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Abstract

Justification logic can be seen as an explicit counterpart of modal logic. Instead of saying „A
is necessary“ (�A), it is possible to say „A is necessarily true because of t“ (t : A), where the
justification term t can even be constructed from more than one justification. The formal way of
studying the connection between modal logic and justification logic is called realization, this is
a procedure that replaces �’s in a modal formula with terms, to create a justification formula.

Sergei Artemov proved that the modal logic S4 is realizable into the logic of proofs LP,
using a cut-free sequent system for S4. At the moment, it is believed that there exists no cut-free
sequent system for S5. Thus to be able to realize S5 into some justification logic syntactically,
another method had to be searched.

Using different realizations of the negative introspection axiom, S5 has been realized into
some of its justification counterparts by using a hypersequent system or a nested sequent system.
In this thesis it will be shown, using hypersequents, that S5 is realizable into any of the ten
justification counterparts that can be constructed with these different realizations of the negative
introspection axiom and can be found in the literature.

In order to establish the same result using non-modular nested sequents as introduced by
Kai Brünnler, too many similar cases have to be considered and, therefore, only some of the less
standard realizations will be shown. For the complete list of realizations using nested sequents,
the nested sequent calculi introduced by Lutz Straßburger will be employed, these calculi are
better suited for this purpose due to their modular nature. This modularity makes it possible to
realize each rule independent of the other rules and, accordingly, of the justification operations
corresponding to the other rules. Even though the focus lies on the realizations of S5, the
modularity of Straßburger’s calculi ensures that the given proofs imply fully modular realization
theorems for all modal logics in the modal cube between K and S5.
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Kurzfassung

Begründung-Logik kann als das explizite Gegenstück von Modallogik gesehen werden. Statt zu
sagen „A ist notwendig“ (�A), ist es hier möglich, zu sagen „A ist notwendigerweise wahr we-
gen t“ (t : A), wobei der Begründungsausdruck t sogar aus mehreren Begründungen geformt
werden kann. Die formale Verbindung zwischen Modallogik und Begründung-Logik, ist gege-
ben durch Realisierung. Das ist eine Prozedur, bei der �’s durch Begründungsausdrücke ersetzt
werden, wodurch eine Begründungsformel entsteht.

Sergei Artemov bewies, dass die Modallogik S4 in die Logic of Proofs LP realisiert wer-
den kann, wobei ein schnittfreier Sequenzenkalkül für S4 verwendet wird. Derzeit wird ver-
mutet, dass es keinen schnittfreien Sequenzenkalkül für S5 gibt. Um S5 syntaktisch in eine
Begründung-Logik zu realisieren, muss eine andere Methode gesucht werden.

S5 ist in einige seiner Begründung-Gegenstücke realisiert worden, wobei ein Hypersequenzen-
System oder ein verschachtelter Sequenzenkalkül sowie verschiedene Realisierungen des nega-
tiven Introspektionsaxioms verwendet wurden. In dieser Arbeit wird mit Hilfe eines Hyperse-
quenzenkalküls gezeigt, dass S5 in alle zehn Begründungs-Logik-Gegenstücke realisiert werden
kann, die mit diesen verschiedenen Realisierungen des negativen Introspektionsaxioms konstru-
iert werden können.

Um das gleiche Resultat zu bekommen, wenn nicht modulare-verschachtelte Sequenzen wie
von Kai Brünnler eingeführt verwendet werden, müssen zu viele ähnliche Falle unterschieden
werden, und daher wird das nur für einige weniger standard Realisierungen gemacht. Für die
komplette Liste mit Realisierungen wobei verschachtelte Sequenzen verwendet werden, wer-
den die verschachtelte Sequenzenkalküle, eingeführt von Lutz Straßburger, verwendet, dieses
Kalkül ist auf grund ihter modularen Nature besser geeignet für dieses Ziel. Diese Modulari-
tät macht es möglich die Regeln unabhängig von den anderen Regeln und dementsprechend,
von dem Begründungsoperationen die mit die anderen Regeln korrespondieren zu realisieren.
Obwohl konzentriert wird auf die Realisierungen von S5, gewährleistet die Modularität von
Straßburger’s Kalkül, dass die gegebenen Beweise vollständig modulare Realisierungs Sätze für
alle Modal-Logiken in des Modalkubus zwischen K und S5 impliziert.
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Introduction

Formal reasoning is a crucial part of artificial intelligence, in order to create intelligent entities,
one has to understand what intelligence is and how to reason in an intelligent manner. Since
human beings assume that they are intelligent, the goal is often to formalize human reasoning.
Logic is such a formal way of reasoning, studied since Ancient Greece. Therefore logic is an
important part of computational intelligence and more general, of computer science.

Classical propositional and first-order logic and modal logic are taught in bachelor and mas-
ter curricula, but these are only a rather small tip of the iceberg. Each logic tries to model a
specific aspect of (human) reasoning in the best possible way.

In modal logics modalities like � and ♦ are used. Depending on the modal logic, �A could
mean for example, “A is known” or “A is necessarily true”. It is however never possible to
change the meaning of this � once chosen: each occurrence of a � within that specific logic,
has the same meaning.

In justification logic, instead of these modalities, justifications are used. Let t be a justifi-
cation for A, this is denoted by t : A and could mean “A is known because of t”. Part of the
language of justification logic consists of operators on these justifications. As is the case in real
life, one justification to know something is often not enough.

In the literature, justification logic is called an explicit counterpart of modal logic. Instead
of saying “A is necessary” (�A), it is possible to say “A is necessarily true because of t”
(t : A) using justifications and t might even be constructed from more than one justification.
The procedure of replacing �’s in a modal formula with terms, to create a justification formula,
is called realization. This might suggest a connection between these two kinds of logics, which
is indeed the case.

The logic of proofs, LP as introduced by Sergei Artemov [1, 2], has such a connection with
the modal logic S4, more formally: S4 is realizable into LP. The proof of this realization as
given by S. Artemov [2], is based on a cut-free sequent system for S4. Since then realization
theorems for other connections between modal logic and justification logic have been proven,
but S5 seems more difficult.

At the moment, it is believed that there does not exist a cut-free sequent system for S5.
Thus to be able to realize S5 into some justification logic syntactically, another method had to
be searched. Over the years, different kinds of these methods are introduced to realize S5 into
different justification logics:

• Using hypersequents, it has been shown by S. Artemov, E. Kazakov and D. Shapiro [4]
that S5 is realizable into LPS5 and LPS5c, two extensions of the logic LP. Two different
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realizations of the negative introspection axiom 5, called A5 and A5c, have been used.

• Using nested sequents, it has been shown by R. Goetschi and R. Kuznets [12] that S5 is
realizable into the justification logic JT45, an extension of LP as well. Another realization
of the negative introspection axiom 5, called j5 was used here.

In addition to the logic JT45, seven other logics were introduced by R. Goeschi and R. Kuznets
[12]: JT5, JTB4, JTB5, JDB4, JDB5, JDB45 and JTB45. The axiom j5 is part of the logics
JT5, JTB5, JDB5, JDB45 and JTB45, but in JTB4 and in JDB4 none of the aforementioned
realizations of 5 are used. The proof of the realization into JT45 applies to the logic JTB45 as
well. For the other six logics a translation method, on top of the syntactical method, was used to
prove the realization of S5 into these remaining logics.

With the three realizations of the 5-axiom above mentioned, there are ten different justi-
fication counterparts of the modal logic S5 that can be found so far in the literature. It has
been proven that S5 is realizable into any of these justification counterparts, but using different
methods. For three of them a syntactic method of realization can be found, one implying the
realization of a forth.

Knowing these results, the goal of the thesis is to use a syntactic method to prove the realiza-
tions of the remaining six justification logics and trying to show that any cut-free proof system
works for every existing realization. This is done by answering the following questions: is it
possible to realize S5 into LPS5 and LPS5c using nested sequents,into JT45, JDB45, JTB45,
JT5, JTB4, JDB4, JDB5 and JTB5 using hypersequents and into any of these ten justification
counterparts using Straßburger’s modular nested sequents [15]?

To answer this question hypersequents (in chapter 3), nested sequents (in chapter 4) and
Straßburger’s modular nested sequents (chapter 5) will be considered. Each sequent system
introduces a set of rules that could be used in an S5-derivation. The goal is to prove that,
assuming by induction hypothesis that the premise of a rule can be realized, the conclusion of
the rule can be realized in the justification counterpart of S5. And this for each rule, for each of
these ten justification logics.

The hypersequent system as that was introduced by S. Artemov, E. Kazakov and D. Shapiro
[4] is written in a notation that is no longer used. A definition in the standard notation can
be found in a paper by A. Avron on hypersequents [5]. The definitions, lemmas and proofs
concerning hypersequents will be based on the system that was used to realize S5 but will be
written in the standard notation.

In the first chapter a short introduction will be given on modal logic and justification logic,
stating the axiom systems and logics that will be used in the thesis. The second chapter covers
the general idea of realization theorems and some important notions, such as internalization and
substitution.

The third chapter starts with the definition of the hypersequent system for S5 in the standard
notation. In this chapter the realization of S5 into JT45, JDB45, JTB45, JT5, JTB4, JDB4,
JDB5 and JTB5 using hypersequents is proven. In the forth chapter the nested sequent system
for S5 as used by R. Goetschi and R. Kuznets [12] is given, followed by the proofs of the
realization of S5 into LPS5 and LPS5c.
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The nested sequent system of S5 consists in addition to the propositional rules of five modal
rules. To prove the realization of these five rules into LPS5, LPS5c, JDB45, JT5, JTB4, JDB4,
JDB5 and JTB5, forty cases have to be considered. Instead of proving all these cases, the
modular nested sequent system, introduced by S. Marin and L. Straßburger [15] will be used.
This is an extension of the nested sequent system as it can be found in R. Goetschi and R.
Kuznets [12], there are seven new rules. The use of this system makes it possible to prove the
realization in a modular manner: each of the rules can be realized independently of the others.
Which means that only seven new cases have to be considered, one for each additional rule. The
modularity of the realization method in combination with the modularity of Straßburger’s calculi
implies the modularity theorem for all modal logics in the modal cube between K and S5. The
system will be given in chapter five, where the realization of S5 into any of the ten considered
justification counterparts will be proven as well.
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CHAPTER 1
Modal Logic and Justification Logic

1.1 Modal Logic

When reasoning about necessity, knowledge, certainty or always, classical propositional logic
is not enough. This is shown by the following example, as Aristotle pointed out already [9, p.
35-36]:

EXAMPLE 1.1.1. Consider a sea-battle, then there are two possibilities: either it will take place
tomorrow or it will not take place tomorrow:
• It is necessary that there will be or will not be a sea-battle tomorrow
• It is not necessary that a sea-battle will take place tomorrow
• It is not necessary that there will not be a sea-battle tomorrow.

Notice that the formulation of these three statements have more or less the same structure. Now,
it is necessary that the sea-battle will take place or that it will not take place, but it is not possible
to predict the future and conclude that it is necessary that the sea-battle will indeed take place or
that it is necessary that the sea-battle will not take place.

In classical propositional logic, it is possible to let atomic formulas denote the three different
statements. But it is not possible to reason why the first statement is valid and why the second
and third statement are not valid1. ♦

Therefore, with classical propositional logic, it is not possible to reason about necessity, or any
other kind of intensional context. Modal logic is a logic that makes it possible to reason with
adverbials, like necessary, known to be, permitted, now etc.

Modal logic extends classical propositional logic, by adding modal operators, called modali-
ties. There are many different modalities that form different kinds of modal logics, here only the
modalities � and ♦ are considered. Depending on the kind of modal logic these operators have

1The original example is more complex and the discussing of it, by many important logicians throughout the
ages, is far more extensive. However, here this shorter version is sufficient to show that reasoning about necessity
cannot be done in classical propositional logic.
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different meanings. Usually, � means necessary and ♦ means possibly, but when reasoning
about knowledge, � means it is known that and ♦ means it is consistent that2.

Syntax

The language of modal logic, as considered here, consists of the connectives ¬, ∧, ∨ and ⊃, the
operators � and ♦, propositional variables p, q, r, . . ., ⊥, > and (, ). Formulas in modal logic
can be defined with the following grammar, let p be a propositional variable:

A := p | ⊥ | > | ¬A | A ∧A | A ∨A | A ⊃ A | �A | ♦A (1.1)

Semantics

In modal logic it is not enough to look at some interpretation, as is done in classical propositional
logic. Kripke models can be used in order to say something about the truth of a modal formula.

Definition 1.1.2. A Kripke frame is a tuple F = 〈W,R〉. Where W is a non-empty set of
possible worlds and R ⊆ (W ×W ) a binary relation on W , called the accessibility relation, if
vRw then w is accessible from v.

A Kripke model is a tuple M = 〈W,R, V 〉, such that 〈W,R〉 is a Kripke frame and V
is a valuation, a relation that assigns subsets of possible worlds to propositional variables. A
proposition p is true in a world w ∈W if w ∈ V (p) and p is false if w /∈ V (p).

The Kripke modelM = 〈W,R, V 〉 is based on the frame F = 〈W,R〉. ♦

Definition 1.1.3. LetM = 〈W,R, V 〉 and w ∈ W , then the truth of a formula in world w is
defined as follows:

M, w 6 ⊥ and M, w  >
M, w  p ⇔ w ∈ V (p)

M, w  ¬A ⇔ M, w 6 A

M, w  A ∧B ⇔ M, w  A andM, w  B

M, w  A ∨B ⇔ M, w  A orM, w  B

M, w  A ⊃ B ⇔ M, w 6 A orM, w  B

M, w  �A ⇔ M, v  A, for all v such that wRv

M, w  ♦A ⇔ M, v  A, for some v ∈W, such that wRv.

♦

Definition 1.1.4. ( [9]) Let M = 〈W,R, V 〉 be a Kripke model. A formula A is valid in a
modelM if and only if for all possible worlds w ∈ W : M, w  A. A formula A is valid in a
frame F = 〈W,R〉 if and only if A is valid in every modalM that can be based on this frame.

Let L be a collection of frames, a formulaA is L-valid if and only ifA is valid in every frame
in the collection L. ♦

2This section is based on First-Order Modal Logic, by M. Fitting and R.L. Mendelsohn [9]
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Different Modal Logics

Definition 1.1.5. A formula in the language of classical propositional logic is a tautology if and
only if the formula is true for any interpretation of the propositional variables that it contains. ♦

Definition 1.1.6. A tautology in the language of modal logic is a propositional tautology as
defined in Definition 1.1.5, where every propositional variable in the tautology can be substituted
by a formula built according to Grammar 1.1 on page 6. Within proofs, any instance of a
tautology as defined here, will be called a propositional tautology, since these tautologies are
based on classical propositional tautologies. ♦

From this definition it follows that, since p ⊃ (q ⊃ p) is true for any interpretation of p and q,
�A ⊃ (�(A ∧�B) ⊃ �A) is a tautology in the modal language.

Definition 1.1.7. The axiom system for the basic modal logic (called K) is defined as follows:
• Tautologies in the modal language as defined in Definition 1.1.6
• Axiom K: �(A ⊃ B) ⊃ (�A ⊃ �B)
• Modus Ponens: From A and A ⊃ B derive B
• Necessitation: From A derive �A.

By adding one or more of the following axioms to the system, new modal logics occur:
• t: �A ⊃ A
• d: �⊥ ⊃ ⊥
• b: ¬A ⊃ �¬�A
• 4: �A ⊃ ��A
• 5: ¬�A ⊃ �¬�A.

♦

Based on the axioms that are part of the system, a modal logic has a corresponding accessibility
relation R on its frames.

Definition 1.1.8. Let ML be a modal logic, whose axiom system extents the basic modal logic
K by zero or more of the above defined axioms and let 〈W,R〉 be a Kripke frame for ML, then:
• If t is part of the axiom system of ML, then R is reflexive, meaning: for all w ∈ W :

(w,w) ∈ R.
• If d is part of the axiom system of ML, then R is serial, meaning: for all v ∈ W , there is

a w ∈W such that (v, w) ∈ R.
• If b is part of the axiom system of ML, then R is symmetric, meaning: for all v, w ∈ W ,

if (v, w) ∈ R then (w, v) ∈ R.
• If 4 is part of the axiom system of ML, then R is transitive, meaning: for all u, v, w ∈W ,

if (u, v) ∈ R and (v, w) ∈ R then (u,w) ∈ R.
• If 5 is part of the axiom system of ML, then R is Euclidean, meaning: for all u, v, w ∈W ,

if (w, u) ∈ R and (w, v) ∈ R then (u, v) ∈ R.
If the axiom system of ML does not contain any of the additional axioms, meaning ML=K, then
there are no restrictions on the accessibility relation R. Kripke frames that do not have any
restrictions on R, belong to the collection of frames K. ♦
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◦
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◦
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◦
K

◦
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Figure 1.1: The modal cube

With the Definition 1.1.4, Definition 1.1.7 and Definition 1.1.8, it is now possible to state sound-
ness and completeness for the basic modal logic K.

Theorem 1.1.9 ( [9]). Consider the basic modal logic K, a formula A is provable in the axiom
system of K if and only if A is K-valid. In other words: the basic modal logic K is sound and
complete.

Based on the five axioms that could be added to the basic modal logic K, 25 = 32 different
axioms systems can be defined. However, not every axiom system yields a different logic. There
are only 15 different modal logics, that are obtained this way. These 15 different modal logics
form the so-called modal cube, (see Figure 1.1, [10]). The name of a modal logic depends on its
axiom system, almost all the names start with K, denoting the basic modal logic. Depending on
the additional axioms, the name is extended by the name that denotes the additional axiom. For
example, the logic which axiom system extends the axiom system of K with the axioms 4 and 5
has the name K45.

There are two exceptions: the logics S4 and S5, S4 represents two axiom systems and S5
represents thirteen axiom systems:

Definition 1.1.10. The logic S4 has a reflexive, transitive accessibility relation. It is the modal
logic that represents the axiom systems KT4 and KTD4.

The logic S5 has a reflexive, symmetric, transitive accessibility relation. It is the modal logic
that represents the axiom systems KT45, KT5, KTB5, KTB45, KDB5, KDB45, KDB4, KTB4,
KTD5, KTDB4, KTDB5, KTD45 and KTDB45. ♦

Not every modal logic that can be constructed will be considered in this text. The most important
modal logics are S4 and S5. When a more general notion of a modal logic is used, only the
following well known logics are meant: K, D, T, K4, B, S4 or S5. Using the axioms as defined
above, for each of these seven logics, M. Fitting and R.L. Mendelsohn proved the following
theorem [9]:

Theorem 1.1.11. Let L be some modal logic. There is a proof of a formula A in the axiom

8



system of L if and only if A is L-valid. This means: the modal logic L is sound and complete.

1.2 Justification Logic

Plato defined knowledge as justified, true belief, until 1963 this was considered to be an adequate
definition of knowledge. This would mean that A knows B if and only if: B is true, A believes
that B and A is justified in believing B. In 1963, E. Gettier published Is Justified True Belief
Knowledge? [11] in which he gives two examples that show that this is not a complete definition
of knowledge.

EXAMPLE 1.2.1. Jones and Smith apply for a job. Suppose that, for several reasons, Smith has
strong evidence that:

(a) Jones is the man who will get the job and Jones has ten coins in his pocket.
From this, Smith concludes that:

(b) The man who will get the job has ten coins in his pocket.
Based on the above observation, Smith is justified in believing that (b) is true. Now suppose
that not Jones, but Smith gets the job and that Smith has ten coins in his pocket as well. The
conclusion that Smith made from (a) is true, Smith believes in it and he is justified in believing
it. But Smith does not know that he has ten coins in his pocket! He bases his belief on the
number of coins in Jones’ pocket. Does Smith still know (b)? ♦

As was described above, modal logic is suitable for reasoning about necessity, certainty and
knowledge. However, �A, is always �A. In the above example it holds then that �(b) and
hence that (b) is known. In justification logic, it is possible to distinguish between reasons to
know something. For Smith (a) was the reason that he knows (b), but what if (a) is not true
anymore, does he still know (b)?

Instead of always using the same �, justification logic uses terms t, such that t : A means: t
is a justification for A. There is not just one term, there may be other terms in a derivation or a
formula. By using operators, new terms can be constructed3.

Syntax

The language of any justification logic consists of the connectives ¬, ∧, ∨ and ⊃, propositional
variables p, q, r, . . .,⊥,>, (, ), proof variables x, y, z, . . ., proof constants, a, c, . . . and operators
·, + and :. The operator ′ :′ is used such that: term : formula is a formula of the justification
logic. Let x be a proof variable, c a proof constant, a term can be defined using the following
grammar:

t := x | c | t · t | t+ t.

Let t be a term as defined above and p a propositional variable, then a formula in justification
logic can be defined with the following grammar:

A := p | ⊥ | > | ¬A | A ∧A | A ∨A | A ⊃ A | t : A (1.2)

3This section is based on papers written by S.N. Artemov [2, 3] and by M. Fitting [8]
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Semantics

As in modal logic, the semantics of justification logic is defined based on models.

Definition 1.2.2. A justification logic model is a tupleM = 〈W,R, E , V 〉. W is a nonempty
set of possible worlds, R ⊆ (W ×W ) is an accessibility relation. E is an evidence function
on 〈W,R〉, it is a mapping from terms and formulas to subsets of possible worlds and V is a
valuation, a relation that assigns subsets of possible worlds to propositional variables, as in the
modal case. ♦

Definition 1.2.3. LetM = 〈W,R, E , V 〉 be a model and w ∈W , then the truth of a formula in
world w is defined as follows:

M, w  p ⇔ w ∈ V (p)

M, w 6 ⊥ and M, w  >
M, w  ¬A ⇔ M, w 6 A

M, w  A ∧B ⇔ M, w  A andM, w  B

M, w  A ∨B ⇔ M, w  A orM, w  B

M, w  A ⊃ B ⇔ M, w 6 A orM, w  B

M, w  t : A ⇔ w ∈ E(t, A) and for all v ∈W such that (w, v) ∈ R :M, v  A.

♦

The definition above is almost the same as the definition for modal logic. However, since there
is not just one �, but there are different justifications, the evidence function E is needed. The
condition that w ∈ E(t, A) says that in world w, t is a justification for A, based on the defined
evidence function and E(t, A) ⊆W denotes the set of worlds in which t is a justification for A.
The properties of E depend on the justification logic.

The following definition is based on the definition of validity in modal models and frames,
Definition 1.1.4.

Definition 1.2.4. Let M = 〈W,R, E , V 〉 be a justification model. A formula A is valid in a
justification modelM if and only if for all possible worlds w ∈ W : M, w  A. A formula A
is valid in a frame F = 〈W,R〉 if and only if A is valid in every justification modelM that can
be based on this frame.

Let L be a collection of frames, a formulaA is L-valid if and only ifA is valid in every frame
in the collection L. ♦

Different Justification Logics

Definition 1.2.5. A tautology in the language of justification logic is a propositional tautology as
defined in Definition 1.1.5, where every propositional variable in the tautology can be substituted
by a formula built according to Grammar 1.2 on page 9. ♦

From this definition it follows that, since (p ∧ q) ⊃ p is a classical propositional tautology
according to Definition 1.1.5, the formula (t : A ∧ s : (B ⊃ C)) ⊃ t : A is a tautology in the
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language of justification logic. Within proofs, any instance of a tautology as defined here, will
be called a propositional tautology, since these tautologies are based on classical propositional
tautologies.

Definition 1.2.6. The axiom system for the basic justification logic (called J) is defined as fol-
lows:

• taut: Tautologies in the justification language as defined in Definition 1.2.5
• app: s : (A ⊃ B) ⊃ (t : A ⊃ (s · t) : B)
• sum: s : A ⊃ (s+ t) : A and t : A ⊃ (s+ t) : A

• Modus Ponens (MP):
A A ⊃ B

B

• Axiom Necessitation (AN): For constants c1, . . . , cn :
Axiom A

cn : . . . : c1 : A.

By adding one or more of the following axioms to the system, new justification logics occur:

• jt: t : A ⊃ A
• jd: t : ⊥ ⊃ ⊥
• jb: A ⊃ ?t : (¬t : ¬A)
• j4: t : A ⊃!t : t : A
• j5: ¬t : A ⊃?′t : (¬t : A)
• A5: t : (A ⊃ ¬s : B) ⊃ (A ⊃?t : (¬s : B))
• A5c: ¬t : A ⊃ c : ¬t : A.

♦

Notice that the language of a logic containing j4, has an operator ! in addition to the already
defined operators, a term t in this logic can have the form !t as well. The language of a logic
containing jb, j5 or A5, has an operator ?, ?′ or ? respectively, in addition to the already defined
operators. A term t in one of these logics can have the form ?t, ?′t or ?t respectively as well4.

In accordance with modal logic, the name of a justification logic depends on its axiom sys-
tem. Instead of the K for the basic modal logic, J is used for the basic justification logic. Notice
that maximal one of the axioms j5, A5 or A5c can be part of an axiom system. Traditionally,
there is one exception to this kind of naming, the Logic of Proofs, defined by S.N. Artemov. This
logic is denoted by LP, its axiom system extends that of J by jt and j4. This exception is also
used for the logics LPS5 and LPS5c, to denote the logics with axiom systems extending that of
LP with A5 and A5c respectively. The names as they were introduced by S.N. Artemov, E.L.
Kazakov and D. Shapiro in Logic of knowledge with justifications [4] are followed.

With these definitions, the most important justification logics for this text can be defined.
When in general some justification logic is considered, one of the logics in Table 1.1 are meant,
this is denoted by JL. When a (set of) justification logic(s) is/are considered in order to say
something about these specific logics, L will be used to represent these logics.

4In some papers terms are called proof polynomials and in the paper by S.N. Artemov, E.L. Kazakov and D.
Shapiro [4], they are called extended proof polynomials because of the new ?t form of a term, here they are called
terms, independent of the form they take.
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Name Additional axioms Name Additional axioms
J None LP jt and j4
LPS5 jt, j4 and A5 LPS5c jt, j4 and A5c
JT45 jt, j4 and j5 JT5 jt and j5
JTB5 jt, jb and j5 JTB45 jt, jb, j4 and j5
JDB5 jd, jb and j5 JDB45 jd, jb, j4 and j5
JDB4 jd, jb and j4 JTB4 jt, jb and j4

Table 1.1: The justification logics as used here

Evidence Function

Based on the axioms that are part of the axiom system, a justification logic has a corresponding
accessibility relation R as was defined for modal logic in Definition 1.1.8. However, now the
justification axioms jt, jd, jb, j4 and j5 restrict the accessibility relation R. If the axiom jt is
part of the axiom system then R has to be reflexive, the axiom jd means that R has to be serial,
the axiom jb means that R is symmetric, an axiom system including j4 has to have a transitive
accessibility relation R and an axiom system that includes j5 has to have a Euclidean R.

The restriction of the accessibility relation was enough to create Kripke models for modal
logics with the corresponding axioms. This is not the case for justification logics. As was already
suggested in Definition 1.2.2, besides the accessibility relation the evidence function is part of a
justification logic model.

Based on the axiom system of a justification logic, the evidence function E has different
properties. The following definition states these properties, the properties for app, sum, j4 and
j5 are based on the PhD thesis of R. Kuznets [13], the properties for jb, A5 and A5c are new.

Definition 1.2.7. Consider a justification modelM = 〈W,R, E , V 〉. A case distinction has to
be made based on the axiom system of the justification logic:
• In every justification logic JL, for all terms s and t, for all justification formulas A and B

and for all worlds v, w ∈ W , E has the following two properties, corresponding to app
and sum respectively:

Application closure: E(s,A ⊃ B) ∩ E(t, A) ⊆ E(s · t, G)

Sum closure: E(s,A) ∪ E(t, A) ⊆ E(s+ t, A).

• A justification logic containing j4 has a transitive accessibility relation and the evidence
function has two additional properties:

Positive introspection closure: E(t, A) ⊆ E(!t, t : A)

Monotonicity: If (v, w) ∈ R and v ∈ E(t, A) then v ∈ E(t, A).

• A justification logic containing j5 has a Euclidean accessibility relation. Let [Φ]c denote
the complement of set Φ. The evidence function in such a logic satisfies the following
property:

Negative introspection closure: [E(t, A)]c ⊆ E(?′t,¬t : A).
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• If the axiom system of a justification logic contains the axiom A5, the evidence function
has to have the following property:

A5 closure:M, w  A and w ∈ E(t, (A ⊃ ¬s : B)) implies w ∈ E(?t,¬s : B).

• Models for justification logics which axiom systems contain A5c, have an evidence func-
tion which has at least the following property:

A5c closure: [E(t, A)]c ⊆ E(c,¬t : A).

• A justification logic containing jb has a symmetric accessibility relation and the evidence
function has the following property:

Symmetry closure:M, w  A implies w ∈ E(?t,¬t : ¬A).

A model for a justification logic that has at least one of the axioms j5, A5, A5c and/or jb in its
axiom system should satisfy the so called strong evidence property as well, for any term t, for
any justification formula A and a world w ∈W :

If w ∈ E(t, A) thenM, w  t : A.

♦

In order to prove that the given properties for the evidence function are the right ones, soundness
and completeness have to be proven:

Theorem 1.2.8. For any justification logic JL a formula A is provable in JL if and only if it is
JL-valid:

JL ` A⇔ A is JL-valid.

The proof of this theorem can be found in AppendixA.
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CHAPTER 2
Realization Theorems

Before proving realizations of S5 into different justification logics, certain concepts, definitions
and lemma’s require presentation. Furthermore, the general idea of realization will be sketched.
When modal or justification axioms, axiom systems and/or logics are mentioned, only those
defined in the first chapter are meant.

2.1 Forgetful Projection and Realization Theorems

A proof of realization is usually based on some cut-free sequent calculus. The procedure of
transforming a formula from one logic into another is called a realization procedure and can
be carried out in two directions. The direction in which a justification formula is transformed
into a modal formula is the easier direction and is called the forgetful projection: every term is
replaced with the same �, which means that some information is lost. The direction in which
a modal formula is transformed into a justification formula is more involved, since not all �’s
should be realized into the same justification term.

Definition 2.1.1. LetA be a formula in the justification language (possibly also containing unary
term operators ’!’, ’?’, ’?” and ’?’), a formula A◦ in the modal language can be constructed by
substitution of � for every occurrence of a term as follows:

p◦ = p, >◦ = >, (B1 ∧B2)
◦ = B◦1 ∧B◦2 , (B1 ⊃ B2)

◦ = B◦1 ⊃ B◦2 ,
⊥◦ = ⊥, (¬B)◦ = ¬B◦, (B1 ∨B2)

◦ = B◦1 ∨B◦2 , (�B)◦ = �B◦.

♦

For the other direction, from modal logic to justification logic, the notion of a realization function
is needed:

Definition 2.1.2. A realization function on a formula A, is a function that substitutes justifi-
cation terms for occurrences of � in A. The result is a formula in the justification language,
denoted by Ar. ♦
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Applying first a realization function on a formula from the modal language and then the forgetful
projection on the result, gives the original modal formula again:

REMARK. Let A be a formula of the modal language and let r be a realization function on A,
then Ar is a formula in the justification language. Applying the forgetful projection to Ar, will
give a formula in the modal language again: (Ar)◦, such that: (Ar)◦ = A.

Counterparts

In the definitions above the possibility of translating between modal and justification formulas
has been introduced. Taking this into account and looking at the names of different modal and
justification axioms and logics a connection between specific modal and justification axioms and
logics can be suspected. Such a connection can be formalized in terms of counterparts, which
already exists on axiom level:

Definition 2.1.3. Every modal axiom mentioned earlier has at least one justification counterpart
and every justification axiom has one modal counterpart. ♦

These counterparts can be recognized by their names, for example, the justification counterpart
of the axiom t is the axiom jt and the modal counterpart of the axiom jb is the axiom b.

Furthermore, the relation of being a counterpart of each other can be extended to the logics:

Definition 2.1.4. Let JL be some justification logic. It is said that JL realizes ML, if JL◦ = ML.
This means: applying the forgetful projection to all of the theorems of JL results in exactly the
set of theorems of ML and for each formula in JL there exists a realization function such that
appyling this realization function to the formula results in a theorem of ML. If JL realizes ML
it is said that ML is the modal counterpart of JL and that JL is a justification counterpart of
ML ♦

The modal counterpart of a justification logic is unique, a modal logic might have more than
one justification counterpart. Examples of pairs of justification logics and modal logics that
are counterparts of each other are J4 and K4, or J45 and K45, or LP and S4, or any of the
justification logics from the set {LPS5, LPS5c, JT45, JT5, JTB5, JTB45, JDB5, JDB45, JDB4,
JTB4} and the modal logic S5. In order to prove that two logics are counterparts of each other,
a realization theorem has to be proven.

Realization Theorems

Based on the idea described above, S. N. Artemov proved the following theorem for the modal
logic S4 and justification logic LP [2]:

Theorem 2.1.5 (Realization of S4).

S4 ` A ⇔ LP ` Ar for some realization r.

The proof of the “⇒”-direction is based on a cut-free sequent calculus for S4. However, such a
calculus is not known for the modal logic S5. In different papers solutions have been suggested,
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using different axiom systems for justification counterparts of S5. The idea is now, to prove the
following theorem, for some of these calculi and axiom systems that are suggested:

Theorem 2.1.6 (Realization of S5).
Let L ∈ {LPS5, LPS5c, JT45, JT5, JTB5, JTB45, JDB5, JDB45, JDB4, JTB4} then:

S5 ` A ⇔ L ` Ar,

using a hypersequent calculus based on the calculus from S.N. Artemov, E.L. Kazakov and D.
Shapiro [4], the nested sequent calculi from R. Goetschi and R. Kuznets [12] and modular nested
sequent calculi from S. Marin and L. Straßburger [15].

2.2 Internalization, Annotation and Substitution

By annotating or labeling �’s during the derivation of a formula, these �’s can be realized by
different terms when required and by the same terms if the �’s were really the same. In order to
use annotations, some definitions are required. Other lemma’s and definitions that are required
for every calculus that is used to prove realization will be stated here as well.

Internalization

In the proof of the realization theorem of S4 into LP, a lemma called The Lifting Lemma was
proven and used. However, the axiom j4 is needed to prove this lemma. R. Goetschi and R.
Kuznets [12] used a more general lemma, basically stating the same, but the proof only uses
axioms from the axiom system of the basic justification logic J. The lemma is called Internal-
ization. This lemma and a corollary that follows from it, are required to prove the realization of
S5.

Lemma 2.2.1 (Internalization). Let JL be some justification logic. If A1, . . . , An `JL B then
there is a term t(x1, . . . , xn) such that: s1 : A1, . . . , sn : An `JL t(s1, . . . , sn) : B, for any
terms s1, . . . , sn.

If there are no premisesA1, . . . , An, which means, n = 0, then t does not have any variables
(it is a ground term) and `JL t : B.

Proof. The proof is by induction on the derivation of A1, . . . , An `JL B, based on the proofs by
S.N. Artemov and R. Goetschi and R. Kuznets [2, 12]:
• Suppose B is one of the axioms of JL, then `JL B. By AN, any constant ccan be chosen.

Let t := c, then `JL t : B and hence for t(s1, . . . , sn) = t = c: s1 : A1, . . . , sn : An `JL

t : B.
• Suppose B is of the form cn−1 : . . . : c1 : C, infered by AN. By using AN again, any

constant cn can be chosen. Let t := cn, then `JL t : B and hence for t(s1, . . . , sn) = t =
c: s1 : A1, . . . , sn : An `JL t : B.
• Let B be one of the premises Ai, then let t(x1, . . . , xn) = xi, from which it follows that
si : Ai `JL t(s1, . . . , sn) : B and hence: s1 : A1, . . . , sn : An `JL t(s1, . . . , sn) : B.
• Let B be derived by MP from C ⊃ B and C. By induction hypotheses, there are terms
t1(x1, . . . , xn) for C ⊃ B and t2(x1, . . . , xn) for B. Now t1(x1, . . . , xn) : (C ⊃ B) ⊃
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(t2(x1, . . . , xn) : C ⊃ (t1(x1, . . . , xn) · t2(x1, . . . , xn)) : B) is an instance of app. By
MP it follows that for t := t1(x1, . . . , xn) · t2(x1, . . . , xn) and arbitrary terms s1, . . . , sn:
s1 : A1, . . . , sn : An `JL t(s1, . . . , sn) : B.

�

As was already suggested by R. Goetschi and R. Kuznets [12], the following theorem can be
proven in any justification logic JL, since the tautologies of classical propositional logic and the
rule Modus Ponens are part of the axiom system of JL.

Theorem 2.2.2 (Deduction Theorem). Let JL be some justification logic and let Γ be a set of
formulas in the languages of JL, then: Γ, A `JL B if and only if Γ `JL A ⊃ B.

Proof.“⇒′′ Suppose Γ, A `JL B, the proof is by induction on the derivation of B from Γ, A:

– Let B be one of the axioms of JL or let B be of the form cn : . . . c1 : C, infered
from AN. This means: `JL B. Since B ⊃ (A ⊃ B) is a propositional tautology,
`JL B ⊃ (A ⊃ B). By Modus Ponens it follows that `JL A ⊃ B. Therefore,
Γ `JL A ⊃ B.

– Let B = A, then Γ, A ` A. As A ⊃ A is a propositional tautology, it follows that
`JL A ⊃ A and hence `JL A ⊃ B. Therefore, Γ `JL A ⊃ B.

– Let B ∈ Γ, then Γ `JL B. Since B ⊃ (A ⊃ B) is a propositional tautology,
Γ `JL B ⊃ (A ⊃ B). By Modus Ponens it follows that Γ `JL A ⊃ B.

– Assume that Γ, A `JL B is obtained by applying Modus Ponens to Γ, A `JL C ⊃ B
and Γ, A `JL C. By induction hypothesis it follows that Γ `JL A ⊃ (C ⊃ B) and
Γ `JL A ⊃ C. Since (A ⊃ (C ⊃ B)) ⊃ ((A ⊃ C) ⊃ (A ⊃ B)) is a propositional
tautology, by applying Modus Ponens twice, it follows that Γ `JL A ⊃ B.

“⇐′′ Suppose Γ `JL A ⊃ B. It follows immediately that Γ, A `JL A ⊃ B and since Γ, A `JL

A, by applying Modus Ponens it follows that Γ, A `JL B.
�

The following corollary is based on Internalization and the Deduction Theorem and can be
proven by using Lemma 2.2.1 and applying the Deduction Theorem.

Corollary 2.2.3. Let JL be some justification logic. If `JL A1 ⊃ . . . ⊃ An ⊃ B, then there is a
term t(x1, . . . , xn) such that `JL s1 : A1 ⊃ . . . ⊃ sn : An ⊃ t(s1, . . . , sn) : B, for any terms
s1, . . . , sn.

Annotation

The annotation of modal formulas is part of the realization procedure when using a (modular)
nested sequent calculus. The idea is to annotate occurrences of � and ♦ in a realization, to be
able to assign terms. The definitions, facts and lemmas about annotation and substitution, in this
and the next subsection, are based on those of R. Goetschi and R. Kuznets [12].

Definition 2.2.4. Let k, l ∈ N+, let p be a proposition. Annotated (modal) formulas can be
defined with the following grammar:

A := p | ⊥ | > | ¬A | A ∨A | A ∧A | A ⊃ A | �2k−1A | ♦2lA.
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Let A be such an annotated formula and let A′ be the formula A without the indices, then A is
an annotated version of A′. If all the indices are unique, no index occurs more than once, the
formula is called properly annotated. ♦

Part of the realization procedure, is the pre-realization of the formulas and objects. With the
above definition of annotated formulas, it is possible to define the pre-realization function on
annotated formulas.

Definition 2.2.5. Let r be a function that assigns terms to the natural numbers used to annotate
a formula, then r is called a pre-realization function. If the function is defined on all the given
indices, then r is called a pre-realization function on a given annotated formula.

The pre-realization function r is called a realization function if r(2l) = xl whenever r(2l)
is defined. ♦

Definition 2.2.6. Let A be an annotated formula, r a pre-realization function on A and p a
proposition. The table 2.1 shows how by induction, the justification formula Ar can be defined,
based on the original modal formula A and the function r.

(p)r := p (A ∨B)r := Ar ∨Br (♦2lA)r := ¬r(2l) : ¬Ar
(¬A)r := ¬(Ar) (A ∧B)r := Ar ∧Br (�2k−1A)r := r(2k − 1) : Ar

⊥r := ⊥ >r := > (A ⊃ B)r := Ar ⊃ Br

Table 2.1: Realization of modal formulas, source: [12]

Let B be a justification formula, then there is some properly annotated formula A and a pre-
realization function r on A such that B = Ar. ♦

It is possible that there exists more than one annotation for a modal formula. If there is a
realization function on one of these annotated versions, does this mean that there is a realization
function on the other annotated version(s) as well?

Lemma 2.2.7. Let JL be a justification formula. Suppose the modal formula A′ has at least
two properly annotated versions, call the first two A1 and A2. Suppose that r1 is a realization
function on A1, such that `JL (A1)

r1 . Then there is a realization function r2 on A2 such that
`JL (A2)

r2 .

The above lemma states that, as long as the formula is really properly annotated, it does not
matter which properly annotated version is chosen: if there is a realization of one of the properly
annotated versions of a formula, there is a realization for any of these versions. The proof of
the lemma is by induction on the structure of the modal formula A′. It does however require the
notion of substitution, which will be introduced in the next subsection.

In order to prove the realization of S5, with a pre-realization based on annotated formulas,
some additional notation is needed:

Definition 2.2.8. Let A be an annotated formula and r a pre-realization function. Let f be a
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partial function then f � S denotes the restriction of f to the set S ∩ dom(f). Then:

vars♦(A) :={xk | ♦2k occurs in A}
r � A :=r � {i | i occurs in A}.

♦

When realizing S5 using hypersequents, another method of labeling/annotating is used. This
method can be defined after firstly defining the language of the hypersequent calculus LS5.

Substitution

Besides internalization and annotation another important concept that should be discussed before
defining the different sequent calculi is that of substitution. Starting with a general definition of
a substitution.

S.N. Artemov [2] stated already that the substitution lemma holds for the logic LP:
if Γ(x, P ) `LP B(x, P ), then for any term t and any formulaF : Γ(x/t, P/F ) `LP B(x/t, P/F ).
This can be generalized for any here considered justification logic JL:

Definition 2.2.9. A substitution as it will be used here, is defined to be a total mapping, from
variables to terms. Let t be some term, the term tσ can be defined inductively:
• Let c be a constant, then cσ := c.
• Let x be a variable, then xσ := σ(x).
• Let ∗ be some unary operation, then (∗t)σ := ∗(tσ).
• Let ◦ be some binary operation, then (t1 ◦ t2)σ := (t1σ) ◦ (t2σ).

LetA be some justification formula, the formula that is obtained by simultaneously replacing all
the terms t in A by tσ is denoted by Aσ. ♦

With this definition of substitution, some other basic definitions that are required when proving
something using substitutions can be given:

Definition 2.2.10. The domain of a substitution σ, denoted by dom(σ), is defined as: dom(σ) :=
{x | σ(x) 6= x}. The variable range of this substitution σ, denoted by vrange(σ), is defined as
the set of variables in terms that are part of the set {σ(x) | x ∈ dom(σ)}. ♦

Definition 2.2.11. Three kinds of compositions with substitutions can be defined. Let x be some
variable and σ1 and σ2 be some substitutions, then the composition of σ1 and σ2 is defined as:
(σ2 ◦ σ1)(x) := σ1(x)σ2.

Let r be some pre-realization function and σ a substitution, then (σ ◦r)(n) := r(n)σ, which
is only defined if r(n) is.

Suppose the substitutions σ1 and σ2 have disjoint domains, the union of these two substitu-
tions is a substitution as well. Let x be some variable, then:

(σ1 ∪ σ2)(x) :=


σ1(x) if x ∈ dom(σ1)

σ2(x) if x ∈ dom(σ2)

x otherwise.

♦
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Definition 2.2.12. Let σ be some substitution and A an annotated formula. Then it is said that
σ lives on A if dom(σ) ⊆ vars♦(A) and σ lives away from A if dom(σ) ∩ vars♦(A) = ∅. ♦

Lemma 2.2.13. Let JL be any justification logic. If `JL A then:
a) `JL Aσ for any substitution σ.
b) `JL A[P1 7→ B1, . . . , Pn 7→ Bn], where the result of replacing simultaneously all oc-

currences of the propositions P1, . . . , Pn in A with formulas B1, . . . , Bn is denoted by
A[P1 7→, . . . , Pn 7→ Bn].

The following facts are directly taken from the paper on nested sequent systems by R. Goetschi
and R. Kuznets [12] and are used in many proofs for the nested sequent calculus. Let A be an
annotated formula, r a pre-realization function, r′, r1, r2 realization functions and σ, σ1, σ2 be
substitutions, then:

(1) σ2 ◦σ1 is a substitution with dom(σ2 ◦σ1) ⊆ dom(σ1)∪ dom(σ2) and vrange(σ2 ◦σ1) ⊆
vrange(σ1) ∪ vrange(σ2). Moreover A(σ2 ◦ σ1) = (Aσ1)σ2.

(2) If dom(σ1) ∩ dom(σ2) = ∅, then dom(σ1 ∪ σ2) = dom(σ1) ∪ dom(σ2).

(3) If dom(σ1) ∩ dom(σ2) = ∅ and vrange(σ1) ∩ dom(σ2) = ∅, then σ1 ∪ σ2 = σ2 ◦ σ1.

(4) σ ◦ r is a pre-realization function with dom(σ ◦ r) = dom(r).

(5) If r is a pre-realizaiton function on A, then so is σ ◦ r and Aσ◦r = Arσ.

(6) If r is a (pre-)realization function on A, then so is r � A.

(7) If dom(r1) ∩ dom(r2) ⊆ {n | n is even}, then r1 ∪ r2 is a realization function.

(8) If r1 ∪ r2 is a realization function, then dom(r1 ∪ r2) = dom(r1) ∪ dom(r2).

(9) σ ◦ r′ is a realization function if and only if xn /∈ dom(σ) whenever r(2n) is defined.

Corollary 2.2.14. Let A be an annotated formula and suppose r is a realization function on it.
If a substitution σ lives away from A then σ ◦ (r � A) is a realization function on A.

Theorems in Different Logics

Not every justification logic that is considered in Theorem 2.1.6, is an extension of the logic JT.
However, in each of the considered logics, the following is provable: s : A ⊃ A. In a similar
way in every of the considered logics, a term negint(x) can be constructed such that for any
justification formulaA and any term s, the following is provable: ¬s : A ⊃ negint(s) : (¬s : A).
To make proofs short and easy to read, the proofs for these kinds of theorems will be proven here.
For this subsection, assume

L ∈ {LPS5, LPS5c, JT45, JT5, JTB5, JTB45, JDB5, JDB45, JDB4, JTB4}.

First take a look at the jb-axiom, only for the cases in which the axiom system of L contains
this axiom. Because of the many negations in the jb-axiom, the following lemma will be used in
proofs:
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Lemma 2.2.15. The jb-axiom is defined as follows: A ⊃ ?t : ¬t : ¬A, if A = ¬B, an instance
of this axiom can take the following form: ¬B ⊃ ?t : ¬t : ¬¬B. From propositional logic it
is known that ¬¬B ⊃ B. In any justification logic that contains the jb-axiom, there is a term
qm(x) such that for any formula B and arbitrary term s, ¬B ⊃ qm(s) : ¬s : B is derivable.

Proof. Consider only the logics that have the jb-axiom in their axiom system:

L ∈ {JTB5, JTB45, JDB5, JDB45, JDB4, JTB4}.

0. P ⊃ ¬¬P Propositional tautology
1. x : P ⊃ t1(x) : ¬¬P From 0. by Corollary 2.2.3
2. ¬t1(x) : ¬¬P ⊃ ¬x : P From 1. by prop. reasoning
3. ?t1(x) : ¬t1(x) : ¬¬P ⊃ t2(?t1(x)) : ¬x : P From 2. by Corollary 2.2.3
4. ¬P ⊃ ?t1(x) : ¬t1(x) : ¬¬P Instance of jb
5. ¬P ⊃ t2(?t1(x)) : ¬x : P From 3. and 4. by prop reasoning

Let qm(x) := t2(?t1(x)). Notice that qm(x) depends neither on s nor on B. From the Substitu-
tion Lemma 2.2.13, it follows that ¬B ⊃ qm(s) : ¬s : B is derivable in L. �

The following lemma is provable for any of the justification counterparts of the modal logic S5,
but some case distinctions are needed for different logics. The most important case is the part
where B = s : A, this case will often occur in proofs.

Lemma 2.2.16. If `L s : A ⊃ B there is a term p(x) such that `L s : A ⊃ p(s) : B.

Proof. The proof is by induction on the derivation of B from s : A in L:
• Suppose B is one of the axioms of L, then `L B. By AN, any constant c, such that
`L c : B, can be chosen to be p(s) := c, then `L p(s) : B. From this it follows that
s : A `L p(s) : B and by the Deduction Theorem 2.2.2: `L s : A ⊃ p(s) : B.
• Suppose B is of the form cn−1 : . . . : c1 : C, using AN again, any constant cn such that
`L cn : cn−1 : . . . : c1 : C can be used to let p(s) := cn, then `L p(s) : B. Like in
the case above, it follows that s : A `L p(s) : B and by the Deduction Theorem 2.2.2:
`L s : A ⊃ p(s) : B.

• Suppose B is derived by MP from C ⊃ B and C. By induction hypotheses, there are
terms t1 for (C ⊃ B) and t2 for t2 : C. Now t1 : (C ⊃ B) ⊃ (t2 : C ⊃ (t1 · t2) : B) is
an instance of app. By MP it follows that for p(s) := t1 · t2: s : A `L p(s) : B, by the
Deduction Theorem 2.2.2 it then can be concluded that `L s : A ⊃ p(s) : B.

• Suppose B = s : A, the following case distinctions have to be made:
– Suppose L ∈ {LPS5, LPS5c, JT45, JTB45, JDB45, JDB4, JTB4} by axiom j4, it

follows that `L s : A ⊃!s : s : A and since s : A = B, `L s : A ⊃!s : B, therefore,
p(x) :=!x and `L s : A ⊃ p(s) : B follows.

– Suppose L ∈ {JTB5, JDB5}, then:
0. ¬x1 : P ⊃?′x1 : ¬x1 : P Instance of j5
1. ¬?′x1 : ¬x1 : P ⊃ x1 : P From 0. by prop. reasoning
2. q : (¬?′x1 : ¬x1 : P ⊃ x1 : P ) From 1. by Lemma 2.2.1
3. q : (¬?′x1 : ¬x1 : P ⊃ x1 : P )

⊃ (?(?′x1) : ¬?′x1 : ¬x1 : P ⊃ (q · ?(?′x1)) : x1 : P ) Instance of app
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4. ?(?′x1) : ¬?′x1 : ¬x1 : P ⊃ (q · ?(?′x1)) : x1 : P From 2. and 3. by MP
5. x1 : P ⊃ ?(?′x1) : ¬?′x1 : ¬x1 : P Instance of jb
6. x1 : P ⊃ (q · ?(?′x1)) : x1 : P From 4. and 5. by prop. reasoning

Let p(x) := (q · ?(?′x)), notice that p(x) depends neither on s nor on A. By the
Substitution Lemma 2.2.13, it then can be concluded that `L s : A ⊃ p(s) : B.

– Let L = JT5 and consider the following derivation:
0. ¬x2 : P ⊃?′x2 : ¬x2 : P Instance of j5
1. ¬?′x2 : ¬x2 : P ⊃ x2 : P From 0. by prop. reasoning
2. q : (¬?′x2 : ¬x2 : P ⊃ x2 : P ) From 1. by Lemma 2.2.1
3. q : (¬?′x2 : ¬x2 : P ⊃ x2 : P )

⊃ (?′(?′x2) : ¬?′x2 : ¬x2 : P ⊃ (q·?′(?′x2)) : x2 : P ) Instance of app
4. ?′(?′x2) : ¬?′x2 : ¬x2 : P ⊃ (q·?′(?′x2)) : x2 : P From 2. and 3. by MP
5. ?′x2 : ¬x2 : P ⊃ ¬x2 : P Instance of jt
6. x2 : P ⊃ ¬?′x2 : ¬x2 : P From 5. by prop. reasoning
7. ¬?′x2 : ¬x2 : P ⊃?′(?′x2) : ¬?′x2 : ¬x2 : P Instance of j5
8. x2 : P ⊃?′(?′x2) : ¬?′x2 : ¬x2 : P From 6. and 7. by prop. reasoning
9. x2 : P ⊃ (q·?′(?′x2)) : x2 : P From 4. and 8. by prop. reasoning

Let p(x) := (q·?′(?′x)), notice that p(x) depends neither on s nor on A. By the
Substitution Lemma 2.2.13, it follows that `L s : A ⊃ p(s) : B.

�

Now the jt-axiom: s : A ⊃ A, this axiom is not part of the axiom systems of JDB5, JDB45 and
JDB4, but it is provable for any L:

Lemma 2.2.17. Consider any of the possibilities forL, thenL ` s : A ⊃ A, for any justification
formula A and any term t.

Proof. Two cases have to be considered, the set of logics that are an extension of the modal logic
JT and the logics that do not have the axiom jt in their axiom system:
• Let L ∈ {LPS5, LPS5c, JT45, JT5, JTB5, JTB45, JTB4}. Since the jt-axiom is part of

the axiom system of L, `L s : A ⊃ A follows immediately for any justification formula
A and any term t.
• Now the cases without the jt-axiom. Let L ∈ {JDB5, JDB45, JDB4}. The proof is based

on the proof that can be found in the paper by R. Goetschi and R. Kuznets [12], there a
case distinction between JDB4 and JDB5 is made, because of the above lemma, this is
not necessary here:

0. P ⊃ ¬¬P Propositional tautology
1. x : P ⊃ t1(x) : ¬¬P From 0. by Corollary 2.2.3
2. ¬t1(x) : ¬¬P ⊃ ¬x : P From 1. by prop. reasoning
3. ?(t1(x)) : ¬t1(x) : ¬¬P ⊃ t2(?(t1(x))) : ¬x : P From 2. by Corollary 2.2.3
4. ¬t2(?(t1(x))) : ¬x : P ⊃ ¬?(t1(x)) : ¬t1(x) : ¬¬P From 3. by prop. reasoning
5. ¬x : P ⊃ (x : P ⊃ ⊥) Propositional tautology
6. t2(?(t1(x))) : ¬x : P ⊃ t(t2(?(t1(x)))) : (x : P ⊃ ⊥) From 5. by Corollary 2.2.3

Let s1 := t2(?t1(x)) and s2 := t(t2(?(t1(x)))), then:
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7. (s2 · p(x)) : ⊥ ⊃ ⊥ Instance of jd
8. s2 : (x : P ⊃ ⊥) ⊃ (p(x) : x : P ⊃ (s2 · p(x)) : ⊥)

Instance of app
9. p(x) : x : P ⊃ (s2 : (x : P ⊃ ⊥) ⊃ (s2 · p(x)) : ⊥)

From 8. by prop. reasoning
10. p(x) : x : P ⊃ (s2 : (x : P ⊃ ⊥) ⊃ ⊥) From 7. and 9. by prop. reas.
11. (s2 : (x : P ⊃ ⊥) ⊃ ⊥) ⊃ ¬s2 : (x : P ⊃ ⊥)

Propositional tautology
12. ¬s2 : (x : P ⊃ ⊥) ⊃ ¬s1 : ¬x : P From 6. by prop. reas.
13. (s2 : (x : P ⊃ ⊥) ⊃ ⊥) ⊃ ¬s1 : ¬x : P

From 11. and 12. by prop. reasoning
14. p(x) : x : P ⊃ ¬s1 : ¬x : P From 10. and 13. by prop. reasoning
15. p(x) : x : P ⊃ ¬?(t1(x)) : ¬t1(x) : ¬¬P From 4. and 14. by prop. reasoning
16. x : P ⊃ p(x) : x : P From Lemma 2.2.16
17. x : P ⊃ ¬?(t1(x)) : ¬t1(x) : ¬¬P From 15. and 16. by prop. reasoning
18. ¬P ⊃ ?(t1(x)) : ¬t1(x) : ¬¬P Instance of jb
19. ¬?(t1(x)) : ¬t1(x) : ¬¬P ⊃ P From 18. by prop. reasoning
20. x : P ⊃ P From 17. and 19. by prop. reasoning

The result follows from 20. and the Substitution Lemma 2.2.13: `L s : A ⊃ A.
�

Lemma 2.2.18. For each L, there is a term negint(x) such that for any term s and any justifi-
cation formula A: `L ¬s : A ⊃ negint(s) : (¬s : A).

Proof. Consider every logic separately:
• Start with L = LPS5:

0. ¬x : P ⊃ ¬x : P Propositional tautology
1. c : (¬x : P ⊃ ¬x : P ) From 0. by Axiom Necessitation
2. c : (¬x : P ⊃ ¬x : P ) ⊃ (¬x : P ⊃?c : (¬x : P )) Instance of A5
3. ¬x : P ⊃?c : (¬x : P ) From 1. and 2. by Modus Ponens

Let negint(x) :=?c, then indeed, by the Substitution Lemma 2.2.13, for any term s and
any justification formula A: `LPS5 ¬s : A ⊃ negint(s) : (¬s : A).

• Now let L =LPS5c. Notice that ¬x : P ⊃ c : ¬x : P is an instance of the axiom
A5c, let negint(x) := c, then, by the Substitution Lemma 2.2.13, for any term s and any
justification formula A: `LPS5c ¬s : A ⊃ negint : (¬s : A) follows.
• Let L ∈ {JT45, JT5, JTB5, JTB45, JDB5, JDB45}, since the axiom j5 is part of the

axiom system of L: `L ¬x : P ⊃?′x : (¬x : P ). Let negint(x) :=?′x, by the Substitution
Lemma 2.2.13 for any term s and any justification formula A it then follows that `L ¬s :
A ⊃ negint(s) : (¬s : A).
• Suppose L ∈ JTB4, JDB4, since the jt-axiom and the jd-axiom are not part of the proof,

the proof is the same for both logics.

0. ¬x : P ⊃ qm(!x) : ¬!x : x : P By Lemma 2.2.15
1. x : P ⊃!x : x : P Instance of j4
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2. ¬!x : x : P ⊃ ¬x : P From 1. by prop. reasoning
3. q : (¬!x : x : P ⊃ ¬x : P ) From 2. by Lemma 2.2.1
4. q : (¬!x : x : P ⊃ ¬x : P )

⊃ (qm(!x) : ¬!x : x : P ⊃ (q · qm(!x)) : ¬x : P ) Instance of app
5. qm(!x) : ¬!x : x : P ⊃ (q · qm(!x)) : ¬x : P From 3. and 4. by MP
6. ¬x : P ⊃ (q · qm(!x)) : ¬x : P From 0. and 5. by prop. reasoning

Let negint(x) := (q · qm(!x)), then, by the Substitution Lemma 2.2.13 for any term s and
any justification formula A: `L ¬s : A ⊃ negint(s) : ¬s : A for L = JTB4 and for
L = JDB4. Notice that the constructed term negint(x) depends neither on s nor on A.

�
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CHAPTER 3
Hypersequent Method

To be able to realize S5 into its justification counterparts, a cut-free sequent system is needed.
Such a system is LS5, as was already presented by G. Mints [16] and used by S. N. Artemov,
E.L. Kazakov and D. Shapiro [4]. The system as it was introduced in both papers, is written in
a notation that is no longer used. Therefore, the definitions, rules and theorems concerning the
system LS5 in the next section will be formulated in what is called the standard notation as A.
Avron described this in his paper on hypersequents [5]. Any of the definitions in this chapter
are taken from the paper by S. N. Artemov, E.L. Kazakov and D. Shapiro [4], where necessary
translated into the standard notation.

3.1 The System LS5

The system LS5, as used here, is defined syntactically as follows:

Definition 3.1.1. The language of LS5 contains propositional variables p1, . . . , pk, . . ., propo-
sitional constant ⊥, connective ⊃, modal operator � and (, ), |. The system has the following
syntactic objects:
• A formula A of LS5 is constructed using the following grammar:

A := pi | ⊥ | A ⊃ A | �A.

Where pi is a propositional variable.
• A sequent exists of two sequences of formulas, separated by “⇒”:

B1, . . . , Bm ⇒ A1, . . . , An.

In general the notation of sequents is shortened to Γ⇒ ∆, with indices when needed. If Γ
stands for B1, . . . , Bm, then �Γ stands for �B1, . . . ,�Bm, in the same way, if ∆ stands
for A1, . . . , An, then �∆ denotes �A1, . . . ,�An.
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• A hypersequent consists of a finite sequence of sequents:

Γ1 ⇒ ∆1 | . . . | Γk ⇒ ∆k.

Each Γi ⇒ ∆i is called a component of the hypersequent, they are sequents as defined
above. Hypersequents are denoted by G and H , if needed with indices.

♦

Definition 3.1.2. A modal translation of a syntactic object X of the system LS5, as defined
above, is a modal formula denoted by Xt constructed as follows:
• The modal translation of a sequent: (B1, . . . , Bm ⇒ A1, . . . , An)t := B1 ∧ . . . ∧ Bm ⊃
A1 ∨ . . . ∨An.
• The modal translation of a hypersequent: (Γ1 ⇒ ∆1 | . . . | Γk ⇒ ∆k)

t := �(Γ1 ⇒
∆1)

t ∨ . . . ∨�(Γk ⇒ ∆k)
t.

♦

With these definitions, it is now possible to define the rules of the system LS5 that were used
by S.N. Artemov, E.L. Kazakov and D. Shapiro [4], in the notation used by A. Avron in his
paper [5]. See Table 3.1.

Axioms A⇒ A ⊥ ⇒

Contraction
G | A,A,Γ⇒ ∆ | H
G | A,Γ⇒ ∆ | H CL

G | Γ⇒ ∆, A,A | H
G | Γ⇒ ∆, A | H CR

G | Γ⇒ ∆ | Γ⇒ ∆ | H
G | Γ⇒ ∆ | H CE

Weakening
G | Γ⇒ ∆ | H
G | A,Γ⇒ ∆ | H WL

G | Γ⇒ ∆ | H
G | Γ⇒ ∆, A | H WR

G | Γ⇒ ∆ | H
G | Γ⇒ ∆ | Γ′ ⇒ ∆′ | H WE

Exchange
G | A,B,Γ⇒ ∆ | H
G | B,A,Γ⇒ ∆ | H EL

G | Γ⇒ ∆, A,B | H
G | Γ⇒ ∆, B,A | H ER

G | Γ⇒ ∆ | Γ′ ⇒ ∆′ | H
G | Γ′ ⇒ ∆′ | Γ⇒ ∆ | H EE

Cut
G1 | Γ1 ⇒ ∆1, A | H1 G2 | A,Γ2 ⇒ ∆2 | H2

G1 | G2 | Γ1,Γ2 ⇒ ∆1,∆2 | H1 | H2

Implication
G | Γ⇒ ∆, A | H G | B,Γ⇒ ∆ | H

G | A ⊃ B,Γ⇒ ∆ | H
⊃⇒

G | A,Γ⇒ ∆, B | H
G | Γ⇒ ∆, A ⊃ B | H

⇒⊃

Modal rules
G | A,Γ⇒ ∆ | Γ′ ⇒ ∆′ | H
G | Γ⇒ ∆ | �A,Γ′ ⇒ ∆′ | H �⇒

G | Γ⇒ ∆ |⇒ A | H
G | Γ⇒ ∆,�A | H ⇒ �

Table 3.1: Rules of the system LS5.

For the system LS5 G. Mints [16] proved already the following two theorems, concerning the
equivalence between S5 and LS5 and cut-elimination.

Theorem 3.1.3. Let G be a hypersequent and let Gt be its modal translation constructed ac-
cording to Definition 3.1.2. Then:

`LS5 G⇔`S5 G
t.
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Theorem 3.1.4. Any derivation in LS5 can be made cut-free: the cut-rule can be eliminated
from it.

Let LS5−denote the hypersequent system that consists of all of the rules of LS5, but without the
cut-rule. From now on, the system LS5−will be used, instead of LS5.

3.2 Auxiliary Definitions

In order to prove the realization theorem, the following more general definitions are needed.

Definition 3.2.1. Two formulas in a rule, one in the premise and one in the conclusion, are
called related, if they occur at the corresponding places of the rule and are denoted by the same
letter. The relation of being related is extended by transitivity.

In a similar way, occurrences of the � are related if they occur in related formulas at the
corresponding place. The class of related occurrences of the � is called a family. ♦

Definition 3.2.2. Every subformula A of a given formula Φ has a positive polarity or a negative
polarity. Let B and C be some formulas, then:
• Let A := Φ, then A has a positive polarity.
• Let A := ¬B, then B has a positive polarity if A has a negative polarity in Φ and B has a

negative polarity if A has a positive polarity in Φ.
• Let A := B ∧C or A := B ∨C, then B and C have a positive polarity if A has a positive

polarity in Φ and they have a negative polarity if A has a negative polarity in Φ.
• Let A := B ⊃ C, then B has a negative and C has a positive polarity if A has a positive

polarity in Φ and if A has a negative polarity in Φ, then B has a positive polarity and C
has a negative polarity.

• Let A := �B, then B has positive polarity if A has positive polarity and B has a negative
polarity if A has a negative polarity.

• The polarity of � is the polarity of the minimal formula that contains this occurrence of
�.

♦

Definition 3.2.3. If all �’s in a family have a positive polarity, it is said that the family is
positive. Otherwise the family is called negative.

A family that contains �’s introduced by the rule (⇒ �) is called essential, such essential
families have a positive polarity. ♦

REMARK. Every � in a negative family has a negative polarity, because the cut-rule is not part
of LS5−.

To be able to assume that the axioms in a derivation are all atomic, the following lemma has to
be proven.

Lemma 3.2.4. Any non-atomic axiom can be derived from atomic axioms.

Proof. There are two forms of axioms in LS5−: A ⇒ A and ⊥ ⇒, the latter is already atomic.
For A any LS5−-formula as defined in Definition 3.1.1 can be substituted. The proof will be by
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induction on the structure of A. Let B and C be LS5−-formulas and let p be a propositional
variable, consider the following cases:
• Suppose A = p or A = ⊥, then A⇒ A is already an atomic axiom.
• Suppose A = B ⊃ C, consider the following derivation using the LS5−-sequent rules:

B ⇒ B
B ⇒ C,B

WR C ⇒ C
C,B ⇒ C

WL

B, (B ⊃ C)⇒ C
⊃⇒

(B ⊃ C)⇒ (B ⊃ C)
⇒⊃

By induction hypothesis, the axioms C ⇒ C and B ⇒ B can be derived from atomic
axioms.

• Suppose A = �B and consider the LS5−-derivation:

B ⇒ B
B ⇒ B | ⇒ WE

�B ⇒|⇒ B
�⇒

�B ⇒ �B ⇒ �

By induction hypothesis, the axiom B ⇒ B can be derived from atomic axioms.
By Definition 3.1.1, these three cases cover all possible LS5−-formulas. From this it follows
that it can be assumed that the axioms in a derivation are atomic. �

In Chapter 2 on realization in general the definition of a realization function on an annotated
formula has already been introduced in Definition 2.2.6. Here the definition of an annotated for-
mula has to be extended to an annotated hypersequent and it has to be defined what a realization
function on an annotated hypersequent is.

Definition 3.2.5. An annotated hypersequent is a hypersequent in which only annotated formu-
las occur, each occurrence of a � and each component of a hypersequent is annotated by an odd
index. A hypersequent is properly annotated if no index occurs twice. ♦

With this definition, it is possible to define a realization function on syntactic objectsX of LS5−.
The syntactic objects of LS5−have been defined in Definition 3.1.1

Definition 3.2.6 ( [4]). Let X be a properly annotated syntactic object and p a proposition. A
realization function r applied on X results in a justification formula, constructed by induction
according to Table 3.2. ♦

pr := p (�2p−1A)r := r(2p− 1) : Ar

⊥r := ⊥ (A ⊃ B)r := Ar ⊃ Br

(B1, . . . , Bm ⇒ A1, . . . , An)r := Br
1 ∧ . . . ∧Br

m ⊃ Ar1 ∨ . . . ∨Arn
((Γ1 ⇒ ∆1)2l1−1 | . . . | (Γk ⇒ ∆k)2lk−1)

r :=
r(2l1 − 1) : (Γ1 ⇒ ∆1)

r ∨ . . .∨ r(2lk − 1) : (Γk ⇒ ∆k)
r

Table 3.2: Realization of properly annotated syntactic objects of LS5−, source: [4]
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Definition 3.2.7. The realization r(D) of an LS5−-derivation D, is the result of applying real-
ization r to the hypersequents of D.

A realization r of an LS5−-derivation D is called normal if all negative occurrences of � in
in the endsequent of D are realized by distinct proof variables. ♦

3.3 The Realization of LS5

Theorem 3.3.1. Let

L ∈ {LPS5, LPS5c, JT45, JT5, JTB5, JTB45, JDB5, JDB45, JDB4, JTB4}.

For any LS5−-derivation D, a normal realization r can be constructed, such that for every
hypersequent G of D, the image (G)r of G under r, is derivable in L.

Proof. The idea of the proof is based on the proof given by S. N. Artemov, E. L. Kazakov and D.
Shapiro [4]. The proofs here are written for the standard notation sequents and with the many
lemma’s from chapter 2, the proofs are short and the same for any of the considered logics.

Assume, without loss of generality, that the axioms of D are atomic (this can be assumed
because of Lemma 3.2.4). An L-derivationD′ and a realization r will be constructed as follows:
• Every non-essential family (the negative and the non-essential positive) is realized by a

fresh proof variable.
• Let f be an essential family. Enumerate all the occurrences of the rule (⇒ �) that

introduce �’s to this family, let k be the total number. Realize all the �’s of f with
ũ = (u1 + . . . + uk), where the ui’s are fresh proof variables (called provisional vari-
ables).

The derivation D′ and the realization r will be constructed by induction on D. At the start,
D′ is empty and r is constructed for families as described. The �’s of negative families are
realized by fresh proof variables and the provisional variables will be replaced by terms, during
the construction of r, from which it follows that r is normal.

During the construction of D′ and r an initially empty substitution σ is built. This idea is
based on the paper by V. Brezhnev and R. Kuznets [6]. At the end, σ assigns a certain term to
each provisional variable.
To be able to substitute the provisional variables ui by terms ti, it is sufficient to check that the
ti’s are not containing uj’s, for j 6= i. Because:
• If the sequents of the premise are annotated by terms that do not contain any ui’s, then the

sequents of the conclusion will be annotated by terms that do not contain any of the ui’s
either. Therefore, all the sequents are annotated by terms that do not contain any of the
ui’s.
• When a term t is is substituted for some ui’s, t does not contain any uj’s.
Start with proving the realization of the axioms into the basic justification logic J.

Axiom (1): A ⇒ A, by Definition 3.1.2, the axiom can be translated into the modal formula
A ⊃ A. Since it has been assumed that the axioms are atomic, A is a propositional variable or
A = ⊥. From the Table 3.2 of realization functions on syntactic LS5−-objects, it is known that
pr := p, for any propositional variable and ⊥r := ⊥. Hence: (A ⊃ A)r := Ar ⊃ Ar, for any
realization function r on A⇒ A, translates to A ⊃ A, which is a justification tautology as well.
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Axiom (2): ⊥ ⇒, by Definition 3.1.2, the axiom can be translated into the modal formula
⊥ ⊃ ⊥. From the definition of a realization function on a syntactic LS5−-object in Table 3.2,
it follows that (⊥ ⊃ ⊥)r = ⊥r ⊃ ⊥r = ⊥ ⊃ ⊥. Hence (⊥ ⊃ ⊥)r can be realized into the
justification formula ⊥ ⊃ ⊥, which is a justification tautology as well.

Now consider the rules contraction, weakening and implication. By Definition 3.1.2 the
premise(s) and the conclusion of each of these rules can be translated into a modal formula.
Assume by induction hypothesis that there is a realization function r, that realizes the premise
of the rule into a formula of the justification logic L. The goal is to prove that the conclusion of
the rule can be realized into L as well, using the realization of the premise(s).

In general assume that Ar = K, Br = L, Γr = C and ∆r = D. Now consider each of the
eight rules in turn:
Contraction left (CL): Consider the first contraction rule:

G | A,A,Γ⇒ ∆ | H
G | A,Γ⇒ ∆ | H .

By induction hypothesis, there is a realization function r that realizes the premise intoL: Gr∨s :
((K ∧K ∧ C) ⊃ D) ∨Hr. It has to be proven that the conclusion of the rule can be realized
into L as well:

0. Gr ∨ s : ((K ∧K ∧ C) ⊃ D) ∨Hr By induction hypothesis
1. (K ∧ C) ⊃ (K ∧K ∧ C) Propositional tautology
2. ((K ∧K ∧ C) ⊃ D) ⊃ ((K ∧ C) ⊃ D) From 1. by prop. reasoning
3. s : ((K ∧K ∧ C) ⊃ D) ⊃ t(s) : ((K ∧ C) ⊃ D) From 2. by Corollary 2.2.3
4. Gr ∨ t(s) : ((K ∧ C) ⊃ D) ∨Hr From 0. and 3. by prop. reasoning.

Let s′ := t(s), then Gr ∨ s′ : ((K ∧C) ⊃ D)∨Hr is a realization of the contraction rule to the
left.
Contraction right (CR): Consider the second contraction rule:

G | Γ⇒ ∆, A,A | H
G | Γ⇒ ∆, A | H .

By induction hypothesis, there is a realization function r that realizes the premise intoL: Gr∨s :
(C ⇒ (D ∨K ∨K)) ∨Hr. It has to be proven that the conclusion of the rule can be realized
into L as well:

0. Gr ∨ s : (C ⇒ (D ∨K ∨K)) ∨Hr By induction hypothesis
1. (D ∨K ∨K) ⊃ (D ∨K) Propositional tautology
2. (C ⊃ (D ∨K ∨K)) ⊃ (C ⊃ (D ∨K)) From 1. by prop. reasoning
3. s : (C ⊃ (D ∨K ∨K)) ⊃ t(s) : (C ⊃ (D ∨K)) From 2. by Corollary 2.2.3
4. Gr ∨ t(s) : (C ⊃ (D ∨K)) ∨Hr From 0. and 3. by prop. reasoning.

Let s′ := t(s), then Gr ∨ s′ : (C ⊃ (D ∨ K)) ∨ Hr is a realization of the conclusion of
contraction rule to the right.

32



External contraction (CE): Consider the external contraction rule:

G | Γ⇒ ∆ | Γ⇒ ∆ | H
G | Γ⇒ ∆ | H .

By induction hypothesis, there is a realization function r that realizes the premise intoL: Gr∨s :
(C ⊃ D)∨ t : (C ⊃ D)∨Hr. It has to be proven that the conclusion of the rule can be realized
into L as well:

0. Gr ∨ s : (C ⊃ D) ∨ t : (C ⊃ D) ∨Hr By induction hypothesis
1. s : (C ⊃ D) ⊃ (s+ t) : (C ⊃ D) Instance of sum
2. t : (C ⊃ D) ⊃ (s+ t) : (C ⊃ D) Instance of sum
3. ((s+ t) : (C ⊃ D) ∨ (s+ t) : (C ⊃ D)) ⊃ (s+ t) : (C ⊃ D) Prop. tautology
4. Gr ∨ (s+ t) : (C ⊃ D) ∨ (s+ t) : (C ⊃ D) ∨Hr

From 0., 1. and 2. by prop. reasoning
5. Gr ∨ (s+ t) : (C ⊃ D) ∨Hr From 3. and 4. by prop. reasoning.

From this it follows that Gr ∨ (s + t) : (C ⊃ D) ∨Hr is a realization of the conclusion of the
external contraction rule.
Weakening left (WL): Consider the first weakening rule:

G | Γ⇒ ∆ | H
G | A,Γ⇒ ∆ | H.

By induction hypothesis, there is a realization function r that realizes the premise intoL: Gr∨s :
(C ⊃ D)∨Hr. It has to be proven that the conclusion of the rule can be realized into L as well:

0. Gr ∨ s : (C ⊃ D) ∨Hr By induction hypothesis
1. (K ∧ C) ⊃ C Propositional tautology
2. (C ⊃ D) ⊃ ((K ∧ C) ⊃ D) From 1. by prop. reasoning
3. s : (C ⊃ D) ⊃ t(s) : ((K ∧ C) ⊃ D) From 2. by Corollary 2.2.3
4. Gr ∨ t(s) : ((K ∧ C) ⊃ D) ∨Hr From 0. and 3. by prop. reasoning.

Let s′ := t(s), then Gr ∨ s′ : ((K ∧ C) ⊃ D) ∨ Hr is a realization of the conclusion of the
weakening rule to the left.
Weakening right (WR): Consider the second weakening rule:

G | Γ⇒ ∆ | H
G | Γ⇒ ∆, A | H.

By induction hypothesis, there is a realization function r that realizes the premise intoL: Gr∨s :
(C ⊃ D)∨Hr. It has to be proven that the conclusion of the rule can be realized into L as well:

0. Gr ∨ s : (C ⊃ D) ∨Hr By induction hypothesis
1. D ⊃ (D ∨K) Propositional tautology
2. (C ⊃ D) ⊃ (C ⊃ (D ∨K)) From 1. by prop. reasoning
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3. s : (C ⊃ D) ⊃ t(s) : (C ⊃ (D ∨K)) From 2. by Corollary 2.2.3
4. Gr ∨ t(s) : (C ⊃ (D ∨K)) ∨Hr From 0. and 3. by prop. reasoning.

Let s′ := t(s), then Gr ∨ s′ : (C ⊃ (D ∨K)) ∨Hr is a realization of the weakening rule to the
right.
External weakening: Consider the external weakening rule:

G | Γ⇒ ∆ | H
G | Γ⇒ ∆ | Γ′ ⇒ ∆′ | H.

By induction hypothesis, there is a realization function r that realizes the premise intoL: Gr∨s :
(C ⊃ D)∨Hr. It has to be proven that the conclusion of the rule can be realized into L as well:

0. Gr ∨ s : (C ⊃ D) ∨Hr By induction hypothesis
1. s : (C ⊃ D) ⊃ (s : (C ⊃ D) ∨ s′ : (C ′ ⊃ D′)) Propositional tautology
2. Gr ∨ s : (C ⊃ D) ∨ s′ : (C ′ ⊃ D′) ∨Hr From 0. and 1. by prop. reasoning.

From this it follows that Gr ∨ s : (C ⊃ D)∨ s′ : (C ′ ⊃ D′)∨Hr is a realization of the external
weakening rule.
Implication to the left (⊃⇒): Consider the rule for implication to the left:

G | Γ⇒ ∆, A | H G | B,Γ⇒ ∆ | H
G | A ⊃ B,Γ⇒ ∆ | H .

By induction hypothesis, there is a realization function r that realizes the premise into L: Gr ∨
s1 : (C ⊃ (D ∨K)) ∧ s2 : ((L ∧ C) ⊃ D) ∨Hr. It has to be proven that the conclusion of the
rule can be realized into L as well:

0. Gr ∨ s1 : (C ⊃ (D ∨K)) ∧ s2 : ((L ∧ C) ⊃ D) ∨Hr. By induction hypothesis
1. (C ⊃ (D ∨K)) ∧ ((L ∧ C) ⊃ D) ⊃ (((K ⊃ L) ∧ C) ⊃ D) Propositional tautology
2. (C ⊃ (D ∨K)) ⊃ (((L ∧ C) ⊃ D) ⊃ (((K ⊃ L) ∧ C) ⊃ D)) From 1. by prop. reas.
3. s1 : (C ⊃ (D ∨K)) ⊃ (s2 : ((L ∧ C) ⊃ D) ⊃ t(s1, s2) : (((K ⊃ L) ∧ C) ⊃ D))

From 2. by Corollary 2.2.3
4. s1 : (C ⊃ (D ∨K)) ∧ s2 : ((L ∧ C) ⊃ D) ⊃ t(s1, s2) : (((K ⊃ L) ∧ C) ⊃ D)

From 3. by prop. reasoning
5. Gr ∨ t(s1, s2) : (((K ⊃ L) ∧ C) ⊃ D) ∨Hr From 0. and 4. by prop. reasoning

Let s := t(s1, s2), then Gr ∨ s : (((K ⊃ L) ∧ C) ⊃ D) ∨ Hr is a realization of the rule for
implication to the left.
Implication to the right (⇒⊃): Consider the rule for implication to the right:

G | A,Γ⇒ ∆, B | H
G | Γ⇒ ∆, A ⊃ B | H.

By induction hypothesis, there is a realization function r that realizes the premise intoL: Gr∨s :
((K ∧ C) ⊃ (D ∨ L)) ∨Hr. It has to be proven that the conclusion of the rule can be realized
into L as well:
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0. Gr ∨ s : ((K ∧ C) ⊃ (D ∨ L)) ∨Hr By induction hypothesis
1. ((K ∧ C) ⊃ (D ∨ L)) ⊃ (C ⊃ (D ∨ (K ⊃ L))) Propositional tautology
2. s : ((K ∧ C) ⊃ (D ∨ L)) ⊃ t(s) : (C ⊃ (D ∨ (K ⊃ L))) From 1. by Corollary 2.2.3
3. Gr ∨ t(s) : (C ⊃ (D ∨ (K ⊃ L))) ∨Hr From 0. and 2. by prop. reasoning.

Let s′ := t(s), then Gr ∨ s′ : (C ⊃ (D ∨ (K ⊃ L))) ∨Hr is a realization of the conclusion of
implication to the right rule.
Modal rule (⇒ �): Consider the first modal rule:

G | Γ⇒ ∆ |⇒ A | H
G | Γ⇒ ∆,�A | H .

Assume that this is the j-th introduction of a � using the (⇒ �)-rule into this family of �’s and
suppose that the � in �A has been annotated with (v1 + . . .+ vk), as described at the beginning
of the proof. Possibly some of the vi’s, (i 6= j) are already substituted in an earlier stage of the
construction of the derivation, therefore, instead of considering (v1 + . . . + vk), the annotation
(v1σ, . . . , vkσ) will be considered. However, vj is definitely a provisional variable. In the entire
derivation vj has to be replaced with s2.

By induction hypothesis, the premise of the rule can be realized into the justification logic
L: Gr ∨ s1 : (C ⊃ D) ∨ s2 : K ∨Hr. Let ṽ = v1σ + . . .+ vj−1σ + s2 + vj+1σ + . . .+ vkσ.

0. Gr ∨ s1 : (C ⊃ D) ∨ s2 : K ∨Hr By induction hypothesis
1. D ⊃ (D ∨ ṽ : K) Propositional tautology
2. (C ⊃ D) ⊃ (C ⊃ (D ∨ ṽ : K) From 1. by prop. reasoning
3. s1 : (C ⊃ D) ⊃ t′(s1) : (C ⊃ D ∨ ṽ : K) By Corollary 2.2.3
4. s2 : K ⊃ ṽ : K Several times sum
5. (D ∨ s2 : K) ⊃ (D ∨ ṽ : K) From 4. by prop. reasoning
6. s2 : K ⊃ (C ⊃ D ∨ s2 : K) Propositional tautology
7. s2 : K ⊃ (C ⊃ D ∨ ṽ : K) From 5. and 6. by prop. reasoning
8. s2 : K ⊃ p2(s2) : (C ⊃ D ∨ ṽ : K) From 7. by Lemma 2.2.16
9. t′(s1) : (C ⊃ D ∨ ṽ : K) ∨ p2(s2) : (C ⊃ D ∨ ṽ : K)

⊃ (t(s1) + p2(s2)) : (C ⊃ D ∨ ṽ : K) From 3. and 8. by sum and prop. reasoning
10. Gr ∨ (t′(s1) + p2(s2)) : (C ⊃ D ∨ ṽ : K) ∨Hr From 0. and 9. by prop. reason.

Let t(s1, s2) := (t′(s1)+p2(s2)), thenGr∨ t(s1, s2) : (C ⊃ D∨ ṽ : K)∨Hr is a realization of
the conclusion of the first modal rule. Since Lemma 2.2.16 has been proven for all possibilities
of L, the proof of the realization for this rule holds for any of the logics that are considered here.

It is left to prove that s2 does not contain any of the vi’s (the provisional variables), where
i 6= j. Since s2 is part of the realization of the premise, by induction hypothesis s2 does not
contain any of the provisional variables vi, i 6= j.

From this it follows that vj can be replaced with s2 in the entire derivation and σ := σ ∪
{vj 7→ s2}.
Modal rule (�⇒): Consider the second modal rule:

G | A,Γ⇒ ∆ | Γ′ ⇒ ∆′ | H
G | Γ⇒ ∆ | �A,Γ′ ⇒ ∆′ | H.
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As described at the beginning of the proof, the � in �A has to be realized by a fresh proof
variable. Assume without loss of generality, that q is such a fresh proof variable.

By induction hypothesis, the premise of the rule can be realized into the justification logic L
as the following formula: Gr ∨ s1 : ((K ∧ C) ⊃ D) ∨ s2 : (C ′ ⊃ D′) ∨Hr. It is left to prove
that the conclusion of the (�⇒)-rule is realizable into L as well.

0. Gr ∨ s1 : ((K ∧ C) ⊃ D) ∨ s2 : (C ′ ⊃ D′) ∨Hr By induction hypothesis
1. ((K ∧ C) ⊃ D) ⊃ (K ⊃ (C ⊃ D)) Propositional tautology
2. s1 : ((K ∧ C) ⊃ D) ⊃ t(s1) : (K ⊃ (C ⊃ D)) From 1. by Corollary 2.2.3
3. t(s1) : (K ⊃ (C ⊃ D)) ⊃ (q : K ⊃ (t(s1) · q) : (C ⊃ D)) Instance of app
4. ¬q : K ⊃ (¬q : K ∨ (C ′ ⊃ D′)) Propositional tautology
5. (¬q : K ∨ (C ′ ⊃ D′)) ⊃ ((q : K ∧ C ′) ⊃ D′) Propositional tautology
6. p1 : (¬q : K ⊃ ((q : K ∧ C ′) ⊃ D′)) From 4. and 5. by Lemma 2.2.1 and prop. reas.
7. ¬q : K ⊃ negint(q) : ¬q : K By Lemma 2.2.18
8. p1 : (¬q : K ⊃ ((q : K ∧ C ′) ⊃ D′))

⊃ (negint(q) : ¬q : K ⊃ (p1 · negint(q)) : ((q : K ∧ C ′) ⊃ D′)) Instance of app
9. ¬q : K ⊃ (p1 · negint(q)) : ((q : K ∧C ′) ⊃ D′)From 6., 7. and 8. by MP and prop. reas.

10. D′ ⊃ (D′ ∨ ¬q : K) Propositional tautology
11. (C ′ ⊃ D′) ⊃ (C ′ ⊃ (D′ ∨ ¬q : K)) From 10. by prop. reasoning
12. s2 : (C ′ ⊃ D′) ⊃ t′(s2) : (C ′ ⊃ D′ ∨ ¬q : K) From 11. By Corollary 2.2.3
13. t′(s2) : (C ′ ⊃ D′ ∨ ¬q : K)

⊃ p4(s2) : ((q : K ∧ C ′) ⊃ D′) By prop. reasoning and Corollary 2.2.3
14. (p1 · negint(q)) : ((q : K ∧ C ′) ⊃ D′) ∨ p4(s2) : ((q : K ∧ C ′) ⊃ D′)

⊃ ((p1 · negint(q)) + p4(s2)) : ((q : K ∧ C ′) ⊃ D′)
From 9. and 13. by sum and prop. reason.

From these derivations it follows that:
• s1 : ((K ∧ C) ⊃ D) ⊃ (q : K ⊃ (t(s1) · q) : (C ⊃ D))
• s2 : (C ′ ⊃ D′) ⊃ p4(s2) : ((q : K ∧ C ′) ⊃ D′)

Since q : K ∨ ¬q : K is a propositional tautology and ¬q : K ⊃ (p1 · negint(q)) : ((q :
K ∧ C ′) ⊃ D′), it can be derived that:

L ` (s1 : ((K ∧ C) ⊃ D) ∨ s2 : (C ′ ⊃ D′)) ⊃
(t(s1) · q) : (C ⊃ D) ∨ (p1 · negint(q)) : ((q : K ∧ C ′) ⊃ D′) ∨ p4(s2) : ((q : K ∧ C ′) ⊃ D′).

Let t1 := (t(s1) · q) and t2 := ((p1 ·negint(q)) +p4(s2)), then from 0., 14. and the above result,
by propositional reasoning it follows that: Gr ∨ t1 : (C ⊃ D)∨ t2 : ((q : K ∧C ′) ⊃ D′)∨Hr.
This is a realization of the conclusion of the modal rule that introduces a � to the left.

Now that it has been proven that any of the rules of LS5−is realizable into L, it can be
concluded that for any LS5−-derivation D, a normal realization r can be constructed such that
for every hypersequent G of D, the image (G)r of G under r is derivable in L, where:

L ∈ {LPS5, LPS5c, JT45, JT5, JTB5, JTB45, JDB5, JDB45, JDB4, JTB4}.

�
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Based on this theorem, Theorem 3.1.3 and Theorem 3.1.4, the following corollary states the
realization of S5 into its justification counterparts.

Corollary 3.3.2.
Let L ∈ {LPS5, LPS5c, JT45, JT5, JTB5, JTB45, JDB5, JDB45, JDB4, JTB4}. Let A be a
modal formula, if there exists an S5-derivation of A, a normal derivation r can be constructed,
such that L ` Ar. This means: S5 is realizable into any of the ten considered justification
logics, using hypersequents.
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CHAPTER 4
Nested Sequents Method

In this chapter a cut-free nested sequent system, that was used by R. Goetschi and R. Kuznets
in their paper on realization [12] and introduced by Kai Brünnler [7], is considered. With this
nested sequent system the realization of many modal logics into their justification counterparts
can be proven, as was done by R. Goetschi and R. Kuznets [12].

However, here only the realization of S5 into justification logic is considered. In the paper,
the realization of S5 into JT45 was directly proven using nested sequents. The realization of
S5 into JT5, JTB5, JDB5, JDB4, JTB4, JTB45 and JDB45 was proven by using in addition
to nested sequents the notions of embedding and operation translation. This method requires
additional restrictions on the axiom system of the justification logic. Here the interest lies in a
direct realization of S5 into its justification counterparts using nested sequents.

Because of the direct realization of S5 into JT45 using nested sequents, it follows that S5
is directly realizable into JTB45 using nested sequents as well. Below the realization of S5 into
LPS5 and LPS5c will be discussed. For the direct realization of S5 into the logics JT5, JTB5,
JTB4, JDB5, JDB4 and JDB45, another system will be considered, which can be found the next
chapter.

4.1 A Nested Sequent System

The nested sequents as used here, are based on the paper by R. Goetschi and R. Kuznets [12].
Unless stated otherwise, the definitions, facts, lemmas and theorem, for this and the next section,
are taken from this paper as well. The proofs can be found there.

Definition 4.1.1. A nested sequent can be defined inductively:
• ∅, the empty sequence, is a nested sequent
• Γ, A and Γ, [∆] are nested sequents, where Γ and ∆ are nested sequents and A is a modal

formula
The comma denotes concatenation, the brackets in [∆] are called structural box. (Nested) se-
quents will be denoted by Greek uppercase letters. ♦
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Definition 4.1.2. The corresponding formula of a sequent Γ, denoted by Γ can inductively be
defined as follows:

∅ := ⊥; Γ, A :=

{
Γ ∨A if Γ 6= ∅
A otherwise

Γ, [∆] :=

{
Γ ∨�∆ if Γ 6= ∅
�∆ otherwise

♦

Because of an ambiguous grammar in the definition of a context in the papers by K. Brünnler [7]
and R. Goetschi and R. Kuznets [12], the following definition will be used here and can be found
in the paper by R. Kuznets and M. Fitting [14].

Definition 4.1.3. A (sequent) context, is a sequent with exactly one hole: the occurrence of {}.
These contexts are denoted by Γ{}. Let ∆ be some sequent and let Σ{} be a context, a context
can inductively be defined as follows:
• ∆, {} is a context
• [Σ{}] and Σ{},∆ are contexts.

Let Γ{} be a context and Π a sequent, then Γ{Π} can be defined based on the above cases:
• If Γ{} = ∆, {}, then Γ{Π} = ∆,Π.
• If Γ{} = [Σ{}], then Γ{Π} = [Σ{Π}].
• If Γ{} = Σ{},∆, then Γ{Π} = Σ{Π},∆.

♦

Definition 4.1.4. A nested sequent-rule, denoted by ρ, is a set of instances that have the follow-

ing form
Γ1 . . . Γn

Γ , for n ≥ 0, where Γ,Γ1, . . . ,Γn are sequents. Γ1, . . . ,Γn is the premise of
rule ρ and Γ is the conclusion of ρ.

A nested sequent-rule ρ may be context-preserving, this means that ρ is a set of instances

of the following form:
Γ{S1} . . . Γ{Sn}

Γ{S}
ρ

, for n ≥ 0 and some set of tuples of sequents
(S1, . . . , Sn, S). Here Γ{} is an arbitrary context that is common for all premises and for the
conclusion of ρ.

Instances of context-preserving nested sequent-rules have a shallow version, denoted with
sh-ρ, for rule ρ. This is the same instance of the rule, but with an empty common context:
Γ{} = {}. Let S, S1, . . . , Sn be sequents, for n ≥ 0, then:

Γ{S1} . . . Γ{Sn}
Γ{S}

ρ S1 . . . Sn
S

sh-ρ

♦

With these definitions, it is now possible to define the nested sequent rules, as they will be used
here.
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Definition 4.1.5.

Γ{a, a} id
Γ{A,B}

Γ{A ∨B} ∨
Γ{A} Γ{B}

Γ{A ∧B} ∧

Γ{A,A}
Γ{A} ctr

Γ{∆,Σ}
Γ{Σ,∆} exch

Γ{[A]}
Γ{�A} �

Γ{[A,∆]}
Γ{♦A, [∆]} k

Γ{[A]}
Γ{♦A} d

Γ{A}
Γ{♦A} t

Γ{[∆], A}
Γ{[∆,♦A]} b

Γ{[♦A,∆]}
Γ{♦A, [∆]} 4

Γ{[∆],♦A}
Γ{[∆,♦A]} 5a

Γ{[∆], [Π,♦A]}
Γ{[∆,♦A], [Π]} 5b

Γ{[∆, [Π,♦A]]}
Γ{[∆,♦A, [Π]]} 5c

Notice that each of these rules is context-preserving, from which it follows that, for each of these
rules a shallow version exists. ♦

4.2 Auxiliary Definitions and Lemma’s

Definition 4.2.1. A subsequent of a sequent Γ is any sequent ∆, such that Γ = Σ{∆} and Σ{}
is some context. ♦

Definition 4.2.2. An annotated sequent (context) is a sequent (context) with only annotated
formulas, all the structural boxes are annotated by odd indices, a sequent (context) is properly
annotated if no index occurs twice. The corresponding formula of an annotated sequent is
defined above in Definition 4.1.2, except for the last case, which is defined as:

Σ, [∆]k :=

{
Σ ∨�k∆ if Σ 6= ∅
�k∆ otherwise

Let Γ be some annotated sequent, if the sequent Γ′ is obtained by removing all indices, it is
said that Γ is an annotated version of Γ′. This idea also holds for a context: let Γ{} be some
annotated context, if the context Γ′{} is obtained by removing all indices, it is said that Γ{} is
an annotated version of the context Γ′{}. ♦

Definition 4.2.3. Given an instance of a nested rule, with common context Γ′{}:

Γ′{Λ′1} . . . Γ′{Λ′n}
Γ′{Λ′}

An annotated version of this rule-instance, has the form:

Γ{Λ1} . . . Γ{Λn}
Γ{Λ}
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Where Γ{},Λ1, . . . ,Λn,Λ are annotated versions of Γ′{},Λ′1, . . . ,Λ′n,Λ′ respectively. The se-
quents Γ{Λ1}, . . . ,Γ{Λn},Γ{Λ} are properly annotated and no index occurs in both Λi and
Λj for any 1 ≤ i < j ≤ n. The annotated context Γ{} is the same for all premises and the
conclusion. ♦

The definition of a realization function on an annotated formula can be found in Definition 2.2.6.
The realization function on an annotated nested sequent is defined as the realization function on
the corresponding formula, as defined in Definition 4.2.2. Taking into account that a rule consists
of sequents, the realization of a nested sequent-rule into a justification logic JL can be defined.

REMARK. If r is a realization function on an annotated sequent Γ{∆}, then r is a realization
function on the subsequent ∆ as well.

Definition 4.2.4. A rule is called realizable in a justification logic JL if all the instances of the
rule are realizable in JL.
• An instance

Γ′{Λ′}
of a 0-premise nested rule is called realizable in a justification logic

JL, if there is an annotated version
Γ{Λ}

of it and a realization function r on its conclusion

Γ{Λ} such that Γ{Λ}r is provable in JL.
• An instance of a context-preserving n-premise nested rule, with n > 0 and with common

context Γ′{}:
Γ′{Λ′1} . . . Γ′{Λ′n}

Γ′{Λ′}

is called realizable in a justification logic JL if there exists an annotated version:

Γ{Λ1} . . . Γ{Λn}
Γ{Λ}

of this rule, such that for any realization functions r1, . . . , rn on the premises Γ{Λ1}, . . . ,
Γ{Λn} respectively, there exists a realization function r on the conclusion Γ{Λ} and a
substitution σ that lives on each of the Γ{Λi}, i = 1, . . . , n such that

JL ` Γ{Λ1}r1σ ⊃ . . . ⊃ Γ{Λn}rnσ ⊃ Γ{Λ}r.

♦

Lemma 4.2.5. For any nested rule ρ, if its shallow version sh-ρ is realizable in a justification
logic JL, then ρ itself is realizable into JL.

Theorem 4.2.6. Let S be a system of nested rules, whose shallow versions are realizable in
a justification logic JL. Then, for every sequent Γ′ that is provable in S, there is a properly
annotated version Γ of it and a realization function r on this Γ, such that Γr is provable in JL.

Using this theorem, the realization of S5 into LPS5 and LPS5c can be proven, by proving that
sh-ρ, for ρ ∈ {id,∨,∧, ctr, exch, �, k, t, 4, 5a, 5b, 5c}, is provable in LPS5 and LPS5c. Most
of the axioms in LPS5 and LPS5c are the same as those of JT45. That is why the proof of the
following two lemma’s, is completely based on the proof that is given by R. Goetschi and R.
Kuznets [12]:
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Lemma 4.2.7. Let ρ ∈ {id,∨,∧, ctr, exch, �, k, t, 4}. The shallow version of ρ is realizable in
LPS5 and in LPS5c.

Proof. Consider three cases, based on the justification logic into which the shallow version of ρ
is provable:
• Let ρ ∈ {id,∨,∧, ctr, exch, �, k}. By R. Goetschi and R. Kuznets [12] it has been proven

that sh-ρ is provable into the based justification logic J.
• Let ρ = t, it has been proven by R. Goetschi and R. Kuznets [12], that sh-ρ is realizable

into JT and therefore into any extension of JT as well.
• Let ρ = 4, in the same paper, it has been proven that sh-ρ is realizable into J4 and hence

into any of the justification logics that extend J4.
Since LPS5 and LPS5c are extensions of J, JT and of J4, it follows that sh-ρ is realizable into
LPS5 and LPS5c for any of the considered rules. �

It is left to prove for both LPS5 and LPS5c that the rules 5a, 5b and 5c are realizable.

4.3 Realization into LPS5 and LPS5c using Nested Sequents

In the realization into LPS5 an axiom that can be derived from A5 will be used, instead of the
axiom A5 itself. Therefore the proofs of the realization of the shallow versions of 5a, 5b and
5c are very similar for LPS5 and LPS5c. In the paper by R. Goetschi and R. Kuznets [12]
some auxiliary lemma’s were needed to prove the realization of these three shallow versions
into J5. The axiom systems of LPS5 and LPS5c contain, in addition to the axioms A5 and A5c
respectively, the axioms jt and j4. Because of these two lateer axioms the auxiliary lemma’s are
not needed here.

Realization into LPS5

The axiom system of LPS5 consists of propositional tautologies, jt, app, sum, j4 and A5: t :
(A ⊃ ¬s : B) ⊃ (A ⊃?t : (¬s : B)). To prove the realization of the shallow versions of 5a, 5b
and 5c, another version of A5 is considered, call it A5’: ¬t : A ⊃?c : ¬t : A, where c is some
constant. This axiom can be derived from A5 as follows:

0. ¬t : A ⊃ ¬t : A Propositional tautology
1. c : (¬t : A ⊃ ¬t : A) From 0. by Axiom Necessitation
2. c : (¬t : A ⊃ ¬t : A) ⊃ (¬t : A ⊃?c : ¬t : A) Instance of A5
3. ¬t : A ⊃?c : ¬t : A From 1. and 2. by Modus Ponens

Notice that a similar proof was given for Lemma 2.2.18, but to keep as close as possible to the
logic LPS5, the axiom A5’ will be used here, instead of the more general theorem that was
introduced by Lemma 2.2.18.

With this new axiom A5’, the realization of 5a, 5b and 5c can be proven for the logic LPS5.

Lemma 4.3.1. Let ρ ∈ {5a, 5b, 5c}. The shallow version of ρ is realizable in LPS5.
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Proof. Consider an arbitrary instance of sh-ρ for each rule ρ in turn:

Case ρ = 5a: Let
[∆′],♦A′

[∆′,♦A′] be an arbitrary instance of sh-5a, let [∆]k,♦2mA and [∆,♦2mA]i

be properly annotated versions of its premise and conclusion respectively. Then
[∆]k,♦2mA

[∆,♦2mA]i
is an annotated version of this instance. Consider an arbitrary realization function r1 on the
premise, then:

0. ∆r1 ⊃ ∆r1 ∨ ¬xm : ¬Ar1 Propositional tautology
1. r1(k) : ∆r1 ⊃ t1(r1(k)) : (∆r1 ∨ ¬xm : ¬Ar1) From 0. by Corollary 2.2.3
2. ¬xm : ¬Ar1 ⊃ (∆r1 ∨ ¬xm : ¬Ar1) Propositional tautology
3. ?c : ¬xm : ¬Ar1 ⊃ t2(?c) : (∆r1 ∨ ¬xm : ¬Ar1) From 2. by Corollary 2.2.3
4. ¬xm : ¬Ar1 ⊃?c : ¬xm : ¬Ar1 Instance of A5’
5. ¬xm : ¬Ar1 ⊃ t2(?c) : (∆r1 ∨ ¬xm : ¬Ar1) From 3. and 4. by prop. reasoning
6. r1(k) : ∆r1 ∨ ¬xm : ¬Ar1 ⊃ (t1(r1(k)) + t2(?c)) : (∆r1 ∨ ¬xm : ¬Ar1)

From 1. and 5. by sum and prop. reasoning

Let t := (t1(r1(k)) + t2(?c)), then it follows that

LPS5 ` r1(k) : ∆r1 ∨ ¬xm : ¬Ar1 ⊃ t : (∆r1 ∨ ¬xm : ¬Ar1).

The index i does not occur in either ∆ or ♦2mA, since [∆,♦2mA]i is properly annotated. Hence:
the realization r, formulated as r := (r1 � ∆,♦2mA) ∪ {i 7→ t} is a realization function on
[∆,♦2mA]i. For the identity substitution σ and r:

LPS5 ` ([∆]k,♦2mA)r1σ ⊃ ([∆,♦2mA]i)
r.

Case ρ = 5b: Let
[∆′], [Π′,♦A′]

[∆′,♦A′], [Π′] be an arbitrary instance of sh-5b, let [∆]k, [Π,♦2mA]i and
[∆,♦2mA]l, [Π]j be properly annotated version of the premise respectively conclusion. Then

the following is an annotated version of this instance:
[∆]k, [Π,♦2mA]i

[∆,♦2mA]l, [Π]j . Consider an arbitrary
realization function r1 on the premise, then:

0. xm : ¬Ar1 ⊃!xm : xm : ¬Ar1 Instance of j4
1. ¬!xm : xm : ¬Ar1 ⊃ ¬xm : ¬Ar1 From 0. by prop. reasoning
2. ?c : ¬!xm : xm : ¬Ar1 ⊃ t1(?c) : ¬xm : ¬Ar1 From 1. by Corollary 2.2.3
3. ¬!xm : xm : ¬Ar1 ⊃?c : ¬!xm : xm : ¬Ar1 Instance of A5’
4. ¬!xm : xm : ¬Ar1 ⊃ t1(?c) : ¬xm : ¬Ar1 From 2. and 3. by prop. reasoning
5. xm : ¬Ar1 ⊃ Πr1 ∨ ¬xm : ¬Ar1 ⊃ Πr1 Prop. tautology
6. !xm : xm : ¬Ar1 ⊃ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ t2(!xm, r1(i)) : Πr1

From 5. by Corollary 2.2.3
7. r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ ¬!xm : xm : ¬Ar1 ∨ t2(!xm, r1(i)) : Πr1

From 6. by prop. reasoning
8. r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ t1(?c) : ¬xm : ¬Ar1 ∨ t2(!xm, r1(i)) : Πr1

From 4. and 7. by prop. reasoning

44



9. ¬xm : ¬Ar1 ⊃ ∆r1 ∨ ¬xm : ¬Ar1 Propositioanl tautology
10. t1(?c) : ¬xm : ¬Ar1 ⊃ t3(t1(?c)) : (∆r1 ∨ ¬xm : ¬Ar1) From 9, by Corollary 2.2.3
11. r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ t3(t1(?c)) : (∆r1 ∨ ¬xm : ¬Ar1) ∨ t2(!xm, r1(k)) : Πr1

From 8. and 10. by prop. reasoning
12. ∆r1 ⊃ ∆r1 ∨ ¬xm : ¬Ar1 Propositional tautology
13. r1(k) : ∆r1 ⊃ t4(r1(k)) : (∆r1 ∨ ¬xm : ¬Ar1) From 12. by Corollary 2.2.3
14. t3(t1(?c)) : (∆r1 ∨ ¬xm : ¬Ar1) ∨ t4(r1(k)) : (∆r1 ∨ ¬xm : ¬Ar1)

⊃ (t3(t1(?c)) + t4(r1(k))) : (∆r1 ∨ ¬xm : ¬Ar1) By prop. reasoning and sum

Let s := t2(!xm, r1(i)) and t := t3(t1(?c)) + t4(r1(k)), then from 11., 13. and 14, by proposi-
tional reasoning it follows that:

LPS5 ` r1(k) : ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 .

The indices l and j do not occur in ∆,Π or ♦2mA, since [∆,♦2mA]l, [Π]j is properly anno-
tated. Therefore r := (r1 � ∆,♦2mA,Π) ∪ {l 7→ t, j 7→ s} is a realization on the conclusion
[∆,♦2mA]l, [Π]j . For the identity substitution σ and r it follows that:

LPS5 ` ([∆]k, [Π,♦2mA]i)
r1σ ⊃ ([∆,♦2mA]l, [Π]j)

r.

Case ρ = 5c: Let
[∆′, [Π′,♦A′]]

[∆′,♦A′, [Π′]] be an arbitrary instance of sh-5c and let [∆, [Π,♦2mA]i]k
and [∆,♦2mA, [Π]j ]l be properly annotated versions of the premise respectively conclusion.

Then
[∆, [Π,♦2mA]i]k
[∆,♦2mA, [Π]j ]l is an annotated version of this instance. Consider an arbitrary realization

function r1 on the premise, as in the case of ρ = 5b, the following is derivable:

r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ t1(?c) : ¬xm : ¬Ar1 ∨ t2(!xm, r1(i)) : Πr1 .

Notice that this is the same as 8. in the proof of case ρ = 5b. From here the proof of ρ = 5c
differs. Let s := t2(!xm, r1(i)), by propositional reasoning it follows that:

LPS5 ` ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ ∆r1 ∨ t1(?c) : ¬xm : ¬Ar1 ∨ s : Πr1

By Corollary 2.2.3, there is a term t5(x5) such that:

LPS5 ` r1(k) :(∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1))

⊃ t5(r1(k)) : (∆r1 ∨ t1(?c) : ¬xm : ¬Ar1 ∨ s : Πr1)

Call this Result A. Since t1(?c) : ¬xm : ¬Ar1 ⊃ ¬xm : ¬Ar1 is an instance of the jt-axiom, by
Axiom Necessitation it follows that, for any constant c′:

LPS5 ` c′ : (t1(?c) : ¬xm : ¬Ar1 ⊃ ¬xm : ¬Ar1).

Consider the following propositional tautology:

LPS5 `(t1(?c) : ¬xm : ¬Ar1 ⊃ ¬xm : ¬Ar1)

⊃ ((∆r1 ∨ t1(?c) : ¬xm : ¬Ar1 ∨ s : Πr1) ⊃ (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1)).
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By Corollary 2.2.3, there is a term t6(x
1
6, x

2
6) such that:

LPS5 ` c′ :(t1(?c) : ¬xm : ¬Ar1 ⊃ ¬xm : ¬Ar1)

⊃ t5(r1(k)) : (∆r1 ∨ t1(?c) : ¬xm : ¬Ar1 ∨ s : Πr1)

⊃ t6(c′, t5(r1(k))) : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1).

Applying Modus Ponens gives:

LPS5 ` t5(r1(k)) :(∆r1 ∨ t1(?c) : ¬xm : ¬Ar1 ∨ s : Πr1)

⊃ t6(c′, t5(r1(k))) : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1).

Define t := t6(c
′, t5(r1(k))), then from Result A, the above result and propositional reasoning

it then follows that:

LPS5 ` r1(k) : (∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)) ⊃ t : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1)

Since [∆,♦2mA, [Π]j ]l is properly annotated, the indices l and j do not occur in ∆,Π or ♦2mA.
Therefore, r := (r1 � ∆,♦2mA,Π)∪{j 7→ s, l 7→ t} is a realization function on the conclusion
[∆,♦2mA[Π]j ]l. For the identity substitution σ and r it follows that

LPS5 ` ([∆, [Π,♦2mA]i]k)
r1σ ⊃ ([∆,♦2mA, [Π]j ]l)

r.

�

Realization into LPS5c

The proofs for ρ ∈ {5a, 5b, 5c} are almost the same in LPS5c as in LPS5. The idea is basically
to substitute c for all occurrences of ?c in the proof of Lemma 4.3.1.

Lemma 4.3.2. Let ρ ∈ {5a, 5b, 5c}. The shallow version of ρ is realizable in LPS5c.

Proof. Consider an arbitrary instance of sh-ρ for each rule ρ in turn:

Case ρ = 5a: Let
[∆′],♦A′

[∆′,♦A′] be an arbitrary instance of sh-5a, let [∆]k,♦2mA and [∆,♦2mA]i

be properly annotated versions of its premise and conclusion respectively Then
[∆]k,♦2mA

[∆,♦2mA]i is
an annotated version of this instance.

By a derivation analogous to the derivation of case ρ = 5a in Lemma 4.3.1 a term t :=
(t1(r1(k)) + t2(c)) can be constructed sucht that:

LPS5c ` r1(k) : ∆r1 ∨ ¬xm : ¬Ar1 ⊃ t : (∆r1 ∨ ¬xm : ¬Ar1).

The index i does not occur in either ∆ or ♦2mA, since [∆,♦2mA]i is properly annotated. Hence:
the realization r, formulated as r := (r1 � ∆,♦2mA) ∪ {i 7→ t} is a realization function on
[∆,♦2mA]i. For the identity substitution σ and r:

LPS5c ` ([∆]k,♦2mA)r1σ ⊃ ([∆,♦2mA]i)
r.
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Case ρ = 5b: Let
[∆′], [Π′,♦A′]

[∆′,♦A′], [Π′] be an arbitrary instance of sh-5b, let [∆]k, [Π,♦2mA]i and
[∆,♦2mA]l, [Π]j be properly annotated versions of the premise respectively conclusion. Then

the following is an annotated version of this instance
[∆]k, [Π,♦2mA]i

[∆,♦2mA]l, [Π]j .
A derivation analogous to the derivation in Lemma 4.3.1 can be given, where terms s :=

t2(!xm, r1(i)) and t := t3(t1(c)) + t4(r1(k)) are constructed such that:

LPS5c ` r1(k) : ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) ⊃ t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 .

The indices l and j do not occur in ∆,Π or ♦2mA, since [∆,♦2mA]l, [Π]j is properly anno-
tated. Therefore r := (r1 � ∆,♦2mA,Π) ∪ {l 7→ t, j 7→ s} is a realization on the conclusion
[∆,♦2mA]l, [Π]j . For the identity substitution σ and r it follows that:

LPS5c ` ([∆]k, [Π,♦2mA]i)
r1σ ⊃ ([∆,♦2mA]l, [Π]j)

r.

Case ρ = 5c: Let
[∆′, [Π′,♦A′]]

[∆′,♦A′, [Π′]] be an arbitrary instance of sh-5c and let [∆, [Π,♦2mA]i]k and
[∆,♦2mA, [Π]j ]l be properly annotated versions of the premise respectively conclusion. Then
[∆, [Π,♦2mA]i]k
[∆,♦2mA, [Π]j ]l is an annotated version of this instance.

Based on part of the derivation of case ρ = 5b and analogous to the derivation of case
ρ = 5c in Lemma 4.3.1, terms s := t2(!xm, r1(i)) and t := t6(c

′, t5(r1(k))) can be constructed
such that:

LPS5c ` r1(k) : (∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)) ⊃ t : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1)

Since [∆,♦2mA, [Π]j ]l is properly annotated, the indices l and j do not occur in ∆,Π or ♦2mA.
Therefore, r := (r1 � ∆,♦2mA,Π)∪{j 7→ s, l 7→ t} is a realization function on the conclusion
[∆,♦2mA, [Π]j ]l. For the identity substitution σ and r it follows that

LPS5c ` ([∆, [Π,♦2mA]i]k)
r1σ ⊃ ([∆,♦2mA, [Π]j ]l)

r.

�

4.4 The Realization of S5

To be able to prove the realization of S5, the following theorem is required:

Theorem 4.4.1. The nested sequent system that belongs to the modal logic S5 is sound and
complete with respect to S5.

R. Goetschi and R. Kuznets [12] have proven that S5 is realizable into JT45, using the realization
of the 5-axiom j5. Therefore, S5 is realizable into JTB45 as well. In the section above it has
been proven that the shallow versions of the nested sequent rules 5a, 5b and 5c are realizable
into the logics LPS5 and LPS5c. With these proofs it is possible to prove the following theorem,
a slightly changed version of the realization theorem of S5 into JT45:
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Theorem 4.4.2. Let L ∈ {LPS5, LPS5c}, then L◦ = S5. Moreover, for each A′ ∈ S5, there
exists a properly annotated version A of it and a realization function r on A such that L ` Ar.

Proof. As often, to be able to prove the equality L◦ = S5, two inclusions will be proven.
The inclusionL◦ ⊆ S5 is the easiest inclusion to prove, it is based on the forgetful projection

of the rules in L. Since it is possible to derive the forgetful projection of any of the axioms of L
and the forgetful projections of all the rules of L are derivable in S5, it follows that L◦ ⊆ S5.

The other inclusion, L◦ ⊇ S5, is harder to prove, as was already mentioned in Chapter
2 on realizations, since here the �’s have to be realized by terms that may be different from
each other. From Lemma 4.2.7 it follows that for ρ ∈ {id,∨,∧, ctr, exch, �, k, t, 4}, sh-ρ
is realizable in LPS5 and LPS5c. If L = LPS5, then it follows from Lemma 4.3.1 that for
ρ ∈ {5a, 5b, 5c}, sh-ρ is realizable in L. In the same way for L = LPS5c, from Lemma 4.3.2,
for ρ ∈ {5a, 5b, 5c}, it follows that sh-ρ is realizable in L. Therefore, the shallow versions of
all the rules of the nested sequent system of S5 are realizable in L.

Now let A′ ∈ S5 be some modal formula, then S5 ` A′. By Theorem 4.4.1 (completeness)
it follows that there is a derivation of A′ in the nested sequent calculus that belongs to the
modal logic S5. Then, by Theorem 4.2.6, there is a properly annotated version A of A′ and a
realization function r on thisA such that L ` Ar. Notice that (Ar)◦ = A′, from which it follows
that A′ ∈ L◦. �
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CHAPTER 5
Straßburger’s Modular Nested

Sequents Method

The nested sequent calculus, as it was presented in the previous chapter, is sufficient to prove
the realization of S5 into JT45 and hence into JTB45, as was proven by R. Goetschi and R.
Kuznets [12] and into LPS5 and LPS5c. In addition S5 is also realizable into other justification
logics, for example when taking into account the sequent calculi that were presented by S. Marin
and L. Straßburger [15].

The logic S5 has different axiom systems, it can be obtained by adding axioms b and 4 or
by adding axioms t and 5 to the basic modal logic K. The modular nested sequent calculi that are
presented by S. Marin and L. Straßburger [15] and will be used here, are such that for any axiom
system for modal logic S5, the corresponding calculus is cut-free. With this modular system, it
is possible to realize S5 into JT5, JTB5, JTB4, JDB5, JDB4 and JDB45, the proof of which
will be discussed here. The definitions given in this chapter are based on the definitions in the
original paper by S. Marin and L. Straßburger [15].

5.1 Modular Nested Sequent System

In the system that was presented in the previous chapter (chapter 4), only unary contexts were
used. The depth of such unary contexts can be defined as follows:

Definition 5.1.1. The depth of a unary context can be defined inductively as:
• depth(∆, { }) = 0
• depth(Γ{ },∆) = depth(Γ{ })
• depth([Γ{ }]) = depth(Γ{ }) + 1.

♦

Now the 5-rule consists of a binary context in its premise and conclusion. In this case, there are
exactly two holes.
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EXAMPLE 5.1.2 ( [15]). Let Γ{}{} = A, [B, {}, [{}], C], for any sequents ∆1 and ∆2 it follows
that: Γ{∆1}{∆2} = A, [B,∆1, [∆2], C]. And if one of the sequents is the empty sequent then:
Γ{∅}{∆2} = A, [B, [∆2], C] and Γ{∆1}{∅} = A, [B,∆1, [∅], C].

The depth can be computed as follows: depth(Γ{}{∆}) = 1 and depth(Γ{∆}{}) = 2. ♦

Nested Sequents

Taking into account the definitions from the chapter on the nested sequents method, the system
NK can be defined as follows:

Definition 5.1.3.

Γ{a, a} id
Γ{A,B}

Γ{A ∨B} ∨
Γ{A} Γ{B}

Γ{A ∧B} ∧

Γ{A,A}
Γ{A} ctr

Γ{∆,Σ}
Γ{Σ,∆} exch

Γ{[A]}
Γ{�A} �

Γ{[A,∆]}
Γ{♦A, [∆]} k

Notice that this system is the same as the first seven rules defined in Definition 4.1.5. ♦

REMARK. The system NK as that was defined by S. Marin and L. Straßburger [15] did not
contain the exch-rule. However, since nested sequents are defined using sequences, the system
had to be modified analogous to the modifications that R. Goetschi and R. Kuznets [12] made to
the system of K. Brünnler [7] for the same purpose.

The modal ♦-rules for axioms d, t, b, 4 and 5 are defined as follows:

Definition 5.1.4.

Γ{[A]}
Γ{♦A} d�

Γ{A}
Γ{♦A} t�

Γ{[∆], A}
Γ{[∆,♦A]} b�

Γ{[♦A,∆]}
Γ{♦A, [∆]} 4�

Γ{∅}{♦A}
Γ{♦A}{∅} 5� depth(Γ{}{[∅]}) ≥ 1

Except for the rule for axiom 5�, the rules are the same as the rules defined in Definition 4.1.5.
The names have been changed, to avoid confusion with the rules that are defined in the next
section. Therefore, it follows from the paper by R. Goetschi and R. Kuznets [12], that for any
of these rules (except 5�), its shallow version is realizable into the justification logics containing
its corresponding axiom. For example, the here defined rule t� is realizable into the justification
logic JT.

Let X ⊆ {d, t, b, 4, 5}, then X� denotes the corresponding subset of the here defined rules:
{d�, t�, b�, 4�, 5�}. ♦
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Structural Modal Rules

Besides the above given nested sequent rules, structural modal rules are defined below, to give a
system that is cut-free for any of the axiomatizations of S5 and eventually to prove the realization
into justification logics.

Definition 5.1.5.

Γ{[∅]}
Γ{∅} d[]

Γ{[∆]}
Γ{∆} t[]

Γ{[Σ, [∆]]}
Γ{[Σ],∆} b[]

Γ{[∆], [Σ]}
Γ{[[∆],Σ]} 4[]

Γ{[∆]}{∅}
Γ{∅}{[∆]} 5[] depth(Γ{}{[∆]}) ≥ 1

Let X ⊆ {d, t, b, 4, 5}, then X[] denotes the corresponding subset of the here defined rules:
{d[], t[], b[], 4[], 5[]}. ♦

Theorem 5.1.6. ( [15]) Let X ⊆ {d,t,b,4,5}. A formula A is a theorem of K+X if and only if
there is a derivation of A in the nested sequent system NK ∪ X� ∪ X[].

The proof of this theorem can be found in the paper by S. Marin and L. Straßburger [15].

5.2 Auxiliary Lemma’s

Lemma 5.2.1. ( [7]) The following three rules are each subrules of the rule 5�, in terms of
instances:

Γ{[∆],♦A}
Γ{[∆,♦A]} 5a�

Γ{[∆], [Π,♦A]}
Γ{[∆,♦A], [Π]} 5b�

Γ{[∆, [Π,♦A]]}
Γ{[∆,♦A, [Π]]} 5c�

R. Goetschi and R. Kuznets have shown that these three rules are realizable into any justification
logic containing the j5 axiom [12]. From chapter 4 on the nested sequents method it follows that
these rules are also realizable into the justification logics LPS5 and LPS5c.

Lemma 5.2.2. ( [15]) The following three rules are each subrules of the rule 5[], in terms of
instances:

Γ{[Π, [∆]]}
Γ{[Π], [∆]} 5a[]

Γ{[Π, [∆]], [Σ]}
Γ{[Π], [[∆],Σ]} 5b[]

Γ{[Π, [∆], [Σ]]}
Γ{[Π, [[∆],Σ]]} 5c[]

As was already suggested above, for ρ ∈ {id, ∨, ∧, ctr, �, k, d�, t�, b�, 4�, 5a�, 5b�, 5c�}, its
shallow version sh-ρ is realizable into the justification logic, which has the corresponding axiom
in its system. By Lemma 4.2.5 it then follows that ρ is realizable into the justification logic as
well. What about the structural modal rules?

The proof of Lemma 4.2.5 as that was given by R. Goetschi and R. Kuznets in their paper
on nested sequents [12], is based on the inductive definition of a context, Definition 4.1.3. This
definition does not change for the structural modal nested rules. Therefore, the proof still holds
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for the structural modal nested rules with one hole and for the rules 5a[], 5b[] and 5c[]. The
following lemma can be stated for any of the rules as defined in Definitions 5.1.3, 5.1.4 and
5.1.5:

Lemma 5.2.3. For any nested rule ρ, if its shallow version sh-ρ is realizable in a justification
logic JL, then ρ itself is also realizable in JL.

In the paper by R. Goetschi and R. Kuznets some lemma’s were necessary to keep the realization
of the 5-rules short. Those lemma’s are used here as well, for the same reason. Notice that due
to the presence of the axioms jt and j4 in the logics LPS5 and LPS5c, these lemma’s were not
required in the proofs of the realizations into LPS5 and LPS5c. The realization of the rules of
Lemma 5.2.2 has to be proven for each of the three realizations of the modal 5-axiom: j5, A5
and A5c.

Instead of considering each of these realizations, Lemma 2.2.18 will be used. The proof of
this Lemma, for logics containing j5, A5 or A5c, is based only on the basic justification logic
J and the realization of the 5-axiom. This means, if the realization of the shallow versions of
the rules of Lemma 5.2.2 can be accomplished by considering only axioms and rules of J and
Lemma 2.2.18, then the rules are realizable into J + j5, J + A5 and J + A5c.

Let L ∈ {J + j5, J + A5, J + A5c}, consider the following lemma’s

Lemma 5.2.4 (Syllogism, [12]). There exists a term syl(x1, x2) such that for arbitrary terms
t1 and t2 and for arbitrary justification formulas A, B and C:

J ` t1 : (A ⊃ B) ⊃ t2 : (B ⊃ C) ⊃ syl(t1, t2) : (A ⊃ C).

Lemma 5.2.5 (Internalized Factivity). There exists a term fact(x) such that for any term s and
any justification formula A:

L ` fact(s) : (s : A ⊃ A).

Proof.

0. P ⊃ x : P ⊃ P Propositional tautology
1. x : P ⊃ t1(x) : (x : P ⊃ P ) From 0. by Corollary 2.2.3
2. ¬x : P ⊃ x : P ⊃ P Propositional tautology
3. negint(x) : ¬x : P ⊃ t2(negint(x)) : (x : P ⊃ P ) From 2. by Corollary 2.2.3
4. ¬x : P ⊃ negint(x) : ¬x : P By Lemma 2.2.18
5. ¬x : P ⊃ t2(negint(x)) : (x : P ⊃ P ) From 3. and 4. by prop. reasoning
6. x : P ∨ ¬x : P ⊃ (t1(x) + t2(negint(x))) : (x : P ⊃ P )

From 1. and 5., using sum and prop reasoning

Let fact(x) := (t1(x) + t2(negint(x))), then by propositional reasoning and the Substitution
Lemma 2.2.13 the result follows. Notice that fact(x) does neither depend on s nor on A. �

Lemma 5.2.6 (Inverse to Negative Introspection, Internalized). There exists a term invnegint(x)
such that, for arbitrary terms s and t and for any justification formula A:

L ` s : ¬negint(t) : ¬t : A ⊃ invnegint(s) : t : A.
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Proof.

0. (¬x2 : P1 ⊃ negint(x2) : ¬x2 : P1) ⊃ ¬negint(x2) : ¬x2 : P1 ⊃ x2 : P1 Prop. tautology
1. c : ((¬x2 : P1 ⊃ negint(x2) : ¬x2 : P1) ⊃ ¬negint(x2) : ¬x2 : P1 ⊃ x2 : P1)

From 0. by AN
2. ¬x2 : P1 ⊃ negint(x2) : ¬x2 : P1 By Lemma 2.2.18
3. p : (¬x2 : P1 ⊃ negint(x2) : ¬x2 : P1) From 2. by Lemma 2.2.1
4. (c · p) : (¬negint(x2) : ¬x2 : P1 ⊃ x2 : P1) From 1. and 3. by app and MP
5. x1 : ¬negint(x2) : ¬x2 : P1 ⊃ (c · p · x1) : x2 : P1 From 4. by app and MP
6. s : ¬negint(t) : ¬t : A ⊃ (c · p · s) : t : A From 5. by the Substitution Lemma 2.2.13

Let invnegint(x) = (c · p · x), then the result follows from substituting invnegint(x). Notice that
the constructed term invnegint(x) does neither depend on s, nor on t, nor on A. �

Lemma 5.2.7 (Internalized Positive Introspection). There exist terms posint(x1) and t!(x1)
such that for any term s and any justification formula A:

L ` posint(s) : (s : A ⊃ t!(s) : s : A).

Proof. Start with proving that there is a term s(x1) such that

L ` s(x1) : (P1 ⊃ negint(x1) : ¬x1 : ¬P1) :

0. fact(x1) : (x1 : ¬P1 ⊃ ¬P1) Instance of Lemma 5.2.5
1. p : ((x1 : ¬P1 ⊃ ¬P1) ⊃ P1 ⊃ ¬x1 : ¬P1) From prop. reasoning and Lemma 2.2.1
2. (p · fact(x1)) : (P1 ⊃ ¬x1 : ¬P1) From 0. and 1. by app and MP
3. t1 : (¬x1 : ¬P1 ⊃ negint(x1) : ¬x1 : ¬P1) By Lemma 2.2.18 and Lemma 2.2.1
4. syl(p · fact(x1), t1) : (P1 ⊃ negint(x1) : ¬x1 : ¬P1) From 2. and 3. by Lemma 5.2.4

Let s(x1) := syl(p · fact(x1), t1), then s(x1) : (P1 ⊃ negint(x1) : ¬x1 : ¬P1) follows. With
this term s(x1), the proof is then:

5. negint(negint(x)) : ¬negint(x) : ¬x : P ⊃ invnegint(negint(negint(x))) : x : P
Instance of Lemma 5.2.6

6. p : (negint(negint(x)) : ¬negint(x) : ¬x : P ⊃ invnegint(negint(negint(x))) : x : P )
From 5. by Lemma 2.2.1

7. s(negint(x)) : (x : P ⊃ negint(negint(x)) : ¬negint(x) : ¬x : P ) By derivation above
8. syl(s(negint(x)), p) : (x : P ⊃ invnegint(negint(negint(x))) : x : P )

From 1. and 2. by Lemma 5.2.4

Let posint(x) := syl(s(negint(x)), p) and t!(x) := invnegint(negint(negint(x))), the result fol-
lows by the Substitution Lemma 2.2.13. The constructed terms posint(x) and t1(x) neither
depend on s nor on A. �
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Proof of Shallow Versions

From the paper by R. Goetschi and R. Kuznets [12] it is known that the rules of Definition 5.1.3
are realizable into the basic justification logic J. From the same paper it is known that the rules
of Definition 5.1.4 are realizable into justification logics, of which the axiom systems contain
the axiom corresponding to the rule. Instead of realizing the 5� rule, the rules as stated in
Lemma 5.2.1 are realized, using the j5-axiom. In chapter 4 it was proven that the same rules can
be realized into the logics LPS5 and LPS5c as well.

It is left to prove that the rules as stated in Definition 5.1.5 can be realized into justification
logics, of which the axiom systems contain the axiom that corresponds to the rule. Instead of the
5[] rule, the three rules as given in Lemma 5.2.2 will be realized, for each of the three realizations
of the 5 axiom: j5, A5 and A5c. In the realization of these three rules the Lemma’s 2.2.18, 5.2.5,
5.2.6 and 5.2.7 will be used.

Lemma 5.2.8. Let ρ ∈ {d[], t[], b[], 4[], 5a[], 5b[], 5c[]}. The shallow version of ρ is realizable in
Jρ, by Jd[] the justification logic JD is meant and by Jρ for ρ ∈ {5a[], 5b[], 5c[]} the logics J5, J
+ A5 and J + A5c are meant.

Proof. Consider an arbitrary instance for each rule ρ in turn.

Case ρ = d[]: Let
[∅]
∅ be an arbitrary instance of sh-d[], let [∅]k be a properly annotated version

of the premise. Then
[∅]k
∅ is an annotated version of this instance. Let r1 be a realization function

on the premise. Notice that ∅r∗ = ⊥ for any realization r∗. Then r1(k) : ∅r1 ⊃ ∅r1 is an instance
of jd and r := r1 is a realization on the conclusion. For the identity substitution σ and r:

JD ` ([∅]k)r1σ ⊃ (∅)r.

Case ρ = t[]: Let
[∆′]

∆′ be an arbitrary instance of sh-t[], let [∆]k and ∆ be properly annotated

versions of the premise and conclusion respectively. Then
[∆]k
∆ is an annotated version of this

instance. Let r1 be a realization function on the premise.
Consider the jt-instance r1(k) : ∆r1 ⊃ ∆r1 . Then, r := r1 is a realization on the conclusion.

For the identity substitution σ and r:

JT ` ([∆]k)
r1σ ⊃ (∆)r.

Case ρ = b[]: Let
[Σ′, [∆′]]

[Σ′],∆′ be an arbitrary instance of sh-b[], let [Σ, [∆]i]k and [Σ]l,∆ be

properly annotated versions of the premise and conclusion respectively. Then
[Σ, [∆]i]k
[Σ]l,∆ is an

annotated version of this instance. Let r1 be a realization function on the premise.

0. Σr1 ∨ r1(i) : ∆r1 ⊃ ¬r1(i) : ∆r1 ⊃ Σr1 Propositional tautology
1. r1(k) : (Σr1 ∨ r1(i) : ∆r1) ⊃

qm(r1(i)) : ¬r1(i) : ∆r1 ⊃ t(r1(k), qm(r1(i))) : Σr1 From 0. by Corollary 2.2.3
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2. r1(k) : (Σr1 ∨ r1(i) : ∆r1) ⊃ (¬(qm(r1(i)) : ¬r1(i) : ∆r1) ∨ t(r1(k), qm(r1(i))) : Σr1)
From 1. by prop. reasoning

3. ¬∆r1 ⊃ qm(r1(i)) : ¬r1(i) : ∆r1 By Lemma 2.2.15
4. ¬qm(r1(i)) : ¬r1(i) : ∆r1 ⊃ ∆r1 From 3. by prop reasoning
5. r1(k) : (Σr1 ∨ r1(i) : ∆r1)

(t(r1(k), qm(r1(i))) : Σr1 ∨∆r1) From 2. and 4. by prop. reasoning

Let s := t(r1(k), qm(r1(i))), then it follows that

JB ` r1(k) : (Σr1 ∨ r1(i) : ∆r1) ⊃ (s : Σr1 ∨∆r1).

The index l does not occur in either Σ or ∆, since [Σ]l,∆ is properly annotated. Hence, the
realization r, formulated as r := (r1 � Σ,∆) ∪ {l 7→ s} is a realization on [Σ]l,∆. For the
identity substitution σ and r:

JB ` ([Σ, [∆]i]k)
r1σ ⊃ ([Σ]l,∆)r.

Case ρ = 4[]: Let
[∆′], [Σ′]

[[∆′],Σ′] be an arbitrary instance of sh-4[], let [∆]i, [Σ]k and [[∆]i,Σ]l be

properly annotated versions of the premise and conclusion respectively. Then
[∆]i, [Σ]k
[[∆]i,Σ]l is an

annotated version of this instance. Let r1 be a realization function on the premise.

0. r1(i) : ∆r1 ⊃ r1(i) : ∆r1 ∨ Σr1 Propositional tautology
1. !r1(i) : r1(i) : ∆r1 ⊃ t1(!r1(i)) : (r1(i) : ∆r1 ∨ Σr1) From 0. by Corollary 2.2.3
2. r1(i) : ∆r1 ⊃!r1(i) : r1(i) : ∆r1 Instance of j4
3. r1(i) : ∆r1 ⊃ t1(!r1(i)) : (r1(i) : ∆r1 ∨ Σr1) From 1. and 2. by prop. reasoning
4. Σr1 ⊃ r1(i) : ∆r1 ∨ Σr1 Propositional tautology
5. r1(k) : Σr1 ⊃ t2(r1(k)) : (r1(i) : ∆r1 ∨ Σr1) From 4. by Corollary 2.2.3
6. r1(i) : ∆r1 ∨ r1(k) : Σr1 ⊃ (t1(!r1(i)) + t2(r1(k))) : (r1(i) : ∆r1 ∨ Σr1)

From 3. and 5., using sum and prop. reasoning

Let t := (t1(!r1(i)) + t2(r1(k))). Then it follows that:

J4 ` r1(i) : ∆r1 ∨ r1(k) : Σr1 ⊃ t : (r1(i) : ∆r1 ∨ Σr1).

The indices i and l do not occur in either [∆]i or Σ since [[∆]i,Σ]l is properly annotated. Hence:
the realization r, formulated as r := (r1 � [∆]i,Σ) ∪ {l 7→ t} is a realization on [[∆]i,Σ]l. For
the identity substitution σ and r:

J4 ` ([∆]i, [Σ]k)
r1σ ⊃ ([[∆]i,Σ]l)

r.

For the last three cases let L ∈ {J + j5, J + A5, J + A5c}.

Case ρ = 5a[] : Let
[Π′, [∆′]]

[Π′], [∆′] be an arbitrary instance of sh-5a[], let [Π, [∆]i]k and [Π]l, [∆]i be

properly annotated versions of the premise and conclusion respectively. Then
[Π, [∆]i]k
[Π]l, [∆]i is an

annotated version of this instance. Let r1 be a realization function on the premise.
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0. (Πr1 ∨ r1(i) : ∆r1) ⊃ (¬r1(i) : ∆r1 ⊃ Πr1) Propositional tautology
1. r1(k) : (Πr1 ∨ r1(i) : ∆r1) ⊃ negint(r1(i)) : ¬r1(i) : ∆r1

⊃ t(r1(k), negint(r1(i))) : Πr1 From 0. by Corollary 2.2.3
2. r1(k) : (Πr1 ∨ r1(i) : ∆r1) ⊃ (¬(negint(r1(i)) : ¬r1(i) : ∆r1)

∨ t(r1(k), negint(r1(i))) : Πr1) From 1. by prop. reasoning
3. ¬r1(i) : ∆r1 ⊃ negint(r1(i)) : ¬r1(i) : ∆r1 By Lemma 2.2.18
4. ¬negint(r1(i)) : ¬r1(i) : ∆r1 ⊃ r1(i) : ∆r1 From 3. by prop. reasoning
5. (¬negint(r1(i)) : ¬r1(i) : ∆r1 ∨ t(r1(k), negint(r1(i))) : Πr1)

⊃ (r1(i) : ∆r1 ∨ t(r1(k), negint(r1(i))) : Πr1) From 4. by prop. reasoning
6. r1(k) : (Πr1 ∨ r1(i) : ∆r1)

⊃ (r1(i) : ∆r1 ∨ t(r1(k), negint(r1(i))) : Πr1) From 2. and 5. by prop. reasoning

Let s := t(r1(k), negint(r1(i))). Then it follows that:

L ` r1(k) : (Πr1 ∨ r1(i) : ∆r1) ⊃ (r1(i) : ∆r1 ∨ s : Πr1).

The index l does not occur in either [∆]i or Π, since [Π]l, [∆]i is properly annotated. This means,
the realization r: r := (r1 � Π, [∆]i) ∪ {l 7→ s} is a realization on [Π]l, [∆]i. For the identity
substitution σ and r:

L ` ([Π, [∆]i]k)
r1σ ⊃ ([Π]l, [∆]i)

r.

Case ρ = 5b[] : Let
[Π′, [∆′]], [Σ′]

[Π′], [[∆′],Σ]′ be an arbitrary instance of sh-5b[], let [Π, [∆]i]j , [Σ]h and
[Π]k, [[∆]i,Σ]l be properly annotated versions of the premise and conclusion respectively. Then
[Π, [∆]i]j , [Σ]h

[Π]k, [[∆]i,Σ]l is an annotated version of this instance. Let r1 be a realization function on the
premise.

0. ¬r1(i) : ∆r1 ⊃ negint(r1(i)) : ¬r1(i) : ∆r1 By Lemma 2.2.18
1. ¬negint(r1(i)) : ¬r1(i) : ∆r1 ⊃ ¬¬r1(i) : ∆r1 From 0. by prop. reasoning
2. ¬¬r1(i) : ∆r1 ⊃ r1(i) : ∆r1 Propositional tautology
3. ¬negint(r1(i)) : ¬r1(i) : ∆r1 ⊃ r1(i) : ∆r1 From 1. and 2. by prop. reasoning
4. p : (¬negint(r1(i)) : ¬r1(i) : ∆r1 ⊃ r1(i) : ∆r1) From 3. by Lemma 2.2.1
5. ¬negint(r1(i)) : ¬r1(i) : ∆r1 ⊃ negint(negint(r1(i))) : ¬negint(r1(i)) : ¬r1(i) : ∆r1

By Lemma 2.2.18
6. negint(negint(r1(i))) : ¬negint(r1(i)) : ¬r1(i) : ∆r1

⊃ p · negint(negint(r1(i))) : r1(i) : ∆r1 From 4. by app and Modus Ponens
7. ¬negint(r1(i)) : ¬r1(i) : ∆r1 ⊃ p · negint(negint(r1(i))) : r1(i) : ∆r1

From 5. and 6. by prop. reasoning
8. ¬r1(i) : ∆r1 ⊃ Πr1 ∨ r1(i) : ∆r1 ⊃ Πr1 Propositional tautology
9. negint(r1(i)) : ¬r1(i) : ∆r1 ⊃ r1(j) : (Πr1 ∨ r1(i) : ∆r1)

⊃ t3(negint(r1(i)), r1(j)) : Πr1 From 8. by Corollary 2.2.3
10. r1(j) : (Πr1 ∨ r1(i) : ∆r1)

⊃ ¬negint(r1(i)) : ¬r1(i) : ∆r1 ∨ t3(negint(r1(i)), r1(j)) : Πr1 From 9. by pr. reas.
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Let s′ := p · negint(negint(r1(i))) and s := t3(negint(r1(i)), r1(j)), then:

11. r1(j) : (Πr1 ∨ r1(i) : ∆r1) ⊃ s′ : r1(i) : ∆r1 ∨ s : Πr1

From 7. and 10. by prop. reasoning
12. r1(i) : ∆r1 ⊃ (r1(i) : ∆r1 ∨ Σr1) Propositional tautology
13. s′ : r1(i) : ∆r1 ⊃ t1(s′) : (r1(i) : ∆r1 ∨ Σr1) From 12. by Corollary 2.2.3
14. r1(j) : (Πr1 ∨ r1(i) : ∆r1) ⊃ t1(s′) : (r1(i) : ∆r1 ∨ Σr1) ∨ s : Πr1

From 11. and 13. by prop. reasoning
15. Σr1 ⊃ (r1(i) : ∆r1 ∨ Σr1) Propositional tautology
16. r1(h) : Σr1 ⊃ t2(r1(h)) : (r1(i) : ∆r1 ∨ Σr1) From 15. by Corollary 2.2.3
17. r1(j) : (Πr1 ∨ r1(i) : ∆r1) ∨ r1(h) : Σr1 ⊃ s : Πr1 ∨ t1(s′) : (r1(i) : ∆r1 ∨ Σr1) ∨

t2(r1(h)) : (r1(i) : ∆r1 ∨ Σr1) From 14. and 16. by prop. reasoning
18. t1(s′) : (r1(i) : ∆r1 ∨ Σr1) ∨ t2(r1(h)) : (r1(i) : ∆r1 ∨ Σr1)

⊃ (t1(s
′) + t2(r1(h))) : (r1(i) : ∆r1 ∨ Σr1) By sum and prop. reasoning

19. r1(j) : (Πr1 ∨ r1(i) : ∆r1) ∨ r1(h) : Σr1

⊃ s : Πr1 ∨ (t1(s
′) + t2(r1(h))) : (r1(i) : ∆r1 ∨Σr1)From 17. and 18. by prop. reas.

Let t := (t1(s
′) + t2(r1(h))), then, from 19. and this substitution:

L ` r1(j) : (Πr1 ∨ r1(i) : ∆r1) ∨ r1(h) : Σr1 ⊃ s : Πr1 ∨ t : (r1(i) : ∆r1 ∨ Σr1).

The indices k and l do not occur in Π, [∆]i or Σ, since [Π]k, [[∆]i,Σ]l is properly annotated. This
means, the realization r := (r1 � Π, [∆]i,Σ)∪{k 7→ s, l 7→ t} is a realization on [Π]k, [[∆]i,Σ]l.
For the identity substitution σ and r:

L ` ([Π, [∆]i]j , [Σ]h)r1σ ⊃ ([Π]k, [[∆]i,Σ]l)
r.

Case ρ = 5c[] : Let
[Π′, [∆′], [Σ′]]

[Π′, [[∆′],Σ′]] be an arbitrary instance of sh-5c[], let [Π, [∆]i, [Σ]j ]h and
[Π, [[∆]i,Σ]k]l be properly annotated versions of the premise and conclusion respectively. Then
[Π, [∆]i, [Σ]j ]h

[Π, [[∆]i,Σ]k]l is an annotated version of this instance. Let r1 be a realization function on the
premise.

0. Σr1 ⊃ r1(i) : ∆r1 ∨ Σr1 Propositional tautology
1. r1(j) : Σr1 ⊃ t1(r1(j)) : (r1(i) : ∆r1 ∨ Σr1) From 0. by Corollary 2.2.3
2. posint(r1(i)) : (r1(i) : ∆r1 ⊃ t!(r1(i)) : r1(i) : ∆r1) By Lemma 5.2.7
3. r1(i) : ∆r1 ⊃ r1(i) : ∆r1 ∨ Σr1 Propositional tautology
4. t!(r1(i)) : r1(i) : ∆r1 ⊃ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1) From 3. by Corollary 2.2.3
5. (r1(i) : ∆r1 ⊃ t!(r1(i)) : r1(i) : ∆r1)

⊃ (r1(i) : ∆r1 ⊃ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1)) From 4. by prop. reasoning
6. posint(r1(i)) : (r1(i) : ∆r1 ⊃ t!(r1(i)) : r1(i) : ∆r1) ⊃ t5(posint(r1(i))) : (r1(i) :

∆r1 ⊃ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1)) From 5. by Corollary 2.2.3
7. t5(posint(r1(i))) : (r1(i) : ∆r1 ⊃ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1))

From 2. and 6. by MP
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8. (r1(i) : ∆r1 ⊃ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1)) ⊃ (Πr1 ∨ r1(i) : ∆r1 ∨ r1(j) : Σr1 ⊃
Πr1 ∨ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1) ∨ t1(r1(j)) : (r1(i) : ∆r1 ∨ Σr1))

Propositional tautology, from 1.
9. t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1) ∨ t1(r1(j)) : (r1(i) : ∆r1 ∨ Σr1)

⊃ (t4(t!(r1(i))) + t1(r1(j))) : (r1(i) : ∆r1 ∨ Σr1) By sum and prop. reasoning
10. (r1(i) : ∆r1 ⊃ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1)) ⊃ (Πr1 ∨ r1(i) : ∆r1 ∨ r1(j) : Σr1 ⊃

Πr1 ∨ (t4(t!(r1(i))) + t1(r1(j))) : (r1(i) : ∆r1 ∨Σr1))From 8. and 9. by prop. reasoning
11. t5(posint(r1(i))) : (r1(i) : ∆r1 ⊃ t4(t!(r1(i))) : (r1(i) : ∆r1 ∨ Σr1))

⊃ t6(t5(posint(r1(i)))) : (Πr1 ∨ r1(i) : ∆r1 ∨ r1(j) : Σr1 ⊃ (Πr1 ∨
(t4(t!(r1(i))) + t1(r1(j))) : (r1(i) : ∆r1 ∨ Σr1))) From 10. by Corollary 2.2.3

12. t6(t5(posint(r1(i)))) : (Πr1∨r1(i) : ∆r1∨r1(j) : Σr1 ⊃ Πr1∨(t4(t!(r1(i)))+t1(r1(j))) :
(r1(i) : ∆r1 ∨ Σr1)) From 7. and 11. by MP

13. r1(h) : (Πr1 ∨ r1(i) : ∆r1 ∨ r1(j) : Σr1) ⊃ (t6(t5(posint(r1(i)))) · r1(h)) : (Πr1 ∨
(t4(t!(r1(i))) + t1(r1(j))) : (r1(i) : ∆r1 ∨ Σr1)) From 12. by app and MP

Let s := t4(t!(r1(i))) + t1(r1(j)) and t := t6(t5(posint(r1(i)))) · r1(h), from 13. and these
substitutions it then follows that:

L ` r1(h) : (Πr1 ∨ r1(i) : ∆r1 ∨ r1(j) : Σr1) ⊃ t : (Πr1 ∨ s : (r1(i) : ∆r1 ∨ Σr1)).

The indices k and l do not occur in Π, [∆]i or Σ, since [Π, [[∆]i,Σ]k]l is properly annotated.
The realization r, defined as: r := (r1 � Π, [∆]i,Σ) ∪ {k 7→ s, l 7→ t}, is a realization on the
conclusion: [Π, [[∆]i,Σ]k]l. For the identity substitution σ and r:

L ` ([Π, [∆]i, [Σ]j ]h)r1σ ⊃ ([Π, [[∆]i,Σ]k]l)
r.

This concludes the proof that the shallow versions of the rules of Definition 5.1.5 are realizable
into the justification logics containing the corresponding axiom. �

The following two corollaries are based this lemma. The first uses Lemma 5.2.3 as well. The
second combines the lemma above with the results that can be found in the paper by R. Goetschi
and R. Kuznets [12] and in Chapter 4.

Corollary 5.2.9. Any of the rules that can be found in Definition 5.1.5 can be realized into the
justification logics whose axiom systems contain the corresponding axiom(s).

Corollary 5.2.10.
• Any of the shallow versions of the rules from Definition 5.1.3 can be realized into the basic

justification logic J.
• Any of the shallow versions of the rules from Definition 5.1.4 can be realized into the justi-

fication logic of which the axiom system contains the corresponding axiom. Furthermore,
the 5�-rule is also realizable into LPS5 and LPS5c.
• Any of the shallow versions of the rules from Definition 5.1.5 can be realized into the justi-

fication logic of which the axiom system contains the corresponding axiom. Furthermore,
the rule 5[] is realizable into (any extensions of) J+j5, J+A5 and J + A5c.
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5.3 The Realization Theorem

Based on Theorem 5.1.6 and Corollary5.2.10, the realization of S5 into any of the ten considered
justification counterparts can be proven. The proof is very similar to the proof of Theorem 4.4.2.

Theorem 5.3.1. Let L ∈ {LPS5, LPS5c, JT45, JT5, JTB4, JDB4, JDB5, JTB5, JTB45,
JDB45}, then L◦ = S5. Moreover, for each A′ ∈ S5 there exists a properly annotated ver-
sion A of it and a realization function r on A such that L ` Ar.

Proof. Since it is known that any of the considered sets K+X is an axiomatization of S5 and by
Theorem 5.1.6, it follows that each of the considered modular nested sequent systems NK∪X�∪X[]

is complete for S5.
As often, to be able to prove the equality L◦ = S5, two inclusions will be proven. The

inclusion L◦ ⊆ S5 is the easiest inclusion to prove, it is based on the forgetful projection of the
rules in L. Since it is possible to derive the forgetful projection of any of the axioms of L and
the forgetful projections of all the rules of L are derivable in S5, it follows that L◦ ⊆ S5.

Now let A′ ∈ S5 be some modal formula, then S5 ` A′. By the above mentioned com-
pleteness, it follows that there is a derivation of A′ in the modular nested sequent calculus
NK∪X�∪X[] that belongs to the corresponding axiomatization of the modal logic S5. Then,
by Corollary 5.2.10 and Theorem 4.2.6, there is a properly annotated version A of A′ and a re-
alization function r on this A such that L ` Ar. Notice that (Ar)◦ = A′, from which it follows
that A′ ∈ L◦.

Therefore, for any L ∈ {LPS5, LPS5c, JT45, JT5, JTB4, JDB4, JDB5, JTB5, JTB45,
JDB45}, S5 is realizable into L. �

Based on the proofs that can be found in the paper by R. Goetschi and R. Kuznets [12] and in
this chapter a more general theorem can be proven as well.

Theorem 5.3.2. Any modal logic that can be found in the modal cube, can be realized into
its justification counterpart(s) using Straßburger’s modular nested sequent calculi. Moreover,
there is a direct and constructive method to realize any modal axiomatization into any potential
justification counterpart.

The proof is based on the combination of the Completeness Theorem 5.1.6, Theorem 4.2.6 and
the fact that the shallow version of any of the rules that are part of Straßburger’s modular nested
sequent calculi, are realizable into any justification logic of which the axiom system contains the
corresponding axiom.
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Conclusion

In the main part of this thesis ten justification logics were considered: LPS5, LPS5c, JT45, JT5,
JTB4, JTB5, JDB4, JDB5, JTB45 and JDB45 and three different realizations of the negative
introspection axiom. In different papers, using different syntactic methods, it was already shown
that S5 is realizable into four of these logics. Part of the goal of the thesis, as stated in the
introduction, was to use a syntactic method to prove the realization of S5 into the remaining
six justification logics. As was already expected, the following theorem has been proven in this
thesis:

Theorem Let A be a formula and let r be a realization function on A, then:

S5 ` A⇔ L ` Ar

by:
• using the cut-free hypersequent system LS5, for each L ∈ {LPS5, LPS5c, JT45, JT5,

JTB4, JTB5, JDB4, JDB5, JTB45, JDB45};
• using nested sequent systems, for L ∈ {LPS5, LSP5c, JT45, JTB45};
• using Straßburger’s modular nested sequents, for each L ∈ { LPS5, LPS5c, JT45, JT5,

JTB4, JTB5, JDB4, JDB5, JTB45, JDB45}.

In fact, not only this theorem has been proven, but the realization into some other justification
logics as well. Let 5∗ ∈ {j5, A5, A5c} then, because of the proof of Lemma 2.2.18, using
the hypersequent system LS5 and Straßburger’s modular nested sequents, S5 is realizable into
logics with one of the following axiom systems: J+jt+j4+5∗, J+jt+5∗, J+jt+jb+j4, J+jt+jb+5∗,
J+jd+jb+j4, J+jd+jb+5∗, J+jt+jb+j4+5∗ and J+jd+jb+j4+5∗. This means that, using these two
methods, S5 can be realized into twenty justification counterparts.

Another goal of the thesis was showing that any cut-free proof system works for every ex-
isting realization. This part of the goal has not been achieved. As was already described in the
introduction, to be able to prove realization into any of the ten considered justification logics us-
ing the nested sequent calculi that were used by R. Goetschi and R. Kuznets [12], the realization
of each of the five modal rules into each of the ten logics has to be proven. For two logics this
is already done, but that still left forty cases to prove. Because a similar amount of cases had
to be proven for the realization proof using the hypersequent system LS5, only the logics with
another realization of the modal axiom 5 were considered. We are confident that applying this
method to the realization into the other justification counterparts is straightforward.

61



On the other hand, the rules of the nested sequent calculi of Chapter 4 have been used in
Straßburger’s modular nested sequent calculi. With these calculi a modular realization of S5 into
any of the ten considered justification logics could be proven, something that was not possible
before.

Even more can be concluded, the fully modular realization using Straßburger’s calculi in
Chapter 5, completes the project of realizing modal logics from the modal cube. A direct and
constructive method of realizing any axiomatization into any potential justification counterpart
has been provided this way.

REMARK. Although it is not truly related to realization, the first chapter of the thesis includes
the first semantics for justification logics that contain the jb axiom. Soundness and completeness
have been established in the appendix.
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APPENDIX A
Soundness and Completeness

For the whole appendix, assume that JL is one of the considered logics in Table 1.1.

Theorem 1.2.8. For any justification logic JL a formula A is provable in JL if and only if it is
JL-valid:

JL ` A⇔ A is JL-valid.

A proof of this theorem for J and for justification logics that extend J with one or more of
the axioms jt, jd, j4 and j5 can be found in the PhD thesis of R. Kuznets [13]. The soundness
and completeness for these logics will be assumed and only the axioms jb, A5 and A5c will be
considered. The proof will follow the structure of the proof in [13] and will sometimes omit
details and proofs of smaller lemma’s and theorems, that can be found there.

A.1 Auxiliary Definitions and Lemma’s

To prove completeness some auxiliary definitions and lemma’s based on the PhD thesis of R.
Kuznets [13], are required. Proofs of lemma’s that are not proven here, can be found in the same
thesis. One of the important notions in this proof is that of consistency:

Theorem A.1.1. Any of the considered logics JL is consistent.

The proof of this theorem requires the realization of modal logic into JL. Since this is being
established syntactically for any of the not yet considered JL’s in this thesis, the proof as given
by R. Kuznets [13] applies here as well.

Definition A.1.2. A set of justification formulas Γ is called JL-consistent if, for any finite subset
{A1, . . . , An} ⊆ Γ, ¬(A1 ∧ . . . ∧An) /∈ JL.

Such a set Γ is called maximal JL-consistent if Γ is JL-consistent and there is no set ∆ such
that ∆ ) Γ ♦

Some properties of maximal consistent sets that are important in proving the completeness are
listed in the following lemma:
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Lemma A.1.3. Let Γ be an arbitrary maximal JL-consistent set.
1. For any formula A, exactly one of the formulas A and ¬A is part of Γ.
2. The set Γ is closed under Modus Ponens.
3. JL ⊆ Γ.
4. If A /∈ JL, then the set {¬A} is JL-consistent.
5. For each JL-consistent set ∆, there exists a maximal JL-consistent set ∆′ sucht that ∆′ ⊇

∆.

Definition A.1.4. Let Γ be a set of justification formulas, then:

Γ# = {A | t : A ∈ Γ for some term t}.

♦

With this definition the canonical justification model can be defined:

Definition A.1.5. As with a justification model, the canonical justification model is defined
as a tuple M = 〈W,R, E , V 〉. Let Γ and ∆ be sets of justification formulas, the canonical
justification model has the following properties:
• W = {Γ | Γ is a maximal JL-consistent set}
• ΓR∆ if and only if Γ# ⊆ ∆
• V (p) = {Γ ∈W | p ∈ Γ}
• E(t, A) = {Γ ∈W | t : A ∈ Γ}

♦

The following lemma can be proven for any justification logic, therefore, the proof is omitted
here.

Lemma A.1.6. [Truth Lemma] In canonical justification models as defined above in defini-
tion A.1.5, the following holds for any world w ∈W and any justification formula A:

M, w  A if and only if A ∈ w.

It has to be proven that the constructed canonical justification model is a justification model, this
is done in the proof of the following lemma:

Lemma A.1.7. The canonical justification model as defined in Definition A.1.5 is a justification
model as defined in Definition 1.2.2 for JL.

The proof of the lemma consists of many cases each of which proves some property of the model.
Most of these cases are already considered by R. Kuznets [13]. Here it will only be proven that
the accessibility relation R, as defined in Definition A.1.5, is symmetric in the presence of the
jb axiom and that E , as defined in the same definition, is an evidence function when one or more
of the axioms jb, A5 and A5c are part of the axiom system.

Proof. LetM = 〈W,R, E , V 〉 be a canonical justification model.
First it has to be proven that the accessibility relation R as defined in Definition A.1.5 is

symmetric in the presence of the jb-axiom. This means: if ΓR∆, then ∆RΓ as well for any
maximal JL-consistent sets Γ and ∆.
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Assume without loss of generality that ΓR∆ and assume towards a contradiction that ∆ 
t : A, but that Γ  ¬A. The, by the Truth Lemma A.1.6, it follows that t : A ∈ ∆ and ¬A ∈ Γ.
By propositional reasoning and Corollary 2.2.3 it follows that there is a term t′ such that: JL `
t : A ⊃ t′ : ¬¬A. Since ∆ is maximal JL-consistent it follows that t : A ⊃ t′ : ¬¬A ∈ ∆ and
by the Modus Ponens closure as stated in Lemma A.1.3: t′ : ¬¬A ∈ ∆.

Since the jb-axiom is present, it follows that JL  ¬A ⊃ ?t : ¬t : ¬¬A for any term t,
thus also for the term t′. By Lemma A.1.3: ¬A ⊃ ?t′ : ¬t′ : ¬¬A ∈ Γ, since ¬A ∈ Γ, by the
Modus Ponens closure by Lemma A.1.3: ?t′ : ¬t′ : ¬¬A ∈ Γ. Since Γ# ⊆ ∆, it follows that
¬t′ : ¬¬A ∈ ∆, which is in contradiction with the maximal JL-consistency of ∆ and the above
established result that t′ : ¬¬A ∈ ∆. From which it follows that A ∈ Γ and hence that ∆RΓ as
well.

For each of the new defined properties on the evidence function E it has to be proven that E ,
as defined in Definition A.1.5, is indeed an evidence function.
• The A5 closure property:M, w  A and w ∈ E(t, (A ⊃ ¬s : B)) implies w ∈ E(?t,¬s :
B).
Let Γ  A and Γ ∈ E(t, A ⊃ ¬s : B), then by the Truth Lemma A.1.6 it follows that
A ∈ Γ and by Definition A.1.5 it follows that t : (A ⊃ ¬s : B) ∈ Γ. The axiom
A5 is part of any logic for which this property is considered, hence by Lemma A.1.3
t : (A ⊃ ¬s : B) ⊃ (A ⊃?t : ¬s : B) ∈ Γ. Applying twice that Γ is closed by Modus
Ponens (Lemma A.1.3), it follows that ?t : ¬s : B ∈ Γ. From Definition A.1.5 it then
follows that Γ ∈ E(?t,¬s : B).
• The A5c closure property: [E(t, A)]c ⊆ E(c,¬t : A).

Assume Γ /∈ E(t, A). Then by Definition A.1.5, it follows that t : A /∈ Γ and since Γ
is maximal JL-consistent, by Lemma A.1.3: ¬t : A ∈ Γ. Because the axiom A5c is part
of the axiom system of any of the logics for which this property of the evidence function
applies, it follows by Lemma A.1.3 that ¬t : A ⊃ c : ¬t : A ∈ Γ. Applying Modus
Ponens, by Lemma A.1.3 it follows that c : ¬t : A ∈ Γ. By Definition A.1.5 it can then
be concluded that Γ ∈ E(c,¬t : A).
• The symmetry closure property:M, w  A implies w ∈ E(?t,¬t : ¬A).

Assume Γ  A, then by the Truth Lemma A.1.6 it follows that A ∈ Γ. Since the ax-
iom jb is part of the axiom system of any logic for which this property is considered, by
Lemma A.1.3, A ⊃ ?t : ¬t : ¬A ∈ Γ for any term t. Applying Modus Ponens (by
Lemma A.1.3), it follows that ?t : ¬t : ¬A ∈ Γ. By Definition A.1.5, it follows that
Γ ∈ E(?t,¬t : ¬A).

That the strong evidence property holds for any canonical justification model has been proven
by R. Kuznets [13]. �

A.2 Proof of Theorem 1.2.8

With these lemma’s, soundness and completeness (Theorem 1.2.8) can be proven:

Proof. Without loss of generality, assume M = 〈W,R, E , V 〉 is a justification model. Both
directions of the theorem statement have to be considered.

67



⇒ Soundness can be proven by induction on the derivation in the logic JL. From the PhD
thesis of R. Kuznets [13] it can already be concluded that each of the axioms of the basic
justification logic J and the axioms jt, jd, j4 and j5 are valid for the justification logics
whose axiom systems contain the corresponding axioms and that the Modus Ponens and
Axiom Necessitation rules are admissible in any justification logic JL. It is left to prove
that the axioms A5, A5c and jb are valid in justification logics which axiom systems
contain these axioms:

– The axiom A5. To prove validity of the A5 axiom, assumeM, w  A andM, w 
t : (A ⊃ ¬s : B), to show that M, w ?t : ¬s : B. Any model for the logics
of which the axiom system contains the A5 axiom, satisfies the A5 closure property
and the strong evidence property.
From the assumption and Definition 1.2.3 it follows that M, w  A and w ∈
E(t, (A ⊃ ¬s : B)). By the A5 closure property: w ∈ E(?t,¬s : B). Using
the strong evidence property it follows thatM, w ?t : ¬s : B.

– The axiom A5c. LetM, w  ¬t : A, this means thatM, w 6 t : A. It has to be
shown thatM, w  c : ¬t : A. Any model for the logics of which the axiom system
contains the A5c axiom, satisfies the A5c closure property and the strong evidence
property.
By the strong evidence property it follows from the assumption that w /∈ E(t, A).
By the A5c closure property: w ∈ E(c,¬t : A). Using the strong evidence property
again it follows thatM, w  c : ¬t : A.

– The axiom jb. LetM, w  A, to show validity, it has to be shown thatM, w  ?t :
¬t : ¬A, for any term t. Any model for the logics of which the axiom system con-
tains the jb axiom, satisfies the symmetry closure property and the strong evidence
property.
By symmetry it follows that for any v ∈ W such that wRv: M, v  ¬t : ¬A, for
any term t. By the symmetry closure property it follows, from the assumption, that
w ∈ E(?t,¬t : ¬A). Since for all v ∈ W such that wRv it holds that M, v 
¬t : ¬A and w ∈ E(?t,¬t : ¬A) for any term t, it follows by Definition 1.2.3 that
M, w  ?t : ¬t : ¬A.

⇐ The canonical justification modelM = 〈W,R, E , V 〉 as constructed in Definition A.1.5
for logic JL is sufficient to refute all justification formulas A such that JL 6` A. From
Lemma A.1.7 it is known thatM is a justification model for JL.

Consider any justification formula A such that JL 6` A. By Theorem A.1.1 it follows that
JL is consistent. Then by Lemma A.1.3, it follows that the set {¬A} is JL-consistent. By
Lemma A.1.3 it follows that this set can be extended to a maximal JL-consistent set ∆,
such that ¬A ∈ ∆. Then by the Truth Lemma A.1.6:M,∆  ¬A and henceM,∆ 6 A.

Both directions have been proven, from which it follows that Theorem 1.2.8 has been proven.
�
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