
Automated Discovery of Secure
Website Domains

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Dominik Frühwirt
Matrikelnummer 0928511

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Mitwirkung: Dr.techn. Markus Huber MSc

Dipl.-Ing. Dr.techn. Martin Mulazzani

Wien, 15. April 2015
Dominik Frühwirt Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Automated Discovery of Secure
Website Domains

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Dominik Frühwirt
Registration Number 0928511

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Assistance: Dr.techn. Markus Huber MSc

Dipl.-Ing. Dr.techn. Martin Mulazzani

Vienna, 15th April, 2015
Dominik Frühwirt Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dominik Frühwirt
Laimbach 153, 3663 Laimbach

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. April 2015
Dominik Frühwirt

v

Kurzfassung

Durch bekannt gewordene Abhörprogramme, wie das der NSA, rückt die Verschlüsselung
von Daten, die über das Internet gesendet werden, immer mehr in den Vordergrund.
Viele Webseiten unterstützen mittlerweile das HTTPS Protokoll, das den Traffic zwischen
Browser und Webserver mittels TLS absichert. Unglücklicherweise gibt es keine zuver-
lässige Möglichkeit herauszufinden, ob ein Server HTTPS Verbindungen zulässt. Daher
entwickelte die Electronic Frontier Foundation (EFF) die Browser Extension HTTPS Eve-
rywhere, die das Upgraden einer HTTP Verbindung auf HTTPS automatisiert, wenn es
durch den entsprechenden Server unterstützt wird. Dies geschieht durch manuell erstellte
und gewartete URL-rewriting Regeln, die mit der Erweiterung mitgeliefert werden. Diese
Diplomarbeit befasst sich mit der Problematik der automatisierten Generierung solcher
Regeln. Dafür wurde eine Software implementiert, die eine große Anzahl an Domains
auf HTTPS Unterstützung prüft und die zugehörigen Regeln erstellt. Die Websites, die
über das HTTPS Protokoll erreicht werden können, werden mit den Versionen, die über
HTTP erreichbar sind, verglichen, um equivalenten Inhalt und korrekte rewriting-Regeln
garantieren zu können. Daher wurden 15 verschiedene Similarity-Matching Methoden
implementiert und evaluiert. Das Crawlen der Top Million Websites aus dem Alexa
Ranking ermöglichte die Generierung von etwa 190000 einzelner Regeln für fast 129000
verschiedene Domains.

vii

Abstract

Since the large-scale surveillance programs of intelligence agencies like the NSA became
known, privacy concerns got in focus of the general public. Many websites support
encryption via the HTTPS protocol securing the data transmitted between browsers
and webservers by using TLS. Unfortunately, there is no reliable possibility to find out
whether a website is available via HTTPS as well. Therefore, the Electronic Frontier
Foundation (EFF) developed the browser extension HTTPS Everywhere that automates
upgrading HTTP connections to secured HTTPS connections if this is supported by
the corresponding server. The extension uses manually created and maintained URL-
rewriting rules that are shipped with the extension. This diploma thesis investigates the
possibilities of automatic rule set generation. For this purpose, a software that checks a
large set of domains on HTTPS support and generates the corresponding rules has been
implemented. The websites reachable via HTTPS get compared to the versions available
via HTTP in order to ensure their equality and correct rewriting rules. Therefore, we
implemented and evaluated 15 different similarity matching methods. The large-scale
crawl of the Alexa top million websites allowed the generation of about 190,000 single
rules for nearly 129,000 different domains.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Background 5
2.1 Transport Layer Security . 5
2.2 Hypertext Transfer Protocol (Secure) . 7
2.3 Browser Extensions . 12

3 State of the Art 15
3.1 Visual Similarity . 17
3.2 Code Similarity . 18
3.3 Fuzzy Hashing . 21

4 Methodology 25
4.1 Candidate Generation . 25
4.2 Calculating Website Similarity Values . 27
4.3 HTTPS Everywhere Rule Generation . 30

5 Software Design 33
5.1 Candidate Generator . 34
5.2 Candidate Checker . 36
5.3 Aggregator . 39
5.4 Rule Generator . 40
5.5 Performance Improvements . 40

6 Evaluation 45
6.1 Candidate Generation . 45
6.2 Candidate Checking . 46

xi

7 Large-Scale Evaluation and Results 53

8 Discussion 59
8.1 Limitations . 61
8.2 Future Work . 62

9 Conclusion 63

Appendix A - Training Set 65

Bibliography 67

CHAPTER 1
Introduction

Since the large-scale surveillance programs of intelligence agencies like the NSA became
known, privacy concerns got in focus of the general public. Moreover, the trust in internet
companies got tarnished by the fact that governmental organizations eavesdrop even on
honest citizens [20].

The Internet Architecture Board (IAB), a committee founded for keeping track of the
standardization activities of the Internet Engineering Task Force (IETF), stated [9] that
unencrypted traffic should generally not be sent over the internet anymore. They explain
that this could possibly re-establish the trust of users in the internet.

Obviously, this appeal applies to traffic between browsers and web-servers as well.
The most popular possibility to access websites in a secure way is to use HTTPS as a
communication protocol. The HTTP over TLS protocol provides confidentiality, website
authenticity and message integrity [65].

Unfortunately, there is evidence [36] originating from documents recently revealed by
Edward Snowden that the NSA is able to decrypt such communications on a large scale.
Nevertheless, this does not mean that SSL/TLS is broken at all since the documents
also show that decryption is only simple if the intelligence agency got access to the
corresponding private key or if TLS is weakly configured [36]. Therefore, HTTPS
may still provide protection against surveillance when accessing a website that’s key
is not compromised. Moreover, other attackers probably do not have vast resources
like intelligence agencies and will almost certainly fail on compromising a successfully
established TLS session.

Despite the fact that the RFC for HTTPS exists since 2000 [63], HTTPS is not
deployed on each and every web-server. This may have several reasons like additional
costs for a valid certificate or the effort necessary for configuring the web-server. Moreover,
webmasters sometimes are concerned about performance issues caused by the additional
computational effort required for encryption. Adam Langley weakened this argument
already in 2010 since his measurements showed that enabling TLS requires “less than 1%

1

of the CPU load, less than 10KB of memory per connection and less than 2% of network
overhead” [48].

However, even when HTTPS is enabled on a web-server, the insecure HTTP protocol
will be also turned on most likely for compatibility reasons since browsers try access via
HTTP first [65] when no protocol is explicitly specified in the entered URL. Due to this
fact, it may remain undetected that there would be a secure alternative available. Even if
a website’s administrator enables immediate redirection to the HTTPS equivalent when
a user tries to access the website via HTTP, it will still be possible for an active attacker
to start attacks like SSL Stripping [53] or Cookie Stealing [65] against the user.

Even though there are mechanisms like HTTP Strict Transport Security (HSTS) or
the secure tag for cookies that mitigate the risk of such attacks, the user has to rely on
the competence of the accessed websites’ administrators since these security measures
have to be enabled explicitly on server-side.

The browser extension HTTPS Everywhere tries to add a further countermeasure
against attackers. It ships with a large rule set containing URL rewriting rules for a
certain set of websites. The extension instructs the browser to change the protocol from
HTTP to HTTPS if a rule exists for the requested website. The entire rule set has been
created by the community of HTTPS Everywhere and is still maintained by hand. Since
the effectivity of the add-on mainly depends on the extent and quality of the rule set it
is a desirable goal to enlarge it further.

In this thesis we try to automatize the process of creating new rules in order to
achieve this goal. As a first step websites that possibly offer connections via both HTTP
and HTTPS have to be found. Since the same website might be accessible on different
subdomains when using either HTTP or HTTPS this task might be difficult (e.g. a
website may be accessible on http://example.com/ and on https://secure.example.com/).
In the following we will call such pairs of URLs comprising one HTTP and one HTTPS-
URL candidates or candidate pairs. Furthermore, administrators may decide to host the
actual website on HTTP and the corresponding back-end on the HTTPS port of the
same domain. Hence, it has to be checked if the webpages retrieved via HTTP and via
HTTPS show the same content. Since webpages are generated dynamically often and
may show different content even on two subsequent requests, this is challenging either.
Finally, the rule set for the HTTPS Everywhere extension has to be created according to
the collected data.

As it can be seen, there are three major research questions to answer:

• How is it possible to find potential candidates of HTTP-HTTPS equivalents?

• How can we check two websites regarding equality?

• How can an appropriate rule set for HTTPS Everywhere be created automatically?

The rest of this thesis is organized as follows: In Chapter 2, the technical background
of secure websites and browser extensions is introduced. In Chapter 3, related techniques
and some similarity matching methods will be explained. Our methodological approach
and the design of our software will be presented in Chapters 4 and 5. In Chapter 6 the

2

evaluation procedure will be discussed and in Chapter 7 the results of the large-scale
evaluation are presented. Finally, the results are discussed in Chapter 8.

3

CHAPTER 2
Background

In this section some background knowledge needed for accomplishing the before mentioned
goals are explained.

2.1 Transport Layer Security
Transport Layer Security (TLS) can be utilized for authentication and encryption of
network traffic. In the ISO OSI-Model it is associated to the presentation layer[65], thus
it is located above the transport layer and therefore over TCP and UDP. It builds a
transparent provider for encryption to the layers above; hence application layer protocols
may work using TLS without the need for adaption. However, for UDP there exists
a distinct protocol called Datagram Transport Layer Security (DTLS) [64] as TLS is
designed for usage with reliable protocols like TCP.

The preceding protocols of TLS are called Secure Socket Layer (SSL), but since
1996 the protocol is developed under the name TLS by the IETF. SSL 1.0 has been
developed by Netscape Communications in 1994 but has never been released [65]. A few
months later, still in 1994, SSL 2.0 replaced its predecessor due to the serious security
flaws. In 1996 SSL 3.0 has been released which is also known to be insecure now [58].
The next RFC improving SSL 3.0 has been standardized by the IETF in 1999 and has
been renamed to TLS 1.0 in this process. As TLS 1.0 only shows minor changes in
comparison to SSL 3.0, the version number used inside of the protocol is 3.1 due to
backward compatibility reasons [23] and thus it is also referred to as SSL 3.1. Some
further improvements have been introduced by TLS 1.1 [24] in 2006 and TLS 1.2 [25] in
2008. Currently the IETF is working on TLS 1.3 [26] which should mitigate and prevent
possible attacks on TLS and also introduce some new features.

TLS makes use of asymmetric cryptography in order to authenticate either one or
both communication parties and for exchanging an additional symmetric key. After
authentication and key exchange the traffic is encrypted using symmetric cryptography
as it costs less than asymmetric encryption regarding computational power [65].

5

Key Exchange RSA, Diffie-Hellman
Authentication RSA, Elliptic Curve Digital Signature Algorithm
Encryption AES, Triple-DES

Message Authentication HMAC based on SHA1, MD5

Table 2.1: Examples for Parts of Cipher Suites [26]

In particular, X.509 certificates are utilized to authenticate the communication partner.
This standard specifies the format and semantics of the certificates containing the keys
necessary for deciding if the counterpart is really the one that should be communicated
with.

TLS messages consist of so called records which encapsulate the transmitted data.
There are different record types referred to as independent protocols in the RFC [26],
namely handshake, alert, change cipher spec and application data protocol. In order
to make the identification of the encapsulated protocol possible, unique IDs have been
assigned to them (e.g. 23 for application data).

Each TLS based connection starts with the TLS handshake arranging a common
communication base [65]. The communication partners negotiate the TLS/SSL version
and the cipher suite which is a combination of a key exchange, an authentication, an
encryption and a message authentication method. Some examples for such cipher suites
can be seen in Table 2.1.

The alert protocol is used for signaling warnings and errors to the communication
partner [65]. There are several different warnings like certificate expired or user cancelled.
When one side receives a warning, it is possible to continue the communication. When a
fatal error is sent, the connection will be closed immediately after sending the alert [26].

The change cipher spec protocol implements only one message saying that every
succeeding message will be sent encrypted and authenticated using the negotiated cipher
suite [65].

All messages containing application payload are encapsulated using the application
data protocol [65]. The data may be fragmented and compressed.

Moreover, some TLS configurations are capable of providing forward secrecy [65].
This prevents attackers from decrypting previously recorded TLS data streams even
if the long term key got revealed. This is achieved by using distinct session keys for
encrypting the communication. These short-term keys are exchanged by using (Elliptic
Curve) Diffie-Hellman key exchange over the already long-term key encrypted connection.
If a server gets compromised, an attacker will only be able to decrypt currently opened
connections but not already closed ones as session keys are deleted after the corresponding
connection has ended.

It should be mentioned that TLS can also be configured to only authenticate the
traffic but not to encrypt it [26], though this is a hardly used option.

6

2.2 Hypertext Transfer Protocol (Secure)

HTTP is a stateless application layer protocol which is mainly used to transfer website
data. HTTP has been standardized by the IETF and the World Wide Web Consortium
(W3C) in several RFCs and its latest standardized version is HTTP/1.1 which has been
published in 1999 [31]. The first version of HTTP, known as version 0.9, has been released
in 1991 [76] and was one of the key technologies for the world wide web. In 1996 RFC
1945 has been finished which defines HTTP/1.0 [7]. HTTP/2 is under development at
the time of writing and addresses several performance problems of its predecessors [6].

HTTP usually uses the reliable TCP protocol, typically on port 80 unless specified
otherwise. Without using further extensions HTTP transmits data in plain text.

There are two different kinds of HTTP messages, namely request and response
messages. They basically consist of three parts, one start-line, the HTTP header and
message body [31].

The start-line of a request message is called request line and consists of the method,
the resource identifier and the HTTP version. The method defines the operation that
should be executed by the server. An assortment of very common method types are:

• GET, to retrieve a document from the server,

• POST, which can be used for submitting HTML form data to the server and

• HEAD, which is similar to GET but does request the server only to send the
header omitting the message body of a resource. It may be used for checking if a
resource is present at the server or if it has been changed since last access in order
to verify the validity of cached documents.

The resource identifier denotes the document on which the requested operation should
be performed and the HTTP version defines the version of the HTTP protocol used.

A response message’s start-line is called status line and usually also comprises three
components. At first the HTTP version is specified, followed by the status code and and a
reason phrase. The status code is represented by a three digit long number indicating the
result of the requested operation, whereas the reason phrase is a textual representation
of the status code.

Basically, status codes are divided into five classes which are determined by the first
digit of the respective code [31]. These categories are named as follows:

• 1xx - Informational

• 2xx - Successful

• 3xx - Redirection

• 4xx - Client Error

• 5xx - Server Error

7

Status Code Reason-Phrase Description
200 OK Everything went OK
302 Found The requested resource is available at another

location
404 Not Found The requested resource could not be found on

the server
500 Internal Server Error Some error occurred on the server while

processing the request

Table 2.2: HTTP status code examples [31]

Some frequently occurring concrete status codes are listed and described in Table 2.2.

In order to transfer some metadata, appropriate header fields can be set within
requests and responses. The different header fields are separated by a single new line
(carriage return, line feed). The Host-field in the header is the only one which is mandatory
[31], as there may be multiple domain names pointing to the same web-server and it
has to be able to differentiate which domain is addressed in order to serve different
content for different domain names. An empty line marks the end of the header and
coincidentally the start of the message body. The message body carries the payload of
the corresponding request or response message. In some cases, like in responses to HEAD
requests, the message body is empty.

Listing 2.1 shows a very simple HTTP GET request to a Google web-server, indicating
the need of the content of index.html. It starts with the request line and comprises only
one header line and no message body. The response to this request is shown in Listing 2.2
and contains the status line, some header fields and finally the content of the requested
index.html document.

As already mentioned before, HTTP is a stateless protocol. For keeping the state of
a session, an additional mechanism called HTTP Cookie has been defined in RFC 6265
[5]. This allows storing small pieces of data on the client side by setting certain header
fields in the response, so it is possible to maintain a user session. A frequent use case
is to store a session key in form of a cookie at the users’ browser in order to match the
correspondig session to a user who is logged in.

GET / index . html HTTP/1 .1
Host : www. goog l e . at

Listing 2.1: Example HTTP Request

8

HTTP/1.1 200 OK
Date : Mon, 01 Dec 2014 09 : 51 : 21 GMT
Expires : −1
Cache−Control : pr ivate , max−age=0
Content−Type : t ex t /html ; cha r s e t=ISO−8859−1
Set−Cookie : PREF=ID=f7ad03f76242d1b2 :FF=0:TM=141742748 . . .
Set−Cookie : NID=67=mALKnPVUW0G−k9FTUdmSN5T_IoADyLTOz1 . . .
P3P : CP="This i s not a P3P po l i c y ! See http ://www. goog . . .
Server : gws
X−XSS−Protec t i on : 1 ; mode=block
X−Frame−Options : SAMEORIGIN
Alternate−Protoco l : 80 : quic , p=0.02
Transfer−Encoding : chunked

<content o f index . html omitted>

Listing 2.2: Example HTTP Response

2.2.1 HTTPS

As applications got more and more frequently accessed via HTTP and there were no
security measures to protect sensitive information like credentials etc., an approach for
transmitting HTTP traffic over a secure TLS channel has been developed and described
in RFC 2818 [63]. Basically, HTTPS simply encapsulates all HTTP traffic in TLS
application data records and uses TCP port 443 by default.

Cookies can also be set within HTTPS sessions. As some websites are available via
both HTTP and HTTPS, it is possible that a cookie set via a secure connection is sent
over the unsecured one subsequently, e.g. when clicking on a link pointing to an HTTP
website. In order to avoid this, it is possible to set the secure-attribute [5]. A user agent
is allowed to send cookies with this attribute set only via secure connections, thus making
session- or other sensitive cookies more secure.

Web-servers sometimes are configured to send a response with HTTP status code
302 when a resource is requested via HTTP, but HTTPS is supported as well. The
Location header field then contains the URL to the secured webpage and the user agent
will navigate accordingly. Since browsers usually prefer to use HTTP when the user does
not specify which protocol to use, the first request to the web-server is still sent in plain.
Hence, if an attacker manages it to perform a man-in-the-middle (MITM) attack, he will
be able to perform different attacks.

One possible attack would be Cookie Stealing [65]. Since the attacker is able to
eavesdrop and even tamper unencrypted traffic when being the man in the middle, it is
possible that cookies sent along with the first unencrypted request are used for hijacking
a currently opened session of a web application. In particular, it is not even necessary
for the attacker to wait for the user accessing the application he wants to hijack the
session of. As soon as one website is accessed via HTTP, the attacker may forge a HTTP

9

302 redirection response referring to the website he wants to attack, certainly using an
HTTP-URL. Since browsers follow redirects from any one website to any other website,
this is no problem. Clearly, this attack only works if the before mentioned secure-flag
was not set by the web application, as cookies will not be sent over the unsecured HTTP
connection then.

SSL Stripping [65] enables the attacker to eavesdrop on communications that are
assumed to be encrypted, e.g. online banking websites. As already mentioned before,
users frequently enter the domain of the website they want to access into the browser
without specifying the protocol to use, i.e. http:// respectively https://. On websites
with critical content, the web-server will probably respond with a redirect to the HTTPS
counterpart of the HTTP website in order to encrypt the transmitted traffic. At this
point the man in the middle may intercepts the traffic and acts like a proxy server. All
links and redirects to the HTTPS protocol are stripped, which means they are rewritten
to HTTP-URLs or omitted in the case of redirects. This way, the user communicates in
clear with the attacker, whereas the attacker establishes a secured HTTPS connection
to the server. Now the attacker may read or even tamper data that is assumed to be
encrypted. Certainly, this might be noticed by the user as the browser does not show
the padlock icon indicating an encrypted connection. However, most users are not aware
of how to distinguish an encrypted connection from an unencrypted one [69], thus this
attack probably takes place undetected.

This attack has been initially introduced at the BlackHat 20091 by Moxie Marlinspike
[53] who additionally provides the popular tool sslstrip2 that performs the described
attack automatically.

Furthermore, there exist various problems with the Public Key Infrastructure (PKI)
of the internet [65]. Briefly speaking, the PKI has been introduced to enable user agents
to verify the correctness of the certificates supplied by HTTPS web-servers, thus making
the communication channel authenticated and encrypted. Therefore, trusted third parties
called Certificate Authorities (CAs) sign certificates of domains to prove their validity.
Browsers are shipped with a set of trusted CAs including their public keys in order to
enable the user agent to validate the signatures of signed certificates.

In [65] some problems of this architecture are described. The first and said to be
biggest problem is that any CA is able to issue a certificate for any domain. Therefore,
attackers that are able to obtain a certificate for an already registered domain may
perform large-scale man-in-the-middle attacks with valid certificates. Since the attacker’s
certificate is also signed by a valid CA, no warnings will be shown at the user agent and
the security indicating padlock of the browser will also be displayed. Furthermore, there
is no guarantee that governments are not able to force CAs to issue certificates for global
surveillance purposes. In 2011 such a security breach of a CA happened [34]. Attackers
managed it to generate over 500 fraudulent certificates including one wildcard certificate
for Google (*.google.com). As the security report shows, this certificate has been used for

1https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html, retrieved:
2015-02-10

2http://www.thoughtcrime.org/software/sslstrip/, retrieved: 2015-02-10

10

https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html
http://www.thoughtcrime.org/software/sslstrip/

performing a large-scale man-in-the-middle attack mostly affecting users located in Iran.

However, the consequences of such breaches could be possibly mitigated by reducing
the set of trusted CAs. The evaluation presented in [61] shows that 34% of the CAs that
are included in common trust stores may be removed without any consequences. The
authors analyzed the traffic of their university’s network for two months and observed
that not a single warning would have been shown by a user agent if the before mentioned
set of CAs would have been removed from the trust stores.

A group of renowned organizations including, amongst others, Mozilla, the Electronic
Frontier Foundation (EFF) and Cisco Systems, started a project in 2014 called Let’s
Encrypt3 in order to reduce the effort of obtaining a valid certificate and deploying it
on a web-server. They develop a tool that is able to automatize the required steps and
furthermore keeps track of the expiration and renewal of an already deployed certificate.
Therefore, a dedicated CA will be provided and the process of proving the domain
ownership will be automated. Let’s Encrypt is expected to be released in mid-2015 and
aims for a wider deployment of HTTPS in the internet due to the simplicity of the tool
and not least because it is free of charge.

2.2.2 HTML

A website comprises at least one Hypertext Markup Language (HTML) file in the simplest
case. It is a language used for structuring documents in a semantic way. The development
of the most current version, HTML5 [78], has been finished in October 2014 and should
redeem its predecessor HTML 4 [77] amongst other languages like XHTML. The HTML
specification is maintained by the W3C.

An HTML document structures the contained data by enclosing it with HTML tags
which are written in angle brackets. A very basic example for an HTML document
can be seen in Listing 2.3. Every document starts with the html-tag and ends with
the corresponding end-tag. These are denoted by putting a / after the opening angle
bracket, e.g. </html> for the html-end-tag. However, there are also tags which can
have an optional end-tag and some that must not have one. Additionally, tags may have
attributes describing additional information, e.g. the src-attribute in the img-tag in
the given example which specifies the image’s location.

Usually, HTML websites additionally include Cascading Style Sheets (CSS) for defin-
ing the look of the page and JavaScript (JS) for executing client side code, e.g. for
asynchronous communication and dynamic reloading of content.

3https://letsencrypt.org/, retrieved: 2015-03-05

11

https://letsencrypt.org/

<html>
<head>

<t i t l e >Example Document</ t i t l e >
</head>
<body>

This i s an example HTML document .
</body>

</html>

Listing 2.3: Example HTML document

2.3 Browser Extensions

In [1], a browser extensions is defined as “software that optionally adds or removes
functionality to the browser” [1]. Extensions are written by using APIs provided by the
browser the extension should be embedded in. Furthermore, there are also components
which add functionality but are denoted as browser plugins. The difference is that plugins
run partly independent from the browser, thus using external code. Popular examples
for plugins are Oracle Java Plugin which allows the execution of Java-Applets and Adobe
Flash Player that enables the browser to display Flash-content.

One concrete extension that occupies a central position in this thesis is named HTTPS
Everywhere4. It evolved from a cooperation of the EFF and The Tor Project5 and is
available for multiple popular browsers. In principle, this extension rewrites HTTP-URLs
according to a certain rule set in order to upgrade them to HTTPS. These rules are
defined in XML-files and make use of regular expressions to accomplish flexible URL
rewriting. As even the first request to a web-server is sent over HTTPS when using the
HTTPS Everywhere extension, SSL Stripping attacks are not possible anymore. Moreover,
session hijacking by stealing unsecured cookies sent along with the first HTTP request is
also prevented. Certainly, this mechanism only works if the accessed website is present
in the rule set. However, the rule set is created and maintained by the community of the
extension, thus fameless websites are possibly missing. The structure of XML rule files
will be explained in Section 4.3.

Some other extensions that are relevant for this thesis are explained in the following.
The extension Perspectives6 [81], available for Firefox Browser, pursues the strategy

to request the sight of globally distributed nodes to a certain certificate of a server. When
the browser retrieves the public key of a web-server, that is not stored in its cache, i.e.
it is visited for the first time, or the cached certificate differs from the one it received,
notary nodes are requested to send their knowledge about the certificate of the server.
This way, the client should receive the same certificate from all requested notary nodes
and can check for attacks that target to eavesdrop or tamper the data sent. Moreover,

4https://www.eff.org/HTTPS-EVERYWHERE, retrieved: 2015-02-09
5https://www.torproject.org/, retrieved: 2015-02-09
6http://perspectives-project.org/, retrieved: 2015-02-09

12

https://www.eff.org/HTTPS-EVERYWHERE
https://www.torproject.org/
http://perspectives-project.org/

this approach makes it even possible to validate untrusted, unsigned certificates as an
attack to the majority of distributed notary nodes is very unlikely to happen. Hence,
a web-server’s certificate is assumed to be valid if the fingerprint of the certificate is
confirmed by a certain amount of notary nodes.

Moreover, Moxie Marlinspike proposed Convergence7 that bases on the idea of
Perspectives and has been introduced at his talk at the DEFCON [54] in 2011. A
corresponding Firefox extension and the code for running a notary node are available for
download.

Certificate Patrol8 tries to address a similar problem by expanding Firefox’ and
SeaMonkey’s features by certificate pinning. The extension caches (pins) certificates of
websites which have been visited before, i.e. they utilize a so called Trust-On-First-Use
(TOFU) policy. If the certificate changes on future requests, Certificate Patrol will
show an intrusive warning to the user. However, users get also warned when a website
legitimately changed its certificate, e.g. when the old one expired or the private key
leaked and a new one was generated, and will probably get desensitized to these messages
over time [70].

The extension Certlock presented in [70] tries to address this problem by omitting some
warnings. They base the decision of when to warn a user on the certificate authorities’
(CAs) countries. If the changed certificate origins from a CA of the same country as
the old one, no warning will be raised. Unfortunately, we could not find a finished
implementation ready to download, but a Google Code page9 comprising one commit
made in 2010 commented with “not a complete implementation”. Hence, it is supposed
that this extension is not being developed further.

Moreover, there are preloaded key pinning lists for Firefox (starting with version 32
[19]) and for Chrome (since version 13 [49]) for some chosen domains.

The Google Chrome extension KB SSL Enforcer10 is capable of redirecting the user to
HTTPS websites without maintaining a list like HTTPS Everywhere. When a request is
sent via HTTP, it probes if the requested document is available via HTTPS on the same
domain and path like the actually requested HTTP resource. If so, it is assumed that
this domain supports TLS secured transmission and future requests to the same domain
will be sent solely via HTTPS [30]. However, sometimes the extension bricks websites by
redirecting the browser to broken or empty websites [43], as the content is not compared
in order to assure equality of the HTTP and HTTPS website. Moreover, the extension
can not hinder the browser to sends the first request to a website in plain enabling an
attacker to steal cookies. Furthermore, it is easily conceivable that an attacker blocks
the probing-requests to convince KB SSL Enforcer that there is no HTTPS web-server,
hence there will be no redirect triggered.

HTTPS Finder11 represents a very similar extension for Firefox. It exhibits the same
weaknesses as KB SSL Enforcer, but provides an additional feature for creating rules for

7http://convergence.io/
8http://patrol.psyced.org/, retrieved: 2015-02-09
9https://code.google.com/p/certlock/, retrieved: 2015-02-09

10https://code.google.com/p/kbsslenforcer/, retrieved: 2015-02-10
11https://code.google.com/p/https-finder/, retrieved: 2015-02-10

13

http://patrol.psyced.org/
https://code.google.com/p/certlock/
https://code.google.com/p/kbsslenforcer/
https://code.google.com/p/https-finder/

HTTPS Everywhere out of gathered information. Additionally, on the homepage of this
extension there is a recommendation to create and deploy such rule files whenever possible,
as HTTPS Everywhere improves the security more than HTTPS Finder, probably because
of the before mentioned problems.

All of the before mentioned approaches are able to prevent man-in-the-middle and
SSL Stripping attacks under certain conditions. Nevertheless, most of them are vulnerable
to attacks that take place when a website is visited for the very first time.

14

CHAPTER 3
State of the Art

Ristić [65] describes several different problems with HTTPS. One of them is that there is no
possibility for a user agent to determine if a website supports TLS secured communication,
thus it simply uses an unencrypted connection, i.e. HTTP, when no protocol is specified
explicitly. Furthermore, it is stated that browsers are very tolerant in terms of certificate
problems. Users can skip certificate warnings issued by the user agent without any
problems and most of them do so as various studies show [72, 22]. This way, active
attackers may utilize self-signed certificates to perform man-in-the-middle attacks which
indeed cause the user agent to display a warning, but still be effective due to the
unawareness of users. There is another issue with mixing contents from both encrypted
and unencrypted sources. HTTPS websites sometimes embed content (e.g. images) that
reside on a server that does not support TLS connections. User agents tolerate this to a
certain extent, thus an active attacker is able to modify these resources and compromise
the session. Cookies can be, as already described in Section 2.2.1, protected from active
attackers by setting the secure flag. However, most of the web applications do not set
this attribute [46]. Therefore, it will still be possible to steal cookies or perform SSL
Stripping if the user agent sends a single request to the web-server over the unsecured
HTTP protocol.

One method to mitigate all of the before mentioned attacks is HTTP Strict Transport
Security (HSTS). It is defined in RFC 6797 [41] which was released in 2012 and describes
a mechanism deployed at both the web-server and the user agent. Websites that are
reachable over HTTPS may instruct the browser to communicate with this server
exclusively over secured connections in the future and to treat every certificate issue
as a fatal error, i.e. the user must have no possibility to skip a certificate warning
on the protected domain. This is achieved by setting the Strict-Transport-Security
header field in an HTTP response sent over a secured connection, e.g. TLS. User agents
react to the header by sending no further requests over unsecured connections to the
domain it received the HSTS header from. Furthermore, there is one mandatory and one
optional directive to parameterize HSTS’ behavior. The mandatory max-age directive

15

specifies the number of seconds the user agent should remember the HSTS setting for the
corresponding domain. The browser will update the expiry date every time the user visits
the website. If all subdomains of a certain domain also support HTTPS connections it is
possible to set the includeSubDomains directive that instructs the user agent to apply
the HSTS policy to subdomains as well. In addition to the possibility of dynamically
setting the HSTS policy for websites by using the Strict-Transport-Security header field,
some browsers come with preloaded HSTS databases for certain popular domains [46].

Unfortunately, HSTS is not a comprehensive protection against active attackers as
the first request to a website may still be sent unencrypted [46]. Furthermore, the first
request sent after the expiration of the max-age time may be transmitted in clear as
well, enabling SSL Stripping and Cookie Stealing again. In addition to these weaknesses,
the deployment of HSTS in real environments is, according to the evaluation in [46], is
erroneous in nearly 30% of the cases.

For this reason users cannot rely on the correct and universal deployment of HSTS
and possibly want to have an additional safety net. As already described in Section
2.3, HTTPS Everywhere provides such supplementary security measures. Since the
extension’s effectiveness mainly depends on the deployed rule set, a more comprehensive
set of rules would cover a larger amount of websites, thus leading to enhanced security
when browsing the web.

In our approach that aims at generating such rules automatically, it is necessary to
have algorithms in place that are able to detect if two retrieved webpages are equal or at
least very similar in order to decide if we found an HTTP-HTTPS equivalent.

Such website comparisons have also been utilized for checking the Tor [27] network on
compromising nodes. Tor is an anonymization tool that relies on wide spread participating
nodes and some exit nodes which are also operated by the community. At these exit
nodes it is possible to alter unencrypted traffic of Tor-users, thus performing a kind of
man-in-the-middle attack is feasible. In order to identify malicious exit nodes, a tool
called TorFlow [62] has been developed for comparing websites loaded via Tor with the
same website loaded normally. They strip the content only to contain tags which they
are interested in, i.e. entities which possibly contain malicious code. Therefore, the
website’s content, in means of non-source code text or images, is not considered due to
the stripping.

Similarity detection is also utilized for finding potential phishing websites. In [44],
currently used techniques of phishing webpage detection are summarized. However,
not all of them can be used for our purposes as several aim at user training and other
non-website-comparing mechanisms. Some of them try to match the source code and/or
text of the real page and the potential fishing website. Matching the content (HTML
code and text) of phishing pages has shown to be very effective [18]. However, phishers
responded to these approaches by putting pages together which solely consist of images,
thus showing only img-tags to the anti-phishing tools and therefore fooling them. Hence,
there are new approaches based on comparing the visual appearance of websites like
described in several papers [57, 83, 18, 38].

Moreover, there are multiple approaches that compare documents on source code

16

level, often regarding the hierarchical structure and/or the semantic content. Buttler
summarized some of them in [16] and also proposed a new method using shingles
which were initially introduced by Broder [14]. In [39], Henzinger provides a large-scale
evaluation of different algorithms for finding near-duplicate web pages. Theobald et al.
[74] propose an approach which is designed to be mostly sensitive for natural language.
Hence, they define near-duplicate web pages as documents showing the same content
disregarding framing and other visual components.

Furthermore, it is possible to utilize some approaches [50, 32] designed for XML
similarity-matching for comparing the source code of websites since HTML webpages
exhibit a hierarchical structure similar to XML documents.

Another method for detecting similar documents is provided by different fuzzy hashing
techniques [11, 45, 12, 13, 67, 10]. As opposed to cryptographic hashes which change
to a large extent even if only one bit of the input gets flipped, fuzzy hashes should be
resistant against small modifications. In this way, it is possible to match slightly modified
files, thus finding near duplicates.

A concrete explanation of the before mentioned approaches for similarity detection
will be given in the next sections.

3.1 Visual Similarity

Since humans mainly differentiate webpages by taking a look at them rather than
reading the source code there are also approaches that try to recognize visual differences
algorithmically. A very common application for visual website comparison is phishing
webpage detection. In the following some visual similarity approaches for websites are
presented.

In [73], the screenshot of a webpage is segmented into several parts which either
contain images, textual content or mixed content. After labeling the different sections
accordingly, graph matching [40] is applied in order to calculate a similarity value. It
should be noted that also pages with related layouts are considered to be similar. In an
example given by the authors, screenshots of two different search engines give a positive
match.

The method proposed by Fu et al. [35] tries to detect phishing pages by measuring
visual similarities based on the Earth Mover’s Distance (EMD). It is a very natural
distance measure which is particularly suitable for “cognitive distance evaluation” [35].
They resize the screenshot images to 100x100 pixels and reduce the color space to get a
robust and normalized signature. The evaluation shows very high precision and recall
values for the proposed algorithm.

The combined approach utilized in [57] tries to match textual as well as visual content.
It considers metadata of text blocks like background and foreground color, font size and
family and also width and height of embedded images, their histograms and their 2D Haar
wavelet transformations [71]. Moreover, it takes the overall screenshot of the webpage
into account, also by extracting histogram and wavelet transformation. A training set has
been utilized to find an optimal threshold, such that false negative rate and false positive

17

rate is minimized. The evaluation shows that only two of 42 phishing pages could not be
detected to be similar. The authors state that these two misclassified phishing pages do
not copy their originals very well.

Another method to compare webpages is to use discriminative keypoint features,
as proposed in [18]. The authors use a modification of Contrast Context Histogram
(CCH) [42] descriptors, called Lightweight CCH (L-CCH) to generate the signature of
a website. The original CCH has been adapted as its capability to match images scale-
and rotation-invariant is not required for webpage comparison. The L-CCH descriptors
are gathered around keypoints which are found by applying the Harris-Laplace detector.
This method achieves an accuracy of about 95% and false positive and false negative
rates are lower than 1%.

The approach proposed in [38] uses the existing tool imgSeek1 for phishing page
detection which utilizes wavelet transformation (similar to [57]) for finding similar images
inside of a database. It takes an image as input and searches for similar ones. Moreover,
it calculates a similarity value for possible similar candidates. By only using the output
of imgSeek as an indicator for phishing page classification, the false positive rate is at
18%.

Another combined method of visual and textual similarity matching is presented
by Zhang et al. in [83]. They utilize the EMD for recognizing visual similarity, but
unlike in [35] the threshold is determined by using a Bayesian model. The comparison
between their and Fu’s image classifier shows that their approach exhibits higher accuracy.
Furthermore, they combine textual and visual comparison by using their fusion algorithm
which outperforms both of the individual approaches.

The theoretical work of Maurer et al. [55] also focuses on detecting phishing pages by
comparing their visual appearances. The authors propose to use the Java library LIRe2

[52] to generate signatures of the webpage screenshots. LIRe is a content based image
retrieval library that comprises various methods for retrieving similar images. Since there
is no finished implementation, no evaluation is given.

3.2 Code Similarity
As already mentioned before, websites are written in the hierarchically structured lan-
guage HTML. Some similarity algorithms solely rely on the comparison of the structure
disregarding the content of the website, others consider both textual content and struc-
tural elements of the code. It is also possible to measure resemblance of documents by
just taking structural elements into account as the hierarchical construction of an HTML
file may suffices for recognizing similar webpages.

Buttler summarizes some document structure similarity algorithms in [16], e.g. the
well known Tree Edit Distance (TED). This distance is calculated by counting the
minimum amount of deletions, insertions and updates that are required to transform
one tree into another. As HTML is a hierarchical format with one single root node

1http://sourceforge.net/projects/imgseek/, retrieved: 2015-02-24
2http://www.semanticmetadata.net/lire/, retrieved: 2015-02-24

18

http://sourceforge.net/projects/imgseek/
http://www.semanticmetadata.net/lire/

(the html-tag), it is possible to convert it into a tree and calculate the TED of two
different documents. The similarity is computed by dividing the distance value of the
two documents by the maximum possible TED value which is equal to the amount of
nodes comprised by the bigger tree. The Robust Tree Edit Distance (RTED) [60] is one
of multiple algorithms proposed in literature to compute the TED in a runtime efficient
way compared to other methods. However, RTED still has a run time complexity of
O(n3) and a space complexity of O(n ∗m), where m and n are the number of elements
of the trees to compare.

Moreover, Buttler [16] describes Weighted Tag Similarity, one of the simplest similarity
measures for structured documents. This method relies on the amount of occurrences of
different tags inside of both documents disregarding their ordering. However, it is stated
that this method would have very low accuracy for HTML documents due to the limited
set of different tags.

Furthermore, an application of Fast Fourier Transformation (FFT) for comparing the
similarity of two documents is described in [33] and evaluated by Buttler. They transform
the sequence of tags comprised by the document into a sequence of numbers, s.t. each
distinct tag is converted to the same number in both transformations. These numerical
series are treated as time series in order to make the application of FFT possible.

Finally, Buttler [16] proposes a novel approach which utilizes Shingling [14] and Path
Similarity. Path similarity simply traverses the structural tree of the HTML document
and stores every path contained by the tree. The paths for the HTML example given
in Section 2.2 would look like shown in Listing 3.1. The similarity can be calculated by
dividing the amount of paths occurring in both documents by the number of paths of the
document comprising the most paths. When applying Shingling, contiguous subsequences
of these paths get hashed and are used for comparison. Therefore, an arbitrarily long
sliding window is utilized to generate the hashes of the sub-paths. After that, the sets
containing the hashes of both documents are compared and the similarity value is given
by the percentage of hashes contained in both sets.

/html
/html/head
/html/head/ t i t l e
/html/head/ t i t l e / [t ex t]
/html/body
/html/body / [t ex t]
/html/body / [t ex t] / img

Listing 3.1: Example Paths

The experiments of Buttler show that the TED algorithm is several orders slower
than any of the other algorithms under test. Though, it is assumed that it is the
best measure for similarity because the algorithm computes the optimum edit distance
provably. Moreover, it is stated that the FFT algorithm is much slower than Weighted
Tag or Path Shingle algorithm, but still less accurate. The Weighted Tag Similarity
represents one of the fastest and most accurate algorithms tested in [16].

19

In [4], Augsten et al. propose the usage of pq-Grams for approximating the tree edit
distance. A pq-Gram is a subtree of the original tree that consists of one node of the
original tree, p− 1 of its ancestors and q of its children. After computing all pq-Grams
of a pair of trees, the similarity is calculated using the amount of pq-Grams the two trees
have in common. The sensitivity of this algorithm can be controlled by adjusting the
parameters p and q. The pq-gram distance for two trees with n nodes can be calculated
in O(n log n) time and in O(n) space.

Henzinger [39] performed a large scale evaluation on two different algorithms presented
by Broder et al. [15] and Charikar [17]. Therefore, a set of 1.6 billion pages have been
analyzed by the author. It is stated that both of the approaches do not work very
well for detecting similar pages on the same website. Both algorithms strip the HTML
tags in order to retrieve only the real text of the website, thus structural elements are
ignored. Broder et al.’s approach is based on producing shingles as in Buttler’s Path
Shingle algorithm except for the usage of words instead of HTML elements. Charikar’s
algorithm produces projections of randomly chosen tokens into multidimensional vectors
and utilizes cosine similarity to measure the resemblance of two vectors, i.e. pages.
However, Henzinger tried to overcome the drawbacks of both algorithms by combining
them and executing them sequentially. The results show that the precision could be
raised from 0.50 (Charikar’s algorithm) respectively 0.38 (Broder et al.’s algorithm) to
0.79 (combined algorithm).

In [50], Leitao et al. utilizes a Bayesian network to compute the probability of child
nodes to be duplicates when thinking of a hierarchically structured HTML document
as a tree. It should be noted that the algorithm branches out very quickly and has a
worst case complexity of O(n ∗ n′), where n and n′ are the number of nodes of the trees
to match. The evaluation shows that the algorithm outperforms an existing approach
called DogmatiX [80] in terms of precision and recall when tested with three different
data sets including both artificial and real world data.

The phishing detection survey [44] of Khonji et al. summarizes state of the art
methods for detecting phishing pages. Some of them utilize algorithms which are based
on measuring the similarity of a legitimate website and a page in question, thus are
applicable for our purposes as well. One of them is called CANTINA [84] and uses Term
Frequency-Inverse Document Frequency (TF-IDF) to get the most relevant terms of both
documents. They submit a search query to Google’s search engine containing the five
terms with the highest TF-IDF and check if the results contain the URL in question.
This could be used for generating candidates by adding the inurl: Google-keyword with
https as a parameter, which causes the search engine to consider only URLs containing
https. However, in order to calculate the TF-IDF value for a term, it is necessary to have
a corpus containing a representative set of documents comprising natural language texts
for computing the Inverse Document Frequency. In [84], they used the British National
Corpus (BNC) for this purpose. Unfortunately, this means that the proper functioning
of the algorithm depends on the language of the corpus and thus it is not flexible enough
to compare arbitrary HTML pages.

The authors of [66] suggest a method for comparing HTML source code by matching

20

the attributes of the HTML tags. They loop through all tags and compare the attributes
of tags of the same type. Unfortunately, it is not explained if the values of all attributes
have to be equal or if it suffices if the set of attributes is the same to count as a positive
matched tag. They treat two pages as similar if more than 50% of the tags match in both
documents. Moreover, they compare the text of the web pages by computing the cosine
similarity of the documents and treat them as similar if the resulting value exceeds 50%.

3.3 Fuzzy Hashing

Fuzzy hashing is also referred to as similarity preserving hashing (SPH) and as already
mentioned before it is designed to create modification resistant fingerprints. Hence, in
contrast to cryptographic hash functions, small modifications to the input should affect
the resulting fingerprint only to a certain extent. A frequently stated application of such
algorithms is file classification in digital forensics.

One of the first approaches of applying fuzzy hashing for forensic purposes has
been published by Kornblum in [45]. The described algorithm ssdeep has initially been
developed by Dr. Andrew Tridgell [75] and is designed to “identify known files that have
had data inserted, modified, or deleted” [45] and uses Context Triggered Piecewise Hashing
(CTPH). In this approach a rolling hash, dependent on the currently processed input,
as well as a traditional hash is calculated simultaneously. When the rolling hash shows
a certain value, called trigger value, the currently processed part of the input will be
hashed by using the traditional hashing algorithm and recorded in the result. In this way
a small modification of a file only results in a change of a small part of the fingerprint as
the file gets hashed piecewise. The similarity value is calculated by computing a weighted
edit distance of two given hashes, dividing it by the sum of the hash lengths and, finally,
normalizing it in order to make zero a terrible match and 100 a perfect match. The
running time of the hash computation is in O(n log n) and the comparison of two hashes
in O(l2), where l is the length of the hash value, thus relatively small and negligible.

However, Roussev states [67] that ssdeep quickly loses granularity when processing
big files due to the fixed-length hash and proposes another fuzzy hashing approach called
sdhash. It is characterized by selecting statistically improbable features and filtering out
weak features in order to keep the false positive rate low. A feature is a sequence of
bits and should constitute a representative and identifying property of a file. Moreover,
SHA-1 has been utilized for hashing the selected features and Bloom filters [8] are used
for storing the hashes in a memory efficient way. In order to calculate the similarity of
two digests, the contents of the corresponding Bloom filters are compared.

In [11] Breitinger and Baier introduce another fuzzy hashing approach called bbHash.
They state that their algorithm outperforms sdhash in terms of hash length as bbHash
produces fingerprints with only 0.5% of the input size compared to the 2.6%-3.3% of
sdhash. Furthermore, they explain that sdhash only covers about 80% of the input in
contrast to their approach covering the whole file. Generally, bbHash utilizes random
static byte sequences of fixed size, called building blocks, to compute a fingerprint.
Moreover, a sliding window of the same size is shifted over the input data byte by byte.

21

Each time the window moves forward, the hamming distances [37] of the current content
of the window to all of the building blocks is calculated. If the smallest computed distance
is lower than a certain threshold, the index of the corresponding building block will
be appended to the hash value. For the comparison of fingerprints they refer to the
approaches used in ssdeep and sdhash. However, they also state that the major drawback
of bbHash is the run time performance due to the huge amount of lookup operations
necessary when computing a hash. The same authors made an evaluation of some existing
fuzzy hashing technologies in [12] and even skipped bbHash “as its performance is not
acceptable” [12].

Furthermore, they propose a new variation of the ssdeep algorithm called MRSH-v2
[12]. It is based on Multi-Resolution Similarity Hashing (MRSH) which is a modification
to ssdeep proposed by Roussev in [68]. In MRSH the rolling hash function is exchanged
with the polynomial hash function djb2 and MD5 is utilized for traditional hashing instead
of FNV. Moreover, bloom filters are used for storing the final hash value. MRSH-v2
switches back to the original rolling hash function as the assumption of the author of
MRSH that djb2 outperforms rolling hash with respect to performance turned out to be
wrong. In order to increase the performance further, in MRSH-v2 MD5 is exchanged
with FNV-1a which is the most current version of FNV at the time of writing. As the
evaluation shows, MRSH-v2 outperforms all of the before mentioned algorithms in terms
of run time and produces hash values of 0.5% of the length of the input data.

Another similarity preserving hash function, mvHash-B, introduced in [10] runs
through three phases. In the first phase a majority vote for each byte of the input is
performed. This method counts the number of binary ones of the currently processed
byte and its neighborhood consisting of a constant amount of surrounding bytes. If the
bit count is equal or higher than a certain predefined threshold, the resulting bit will be
a binary one, zero otherwise. As a second step, run length encoding (RLE) is utilized as
a compression algorithm. RLE simply counts the number of identical successive bits and
creates a sequence of these bit counters as a result. The third and last step deals with the
fingerprint generation using Bloom filters. The runtime performance of this algorithm has
been compared to the cryptographic hash function SHA-1 and the SPH functions sdhash
and ssdeep by computing the corresponding hashes of a randomly generated 100MiB
file. The results show that mvHash-B is slower than SHA-1 by a factor of nearly 2.8
but still faster than the other SPH algorithms. Furthermore, they define a new test
called edit operations ratio (EOR) measuring the robustness of an SPH algorithm by
modifying a copy of the input data step by step until the calculated similarity value
drops below a certain threshold. The number of tolerated random insertions, deletions
and substitutions divided by the original file length gives the EOR. The comparison of
the EOR of mvHash-B and sdhash shows higher values for sdhash, thus it is more robust
with the trade-off of higher hash value length.

Breitinger et al. proposed another similarity preserving hash function called saHash
[13]. It utilizes multiple sub-hash functions, which can be exchanged modularly, and
operates in linear time. The single hash functions are not very robust singularly as e.g.
the first sub-hash function simply yields the length of the input byte sequence. However,

22

in combination they are capable of computing an SPH very efficiently in terms of runtime.
They compared the runtime of different hash functions by generating a random 100MiB
file and computing the corresponding hash. The evaluation shows that saHash works
faster than ssdeep and sdhash, but slower than SHA-1. Moreover, the authors describe
that saHash is only capable of calculating the similarity of inputs with similar sizes, thus
it is not able to detect fragments.

23

CHAPTER 4
Methodology

The chosen approach aims at the automatic generation of HTTPS Everywhere rules in
order to cover a larger set of websites that are protected by this extension, thus e.g.
protected against SSL Stripping and Cookie Stealing. To do so, there are three major
tasks to manage. At first, websites that support HTTP as well as HTTPS (we call
them candidates at this stage) have to be found. As it is possible to display completely
different content on HTTP and HTTPS websites located on the very same domain, we
have to check if these websites are equal by measuring the similarity of the two websites.
Candidates that are similar enough to be treated as equal are called HTTP-HTTPS
equivalents and are considered when generating the rule set files for HTTPS Everywhere.

In the following, the approaches to handle each of these major tasks will be described
in detail.

4.1 Candidate Generation

In this thesis we use the term candidate pair for a pair of URLs, whereas one URL uses
the HTTP protocol and the other one uses HTTPS. Such candidates are possibly equal
webpages accessible via different protocols, though this is not sure until their similarity
is checked.

Since HTTPS web-servers may run on a different subdomain than the corresponding
HTTP server it may be rewarding to find existing subdomains.

One of the simplest methods to generate candidates for a given domain is to guess
the corresponding HTTPS-URL. In order to make guessing more efficient, one could
try frequently used subdomain names of secured websites and, of course, just the same
domain but with https:// instead of http:// prepended. In order to get an insight into
the webmasters’ naming strategies for secure domains, we downloaded the current rule set
of HTTPS Everywhere and implemented a script which analyzes it. The rule set consists
(at the time of writing) of over 13,200 XML-files containing about 15,700 active and 1,800

25

deactivated rules which totals to about 17,500 single rules. We solely considered activated
rules as these are currently valid and used by the HTTPS Everywhere extension.

During the evaluation of the most popular subdomain names for secured websites we
noticed that there are many rules that redirect the user agent to subdomains named s3
and a248.e. When we took a closer look to some single rule-files it turned out that these
rules redirect to Amazon’s or Akamai’s cloud storages1, thus even to a different second
level domain (s3.amazonaws.com respectively a248.e.akamai.net). Therefore, we modified
the script in order to establish new statistics about commonly chosen subdomains and
the amount of rules where the second level domain gets rewritten.

Furthermore, some top level domains (TLDs) comprise special second level domains
under which third level domains can be registered. An extreme case is the country
code TLD (ccTLD) of the United Kingdom. It was not possible to register a second
level domain directly under the .uk TLD until June 2014 [59]. Only registering third
level domains under a limited number of second level domains, like .ac.uk or .co.uk, has
been possible. Similar regulations have been valid for New Zeeland (.nz) [56] and other
ccTLDs. In order to consider such peculiarities we used the public suffix list2 which is
an initiative of the Mozilla Foundation and contains all known suffixes where a domain
name can be registered. By utilizing this list it is ascertained that the correct subdomain
is extracted from the URL.

In Table 4.1 the ten most frequently occurring subdomain names in the to-attributes
of all HTTPS Everywhere rules are shown in both absolute and relative numbers. In
40% of the cases there is a redirect to the empty subdomain which means that the
secure website is hosted on the base domain. Nearly a quarter of all rules show that
a redirect to the subdomain www is done. The subdomain $1, deployed in more than
10% of the cases, means that the secure site can be reached on the same subdomain of
the base domain (e.g. the secure equivalent of http://blog.example.com/ is hosted on
https://blog.example.com/). One could assume that the self-evident subdomain names
secure and ssl would be used very frequent for secured websites, but as the evaluation
shows, they occur only to a small extent of a bit beyond 2% in total. The rest of the
results only occur in under 1% of the cases, thus they are very seldom and negligible.

For retrieving the correct subdomains of the given URLs Mozilla’s public suffix list
has been utilized. In particular, the python package publicsuffix 1.0.5 3 has been used for
this analysis.

The results of this evaluation directly affects the candidate generation since the
FrequentSubdomainGenerator (see Section 5.1) creates candidates for each of the eight
most frequently used subdomains.

Another possible approach to find existing subdomains is to perform a DNS zone
transfer. This mechanism has been introduced to improve the reliability of the naming
system. In this way multiple name servers can be set up and kept in sync by exchanging
their DNS entries. We can use this for our purpose by requesting the name server (NS)

1https://aws.amazon.com/s3/, http://www.akamai.de/, retrieved: 2014-12-10
2https://publicsuffix.org/, retrieved: 2014-12-10
3https://pypi.python.org/pypi/publicsuffix/, retrieved: 2014-12-10

26

https://aws.amazon.com/s3/
http://www.akamai.de/
https://publicsuffix.org/
https://pypi.python.org/pypi/publicsuffix/

Subdomain Absolute Relative (%)
6326 40.42

www 3840 24.54
$1 1742 11.13

secure 285 1.82
cdn 45 0.29
ssl 42 0.27

static 41 0.26
shop 36 0.23
my 35 0.22

images 35 0.22
TOTAL 12427 79.4

Table 4.1: The ten most frequent subdomain names of secured websites

entries of a certain domain and sending an Asynchronous Full Transfer Zone (AXFR)
request to them. The name servers will answer with all entries of the requested zone
and thus we will also receive A-records which may yield valid website domains. However,
unauthorized zone transfers are disabled by configuration very often for security reasons.

Furthermore, there are tools for brute-forcing subdomain names like SubBrute4 or
dnsmap5. These programs are shipped with large word lists and try to resolve each of the
word list entries as DNS subdomain of an arbitrary base domain. As the enumeration of
a large word list lasts relatively long (over 5 minutes on a laptop running SubBrute with
its standard word list) this method is not suitable for large-scale evaluations.

4.2 Calculating Website Similarity Values

In order to check if a candidate is an HTTP-HTTPS equivalent, i.e. the given HTTP
and HTTPS websites show the same content, we have to measure the similarity of the
pages. As many websites are generated dynamically, it is not sufficient to simply compare
the source codes character by character to determine their equality. Elements like ads,
dynamic hidden tokens, date and time or dynamic reordering of products in a webshop
may change the website’s source code and visual appearance on each and every request.
For that reason it is necessary to utilize algorithms that are tolerant against such minor
differences, though they should distinguish between different pages on the same website
that may have elements like menus and headers in common. Examples for websites
showing dynamically changing content are shown in Figures 4.1 and 4.2. The depicted
websites have been retrieved in two subsequent requests. As one can see, they partially
show the same content like menu and layout whereas some blocks are substituted by
others.

4https://github.com/TheRook/subbrute, retrieved: 2015-02-04
5https://code.google.com/p/dnsmap/, retrieved: 2015-02-04

27

https://github.com/TheRook/subbrute
https://code.google.com/p/dnsmap/

Figure 4.1: Results of two subsequent requests to amazon.de

Since our approach needs to overcome the problems arising from this dynamic behavior,
we summarized currently used methods for similarity matching in Chapter 3 and discuss
their deployment in our approach in the following.

Most of the methods for code similarity matching presented in the survey of Buttler
[16] have been tested. The Tree Edit Distance (TED) is known to have high requirements
in terms of computational power and memory consumption. Nevertheless, we tried to
utilize it for website comparison since there is a working Java implementation. Weighted
Tag Similarity showed the most accurate results in the evaluation of Buttler, though it
is mentioned that it may yield not very accurate results when using it for calculating
similarity of HTML documents. However, this approach has also been evaluated within
this thesis. The proposed path similarity approach [16] has also been adopted and
evaluated. pq-Grams presented by Augsten et al. [4] approximate the TED in a memory
efficient way and requires less computational power. Hence, we tried to utilize pq-Grams
for similarity matching. Furthermore, the fuzzy hashing methods ssdeep [45] and sdhash
[67] have been included in our evaluation. Finally, the idea of utilizing imgSeek proposed
in [38] as well as the application of LIRe suggested in [55] have been adopted and
evaluated as it can be seen in the next chapters.

In addition, we developed a novel approach for website comparison by using the
well-known Levenshtein distance[51]. This metric represents the minimum number of
insertion-, deletion- and substitution operations that are required to transform one string
into another. Unfortunately, it is computationally expensive to calculate the Levenshtein
distance. Its runtime complexity is in O(n ∗m), where n and m are the lengths of the
strings to compare. However, we utilized this algorithm in our software and tested it in
various configurations and with differently preprocessed inputs. The detailed descriptions
of these variations can be seen in Section 5.2. Furthermore, the simple image matching
approach described by Dr. Neal Krawetz in [47] has been implemented and tested for our
purpose. The first step of this algorithm requires shrinking the screenshot of the website

28

Figure 4.2: Results of two subsequent requests to gmx.at

to a size of 8x8 pixels and converting it to greyscale. Then the mean greyscale value of
the shrinked image is calculated and used as threshold. Finally, the 64-bit fingerprint is
calculated by traversing all pixels and appending a binary 1 to the result if the greyscale
value of the currently visited pixel exceeds the threshold, 0 otherwise. Two fingerprints
are compared by calculating their hamming distance [37], i.e. counting the amount of
differing bits of the two hashes.

In the approach proposed in [73] websites with similar layouts are treated as positive
match. Our use case requires distinguishing webpages that may have some elements in
common. Therefore, this approach is not suitable for our purpose. The visual-similarity
approaches presented in [35], [57], [18] and [83] look promising, though there is no source
code publicly available that could be used within our solution. Since implementing them
would mean too much effort we did not evaluate these approaches. The Fast Fourier
Transformation (FFT) approach is, according to Buttler, less accurate than other tested
algorithms in [16] and therefore has not been tested. CANTINA [84] utilizes Term
Frequency-Inverse Document Frequency (TF-IDF) which requires a corpus of documents

29

to work. Since we want to classify websites disregarding their language, implementing
this approach would probably be unrewarding. The Bayesian approach of Leitao et al.
[50] branches out very quickly on larger documents, thus having higher requirements
on processing power and memory. Additionally, there is no working implementation
available. As the effort would probably exceed the benefit, we did not utilize Leitao et
al.’s procedure. The same applies to the algorithms of Broder et al. [15] and Charikar [17]
since we could not find any publicly available implementations. The approach described
in [66] is explained not very accurate, thus reprogramming would possibly yield different
results than stated in the paper and was not done therefore. The fuzzy hashing approach
bbHash [11] has been skipped due to known performance issues. Even its authors did
not evaluate it in a second paper [12] because of its infeasible runtime. The algorithms
presented in [10] and [13] could not be tested, as we were unable to compile the source
code which was initially written on a Microsoft Windows system by using Microsoft Visual
Studio6. Moreover, there is no documentation on how to compile and run the software
on a UNIX based operating system; hence we could not resolve missing dependencies.

Details regarding the implementation of the evaluated approaches can be seen in
Chapter 5.

4.3 HTTPS Everywhere Rule Generation
After the candidates are generated and their similarity values are calculated, rule files
for HTTPS Everywhere can be created. Since there are only the similarity values of
all checked candidates available, the decision if two websites are similar enough to be
considered as HTTP-HTTPS equivalent has to be made at this stage. Therefore, all of
the different matchers have to be evaluated in order to choose the most suitable matchers
and determine their thresholds. The procedure of this evaluation can be seen in Chapter
6.

Each candidate pair that exceeds the thresholds of the chosen matchers will be
incorporated into the rule set. Furthermore, some websites perform automatic redirects
from HTTP to HTTPS. These redirects will also be considered and appropriate rules
are included in the result since it still makes sense that HTTPS Everywhere initiates the
redirect instead of the web-server (see Section 2.2).

Obviously, redirects from HTTPS to HTTP (called downgrade redirects) have to be
ignored and are not included in the rule set.

In the following the structure of HTTPS Everywhere rule files is explained in detail.
Listing 4.1 shows an example for a currently valid rule set-file for the website of the
Vienna University of Technology. The semantics of the different XML tags included
in such files is described at [29] and will be summarized in the following. The root
tag of each rule set file is ruleset that contains a name-attribute and optionally a
default_off-attribute denoting that the contained rules are disabled.

Moreover, a rule set file comprises one or more target-tags each containing one
host-attribute. These define the domains affected by the rules contained in this rule set.

6http://www.visualstudio.com/, retrieved: 2015-02-19

30

http://www.visualstudio.com/

As it can be seen in the provided example, it is possible to use wildcards (*) within the
host-attribute, though only one per attribute is allowed. If the wildcard is on the left of
the domain like in the example (*.tuwien.ac.at), it will match arbitrary long subdomains
like www.zid.tuwien.ac.at.

The optional exclusion-tag has one pattern-attribute that contains a JavaScript
regular expression describing URLs that should be ignored despite the fact that they
may be included in rewriting rules. Such exclusions are helpful when parts of websites
are available via HTTP but not via HTTPS.

Moreover, it is possible to explicitly set the secure flag (see Section 2.2.1) for cookies
provided by a website. This can be done by specifying a securecookie-tag containing
a host- and a name-attribute. The former expresses the hosts that should be affected
by the tag, whereas the latter shows the name of the cookies that should be secured.
Both attributes have to be expressed as regular expressions.

The core functionality of HTTPS Everywhere, namely URL rewriting, is specified by
using the rule-tags. They comprise a from- as well as a to-attribute. When the user
navigates to an URL that is described by a regular expression in a from-attribute, the
extension will rewrite the URL according to the corresponding to-attribute. The second
rule in the given example shows the sequence $1 inside of the to-attribute. This way it is
possible to make URL rewriting more generic as these characters get replaced by the first
bracketed part of the regular expression. In our example the second rule rewrites all of the
given OR-ed subdomains to the same subdomain as $1 gets replaced by the appropriate
subdomain of the original URL. For example: http://ui.zid.tuwien.ac.at/ would get
rewritten to https://ui.zid.tuwien.ac.at/. For a detailed explanation of JavaScript regular
expressions see [21] or [79].

<r u l e s e t name="Vienna Un ive r s i ty o f Technology (p a r t i a l)">
<ta rg e t host="tuwien . ac . at "/>
<ta rg e t host ="∗ . tuwien . ac . at "/>

<exc l u s i on pattern="^http ://www. z id \ . tuwien \ . ac
\ . at / s t s / (? ! campussoftware | s tudentenso f tware)"/>

<se cu r e cook i e host ="^(? :\ . mail \ . student | \ . webmail |www)
\ . tuwien \ . ac \ . at$ " name=".+"/>

<ru l e from="^http : / / (? :www\ .) ? tuwien \ . ac \ . at /"
to="https : //www. tuwien . ac . at /"/>

<ru l e from="^http : / / (mail | pop | mail \ . student | webmail |
(? : u i |www) \ . z id | (? : mail | webstats) \ . z s e rv) \ . tuwien \ . ac \ . at /"
to="https : // $1 . tuwien . ac . at /"/>

</ru l e s e t >

Listing 4.1: Example HTTPS Everywhere rule set-File (comments omitted)

Moreover, rules can be used to downgrade a connection from HTTPS to HTTP. This

31

is sometimes necessary as some websites show broken links when accessed with using
HTTPS Everywhere as the referenced resources are only available via HTTP. In order
to avoid unintentional downgrading from HTTPS to HTTP, the extension does not
allow it without specifying an additional downgrade-attribute within the corresponding
rule-tag.

32

CHAPTER 5
Software Design

Basically, our software comprises four highly decoupled components, namely

• Candidate Generator,

• Candidate Checker,

• Aggregator and

• Rule Generator.

In order to make the software highly scalable, we decided to interconnect the first
three components by using message queueing. This approach allows starting up multiple
Candidate Generators acting as data sources and also various Candidate Checkers acting
as data sinks. These workers read candidates from the candidates queue, process them
and write the results to the results queue. The candidate pairs are published to the queue
within work packages, such that particular candidates can be forced to be processed
by one and the same worker. The results queue is read by the Aggregator that stores
the calculated similarity values of the candidates into the database. Finally, the Rule
Generator creates the rule set for the HTTPS Everywhere extension.

All components can be distributed among different hosts, such that the work load
is balanced between them and performance gets increased. Furthermore, such a loosely
coupled design provides the possibility to exchange single components of the program, so
for example a new Candidate Generator can be implemented in Python and connected
to the rest of the software by simply publishing messages to the corresponding message
queue. The coarse software architecture is depicted in Figure 5.1.

We decided to use Java1 7 for the implementation of the single components and a
RabbitMQ2 3.2.4 server for exchanging messages. To store the results we utilized the

1https://www.java.com/, retrieved: 2015-02-18
2https://www.rabbitmq.com/, retrieved: 2015-02-18

33

https://www.java.com/
https://www.rabbitmq.com/

Figure 5.1: Software Architecture

relational database PostgreSQL3 9.3.6. The rest of the utilized libraries are mentioned in
the sections of the corresponding component that uses them.

As possibly already assumed, the software is not intended to run on the clients using
HTTPS Everywhere, but on a server infrastructure that generates new rules for the users
of the extension.

5.1 Candidate Generator

The Candidate Generator is responsible for creating potential candidates of HTTP-
HTTPS equivalents. Simply put, this component generates pairs like (http://example.com/,
https://secure.example.com/) which could possibly show equal content. However, it does
not check if the generated candidates really have equal content. For the rest of the
document candidate pairs are denoted in the same way like it has been done just before:
(http-url, https-url).

As already mentioned, the candidate pairs are bundled to work packages before
publishing them to the queue. This can be beneficial if it is sufficient to find only
one HTTPS equivalent for one corresponding HTTP-URL. Suppose that the following
two candidates have been generated: (http://example.com/, https://example.com/) and
(http://example.com/, https://secure.example.com/). By sending them bundled, such
that only one worker is charged with the task of processing both related candidates,
it is possible to stop working on this work package when a positive match has been
found. Since it is only possible to have one HTTPS target for every HTTP-URL within
the HTTPS Everywhere rule set, it suffices to have one positive match. Furthermore,
skipping the rest of the candidates means saving time, i.e. if (http://example.com/,
https://example.com/) are equivalent, there will be no need for inspecting all future
candidate pairs that show http://example.com/ as an HTTP-URL as well. If these
would not get bundled, it would be very likely that different Candidate Checkers receive
candidates containing one and the same HTTP-URL and process them without knowledge
about previous similarity calculations.

3http://www.postgresql.org/, retrieved: 2015-02-18

34

http://www.postgresql.org/

In addition to the possibility of skipping candidates if an HTTP-HTTPS equivalent
has been found, the packaging of candidate pairs yields the additional advantage that
the same HTTP-URL potentially occurs multiple times inside of one work package. This
makes caching very effective.

The different chosen approaches for generating candidates are organized within Gener-
ators in our software. The common abstract super-class of the concrete implementations
guarantees maintainability and extensibility. All Generators expect an HTTP-URL as in-
put and return a list of candidate pairs. The following Generators have been implemented:

TestSetGenerator The TestSetGenerator simply returns the candidates that have
been chosen as a training set for determining the accuracy, performance and threshold of
the implemented matchers (see Chapter 6). Hence, this Generator is not designed for the
large-scale evaluation.

FrequentSubdomainsGenerator This Generator bases on the evaluation of fre-
quently used subdomains (see Section 4.1 and Chapter 6) for HTTPS secured websites.
The host-part of the URL is extracted using Java’s URL class and is passed to the Java
implementation of Mozilla’s public suffix list4 in order to get the registered domain. Then
candidates comprising the eight most frequently used subdomains are generated. The
generated candidates for the example input http://example.co.uk/ can be seen in Ta-
ble 5.1. Since there is no subdomain in this case, only seven candidate pairs are generated.

HTTP-URL HTTPS-URL
http://example.co.uk/ https://example.co.uk/
http://example.co.uk/ https://www.example.co.uk/
http://example.co.uk/ https://secure.example.co.uk/
http://example.co.uk/ https://cdn.example.co.uk/
http://example.co.uk/ https://ssl.example.co.uk/
http://example.co.uk/ https://static.example.co.uk/
http://example.co.uk/ https://shop.example.co.uk/

Table 5.1: Candidates generated for http://example.co.uk/

SimpleZoneTransferGenerator The SimpleZoneTransferGenerator tries to per-
form a DNS zone transfer for the supplied host and generates candidate pairs comprising
the initially passed HTTP-URL and HTTPS-URLs assembled from the retrieved DNS
A-records. If unauthorized zone transfers are not enabled on the respective DNS server,
no candidates will be generated. For the implementation of this method, dnsjava 2.1.6 5

has been used to perform the zone transfer.

4https://github.com/whois-server-list/public-suffix-list, retrieved: 2015-03-06
5http://www.dnsjava.org/, retrieved: 2015-02-24

35

https://github.com/whois-server-list/public-suffix-list
http://www.dnsjava.org/

NestedZoneTransferGenerator This Generator is able to invoke other Generators
when a DNS zone transfer succeeded in order to generate even more candidates. It
supplies the retrieved A-records to one or more other Generators, accumulates the results
and returns all generated candidate pairs.

After the candidates for a set of URLs have been generated they are combined to work
packages by grouping them with respect to their HTTP-URLs. Finally, the Candidate
Generator publishes the work packages to the candidates message queue.

5.2 Candidate Checker

The task of calculating similarity values of candidate pairs is taken over by the Candidate
Checker that utilizes visual and/or code similarity techniques. This presumes that some
kind of automated browser is utilized for gathering HTML code and screenshots of the
webpages in question. In our implementation we made use of Selenium6 with Ghost
Driver7 as a WebDriver implementation. Ghost Driver utilizes PhantomJS8 as a backend
which is a headless browser relying on WebKit9.

The software has been designed in a way that the PhantomJS browser can easily be
exchanged by other alternatives. Therefore, a Java interface is utilized that can be used
for integrating other browsers. Moreover, it is not even absolutely necessary to utilize
an automated browser since the abstraction allows deploying arbitrary procedures for
fetching the source code and screenshot of a website.

The Candidate Checker reads work packages from the candidates queue, processes
them and publishes the calculation result to the results queue. In addition to deploying
these workers onto multiple servers, it is possible to start an arbitrary amount of threads.
Each of them processes its own work packages by using its own browser instance. The
limitation for the maximum number of threads accrues from the available computational
power, memory and network bandwidth.

The different approaches that have been selected for calculating the similarities of
websites (see Chapter 4) are organized in so called matchers in our implementation,
having one common interface to make the design modular and extensible. Matchers
that should be used for similarity calculation can be easily added to and removed from
our software. In the following the implementations of the various tested approaches are
described in detail:

FuzzyImageMatcher The FuzzyImageMatcher bases on the approach described
in [47]. For downscaling of the screenshot made by PhantomJS, we utilized the Java
standard scaling method Image.getScaledInstance() with the SCALE_FAST parame-
ter. The actual similarity value is calculated by dividing the hamming distance[37] of
the websites’ fingerprints by the maximum possible hamming distance of 64 (as each

6http://www.seleniumhq.org/, retrieved: 2015-02-24
7https://github.com/detro/ghostdriver, retrieved: 2015-02-24
8http://phantomjs.org/, retrieved: 2015-02-24
9https://www.webkit.org/, retrieved: 2015-02-24

36

http://www.seleniumhq.org/
https://github.com/detro/ghostdriver
http://phantomjs.org/
https://www.webkit.org/

fingerprint is 64 bit long) and subtracting it from 1 (sim = 1− HammingDistance(F P 1,F P 2)
64).

LevenshteinMatcher The first attempt we made to utilize the Levenshtein distance
within a matcher, was a very basic one. It simply took the whole HTML documents and
calculated their distance. The implementation of the Levenshtein distance algorithm has
been taken from [82]. Since the algorithm is not very efficient in terms of runtime, the
calculation lasts relatively long even for websites with small source code sizes. Since the
similarity calculations for only 1,000 websites with an average source code size of 60 KiB
would last about 10 hours, we decided not to use it within the final software. A brief
runtime evaluation is shown in Chapter 6.

LevenshteinCodeMatcher Since the runtime performance of the Levenshtein-
Matcher is poor due to the length of the input string, we reduced the number of
characters by solely considering the structural elements of the HTML documents. As
textual content is stripped out, the size of an HTML file decreases and makes the distance
calculation faster. One problem with this approach is that the length of the name of a
tag and its attributes influence the Levenshtein distance if this tag is missing or permuted
in the second document, as each and every letter of the HTML tag is incorporated. The
solution for this problem additionally improves the performance of this matcher. Each
tag gets an identifier in form of a consecutively numbered integer assigned, disregarding
the attributes contained by the respective tag. This means that e.g. the tags <p> and
<p align=“center”> are tagged with the same number. After all tags are numbered,
a string representing the HTML document is constructed by recording each occurrence
of a tag with its corresponding identifier stored in one character of the string. This
has two positive effects. Firstly, each Levenshtein-operation on one tag is counted only
once disregarding the tag’s string length. Secondly, the length of the input is shortened
further which directly affects the processing time. It should be noted that neither the
attributes of the tags, nor the corresponding end-tags of the elements are considered in
this approach. For the implementation jsoup10 has been used for extracting the HTML
tags out of the full HTML document.

LevenshteinCodeMatcherWithEndTags As already mentioned, the Levenshtein-
CodeMatcher does not consider HTML end-tags in the distance calculation. In order
to measure the impact of end-tags on similarity matching, an additional matcher has
been created that encodes start-tags as well as end-tags into the string containing the
packed HTML structure. In Chapter 6, the two matchers are compared and the impact
of considering end-tags is evaluated.

LevenshteinTextMatcher The counterpart of the LevenshteinCodeMatcher(WithEndTags)
is represented by the LevenshteinTextMatcher that, unlike to the former, solely takes
the text contained in the HTML document into account. Thus, HTML tags are stripped
out and the Levenshtein distance is computed only for the textual elements. Since

10http://jsoup.org/, retrieved: 2015-02-18

37

http://jsoup.org/

websites sometimes comprise much text, the calculation may last relatively long in
comparison with other tested algorithms. The average calculation durations needed
for the candidates in the training set has been evaluated and can be seen in a later chapter.

LevenshteinWordMatcher In order to speed up the LevenshteinTextMatcher we
developed a faster approach that operates on the same data, i.e. the textual content
of a webpage. In principle, this improvement is similar to that deployed at the Leven-
shteinCodeMatcher. Each word in the text gets a numeric identifier assigned that is
used for assembling a new string representing the corresponding HTML document. Since
there is an infinite amount of possible words, it may occur that the same identifiers are
assigned to multiple different words. This possibly seems problematic but since exact
matching is no requirement, it is legitimate in this case. As it can be seen in Chapter 6,
the developed procedure achieves its goal and gives this matcher the desired speed-up.

PathSimilarityMatcher The PathSimilarityMatcher bases on the approach pre-
sented in [16] and traverses the HTML tree by using jsoup in order to construct the
path-strings (see Section 3.3 resp. Listing 3.1). In order to keep the retrieval of the path
strings out of the set of paths fast, we utilized a HashMap.

PQGramMatcher The approach of using pq-Grams [4] for measuring similarity of
HTML trees has been implemented by using jqgram11. It is a nodejs12 implementation
that requires the HTML trees to be in JSON notation. Therefore, an additional file is
assembled dynamically and is taken as input for nodejs. Again jsoup is utilized for the
construction of the HTML tree.

SSDeepMatcher The SSDeepMatcher utilizes the ssdeep [45] algorithm to create
fuzzy hashes of the websites to compare. In particular, a Java port of ssdeep13 has been
deployed to match the whole HTML documents. It computes the fingerprints of both
documents and uses the already described (see Chapter 3) fingerprint comparison method
to compute the similarity of the webpages.

SSDeepCodeMatcher This matcher applies the ssdeep algorithm to the structural
elements of the webpage’s code. In order to solely consider the tags of the HTML docu-
ments and to keep the length of the input for ssdeep short, the tags get encoded as integers
as it is done at the LevenshteinWordMatcher and the LevenshteinCodeMatcher. As at the
latter, HTML end-tags are not considered, thus are not included in the constructed string.

SSDeepImageMatcher The SSDeepImageMatcher utilizes ssdeep to compare the
screenshot images of the possibly equivalent websites. It uses the standard Java imple-

11https://www.npmjs.com/package/jqgram, retrieved: 2015-02-19
12http://nodejs.org/, retrieved: 2015-02-19
13https://github.com/openplanets/bitwiser/blob/master/bitwiser-core/src/

main/java/eu/scape_project/bitwiser/utils/SSDeep.java, retrieved: 2015-02-19

38

https://www.npmjs.com/package/jqgram
http://nodejs.org/
https://github.com/openplanets/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/utils/SSDeep.java
https://github.com/openplanets/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/utils/SSDeep.java

mentation BufferedImage to get the bytes of the image in ARGB format and uses this
array as input for the ssdeep Java port.

SSDeepTextMatcher The counterpart of the SSDeepCodeMatcher is represented
by the SSDeepTextMatcher which solely considers the text of HTML documents. Like the
LevenshteinTextMatcher and the LevenshteinWordMatcher, it utilizes the jsoup library
for stripping out the HTML code.

SDHashMatcher The SDHashMatcher takes the whole HTML document as input
for the sdhash [67] algorithm. Since there is no Java port of sdhash, we execute the
command line tool provided by the algorithm’s inventors and parse its output to retrieve
the similarity values.

TEDMatcher This matcher computes the Tree Edit Distance (TED) of the HTML
trees of the two documents and calculates their similarity by setting the TED value in
relation to the number of HTML elements (= tree nodes) comprised by the document
with the bigger HTML tree. The algorithm used for calculating the TED is the already
mentioned RTED algorithm (see Chapter 3). The Java implementation has been taken
from the website of the algorithm’s inventors14. In order to compose the tree needed as
input for the RTED algorithm, we used the jsoup library once more.

WeightedTagSimilarityMatcher In order to compute the Weighted Tag Similarity
presented by Buttler [16], the number of occurrences of all HTML tags has to be counted.
Again, the jsoup library has been utilized for identifying and counting the different
elements.

After the similarity calculation of an arbitrary selection of one or more different
matchers the results are published to the results queue.

5.3 Aggregator

The Aggregator is used for persisting the results of the similarity calculations made by the
Candidate Checker into a database. We chose to utilize Hibernate15 as an object-relational
mapper and, as already mentioned before, PostgreSQL16 as the corresponding relational
database.

The Aggregator has been introduced in order to keep persisting of the gathered data
simple. The possibly distributed Candidate Checkers will not have to be redeployed if
the database backend or the database scheme changes since the Aggregator is a central
component usually deployed only once.

14http://www.inf.unibz.it/dis/projects/tree-edit-distance/index.php, retrieved:
2015-02-24

15http://hibernate.org/, retrieved: 2015-02-24
16http://www.postgresql.org/, retrieved: 2015-02-24

39

http://www.inf.unibz.it/dis/projects/tree-edit-distance/index.php
http://hibernate.org/
http://www.postgresql.org/

5.4 Rule Generator
The Rule Generator is responsible for creating the rule set for HTTPS Everywhere out
of the gathered data. Therefore, appropriate data sets are fetched from the database
again by using Hibernate. In order not to fetch all available datasets, the thresholds
of the chosen algorithms are already considered in the database query. Each result set
comprises the following fields:

• originalUrl1: HTTP-URL that has been initially requested

• redirectedUrl1: URL that the browser has been redirected to when it tried to
access originalUrl1 or NULL if there was no redirect

• originalUrl2: HTTPS-URL that has been initially requested

• redirectedUrl2: URL that the browser has been redirected to when it tried to
access originalUrl2 or NULL if there was no redirect

• matcher: Name of the matcher that has been used for similarity calculation

• similarity: Computed similarity value

The steps that are taken for generating the rules out of the result sets stored in
the database can be seen in Algorithm 5.1. The output of this algorithm is supplied
to another helper-class that groups all generated rules by the base domain of the URL
stored in the from-attribute. Again, the public suffix list has been utilized to determine
the correct domain. After the grouping operation, rules belonging to the same website are
bundled and can now be stored within one XML rule-file. This storing-task is taken over
by another class (RuleSetWriter) that utilizes StAX Utilities17 for writing the rules to the
disk. Moreover, the RuleSetWriter escapes the from- and to-attributes accordingly, such
that they meet the requirements of both the JavaScript RegExp syntax and, certainly,
the HTTPS Everywhere extension.

5.5 Performance Improvements
As we are gathering data on a large scale, we tried to make some improvements regarding
performance in order to speed up the crawling process.

A cache has been introduced at the Candidate Generator and Candidate Checker
in order not to face the same redirects again and again. As the Candidate Genera-
tor usually produces multiple candidates containing one and the same HTTP-URL,
it is possible that all of them cause the very same redirect when accessed by the
Candidate Checker. For example suppose that the Candidate Generator creates two
candidate pairs (http://example.com/, https://example.com/) and (http://example.com/,
https://www.example.com/). When the Candidate Checker accesses http://example.com/

17https://java.net/projects/stax-utils/pages/Home, retrieved: 2015-03-10

40

https://java.net/projects/stax-utils/pages/Home

Algorithm 5.1: Rule generation
Input: ResultSet[] resultsets
Result: Rule[] ruleset

1 forall the rs in resultsets do
2 Rule r;

// redirect from HTTP to HTTPS occurred?
3 if rs.redirectedUrl1 starts with ’https://’ then
4 r.from := rs.originalUrl1;
5 r.to := rs.redirectedUrl1;
6 ruleset.append(r);
7 continue
8 end

// downgrade redirect from HTTPS to HTTP occurred?
9 if rs.redirectedUrl2 starts with ’http://’ then

10 continue
11 else
12 r.from := rs.originalUrl1;
13 r.to := rs.originalUrl2;
14 ruleset.append(r);
15 if rs.redirectedUrl1 is not NULL then
16 r.from := rs.redirectedUrl1;
17 r.to := rs.originalUrl2;
18 ruleset.append(r);
19 end
20 end
21 end

the first time a redirect to http://example.com/start/ occurs. As this will change very
unlikely during one run, it is stored into the cache in order to access the page the
Candidate Checker will be redirected to directly. Furthermore, domains which refuse
connections to the corresponding ports of HTTP or HTTPS protocol, i.e. unreachable
websites, get also cached in order not to probe the same hosts on open ports again and
again. The same is true for websites that keep the browser in loading state for over one
minute, thus causing a load timeout.

Moreover, an additional check for the currently utilized matcher types has been
introduced in order to fetch the source code solely if there is a matcher that needs the
source code to calculate a similarity value. The same is true for matchers requiring
screenshots.

The introduction of this cache for redirects and unreachable sites resulted in a
considerably large speed-up. With using a test set containing the top 20 of Alexa’s

41

top sites18 and using the FrequentSubdomainGenerator the first run without utilizing a
cache took over 20 minutes. The second run has been done on the same data set with
the cache enabled and it lasted for not even 9 minutes which means an improvement
of nearly 57%. PhantomJS defaults to a configuration that turns the browser cache off.
Enabling this caching-option leaded to an execution time of about 3.5 minutes which
means an additional speed-up of nearly 60%. These measurements have been performed
on a notebook with 4GiB memory and an Intel i5 processor.

The Candidate Generator fetches the URLs of a candidate sequentially. Based on
the preceding example it will load http://example.com/ first and https://example.com/
subsequently. If the FrequentSubdomainGenerator has been utilized for candidate gen-
eration, it is very likely that the next candidate pair also shows http://example.com/
as one of its URLs. Since the browser loaded a different website in between these two
equal requests (namely https://example.com/) it has to load it from its browser cache
and execute all embedded scripts again which produces computational overhead. Hence,
a source code cache has been introduced which stores only a few of the last responses to
avoid this effect.

Another attempt to improve the performance of the Candidate Checker further was
to utilize a hybrid crawler which makes use of both Java’s HttpURLConnection and
the PhantomJS browser. The former is solely used for fetching the source code of a
website, the latter for taking screenshots of a website. This increases the performance
of flexible approaches that do not need screenshots on every website access since the
HttpURLConnection solely requests the HTML code without embedded objects like
JavaScript code and images. Moreover, no website rendering engine gets started, thus
computational and memory requirements decrease. Certainly, this only applies if the
utilized matchers require no screenshot of the crawled webpages, otherwise a rendering
engine is necessary which means a real browser like PhantomJS has to be deployed.

One problem with using only HttpURLConnection for fetching the HTML code is
that this class does not automatically follow redirects from HTTP to HTTPS websites.
However, this can be implemented manually by retrieving the HTTP status code of the
response and considering the Location-header field as the new destination URL. Another,
more problematic, issue is that redirects can be also done by using an HTML meta-tag or
operations on JavaScript’s window.location property. Unfortunately, there is no realistic
possibility to evaluate such expressions without utilizing a HTML and JavaScript engine.
For that reason the hybrid crawler could not be used as a reliable source for HTML code.

Another improvement has been implemented on the overall process by introducing
an additional validation inside of the Candidate Generator. It checks the candidates on
reachability before writing the jobs into the message queue. Hence, it tries to open a
connection to TCP port 80 respectively 443 and immediately closes it after it has been
established. This reduces the work load for the Candidate Checkers as they do not have
to try to connect to unreachable resources which means an additional speed-up of the
overall process. The reachability-check has been implemented in the common super-class

18http://www.alexa.com/, retrieved: 2015-03-12

42

http://www.alexa.com/

of the Generators in order to make this additional functionality available for all currently
available Generators and for future extensions.

43

CHAPTER 6
Evaluation

6.1 Candidate Generation
As described before, the Candidate Generator performs a connect-check of all generated
URLs before it hands them over to the Candidate Checker via the message queue. When
testing many domains the timeout used when connecting to a certain domain has a large
impact on the overall runtime. On the one hand, a long timeout value prolongs the
candidate generation to a large extent. On the other hand, short timeouts could lead to
false negatives, i.e. the server could have been reached but the response took longer than
the configured timeout allowed.

In order to find a suitable connect timeout, we took a random set of 1,000 pages out
of the Alexa’s top million and varied the connect timeout when generating candidates. In
particular, we utilized the FrequentSubdomainGenerator and tried timeouts between one
and ten seconds. Interestingly, the first iteration with a timeout of one second took longer
than the second run with a timeout of two seconds. We found that this paradoxical result
originates from DNS resolution and caching. When a system requests a DNS server to
resolve an address, the client probably caches the result to serve future requests faster. In
order to get rid of this DNS resolving time we made an additional disregarded run on the
same set of domains before running the whole test with different timeouts. The evaluation
of the candidate generation with using different timeouts showed that the overall time
needed to generate candidates linearly increases with the chosen timeout. This behavior
is depicted in Figure 6.1. Moreover, we considered the number of candidates found when
running the tests in order to detect the optimal timeout value that cause a minimum of
missed candidates but still acceptable timeouts. The results depicted in Figure 6.2 show
that the timeout of one second might be too short for some servers to answer since other
tried timeouts yield more candidates. However, higher timeouts do not necessarily mean
higher precision as it can be seen when taking a look at the number of candidates found
when waiting eight or nine seconds for a response. These low values possibly arise from
variations of the internet connection. Therefore, we chose to set the timeout to three

45

Figure 6.1: Overall Duration Figure 6.2: Candidates found

seconds for our large-scale evaluation since this leads to an acceptable runtime and still
accurate results.

6.2 Candidate Checking
In order to find the most accurate and performant matchers we defined a training set of
websites containing negative, similar but negative and positive candidate pairs and made
50 test runs with all implemented matchers. We averaged the results of the similarity
calculations for each candidate pair to be able to compare the matchers’ classification
accuracy and performance. The multiple test runs on the same set of candidates have
been performed in order to get different versions of dynamically generated websites and
thus more realistic conditions. The websites contained in the training set can be seen in
Appendix A. Candidates in the category negative show completely different content in
terms of layout and textual content. Similar but negative candidates share either textual
or layout characteristics. Positive candidates contain websites that should be treated as
HTTP-HTTPS equivalents but may also comprise dynamically generated elements.

Some of the visual similarity algorithms would have been hard to integrate directly
into our software because of missing Java bindings. For that reason we used PhantomJS
(outside of our software) to store screenshots of all websites in our training set and tested
the algorithms manually. In particular, this has been done for imgSeek and LIRe.

Since imgSeek is a stand-alone program, the duration of the calculations could not be
measured as there is only a GUI available for retrieving the similarity values. Though, it
can be said that the performance of imgSeek would be acceptable for our purpose as the
perceived latencies have been very low when performing the manual evaluation.

The library LIRe used in the theoretical approach in [55] for detecting phishing pages
has been tested by using the demo application that is available for download. We tried to
find matches for screenshots of HTTPS websites within the stored set of HTTP screenshots.
Even for websites with not only one dynamic element, e.g. http://en.wikipedia.org/, the
library did not yield any results. After cropping the screenshots to a maximum height of
500 pixels, the demo application found matching images. Unfortunately, it was irrelevant
which image has been used as input, the search results kept the same, thus this library is
not suitable for our purpose and has not been evaluated further.

46

As mentioned before, the LevenshteinMatcher that considers the whole HTML file
has not been evaluated on the training set due to its infeasible runtime. Though, we
measured the runtime on two average-sized webpages. According to a large-scale analysis
of over 480,000 websites performed by HTTP Archive1 the average size of an HTML
document is about 60 KiB. Therefore, we generated two files of that size containing
random characters and numbers (using /dev/urandom and tr) and took it as input for
the LevenshteinMatcher. The distance calculation lasted longer than 37 seconds, hence
far too long for large-scale evaluations.

For the rest of the algorithms, all similarity values calculated in the 50 test runs have
been averaged per matcher and candidate pair. This yields the mean classification value
of a matcher for every website pair in the training set. As for each candidate pair in the
training set it is known if it is a positive or a negative match, it is possible to average
the similarity values of all negative candidate pairs and all positive candidate pairs per
matcher. Hence, these values denote the mean similarities the matchers calculate for
positive and for negative candidate pairs. It is assumed that the broader the distance
between those values is, the better the classification works.

The results of the matcher evaluation can be seen in Table 6.1. The second (AVG
neg) and third column (AVG pos) of the table show the average values the corresponding
matcher produces when checking a candidate pair that is a negative respectively a
positive match. The fourth column (Mean) shows the arithmetic mean between these two
values, i.e. AV G 0 + AV G 1

2 . This value has been chosen as threshold for candidate pair
classification of the corresponding matcher. The fifth column (Distance) is defined as the
difference between AVG 1 and AVG 0 and serves as an indicator for robustness, thus it
is used as selection criterion for the large-scale evaluation. The last column (Duration)
shows the average time needed to calculate a similarity value of two webpages. The table
is sorted by our main selection criterion for matchers, i.e. the distance. As it can be
seen, the LevenshteinWordMatcher achieves the highest score in our evaluation followed
by the LevenshteinTextMatcher and the PathSimilarityMatcher. The calculations of the
SSDeepImageMatcher take an average of over 16 seconds for a single calculation which is
infeasible for large-scale evaluations.

It makes sense not to use only one matcher for classification since either the semantic
text or the structural elements would be ignored. We did not choose the two matchers
with the highest scores, namely the LevenshteinWordMatcher in combination with the
LevenshteinTextMatcher as both solely consider textual content. Hence, we selected a
combination of the LevenshteinWordMatcher and the PathSimilarityMatcher for the
large-scale evaluation since it is assumed that this yields the most accurate and robust
results since both textual and structural elements will be considered. Moreover, the
average duration of the LevenshteinTextMatcher shows a relatively high value giving
another reason not to utilize this matcher.

Table 6.2 depicts a more precise breakdown of the test runs. The minimum, maximum
and average calculated similarity values are shown for each category of the training set.
When taking a look to the category positive it can be seen that the WeightedTagSimilarity-

1http://httparchive.org/trends.php, retrieved: 2014-11-21

47

http://httparchive.org/trends.php

Matcher AVG
neg

AVG
pos

Mean
(Threshold) Distance AVG

Duration
LevenshteinWord 0.09 0.90 0.49 0.81 151
LevenshteinText 0.22 0.91 0.57 0.68 3358
PathSimilarity 0.37 0.99 0.68 0.62 48
LevenshteinCode 0.40 0.95 0.67 0.55 205
LevenshteinCodeWET 0.43 0.95 0.69 0.53 1577
SSDeepCode 0.32 0.80 0.56 0.48 118
SSDeepText 0.29 0.77 0.53 0.48 60
PQGram 0.06 0.50 0.28 0.43 291
SDHash 0.30 0.73 0.52 0.42 561
WeightedTagSimilarity 0.57 0.99 0.78 0.42 32
SSDeepImage 0.27 0.66 0.47 0.39 16399
imgSeek 0.07 0.40 0.23 0.34 -
SSDeep 0.26 0.59 0.42 0.33 70
FuzzyImage 0.66 0.91 0.78 0.25 247

Table 6.1: Results of the matcher evaluation

Matcher ’s average similarity value for positive candidates is, as well as the minimum, very
high, thus having only little variations when encountering a HTTP-HTTPS equivalent.
However, the calculations for similar but negative candidates vary between 0.02 and
0.98 reducing the robustness of this algorithm. Generally, most of the matchers show
high variations for candidates in this category. The best values could be achieved by
the LevenshteinWordMatcher which calculations vary between 0.02 and 0.38. The same
matcher also shows very promising results in the category containing negative candidate
pairs as well as the PQGramMatcher that achieved equal values.

In Figure 6.3 the calculated similarity values for the websites in the training set are
depicted as bar charts for some selected matchers. The chart of the LevenshteinWord-
Matcher (see Figure 6.3a) shows some noticeable features. Firstly, the bars representing
the positive category do not overlap with the bars of the other two categories, thus the
threshold may be set within a certain range such that there is not a single wrong classifica-
tion in the training set. The previously chosen threshold of the LevenshteinWordMatcher
is within this range (see Table 6.3). Furthermore, it can be seen that all candidates of
the negative category got minimal similarity values since they all are included in the
first bin. The LevenshteinTextMatcher (see Figure 6.3b) shows almost as good results.
Solely one bin of the similar but negative category overlaps with one bar of the positive
candidate pairs. On closer inspection it turned out that this is caused by a candidate pair
containing websites that both show the same legal text. The PathSimilarityMatcher (see
Figure 6.3c) is able to distinguish candidates of the positive and negative categories very
well but has difficulties with the similar but negative category. The algorithm calculated
very high similarity values for some candidate pairs belonging to this group. The fourth

48

Matcher positive similar but neg. negative
min max avg min max avg min max avg

LevenshteinWord 0.60 1.00 0.90 0.02 0.38 0.14 0.00 0.02 0.01
LevenshteinText 0.67 1.00 0.91 0.13 0.76 0.31 0.04 0.22 0.09
PathSimilarity 0.81 1.00 0.99 0.01 0.96 0.57 0.01 0.11 0.04
LevenshteinCode 0.50 1.00 0.95 0.02 0.88 0.54 0.08 0.42 0.18
LevenshteinCodeWET 0.50 1.00 0.95 0.02 0.89 0.57 0.09 0.48 0.21
SSDeepCode 0.40 1.00 0.80 0.00 0.83 0.48 0.00 0.99 0.08
SSDeepText 0.44 1.00 0.77 0.00 0.60 0.42 0.00 0.54 0.08
PQGram 0.03 1.00 0.50 0.00 0.63 0.10 0.00 0.02 0.01
SDHash 0.51 1.00 0.73 0.07 0.84 0.41 0.00 0.75 0.14
WeightedTagSimilarity 0.93 1.00 0.99 0.02 0.98 0.73 0.17 0.62 0.32
SSDeepImage 0.38 1.00 0.66 0.00 0.55 0.39 0.00 0.54 0.09
SSDeep 0.08 1.00 0.59 0.00 0.72 0.32 0.00 0.54 0.16
FuzzyImage 0.66 1.00 0.91 0.11 1.00 0.72 0.25 0.77 0.56

Table 6.2: Results of the matcher evaluation per training set category

depicted matcher (see Figure 6.3d) shows rather poor results since sometimes even bars
of all three categories overlap. Therefore, the FuzzyImageMatcher is not suitable for
providing reliable similarity matching for websites.

After we determined the threshold for each matcher by using the described method,
we re-evaluated the data gathered while performing the test run on the training set
and calculated the true/false positive (TP/FP) and true/false negative (TN/FN) values.
With using these values, we computed precision and recall for each matcher which can
be seen in Table 6.3. Furthermore, the percentage of correctly classified candidates is
shown. Most of the matchers show a high recall score, thus the majority of the positive
candidate pairs are also classified as positive matches. However, precision varies widely
among the different matchers. As it can be seen, the LevenshteinWordMatcher classifies
all of the candidate pairs in the training set correctly when using the calculated threshold.
The LevenshteinCodeMatcher and the LevenshteinCodeMatcherWithEndTags comprise
equivalent accuracy while the latter shows over seven times higher time consumption
compared to the former (see Table 6.1). This suggests that considering HTML end-tags
is not crucial for similarity matching based on structural elements.

49

Similarity

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Positive
Similar but negative
Negative

(a) LevenshteinWordMatcher

Similarity

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Positive
Similar but negative
Negative

(b) LevenshteinTextMatcher

Similarity

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Positive
Similar but negative
Negative

(c) PathSimilarityMatcher

Similarity

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Positive
Similar but negative
Negative

(d) FuzzyImageMatcher

Figure 6.3: Similarity calculation results

50

Matcher classified correctly precision recall
LevenshteinWord 1.00 1.00 1.00
LevenshteinText 0.95 0.84 1.00
PathSimilarity 0.78 0.56 1.00
LevenshteinCode 0.78 0.63 0.99
LevenshteinCodeWithEndTags 0.78 0.63 0.99
SSDeepCode 0.70 0.48 0.76
SSDeepText 0.83 0.82 0.93
PQGram 0.85 0.77 0.65
SDHash 0.79 0.78 0.99
WeightedTagSimilartiy 0.69 0.56 1.00
SSDeepImage 0.67 0.52 0.90
SSDeep 0.71 0.50 0.86
FuzzyImage 0.74 0.52 0.87

Table 6.3: Analysis of precision and recall

51

CHAPTER 7
Large-Scale Evaluation and

Results

For the large-scale evaluation we chose to use Alexa’s top million websites1 (downloaded
on 2014-11-13) as input for the Candidate Generator. This list is created by evaluating
data that originate from over 25,000 different browser extensions [3] delivering data to
Alexa. The rank of a website is determined by the estimated number of daily unique
visitors and the estimated page visits of the past three months. However, it is stated [2]
that websites with a rank beyond 100,000 are statistically not meaningful because of a
lack of received data. Moreover, the list does not embrace subdomains of websites unless
it is known that personal user pages (e.g. blogs) are hosted there [2].

In order to get an insight into the different TLDs occurring in the list we implemented
a Python script and parsed the entries by using the package publicsuffix. The ten most
frequent TLDs occurring in the Alexa top million list are stated in Table 7.1. As it can be
seen, over 60% of the contained websites are hosted on the country independent .com-,
.net- and .org domains. The most frequently occurring ccTLDs are .ru followed by
.de.

The crawl has been performed using four distinct servers. Five instances of the
Candidate Generator ran on an Amazon EC2 T2 micro instance2. Further three servers
have been provided by SBA-Research and served as Candidate Checkers, whereby two of
them ran five worker threads each and the remaining one ran 15. One of them additionally
hosted the RabbitMQ server and the PostgreSQL server. Hence, the Aggregator, that
accesses both of them, has also been deployed on that host.

After the first crawl of Alexa’s top million pages it turned out that our software only
considered about 706,000 distinct websites. The dropout of nearly 300,000 websites could

1Daily updated list of top million websites: http://s3.amazonaws.com/alexa-static/
top-1m.csv.zip, retrieved: 2015-03-25

2https://aws.amazon.com/ec2/instance-types/, retrieved: 2015-03-13

53

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://aws.amazon.com/ec2/instance-types/

TLD Amount %
.com 516927 51.7
.net 51912 5.2
.ru 42020 4.2
.org 41382 4.1
.de 27111 2.7
.jp 19362 1.9
.br 18984 1.9
.uk 17086 1.7
.in 15577 1.6
.pl 13544 1.4

Table 7.1: Most frequently occurring TLDs in Alexa list

have two reasons. Either the websites do not have an HTTPS equivalent with a valid
certificate or the website is even unreachable via HTTP. In order to make sure we missed
no webpages, we restarted the software with all unconsidered pages as input and with
an extended connect timeout value of ten seconds instead of three. As a result of this
re-run, an additional amount of 3,591 websites have been checked resulting in further
2,555 single rules.

The results of the crawl including the re-run allowed the generation of 128,539 rule
files that contain 189,676 single rewriting rules for 181,689 different domains. Figure 7.1
shows the amount of input-domains that allowed the generation of at least one rule with
respect to the rank in the Alexa list. That means that e.g. at least 19,256 of the websites
with a rank lower than 100,000 do support HTTPS.

Figure 7.2 shows the calculated similarity values of both chosen matchers in the form
of histograms.

Additionally, we evaluated the number of automatic redirects to HTTPS that occurred
during the large-scale crawl. In total there were 53,382 automatic redirects. The ten
subdomains that have been most frequently target of redirects to HTTPS can be seen in
Table 7.2. Moreover, we evaluated the number of automatic redirects with respect to the
corresponding Alexa rank. The results can be seen in Figure 7.3. Table 7.3 shows the
same data with regard to the TLDs. In particular, we evaluated the TLDs of websites
that provided automatic redirects as well as the TLDs of all generated rules. The ten
TLDs which contained the most websites that allowed the generation of at least one
rule are listed. The relative number in the table shows the number of input-domains
of the Alexa list in relation to the corresponding absolute amount (e.g. 6.08% of the
.com-domains included in the Alexa top million list performed an automatic redirect).

All of these results will be discussed in the next chapter.

54

Alexa Rank

D
om

ai
ns

 th
at

 a
llo

w
ed

 g
en

er
at

io
n

of
 r

ul
es

0 200000 400000 600000 800000 1000000

0
50

00
10

00
0

15
00

0
20

00
0

19256

17063

14937

13796
13216

12580
12093

11573
11084

10679

Figure 7.1: Number of generated rules

Similarity

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8 Threshold

(a) LevenshteinWordMatcher

Similarity

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8 Threshold

(b) PathSimilarityMatcher

Figure 7.2: Calculated similarity values

55

Subdomain Amount %
www. 31828 59.6
no subdomain 15789 29.6
accounts. 309 0.6
bankingportal. 168 0.3
secure. 164 0.3
account. 129 0.2
login. 95 0.2
portal. 82 0.2
ssl0. 78 0.1
banking. 73 0.1

Table 7.2: Automatic redirect evaluation

Alexa Rank

W
eb

si
te

s
w

ith
 a

ut
om

at
ic

 r
ed

ire
ct

s
to

 H
T

T
P

S

0 200000 400000 600000 800000 1000000

0
20

00
40

00
60

00
80

00

7011
6713

5953
5665

4961 4843 4775 4656
4471 4334

Figure 7.3: Number of automatic redirects to HTTPS

56

Automatic Redirects Overall Results
TLD Absolute Relative (%) Absolute Relative (%)
com 31323 6.08 79284 15.39
org 2647 6.39 6672 16.10
de 2483 9.14 5794 21.32
net 1827 3.5 5399 10.35
co.uk 957 6.46 2986 20.15
com.au 597 7.79 1873 24.45

jp 526 4.69 1728 15.42
com.br 579 3.62 1727 10.79

ru 583 1.39 1672 3.99
nl 867 10.48 1602 19.36

Table 7.3: Results listed per TLD

57

CHAPTER 8
Discussion

As it can be seen in Figure 7.1 a higher amount of websites with low ranks in the Alexa
list allowed the generation of rules than websites with higher ranks. These results suggest
the assumption that well-known websites support HTTPS more likely than fameless ones.

Figure 7.2 shows that the classification of candidates has been clear most of the
time since there are only a few calculated similarities near the threshold. Especially
the LevenshteinWordMatcher calculated similarities either under 0.05 or over 0.95 for
over 90% of all inspected candidates, thus making clear decisions in most of the cases.
The PathSimilarityMatcher also performed very well and classified nearly 80% of the
candidate pairs into the before mentioned intervals.

The subdomains that are target of redirects very often stated in Table 7.2 show that
automatic redirects target either the www.-subdomain or no subdomain in nearly 90%
of the cases. Both of these subdomains have been used for generating candidates since
they also occurred in the ten most frequently used subdomains in the current HTTPS
Everywhere rule set (see Table 4.1). Additionally, the fifth most frequent subdomain
secure. has also been used for candidate generation. The subdomains bankingportal.
and ssl0. appeared to be very special, thus we took a closer look on the underlying
data. bankingportal. turned out to be the standard secure subdomain of many different
German Sparkassen-websites. The multiple occurrences of the subdomain ssl0. arised
from websites probably possessed by the webhoster OVH 1 all redirect to the same domain.

As it can be seen in Table 7.3, the number of websites performing automatic redirects
to HTTPS sinks with increasing Alexa rank. Therefore, more popular webpages provide
this security-increasing mechanism more likely than fameless ones.

Table 7.3 shows that the most rules could be generated for websites in the .com-TLD.
The same applies to the number of automatic redirects. Since .com-domains form the
majority of the Alexa list, i.e. the input for candidate generation, this could have been
expected. However, the relative numbers show that there are TLDs that comprise a higher

1https://www.ovh.co.uk/, retrieved: 2015-04-13

59

https://www.ovh.co.uk/

percentage of domains that perform automatic redirects to HTTPS, like the .nl-TLD
whose websites redirect in over 10% of the cases. The .ru-TLD brings up the rear in
both shown categories with only less than 2% of automatic redirects and fewer than 4%
of websites that allowed the generation of rules. The highest percentages of the latter
category could be reached by the .com.au- and .de-TLDs with nearly 25% respectively
about 21%.

There are also TLDs which allowed the generation of rules for 100% of the domains,
like .td, .tg and .tr, but since there is only one domain for each of these TLDs in the
Alexa list we do not discuss these corner cases.

We are currently in conversation with the responsible persons of the HTTPS Every-
where extension in order to integrate the generated rules into the public rule repository.

In order to assess the overall classification accuracy we chose a random set of 100
candidates and inspected them manually. We browsed both URLs of each candidate
and evaluated if it is a positive or negative match. In this way we could determine the
number of true/false positives (TP/FP) and true/false negatives (TN/FN). These results
can be seen in Table 8.1. The cells highlighted in green show combinations that led to a
correct classification, whereas cells highlighted in red show the number of misclassified
candidates. 95% of the candidates in the sample have been classified correctly. The
remaining five percent have been classified false positive by both matchers. One single
candidate has been correctly identified as positive match by the LevenshteinWordMatcher
but as negative match by the PathSimilarityMatcher.

PSM
TP TN FP FN

LW
M

TP 54 - - 0
TN - 40 1 -
FP - 0 5 -
FN 0 - - 0

Table 8.1: Random sample of 100 candidates out of all results

There are 50 candidates that got similarity values close (+/- 0.05) to the thresholds
of both of the corresponding Matchers. These results have also been inspected manually
in order to determine TP/TN/FP/FN rates again. We needed to exclude three of the
candidates since one of them was not reachable anymore and other two have been double
checked by the software, thus were duplicates in the database. The results can be seen in
Table 8.2. To sum up, it can be said that over 70% of the candidates that are border
cases have been classified correctly.

When solely considering the results of the LevenshteinWordMatcher it can be seen
that it performs better than the PathSimilarityMatcher. It classified about 70% of the
checked candidates correctly whereas the PathSimilarityMatcher handled only about
49% correctly.

In the following, the before mentioned introduction of the cache (see Section 5.5) and
problems that occurred while implementing the software are discussed.

60

PSM
TP TN FP FN

LW
M

TP 7 - - 4
TN - 10 12 -
FP - 4 3 -
FN 2 - - 5

Table 8.2: Sample of candidates with similarities near the thresholds

The large speed-up of the Candidate Checker achieved by the utilization of a cache can
be explained by the avoidance of accessing websites which cause a load timeout multiple
times. As there are websites causing load timeouts the impact of using a cache can get
very high since multiple accesses to such pages are avoided. Moreover, the overall system
is designed in a way that makes the impact of the cache even higher. The Candidate
Checker requests the HTTP webpage of the candidate pair first and the HTTPS site
afterwards. Mostly there are multiple candidate pairs showing the same HTTP website,
but different HTTPS websites. Therefore, the HTTP website gets requested multiple
times, but the browser has to reload it every time since there has been a different site
loaded in between, i.e. the corresponding HTTPS websites.

Furthermore, we encountered some issues with Selenium that made the development
and data acquisition more difficult. One problem was that there is no interface to check
if a redirect occurred when accessing an URL. Therefore, the URL is manually tested for
change after a website was accessed. Obviously, it would be more convenient to have a
callback method within Selenium for such cases. Additionally, there is no possibility to
check the validity of a website’s certificate. There are options to allow or deny access to
websites with invalid certificates, but no interface for requesting information about it.
Therefore, we could not gather any data about how many websites would provide a TLS
connection, but do not show a valid certificate.

Moreover, the stability of Selenium respectively PhantomJS caused some problems
since the Java process sometimes loses connection to the PhantomJS instance. In this
case, a new PhantomJS browser is instantiated and the Candidate Checker continues
to process work packages. Unfortunately, the PhantomJS process does not terminate
when losing connection to the Java process and keeps running. As memory would run
full after time due to the unused PhantomJS instances, we implemented a watchdog that
kills these orphan processes periodically.

8.1 Limitations

In order to perform the evaluation in acceptable time, the Alexa top million websites
have been used as they are and no variations of the domains have been tried. Since
some websites might are accessible on a subdomain that is not included in the list (e.g.
http://google.com/ is in the Alexa list, but http://www.google.com/ is not), there could

61

have possibly been additional rules generated if the subdomain of the input websites
would have been varied.

Furthermore, the content of linked JavaScript and CSS files is not considered. Hence,
different versions of the scripts could be utilized without being detected by our software.
Therefore, it is possible that websites get modified by scripts depending on the used
protocol resulting in two entirely different webpages comprising the same HTML source
code. However, since there is no use case for such behavior, it is very unlikely that
legitimate websites act in that way.

Another problem is that Selenium does not provide any possibility to check the
response code delivered by the HTTP server. Therefore, the software tries to match
error pages as well. Obviously, the similarity will be very high when comparing two
equal error-pages with each other resulting in a rule for a website that is not available
at all. The approach to probe the response code manually by using the standard Java
HttpURLConnection also failed due to the fact that some websites perform redirects by
using meta tags on their error pages although there are dedicated response codes for
redirections (see Section 2.2).

8.2 Future Work
Currently the software solely calculates a similarity value for the landing page of a website.
In order to make sure the whole website supports HTTPS it could be a desirable goal
to parse the landing page for further URLs pointing at the same domain and compare
their HTTP and HTTPS versions as well. This would make it possible to find exclusion
patterns making the rule set more accurate.

Moreover, the generation of candidates could be improved by using the repository of
the ZMap Team2. It contains port scans of every IPv4 address on the internet gathered
with their tool ZMap [28]. The scan results could be used for finding hosts that provide
both HTTP and HTTPS servers. Since the corresponding domain names have to be
known in order to perform a correct HTTP request, they have to be found in some way.
One opportunity is to use reverse DNS to resolve the IP addresses to domain names.
However, not every IP has a corresponding PTR-record thus this method is not very
reliable. Another possibility is given by inspecting certificates that are provided by the
HTTPS servers. They contain the corresponding domain name they are issued for and
are also available in the repository of the ZMap Team.

2https://scans.io/, retrieved: 2015-03-16

62

https://scans.io/

CHAPTER 9
Conclusion

In this work we evaluated the current rule set of the HTTPS Everywhere extension and
extracted the most frequently used subdomains for HTTPS secured websites. Most of the
rewriting rules redirect to the base domain, the www subdomain and the same subdomain
the HTTP URL showed. Furthermore, we evaluated 15 different methods for measuring
the similarity of websites. We found that the best matchers for websites were the
LevenshteinWordMatcher, the LevenshteinTextMatcher and the PathSimilarityMatcher
since they had the largest distance between their mean classification for positive and
negative matches. In total we generated about 190,000 single rules for nearly 129,000
different domains and are in the process of submitting them to the public HTTPS
Everywhere rule set.

63

Appendix A - Training Set

Website A Website B

P
os
it
iv
e

http://www.gmx.at/ https://www.gmx.at/
http://www.youtube.com/ https://www.youtube.com/
http://www.amazon.de/ https://www.amazon.de/
http://www.amazon.co.jp/ https://www.amazon.co.jp/
http://en.wikipedia.org/wiki/
Main_Page

https://en.wikipedia.org/wiki/
Main_Page

Si
m
ila

r
bu

t
ne

ga
ti
ve

http://members.chello.
at/wienerrettung/m70/
Vorschriften/SanG.htm

https://www.ris.bka.gv.at/
GeltendeFassung.wxe?Abfrage=
Bundesnormen&Gesetzesnummer=
20001744&ShowPrintPreview=True

https://github.com/
openpreserve/bitwiser/blob/
master/bitwiser-core/src/
main/java/eu/scape_project/
bitwiser/utils/SSDeep.java

https://github.com/
openpreserve/bitwiser/blob/
master/bitwiser-core/src/
main/java/eu/scape_project/
bitwiser/BitwiseAnalyser.java

https://www.google.at/?gws_rd=
ssl#q=a

https://www.google.at/?gws_rd=
ssl#q=b

http://en.wikipedia.org/wiki/
Fuzzy_logic

http://en.wikipedia.org/wiki/
Fuzzy_set

http://www.amazon.co.jp/ https://www.amazon.de/
http://www.amazon.com/ https://www.amazon.co.jp/
http://www.amazon.com/ https://www.amazon.de/
http://www.amazon.com/
Instant-Video/b/ref=nav_
shopall_aiv?ie=UTF8&node=
2858778011

https://www.amazon.de/
Instant-Video/b/ref=nav_
shopall_aiv?ie=UTF8&node=
3010075031

N
eg
at
iv
e http://www.amazon.com/ https://www.youtube.com/

http://www.asdf.com/ https://scholar.google.at/
http://www.gmx.at/ https://www.facebook.com/
http://en.wikipedia.org/wiki/
Main_Page

https://www.google.com/

http://derstandard.at/ https://translate.google.at/

65

http://www.gmx.at/
https://www.gmx.at/
http://www.youtube.com/
https://www.youtube.com/
http://www.amazon.de/
https://www.amazon.de/
http://www.amazon.co.jp/
https://www.amazon.co.jp/
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Main_Page
http://members.chello.at/wienerrettung/m70/Vorschriften/SanG.htm
http://members.chello.at/wienerrettung/m70/Vorschriften/SanG.htm
http://members.chello.at/wienerrettung/m70/Vorschriften/SanG.htm
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20001744&ShowPrintPreview=True
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20001744&ShowPrintPreview=True
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20001744&ShowPrintPreview=True
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20001744&ShowPrintPreview=True
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/utils/SSDeep.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/utils/SSDeep.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/utils/SSDeep.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/utils/SSDeep.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/utils/SSDeep.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/BitwiseAnalyser.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/BitwiseAnalyser.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/BitwiseAnalyser.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/BitwiseAnalyser.java
https://github.com/openpreserve/bitwiser/blob/master/bitwiser-core/src/main/java/eu/scape_project/bitwiser/BitwiseAnalyser.java
https://www.google.at/?gws_rd=ssl#q=a
https://www.google.at/?gws_rd=ssl#q=a
https://www.google.at/?gws_rd=ssl#q=b
https://www.google.at/?gws_rd=ssl#q=b
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Fuzzy_set
http://en.wikipedia.org/wiki/Fuzzy_set
http://www.amazon.co.jp/
https://www.amazon.de/
http://www.amazon.com/
https://www.amazon.co.jp/
http://www.amazon.com/
https://www.amazon.de/
http://www.amazon.com/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=2858778011
http://www.amazon.com/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=2858778011
http://www.amazon.com/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=2858778011
http://www.amazon.com/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=2858778011
https://www.amazon.de/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=3010075031
https://www.amazon.de/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=3010075031
https://www.amazon.de/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=3010075031
https://www.amazon.de/Instant-Video/b/ref=nav_shopall_aiv?ie=UTF8&node=3010075031
http://www.amazon.com/
https://www.youtube.com/
http://www.asdf.com/
https://scholar.google.at/
http://www.gmx.at/
https://www.facebook.com/
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
https://www.google.com/
http://derstandard.at/
https://translate.google.at/

Bibliography

[1] W. Alcorn, C. Frichot, and M. Orrù. The Browser Hacker’s Handbook. John Wiley
and Sons Inc., 2014.

[2] Alexa. How are Alexa’s traffic rankings determined?
https://support.alexa.com/hc/en-us/articles/
200449744-How-are-Alexa-s-traffic-rankings-determined-, re-
trieved 2015-04-10.

[3] Alexa. Information. Insight. Advantage. http://www.alexa.com/about, re-
trieved 2015-04-09.

[4] N. Augsten, M. Böhlen, and J. Gamper. Approximate Matching of Hierarchical
Data Using Pq-grams. In Proceedings of the 31st International Conference on Very
Large Data Bases, VLDB ’05, pages 301–312. VLDB Endowment, 2005.

[5] A. Barth. HTTP State Management Mechanism, Apr. 2011. http://tools.ietf.
org/html/rfc6265, retrieved: 2014-12-12.

[6] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Proto-
col version 2 (draft), July 2014. https://tools.ietf.org/html/
draft-ietf-httpbis-http2-14, retrieved: 2014-12-11.

[7] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0, May 1996. http://tools.ietf.org/html/rfc1945, retrieved:
2014-12-11.

[8] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun.
ACM, 13(7):422–426, July 1970.

[9] I. A. Board. IAB Statement on Internet Confidentiality, 2014. https://www.iab.
org/2014/11/14/iab-statement-on-internet-confidentiality/, re-
trieved: 2015-01-08.

[10] F. Breitinger, K. Astebø l, H. Baier, and C. Busch. mvHash-B - A New Approach
for Similarity Preserving Hashing. In IT Security Incident Management and IT
Forensics (IMF), 2013 Seventh International Conference on, pages 33–44, Mar. 2013.

67

https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined-
https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined-
http://www.alexa.com/about
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/draft-ietf-httpbis-http2-14
https://tools.ietf.org/html/draft-ietf-httpbis-http2-14
http://tools.ietf.org/html/rfc1945
https://www.iab.org/2014/11/14/iab-statement-on-internet-confidentiality/
https://www.iab.org/2014/11/14/iab-statement-on-internet-confidentiality/

[11] F. Breitinger and H. Baier. A Fuzzy Hashing Approach based on Random Sequences
and Hamming Distance. 7th annual Conference on Digital Forensics, Security and
Law (ADFSL), pages 89–101, May 2012.

[12] F. Breitinger and H. Baier. Similarity Preserving Hashing: Eligible Properties
and a New Algorithm MRSH-v2. In M. Rogers and K. Seigfried-Spellar, editors,
Digital Forensics and Cyber Crime, volume 114 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pages
167–182. Springer Berlin Heidelberg, 2013.

[13] F. Breitinger, G. Ziroff, S. Lange, and H. Baier. Similarity Hashing Based on
Levenshtein Distances. In G. Peterson and S. Shenoi, editors, Advances in Digital
Forensics X, volume 433 of IFIP Advances in Information and Communication
Technology, pages 133–147. Springer Berlin Heidelberg, 2014.

[14] A. Z. Broder. Identifying and Filtering Near-Duplicate Documents. In Proceedings
of the 11th Annual Symposium on Combinatorial Pattern Matching, COM ’00, pages
1–10, London, UK, UK, 2000. Springer-Verlag.

[15] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic Clustering
of the Web. In Selected Papers from the Sixth International Conference on World
Wide Web, pages 1157–1166, Essex, UK, 1997. Elsevier Science Publishers Ltd.

[16] D. Buttler. A Short Survey of Document Structure Similarity Algorithms. In
International Conference on Internet Computing, pages 3–9. CSREA Press, 2004.

[17] M. S. Charikar. Similarity Estimation Techniques from Rounding Algorithms. In
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,
STOC ’02, pages 380–388, New York, NY, USA, 2002. ACM.

[18] K.-T. Chen, J.-Y. Chen, C.-R. Huang, and C.-S. Chen. Fighting Phishing with
Discriminative Keypoint Features. Internet Computing, IEEE, 13(3):56–63, May
2009.

[19] M. Chew. Firefox 32 supports Public Key Pinning, Aug.
2014. http://monica-at-mozilla.blogspot.de/2014/08/
firefox-32-supports-public-key-pinning.html, retrieved 2015-03-25.

[20] S. Cobb. New Harris poll shows NSA revelations impact online shopping, banking,
and more, Apr. 2014. http://www.welivesecurity.com/2014/04/02/
harris-poll-nsa-revelations-impact-online-shopping-banking/,
retrieved: 2015-03-02.

[21] M. Corporation. Regular Expressions, Feb. 2015. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions, re-
trieved: 2015-02-09.

68

http://monica-at-mozilla.blogspot.de/2014/08/firefox-32-supports-public-key-pinning.html
http://monica-at-mozilla.blogspot.de/2014/08/firefox-32-supports-public-key-pinning.html
http://www.welivesecurity.com/2014/04/02/harris-poll-nsa-revelations-impact-online-shopping-banking/
http://www.welivesecurity.com/2014/04/02/harris-poll-nsa-revelations-impact-online-shopping-banking/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

[22] R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing Works. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06, pages
581–590, New York, NY, USA, 2006. ACM.

[23] T. Dierks and C. Allen. The TLS Protocol Version 1.0, Jan. 1999. https://www.
ietf.org/rfc/rfc2246.txt, retrieved: 2015-02-10.

[24] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1,
Apr. 2006. https://tools.ietf.org/html/rfc4346, retrieved: 2015-02-10.

[25] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2,
Aug. 2008. https://tools.ietf.org/html/rfc5246, retrieved: 2015-02-10.

[26] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3, Apr. 2014. https://tools.ietf.org/html/
draft-ietf-tls-rfc5246-bis-00, retrieved: 2014-11-27.

[27] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-generation Onion
Router. In Proceedings of the 13th Conference on USENIX Security Symposium -
Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[28] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-wide
Scanning and Its Security Applications. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13), pages 605–620, Washington, D.C., 2013.
USENIX.

[29] EFF. HTTPS Everywhere Rulesets. https://www.eff.org/de/
https-everywhere/rulesets, retrieved: 2015-02-09.

[30] K. S. Enforcer. FAQ. https://code.google.com/p/kbsslenforcer/wiki/
FAQ, retrieved: 2015-02-10.

[31] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1, June 1999. http://tools.ietf.
org/html/rfc2616, retrieved: 2014-12-11.

[32] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Detecting Structural
Similarities between XML Documents. In Proceedings of the 5th International
Workshop on the Web and Databases, WebDB ’02, 2002.

[33] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Fast detection of
XML structural similarity. Knowledge and Data Engineering, IEEE Transactions
on, 17(2):160–175, Feb. 2005.

[34] Fox-IT. DigiNotar Certificate Authority breach "Operation
Black Tulip", Sept. 2011. http://www.rijksoverheid.
nl/bestanden/documenten-en-publicaties/rapporten/

69

https://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/draft-ietf-tls-rfc5246-bis-00
https://tools.ietf.org/html/draft-ietf-tls-rfc5246-bis-00
https://www.eff.org/de/https-everywhere/rulesets
https://www.eff.org/de/https-everywhere/rulesets
https://code.google.com/p/kbsslenforcer/wiki/FAQ
https://code.google.com/p/kbsslenforcer/wiki/FAQ
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf

2011/09/05/diginotar-public-report-version-1/
rapport-fox-it-operation-black-tulip-v1-0.pdf, retrieved: 2015-03-
02.

[35] A. Fu, L. Wenyin, and X. Deng. Detecting Phishing Web Pages with Visual
Similarity Assessment Based on Earth Mover’s Distance (EMD). Dependable and
Secure Computing, IEEE Transactions on, 3(4):301–311, Oct. 2006.

[36] M. Green. On the new Snowden documents, Dec. 2014.
http://blog.cryptographyengineering.com/2014/12/
on-new-snowden-documents.html?utm_source=dlvr.it&utm_medium=
twitter&m=1, retrieved: 2015-03-02.

[37] R. W. Hamming. Error detecting and error correcting codes. BELL SYSTEM
TECHNICAL JOURNAL, 29(2):147–160, 1950.

[38] M. Hara, A. Yamada, and Y. Miyake. Visual similarity-based phishing detection
without victim site information. In Computational Intelligence in Cyber Security,
2009. CICS ’09. IEEE Symposium on, pages 30–36, Mar. 2009.

[39] M. Henzinger. Finding Near-duplicate Web Pages: A Large-scale Evaluation of
Algorithms. In Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’06, pages 284–291,
New York, NY, USA, 2006. ACM.

[40] A. Hlaoui and S. Wang. A new algorithm for inexact graph matching. In Pattern
Recognition, 2002. Proceedings. 16th International Conference on, volume 4, pages
180–183 vol.4, 2002.

[41] J. Hodges, C. Jackson, and A. Barth. HTTP Strict Transport Security (HSTS), Nov.
2012. http://tools.ietf.org/html/rfc6797, retrieved: 2014-11-04.

[42] C.-R. Huang, C.-S. Chen, and P.-C. Chung. Contrast Context histogram-An Efficient
Discriminating Local Descriptor for Object Recognition and Image Matching. Pattern
Recogn., 41(10):3071–3077, Oct. 2008.

[43] M. K. Kern and E. Phetteplace. Hardening the browser. Reference & User Services
Quarterly, 51(3):210–214, 2012.

[44] M. Khonji, Y. Iraqi, and A. Jones. Phishing Detection: A Literature Survey.
Communications Surveys Tutorials, IEEE, 15(4):2091–2121, Apr. 2013.

[45] J. Kornblum. Identifying Almost Identical Files Using Context Triggered Piecewise
Hashing. Digit. Investig., 3:91–97, Sept. 2006.

[46] M. Kranch and J. Bonneau. Upgrading HTTPS in Mid-Air: An Empirical Study of
Strict Transport Security and Key Pinning. In NDSS ’15: The 2015 Network and
Distributed System Security Symposium, Feb. 2015.

70

http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://blog.cryptographyengineering.com/2014/12/on-new-snowden-documents.html?utm_source=dlvr.it&utm_medium=twitter&m=1
http://blog.cryptographyengineering.com/2014/12/on-new-snowden-documents.html?utm_source=dlvr.it&utm_medium=twitter&m=1
http://blog.cryptographyengineering.com/2014/12/on-new-snowden-documents.html?utm_source=dlvr.it&utm_medium=twitter&m=1
http://tools.ietf.org/html/rfc6797

[47] N. Krawetz. Looks Like It. http://www.hackerfactor.com/blog/index.
php?/archives/432-Looks-Like-It.html, retrieved: 2015-02-18.

[48] A. Langley. Overclocking SSL, June 2010. https://www.imperialviolet.
org/2010/06/25/overclocking-ssl.html, retrieved: 2015-03-04.

[49] A. Langley. Public Key Pinning, May 2011. https://www.imperialviolet.
org/2011/05/04/pinning.html, retrieved 2015-03-25.

[50] L. Leitão, P. Calado, and M. Weis. Structure-based Inference of XML Similarity
for Fuzzy Duplicate Detection. In Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management, CIKM ’07, pages 293–302,
New York, NY, USA, 2007. ACM.

[51] W. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

[52] M. Lux and S. A. Chatzichristofis. LIRe: Lucene Image Retrieval: An Extensible
Java CBIR Library. In Proceedings of the 16th ACM International Conference on
Multimedia, MM ’08, pages 1085–1088, New York, NY, USA, 2008. ACM.

[53] M. Marlinspike. New tricks for defeating SSL in practice. BlackHat DC, February,
2009.

[54] M. Marlinspike. SSL And The Future Of Authenticity, Aug. 2011. https://www.
youtube.com/watch?v=pDmj_xe7EIQ, retrieved 2015-03-09.

[55] M.-E. Maurer and D. Herzner. Using Visual Website Similarity for Phishing Detection
and Reporting. In CHI ’12 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’12, pages 1625–1630, New York, NY, USA, 2012. ACM.

[56] S. Media. New level of Internet domain names - more choice for NZ-
ers, 2013. http://www.scoop.co.nz/stories/SC1310/S00023/
new-level-of-internet-domain-names-more-choice-for-nzers.
htm, retrieved: 2015-03-05.

[57] E. Medvet, E. Kirda, and C. Kruegel. Visual-similarity-based Phishing Detection.
In Proceedings of the 4th International Conference on Security and Privacy in
Communication Netowrks, SecureComm ’08, pages 22:1–22:6, New York, NY, USA,
2008. ACM.

[58] B. Möller, T. Duong, and K. Kotowicz. This POODLE Bites: Exploiting The SSL
3.0 Fallback, 2014.

[59] Nominet. .uk roll out, 2014. http://www.dotuklaunch.uk/
dates-and-definitions, retrieved: 2015-03-05.

71

http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2011/05/04/pinning.html
https://www.imperialviolet.org/2011/05/04/pinning.html
https://www.youtube.com/watch?v=pDmj_xe7EIQ
https://www.youtube.com/watch?v=pDmj_xe7EIQ
http://www.scoop.co.nz/stories/SC1310/S00023/new-level-of-internet-domain-names-more-choice-for-nzers.htm
http://www.scoop.co.nz/stories/SC1310/S00023/new-level-of-internet-domain-names-more-choice-for-nzers.htm
http://www.scoop.co.nz/stories/SC1310/S00023/new-level-of-internet-domain-names-more-choice-for-nzers.htm
http://www.dotuklaunch.uk/dates-and-definitions
http://www.dotuklaunch.uk/dates-and-definitions

[60] M. Pawlik and N. Augsten. RTED: A Robust Algorithm for the Tree Edit Distance.
Proc. VLDB Endow., 5(4):334–345, Dec. 2011.

[61] H. Perl, S. Fahl, and M. Smith. You Won’t Be Needing These Any More: On
Removing Unused Certificates from Trust Stores. In N. Christin and R. Safavi-Naini,
editors, Financial Cryptography and Data Security, Lecture Notes in Computer
Science, pages 307–315. Springer Berlin Heidelberg, 2014.

[62] M. Perry. TorFlow: Tor Network Analysis, Aug. 2009. http://fscked.org/
talks/TorFlow-HotPETS-final.pdf, retrieved: 2015-03-12.

[63] E. Rescorla. HTTP Over TLS, May 2000. https://tools.ietf.org/html/
rfc2818, retrieved: 2014-12-02.

[64] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2,
Jan. 2012. https://tools.ietf.org/html/rfc6347, retrieved: 2015-02-10.

[65] I. Ristić. Bulletproof SSL and TLS. Feisty Duck, 2014.

[66] S. Roopak and T. Thomas. A Novel Phishing Page Detection Mechanism Using
HTML Source Code Comparison and Cosine Similarity. In Advances in Computing
and Communications (ICACC), 2014 Fourth International Conference on, pages
167–170, Aug. 2014.

[67] V. Roussev. Data Fingerprinting with Similarity Digests. In K.-P. Chow and
S. Shenoi, editors, Advances in Digital Forensics VI, volume 337 of IFIP Advances
in Information and Communication Technology, pages 207–226. Springer Berlin
Heidelberg, 2010.

[68] V. Roussev, G. G. Richard, III, and L. Marziale. Multi-resolution Similarity Hashing.
Digit. Investig., 4:105–113, Sept. 2007.

[69] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The Emperor’s New Security
Indicators. In Security and Privacy, 2007. SP ’07. IEEE Symposium on, pages
51–65, May 2007.

[70] C. Soghoian and S. Stamm. Certified Lies: Detecting and Defeating Government
Interception Attacks Against SSL (Short Paper). In Proceedings of the 15th Inter-
national Conference on Financial Cryptography and Data Security, FC’11, pages
250–259, Berlin, Heidelberg, 2012. Springer-Verlag.

[71] R. S. Stanković and B. J. Falkowski. The haar wavelet transform: its status and
achievements. Computers & Electrical Engineering, 29(1):25 – 44, 2003.

[72] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor. Crying Wolf: An
Empirical Study of SSL Warning Effectiveness. In Proceedings of the 18th Conference
on USENIX Security Symposium, SSYM’09, pages 399–416, Berkeley, CA, USA,
2009. USENIX Association.

72

http://fscked.org/talks/TorFlow-HotPETS-final.pdf
http://fscked.org/talks/TorFlow-HotPETS-final.pdf
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc6347

[73] Y. Takama and N. Mitsuhashi. Visual similarity comparison for Web page retrieval.
In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International
Conference on, pages 301–304, Sept. 2005.

[74] M. Theobald, J. Siddharth, and A. Paepcke. SpotSigs: Robust and Efficient Near
Duplicate Detection in Large Web Collections. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’08, pages 563–570, New York, NY, USA, 2008. ACM.

[75] A. Tridgell. spamsum, 2002. http://www.samba.org/ftp/unpacked/
junkcode/spamsum/README, retrieved: 2014-12-16.

[76] W3C. The Original HTTP as defined in 1991, 1991. http://www.w3.org/
Protocols/HTTP/AsImplemented.html, retrieved: 2015-03-17.

[77] W3C. HTML 4.01 Specification, Dec. 1999. http://www.w3.org/TR/1999/
REC-html401-19991224/, retrieved 2015-03-17.

[78] W3C. HTML5 specification, Oct. 2014. http://www.w3.org/TR/2014/
REC-html5-20141028/, retrieved 2015-03-17.

[79] w3schools. JavaScript RegExp Reference. http://www.w3schools.com/jsref/
jsref_obj_regexp.asp, retrieved: 2015-02-09.

[80] M. Weis and F. Naumann. DogmatiX Tracks Down Duplicates in XML. In Proceed-
ings of the 2005 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’05, pages 431–442, New York, NY, USA, 2005. ACM.

[81] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving SSH-style
Host Authentication with Multi-path Probing. In USENIX 2008 Annual Technical
Conference on Annual Technical Conference, ATC’08, pages 321–334, Berkeley, CA,
USA, 2008. USENIX Association.

[82] Wikipedia. Algorithm Implementation/Strings/Levenshtein distance.
https://en.wikibooks.org/wiki/Algorithm_Implementation/
Strings/Levenshtein_distance#Java, retrieved: 2014-11-3.

[83] H. Zhang, G. Liu, T. Chow, and W. Liu. Textual and Visual Content-Based
Anti-Phishing: A Bayesian Approach. Neural Networks, IEEE Transactions on,
22(10):1532–1546, Oct. 2011.

[84] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: A Content-based Approach to
Detecting Phishing Web Sites. In Proceedings of the 16th International Conference
on World Wide Web, WWW ’07, pages 639–648, New York, NY, USA, 2007. ACM.

73

http://www.samba.org/ftp/unpacked/junkcode/spamsum/README
http://www.samba.org/ftp/unpacked/junkcode/spamsum/README
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/2014/REC-html5-20141028/
http://www.w3.org/TR/2014/REC-html5-20141028/
http://www.w3schools.com/jsref/jsref_obj_regexp.asp
http://www.w3schools.com/jsref/jsref_obj_regexp.asp
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Java
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Java

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Transport Layer Security
	Hypertext Transfer Protocol (Secure)
	Browser Extensions

	State of the Art
	Visual Similarity
	Code Similarity
	Fuzzy Hashing

	Methodology
	Candidate Generation
	Calculating Website Similarity Values
	HTTPS Everywhere Rule Generation

	Software Design
	Candidate Generator
	Candidate Checker
	Aggregator
	Rule Generator
	Performance Improvements

	Evaluation
	Candidate Generation
	Candidate Checking

	Large-Scale Evaluation and Results
	Discussion
	Limitations
	Future Work

	Conclusion
	Appendix A - Training Set
	Bibliography

