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Abstract

When referring to the quality of 3D graphics engines, the central point of interest is
usually computational performance. This very intense occupation with this aspect of such
graphics engines leads to the exposure of performance-relevant implementation specifics
in the API, to allow performance-aware usage of the product, but limiting the audience to
those knowledgeable about the details of graphics engine implementation.

Our aim was to evaluate whether the amount of domain knowledge in existing graphics
engine APIs was justified; whether it would be possible to reduce the knowledge expected
from the user of such APIs without sacrificing too much performance. We have analyzed
three different open source graphics engines to identify elements that are less known outside
of the graphics development domain. Based on our findings, we have created PURGE, our
own high-level API for graphics development, which makes use of other libraries for the
actual rendering.

We have found that the performance impact of the added software layer was not notice-
able during the development of simple test scenes, which we assume to be the prior concern
of developers who are starting graphics development for the first time.





Zusammenfassung

Beim Entwickeln von Grafik-Engines liegt des Augenmerk meist auf der Performance,
gemessen an der Anzahl Frames pro Sekunde, die die Engine zu generieren vermag. Dieser
starke Fokus auf die Effizienz führt in vielen Fällen dazu, dass sich auch performancere-
levante Details der Implementierung in der API wiederfinden um eine möglichst effiziente
Verwendeung des Produkts zu ermöglichen. Durch diese Herangehensweise wird für die
Verwendung solcher APIs einiges an Wissen in Teilbereichen der Grafikprogrammierung
vorausgesetzt.

Wir wollen im Rahmen dieser Arbeit die Notwendigkeit dieser Herangehensweise über-
prüfen. Wir wollen herausfinden, ob eine Reduktion des benötigten Fachwissens einen di-
rekten Performance-Verlust zur Folge hat. Wir haben zu diesem Zweck drei quelloffene
Grafik-Engines analysiert, um Konzepte zu identifizieren, die außerhalb der Grafikdomäne
wenig Verbreitung finden. Auf Basis unserer Erkenntnisse haben wir PURGE – eine eige-
ne Grafik-API – entwickelt, die auf die Verwendung durch Entwickler ausgerichtet ist, die
wenig bis überhaupt keine Erfahrung in dieser Domäne besitzen.

Anschließende Tests haben ergeben, dass diese zusätzliche Software-Ebene kaum Aus-
wirkungen auf die Performance von visuell einfachen Applikationen hat.
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CHAPTER 1
Introduction

1.1 Motivation

Familiarizing oneself with a new domain requires one to learn and understand new concepts.
In the case of 3D graphics engines1, this means learning how a graphics engine works on the
inside. The level of abstraction provided by many such library APIs is enough for developers
with existing knowledge of this domain to adapt to a new API, but we found many of the libraries
to provide an insufficient API for those without prior exposure to graphics development.

Graphical computation is a vast domain, where library-developers focus on the performance
to achieve better-looking and/or more complex scenes. This very intense occupation with this
aspect of such graphics engines leads to the exposure of performance-relevant implementation
specifics in the API, to allow performance-aware usage of the final product, but limiting the
audience to those knowledgeable about the details of graphic engine implementation.

Since advances in graphics hardware have made it possible for a modern graphics engine to
supply several orders of magnitude more performance over the last decades, another approach
to designing APIs for such engines will be explored in this document - one that focuses on ease
of use, possibly sacrificing performance for this goal.

In this context, the aim of this thesis is to create an API that is easy to grasp for developers
without specific knowledge of graphics engine implementation and usage. The resulting graph-
ics engine called PURGE2 is expected to handle as many unspecified-but-necessary parameters
as possible with default values that try to predict the developers expectation. This behavior will
most certainly lead to sub-optimal results, but permits fast draft implementations.

1The term graphics engine is used for any software library providing an API for graphical computation with a
visual output.

2PURGE is an acronym for PURistic Graphics Engine. The library has no hard dependencies to other libraries.
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The question is: is it possible to create a 3D graphics engine that can be used by developers
that have no prior experience developing graphics applications. And what impact does it have
on the usability, readability and performance of the applications making use of such an API?

With these premises, the API presented in this thesis supports fast development, with the
option of optimizing the resulting application at the end of a development cycle as propagated
by [17].

1.2 Approach

Since modern graphics engines cover a large range of topics, we will first select a sub-set of
features of common graphics engines that we will support in our library. To compose this list of
features, we will need a set of use cases which should cover the most common usages of the API
when starting a project from scratch. These use cases will be implemented as tests at the end of
the project.

In the next step, we will create a list of graphics engines to be used as reference implemen-
tations throughout the design process. This list of reference engines will cover projects with
different design philosophies and project goals to avoid a homogeneous basis for comparisons.
The selected engines must provide the complete feature list composed in the previous step.

We will then analyze the implementations of the chosen features in those reference engines
and come up with initial architectural ideas. Those first attempts at the design will be refined in
further chapters until we have a working implementation.

In order to obtain a fair base for benchmark comparisons, the library will not include any ren-
dering by itself. All rendering operations will instead be delegated to other graphics engines by
the PURGE library. The engine that is responsible for the rendering process (called Renderer

in the final API) will then be integrated at run-time. Although this part of the application is
interchangeable - there could be several different renderers using different graphics engines - we
will only be using Ogre3d for this purpose.

We will eventually evaluate the usability of the resulting API using a number of test scenes.
The scenes will be implemented twice - once with and once without usage of the API. The
improvement will be measured by the lines of code, the number of function calls, as well as
the number of distinct function calls to the API, as some operations might require multiple calls
that could be reduced to a single one. Furthermore, a performance benchmark will disclose the
impact of the added software layer on the test scenes.
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CHAPTER 2
Related Work

There is plenty of literature available for the design and implementation of Graphics engines.
None of the literature we have reviewed had information on the design of the API. It is much
more likely to find generic information about programming [10], object-oriented development
[9], dynamic linking [36] and coding guidelines [8].

In order to discuss the API of graphics engines, we will first have to look at the components
of a graphics engine. There are many aspects of a graphics engine that need to be addressed
when developing such a library. A very good overview to this subject is provided by [3]. As our
focus is on the API of the introductory articles, we will merely cover the API required by those
tutorials.

The very first applications built when learning graphics development involve the program-
matic generation of a scene. The developer usually learns these few operations at first:

• Placing objects in a 3d space,

• moving/rotating those objects to other positions,

• moving/rotating the camera to view the scene from different angles, and

• performing the repositioning operations discretely within a time frame.

2.1 Scene graph

This data structure has become the de-facto standard for storing objects in graphics engines.
Paffenroth et al. [26] describe it as a “well-known and longstanding notion in computer graphics,
either as a structural hierarchy of the view scene [6], or a spatial development of it [33] [34].”

A Scene Graph usually is a direct acyclic graph containing objects in the scene [32]. Each
node within the tree has several properties (like location, orientation and scale) that usually
propagate to child nodes. Placing a dinner table in a room could look as depicted in Figure 2.1.
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The objects “on” the table have a relative position referencing the position of the parent node.
This solution allows us to reposition the complete structure without having to reposition each
sub-node separately.

Figure 2.1: An example scene graph depicting a dinner table

Apart from these usability features, scene graphs are further useful for the calculation of
bounding volumes, which in turn are used for clipping. Assarson et. al summarize several such
techniques and shows a speed improvement of up to 11-fold using these methods [1].

2.2 Quaternions

Positioning an object within a scene graph requires the expression of its orientation relative
to its parent node. There are several methods for expressing the attitude of an object within
3-dimensional space, which are summarized in [7]. The quaternion has become the de-facto
standard for this purpose in graphics engines [24], as it is neither as memory-intensive as a
transformation matrix, nor prone to the so-called gimbal lock as Euler angles are.

Quaternions are hyper-complex numbers of rank 4, constituting a four dimensional vector
space over the field of real numbers [4]. A Quaternion is expressed as a four tuple

q = (w, x, y, z) = w + ix + jy + kz

which consists of a vector part x, y, z, the scalar part w and where the units i, j, k satisfy:

i2 = j2 = k2 = ijk = −1 (2.1)

ij = −ji = k (2.2)

jk = −kj = i (2.3)

ki = −ik = j (2.4)

4



A quaternion expresses an attitude within 3d-space – more precisely the rotation towards
an attitude. The multiplication of quaternions (A · B) correspond to sequential application of
their rotations and yields a new quaternion (C) which expresses the first rotation followed by
the second rotation. As the first rotation will rotate the axes of the second rotation, changing
the order of the multiplicants results in a different compound rotation, rendering the quaternion
multiplication non-commutative. This property of rotations is visualized in Figure 2.2.

Figure 2.2: Changing the order of rotations yields different results: The rotations above (90 ◦ around
blue, 90 ◦ around green) are applied to the original orientation in reverse order in the lower half,
resulting in different final attitudes.

2.3 Render Loop

Once the initial setup of a scene is completed, it needs to be drawn onto the screen each time an
object in the scene is modified. Instead of rendering the output each time the scene is updated,
most graphics engines choose to redraw it in an infinite loop, assuming that the output will
change frequently enough that a constant redraw is necessary. This behavior is in contrast to that
of window managers for example, which usually redraw the screen only when necessary.
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There are several aspects to the design of this infinite loop. Valente et al. [35] list and
categorize several such models. The most simple implementation, the “simple coupled model”,
is visualized in Figure 2.3. The objects are updated with fixed values in this model – the camera
rotates 1 ◦ each frame, for example.

Figure 2.3: The most simple render loop

The disadvantage of this simple design is its dynamic frame rate – some operations will
take longer than others, resulting in greatly varying intervals between single frames, which will
result in different results on different hardware. Synchronizing the output of the renderer to a
fixed interval is achieved by a simple blocking operation at the end of each cycle as seen in
Figure 2.4. This will guarantee an output at a fixed rate, like 30 frames/second, and allows the
developer to use constant values during updates as with the previous model.

Figure 2.4: A simple render loop with synchronization.

This approach is still insufficient, as the application starts to stutter whenever a cycle needs
more time to finish than the predefined time slot. The solution is to perform all modifications
to the objects in the scene using the time elapsed since the last cycle. This is the “Single-thread
Uncoupled” model shown in Figure 2.5. It is further possible to add a synchronization to the end
of the loop, limiting the required operations to fixed multiples of the constants required during
the loop. If a cycle needs two time slots in the example above (i.e. more than 1/30, but less than
2/30 seconds), the next cycle will rotate the camera by 2 ◦ instead of 1 ◦.

Figure 2.5: Single-thread Uncoupled model.

Other models operate on multiple threads. Most importantly the rendering is performed in a
separate thread, which blocks until the world updates in other threads are in a consistent state.
These approaches make use of the multiple CPU cores present in today’s hardware. Another big
advantage of such models is that the rendering itself is performed on the GPU, while the other
operations are usually bound to the CPU. All previously presented models stress either of these
resources, while the other stays idle.
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It is possible to tackle this issue without the need for threading when using double buffering
– a common feature of modern 3d graphics cards. Most calls to OpenGL will return imme-
diately while processing the issued command on the GPU. The call to the OpenGL function
SwapBuffers() – which flushes the rendered image onto the screen – will block until all
pending operations are finished. This makes it possible to perform other operations during this
time frame. This approach is outlined in Figure 2.6.

Figure 2.6: A render loop in OpenGL performing operations in parallel on the CPU and the GPU.

2.4 Models

A model is a 3D object that can be positioned in space. Usually models have a predefined shape,
a mesh, consisting of a collection of triangle definitions. The mesh alone is not enough to render
any realistic scene, additional material definitions are attached to triangle groups which define
how the triangles are to be drawn by the renderer. These materials are implemented by dedicated
code fragments that run on the GPU. These self-contained applications – so-called shaders – are
categorized by the objects they operate on [3].

• Vertex Shaders operate on single vertices – the points in the 3D-space of the mesh forming
the triangles – of the mesh. This shader type receives a single point as input and must
operate on that vertex alone without any knowledge of its surroundings.

• Geometry Shaders receive multiple vertices that were processed by the vertex shaders.
They have the ability to add new vertices or remove/modify existing vertices.

• Pixel Shaders (also called Fragment Shaders) operate on the pixels of the final image, just
before it is drawn onto the screen. Figure 2.7 displays a few examples of pixel shaders.

As all of these shaders operate on tiny fragments of the complete scene, the application of
the shaders can be run in parallel. Modern graphics cards can run hundreds of operations in
parallel for this purpose [25].

2.5 Lighting

Although lights are usually defined as self-contained entities in a scene, they are never drawn
directly. Instead, they define how other objects in the scene are rendered. Heidrich et. al. sum-
marize various lighting models in virtual environments in [14]. A light source usually consists
of two components: diffuse and specular.
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Figure 2.7: Examples of pixel shaders: the same model a.) without any shaders, b.) with a uniform
color, c.) with a texture and d.) a shader rendering a spotlight onto it.

• The diffuse component of a light ray is scattered at many angles upon hitting a surface
and can thus be seen from various angles, whereas

• the specular component is reflected at the same angle at which it hits a surface.

As light sources are only observable by the illumination of the objects in the scene, these two
components are defined on the material of all surfaces, too. Whenever a diffuse (or specular)
light would illuminate a surface, the material of the surface defines the effect of the illumination.
A mirror will almost ignore the diffuse component of the light, but reflect the specular compo-
nent with the same intensity as the incoming light beam. Most natural fabrics will do the exact
opposite.

Another property of lights is the direction the light beams are emitted towards. The common
categories defined by this behavior are:

• point lights – unidirectional light sources,

• spot lights – emitting light in a cone,

• directional lights – coming from an infinitely distant point, giving off parallel rays – and

• a single ambient light – uniformly illuminating everything equally from all directions.
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The last parameter for light sources is their attenuation behavior – how the light emitted from
a light source is reduced depending on the distance to the surface it illuminates. This is actually
rather a property of the environment in which the light source operates, as light does not fade
as long as it travels unhindered in vacuum. A dusty room, on the other hand, would cause light
sources to be less effective with increasing distance. The attenuation is considered a property of
the light source nonetheless for technical reasons: The modification of illumination based on the
properties of the sub-spaces between the surface and light source would be quite complex and
computationally extremely expensive.

2.6 Cameras

A camera is a viewpoint from which the scene is rendered. The visible space to a camera is
the so-called view frustum [20], and is constrained by the near and far clip distances as seen in
Figure 2.8. Solely objects within – or reaching into – this area are rendered when viewing the
scene from this camera.

Figure 2.8: The view frustum of a camera, contained by the near clip distance in purple and the far
clip distance in red.

The other two parameters for the definition of a camera are its field of view – the horizontal
angle of the frustum – and the aspect ratio defining the vertical angle. It is possible to establish
further properties that simulate the effects of different camera lenses [18], but we will limit our
model to the simplified definition above.
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CHAPTER 3
Scope

3.1 Reference Engines

Throughout the thesis, we will have other graphics engines as reference implementations and
API examples. We have chosen three different engines with varying aims as such reference
engines:

• OpenSceneGraph: This engine features a very powerful but complex scene graph im-
plementation. The complete design philosophy is focused on the scene graph, the data
structure managing the objects within the scene. This data structure is very important in
modern graphics engines and will be explained a bit more in the next chapter. The API of
the engine itself is targeted at developers with experience in the graphics domain and it is
quite complex, requiring good knowledge of the math behind the scenes. An introduction
to the engine can be found in [19].

• Panda3d: Initially produced by Disney’s VR Studio, this engine has become an open
source project that is still used in commercial projects of Disney1. The engine itself is
developed using C++, but the engine comes with a python interface allowing rapid proto-
typing without the need for recompilation [13]. We have found that it has indeed a very
clean and simple API that allows the creation of simple scenes with few commands.

• Ogre3d: A quite popular open source graphics engine that was used in several commercial
games. According to its web page, it was “designed to make it easier and more intuitive
for developers to produce applications utilizing hardware-accelerated 3D graphics”2. Al-
though the API is quite verbose, it has a very clean architecture and good documentation.

1Toontown (http://toontown.go.com/) and Pirates of the Caribbean online (http://piratesonline.go.com/welcome)
being two examples

2http://www.ogre3d.org/about
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3.2 Features

In order to keep the focus on the architectural design within the engine, we will implement a
very limited feature set. We will use the topics covered by some introductory books on graphics
engine usage to determine these features: [31], [16], [23], [9] and [22]. All five books are targeted
at developers without prior knowledge of graphics engines and four of them introduce the reader
to the API of one specific graphics engine. Although all of them cover many more topics, the
common areas can be summarized as:

• scene graph manipulation,

• camera manipulation,

• lighting,

• loading and manipulating objects (including meshes, materials, textures),

• operations on a 2-dimensional space,

• processing user input and

• usage of the engine within a render loop.

Other areas found in more than one of these books are:

• picking objects,

• particle effects,

• loading terrain,

• collision detection and

• visual post-processing.

Having a list of common topics in introductory books, we can now pick a set of features that
will be included in PURGE.

Renderer

The most important decision to make first is the low-level graphics API to use. We could make
use of OpenGL or DirectX, but this approach would not provide a good base for benchmark com-
parisons, as the rendering process is extremely complex and the required optimizations would
cover much more ground than the API itself.

Instead, we will be using the API of other graphic engines. PURGE will solely handle the
high-level scene layout and delegate all rendering operations to another, external renderer. This
approach will allow us not only to concentrate on the API, but will further provide the ability to
compare performance metrics of the resulting library to those of the unmodified renderer.

Details on the design of this architecture are provided in Section 4.1, whereas the implemen-
tation details can be found in Section 5.2.

12



Scene Management

First, it is important to note that all covered engines make use of scene graphs as a means of
managing objects in 3-dimensional space. We will need to define a set of operations we want to
support on the nodes of this scene graph. The common properties of the above graphics engines
are

• location,

• rotation and

• scale.

Changing the Location of an object “moves” the object by a given amount. The Rotation
does not change its location per se, but moves all points of an object around an axis in a circular
manner.

The Scale of an object is defined as adjusting the distance of each point of an object to a
given point of reference by a scalar. The scale is defined separately for each coordinate axis and
can be negative. The complete scale can thus be defined by a tuple of three scalars, one for the
scale of each coordinate axis. This implicitly defines a mirroring feature: Scaling by (1|1|−1)
results in the object being everted along the Z-axis.

Lights

Lighting is the feature that affects the realism of a scene the most. As implementing a decent
lighting model would go way beyond the scope of this thesis, we will use an extremely simplified
model. The light sources in the final library will be defined by

• a specular color,

• a diffuse color and

• a linear attenuation value.

These parameters define the “behavior” of light rays which are emitted from a light source.
Another component of light sources is the direction these rays are emitted towards. The types of
light present in most engines are

• point lights,

• spot lights,

• directional light and

• a single ambient light.

The first two light sources – point and spot lights – can be integrated into the scene as tangible
objects. They can be positioned, rotated and scaled as defined by the scene node operations
above. Although rotating a point light has no visual effect on the output, it is possible that the

13



rotation has an effect on other objects that are attached to this light source, as we will discuss in
Section 4.5.

The other two light sources – directional and ambient lights – are not integrated into the
scene graph, but rather defined outside of it as global illumination parameters. As these light
sources do not have a single point as origin, they do not have any attenuation either. The sun is
a good example of a directional light source that emits light in a single perceived direction, and
has no significant attenuation. The ambient light can be thought of as the illumination resulting
from diffuse reflections within the scene.

The design of the light classes can be found in Section 4.5.

Models

The final area to be covered is the loading of models into the scene. Although every graphics
engine supports various formats, each of them supports reading a geometric model from external
resources - most commonly files. Our reference engines are not limited to models when loading
entities from files. They have own scripting languages or exporters that can be used to define
other object types that can be loaded into the scene. These entities are not necessarily handled
by the engine, they might as well be processed by plug-ins. Some examples include

• light sources,

• billboard effects,

• particle effects,

• dynamically generated models (trees, for example),

• terrain and

• sky boxes.

To cope with this variety of entities, the object model of PURGE will not distinguish effects
from predefined or dynamically generated models. All loadable objects are treated equally. This
decision has one important implication: The resulting library will not be able to manipulate
these objects. It is capable of triggering the loading of an object by its name, but incapable of
altering an object that was loaded this way. This fact further implies that light sources integrated
as “models” are indistinguishable from other objects and cannot be modified at a later time.

3.3 Excluded Features

To further define the boundaries of the engine, we will establish another list of explicitly ex-
cluded features; especially since several features not covered in this thesis might be perceived as
inherent features of a graphics engine.

• Rendering to anything except the screen: Rendering to the screen is assumed to be the
primary concern of a developer making use of such a simplistic API,
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• 2d objects: Neither the rendering of menus, nor any other two-dimensional overlays
are covered in this thesis. The focus will be solely on the management of the three-
dimensional scene.

3.4 Use Cases

As the target audience consists of software developers with little or no prior experience with
graphics engines, the library will provide the most convenient API for the simplest tasks. We
considered the following list to be the most rudimentary tasks when confronted with a graphics
engine API for the first time:

• Creating an empty scene and looking into that scene through a camera: This step involves
the creation of all necessary objects to enter the rendering loop. As this step is part of
every application, the reduction of this boilerplate code could be considered to be the
most important use case.

• Positioning an object in the scene: Loading an object into the scene and altering its coor-
dinates, orientation and/or scale to be visible through the default camera.

• Updating an object: Moving, rotating or otherwise modifying a previously loaded object
discretely in a pre-defined time period.

• Controlling the camera: Updating properties of the camera, enabling the implementation
of a dynamic scene.

This list of use cases will be used during the evaluation of the final architecture in Section 6.
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CHAPTER 4
Design

Since the aim of this thesis is to provide an API usable without domain-specific knowledge of
computer graphics, the API will try to hide as many domain-specific aspects of graphics engine
usage as possible. It will need to predict some intentions of its users. For example, the library
will automatically create a render window if none was created by the user before the render loop
was entered. More such details are summarized in Section 5.4.

It will further try not to hide away such implementation details completely, giving more
experienced developers the level of control available in other graphics engines. This approach
effectively creates an API that is usable on two levels:

• as a complex, feature-rich graphics engine, and

• as a simplified engine with many default parameters and operations.

The driving force behind any decisions during the design process was the principle of least
astonishment [30]. The adopting developers are assumed to be developers that have very little or
no prior knowledge of implementing graphics applications, which implies that some behaviors
of the resulting engine might still be unexpected to those knowledgeable in this domain. An
experienced developer might want to enter the render loop without any active render windows,
for example.

To support these operations, all automatic behavior will be modeled to be suppressible. It is
still possible to start the main rendering loop without any target to render to if this is the actual
intent. But, where other engines would insist on a choice – and would probably abort execution
due to a lack thereof – PURGE instead tries to make that choice for the developer. This naturally
means that the choice might not be the right one for users familiar with this domain.
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4.1 External Renderer

Luckily, the usage of an external renderer already provides access to an advanced API. Users
knowledgeable about the external graphics engine being used can fine-tune operations within
that engine. Any object controlling the rendering process is created within the PURGE names-
pace, and adopted by the external rendering facility, the Renderer. That facility is responsible
for taking that object into account during the rendering process.

Figure 4.1: Initial design approach to the external renderer

The first approach to the integration of the external render was to design the Renderer as
an abstract class that is responsible for providing all other objects supported by PURGE, as seen
in Figure 4.1. The drawback of this architecture became clear quite early during the implemen-
tation process: The design of PURGE was adopting too many characteristics of the underlying
renderer. The library was becoming a layer on top of Ogre3d instead of an independent graphics
library.

To counter this trend during the design process, the architecture was slightly altered to de-
couple PURGE objects from their implementations in the renderer. The aim was to render the
Renderer completely interchangeable, even at run-time, an approach to the engine design we
have found in [28]1. This has lead to the second design outlined in Figure 4.2, where the ob-
jects in PURGE can survive an exchange of the active Renderer. We switched from direct
inheritance to the bridge pattern as described in [12].

But this change had some drawbacks: Although the PURGE object was now capable of
storing its parameters, the API had not changed. The object would now store its state on its own,
but immediately update the implementing object. Apart from this lack of solution to the initial
problem, another, more grave design flaw was brought to our attention with this switch. Why
should the library actually enforce the duplication of the already-present data in the Renderer?

1Plummer basically contemplates on a game architecture proposal in [29] and attempts to create a game engine
with completely interchangeable components for specialized tasks.
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Figure 4.2: Second design of the external renderer

What was the Transcript good for? It was a required implementation detail in the ini-
tial design, but the usage of the bridge pattern had made that class obsolete for PURGE. The
Renderer was still free to create a mapping of a PURGE-object to its own, graphics-engine
specific objects, but PURGE does not need any information from these objects.

So this short-lived solution was discarded and the flow of information was reversed: Instead
of pushing any changes from PURGE to the Renderer, the Renderer is now expected to pull
any information it needs from PURGE. The outline of this design can be seen in Figure 4.3.

With this last change, the flow of information is defined as follows:

1. The application can create, update and delete any number of objects in PURGE. None of
the changes have any visible effect at this point.

2. When all changes for this loop cycle are declared to PURGE, the rendering step initiates.
3. The OgreRenderer is responsible for creating, updating and deleting all required internal

objects to render the scene as contained in PURGE.
4. When the renderer is finished, control is passed back to PURGE, where a new loop cycle

begins.

The implementation of this communication model requires further elaboration on the details
of the render loop. We will come back to the implementation specifics in Section 5.2.
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Figure 4.3: Third iteration of the renderer architecture

4.2 Render Loop

The communication between PURGE and the external Renderer is heavily dependent on the
render loop – or main loop – of our library. The loop basically consists of three different stages
that need to be run through repeatedly:

1. gathering user input,
2. updating the scene and
3. rendering the scene.

We will be using the “Single-thread Uncoupled model” presented by [35], which cycles
through these stations periodically in a single thread and updates the objects using the time
elapsed since the last cycle. We will see in Section 5.4, that the choice of the implementation
does not have a strong impact on the API.

The render loop in a graphics engine must provide an API for the repeated modification of
the scene by the application. The sequence described above (gather input, update, render) is
present in all reference engines, but each of them approaches this problem quite differently:

• Ogre3d: Provides the FrameListener interface2 for the registration of recurring tasks dur-
ing the loop cycle. Developers can implement this interface to react to certain events in
the rendering loop, usually the end of the render cycle. The current version provides three
such events:

• frameStarted(): Called before the frame is being rendered.

2http://www.ogre3d.org/docs/api/html/classOgre_1_1FrameListener.html
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• frameRenderingQueued(): Called while the GPU is computing the current frame.
This event is useful in the case one wants to make use of the CPU at this time, as
the CPU would otherwise be idle and the application would block until the GPU is
finished.

• frameEnded(): Called after the rendering is finished.

Ogre3d does not have native routines for processing input from external devices (such as
keyboards or mice), but an external project is recommended for this purpose throughout
the documentation: OIS3. This external library again provides two methods of processing
input: buffered and unbuffered. If the library is used in buffered mode, all input can be
processed at once during the execution of a frame listener. In unbuffered mode, a listener
has to be provided to the library that will be called immediately on the retrieval of new
events through system interrupts.

• Panda3d: Allows the registration of tasks to be continuously performed at a central facility,
the AsyncTaskManager. As the name suggests, the library is capable of distributing on-
going tasks across different threads and actually makes use of this mechanism to manage
the rendering loop. The rendering step itself is nothing more than a GenericAsyncTask.
A nice option is the registration of function pointers instead of full-blown classes, which
makes playing around with the library a bit more convenient.

The AsyncTaskManager holds multiple instances of AsyncTaskChain, which contain
objects of type AsyncTask. Each AsyncTaskChain can run in a separate thread. Fur-
thermore, each AsyncTask has a sort number that ensures that tasks can be executed in
a predefined order across all AsyncTaskChains. Figure 4.4 visualizes the sequence in a
single cycle with two AsyncTaskChains.

Unfortunately, the name Chain is a bit misleading in this context. The name suggests a
linear dependence between “links”, which is not the case: The “links” in the chain have
additional dependencies to other links in other chains, as seen in Figure 4.4. A more
accurate visual representation of this approach would possibly be “thread”, reminding
of the computational thread it possibly runs in and the thread of a woven fabric, having
dependences to other threads.

• OpenSceneGraph: As the project does not provide a render loop per se, it is possible
to implement ones own loop that takes care of any operations in-between the rendered
frames.

But another peculiarity of OpenSceneGraph is the strong focus on the scene graph, even
when designing the application flow. We had seen that the scene graph is actually a data
structure for organizing objects in space. OpenSceneGraph additionally allows the regis-
tration of callbacks to scene nodes. These NodeCallbacks4 are called during the render-
ing process as part of the render loop that updates the scene graph.

3The official web-site of the project is http://www.wreckedgames.com, but more information can be found on its
sourceforge project site: http://sourceforge.net/projects/wgois/

4http://www.openscenegraph.org/documentation/NPSTutorials/osgFollowMe.htm
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Figure 4.4: Simplified sequence diagram of a single rendering cycle in Panda3d.
AsyncTaskChain #1 and AsyncTaskChain #2 start running simultaneously, but the
second chain will block until the first task in the first chain was executed, as it has a smaller sort value
than the task in the second chain.

Among the analyzed libraries, Panda3d provides the most flexible API for managing the
scene during the main loop. It allows us to split the loop into multiple threads, making good use
of multiple CPUs, but the API emphasizes an early decision which tasks could be performed
in separate threads. It requires the definition of AsyncTaskChains for the integration of new
tasks into the loop. A dependence between the tasks is then established through the so-called
sort numbers.

An alternative implementation could hide away the details of threading just by introducing
Task groups as outlined in Figure 4.5. A Task group adopts the duty of the numeric sort number
in Panda3d’s loop design. Instead of assigning a value to a task, it is instead added to the same
task group as other tasks that can be processed simultaneously.

This implementation is in contrast to Panda3d’s implementation choice, as it does not group
tasks by their ability to run in parallel, but rather creates groups of tasks that need to be performed
sequentially – handling input, computing Physics, computing AI choices, updating positions,
and rendering are some examples of such task groups.

The design described above is equivalent to having a single flat rendering loop that executes
tasks sequentially. The TaskGroup structure is introduced for convenient re-arranging of the
loop elements as a tree structure. With an adequate TaskGroup re-implementation it would
be further possible to insert parallelism into this design. Although this implementation is not
accomplished within this thesis, we will look at it briefly in Section 5.4.
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Figure 4.5: Task and TaskGroup class hierarchy.

To further simplify the process of adding Tasks to a task group, we will add additional func-
tions to the TaskGroup class. These functions will further improve the usability by reducing the
number of calls necessary to perform common operations: Adding a task after another reference
task, for example.

While looking into the implementation of the communication between PURGE and the
Renderer in Section 5.2, we will further discuss the single mandatory task of the library: the
RenderTask.

4.3 Cameras and Windows

We will implement a simplified model of cameras, defined by near- and far clip distances, as well
as a field of vision. The aspect ratio will always match that of the render window, preventing
accidental distortion of the render output.

A window is a 2d-plane where the view of a camera can be projected to. As the window is
partially managed by the system’s window manager and modified by the user of an application,
this entity should additionally be regarded as a communication device. The user can move,
re-size or close the window. We will only model a single such interaction to prove that the
architecture could support others as well. Window objects in our library will be able to detect
when the user has closed a window.

All our reference engines allow us to partition the render plane of the windows to create
multiple smaller regions that each display the rendered output of one camera, as demonstrated
by Figure 4.6. This approach allows developers to implement split-screen games, for example.
All three engines provide this feature, although they all use different names for this fraction of
the window displaying the output of a camera:

• Ogre3d calls them Viewports,

• in Panda3d, these are DisplayRegions, whereas

• OpenScenegraph refers to them as Views.

We will be using the term Viewport, as this is the technical term for this construct and the
other names do not provide any additional insight into this entity. Figure 4.7 shows the general
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Figure 4.6: A render window displaying a single space ship in four different viewports.

association between windows, viewports and cameras5. A viewport contains information on
how the camera view is embedded into a window.

Figure 4.7: Associations between windows, viewports and cameras.

One important property a viewport needs is its z-index. This value is consulted whenever
viewports overlap. The one with the lower value is drawn first and is overlapped by the viewports
“above” it.

The implementation of these structures are described during the implementation of the
Renderer in Section 5.2.

4.4 Relative Orientation

The Cartesian Coordinate System of the 3-dimensional space of a scene has two properties that
need to be defined in order to position objects therein:

• Handedness: The direction the third vector points to, when the first two are defined.

• Orientation: The directions the three vectors point to relative to the render window.

The orientation is unnecessary for the definition of the coordinate system from a mathemat-
ical point of view, since all orientations with the same handedness can be transformed to each
other using a single rotation around the origin according to Euler’s rotation theorem [27]. But

5A viewport is actually not limited to a single camera in all reference implementations, but we will stick to this
simple model for our library.
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since human orientation rather happens in terms of relative directions – up, down, left, right,
forward, backward – we will try to use these directions instead of the named axes X , Y and Z.

The lack of a standard mapping6 is taken as an indicator that it is best left to personal pref-
erence. The choice will not have any effect on the API if orientation is expressed throughout the
application, but it will still have two effects on the result:

• If relative movement using the terms “up” or “down” are used alongside vectors for posi-
tioning objects, the three components of the vector will each map to one relative direction.
There will be a visible difference between the exact same applications using different
coordinate systems.

• The other implication is not so obvious: The underlying renderer will need to perform
additional operations if the handedness of the coordinate systems differs from its own
usage. We will elaborate on this effect during the implementation of the Renderer in
Section 5.2.

Conceptually, the desired orientation serves but a single purpose: to assign a default rota-
tion to newly created objects. All rotatable objects have a predefined orientation, or predefined
directions that are considered that object’s forward, right and up vectors. The orientation of the
coordinate system rotates all new objects to align those directional vectors to those of the co-
ordinate system’s orientation. Figure 4.8 shows a newly created spot light that was positioned
facing forward in the coordinate system orientation of Direct3D9 – assuming that the forward
orientation of a spot light is defined by the direction vector its light is emitted to.

As long as the coordinate system to use during development is defined before any objects
have been created, the library does not need to care about the coordinate system in use. We will
need to define how the application behaves if the coordinate system is changed at run-time:

Although it would technically be possible to re-position all objects within the scene, we have
chosen to ignore this event. Although changing the coordinate system after having used it for
positioning can lead to unexpected results, it is still possible to set the desired coordinate system
at any point during run-time. The responsibility for choosing a system before starting the scene
setup is left to the developer.

Since changing the coordinate system of a project during development would lead to quite
unexpected behavior, this constraint appears acceptable. We will be using the OpenGL standard
as the default coordinate system in our library if no other system is set explicitly.

Although such relative axes are defined in all graphics engines, they are not an integral part
of the API. The orientation serves a more technical purpose: When the scene is viewed from a
certain point, every other object is positioned in a coordinate system that has its origin at that
point. All objects left of the viewer have a negative X value in OpenGL or Direct3D9 at this
point. The mapping of named axes to the relative directions are only performed, as the whole
scene is transformed into this coordinate system eventually.

6OpenGL and Direct3D9 both use X/Y for left/up but differ in handedness, OpenGL defining negative Z as the
forward vector [5], whereas Direct3D9 chooses positive Z [15]. Panda3d, on the other hand, implements a right-
handed coordinate system where X, Y and Z correspond to right, forward and upward [13].
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Figure 4.8: A spot light facing “forward” in the Direct3D9 coordinate system, assuming its front-side
is the direction the light is emitted to.

The orientation is still used as a default alignment of new objects but a “rotation to the left”
does not exist in any of the reference APIs7, rendering the original definition less useful than it
could be. Whatever the orientation of the coordinate system is, one must fall back to the usage
of the named coordinate axes X , Y and Z during application development.

We will introduce relative orientation into the API to make stronger use of the already-
present orientation capabilities of humans in the real world. If the Direct3D9 alignment of the
coordinate system was chosen, a rotation around the Y axis can be expressed as a rotation to the
right: rotateRight(Degree(90));.

A problem with an approach using this model is the ambiguity of the reference position. A
very good example one is immediately confronted with when getting acquainted with a graphics
library API is the rotation of a camera. We will start to explore this issue by defining three
distinct axes along which one could perform rotations in our relative coordinate system. These
axes reach

• from left to right,

• from down to up and

• from backward to forward.

The problem with cameras is that the human brain is not used to process tilted images. A
camera that was rotated along the backward-forward axis tends to look odd, as demonstrated by
Figure 4.9. This means that the rotational axes for the default use of cameras can be reduced to
two:

• from left to right (for looking up/down) and

• down to up (for looking to the sides).
7Although Ogre3d provides equivalent methods called yaw(), pitch() and roll(), the wording is in-

tentionally chosen not to resemble orientation relative to the current position.
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Figure 4.9: A tilted camera

The next issue arises when these two axes are used consecutively. A camera that was rotated
to look downward – a rotation along the left-right axis – a rotation along the down-up axis – with
the intention of looking sideways – introduces an amount of tilt. This phenomenon is a result of
the rotation along a local axis – the tilt of the object has not changed from the viewpoint of the
camera object itself, but the tilt of the current orientation of the camera has – from the viewpoint
of an unrotated scene node, as seen in Figure 4.10.

The available rotation axes to a camera are further constrained to

• the local axis traversing from left to right and

• the global axis pointing upwards.

This example demonstrates the main issue with rotations. Every rotation consists of two
distinct components:

1. an axis/angle pair that defines the rotation and
2. the coordinate system the rotation is to be performed in.
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Figure 4.10: Rotating a camera looking down on a cube around the global coordinate system (upper
frames) and its local coordinate system (lower frames). The lower images demonstrate that the tilt of
the camera has not changed within its local coordinate system: the line on the floor is always parallel
to that in other frames.

There are two approaches in our reference engines to the ambiguity arising due to the non-
commutative nature of quaternion multiplication during rotations. Prior to these solutions, we
must take note that all reference engines use quaternions for the orientation within the scene.
The following is an example in Ogre3d:

1 Quaternion rotation1;
2 Quaternion rotation2;
3 rotation1.FromAngleAxis(Degree(90), Vector3::UNIT_Y)
4 rotation2.FromAngleAxis(Degree(90), Vector3::UNIT_X)
5 sceneNode->rotate(rotation1 * rotation2);

The quaternions are used differently by our reference engines, though:

• Ogre3d’s SceneNode has a method rotate() that accepts a quaternion as first, and the
TransformSpace as second parameter. The TransformSpace is an enum consisting
of the values

• TS_LOCAL – rotation within the current orientation, this is the default value of this
parameter

• TS_PARENT – rotation within the orientation of the parent scene node
• TS_WORLD – rotation from the viewpoint of an unrotated scene node

• The other libraries do not provide any means of rotating rotated nodes at all. The only
option is to re-set the orientation of a scene node. The developer is responsible for the
creation of the desired quaternion for this purpose.

Although Ogre3d uses three predefined context spaces, the rotation is not limited to those
three, so we will approach the issue from a different angle. Instead of limiting the contexts to
these values, we will declare that a rotation requires a context node the operation is performed
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in. In the camera example above, this is either the parent node (casually referred to as “local”
value above), or the root node of the scene graph (the “global” value).

Every node should actually be viewed as a coordinate system that is embedded into another
coordinate system8. In other words: every child node creates a sub-space within its parent node.
This means that the global result of a rotation will change depending on the space the query is
performed in.

1 sceneNode->rotate(quaternion, context);

This choice brings up an ambiguity: it is not clear, whether the context implies an orien-
tation or a location. The above code snippet could be interpreted as either of:

• “Perform the rotation as if the context node was looking at sceneNode from its current
position.”

• “Perform the rotation as if the context node was re-positioned to look at sceneNode
without changing its orientation.”

We have accepted this flaw and kept this solution, since the behavior during re-orientation is
application-specific – a camera would probably be rotated differently than an asteroid floating in
space without gravity. Re-positioning a node leaves much less room for interpretation: the only
remaining variable is the distance to the object, which is irrelevant for this purpose.

The implementation of the concepts described here can be found in Section 5.1.

4.5 Scene Construction

Scene graphs are opaque in all of the reference engines, requiring the designer of a scene to use
these constructs explicitly when constructing a scene. Panda3d declares that a Model is merely
a special SceneNode that can handle rotating, movement and scaling, while Ogre3d considers
Models to be Objects and moves them outside the scene graph hierarchy. OpenSceneGraph
takes an even stricter approach and defines that such operations can only be performed on nodes
dedicated to these tasks.

Creating a port of the scene depicted in Figure 2.1 in Ogre3d could look as follows:

1 // create scene nodes
2 tableRootNode = roomNode->createChildSceneNode("TableRootNode")
3 tableNode = tableRootNode->createChildSceneNode("TableNode")
4 cutleryNode = tableNode->createChildSceneNode("CutleryNode")
5 forkNode = cutleryNode->createChildSceneNode("ForkNode")
6 knifeNode = cutleryNode->createChildSceneNode("KnifeNode")
7 // create models
8 tableModel = sceneManager->createEntity("TableModel", "table.mesh");

8Except for the root node, which does not have a parent
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9 forkModel = sceneManager->createEntity("ForkModel", "fork.mesh");
10 knifeModel = sceneManager->createEntity("knifeModel", "knife.mesh");
11 tableNode->attachObject(tableModel);
12 forkNode->attachObject(forkModel);
13 knifeNode->attachObject(knifeModel);
14 // position objects
15 cutleryNode->setPosition(1, 1, 10);
16 forkNode->setPosition(0, 0, 0);
17 knifeNode->setPosition(1, 0, 0);

The choices in Ogre3d and OpenSceneGraph lead to the creation of additional objects during
the construction of a scene, though. Every model needs its own scene node to allow us to position
the object within its parent node. Panda3d’s approach makes this task a bit easier:

1 // create scene nodes
2 tableRootNode = window->get_render().attach_new_node("TableRoot");
3 cutleryNode = tableModel.attach_new_node("cutlery");
4 // create models
5 tableModel = window->load_model(tableRootNode, "table");
6 forkModel = window->load_model(cutleryNode, "fork");
7 knifeModel = window->load_model(cutleryNode, "knife");
8 // position models
9 cutleryNode.set_pos(1, 1, 10);

10 forkNode.set_pos(0, 0, 0);
11 knifeNode.set_pos(1, 0, 0);

After positioning all objects with either of the code snippets above, the table and all other ob-
jects can be moved, rotated or scaled at once using the tableRootNode object, which provides
the appropriate methods for these operations (setPosition, setRotation, setScale).

We will adopt Panda3d’s model for the implementation of the scene graph, where every
Model is a SceneNode itself, providing all the functionality required for positioning of the
object. This idea is not limited to Models, every tangible object can have its own SceneNode

sub-class that provides additional methods for the modification of the object itself. This approach
naturally reduces the number of steps required for the implementation of a scene.

A drawback of this model became clear quite early during the design process: It does not
differentiate objects from their incarnations within the scene. This distinction is required to
embed the exact same object multiple times into a single scene. As Models have no proper-
ties of their own in our library, the problem became visible during the implementation of the
SpotLightNode.

When placing a modifiable object into the scene, we felt the need for a distinction of the
object being placed and its position parameters in the scene. Some properties of a single
SpotLight could need to be updated, regardless of their position in the scene. There needs
to be a SpotLight and a SpotLightNode. We will introduce two distinct classes for this
purpose:
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• the SpotLightDefinition that describes the object and

• a SpotLightNode that contains information about placement of the object within the
scene.

There can only be one Definition of an object, but multiple Nodes integrating that object
into the scene. We will be using the spotlight color as a modifiable property during the rest
of this design process, although conceptually, there is no difference between any of the object
types9 to be integrated into a scene graph. The API treats them all in the exact same way.

The SpotLightNode is a sub-class of SceneNode and embeds a SpotLightDefinition
into the scene graph. To unify the API between the two classes – to make them feel alike – we
will additionally introduce an interface called SpotLight. This design is visualized in Figure
4.11.

Figure 4.11: Interdependencies of the three classes required to define and embed a SpotLight into
the scene graph.

• The Definition defines a re-usable component, such as a single light source in an array
of spot lights for the lighting of a theater stage.

• The Node provides the exact same methods for manipulating the underlying template.

• The consequence of this interface is that any operation on the Node will alter the appear-
ance of all other nodes in the scene.

We can even conceal this distinction between the Definition of an object and its integra-
tion into the scene via its Node class by creating a factory method in the interface. A SpotLight

is created and embedded in a single step through a call to this factory:

1 SpotLight* spotLight = SpotLight::create();

9models, light sources and cameras
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The spotLight created in this example is of type SpotLightNode and it contains a pointer
to a newly created SpotLightDefinition. Creating an array of lights that have the same
behavior is accomplished using the factory in SpotLightNode:

1 std::vector<SpotLight*> lights;
2 lights.push_back(SpotLight::create());
3 for (int i = 0; i < numLights; i++)
4 {
5 lights.push_back(
6 SpotLightNode::create(lights[0]->getDefinition())
7 );
8 }

With this design, the scene graph has become quite transparent during scene construction:

• Every created object is immediately attached to the scene graph and

• objects can be attached to each other to declare a dependency of their positional properties.

There is one scenario left, where attaching objects to each other is not enough to declare
a dependency between them. This is the case if the objects involved do not have an intuitive
hierarchy between them. In our dinner table example, the association between a fork and a knife
is such a case. It is not intuitive to declare either of the objects as the one dictating the position
of the other, whereas this approach works in the association between a table and a plate: If we
move the table around, we want the plate to keep its position relative to the table, but it is hard
to say whether the movement of a fork should affect the knife or vice versa.

The API so far would require us to create a scene node to provide a common handle for all
the cutlery:

1 cutlery = SceneNode::create();
2 knife = Model::create("Knife");
3 fork = Model::create("Fork");
4 knife->attachTo(cutlery);
5 fork->attachTo(cutlery);

This solution “leaks” the existence of a scene graph. This is not a problem per se, but since
this is the only scenario in which the scene graph becomes visible in our API, we will try to
address this leakage to eliminate yet another new concept in an API providing an introductory
portal into an unknown domain.

We will instead use another mental model that is already present in the user interfaces of
many applications that need to arrange objects in 2d or 3d space: object groups. This concept is
present in many 3d modeling tools10, as well as in applications for 2d design11.

10Some examples of well-established modeling tools are 3d Studio Max, Blender or Maya
11Applications for creating diagrams particularly make use of it, like dia or OmniGraffle.
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An object group has the exact same aim as a node in a scene graph - to introduce a hierarchy
into complex object structures. This idea could be implemented in two ways.

1. We could either create a typedef for the SceneNode class, or
2. declare a sub-class thereof.

We have chosen to create a separate sub-class in order to separate it from the SceneNode

class. A typedef would remove the black-box status of the SceneNode. With this last change,
the scene graph data structure cannot be found in the API unless one explicitly seeks it out.

4.6 Scene Modification

When modifying the structure of a scene graph, the objects within the scene are modified im-
plicitly. If a scene node is re-parented to another node, the properties of the child node change.
If we consider the example in Figure 4.12, the getLocation() method of the Child node will
return a different value after the re-parenting.

Figure 4.12: Example scene node re-parenting.

An object that has a location value of (5|5|5) is positioned with that value as offset from
the origin of its parent, no matter where the parent is positioned within the scene. The same is
true for other properties of a scene node: rotating the TableNode rotates all objects, updating
the scale value propagates as well.

The API needs to provide the means of keeping its property on a global scale. The object
should be able to keep its location from the viewpoint of an observing camera, otherwise it will
jump to another position in-between two frames. As none of our reference engines supports this
operation, we will have to find a new solution.

The adjustment of the object’s properties is trivial from a mathematical stand point, so we
could just allow the developer to pass the properties he/she wants to keep on a global scale as a
parameter:

1 child->attachTo(newParent, POSITION | ORIENTATION);

But we had a similar problem during the design of relative rotations in Section 4.4. The
choice at that point was to support passing arbitrary nodes as a point of reference, not limiting
the developer to a set of predefined values. We will try to provide the same flexibility for this
operation.
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Updating the property of a scene node while retaining its value relative to another node can
be performed with these two steps:

• The property value is queried from the viewpoint of the context node before the object is
detached from its OldParent.

• The value is recalculated to match the previously queried value in the same context after
the parent was changed.

Finding a solution to these two operations is the foundation of the solution to the initial
problem. We had already addressed the second operation in our previous discussion on relative
orientation. The other operation could be performed on the same basis, leaving us with the
following code sample:

1 location = child->getLocation(context);
2 child->attachTo(newParent);
3 child->setLocation(location, context);

We can further create a facade that updates all properties of the child node to match its
previous values from the viewpoint of a context node:

1 child->attachTo(newParent, context);

Apart from the issues during re-arrangement of the scene graph, we will tackle another
aspect of the API. We had discussed the possibility to register Tasks to be performed during
the render cycle. We found that one usage scenario when getting familiar with a graphics API
was the movement of objects. We were creating a separate class for updating the location of an
object along a vector in each application for testing a graphics library.

We decided to implement a dedicated Task for this use case, as this is the most elementary
form of scene modification over time. But instead of limiting the class to this single operation
(movement in a single direction), we will be implementing all basic operations – movement,
rotation and scaling.

These thoughts have led us to the design of the SceneNodeModificationTask, which
has the exact same interface as a SceneNode. A basic class outline is shown by Figure 4.13.
An object of this type performs the operation repeatedly on an object as long as it is present in
the main task group.

To configure the movement of an object along a vector, one needs to provide the vector at the
length of the desired distance the object shall travel per second. Implementing an object moving
at a speed of 100 along the vector (1|1|1) can be accomplished by the following code snippet:

1 task = ModelModificationTask::create();
2 task->moveForward(Vector3(1, 1, 1).resize(100));
3 task->register(model);
4 MainTaskGroup::get()->add(task);
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Figure 4.13: Outline of the SceneNodeModificationTask classes. Note that the classes
lack several methods that would unnecessarily clutter the diagram.

This Task object will now repeatedly call the moveForward() method on the model at
each loop cycle. The parameter vector will be re-sized during each call to have the correct
length in relation to the time passed since its last call. The same procedure can be performed
with rotations as well as scalars.

The same concept can be applied to other properties of other objects. Dimming a spot light
over the course of two seconds can be achieved with the following code:

1 task = LightModificationTask::create();
2 task->setColor(Color::BLACK);
3 task->setDuration(2);
4 task->register(spotLight);
5 MainTaskGroup::get()->add(task);

The implementation of these concepts are further described in Section 5.1.
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CHAPTER 5
Implementation

After outlining the big picture in the previous Chapter, we will look at the implementation details
of some components. We have noticed that the majority of the implementation ideas revolve
around the scene graph.

5.1 Scene Graph

The basic design of the base class for all specialized scene nodes is presented in Figure 5.1.
Note that there are many more methods in the actual implementation that were only added for
convenience. We will look at the implementation of all methods in this graph, dividing them
into two categories:

• Re-parenting

• Property Queries and Modifications

We will additionally look into the implementation of some convenience methods and patterns
that try to further simplify the API.

Re-parenting

When arbitrary re-parenting of scene nodes is supported in an API, there is the possibility to
create circular dependencies:

1 knifeNode->attachTo(forkNode);
2 forkNode->attachTo(knifeNode);

We have three solutions to this issue: Either

• the API is designed in a way that makes it impossible to create any circular dependencies,
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Figure 5.1: Basic layout of the SceneNode class.

• the issue is ignored altogether as such a circular construct is no longer part of the scene
graph and does not have any impact on the visual output, or

• the library checks for them at certain points during the execution.

The only available solution eliminating the problem altogether is the prohibition of re-
parenting scene nodes. It is not possible to generate circular dependencies if an existing par-
ent node is responsible for creating new nodes and those parents cannot be re-attached to other
nodes. We will discard this very effective solution, as it renders the scene graph API very inflex-
ible.

The next option is to ignore such constructs. As every node has exactly one parent, a circle
implies that it does not have a reference to the root scene node. Since the scene only contains
nodes that are somehow attached to the root node, these nodes won’t be displayed at all. This
choice could lead to bugs that are quite hard to find for the same reason.

The remaining option involves verifying the tree structure either when the scene graph
changes or when the parent of a scene node is queried. Since the parent node is expected to
change less often than it is queried, the check for circular references is performed immediately
after an object is attached to another one. This choice additionally provides much more concise
error messages and better supports debugging of such an error case.

Property Query and Modification

Scale

The scale of a node in the global context is the product of all scale factors in all parent nodes:
sg = sp0 · sp1 · . . . · spn · sn. Evaluating the scale of a scene node from the viewpoint of another
node, we just need to find the quotient of the global scale values of the viewpoint and the queried
node:

1 Real SceneNode::getScale(SceneNode* context) {
2 if (context == parent) {
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3 return m_scale;
4 }
5 if (context == root()) {
6 return parent->getScale(root()) * m_scale;
7 }
8 return getScale(root()) / context->getScale(root());
9 }

Although this implementation would be sufficient, we have added another dedicated if-block
for handling the case where context == this, as the return value is always 1 in this case.
Space never seems distorted from ones own viewpoint.

After the implementation of the query method, the implementation of the setter becomes
trivial:

1 SceneNode* SceneNode::setScale(Real s, SceneNode* context) {
2 m_scale *= s / getScale(context);
3 return this;
4 }

Rotation

Rotations are stored as a rotation within the coordinate system of the parent node. To evaluate
the rotation of a scene node in the global context, we will need to multiply the rotations of
all parent nodes. The return value of node->getRotation(RootSceneNode::get()) is
computed by rg = rp0 · rp1 · . . . · rpn · rn, where rn denotes the rotation quaternion of the current
node and rp0 through rpn are the rotation quaternions of the parent nodes.

To evaluate the rotation of a node in the coordinate system of another node, we can take the
rotations of both nodes in the global coordinate system and compute the necessary quaternion
that would change the rotation of the viewpoint to that of the target. If rg and Rg are the global
rotation quaternions of the target and context nodes respectively, the rotation from Rg to rg can
be computed using ∆r = R−1

g · rg.

The resulting quaternion ∆r can be used to rotate Rg to rg, as Rg ·∆r = Rg ·R−1
g · rg = rg.

Surprisingly the steps required for this computation do not differ from the evaluation of the scale.
This defines the implementation of getRotation() method very similar to getScale():

1 Quaternion SceneNode::getRotation(SceneNode* context) {
2 if (context == parent) {
3 return m_rotation;
4 }
5 if (context == root()) {
6 return parent->getRotation(root()) * m_rotation;
7 }
8 return context->getRotation(root()).inverse() *
9 getRotation(root());
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10 }

The method for updating the rotation is analogous to setScale as well:

1 SceneNode* SceneNode::setRotation(Quaternion r, SceneNode* context) {
2 Quaternion perceivedRot = getRotation(context);
3 m_rotation *= perceivedRot.inverse() * r * perceivedRot;
4 return this;
5 }

Location

Finding the location of an object is a bit more complex, as the calculation involves the other two
properties. The position in global space is defined by

lg = lp0 + (rp0 · lp1 · sp0) + . . . + (rpn−1 · lpn · spn−1) + ln

This is necessary as the rotation and scale properties do not effect the node they have been
defined in but solely effect the sub-space they are creating.

This makes the calculation of a relative location to another more complex as well. After
finding the global positions of both nodes (the queried node and the context node), we can
create a vector pointing from one point to the other. We will need to adjust that vector using the
rotation and scale of the own values of the context node:

∆l = Rn · (lg − Lg) · Sn

After that we can use ∆l to position an object in the space of the context node at the ex-
act same position as the initially queried node. The implementation of this method explicitly
requires the handling of the context node being the parent node this time:

1 Vector3 SceneNode::getLocation(SceneNode* context) {
2 if (context == parent) {
3 return m_location;
4 }
5 if (context == root()) {
6 return parent->getLocation(root()) +
7 parent->m_rotation * m_location * parent->m_scale;
8 }
9 return getLocation(root()) - context->getLocation(root());

10 }

Setting the location from an external viewpoint is as simple as the setter of the other two
properties:

1 SceneNode* SceneNode::setLocation(Vector3 l, SceneNode* context) {
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2 m_location += l - getLocation(context);
3 return this;
4 }

Convenience

Additional Methods

The methods presented at the beginning of this Section are completely sufficient to perform all
available operations on SceneNodes. Being limited to these few operations would render the
API unnecessarily complex. We will try to hide any design details until the developer actively
seeks them out. We have implemented a wide variety of additional methods for this purpose:

• Property modification without context, where the context is assumed to be the parent node:

• setScale(Real scale)
• setRotation(Quaternion rotation)
• setLocation(Vector3 location)

• Relative property modification:

• scale(Real scalar)
• rotate(Quaternion rotation)
• move(Vector3 vector)

• Relative movement and rotation, both with and without the additional context parameter:

• moveLeft(Real amount)
moveRight(Real amount)

• moveUp(Real amount)
moveDown(Real amount)

• moveForward(Real amount)
moveBackward(Real amount)

•

rotateLeft(Angle amount)
rotateRight(Angle amount)
turnLeft(Angle amount)
turnRight(Angle amount)

•

rotateUp(Angle amount)
rotateDown(Angle amount)
turnUp(Angle amount)
turnDown(Angle amount)

• tiltLeft(Angle amount)
tiltRight(Angle amount)
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The definition of these methods have bloated the API on one hand, but provided the perfect
method for many use cases. We have noticed during testing that we were not using quaternions
at all. We were able to create our test scenes just with relative modification of our objects.

Fluent Interfaces

When embedding an object into the scene graph, we need to adjust several properties of the
object. Usually this involves multiple distinct calls to a newly created scene node. A pattern
that we immediately thought of with this insight was the fluent interface [11]. Fluent interfaces
return the object that is being operated on to allow us to chain multiple methods. The above
example would be reduced to just four lines of code with the implementation of this idea:

1 table = Model::create("Table");
2 cutlery = SceneNode::create()
3 ->setPosition(1, 1, 10)
4 ->attachTo(table);
5 knife = Model::create("Knife")
6 ->setPosition(1, 0, 0);
7 ->attachTo(cutlery);
8 fork = Model::create("Fork")
9 ->attachTo(cutlery);

Unfortunately, we had chosen to sub-class the SceneNode for each object type that can be
attached to the scene graph. This means that any operation on the SceneNode API would return
a SceneNode object and no longer its sub-class. But a fluent API returning the covariant type
would be much more intuitive to avoid the following scenario:

1 light = SpotLight::create()
2 // the next call would return a SceneNode object
3 // which does not provide the setColor() method:
4 ->setPosition(1, 1, 1)
5 // compilation error on the next line:
6 ->setColor(Color::RED);

The simplest solution would be to re-implement all methods of the SceneNode in the
SpotLightNode class to return the type of the implementing class. Instead of performing this
implementation in each sub-class of SceneNode, we will use the curiously recurring template
pattern (CRTP) to accomplish this task. [21] presents this pattern based on work in [2] and its
implementation in our library is presented in Figure 5.2

The API now returns the type of the object an operation was called on, allowing us to use all
methods of a SpotLightNode in succession, regardless of the implementation of the methods
within the class hierarchy.
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Figure 5.2: The architecture of the fluent interface. The template class’ method
FluentSceneNode<T>::move() executes SceneNode::move() and returns this
, casting it to a T pointer.

Figure 5.3: All states and some possible state changes regarding the external renderer.

5.2 Renderer Communication

The external renderer is implemented as a replaceable component of the library. Because of this
approach, the communication between this component and the rest of the library needs to be
divided into several states, depending on the presence of the renderer and whether it is active or
not. The flowchart in figure 5.3 shows the state changes between

1. the initial state of the library without any registered renderers,
2. the operation with an inactive renderer and
3. the state an application usually runs in – where the output of the scene is being rendered.

The flow of information between PURGE and its rendering component was defined as fol-
lows:
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• No registered renderer: All operations on objects are performed within PURGE, any pa-
rameter changes are stored in the main library. This state guarantees that the API is capable
of processing all commands independently of any implementing renderers.

• As soon as a renderer has been defined, it is registered as an available component in
PURGE, but there is still no flow of information between the two layers.

• The activation of the renderer causes the first flow of data. The renderer itself will first
call its own initialization routines, acquire the resources it needs, and will then receive the
data forming the current scene. When this process is finished, the renderer will be called
regularly by the main loop to render the scene.

• Once the renderer is de-activated, the renderer is expected to free all resources in order to
allow another renderer to be activated – which will possibly require some resources this
renderer was holding.

As outlined in the description of the state changes, there are two instants at run-time that
require passing scene data from PURGE to the renderer:

1. The activation of the renderer and
2. the rendering process, which will periodically need access to the scene data in order to

render it.

The first instance requires the transmission of all data that was generated in the absence of the
renderer. The second state, however, requires merely the transmission of changes – re-evaluating
every existing object in the renderer would have an easily avoidable performance impact.

A possible implementation could consist of a list of operations that were performed on the
scene objects, which can be flushed to the renderer in both cases. This approach supports the
equal treatment of both scenarios: In the first case, all operations are transmitted to the renderer,
in the second case only those that have been triggered since the last transmission.

This solution requires the tracking of any changes to the scene, which will be flushed to the
renderer before the actual rendering is performed. Unfortunately, this necessity requires further
optimizations to eliminate the increasing memory consumption throughout the lifetime of the
application.

The next approach is a variation on the first. Several distinct events have been defined that
can be consumed by the renderer. At each cycle, the following operations are accumulated:

• newly created objects,

• updated objects and

• destroyed objects.

The renderer is expected to process these lists of events to implement the specified scenario.
PURGE, on the other hand, is responsible for the proper accounting: Each object is present in at
most one list, which ensures that
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• objects that were destroyed in the same cycle are not present in any of these lists.

• newly created objects are not present in the list of updated objects, even if any modifying
operations were performed after their creation.

• destroyed objects do not appear in any other registers.

• objects that were not modified at all during the current cycle are not present anywhere.

Updated objects further keep a list of properties that were updated during the cycle. The
new values of these properties can be queried by the renderer as needed. Changing the color of
a SpotLight thus leads to the following operations within the render cycle:

1. The object is marked as changed – it is added to the list of updated SpotLight objects.
2. The value SpotLight::CHANGE_COLOR is pushed onto the vector of changes of the

same object.
3. When the renderer is instructed to perform the rendering, all updated SpotLight objects

are collected via SpotLight::getUpdatedInstances(), the changes to the object
are retrieved and the color value of the renderer’s internal Light object is replaced by the
new value retrieved by purgeSpotLight->getColor().

Figure 5.4: Outline of the TrackedObject class.

Figure 5.4 shows an outline of the base class for all objects that need to be considered
during the rendering process. This template class using the curiously recurring template pattern
provides the necessary query functions for the Renderer. There are some considerations for
the usage of such a class for all sub-classes:

• The constructors of inheriting classes must call the init() method of the parent for the
registration of the object in the correct lists.
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• Changes to properties must be registered at the base class via a call to markChanged(),
passing a constant value describing the property that was updated.

• Sub-classes must not be destroyed via their regular destructors. An object that is to be
removed from the application needs to be marked with a call to destroy(), as the de-
stroyed object must be communicated with the Renderer.

With such an interface to the objects in the graphics engine, the Renderer is capable of
pulling just the information it needs to update its own objects. The exact management of the
Instances arrays is described in Section 5.4.

5.3 OgreRenderer

The implementation of the Renderer class using the Ogre3d library posed a few interesting
problems.

Initialization

Resource Locations

PURGE assumes that there is a pool of Models available for usage that can be addressed with
a unique string identifier each. Fortunately, Ogre3d takes the same approach: During the ini-
tialization of the engine, one has to define a list of resource locations that contain such named
objects. This means that the initialization of the OgreRenderer itself must provide access to
the functionality already present in Ogre3d.

As this is the only parameter that needs to be specified at the start-up of the engine1, we have
decided to accept a resource location as a parameter to the factory.

Ogre3d supports two different resource location classes containing resources – both deriving
from the Archive interface: the FilesystemArchive and the ZipArchive, one providing
access to files in a directory, the other granting access to files in zip-archive. As our library is
aimed at rapid prototyping, we have chosen to support a single directory name as a resource
location. Additional locations can be added using the API of Ogre3d itself, if required.

Delayed Initialization

Another issue arose during the implementation of the renderer on Linux. The application was
crashing if an Ogre::Camera was created an Ogre::Window. A similar crash occurred when the
resource locations were registered before a Window was established. Both issues turned out
to be a constraint imposed by OpenGL: Several operations in OpenGL require a window as a
context.

The solution was to delay the initialization of the complete OgreRenderer until a PURGE
::Window was defined. This approach has no side effects, as the rendered output on the window

1All other parameters can operate with default values, but the location of the resources required by the application
are taken to be of great interest to the developer using our API.
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is the single duty of the Renderer. The method perform() would return immediately without
performing any operations either way.

Communication

The communication between the two libraries is handled at a central point, the Transcription
class, outlined in Figure 5.5. This template class uses the curiously recurring template pattern
– just like its management counterpart in PURGE, the TrackedObject, outlined in Figure 5.4
– and provides two static functions for synchronizing PURGE objects and their corresponding
bridge objects:

Figure 5.5: The Transcription class manages the communication between PURGE objects
and Ogre3d objects.

• activateInstances() will read all available objects in PURGE and create matching
instances in the OgreRenderer. This step is only necessary to activate the renderer.

• updateInstances() is called by OgreRenderer::render() prior to the rendering.
It creates new objects, destroys obsolete objects and carries any modified state from the
existing PURGE objects to the bridge objects.

Both procedures possibly create bridge objects. To provide greater flexibility for this pur-
pose, the classes assume a static factory method instead of calling the constructor directly. The
Transcript template parameter has the option of implementing this factory to perform addi-
tional operations after the object was created.

5.4 Main Loop

The implementation of the render loop designed in Section 4.2 is outlined in Figure 5.6. The
Task class is the base class for all operations to be performed in-between the rendering steps.
The TaskGroup combines multiple Tasks into a single Task.

The current implementation of TaskGroup::perform() calls all registered Tasks sequen-
tially. An alternative to this approach would be the implementation of a ParallelTaskGroup.
This idea was not implemented, though, as this would require the introduction of thread-safety
to the application as a whole. This additional option could be pursued at a later time as an
optimization technique to the PURGE library.
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Figure 5.6: Outline of the TaskGroup class.

RenderTask

PURGE further needs to provide some tasks by itself covering the rendering step. These special
tasks are responsible for passing control to any active GraphicsImplementer to generate the
visual output of the scene. Following the philosophy of the Ogre3d rendering loop, this step is
defined by the following Task classes:

• RenderingPreparation: This Task is an equivalent of Ogre3d’s frameRenderingQueued
event. When this task is finished, all operations that need to be performed on the CPU are
finished and the GPU is working in the background.

• RenderingFinished: This Task will block until the GPU has finished its pending opera-
tions and the next cycle of the render loop can be entered.

This distinction allows one to inject tasks in-between these two steps, achieving the same
flexibility found in Ogre3d. An example task queue is outlined in Figure 5.7.

Figure 5.7: A very simple rendering loop.
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CHAPTER 6
Evaluation

We have designed several test scenes to test various aspects of the final API. The tests scenarios
are used for obtaining source code metrics, as well as for performance comparison between the
implementations with and without the PURGE layer.

All source code measurements exclude statements in reference engines that have no equiva-
lence in the simplified PURGE API. Furthermore, many test scenarios include source code from
previous tests. To keep the focus on the current test, all statements that were covered in a prior
case are ignored.

The measured values are:

• Lines of code: Number of lines in the source code of the application. Each line contains a
single statement, empty lines and lines consisting of a single brace are ignored. Some tests
further do not include the placement of a camera, which is required to test the number of
rendered frames per second (below), thus the statements required for this positioning are
ignored, too.

• Function calls: Number of API functions that were used for the implementation.

• Distinct function calls: This value represents the number of different functions that were
needed to implement the scenario. It is assumed that a lower value reduces the complexity
of the API.

• Average frames per second: Number of frames that were drawn until the end of the test
application. The value is the average of 100 runs of the test scenario, rendering for five
seconds in each iteration. It is important to note that this value is highly dependent on the
bridge implementation in the case of PURGE.

• Peak memory usage: This value is obtained through the getrusage() system call on
Linux.
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6.1 Creating a scene

The first 5 test cases will gradually create an application that will render a space ship at the
center of the render window. The finished scene is depicted in figure 6.1

Figure 6.1: Output of TestScene5

TestScene1: Creating an empty render window

The minimal code required to create a window and enter a render loop that will exit whenever
the window is closed. This is the most basic scenario for every graphics engine. This test
measures the load of the boilerplate code of each graphics library. A performance comparison is
not sensible in this case, as PURGE chooses to create a differently sized default render window
than Ogre3d.

Table 6.1: Code metrics for TestScene1

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 2 8 1 4
Function calls 3 9 2 4
Distinct Function calls 3 9 2 4

Table 6.1 shows that OpenSceneGraph needs the fewest lines of code for this task. PURGE
has two semantically equivalent statements but requires an additional call for the instantiation
of the Renderer. Additionally this test provides the first assertion of the initial statement that
Ogre3d is quite verbose.
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TestScene2: Controlling the render window

In order to create a test scene that allows direct comparison of the frame rates of the same
application with and without the PURGE layer, the render window will be adjusted in this test:
The render window is centered on the display and created with a predefined size of 800x600
pixels. Panda3d is the only library that did not need the render window object in the initial test
case. The results can be seen in Table 6.2.

Table 6.2: Code metrics for TestScene2

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 1 1 1 3
Function calls 1 1 1 3
Distinct Function calls 1 1 1 3

This test is the first to additionally measure impact of the added layer to the rendering per-
formance (Table 6.3). As the scene is completely empty (no visible objects have been created),
this value shows the resource usage for the idle render loop. This already-low value will further
decrease as the impact of the render loop itself is negligible in a graphics application.

Table 6.3: Performance metrics for TestScene2

without PURGE with PURGE relative value
Frames per second 8726.45 8713.35 99.85%
Peak memory usage 76709 77170 100.60%

TestScene3: Positioning the camera

The camera is positioned at (X |X |X) and rotated to look at the origin. Panda3d performs all
required steps in one statement each:

1. retrieving the camera object from the window,
2. repositioning the camera and
3. setting the new orientation to look at the global origin.

As OpenSceneGraph provides a method similar to GLU’s gluLookAt(), the re-alignment
can be performed in a single step. PURGE instead makes use of its fluent interfaces to reduce
the lines of required code and Ogre3d needs to create a dedicated scene node that performs the
transformation for the camera.

The repositioning of the camera did not have any impact on the rendering performance, but
the tiny gap between the measured memory consumptions closes a bit further as Ogre3d needs
to make use of an additional object.
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Table 6.4: Code metrics for TestScene3

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 1 3 2 3
Function calls 3 4 5 3
Distinct Function calls 3 4 5 3

Table 6.5: Performance metrics for TestScene3

without PURGE with PURGE relative value
Frames per second 8727.26 8712.92 99.84%
Peak memory usage 76709 76934 100.29%

TestScene4: Loading an object

The next step involves loading an object into the scene without modifying its position: the
object is attached to the root scene node. As attaching the object to the scene graph is implicit
in PURGE, the whole task can be performed in a single step. Ogre3d needs to implement the
remaining boilerplate code for registering the location of the resource.

Table 6.6: Code metrics for TestScene4

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 1 4 1 2
Function calls 1 6 2 4
Distinct Function calls 1 6 2 4

The object used for this test consists of approximately 123.000 triangles. We had assumed
that the performance difference would decrease in previous tests and this assumption is backed
by the performance difference presented in Table 6.7. The memory footprint of the loaded object
further reduces the difference in memory consumption.

Table 6.7: Performance metrics for TestScene4

without PURGE with PURGE relative value
Frames per second 661.75 660.92 99.87%
Peak memory usage 145362 145446 100.06%

TestScene5: Positioning after loading

The previously loaded object is now positioned at the coordinates (−X |−X |−X). Ogre3d and
OpenSceneGraph need to create a new scene node that accepts this transformation. A model
in Panda3d is itself a scene node that can be manipulated directly. The implementation using
PURGE makes use of the fluent interface to append a single function call to an existing line.
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Table 6.8: Code metrics for TestScene5

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 0 2 4 1
Function calls 1 3 4 1
Distinct Function calls 1 3 4 1

The additional scene node required by Ogre3d further closes the performance gap between
the two implementations, whereas the difference in memory consumption does not change at all.

Table 6.9: Performance metrics for TestScene5

without PURGE with PURGE relative value
Frames per second 670.15 669.96 99.97%
Peak memory usage 145361 145446 100.06%

6.2 Completed Scene

So far we have looked at the complexity of very specific, incremental tasks. To get a better
overview on the amount of code required for the whole scene, we will additionally consider the
code metrics of the complete application we have created step by step during the previous five
test cases. Table 6.10 shows the difference between all APIs.

Table 6.10: Code metrics for the whole TestScene5 implementation

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 5 19 10 12
Function calls 8 23 14 16
Distinct Function calls 7 21 14 14

6.3 Modification over time

As the previous tests were testing the creation of a single, static scene, we will be looking at
some dynamically updated scene graphs in this section.

TestScene6: Movement

This scene implements a straight movement of a previously loaded object from one point to
another. The presence of the automatic scene node manipulator simplifies this task tremendously
in the application using PURGE. The Panda3d API is satisfied with a single function, the other
implementations need a separate class for an ongoing modification of the scene. In either case
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the implementation drives the developer through a lot more knowledge than necessary for such
a simple task.

The metrics just count the amount of effort required to implement this feature into an existing
scene. We will only be measuring the statements we needed to write to make the object in
TestScene5 move.

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 1 8 8 5
Function calls 4 11 12 8
Distinct Function calls 4 11 12 8

Table 6.11: Code metrics for TestScene6

The performance difference between the two implementations was rather small again.

Table 6.12: Performance metrics for TestScene6

without PURGE with PURGE relative value
Frames per second 668.50 668.22 99.96%
Peak memory usage 145361 145454 100.06%

TestScene7: Rotation

This test scene implements a 360 ◦ rotation of an existing object. As with the previous test we
will only measure the additional statements required for the rotation. Not surprisingly, the results
are very similar to that of the previous test.

PURGE Ogre3d OpenSceneGraph Panda3d
Lines of Code 1 10 8 7
Function calls 4 14 11 11
Distinct Function calls 4 14 11 11

Table 6.13: Code metrics for TestScene7

Table 6.14: Performance metrics for TestScene7

without PURGE with PURGE relative value
Frames per second 670.38 670.27 99.98%
Peak memory usage 145365 145458 100.06%

6.4 Scalability tests

The next few tests will probe how the library behaves when the amount of objects increases.
As the tests merely add some loops into the previously analyzed code, we will omit the code
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metrics for the next tests and just look at the performance. To keep the focus further on the
CPU-operations, we have performed all tests in this chapter with cubes of size (1|1|1). More
complex objects would shift the majority of the execution onto the GPU, which does the exact
same operations in both implementations.

TestScene8: Many objects at origin

We have created one thousand cubes at the origin of a scene for this test. The Ogre3d imple-
mentation attaches all objects directly to the root scene node, whereas the Renderer of PURGE
creates a dedicated scene node for each object. The results clearly show that these additional
scene nodes have a huge impact on the performance in the Ogre3d rendering process. The addi-
tional nodes further result in increased memory consumption.

Table 6.15: Performance metrics for TestScene8

without PURGE with PURGE relative value
Frames per second 872.94 32.84 3.76%
Peak memory usage 64806 68778 106.13%

This is an uncommon use case scene in graphics development, as there are usually very
few objects attached to the root scene node. These are the objects that form the immobile
environment of the scene – like the plants and rocks provided by Panda3d’s official tutorial
application, depicted in Figure 4.9. On the other hand, these models can be extremely complex,
straining the GPU in another way. To assess these thoughts, we have created the same test scene
with a single, complex object, Ogre3d’s official ogre head model consisting of 2242 vertices.

Table 6.16: Performance metrics for TestScene8.2

without PURGE with PURGE relative value
Frames per second 625.87 630.57 100.75%
Frames per second (no far-clipping) 632.73 629.06 99.42%
Peak memory usage 68229 68356 100.19%

Interestingly, PURGE achieved a higher frame rate in this test. This unexpected difference
was caused by the default values of the camera frustum in PURGE: we have disabled the far end
of the frustum, always drawing everything in sight. This will generate much worse results with
a more populated scene, but we will keep the implication that such a scene will require manual
tweaking of the camera parameters, optimizing the API for the simplest scenes. Re-running the
application after adjusting the Ogre3d implementation provided the results in Table 6.16. We
have added this newly found optimization to all following tests.

The elaboration on the initial test showed that the PURGE software layer has trouble with
multitudes of objects positioned at the origin. The same scene could be created in another way
that would eliminate this deficit entirely: by merging all models to be positioned at the origin
into a single model.
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TestScene9: Many objects, distributed in space

Figure 6.2: Output of TestScene9

We have created a “wall” consisting of 32 ∗ 24 = 768 cubes facing the camera. The frame
rate is again marginally higher with the added software layer, but we couldn’t find the cause
for this difference in this scene. It is possible that another choice of a default value effects the
performance.

Table 6.17: Performance metrics for TestScene9

without PURGE with PURGE relative value
Frames per second 37.58 37.74 100.43%
Peak memory usage 67708 67702 99.99%

TestScene10: Rotating many objects

The same objects that were created during the previous test were rotated 360 ◦ around their up
axis throughout the run-time. This test shows that the transmission of changes from PURGE to
Ogre3d contains another big performance impact. In contrast to the previous performance deficit
in TestScene8, this use case could be much more common and the solution is not as simple.

Table 6.18: Performance metrics for TestScene10

without PURGE with PURGE relative value
Frames per second 73.96 30.38 41.08%
Peak memory usage 79962 83694 104.67%
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One possible optimization is sharing of attitude objects. If PURGE has the same handedness
of its coordinate system as the underlying graphics engine, it would be possible to write all
attitude changes into the quaternion of the underlying engine – or binding the quaternion used by
Ogre3d to the object created by PURGE. The same approach could be applied to other properties
(like position and scale) as well. This solution breaks the separation of the two graphic engines
in favor of a higher frame rate.

Taking the idea of such a sacrifice of separation further, we could implement the newly
created API for Ogre3d, rather than a dedicated software layer. This would eliminate the need
to transmit any changes from one engine to another, leading to much higher performance.

TestScene11: Many objects, with a higher scene graph level

The layout of the test with distributed objects was repeated, this time attaching the objects in
each row to a common parent node in both implementations. The consistent improvement of the
frame rate now starts to indicate a positive impact of our layer on scenes consisting of multiple
immobile objects, even after re-running the tests.

Table 6.19: Performance metrics for TestScene11

without PURGE with PURGE relative value
Frames per second 40.22 40.33 100.28%
Peak memory usage 67699 67698 100.00%

This effect proved to be the result of the model used in the tests. The results changed as we
switched from dynamically created cube models to a pre-calculated cube model loaded from a
file. The repeated test summarized in Table 6.20 has slightly lower frame rates than the previous
test run, as the pre-calculated cube was larger than the dynamically created one.

Table 6.20: Performance metrics for TestScene11.1

without PURGE with PURGE relative value
Frames per second 34.36 33.92 98.72%
Peak memory usage 67700 67958 100.38%

TestScene12: Rotating the scene nodes

The scene nodes containing each row are rotated around their “up” axis again.

Table 6.21: Performance metrics for TestScene12

without PURGE with PURGE relative value
Frames per second 79.01 74.24 93.96%
Peak memory usage 79966 80495 100.66%

57





CHAPTER 7
Conclusion

The biggest issue with a learning-by-doing approach in the usage of graphics engines is the huge
amount of knowledge their APIs assume. We have managed to create an API that conceals as
much of these domain-specific entities as possible and allows the learning developer to choose
the order in which he can pick up all these aspects unknown to him.

We found that we could create whole scenes without the explicit need of scene graphs or
quaternions, two areas that were very hard to grasp for us while we were familiarizing ourselves
with the reference engines. The wide variety of facades and helper classes further simplified our
development process. The code metrics of our tests have shown that half the amount of code is
sufficient to perform the exact same basic operations as with other graphics engines.

The performance of the library is extremely close to that of the original Ogre3d library in
most cases. This gap started growing as we started using more primitive objects in our test
scenes. This does not come as a surprise, as the whole library was developed for the communi-
cation of very abstract concepts.

7.1 Future Work

We had specifically chosen to cover a very small area of the graphics domain, as the complete
domain is huge. Subdividing Models to expose their components – like meshes or shaders – is
one area that could be interesting. Another approach would be adding interactivity and sound to
the library, this could even be sufficient to provide a very simple platform for game development.

On the other hand, the interaction between PURGE and Ogre3d could be optimized. We
had already seen a test case where the implementation with an additional layer can provide even
better performance than the original implementation. This is actually quite easy to achieve as
one could use much more complex computations in the bridging layer than a layman graphics
developer could ever think of.
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Another approach to the optimization could be a stronger coupling to one specific graphics
engine, providing a second API to Ogre3d perhaps. PURGE as an additional software layer
could be disbanded to just be a part of the rendering library it was using.

An additional idea emerged during the implementation of the decoupled renderer. The newly
created abstraction layer on top of other renderers could be used as a uniform API to the under-
lying graphics engines. It would be possible to use this API for the comparison of different
graphics libraries. This would require more elaborate implementations of the bridging layers,
though.
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