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Kurzfassung

Featurespace (Merkmalsraum) ist ein wichtiges Konstrukt in Information Retrieval (IR)
und Machine Learning (ML), in dem die zugrunde liegenden Objekte als Featurevektoren
(Merkmalvektoren) dargestellt werden. Diee bilden die Basis-Infrastruktur für Daten-
modelle, welche den Kern von IR und ML darstellen. Diese Modelle beruhen auf den
Beziehungen zwischen den Featurevektoren, die von Metriken gemessen werden. Metriken,
wie Distanzen und Ähnlichkeiten, werden definiert, um Beziehungen zwischen einzelnen
Vektoren (z.B. Distanz zwischen zwei Punkten) oder zwischen Gruppen von Vektoren
(z.B. Ähnlichkeit zwischen zwei Punktwolken oder zwei Images) widerzuspiegeln. Es
gibt jedoch drei Hauptprobleme in dieser Hinsicht: Das Erste ist, dass hunderte von
Metriken existieren. Jede von diesen misst nur bestimmte Merkmale und Aspekte dieser
Beziehungen, was bedeutet, dass verschiedene Metriken verschiedene Sichtweisen der
Realität repräsentieren. Das kann auch so gesehen werden, dass verschiedene Metriken
unterschiedliche Empfindlichkeiten bzw. Neigungen oder Verzerrungen zu bestimmten
Eigenschaften, Aspekten oder Situationen haben. Diesen Bias zu verstehen erfordert ein
formales Messverfahren dieser Empfindlichkeiten und Neigungen. Ein solches Verfahren,
das eine formale Auswahlmethodik für Metriken möglich macht, um die für einen be-
stimmten Zweck am besten geeignete Metrik zu selektieren ist der erste Beitrag dieser
Dissertation.

Das zweite Problem ist die Effizienz der Berechnung rechenintensiver Metriken, z.B.
solche, die laut ihrer Definition die Abstände zwischen allen möglichen Paaren von Punkten
berücksichtigen. Die Berechnung kann extrem ineffizient sein, insbesondere wenn Objekte
verglichen werden, die aus einer enormen Anzahl von Punkten bestehen. Ein Beispiel
ist die Berechnung der Hausdorff-Distanz zwischen Magnetresonanztomographiebildern
(MRI). Solche Bilder können aus bis zu 100 Mio Punkten (z.B. ganz Körper MRI Images)
bestehen. Das dritte Problem stellen Eigenheiten hochdimensionale Featurespaces dar,
welche als Fluch der Dimensionalität (curse of dimensionality) bekannt sind, z.B. Sparsity
(Spärlichkeit), Distanz Konzentration und Hubness. Diese Schwierigkeiten können auch
als Sonderfälle der Metrik Sensitivität (asymptotische Neigung) betrachtet werden, welche
entstehen, wenn die Dimensionalität ausreichend hoch ist. Einige der State-of-the-Art
Methoden versuchen diese Schwierigkeiten durch die Verwendung von Merkmalsauswahl
(feature selection) zu bewältigen, die die Dimensionalität des Merkmalraums durch die
Beschränkung des Modells auf einer Teilmenge dieser Merkmale verringern, was mit
Informationverlust verbunden ist.
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Bezüglich der der Sensitivität und Verzerrung von Metriken, präsentieren wir in einem
ersten Schritt 20 Metriken für Evakuierung von 3D Medical Image Segmentierung, stellen
für sie binär und fuzzy Definitionen bereit, und präsentieren eine umfassende Diskussion
und Analyse ihrer Eigenschaften und Sensitivitäten. Basierend auf dieser Analyse stellen
wir Richtlinien für die Auswahl von Metriken entsprechend der Eigenschaften der Seg-
mentierungen und des Segmentierungsziels vor. In einem zweiten Schritt schlagen wir
eine neue formale Methode vor, die automatisch auf die Sensitivität und Verzerrung der
Metriken, basierend auf den Eigenschaften der zugrunde liegenden Objekte mit Berück-
sichtigung Benutzereinstellungen, rückschließt. Basierend auf dieser Methode präsentieren
wir ein formales Verfahren zur Auswahl von Metriken für beliebige Evaluierungsprozess.

Für die Effizienz der Berechnung rechenintensiver Metriken stellen wir einen neuen
Algorithmus zur Berechnung der exakten Hausdorff-Distanz zwischen beliebigen Punkt-
wolken in einer Berechnungszeit vor, die linear mit der Größe der Punktwolken zunimmt.
Dieser Algorithmus ist allgemein ohne Einschränkung über die zugrunde liegenden Ob-
jekten, die verglichen werden.

Im Hinblick auf hochdimensionale Datenräume präsentieren wir eine neue Erklärung
für die Ursache von Hubness (curse of dimensionality), die auf Sparsity und Distanzkon-
zentration basiert. Auf der Grundlage dieser Erklärung leiten wir einen neuen Schätzer
für Hubness ab, der auf Statistiken der Distanz zum Schwerpunkt beruht und in linearer
Zeit berechnet werden kann. Wir stellen auch ein Verfahren zur Verringerung des Hubness
anhand dieser Erklärung vor.



Abstract

In machine learning, data mining, and information retrieval, a feature space is an
important construct, in which the underlying objects are represented as feature vectors,
providing the base infrastructure required to build data models, which are the core of
information retrieval and machine learning. These models are based on the relations
between feature vectors, which are measured by metrics. Metrics, such as distances and
similarities, are defined to reflect the relations between the individual feature vectors (e.g.
distance between two vectors) or between groups of these vectors (e.g. similarity between
classifications or images). However, there are three main problems in this regard:

The first is that metrics measure particular aspects of these relations, which means
that different metrics represent different views of reality. This means that different metrics
have different sensitivities and biases to particular properties, aspects, and contexts,
which imposes the demand for bias and sensitivity measurement that enables defining
a formal way for selecting the most suitable metrics depending on the nature of the
underlying objects and the subjective user goals.

Regarding the metric bias and sensitivity, we provide in a first step a comprehensive
discussion and analysis of 20 metrics for evaluating 3D medical image segmentation.
Based on this analysis, we provide guidelines for metric selection based on the properties
of the individual metrics, the properties of the segmentations, and the segmentation goal.
In a second step, we propose a novel formal method that automatically measures the bias
of metrics, based on the properties of the underlying objects and constraints determined
by the user preferences. Based on this method, we provide a formal method for selecting
evaluation metrics.

The second problem is efficiency of calculating computationally intensive metrics, like
the Hausdorff distance, especially when comparing two point sets with huge size. One
example of such a case is calculating the Hausdorff distance between medical volumes
(3D images). Such volumes could have up to 100 Mio 3D pixels, e.g. whole body medical
volumes. Metrics that are defined to calculate distances between all pairs of points
become extremely inefficient when they are applied to such volumes.

Concerning the calculation efficiency of computationally intensive metrics, we propose
a novel algorithm for calculating the exact Hausdorff distance in linear time. This
algorithm is general and does not put any assumption on the underlying objects being
compared.

The third problem is related to the curse of dimensionality, caused by the difficulties in
relation to high dimensional feature spaces, including sparsity, distance concentration, and
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hubness. These difficulties can also be seen as a special case of metric bias (asymptotic
bias) arising when dimensionality is sufficiently increased. Some of the state-of-the-art
methods deal with these difficulties by using feature selection, which aims to reduce the
dimensionality of the feature space by restricting the model to a subset of the features.

Regarding high dimensional spaces, we propose a novel explanation of the cause of
hubness (a common aspect of the curse of dimensionality) that is based on sparsity and
distance concentration. Based on this explanation, we derive a novel estimator of hubness
in linear time using statistics of the distance distribution. We also provide a method for
hubness reduction, based on this explanation.
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CHAPTER 1
Introduction

The terms denoting similarity such as close, similar, near, etc. and those denoting
distance such as different, far, dissimilar, discrepant, etc. are basic concepts. In some
contexts, they are related to perceptual meanings,i.e. can be observed visually, like
the similarity between the faces of two persons. In other contexts, there are no visual
relations, such as the similarity between two problem solutions or two classifications.
Here, the similarity is rather a measure of the qualities two things have in common.
However, similarity is sometimes subjective. To illustrate this, consider the following
question: which figure is more similar to a circle, a square with the same area or a circle
with different radius. The answer could be the square if we are focusing on area and
the circle if we are focusing on the form. This is a simple example. However in practice,
there are numerous aspects that can be considered to decide on the similarity. Metrics
are functions that attempt to measure similarity. Since it is impractical and also not
desirable to consider all aspects at a time, there are numerous metrics. Each of them
considers only a subset of these aspects depending on its definition, which is the reason
behind metrics having different sensitivities, different biases, and different suitabilities to
measure similarity in different applications. The remainder of this section is organized as
follows: In Section 1.1, we discuss in general metrics and metric space. In Section 1.2, we
discuss some aspects relating to feature space as a core framework for machine learning
(ML) and information retrieval (IR). In particular, we link feature space to metric space
and then we link feature space representing image data to feature space representing text
data by introducing an analogy between them. In Section 1.3, we present some of the
difficulties that arise when using metrics in feature spaces of particular properties. In
particular, we present the problem of metric bias and the need for bias measurement; we
we present the efficiency problem of calculating complex metrics in large data collections;
and we present some problems arising when the dimensionality of the underlying data
is very high. Finally in Sections 1.4 to 1.7, we present the research questions and the
contribution of this thesis, we provide general notation that is used throughout the thesis,
and we describe the structure of the thesis.
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1.1 Metrics and Metric Spaces
In this section, we discuss metrics and metric spaces. At first we define the term object
to denote things that metrics are applied on. Then we define the term metric and clear
the relation between distance metrics and similarity measures. Finally we define the
concept of metric space.

Object: Since metrics measure the distance between things, i.e. compare two things,
we define the notation object to denote everything that can be compared.

Definition 1. Object: We denote with object every thing that can be compared using
metrics, i.e. a metric compares two objects.

Objects can be simple, e.g. single points or more complex, e.g. point sets. The
definition of objects can differ depending on the nature of the underlying data and the
complexity of these objects can vary from one domain to another. In some applications,
objects are not simple points, but rather more complex, e.g. a set of points. Examples
are objects represented by point clouds. We will denote such objects as point cloud
objects. A special case of point cloud objects are objects defined on an imaginary grid
such that each point is represented by a grid cell. 2D and 3D images are examples of
this type. We will denote such objects as grid-based objects.

Metric: A metric is a function defined on a set of objects, such that for any pair of
objects in the set, it provides a positive value indicating how far the two objects are from
each other. The following provides a formal definition of a metric.

Definition 2. Metric: Let O be a set of objects with A,B,C ∈ O. Let the function
φ be defined such that φ : O × O → R. The function φ is a metric iff it satisfies the
following properties: (i) non-negativity, i.e. φ(A,B) ≥ 0, (ii) the coincidence axiom, i.e.
φ(A,B) = 0 if and only ifA = B, (iii) symmetry, i.e. φ(A,B) = φ(B,A), and (iv) the
triangle inequality, i.e. φ(A,C) ≤ φ(A,B) + φ(B,C).

Some distance measures do not satisfy all the metric properties above. Examples of
such measures are the pseudo metric [Kel75] if they satisfy all the properties except the
coincidence axiom, and the quasi metrics [Wil31] if they satisfy all the properties except
the symmetry. More information about these and other extended metrics like the semi
metrics and the quasi-pseudo metrics can be found in [Kel75].

There is a large variety of metrics. They differ in their nature, their sensitivities, their
bias, and the aspects they measure. We categorize metrics according to general aspects to
ease understanding them. There are different aspects according to which metrics can be
categorized, e.g. their applications. However, we divide metrics into two types according
to the type of objects they can compare, namely:

• Distance between single points: These metrics measure how close two points are.
Examples of metrics in this category are the p-norms and the cosine similarity
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(note that the cosine similarity in its standard form is not a metric as it does not
satisfy the triangle inequality property and it also violates the coincidence axiom).

• Distance between point clouds: These metrics measure how close (similar) two
point clouds are. These metrics are more complex; they attempt to summarize the
similarity between two sets of points, i.e. to provide one value that summarizes the
similarities among all points in the two sets.

Distance metrics vs. similarity measures: In contrast to distance metrics, simi-
larity measures give information on how close/similar two objects are. There are different
ways to convert a similarity to a distance and vice versa. The most straightforward
method is the inversion, i.e. s = 1/φ, where φ is a distance metric and s is the cor-
responding similarity. However, for some applications, e.g. those where the similarity
has directly to do with human perception, there are other methods that could be more
optimal than the inversion method and shown to be more suitable for perceived similarity,
e.g. the exponential conversion proposed by Shepard [She87] given by

s = e−φ (1.1)

Formally, similarity measures are not metrics because they do not satisfy the coinci-
dence axiom, since two identical objects do not have a zero similarity. They also do not
satisfy the triangle inequality, as given in Definition 2. However, given the similarity is
normalized to have its range in [0, 1], then the conversion to distance using the inverse of
Shepard conversion (Equation 1.1) given by

φ = −log(s) (1.2)

results in a distance that satisfies non-negativity, the coincidence axiom and the triangle
inequality in Definition 2. Assuming the underlying similarity measure is also symmetric,
then its conversion is a metric. Li et al. [LCL+04] provide more information about
similarity normalization and conversion to distance.

Since there is at least one conversion that converts any symmetric similarity to
a distance satisfying the metric properties, we will not differentiate between distance
metrics and similarity measures in this thesis, i.e. we will denote both of them as metrics,
unless otherwise explicitly stated.

Metric space: A set of objects X together with a metric φ build a metric space. One
example is the 3D Euclidean metric space. In this case X is the set of all 3D points
and φ is the Euclidean distance between each point pair (the length of the straight line
between the two points).

Definition 3. Metric space: The ordered pair (O,φ) consisting of a set of objects O and
a metric φ defined on O ×O is called a metric space.
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1.2 Feature Space

Feature space is one of the most important concepts of machine learning that provides a
framework for representing objects, e.g. documents or images.

In this section, we discuss feature space to highlight some important related aspects.
In the following, we define some of the core elements and concepts of feature space
[WF05].

Features: A feature is a measurable property, quality, aspect, or characteristic of an
object. Features can be symbolic (e.g. color) or numeric (like height). However, they can
always be represented as numeric values by applying a data preparing step like encoding
and normalization. Since data preparation is not in the scope of this thesis, we always
assume numerical features, i.e. each feature is always represented by a single numeric
value.

Feature space: In machine learning, data mining, and information retrieval applica-
tions, objects are represented using their features. Since the features can be numerous
and/or some of them can be less relevant than others, a data preparation step called
feature selection can be used to select a subset of the features to be considered. Once
these features are known, each of the underlying objects is represented by a combination
of these features. The union of all these object representations forms a d-dimensional
vector (d is the number of features selected) called feature vector, which can be modeled
as a hyperspace called feature space.

1.3 Difficulties in Using Metrics in Feature Space

In this section we describe some of the difficulties arising when metrics are used with
feature spaces, to which we present solutions in this work. The solved difficulties are in
three directions, namely selecting the most suitable metric for a feature space, efficiently
calculating computationally intensive metrics when the size of the feature space (number
of points and/or dimensionality) is huge, and addressing drawbacks related to hubness
when the dimensionality of the feature space is high.

1.3.1 Metric Bias and Metric Selection

There are already dozens of metrics metrics used information retrieval, and more keep
appearing [ACMS12]. Most researchers choose metrics (e.g. evaluation measures) arbi-
trarily or according to their popularity [ACMS12]. A poorly defined metric may lead to
inaccurate results, e.g. selecting suboptimal models when comparing the performance of
classifiers [FWM+09] [SC12] [CK97] [PRVtHR08]. Although our research on metric and
metric bias is general, i.e. applicable to various domains, we concentrate in our analysis
on effectiveness metrics, i.e. metrics used to compare objects, e.g. classifications, with
reference objects, e.g. ground truth.

4



Radlinski et al. [RC10] show that the relative system improvement achieved is
decreasing, which results in sensitivity and fidelity of evaluation metrics becoming
increasingly critical. When improvements are small, metrics with high sensitivity are
needed to measure small but real improvements and also with high fidelity to distinguish
between improvements based on user preferences and improvements resulting from biased
relevance judgments.

Blanco et al. [BZ11] show experiments demonstrating how random perturbation
could lead to significant improvements measured by the standard IR evaluation methods;
they warned researchers about misinterpretation and stressed the need for standard and
reliable evaluation methodology.

The following are some examples of metric sensitivities from the literature when
metrics are used for comparing images: Hausdorff distance is very sensitive to noise and
least squares based evaluation methods are very sensitive to outliers [GJC01]. Mutual
information doesn’t utilize spatial information inherited in images because only voxel
relationships are considered but not the neighborhoods [RTR+04]. The baseline level
of a metric is a property that gives how capable is a metric to discover the amount
of agreement caused by chance. The baseline level should ideally be zero, since a
random classifier should ideally have a zero score. Information theoretical measures
have a non-convergent baseline which depends on the ratio between the number of
data points and the number of classes. Therefore this class of measure needs chance
correction [VEB09]. Commonly used measures (precision, recall and F-measures) are
biased and don’t consider the level of chance [Pow11]. Choosing evaluation metrics
is very important and application-dependent; when evaluating imbalanced datasets,
the metric choice is not obvious [FWM+09]. Metrics have different properties with
respect to their correlation with user satisfaction criteria and their ease of interpretation
[BV00]. Benhabiles et al. [BLVD10] validated 250 automatic segmentations against their
corresponding ground truth segmentations using four different evaluation metrics. The
results were then compared with manual ratings from 40 human observers. They found
that the correlations between the ranking based on the manual ratings and the rankings
based on the evaluation metrics vary between 30% and 80% depending on the metric
used.

There is still no real scientific approach to efficiently select the most suitable evaluation
metric for a specific task and/or a specific data set. Investigating metrics would help
researchers to better understand them and help companies and stakeholders to save effort
and time reaching optimal systems [PRVtHR08].

1.3.2 Computationally Intensive Metrics

In Section 1.1, we have divided metrics into two categories depending on the nature of
the objects they can compare, namely metrics that measure the distances between two
points and metrics that measure the distance between point sets.

Metrics of the latter category could be computationally intensive. The runtime of
calculation depends on two factors, namely (i) the point set size, and (ii) the definition
of the metric, i.e. the way it performs the comparison. While some metrics are not com-
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putationally expensive. e.g. because they are based on basic cardinalities (Section 1.6.4),
i.e. the overlap between the point sets, some other metrics are computationally intensive,
since they attempt to compare all point pairs in the two point sets being compared.

One example of computationally intensive metrics is the Hausdorff distance (HD),
which is defined as the maximum of the minimums of the distances from the first point set
to the second one. To straightforwardly compute the HD between the point sets X1 and
X2, for each point xi ∈ X1, the minimum distance to X2, i.e. min(d(xi, X2)), should
be calculated. The HD is then the maximum of these minimums. The straightforward
computation has thus a runtime complexity of O(n2), where n is the point set size.
This runtime complexity becomes a problem when n is significantly large. Consider for
example comparing two 3D medical images, e.g. magnetic resonance images (MRI). A
whole body MRI can contain many millions of voxels (grid cells). In such cases, the
direct computation of the HD is not practical.

Several approaches have been proposed that aim to overcome the computational
complexity of the Hausdorff distance, either by finding an efficient approximation or
by efficiently computing the exact HD for special types of objects like polygons, line
segments, or special curves.

In this work, we propose a novel general algorithm for computing the exact Hausdorff
distance between arbitrary point sets in linear time in terms of the point set size.
Furthermore, we provide an efficient method for computing the average distance between
two image segmentations that makes use of the nature of image segmentations being
dense point sets.

1.3.3 High Dimensional Space

When the dimensionality of the feature space is significantly high, e.g. when the number
of features is large, another category of difficulties arises when applying metrics. The
curse of dimensionality is a common term denoting phenomena that are related to high
dimensional feature space. Distance concentration [RNI10] is one of these phenomena.
It denotes the phenomenon in high dimensional space, in which all pairwise distances
tend to be equal. Distance concentration has been studied intensively, e.g. in [BGRS99]
[HAK00] [AHK01] [Fra08] [FWVM07] [Koe00] [RS05] [ST83].

Another term, called hubness, is also related to the curse of dimensionality. Hubness
denotes a phenomenon in relation to the neighbor neighbor (NN) algorithms when applied
to high dimensional feature space (the formal definition of hubness is in Section 4.1).
Hubness is a characteristic of the structure of the NN relations in a metric space.
According to this characteristic, there are objects that are frequently found as NN of
other objects; these objects are called hubs. On the other hand, there are objects that
are rarely or never found as NN of other objects; such objects are called anti-hubs or
orphans. Some researchers link hubness to distance concentration, while others consider
hubness a matter of density gradient or boundary in finite datasets.

Hubness has a negative effect on the performance of information retrieval systems,
for example music retrieval [FSS12], because objects represented by hubs are far more
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frequently retrieved than other objects although they may have low similarity to the
query object.

In contrast to distance concentration, hubness has not been deeply studied [RNI10].
In this work, we provide a novel explanation for the cause of hubness based on data
sparsity and distance concentration in high dimensional spaces. In contrast to other
approaches, our explanation does not make assumptions about the data distribution or
distance metric. Furthermore, it generalizes other models, and explains observations
and results documented in the literature. Based on this explanation, we propose a novel
hubness indicator that predicts the hubness, given a data set. This indicator is calculated
in linear time in terms of the dataset size, which is efficient compared with the basic
hubness measure that calculates the kNN-lists of all points.

1.4 Research Questions
The general focus of this work are the difficulties that arise when measuring distance in
feature space under particular conditions, namely when distance metrics are biased to
some properties of the feature space, when the feature space is very large such that the
distance computation is no longer efficient, or when the dimensionality of the feature
space is high such that distance measures are subjects to the curse of dimensionality. In
particular, the research questions are in three research areas:

(I) Metric bias and metric selection: This research area deals with the bias of
evaluation metrics, when comparing objects represented by point sets in the feature
space, i.e. the tendency of metrics to penalize or reward particular properties of the
objects being compared and the degree of suitability of a particular metric to measure a
particular quality. In this scope, the research aims to answer the questions, (1) how can
metric bias be measured, and (2) how to formally select the most suitable metric(s) for
evaluating a set of classifications, taking into consideration the classification task and
the user preference?

(II) Computationally intensive metrics: this research area deals with the efficiency
problem of calculating some distance metrics between two point sets, when the size of
the point sets is huge. Distance metrics coming into consideration are computationally
intensive metrics. In particular, these are metrics that attempt to calculate distances
of all point pairs in the two point sets, e.g. the Hausdorff distance. This complexity
becomes a problem when the set size is huge. Since the Hausdorff distance is based on
finding the maximum of the minimum (i.e. for each point in the first set, the minimum
distance in the second set should be found), it is of importance to find an efficient way
to calculate such complex metrics.

(III) Hubness: this research area deals with the hubness problem (a common phe-
nomenon of the curse of dimensionality), which arises when the dimensionality of the
feature space is significantly increased. More specifically, this research area deals with
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the questions: (1) what is the cause that leads to hubness emergence in high dimensional
feature space, (2) how can we predict the probability of hubness emergence, i.e. how
to measure the tendency of a particular data set to produce hubness, and (3) what are
possible strategies to reduce the tendency to hubness?

1.5 Contribution
The contribution of this work is summarized as follows in relation to the research questions
above:

• In the research area (I) metric bias and metric selection, we provide a comprehensive
analysis of evaluation metrics of 3D medical image segmentation and conclude this
analysis with guidelines for selecting evaluation metrics for 3D image segmentation
based on the properties of the metrics and the properties of the segmentations.
Then, we generalize the results of this analysis to evaluation metrics for arbitrary
domains, providing a novel formal method for measuring the bias of a given metric
m to a particular property, based on the correlation between the rankings produced
by the metric m and the rankings produced by the other metrics. Based on
this method, we propose a formal general framework for metric selection. These
contributions have been published in [THJ14b] and [TH15b].

• In the research area (II) computationally intensive metrics, we propose a novel
efficient algorithm for calculating the exact Hausdorff distance in linear time in
terms of the point set size. The algorithm is efficient in terms of speed and memory,
and significantly outperforms state-of-the-art methods. Furthermore, it is general,
i.e. it can be applied to arbitrary point sets. This algorithm has been published in
[TH15a].
Furthermore, we provide an efficient algorithm for computing the average dis-
tance between two image segmentations that makes use of the nature of image
segmentations being dense point sets.

• In the research area (III) hubness, we propose a formal explanation of the cause
of hubness, based on the sparsity and distance concentration in high dimensional
space. Based on this explanation, we propose a hubness indicator that predicts
the tendency to hubness of a given data set in linear time without calculating the
nearest neighbor lists of all points. Furthermore, we suggest two novel methods
for hubness reduction, based on this formal explanation. These findings have been
submitted in [THR15].

1.6 Formal Definitions and Notations
In this section we provide formal definitions, constructs, and notation that hold throughout
the thesis to ensure consistency.
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1.6.1 Metric and Metric Space

We provide definitions related to metrics and metric space. Some of these definitions,
namely Definitions 1, 2, and 3, have already been defined in Section 1.1 and are restated
here.

Definition 1. Object: We denote with object every thing that can be compared using
metrics, i.e. a metric compares two objects.

Objects can be simple, e.g. single points or more complex, e.g. point sets. Images are
also objects, since they are a special case of point sets. Objects can also be classifications
or clusterings. We will use the term object when we talk about metrics in general.

A metric is a function defined on a set of object, such that for any pair of objects
in the set, it provides a positive value indicating how far the two objects are from each
other. The following provides a formal definition of a metric.

Definition 2. Metric: Let O be a set of objects with A,B,C ∈ O. Let the function
φ be defined such that φ : O × O → R. The function φ is a metric iff it satisfies the
following properties: (i) non-negativity, i.e. φ(A,B) ≥ 0, (ii) the coincidence axiom, i.e.
φ(A,B) = 0 if and only ifA = B, (iii) symmetry, i.e. φ(A,B) = φ(B,A), and (iv) the
triangle inequality, i.e. φ(A,C) ≤ φ(A,B) + φ(B,C).

Definition 3. Metric space: The ordered pair (O,φ) consisting of a set of objects O and
a metric φ defined on O ×O is called a metric space.

Depending on the nature of the objects in O, metric spaces can be of different types.
In this work, we are mainly interested in metric spaces defined on top of feature spaces,
In particular, we will deal with two types of metric spaces, namely when the objects are
vectors (e.g. text documents) and point sets (e.g. images, graphs). In the following, we
define these two types of metric space.

Definition 4. Vector metric space is a special case of the metric space according to
Definition 2, in which the underlying objects are represented by vectors in the hyperspace.
Let (X,φ) be a metric space defined on the point set X = {x1, ..., xn} with xi ∈ Rd
and the distance function φ : X × X → R. Without loss of generality we assume
that X is normalized to have its mean at the origin. Unless it is explicitly specified,
we will use ‖., .‖ to denote distance in general and ‖., .‖p to denote the p-norms, i.e.

‖xi, xj‖p = (
d∑

m=1
|xim − xjm|p)

1
p is the distance between the two points xi and xj and

‖x‖p = (
d∑

m=1
|xm|p)

1
p is the distance of the point x to the mean.

Definition 5. Point set metric space is a special case of the metric space according
to Definition 2, in which the underlying objects are represented by point sets in the
(hyper)space. Let X = {x1, ..., xn} with xi ∈ Rd be the set of all points in the d-hyperspace,
and let P(X) be the powerset (the set of all subsets) of X. The point set metric space is
defined as (P(X), φ), where φ is a metric defined as φ : P(X)× P(X)→ R.
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1.6.2 Evaluation process

In this thesis, only one type of evaluation will be handled, namely the evaluation based
on comparing objects with ground truth. We restate the definition of the evaluation
process defined in Section 1.6, which will be considered in this chapter.

Definition 6. Evaluation in the sense of this work: Let O = {o1, ..., on} be a set of
objects according to Definition 1 being evaluated. Let Ô = {ô1, ô2, ...} be the set of ground
truth objects. The evaluation is performed by comparing each object oi ∈ O against its
corresponding ground truth object ôj ∈ Ô. Note that |O| is not necessarily equal to |Ô|
because a ground truth object normally corresponds to more than one object.

1.6.3 2D and 3D Image Space

An image can be thought of as a set of points defined on a grid, i.e. the points are
represented by grid cells, which we call pixels. Images can be 2-dimensional (2D) or
3-dimensional (3D). 3D images are also called volumes, and the 3D-pixels are called
voxels. The metric space defined on a set of images is a special cases of the metric space
according to Definition 3, in which the objects are images, and the metrics coming into
consideration are only those according to Definition 5. Since 2D images are a special case
of 3D images, we will only provide a definition for a 3D image, which implicitly holds for
a 2D image as well.

Definition 7. A 3D binary image (volume) is represented by the ordered pair (X,S),
where:

• X = {x1, ..., xn} is a point set with |X| = w · h · d, where w, h and d are the
width, height and depth of the grid on which the volume is defined, such that each
point x ∈ X corresponds to a grid cell (voxel). We will call w, h and d the grid
dimensions and w · h · d the grid size.

• S is a classification that assigns each grid cell (each point x ∈ X) to one of two
classes, either the foreground or the background, such that S builds a partition
S = {S1, S2} on X represented by the assignment function f i(x) that provides
the membership of the grid cell x in the subset Si, where f i(x) = 1 if x ∈ Si and
f i(x) = 0 if x /∈ Si.

The classification S can also be seen as a two class image segmentation. We denote
S1 by the foreground and S2 by the background. We also define the term segment as the
union of all voxels of the foreground.

Note that binary images are a special case of fuzzy images, in which the assignment
function f has the range {0, 1}. This definition can be generalized to the fuzzy case by
redefining the range of f to be [0, 1] representing the degree of membership of a voxel to
a particular class.

10



Definition 8. A fuzzy 3D image (volume) is an image according to Definition 7, in which
the assignment function f i(x) is redefined to have its range in [0, 1], where f i(x) ∈ [0, 1]
represents the degree of membership of the grid cell x in the subset Si.

1.6.4 Basic Cardinalities of the Confusion Matrix

Many of the metrics used for comparing 3D image segmentations can be derived from
the four basic cardinalities of the so-called confusion matrix, namely the true positives
(TP ), the false positives (FP ), the true negatives (TN), and the false negatives(FN).
We define these cardinalities for the binary as well as the fuzzy case.

Basic cardinalities for binary segmentation: For two binary classifications that
assign each element in a sets to one of two classes, in our case segmentations according
to Definition 7, we define the four basic cardinalities (also called the confusion matrix),
representing the overlap that results based on the agreement/disagreement of the assign-
ments of the two classifications (segmentations). The four cardinalities are TP (true
positive), FP (false positive), FN (false negative), and TN (true negative).

Definition 9. Let Sg and St be two segmentations according to Definition 7, with
assignment functions fg and ft respectively. Let Sg denote the ground truth segmentation
and St denote the segmentation being evaluated. The four cardinalities are given by the
sum of agreement mij between each pair of subsets i ∈ Sg and j ∈ St. That is

mij =
|X|∑
r=1

f ig(xr)f
j
t (xr) (1.3)

where TP = m11, FP = m10, FN = m01, and TN = m00.

Table 1.1 shows the confusion matrix of the partitions Sg and St.

Table 1.1: Confusion matrix comparing two segmentations, Sg as the ground truth
segmentation and St as the test segmentation

Subset S1
t S2

t (= S1
t )

S1
g TP (m11) FP (m12)
S2
g (= S1

g ) FN(m21) TN(m22)

Generalization to fuzzy segmentation: Intuitively, one favorable way to generalize
the metrics based on the basic cardinalities to the fuzzy is to generalize the cardinalities
of the confusion matrix to the fuzzy case. To this end, the main task is to calculate the
agreement between two segmentations, where the assignments of voxels to segments are
probabilities (fuzzy). It is common for this purpose to use a suitable triangular norm
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(t-norm) to calculate the agreement between two fuzzy assignments [KPM00][Cam07].
Given two probabilities p1 and p2 representing the memberships of a particular element
(voxel) to a particular class (segment) according to two different classifiers (segmenters),
we use the min(p1, p2) as a t-norm as the agreement between the two classifiers. That
is, we define the agreement function g : [0, 1]× [0, 1]→ [0, 1] that models the agreement
on a particular voxel being assigned to a particular segment as g(p1, p2) = min(p1, p2).
This also means that the agreement on the same voxel being assigned to the background
is given by g(1− p1, 1− p2). Intuitively, the disagreement between the segmenters is the
difference between the probabilities given by |p1− p2|. However, since the comparison
is asymmetrical (i.e. one of the segmentations is the ground truth and the other is the
test segmentation), we consider the signed difference rather than the absolute difference
as in Equations 1.5 and 1.7. The four cardinalities defined in Equation 1.3 can be now
generalized to the fuzzy case as follows:

Definition 10. Let Sg and St be two segmentations according to Definition 8, with
assignment functions fg and ft respectively. Let Sg denote the ground truth segmentation
and St denote the segmentation being evaluated. The four fuzzy cardinalities of the
confusion matrix are given by

TP =
|X|∑
r=1

min(f1
t (xr), f1

g (xr)) (1.4)

FP =
|X|∑
r=1

max(f1
t (xr)− f1

g (xr), 0) (1.5)

TN =
|X|∑
r=1

min(f2
t (xr), f2

g (xr)) (1.6)

FN =
|X|∑
r=1

max(f2
t (xr)− f2

g (xr), 0) (1.7)

Note that in Equations 1.4 to 1.7, f ig(xt) and f jt (xt) are used in place of p1 and p2
since each of the functions provides the probability of the membership of a given point
in the corresponding segment, and in the special case of crisp segmentation, they provide
0 and 1.

Other norms have been used to measure the agreement between fuzzy memberships
like the product t-norm, the L-norms, and the cosine similarity. We justify using the min
t-norm by the fact that, in contrast to the other norms, the min t-norm ensures that the
four cardinalities, calculated in Equations 1.4 to 1.7, sum to the total number of voxels,
i.e. TP + FP + TN + FN = |X| which is an important requirement for the definition of
metrics. For example, applying other norms that do not satisfy this property to metrics
based on the confusion matrix may lead to undesirable effects like negative metric values
or perfect match values less/greater than one.
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1.7 Structure of the Thesis
This thesis is structured according to the research areas of the research questions, that is
each research area is addressed in a chapter. The remainder of the thesis is organized as
follows. In Chapter 2, we cover metric bias and metric selection methods. In Chapter 3,
we present a novel efficient algorithm for calculating the exact Hausdorff distance between
two arbitrary point sets in linear time as well as an efficient method for calculating the
average distance between image segmentations. In Chapter 4, problems related to high
dimensionality of feature space are analyzed. Here, we introduce a novel explanation of
hubness, a novel hubness indicator, as well as strategies for hubness reduction, based on
the explanation proposed.
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CHAPTER 2
Metrics and Metric Bias

2.1 Introduction

Metric bias and sensitivity are a challenge in choosing evaluation metrics. In this chapter,
we address the problem of measuring metric bias and selecting evaluation metrics. We do
this in two related steps: In the first step, we address selection of evaluation metrics for
a specific domain, namely medical 3D image segmentation by providing comprehensive
analysis of the properties of 20 evaluation metrics, which is concluded by metric selection
guidelines based on the properties segmentations and biases of the individual metrics.
In the second steps, metric selection is generalized by providing a domain-independent
framework for metric selection that generalizes the analysis provided in the first step by
systematically inferring metric bias for a particular dataset based on the properties of
the dataset.

Sensitivity to a particular property could prevent the discovery of particular errors
or it could over/underestimate them. For example, when evaluating classifications,
metrics can be sensitive to class imbalance, number of classes, etc. When evaluating
image segmentation, metrics can be sensitive to outliers, number of segments, boundary
complexity, etc. Another type of sensitivity is the inability of identifying classification
caused by chance. This is related to the baseline value of the metric, which should ideally
be zero when the classification is done at random, indicating a zero score [VEB10]. In
Section 1.3.1, we introduced the need for a formal way for selecting evaluation metrics.
Metric sensitivities are a challenge in choosing evaluation metrics.

Medical image segmentation, as an example of classification, suffers from a lack of
standardization of evaluation methodology, and the absence of a formal way for selecting
evaluation metrics. In medical image segmentation, an image (e.g. an MRI Volume) is
automatically segmented, i.e. each of its pixels/voxels is either assigned or not assigned
to a particular class, e.g. a tumor. There are different quality aspects in medical image
segmentation according to which types of segmentation errors can be defined. Metrics
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are expected to indicate some or all of these errors, depending on the data and the
segmentation task.

Based on four basic types of errors (added regions, added background, inside holes
and border holes), Shi et al. [SNL13] described four types of image segmentation errors,
namely the quantity (number of segmented objects), the area of the segmented objects,
the contour (degree of boundary match), and the content (existence of inside holes and
boundary holes in the segmented region).

Fenster et al. [FC05] categorized the requirements of image segmentation evaluation
into accuracy (the degree to which the segmentation results agree with the ground truth
segmentation), the precision as a measure of repeatability, and the efficiency which is
mostly related to time. Under the first category (accuracy), they mentioned two quality
aspects, namely the delineation of the boundary (contour) and the size (volume of the
segmented region). The alignment, which denotes the general position of the segmented
object, is another quality aspect, which could be of more importance than the size and
the contour when the segmented objects are very small.

Contributions: This part of the thesis investigates metric properties, metric sensitivi-
ties, and metric bias and provides a formal framework for selecting evaluation metrics for
image segmentation. This is established in two main steps:

• A comprehensive investigation of a set of metrics for evaluating 3D medical image
segmentation, namely 20 evaluation metrics that have been identified based on
a literature review used for the VISCERAL Benchmarks [LMMH13]. This work
has been published in [TH15b]. In particular, the work can be summarized by the
following:

– It provides an overview of 20 evaluation metrics for volume segmentation,
selected based on a literature review. Cases where inconsistent definitions
of the metrics have been used in the literature are identified, and unified
definitions are suggested.

– It provides fuzzy definitions for all selected metrics. This allows uncertainty
in medical image segmentation to be taken into account in the evaluation.

– It provides comprehensive analysis of the properties and biases of these metrics,
based on the correlation among them under different conditions, and by means
of empirical examples. Based on this analysis, it provides guidelines for
selecting a subset of these metrics.

– It provides an efficient open source implementation of all 20 metrics that out-
performs state-of-the art tools in terms of computation time and memory usage,
especially when used for comparing huge 3D medical image segmentations.

• A general formal method for measuring metric bias and a framework for selecting
evaluation metrics for arbitrary domains. In particular, we provide a generalization
of the metric selection method, published in [THJ14b], which is restricted to image
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segmentation. For this, we propose a novel method for inferring metric bias to
the properties of the objects being evaluated, based on which we define a general
framework for automatic selection of evaluation metrics for arbitrary evaluation
task. However, this method has been demonstrated and tested using only 3D
medical segmentations. Testing using other domains is recommended as future
work.

Chapter organization: The remainder of this chapter is organized as follows. In
Section 2.2, we present related work investigating metric properties or providing research
on choosing evaluation metrics. In Section 2.3, we present research results done on evalu-
ation of 3D medical image segmentation. In particular, we present in Section 2.4 a short
literature review of 20 evaluation metrics used for evaluating 3D medical segmentation
(definitions and algorithms for calculating these metrics are presented in Appendix A).
In Section 2.5, we provide an in-depth analysis of the 20 metrics, and a discussion of
their properties, bias, and utilities as well as guidelines for selecting a subset of these
metrics. In Section 2.7, we present a formal method for measuring metric bias based on
correlation among metrics as well as a framework for automatically selecting the most
suitable evaluation metric(s), given a set of objects and an evaluation task. Finally, we
conclude the chapter in Section 2.8.

2.2 State-of-the-Art

In this section, we present some related work, either studying metric properties to provide
guidelines for choosing metrics or providing standardization of evaluation methodologies
and evaluation tools.

2.2.1 Formal Foundation

Huang et al. [HL05] establish a formal framework for comparing two different measures
and introduce two criteria for formal comparison of the goodness of evaluation metrics,
namely the degree of consistency and the degree of discriminancy. To briefly describe this
framework, consider the task of classification evaluation, where classifiers are evaluated
by comparing automatic classification with ground truth classifications using metrics.
The intuitive idea behind this framework is that if two measures f and g are used to
evaluate two classifiers a and b, then it is desirable that at least f and g are consistent
with each other, that is, when f stipulates that classifier a is (strictly) better than b,
then g will not say b is better than a. Further, if f is more discriminating than g, we
would expect to see cases where f can tell the difference between classifiers a and b but g
cannot, but not vise versa. In particular, considering a sufficient number of classifications
corresponding to the classifiers a and b, the degree of consistency (DoC) counts the
cases where the metrics f and g agree on the goodness of the classifiers a and b, i.e.
f(a) > f(b) ⇐⇒ g(a) > g(b). Once the DoC of two metrics reaches a satisfying level,
then one of the metrics is selected depending on the degree of discriminancy (DoD),
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which in contrast counts the cases where f can distinguish between the two classifiers,
but g cannot do. If for example Doc(f, g) > 0.5 and DoD(f, g) > 1, then the metric
f is better than g for evaluating these classifiers. Applying these criteria, Huang et al.
showed theoretically and empirically that AUC (Area Under Curve) is a better measure
than accuracy in evaluating the performance of classifiers. They also showed that AUC
produces a better classifier ranking and and gives better results when used in combination
with a statistical analysis like ANOVA.

Busin et al. [BM13b] used axiometrics to define a abstract formal notation based
on the concepts of measure, measurement, and similarity. They used these notations to
define a set of axioms that should be satisfied by an effectiveness metric, i.e. these axioms
are used as criteria to evaluate metrics. They claimed this axiom set to be extendable
and the notation to fit any effectiveness metric. Other researchers [AGAV09] [VEB10]
[Mei05] [WW07] also applied formal constraints based on axiometry to compare and
judge evaluation metrics depending on the grade of satisfaction of these constraints. Since
these axioms are of an abstraction level that is not in focus of this thesis, we forgo listing
them in this place.

All these approaches deal with the problem only from a theoretical axiometrical point
of view without taking into account the classification goal and the nature and properties
of data being classified. To explain this, consider the sensitivity to outliers as an example.
Using these approaches, the sensitivity of the metrics can be recognized, but this alone is
not sufficient to select an effectiveness metric for a particular data set because of two
reasons: (i) These approaches do not consider the level of outliers in the underlying
particular data set, and (ii) they do not consider the evaluation goal, i.e. whether or not
the outlier sensitivity is desirable for this particular evaluation goal. On the contrary,
the novel approaches proposed in this chapter provide a way for metric selection that
takes into consideration both of the underlying data set and the evaluation goal.

2.2.2 Bias and Sensitivity of Metrics

Metric bias is the tendency of a particular metric to reward/penalize objects because of
particular characteristics (properties) they have. An example of bias is the sensitivity
of some metrics to class imbalance, i.e. classification where one class vastly exceeds the
other classes in size. Fatourechi et al. [FWM+09] proposed a framework based on Desired
Region of Operation (DROP) for selecting the best evaluation metric among a set of
metrics for evaluating classification algorithms with an imbalanced dataset. They stated
that when datasets are imbalanced, then care should be taken in evaluating classification
algorithms.

Sakai [Sak06] proposed a method for evaluating evaluation metrics by measuring their
sensitivity using Bootstrap Hypothesis Tests, and used this method in comparing seven
evaluation metrics, namely AveP (average precision) nCG1000 (normalized cumulative
gain at cut-off 1000), nDCG1000 (normalized discounted cumulative gain at cut-off 1000),
Q−measure, G−AveP (the geometric mean of AveP ), G−Q−measure (the geometric
mean of Q−measure), and PDoc1000 (the precision at cut-off 1000). They concluded that
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Qmeasure, nDCG1000, and AveP are very sensitive and PDoc1000 is very insensitive
while nCG1000, G−AveP , and G−Q−measure lie in the middle.

Buckley et al. [BV00] presented a way of estimating the stability of particular
measures. They negated the belief that commonly used evaluation measures are equally
reliable. Sakai [Sak07] provided comparisons between metrics depending on the sensitivity
and stability using the Voorhees/Buckley swap method [VB02]. All these papers lack
generality because they are methods designed either for specific metrics or for specific
metric properties. Powers [Pow11] showed that commonly used measures (precision,
recall and F-measures) are biased and don’t consider the level of chance, that is they do
not consider agreement caused by chance, e.g. they would measure an accuracy of 0.5
for a random classifier, whereas such a classifier should be given a zero score. Powers
introduced the concepts of informedness and markedness as measures for the probability
that a classification is caused by chance. This concept is based on betting as metaphor,
that is pure guessing will leave a punter with nothing in the long run, while a punter with
a certain knowledge will win every time. Based on this concept, he recommended using
ROC (Receiver Operating Characteristic) curve as a less biased measure. Bradley [Bra97]
also recommended using ROC and the area under the curve (AUC) as a measure of
accuracy of machine learning algorithms because of its independence of decision threshold
and its invariance to a prior class probabilities. Vinh et al. [VEB09] [VEB10] provided a
study on using information theoretical measures for comparing clustering. They addressed
the sensitivity of these metrics when the set size is small compared to the number of
clusters and emphasize the need for chance adjusting in this case. Wallach [Wal06]
recommends information theoretical measures like mutual information and variation of
information for evaluating classifiers and shows that using classic precision, recall and
accuracy could be misleading when comparing classifiers.

2.2.3 Metric Standardization and Tools

In the text retrieval domain, the TREC_EVAL tool1 provides a standardization of
evaluation that provides a standard reference to compare text retrieval algorithms.

Gerig et al. [GJC01] proposed a tool (Valmet) for evaluation of medical volume
segmentation. In this tool only five metrics (volumetric overlap, probabilistic distance,
Hausdorff distance, average distance, and interclass correlation) are implemented. There
are important metrics, like information theoretical metrics as well as some statistical
metrics like Mahalanobis distance, and metrics with chance correction like Kappa and ad-
justed Rand index, that are not implemented in the Valmet evaluation tool. Furthermore,
this tool doesn’t provide support for fuzzy segmentation. The ITK Library2 provides a
software layer that supports medical imaging tasks including segmentation. The ITK
Library provides evaluation metrics that are mostly based on distance transform filters
[MQR03]. However, this implementation has the following shortcomings: First, the ITK
Library doesn’t implement all metrics identified in a literature review (Chapter 2.4) to

1More about TREC_EVAL under http://trec.nist.gov/trec_eval/
2National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) www.itk.org
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be relevant for evaluating medical segmentation. Second, since most of the metrics are
based on distance transform filters, they are not scalable to increasing volume grid size,
that is they are not efficient in terms of speed as well as memory used when the grid size
is increased.

To illustrate the importance of a standard evaluation tool for medical image segmen-
tation, we show in Section A.9 examples of metrics with more than one definition in
the literature leading to different values, but each of them is used under the same name.
There is a need for a standard evaluation tool for medical image segmentation which
standardizes not only the metrics to be used, but also the definition of each metric.

2.3 Evaluation of Medical Image Segmentation

Medical image segmentation is an important image processing step in medical image
analysis. Segmentation methods with high precision (including high reproducibility) and
low bias are a main goal in surgical planning because they directly impact the results,
e.g. the detection and monitoring of tumor progress [ZWB+04] [ZWKW04] [KMVW97].
Warfield et al. [WWG+99] denoted the clinical importance of better characterization of
white matter changes in the brain tissue and showed that particular change patterns in
the white matter are associated with some brain diseases. Accurately recognizing the
change patterns is of great value for early diagnosis and efficient monitoring of diseases.
Therefore, assessing the accuracy and the quality of segmentation algorithms is of great
importance.

Medical 3D images are defined on a 3D grid that can have different sizes depending on
the body parts imaged and the resolution. A formal definition of 3D image segmentation
is provided in Section 1.6.3. The grid size is given as (w × l× h) denoting the width, the
length, and the height of the 3D image. Each 3D point on the grid is called a voxel. Given
an anatomic feature, a binary segmentation can be seen as a partition that classifies the
voxels of an image according to whether they are part or not of this anatomic feature.
Examples of anatomic features are white matter, gray matter, lesions of the brain, body
organs and tumors. Segmentation evaluation is the task of comparing two segmentations
according to Definition 6, i.e. by comparing the segmentation being evaluated with its
corresponding ground truth segmentation.

Medical segmentations are often fuzzy meaning that voxels have a grade of membership
in [0, 1]. This is e.g. the case when the underlying segmentation is the result of averaging
different segmentations of the same structure annotated by different annotators. Here,
segmentations can be thought of as probabilities of voxels belonging to particular classes.
One way of evaluating fuzzy segmentations is to threshold the probabilities at a particular
value to get binary representations that can be evaluated as crisp segmentations. However,
thresholding is just a workaround that provides a coarse estimation and is not always
satisfactory. Furthermore, there is still the challenge of selecting the threshold because
the evaluation results depend on the selection. This is the motivation for providing
metrics that are capable of comparing fuzzy segmentations without loss of information.
In this work, we provide fuzzy definition for each of the metrics analyzed in this section.
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2.4 Evaluation Metric Overview
In this section, we present a set of 20 metrics for validating 3D medical image segmentation
that were selected based on a literature review of papers in which 3D medical image
segmentations are evaluated. Only metrics with at least two references of use are
considered. An overview of these metrics is given in Table 2.1. Depending on the
relations between the metrics, their nature and their definition, we group them into
six categories, namely overlap based, volume based, pair-counting based, information
theoretic based, probabilistic based, and spatial distance based. Column “category” in
Table 2.1 assigns each metric to one of these categories. The aim of this grouping is to
first ease discussing the metrics in this paper and second to enable a reasonable selection
when a subset of metrics is to be used, i.e. selecting metrics from different groups to
avoid biased results. In the following, we shortly describe each of these categories:

• Spatial overlap based (Category 1): These are metrics defined based on the
spatial overlap between the two segmentations being compared, namely the four
basic overlap cardinalities (TP, TN, FP, FN) described in Definition 9.

• Volume based (Category 2): Metrics from this category are based on comparing
the volume of the segmented region, i.e. they aim to measure the number of voxels
segmented compared with the number of voxels in the true segmentation (ground
truth).

• Pair counting based (Category 3): Metrics from this category are based on(n
2
)
tuples that represent all possible voxel pairs in the image. These tuples can

be grouped into four categories depending on where the voxels of each pair are
placed according to each of the segmentations being compared. These four groups
are Group I: if both voxels are placed in the same segment in both segmentations.
Group II: if both voxels are placed in the same segment in the first segmentation
but in different segments in the second. Group III: if both voxels are placed in
the same segment in the second segmentation but in different segments in the first.
Group IV: if both voxels are placed in different segments in both segmentations.

• Information theoretic based (Category 4): Metrics of this category are based
on basic values of the information theory like entropy and mutual information.

• Probabilistic based (Category 5): These metrics consider the segmentations
being compared as two distribution. Under this consideration, the metrics are
defined based on classic comparison method of statistics of these distributions.

• Spatial distance based (Category 6): These metrics aim to summarize dis-
tances between all pairs of voxels in the two segmentations being compared, i.e.
they provide a one value measure that represents all pairwise distances.

An efficient implementation of all metrics in Table 2.1 is provided as an open source
evaluation tool named EvaluateSegmentation. More details about EvaluateSegmentation
is provided in Appendix A.10.

21



Complete definitions and calculation algorithms for each of these metrics as well as
fuzzy definitions are presented in Appendix A. The column “definition” in Table 2.1
provides the equation numbers for the definition of each metric.

Table 2.1: Overview of evaluation metrics for 3D image seg-
mentation. The symbols in the second column are used to
denote the metrics. The column “reference of use” shows
papers where the corresponding metric has been used in the
evaluation of medical volume segmentation. The column “cat-
egory” assigns each metric to one of the categories above. The
column “definition” shows the equation numbers where the
metric is defined.

Metric Symb. Reference of use in medical images cat. Definition
Dice
(=F1-Measure) DICE [ZWB+04], [ZWKW04], [KvdHR+07],

[CHL+06], [GSP+08], [KMJK+10],
[BPA+08], [MJB+12], [KCAB09],
[CdLGBC09], [AFNIS13]

1 (A.6)

Jaccard index JAC [MJB+12], [GSP+08], [RPR13a],
[VYPP11], [CdLGBC09], [AFNIS13],
[KMJK+10], [RPR13b]

1 (A.7)

True positive rate
(Sensitivity, Recall)

TPR [AFNIS13], [MJB+12], [KMJK+10],
[KCAB09], [PLH+12], [ULZ+06]

1 (A.10)

True negative rate
(Specificity)

TNR [AFNIS13], [MJB+12], [KMJK+10],
[ULZ+06]

1 (A.11)

False positive rate
(=1-Specificity, Fall-
out)

FPR → Specificity 1 (A.12)

False negative rate
(=1-Sensitivity)

FNR → Sensitivity 1 (A.13)

F-Measure (F1-
Measure=Dice)

FMS → Dice 1 (A.15),
(A.17)

Global Consistency
Error

GCE [RPR13a], [VYPP11], [YM13a],
[YM13b], [RPR13b]

1 (A.18)
to
(A.20)

Volumetric Similar-
ity

V S [GSP+08], [RPR13a], [VYPP11],
[BPA+08], [CdLGBC09], [GHS07],
[RPR13b]

2 (A.22)

Rand Index RI [RPR13a], [VYPP11], [YM13a],
[YM13b]

3 (A.31)

Adjusted Rand In-
dex

ARI [WBFR04], [MVvW05] 3 (A.34)
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Mutual Information MI [ZWKW04], [RTR+04], [KvdHR+07] 4 (A.35)
to
(A.40)

Variation of Infor-
mation

V OI [RPR13a], [YM13a], [VYPP11],
[YM13b]

4 (A.41),
(A.37)

Interclass correla-
tion

ICC [GJC01], [DKC+11] 5 (A.43)

Probabilistic Dis-
tance

PBD [GJC01], [GSP+08] 5 (A.45)

Cohens kappa KAP [MJB+12], [ZWB+04] 5 (A.46)
to
(A.48)

Area under ROC
curve

AUC [ZWKW04], [PLH+12], [MVvW05] 5 (A.49)

Hausdorff distance HD [MJB+12], [GJC01], [MNLBR07],
[GSP+08], [BPA+08], [KCAB09],
[CdLGBC09], [PN12]

6 (A.50),
(A.51)

Average distance AVD [MJB+12], [KCAB09] 6 (A.52),
(A.53)

Mahalanobis Dis-
tance

MHD [NVV99], [CdLGBC09] 6 (A.54)
to
(A.56)

2.5 Metric Analysis

In this section, we provide an analysis of the metrics in Table 2.1, namely a discussion
about their properties, i.e. their strength, weakness, bias, and sensitivities in evaluating
medical segmentation. For this, we use two strategies, the first is examining the correlation
between rankings of segmentations produced by different metrics in different situations.
The second method is analyzing the metric values for particular empirical examples,
where the segmentations have particular properties. Based on this analysis, we provide
guidelines for selecting a subset of these metrics for evaluating a set of medical image
segmentations. This analysis should give a motivation for the need of a formal method
for selecting evaluation metrics, which we will propose in Section 2.7.

2.5.1 Correlation among Metrics

In this section, we examine the correlation between rankings of segmentations produced
by different metrics without putting any constraints on the segmentations being ranked.
Figure 2.1 shows the result of a correlation analysis between the rankings produced by 16
of the metrics presented in Table 2.1 when applied to a data set of 4833 automatic MRI and
CT segmentations. In this data set, all medical volumes provided by all the participants
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in the VISCERAL project [LMMH13] Anatomy 1 and Anatomy 2 Benchmarks were
included. Each medical image is a segmentation of only one of 20 anatomical structures
varying from organs like lung, liver, and kidney to bone structures like vertebra, glands
like thyroid, and arteries like aorta. More details on these structures are available in
[JdTGM+14]. Note that the Jaccard (JAC) and F-Measure (FMS) were excluded
because they provide the same ranking as the Dice coefficient (DICE), a fact that follows
from the equivalence relations described in Section A.3.1. Also FPR and FNR were
excluded because of their relations to TNR and TPR respectively, as given in Equations
A.12 and A.13. In a first step, the volume segmentations were evaluated by comparing
each of them with its corresponding ground truth using each of the 16 metrics (evaluation
according to Definition 6), and then they were ranked using each of the metrics to get 16
rankings in total. Then, the pairwise Pearson’s correlation coefficients were calculated.
Note that analyzing the correlation between rankings instead of metric values solves the
problem that some of the metrics are similarities and others are distances and avoids
the necessity to convert distances to similarities as well as to normalize metrics to a
common range. Each cell in Figure 2.1 represents the Pearson’s correlation coefficients
between the rankings produced by the corresponding metrics. The color intensity of the
cells represent the strength of the correlation. Metrics in Figure 2.1 can be divided into
three groups based on the correlation between the rankings produced by them, one group
is at the top left (Group 1) including ARI, KAP , ICC, DICE, AVD, MHD, PBD,
and V S and another group is at the right bottom (Group 2) including TNR, RI, GCE,
and V OI. The metrics in each of these groups strongly correlate with each other, but
have no correlation with metrics in the other group. The remaining metrics (Group 3)
including MI, AUC, TPR, and HD have medium correlation between each other and
the other groups. A deeper consideration of the metric definitions shows that Group 1
and Group 2 classify the metrics according to whether they consider or do not consider
the true negatives (background voxels) in their definitions. While all metrics in Group
2 include the true negatives in their definitions, none of the metrics in Group 1 does
this. Note that the adjusted Rand index and the kappa measures principally include
the true negatives in their definitions, but both of them perform chance adjustment,
which eliminates the impact of the true negatives, i.e. avoids that the influence of the
background dominates the result [FWM+09]. Also note that the average distance (AVD)
and the Mahalanobis distance (MHD) in Group 1 do not consider the true negatives,
since they are based on the distances between the foreground voxels (non-zero voxels).
Considering the true negatives in the evaluation has a large impact on the result, since the
background (normally the largest part of the segmentation) contributes to the agreement.
Figure 2.2 illustrates, by means of a real example, how metrics based on the true negatives
change the resulting rankings when the true negatives are reduced by selecting a smaller
bounding cube [ULZ+06]. Such metrics are biased against the ratio between the total
number of foreground voxels and the number of the background voxels, which is denoted
as the class imbalance. This leads to segmentations with large segments being penalized
and those with small ones being rewarded, a case that is common in medical image
segmentation e.g. when the quality of two segmentations is to be compared, where one
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Figure 2.1: The correlation between the rankings produced by 16 different metrics The
pairwise Pearson’s correlation coefficients between the rankings of 4833 medical volume
segmentations produced by 16 metrics. The color intensity of each cell represents the
strength of the correlation, where blue denotes direct correlation and red denotes inverse
correlation.

of them is larger, and the other one is smaller than the ground truth segmentation. Vinh
et. al [VEB10] stated that such metrics need chance adjustment, since they do not meet
the constant baseline property.

The correlation between metric is determined by factors of three categories. The first
category are factors concerning the definitions of the metrics, examples of this category
are whether or not the false positives are included in the definition and whether or not
the spatial positions of the points (e.g. voxels) are considered. The second category are
factors concerning the objects being compared. Examples of this category are the level
of outliers in the segmentations being compared and the size of the segments in each
segmentation. The third category are factors concerning the relations between each pair

25



Figure 2.2: The effect of decreasing the true negatives (background) on the ranking Each
of the segmentations in A and B is compared with the same ground truth. All metrics
assess that the segmentation in A is more similar to the ground truth than in B. In Á,
the segmentation and ground truth are the same as in A, but after reducing the true
negatives by selecting a smaller bounding cube. The metrics RI, GCE, and TNR change
their rankings as a result of reducing the true negatives. Note that some of the metrics
are similarities (marked with S) and others are distances (marked with D).

of objects being compared. One example of this category is the overlap between the
objects in each pair, i.e. whether the two objects have small or large overlap between
them. Note this factor is self a metric, e.g. the DICE.

Obviously, given a set of metrics, factors from the first category do not change, since
they depend on the definition of these metrics. However, factors from the other two
categories change with the data. We want to examine how the correlation changes with
these factors, i.e. how consistent is the correlation presented in Figure 2.1.

In one experiment, we examined the correlation for random subset of the original data
set. We performed the experiment (calculating the metric correlation), but for subsets,
selected randomly from the original dataset with sizes varying from 10% to 100% of the
original dataset. The result was almost identical correlation in all cases. This can be
explained by the fact that a random selection of object keeps factors from the second and
third categories unchanged in average, which results in an identical correlation. Now the
question is how the correlation changes when selecting subsets not random, but rather
according to a particular factor. This is what we analyze in the next section.
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Figure 2.3: The effect of overlap on the correlation between rankings produced by different
metrics. The positions and heights of the bars show how metrics correlate with DICE
and how this correlation depends on the overlap between the compared segmentations.
Four different overlap ranges are considered.

2.5.2 Effects of Overlap on the Correlation

In this section, we examine the correlation between metrics when the underlying objects
have particular overlap between them. This experiment is motivated by the obvious fact
that the strong correlation between overlap based metrics and distance based metrics
(Figure 2.1) cannot hold in all cases. For example, consider the case where the overlap
between segments is zero, here all overlap based metrics provide zero values regardless
of the positions of the segments. On the contrary, distance based metrics still provide
values dependent on the spatial distance between the segments. This motivated us to
examine how the correlation described in Section 2.5.1 behaves when only segmentations
with overlap values in particular ranges are considered.

Figure 2.3 shows the Pearsons’s correlation between the DICE and each of the other
metrics when the measured DICE is in a particular range. One important observation
is that the correlation between DICE and the distance based metrics (AVD, HD,
and MHD) decreases with decreasing overlap, i.e. with increasing false positives and
false negatives. This is intuitive because overlap based metrics, in contrast to distance
based metrics, don’t consider the positions of voxels that are not in the overlap region
(false positives and false negatives), which means that they provide the same value
independent of the distance between the voxels. It follows that increasing the false
positives and/or false negatives (decreasing overlap) means increasing the probability of
divergent correlation. Another observation is the strongly divergent correlation between
volumetric similarity (V S) and DICE. This divergence is intuitive since the V S only

27



compares the volume (voxel count in case of binary images) of the segment(s) in the
automatic segmentation with the volume in the ground truth, which implicitly assumes
that the segments are optimally aligned. Obviously, this assumption only makes sense
when the overlap is high. Actually, the V S can have its maximum value (one) even
when the overlap is zero. However, the smaller the overlap, the higher is the probability
that two segments that are similar in volume are not aligned, which explains the strong
divergence in correlation when the overlap is low.

Finally, the highest divergence in the correlation is observed with the probabilistic
distance (PBD). This is caused by the fact that PBD, in contrast to DICE, over-
penalizes false positives and false negatives. This can be explained by means of the
definition of the PBD in Equation A.44: differences in the voxel values in the compared
segmentations have a double impact on the result because they increase the numerator
and decrease the denominator at the same time, causing the distance to increase rapidly.
Actually, the PBD even reaches infinity when the overlap reaches zero. PBD behaves
the opposite of the V S regarding the sensitivity to the alignment, i.e. it strongly penalizes
alignment errors (we mean with alignment errors that the segmented volume is correct,
but the overlap is low). This makes PBD suitable for tasks where the alignment is of
more interest than the volume and the contour.

2.5.3 Boundary Errors

Anatomy structures that are segmented can be of different grades of complexity in terms
of boundary delimitation. They can vary from simple and smooth shapes, like a kidney,
to irregular shapes, like tumors, but also branched and complex like the vessels of the eye
retina. It depends on the goal of the segmentation, whether the exact delimitation of the
boundary is important or not. For example, the boundary can be of importance when
the goal is monitoring the progress of a tumor. In other cases, the goal is to estimate the
location and the size or general shape of an anatomical structure, e.g. a lesion. Here
the alignment and the extent are rather more important than the boundary. Another
requirement could be maximizing the recall at the cost of the boundary delimitation, i.e.
to ensure that the segmented regions contain (include) all of the true segment, e.g. when
the goal is to remove a tumor. In this section, we analyze the metrics in terms of their
capabilities of (i) penalizing boundary errors, (ii) rewarding recall, and (iii) discovering
the general shape, thereby ignoring small details.

Penalizing boundary errors Figure 2.4 illustrates the fact that metrics differently
consider boundary delimitation. In (A) a star is compared with a circle and in (B), the
same star is compared with another star that has the same shape and dimensions, but is
slightly rotated so that the resulting overlap errors FP and FN (obviously also the TP
and TN) are the same as in (A). It follows that all metrics defined based on the overlap
error cardinalities provide the same similarity between the two shapes in each case, which
has been also confirmed empirically. This means that they do not discover that the
shapes in (B) are more similar than those in (A), which also implies that such metrics
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Figure 2.4: Metrics that fail to discover boundary errors. In (A), the star is compared with
a circle and in (B) the same star is compared with another star of the same dimensions,
rotated so that the resulting overlap errors (FP and FN) are equal in magnitude in both
cases. All metrics that are based on FP and FN (overlap-based metrics) are not able
to discover that the two shapes in (B) are more similar to each other than those in (A).
On the contrary, all spatial distance based metrics discover the similarity and give (B)
a higher score than (A). However, the metric most invariant to boundary error is the
volumetric similarity, since it gives a perfect match in both cases.

are not recommended when segmentation algorithms are expected to provide accurate
boundaries. However, the spatial based distance metrics, in particular the HD and the
AVD, discover these boundary errors and provide higher similarity values for case (B).
This makes these two metrics more suitable for cases where the boundary delimitation is
of interest. Actually, as already mentioned in Section 2.5.2, this suitability follows from
the fact that spatial based metrics consider the positions of the FP and FN in contrast to
the overlap based metrics where FP voxels as well as FN voxels count the same regardless
of their distances from the true positions. The volumetric similarity (V S) is also not
recommended to discover boundary errors. Note that in (A) and (B), the V S provides a
perfect match, given |FP | = |FN | regardless of the boundary. V S is recommended for
cases where the segmented volume is in the focus of interest regardless of the boundary
and the alignment.

Rewarding recall Segmentation errors can be due to missing regions (parts in the
ground truth that are missing in the automatic segmentation) or added regions (parts in
the automatic segmentation without corresponding parts in the ground truth). Depending
on the application, sometimes missing regions harm more than added regions, which
means that algorithms are preferred that aim to maximize recall on cost of precision,
i.e. avoid missing regions, even on cost of having added regions. In this case, metrics
that reward recall could be a good choice. Figure 2.5 illustrates in 2D how metrics differ
in evaluating segmentations in terms of missing and added regions. In one case, the
ground truth segment GT is compared with a smaller segment A and in another case
GT is compared with a larger segment B. The distance between the boundary of the
ground truth and the boundary of the segment δ is equal in both cases. However, the
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Figure 2.5: Boundary errors: rewarding/penalizing recall. Illustration in 2D of boundary
errors that decrease/increase recall. The ground truth image GT is compared with the
image A that is smaller than GT and with another image B that is larger than GT.
Although the boundary error in both cases is equal (δ), the magnitude of the resulting
false negative (FN) with A is smaller than the resulting false positive (FP) with B. This
causes that metrics, considering the absolute magnitudes of FN and FP, penalize high
recall.

volume differences (FN and FP) are not equal, which causes metrics based on the four
cardinalities (TP, TN, FP, FN) to evaluate the two cases differently. The metrics MI
(mutual information) and TPR (recall) reward recall and hence evaluate B as better
than A. This is because MI measures how much information the segmentations have in
common, which obviously increases with recall.

General shape and alignment The Mahalanobis distance MHD (Equations A.54
to A.56) measures the distance between two segmentations by comparing estimates of
them, in particular it considers the two ellipsoids that best represent the segmentations
[Mah36]. This way of comparison ignores the boundary details and considers only the
general shape and the alignment of the segments. The could be a good choice when
obtaining the exact shape of the segment is not a requirement.

2.5.4 Effect of Segmentation Density

The density of segments in automatic segmentations can vary depending on the strategies
used by the segmentation algorithms. While some algorithms produce solid segments,
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Figure 2.6: The effect of segment density. Two segmentations (B) and (C) are compared
with the corresponding ground truth (A). (B) has a solid structure while (C) has a lower
density due to large number of tiny holes uniformly distributed inside it. Although (C)
has a a higher accuracy of the boundary than (B), all metrics, excepts MHD and HD,
give (B) a higher score than (C).

others produce segments with low density, e.g. due to a huge number of uniformly
distributed tiny holes. It depends on the goal of the segmentation, whether the density
of a segment is of importance or not. In some cases, the density has a meaning e.g.
when it should measure the progress of a disease, and in other cases it is meaningless,
e.g. when anatomical structures are to be localized, e.g. organs. There are cases where
algorithms work very will in identifying the boundary of the structure being segmented,
but produce segments with low density. Figure 2.6 shows a real example of brain tumor
segmentation from the BRATS 2012 challenge, where a segmentation algorithm provides
a solid segment (B) with low accuracy in identifying the boundary, and another algorithm
(C) produces a segment with a boundary of higher accuracy, but the density is low due
to numerous tiny holes. When comparing each of these cases with the corresponding
ground truth (A), all the metrics, except the Mahalanobis distance (MHD) and the
Hausdorff distance (HD), measure a higher similarity (or smaller distance) in (B) than
in (C). The explanation is obvious, since all tiny holes are calculated as false negatives,
which has impact on all metrics defined based on the four cardinalities (TP, TN, FP,
FN). On the other hand, since the MHD estimates the general shape of the segment,
thereby ignoring small details, it is not sensitive to segment density. Also the HD is not
sensitive, since it is a max min operation, which means that errors caused by the tiny
holes are ignored, when there exist larger errors. Given that the task is to identify the
tumor core using a crisp segmentation, i.e. assigning each voxel either as tumor core
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or background, the question is whether it is justified to penalize the low density of the
segment. However, in cases where the segment density is to be ignored, metrics with
such sensitivity should be avoided.

2.5.5 Effect of Segment Size

There is an inverse relation between segment size (relative to the grid size) and the
expectation value of the alignment error, which directly follows from the degree of freedom
for the segment location being higher when the segment is small. Furthermore, there is
a direct relation between the expectation of alignment error and overlap between the
segment in the ground truth and that in the segmentation under test. For small segments,
the expectation value of the alignment error can be comparable in magnitude with the
segment size, which results in the probability of small (or zero) overlap being high. In
such a case, all metrics based on the four overlap cardinalities (TP, TN, FP, FN), e.g.
the overlap based metrics, are not suitable, since they would provide the same value
regardless of how far the segments are from each other, once the overlap is zero. To
illustrate this effect, consider comparing two linear segments using DICE. Assume that
these linear segments have almost exact match, but the overlap is zero. Here, the DICE
provides the same value (zero) for these two lines and for another two lines that are far
from each other. Figure 2.7 illustrates this effect. In (A), two large segments having a
displacement ∆ from each other. This results in a relatively large overlap, which makes
overlap based metrics conceivable. On the contrary when the segments are thin and long
as in (B) or very small as in (C) so that they have no overlap, in such a case although
having the same displacement ∆, overlap based metrics give zero similarity, which is not
always reasonable. For example, a segmentation algorithm that provides a segmentation
of a blood vessel that does not exactly match the ground truth vessel, but tight beside it,
such algorithm may be worth a higher score than zero. Another problem with overlap
based metrics is that they are not sensitive to voxel positions, that is once a voxel is a
false positive, it does not matter where it is. Figure 2.7 (C) and (D) illustrate this effect:
Although the displacement δ in (D) is smaller than the displacement ∆ in (C), overlap
based metrics cannot discover that the segmentation (D) is better than (C). Obviously,
metrics based on the volume, e.g. the volumetric similarity have also the same drawback.

Distance based metrics are recommended when the segments are small because they
always provide values that are proportional to the spatial distance regarding of the
overlap.

The question that arises here is, can we estimate a threshold that separates small
from large segments? To answer this question, we first define small segment to be when
the smallest dimension of this segment, i.e. min(length, width, height), is significantly
less than the corresponding dimension of the grid on which the image is defined, which
means that at least one dimension should be small compared with the corresponding
dimension of the grid. This results in three types of small segments, namely (i) segments
that are small in only one dimension (planar shapes), (ii) small in two dimensions (linear
shapes), (ii) or small in three dimensions (point similar shapes). The decision about
whether segments are small or not can be done based on the distribution of the segment
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Figure 2.7: Illustration of sensitivity of overlap based metrics to segment size. In (A),
two large segments having a displacement ∆. This results in a relatively large overlap.
In (B), two thin segments with the same displacement, but without any overlap. Overlap
based metrics give zero. Also in (C), small segments with the same displacement have
no overlap. Overlap based metrics cannot differentiate the quality between (C) and (D)
with a smaller displacement.

sizes, i.e. by considering how likely two segments have no overlap. However, it is helpful
to define a threshold as a rule of thumb for judging segment size. We define this threshold
as follows:

Let S1 and S2 be two segments being compared, and assume for simplicity that both
of them have the same size. Let s be the smallest dimension of the segments and g be
the corresponding dimension of grid. We will calculate the threshold ε = s

g based on the
expectation value of the distance between the centers of the two segments S − 1 and S2.

We calculate this expectation value by considering all possible locations that the two
segments can take along the dimension g. Note that we consider the possible locations
only in the critical direction (direction of the smallest dimension). The degree of freedom
of the locations is governed by g − s because we assume that the segments should be
entirely within the grid, which means they cannot be located farther than s/2 from the
borders. In the a first calculation alternative (which only has explanation purpose) we
assume that the locations are uniformly distributed. In this case the expectation value of
the distance between the segments E[d(S1, S2)] is given by

E[d(S1, S2)] = 1
(g − s)2

g−s∑
i=1

(
g − s
i

)
= g − s

3 (2.1)
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Since a threshold is required that separates segments having overlap from those having
no overlap, the segment size s should not exceed the expectation value of the distance
between segments (note that the distance between the centers is meant), i.e.

s >
g − s

3 =⇒ s >
g

4 (2.2)

Obviously, this threshold is not realistic, because it assumes that the locations are
uniformly distributed, which only holds for a random segmentation algorithm. In practice,
the locations are concentrated at a particular region of the grid which is dependent on
the general quality of the segmentation algorithms being evaluated. We will use the
Pareto method to estimate this region, i.e. we assume that 80% of the segment locations
will be in 20% of the possible space. Applying this to Equations 2.1 and 2.2, we obtain:

E[d(S1, S2)] = 20
100

80(g − s)
3 · 100 + 80

100
20(g − s)

3 · 100 = 32
100

g − s
3 (2.3)

s >
32
100

g − s
3 =⇒ s >

32
332g =⇒ ε ∼ 0.10 (2.4)

Note that the threshold depends on the general quality of the segmentations. For example
if we assume instead a Pareto distribution of 10% : 90%, we get a threshold ε ∼ 0.05.

2.6 Metric Properties and Metric Selection Guidelines
In this section, based on the analysis presented in Section 2.5, we define some properties of
evaluation metrics (Section 2.6.1), some properties of image segmentation (Section 2.6.2),
and some general requirements that can be put on the segmentation task (Section 2.6.3).
Based on these definitions, we provide metric selection guidelines that can be used to
select evaluation metrics for 3D image segmentation.

2.6.1 Metric Properties

Based on the results of the discussion so far, we summarize the properties of the metrics
that are relevant for segmentation. In particular, we define these properties and assign
them to the metrics listed in Table 2.1.

• Outlier sensitivity: Sometimes automatic segmentations have outliers in form of
few pixels outside the segment. The underlying property describes metrics that
strongly penalize such outliers.

• True negatives consideration: In a two class segmentation, the voxels are assigned
either to the single segment or to the background. The voxels that are assigned as
background by both the automatic segmentation and the ground truth are called
the true negatives. The underlying property describes metrics that calculate the
true negatives as a part of the agreement between the automatic segmentation and
the ground truth.
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• Chance adjustment: The agreement between two segmentations could be caused by
chance. The score measured for a segmentation performed randomly is called the
baseline. The base line value of a metric should ideally be zero. The underlying
property describes metrics that are defined to consider agreement caused by chance,
i.e. to minimize the baseline value.

• Sensitivity to point positions: Some metrics, e.g. overlap-based metrics, do not
consider the position of false positive voxels, i.e. they provide the same result
wherever these voxels are. The underlying property describes metrics that do
consider the position of the false positive, i.e. their values differ depending on
where these voxels are.

• Ignoring alignment errors: alignment errors are when the segment in the automatic
segmentation has similar shape and similar volume as the corresponding segment
in ground truth, but it is not correctly aligned, e.g. translated or rotated. Some
metrics are invariant to alignment error, i.e. they cannot discover them, like the
volumetric similarity.

• Recall rewarding: Describes metrics that are not sensitive to errors increasing recall,
in particular they penalize boundary errors that decrease the segmented volume
more than errors that enlarge the segmented volume.

• General shape and alignment: Describes metrics that ignore small details and judge
only the general shape and alignment of the segmented region.

• Overlap-based: This property describes metrics that are based on four types of
overlap (TP, TN, FP, FN) between the automatic segmentation and the ground
truth.

• Distance-based: This property describes metrics that are defined as functions
of the Euclidean distances between the voxels of the segment in the automatic
segmentation and the voxels of the segment in the ground truth.

• Information theoretical-based: Describes metrics based on information theoretical
factors like the entropy.

• Probabilistic-based: Describes metrics defined as functions of statistics calculated
from the voxels in the overlap regions of the segmentations.

• Pair-counting-based: Considering that a segmentation is a partitioning of an image,
pair-counting-based metrics divides the tuples representing all possible object pairs
into four groups depending on where the objects of each tuple are placed regarding
the partitions, i.e. whether they are placed in the same partition or in different
partitions. More details can be found in Appendix A.5

• Volume-based: Describes metrics that are defined based on the volume of the
segmented region (e.g. the voxel count in case of binary segmentations). Note
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that volume-based metrics are totally different from overlap-based metrics because
the former consider the absolute volume of the segmented region regardless of the
overlap.

Now, depending on whether each of these properties holds or does not hold for a
particular metric, we present the property assignments in Table 2.2, in which a check
marked cell denotes that the corresponding metric has the corresponding property. This
assignment will be used later in Section 2.6.4 to define a protocol for selecting evaluation
metrics.

2.6.2 Segmentation Properties

Metric selection should consider, among others, the properties of the segmentations being
evaluated. In this section, we define some of the properties that segmentations can have,
to which metrics can be sensitive. These properties will be used in combination with the
metric properties to define a protocol for metric selection in Section 2.6.4.

• Outliers: In segmentation, outliers are relatively small wrongly segmented regions
outside (normally far from) the segment. Metrics sensitive to outliers over-penalize
them. When outliers do not harm, metrics with sensitivity to outliers, such as the
HD, should be avoided.

• Small segment: When a segment size is significantly smaller than the background,
so that it is comparable in magnitude with the expectation of the alignment error,
then all metrics based on the four overlap cardinalities (TP, TN, FP, FN), e.g. the
overlap based metrics, as well as volume based metrics (V S) are not suitable. Small
segments are those with at least one dimension being significantly smaller than the
corresponding dimension of the grid on which the image is defined (e.g. less than
5% of the corresponding grid dimension). In this case, distance based metrics are
recommended.

• Complex boundary: While some segments have smooth boundaries, there are others
that have a non-regular shaped complex boundary, which are denoted by this
property. Metrics that are sensitive to point positions (e.g. HD and AVD) are
more suitable to evaluate such segmentations than others. Volume based metrics
are to be avoided in this case.

• Low densities: Some algorithms produce segmentations that have a good quality in
terms of contour and alignment, but the segments are not solid, but rather have a
lower density, e.g. because of numerous tiny holes. All metrics based on the four
cardinalities are sensitive to segment density. They penalize low density and hence
should be avoided in cases where the low density does not harm. In these cases,
distance based metrics (HD, AVD, and MHD) are good choices.

• Low segmentation quality: This property describes segmentations that have in
general a low quality, i.e. it can be assumed that the segments have in general low
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Table 2.2: Assignment between the properties defined in Section 2.6.1 and the metrics
defined in Table 2.1. A particular metric has a particular property iff the corresponding
cell is check marked.
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PBD X
KAP X X X
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MHD X X X

overlap with the corresponding segments in the ground truth segmentation. When
the overlap is low, distance based metrics are more capable of differentiating between
segmentation qualities than volume based metrics. The volumetric similarity V S
should be avoided.
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2.6.3 Requirements on the Segmentation Algorithms

Depending on the goal of the segmentation, there could be special requirements on
the segmentation algorithms. Many different requirements could be defined, which can
strongly differ from case to case. Some of the requirements that could be put on the
segmentation algorithms are:

• Contour is important: Depending on the individual task, the contour can be
of interest, that is the segmentation algorithms should provide segments with
boundary delimitation as exact as possible. Metrics that are sensitive to point
positions (e.g. HD and AVD) are more suitable to evaluate such segmentation
than others. Volume based metrics are to be avoided in this case.

• Alignment is important: When the requirement is the location (general alignment)
of the segment rather than the boundary delimitation. In this case, the volume
based metrics are not a good choice.

• Recall is important: In some cases, it is an important requirement that the segmented
region includes at least all the true segment, regardless of including parts of the
false region. Obviously, the boundary delimitation in this case is of less interest,
and the algorithms should rather maximize the recall. Metrics that reward recall
are the mutual information MI and the true positive rate TPR.

• Volume is important: Sometimes the magnitude of the segmented region is of more
importance than the boundary and the alignment. Here, algorithms should segment
region to have a volume as near to that of the true segment as possible. The
volumetric similarity V S is recommended.

• Only general shape and alignment: The exact boundary and high overlap are not
always requirements. Depending on the goal, sometimes the general shape and the
alignment (location) are sufficient, e.g. when the requirement is to identify lesions
and give an estimation of the size. For this case, the Mahalanobis distance MHD
is a good choice.

2.6.4 Guidelines for Selecting Evaluation Metrics

As has been stated in Section 2.1, different metrics have sensitivities to different properties
of the segmentations, and thus they can discover different types of error.

Now, we provide guidelines for choosing a suitable metric based on the results so far.
These guidelines are additionally summarized in Table 2.3 in form of matching between
data properties/requirements and metric properties:

i When the objective is to evaluate the general alignment of the segments, especially
when the segments are small (the overlap is likely small or zero), it is recommended
to use distance based metrics rather than overlap based metrics. The volumetric
similarity (V S) is not suitable in this case.
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ii Distance based metrics are recommended when the contour of the segmentation,
i.e. the accuracy at the boundary, is of importance [FC05]. This follows from being
the only category of metrics that takes into consideration the spatial position of
false negatives and false positives.

iii The Hausdorff distance is sensitive to outliers and thus not recommended to be
used when outliers are likely. However, methods for handling the outliers, such
as the quantile method [HKR93], could solve the problem, otherwise the average
distance (AV G) and the overlap based metrics as well as probabilistic based metrics
are known to be stable against outliers.

iv Probabilistic distance (PBD) and overlap based metrics are recommended when
the alignment of the segments is of interest rather than the overall segmentation
accuracy [ZWKW04].

v Metrics considering the true negatives in their definitions have sensitivity to segment
size. They reward segmentations with small segments and penalize those with
large segments [ULZ+06] . Therefore, they tend to generally penalize algorithms
that aim to maximize recall and reward algorithms that aim to maximize precision.
Such metrics should be avoided when the objective is to reward recall.

vi When the segmentations have a high class imbalance, e.g. segmentations with
small segments, it is recommended to use metrics with chance adjustment, e.g. the
Kappa measure (KAP ) and the adjusted Rand index (ARI) [HA85] [FWM+09].

vii When the segments are not solid, but rather have low densities, then all metrics
that are based on volume or on the four cardinalities (TP, TN, FP, FN) are not
recommended. In such cases distance-based metrics, especially MHD and HD,
are recommended.

viii Volumetric similarity is not recommended when the quality of the segmentations
being evaluated is low in general, because the segments are likely to have low overlap
with their corresponding segments in the ground truth. In this case, overlap-based
and distance-based metrics are recommended.

ix When the segmented volume is of importance, volumetric similarity and overlap
based metrics are recommended rather than distance based-metrics.

x When more than one objective is to be considered, which are in conflict, then it is
recommended to combine more than one metric, so that each of the objectives is
considered by one of the metrics. Thereby, it is recommended to avoid selecting
metrics that are strongly correlated (Figure 2.1).
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Table 2.3: Summary of metric selection guidelines. Each row corresponds to either a
segmentation property or a requirement and each column corresponds to one of the
metrics in Table 2.1. A checked cell (X) denotes that the metric is recommended for the
corresponding property/requirement, a crossed cell (X) denotes that the metric is not
recommended, and empty cells denote neutrality.
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2.7 Metric Bias Inference

In Section 2.3, we analyzed a set of metrics, identified the properties, sensitivities, and
biases of each metric. Based on this analysis, we defined guidelines for selecting metrics
from this set for segmentation evaluation settings.

In this section, we present a formal method for inferring the bias (sensitivity) of
a particular evaluation metric to a particular property from a set of properties the
underlying objects can have. Furthermore, based on bias inference, we provide a method
for selecting the most suitable evaluation metric, given a data set and an evaluation task.
In [THJ14b], we have proposed a formal method for selecting metrics for evaluating 3D
medical image segmentation based on measuring metric bias. We now generalize this
method to be used with any evaluation process, in which objects are compared with their
corresponding ground truth objects.

Section 2.5 provides an analysis of 20 evaluation metrics for 3D medical image
segmentation. It discusses the properties of segmentations and the biases of evaluation
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metrics. It relates these properties and biases to requirements put on segmentation
algorithms to provide a protocol (guidelines) for metric selection. The method proposed
in this section also considers the properties of the objects being evaluated to infer
metric biases and it uses these biases for metric selection. Here, we want to highlight
the differences and the relations between the metric analysis in Section 2.5 and the
bias inference method presented in this section. Section 2.5 aims to study particular
metrics. It analyzes each individual metric from a theoretical point of view considering its
definition and the nature how it works. It provides empirical experiments, examples and
comments from the literature to define the biases of each individual metric. Once this
is done, it relates these biases to segmentation properties and the requirements put on
the segmentation algorithms to define selection guidelines. On the contrary, the method
proposed in this section does not consider any theoretical knowledge of the metric or
the metric biases, does not consider the definitions of the metrics, and even does not
assume any particular metrics, because the bias is systematically inferred, given a set of
properties defined on the objects being evaluated. Furthermore, the proposed method is
not domain specific, but general and applicable to any evaluation task that is based on
comparing objects with corresponding ground truth.

Evaluation process: We revisit (repeat) the definition of the evaluation process
defined in Section 1.6.2, which will be considered in this chapter.

Definition 6. Evaluation in the sense of this work: Let O = {o1, ..., on} be a set of
objects being evaluated. Let Ô = {ô1, ô2, ...} be the set of ground truth objects. The
evaluation is performed by comparing each object oi ∈ O against its corresponding ground
truth object ôj ∈ Ô. Note that |O| is not necessarily equal to |Ô| because a ground truth
object may correspond to more or less than one object.

Object Properties: Metrics can be biased to properties of the objects being evaluated.
The methods proposed in this section are based on measuring the bias of metrics to the
properties of the objects being evaluated. Examples of metric bias to object properties
can be found in the analysis of 20 evaluation metrics for 3D medical images presented in
Section 2.5. The following is the definition and discussion of the term object property
(from now property).

Definition 11. Object properties and property values: Let O = {o1, ..., on} be a set of
objects in an evaluation process according to Definition 6. We define F = {f1, ..., fr} to
be a set of object properties (from now properties) that the objects O can have. These
can be any properties thought to impact metrics e.g. size, class imbalance, number of
classes, noise, deviation; for images, they can be shape signatures, sphereness, boundary
smoothness, resolution, moments, etc. Furthermore, properties can also be metric-
dependent e.g. precision and recall. The association between an object o and a property f
is represented by a value that gives how strongly f exists in o. We will denote this by
property values, i.e. property value f means the value of property f .
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In general, any properties of the underlying objects can be included in the process of
metric selection. They can also be restricted to those properties known to be the only
relevant ones for the evaluation task. Weighting is also another possibility to customize
(personalize) the influence of particular properties on the metric selection. Weighting is
described in Section 2.7.4.

There are in general two types of properties that can be involved:

• Properties exclusively related to the objects being evaluated, these vary strongly
depending on the domain, for example in evaluating text retrieval systems, they
can be document length, average term frequency, length of the corresponding query,
etc. I evaluating classification, they could be class imbalance, class size, number of
classes, noise, level of chance, and many others. In other domains, e.g. imaging,
other properties can be included like shape signatures, descriptors, sphereness,
smoothness, boundary complexity, resolution, moments, segment size, outliers, etc.

• Properties in relation to the ground truth, i.e. metric values. Note that metrics
are used here as object properties that are in turn used to select metrics. The
justification is that some metrics are sensitive to properties which are measured by
metrics. We give two examples as illustration. The first example are metrics are
sensitive to overlap, i.e. their average correlation with other metrics depends on
the overlap between the object being evaluated and the ground truth. Here, the
overlap value measured as the Dice can be included as a property to discover metric
sensitivity to overlap (More details on sensitivity to overlap is in Section 2.5.2).
Another example is the recall. Since there are metrics that penalize recall and
others that reward recall, one can include the recall as an object property to infer
sensitivities of other metrics to low/high recall (more details on rewarding recall is
in Section 2.5.3).

Problem Definition: We define the problems to be solved:

Definition 12. Bias inference: Let O be a set of objects being evaluated according to
Definition 6, and let F be a set of properties according to Definition 11. Furthermore,
let M be a set of evaluation metrics. A metric m ∈ M can be biased to a property
f ∈ F , that is m tends to over/under estimate the quality of object o ∈ O, given o has
the property f . This bias can differ in magnitude and in direction. In particular, the
tasks are:

A Inferring the bias magnitude of a metric m ∈M to a property f ∈ F .

B Inferring the direction of this bias, i.e. whether metric m rewards or penalizes
property f .

Definition 13. Metric selection: Given a set of objects O, ground truth objects Ô
according to Definition 6, a set of properties F according to Definition 11, and a set of
metrics M , the task is to sort the metrics in M according to their suitabilities to evaluate
the objects O.
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The remainder of this section is organized as follows. Section 2.7.1 provides an
example that illustrates the settings and the problems to be solved, which will also be
used to illustrate further steps of the proposed methods in other sections. In Sections 2.7.2,
we present a novel method for inferring the magnitude of metric bias to a particular
property, i.e. a solution for the problem in Definition 13. In Section 2.7.3, we provide a
method for measuring the direction of the bias, i.e. deciding, whether a metric penalizes
or rewards a particular property. We present in Section 2.7.4 a framework for selecting
evaluation metrics based on their bias, i.e. a solution for the problem in Definition 12.
Finally in Section 2.7.5, we discuss and analyze the proposed methods.

2.7.1 Illustrative Example

To illustrate the problems to be solved, we give an illustrative example and link its elements
to the corresponding Definitions. We will also use this example for the explanation in
the next sections. In an evaluation process, the performance of information retrieval (IR)
systems is evaluated by comparing their binary results with ground truth. Here binary
results mean that upon test queries, the systems should classify a document collection
into two classes, namely relevant and irrelevant. Each of these binary classifications is
evaluated by comparing it with its corresponding ground truth classification. The set of
all classifications being evaluated and their ground truth classifications correspond to the
object sets O and Ô in Definition 6 respectively. Five properties have been identified
which are thought to have impact on the evaluation, and thus have been included as the
property set corresponding to the set F in Definition 2.7. These properties are F = {class
size ratio (class imbalance), document average length, term average frequency, length
of the corresponding query, level of chance (probability of classification being done by
chance)}. A set of seven metrics M = {precision, recall, AUC, F-Measure, accuracy,
Rand index, mutual information} contains the candidates from which metrics are to be
selected. The problems to be solved corresponding to Definitions 12 and 13 are (i) to
infer the bias of each metric to each property, e.g. the bias of precision to class imbalance,
and (ii) to find the metric(s) most suitable to be used as evaluation metric(s) based on
the average metric biases. This example will be used to illustrate further steps of the
proposed methods in the next sections.

2.7.2 Measuring Bias Magnitude

Given a set of objects O, ground truth objects Ô according to Definition 6, a set of
properties F according to Definition 11, and a set of metrics M , the task is to measure
the bias (sensitivity) of the metric m ∈ M to the property f ∈ F . Using each of the
metrics m ∈M , we compare each object in O with its ground truth Object in Ô to get
a metric value. The resulting matrix of metric values is used in combination with the
properties in F to infer metric bias.

The method proposed in this section mainly depends on the fact that if a metric m is
sensitive to a property f , then m tends to generally over-reward or over-penalize objects
having the property f . To illustrate this, consider the example in Section 2.7.1, and
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the fact that mutual information is biased against high class imbalance, that is it tends
to measure a lower similarity when the number of relevant documents is significantly
smaller than the number of irrelevant documents.

Unfortunately, we cannot directly decide whether a metric is biased to a particular
property or not, i.e. we do not know whether a particular metric value is related to
the quality of the object or to an under/over-estimation due to a metric sensitivity to a
particular property, provided that the object has this property. Therefore, our method
measures the bias of a metric m ∈M to a property f indirectly by analyzing the average
correlation between rankings produced by the metric m and rankings produced by the
other metrics under the impact of the property f , which is described in more detail in
the next paragraphs.

Recall the example again and consider that the mutual information (MI) is biased
against higher class imbalance. If we group the classifications being evaluated into
different subsets, such that classifications with equal class size ratio (CSR) are put in the
same subset, then the average values of MI in each subset would be obviously dependent
on the CSR in the subsets, i.e. the MI averaged over all classifications in a subset
would be larger for subsets with higher CSR. The subsets can then be ranked based on
this average MI to get the subset ranking of the metric MI under the impact of the
property CSR. The same can be done for each metric m ∈M to get a subset ranking
of metric m under the impact of the property CSR. If we now calculate the average
correlation between the ranking of M and the rankings of all other metrics, we obtain
the average correlation of MI under the impact of the property CSR. We call this the
biased correlation of MI under the impact of the property CSR.

Now let us think about another case, namely when we group the classifications
randomly. Here, the property CSR has no impact, because the subsets contain classifica-
tions with different CSRs. If we analogously average the MI in each subset and rank
the subsets according these averages, we obtain the subset ranking of metric MI for
random grouping. Doing the same for all other metrics and then calculating the average
correlation between the ranking of MI and all other metrics, we obtain the average
correlation of MI without an impact of any property, which we call the base correlation
of the metric M .

To infer the bias of the MI to the property CSR, we consider the change in average
correlation of MI between the two cases, i.e. the case of random grouping and the case
of grouping according to CSR, that is the difference between biased correlation and base
correlation.

We have illustrated the core idea of the proposed method by means of an example
showing how to infer the bias of only one metric (mutual information) to only one
property (class imbalance). The formal algorithm for inferring the bias of an arbitrary
metric to an arbitrary property is presented bellow.

This algorithm is then applied to find the bias of each metric to each property, to
obtain a bias matrix, which can be then used to (i) calculate the average bias of each
metric, (ii) calculate the weighted bias of each metric, and (iii) apply metric selection
based on average/weighted bias.
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Algorithm - Bias Inference

1. For each metric i ∈M , compare each of the objects j ∈ O with its ground truth object
to get the matrix s where s(i, j) is the metric value of object j measured by metric i.

2. For each metric i ∈ M , rank the objects in O depending on their metric values s to
get the rank matrix r where r(i, j) is the rank of object j based on the metric i.

3. Construct a random partition P ′ on O by randomly assigning the objects to q equal
subsets. Choose q such that there are statistically enough objects in each subset (a
good selection is q ≈

√
n, where n is the number of objects). Each partition should

have the same number of subsets q. The function P ′k(j) that assigns an object j to the
subset k is defined by

P ′k(j) =
{

1 j ∈ subset k
0 otherwise

(2.5)

Now for each metric i ∈M , calculate for each subset k in P ′ a rank average S′i(k) of
the individual ranks of objects in the subset.

S′i(k) =

 ∑
P ′
k

(j)=1
r(i, j)

 /nk (2.6)

Rank the subsets based on their rank averages S′ to get R′ = R′(k, i) that gives the
rank of the subset k according to metric i.

4. Construct a partition P f of q equal subsets of O according to the property f , i.e.
according to the property value f in the objects. The function P fk (j) assigns the object
j to the subset k.

P fk (j) =
{

1 j ∈ subset k
0 otherwise

(2.7)

Note that the q subsets are sorted according to the values of property f , i.e. the
average value of property f in the subset k + 1 is larger than in the subset k.

Now analogously to the random partition, calculate for each subset k in P f the rank
averages Sfi (k) given by

Sfi (k) =

 ∑
P f
k

(j)=1

r(i, j)

 /nk (2.8)

where nk is the number of segmentations in the subset k.

Rank the subsets based on their rank averages Sf to get Rf = Rf (k, i) that gives the
rank of the subset k according to metric i.
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5. Base correlation: To calculate the base correlation of metric m, consider the random
partition and calculate the average correlation between the ranking according to metric
m and the rankings according to all other metrics. The base correlation C ′(m) is given
by

C ′(m) = 1
|M |

∑
i∈M

corr[R′(.,m), R′(., i)] (2.9)

where corr(x1, x2) is the correlation (e.g. the Pearson’s correlation coefficient) between
the rankings x1 and x2, and R′(., i) means all ranks (the ranking) according to metric i.

6. Biased correlation: To calculate the biased correlation of metric m to property f ,
consider the partition according to property f and calculate the average correlation
between the ranking according to metric m and the rankings according to all other
metrics. The biased correlation C(m) is given by

Cf (m) = 1
|M |

∑
i∈M

corr[Rf (.,m), Rf (., i)] (2.10)

where corr(x1, x2) is the correlation (e.g. the Pearson’s correlation coefficient) between
the rankings x1 and x2, and R(., i) means all ranks (the ranking) according to metric i.

7. Bias: Finally, to calculate the bias of the metric m to the property f , calculate the
difference between the base correlation and the biased correlation of the metric m, i.e.
the bias B(m) is given by

Bf (m) = Cf (m)− C ′(m) (2.11)

Note that ranking the subsets using the averages of the individual ranks in each subset
is a ranking method inspired by the Mann-Whitney-Wilcoxon (MWW) test [MW47].
This is because straightforwardly computing the ranks directly from metric averages
is sensitive to outliers and may produce incorrect rankings if the metric values are not
normally distributed, because large metric values can compensate small ones [Dem06].

The algorithm above infers the magnitude of the bias of the metric m to a specific
object property f . This inference is based on the change of the average correlation
between the metric m and the other metrics as a result of grouping the objects according
the property f . However, the bias magnitude does not give any information on the type
(direction) of bias, i.e. whether it is reward or penalization of the property f , which is
addressed in the next section.

2.7.3 Measuring Bias Direction

In this section, we introduce a method for finding the sign (direction) of the bias calculated
according to the algorithm in Section 2.7.2, i.e. for differentiating between rewarding
bias and penalization bias.
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The method is based on comparing the sum of subset ranks in the first q/2 sub-

sets, i.e.
q/2∑
k=1

Rf (k,m) with the sum of the subset ranks in the remaining subsets, i.e.
q∑

k=q/2+1
Rf (k,m), that is the Df (m) is direction of bias of a metric m to a property f

and given by

Df (m) =


+1 for

q/2∑
k=1

Rf (k,m) >
q∑

k=q/2+1
Rf (k,m)

−1 otherwise
(2.12)

where +1 means that m rewards f and −1 means that m penalizes f .
Note that the subsets are sorted according to the property value f (see step 4 in the

algorithm in Section 2.7.2). Equation 2.12 can be explained as follows: If the first half
of the subsets (those having in general lower values of property f) have smaller rank
sum than the remaining subsets (those having in general larger values of property f),
this means that the metric m rewards the property f (plus sign), and vice versa, if the
first half of the subsets has larger rank sum, this means that the metric m penalizes the
property f (minus sign).

2.7.4 Metric Selection

In this section, we present a formal method for metric selection, i.e. measuring the
suitability of a particular metric for evaluating a particular set of objects, based on the
metric bias introduced in Section 2.7.2. Formally, given an evaluation process according
to Definition 6, and a set of properties F according to Definition 11, the method proposed
in this section provides a solution for the problem described in Definition 13, namely
it sorts a set of metrics M according to their suitabilities to be used for the evaluation
process.

The assumption behind this method is that the decision on the suitability of a metric
depends on the biases of this metric regarding the properties of the underlying objects
being evaluated. However, the relation between bias and suitability is not straightforward.
We cannot generalize that metrics with high bias are not suitable or vice versa. In some
cases, bias to a particular property is required; in other cases, bias to the same properties
may be not preferred. The evaluation goal can have impact on how biases are to be
considered in metric selection. In general, we differentiate between two cases:

I There are no particular properties to be emphasized, preferred, or known to have
impact related to the evaluation task. Here, it is assumed that metrics are to be
selected that in general have less bias to the different properties of the objects, i.e.
stable metrics that would not over-/under penalize particular properties.

II There are properties known to be related to the evaluation goal or the nature of the
object that the user intends to reward or penalize, because e.g. objects with these
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properties are preferred or not preferred. For example, in evaluating a segmentation
task, where it is important that the segmented region completely includes the true
segment, i.e. recall is more important than precision, in this case bias that penalizes
small segments or rewards recall would be preferred. In another case, where the
exact boundary of an image is of importance, a metric bias penalizing complex
boundaries is is to be avoided. An example of properties related to the nature of
the objects is outliers.

Average Bias

For Case I, the most suitable evaluation metrics are those with the least average bias over
all properties in F . The idea behind this assumption is that since there are no properties
known to be preferable or not preferable, the goal of the selection is to avoid metrics with
sensitivities and biases as much as possible and and to select metrics that are neutral
and stable regarding the different properties, which can be achieved by selecting metrics
with minimum average bias. The average bias of a metric m regarding the property set
F is defined as follows:

Definition 14. Average bias: given a set of objects O being evaluated according to
Definition 6, a set of object properties F according to Definition 11, and a set of
evaluation metrics M , then the overall bias B(m) of the metric m ∈ M regarding the
properties F is given by

B(m) = 1
|F |

∑
f∈F

Bf (m) = 1
|F |

∑
f∈F

abs
(
Cf (m)− C ′(m)

)
(2.13)

Weighted Average Bias

For Case II, it is required that the selection takes into consideration the evaluation
goal, represented by some properties being more or less important than others. To this
end, we introduce a weighted bias, which extends the average bias in Equation 2.13 by
customizing it to the user preference using the weight vector W , which has the length
|F | and maintains a weight for each property f ∈ F . These weights are values in the
interval [−1, 1].

Definition 15. Weighted average bias: Given a set of metrics M , a set of objects O
being evaluated according to Definition 6, a set of properties F according to Definition 11,
where some of the properties are known to be more relevant for the evaluation than others,
then the weighted bias Bw(m) of the metric m ∈M regarding the properties F is given by

Bw(m) = 1
|F |

∑
f∈F

(
1−W fDf (m)

)
Bf (m) (2.14)

where Bf (m) is the magnitude of bias of the metric m to the property f , Df (m) is the
direction of this bias, and W f is the weight of the property f that is utilized as follows:
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• W f = 0 should be used in order that Bf (m) is considered as is, i.e. as absolute
value of the bias regardless of the bias direction. This is the case if there is
special importance of property f . Setting zero weights for all properties results
in Equation 2.14 reducing to Equation 2.13, i.e. average bias, which means that
Equation 2.14 is the general form.

• 0 < W f ≤ 1 should be used in order that metrics rewarding the property f are
preferred. The value represents the preference, the higher the weight, the more
preference is, i.e. one means strong preference.

• −1 ≤ W f < 0 should be used in order that metrics penalizing the property f are
preferred. The value represents the preference, the higher the weight, the more
preference is, i.e. one means strong preference.

To select metrics from M , Equation 2.14 is performed for each metric m ∈M , then
metrics with the lowest weighted average bias are selected. Note that average bias is a
special case of weighted average bias, where all the weights have zero values.

2.7.5 Discussion

In this section, we present an experiment to validate the proposed method, which is
described step by step to provide a clearer explanation of the formal definitions and
algorithms.

Experiment

In this section, the proposed method for bias inference and metric selection is tested
with a data set of 229 automatic brain tumor segmentations (MRI 3D volumes) from the
BRATS2012 challenge3. These segmentations correspond to 47 medical cases, and were
automatically generated by five different segmentation algorithms participating in the
BRATS challenge. Note that the original dataset consists of 300 segmentations, but only
those segmentations have been considered that correspond to medical cases where at
least three segmentations per medical case exist. That is because the experiment requires
building a ranking per medical case, for which only one or two segmentations are not
sufficient.

We describe the experiment step by step and link each step to its corresponding
formal definition. Beginning from the setting defined in Definitions 6, and 11, the 229
segmentations correspond to the set of objects O. For the set of metrics M , 18 metrics
were selected from metrics listed in Table 2.1; note that Jaccard and F-Measure were
excluded because they produce the same ranks as the Dice. For the set of properties
F , 7 properties were defined, namely segment size, noise, class imbalance, connected
component count, point variance, sphereness, and recall. A technical report of the
complete data of this experiment in form of tabular results of each step is available in

3MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation,
www2.imm.dtu.dk/projects/BRATS2012
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[THJ14a]). The following steps (referenced to the algorithm described in Section 2.7.2)
were performed:

• (Step 1): Using each metric m of the 18 metrics in M , each segmentation was
evaluated against its corresponding ground truth segmentation to get the 18× 229
dimensional metric matrix s.

• (Step 2): For each metric, the segmentations were ranked. The ranks were calculated
based on the metric matrix s to get one ranking per metric, which results in a
18 × 229 dimensional segmentation rank matrix r. Note that here the rankings
are not regarding the medical cases, but regarding the metrics globally over all
segmentations.

• (Step 3): The segmentations were grouped randomly into 10 subsets (q = 10) to get
the random partition P ′, i.e. each subset consists of 229

10 ≈ 22 segmentations. Now,
the 10 subsets were ranked based on the rank sum of the individual segmentations
in each subset obtained from Equation 2.6 to get a 18× 10 dimensional subset rank
matrix R′.

• (Step 4): For each of the properties f ∈ F , a partition on the segmentation set,
consisting of 10 subsets, was constructed according to the property value f in the
segmentations to get the partition P f . Analogously to the random partition, the
10 subsets were ranked based on the rank sum of the individual segmentations in
each subset (Equation 2.8) to get the 18× 10 dimensional rank matrix Rf .

• (Steps 5, 6, and 7) Now having the random subset ranking for each metric R′(m),
and the subset ranking for each property and each metric Rf (m), the biases of the
individual metrics and properties were inferred using Equations 2.9, 2.10, and 2.11
and the average bias of each metric was calculated using Equation 2.13. Finally
metrics were sorted according to increasing average bias. The results are displayed
in Table 2.4.

The result of the metric suitability based on metric bias inference is displayed in
Table 2.4. The column “automatic” shows the average bias of each metric, where the
metrics with the least average bias are the most suitable. This suitability is represented
by ranks, shown in column “rank”, where metrics with lower rank are more suitable. We
call this the automatic metric suitability ranking.

In the remainder of this section, we validate the automatic metric suitability ranking
using an expert segmentation ranking. In other words, to know how well this method
can find suitable metrics, we find out which metrics a medical expert would select for
evaluating the same segmentations.

To this end, a manual ranking done by a radiology expert was used: for each of the
medical cases, the five corresponding segmentations were ranked by their quality from a
medical point of view. I.e. the radiology expert visually evaluates the 5 segmentations
by comparing them with their corresponding ground truth and gives each of them a
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rank depending on its quality from a medical point of view. Let us call these the expert
rankings. Analogously, each of the 5 segmentations was given a rank based on its distance
(or similarity) to the ground truth segmentation, measured by each of the 18 metrics.
Let us call the resulting rankings “the metric rankings”.

Now, the average correlation between the expert rankings and the metric rankings
was computed for each metric and finally the metrics were sorted according to their
average correlation. The resulting metric ranking (Table 2.4 column “expert”) was used
as a ground truth suitability ranking to validate the automatic suitability ranking.

The Table 2.4 column “automatic” shows for each metric the average bias (Equa-
tion 2.13) and the corresponding suitability rank computed based on the average bias.
The column “expert” shows for each metric the average correlation with the expert rank-
ing, and the suitability rank based on it. A moderate to strong correlation between the
two rankings can be observed. The six best metrics are the same in both rankings. This
correlation shows that metrics with low bias produce rankings that are more correlated
to expert rankings than others.

Note that the weighted average bias, described in Definition 15 have not been used
in this experiment. Further investigation regarding weighted bias is suggested as future
work.

2.8 Summary

We investigated metric properties, sensitivities, and metric bias. We related the findings
to metric suitability for evaluation tasks and metric selection. This work was done in
two parts.

In the first part, we investigated 20 evaluation metrics for 3D medical segmentations,
which have been identified based on a literature review. For all these metrics, we provided
definitions for binary and fuzzy segmentations. Furthermore provided a comprehensive
analysis of these metrics, discussing their properties, sensitivities and biases, which we
concluded by guidelines for selecting metrics for evaluating medical image segmentations.
We have presented these findings in [TH15b].

In the second part, we generalized the concept of selecting metrics based on metric
bias. Note that the first part also deals with metric selection based on metric bias, but
with a difference, namely it is based on analysis, experiment and theoretical explanation
of the properties of particular metrics for a specific domain, namely the 3D medical
segmentation. On the contrary, the method proposed in this part aims to infer metric bias
systematically using a formal general framework for any metrics and any evaluation task
that is based on comparing objects with their corresponding ground truth. The method
has been demonstrated only on medical segmentation. In particular, we generalize the
metric selection framework that we had proposed in [THJ14b] to arbitrary evaluation
tasks, given they are based on comparing objects with ground truth. The metric selection
is based on a novel formal method for inferring metric bias to a particular property
of the objects being evaluated. Given a set of properties defined to be relevant for an
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Table 2.4: Manual and automatic metric suitability rankings. In column “expert”, the
average correlation between metric rankings and the manual rankings as well as corre-
sponding suitability ranks according to descending correlation. In column “automatic”,
the metric bias calculated automatically by the proposed method as well as the ranks
according to ascending bias (detailed data and results available in [THJ14a])

metric expert automatic
correl. rank bias rank

Cohen’s Kappa 0.818 1 33.5 2
Adjusted Rand Index 0.818 1 33.1 1
Interclass Correlation 0.818 1 33.5 2
Probabilistic distance 0.802 2 34.7 5
Dice 0.800 3 33.6 3
Average Distance 0.798 4 33.9 4
Accuracy 0.791 5 64.0 14
Rand Index 0.791 5 64.0 14
Variation of Inform. 0.791 6 62.0 13
Mutual Information 0.753 7 46.5 12
Mahalanobis Distance 0.701 8 37.7 7
Global Consistency Err. 0.670 9 69.8 15
Hausdorff Distance 0.663 10 35.5 6
Area u. curve (AUC) 0.647 11 42.0 8
Sensitivity 0.615 12 44.4 10
Precision 0.608 13 44.5 11
Volumetric Similarity 0.590 14 43.6 9
Specificity 0.398 15 78.6 16
Correlation between expert & automatic ranking 0.607

evaluation task, the propose method infers the overall bias of a given metric regarding
these properties, which gives a basis for a formal metric selection framework.
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CHAPTER 3
Computationally Intensive

Metrics

3.1 Introduction

Efficiency in speed as well as in memory usage is an important issue in metric calculation,
especially those metrics that attempt to calculate the distance between two point sets,
thereby considering distances of all point pairs in the two point sets, e.g. the Hausdorff
distance (HD) and the average distance (AVD). This complexity becomes a problem when
the set size is huge. An example of huge point sets are 3D medical image segmentations,
which can have up to 100 Mio voxels.

There are several aspects that should be considered in order to achieve efficient evalua-
tion tools. One of these aspects is avoiding unnecessary multiple computation when many
metrics are to be calculated that are based on common basic elements or can be reduced to
common elementary factors. This is an important consideration for evaluation tools that
attempt to calculate a set of related metrics. We have successfully applied this method to
optimize an implementation of an evaluation tool named EvaluateSegmentation1, which
we have implemented and described in [TH15b]. In EvaluateSegmentation, 20 evaluation
metrics for 3D medical image segmentation have been implemented. A synergy between
15 of these metrics has been found by reducing their definitions to common basic factors,
which results in these factors having to be computed only once, which avoids unnecessary
computation and thus enables high efficiency in time and memory usage. Examples
of such basic elements are the basic cardinalities of the confusion matrix (true/false
positives and true/false negatives). Another advantage of reduction to common factors is
enabling a generic extension of metrics, e.g. from binary to fuzzy, by only extending the
elementary factors, based on which the metrics are defined.

1EvaluateSegmentation is an open source project for evaluating medical volume segmentations
available for download from http://github/codalab/EvaluateSegmentation.
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Another aspect of efficiency is the calculation of computationally intensive metrics,
especially those metrics that calculate distances between all possible pairs of points,
e.g. the HD and the AVD. The naive computation of such metrics takes a time that
is quadratically proportional to the point set size. When the point sets are huge, the
computational time is critical. Memory usage is another challenge in metric computation
in combination with huge point sets. Regarding these two aspects, we present (i) a
linear general algorithm for calculating the exact Hausdorff distance, as one of the most
computationally intensive metrics, and (ii) an optimization method for calculating the
average distance between image segmentations, which makes use of them being rigid
objects (dense point sets) to achieve an efficient computation.

The Hausdorff distance (HD) is a measure of dissimilarity between two point sets. The
HD is an important metric that is commonly used in many domains like image processing
and pattern matching as well as evaluating the quality of clustering. For example it
is common to use the Hausdorff distance in the medical domain in applications like
evaluation of medical segmentations and registration. In many cases medical images, such
as magnetic resonance (MRI) and computed tomography (CT) volumes are compared e.g.
to evaluate the performance of registration [BM92] [CR03] and segmentation algorithms
[MNLBR07] [BPA+08] [KCAB09].

Formal definitions: The directed Hausdorff distance Ȟ between two arbitrary point
sets A and B is the maximum of distances between each point x ∈ A to its nearest
neighbor y ∈ B. That is:

Ȟ(A,B) = maxx∈A{miny∈B{||x, y||}} (3.1)

where ||., .|| is any norm e.g. the Euclidean distance function. Note that Ȟ(A,B) 6=
Ȟ(B,A) and thus the directed Hausdorff distance is not symmetric. The Hausdorff
distance H is the maximum of the directed Hausdorff distances in both directions and
thus it is symmetric. H is given by:

H(A,B) = max{Ȟ(A,B), Ȟ(B,A)} (3.2)

The Average Distance (AVD), is defined as the average of minimum distances from
points in the first point set to the second one and vice versa. It is defined as

AVD(A,B) = d(A,B) + d(B,A)
2

(3.3)

where d(A,B) is the directed Average Hausdorff distance that is given by

d(A,B) = 1
N

∑
x∈A

min
y∈B
||x− y|| (3.4)

According to the definitions of the HD and AVD, they are based on calculating all
pairwise distances between points in the two point sets, which implies that a straight-
forward computation takes a time that is quadratically proportional to the point set
size.
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Requirements on distance algorithms: Many researchers have noted the computa-
tional complexity of the HD and AVD [NJS11] [GJC01] [HDAC12]. The most important
characteristics to optimize are runtime and memory required. However, evaluating the
quality of an algorithm should take into consideration how these two characteristics vary
in relation to the following parameters, where the terms volume, grid size, and set size
are according Definition 7:

• Point set size: For example, a brain MRI volume could reach a million voxels and
that of a whole body could reach 100 million voxels. The runtime of the algorithm
should remain reasonable when the set size increases extremely.

• Grid size: It is desirable that the complexity of the algorithm depends only on the
point set size rather than the grid size. For example, in brain tumor segmentations,
the volume of the tumor is normally a small fraction of the grid size and the rest is
background. The background should not be included in the computation.

• Density and sparsity: an algorithm could perform better with sparse point sets like
geographical locations and worse with dense point sets like MRI segmentations and
vice versa.

• Generality: algorithms restricted to a special class of point sets cannot be applied
in a general situation.

Contribution: In this chapter, we propose two algorithms:
The first is for calculating the HD. This algorithm is optimized to satisfy all the

requirements stated above, i.e. it remains efficient when changing any of the four
parameters. It has a nearly-linear complexity and an efficient performance for extreme
point set sizes as well as for extreme grid size. It outperforms the standard HD algorithm
of the ITK Library, the leading platform for image processing in the medical domain.
Furthermore the proposed algorithm performs equally for sparse and dense point sets,
and finally it is general without restrictions on the characteristics of the point set.

The second algorithm is for computing the AVD between 2D/3D image segmentations.
This algorithm satisfies only the first two requirements, i.e. it operates efficiently with
image segmentations having huge segments as well as huge grid sizes. It does not satisfy
the generality and sparsity requirements because it is restricted to image segmentations
since it makes use of their nature being dense objects.

Chapter organisation: The remainder of the chapter is organized as follows. Related
work is discussed in Section 3.2. In Section 3.3 we propose the novel algorithm for comput-
ing the Hausdorff distance and provide a runtime analysis of the algorithm. Experiments
and results are presented in Section 3.4. In Section 3.5, we present optimizations for
calculating the average distance. Finally, the chapter is concluded in Section 3.6.
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3.2 State-of-the-Art

Several approaches have been proposed that aim to overcome the computational com-
plexity of the Hausdorff distance. These approaches can be generally divided into two
categories, namely approximation and exact calculation of the Hausdorff distance. The
first category contains those methods that try to efficiently find an approximation of the
Hausdorff distance. This category is especially common with runtime-critical applica-
tions, for example pattern matching under transformation (e.g. moving object detection).
Because the HD algorithm proposed in this chapter aims to calculate the exact Hausdorff
distance, this category of research is actually not directly in the focus of this chapter; we
therefore only give some representative references for this category. Alt et al. [ABJ91]
used Voronoi diagrams to efficiently approximate the HD between simple polygons. Indyk
et al. [IV03] proposed an algorithm for approximating the HD for matching patterns
under transformation by using the Halls Theorem to reduce the necessary geometrical
matching. Hossain et al. [HDAC12] proposed a linear time algorithm for finding an
approximation of the HD with lower approximation error.

Most algorithms belonging to the second category try to efficiently compute the
exact Hausdorff distance for specific classes of point sets or special types of objects like
polygons, line segments, or special curves. The rest of these algorithms use complex
structures that require a preprocessing phase causing long computation time and high
memory need. In the next subsections we highlight some work related to this category in
more detail.

3.2.1 Polygons

Atallah [Ata83] provided an algorithm for computing the Hausdorff distance for a special
case of point sets, namely non-intersecting, convex polygons. The algorithm has the
complexity of O(n + m) where m and n are the vertex counts. The algorithm is
mainly based on the fact that when minimizing/maximizing distances between two
non-intersecting convex polygons, then points with extreme distances are always the
vertices. This implies that only distances between vertices need to be computed to find
the Hausdorff distance. Although this algorithm is simple and computationally efficient,
it is restricted to a special class of point sets.

3.2.2 R-Trees

Papadias et al. [PTMH05] proposed an algorithm for finding aggregate nearest neighbors
(ANN) in databases. Given two databases in form of point sets A and B, the algorithm
finds for a given point a ∈ A the nearest point b ∈ B. That is ANN(a,B) = b ∈ B :
dist(a, b) = minddist(a,B). The query data points are spatially indexed to produce
an R-Tree which is then used to optimize searching for the ANN. In fact, ANN(a,B)
can be an elementary function for computing the directed Hausdorff distance because
Ȟ(A,B) = maxa∈AANN(a,B). But because the algorithm deals with B as a single
object, it follows that the direct use of ANN to compute Hausdorff distance means

56



iterating all points a ∈ A and performing ANN each time. Nutanong et al. [NJS11]
extended the algorithm proposed in [PTMH05] by avoiding the iteration of all points in A:
the algorithm achieves this by performing the aggregate nearest neighbor simultaneously
in both directions, that is to use two R-Trees at the same time, one for each point set.

However, the drawbacks of both methods above are (i) they use complex structures
with additional computational effort needed for building the index and (ii) the methods
assume sparse point sets that are suitable for building an efficient R-Tree. If the underlying
point sets are very dense or in the worst case rigid objects (e.g. medical segmentation),
algorithms based on R-Trees may not be the best choice.

3.2.3 Distance Transform Based Algorithms

A distance transform (called also distance maps) is a representation of an image in which
each pixel becomes a label that reflects its distance to the boundary or background. There
are various transforms depending on the distance metric used [MQR03]. A common
way to efficiently compute the HD in image processing is to use the distance transform.
These methods compute the Hausdorff distance in linear time, given a distance transform,
but the time required for computing the distance transform is proportional to the grid
size, as it also takes background into account. Furthermore, these methods are based
on labeling the pixels which makes them restricted to images, and thus they are not
general. The ITK Library2 uses distance transforms for computing the HD, described in
[TSG06]. Ciesielski et al. [CCUG11] investigated the computational complexity of the
algorithm described in [TSG06]. They concluded that this distance transform algorithm is
a computationally expensive but ubiquitously needed operation in image processing. We
use the ITK implementation of this algorithm as a reference to compare the performance
of the proposed algorithm in Section 3.4.

3.2.4 HD for Mesh Surfaces

Guthe et al. [GBK05] proposed an algorithm for calculating the Hausdorff distance
between mesh surfaces. This algorithm makes use of the specific characteristics of meshes
to avoid sampling all points in the compared surfaces. To achieve this, two strategies are
used. In the first strategy, the algorithm aims to recognize areas in the two compared
surfaces where the pairwise triangles are expected to have maximum distance between
them. Only these areas are intensively sampled thereby avoiding sampling all triangles of
the surfaces. This is achieved by building a grid, in particular an octree, on each of the
surfaces and then calculating the min/max distances between cells. The second strategy
is to avoid sampling all points in a particular triangle when calculating the min/max
distances of the cells. This is achieved by measuring the distances of the triangle vertices
to the other mesh surface in a first step. Then, sampling further points inside the triangle
is stopped if all distances of the vertices are less than the actual (yet unknown) HD. As
mentioned above, this algorithm is based on the specific characteristics of meshes and

2National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) www.itk.org
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thereby lacks generality. In particular, the second strategy is only applicable on surfaces
consisting of triangles (meshes) and because it is used in the first strategy, this implies
that also the first strategy can be only applied on meshes efficiently.

3.2.5 Optimizing the k-Nearest Neighbors Algorithm

The k-nearest neighbor (k-NN) algorithm is a basic operation in many algorithms in
information retrieval, machine learning, and data mining. It is also the core operation of
many metrics that aim to compare two point sets, like the Hausdorff distance (HD) and
the average distance (AVD). There is a lot of literature on k-NN optimization techniques.
However, we are interested in an optimization presented by Zhao et al. [ZLX+14], on
which we will build in Section 3.5 to optimize the calculation of the AVD. Zhao et al.
proposed an optimized algorithm for finding the nearest neighbor (NN) based on a 3D
uniform cell grid. In particular, this algorithm aims to find a convenient subspace of
the grid that contains the NN by finding a hypersphere of a radius as small as possible
containing the NN, such that unnecessary calculations are avoided. Using this technique,
an efficient calculation of the NN is achieved. However, this optimization alone is not
sufficient for calculating the AVD between huge 3D medical segmentations. Therefore,
we propose two substantial modifications for this algorithm in Section 3.5 that result in
an efficient AVD calculation algorithm that is sufficient for computing the AVD between
huge 3D medical segmentations.

3.3 Calculating the Hausdorff Distance

In this section we propose a novel algorithm for calculating the exact Hausdorff distance.
Before starting with the new algorithm, we will define some notations that will hold
through the rest of the chapter. We also present the straightforward algorithm for
calculating the Hausdorff distance in Algorithm 3.1 to ease explanation. Let A =
{x1, x2, ..., xm} and B = {y1, y2, ..., yn} be two point sets in Rd and let ||x, y|| be any
norm Rd −→ R where x, y ∈ Rd. In the usual case this is the Euclidean distance function.
Recall equations (3.1) and (3.2) and note that the Hausdorff distance is the maximum of
the two directed Hausdorff distances in both directions. Thus, from now we will only
concentrate on computing the directed Hausdorff distance Ȟ(A,B)

Note that we will only use two dimensional point sets in illustrations for simplicity,
although the proposed algorithm is applicable for point sets in Rd.

Obviously Algorithm 3.1 runs in O(m ∗ n) time where m = |A| and n = |B| because
both loops in Algorithm 3.1, Lines 2 and 4, always run through all points. From now, we
will call these loops the outer loop and the inner loop respectively.

Hereafter the three parts of the proposed algorithm are presented: in the first part
(Section 3.3.1), we show that a complete scan in the inner loop is not always necessary
(early breaking). The second part (Section 3.3.2) presents a sampling method that can
replace the trivial scanning and considerably enhance the performance. The combination
of early breaking and the sampling method provides a significant efficiency increase
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Algorithm 3.1: NAIVEHDD straightforwardly computes the directed Hausdorff
distance
Require: Two finite point sets A, B.
Ensure: Directed Hausdorff distance
1: cmax← 0;
2: for x ∈ A do
3: cmin←∞
4: for y ∈ B do
5: d← ||x, y||
6: if d < cmin then
7: cmin← d
8: end if
9: end for
10: if cmin > cmax then
11: cmax← cmin
12: end if
13: end for
14: return cmax

compared to the application of these optimizations individually. In the third part
(Section 3.3.3), a refinement technique is presented that excludes the intersection of the
compared sets from computation in advance in the case where the intersection is defined,
e.g. when the compared sets are images or volumes, which additionally provides a small
increase in the speed of the algorithm. Finally, in Section 3.3.4 we present the runtime
analysis of the proposed algorithm.

3.3.1 Early Breaking

It is not always necessary that the scan in the inner loop (Algorithm 3.1, Line 4) runs
completely through. Since the Hausdorff distance aims to find the maximum of the
minimums, the inner loop can actually break as soon as a distance is found that is below
the temporary HD (cmax), because in this case cmax will definitely not change in the
rest of the loop. This means the algorithm can break the inner loop and continue with
the next point of the outer loop. Through the rest of the chapter, we will call stopping
the inner loop because of finding some distance d < cmax the early break. We modify
Algorithm 3.1 to consider the early break as illustrated in Algorithm 3.2, Line 9.

Note that the run time of Algorithm 3.2 depends on at least the following factors:

• The order in which the outer loop iterates the points in A: detecting a point with
a relatively large distance to B leads to a larger value of cmax and consequently to
a higher probability of the occurrence of an early break. In fact detecting the point
with maximum distance to B at the beginning leads to the best case.
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Algorithm 3.2: EARLYBREAK computes the directed HDD using the early break
technique and random sampling
Require: Two finite point sets A, B
Ensure: Directed Hausdorff distance
1: cmax← 0;
2: E ← A\(A ∩B) {described in Sec. 3.3.3}
3: Er ← randomize(E) {Randomization described in Sec. 3.3.2}
4: Br ← randomize(B) {Randomization described in Sec. 3.3.2}
5: for all x ∈ Er do
6: cmin←∞
7: for all y ∈ Br do
8: d← ||x, y||
9: if d < cmax then {Early break described in Sec. 3.3.1}
10: cmin← 0
11: break
12: end if
13: if d < cmin then
14: cmin← d
15: end if
16: end for
17: if cmin > cmax then
18: cmax← cmin;
19: end if
20: end for
21: return cmax

• The order in which the inner loop performs the scan in B: Here it is advantageous
to pick points with smaller distances, because a distance below cmax leads to an
early break. Figure 3.1 illustrates the relation between the iteration order and the
occurrence of the early break.

3.3.2 Random Sampling in Place of Scanning

Now the question is how much is the improvement from using the early break alone?
According to object coherence [GP93] based on the principle of spatial locality, in some
classes of point sets, like images and volumes, the points are likely to be spatially
distributed in a way that points iterated successively (e.g. line-wise or column-wise in
an image) in the first set have similar distances to some reference point in the second
set, which means that the early break could likely be delayed more than necessary. In
other words, if no early break occurs, it is likely that it will not occur when a nearby
point is tried. It is better in this case to continue the search in another region which
is spatially far from the current point. In this section we describe how to use random
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Figure 3.1: x(i−1) is the point already minimized in the previous iteration where cmax
was found to be the current maximum (temporary HD). Point xi is being currently
minimized by calculating its distances to B. Points y1..y8 ∈ B are numbered according
to their distance to xi. An iteration order beginning with y1, y2 or y3 is good because it
will cause an immediate break whereas an iteration order beginning with other points is
worse because the scan will continue.

sampling instead of the trivial scanning to improve performance. This method leads to
an algorithm with nearly-linear runtime as will be shown in Section 3.3.4

In random sampling, the aim is to avoid similar distances in successive iterations. This
is achieved by randomly iterating the points in the inner loop. However, we randomize
the sampling order also in the outer loop. We found that randomizing the sampling order
additionally in the outer loop makes the runtime more efficient in some special cases. E.g.
when the two point sets form generally linear shapes and one of them is nearly on the
extension line of the other. The randomization additionally in the outer loop reduces the
probability of worst cases with such point sets (this is e.g. frequent when the compared
point sets are trajectories). For other cases, it is enough to only randomize the inner loop.
But because the randomization doesn’t need much computational effort and because
there are no cases where it has a negative effect on the efficiency, we always randomize
both of the loops. To achieve this, we prepare a list Br with all points y ∈ B randomly
ordered and we use this set for iteration in the inner loop instead of set B. The same
is done with iterating in the outer loop, more specifically the set E is also randomized
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to get the set Er. Algorithm 3.2, Line 3 and Line 4 show the additional randomization
steps.

Note that preparing the random set in advance is necessary, because picking random
candidates in the loop cannot ensure iterating through all the points. Generating the
random order is possible in linear runtime by swapping each point in the set with
a randomly selected point from the same set. Algorithm 3.3 illustrates this linear
randomization.

The random scan eliminates the effect of the spatial locality in the point set and
provides a significant improvement as shown in Sections 3.3.4 and 3.4.

Algorithm 3.3: RANDOMIZE finds a random order of a given point set
Require: A finite point set S
Ensure: Random order of S
Sr ← S;
for all p1 ∈ Sr do
p2 ← randompoint(Sr)
swap(p1, p2)

end for
return Sr

3.3.3 Excluding Intersection

In this section we describe a refinement that is applicable when the compared point
sets are not disjunct but rather have a computable intersection. This is the case when
the point sets are defined on a grid. For instance in the evaluation of medical volume
segmentations, the compared images (test image and ground truth image) mostly have a
large portion of voxels in common. We describe a technique that improves the performance
of calculating the Hausdorff distance by excluding the intersection from the computation.
This optimization generally provides a small increase in speed beyond the combination
of early breaking and randomization. It is not a core part of the general HD algorithm,
and can be used to achieve a small speed increase in cases where it is applicable. Let
S = A∩B be the intersection between the compared point sets, then it is easy to conclude
that Ȟ(A,B) = Ȟ(A\S,B). This follows from the fact that when iterating points x ∈ A
in the outer loop, ∀xi ∈ S ∃s1 = xi ∈ A, s2 = xi ∈ B : ||s1, s2|| = 0, it follows that
dist(xi, B) = 0 which means that cmax doesn’t change in the corresponding iteration.
In other words, for each of the intersection points, a direct early break is guaranteed and
therefore it is not necessary to include them in the outer loop and they can be excluded
from A in advance. Note that the intersection points must be however included in the
inner loop because they could be at minimum distance to some point y ∈ B, y /∈ S.
Algorithm 3.2, Line 2 shows the additional step needed to implement this improvement.
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3.3.4 Runtime Analysis

Algorithm 3.2 has a runtime of O(m) in its best case and a run time of O(m ∗ n) in
its worst case (Note that we do not consider the complexity of measuring the distance
between two points, which is dependent on the dimensionality of the points, because
optimizing this measurement is not in the scope and thus assumed to be constant). The
best case is when an early break occurs directly at the beginning of each iteration in
the inner loop, that is when we always select a point with a distance below cmax. On
the other hand, the worst case occurs when a full scan runs through completely in each
iteration. The more important question is about the runtime of the average case.

Informally, it is expected that the average case runtime is biased towards the best
case because the worst case generally requires conditions that are more difficult to satisfy.
While a definite iteration order in the inner and the outer loops is required for the worst
case so that the early break is prevented in each iteration, the best case requires only
one condition, namely picking a point with a distance below cmax in each first iteration
in the inner loop.

Now let us see the average case runtime in a more formal way. We consider the
randomly picked point y ∈ B in Algorithm 3.2 in the inner loop and define the random
variable D to be the distance d measured between the point y and the current reference
point x ∈ A. We also define the event e to be that distance d is larger than cmax that is
e ≡ d > cmax. Note that event e means the non-appearance of an early break. Let us
assume that event e always occurs with the probability q that is P (e) = q. Obviously
the event e occurs with probability p = 1− q and denotes picking a distance d ≤ cmax.

We also define the random variable R to be the number of successive distances
exceeding cmax followed by one distance below cmax i.e. the length of a sequence of
successive events e followed by an event e. For any iteration i, this is equivalent to i− 1
distances from the reference point x to the points y1, y2, ..., yi−1 namely d1, d2, ....., di−1 >
cmax and one distance di ≤ cmax. The probability density function of R is given by

f(x) = P (d1 > cmax, ...., dx−1 > cmax, dx ≤ cmax)
= q ∗ .... ∗ q ∗ p
= qx−1p

(3.5)

which is a geometrical probability distribution. Figure 3.2 shows the probability distribu-
tion f(x). Note the strong steepness of f(x) that make longer runs of event e unlikely
and intuitively explains the bias of the average case runtime towards the best case. To
formally find the average case runtime, the expected value E[R] of f(x) should be found
which is equivalent to the expected number of iterations until an early break.

E[R] =
∞∑
x=1

xf(x) =
∞∑
x=1

xqx−1p (3.6)

E[R] is a geometrical series with 0 ≤ p ≤ 1 that converges and has a sum. From Equation
3.6 it follows

E[R] = p+ 2.q.p+ 3.q2.p+ 4.q3.p+ ... (3.7)
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Figure 3.2: The probability density function of a geometrical distribution.

By multiplying both sides with q, subtracting the resulting equation from Equation 3.7,
and then dividing by p

E[R](1− q)
p

= 1 + q + q2 + q3 + .... (3.8)

By multiplying both sides with q, subtracting the resulting equation from Equation 3.8,
and then substituting q = 1− p

E[R] = 1
p

(3.9)

Equation 3.9 tells the important fact that the number of tries until an early break depends
only on p which denotes the probability of picking a point with distance below cmax.
The higher p is, the more likely that the inner loop terminates after a lower number of
tries and vice versa.

But how high is p actually and what does it depend on? In fact, p depends mainly
on how large cmax is and cmax is limited by the HD because (cmax ≤ h) which means
the HD determines how large cmax at most can be. If the Hausdorff distance is large,
cmax can take larger values and thus it is more likely that a randomly selected point is
below cmax which means a higher value of p and vice versa, that is p ∝ h. Figure 3.3
illustrates the relation between cmax, the probability p, the Hausdorff distance, and the
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Figure 3.3: Distribution of pairwise distances assuming a normal distribution for illus-
tration. (A) Position of the Hausdorff distance h relative to the distribution affects p
because cmax ≤ h. (B) h is large and cmax can reach large values thereby increasing p.
(C) h is small and cmax remains small thereby decreasing p.

distribution of the pairwise distances dij where dij = ||xi, yj || : ∀xi ∈ A, yj ∈ B. Here,
a normal distribution is just for illustration and the relation holds for any distribution.
The example is to show how p does not directly depend on the size of set B, but rather
on the Hausdorff distance h and the distribution of the pairwise distances.

Note that we don’t have to determine the distribution of the pairwise distances
to conclude that the runtime depends only on h, this is because the distribution only
determines the value of p, which is irrelevant for whether the runtime is dependent on B
or not because the expected value 1

p is a constant value for any p > 0.
Formally, the average probability that the randomly picked distance d ≤ cmax is
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given by

p = average

(∫ cmax

x=0
f(x)dx

)
= c

∫ h

x=0
f(x)dx (3.10)

where f is the probability density function that represents the distribution of the pairwise
distances and c is a constant that results by estimating cmax in terms of h; the justification
of this estimation is in the next subsection.

3.3.5 Convergence of the Temporary HD (cmax)

The value of cmax geometrically increases during the progress of the outer loop (Algorithm
3.2) so that it already reaches values near h after a very small number of iterations
compared with the total count of iterations, as demonstrated in Figure 3.4. We explain
this geometrical increase as follows: At the beginning of the outer loop cmax is zero,
then it increases monotonically with the progress of the outer loop until it reaches the
Hausdorff distance h. In each iteration, there are two possibilities, either the distance
to the current point is smaller than cmax, here no cmax update is performed or the
distance is larger than cmax, in this case cmax is updated to have the distance value. Let
us observe only those iterations where cmax is updated. For any such update iteration i
we define cmax(i) to be the cmax value in that iteration (before update) and d(i) to be
the distance of the randomly selected point. The possible values that d(i) can have are
in the interval [cmax(i), h]. This means d(i) has an expected value of h−cmax(i)

2 which is
subsequently the expected value of cmax(i+ 1). It follows that in the next iteration i+ 1,
the expected interval in which d(i+ 1) values can be is [h− h−cmax(i)

2 , h]. Analogously, for
iteration i+2, we likely get cmax(i+2) = h−cmax(i)

4 and an interval [h− h−cmax(i)
4 , h] and

so on which implies a geometrical convergence of cmax to h. To experimentally verify
this geometrical convergence, we computed the Hausdorff distance between 1000 pairs of
trajectories generated from the road network of Oldenburg (described in Section 3.4.7).
Each of the trajectories consists of 2000 points. For each iteration in the outer loop,
two values were recorded, namely the number of iterations in the inner loop until the
early break n and the value of cmax at the beginning of each iteration in the outer
loop, hence getting 2000 values for each pair of trajectories, i.e. 2 million values in total.
Two statistics were computed, the first by averaging the number of iterations until the
early break (n) to get (n) at each iteration of the outer loop. This is visualized with a
logarithmic scale in Figure 3.5. At first, n is very high because cmax is zero and the inner
loop is scanned completely. After that, n decreases rapidly to converge finally at very low
values. This statistic confirms the convergence behavior of the number of iterations until
the early break predicted theoretically. The second statistic was made by converting the
recorded cmax values to percentage values of the HD between the corresponding pair
of trajectories; this is because the HD is different in each pair. From these percentage
values, we counted how many values exceed 90% and 99% at each iteration in the outer
loop. Figure 3.6 shows the results. We show only the first 200 iterations to make the
plot more readable. The results confirm the quick convergence of cmax to the HD. In
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Figure 3.4: The progress of cmax in the first 10 thousand iterations (outer loop) when
comparing two real brain tumor segmentations. Note that only 10 thousand of 15.6
million iterations in total (this is the number of voxels in the first segmentation) are
shown and thus the curve does not reach the HD.

about 80% of the cases, cmax is already after 5 iterations above 90% of the HD, and
already after 50 iterations above 99% of the HD.

From Equations 3.9 and 3.10, the expected number of iterations until the early break
given a Hausdorff distance h is

E[R] = 1
p

= 1
c
∫ h
x=0 f(x)dx (3.11)

Note that if h is very small, for example h ≈ 0, the algorithm tends to get low
performance. Nevertheless, low values of h mean high match between the point sets
which means that it is likely that A and B have high intersection, which also means that
the improvement introduced in Section 3.3.3 will compensate the loss of performance by
excluding the intersection and this will keep a low overall runtime.

67



Figure 3.5: The average number of iterations in the inner loop until the early break at
each iteration of the outer loop. Values are recorded from measuring the HD between
1000 pairs of trajectories generated from the road network of Oldenburg. Each trajectory
contains 2000 points. Iterations of the outer loop are on the x-axis and the number of
iterations in the inner loop averaged over all pairs on the y-axis.

3.3.6 Handling of Outliers

The Hausdorff distance is generally sensitive to outliers [EAN08] [HKR93]. The Hausdorff
quantile is a method proposed in [HKR93] to solve the problem of outliers: according to
the Hausdorff quantile method, the Hausdorff distance is defined to be the qth quantile
of distances instead of the maximum, so that possible outliers are excluded, where q is
selected depending on the application and the nature of the measured point sets. The
proposed algorithm can be easily extended to support the Hausdorff quantile by saving
all distances measured and after the outer loop is finished, the distances are sorted and
the qth quantile is returned instead of cmax.
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Figure 3.6: Convergence behavior of the temporary HD (cmax) along the iterations of
the outer loop. Iterations of the outer loop are on the x-axis and the frequencies of cmax
values exceeding 90% and 99% of the corresponding HD at each iteration are on the
y-axis.

3.4 Analysis

The proposed algorithm was tested with three different types of data, namely 3D
medical image segmentations, trajectories generated from a road network and random
3D Gaussians.

The terms volume, grid size, and set size used in combination with experiments using
3D medical image segmentations are defined in Definition 7.

Testing with real 3D medical image segmentations is done in four different variants
against the ITK HD algorithm and in a fifth variant against a version of the proposed HD
algorithm without the random sampling. In the first experiment (Section 3.4.1), the HD
between the volumes and the corresponding ground truth segmentations was calculated.
In the second experiment (Section 3.4.2), images were compared with randomly selected
volumes from the same set, so that the volumes in each pair do not overlap to rule out
that the general performance is dependent on the overlap between the compared images.
In the third experiment (Section 3.4.4), new images were generated by merging up to 8
images in order to test the performance when the point set size increases. In the fourth
experiment (Section 3.4.3), the sensitivity to increasing grid size is tested using whole
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body MRI volumes. In the fifth experiment (Section 3.4.5), the same test as in the first
experiment was performed, but against the proposed algorithm without the random
sampling step to show the effect of combining the early break with the random sampling.

In the sixth experiment (Section 3.4.6), 3D point sets were generated based on random
Gaussians and used to test the proposed algorithm to rule out that the efficiency of the
proposed algorithm is dependent on the nature of medical images.

Finally, in the last experiment (Section 3.4.7), trajectories generated from a road
network were used to test the proposed algorithm against the incremental Hausdorff
distance calculation algorithm (INC), based on R-Trees.

The first six experiments were performed on a machine with 3GHz Intel core processor,
8GB Memory, and Windows 7 OS. The last experiment (Section 3.4.7) was done on a
machine with the specification described in [NJS11], namely using a computer with a
Core 2 Duo processor and 2GB of Main Memory, running Mac OS 10.5.

3.4.1 Comparing Volumes with Ground Truth

In this experiment, we used a test set of 300 automatic brain tumor segmentations
(MRI 3D volumes) from the BRATS2012 challenge3. These volumes were produced by
segmentation algorithms proposed by four participants of the BRATS challenge. The
volumes vary widely in size and span the range from 2k to 600k voxels as point set size
and from 125x125x125 to 250x250x250 voxels as grid size. Each of these volumes was
validated against the corresponding ground truth segmentation made by human experts.
The test set consists of 240 volumes and 60 ground truth segmentations. All volumes were
validated using three algorithms: the first is an implementation of the straightforward
algorithm (Algorithm 3.1) to ensure that the proposed algorithm computes the correct
Hausdorff distance. The second one is the standard Hausdorff distance algorithm of the
ITK library4, namely the itk::HausdorffDistanceImageFilter, assumed to represent the
state-of-the-art. The ITK algorithm is based on the distance transform technique and is
described in [TSG06] and [EAN08]. The third algorithm is the proposed algorithm, an
implementation of Algorithm 3.2.

Figure 3.7 shows the performance of the proposed algorithm compared with the ITK
algorithm: while the ITK algorithm took an average time of 2.09 seconds per volume,
all runtimes of the proposed algorithm were below one second and have an average of
0.26 seconds per volume, which means that the proposed algorithm outperforms the ITK
algorithm by about 7.6 times.

3.4.2 Testing with non-Overlapping Images

The aim of this experiment is to rule out that the performance depends on the overlap
between the two compared volumes. To this end, we put all images (segmentations and

3MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation,
http://www2.imm.dtu.dk/projects/BRATS2012

4National Library of Medicine Insight Segmentation and Registration Toolkit (ITK)
http://www.itk.org
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Figure 3.7: Comparison between the performance of the proposed algorithm and the ITK
algorithm in validating 240 real brain tumor segmentations against the corresponding
ground truth. The set sizes of the segmentation pair being compared in kilo voxels are
on the horizontal axis and the run time in seconds is on the vertical axis. The grid size
varies from 125x125x125 to 250x250x250 voxels. The entries are sorted according to the
sum of the two sizes ascending.

ground truth volumes) in one pool of 300 images, then 300 pairs were selected from
the pool so that the intersection (overlap) between the two images in each pair is zero.
This was possible because brain tumors reside in different locations in the brain. The
HD was calculated using the ITK algorithm and the proposed algorithm. Note that we
had to unify all volumes to one grid size, namely 250x250x250 because the algorithms
accept only pairs consisting of two volumes with the same grid size. Figure 3.8 shows the
runtime plot of the proposed algorithm compared with that of ITK: again the proposed
algorithm outperforms the ITK algorithm about by 7.8 times. While the runtimes of
the proposed algorithm rarely exceed one second and have an average of 0.51 sec, the
ITK algorithm took an average of 3.82 sec. The result shows that the efficiency of the
method is not restricted to overlapped point sets and thus confirms the runtime analysis
in Section 3.3.4, namely Equation 3.11 that shows that the algorithm tends to have a
high efficiency when the HD is large. The increase in the efficiency compensates the
efficiency lost when the intersection is not present. This is the case in this experiment
because the HD is likely large, given that the images don’t overlap.
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Figure 3.8: Comparison between the performance of the proposed algorithm and the
ITK algorithm in comparing 300 pairs of volumes selected randomly so that the overlap
between volumes in each pair is zero. The set sizes of the segmentation pair being
compared in kilo voxels are on the horizontal axis and the run time in seconds is on the
vertical axis. All volumes have a unified grid size of 250x250x250 voxels. The entries are
sorted according to the sum of the two sizes ascending.

3.4.3 Efficiency Test with Whole Body Volumes

In this experiment we test the runtime behavior of the proposed algorithm of calculating
the HD when the grid size of the volume is increased. For this, we tested it with very
large 3D MR and CT volume segmentations from the VISCERAL project [LMMH13].
The set consists of 840 MRI and CT volume segmentations. These volumes were produced
by segmentation algorithms proposed by five participants of the VISCERAL Anatomy
1 Benchmark. For each of the volumes there exists a ground truth segmentation. The
volumes span the range from 387× 21× 1507 to 511× 511× 899 voxels as grid size and
the range from 1000 to 5Mio voxels as set size. Each of these volumes was validated
against the corresponding ground truth segmentation. In a first run, the proposed HD
algorithm was executed and in a second run, the algorithm of the ITK Library was used.
While the proposed HD algorithm ran through successfully with all volumes, the ITK
algorithm broke down with a memory allocation error with all volumes over a particular
grid size. The results in Figures 3.9 show that the proposed HD algorithm takes an
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Figure 3.9: Comparison between the performance of the proposed HD algorithm and
ITK Library implementation in validating 840 whole body segmentations against the
corresponding ground truth. The data points are sorted according to the grid size
(w × l × h). The set sizes of the segmentation pair being compared in kilo voxels as well
as the grid size are on the horizontal axis and the run time in seconds is on the vertical
axis. The ITK implementation failed with memory allocation error with all volumes
over a particular grid size. The entries are sorted according to the sum of the two sizes
ascending.

average execution time of 33.6 seconds for calculating the HD. The failing of the ITK
implementation with images with large grid size can be explained by the fact that the
distance transform based algorithms are sensitive to increasing grid size because all the
background voxels should be labeled. On the contrary, the proposed algorithm is not
sensitive to grid size increase because the background is not involved in the computation
at all.

The result of this experiment can be explained by the fact that distance transform
based algorithms are sensitive to increasing grid size because all the background voxels
should be labeled by the algorithm. Ciesielski et al. [00252] investigated the computational
complexity of the distance transform algorithm used in ITK and concluded that it is
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computationally expensive but ubiquitously needed operation in image processing.
On the contrary, the proposed algorithm is not sensitive to grid size increase because

the background is not involved in the computation at all.
The results of all experiments with MRI segmentations against the ITK HD algorithm

are summarized in Table 3.1.

Table 3.1: Result summary for experiments on medical images of varying sizes and
characteristics where n1..n2 is the size range of the compared point sets, L, B, H are the
grid dimensions for medical volumes and the time values are the average execution time
for calculating the HD

Testing with .. LxBxH
(grid size)

n1..n2 (set
size)

proposed
algorithm

ITK algo-
rithm

ground truth 125 to 250 2k..350k 0.26 sec. 2.09 sec.
non-overlapping
point sets

250x250x250 2k..350k 0.51 sec. 3.82 sec.

merged volumes 250x250x250 207k..1100K 0.93 sec. 3.45 sec.
Whole body vol-
umes

387x21x1507
to
511x511x899

1.4k..3940k 33.6 sec. allocation error

3.4.4 Testing with Large segments

The experiment in Section 3.4.3 ensures large grid sizes but does not ensure large segments
since the organs can be small. In this experiment we test the runtime behavior when
the set size increases. For this, we constructed a new pool of 300 volumes, where
each of them is generated by merging up to 8 randomly selected volumes from the
original test set without increasing the grid size, which is still 250x250x250 voxels, that
is V = V1 ∪ V2 ∪ V3... where V1, V2, ... are the randomly selected volumes and V is the
resulting test volume. The resulting volumes span a set size range from 150k to 850k
voxels. Finally, 300 pairs were randomly selected and compared.

Figure 3.10 shows that the proposed algorithm outperforms the ITK algorithm and
has no significant runtime increase with increasing the set size.

3.4.5 Testing the Effect of Random Sampling

This experiment is to show the contribution of the random sampling to the efficiency of
the proposed algorithm. The same data and configuration of the experiment in Section
3.4.1 is used except that the random sampling is replaced by direct scanning. In particular,
Lines 3 and 4 in Algorithm 3.2 are omitted and the sets E and B are used instead of the
sets Er and Br respectively. The results in Figure 3.11 show that the random sampling is
strongly related with the performance of the algorithm and has a significant contribution
to the efficiency. Note that eight instances are removed to improve the visibility of the
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Figure 3.10: Performance comparison between the proposed algorithm and the ITK
algorithm in comparing enlarged volumes. The set sizes of the segmentation pair being
compared in kilo voxels are on the horizontal axis and the run time in seconds is on the
vertical axis. All volumes have a unified grid size of 250x250x250 voxels. The entries are
sorted according to the sum of the two sizes ascending.

plot because they have an execution time exceeding 100 seconds with direct scanning.
The contribution of the random sampling is a factor of 36.8 measured as the ratio between
the two execution times averaged over all pairs.

3.4.6 Testing with Random Gaussians

To rule out that the efficiency is dependent on the point distribution of medical volumes,
the proposed algorithm was tested against random Gaussians. 300 point clouds were
generated; each of them consisting of 50 thousand to 0.5 million points; the points in each
cloud are normally distributed and satisfy a random Gaussian (i.e. the point coordinates
x, y and z are generated according to three different Gaussians each with a random µ
and a random σ) selected so that the points fit in a grid of 250x250x250 voxels. From
these point clouds, 300 pairs were randomly selected. The HD distance between the
point sets in each pair was measured by the proposed algorithm and the ITK algorithm.
The results in Figure 3.12 show that the proposed algorithm still outperforms the ITK
algorithm with a factor of about 4.35. The experiment shows that the proposed algorithm
replicates its performance with normally distributed point sets.
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Figure 3.11: Contribution of random sampling: Comparison between the efficiency of the
proposed algorithm when using random sampling and direct scanning. The same data as
in the experiment in Section 3.4.1 is used. The size of the compared images in kilo voxel
is on the x-axis and the execution time in seconds, scaled logarithmically, is on the y-axis.

We analyzed the few data points in Figure 3.12 where the proposed algorithm required
a computation time of more than 4 seconds. We found that the relatively long runtime is
not related to a particular point set, but rather to a combination between two point set
configurations. In particular the runtime is relatively long when the pairwise distances
are in average small compared with the HD, which causes that cmax grows slower and
the early break consequently occurs less often. This observation is in conformance with
the runtime analysis in Section 3.3.4, i.e. that the runtime is dependent on the value of
the HD relative to the distribution of the pairwise distances between the compared point
sets, as illustrated in Figure 3.3.

3.4.7 Testing against Incremental Hausdorff Distance

In this experiment, the proposed method was tested against the incremental Hausdorff
distance calculation algorithm (INC) proposed by Nutanong et al. [NJS11]. To this
end, we tested the proposed algorithm with the same data, the same setting, and on
hardware of identical specification as described in [NJS11], Section 7.1 (Hausdorff Distance
Calculation). As point sets, we used trajectories generated from the Oldenburg (OL)
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Figure 3.12: Comparison between the performance of the proposed algorithm and the
ITK algorithm in measuring the HD of 300 pairs of Gaussians generated by randomly
selected means and standard deviations for each of the 3 dimensions. The sizes of the
point sets being compared in kilo voxels ares on the horizontal axis and the execution
time in seconds is on the vertical axis.

road network5 so that each trajectory is the shortest path between two randomly selected
points in the network with a length of 2000 units. The points on each trajectory were
sampled in different resolutions, i.e. the path was truncated into chunks with different
lengths. Five groups of trajectories (G1 .. G5) were constructed so that each group
contains trajectories sampled in a different resolution. G1, G2, G3, G4, G5 have 400,
800, 1200, 1600, 2000 sampled points respectively. The HD(X,Y) was calculated between
trajectories by varying the point set size, i.e. selecting trajectories from different groups.
In a first experiment set, the size of X was fixed and the size of Y was varied, and in a
second experiment set the size of Y was fixed and the size of X was varied. The execution
times of these experiments are compared with the execution times published in [NJS11],
Section 7.1, Figure 8. Figure 3.13 shows the execution time where each data point is
the average of 200 different pairs of trajectories. The results show that the proposed
algorithm outperforms the INC algorithm by about 30 times.

5City of Oldenburg Road Network http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm
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Figure 3.13: Comparison of the execution time of calculating the Hausdorff distance
HD(X,Y) by the proposed algorithm and the incremental Hausdorff calculation (INC)
[NJS11]. In A, the size of X is fixed and the size of Y varies and conversely in B. Each
data point is the average of 200 pairs of trajectories. The size of the point set is on x-axis
and the execution time in milliseconds on the y-axis.

3.5 Average Distance between Image Segmentations
The Average Distance (AVD) is defined in Equations 3.3 and 3.4, which we restate here.
The AVD is defined as the average of minimum distances from points in the first point
set to the second one and vice versa. It is defined as

AVD(A,B) = d(A,B) + d(B,A)
2 (3.3)

where d(A,B) is the directed Average Hausdorff distance that is given by

d(A,B) = 1
N

∑
a∈A

min
b∈B
||a− b|| (3.4)

Obviously, a straightforward computation of the AVD has a complexity that is
quadratically proportional to the point set size.

The AVD is known to be stable and less sensitive to outliers than the HD. The
AVD is commonly used to compare image segmentations, for example comparing medical
image segmentations [SSS02], [MJB+12], [KCAB09]. Unfortunately, the two optimization
techniques used for the Hausdorff distance (early break and randomization) cannot be
applied for the AVD because the AVD attempts to calculate all the distances and finally
considers their average, which makes early break optimization not applicable. In this
section, we use two optimization techniques to achieve efficient calculation of the AVD
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between two binary image segmentations. We formally define binary image segmentation
as follows:

The nearest neighbor (NN) is the core operation used to calculate the average distance
between two image segmentations. Given a point q and a segment A, the NN of q in A is
defined as:

Definition 16. Nearest neighbor (NN): Let A be a segment in a binary segmentation
according to Definition 7. Let q be any query point. The nearest neighbor operation
NN(q, A) finds the point p ∈ A such that d(q, p) ≤ d(q, x),∀x ∈ A.

In this section, we provide optimizations for the NN operation used in combination
with image segmentations. The first optimization is based on excluding the irrelevant
voxels from the calculation, e.g. by considering representations of the segmentations
as hollow objects (surfaces), thereby excluding the inside voxels from the calculation.
The second optimization is based on reducing the search space of the NN by finding a
convenient search radius.

3.5.1 Voxel Exclusion

Let A and B be segmentations according to Definition 7, illustrated in Figure 3.14 (1) and
(2), which are to be compared using the average distance. Since both of the segmentations
are defined on the same grid, the segments (foreground) in A and B result in three
types of regions as illustrated in Figure 3.14 (3). Assuming that A is the ground truth
segmentation and B is the segmentation being tested, then region R1 = A\B represents
the false negative (FN), R2 = A ∩B represents the true positive (TP), and R3 = B\A
represents the false positive.

According to Equation 3.3, the average distance is the average of the directed average
distances from A to B and from B to A. Since we are interested in optimizing the nearest
neighbor function, we only describe one direction, namely from A to B. The same holds
for the opposite direction.

A naive calculation of the directed AVD from A to B should calculate the nearest
neighbors of all points q ∈ A, which we call the domain of the NN operation D(NN).
Note that A = R1 ∪R2. The nearest neighbors are found in B, which we call the range
of NN operation R(NN). Note that B = R2 ∪R3.

Obviously, The first voxel exclusion optimization is removing region R2 from the
domain D(NN), i.e. calculating the nearest neighbors of only those points of A that are
in R1 and ignoring those lying in R2. This optimization is illustrated in Figure 3.14
(4) and (5). This is justified by the fact that all points q ∈ A lying in R2 have a zero
distance to the segment B. Note that the inverse does not hold, i.e. R2 is only removed
from the domain D(NN) and may not be removed from the range R(NN), since a point
x ∈ B in R2 could be the NN of some point q ∈ A that is not in R2.

The second voxel exclusion optimization makes use of the nature of segmentations
being rigid objects (dense point sets). It suggests considering only the surface of R(NN),
instead of considering all points inside it, as illustrated in Figure 3.14 (6). Here R(NN) =
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Figure 3.14: Illustration of the optimizations used in calculating the average distance
(AVD). In (1) and (2), the images A and B, defined on the same grid, are to be compared
using the AVD. In (3), the intersection of the images is identified. In (4), the points in
the intersection are removed from the domain D(NN), since they have zero distances.
In (5), only distances from R1 to B are considered. In (6), only the boundary voxels
(surface) of B are considered as range R(NN).

surface(B) This is justified by the fact that when moving in a straight line from a point
q ∈ R1 toward B, the first point crossed in B is on the surface, which means the nearest
neighbor cannot be farther than this point. This implies that all points inside B and not
on the surface are not relevant.

To extract the surface (boundary) of a 3D segmentation, any convenient contour
tracing algorithm can be used, which has the following properties: (i) can be applied for
3D images, (ii) discovers the holes in an object, and (iii) visits all connected components
in an image. More information about contour tracing algorithms is in [SHB07] [CKL14]
[Zam82]. For illustration, we use Algorithm 3.4 that takes a segmentation as input
and calculates its 3D boundary, i.e. a hollow segmentation having the same surface.
Figure 3.15 illustrates the surface of a real brain tumor segmentation resulting from
applying Algorithm 3.4.

3.5.2 Reducing the Search Sphere

Voxel exclusion optimization presented in Section 3.5.1 achieves a considerable efficiency
improvement. However, more improvement is required to achieve satisfactory efficiency
for huge image segmentations. In this section, we propose another optimization of the
nearest neighbor (NN) operation for calculating the AVD. This optimization results in
the search space required to find the NN of a query point being reduced, i.e. it avoids
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Figure 3.15: Finding the surface of a segmentation: In (A), a 3D segmentation of the
edema of a real brain tumor viewed as three orthogonal slices. In (B), the surface
(boundary) of the same segmentation as a result of applying the Algorithm 3.4 on the
segmentation in (A).

Algorithm 3.4: HOLLOW returns the surface points of a 3D image
Input: Image as a set of pixels, I
Output: Hollow image h(I)

1 H ← ∅;
2 foreach p ∈ I do
3 N ← the 6 neighbors of p;
4 foreach n ∈ N do
5 if n is background then
6 add p to H;
7 end
8 end
9 end

10 return H

scanning the whole segment surface (hollow segment) resulting from the first optimization.
We use a modified version of the NN algorithm proposed by Zhao et al. [ZLX+14] in
which a 3D cell grid is built on the point cloud and for each query point, a search subspace
(a subset of the grid cells containing the nearest neighbor) is found to limit the search
required to find the NN. The modification we added to this algorithm is to find a radius
r of a convenient search sphere that for sure contains the NN in B of a given query point
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Figure 3.16: Illustration of the optimizations achieved by reducing the search space when
searching the nearest neighbor, a search sphere with radius r is found by moving from
the query q toward the mean m and considering the first point crossed on the boundary.

q ∈ A, as illustrated in Figure 3.16. Finding this convenient search radius r is done by
moving in a straight line from the query point q toward the mean (centroid) m of the
segment B and stopping as soon as a point c ∈ B is crossed on the surface of segment
B. The distance from the query q to the crossing point c is the search radius required,
since it ensures finding the NN within the search sphere, i.e. r = qc. After finding a
convenient sphere, all grid cells contained by this sphere or crossed by its surface are
searched. If no point c is found (which is unlikely to happen with segmentations), an
exhaustive search is performed.

We present the experiments that validate the efficiency of the proposed algorithm for
calculating the AVD with two different sets of real MR and CT volume segmentations,
namely brain tumor segmentations (Section 3.5.3) and whole body image segmentations
(Section 3.5.4). In both cases, the proposed AVD algorithm was tested against the
implementation of the AVD algorithm of the ITK library version 4.4.1, assumed to
represent the state-of-the-art. This ITK algorithm is based on the distance transform
technique, described in [TSG06] and [EAN08]. All experiments were executed on a
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Figure 3.17: Comparison between the performance of the proposed AVD algorithm and
the AVD algorithm of the ITK Library in validating 240 brain tumor segmentations
against the corresponding ground truth. The grid size is on the horizontal axis and the
run time in seconds is on the vertical axis. The data points are sorted according to the
grid size (w × l × h).

machine with Intel Core (i5) CPU, 8 GB RAM and Windows 7 OS. Note that all
execution times include the time for reading the images and calculating the metrics.

3.5.3 Efficiency Test with Brain Tumor Segmentation

In this experiment, the proposed algorithm of calculating the AVD was tested with
real brain tumor segmentations (MR 3D volumes). We used the same dataset of the
experiment in Section 3.4.1, namely 300 automatic brain tumor segmentations from the
BRATS2012 challenge, consisting of 240 volumes and 60 ground truth segmentations
(more details in Section 3.4.1). Each of these volumes was compared twice with the
corresponding ground truth segmentation, one time using the proposed AVD algorithm,
and one time using the AVD algorithm of the ITK Library.

Figure 3.17 shows that the proposed algorithm outperforms the ITK implementation
in computing the AVD by a factor of 3.0 and takes an average of 2.5 seconds. It also
shows that in contrast to the proposed algorithm, the performance of the ITK algorithm
is strongly dependent on the grid size.
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3.5.4 Efficiency Test with Whole Body Volumes

In this experiment we test the runtime behavior of the proposed algorithm of calculating
the AVD when the grid sizes of the volumes are huge. For this, we tested it with whole
body 3D MR and CT volume segmentations from the VISCERAL project [LMMH13].
We used the same dataset of the experiment in Section 3.4.3, consisting of 840 whole
body MRI and CT volume segmentations with grid sizes varying from 387× 21× 1507
to 511× 511× 899 voxels and segment sizes varying from 1000 to 5Mio voxels. Each of
these volumes was validated twice against the corresponding ground truth segmentation,
one time using the proposed AVD algorithm and another time using the algorithms of
the ITK Library.

While the proposed AVD algorithm ran through successfully with all volumes, the
ITK algorithm broke down with a memory allocation error with all volumes over a
particular grid size. The results in Figures 3.18 show that the proposed AVD algorithm
takes an average execution time of 38.9 seconds for calculating the AVD. Similarly to
the behavior of the HD distance in Section 3.4.3, the failing of the ITK implementation
with images of large grid size can be explained by the fact that the distance transform
based algorithms are sensitive to increasing grid size because all the background voxels
should be labeled. The proposed algorithm is not sensitive to grid size increase because
the background is not involved in the computation at all. Even if the segment is large
(background is small), the proposed algorithm is still efficient since it considers only the
surface of the segment.

3.6 Summary

We propose an efficient algorithm for computing the exact Hausdorff distance. We
formally show that the proposed algorithm has a nearly-linear runtime in the average
case. The proposed algorithm combines early breaking and randomization optimizations
to achieve a significant increase in speed over other algorithms that do not use this
combination. The proposed algorithm does not impose any restrictions on the input data,
and is hence generalizable to all applications. Moreover, it does not require a complex
setup phase needing high computational effort and extensive storage space.

We experimentally show a 36-fold increase in speed over an HD algorithm with
only early breaking included i.e. without using the randomization. We also show
experimentally that the proposed algorithm significantly outperforms in terms of speed
the standard HD algorithm of the ITK Library in comparing medical volumes and the
incremental HD algorithm in comparing trajectories generated from a road network.
Moreover, the proposed algorithm is shown to work even when comparing volumes with
extremely high dimensions (grid size).

Furthermore, we propose two optimizations that achieve an efficient calculation
of the average distance (AVD). The first optimization is based on voxel exclusion
by (i) removing the segment intersection and (ii) considering only the voxels on the
segment surface, but not those inside the segment. The second optimization is based
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Figure 3.18: Comparison between the performance of the proposed AVD algorithm
and ITK Library implementation in validating 840 whole body segmentations against
the corresponding ground truth. The data points are sorted according to the grid size
(w × l × h). The set sizes of the segmentation pair being compared in kilo voxels as well
as the grid size are on the horizontal axis and the run time in seconds is on the vertical
axis. The ITK implementation failed with memory allocation error with all volumes
over a particular grid size. The entries are sorted according to the sum of the two sizes
ascending.

on reducing the search subspace by finding a convenient search radius that contains the
nearest neighbor. An implementation of these algorithms is available as part of the tool
EvaluateSegmentation6.

6EvaluateSegmentation is an open source project for evaluating medical volume segmentations
available for download from http://github/codalab/EvaluateSegmentation.
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CHAPTER 4
Formal Analysis of Hubness

4.1 Introduction

After having addressed a problem related to feature spaces with huge number of points, in
this section, we address another problem related to feature spaces of high dimensionality,
namely the hubness problem.

Hubness is a term used to denote a phenomenon related to the k-nearest neighbor
algorithm (kNN) when applied to high dimensional data. Hubness is characterized by
the emergence of hubs and anti-hubs in high-dimensional data. Hubs are data points for
which the probability of appearing in the kNN -lists of other points is significantly higher
than expected. On the contrary, anti-hubs are data points for which the probability to
be nearest neighbor of other points is significantly lower.

In a recent analysis of hubness observed in a music retrieval system, Flexer et al.
[FSS12] show by analyzing human gradings of songs retrieved by the system, that hub
songs seem to exhibit less perceptual similarity to the songs they are close to. They
also show that hubness is strongly related to the classification algorithms used and the
features selected to build the model rather than being a property of particular songs.
Furthermore, they show that hubness is also observed in very large databases, e.g. music
retrieval with more than 1/4 Mio songs, and even gets worse with increasing collection size.
Radovanovic et al. [RNI10] empirically show that the distance metric used in the kNN
algorithm as well as the data distribution have a direct impact on the potential emergence
of hubness and that least hubness is observed with the cosine distance combined with
sets of points with normally distributed components.

The curse of dimensionality denotes phenomena that arise when dealing with data in
high dimensional spaces. The distance concentration [RNI10] is one of these phenomena,
known as the tendency of all pairwise distances to be equal when the dimensionality d is
sufficiently high. Distance concentration has been studied intensively, e.g. in [BGRS99]
[HAK00] [AHK01] [Fra08] [FWVM07] [Koe00] [RS05] [ST83]. Because our analysis of
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hubness is closely related to the distance concentration, we present more details on
relevant aspects of distance concentration in Section 4.3.

In contrast to distance concentration, hubness, as a further aspect of the curse of
dimensionality, has not been deeply studied. While there is considerable research about
the impact of hubness on machine learning and information retrieval, less research has
been invested for understanding the origin of hubness [RNI10].

Formal definitions: One of the important algorithms performed to metric spaces is
the nearest neighbor algorithm, which is a core computation in machine learning and
information retrieval because many algorithms are based on it. Given an object x ∈ X,
the task is to find y ∈ X such that d(x, y) ≤ d(x, z), ∀z ∈ X, z 6= x. In the following we
provide basic definitions and notations related to the nearest neighbor algorithms.

Definition 17. The k-nearest neighbor list of the point x ∈ X is defined as the point
subset Lk(x) ⊂ X where ∀xi ∈ Lk(x), xj ∈ X \ Lk(x) :‖x, xi‖ ≤‖x, xj‖

Definition 18. The k-occurrence nk(x) of the point x ∈ X is defined to be the number
of times the point x appears in the k-nearest neighbor lists of other points, i.e.
nk(x) =

n∑
i=1

1Lk(x)(xi), where 1Lk(x) is the indicator function with respect to Lk(x), i.e.

1Lk(x)(xi) = 1 if xi ∈ Lk(x) and 0 otherwise.

Definition 19. Hubness is defined as the asymmetry of the distribution of the k-
occurrence in Definition 18, which leads to :

• the emergence of hubs, where a hub is a point xh for which nk(xh) >> E[nk], and

• the emergence of anti-hubs, where an anti-hub is a point xu for which nk(xu) <<
E[nk].

where E[.] denotes the expected value. A basic measure of hubness is the skewness of the
k-occurrence, given by

Snk = µ3
σ3 = E[(nk(x)− µ)3]

(E[(nk(x)− µ)2])3/2 (4.1)

where µ3 is the third central moment, µ is the mean, and σ is the standard deviation of
nk

The basic measure of hubness (Equation 4.1) as the third standardized moment of
the k-occurrence Snk has been used in [LBSN13] [RNI10]. We will use this measure as a
reference for validating the proposed explanation of hubness and the proposed hubness
indicator.

Further notations used throughout this chapter are defined in Table 4.1.
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Notation Definition
DTM distance to mean
PWD pairwise distance
NN nearest neighbor
d dimensionality of a hyperspace
d-space a space of dimensionality d,

likewise d-hypercube and d-
hypersphere

HDS high dimensional space
E[.] the expected value
var(.) the variance

Table 4.1: Notation used throughout this chapter

Contribution: This chapter results in the following contributions:

• An explanation of the cause of hubness, based on sparsity and distance concentration
in high-dimensional space. This explanation is general and not restricted to any
assumptions on the distribution and the distance norm used.

• A novel hubness indicator based on distance statistics that estimates the hubness in a
data set in linear time in terms of the point set size.

• A novel hubness estimator of the amount of hubness caused by a particular point.

• Two novel strategies for hubness reduction.

The explanation of hubness proposed in this chapter is based, amongst others, on
facts related to distance concentration and sparsity in the high dimensional space. We
show that points in high dimensional space have a distance structure that is similar to
the distance structure of the vertices of a hypercube. Based on this fact, we show that a
hub is a point that deviates from it corresponding hypercube vertex towards the centroid,
which makes it nearer to all points at vertices connected with its vertex by one edge.
Furthermore, we suggest two novel strategies for hubness reduction based on the hubness
explanation proposed.

Chapter organization: The remainder of this chapter is organized as follows: We
provide in Section 4.1 a formal definition of the hubness problem and a basic function for
measuring hubness as well as notation that holds throughout this chapter. Section 4.2
presents some relevant research related to hubness. In Section 4.3 we provide a model of
distance structure in high dimensional space; thereby we provide a theoretical background
that we use to explain the cause of hubness. In Section 4.4, we propose a novel explanation
of the cause of hubness based on the model presented in Section 4.3. Novel hubness
indicators are proposed in Section 4.5 that estimate the hubness probability in a given
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point set and the amount of hubness caused by a particular point. Section 4.6 presents
further analysis that confirms the theoretical findings by providing empirical results and
explanations for phenomena described in the literature.

4.2 State-of-the-Art

Origin of hubness: Radovanovic et al. [RNI10] provide an analysis of the origin
of hubness. They empirically show a correlation between the position of a data point
relative to the data mean and the probability of it being a hub. While it is already
well-known that a point nearer to the mean is on average nearer to all other points,
the main contribution of Radovanovic et al. is that they formally show that this effect
is amplified in a normal distribution when the dimensionality is increased. Since the
Euclidean distances between the mean and the other points (DTM) are distributed
according to the Chi square distribution (this follows directly from the definition of the
Chi square), they use this as a model to show their claim. For this they assume an
imaginary point set with i.i.d. normally distributed points, in which the dimensionality
is successively increased and show using the Chi square distribution that the nearer the
point is to the mean, the higher the probability of the point being a hub. For this, while
increasing the dimensionality, they tracked and observed two points drawn from the data,
but located at specific positions with respect to the origin. These positions are expressed
in terms of the standard deviation σ and the expectation value of the DTM . For each of
the two points, the average distance to all other points was observed. As an examples they
considered one point p1 located at the expected distance and another point p2 located
2 · σ closer to the mean than the first one. They showed (as a main contribution of their
paper) that the average distance to all other points of the first point ‖p1, .‖2 is larger
than this of the second point ‖p2, .‖2 and that the difference between the two averages
increases with the dimensionality, i.e. ‖p1, .‖2 > ‖p2, .‖2 and

(
‖p1, .‖2 − ‖p2, .‖2

)
∼ d.

Note that this claim is proven only for the Euclidean distance and the normal distribution
and thus lacks the generality.

Low et al. [LBSN13] challenge the claim of Radovanovic et al. [RNI10] and state
that hubness is a matter of density gradient in data sets, e.g. at the boundary of finite
data sets or in distributions with decreasing density gradient like the normal distribution,
rather than a matter of high dimensionality (“... that the emergence of hubs is an intrinsic
effect of the dimensionality of the data - a view we dare to challenge here” [LBSN13]).
They provide different empirical examples by generating random point sets uniformly
sampled over the d-hypercube and the d-hypersphere and demonstrated that hubness
also occurs in low dimensional point sets, e.g. 2D and 3D images. In other experiments,
they demonstrated that hubness can be increased by increasing the boundaries in the
data set, i.e. when the point set consists of many chunks separated from each others, and
each of them is uniformly distributed. Furthermore, they also demonstrate empirically
that the strength of hubness depends on the distribution of the points; e.g. while hubness
is strongly observed in normally distributed point clouds, it seems to be weak in points
distributed in a hyperball. From these empirical observations, they concluded that
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hubness is caused by density gradient. They claimed that the density gradient at the
boundary of the point set causes hubness, which explains the increase of hubness when
the point set consists of chunks, since spitted data has more boundaries than continuous
data. They also claimed that the density gradient in normally distributed data, which
results from decaying the density while moving farther from the mean, is the reason why
hubness is in general higher in normally than in uniformly distributed data.

Retrievability: Azzopardi et al. [AV08] introduced the concept of retrievability as a
measure of how a retrieval system affects the users’ ability to access document, i.e. it
gives knowledge about how retrievable the system makes individual documents. They
provide analysis of TREC collections that demonstrate the importance of the utilities
provided by the retrievability measure they proposed, especially with tasks that require
the content being reliably accessible, e.g. higher order information access tasks, such as
e-Government accessibility. They emphasizes that effectiveness is insufficient to evaluate
biased retrieval systems due to the growing amount of content and the growing users’
reliance on retrieval systems in finding contents. They justified this claim by showing
that in highly biased retrieval systems, up to 80% of the document could be removed
from the collection without significantly degrading performance, given the TRC-style
evaluation is used, which sets maximizing effectiveness as a goal. Retrievability is related
to hubness in the sense that retrievability assumes that documents are retrieved with
different grades of ease due to retrieval system bias. From the hubness point of view,
document with high retrievability are hubs and those with low retrievability are anti-hubs
(orphans). However, the approaches proposed in this chapter and the approach proposed
by Azzopardi et al. are totally different: While we provide explanation and measures of
hubness at lower level that is based on the impact of metric bias on distance structure
in high dimensional space, the methods by Azzopardi et al. are achieved at a higher
level by tackling the retrieval system from outside, namely by observing the documents
retrieved upon sending queries. That is, given a document collection D, the set of all
possible queries Q, then the retrievability of a document d with respect to the collection
D is a measure of how likely d will be retrieved upon sending the queries q ∈ Q. Since
queries are not equal frequently used, the retrievability measure considers a weight Oq
for each query q. If Kdq is the rank of the document d in the ranked list upon the query
q, then the retrievability measure is defined as

r(d) =
∑
q∈Q

Oq · f(Kdq, c) (4.2)

where f(Kdq, c) is a generalized utility function and c denotes the maximum rank the
user is willing to proceed down the ranked list.

Bashir et al. [AV08] investigated retrievability in patent retrieval and proposed a
method for improving retrievability using novel approaches of pseudo relevance feedback
and query expansion. Patent retrieval, as a prior-art retrieval, is a recall-oriented
application domain, where not missing a relevant patent is considered more important
than retrieving only the set of relevant patents at top rank results. In this domain,
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queries are typically patent applications being examined for novelty. Patent documents
have complex structures and diverse technical contents, which leads to extremely large
dictionaries. Experiments using retrievability measurement proposed in [AV08] indicate a
large bias toward a subset of patents in state of the art retrieval systems, which results in
that a large subset of patent documents being not retrievable. State of the art methods
suggest increasing the coverage of prior-art queries by improving queries using Query
Expansion (QE) with Pseudo Relevance Feedback (PRF). Bashir et al. proposed a novel
method for a better identifications of PRF patents. In particular, they suggested that
PRF patents are identified based on their similarity with query patents via selected
terms (instead of all terms as in state-of-the-art methods). They identify relevant terms
from query patents based on their proximity distribution with prior-art queries. Using
this approach, an increase in the retrievability of individual patents is obtained, which
indicates that this prior-art retrieval approach provides better opportunity for retrieving
individual patents in search space.

Hubness reduction: Much work has been done for hubness reduction. Schnitzer et al.
[SFSW11] use mutual proximity based on the shared neighborhood between points as a
distance metric in the NN algorithm. Mutual proximity between two points is defined as
the number of common neighbors between these two points. Using mutual proximity as a
distance metric, a new distance model is created in which the nearest neighbor relations
are corrected which leads to a hubness reduction. However, the fact that hubness has
negative impact on the distance metrics used for finding the shared neighborhood (mutual
proximity) makes this approach sub-optimal. Tomasev et al. [TM12] show that using
the distance space induced from the shared neighborhood does not eliminate hubs and
anti-hubs, and thus does not entirely overcome the hubness problem. They propose a
new hubness-aware method for calculating the shared neighbors. This methods defines
similarity that increases the class separation. This is done by assigning a weight to each
point that minimizes the intra-class distances while maximizing the inter-class distances,
which decreases the impact of hubness on the creation of the shared neighbor distance
model. Local scaling method [ZmP05] is an approach for building nearest neighbor
relations model using distance scaling based on local neighborhood information. Local
scaling approaches attempt to scale the distance between two points depending on the
distances their k-nearest neighbors. In particular, the scaled distance LS(xi, xj) between
the points xi and xj is given by

LS(xi, xj) = exp

(
‖xi, xj‖2

Dk(xi)Dk(xj)

)
(4.3)

where Dk(x) is the distance between the point x and its k-nearest neighbor. Local scaling
has been used as a method for hubness reduction, since the resulting nearest neighbor
relations seem to be more symmetrical than those obtained without using the local scaling.
Schnitzer et al. [SFSW12] propose a new hubness reduction method that uses a new
version of scaling, which they called global level. In contrast to local scaling that uses the
neighborhood information to scale distance, global scaling method attempt to use global
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neighborhood information. In this method, the global point distribution is considered to
transform the distance between xi and xj into a probability that xi is the closest point
to xj . After that the scaled distance is calculated by combining the joint probabilities
of the distances form xi to xj and form xj to xi. Suzuki et al. [SHS+13] proposed an
approach for reducing hubness using the centering method. The centering method is a
transformation in which the points are transformed such that their origin is shifted to the
data centroid. The also extended this method by using weighted centering, i.e. shifting
the origin explicitly to the hub points instead of the centroid. They empirically showed
that the weighted centering method leads to considerable improvement in combination
with natural language data.

Contribution: In this chapter, motivated by the insight of Radovanovic et al. [RNI10]
that hubs tend to be closer to the distribution mean than other points, we propose an
explanation of the cause of hubness based on data sparsity and distance concentration
in high-dimensional spaces. In contrast to the analysis by Radovanovic et al., which is
based on particular distributions and thus lacks generality, our proposed explanation does
not make any assumptions about the distribution or distance norm used. For example,
due to the assumptions by Radovanovic et al., the cause of hubness they provided does
not explain why the dimensionality alone is not sufficient for the emergence of hubness,
nevertheless there are some distributions where hubness does not occur regardless of the
dimensionality (more in Section 4.6.3). It also does not provide an explanation for the
impact of the distance norms on the hubness behavior. Our proposed cause of hubness
provides answers to all of these questions. Furthermore, our explanation decreases the
discord between the results of Radovanovic et al. [RNI10] and the results of Low et al.
[LBSN13] by linking both of them to the same cause (more in Section 4.6.2). Based on
the theoretical results presented in this chapter, we also propose a hubness indicator
that predicts the hubness in a given data set as well as the hubness contribution by a
particular data point.

4.3 Distance Structure in High Dimensional Space

In this section, we provide the theoretical background required to explain the cause of
hubness. This will be based on (i) the sparse distribution of points in high dimensional
space (HDS), and (ii) the distance convergence as a direct result of the distance concen-
tration. As an outcome of this section, we show that when d is sufficiently large, points
lie almost exclusively at the vertices of a hypercube, a fact that will be used to explain
hubness, the main contribution of this chapter, in Section 4.4.

The remainder of this section is organized as follows: In Section 4.3.1, the sparse
distribution of points in a high dimensional space (HDS) is discussed. In Section 4.3.2,
we discuss the convergence of the distance to mean (DTM) and the pairwise distance
(PWD) in HDS. The convergence of distance between hypercube vertices is discussed in
Section 4.3.3. Finally in Section 4.3.4, we present a model of distance structure between
high dimensional points that will be used to explain hubness in Section 4.4.
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4.3.1 Sparsity in High Dimensional Space

In high dimensional space, data becomes sparse [BB61] [ST83] [AHK01] [RS05]. There
are more than one concept referred to as sparsity, e.g. in information retrieval and data
mining, sparsity denotes the property of data where data points have zeros as values
for the majority of their components. However, for this research, we are interested in
another aspect of sparsity, namely that high dimensional points lie in different orthants
(an orthant is subset of the hyperspace analogous to the quadrant in 2D and 3D space),
and that most of the orthants are empty.

Let’s formally define the notation of the orthant.

Definition 20. Notation of the orthant. Let Rdq , 1 < q < 2d, denote the d-dimensional
orthants in Rd, that is, the sets I±1 × I

±
2 × .....× I

±
d , where I

+
j = [0,∞), I−j = (−∞, 0),

and I±j means either I−j or I+
j .

There are exactly 2d orthants in a d-dimensional space, which increases very rapidly
as d increases. For example in a 100− d space, there are 2100 ≈ 1030 orthants. In such
a space, any real world data set is sparse. E.g. in a dataset consisting of one trillion
100-dimensional points, only a tiny fraction (less than a trillionth) of the orthants have
points.

In particular, we show in Lemma 1 that in a high dimensional space, points are
with very high probability in different orthants, which implies that an orthant generally
contains at most one point.

Lemma 1. Given a data set X of n << 2d points with i.i.d components, then each
orthant contains with high probability at most one point.

Proof. Let the points X be represented by a random vector R = {R1, ..., Rd}, distributed
according to the probability densities ψi with the means µj . Then xi ∈ X is given by
the d-tuple (R1i, ...., Rdi), where Rji is the ith value of the random variable Rj . Assume
without loss of generality that Ri are normalized to have their means at the origin, i.e.
µj = 0.

Let the function vector ω = {ω1, ...., ωd} be the probabilities of a point having its
coordinates in I+, i.e. ωj(xi) = P (xij ∈ I+) is the probability that xi has a positive jth
coordinate and 1 − ωj(xi) = P (xij ∈ I−) is the probability that xi has a negative jth
coordinate. Note that in case that ψi is a symmetrical distribution about its mean, then
ωi = 1

2 . The orthant, in which each point xi resides, is determined by the outcome of the
random vector R represented by functions ω, which corresponds to an experiment with
d independent Bernoulli trials each having the probability ωj . Let v be the event of a
point located in a particular orthant, we are primarily interested in the distribution of k
occurrences of the event v within n points, which meets the Poisson distribution given by
f(k, λ) = λke−λ

k! , where λ = n ·
∏d
j=1 ωj is the average occurrence of the event v within n

points. This is a very low probability, given high dimensional data of the real world.

To imagine the probability of two points being in the same orthant, consider 1020

points in a 100 dimensional space. Assume a symmetrical distribution, i.e. w = 1
2 , this
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means λ = 1020∏100
j=1

1
2 ≈ 10−6, which means the probability of two points in the same

orthant is f(2, 10−6) = 10−12e10−6

2 ≈ 10−11. Lemma 1 shows that in a high dimensional
space, an orthant contains with very high probability at most one point.

4.3.2 Distance Convergence

In this section, we will show that when the dimensionality d is sufficiently high, then the
DTM and PWD converge and the following limits hold for any finite point set regardless
of its distribution:

lim
d→∞
‖x‖ = cm · η(d) (4.4)

lim
d→∞
‖xi, xj‖ = cp · η(d) (4.5)

where cm and cp are constants determined by the distribution and η is some function of
d.

This convergence of distance (Equations 4.4 and 4.5) directly follows from the definition
of the distance concentration, which is known as the tendency of pairwise distances to
be equal as d reaches infinity. Distance concentration has been deeply studied, e.g. in
[Dem94] [Fra08] [HAK00] [Kha04] [Koe00] [ST83] [ZM14], and in relation to distance
norms in [AHK01] [BM13a] [FWVM07].

Since the distance concentration is deeply studied, and well analyzed under various
settings, e.g. for different distributions and different distance norms, it is not in the
focus of this chapter to prove distance concentration. Rather, we present in the next
paragraphs, as illustrative examples, proofs for the convergence of DTM and PWD in
the Euclidean space, that do not make any assumptions about the distribution of the
point components.

Let X be a point set according to Definition 3 with ‖., .‖2 as a distance norm. To
show that the DTM of the points X converges when d → ∞ without assumptions on
their distribution, we show that all the points X are at the surface of a hypersphere
centered at the mean of X, which implies that they are at the same distance from the
mean [ZM14]. To this end, consider the smallest hypersphere, Sd, centered at the mean
of X and containing all the points in X, i.e. it has a radius r = max(‖X‖). Now let
us calculate the volume of the outer thin shell of the hypersphere, E, with a thickness
ε. The aim is to show that when d is large, then the vast majority of the hypersphere
volume is in the thin shell E, i.e. as d→∞, vol(E)→ vol(Sd).

The volume of the hypersphere sd is given by [Ken04] as:

vol(Sd) = 2π
d
2

Γ(d2 + 1)
rd (4.6)

where Γ is the Gamma function. The volume of the shell E of thickness ε is the difference
between the volume of the hypersphere Sd with radius r and a smaller hypersphere Šd
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with radius r − ε, i.e.

vol(Šd) = 2π
d
2

Γ(d2 + 1)
(r − ε)d (4.7)

The ratio between the volume of the shell and the volume of the hypersphere is

vol(E)
vol(Sd)

= vol(Sd)− vol(Šd)
vol(Sd)

= 1−
(
r − ε
r

)d
(4.8)

Now, the volume of the thin shell E is almost equal to the volume of the hypersphere Sd
when d is sufficiently large because

lim
d→∞

vol(E)
vol(Sd)

= lim
d→∞

1−
(
r − ε
r

)d
= 1 (4.9)

which implies that all the points X are with high probability in the shell E, given d is
sufficiently high. This also implies that the points are at the same distance from the
mean, i.e. their DTM converges to r.

The proof above shows that the DTM distance converges to some value, but it
does not specify this value, since it depends on the distribution, i.e. the radius r of
the hypersphere is determined by the distribution of the points. For example if the
components of the points are normally distributed, then the DTM is distributed according
to the Chi distribution F with d degrees of freedom, which directly follows from the
definition of the chi distribution. Here the DTM converges to the expected value of F ,
given by

E[‖X‖2] = E[xF ] =
√
d (4.10)

Theorem 1, from Demartines [Dem94], provides a formula for the convergence value
of the DTM for any distribution.

Theorem 1. Demartines [Dem94] adapted, Let X ∈ Rd be a random vector with
i.i.d. components that meet the distribution R then,

E[‖x‖] =
√
ad− b+O(1/d) (4.11)

var(‖x‖) = b+O(1/
√
d) (4.12)

where a and b are constants that depend only on the distribution R, and do not depend
on the dimensionality d.

According to Theorem 1, the DTM converges to a constant value that depends on d
which confirms Equation 4.4.

Now we will show the convergence of the pairwise distance (PWD) between high
dimensional points. To this end, we start from the results reached above, i.e. the
hyperpoints are in the outer thin shell E of the hyperball. Let x = (x1, ..., xd) and
y = (y1, ..., yd) be any two points in E. Without loss of generality rotate the space so
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that one of the points, say x has zero value for its second up to dth component, i.e.
x = (r, 0, 0, ...., 0). This is possible since x is at the surface of the hyperball. Now, for
the Euclidean distance between the two points

(‖x, y‖2)2 =
d∑
i=1

(xi − yi)2 = (r − y1)2 +
d∑
i=2

y2
i

= r2 − 2ry1 +
d∑
i=1

y2
i

(4.13)

Since the distance of the point y to the mean is r because y is also in the shell, we have
d∑
i=1

y2
i = r2. By substituting in Equation 4.13, we get

‖x, y‖2 =
√

2r2 − 2ry1 =
√

2r
√

1− y1
r

(4.14)

Again r, the convergence value of the DTM (the radius of the hypersphere), is distribution
dependent. Considering the convergence according to Theorem 1, Equation 4.11, and
assuming a sufficiently large d so that the term O(1/d) vanishes, we get by substituting
in Equation 4.14

‖x, y‖2 =
√

2(ad− b)
√

1− y1√
ad− b

(4.15)

lim
d→∞
‖x, y‖2 = lim

d→∞

√
2(ad− b)

√
1− y1√

ad− b

=
√

2(ad− b) =
√

2E[‖x‖2]
(4.16)

This implies that in high dimensional space, the Euclidean DTM and PWD have always
the following relation

PWD =
√

2DTM (4.17)

which consequently implies that the vectors representing any two points are orthogonal,
since the two vectors together with the PWD form a right-angled triangle. Thus the
points on the hypersphere are actually only on the vertices of the inscribed hypercube,
which is presented in more detail in the next section.

4.3.3 Hypercube Vertices

There are different classes of distance in a hypercube, e.g. edges, face diagonals, cell
diagonals, etc. In a cube of edge length g, e.g. Figure 4.5 (C), a point pair sharing an
edge (e.g. P1 and P2) has distance g, a point pair sharing a small diagonal (e.g. P1 and
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P3) has distance
√

2g, and a point pair sharing a large diagonal (e.g. P1 and P7) has a
distance

√
3g. That means there are three classes of distance in a cube. In general, there

are d classes of distance in a d-hypercube [Aic97]. Assuming the Euclidean distance,
these distance classes are {

√
tg, t = 1, ..., d} where g is the edge length of the hypercube.

That means, with increasing dimensionality, new distance classes arise. However, it is
rather of more importance, how the PWD between vertices is distributed among these
distance classes. In the following Lemma, we show that the distance between hypercube
vertices converges.

Lemma 2. Let Cd be a hypercube in the d-space with an edge length g, and let Vd = {0, g}d
be the set of its vertices, then the pairwise distance between the vertices converges when d
is sufficiently increased, that is

lim
d→∞
‖x, y‖p = g ·

(
d

2

) 1
p (4.18)

where x, y ∈ Vd.

Proof. Without loss of generality, assume Cd has one of its vertices at the origin and its
edges along the axes. Then the vertices x and y are the hyperpoints x = (x1, x2, ...., xd),
and y = (y1, y2, ...., yd), where xi, yi ∈ {0, g}. The distance between the two vertices is

‖x, y‖p =
(

d∑
i=1
|xi − yi|p

) 1
p

=
(

d∑
i=1

hpi

) 1
p

= g

(
d∑
i=1

bi

) 1
p

(4.19)

where hi ∈ {0, g} and bi ∈ {0, 1}.∑d
i=1 bi is a random variable drawn from a Binomial distribution (bin), since it is the

number of successes in a sequence of Bernoulli experiments (bi), each of them with two
outcomes {0, 1} distributed uniformly with probability 1

2 , i.e.
∑d
i=1 bi ∼ bin(d, 1

2), and
has an expectation value d/2, a standard deviation of

√
d/4, a minimum of 1 and a

maximum of d.
By substituting the expectation value E

[∑d
i=1 bi

]
= d/2 in Equation 4.19, it follows

that

E [‖x, y‖p] = g · (d/2)1/p (4.20)

Now, since the expectation value and the convergence value are in general not
necessarily equal, we only need to show that they are in this case. This follows from the
decay of the ratio between the standard deviation σbin and the domain of the Binomial
distribution (maxbin −minbin) when d is sufficiently increased, i.e.

lim
d→∞

σbin
maxbin −minbin

= lim
d→∞

√
d/4

d− 1 = 0 (4.21)

Since the ratio converges to zero as d increase, it follows that the distance converges to
the expectation value (Figure 4.1), i.e.

lim
d→∞
‖x, y‖p = g · (d/2)1/p (4.22)
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Figure 4.1: Distribution of the pairwise distance between vertices of unit hypercubes
of different dimensionalities; (A) for a 10-hypercube, fully enumerated; (B), (C), and
(D) for 50-hypercube, 100-hypercube, and 500-hypercube respectively, sampled using the
Monte-Carlo method.

Lemma 2 implies that particular distances dominate the distance structure in HDS,
which results in the fact that the distances between pairs of vertices are with high
probability equal.

Figure 4.1 illustrates the distribution of distance between vertices of hypercubes
of different dimensionalities (10, 50, 100, and 500), which empirically confirms the
convergence according to Lemma 2, i.e. the interval containing most of the distances gets
smaller as d increases.

4.3.4 Distance Structure of High Dimensional Points

This section shows that high dimensional points are at the vertices of a hypercube, or at
least they can be modeled with hypercube vertices. In other words, we show that the
distance structure of the hypercube vertices is equivalent to the distance structure of
high dimensional points when d is sufficiently large.
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Hypercube vertices have three relevant properties, each of which corresponds to a
property of points in HDS: (i) Vertices have equal distance to the hypercube centroid;
this property corresponds to the DTM of high dimensional points when it converges
(Equation 4.4) which has been proven in Equations 4.6 to 4.9; (ii) vectors representing
the vertices are orthogonal; this property corresponds to the relation between DTM and
PWD (Equation 4.17), which implies that high dimensional points are orthogonal; and
(iii) the vast majority of pairwise distances between hypercube vertices is equal according
to Lemma 2; this property corresponds to the convergence of PWD, given by Theorem 1.
Combined with the fact that there is at most one point in each orthant (Lemma 1), this
leads to the fact that hypercube vertices provide a model for points in high dimensional
space, which will be used in Section 4.4 to explain hubness.

Note that high dimensional points being on the vertices of a hypercube is not in conflict
with the fact that they are on the surface of a hypersphere, as shown in Section 4.3.2,
because they are actually at the vertices of the hypercube inscribed in the hypersphere
of radius r, where r is the convergence value of the DTM.

Empirical demonstration of distance convergence using different norms: We
illustrate the distance convergence and the distance structure described in this section
using i.i.d. point sets for three different norms, namely the Euclidean distance (L2), the
sup norm (L∞), and the cosine distance (cos).

For two points x = {x1, ...xd} and y = y1, ..., yd The L∞ norm is defined as

‖x, y‖∞ = maxdi=1(|xi − yi|) (4.23)

and the cosine distance is defined as

‖x, y‖cos = 1− ~x · ~y
|x|.|y|

= 1−

d∑
i=1

xiyi√
d∑
i=1

x2
i

√
d∑
i=1

y2
i

(4.24)

To this end, we generated four i.i.d normally distributed point sets, each consisting
of 500 points, with the dimensionalities 2, 10, 100, and 10000. Using each of the three
norms, the DTM was calculated for each point. Only 500 pairwise distances (PWD) were
sampled randomly and calculated using each of the norms.

Figure 4.2 shows the results for the Euclidean distance. While the distances in low
dimensionalities (2 and 10) spread to fill most of the space, they tend to converge in
higher dimensionalities (100 and 10000). Note that in each case the expectation value
(the convergence value) of the DTM is

√
d and the expectation value of the PWD is√

2d, which is in conformance with the theoretical results in Equations 4.10 and 4.17
respectively. This implies that any two points form with the mean a right angle triangle,
which also implies that all point vectors are orthogonal to each other.

Figure 4.3 illustrates the convergence of L∞ in high dimensional space. A distance
convergence of DTM and PWD is observed as in the case of Euclidean distance, but
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Figure 4.2: Convergence of the DTM and the PWD with increasing dimensionality. Four
random point sets were drawn from a normal distribution with dimensionalities 2, 10,
100, and 10000 in (A), (B), (C), and (D) respectively. Each point set consists of 500
points. For each point set all distances to mean are calculated, and 500 pairwise distances
were sampled randomly. The DTM converges to

√
d and the PWD converges to

√
2d,

which is in conformance with Equations 4.10 and 4.17 respectively.

with two differences, namely (i) that the convergences values are different. This is in
conformance with Equations 4.4 and 4.5 that state that the convergent values depend
on the distribution and dimensionality. (ii) The convergence is slower than with the
Euclidean distance, which is in agreement with the observation reported in literature
[FWVM07] that L∞ is less concentrated in high dimensional space than the Euclidean
distance.

Figure 4.4 illustrates the convergence behavior of the cosine distance norm (COS)
in high dimensional space. Note that the mean with respect to the COS is the vector
(point) that minimizes the cosine distances (angles) to all other points. Such vector does
not necessarily represent one of the points in the point set. However, for this experiment,
we use as an approximation of the mean one of the points in the set, namely the one
nearest to the mean, i.e. the point in the set that minimizes the cosine distances to all
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Figure 4.3: Convergence of the DTM and the PWD with L∞ norm. The same i.i.d.
random point sets as in Figure 4.2 have been used.

other points. This can be identified by calculating for each point the sum of pairwise
distances to the other points and then selecting the one with the lowest sum.

Both DTM and PWD converge to the same value, namely one. This is an interesting
observation that confirms the distance structure we have presented in this section as
follows:

The convergence value of the COS PWD (which is observed to be one) gives infor-
mation about the convergence value of the angle between vectors representing points in
high dimensional space. In particular, the convergence of COS PWD to one implies that
the angle converges to 90◦, which confirms that all vectors are orthogonal, i.e. also with
COS norm, points are located at the vertices of a hypercube. Formally, this follows from

lim
d→∞
‖x, y‖COS = 1 =⇒ lim

d→∞
cos(x̂y) = 0 =⇒ lim

d→∞
x̂y = 90◦ (4.25)

where x̂y denotes the angle between the vectors representing the point x and y. Note
that cosine distance is 1− angle according to Equation 4.24.
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Figure 4.4: Convergence of the DTM and the PWD with the cosine norm (COS). The
same i.i.d. random point sets as in Figure 4.2 have been used. Note that the mean in
terms of the cosine distance is not the origin, but rather the vector (point) that minimizes
the angles to all other points.

4.4 Cause of Hubness

In Section 4.3 we showed that high dimensional i.i.d points are concentrated at the
vertices of a hypercube due to the sparsity combined with the distance concentration.
Based on this, we provide in this section an explanation of the bias in the NN relations
in a high dimensional space and thus the cause of hubness. Before we provide a general
explanation of hubness, we give an example in lower dimensionality on the cause of
hubness.

Assume that a 2-hypercube (square) has 4 points located exactly at its vertices as
shown in Figure 4.5 (A). Because the distances between vertices are equal, points could
be mutually nearest neighbors to each other so that the NN relations are symmetrical,
and thus the hubness is low. Now suppose that the point P1 is deviated toward the mean
as in Figure 4.5 (B). In this case, the NN relations change so that P1 becomes the nearest
neighbor of P2 and P4. In other words P1 becomes a hub. This happens regardless of
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Figure 4.5: In (A) there are symmetrical NN relations. In (B), the point P1 is deviated
toward the mean of the square, which causes changes in the NN relations of the neighboring
points, so that P1 becomes the nearest neighbor of P2 and P4, which makes P1 a hub.
In (C) there are symmetrical NN relations between the cube vertices, since vertices have
equal distances between them. In (D), P1 is deviated toward the mean. This causes P1
to become the NN neighbor of P2, P4, and P5. The number of points for which the NN
relations change increases with dimensionality.

how small this deviation is, given the points are exactly at the vertices. Analogously, in a
3-hypercube (cube) with 8 points located exactly at the vertices, as shown in Figure 4.5
(C), suppose that one point, say P1, has been deviated toward the mean, as shown in (D).
The same will happen, i.e. the NN relations change, but with one difference, namely that
more points are affected, in this case P1 becomes the nearest neighbor of P2, P4, and
P5, which results in P1 becoming a hub. In higher dimensionalities, the deviated point
becomes the nearest neighbor of more points. Actually, it becomes the nearest neighbor
of all points at vertices connected with its vertex over one edge. Considering the fact
that each vertex is connected with exactly d other vertices over one edge, this implies
that the number of points affected by the deviation increases with the dimensionality.
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The example described above is too simple because of the following:

(I) It assumes that all points are exactly at the vertices of the hypercube and one point
deviates from the vertex toward the mean, but in practice, all points have some
deviation from the vertices depending on the distribution, the dimensionality, and
the distance norm used. How does this fact affect hubness emergence?

(II) In addition to the deviation of a point toward the mean, there are other types
of deviation, e.g. away from the mean or perpendicular to this direction or a
composition of multiple deviations. What is the impact of each type of deviation?

(III) The example assumes that all vertices are occupied by points, but in practice only
a very small fraction of them are (see Section 4.3.1). How can the explanation of
hubness hold regardless of this fact?

Actually, the example above illustrates a point distribution that provides optimal
conditions for the emergence of hubness. We will call this distribution the hubness-optimal
distribution. The hubness in a data set is decided by how much the distribution of the
data set is similar to hubness-optimal distribution. This similarity is defined formally in
the next sections.

The remainder of this section is organized as follows. In Section 4.4.1, we define three
types of deviation from the hypercube vertices that points can have. We discuss and
formally define their impact on hubness. In Section 4.4.2, we discuss two categories of
factors having impact on hubness, namely factors characterizing the general tendency to
hubness and factors specifying the hubness caused by outliers. With these two sections
we answer questions (I) and (II). In Section 4.4.3, we discuss the relation between the
three types of deviation from the hypercube vertices and the statistics of the DTM and
PWD. Finally in Section 4.4.4, we discuss the sparsity in high dimensional space and
explain why sparsity does not violate the hubness-optimal distribution; thereby we answer
question (III).

4.4.1 Deviation Types

In this section we discuss three types of deviation from the vertices of the hypercube that
the points can have. We show that only one type of deviation promotes hubness while the
other two types decrease hubness. The deviation types are illustrated in Figure 4.6 (A).
These are: the δr− deviation, in which a point deviates in the radial direction toward the
mean; the δr+ deviation, in which a point deviates from a vertex in the radial direction
away from the mean; and the δp deviation, which denotes deviations, in which a point
deviates from a vertex in a direction perpendicular to the radial directions. Obviously,
an arbitrary point deviation from a vertex is a composition of these three deviation types
and can be resolved to them as components.

Let δ be any arbitrary deviation from a vertex of the hypercube in any direction.
Obviously, δ is a d-dimensional vector, thus it has d components. If one of these
components is along the radial direction (the direction from the vertex to the hypercube
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Figure 4.6: Deviation types: (A) The three types of deviation from the hypercube vertex
that a point can have. δr− deviation is when a point leaves a vertex towards the mean
(hypercube center), which we call the radial inside direction. δr+ deviation is when
a point deviates away from the mean, which we call the radial outside direction. δp
deviation is any direction that is perpendicular to the radial direction, which we call the
perpendicular hyperplane. (B) An arbitrary deviation δ of a point x can be resolved into
its components as one or more of the three deviation types. (C) and (D) Two different
distributions with a large γ̃ value (C), small γ̃ value (D). The shaded area illustrates the
space where the point exists with high probability relative to the corresponding vertex.

centroid or vice versa), then, assuming a coordinate system for which the radial direction
is an axis, there are other d− 1 components, forming a (d− 1)-hyperplane orthogonal
to the radial direction, which we will call the perpendicular hyperplane. Figure 4.6 (B)
illustrates the decomposition of an arbitrary deviation δ of a point x in the 2-space into
its components in the radial direction (δr−) and in the perpendicular plane (δp).

We formally define the three types of deviations as follows.

Definition 21. Let X be a data set according to Definition 3, and x ∈ X be a d-
dimensional data point with an expected position at V , the hypercube vertex of the
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hypercube Cd with the centroid M . Let x be at position V́ , having a deviation δ from its
expected position in any arbitrary direction in the d-space, so that V is the nearest vertex
to V́ . Also let θ be the angle at the vertex V formed by M and V́ , then

• The radial direction denotes the direction from M to V , or from V to M .

• The radial inside direction is the direction from V to M

• The radial outside direction is the direction from M to V

• The perpendicular hyperplane denotes the (d− 1)-hyperplane orthogonal to the radial
direction.

• The corresponding vertex V of a point x = (x1, ..., xd) is the nearest vertex to x, given
by

V = (v1, ..., vd) where
{
vi = 1, xi ≥ 0
vi = 0, otherwise

(4.26)

• The deviation in the radial direction δr is given by

δr = δ · cos(θ) (4.27)

Now the three deviation types are defined as follows:

1. δr− is any deviation component in the radial inside direction, given by

δr− = δ · cos(θ), where θ < π/2 (4.28)

2. δr+ is any deviation component in the radial outside direction, given by

δr+ = δ · cos(θ), where θ ≥ π/2 (4.29)

3. δp is any deviation in the perpendicular hyperplane, given by

δp = δ
√

1− cos(θ)2 (4.30)

In this section, we discuss and formally define the impact of each of the three types of
deviation in Definition 21 on the similarity of the point distribution to the hubness-optimal
distributions, and consequently on hubness.

In general, a point distribution is similar to the hubness-optimal distribution if the
minority of the points are deviated from their corresponding vertices toward the mean,
while the majority of the points are concentrated at their corresponding vertices, i.e. may
deviate from the corresponding vertices in any direction, but remain within a radius that
is smaller than the deviation of the minority toward the mean. This means that the
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degree of similarity can be roughly estimated as the ratio between the extent of deviation
toward the mean and the extent of deviation otherwise. This rough estimation is γ̃ (a
more accurate estimation is provided in Section 4.4.2), given by.

γ̃ = var(δr)
var(δp)

(4.31)

To understand why the ratio between var(δr) and var(δp) gives a rough estimation of the
similarity to the hubness-optimal distribution (where as we will see, only δr− has impact),
consider the following two cases. Case 1, γ̃ is large, i.e. var(δp) is small compared with
var(δr). Since δp is in the (d − 1)-hyperplane, this implies that the deviation of d − 1
components is on average smaller than the deviation in the radial direction. Case 2, γ̃ is
small, i.e. the opposite of Case 1, which implies that the deviation in d− 1 components
is on average larger than the deviation in the radial direction. It is clear that Case 1 is
more similar to the hubness-optimal distribution than Case 2, since in Case 1, the points
are more concentrated at the corresponding vertices than in Case 2. Figure 4.6 (C) and
(D) illustrate the γ̃ estimation of the general tendency to hubness in a data set. The
shaded area around the vertex illustrates the space where the point is likely to exist. In
(C), var(δr) is large compared with var(δp), which results in a high tendency to hubness.
In (D) is the opposite, and consequently the hubness emergence is unlikely. Note that
this holds for all vertices, although illustrated for only one.

In the remainder of this section, we explain why δp and δr+ deviations do not promote
hubness like δr−, on the contrary, they even decrease hubness.

Let us consider the cases illustrated in Figure 4.7: In (A), the NN relations are
symmetrical because points are exactly at the vertices of a cube. In (B), deviating the
point P4 along an edge of the cube has a limited effect, since only P3 becomes nearer
to P4 and all other points remain unaffected. In (C), deviating the point P4 on a face
diagonal has a limited effect, because only P3 and P8 become nearer to P4. The effect
is more than in (B), but however less than when deviating the point directly toward
the mean. Note that θ (the angle between the deviation vector δ and the hypercube
diameter from the corresponding vertex to the centroid) is inversely proportional to the
number points affected by the deviation, i.e. θ is smaller in (C) than in (B), and in the
direct deviation toward the mean is the smallest (θ = 0). Imagine the case in a high
dimensional space, where the hypercube vertex is connected to a large number of other
vertices over one edge and there are many faces. The number of points becoming nearer
to a deviated point depends on which face the point is deviated along, and consequently
on the angle θ. This number is maximized when the deviation is directly in the radial
inside direction, and minimized when the deviation is completely in the perpendicular
hyperplane, otherwise, it depends on the angle θ, a fact that is conformant with the γ̃
estimation.

In addition to the fact that δp deviations do not promote hubness, as has been
illustrated, they even compensate the hubness that may be caused when some point is
deviated toward the mean. To understand this compensation effect, recall the illustrative
example in Figure 4.5 (B) and (D), and imagine that the points are not at the vertices,
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Figure 4.7: In (A), points are exactly at the vertices of a hypercube. In (B), P4 is
deviated along an edge of the hypercube affecting only one point regarding the NN
relation, namely P3. In (C), the point P4 is deviated along a face diagonal, thereby
affecting two points, namely P3 and P8.

but instead have deviations in the perpendicular direction. In this case, the probability of
the points changing their NN relations as a result of the deviation of P4, i.e. having P1
as NN, is reduced. This is what we call the compensation effect, which justifies including
δp as a denominator of γ̃, the estimator of tendency to hubness, Equation 4.31.

Now let us consider the δr+ deviation, i.e. away from the mean. Such deviations result
in the deviated points becoming farther from the rest of the points, i.e. isolated, thereby
becoming anti-hubs. Furthermore, such deviations have obviously a compensation effect
due to the same reasons that δp deviations have, as mentioned above, i.e. they contribute
in enlarging the radius around the vertices, where points exist with high probability,
which reduces the similarity to the hubness-optimal distribution.

4.4.2 General Tendency vs. Outlier Specific Hubness

Equation 4.31 provides a rough estimation of the general tendency to hubness of a data
set. In this section, we provide a more accurate estimation of the general tendency to
hubness. Furthermore, we provide an estimation of the point specific hubness, which
depends on (i) the general tendency to hubness in the data set and (ii) the position of
the point.

General Tendency to Hubness

The statement of Equation 4.31 is that the less the deviation in the perpendicular
hyperplane (δp), compared with the deviation in the radial direction (δr), the more
similar the distribution is to the hubness-optimal distribution, and thus the tendency
to hubness is higher. However, γ̃ is a rough estimate, because it considers only one
statistic of the deviation toward the mean, namely var(δr), which measures the extent
of the δr deviation on average, but does not take into consideration its distribution. To
understand this, consider the distributions of δr as shown in Figure 4.8. γ̃ does not
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Figure 4.8: Distribution of δr and the similarity to the hubness-optimal distribution.
Although both of the distributions have the same variance, (B) has a higher kurtosis,
which makes it more similar to the hubness-optimal distribution, since the mass is
concentrated at the mean and few points deviate from the mean (tails).

differentiate between these two distributions, given that both of them have the same
variance. Actually, there is a difference between them regarding the tendency to hubness.
The distribution in (B) has a higher kurtosis than in (A). A distribution with high kurtosis
is characterized by a sharp peak and tails, which results in the mass concentrating in a
small range around the mean, and the minority being in the tails. Such a distribution is
more similar to the hubness-optimal distribution than in (A) because the majority of
the points are concentrated at the vertices (the mass) and only few points are deviated
toward the mean (the left tail). Kurtosis is a characteristic that has impact on the general
tendency to hubness, which is a justification to include it in the definition of γ̃. The
kurtosis of a random variable Y is defined by

kurt(Y ) = E[(Y − E[Y ])4]
(E[(Y − E[Y ])2])2 (4.32)

However, since hubs are points deviating toward the mean, i.e. points corresponding
to the left tail of the distribution of δr, and kurtosis is in contrast defined for both sides,
we define the function kurtL(δr) that considers only the kurtosis of the left part of the
distribution, i.e. the part having a direct impact on hubness, which enables a more
accurate estimation of hubness tendency in the dataset X, that is

kurtL(δr) = E[f(δr)4]
(E[f(δr)2])2 where

f(δr) =
{
δr − E[δr] if δr < E[δr]
0 otherwise

(4.33)

Now, we extend the hubness tendency estimation γ̃ to a more accurate form γ́, given
by

γ́ = kurtL(δr)
var(δr)
var(δp)

(4.34)
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Outlier Specific Hubness

The tendency to hubness γ́ (Equation 4.34) is a characteristic of a data set, since it is
based on the distributions of δr and δp. However, most of the hubness in a data set
is normally caused by few points, namely those outliers lying nearer to the mean than
the other points, i.e. points corresponding to the left tail of the δr distribution. Such
outliers may significantly increase hubness, which results in the hubness deviating from
the typical value for the underlying distribution.

It is useful to have a way to identify those outliers in order to remove them, or to
weight distance metrics to penalize them in order to reduce hubness. In the following, we
propose an indicator for hubness caused by a particular point.

Let X be a point set according to Definition 3. Let x ∈ X have a deviation δr−(x)
from its expected position (the corresponding vertex). The hubness caused by x is
proportional to the deviation of x toward the mean in relation to the average deviation
of the other points, i.e. relative to the standard deviation of the radial deviations. We
define ϑ́(x) as an estimate of the relative hubness caused by the point x, which is given
by

ϑ́(x) = E[δr]− δr(x)√
var(δr)

(4.35)

Note that ϑ́(x) is a measure of the relative hubness contribution of a particular point
and does not give information about the absolute amount of hubness. That is ϑ́(x)
specifies the order of the points in terms of their hubness contribution, i.e. a point with
a higher ϑ́ value is expected to have a higher hubness contribution than another point in
the same point set with a lower ϑ́ value. This means that comparing points in different
point sets using ϑ́ does not make sense.

Also note that when δr in Equation 4.35 is a deviation toward the mean, i.e. δr−, it
has a negative value, which results in a positive ϑ́ value denoting a hub, and when δr is a
deviation away from the mean (δr+), it has a positive value, which results in a negative
ϑ́ denoting an anti-hub.

In Section 4.6.1, we provide analysis that illustrates by means of i.i.d. random point
sets the relation between tendency to hubness and the outlier specific hubness.

4.4.3 Relation to DTM and PWD

In this section, we show that var(δ), var(δr), and var(δp) can be estimated using statistics
of two common distances, namely the distance to mean (DTM) and the pairwise distance
(PWD).

Let X be a point set according to Definition 3. Let ρ =‖x‖, x ∈ X be the DTM with
a minimum min(ρ), an expected distance E[ρ], and a variance var(ρ). Furthermore, let
η =‖x, y‖, x, y ∈ X be the pairwise distances (PWD) in X. Now, δr is straightforwardly
related to ρ (the DTM) because if a point deviates toward the mean by δr, then the
DTM is reduced by the same amount, and vice versa. Since the expected value of the

111



DTM E[ρ] corresponds to the distance of the hypercube vertex to the mean, it follows
that

δr = ρ− E[ρ] (4.36)

Consequently, because E[ρ] is constant for a given data set, this means that the dis-
tribution of ρ is the same as of δr, but shifted a distance E[ρ] to the right. It follows
that ρ has the same variance and the same kurtosis as δr, i.e. var(ρ) = var(δr),
kurtL(ρ) = kurtL(δr).

The extent of var(δp) can be sufficiently estimated by the variance of η because
var(δp) is the variance of the deviations from the vertices in d − 1 dimensions (most
of the directions), and var(η) is the variance of the PWD. As an illustration, imagine
that the points are exactly at the vertices, then var(η) = 0 and also var(δp) = 0. Now,
starting from this setting, any deviation of a point from the corresponding vertex in the
(d− 1)-space causes an increase in var(δp) and consequently in var(η).

By substituting in Equations 4.34 and 4.35, we define new variants of γ́ and ϑ́, namely
γ and ϑ, using only statistics of ρ and η, that is

γ = kurtL(ρ)var(ρ)
var(η) (4.37)

ϑ(x) = E[ρ]−‖x‖√
var(ρ)

(4.38)

Stability: Estimating var(δr) and var(δp) using the DTM and PWD is a more stable
method than the direct calculation using Equations 4.27 to 4.30, because the direct
calculation assumes that the expected positions of the points are exactly at the vertices.
This assumption is true as a convergence value only when the dimensionality is sufficiently
high. On the contrary, using the DTM and PWD statistics to estimate the deviations
does not make this assumption, since the actual expected positions are implicitly used,
which results in a more stable estimation also with relatively lower dimensionalities.

Another advantage is saving the effort of implementing algorithms for the explicit
calculation the point deviations when statistics about the DTM and PWD are already
available, or when the distribution of the underlying data is already known so that these
values can be easily estimated.

Sampling the PWD: It is important to note here that only an estimation of the PWD
variance is sufficient, and that the exact PWD variance is not necessarily required, since
we are interested only in the extent of the deviation. The estimation can be achieved by
sampling n point pairs randomly, where n is the point set size. This avoids the complexity
of calculating the exact var(η), and thus enables calculation in linear time in terms of
the point set size. Figure 4.9 empirically demonstrate the convergence of the sampled
PWD variance of a random point set consisting of 500 i.i.d. normally distributed points.
It shows that the variance quickly converges to the exact value. Already after |X| out
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Figure 4.9: The convergence of the sampled PWD variance of a random point set
consisting of 500 i.i.d. normally distributed points. Each data point represents the
variance resulting from sampling a number of point pairs (the x-axis). The figure shows
that the variance quickly converges to the exact value.

|X|2 samples, it reaches a good estimation that is sufficient for the hubness indicator. In
Section 4.11, we show in Figure 4.11 empirical results of the performance of a hubness
indicator based on sampling the PWD as described above.

4.4.4 Distribution of Points among the Vertices

In Section 4.3.1, we showed that high dimensional data is sparse, and only a tiny fraction
of the 2d orthants have points, where the rest are empty. In Section 4.3.4, we suggested
a distance structure in high dimensional space that states that points are concentrated
at a hypercube vertices, which is the basis of the hubness explanation. Analogously,
data sparsity implies also that only a tiny fraction of these 2d hypercube vertices are
occupied by points and the rest are empty. At first sight, this fact seems to violate the
hubness-optimal distribution described in Section 4.4 (the core idea of the proposed
hubness explanation), which states that when a point deviates from a vertex toward the
mean, it becomes a hub as a result of becoming nearer to the points at the neighboring
vertices. How can this hold, given that the neighboring vertices are most likely empty,
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Figure 4.10: Illustration in a low dimensionality of how a subset of hypercube vertices
can build another hypercube of lower dimensionality. The vertices P2, P6, P8, and P4 of
the cube (3-hypercube) are occupied by points. These four points build a fully occupied
square (2-hypercube, i.e. a hypercube of lower dimensionality)

since only a tiny fraction of vertices are occupied by points? This is the question that we
answer in this section.

We showed in Section 4.3.3 that given the dimensionality of a hypercube is sufficiently
high, the PWD between its vertices converges to a particular value, and that the vast
majority of the pairwise-distances are of this value as illustrated in Figure 4.1. Now,
imagine that we select a tiny subset of these pairwise-distances, it is most likely that
all of them will be equal to the convergence value. In other words, a randomly selected
subset of the 2d hypercube vertices have the same PWD between them.

This fact leads to an interesting property of the high dimensional hypercube, namely
that a randomly selected subset of vertices of a d-hypercube most likely forms another
e-hypercube where e < d, i.e. another hypercube of lower dimensionality. In our case,
the subset consisting of those vertices occupied by points build a another hypercube
fully occupied by points and having a lower dimensionality. Figure 4.10 illustrates this
property by means of an example in a low dimensionality, namely a cube with partially
occupied vertices, i.e. only P2, P6, P8, and P4 have points. These vertices build another
fully occupied hypercube of lower dimensionality, namely the square P2 P6 P8 P4.
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4.5 Hubness Indicator
It is of advantage to have a way for predicting the hubness in a data set without calculating
k-NN lists of all points, as required for Equation 4.1. In this section, we propose a hubness
indicator that has a linear complexity in terms of the point set size. This indicator is
given in two variants: using the direct calculation of δ deviation in Section 4.5.1, and
using the DTM and PWD statistics in Section 4.5.2.

4.5.1 Indication Using δ Deviations

In Section 4.4.2, we described two factors that determine the strength of hubness in a
point set, namely the general tendency to hubness γ́ (Equations 4.34) and the outlier
specific hubness ϑ́(x) (Equation 4.35). In this section, we put γ́ and ϑ́ together to define
a hubness indicator that provides an estimate of the total Hubness in a point set. The
total hubness consists of two following parts:

The base hubness: The first part, which we will call the base hubness, is caused by γ́,
the general hubness tendency in the data set, which is characteristic, given a distribution,
a dimensionality and a distance norm. For example, γ́ has a higher value for normally
than for uniformly distributed data which results from the DTM variance of the normal
distribution being larger due to the density gradient in the radial direction (detailed
discussion in Section 4.6.2), and consequently normally distributed data has in general a
stronger hubness than uniformly distributed data.

The outlier specific hubness The second part of hubness is the outlier specific
hubness, which is caused by outliers and thus related to ϑ́. Note that ϑ́(x) is an indicator
of the relative hubness of a single point (outlier) x, while here, we define an indicator
for the absolute total hubness of a point set, i.e. an indicator for the total set hubness,
based on the relative point hubness ϑ́. Here, there are two considerations:

The first consideration is that ϑ́(x) is the relative hubness of x, which only determines
the hubness capability of x compared with the other points. Whether and how much
this capability in deed causes hubness, depends also on the general tendency to hubness
γ́, i.e. the same outlier would cause a higher hubness in a distribution with higher γ́ (e.g.
normal distribution) than in a distribution with a lower γ́ (e.g. uniform distribution).
Thus, the absolute hubness caused by an outlier is estimated by γ́ · ϑ́(x).

The second consideration is that the total outlier specific hubness in a data set is
caused by more than one outlier. Normally, it is caused by a series of outliers at different
distances from the mean and thus with different values of ϑ́(x). An intuitive way to
calculate the total hubness is to sum the outlier specific hubness over all points. However,
this estimation is not accurate because the absolute hubness of a point x depends also on
the existence of another point y that is nearer to the mean than x. That is the hubness
of x, given y, is significantly less than its hubness, given that y does not exist.

A more accurate estimator of the total outlier specific hubness is using only the point
with the highest ϑ́ (namely the nearest point to the mean), which we denote by xmax.
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We estimate the total outlier specific hubness by the square of the hubness caused by
this point, i.e. ϑ́2(xmax). This is justified as follows: Since there is normally a series of
outliers at different distances from the mean, which have different hubness values starting
from zero (for points far from the mean) and increasing until the maximum hubness
value (for xmax), the total hubness can be estimated as the sum of an arithmetic series.
This implies a total that is quadratically proportional to largest term in the series, i.e.
ϑ́2(xmax). The following example illustrates how an arithmetic series sums to a value
that is quadratically proportional to the largest term

n∑
i=1

ni = 1 + 2 + 3 + ....+ n = n(n+ 1)
2 ≈ n2

2 (4.39)

We combine the base hubness and the outlier specific hubness in a hubness indicator
of the total hubness in a point set X, which is given by

H́(X) =ά · γ́ + β́ · γ́ · ϑ́2(xmax)
=γ́(ά+ β́ · ϑ́2(xmax))

(4.40)

where xmax is the point with the highest δr− deviation, i.e. the nearest to the mean, and
ά as well as β́ are scaling constants that can be used as weights to balance the impact
of global versus outlier-based hubness. They can also be used to scale H́(X) to some
hubness measure as a reference, e.g. the basic measure Equation 4.1; this is required
because H́(X) provides values that are proportional to the hubness, but not necessarily
equal to those of the basic measure; thus the constants α and β can be used to obtain
hubness estimation values that are comparable with those of the basic measure.

Section 4.6.1 provides an analysis by means of random i.i.d. point sets that illustrates
that the total hubness in a data set consists of two components, the base hubness and
the outlier specific hubness.

4.5.2 Indication Using DTM and PWD

In Section 4.5.1, we have proposed a hubness indicator H́(X) that is based on the
δ deviations. In this Section, we propose analogous to Equation 4.40 a new hubness
indicator H(X) based on Equations 4.37 and 4.38, using only statistics of the DTM and
PWD (i.e. statistics of ρ and η instead of the direct calculation of δ deviations). This
results in a more stable indicator since the calculating statistics of the DTM and PWD
does not assume a complete distance concentration as the calculating statistics of the
deviations. This has been discussed in more details in Section 4.4.3. The new hubness
indicator H(X) is given by

H(X) = γ(α+ β · ϑ2(xmax))

= kurtL(ρ)var(ρ)
var(η)

(
α+ β

(E[ρ]−‖xmax‖)2

var(ρ)

)
(4.41)
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Figure 4.11: Q-Q plots of the exact hubness calculated using the basic hubness measure
Equation 4.1 versus the estimated hubness H(x) according to the proposed hubness
indicator Equation 4.41 using a scaling constant α = 1

3 . In both cases, 950 point sets, each
of them consisting of 1000 points with dimensionalities uniformly distributed between 50
and 1000. In (A) for i.i.d points drawn from a uniform distribution over a hypercube,
and in (B) for i.i.d. normal distribution.

where xmax is the point with the highest ϑ value, i.e. the nearest point to the mean, and
α as well as β are scaling constants that can be used as weights to balance the impact
of global versus outlier-based hubness. They can also be used to scale H(X) to some
hubness measure as a reference. In order that H(X) provides hubness values comparable
with the basic measure in Equation 4.1, the constant α should be set to 1

3 and β to 1.
To test the performance of the hubness indicator, Equation 4.41, we used 950 i.i.d.

random point sets, each consisting of 1000 points and having a dimensionality, uniformly
selected between 50 and 1000. For each of these 950 samples, two values have been
calculated, namely the exact hubness using the basic function in Equation 4.1 and the
estimated hubness value using the hubness indicator in Equation 4.41. The resulting 950
pairs of hubness values are then plotted on a quantile-quantile plot (Q-Q plot), which is a
graph that visualizes the correlation between two distributions. Figure 4.11 (A) shows the
Q-Q plot of one experiment using samples of uniformly distributed points, and (B) is the
Q-Q of the same experiment repeated using samples of normally distributed points. Both
plots show a strong correlation between the exact hubness and the estimated hubness (In
a Q-Q plot, the strength of correlation is indicated by how approximately the points lie
on the line x = y, i.e. on the red line).

Note that this hubness indicator has a complexity O(d · n), where n is the point set
size, since a sampling of the PWD variance is sufficient, as mentioned in Section 4.4.3.
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This is efficient compared with the classical way (Equation 4.1), that calculates the k-NN
lists of all points, having at least O(d · n2 · logn) complexity, assuming a sort complexity
of O(n · logn) and distance measurement complexity of O(d), which is not efficient when
n is large.

4.6 Analysis
In this section, we provide an analysis that supports the proposed cause of hubness,
by explaining well-known observations or observations documented in the literature, as
well as by presenting empirical results on point sets of different i.i.d. distributions and
different distance norms.

4.6.1 Base Hubness vs. Outlier Hubness

Section 4.5 proposes a hubness indicator based on dividing the total hubness of a data
set into two components, the base hubness, determined by γ (Equation 4.34) and the
outlier specific hubness, determined by ϑ (Equation 4.35). While the base hubness is
characteristic, i.e. stable, given a distribution, a dimensionality and a distance norm, the
outlier specific hubness can lead to hubness of a data set strongly deviating from the
hubness characteristic specified by γ. This is, for example, the reason why some point
sets with uniform distribution can have higher hubness values than point sets with normal
distributions if they have a high rate of outliers on the left side of the δr distribution.
The two hubness components are illustrated in Figure 4.12 by showing how the hubness
is reduced by removing the nearest n points to the mean, which are with high probability
outliers. Figure 4.12 shows the hubness values (calculated using the basic algorithm in
Equation 4.1) of i.i.d. point sets (uniform distribution in (A) and normal distribution in
(B)) after successively removing the nearest points to the data mean. Furthermore, the
values of ϑ of the point sets before removing the points is written in the legend. There
are three interesting observations: (i) Removing only few points results in a significant
reduction of hubness, namely the hubness was reduced by 50% by removing only 3 points
in some point sets and removing 10 points on average, which means that hubness is
reduced by 50% by removing 2% of the points on average. (ii) In all point sets from
the same distribution, hubness converges to the same value after removing the outliers,
which means that, after removing the outlier specific hubness, the remaining hubness
is the base hubness. (iii) Considering the factor ϑ before the point removal, it is clear
that ϑ correlates with the amount of hubness reduced until reaching the base hubness,
i.e. with the outlier specific hubness.

4.6.2 Radovanovic et al. [RNI10] Versus Low et al. [LBSN13]

As has been mentioned in Section 4.2, Radovanovic et al. [RNI10] provide analysis on
the origin of hubness. They emphasize the dimensionality and the data centrality as
the main cause of hubness. However, Low et al. [LBSN13] challenge this claim and
state that hubness is a matter of density gradient in data sets. To demonstrate the
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Figure 4.12: Reducing the hubness by removing the nearest point to the mean. 5 point
sets in the 500-dimensional space, each consisting of 500 points with i.i.d components from
uniform distribution (A) and normal distribution (B). The number of points removed
is on the x-axis and the hubness is on the y-axis, calculated using the basic algorithm,
Equation 4.1. The values of ϑ before point removal are encoded in the legend.

usefulness of our explanation as a theoretical background, we show that the discord
between these two divergent research results can be reduced by linking both of them to
the same explanation. Obviously, the observations of Radovanovic et al. that hubness is
related to high dimensionality, and that hubs tend to be closer to the mean than other
points, are straightforward outcomes of our explanation, since the number of vertices,
connected to a given vertex over one edge, increases with the dimensionality, which
consequently increases the impact of outliers on the NN relation of other points, as shown
in Section 4.4.

However, the claim of Low et al. that hubness is a matter of density gradient can be
also linked to the same explanation. An important result of our explanation is that the
dimensionality alone is not sufficient for the emergence of hubness. In fact, even if the
dimensionality is already high, the emergence of hubness depends on other conditions,
namely the hubness tendency γ (Equation 4.34) and the existence of outliers on the left
side of the distribution of the DTM . We agree with Low et al. that the density gradient
promotes hubness insofar as it has an influence on the variance of δr and thus a direct
impact on γ.

To explain how the density gradient has an impact on γ, we show that increasing the
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Figure 4.13: The density gradient in a distribution where the density decreases when
moving farther from the mean. The dashed circles illustrate the density levels. var(DTM)
increases with increasing rate of density decay, because the difference between min(∆r)
and max(∆r) increases, where ∆r = rj − ri.

gradient results in an increase in the variance of the δr. Let us consider a distribution where
the density decreases when moving away from the mean, e.g. the normal distribution, as
shown in Figure 4.13. Here the density si at radius ri is larger than the density sj at
radius rj , given ri < rj . Since we are only interested in the var(δr) (the variance in the
radial direction), we consider how the DTM changes as a result of changing the gradient.
Since the density decreases when moving farther from the mean, the distance we should
move until encountering the next point (∆r) increases, the farther we are from the mean.
Consequently, the rate of change of DTM per unit radial distance increases, which means
an increase in var(DTM), which obviously means an increase in var(γ).

Let us consider two examples presented by Low et al. as arguments that the density
gradient is the cause of hubness. The first example is the observation of the high hubness
in points drawn from a normal distribution compared to the lower hubness in uniformly
distributed points. Here they link this observation to the high density gradient in the
normally distributed points. Figure 4.14 (A) to (D) show how the strength of hubness
is related to the variances of DTM and PWD, and consequently to the factor γ (ratio
between variances of the DTM and the PWD). (A) and (B) are drawn from a uniform
distribution. (C) and (D) are drawn from a normal distribution. The factor γ, which can
be linked to the density gradient, is responsible for hubness being in general stronger in
normal than in uniform distribution. Note that hubness can deviate from this general
tendency specified by γ as a result of outliers at the left side of the DTM distribution,
which have impact on the factor ϑ. For example in (B), the hubness is stronger than in
(A) because of the outliers at the left side in (B). The outliers at the right side in (A) do
not have impact on hubness. Analogously, the hubness in (D) is stronger than in (C)
because of the outliers at the left side in (D).

The second example is the uniform distribution in the hyperball. Here Low et al.
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argue the low hubness value to be a result of the low density gradient. As mentioned
above, we agree with this claim insofar that the density gradient has an impact on γ.
Figure 4.14 (E) and (F) shows that the uniform distribution in the hyperball has a very
low γ because in contrast of the variance of PWD, the variance of the DTM is very low.
The behavior of the hypersphere is discussed in detail in Section 4.6.3.

4.6.3 The Special Behavior of the Hyperball

The strange properties of the hyperball have been discussed by many researchers, e.g.
[ZM14] [Ham50] [Fra08] [Koe00]. We will discuss some of these properties to explain
the special property of the hyperball with respect to hubness. Low et al. [LBSN13]
provide empirical results showing that no (or significantly low) hubness is observed in
i.i.d points drawn from a uniform distribution in a hyperball. In this section, in a first
step, we discuss the distance distribution and the convergence behavior of the uniform
distributions in the hyperball, then we provide an explanation for the fact that such a
distribution is almost free of hubness using the proposed cause of hubness.

Points uniformly distributed in a high dimensional hyperball with radius r are located
almost exactly on the surface of the hyperball, i.e. at a distance r from the mean, a
fact that has been confirmed frequently, e.g. [Ham50][ZM14]. We have provided a proof
for distance convergence in Section 4.3.2. However, the unique property of the uniform
hyperball is the quick convergence of the DTM compared to the PWD. When increasing
the dimensionality d, the asymptotic Euclidean PWD in the hyperball converges to r

√
2

and the DTM converges to r. However, the PWD converges significantly more slowly
than the DTM.

Figure 4.15 shows the convergence behavior of the DTM and the PWD for three
different distributions, namely a normal distribution (A), a uniform distribution over the
hypercube (B), and a uniform distribution in the hyperball (C). The variances of the
DTM and PWD are estimated by plotting the minima and the maxima of the distances.
Two unique properties of the uniform hyperball can be observed: (i) While the DTM
and PWD in (A) and (B) continue growing asymptotically with d, the DTM and PWD
are limited in (C) and do not depend on d. (ii) When increasing d, while the variance of
the DTM in (A) and (B) continues to have relatively large values, the variance of the
DTM in (C) decays very quickly and becomes almost zero already at d = 50. On the
contrary, the variance of the PWD still keeps its relatively large values until the highest
dimensionality considered in the experiment.

Now, the observation of the uniform hyperball being almost free of hubness can be
straightforwardly explained by the proposed cause of hubness. The general hubness
tendency of the uniform distribution over the hyperball is limited by γ = var(DTM)

var(PWD) , which
decreases very quickly, since var(DTM) decreases quickly whereas var(PWD) keeps its
value up to high dimensionalities. The low value of γ in the uniform hyperball explains
the observation of being almost free of hubness. Figure 4.15 (D), shows the distribution
of the DTM of one point set from (C) with d = 500. Note that the variance, estimated
by max(DTM)−min(DTM), is very low (∼ 0.001) compared with the variance of the
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Figure 4.14: The relation between hubness and the distributions of DTM and PWD.
Five examples of point sets, each of them consists of 300 points with dimensionality 500,
drawn from different i.i.d. distributions. (A) and (B) are tow different random point sets
drawn from a uniform hypercube, (C) and (D) from a normal distribution, and (E) from
a uniform distribution over a hyperball. (F) is a details view of the DTM distribution
in (E). The factor γ (ratio between the DTM variance and the PWD variance) as well
as the outliers left to the DTM distribution decide the strength of hubness. In (A) and
(B), γ is mid-range and the hubness has also mid-range values, however in (B) hubness is
higher because of the outliers at the left side. In (C) and (D), γ is high and hubness is
relatively high, but however it is higher in (D) because of the outliers at the left side. In
(E), γ is very low and hubness is also very low although there is a high rate of outliers at
the left side of the DTM distribution, which is clear in the details plot (F). All hubness
values are measured with the basic NN definition, Equation 4.1
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Figure 4.15: Comparison of the decay rates of the DTM variance and PWD variance
for 500 point sets with dimensionalities varying from 1 to 500 for three distributions,
namely a normal distribution in (A), a uniform distribution over the hypercube in (B),
and a uniform distribution in the hyperball in (C). In each of the three cases, the
estimative variances of the DTM and PWD are visualized by showing the minimum and
the maximum. In (D), the distribution of the DTM of one case from (C), namely a
point set of the dimensionality 500 is shown. Note that the domain of (D) corresponds
to a very small distance interval of about 0.001 unit, compared with the corresponding
interval of the PWD, which is about 0.2, estimated as max(PWD) - min(PWD) for the
corresponding point set in (C)

PWD (∼ 0.2), estimated by max(PWD)−min(PWD) from (C). Also note that this
resulting low γ prevents the emergence of hubness, although there are outliers on the left
side of the distribution, as shown in (D).

Also Figure 4.14 (E) and (F) shows the relation between hubness and the distribution
of the DTM and PWD in the hyperball. It shows that such a distribution is characterized
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by a very low γ compared with the uniform distribution (A) and (B), and the normal
distribution (C) and (D).

4.7 Hubness Reduction

The theoretical background proposed in Section 4.4 and the factors affecting hubness
defined in Section 4.5 provide a foundation for strategies of hubness reduction. As
has been mentioned in Section 4.6.1, hubness consists of two parts, the base hubness
determined by the distribution, the distance norm, and the dimensionality, which can be
indicated by the factor γ (Equation 4.37), and outlier specific hubness, caused by points
lying significantly nearer to the mean than the other points and indicated by the factor
ϑ (Equation 4.38). In his section we suggest two strategies for hubness reduction based
on these foundations. We test these methods only with i.i.d. random point sets and
recommend testing them with real data sets in future work.

4.7.1 Hubness Reduction by Hub Removal

In this section, we suggest a strategy for hubness reduction based on the factor ϑ
(Equation 4.38) determining the outlier specific hubness. In Section 4.6.1, it has been
illustrated by means of i.i.d. random data sets that only ∼ 1% of the points (outliers)
cause most of the outlier hubness and also that removing these outlier points leads to a
significant hubness reduction. This observation suggests the exclusion of outliers as a
hubness reduction strategy.

This is motivated by two observations:

i For the identification of such outlier points (hubs), the hubness indicator proposed
in Section 4.5 can be used, which finds such points in linear time.

ii Only very few points need to be removed in order to achieve a significant hubness
reduction, as has been illustrated in Section 4.6.1.

Since there are usually few hubs, this means that the negative impact on performance
caused by hub removal is small compared with the positive impact caused by hubness
reduction. In the following, we present the justification for this claim. We start with an
illustrative example and then generalize it.

Figure 4.16 illustrates a set of 13 points with their nearest neighbor (NN) relations for
a k-NN algorithm with k = 1. We define correct relations to be NN relations measured by
a distance metric and confirmed by a human as correct. Correct relations are illustrated
as green arrows and the corresponding points are also colored in green. Furthermore, We
define incorrect relations to be NN relations measured by a distance norm and judged by
a human as incorrect because the measurement is affected by hubness bias. Incorrect
relation are illustrated as red arrows and the corresponding points are also colored in red.
In (A), the hub point h is recognized by a distance metric to be the NN of six points.
Only one of these six relations, namely the point t, is correct. The other five relations
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(w1 to w5) are incorrect. In total, there are seven correct NN relations (green arrows),
and five incorrect relations (red arrows). In (B), the hub point h has been removed,
which leads to changes in the NN relations measured by the same metric. Now, the point
t gets another NN, which is incorrect. But on the other hand, the points w1 to w5 get
new NN, which results in their NN relations becoming correct. In total, there are 11
correct relations and only one incorrect relation.

To compare (evaluate) the two cases, let us define a score that results from increment-
ing for each correct relation and decrementing for each incorrect relation. In (A), the
score is 7− 5 = 2. In (B), i.e. after removing the hub point h, the score is 11− 1 = 10.
This means that removing one hub point h leads to a score increase of 10− 2 = 8.

Now, consider the general case with a k-NN algorithm and recall the k-occurrence
nk (Definition 18), where nk(x) denotes the number of points for which x is the k-NN.
The expectation value of the k-occurrence in a k-NN algorithm is k, i.e. E[nk] = k,
which means that if the hubness would not exist, a point would likely be the NN of k
points. Now assume that a hub point h is identified by a distance metric to be the NN
of m other points and assume that m is sufficiently larger than k, i.e. nk(h) = m and
m >> k. Since the expectation value of the E[nk] is k, this means that there are likely
m− k incorrect NN relations corresponding to the hub point h. The score in this case is
k − (m− k) = 2k −m (the correct relations minus the incorrect relations).

Now, removing the hub point h from the data set has two impacts: (i) A negative
impact caused by k cases, namely when the query point q is one the k points having h
as correct NN because these become incorrect after removing h. (ii) A positive impact
related tom−k cases, namely when the query point q is one of them−k points incorrectly
measured to have h as NN, these become correct after removing h. This means that
the number of correct relations changes from k to m − k and the number of incorrect
relations changes from m− k to k. The score in this case is (m− k)− k = m− 2k.

The score increase caused by removing h is (m− 2k)− (2k −m) = 2m− 4k, which
implies that removing the hub point h leads to a total improvement of 2m− 4k relations.
Note that the higher m is compared with k, the more benefit is obtained by its removal.

We tested this method with randomly generated i.i.d. point sets, by generating 100
point sets, each containing 1000 points and having a dimensionality between 100 and 1000.
For each point set, the hubness was calculated twice using the basic hubness measure
(Equation 4.1), once with all the points included and a second time after removing 1% of
the points (10 points) that have the most hubness, identified using the hubness indicator
in Section 4.5. In each case, a k-NN algorithm was considered with a k value randomly
selected between 1 and 10. The results are displayed in Table 4.17, which show that
by removing 10 out of 1000 points, the hubness can be reduced to 51% of the original
hubness in the average case and to 23% of the original hubness in the best case. Note
that after removing 10 points, the remaining hubness is almost constant for all point
sets, because the remaining hubness is the base hubness, which is characteristic for the
distribution, an observation that is in conformance with the analysis in Section 4.6.1.
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Figure 4.16: The influence of removing hubs on the NN relations. Green arrows represent
correct NN relations, and red arrows represent incorrect NN relations caused by hubness
bias. The direction of the arrow means k-nearest neighbor of. In (A) the hub point h is
measured by a metric to be the NN of six points, only one of them r is correct and the
five others are incorrect. (B) illustrates the NN relations after removing the hub point h.
A significant decrease in the incorrect relations, and increase in the correct relations are
observed.

4.7.2 Hubness Reduction by Transforming to the Hyperball

In this section, we suggest a method for hubness reduction based on the factor γ
(Equation 4.37). In Section 4.6.3, we showed that the uniform distribution in a hyper ball
is characterized by significantly low hubness due to a low γ. We propose a method for
hubness reduction in normally distributed points by transforming the point components
(coordinates) such that the points fit into a uniform distribution in a hyper ball without
destroying their nearest neighbor relations.

As has been mentioned in Section 4.6.2, the density gradient in the normally dis-
tributed data results in high values of γ, which consequently cause high hubness values.
The idea behind this reduction method is to reduce or eliminate the density gradient in
the normal distribution.

To this end, points are moved toward the centroid so that the variance of the
distribution of the DTM is reduced. Figure 4.18 shows the transformation that achieves
a reduction of the DTM variance, while maintaining the relative spatial relations between
points. Points far from the centroid are moved toward the centroid more than nearer
points, but however, the DTM of points should still have the same order after the
transformation. In Figure 4.18, (B), the point X2 is the farthest from the centroid, so it
is moved the most, and likewise X3 is the nearest and thus it is moved the least.
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Figure 4.17: Hubness reduction by hub removal: 100 i.i.d point sets have been randomly
generated, each containing 1000 points and having a dimensionality between 100 and
1000. For each point set, two hubness values were calculated using the basic hubness
measure (Equation 4.1), one value of the complete point set and the other value after
removing 1% of the points (10 points) that have the most hubness. In each case, a k-NN
algorithm was considered with a k value randomly selected between 1 and 10. The point
sets are sorted according to the original hubness (before removal). Sorting a according to
dimensionality does not make sense because the effect of dimensionality on hubness is
considerably smaller than the effect of outliers.

The transformation required should meet three properties: (1) It should manipulate
only distances in the direction of the density gradient, i.e. in the radial direction. Angles
between vectors representing the points should not be changed to avoid unnecessary
manipulation. (2) The order of the points with respect to their DTM should be maintained,
which results in the NN relations remaining unchanged. (3) The transformation should
be sensitive to the distance from the mean, i.e. farther points should be moved toward
the centroid more than near ones.

One way to achieve this goal is to use the probability density function of the normal
distribution for the transformation. Let X be a set of d-dimensional points with normally
distributed components X1 ... Xd. Each component Xi is normally distributed according
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Figure 4.18: Transformation for hubness reduction. In (A) the points are normally
distributed which results in a density gradient. In (B), points far from the centroid
are moved toward the centroid, so that the magnitude of movement corresponds to the
distance from centroid, i.e. farther points far from the centroid are more moved than
near ones. In (B), the points after transformation have distribution that is nearer to the
uniform hyperball, and thus have less hubness.

to the probability density fi with σi and µ = 0, i.e. the components are normalized to
have their means at the origin. This implies that fi(xi) is the probability of a point x
having xi as its value of ith component.

In order that the points fit in a hypersphere, we should transform each individual
component, such that the components become uniformly distributed, thereby keeping the
angle of each vector unchanged, i.e. we want to transform only the lengths of the vectors.
Transforming a vector goes in three steps, (i) calculating its length r and angle α, (ii)
dividing all its components by r to get the unit vector representation of the point, and
(iii) giving the unit vector a new length that is related to the probability density fi(r).
The first two steps are the steps required for the common unit length normalization
[SB88] [Buc93] [SBM96]. The third step aims to give each vector x a new length in [0, 1],
such that the original length hierarchy (order) is maintained, i.e. if two vectors x1 and
x2 respectively have original lengths r1 and r2, where r1 > r2, then the new lengths ŕ1
and ŕ2 should also meet the condition ŕ1 > ŕ2. This condition is satisfied when using the
probability density fi because of the fact that the farther the point is from the origin,
the lower is the probability. Note that in order for this to hold, the point components
should be normalized to have their means at the origin.

Formally, each point x = (x1, ..., xd) with a distance to the origin r =‖x‖ is trans-
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formed to the point x́ = (x́1, ..., x́d) where

x́i = xi − µi
r

1√
2π

(1− e
−r2

2 ) (4.42)

where µ = (µ1, ..., µd) is the mean. Note that the normalization of the points to have
their mean at the origin is already included in the transformation. Figure 4.19 shows the
result of applying the transformation in Equation 4.42 on i.i.d random point sets with
normally distributed point components. In this experiment, 30 i.i.d. random point sets
were generated, such that each has 1000 points and a dimensionality randomly selected
between 30 and 500. The exact hubness values were calculated for the point sets using
the basic algorithm (Equation 4.1) for k values selected between 1 to 10. For each point
set, the points were transformed using Equation 4.42 and then the exact hubness values
were calculated again. The results show a significant hubness reduction achieved by the
transformation.

Note that in many state-of-the-art algorithms of IR, normalized vectors are used,
where vectors representing data points are divided by their lengths which results in all
vectors having the unit length [SB88] [Buc93] [SBM96]. Such normalization results in
the variance of the DTM becoming zero, since all points are at the same distance to the
mean, which is sufficient for hubness elimination. However, this normalization has the
disadvantage of large loss of information compared with the transformation proposed in
Equation 4.42, which does not require that the vectors representing the points have unit
length.

The transformation according to Equation 4.42 can be used in two ways: As a
transformation of the data space as a prior step, and then using a normal distance metric
for measuring distance and building models; or as an integrated part of the distance
metric, i.e. the distance metric considers the transformation as a part of its definition.

4.8 Testing with Real Data and other norms
In this section, we present a set of experiments that verify the hubness findings using
real world data. As dataset, we used the TREC-AP 1 text collection. The collection
contains 209,783 documents and has a dimensionality of 237,368 terms. This collection
was used in other research [AV08] to verify methods related to a similar topic, namely
the retrievability.

These experiments require measuring the exact hubness to be used as a reference. Since
the basic measure of hubness (Equation 4.1) has a complexity of an O(d · |X|2 · log |X|),
it is not realistic to test with the whole data set because this would take years of running
time. To solve this problem, our strategy was to perform the experiments on random
samples, each consisting of 500 documents selected uniformly from the collection. For
significance, i.e. to ensure that the samples represent the collection, each experiment was
repeated using 5 different samples.

1The TREC-AP text categorization test collection is derived from proprietary AP news data. See the
detailed description under http://www.daviddlewis.com/resources/testcollections/trecap
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Figure 4.19: Hubness reduction by hub transformation: 30 i.i.d point sets have been
randomly generated, such that each has 1000 points and a dimensionality between 30
and 500. For each point set, two hubness values were calculated using the basic hubness
measure (Equation 4.1), one value is the original hubness and the other value is the
hubness after the transformation according to Equation 4.42. In each case, a k-NN
algorithm was considered with a k value randomly selected between 1 and 10. The point
sets are sorted according to the original hubness (before transformation).

This set of experiments aims to (i) verify the proposed explanation of hubness using
real world data, (ii) test whether this explanation is applicable to other norms, and (ii)
evaluate the performance of the hubness indication method proposed in Section 4.5 using
real data. In particular, we present experiments using three different norms. In two
of them, namely the L2 norm and the cosine distance COS, we aim to show that our
findings are general and can be directly applied to norms of different categories. In the
third one, namely the L∞, we aim to show that there are, however, norms, to which our
findings hold in general, having special properties that cause side effects, which prevent a
direct application of the hubness indicator and hubness reduction methods.

We describe here the experiment that was repeatedly performed on the samples each
time under different settings, namely different norms and different values of k. The results
of these experiments are presented and discussed in the next paragraphs. The experiment
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was performed as follows: The exact hubness of each sample is calculated using the
classic measure (Equation 4.1). Then for each document, the hubness contribution ϑ(x)
is calculated using the proposed hubness indicator (Equation 4.38). Additionally, the
k-occurrence nk(x) is calculated for each document. The documents are then sorted
according to ϑ(x) descending. Now, the documents are successively removed from the
sample in the sort order (the highest ϑ first). After each removal, the hubness of the
sample is calculated using the basic measure. With the help of nk values, it is possible to
verify whether the documents identified as hubs using the hubness indicator, i.e. having
high ϑ), are indeed hubs. And with the help of the exact hubness of the samples, it is
possible to verify that removing hubs leads to overall hubness reduction.

Experiments using L2 norm: Figure 4.20 shows the results of the experiment per-
formed using the L2 norm and a k-NN algorithm with k = 1. The same experiment was
repeated for each of the five samples. In (A), the top part of a listing of the documents
sorted (separately for each sample) according to ϑ(x) (hubness contribution). For each
document, the k-occurrence nk(x) (calculated according to Definition 18) is shown. The
aim is to show that the documents removed based on ϑ(x) are indeed hubs by comparing
ϑ(x) with nk(x). In (B), the vertical axis shows the exact hubness of each sample (mea-
sured using the basic function Equation 4.1) after successively removing the documents
from the top of the listing in (A), i.e. in the order of decreasing ϑ(x). The number of
documents removed are on the horizontal axis. Note that the hubness on the vertical
axis in (B) is the overall hubness of the sample after the removal, while ϑ(x) in (A) is a
hubness indicator corresponding to one single document, which is a value proportional
to the hubness contribution of the document, which is not comparable with the sample
hubness as absolute value. Also note that since ϑ(x) aims to predict for the document x
the relative hubness contribution in the same point set, it makes no sense to compare ϑ
values in different sets.

One important observation is that the decrease of hubness is not strictly monotonous,
that is the removal of some points results in a hubness increase. This is a major difference
between the results of this experiment and those of a similar experiment presented in
Section 4.6.1, which was performed on i.i.d. random point sets with uniformly as well
as normally distributed points. In contrast to the current experiment, the hubness in
random data sets decreases strictly monotonous with hub removal. We explain this effect
by text data being clustered and not uni-modal like the randomly generated point sets.
Text data being clustered stems from sparsity, that is for a given document, the vast
majority of the attributes are zeros. When the data is clustered, removing some hubs
could lead to the emergence of other hubs, most likely in another cluster, but nearly
at the same distance from the mean. This can be observed for documents with similar
(or equal) ϑ values, e.g. the first two documents of Samples 1 in Figure 4.20 (A). The
removal of the first one causes a hubness increase as shown in Figure 4.20 (B).

However, although the hubness decrease is not strictly monotonous, the hubness
seems to converge after removing few hubs to a particular value. This confirms our
findings regarding base- and outlier hubness presented in Section 4.6.1, i.e. after removing
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Figure 4.20: Hubness reduction by hub removal on samples of the TREC-AP text
collection, each consisting of 500 documents. A k-NN algorithm with k = 1 and the L2
norm have been used. In (A), for each document x, the value of the hubness contribution
ϑ(x) and the exact k-occurrence nk(x) are calculated. The documents are sorted according
to ϑ. The top part of the list is shown. In (B), the documents are successively removed
in the order of the list (highest ϑ first). The number of documents removed is on the
horizontal axis and the resulting exact hubness of the sample is on the vertical axis.

the outlier hubness, the hubness converges to the base hubness, which is distribution
characteristic (note that all samples are drawn from the same distribution).

To evaluate the effect of k on the behavior of hubness, we repeated the previous
experiment with k = 3 instead of 1. Figure 4.21 shows results that are similar to those of
the previous experiment, but with one difference, namely that the hubness is in general
lower for the same samples. This is in conformance with the observations documented
in the literature [FSS12], namely that hubness is mostly stronger with smaller values of
k. Note that the nk(x) values being larger does not necessarily mean higher hubness,
because this is related to the higher value of k. The hubness has to do with the skewness
of nk distribution rather than with the absolute values. Also note that ϑ values are the
same as in the previous example because ϑ depends only on the position of the document
relative to the collection and does not depend on k, that is ϑ gives an indication of the
relative hubness contribution of a particular document based on its position.

132



Figure 4.21: The results of the previous experiment (Figure 4.20) repeated using k-NN
algorithm with k = 3 instead of k = 1.

Experiments using cosine distance norm (COS): The aim of this experiment is to
show empirically that the proposed findings are applicable to a different category of norms
than the p-norms, namely the cosine distance. In Section 4.3.4, we have demonstrated
that the distance structure with respect to COS is in conformance with the hubness
explanation model, i.e. that the points are located at the hypercube vertices. In this
experiment, we empirically confirm that the hubness indicator and the hubness reduction
by hub removal are applicable to the COS. We perform the same experiment as before
using the COS norm and an k-NN algorithm with k = 1. Figure 4.22 presents the results,
which show that the hubness has been reduced by removing the documents with the
highest ϑ values. They also show that the hubness converges in all samples to almost the
same value as expected. One can also observe that the convergence of hubness is faster
than with L2 and almost strict monotonous, which makes the hubness indicator and the
hubness reduction method more effective. Note that the definition of the mean differ
according to the distance norm. Recall that the mean with respect to COS is the vector
that minimizes the angles to all other points. However, we use an approximation of the
mean, namely the nearest point to the mean as has been described in Section 4.3.4.

Experiments using L∞ distance norm: The results of repeating the experiment
with L∞ norm are presented in Figure 4.23 and show, in contrast to L2 and COS, no
hubness reduction.
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Figure 4.22: The results of the same experiment repeated using the COS norm and
a k-NN algorithm with k = 1. Results show that removing the documents with the
highest ϑ results in a hubness reduction as expected. It is also observed that the hubness
convergence is faster than with the L2 norm.

This surprising result motivated us to look deeper at the distribution of the k-
occurrences nk(x) and how they are related with the hubness indicator ϑ(x). Figure 4.24
shows a plot of all these values for Sample 1 in (A) for L2 and in (B) and for L∞. The plot
in (B) shows that there is a relation between nk(x) and ϑ(x), namely that the documents
with high ϑ values (on the left side) have in general higher nk values. Documents with
negative ϑ(x) (those deviating away from the hypercube vertices) are mostly anti-hubs.
This relation confirms that the proposed hubness explanation is in general valid also for
L∞. However there is a special property of the L∞ that prevents the hubness reduction
by hub removal, which we explain as follows:

Since L∞ is defined as the maximum of the dimension-wise displacements between
two points, this definition results in that documents having equal largest term frequencies
are at the same distance from the mean, although d− 1 of their components are totally
different. This results in a step-like distribution of ϑ(x) as illustrated in Figure 4.24 (B).
This step-like distribution makes distinguishing the hubness potential of the documents
ineffective and thus prevents an exact identification of hubs because the hubness reduction
by removal is based on removing only the top few documents in the list sorted according
to ϑ(x). Such side effects caused by special properties related to particular norms require
additional handling in order to apply the hubness indicators and reduction methods.

134



Figure 4.23: The results of the experiment hubness reduction by removal repeated using
the L∞ norm and a k-NN algorithm with k = 1. There is no hubness reduction observed
in (B) after removing the top documents of the list sorted according to ϑ(x) in (A).

Finding generic guidelines for doing so is an essential challenge for future work.

4.9 Summary
We provided an analysis of hubness that results in a theoretical explanation of the
origin of hubness based on the sparsity and distance concentration in high dimensional
spaces. This explanation is general, since it does not assume particular distributions
or particular distance norms. We demonstrated the strength of the proposed analysis
by showing that three observations from the literature regarding hubness can be linked
to the proposed origin of hubness and explained based on it. Based on this theoretical
finding, we proposed hubness indicators with linear complexity in terms of the point set
size. These indicators provide estimations of hubness in a given data set, or hubness
caused by a particular data point. The indicators are based on the distribution of point
deviations from their expected positions without calculating the nearest neighbor lists of
all data points. Furthermore, we suggest a new strategy for hubness reduction based on
transformation of the point components.
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Figure 4.24: Comparison between L2 norm (A) and L∞ norm (B) of how the nk(x) values
are distributed in relation to the ϑ(x) values for all documents in Sample 1. The values
are sorted according to ϑ(x). In order to make the plot readable, ϑ(x) has been scaled
(x20) on the vertical axis. While ϑ(x) is distinguishable for all documents in (A), it does
not seem so in (B) because ϑ(x) distribution has a step-like form. The distribution of
the nk(x) values is however related to ϑ(x) because documents on the left side have in
general higher nk values than those on the right side.
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CHAPTER 5
Conclusion and Future Work

5.1 Conclusion
In this work, we provide solutions for some difficulties arising when applying metrics to
feature space of particular properties or under particular conditions. These solutions are
in three different directions:

Metric bias and metric selection: We investigated biases and sensitivities of metrics
to provide guidelines as well as a formal method for selecting evaluation metrics. This
was achieved in two steps:

In the first step, we provided a comprehensive analysis of 20 evaluation metrics for
3D medical segmentations, which have been identified based on a literature review, such
that only those metrics have been considered, for which there exist at least two papers
confirming their usage in evaluating 3D medical segmentation. For each of these metrics,
we provided binary and fuzzy definitions, as well as an efficient implementation in the
form of an evaluation tool that has been provided as an open source project1.

Furthermore we provided a comprehensive analysis of these metrics, discussing their
properties, sensitivities and biases. To this end, (i) we analyzed the correlation between
rankings produced by these metrics in general and under particular conditions, e.g. when
the overlap between segments has particular levels. (ii) We analyzed particular examples
of segmentation having special properties and investigated the behavior of each metric,
given these properties. (iii) We designed synthetic al segmentations and illustrations to
clear the strength and drawbacks of some metrics under particular conditions. (iv) We
considered observations documented in the literature and related them to our analysis.

Finally, this analysis was summarized in form of metric properties (such as sensitivity
to outliers, bias to segment size, ability to discover agreement caused by chance, rewarding

1EvaluateSegmentation is an evaluation tool providing efficient implementation of 20 evalu-
ation metrics for 3D image segmentation. It is available for download as open source under
http://github/codalab/EvaluateSegmentation
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high recall, etc.), and segmentation properties (such as complexity of boundary, segment
density, outlier level, etc.). We then related between these metric and segmentations
properties to provide guidelines for selecting suitable evaluation metric(s) for 3D medical
images.

In the second step, a general metric selection framework has been proposed for
selecting evaluation metrics for arbitrary evaluation task that is based on comparing
objects with their corresponding ground truth objects. This framework is based on a novel
method for inferring metric bias that provides a formal way to infer the metric sensitivity
to a particular property of the objects being evaluated. Given a set of objects being
evaluated and a set of properties that these objects can have, the proposed framework
provides a method to automatically infer the bias of each metric to each property, based
on which the overall bias to a particular data set is inferred.

Efficient metric calculation: We proposed two solutions to the efficiency problem
of computing the distance between two huge point sets.

In the first solution, we proposed an efficient algorithm for calculating the exact
Hausdorff distance (HD) between two arbitrary point sets. The HD is known to be
complex in terms of computation time. A direct computation of the HD has a complexity
that is quadratically proportional to the point set sizes, which makes a direct computation
inefficient when the point sets are huge. The proposed algorithm calculates the exact
HD in linear time in terms of the point set size. The proposed algorithm is general and
can be used to measure the distance between two arbitrary point sets. The algorithm
is based on two optimizations, namely the early breaking optimization, which makes
use of the HD being a maximum of minimums, and the randomization optimization,
which makes use of the principle of locality. In the early break optimization, unnecessary
computations are avoided by breaking the loop of minimization when it is ensured that
the completing the loop will not give additional information about the current maximum.
The randomization optimization ensures that the order, in which minimum distances
are computed, is random. This leads to a considerably more frequent occurrence of the
early break and thus more avoidance of unnecessary computations. The idea behind the
randomization optimization is that processing in the natural order of points (without
randomization) leads, according to the principle of locality, to that the early break is not
likely to occur, given that it has not occur in the previous iteration. This algorithm has
been tested in various domains and found to significantly outperform the state-of-the-art
algorithms.

In the second solution, we presented an efficient algorithm for calculating the average
distance between image segmentations. This algorithm makes use of the segmentations
being solid objects. The algorithm adds two optimizations to an existing algorithm that
calculates the nearest neighbor using grid indexing. The first added optimization is
avoiding the computation of distances to points inside the segments, i.e. measuring the
distance between the surfaces of the segments. This is done by considering representations
of the segments as hollow objects. The second optimization is reducing the search of
nearest neighbors by finding a convenient search sphere (search radius) that ensures finding
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the nearest neighbor, which considerably reduces the number of distance computations
required. The algorithm has been tested on huge whole body magnet resonance volume
segmentations and found to outperform the ITK algorithm as a state-of-the-art algorithm.

Hubness explanation, estimation, and reduction: We presented a formal expla-
nation of the origin of hubness in high dimensional space. This explanation is based on the
distance concentration of high dimensional points, which is well studied and has a solid
basis. We provide a model of distance structure between points when the dimensionality
is sufficiently high. According to this model, points are located (concentrated) at the
vertices of a hypercube and have only small deviation from the vertices that decreases
with dimensionality. When a points deviates more than the expectation value from a
vertex toward the centroid of the hypercube, it becomes a hub because it becomes nearer
to many other neighboring vertices.

Based on this hubness explanation, we proposed a hubness estimator that predict the
hubness of a particular point, i.e. the amount of hubness a particular point contributes
with, which enables the identification of hubs and anti-hubs. Another hubness indicator
has been proposed that predicts the extent of hubness in a given data set in a linear time
in terms of the point set size.

Furthermore, based on the explanation, we suggested two hubness reduction methods,
the first one is based on the identification of hubs using the hubness estimator and
removing them from the data set, which leads to a considerable hubness reduction
by removing only a tiny fraction ( 1%) of the points. The second hubness reduction
method is based on transforming normally distributed points to a distribution known to
have very low hubness while maintaining the nearest neighbor relations between points.
In particular, points with normally distributed components are transformed to have
a uniform distribution in a hyperball, by moving points toward the center, such that
farther points are moved more than nearer ones in a manner that points fit in a uniform
hyperball.

5.2 Future Work
The following suggestions are possibilities that are recommended to continue the research
done in this thesis.

Hubness: In Chapter 4, we proposed a formal explanation of the origin of hubness
and hubness indicators that predict the hubness contribution of a particular point as well
the overall hubness in a data set. These findings are general and can be applied to any
distance norm. However, although the basic theoretical principle is applicable for any
norms, some special problems arise in combination with some norms, which seem as side
effects related to the definition of these norms. One example is the L∞ norm, which is
defined as the maximum of the dimension-wise displacements between two points. This
definition results in that all points are at the same distance from the mean, given that
their largest component (coordinate) is equal, i.e. they are at the same distance from the
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mean although d− 1 of their components may be totally different. To imagine the effect
of this property, consider that in a text collection with term frequencies varying from
0 to r, there are only r levels of distance to mean, which means there is always a huge
number of documents at the same distance from the mean. In this case, our expectation
based on the proposed hubness explanation about the positions of hubs holds in general,
i.e. that hubs are in general nearer to the mean than other points, but not the contrary,
i.e. not every point near to the mean is a hub.

Another example of problems to be further investigated is the definition of the mean
with respect to different norms. For example, this is the case with the BM25 function that
is commonly used to measure the similarity between text documents. While the meaning
of mean is clear with respect to the p-norms (e.g. the Euclidean distance), it does not
seem to be straight forward with BM25. Such problems stemming from special properties
of particular distance measures need to be addressed. We recommend therefore further
investigation to enable a general application of the hubness findings in combination with
these norms.

In Section 4.7.2, we suggested a hubness reduction method based on transforming
normally distributed points to a distribution that fits in a uniform hyperball, which
leads to a significant hubness reduction. In the proposed form of the transformation, the
method works only with uni-modal normal distribution. However, data in practice is
clustered (e.g. as a result of sparsity in text data). Such data can be often represented by
a Gaussian mixture. We recommend further investigation to generalize the transformation
to Gaussian mixture to enable the application of this hubness reduction method on a
wider spectrum of real word data.

Analogy between text and images: Modeling the data in a feature space depends
on the nature of the underlying data. Image and text are commonly used data in image
retrieval and data mining. Metrics used to measure the similarity between images are
usually different than metrics used to measure similarity between text documents. We
suggest an analogy between text data and image data that enables representing both
of them with the same framework, which allows the mutual application of the same
techniques like the similarity metrics.

Images are defined on a grid. We link the union of all cells in this grid to the set
of terms in a text feature space, such that image data is seen as a feature space of
dimensionality d = w.l.h (width · length · height), i.e. grid cells in image data correspond
to terms in text data. Since an image is a collection of grid cells (pixels) and documents
are collections of terms, images are linked to documents.

We recommend further investigating this analogy trying to answer questions like
whether the techniques used for text processing can be transferred to images and vice
versa. Can, for instance, BM25 be applied for image similarity, and the Hausdorff distance
for document similarity. Another question is whether image feature space is subject to
curse of dimensionality, e.g. hubness, since the image feature space is high dimensional
according to this analogy.

A deeper insight in this analogy suggests that it is promising, since it can be extended
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Figure 5.1: Illustration of the suggested analogy between image and text. The analogies
are represented by dashed lines. Grid cells correspond to terms. The image to the
document. The distances between pixels correspond to the distance between terms
(semantic). The color a grid cell has from the context of an image corresponds to the
meaning added to a term from the context of a document.

to more elements, namely semantic attributes. The 3-dimensional grid space of the image
data gives information about the relations between grid cells, i.e. the distance between
each pair of cells. This grid space is linked to the semantic in text that gives information
about the similarity between terms. The analogy can thus be extended to context-added
semantic. In a text document, a term can obtain a new semantic from the context of the
document. Analogously the same grid cell can have two different colors, each one in the
context of a different image. Figure 5.1 illustrates the suggested analogy between images
and text.

It is worth investigation to figure out whether the accuracy of text retrieval systems
can be increased by making use of measures designed for image similarity, that is to
measure the similarity between text documents at syntax and semantic levels using these
measures based on the analogy described above.
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APPENDIX A
Metric Definitions and

Algorithms

In this appendix, we provide the definitions of all metrics listed in Table 2.1, which have
been selected, based on a literature review described in Section 2.4, as evaluation metrics
for 3D medical image segmentation. Furthermore, we present in Section A.9 examples of
inconsistency in the literature regarding the definition of the metrics to underline the
need of a standardization of the definitions of evaluation metrics.

Formal general definitions for binary and fuzzy 3D images are provided in Section 1.6.3.
Definitions of the basic cardinalities of the confusion matrix for the binary and fuzzy
cases are provided in Section 1.6.4. Because these two Sections contain basic definitions
that are important for this chapter, we repeat these two sections here to improve the
readability.

A.1 2D and 3D Images

An image can be thought of as a set of points defined on a grid, i.e. the points are
represented by grid cells, which we call pixels. Images can be 2-dimensional (2D) or
3-dimensional (3D). 3D images are also called volumes, and the 3D-pixels are called
voxels. The metric space defined on a set of images is a special cases of the metric space
according to Definition 3, in which the objects are images, and the metrics coming into
consideration are only those according to Definition 5. Since 2D images are a special case
of 3D images, we will only provide a definition for a 3D image, which implicitly holds for
a 2D image as well.

Definition 7. A 3D binary segmentation (binary segmented volume) is represented by
the ordered pair (X,S), where:
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• X = {x1, ..., xn} is a point set with |X| = w · h · d, where w, h and d are the
width, height and depth of the grid on which the volume is defined, such that each
point x ∈ X corresponds to a grid cell (voxel). We will call w, h and d the grid
dimensions and w · h · d the grid size.

• S is a classification that assigns each grid cell (each point x ∈ X) to one of two
classes, either the foreground or the background, such that S builds a partition
S = {S1, S2} on X represented by the assignment function f i(x) that provides
the membership of the grid cell x in the subset Si, where f i(x) = 1 if x ∈ Si and
f i(x) = 0 if x /∈ Si. S can also be seen as a segmentation, i.e. the set of voxels that
define a segment. We denote S1 by the foreground voxels and S2 by the background
voxels.

Note that binary segmentations are a special case of fuzzy segmentations, in which
the assignment function f has the range {0, 1}. This definition can be generalized to the
fuzzy case by redefining the range of f to be [0, 1] representing the degree of membership
of a voxel to a particular class.

Definition 8. A fuzzy 3D segmentation (fuzzy segmented volume) is an image according
to Definition 7, in which the assignment function f i(x) is redefined to have its range in
[0, 1], where f i(x) ∈ [0, 1] represents the degree of membership of the grid cell x in the
subset Si.

A.2 Basic Cardinalities of the Confusion Matrix
Many of the metrics used for comparing 3D image segmentations can be derived from
the four basic cardinalities of the so-called confusion matrix, namely the true positives
(TP ), the false positives (FP ), the true negatives (TN), and the false negatives(FN).
We define these cardinalities for the binary as well as the fuzzy case.

Basic cardinalities for binary segmentation: For two binary classifications that
assign each element in a sets to one of two classes, in our case segmentations according
to Definition 7, we define the four basic cardinalities (also called the confusion matrix),
representing the overlap that results based on the agreement/disagreement of the assign-
ments of the two classifications (segmentations). The four cardinalities are TP (true
positive), FP (false positive), FN (false negative), and TN (true negative).

Definition 9. Let Sg and St be two segmentations according to Definition 7, with
assignment functions fg and ft respectively. Let Sg denote the ground truth segmentation
and St denote the segmentation being evaluated. The four cardinalities are given by the
sum of agreement mij between each pair of subsets i ∈ Sg and j ∈ St. That is

mij =
|X|∑
r=1

f ig(xr)f
j
t (xr) (A.1)
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where TP = m11, FP = m10, FN = m01, and TN = m00.

Table 1.1 shows the confusion matrix of the partitions Sg and St.

Table A.1: Confusion matrix comparing two segmentations, Sg as the ground truth
segmentation and St as the test segmentation

Subset S1
t S2

t (= S1
t )

S1
g TP (m11) FP (m12)
S2
g (= S1

g ) FN(m21) TN(m22)

Generalization to fuzzy segmentation: Intuitively, one favorable way to generalize
the metrics based on the basic cardinalities to the fuzzy is to generalize the cardinalities
of the confusion matrix to the fuzzy case. To this end, the main task is to calculate the
agreement between two segmentations, where the assignments of voxels to segments are
probabilities (fuzzy). It is common for this purpose to use a suitable triangular norm
(t-norm) to calculate the agreement between two fuzzy assignments [KPM00][Cam07].
Given two probabilities p1 and p2 representing the memberships of a particular element
(voxel) to a particular class (segment) according to two different classifiers (segmenters),
we use the min(p1, p2) as a t-norm as the agreement between the two classifiers. That
is, we define the agreement function g : [0, 1]× [0, 1]→ [0, 1] that models the agreement
on a particular voxel being assigned to a particular segment as g(p1, p2) = min(p1, p2).
This also means that the agreement on the same voxel being assigned to the background
is given by g(1− p1, 1− p2). Intuitively, the disagreement between the segmenters is the
difference between the probabilities given by |p1− p2|. However, since the comparison is
asymmetrical (i.e. one of the segmentations is the ground truth and the other is the test
segmentation), we consider the signed difference rather than the absolute difference as
in Equations A.3 and A.5. The four cardinalities defined in Equation A.1 can be now
generalized to the fuzzy case as follows:

Definition 10. Let Sg and St be two segmentations according to Definition 8, with
assignment functions fg and ft respectively that satisfy the conditions f1

g (x) + f2
g (x) = 1

and f1
t (x) + f2

t (x) = 1 for all x ∈ X (i.e. the memberships of a given point x always sum
to one over all classes). Let Sg denote the ground truth segmentation and St denote the
segmentation being evaluated. The four fuzzy cardinalities of the confusion matrix are
given by

TP =
|X|∑
r=1

min(f1
t (xr), f1

g (xr)) (A.2)

FP =
|X|∑
r=1

max(f1
t (xr)− f1

g (xr), 0) (A.3)
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TN =
|X|∑
r=1

min(f2
t (xr), f2

g (xr)) (A.4)

FN =
|X|∑
r=1

max(f2
t (xr)− f2

g (xr), 0) (A.5)

Note that in Equations A.2 to A.5, f ig(xt) and f jt (xt) are used in place of p1 and p2
since each of the functions provides the probability of the membership of a given point
in the corresponding segment, and in the special case of crisp segmentation, they provide
0 and 1.

Other norms have been used to measure the agreement between fuzzy memberships
like the product t-norm, the L-norms, and the cosine similarity. We justify using the min
t-norm by the fact that, in contrast to the other norms, the min t-norm ensures that the
four cardinalities, calculated in Equations A.2 to A.5, sum to the total number of voxels,
i.e. TP + FP + TN + FN = |X| which is an important requirement for the definition of
metrics.

Basic setting: Based on the definitions in Sections A.1 and A.2, we provide the settings
to be considered for the metric definitions in the following sections.

Let Sg and St be two segmentations according to Definition 7 or Definition 8, depending
on whether the segmentations are binary or fuzzy, which is to be given in the context.
Note that binary segmentation is just a special case of the fuzzy segmentation. Let Sg
denote the ground truth segmentation and St denote the segmentation being evaluated.
The segmentations Sg and St have the assignment functions fg and ft respectively, which
provide the memberships of the voxels in the foreground. Note that in this chapter, unless
it is explicitly stated, we only deal with partitions with two classes, namely the class of
interest (e.g. anatomy or feature) and the background. We always assume that the first
class (S1

g , S1
t ) is the class of interest and the second class (S2

g , S2
t ) is the background.

In the remainder of this appendix, we define the foundation of methods and algorithms
used to compute all the metrics presented in Table 2.1. We structure the discussion in
this appendix to follow the metric grouping given in the column “category”.

A.3 Spatial Overlap Based Metrics
Because all spatial overlap based metrics are based on four basic overlap cardinalities of
the so-called confusion matrix, namely the true positives (TP ), the false positives (FP ),
the true negatives (TN), and the false negatives(FN), we define these cardinalities for
crisp as well as fuzzy segmentations, then we define the metrics based on them.

A.3.1 Calculation of Overlap Based Metrics

In this section, we define each of the overlap based metrics in Table 2.1 based on the
basic cardinalities in Equation A.1 (crisp) or Equations A.2 to A.5 (fuzzy).

146



The Dice coefficient [Dic45] (DICE), also called the overlap index, is the most used
metric in validating medical volume segmentations. In addition to the direct comparison
between automatic and ground truth segmentations, it is common to use DICE to
measure reproducibility (repeatability). Zou et al. [ZWB+04] used DICE as a measure
of the reproducibility as a statistical validation of manual annotation where segmenters
repeatedly annotated the same MRI image, then the pair-wise overlap of the repeated
segmentations is calculated using DICE, which is defined by

DICE =
2|S1

g ∩ S1
t |

|S1
g |+ |S1

t |
= 2TP

2TP + FP + FN
(A.6)

The Jaccard index (JAC) [Jac12] between two sets is defined as the intersection between
them divided by their union, that is

JAC =
|S1
g ∩ S1

t |
|S1
g ∪ S1

t |
= TP

TP + FP + FN
(A.7)

We note that JAC is always larger than DICE except at the extrema {0, 1} where they
are equal. Furthermore the two metrics are related according to

JAC =
|S1
g ∩ S1

t |
|S1
g ∪ S1

t |
=

2|S1
g ∩ S1

t |
2(|S1

g |+ |S1
t | − |S1

g ∩ S1
t |)

= DICE

2−DICE

(A.8)

Similarly, one can show that

DICE = 2JAC
1 + JAC

(A.9)

That means that both of the metrics measure the same aspects and provide the same
system ranking. Therefore, it does not provide additional information to select both of
them together as validation metrics as done in [CdLGBC09][AFNIS13][CCH06].

True Positive Rate (TPR), also called Sensitivity and Recall, measures the portion
of positive voxels in the ground truth that are also identified as positive by the segmenta-
tion being evaluated. Analogously, True Negative Rate (TNR), also called Specificity,
measures the portion of negative voxels (background) in the ground truth segmentation
that are also identified as negative by the segmentation being evaluated. However these
two measures are not common as evaluation measures of medical image segmentation
because of their sensitivity to segment size, i.e. they penalize errors in small segments
more than in large segments [GJC01] [FC05] [ULZ+06]. Note that the terms positive and
negative are rather for crisp segmentation. However, the generalization in Equations A.2
to A.5 extends the meaning of the terms to grade agreement. These two measures are
defined as follows:

Recall = Sensitivity = TPR = TP

TP + FN
(A.10)
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Specificity = TNR = TN

TN + FP
(A.11)

There are two other measures that are related to these metrics, namely the false positive
rate (FPR), also called Fallout, and the false negative rate (FNR). They are defined by

Fallout = FPR = FP

FP + TN
= 1− TNR (A.12)

FNR = FN

FN + TP
= 1− TPR (A.13)

The equivalence in Equations A.12 and A.13 implies that only one of each two equivalent
measures should be selected for validation and not both of them together [ULZ+06], i.e.
either FPR or TNR and analogously, either FNR or TPR. Another related measure
is the precision, also called the positive predictive value (PPV ) which is not commonly
used in validation of medical images, but it is used to calculate the F-Measure. It is
defined by

Precision = PPV = TP

TP + FP
(A.14)

Fβ-Measure (FMSβ) was first introduced in [Chi92] as an evaluation measure for
information retrieval. The Fβ-Measure is a trade-off between PPV (precision, defined
in Equation A.14) and TPR (recall, defined in Equation A.10). the Fβ-Measure is given
by

FMSβ = (β2 + 1) · PPV · TPR
β2 · PPV + TPR

(A.15)

However, FMS is a special case of the Van Rijsbergen’s effectiveness measure introduced
in [Rij79]. FMSβ can be derived by setting α = 1

β2+1 in Rijsbergen’s effectiveness
measure given by

E = 1− 1
α 1
PPV + (1− α) 1

TPR

(A.16)

With β = 1.0 (precision and recall are equally important), we get the special case
F1-Measure (FMS1); we call it FMS for simplicity. It is also called the harmonic mean
and given by

FMS = 2 · PPV · TPR
PPV + TPR

(A.17)

Here, we note that the FMS is mathematically equivalent to DICE. This follows from a
trivial substitution for TPR and PPV in Equation A.17 by their values in Equations A.10
and A.14, i.e. TPR = TP

TP+FN and PPV = TP
TP+FP . The simplification directly results

in the definition of DICE in Equation A.6, i.e. DICE = 2TP
2TP+FP+FN .

The global consistency error (GCE) [MFTM01] is an error measure between two
segmentations. Let R(S, x) be defined as the set of all voxels that reside in the same
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region of segmentation S where the voxel x resides. For the two segmentations S1 and
S2, the error at voxel x, E(S1, S2, x) is defined as

E(St, Sg, x) = |R(St, x)\R(Sg, x)|
|R(St, x)| (A.18)

Note that E is not symmetric. The global consistency error (GCE) is defined as the error
averaged over all voxels and is given by

GCE(St, Sg) = 1
|X|

min

{ |X|∑
i

E(St, Sg, xi),

|X|∑
i

E(Sg, St, xi)
} (A.19)

Equation A.19 can be expressed in terms of the four cardinalities defined in Equations
A.2 to A.4 to get the GCE between the (fuzzy) segmentations Sg and St as follows

GCE = 1
|X|

min

{
FN(FN + 2TP )

TP + FN
+ FP (FP + 2TN)

TN + FP
,

FP (FP + 2TP )
TP + FP

+ FN(FN + 2TN)
TN + FN

} (A.20)

A.3.2 Overlap Measures for Multiple Labels

All the overlap measures presented previously assume segmentations with only one label.
However, it is common to compare segmentations with multiple labels, e.g. two-label
tumor segmentation (core and edema). Obviously, one way is to compare each label
separately using the overlap measures presented previously, but this would lead to the
problem of how to average the individual similarities to get a single score. For evaluating
segmentations with multible classes, we use the overlap measures proposed by Crum et.
al [CCH06], namely DICEml and JACml which are generalized to segmentations with
multiple labels. For the segmentations A and B

JACml =

∑
labels,l

αl
∑

voxels,i
MIN(Ali, Bli)∑

labels,l
αl

∑
voxels,i

MAX(Ali, Bli)
(A.21)

where Ali is the value of voxel i for label l in segmentation A (analogously for Bli) and
αl is a label-specific weighting factor that affects how much each label contributes to the
overlap accumulated over all labels. Here, the MIN(.) and MAX(.) are the norms used
to represent the intersection and union in the fuzzy case. DICEml can be then calculated
from JAC according to Equation A.9, i.e. DICEml = 2JACml/(1 + JACml). Note that
the equations above assume the general case of multiple label and fuzzy segmentation.
However, in multiple label segmentations, voxel values mostly represent the labels (classes)
rather than probabilities, which means that in most available image formats, there are
either multiple label or fuzzy segmentations [CCH06].
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A.4 Volume Based Metrics

As the name implies, volumetric similarity (V S) is a measure that considers the volumes
of the segments to indicate similarity. There is more than one definition for the volumetric
similarity in the literature, however we consider the definition in [RPR13a], [VYPP11],
[RPR13b] and [CdLGBC09], namely the absolute volume difference divided by the sum
of the compared volumes. We define the Volumetric Similarity (V S) as 1− V D where
V D is the volumetric distance. That is

V S = 1−
||S1

t | − |S1
g ||

|S1
t |+ |S1

g |
= 1− |FN − FP |

2TP + FP + FN
(A.22)

Note that although the volumetric similarity is defined using the four cardinalities,
it is not considered an overlap-based metric, since here the absolute volume of the
segmented region in one segmentation is compared with the corresponding volume in the
other segmentation. This means that the overlap between the segments is absolutely not
considered. Actually, the volumetric similarity can have its maximum value even when
the overlap is zero. More details in Section 2.5.

A.5 Pair Counting Based Metrics

In this section, pair-counting based metrics, namely the Rand index and its extensions,
are defined. At first we define the four basic pair-counting cardinalities, namely a, b, c,
and d for crisp and fuzzy segmentations and then we define the metrics based on these
cardinalities.

A.5.1 Basic Cardinalities

Given two partitions of the point set X being compared, let P be the set of
(n

2
)
tuples

that represent all possible object pairs in X ×X. These tuples can be grouped into four
categories depending on where the objects of each pair are placed according to each of
the partitions. That is, each tuple (xi, xj) ∈ P is assigned to one of four groups whose
cardinalities are a, b, c, and d.

• Group I: if xi and xj are placed in the same subset in both partitions Sg and St.
We define a as the cardinality of Group I.

• Group II: if xi and xj are placed in the same subset in Sg but in different subsets
in St. We define b as the cardinality of Group II.

• Group III: if xi and xj are placed in the same subset in St but in different subsets
in Sg. We define c as the cardinality of Group III.

• Group IV: if xi and xj are placed in different subsets in both partitions Sg and St.
We define d as the cardinality of Group IV.
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Note that the count of tuples in Groups I and IV represents the agreement (a+d) whereas
the count of tuples in Groups II and III (b+ c) represents the disagreement between the
two partitions.

Obviously, because there are
(n

2
)

= n(n− 1)/2 tuples, the direct calculation of these
parameters needs O(n2) runtime. However, Brennan and Light [BL74] showed that these
cardinalities can be calculated using the values of the confusion matrix without trying
all pairs and thus avoiding the O(n2) complexity, that is

a = 1
2

r∑
i=1

s∑
j=1

mij(mij − 1) (A.23)

b = 1
2

( s∑
j=1

m2
.j −

r∑
i=1

s∑
j=1

m2
ij

)
(A.24)

c = 1
2

( r∑
j=1

m2
i. −

r∑
i=1

s∑
j=1

m2
ij

)
(A.25)

d = n(n− 1)/2− (a+ b+ c) (A.26)

where r and s are the numbers of classes in the segmentations being compared (e.g. 2
for a 2-class segmentation), mij is the confusion matrix (Table A.1), mi. denotes the
sum over the ith row, and m.j denotes the sum over the jth column. Note that here, in
contrast to the overlap based metrics, there is no restriction on the number of classes
in the compared partitions. However, for the evaluation of 3D medical segmentation,
we are interested in segmentations with only two classes, namely the anatomy and the
background; i.e. r = s = 2. We define the four cardinalities for this special case, more
specifically for the segmentations Sg and St defined in Appendix A.1 based on the four
overlap parameters defined in Appendix A.2

a = 1
2
[
TP (TP − 1) + FP (FP − 1)

+TN(TN − 1) + FN(FN − 1)
] (A.27)

b = 1
2
[
(TP + FN)2 + (TN + FP )2

−(TP 2 + TN2 + FP 2 + FN2)
] (A.28)

c = 1
2
[
(TP + FP )2 + (TN + FN)2

−(TP 2 + TN2 + FP 2 + FN2)
] (A.29)

d =n(n− 1)/2− (a+ b+ c)
=n(n− 1)/2−

(A.30)
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A.5.2 Generalization to Fuzzy Segmentations

As mentioned above, since the cardinalities a, b, c, and d are by definition based on
grouping all the pairwise tuples defined on Sg and St, this requires processing n(n− 1)/2
tuples which means a direct computation of these cardinalities for fuzzy segmentations
takes O(n2) runtime. For medical segmentation, this complexity could be a problem
since the number of voxels in a medical volume could reach 8-digit numbers. Methods
(Huellermeier et al [HRHS12], Brouwer [Bro09], Campello [Cam07]) have been proposed
that calculate the Rand index and its extension for fuzzy segmentations using different
approaches. None of these approaches is efficiently applicable in the 3D medical imaging
domain because they all have a run time complexity of O(n2). However, Anderson et al.
[ABPK10] proposed a method that calculates the four cardinalities for fuzzy sets in O(n)
runtime. This is achieved by combining two already known strategies: (i) calculating
the confusion matrix for fuzzy sets using some agreement function e.g. Equations A.2
to A.5 and (ii) calculating the four cardinalities by applying Equations A.23 to A.26 on
the values of the fuzzy confusion matrix calculated in (i). We use this approach which
means that Equations A.27 to A.30 already provide the fuzzy cardinalities according to
[ABPK10], given the parameters TP , FP , TN and FN are calculated for fuzzy sets. In
the next subsection, the Rand index and the adjusted rand index are calculated based
on these cardinalities.

A.5.3 Calculation of Pair-counting Based Metrics

The Rand Index (RI), proposed by W. Rand [Ran71] is a measure of similarity between
clusterings. One of its important properties is that it is not based on labels and thus
can be used to evaluate clusterings as well as classifications. The RI between two
segmentations Sg and St is defined as

RI(Sg, St) = a+ b

a+ b+ c+ d
(A.31)

where a, b, c, d are the cardinalities defined in Equations A.27 to A.30.
The Adjusted Rand Index (ARI), proposed by Hubert and Arabie [HA85], is a

modification of the Rand Index that considers a correction for chance. It is given by

ARI =

∑
ij

(mij
2
)
−
∑
i

(mi.
2
)∑
j

(m.j
2
)
/
(n

2
)

1
2
[∑
i

(mi.
2
)

+
∑
j

(m.j
2
)]
−
∑
i

(mi.
2
)∑
j

(m.j
2
)
/
(n

2
) (A.32)

where n is the object count, mij is the confusion matrix (Table A.1), mi. denotes the
sum over the ith row, and m.j denotes the sum over the jth column.

The idea behind this correction for chance is to abstract the agreement caused by
chance from the enumerator, which is estimated here as the expectation value of the
number of tuples from Group I, i.e. pairs in which the objects are placed in the same
class in the first segmentation and in the same class in the second segmentation. This
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expectation value is given by

E

∑
ij

(
mij

2

) =
∑
i

(
mi.

2

)∑
j

(
m.j

2

)
/

(
n

2

)
(A.33)

The ARI can be expressed by the four cardinalities as

ARI = 2(ad− bc)
c2 + b2 + 2ad+ (a+ d)(c+ b) (A.34)

A.6 Information Theoretic Based Metrics

The Mutual Information (MI) of two variables is a measure of the amount of information
one variable has about the other, or simply the amount of information they share. Or in
other words, the reduction in uncertainty of one variable, given that the other is known
[CT91]. It was firstly used as a measure of similarity between images by Viola and Wells
[VW97]. Later, Russakoff et al. [RTR+04] used the MI as a similarity measure between
image segmentations; in particular, they calculate the MI based on regions (segments)
instead of individual pixels. The MI is related to the marginal entropy H(S) and the
joint entropy H(S1, S2) between images defined as

H(S) = −
∑
i

p(Si) log p(Si) (A.35)

H(S1, S2) = −
∑
ij

p(Si1, S
j
2) log p(Si1, S

j
2) (A.36)

where p(x, y) is joint probability, Si are the regions (segments) in the image segmentations
and p(Si) are the probabilities of these regions that can be expressed in terms of the four
cardinalities TP , FP , TN and FN , which are calculated for the fuzzy segmentations
(Sg and St) in Equations A.2 to A.5 as follows

p(S1
g ) = (TP + FN)/n

p(S2
g ) = (TN + FN)/n

p(S1
t ) = (TP + FP )/n

p(S2
t ) = (TN + FP )/n

(A.37)

where n = TP + FP + TN + FN is the total number of voxels. Because TP , TN , FP
and FN are by definition cardinalities of disjoint sets that partition the volume, the joint
probabilities are given by

p(Si1, S
j
2) = |S

i
1 ∩ S

j
2|

n
(A.38)
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which implies

p(S1
1 , S

1
2) = TP

n

p(S1
1 , S

2
2) = FN

n

p(S2
1 , S

1
2) = FP

n

p(S2
1 , S

2
2) = TN

n

(A.39)

The MI is then defined as

MI(Sg, St) = H(Sg) +H(St)−H(Sg, St) (A.40)

The Variation of Information (V OI) between two variables is a measure of the amount
of information lost (or gained) when one variable is changed to the other. Marin [Mei03]
first introduced the V OI measure for comparing clustering partitions. The V OI is
defined using the entropy and mutual information as

V OI(Sg, St) = H(Sg) +H(St)− 2 MI(Sg, St) (A.41)

A.7 Probabilistic Metrics
The Interclass Correlation (ICC) [SF79] is a measure of correlations between pairs of
observations that don’t necessarily have an order, or are not obviously labeled. It is
common to use the ICC as a measure of conformity among observers; in our case it is
used as a measure of consistency between two segmentations. ICC is given by

ICC = σ2
S

σ2
S + σ2

ε

(A.42)

where σS denotes variance caused by differences between the segmentations and σε
denotes variance caused by differences between the points in the segmentations [SF79].
Applied to the segmentations Sg and St, ICC is defined as

ICC = MSb −MSw
MSb + (k − 1)MSw

with

MSb = 2
n− 1

∑
x

(m(x)− µ)2

MSw = 1
n

∑
x

(fg(x)−m(x))2 + (ft(x)−m(x))2

(A.43)

where MSb denotes the mean squares between the segmentations (called between group
MS),MSw denotes the mean squares within the segmentations (called within group MS), k
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is the number of observers which is 2 in case of comparing two segmentations, µ is the grand
mean, i.e. the mean of the means of the two segmentations, and m(x) = (fg(x) +ft(x))/2
is the mean at voxel x.

The Probabilistic Distance (PBD) was developed by Gerig et al. [GJC01] as a
measure of distance between fuzzy segmentations. Given two fuzzy segmentations, A and
B, then the PBD is defined by

PBD(A,B) =
∫
|PA − PB|
2
∫
PAB

(A.44)

where PA(x) and PB(x) are the probability distributions representing the segmentations
and PAB is their pooled joint probability distribution. Applied on Sg and St, defined in
Appendix A.1, the PBD is defined as

PBD(Sg, St) =

∑
x
|fg(x)− ft(x)|

2
∑
x
fg(x)ft(x) (A.45)

The Cohen Kappa Coefficient (KAP ), proposed in [Coh60], is a measure of agreement
between two samples. As an advantage over other measures, KAP takes into account
the agreement caused by chance, which makes it more robust. KAP is given by

KAP = Pa − Pc
1− Pc

(A.46)

where Pa is the agreement between the samples and Pc is the hypothetical probability of
chance agreement. The same can be expressed in the form of frequencies to facilitate the
computation as follows

KAP = fa − fc
n− fc

(A.47)

where n = |X| is the total number of observations, in our case the voxels. The terms in
Equation A.47 can be expressed in terms of the four overlap cardinalities, calculated for
fuzzy segmentations (Equations A.2 to A.5), to get

fa = TP + TN

fc = (TN + FN)(TN + FP ) + (FP + TP )(FN + TP )
n

(A.48)

The ROC curve (Receiver Operating Characteristic) is the plot of the true positive
rate (TPR) against the false positive rate (FPR). The area under the ROC curve
(AUC) was first presented by Hanley and McNeil [HM82] as a measure of accuracy in
diagnostic radiology. Later, Bradley [Bra97] investigated its use in validating machine
learning algorithms. The ROC curve, as a plot of TPR against FPR, normally assumes
more than one measurement. For the case where a test segmentation is compared to
a ground truth segmentation (one measurement), we consider a definition of the AUC
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Figure A.1: Illustration of the AUC when only one measurement is available according
to [Pow11]. In this case, the AUC is area of the trapezoid defined by the measurement
point and the lines TPR = 0 and FPR = 1.

according to [Pow11], namely the area of the trapezoid defined by the measurement point
and the lines TPR = 0 and FPR = 1 as illustrated in Figure A.1, which is given by

AUC = 1− FPR+ FNR

2

= 1− 1
2

(
FP

FP + TN
+ FN

FN + TP

) (A.49)

A.8 Spatial Distance Based Metrics
Spatial distance based metrics are widely used in the evaluation of image segmentation as
dissimilarity measures. They are recommended when the segmentation overall accuracy,
e.g. the boundary delineation (contour), of the segmentation is of importance [FC05].
Distance-based metrics is the only category of metrics to take into consideration the
spatial position of voxels. More about the properties of distance metrics is in Section 4.6.
In this section, we present three distance metrics, namely the Hausdorff distance, the
Average distance and the Mahalanobis distance. All distances calculated in this section
are in voxels, which means the voxel size is not taken into account.

A.8.1 Distance Between Crisp Volumes

The Hausdorff Distance (HD) between two finite point sets A and B is defined by

HD(A,B) = h(A,B) + h(B,A)
2

(A.50)

where h(A,B) is called the directed Hausdorff distance and given by

h(A,B) = max
a∈A

min
b∈B
||a− b|| (A.51)
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where ||a − b|| is some norm, e.g. Euclidean distance. That is the directed Hausdorff
distance h(A,B) is the maximum of distances between each point x ∈ A to its nearest
neighbor y ∈ B. An algorithm that directly calculates the HD according to Equation A.51
takes an execution time of O(|A||B|). There are many algorithms that calculate the HD
with lower complexity. We use the algorithm proposed in Chapter 3 which calculates the
HD in a nearly-linear time complexity.

The HD is generally sensitive to outliers. Because noise and outliers are common in
medical segmentations, it is not recommended to use the HD directly [GJC01] [ZL04].
However, the quantile method proposed by Huttenlocher et al. [HKR93] is one way
to handle outliers. According to the Hausdorff quantile method, the HDq is defined
to be the qth quantile of distances instead of the maximum, so that possible outliers
are excluded, where q is selected depending on the application and the nature of the
measured point sets.

The Average Distance, or the Average Hausdorff Distance (AVD), is the HD averaged
over all points. The AVD is known to be stable and less sensitive to outliers than the
HD. It is defined by

AVD(A,B) = max(d(A,B), d(B,A)) (A.52)

where d(A,B) is the directed Average Hausdorff distance that is given by

d(A,B) = 1
n

∑
a∈A

min
b∈B
||a− b|| (A.53)

where n = |X| is the number of voxels. We use the algorithm proposed in Chapter 3
which efficiently calculates the AVD between image segmentations.

The Mahalanobis Distance (MHD) [Mah36] between two points in a point cloud, in
contrast to the Euclidean distance, takes into account the correlation of all points in the
point cloud containing the two points. The MHD between the points x and y in the
point cloud A is given by

MHD(x, y) =
√

(x− y)TS−1(x− y) (A.54)

where S−1 is the inverse of the covariance matrix S of the point cloud and the superscript
T denotes the matrix transpose. Note that x and y are two points in the same point cloud,
but in the validation of image segmentation, two point clouds are compared. For this task,
we use the variant of MHD according to G. J. McLachlan [McL99], where the MHD is
calculated between the means of the compared point clouds and the common covariance
matrix of them is considered as S. Hence the Mahalanobis distanceMHD(X,Y ) between
the point sets X and Y is

MHD(X,Y ) =
√

(µx − µy)TS−1(µx − µy) (A.55)

where µx and µy are the means of the point sets and the common covariance matrix of
the two sets is given by

S = n1S1 + n2S2
n1 + n2

(A.56)
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where S1, S2 are the covariance matrices of the voxel sets and n1, n2 are the numbers of
voxels in each set.

A.8.2 Extending the Distances to Fuzzy Volumes

Different approaches have been proposed to measure the spatial distance between fuzzy
images. The approaches described in [SLN11] are based on defuzzification (finding a crisp
representation) either by minimizing the feature distance, which leads to the problem
of selecting the features, or by finding crisp representations with a higher resolution,
which leads to multiplication of the grid dimensions and therefore negatively impacts
the efficiency of time consuming algorithms, like HD and AVD. For evaluating 3D
medical segmentation, we use a discrete form of the approach proposed in [ZKB87] i.e.
the average of distances at different α-cuttings depending on a given number of cutting
levels k. The HD distance between the fuzzy segmentations A and B is thus given by

HDk(A,B) = 1
k

k∑
i=1

HD i
k
(A,B) (A.57)

HDα(A,B) = HD(Aα, Bα) (A.58)

where Aα and Bα are the crisp representations resulting from thresholding the fuzzy
volumes A and B at cutting level α, HDα is the HD at cutting level α, and k > 0 is an
integer that gives the number of cutting levels considered.

Analogously, the AVD and MHD between the fuzzy volumes A and B are given by

AVDk(A,B) = 1
k

k∑
i=1

AVD(A i
k
, B i

k
) (A.59)

MHDk(A,B) = 1
k

k∑
i=1

MHD(A i
k
, B i

k
) (A.60)

If the parameters k and α are omitted, i.e. HD, AVD and MHD, we assume
distances at the cutting level α = 0.5.

A.9 Multiple Definition of Metrics in the Literature
We present three examples representing three categories of inconsistency in the literature
regarding the definition of the metrics to underline the need of a standardization of
evaluation metrics and motivate a standard evaluation tool for medical segmentations.
The first category is caused by misinterpretation resulting in misleading definitions, for
example the confusion of the pair counting cardinalities (a, b, c and d) with the overlap
cardinalities (TP , FP , TN and FN). In some papers [SY02] [ABPK10] [HRHS12]
[Cam07], the pair-counting cardinalities are used in place of the overlap cardinalities
although they are mathematically and semantically different. According to the definition,
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the pair-counting cardinalities result from grouping n(n− 1)/2 tuples defined on X ×X
(Section A.5.1) whereas the overlap-based cardinalities (Section A.2) result from the
class overlap i.e. pairwise comparison of n voxel assignments. In the papers mentioned
above, several overlap-based metrics including the Jaccard index are defined using the
pair-counting cardinalities in place of the overlap cardinalities. To illustrate how strongly
the results differ in the two cases, we show examples in Table A.2. In each example, the
partitions P1 and P2 are compared using the Jaccard index which is calculated in two
ways: the first (JAC1) using the overlap cardinalities according to [Jac12] and [JD88],
the second (JAC2) using the pair counting cardinalities according to [SY02], [ABPK10],
[HRHS12] and [Cam07]. The values are different except in the first example.

Table A.2: Five examples show that the pair counting cardinalities (a, b, c, and d) cannot
be used in place of the overlap cardinalities (TP , FP , FN , and TN) to calculate the
Jaccard index.

P1 P2 TP FP FN TN JAC1 a b c d JAC2
1,0,1,1 1,1,0,0 1 2 1 0 0.25 1 2 1 2 0.25
1,1,1,1 0,0,0,1 1 3 0 0 0.25 3 3 0 0 0.5
0,1,0,1 1,1,0,0 1 1 1 1 0.33 0 2 2 2 0.0
0,0,0,0 0,0,0,1 0 0 1 3 0.0 3 0 3 0 0.5
1,0,0,1 1,1,0,1 2 0 1 1 0.67 1 2 1 2 0.25

The second category is naming inconsistency, where the same name is used to denote
two different metrics. One example is the volumetric similarity (V S). While V S is
defined in [RPR13a], [VYPP11], [RPR13b] and [CdLGBC09] as the absolute volume
difference divided by the sum of the compared volumes (Equation A.22), there is another
metric definition under the same name in [ISHV+12] defined as twice the volume of the
intersection divided by the volume sum in percent, i.e.

V S = 2 |St ∩ Sg|
|St + Sg|

.100% (A.61)

The last category is the multiple definition that stems from different theoretical approaches
for estimating the same value. For example, the Interclass Correlation (ICC) has an
early definition proposed by Fisher [Fis54]. Later, several versions of the ICC have
been proposed. Some of these versions was designed to meet the needs of particular
purposes, and others were proposed as alternative estimators. Shrout et al. [SF79] has
discussed six versions of the ICC, one of them is the definition in Equation A.42. Note
that this category is different from the second category in that here the versions of the
same metrics aim to estimate the same statistic, while in the second category, the same
name has been used to denote another metric that is totally different.
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A.10 Implementation
The 20 metrics, identified in the literature review (Table 2.1) have been implemented in
a tool named EvaluateSegmentation and provided as an open source project available
under http://github.com/codalab/EvaluateSegmentation.

EvaluateSegmentation is an efficient command line tool that compares two 2D or 3D
medical segmentations using the 20 evaluation metrics presented in Table 2.1. Being a
pure command line tool without a GUI interface makes it suitable to be called using
automation scripts when many segmentations are to be evaluated. The implementation
has been generally designed to take advantage of the relations between the 20 implemented
metrics represented in their definition in order to make use of the synergy between them
to avoid repeating operations and hence to save execution time and memory. By default
the evaluation result is displayed in a readable format on the System out, but it can be
optionally saved as an XML file in a given path, e.g. to be parsed and processed by other
tools.

The proposed tool uses the ITK Library, in particular the input/output layer, to read
medical images, which gives it two important properties:

• The tool is fully compatible with a wide spectrum of medical image formats, namely
all formats supported by the ITK framework.

• The tool is invariant to changes in file formats, e.g. it is also compatible with
formats that are changed, or even introduced after its implementation. That is
because the job reading the images is done by the ITK library, which is permanently
maintained to support new standards.

EvaluateSegmentation is implemented in C++ using the CMake framework, which
makes it operating system and compiler independent. CMake (www.cmake.org) is an
open source platform that enables programs implemented in native languages like C++
to be operating system and compiler independent; it was originally created and funded
by the National Library of Medicine (NLM) to provide a sufficient way for distributing
the ITK application. The source of the project as well as builds for some operating
systems are available under http://github.com/codalab/EvaluateSegmentation. To build
the EvaluateSegmentation for any operating system, using any compiler, two resource
components are required (i) the source code of the project and (ii) the ITK Library
available as open source under http://www.itk.org.

Efficiency in speed as well as in memory usage is a critical point in metric calculation.
EvaluateSegmentation uses various optimization techniques to achieve this purpose. More
information about the efficiency optimization used in EvaluateSegmentation is available
in Chapter 3.
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