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Abstract

The importance of simulation in engineering research is undeniable, the fact that its application

needs much less money than physical tests reduces research and development costs drastically.

The present thesis deals with the development and implementation of a constitutive model

of different anisotropic, viscoelastic material behaviour for carrying out steady state dynamics

simulations. The types of anisotropy studied are concretely cubic anisotropy and orthotropy,

which can be easily simplified to transversal isotropy.

For achieving this objective, the most important theoretical concepts are developed, ranging

from elasticity and linear viscoelasticity theories to some Finite Element Method techniques.

The constitutive model will be programmed in an Abaqus UMAT subroutine. This UMAT

allows the implementation of the material constitutive law in Abaqus commercial software to

carry out the desired frequency domain studies, or, more precisely, to predict how the material

behaves under the effect of harmonic excitaton.

The material input data for the UMAT is obtained through simulations applied to unit cells

with the structure and material properties under study. By these unit cell and with periodic

boundary conditions, an infinitely repeating pattern of the cellular architecture is simulated.

Furthermore, the quality of the UMAT predictions will be intensely tested through differ-

ent simulations at different frequencies. Such simulations will be applied to both the inhomo-

geneous unit cell and an homogenous unit cell whith the homogeneized input data applied

through the UMAT. The results from both simulations will be compared in order to test the ac-

curacy of the simulations when the UMAT is applied.

Some UMAT applications are also dealt. On one side, the UMAT for cubic anisotropy will be

applied to a cubic finite model with different material principal directions. On the other hand, a

DMA model is developed and implemented to simulate a four-layered composite with different

configurations in the transversally isotropic layer orientations.
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Resumen

En ingeniería, la importancia de la simulación por ordenador en investigación y desarrollo es

innegable, el motivo es básicamente que su aplicación es mucho más económica que la de test

reales, por lo cual reduce enormemente los costes del proceso. El presente proyecto consiste

en el desarrollo y aplicación de distintos modelos constitutivos de materiales anisotrópicos y

linealmente viscoelásticos, para ser aplicados a simulaciones de “steady-state dynamics”, i.e.

simulaciones de estado estacionario en oscilaciones forzadas.

Para alcanzar dicho objetivo, están incluidos los conceptos teóricos más importantes para

su desarrollo, desde los conceptos de elasticidad y viscoelasticidad lineal hasta las técnicas de

elementos finitos empleadas.

La ley constitutiva de los distintos tipos de materiales considerados será programada en

una subrutina tipo UMAT. Un UMAT permite la implementación de dicha ley constitutiva en

Abaqus, permitiendo el empleo en simulaciones de materiales que de otra forma no sería posi-

ble, para llevar a cabo estudios sobre el material en el dominio de la frecuencia, i.e. cómo se

comportará el material al ser sometido a cargas periódicas.

Los datos de entrada para el UMAT son obtenidos por medio de diferentes simulaciones

aplicadas a celdas unitarias con la correspondiente estructura y propiedades materiales bajo

estudio. Con esta celda unitaria, sometida a condiciones de contorno periódicas, se simula una

estructura infinita compuesta por la celda unitaria repetida infinitamente a lo largo del espacio,

con ello se obtienen las propiedades medias del material considerado.

Además, la calidad de las predicciones realizadas por los UMAT será testeada de forma in-

tensiva a través de distintos test a diferentes frecuencias. Dichos test serán aplicados a ambas,

la celda unitaria no homogénea y la celda homogénea con las propiedades materiales homo-

geneizadas, introducidas en Abaqus a través del UMAT. Los resultados de ambas simulaciones

serán comparados con el fin de comprobar la precisión de los resultados generados tras la apli-

cación del UMAT.

También están incluidas en el proyecto algunas aplicaciones del UMAT. Por un lado, el UMAT

de anisotropía cúbica será aplicado a un modelo cúbico finito orientado en distintas direc-

ciones. Además, ha sido desarrollado un modelo de DMA, i.e. “Dynamic Mechanical Analysis”, y
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ha sido implementado con un composite laminado de cuatro capas, cada una con propiedades

de isotropía transversal, con distintas configuraciones en la disposición y orientación de la di-

rección principal de las láminas que componen la plancha.
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Chapter 1

Introduction

As the objective of the present thesis is the simulation of different anisotropic materials in the

frequency domain, some general aspects of both concepts are specified in this chapter.

1.1 Composite materials

Composite materials or composites are materials made from two or more constituent materi-

als with significantly different physical or chemical properties that, when combined, produce a

material with different characteristics from the individual components. The individual compo-

nents remain separate and distinct within the final structure.

1.1.1 General properties

In comparison to common materials used today such as metal and wood, composites can pro-

vide a distinct advantage. One driver and advantage in the adoption of composites is the light-

weight properties. In transportation, less weight equates to more fuel savings and improved ac-

celeration. In sporting equipment, lightweight composites allow for longer drives in golf, faster

swings in tennis, and straighter shots in archery. While in wind energy, the less a blade weighs,

the more power the turbine can produce. The vast range of materials that can be combined

turns into a huge variety of composites with very different properties and applications.

For example, in the context of this work, a fiber-reinforced thermoplastic matrix mainly

presents high stiffness with a very reduced weight, so it can resist high loads in the fiber di-
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rection without making the system much heavier, which means energy efficiency for the system

it takes part, e.g. a vehicle. In consequence of the different behavior in fiber and transverse

direction, this example is a case of an anisotropic material.

1.1.2 Classification of composites

Composite materials are commonly classified in two distinct levels, on the basis of matrix phase

and on the reinforcement shape.

On the basis of matrix phase, composites can also be classified into metal matrix composites

(MMCs), ceramic matrix composites (CMCs) and organic matrix composites (OMCs). The lat-

ter is generally assumed to include two classes of composites, namely polymer matrix compos-

ites (PMCs) and carbon matrix composites commonly referred to as carbon-carbon composites.

The second level of classification refers to the reinforcement form, there are three types. Fiber-

reinforced composites are composed of fibres embedded in matrix material. Such a composite is

considered to be a discontinuous fiber or short fiber composite if its properties vary with fiber

length. On the other hand, when the length of the fibre is such that any further increase in length

does not further increase in the elastic modulus of the composite, the composite is considered

to be continuous fiber reinforced. Fibers are small in diameter and when compressed axially,

they bend easily although they have very good tensile properties. Another type are laminar

composites,which are composed of layers of materials held together by the matrix. Sandwich

structures fall under this category. Finally, particle-reinforced composites are composed of par-

ticles distributed or embedded in a matrix body. The particles may be flakes or in powder form.

Concrete and wood particle boards are examples of this category.

1.1.3 One composite example: cellular materials

Cellular materials are those that contain many air cells or voids (either open or closed, or both)

dispersed throughout the mass. The fundamental property is relative density, i.e. the ratio of the

apparent mass density of the cellular material to the mass density of the base material, which in

case of cellular materials is typically low (less than 0.3).

These materials are widespread in nature, like in cork or cancellous bone (figure 1.1) which
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Figure 1.1: Example of cellular material: humerus cancellous bone. [15]

is found in most areas of bone that are not subject to great mechanical stress like at the ends of

long bones. Furthermore, cellular materials are also in food, like in bread or chocolate. How-

ever, they are less explored, less well understood and worse documented. Recently, they have

gained increased importance in engineering and bio medical applications, taking importance

in industry, like in honeycombs, prosthesis or lightweight structures.

Their particular properties are governed by the internal cellular architecture and the mate-

rial they are made of, leading to a tremendous variability and complexity. This high variability

yields to such different applications, i.e. in some cases we have relatively poor structural prop-

erties, e.g. in thermal insulation or packaging, and in others we look for high stiffness with low

density, e.g. in aerospace industry.

A better understanding of the relation between architecture and cellular material properties

is required for service-oriented selection of existing materials. Moreover, such knowledge is the

basis for tailoring man made materials by designing them adequately to show desired proper-

ties. [3][11]

Typically, cellular materials can be divided into three types: two-dimensional polygon ar-

rangements; three-dimensional arrangements, which are generally referred to as foams and can

be also divided into open-cell and closed-cell structures. The base material can be present only

in the cell edges, which would be the case of open-cell materials, or it can take a spatial distri-

bution in a way that each cell form a confined space, which is the case of closed-cell structures.

For engineering applications mainly foams are used, i.e. polymeric, ceramic or metallic foams.
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Figure 1.2: Different arrangements of cellular materials. [16]

Some examples of such cellular materials are given in figure 1.2.

1.1.4 Continuous fiber reinforced materials

Fiber reinforced composites are materials composed of fibers, which are generally the reinforce-

ment and the main source of strength, and the matrix, which ’glues’ all the fibers together in

shape and transfers stresses between the reinforcing fibers. Some examples can be carbon or

glass-fiber composites.

Most matrices are made of resins for their wide variation in properties and relatively low

cost, e.g. polyester, polyamide or epoxy.

Reinforcing fibers are normally made of metals, ceramics, glasses, or polymers. The arrange-

ment or orientation of the fibers relative to one another, the fiber concentration, and the distri-

bution have a significant influence on the strength and other properties of fiber-reinforced com-

posites. In the case of continuous fiber reinforcement, the fibers have a ratio length to transver-

sal surface really high. This high ratio makes possible to assume the composite to behave as if

the fibers were infinitely long.
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1.2 Frequency domain viscoelastic behavior simulation

Many materials in nature and engineering present in greater or lesser extent viscoelastic be-

haviour, and they are loaded under periodic loads, e.g. vibrations in a vehicle, so their simula-

tion in the frequency domain takes strong importance.

1.2.1 Material constitutive model and homogenization

A material constitutive model is a mathematical description of the material behavior. The de-

veloping of such material constitutive laws takes huge importance in simulation, one of the ad-

vantages is that it allows the homogenization of complex material arrangements, reducing not

only the effort in meshing, but also the number of elements needed to accurately predict the

overall behavior. In consequence, it reduces the computation time and the required resources

incredibly.

In addition, all we need for applying these constitutive models to simulations are the cor-

respondent material parameters. To obtain them, real tests can be carried out, but they are

expensive, hard to implement and the material must be available, which is not always possible.

Hence, Finite Element Method or simply FEM models are generally a good alternative. With

FEM it is possible to predict the needed material properties from different simple load tests ap-

plied to a small, significative material portion, with relatively low computer requirements. The

required material tests to get such properties are not unique and the minimum number of them

that is needed to fully describe the material behaviour depends on each material under study.

Some viscoelastic constitutive models have been set in the time domain, i.e. to study how

they behave under different types of loading or unloading periods of time, e.g. [26]. The imple-

mentation of viscoelastic constitutive models in the frequency domain is a new possibility in

Abaqus software. In consequence, there has been not a very deep insight in its developing. The

development of such a material law to simulate different viscoelastic anisotropic materials in

the frequency domain, is the objective of the present thesis.



Chapter 2

Material behavior

In this chapter linear elastic deformation and linear viscoelastic behavior will be dealt with,

as their combination compose the reaction mechanism to loading of the different anisotropic

materials modeled in this thesis.

2.1 Linear elasticity

Solid objects will deform when forces are applied on them. Elasticity is the tendency of solid

materials to return to their original shape after being deformed.

In engineering the amount of elasticity of a material is determined by two types of material

parameter. The first type of material parameter is called a modulus, which measures the amount

of force per unit area (stress) needed to achieve a given amount of deformation or strain. The

second type of parameter measures the elastic limit, which is the stress beyond which the ma-

terial no longer behaves elastic and permanent deformation of the material will take place.

With the assumption of small strains, which means that they do not exceed 5%, many elastic

materials exhibit linear elasticity and can be described by a linear relation between stress and

strain: the so-called Hooke’s law, which in one-dimension stands for [18]:

σ= Eε , (2.1)

with E as Young’s modulus, ε as the strain andσ as the stress. Hooke’s law for elastic materials

7
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can also be written in terms of a compliance J:

ε= Jσ . (2.2)

Consequently, the elastic compliance, J , is the inverse of the Young’s modulus, E :

J = 1

E
. (2.3)

2.2 Viscoelasticity

Most solid materials are described, for small strains, by Hooke’s law of linear elasticity: stress σ

is proportional to strain, as we could see in equation (2.1).

In contrast to elastic materials, a viscous fluid under shear stress obeys

σ= η
dε

dt
(2.4)

with η as the viscosity and t as time.

In consequence, viscous materials, like honey, resist shear flow and strain linearly with time,

t , when a stress is applied. On the other hand, elastic materials deform in such case and return

to their original state once the stress is removed. In reality, materials deviate from Hooke’s law

in various ways, for example, by exhibiting viscoelasticity, which is the property of materials

that exhibit both viscous and elastic characteristics when undergoing deformation and exhibit

time-dependent strain or stress. Whereas elasticity is usually the result of bond stretching along

crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or

molecules inside an amorphous material. [20]

The previous statement yields from the stress–strain curve, which is obtained by applying

a constant rate of strain to a bar of the material. If the material is linearly elastic, the curve

is a straight line with a slope proportional to the elastic modulus (the thick line in the right

diagram in figure 2.1). For a sufficiently large stress (the yield stress σy ), the material yields

as shown in the right plot of figure 2.1. This is a threshold phenomenon. A linear viscoelastic

material, by contrast, gives rise to a curved stress–strain plot (the left diagram in figure 2.1) [18].
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Figure 2.1: Stress-strain plots for a linear viscoelastic and a elastic-plastic material. [18]

The reason for this rise is that during constant strain rate deformation, both time and strain

increase together. The viscoelastic material is sensitive to time. Consequently, the curve on the

left becomes steeper if the strain rate is increased.

When testing and describing viscoelastic materials, it is preferable to apply a step strain or

step stress in time rather than a ramp (constant rate of strain) because the effect of time is then

isolated from any nonlinearity. The response to step strain is stress relaxation, and the response

to step stress is creep.

2.2.1 Transient properties: creep and relaxation

These two properties take importance only in the time domain, which is out of the objectives of

the thesis, but their explanation is important to understand how a viscoelastic material actually

behaves.

Creep

Creep is a progressive deformation of a material under constant stress. In one dimension, sup-

pose the history of stress σ as it depends on time t to be a step function with the magnitude σ0,

beginning at time zero:

σ(t ) =σ0H(t ) , (2.5)
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where H(t ) is the unit Heaviside step function defined as:

H(t ) =


0 if t < 0 .

1/2 if t = 0 .

1 if t > 0 .

(2.6)

The strain ε(t ) in a viscoelastic material will increase with time. The ratio

J (t ) = ε(t )

σ0
, (2.7)

is called the creep compliance. In linear viscoelastic materials, the creep compliance is inde-

pendent of stress level. The intercept of the creep curve on the strain axis is described by some

authors to instantaneous elasticity. It is just a theoretical parameter, as no load can be physically

applied instantaneously. If the load is released at a later time, the strain will exhibit recovery or

a progressive decrease of deformation. Strain in recovery, referring to viscoelasticity, will ap-

proach zero. This recovery phase is not included in equations (2.5) and (2.7) for simplicity.

The creep response in figure 2.2 is shown beginning at the same time as the stress history,

which is the cause, this follows from the physical concept of causality, that is, the effect does not

precede the cause, and the same happens with the recovery phase when the stress is released.

It is also appreciable in this figure that the viscoelastic behavior is a combination of both elastic

and viscous behaviour.

Relaxation

Stress relaxation is the gradual decrease of stress when the material is held at constant strain. If

we suppose the strain history to be a step function of value ε0 beginning at time zero:

ε(t ) = ε0H(t ) , (2.8)

the stress σ(t ) in a viscoelastic material will decrease as shown in figure 2.3. The ratio

E(t ) = σ(t )

ε0
, (2.9)

is called the relaxation modulus. In linear materials, it is independent of strain level, so E(t )
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Figure 2.2: Creep and recovery. Stress σ and strain ε versus time t . [18]

is a function of time alone. So if we compare equation (2.9) and equation (2.7) we can appreciate

that the creep compliance is not the inverse of the relaxation modulus.

Associated material parameters

Creep and relaxation can occur in shear as well as in volumetric deformation. The relaxation

function for shear stress is called G(t ). For volumetric deformation, the instantaneous bulk

modulus is called K0 . A corresponding relaxation function K (t ) may be defined as in equa-

tion (2.9), but with the stress and strain with his hydrostatic counterparts. A similar distinction

is made in the creep compliances, JG (t ) for creep in shear, J (t ) for creep in extension, and JK (t )

for creep in volumetric deformation.

A distinction may be made between aging and non-aging materials: in aging materials, prop-

erties change not only with time after we apply a stress or strain, but also with the time following

the formation or transformation of the material. Concrete, for example, is an aging material.

This thesis deals exclusively with non-aging materials.
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Figure 2.3: Relaxation and recovery. [18]

2.2.2 Dynamic response to sinusoidal load

The response of linear viscoelastic materials to sinusoidal load is developed in this section, and

this response is referred to as dynamic. The dynamic behavior is of interest because viscoelastic

materials are used in situations in which the damping of vibration or the absorption of sound

is important. The frequency of the sinusoidal load on an object or structure may be so slow

that inertial terms do not appear (the subresonant regime), or high enough that resonance of

structures made of the material occurs. Oscillatory stress and strain histories are represented by

sinusoid functions.

Suppose the strain ε(t ) is varying sinusoidally in time t , as shown in figure 2.4:

ε(t ) = ε0 sin(2π f t ) , (2.10)

in which t is time, ε0 is the amplitude and f is the frequency (in cycles per second or Hertz,

abbreviated Hz). The reaction stress generated by such a strain of a linear viscoelastic material

is also sinusoidal in time, but the stress will be advanced in phase by a phase angle δ, so the
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Figure 2.4: Stress and strain versus time, with a phase shift δ. [18]

stress caused by the strain of equation (2.10) takes the form

σ(t ) =σ0 sin(2π f t +δ) . (2.11)

The period T of the waveform is the time required for one cycle: T = 1/ f . As is possible to

appreciate in figure 2.4 The phase angle is related to the time lag ∆t between the sinusoids by

δ= 2π∆t/T .

In a plot of the two waveforms, the sinusoids are shifted with respect to each other on the

time axis as we can see in figure 2.4. Recall that the cosine function is π/2 radians out of phase

with the sine function. Sinusoidal functions that represent oscillatory quantities in which phase

is important are commonly written in complex exponential notation. [17]

As a result of the phase lag between stress and strain, the dynamic stiffness can be treated as

a complex number E∗ .

σ(t )

ε(t )
= E∗ = E ′+ ıE ′′ , (2.12)

where ı =p−1. E ′ is the component of the stress–strain ratio in phase with the applied stress,

and its called the storage modulus; E ′′ is the component 90o out of phase and its called the loss
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Figure 2.5: Loss angle in function of frequency example [10]

modulus.

The loss angle δ is a dimensionless measure of the viscoelastic damping of the material or

the internal friction. The dynamic functions E ′, E ′′, and δ depend on frequency. The tangent of

the loss angle is called the loss tangent: tanδ, and it stands for:

tanδ( f ) = E ′′( f )

E ′( f )
. (2.13)

In an elastic solid, tanδ= 0. [18]

Considering the frequency dependency of the loss tangent that can be seen in figure 2.5, the

loss angle takes value zero when the frequency tends to zero, as it would be a static loading case,

but also when the frequency tends to infinity, as for these frequencies the relaxation modulus

tends to the short term elastic modulus E0, which has no loss angle. It takes a maximum value

at a frequency value that depends on the material under study. [10]

2.2.3 Analytical solution procedure

Taking into account that the loss modulus of the viscoelastic material leads to one sort of damp-

ing, we can reduce the problem of the viscoelastic, periodically loaded structure stated in the

previous section to a differential equation given by:

mü +γu̇ +ku +F = 0 , (2.14)
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where m is the mass of the system, u is the displacement, being u̇ and ü its first and second

derivatives respectively, γ is the associated damping coefficient, k is the stiffness of the system

and F is the applied force.

If the force F in equation (2.14) is periodic or, more generally, if we can express it as

F = F̄ exp(αt ) , (2.15)

where the phase angle αt , with α

α=α1 + ıα2 , (2.16)

and the amplitude F̄

F̄ = F̄1 + ıF̄2 , (2.17)

are complex. Then a general solution can be written in a similar way as in the previous

section, but this time in terms of displacements

u = ū exp(αt ) . (2.18)

Substituting the above in equation (2.14) gives

(α2m +αγ+k)ū = k̄ū =−F̄ . (2.19)

The solution is thus precisely of the same form as that used for static problems, see equa-

tion (2.1), but now, however, has to be determined in terms of complex quantities. Computation

can be carried out in terms of real numbers, by

exp(αt ) = exp(α1t )[cosα2t + ı sinα2t ]

F̄ = F̄1 + ıF̄2

ū = ū1 + ıū2

(2.20)

in which α1, α2, F̄1,F̄2, ū1 and ū2 are real quantities. Inserting equations (2.20) in equa-

tion (2.19) we have
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(α2
1 −α2

2)m +α1γ+E −2α1α2m −α2γ

−2α1α2m −α2γ −(α2
1 −α2

2)m −α1γ−E

 ū1

ū2

=−
 F̄1

−F̄2

 , (2.21)

which forms a system in which all quantities are real and from which the response to any

periodic input can be determined by direct solution. With periodic input the solution is not

sensitive to the initial conditions and the above solution represents the finally established re-

sponse [32], which is what we get in steady state dynamics simulations.

2.2.4 Mechanical viscoelasticity models

Among the simplest transient response functions are those that involve exponentials. In relax-

ation, we may consider

E(t ) = E0e−t/τr , (2.22)

with τr called the relaxation time and E0 the instantaneous modulus. In creep, the corre-

sponding relation is

J (t ) = J0(1−e−t/τc ) , (2.23)

with τc called the creep or retardation time and J0 the instantaneous compliance. Exponen-

tial response functions arise in simple discrete mechanical models composed of springs, which

are perfectly elastic, see equation (2.1) and dashpots, which are perfectly viscous, see equa-

tion (2.4). The dashpot may be envisaged as a piston–cylinder assembly in which motion of the

piston causes a viscous fluid to move through an aperture.

The Kelvin-Voigt model

The Kelvin-Voigt model consists of a spring and dashpot in parallel, so that they both experience

the same deformation or strain and the total stress is the sum of the stresses in each element. It

is represented in figure 2.6, where E∞ is the long term modulus.

So the stress experienced by the system is
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Figure 2.6: Kelvin-Voigt model and its creep function J (t ) vs time. [13]

σ= E∞(ε+τcε̇) , (2.24)

with the retardation time τc = η/E∞. The creep response of the Voigt model is, as shown in

figure 2.6:

J (t ) = 1

E∞
(1−e−t/τc ) , (2.25)

and the relaxation response is a constant plus a delta function [18].

In conclusion, the strain approaches to a final nonzero value, presenting stress relaxation,

which fits to viscoelastic behavior. However, it has rigid behavior at the beginning, with creep

compliance J(t=0) = 0, so this model is not suitable for modeling viscoelasticity.

The Maxwell model

The Maxwell model consists of a spring and dashpot in series. Because inertia is neglected, the

stress is the same in both elements; and the total strain is the sum of the strains. This model is

represented in figure 2.7, with E representing this time the instantaneous relaxation moduli E0.

The stress for this model takes the form

σ+τσ̇= ηε̇ , (2.26)
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Figure 2.7: Maxwell model with its creep function J (t ), and its relaxation function E(t ). [13]

with τ as η/E0. If we input step strain, the relaxation response in terms of the relaxation

modulus is found to be, with τ= τr:

E(t ) = E0e−t/τr , (2.27)

however, if we input step stress, the creep response is

J (t ) = 1

E0

t

η
. (2.28)

As we can see in the equations above and on figure 2.7, the Maxwell body has a sudden strain

increase to the stress change, so it has solid-like behavior in the beginning, but the strain goes

to an infinite value in constant stress tests and the stress relaxes to zero, so it has liquid-like final

behavior, so it is also unsuitable.

Standard linear solid

There are two different configurations with equivalent results. One possibility would be a series

configuration of Hooke’s body and Kelvin-Voigt body, and the other would be a parallel config-

uration of Hooke’s body and Maxwell body.

An example of each case is given in figure 2.8. In this case the creep function stands for



CHAPTER 2. MATERIAL BEHAVIOR 19

J (t ) = 1

E∞
− E1

E∞(E1 +E∞)
e−t/τc , (2.29)

and the relaxation function for

E(t ) = E∞+E1e−t/τr , (2.30)

where τ= τr and

τc = τr
(E1 +E∞)

E∞
. (2.31)

Figure 2.8: Two configurations for standard linear solid model with its creep function J (t ), and
its relaxation function E(t ). [13]

Observe that the retardation time is not equal to the relaxation time; it is larger. In con-

clusion, this model is suitable to modeling viscoelasticity, as it presents a finite instantaneous

elastic moduli E0 = E∞+E1, which relaxes with time to a long term finite elastic modulus E∞.

This model can be expanded by more Maxwell bodies connected in parallel, as showed in
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Figure 2.9: Model of complex standard linear solid group. [13]

figure 2.9; the relaxation function consists now in a sum of several exponential functions, which

can be developed in terms of Prony series [33].

The group presented in figure 2.9 has an instantaneous elastic modulus and a relaxation

function dependent on every parallel element, i.e. Hooke’s body and Maxwell’s bodies, where

each Maxwell body corresponds to a sum element, providing a portion of the temporary stress

profile. On the other hand, the long term behavior depends only on the elastic modulus of the

Hooke’s body E∞.



Chapter 3

Applied FEM techniques and resources

The present thesis uses ABAQUS Standard version 6.14 from Dassault Systèmes, as this software

uses the Finite Element Method or FEM, a contextualization and a short explanation of its main

used features are given in this chapter.

3.1 Introduction

The limitations of the human mind are such that it cannot grasp the behavior of its complex

surroundings and creations in one operation. In many situations an adequate model is obtained

using a finite number of well-defined components. We shall term such problems discrete. In

others the subdivision is continued indefinitely and the problem can only be defined in terms

of differential equations or equivalent statements that imply an infinite number of elements.

We shall term such systems continuous.

With the advent of digital computers, discrete problems can generally be solved readily even

if the number of elements is very large. As the capacity of all computers is finite, continuous

problems can only be solved exactly by mathematical manipulation. Here, the available mathe-

matical techniques usually limit the possibilities to oversimplified situations.

To overcome the intractability of realistic types of continuum problems, various methods

of discretization have been proposed from time to time by engineers and mathematicians. All

involve an approximation, a mathematical model, which, hopefully, approaches in the limit the

true continuum solution as the number of discrete variables or elements increases.[32]

21
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This discrete arrangement of elements is commonly known as mesh, and the finite element

procedure uses it to solve the differential equations of the simplified mathematical model. Since

the FEM is a numerical procedure, it is necessary to assess the solution accuracy. If the accuracy

criteria are not met, the numerical solution has to be repeated with refined solution parameters

(such as finer meshes) until a sufficient accuracy is reached.

It is clear that the finite element solution will solve only the selected mathematical model

and that all assumptions and approximations in this model will be reflected in the predicted

response. Hence the choice of an appropriate mathematical model is crucial and completely

determines the insight into the actual physical problem that we can obtain by the analysis. [4]

The procedure is illustrated in figure 3.1.

3.2 Periodic Microfield Models

Periodic Microfield Approaches or PMAs aim at approximating the macroscopic and micro-

scopic behavior of inhomogeneous materials by studying model materials that have periodic

microstructures. In the context of these thesis, they are used to obtain material data and to

perform some tests of reliability of the UMAT.

3.2.1 Basic concepts of unit cell models

Periodic microfield approaches analyze the behavior of infinite (one, two- or three-dimensional)

periodic phase arrangements under the action of far field mechanical loads or uniform temper-

ature fields. The most common approach to studying the stress and strain fields in such periodic

configurations is based on describing the microgeometry by a periodically repeating unit cell to

which the investigations may be limited without loss of information or generality, at least for

static analysis.

A unit cell is any volume element that can generate a periodic microgeometry. Accordingly, a

unit cell may comprise a simple periodic base unit (or part of it), a collective of simple periodic

base units, or a phase arrangement of arbitrary geometrical complexity (multi-fiber or multi-

particle unit cell) that shows translational periodicity; in the limiting case a unit cell may thus

be a representative volume element, which is a subvolume of the whole volume under study
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Figure 3.1: The process of finite element analysis. [4]
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that is of sufficient size to contain all information necessary for describing the behavior.

The literature on periodic homogenization of inhomogeneous materials is fairly extensive,

and well developed mathematical theories are available on scale transitions in periodic struc-

tures, compare [21]. For further detail see [6].

3.2.2 Boundary conditions (B.C.s)

Unit cells together with the boundary conditions (B.C.s) prescribed on them must generate valid

tilings both of the undeformed geometry and for all deformed states pertinent to a given mi-

cromechanical problem. Accordingly, gaps and overlaps between neighboring unit cells as well

as nonphysical constraints on their deformations must not be allowed, i.e., the cells must be ge-

ometrically compatible. In order to achieve this, the boundary conditions for the unit cells must

be specified in such a way that all deformation modes appropriate for the load cases to be stud-

ied can be attained. The three major types of boundary conditions used in periodic microfield

analysis are periodicity, symmetry and antisymmetry or point symmetry.

In PMA models one of these three types of boundary conditions (or a combination of them)

must be used, irrespective of the numerical method employed for solving the equilibrium equa-

tions. Generally, for a given periodic phase arrangement unit cells are non-unique, the range

of possible shapes being especially wide when point or mirror symmetries are present in the

microgeometry (as tends to be the case for regular lattices). As an example, figure 3.2 depicts

a (two-dimensional) periodic hexagonal array of circular inhomogeneities (e.g., fibers oriented

normally to the plane) and some of the unit cells that can be used to study aspects of the behav-

ior of this phase arrangement. There are considerable differences in the sizes and capabilities of

the unit cells shown. [6]

In the following a nomenclature is used in which the faces of two-dimensional quadrilateral

unit cells are denoted as N, S, E and W (for North, South, East, and West which are used as

in topographical maps), vertices being named according to the adjoining cell faces, compare

figures 3.5 and 3.6. The faces of three-dimensional cells of hexahedral shape are, by analogy,

referred to as N, S, E, W, B and T (the latter standing for bottom and top), and edges as well as

vertices are referred to via the adjoining faces (e.g., SE or SWB), see figure 3.4.

As periodic and symmetry boundary conditions are some of the B.C.s used in the present
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Figure 3.2: Periodic hexagonal array of circular inhomogeneities in a matrix and 10 unit cells
that can be used to describe the mechanical responses of this arrangement under loads acting
parallel to the coordinate axes. [6]

work, few further details about them will be given.

Periodicity boundary conditions

They are the most general boundary conditions for unit cells in periodic microfield approaches.

They can handle any physically valid deformation state of the cell and, consequently, of the

material to be modeled. Periodicity boundary conditions make use of translation symmetries

of a given geometry; in figure 3.2 cells A to E belong to this group.

In order to describe an N-dimensional phase arrangement with translation periodicity, a

suitable unit cell and a set of N linearly independent periodicity vectors pn are required. These

periodicity vectors are neither unique nor do they have to be orthogonal. The surface of any unit

cell to be used with periodicity boundary conditions must consist of at least N pairs of faces (or

pairs of parts of faces) Γk , and the surface elements making up a given pair, k+ and k−, must be

identical but shifted relative to each other by “shift vectors” ck . Each shift vector, in turn, must

be a linear combination of the periodicity vectors, i.e. ck = ∑
l ck

l pl , where the ck
l are integer

numbers. In figure 3.3 are represented some examples of possible periodic unit cells, matching

pairs of faces (or, in the case of some cells, parts of faces) Γk are marked by being drawn in the

same line style.
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Figure 3.3: Seven different but equivalent periodic minimum-size unit cells for a two-
dimensional periodic matrix–inclusion medium with two (slightly) non-orthogonal periodicity
vectors p1 and p2 (p ′′′

1 and p2 form an alternative pair of periodicity vectors). Paired faces (or
parts of faces) Γk are marked by identical line styles and regions belonging to one of the cells are
highlighted by shading. [6]

Unit cells of simple shape to some extent facilitate the application of periodicity boundary

conditions, like in figure 3.4.

Because the unit cells tile the computational space by translation, neighboring cells (and,

consequently, the “opposite” faces of a given cell) must fit into each other like the pieces of a

jigsaw puzzle in both undeformed and deformed states. For each pair of surface elements, Γk ,

the periodicity boundary conditions for the mechanical problem in the small strain regime look

like

∆uk = uk+ −uk− = u(sk +ck )−u(sk ) = 〈ε〉∗ck , (3.1)

where uk− and uk+ are the displacements at pairs of “homologous” points sk and sk + ck

on the surface elements k− and k+ (which may, e.g., correspond to faces N and S in figures 3.4

and 3.5, respectively. The vector linking such pairs of points is in a deformed state is ĉk = ck +
∆uk . These conditions enforce a “seamless fit” between neighboring unit cells for all possible

deformed states.

For numerical analysis the two faces making up a pair Γk must be discretized in a compatible
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Figure 3.4: Cube-shaped periodic unit cell containing 15 randomly positioned spherical par-
ticles of equal size at a volume fraction of ε(i ) = 0.15. Designators of the six faces (East, West,
North, South, Top, Bottom) and of the vertices are given.[24]

Figure 3.5: Sketch of periodicity boundary conditions as used with an initially rectangular two-
dimensional unit cell.[6]
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Figure 3.6: Sketch of symmetry boundary conditions as used with a rectangular two-
dimensional unit cell.[6]

way, i.e., the nodal points on them must be positioned at equal values of the “face coordinates”

sk . Equations (3.1) then become sets of linear constraints each of which links three nodal dis-

placement DOFs. Equation (3.1) shows that the displacements of the “master nodes”, SE and

NW, contain the information on the macroscopic strain tensor 〈ε〉. In addition, the displace-

ments of the master nodes and of faces S and W fully control the displacements of the “slave

faces” N and E. [6]

Symmetry boundary conditions

For rectangular and hexahedral unit cells in which the faces of the cell coincide with symmetry

planes of the phase arrangement and for which this property is retained for all deformed states

that are to be studied, periodicity B.C.s simplify to symmetry (or mirror) boundary conditions.

Following the nomenclature of figure 3.6 these B.C.s take the form

uE (s̃2) = uSE vN (s̃1) = vNW uW (s̃2) = 0 uS(s̃1) = 0 , (3.2)

where u and v stand for the displacement components in 1- and 2-direction, respectively.

Equation (3.2) puts constraints on the normal displacement components at the unit cells’ sur-

faces, but leaves the tangential displacements free.

The load cases that can be handled are limited to uniform thermal loads or mechanical loads
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that act in directions normal to one or more pairs of faces.

3.2.3 Application of loads and evaluation of fields

Once suitable unit cells have been defined and appropriate B.C.s applied, the volume elements

must be subjected to appropriate loads in the form of uniform macroscopic stresses as well

as strains, homogeneous temperature excursions, or suitable transformation strains, i.e., the

microscopic and macroscopic fields must be linked.

The method of macroscopic degrees of freedom consists in applying far field stresses and

strains to a given unit cell via concentrated nodal forces or prescribed displacements, respec-

tively, at the master nodes and/or pivot points. The displacements or reaction forces at the

master nodes, in turn, can be used to evaluate the macroscopic strains and stresses acting on

the composite.

In order to obtain three-dimensional homogenized elastic tensors with the method of macro-

scopic degrees of freedom, six suitable, linearly independent load cases must be solved for in the

most general case.



Chapter 4

Material symmetries and UMAT

development

In this chapter the generalized Hooke’s law is presented. Some different material symmetries

will be dealt too, this material symmetries simplify the problem, as less independent parameters

for defining the material behavior are needed. Finally, how via UMAT those material symmetries

are implemented will also be detailed.

4.1 Generalized Hooke’s Law

In equation (2.1), Hooke’s Law is for 1-dimensional cases represented, but it should be general-

ized, as such an equation does not apply anymore regarding 2D or 3D cases, in which the stress

is not a single value anymore, but a second-rank tensor σi j :

σi j =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (4.1)

Because of its symmetry properties, we can write the stress tensor σi j as

30
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σi =



σ1

σ2

σ3

σ4

σ5

σ6


, (4.2)

whereσ1 =σ11, σ2 =σ22, σ3 =σ33, σ4 =σ12, σ5 =σ13 andσ6 =σ23. The same procedure can

be applied with the strain tensor εi j . In the present work, engineering shear strain is considered,

as it is the convention used by Abaqus software. Considering engineering shear strain as

γi j = 2εi j for i 6= j . (4.3)

The resulting stress σi j to an applied strain εi j is such that each component is linearly re-

lated to all the components of the strain [23]. Thus, for example, without considering the sym-

metry of the strain tensor, σ11 would linearly depend on each one of the nine components of

εi j . In terms of that, we can write the generalized form of Hooke’s Law:

σi j = Ei j klεkl , (4.4)

where Ei j kl is the elasticity tensor and is composed by the elastic constants of the material.

As εi j and σi j are in general second order tensors, Ei j kl is a fourth order tensor.

If we apply only one component of stress, say σ11, equation (4.4) imply that all the strain

components, not just ε11, may be different from zero.

Equation (4.4) stands for nine equations, each with nine terms on the right-hand side. So

there are 81 Ei j kl coefficients. On the other hand, as stated above, strain and stress tensors are

symmetric. In consequence, only 36 of the 81 components Ei j kl can be independent and we

can represent the fourth rank stiffness tensor as a 2 dimensional tensor Ei j as follows

σi = Ei jε j , (4.5)

where Ei j is also symmetric. Hence, there are at most 21 different components in the elas-
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ticity tensor for the most anisotropic case.

4.1.1 Plane theory of elasticity: Plane stress

Many problems in elasticity may be treated satisfactorily by a two-dimensional, or plane theory

of elasticity, in consequence, under this assumption the elasticity tensor Ei j can be reduced

from a (6x6) matrix to a (3x3) matrix, reducing considerably the computational effort. There are

two general types of problems involved in this plane analysis, plane stress and plane strain. This

two types are defined by setting down certain restrictions and assumptions on the stress and

strain fields.

Plane strain is defined to be a state of strain in which the strain normal to the 1-2 plane, or

ε33, and the shear strains γ23 and γ13 are assumed to be zero. This assumption is acceptable if

one of the dimensions of the model, say the 3 direction, is very large in comparison with the

dimensions of the structure in the other two directions.

On the other hand, plane stress is defined to be a state of stress in which the normal stress,

σ33 and the shear stresses, σ23 and σ13 are assumed to be zero. This model is useful to treat

essentially plate structures, or those which one dimension is much smaller than the others. As

this possibility is implemented by one of the UMATs, it will be further developed.

Under plane stress assumption, and regarding equation (4.5) as a system of six equations, it

results that ε5 and ε6 are zero, but also that ε3 is linearly dependent from the remaining strains.

So it is possible to write the (6x6) elasticity tensor of equation (4.5) as a (3x3) tensor as follows

Ei j =


E11 −E13

E13
E33

E12 −E13
E23
E33

E14 −E13
E34
E33

E12 −E23
E13
E33

E22 −E23
E23
E33

E24 −E23
E34
E33

E14 −E34
E13
E33

E24 −E34
E23
E33

E44 −E34
E34
E33

 , (4.6)

where E11, E13 are the terms (11) and (13) of the (6x6) Ei j original matrix respectively, and

so successively. In case the coordinate system in consideration coincides with the principal

material axes of a orthotropic material, the tensor would look like
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Ei j =


E11 −E13

E13
E33

E12 −E13
E23
E33

0

E12 −E23
E13
E33

E22 −E23
E23
E33

0

0 0 E44

 . (4.7)

4.2 Material symmetries

The presence of symmetry in the material properties reduces still further the number of inde-

pendent Ei j parameters.

All the tensors is this section are referred in the way ABAQUS implements them: in terms of

engineering strain γi j , introduced in equation (4.3).

Orthotropic materials

Some engineering materials, including certain piezoelectric materials, e.g. Rochelle salt [5], or

wood, are orthotropic.

By definition, an orthotropic material has at least three orthogonal planes of symmetry. Such

materials require nine independent parameters (i.e. elastic constants) in their constitutive ma-

trices [23]. Various sets of these parameters can be given, their choice is not unique.

So its elasticity matrix, found as the inverse of the compliance matrix of the material, which

is the matrix which linearly relates strains to stresses, looks like [8]

Ei j =



1−νy zνz y

Ey Ez∆1

νy x+νzxνy z

Ey Ez∆1

νzx+νy xνz y

Ey Ez∆1

νx y+νxzνz y

Ez Ex∆1

1−νzxνxz
Ez Ex∆1

νz y+νzxνx y

Ez Ex∆1

νxz+νx yνy z

Ex Ey∆1

νy z+νxzνy x

Ex Ey∆1

1−νx yνy x

Ex Ey∆1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Gx y 0 0

0 Gxz 0

0 0 Gy z


, (4.8)

which is symmetric, where

∆1 =
1−νx yνy x −νy zνz y −νzxνxz −2νx yνy zνzx

ExEy Ez
, (4.9)
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with Ex , Ey and Ez the respective Young’s Moduli in the x, y and z directions, νi j the Poisson’s

ratio in the j direction when a stress or strain is applied on the i direction, and Gi j are the shear

moduli.

Even though nine independent parameters are needed for its implementation, the terms on

the elasticity matrix can be obtained via six material tests, e.g. three tensile and three shear tests,

as from the tensile tests we can compute both Young modulus and Poisson’s ratio. Depending

on which kind of boundary conditions we use, we can obtain each of the material parameters

present in the matrix separately, or directly the terms of the stiffness tensor.

Transversally isotropic materials

A special class of orthotropic materials are those that have the same properties in one plane

(e.g. the x-y plane) and different properties in the direction normal to this plane (e.g. the z-axis).

Such materials are called transverse isotropic, and they are described by five independent elastic

constants, instead of nine for orthotropic.

Examples of transversely isotropic materials include some piezoelectric materials (e.g. PZT-4,

barium titanate [5]) and fiber-reinforced composites where all fibers are in parallel.

For a transversally isotropic material, with isotropy plane x-y, its stiffness matrix can be easily

deduced from the orthotropic material’s one, it looks like [8]

Ei j =



1−νpzνzp

Ep Ez∆2

νp+νzpνpz

Ep Ez∆2

νzp+νpνzp

Ep Ez∆2

νp+νpzνzp

Ez Ep∆2

1−νzpνpz

Ez Ep∆2

νzp+νzpνp

Ez Ep∆2

νpz+νpνpz

E 2
p∆2

νzp+ν2
pz

E 2
p∆2

1−ν2
p

E 2
p∆2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
Ep

2(1+νp ) 0 0

0 Gxz 0

0 0 Gxz


, (4.10)

with Ep and νp respectively the Young’s Moduli and the Poisson’s Ratio of the considered

material in the symmetry x-y plane, and

∆2 =
1−ν2

p −νpzνzp −νzpνpz −2νpνpzνzp

E 2
p Ez

. (4.11)
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In this case, at least three material tests are needed, e.g. two tensile and one shear test. And

once again, depending on which kind of boundary conditions we use, we can obtain each of the

material parameters present in the matrix separately, or directly the terms of the stiffness tensor.

Cubic material symmetry

Cubic material symmetry can be regarded as the one with the lowest grade of anisotropy. The

number of independent elastic material parameters is three, e.g. the bulk modulus, K , and the

shear modulus, G and M , being G in this case the shear modulus related to normal loads that

involve no volume change, or the shear modulus in the 45º direction. This is a convenient choice

for treating the present problem of viscoelasticity [27].

The elasticity matrix for cubic symmetry can also be specified in terms of equation 4.8, but

another representation is shown for convenience as follows

Ei j =



K + 4
3G K − 2

3G K − 2
3G

K − 2
3G K + 4

3G K − 2
3G

K − 2
3G K − 2

3G K + 4
3G

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

M 0 0

0 M 0

0 0 M


. (4.12)

In this case, at least two different material tests are needed, e.g. one tensile test, from where

E and ν are extracted, and one load case which fulfills σ11 = −σ22, σ33 = 0, which represents a

normal load case with no volume change, or a 45º shear test.

Isotropy

An isotropic material has the same properties in every direction, so it shows responses which

are independent of the loading direction. Isotropic materials have an infinite number of planes

of symmetry. In consequence, if the reference axes are transformed by the operation of a centre

of symmetry, the components of Ei j kl remain unaltered [23].

Accordingly, the stiffness matrix for isotropic materials is the same as for cubic anisotropic

materials, i.e. equation (4.12), but with G = M .
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One material test is enough to obtain the two independent parameters that are needed for

constructing the isotropic stiffness matrix, e.g. a tensile test.

4.3 UMAT development procedure

A UMAT is a subroutine that, implementing a material constitutive model, allows to set a User-

defined mechanical material behavior in Abaqus.

To see the different components of the subroutine interface, see appendix A.

In the case of the present thesis, as a linear viscoelastic material is studied under steady

state dynamics conditions, the material input data is frequency dependent. This material input

data will be the results obtained from different simulations that depend, as seen in the previous

section of this chapter, on the material symmetries.

In consequence, the UMAT will have as input different material properties at each frequency

that was computed in the material data extraction. If the frequency under study is not one

of those in the input data, but in between, linear interpolation of the input material data will

be applied. On the other hand, in case such frequency is over the maximum frequency in the

input data or below the minimum one, the upper and the lower frequency material data will be

considered in the UMAT calculations correspondingly.

After the modulus and its loss angle interpolation, in case it was necessary, of the complex

input material properties, such input data is converted in terms of its real and imaginary parts.

Afterwards, the storage and the loss material elasticity matrices are computed for the corre-

sponding frequency under study and passed into Abaqus.

To see the input format of the developed UMATs see appendix B.



Chapter 5

UMAT intense testing and application

In this chapter some simulations will be carried out to test the UMAT’s accuracy and limita-

tions. Three UMATs are programmed, one specific for cubic anisotropy which can also deal with

isotropy; another one, much more complex, to deal with orthotropy, so it can also be applied for

transversal isotropy, cubic anisotropy and isotropy; and finally one with the same structure as

the orthotropic UMAT, but aimed at dealing with plane stress simulations.

5.1 Cubic UMAT

The material input data extraction, the cubic UMAT intense testing and a finite model applica-

tion are developed in the present section.

5.1.1 Material input data extraction

The material input data is obtained from the (1x1x1) mm unit cell in figure 5.1 with periodic

boundary conditions used in previous works [27]. This way, a regular periodic microstructure

can be modeled without imposing any over or under constraints. Macroscopic loading and

reading of the unit cell’s response is treated via master nodes as explained in section 3.2.3. This

way the material behavior is predicted under uniform far field loads without any influence of

gradients, free faces, and load introduction.

The unit cell has a relative density of 0.1017. The strut material is a polymer which can be

processed by rapid prototyping [29]. For the present study it is taken to be isotropic linear vis-

37
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Figure 5.1: Cubic unit cell used for material input data extraction.[27]

coelastic, with the long term elastic Young’s modulus, E∞ = 118 [MPa], and Poisson number,

µ= 0.4. The relaxation behavior is given in terms of one Prony term in shear with a characteris-

tic time, τG = 3 [s], and relative relaxation shear modulus, g = 0.791. Such viscoelastic behaviour

yielded a maximum loss angle of δ= 36.25ž. The bulk modulus is considered to not show relax-

ation, i.e. the relative relaxation bulk modulus, k = 0. [27]

Volumetric compression tests have been applied at different frequencies in order to get input

data of the complex bulk modulus K ∗ and its loss angle, δK , shear tests in the x-z plane for the

complex shear modulus M∗ and its loss angle, δM , and 45º shear tests applying the load case

already explained in section 4.2, σ11 = −σ22, σ33 = 0 for the input data related to the complex

shear modulus G∗ and its loss angle, δG .

The resulting input data are presented in table 5.1 and graphically represented in figures 5.2

and 5.3.
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Table 5.1: Homogenized cubic material data by unit cell

simulations.

f [Hz] K [MPa] δK [º] G [MPa] δG [º] M [MPa] δM [º]

10−5 1.93845 0.03653 2.32335 0.03840 0.12920 0.03654

5.0 ·10−5 1.93847 0.20091 2.32338 0.21121 0.12920 0.20094

10−4 1.93852 0.36529 2.32344 0.38400 0.12921 0.36534

2.5 ·10−4 1.93890 0.91304 2.32390 0.95982 0.12923 0.91316

5.0 ·10−4 1.94025 1.82481 2.32555 1.91836 0.12932 1.82507

7.5 ·10−4 1.94249 2.73403 2.32830 2.87433 0.12947 2.73445

10−3 1.94563 3.63945 2.33214 3.82648 0.12968 3.64006

1.25 ·10−3 1.94965 4.53984 2.33706 4.77356 0.12994 4.54070

2.5 ·10−3 1.98274 8.92591 2.37757 9.39215 0.13213 8.92909

3.75 ·10−3 2.03622 13.0264 2.44316 13.7228 0.13567 13.0347

5.0 ·10−3 2.10790 16.7467 2.53126 17.6697 0.14041 16.7635

6.25 ·10−3 2.19514 20.0332 2.63879 21.1782 0.14618 20.0627

7.5 ·10−3 2.29518 22.8695 2.76254 24.2308 0.15280 22.9159

8.75 ·10−3 2.40532 25.2672 2.89933 26.8382 0.16009 25.3344

10−2 2.52307 27.2558 3.04628 29.0291 0.16788 27.3474

2.0 ·10−2 3.53355 33.1880 4.34386 36.2466 0.23498 33.5452

3.0 ·10−2 4.38184 31.3902 5.50125 35.1184 0.29196 32.0082

4.0 ·10−2 4.98961 28.0173 6.38417 31.9547 0.33356 28.8124

5.0 ·10−2 5.40849 24.7221 7.02629 28.6058 0.36284 25.6104

6.0 ·10−2 5.69801 21.8758 7.48933 25.5815 0.38349 22.7972

7.0 ·10−2 5.90186 19.4983 7.82610 22.9791 0.39829 20.4155

8.0 ·10−2 6.04880 17.5234 8.07486 20.7713 0.40911 18.4159

9.0 ·10−2 6.15724 15.8755 8.26194 18.9004 0.41720 16.7329

10−1 6.23909 14.4892 8.40519 17.3079 0.42336 15.3071

1.25 ·10−1 6.37236 11.8505 8.64241 14.2350 0.43352 12.5696

Continued on next page
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Table 5.1 – Continued from previous page

f [Hz] K [MPa] δK [º] G [MPa] δG [º] M [MPa] δM [º]

2.5 ·10−1 6.56633 6.11072 8.99707 7.40206 0.44861 6.52288

3.75 ·10−1 6.60453 4.09788 9.06829 4.97224 0.45163 4.38012

5.0 ·10−1 6.61808 3.07980 9.09367 3.73918 0.45271 3.29350

6.25 ·10−1 6.62438 2.46621 9.10550 2.99507 0.45321 2.63793

7.5 ·10−1 6.62781 2.05625 9.11194 2.49758 0.45348 2.19970

8.75 ·10−1 6.62989 1.76306 9.11584 2.14166 0.45364 1.88619

1.0 6.63123 1.54299 9.11837 1.87445 0.45375 1.65084

2.5 6.63493 0.61755 9.12532 0.75033 0.45405 0.66080

5.0 6.63546 0.30880 9.12632 0.37520 0.45409 0.33043

7.5 6.63556 0.20587 9.12650 0.25014 0.45409 0.22029

10.0 6.63559 0.15440 9.12656 0.18761 0.45409 0.16522

50.0 6.63554 0.03088 9.12649 0.03752 0.45383 0.03306

100.0 6.63526 0.01544 9.12603 0.01876 0.45300 0.01656

In figure 5.3 we can appreciate the variation in the loss angle with the frequency. which takes

the pattern introduced and developed in section 2.2.2. Furthermore it is visible in figure 5.2 the

variation of the different considered moduli with frequency, which, in the frequency range of

high loss angle, show a noticeable increment in their module to become at high frequencies

again stabilized, but to a higher value. The first natural frequency of the unit cell appears ap-

proximately between 350 and 400 [Hz], depending on the load case, and the successive eigenfre-

quencies are close to each other so the pattern of these graphics changes over such frequency.

Considering that for a isotropic material, M and G would take the same value, this results

show that the present cubic, porous material has very low resistance when M is triggered, as its

M shear modulus is clearly lower as its G shear modulus.
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Figure 5.2: Cubic modulus input data in graphical form.

Figure 5.3: Cubic loss angle input data in graphical form.
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5.1.2 UMAT intense testing

With the material input data on table 5.1 the cubic UMAT has been intensively tested. The pro-

cedure consists in the application of different load cases at different frequencies. The boundary

conditions applied to the master nodes in each simulation are represented in table 5.2. Such

simulations have been applied to both unit cells, the inhomogeneous cubic unit cell of figure 5.1

with isotropic material data, and a single element with the homogeneized cubic material data

of table 5.1, applied through the UMAT subroutine and with periodic boundary conditions.

Table 5.2: Cubic UMAT intense testing load cases. Master

nodes’ displacement boundary conditions.

M0 Mx My Mz

test 1

dx [mm] 0 -1 0 0

dy [mm] 0 0 0 0

dz [mm] 0 0 0 0

test 2

dx [mm] 0 0.5 0 0

dy [mm] 0 0 - -

dz [mm] 0 0.86603 0 -

test 3

dx [mm] 0 - - 0.5

dy [mm] 0 - - 0.5

dz [mm] 0 0 0 -0.5

test 4

dx [mm] 0 0 0 -

dy [mm] 0 0.5 0 -

dz [mm] 0 0 0.5 -

test 5

dx [mm] 0 0 - 0

dy [mm] 0 0.5 0 0

dz [mm] 0 0 0 0.5
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In the ideal case, each simulation results would coincide correspondingly. This ideal case is

actually impossible to achieve because of numerical precision in Abaqus calculations and the

number of significant figures chosen for the material input data. Furthermore, if the frequency

under study does not coincide with a input data frequency, another error has to be considered,

because as presented in section 4.3, a linear interpolation is carried out for the calculations. In

conclusion, the more input frequencies used, the more precise the UMAT predictions will be,

but some computational errors will always be present.

Table 5.3: Cubic UMAT intense testing average and maxi-

mum resulting error in the reference node M0 main reac-

tion force, RF , and its loss angle, δ calculations.

average error maximum error

test 1
RF1 0.0446% 0.1271%

δ1 0.1089% 0.2562%

test 2
RF1 0.0487% 0.1110%

δ1 0.1135% 0.2635%

test 3
RF3 0.0563% 0.1626%

δ3 0.1107% 0.2577%

test 4
RF1 0.1920% 0.2641%

δ1 0.1287% 0.2954%

test 5
RF3 0.0555% 0.1560%

δ3 0.1099% 0.2511%

The comparison of the results given from both models is provided in table 5.3. This com-

parison is carried out in the 10−4 −100 [Hz] frequency range, as it is the range with closest input

data. Table 5.3 shows a good prediction from the UMAT, with an error below 1%. Despite that

good general precision, if we perform calculations in a frequency range with less input data,

the calculations yield higher errors, this is due to the interpolation errors and would be easily
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Figure 5.4: Finite model of cubic material in the [001] direction.

solved adding new material input data in the range of frequencies where the calculations will

take place.

5.1.3 Finite medium application

The UMAT has been applied to different models of finite size to simulate the effects of load

introduction, free faces, and (possibly) open cut base cells. The finite models are four cubic

samples which consist in arrays of cells as the one in figure 5.1 with different orientations. These

finite models have been previously used in [27].

For every orientation a (virtual) cubic sample of size (8x8x8) mm is investigated, but as for

each material orientation different symmetries are present, it is possible to reduce the size of

the simulated models. Therefore, smaller finite samples have been simulated. In the case of the

[001] and [110] orientations in figures 5.4 and 5.5 respectively, a (4x4x4) mm model is enough,

as it is possible to apply symmetry boundary conditions in the xy, xz and yz planes. On the other

hand, for the [111] and [120] orientations in figures 5.6 and 5.7 respectively, a (4x8x8) mm model
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Figure 5.5: Finite model of cubic material in the [110] direction.

Figure 5.6: Finite model of cubic material in the [111] direction.
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Figure 5.7: Finite model of cubic material in the [120] direction.

is needed, as such orientations have not the previous symmetry properties, so just the symmetry

in the xy plane is considered.

Finite models of the same dimensions and boundary conditions, but with homogenized ma-

terial have been built for the application of the cubic UMAT in order to compare the results given

by both finite samples for each material orientation.

Loading conditions are of the type of “uniaxial stress” in the z-direction. The faces with load

introduction are thought as having rather massive plates attached to the struts. In addition, all

displacement degrees of freedom at the bottom of the structure are locked. At the top face all

displacements in loading direction are equal, and the lateral displacements are locked [27].
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Table 5.4: Finite models with different material orienta-

tions simulation and comparison to the correspondent

UMAT results. Reaction force in the stress direction, RF3,

and its loss angle, δ3.

frequency [Hz]

0.001 0.00373 0.0518 0.193 2.68 10

001

RF3 [N] 5.028 5.262 14.920 18.390 18.790 18.790

RF3.U M AT [N] 5.004 5.243 14.790 18.360 18.770 18.760

δ3 [º] 3.761 13.410 26.760 8.959 0.659 0.177

δ3.U M AT [º] 3.771 13.410 26.940 9.109 0.711 0.177

110

RF3 [N] 1.034 1.081 3.007 3.677 3.754 3.751

RF3.U M AT [N] 0.970 1.015 2.776 3.405 3.475 3.438

δ3 [º] 3.712 13.230 26.000 8.687 0.639 0.174

δ3.U M AT [º] 3.689 13.110 25.770 8.685 0.678 0.171

111

RF3 [N] 0.506 0.529 1.438 1.751 1.786 1.775

RF3.U M AT [N] 0.561 0.587 1.584 1.933 1.967 1.874

δ3 [º] 3.642 12.980 25.410 8.507 0.626 0.169

δ3.U M AT [º] 3.653 12.980 25.270 8.506 0.666 0.174

120

RF3 [N] 2.201 2.303 6.481 7.972 8.144 8.136

RF3.U M AT [N] 2.315 2.425 6.779 8.383 8.564 8.478

δ3 [º] 3.738 13.320 26.530 8.894 0.654 0.176

δ3.U M AT [º] 3.747 13.320 26.600 8.986 0.702 0.177

As we can see in the result table 5.4, the UMAT predictions are quite acceptable, specially in

the loss angle calculations, where generally the error is almost zero. The errors are mainly due

to the reasons presented above, and the major error in the [111] material orientation might be

due to the finite model symmetry consideration, because it is not clear if in this orientation this

symmetry actually exists.
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Figure 5.8: Transversal isotropy unit cell. [25]

The complexity of the model and mesh is clearly lower in case of the homogeneous finite

sample with the cubic UMAT application, so the preprocessing time is drastically reduced. Fur-

thermore, the reduction in the calculation time is considerably important, e.g. in the finite

model with [001] material orientation calculation, the reduction of computation time is 78.57%,

and in case of the [111] material orientation, it reaches the 94.39%. In conclusion, the UMAT ap-

plication has a substantial improvement in computational efficiency with precision costs gen-

erally assumable.

5.2 Orthotropic UMAT

In the present section the transversal isotropic material input data extraction and the ortho-

tropic UMAT intense testing with such input data are discussed.

5.2.1 Material input data extraction

In this case the material input data is obtained from the (2x1.73205x0.1) mm unit cell in fig-

ure 5.8, developed in [25]. This unit cell yields transversally isotropic material data. The loading

and reading of the unit cell’s behaviour is the same as the applied in the cubic symmetry case.
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The unit cell models a transversally isotropic material composed of matrix and fibers. In

the present case, the matrix is considered as the polymer used in the cubic case 5.1.1. On the

other hand, the fiber material has a much lower long term elastic modulus, E = 0.0118 [MPa],

four orders of magnitude lower than the matrix material, and a Poisson number, ν = 0.4, no

viscoelastic properties are considered in the fiber material. Such low stiffness fibers behave like

voids, so the material can be thought as a transversally isotropic cellular material.

Even though with three would be enough, in order to get the material input data six simula-

tions have been carried out at different frequencies. The reason is with six simulations we can

get directly from the Abaqus output each different complex modulus and its phase angle of the

elasticity matrix with no need of further calculations. This is convenient as the calculations in

the unit cell are not very expensive in terms of computation time. Three confined compression

tests in the x-direction with different boundary conditions, one for each, the (11), (12) and (13)

terms (the x displacements in order to get directly the values of the tensor as Abaqus output

have different magnitudes, as the normal surface for each term is different in the unit cell), one

confined compression test in the z-direction for the (33) term, and two shear tests, one in the x y

plane for the (44) term and the other in the xz plane for the (55) term. For the input in the or-

thotropic UMAT, terms (22), (23) and (66) should be also included as input. On the other hand,

as the material is transversally isotropic, see section 4.2, terms (11) and (22), (13) and (23), (55)

and (66) are equal, so simulations to get such terms are not necessary.

Table 5.5 shows the resulting input data from such simulations. The first eigenfrequency of

the system is now approximately between 0.4 and 0.55 [Hz], so the maximum frequency con-

sidered for the input material data is 0.375 [Hz]. The material input data is also represented in

figures 5.9 and 5.10.
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Figure 5.9: Transversally isotropic elasticity matrix components input data in graphical form.

Figure 5.10: Transversally isotropic loss angle input data in graphical form.

The strange results obtained from the unit cell in term (13) might be caused by the fact that

the master nodes are placed in the center of the fibers, which in this case act as voids, so the

stress transmission might not be as accurate as desired. The effects of this inaccuracy in the
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input data will be reflected in the intense testing error results.

5.2.2 UMAT intense testing

The same procedure as with the cubic UMAT has been carried out with the orthotropic UMAT.

But in this case, with the boundary conditions of table 5.6, applied to unit cell in figure 5.8 and a

single element unit cell with the homogenized transversally isotropic material data of table 5.5,

applied though the orthotropic UMAT and with periodic boundary conditions.

Table 5.6: Orthotropic UMAT intense testing load cases.

Master nodes’ displacement boundary conditions.

M0 Mx My Mz

test 1

dx [mm] 0 1 0 0

dy [mm] 0 0 - 0

dz [mm] 0 0 0 -

test 2

dx [mm] 0 0 0 0

dy [mm] 0 1 0 0

dz [mm] 0 0 1 0

test 3

dx [mm] 0 1 0 0

dy [mm] 0 0 - 0

dz [mm] 0 0 0 0.1

test 4

dx [mm] 0 0 - 0

dy [mm] 0 1 0 0

dz [mm] 0 0 - 0.1

test 5

dx [mm] 0 - 0.5 0

dy [mm] 0 0 0.5 0

dz [mm] 0 0 0 -
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The reasons why some errors should be assumed and considered are the same as those ex-

plained in the cubic UMAT intense testing. The comparison of the results in the 10−4−10−1 [Hz]

frequency range yielded the error results shown in table 5.7.

Table 5.7: Orthotropic UMAT intense testing average and

maximum resulting errors in a displaced node main reac-

tion force, RF , and its loss angle, δ calculations.

average error maximum error

test 1
RF1 0.2909% 0.8126%

δ1 1.0574% 4.7510%

test 2
RF3 0.4128% 1.8708%

δ3 1.1018% 5.2516%

test 3
RF3 0.3551% 1.5925%

δ3 1.3915% 6.3329%

test 4
RF3 0.0705% 0.1176%

δ3 0.8354% 3.7352%

test 5
RF2 0.6578% 2.6943%

δ2 1.0945% 4.5193%

The results of this simulations yield a quite low average error, with a higher maximum error,

specially in the loss angle calculations. The error takes this higher values when the calculations

are performed over 10−2 [Hz], in calculations at frequencies below such frequency the error re-

mains generally lower than 1%, which can be considered negligible. This increased error values

are mainly due to the input data inaccuracies in the (13) term described in the previous section.

Despite this increased error, the UMAT behaviour is good as a maximum error of 6% is typically

affordable and minor errors can be considered below f = 10−2 [Hz].
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5.3 Plane stress UMAT: DMA test

In the present section the motivation and data extraction for a plane stress UMAT is included.

Furthermore, it will be applied for the simulation of a Dynamic Mechanical Analysis (DMA) on

a layered composite with different configurations.

5.3.1 Motivation for the plane stress UMAT

As presented in section 4.1.1, in some cases the reduction of the dimensions of the problem is

possible via plane stress theory. This reduces the computation costs as the rank of the elasticity

matrix and the number of degrees of freedom are reduced.

If the orthotropic UMAT implements the procedure in section 4.1.1, seems such theory is

only applicable for elastic materials, because when complex computations are carried out to

compute the plane stress elasticity matrix out of the 3D one, only the complex moduli of the

components gets proper results. The phase angle calculation yields in general high errors that

cannot be assumed.

In order to avoid this inconvenience and to have the possibility to accurately perform plane

stress calculations, a new UMAT, based on the previous orthotropic UMAT, has been developed.

This UMAT has as input directly the values of the plane stress elasticity tensor, this way com-

plex matrix transformations are avoided, as the terms for the elasticity tensor can be directly

extracted from Abaqus if proper boundary conditions are chosen.

5.3.2 Material input data extraction

The material input data for the plane stress UMAT is obtained from the transversally isotropic

unit cell 5.8, considering plane stress assumptions in the x-z plane. The 1 and 2 directions coin-

cide in this case with the z and x directions respectively.

In this case, the chosen matrix material is once again the polymer used in the cubic unit cell.

On the other hand, for the fiber material, boron-containing E-glass fiber with no viscoelastic

properties has been considered. Its elastic properties are E = 77,000 MPa and ν= 0.22. [9]
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Figure 5.11: Plane stress transversally isotropic elasticity matrix components input data in
graphical form.

Two z-direction tensile tests with restrained x-displacement and one x-direction tensile test

with reastrained z-displacement were carried out to get terms (11), (12) and (22) respectively.

Furthermore an in-plane shear test is applied to get the remaining (33) term. All of them are per-

formed at different frequencies as in the previous cases. The computation strategy and UMAT

structure is the same applied in the orthotropic case.

The resulting transversally isotropic, plane stress input data are presented in table 5.8 and

graphically represented in figures 5.11 and 5.12.
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Figure 5.12: Plane stress transversally isotropic loss angle input data in graphical form.

5.3.3 DMA application

In the present section the plane stress UMAT with the transversally isotropic material input data

of the previous section will be applied to a model for Dynamic Mechanical Analysis, also devel-

oped in the context of the present thesis.

DMA description and applications

Dynamic Mechanical Analysis, otherwise known as DMA, is a technique where a small defor-

mation is applied to a sample in a cyclic manner. This allows the materials response to stress,

temperature, frequency and other values to be studied. The term DMA is also used to refer to

the machine that performs the test.

DMA works by applying a sinusoidal deformation to a sample of known geometry. The sam-

ple can be subjected by a controlled stress or a controlled strain. For a known stress, the sample

will then deform a certain amount. How much it deforms is related to its stiffness. A force motor

is used to generate the sinusoidal wave and this is transmitted to the sample via a drive shaft.

An example of a DMA machine is represented in figure 5.13.

DMA measures stiffness and damping, these are reported as modulus and tanδ, which as
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Figure 5.13: Schematic of the PerkinElmer DMA 8000. [19]

described in section 2.2.2, is a measure of damping or energy dissipation of the material. So it is

most useful for studying the viscoelastic behavior of materials.

The temperature of the sample or the frequency of the stress are often varied, leading to vari-

ations in the complex modulus; this approach can be used to describe viscoelastic properties, to

locate the glass transition temperature of the material or to identify transitions corresponding

to other molecular motions.

Model description and application

A sample of 10 mm width, 50 mm support distance and 1 mm thickness has been chosen for the

DMA model. The model includes a four layered section definition, so each layer consists in a

0.25 mm thickness ply with the possibility to set up different material orientations to each layer.

The model is represented in figure 5.14.

Such Abaqus model consists in a three point load case with a periodic central displacement

of 40µm. The selected element type has been the thin shell element S4R5, which is applicable as

the ratio thickness to support distance is very low. The reason for this selection is that the trans-
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Figure 5.14: DMA Abaqus model.

verse shear stiffness, required by Abaqus for performing its computations with shell elements,

has no influence in the simulation results. The proper calculation of such material parameter

is quite complex as the material is non-homogeneous, with the S4R5 such complications are

avoided.

Different simulations have been performed in order to compare the behaviour of different

configurations of the four layered composite. Such simulations consist in steady state dynamic

analysis at different frequencies in the 10−5 −10−2 [Hz] frequency range. The studied layer con-

figurations are [0]4, [90]4, [±45]2, [90/0]s and [0/90]s . An example of how the deformed shape

looks like is included in figures 5.15 and 5.16.

Simulation results

For each configuration and at different frequencies, the reaction force in the 3rd direction and

its loss angle at the loading point has been predicted. The results are presented in table 5.9 and

graphically represented in figures 5.17 and 5.18.
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Figure 5.15: DMA deformed model. [0]4 composite, f = 10−5 [Hz], scale factor = 150.

Figure 5.16: DMA deformed model. 2D view of x-z plane. [0]4 composite, f = 10−5 [Hz], scale
factor = 150.
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Figure 5.17: DMA RF3 results in graphical form.

Figure 5.18: DMA δ3 results in graphical form.

Looking at the reaction force in the third direction at the loading point, RF3, graphically

represented in figure 5.17, the results from the DMA simulations yielded, as expected, that the

stiffest layer configuration is the [0]4, followed by the [0/90]s one. In contrast, the [90]4 and the
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[±45]2 configurations are reflected as the most flexible ones.

On the other hand, on the shift angle representation in figure 5.18, we can appreciate that

those configurations with higher stiffness present practically no damping, as the loss angle re-

mains much closer to zero than in the softer cases. This is consequence of the fiber properties.

The behaviour of the stiffer configurations is mainly influenced by the fiber material, which has

no viscoelastic properties. Also the percentage increase in the reaction force in the high loss

angle frequency range, which is quite accused in the case of the the [90]4 and the [±45]2 config-

urations, is almost negligible in the [0]4 and the [0/90]s cases.



Chapter 6

Summary

Three different Abaqus UMATs have been successfully developed in the present thesis, one for

cubic anisotropy, another one to orthotropy and one last one to deal with plane stress cases.

Such UMATs yielded good results in those cases where the input data was correctly selected. In

consequence, the simulation of orthotropic, and less complex types of material symmetries, lin-

ear viscoelastic materials in the frequency domain is possible in Abaqus through the application

of the developed UMATs.

Furthermore, the increase in computational efficiency in those cases where homogenization

was applied has been proved, with a computation time reduction up to 95

Last but not least, the development of the DMA model allows the simulation of a Dynamic

Mechanical Analysis, which is usually applied in material characterization, without having the

physic machine and the finite sample to experimentally perform it.

Further investigation

There are two main further investigation directions. On one hand, one path could be the study

of the complex matrix conversion from the 3D to the plane stress case. On the other hand is the

experimental DMA application to a finite sample and its comparison to the Abaqus DMA model

results, in order to prove its accuracy and its strong and weak points.
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Appendix A

UMAT interface

The present appendix is an extract of the DS Simulia ABAQUS 6.14 User’s Guide [1]. It includes

the UMAT interface structure and a further explanation of the most important terms or variables

that take part in the frequency domain linear viscoelastic UMAT programming.

A.1 UMAT interface structure

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,

2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC)

C

INCLUDE 'ABA_PARAM.INC'

C

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),

4 JSTEP(4)
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user coding to define DDSDDE, STRESS, STATEV, SSE, SPD, SCD

and, if necessary, RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT

RETURN

END

A.2 Variable list

DDSDDE(NTENS,NTENS)

For viscoelastic behavior in the frequency domain, the Jacobian matrix must be dimen-

sioned as DDSDDE(NTENS,NTENS,2). The stiffness contribution (storage modulus, E(i j ),s) must

be provided in DDSDDE(NTENS,NTENS,1), while the damping contribution (loss modulus, E(i j ),l )

must be provided in DDSDDE(NTENS,NTENS,2).

TIME(1)

Value of step time at the beginning of the current increment or frequency.

NDI

Number of direct stress components at this point.

NSHR

Number of engineering shear stress components at this point.

NTENS

Size of the stress or strain component array (NDI + NSHR).

PROPS(NPROPS)

User-specified array of material constants associated with this user material.

NPROPS

User-defined number of material constants associated with this user material.



Appendix B

Material data input

If a UMAT subroutine is used, the material parameters should be passed in to Abaqus as input

data in the user material definition. In this appendix the formatting of the data that should be

provided will be dealt for the cubic, the orthotropic and the plane stress UMATs.

B.1 Cubic UMAT data input

In cubic symmetry three complex moduli are needed. Therefore, six values should be passed in

as input at each frequency. The selected material input data is explained in section 5.1.1.

The order of the input data should be, frequency of the following six material data input,

complex bulk modulus K ∗, its loss angle, δK , the complex shear modulus G∗, its loss angle, δG ,

the complex shear modulus M∗ and its loss angle, δM . Every loss angle must be specified in

degrees. Finally, as Abaqus reads eight values per input data line, a zero value should be input

as the eighth input at each frequency. Afterwards, in case it exists, the next frequency with its

correspondent material data should be typed.

In conclusion, the number of material input data should be 8n f , with n f the number of

frequencies the user has material data input available.

User defined cubic material input example

Here is an example of cubic material input data where material properties are specified at three

different frequencies.
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*MATERIAL, NAME=VISCO

*USER MATERIAL, CONSTANTS=24

1.0E-3, 1.943, 3.655, 2.332, 3.831, 0.139, 3.646, 0.

5.0E-5, 2.235, 18.23, 2.541, 20.98, 0.154, 16.25, 0.

1.0E-2, 2.527, 27.26, 3.046, 29.03, 0.174, 27.35, 0.

B.2 Orthotropic UMAT data input

In orthotropic symmetry nine complex moduli are needed. Therefore, 18 values should be

passed in as input at each frequency. The selected material input data are explained in sec-

tion 5.2.1.

In this case again the first input data should be the frequency of the following 18 material

data input. The order of the matrix terms input data at that frequency is as follows, term (11),

(12), (13), (22), (23), (33), (44), (55), (66). For each term of the elasticity matrix its complex mod-

ule and its respective loss angle in degrees should be given in this order. Once again, as Abaqus

reads eight values per input data line, five zero values should be input in order to complete the

line at each frequency. Afterwards, in case it exists, the next frequency with its correspondent

material data should be typed.

In conclusion, the number of material input data should be 19n f , with n f the number of

frequencies the user has material data input available.

User defined orthotropic material input example

Here is an example with transversally isotropic material input data where material properties

are specified at two different frequencies.

*MATERIAL, NAME=VISCO

*USER MATERIAL, CONSTANTS=48

3.00E-002, 53.988, 26.549, 28.012, 22.551, 27.336, 1.671, 53.988

26.549, 27.336, 1.671, 122.191, 27.283, 13.057, 30.838, 26.307

40.250, 26.307, 40.250, 0., 0., 0., 0., 0.



APPENDIX B. MATERIAL DATA INPUT 72

4.00E-002, 60.063, 24.028, 30.566, 20.137, 27.356, 5.086, 60.063

24.028, 27.356, 5.086, 136.525, 24.904, 14.818, 28.043, 31.307

37.525, 31.307, 37.525, 0., 0., 0., 0., 0.

B.3 Plane stress UMAT data input

In plane stress linear viscoelasticity, a orthotropic material needs 4 complex moduli to be de-

fined. Therefore, 8 values should be passed in as input at each frequency. In this case the se-

lected material input data are explained in section 5.3.2.

As in the other UMATs, the first input data should be the frequency of the following 8 material

data input. The order of the matrix terms input data at that frequency is as follows, term (11),

(12), (22), and (33). As in the orthotropic UMAT, for each term of the elasticity matrix its complex

module and its respective loss angle in degrees should be given in this order. As before, because

Abaqus reads eight values per input data line, seven zero values should be input in order to

complete the line at each frequency. Afterwards, in case it exists, the next frequency with its

correspondent material data should be typed.

In conclusion, the number of material input data should be 9n f , with n f the number of

frequencies the user has material data input available.

User defined plane stress input example

Here is an example with plane stress, transversally isotropic material input data where material

properties are specified at two different frequencies.

*MATERIAL, NAME=VISCO

*USER MATERIAL, CONSTANTS=32

4.00E-002, 46368.804, 0.0828, 256.079, 13.553, 1156.042, 20.063, 501.575

36.980, 0., 0., 0., 0., 0., 0., 0.

5.00E-002, 46382.548, 0.0810, 265.775, 12.027, 1242.800, 19.184, 562.805

33.666, 0., 0., 0., 0., 0., 0., 0.
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