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Abstract

The growing availability of three-dimensional (3D) displays in the commercial sector and related
trends in this field increase the demand for 3D content. Therefore, the development of tools for
the generation of 3D content is of academic and commercial interest. This thesis proposes a
semi-automatic 2D-to-3D depth propagation algorithm, which requires only little user-effort and
delivers good quality results. To perform the propagation, the user only needs to assign depth
by annotating scribbles on the first and last frame. The proposed algorithm builds upon a cost
volume filtering-based video object segmentation algorithm and propagates the user-assigned
depth values to all frames of the video. Our work focuses on several quality attributes including
temporal consistency, edge-sharpness mismatches and depth changes over time. The proposed
algorithm achieves improved temporal consistency by enhanced temporal filtering. Moreover,
the algorithm accounts for the depth change of an object moving throughout the video by the
incorporation of the depth order of the video. Evaluations show that the proposed algorithm
requires minimal user interaction and generates spatio-temporally coherent depth maps with a
perceptually consistent depth change for objects that change their depth in time. Moreover, a
quantitative and visual comparison of the proposed algorithm to a related 2D-to-3D conversion
algorithm is performed. It is shown that high-quality results can be achieved by using a robust
optical flow estimation and a comfortable scribble annotation by the user.
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Kurzfassung

Die wachsende Verfügbarkeit von 3D-Bildschirmen im kommerziellen Bereich und damit ver-
bundene Trends steigern die Nachfrage nach 3D-Inhalten. Daher ist die Entwicklung von Tech-
nologien zur Generierung von 3D-Inhalten von akademischem und kommerziellem Interesse.
Im Zuge dieser Diplomarbeit wird ein semi-automatischer 2D-zu-3D Tiefenpropagierungsal-
gorithmus vorgestellt, welcher nur wenig Benutzeraufwand benötigt und Ergebnisse von guter
Qualität liefert. Um die Propagierung durchzuführen, müssen BenutzerInnen lediglich grobe
Tiefeninformationen auf dem ersten und letzten Bild des Videos angeben. Der vorgestellte Al-
gorithmus baut auf einem Objektsegmentierungsalgorithmus für Videos auf, welcher mit Kos-
tenfilterung arbeitet, und propagiert automatisch die von den BenutzerInnen angegebene Tiefe
auf das gesamte Video. Diese Diplomarbeit fokussiert dabei besonders auf einige Qualitäts-
merkmale wie zeitliche Kohärenz, unscharfe Tiefenkanten und zeitliche Tiefenänderungen. Der
vorgestellte Algorithmus erzielt durch eine erweiterte zeitliche Filterung verbesserte Ergebnisse
bezüglich der zeitlichen Kohärenz. Außerdem wird die zeitliche Tiefenänderung von Objekten,
die sich im Laufe des Videos in der Tiefe bewegen, durch die Miteinbeziehung der Tiefenord-
nung der Objekte im Video ermöglicht. Evaluierungen zeigen, dass der vorgestellte Algorithmus
mit minimalem Benutzeraufwand zeitlich-kohärente Tiefenkarten mit wahrnehmungskonsisten-
ten Tiefenänderungen erzeugt. Zusätzlich wird der vorgestellte Algorithmus mit einem ähnlichen
2D-zu-3D Konvertierungsalgorithmus verglichen. Es wird gezeigt, dass hohe Qualität durch die
Verwendung von robust geschätzten Optical Flow Vektoren und komfortable Tiefenannotierung
durch BenutzerInnen erzielt werden kann.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

During the last years the popularity of three-dimensional (3D) films increased more and more.
The future trend and the availability of 3D displays in the commercial sector direct to a higher
demand of 3D media. When watching a 3D film, the depth impression is generated through
two slightly shifted images from the same scene. The human brain interprets the shift between
the two images as depth and one perceives three dimensions. For producing 3D content either
special cameras, which record two or more images, or technologies for the conversion of existing
two-dimensional (2D) media to 3D are used. This work is focusing on the latter, i.e., 2D-to-3D
conversion.

On the one hand new 3D productions can be produced with special equipment, which is
usually quite expensive. With a stereoscopic camera it is possible to record two images from
a slightly different angle at the same time. Similarly, two or more cameras can be used but
have to be aligned properly. Furthermore, a special depth camera (e.g. Time-of-Flight [41] or
Kinect [74]) can record depth information of the scene. These cameras are saving the actual
depth, that is the distance from the camera to the point in depth maps. In contrast, disparity
describes the shift of a point between the left and the right image. Thus, disparity corresponds
to the relative depth [33]. In the course of this thesis the terms depth and disparity are used
synonymously. Moreover, a depth map is usually visualized as a grey scale image with the same
dimensions as the corresponding frame. The intensity of each pixel value represents the distance
to the camera. The darker the value, the larger is the distance between the camera and the point
and vice versa (cf. Figure 1.1). Depth maps are used to generate new or adapt existing 3D
material to different media. Since the shift between two images adapted for a cinema screen
appears larger on a small screen caused by reasons of geometric relations, 3D material has to be
adopted to the size of the screen. Thus, if not adopted the 3D material of a cinema production
would cause an uncomfortable 3D effect when watching it on television. For both these above
mentioned options, i.e., recording two images with a stereoscopic camera or recording depth
with a special depth camera, it has to be decided previously if the production should be in
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: (a) Input image and (b) corresponding depth map. The depth values are presented
as grey values from dark (far) to white (close). [16]

3D. Due to the high costs of the special equipment, this is usually just profitable for cinema
productions such as the film series ‚The Hobbit’ by Peter Jackson. For example, the official
production costs for the three film series recorded in 3D with high frame rate, that is 48 frames
instead of 24 frames per second (FPS), were about 560 Mio. US $ [22].

On the other hand, 2D-to-3D conversion techniques are often a cheaper alternative for 3D
content generation. Thus, it is possible to generate new stereoscopic (3D) content from already
existing monocular (2D) videos. These 2D-to-3D conversion techniques focus on estimating a
depth map for every frame of the film without a given second view. Special rendering algo-
rithms [25] compute with the monocular colour image and the corresponding depth map the
additional images (a second view) needed for the 3D perception. For that purpose, depth maps
have to be high-quality to receive a comfortable depth impression. In this context, temporal
consistency, no flickering and smooth depth changes of moving objects in the scene are a few
quality features. Furthermore, it is important to convert the film within a reasonable time. In the
case of a 90 minutes film with 24 FPS, about 130000 depth maps have to be computed. Thus,
there are several features which have to be considered when performing a 2D-to-3D conversion.
Generally, there are three kinds of 2D-to-3D conversion techniques, which differ in time, quality,
costs and artistic freedom:

1. Manual 2D-to-3D conversion: This technique typically consists of three steps. First, users
extract objects and surfaces manually frame by frame, which is called rotoscoping. While
this segmentation is still mainly manually, it is worth to note that software can be used to
facilitate this process. Moreover, software helps to segment objects and track them to the
next frame [2]. In a second step, depth is assigned by the user to the segmented objects
and surfaces and, in doing so, a depth map is created for each frame. The last step is
to fill occlusions which occur after shifting the scene to a slightly different angle. Those
occlusions appear in the final rendered second view since there is no information available
for regions which are occluded in the original view. Thus, those regions have to be either
manually filled or with the help of inpainting algorithms (e.g., [4]). The advantages of
manual conversion are artistic freedom and high-quality results. However, it takes a lot
of time to work with each frame separately which results in high costs. This method
is usually used to professionally convert old 2D films to 3D for cinema or high-quality
3DTV. For example, the conversion of ‚Starwars Episode 1: The Phantom Menace’ took
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Figure 1.2: (a) Input image and (b) corresponding user-defined scribble map. The depth values
are represented in the form of coloured scribbles as the hue scale shows. [16]

10 months with more than 1000 rotoscope artists. The costs for converting the film are
estimated to be even higher than the original production costs which were 115 Mio. US
$ [46], [71], [77].

2. Automatic 2D-to-3D conversion: These methods automatically convert full monocular
videos to stereoscopic videos, thus, without any user work. Companies like Samsung or
JVC are already using such real-time automatic algorithms within their 3D displays [75].
Automatic conversion algorithms (e.g. [21], [52], [69]) are using monocular depth cues
such as focus and defocus, perspective, relative size, light and shading to estimate the
depth. Depth also can be estimated from motion. The basic idea is that objects which
are close to the camera move faster than objects which are far [85]. However, since there
is basically no interaction by the user it is hard to control the whole process. Therefore,
such algorithms might work good on certain 2D scenes but often result in low quality.
However, it is possible to convert videos in real-time [75].

3. Semi-automatic 2D-to-3D conversion: As discussed above, on the one hand there is man-
ual conversion, which is time-consuming and expensive and on the other hand there are
automatic algorithms, which are fast but of lower quality. Researchers got aware of this
problem and proposed semi-automatic methods. Semi-automatic techniques (e.g., [18],
[33], [36], [47], [66], [83], [86], [87]) allow user interaction while the user effort stays
low. Generally, only some keyframes are marked with depth values by users. With this
user input, depth is propagated to all pixels of a video. Therefore, semi-automatic con-
version methods close the gap between manual and automatic techniques. They provide
artistic freedom through sparse user input which results in good quality and is still cheap.

2D-to-3D conversion methods become more and more common not only because of financial
but also because of technical and artistic reasons. Besides the lack of 3D content and the high
costs of the equipment for shooting in 3D, stereo cameras have restrictions. Due to their weight
and size it is difficult to use them in action scenes. In that case, the scene has to be converted in
the post-production anyway. For these reasons, it is important to reduce the time and increase
the quality of 2D-to-3D conversion.
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This master thesis focuses on the semi-automatic 2D-to-3D conversion and the improvement
of quality with sparse user interaction. In existing algorithms (e.g., [33], [36], [47], [66], [86]),
the user has to input the depth information on a few keyframes by annotating scribbles (cf.
Figure 1.2). Other methods (e.g., [18], [87]) are working with pre-segmented objects on which
depth is assigned by the user. Since object segmentation has to deal with similar problems
such as edge-sharpness and consistency over time, this thesis is extending an interactive video
segmentation algorithm [11] to a 2D-to-3D conversion method. While segmentation partitions
the video into segments that are homogeneous in a certain feature space (e.g., colour), 2D-to-3D
conversion identifies parts in a video related to their depth position. The segmentation algorithm
of [11] works with minimal user input. The basic idea is that only one scribble is needed to
mark the foreground object in the first frame to get a segmentation of fore- and background in
every frame of the scene. The challenge of semi-automatic approaches is keeping depth maps
temporally coherent with only a few keyframes as input. To this end, it is possible to improve the
temporal consistency with filter operations [47]. Moreover, temporal depth changes of objects
have to be considered to achieve improved quality.

1.2 Aim of the Thesis

The main goal of this master thesis is to extend the video object segmentation algorithm from
[11] to a 2D-to-3D depth propagation algorithm which achieves improved quality compared to
state-of-the-art methods (cf. Chapter 2) while keeping the user work low. The main issue is to
find a compromise of a good quality achieving method combined with a minimal user input. To
this end, this thesis is focusing on some quality features to improve the quality while keeping
the user effort low. Thus, temporal consistency is an important quality attribute. Temporal depth
changes which result in flickering should be avoided and therefore smooth depth changes of
objects should be considered. Furthermore, some conversion techniques cannot deal with edge-
sharpness mismatches, which are the result of over-smoothing at depth edges. Different to that
is the cardboard effect, where objects suffer from missing depth variation within their bounds.
Another desired effect is the depth change over time. Thus, it should be able to model an object
moving closer to the camera throughout the video.

By using the example of the algorithm of [66], it can be seen that high quality with depth
variations and depth changes over time is possible, but at the cost of increased user input. To
achieve high quality, the authors recommend to mark every frame of the video with scribbles
(cf. Figure 1.2). Therefore, a key goal of this thesis is to achieve good quality with minimal
user input. To this end, only the first and the last frames are keyframes with annotated scribbles.
Thus, the applied algorithm enables depth changes over time, which is another desired quality
attribute. Another issue many algorithms are dealing with is temporal consistency and stability.
Often filtering techniques are used in combination with motion estimation (e.g., [83], [47]) to
handle consistency and avoid abrupt changes between frames and flickering. Similar to that,
the proposed algorithm (cf. Chapter 4) uses an extended version of the guided filter [37] in
combination with optical flow vectors.

The extension from a video object segmentation to the 2D-to-3D conversion method consists
of several steps which results in a good quality algorithm with minimal user input. In a first step,
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the segmentation algorithm from [11] (cf. Section 3.3) is extended to perform a naive depth
propagation (cf. Section 4.1). For this purpose, cost volume filtering is used (cf. Section 3.3).
To perform the propagation, the user only needs to assign depth by annotating scribbles on the
first and last frame. In a next step, temporal consistency is improved by adding an enhanced
temporal filtering approach similar to [47] using a guided filter implementation for videos [37]
(cf. Section 4.2). Next, a spatial influence extension is applied by adding spatial costs to the cost
volume term in order to reduce the influence of pixels which are similar in colour but different
in depth and far away from the current user-assigned scribble (cf. Section 4.3), which would
result in noise. In a last step, temporal depth changes are being enabled (cf. Section 4.4) by
incorporating the depth order of the video in order to model the movement of an object in depth
throughout the video. As results show in the evaluation (cf. Chapter 5), the proposed algorithm
requires minimal user interaction and generates spatio-temporally coherent depth maps with a
perceptually consistent depth change for objects that change their depth in time by incorporating
the depth order of the video.

1.3 Structure of the Thesis

This master thesis is organized in six chapters. The current one, Chapter 1, overviews the moti-
vation and the problem as well as the aim of the work. In the following, the remaining chapters
are discussed:

• Chapter 2 gives an overview of currently important 2D-to-3D conversion algorithms.
Since the focus of this thesis is to improve quality while keeping the user input low, this
trade-off will be part of the discussion of various approaches in this chapter.

• Chapter 3 discusses image and video features and related segmentation techniques, which
are important for the 2D-to-3D conversion. Moreover, since the algorithm introduced in
the following chapter is based on a cost volume filtering approach [11] to segment objects,
the technique of cost volume filtering is discussed in more detail together with filtering
approaches.

• Chapter 4 introduces a new approach of a 2D-to-3D conversion method. The implemented
cost volume filtering-based depth propagation algorithm represents an extension of a video
object segmentation approach [11]. Moreover, various extensions, including a temporal
consistency improvement, a spatial influence extension and a temporal depth change ex-
tension and their impacts are presented and discussed in separated sections.

• Chapter 5 evaluates the proposed extensions of the 2D-to-3D algorithm and compares the
implemented cost volume filtering-based depth propagation algorithm that is presented in
this thesis to a related algorithm.

• Chapter 6 summarizes the achieved results and findings of the newly introduced 2D-to-3D
depth propagation approach and discusses possibilities for enhancements.





CHAPTER 2
State of the Art: Semi-Automatic

2D-to-3D Conversion

This chapter gives an overview of prior work on semi-automatic 2D-to-3D conversion. The goal
of these semi-automatic algorithms is to propagate sparsely given depth values to all pixels. In
particular, users sparsely initialise depth values on keyframes by indicating which image regions
are close or far from the camera. This can be done by using a few scribbles ( [33], [36], [47],
[66], [86]) or marking depth on the whole frame ( [18], [83], [87]). For the purpose of 2D-to-
3D conversion, this assignment has not to be accurate in terms of depth values, but has to be
perceptually consistent [33]. Moreover, cognitive studies, i.e., [44], have shown that the depth
order influences the perception of the scene more than the absolute depth.

The following overview highlights in particular how the discussed conversion algorithms
handle the following challenges: (i) spatial depth variations within objects, (ii) temporal depth
changes of objects and (iii) temporal consistency. The lack of depth variations, i.e., (i), is referred
to as cardboard effect. Missing temporal consistency, i.e., (iii), results in disturbing flickering
and abrupt changes over time.

In the following, four groups of 2D-to-3D conversion algorithms are presented: (i) Filtering-
based methods that propagate depth values from a keyframe to the next one by using a fil-
ter, (ii) Machine Learning Algorithms that learn the relationship between user-defined depth
samples and their corresponding colour to propagate given depth to frames of a 2D video,
(iii) Optimization-based approaches that express the problem of assigning depth as a global en-
ergy function, and (iv) Segmentation-based methods that propagate depths within predetermined
segments.

2.1 Filtering-based Methods

The basic idea of filtering-based conversion methods is to iteratively propagate a weighted mean
of existing depth values that was computed on one frame to the following frames, without given

7
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Figure 2.1: Depth propagation after 100 frames from [83]. (a) source image, (b) depth ground
truth, (c) depth propagation using bilateral filter and (d) depth result after the correction step. [83]

depth values. Therefore, users assign depth of the first frame of a video on the entire keyframe.
By reducing the assignment of depth from every frame to a few keyframes, the user effort can
be significantly reduced compared to a manual conversion. A well-known technique in the field
of propagation filtering is the bilateral filter [81] as used in [83]. The bilateral filter is an edge
preserving filter and was originally introduced to smooth images. The idea of this filter is to
smooth pixels in the filter window according to their distance to the window centre and their
colour distance to the pixel centred in the window. Edges can be preserved, because of the
colour difference between, e.g., an object and the background. In [83] the bilateral filter is used
to propagate depth from the keyframe to the next one.

Basically, filter-based methods are a fast and simple possibility to propagate depth. However,
as observed in [83], these methods show a few drawbacks:

1. Depth ambiguity problem: The colour of two pixels within a filter window is the same,
but depths differ. Thus, only due to the colour information it is not possible to decide
which depth value should be propagated. Such ambiguity might happen, if two objects
with equal colour, but different depth have an overlapping region.

2. New colour problem: A colour that is not present in the reference frame appears in a
following one. Thus, the filter has no depth information to the new colour value. That
usually happens when new areas of the background are uncovered or a new object enters
the scene.

3. Recursive propagation of errors: If the errors described above are not corrected, they are
recursively propagated to the following frames. Therefore, errors increase from frame to
frame and influence the resulting depth map.
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The authors in [83] address these problems by correcting the propagation errors after they appear.
To this end, they assume that the previous frame (i.e., the keyframe or frame that has already been
depth corrected) is correct. They use motion compensation to overwrite the depth values which
resulted from using the bilateral filter to propagate depth from the keyframe to the following
frame. The motion vectors are estimated from the depth map of the previous and the filtered
depth map of the current frame. As shown in Figure 2.1(d) the described problems are being
reduced. However, it can also be seen (cf. Figure 2.1(d)) that errors remain, e.g., at the bottom
left side of the cube, which might be propagated recursively to the following frames. Since
depth values are only assigned in the first frame - the keyframe - and then propagated from
one to the next frame, smooth temporal depth changes are not modelled. Hence, some authors
such as [18] or [50] adapted the basic filtering-based conversion in order to model such changes.
More precisely, the authors of [18] additionally annotate the keyframe at the end of the video
and combine the conversion result based on the first and last frame for all frames in between.
Moreover, the authors improved the motion compensation by using the colour images instead
of the depth maps, for estimating the motion vectors. Since there is little structure in depth
maps, the computed motion vectors in [83] are not accurate. By using the colour images for the
computation of the motion vectors, the resulting flow is more accurate. However, by adding a
keyframe at the end, the user effort increases again, but it is possible to model depth changes.

2.2 Machine Learning Algorithms

Another group of 2D-to-3D conversion algorithms exploit machine learning techniques to con-
vert a given colour video to 3D. A Machine Learning Algorithm (MLA) acts like a black box
that learns the relationship between the input and the output, which in our case of 2D-to-3D
conversion are colour patterns in an input frame and the disparities.

For example, in [36] the creation of depth maps is based on such MLAs. Thus, the input for
the MLA is a colour video and the output are depth maps for each frame. The algorithm of the
rapid 2D-to-3D conversion [36] is using MLAs in two phases:

1. Depth mapping: In the beginning phase an MLA is applied to some keyframes. These can
be chosen by some techniques used for shot transitions (e.g. [67]) or manually by the user.
For each of the chosen keyframes a proper MLA is trained by samples defined by the user.
Therefore, the user marks specific regions with depth values on a coloured keyframe. The
MLAs learn the relationship between the coloured samples and their associated depth and
use that to generate the depth map for this keyframe.

2. Depth tweening: In a second phase the MLAs are used to assign depth to tween frames.
Tween frames are all frames between two keyframes. The MLAs results from the two
surrounding keyframes are used to assign depth. The resulting depths from each MLA are
combined in a weighted manner.

Regarding [36], the use of MLA reduces the amount of user interaction significantly compared
to manual conversion. A result is shown in Figure 2.2, where for a video with 43 frames only
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Figure 2.2: Resulting depth maps from [36]. 2D-to-3D conversion of a video with 43 frames
with keyframes at 1, 14 and 43 by providing 8.000 training samples over the three keyframes.
(a) shows the source image and (b) the resulting depth map by depth tweening at frame six. (c)
shows the source image and (d) the resulting depth map by depth tweening at frame 32. [36]

three keyframes were used for the depth propagation. However, the error of the depth map
increases with the increasing distance to the nearest keyframe. Additionally, some significant
changes in light conditions or fast abrupt motion between two keyframes can lower the quality
of the conversion result [36]. The authors state that in this case the keyframes have to be chosen
carefully.

2.3 Optimization-based Methods

In case of optimization-based algorithms the propagation step is designed with a global energy
function. Particularly, depth is propagated by solving a large linear system that implements a
set of constraints by minimisation. Usually this function consists of a data cost term, which
represents the costs when a pixel is assigned to a specific depth value or label, and a smoothness
term, which is responsible for the propagation, e.g., by considering the similarity of neighbour-
ing pixels.

For example, the algorithm from [33] was one of the first methods that used user-defined
scribbles to compute a depth map. Like the algorithm implemented in this work, the method
of [33] only uses input scribbles from the first and the last frame of a video shot. In that way it
is also possible to model depth changes over time.

In a first step, these user-defined depth values are propagated on frames on which they were
drawn. Then Support Vector Machine (SVM) [33] classifiers are trained and applied for each
depth value defined by the user separately for the first and last frame. By using Scale-Invariant
Feature Transform (SIFT) [53] some anchor points, which are points with a high confidence
value of the classifier, are detected and followed throughout the video. Those are assigned to
depth values by choosing the classifier with the lowest error rate. The depth values of non-anchor
points are assigned by solving an optimization problem in least squares manner. Specifically,
this conversion algorithm minimises a linear system of equations that consists of four types of
constraints per pixel:

1. The disparity of a pixel is similar to the disparity of its spatial neighbour.
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Figure 2.3: Resulting depth map from [33]. (a) the first frame, (b) the last frame, (c) and (d)
disparity maps of the same frame between the two keyframes. (c) shows the result without
motion-based weighted and (d) with weighting. [33]

2. Disparity changes continuously over time according to motion vectors computed by the
optical flow from [61].

3. The disparity values of user-defined scribbles are fixed.

4. The anchor points chosen by the classifiers further guide the propagation.

Since the amount of linear equations increases quadratic with the amount of pixels in a video,
the resolution of the video is reduced by the factor of four to make the algorithm more efficient.
Afterwards, the solution is upsampled with a joint bilateral technique from [45]. A resulting
disparity map of a video is shown in Figure 2.3. The disparity maps in (c) and (d) show the
corresponding depth of a frame between the keyframes (a) and (b). Due to the motion-based
weighting, i.e., constraint two, the disparity of the car is lower (darker) in (d) than in (c), which
refers to a farther distance to the camera.

In [86] the authors solve a similar system of equations as the above discussed algorithm
(i.e., [33]). The so called StereoBrush framework works with sparse scribble input, where low
intensities represent far objects and vice versa. The user can define common scribbles, with only
one intensity value, or gradient scribbles, which are useful for depth variation as in slanted or
rounded objects. Contrary to [33], in [86] the goal is to directly generate a stereoscopic pair
with a left and a right view, instead of computing a depth map. Therefore two image warps are
computed, which are defined as the mapping functions of the given image to a novel right and
left view. Afterwards, the energy function is indirectly solved for these novel views. Instead of
propagating scribble values directly to the video, they are put into a disparity hypothesis with
a per-pixel set of constraints with an incorporated confidence weight. In that way they enforce
the disparity value to be close to the original value of the scribble. The discontinuity preserv-
ing smoothness term is based on colour edges and thus helps to preserve object structure. A
saliency map detects context-aware regions in an image. Such context-aware or salient regions
are parts of an image, which are useful for the observer to describe the image. Those regions are
shown in a saliency map. The additional saliency weight reduces disparity over-smoothing in
such regions. Finally, the authors use a content-and-disparity-aware resizing method to stretch
background regions and fill disocclusions with a hole filling method to get the finished new left
and right view. A resulting disparity map is shown in Figure 2.4. It can be seen that disparities
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Figure 2.4: Disparity propagation by [86]. (a) the source image, (b) the user-defined scribble
map and (c) the resulting disparity map. [86]

at object borders are sharp. Thus, compared with [33], over-smoothing in salient image regions
is reduced due to the additional salient weight in the discontinuity preserving smoothness term.
Contrary to [33], StereoBrush is implemented as a multi-scale GPU implementation and, thus,
the input does not have to be scaled down. Moreover, the user immediately receives feedback
on a per keyframe level.

The authors of [47] present an efficient and simple method to solve the global optimization
problem by separating the data from the smoothness term and thus solving or approximating the
optimisation more efficiently. The separated terms are then solved in series, where the smooth-
ness term is approximated by a filtering operation. Thus, it can be used in various image-based
optimization problems as segmentation (e.g., [11]) or depth propagation (e.g., [40], [47]).

In [47] the authors replace the smoothness term by an efficient edge aware filtering opera-
tion. The special feature of this edge aware filter is the temporal filtering approach. The authors
are using a box filter (median filter) implementation that also filters temporally in addition with
motion paths. These paths are computed by following optical flow vectors from frame to frame.
The box filter filters analogue to the spatial direction temporally along these motion paths. More
about this filtering technique is presented in Section 3.3. Moreover, this approach is used simi-
larly in the algorithm proposed in this thesis (cf. Chapter 4). Prior to that approximation of the
smoothness term, the data term enforces the given scribble map, defined by the user. Each pixel
is related to one of the given scribble disparities due to colour similarities.

The authors apply their method on different applications such as disparity estimation, depth
upsampling, and colour and scribble propagation (cf. Figure 2.5). According to the authors of
this implementation, in the case of scribble propagation one keyframe for every 20 frames is
sufficient to propagate depth to a video. Since one of the user-defined disparity values is going
to be assigned to the final map, there is no disparity variation within objects, which results in
a cardboard effect. Furthermore, the implementation of [47] does not enable disparity changes
over time. However, due to the temporal filtering approach, temporal consistency is improved.

2.4 Segmentation-based Methods

Since segmentation is closely related to 2D-to-3D conversion, there are various approaches ex-
ploiting different types of segmentation approaches. While segmentation partitions an image or
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Figure 2.5: Colour scribble propagation from [47] over a video with 35 frames. (a) source
images, (b) scribble maps on keyframes and (c) colour propagation. [47]

a video into homogeneous segments due to a certain feature space, e.g. colour, 2D-to-3D con-
version identifies parts in a video related to their position in depth and assigns depth values to
each pixel. More about segmentation and used techniques is discussed in Chapter 3. Basically,
segmentation-based conversion methods consist of two steps: First, the video is segmented into
objects or regions. Second, segments are assigned to depth throughout the whole video. In the
following we discuss two segmentation-based methods and how they implement the above men-
tioned steps.

We refer to the algorithms from [18] and [87] as interactive segmentation-based 2D-to-
3D conversion methods. Both are working very similarly but differ in the context of depth
propagation to non-keyframes. In total there are four steps:

1. Selecting keyframes.

2. Performing a segmentation of objects and areas in the chosen keyframes.

3. Assigning depth values to the segmented areas.

4. Propagating depth from keyframes to non-keyframes.

After choosing keyframes, both algorithms ( [18], [87]), are using an image snapping tool
called Lazy Snapping [49] to perform an interactive object segmentation. Since this tool initially
is used to segment only one foreground object from the background on a single frame, the
authors of [18] and [87] adapted the method. The use of this tool results in multiple segmented
objects in the chosen keyframes. The user assigns disparity to each segmented object with
scribbles. The authors of [18] additionally provide pre-set disparity models such as for planar,
spherical or cylindrical surfaces and objects. Up to this second step, both algorithms are basically
doing the same, but vary now in the following depth propagation step.
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Figure 2.6: The resulting depth maps from [87]. (a) shows keyframe 1, (b) frame 5, (c) keyframe
10, (d) and (f) the result of keyframes using the segmentation tool, (g) and (i) KLT feature points
for tracking, (h) the tracked points in frame 5 and (e) the final depth map of frame 5. [87]

In [87], an additional tracking algorithm between each pair of keyframes is performed to
track the contours of each object. Therefore, the authors adopted an algorithm which is based on
the Kanade-Lucas-Tomasi (KLT) feature tracker [73]. That way, a segmentation of the objects
throughout the whole video is possible. Since the user assigns depth on keyframes for each
object, these depth values can be carried on to non-keyframes. In order to model depth changes,
the depth is linearly interpolated between two keyframes. On the contrary, [18] propagates depth
based on the video filtering method from [83], which uses bilateral filtering in combination with
optical flow vectors. Instead of using just one keyframe as input like in [83], the adapted method
in [18] combines the propagated depth values of the two surrounding keyframes weighted by
distance to the nearest keyframe.

In [87], the quality of the resulting depth maps (cf. Figure 2.6) depends on the result of
the tracking method. However, the used tracking algorithm in [87] has difficulties with camera
motion, occlusions between objects and background changes. According to the authors, an
improved tracking algorithm would lead to improved quality. The authors point out that for a
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Figure 2.7: Resulting depth maps from [18]. The first and last frames are the keyframes. Frames
in between are the result of the propagation. [18]

good quality conversion every tenth frame has to be annotated. Hence, there is still a big amount
of work to be done by the user. Moreover, since each segmented object is assigned with one
depth value the resulting depth map suffers under the cardboard effect. The main advantage
of [18] and [87] is the hard segmentation of the objects which provides clear boundaries.

In [18], the cardboard effect is prevented by the pre-set depth models, which are assigned
to the segmented objects (cf. Figure 2.7). Furthermore, first and last frame as keyframes are
acceptable for a video with 50 frames because of the used video filtering method. Although the
user can use the adapted snapping tool to segment the objects, it is still time-consuming.

To overcome these problems, combined approaches have been proposed, e.g., [66]. The
authors of [66] use two interactive image segmentation algorithms, Random Walks [31] and
Graph Cuts [8], [9], to perform a 2D-to-3D conversion which produces high quality depth maps.
Similar to [12], this fusion algorithm is a graph-based conversion.

Random Walks and Graph Cuts are two image segmentation algorithms which treat an image
as graph, representing each pixel as a node connected by weighted edges. The weight depends
on the similarity between two nodes. In the case of an image, the graph is 4-connected and
is extended to a 6-connected graph for video in [66]. Therefore, each node additionally gets
an edge to the pixel in the same spatial location in the previous and next frame. In the fusion
framework, the user marks objects with depth assigned strokes as closer or farther from the
camera. To combine the two mentioned algorithms, the result of the Graph Cut method acts as
input for Random Walks.

The Graph Cuts algorithm was intended to solve a binary classification problem by min-
imising an energy function. Each pixel is assigned to either the foreground or the background.
For the depth propagation each user-defined scribble represents a label and is defined as a bi-
nary classification problem. To solve this multi-label classification problem, the Graph Cuts
algorithm is performed for each user-defined label. Hence, in each iteration the current label is
assigned to the foreground while all other labels remain in the background. After performing all
Graph Cuts iterations, each pixel is assigned to the label corresponding to the least amount of
required energy. It might happen that a pixel was not assigned to any label. Such a pixel was
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Figure 2.8: Resulting conversion from [66]. (a) shows an example image, (b) an example image
with user-defined scribbles, (c) the depth map using modified Random Walks algorithm, (d) the
depth map using modified Graph Cuts algorithm and (e) the combined depth map from (c) and
(d). [66]

never part of a foreground object in one of the Graph Cuts iterations. In that case, region filling
methods are used to correct those missing values. The algorithm results in a hard segmentation
with clear object boundaries and no depth variations within the regions (cf. Figure 2.8(c)), which
appear as an undesired cardboard effect.

The Random Walks method is also a graph-based optimization algorithm [31]. It starts at a
randomly chosen node in the graph and walks around visiting all unlabelled nodes. To this end,
the weight of the edges influences the decision where to go. Since the weight depends on the
similarity between nodes, it is more probable to visit similar nodes. The goal is to assign each
node to one of K possible labels. Each label represents one of the user-defined depth values.
The algorithm calculates the probability that each pixel belongs to one of these labels by solving
a linear system of equations [31], [66]. The depth values resulting from the optimisation can
differ from the user-defined values. On one hand, this can eliminate the cardboard effect but on
the other hand leads to mixed depth values at object boundaries (cf. Figure 2.8(d)).

By using the Graph Cuts result as input for the Random Walks iteration, the result is a
depth map with hard object boundaries and smooth depth variation within the regions (cf. Fig-
ure 2.8(d)). To convert videos, the user-defined labels are tracked throughout the whole video
by the use of one of two proposed methods. First, there is an object tracking approach. Thereby,
with a tracking method, the segmented objects are tracked and their depth values are assigned
along the trajectories, which describe the movement of the object from one frame to the next
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throughout the whole video. However, the authors of [66] point out that this approach is very
time consuming. Thus, another method is offered. This less computational alternative computes
the optical flow, i.e., the movement of each pixel from one frame to the next one. Again the
depth is assigned along the optical flow vectors from one frame to the next. According to the
authors of [66], this method achieves good results for videos with horizontal motion and is there-
fore used instead of the more computationally demanding object tracking approach. However,
labelling every frame would produce the best results but is user-intense and time-consuming.

2.5 Summary

In this final section, the above presented algorithms are briefly summarized and discussed once
more with regard to their quality and user effort, starting with the filtering-based techniques.
Since every used keyframe has to be fully assigned with depth values, filtering-based techniques
require the most work done by the user. To determine depth values, some algorithms (e.g., a
stereo algorithm from [6]) can be used. However, this approach needs more time than drawing
scribbles. Additionally, depth variation within objects can be modelled and the undesired card-
board effect is avoided. In [18], the extended version of the filter-based algorithm from [83]
enables the modelling of depth changes. Difficulties for this type of algorithms are new uncov-
ered regions and colours, which can be handled with the use of more keyframes at the expense
of increasing user input.

The machine learning algorithm from [36] is less time-consuming for the user than filtering-
based (each keyframe fully assigned with depth values) and manual conversion (each frame
fully assigned with depth). For a video with 43 frames the user has to define about 8000 samples
on three keyframes to achieve good quality. The definition of different depth-defined samples
within an object avoids the cardboard effect. However, this algorithm does not model smooth
depth changes over time.

The most complex 2D-to-3D conversion methods are the optimization-based algorithms
[33], [47], [86]. They solve the complex optimization problem by separating the data and the
smoothness term. Thus, they present a more efficient algorithm. Optimization-based algorithms
score with minimal user input, since only some user-defined scribbles on a few keyframes are
necessary to achieve good quality. With the use of keyframes in the first and the last frame the
authors of [33] are able to model depth changes over time. The ability for depth variations de-
pends on the optimization constraints and the framework. Hence, the algorithm of [33] is able
to avoid the cardboard effect, while the resulting depth maps of [47] and [86] suffer from these
missing depth variations. However, [86] can avoid over-smoothed regions around the object
edges.

The time effort of segmentation-based methods depends on the chosen segmentation tech-
nique. The presented interactive algorithms [18], [87] are time-consuming, because the segmen-
tation is done more or less manually with a segmentation tool. However, the graph-based [66]
approaches do need less time to initialise the segmentation. Users have to mark the desired
depth value on keyframes with a few scribbles. According to the authors of the graph-based fu-
sion algorithm [66], every frame has to be labelled in order to achieve high quality results. The
ability of modelling depth variation within objects and depth changes over time and furthermore
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depends on the applied propagation step. Thus, both of the interactive segmentation techniques,
i.e., [18] and [87], are able to use depth changes, since their propagation is filtering-based [18]
or uses a tracking technique [87]. Hence, especially filtering-based methods [18] enable depth
variation within objects. The graph-based fusion method from [66] is able to avoid the cardboard
effect and provides depth changes over time.

Concluding, it seems that the segmentation-based methods [18], [66], [87], together with
the optimization-based algorithms [33], [47], [86] require the least user input while achieving
good quality results. Regarding to the segmentation-based conversions, the combination of the
segmentation step and the propagation step is crucial for the quality of the results. For this reason
and since the proposed 2D-to-3D conversion algorithm implemented in this thesis is based on
segmentation, segmentation is discussed in more detail in the following Chapter 3.



CHAPTER 3
Principles of Video Segmentation and

Cost Volume Filtering

It can be concluded from previous chapters, e.g., Chapter 2, that video analysis and segmen-
tation can be important in 2D-to-3D conversion. Generally, segmentation is one of the first
steps in a lot of image processing and computer vision applications such as depth propagation
(e.g., [18], [66], [87]) and tracking (e.g., [43], [73]). The goal of segmentation is to partition a
given image or video into parts, which are referred to as segments or regions. These segments can
be represented in different forms, which are discussed in Section 3.1. Segments, typically, are
homogeneous in a certain feature space, e.g., only contain pixels with similar colours. Additional
to colour, Section 3.1 also discusses other features such as motion. In Section 3.2, we discuss
(interactive) image and video segmentation techniques (e.g., [23], [43], [59], [72], [88]) that are
related to the 2D-to-3D conversion approach that is proposed in this thesis. This discussion also
covers other relevant video analysis techniques, such as motion estimation (e.g., [13], [48]) and
tracking (e.g., [73]). Finally, Section 3.3 puts emphasis on a label-based optimization frame-
work, namely cost volume filtering (CVF), which will be exploited in our proposed 2D-to-3D
conversion approach (cf. Chapter 4). Specifically, we discuss the general CVF-framework and
some filtering techniques such as the guided filter [37] as well as CVF for the special case of
image segmentation.

3.1 Representation and Features for Segmentation

The result of an image or video segmentation algorithm is commonly represented either by
contours or regions. A contour (cf. Figure 3.1(a) and 3.1(c)) defines the boundaries of segments
while a region (cf. Figure 3.1(b) and 3.1(d)) represents the area inside those boundaries. The
choice of representation depends on the segmentation technique and the further application as
well as the used features to detect the different regions in an image or video. According to [35],
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Figure 3.1: (a) shows an object contour representation [90], (b) an object region representation
[90], (c) a segmentation by the mean shift technique using contours [79], and (d) a segmentation
by a graph-based merging technique using regions [79].

contours and regions should be simple. This means, while contours should not be ragged, regions
should not contain many holes.

Independent of the chosen representation, segments are typically homogeneous in a certain
feature space [90]. There are different features of an image or video that can be used to perform
a segmentation. Examples of well-known features are colour, edges, motion and texture, which
are disussed in the following.

Colour

Colour is a property of the surface of each object in an image and influenced by two physical
factors. First, the distribution of the illuminant and, secondly, the reflectance properties of the
object [90]. The combination of these two attributes makes colour sensitive to illumination
variation in an image or video. When using different colour spaces, e.g., the RGB or HSV space,
it is possible to explore different aspects of colour such as brightness, saturation or hue. With
colour transformations it is possible to convert an image given in one colour space to another
colour space.

Most commonly, the RGB colour space is used [64], where a colour is represented in its com-
ponents of red (R), green (G) and blue (B). However, according to the human visual system this
colour space is not perceptually uniform [64]. In other words, the colour difference perceived by
humans does not correspond to the difference between the colours in the RGB space [64]. An-
other well known colour space is HSV, which represents colour in terms of hue (H), saturation
(S) and value (V), and is an approximately uniform colour space [64]. Hue refers to the per-
ceived colour, e.g., red, while saturation is used to specify the purity of the colour, and the value
parameter defines the intensity of the colour. Due to these three components it is more intuitive
for humans to work with such a colour space. The CIE L*a*b* [57] and CIE L*u*v* [20] colour
models were introduced to better assess perceptual differences among colours. These spaces are
designed in a way that by using a simple Euclidean distance it is possible to calculate perceptual
colour differences [55].



3.1. REPRESENTATION AND FEATURES FOR SEGMENTATION 21

Edges

Edges are a salient feature in images. An edge can be described as an area in an image where dif-
ferences of colour, intensity or texture occur [79]. The larger these differences are, the ‚stronger’
the edge is perceived by the human observer. This fact can also be used in computer vision to
filter out weak and potentially not important edges. Subsequent to the detection of edges in an
image, those edges can be linked together into continuous contours, which ideally segment an
object in an image. Compared to the feature colour, edges are less sensitive to changes in illu-
mination [90]. Since an illumination change usually has impact on the whole image, the values
of, e.g., intensity are shifted in all parts and, thus, discontinuities remain.

There are several approaches to detect edges in images (e.g., [17], [19], [24]). Most of
them locate abrupt changes in image intensities and have been developed for greyscale images.
Edge detection results of each independent colour channel can be combined to detect edges in
colour images or videos [79]. Greyscale edge detectors often use gradient functions (e.g., [24]).
Commonly used edge detectors are the Sobel and Prewitt operator [24], or the Canny edge
detection approach [17].

Motion

Motion is a feature often used in motion-based or tracking applications. In the case of tracking,
motion is used to follow selected objects throughout the video (e.g., [87]). This is especially
important when segmenting videos and will, in this context, be discussed more explicitly in
Section 3.2 and Section 3.3.

A well-known approach to estimate motion from a video is optical flow estimation. Optical
flow estimation is described as the computation of a dense field of motion vectors of each pixel.
These vectors contain each pixel’s motion direction and motion velocity in regard to its new
position in the next frame. Optical flow estimation approaches determine pixel motion between
consecutive frames based on the brightness constancy constraint: I(x, y, t) − I(x + dx, y +
dy, t+ 1) = 0 [38]. This constraint assumes that the intensity I(x, y, t) of a pixel (x, y, t) does
not change between frames. Hence, the intensity I(x+dx, y+dy, t+1) in the following frames
stays the same. Two well-known optical flow estimation methods are the Horn-Schunck formu-
lation [38] and the Lucas-Kanade method [54]. Horn-Schunck [38] deals with the problem of
solving two unknown terms (direction and velocity) for each pixel globally by minimising an
energy function with an additional smoothness term. Contrary to the global method of [38], the
Lucas-Kanade method [54] is a local approach. It solves the optical flow equation by combin-
ing information from local pixel neighbourhoods and minimising the energy function by using
Least-Squares Estimation (LSE) [5]. While local methods such as Lucas-Kanade are often more
robust under noise, they do not compute a dense flow field. Contrary, global methods, e.g.,
Horn-Schunck, give a dense flow field. However, the computation is more expensive and is
more sensitive to noise [14]. For an overview of more recent optical flow estimation approaches,
interested readers are referred to [70]. Based on the brightness constancy assumption and ad-
ditional assumptions, such as global smoothness, optical flow estimation methods can compute
motion vectors. The resulting motion vectors can be used for, e.g., tracking contours, recogniz-
ing moving objects or segment objects due to similar motion.
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Texture

Texture refers to the properties of the surface or structure of an object [76]. Texture can be de-
scribed as a measure of the intensity variation of a surface [90]. A particular texture is described
by a texture descriptor, which models its intensity variations and contains a deterministic or prob-
abilistic rule to classify the texture. An example of descriptors are Grey-Level Co-occurrence
Matrices (GLCMs) by [34], which capture co-occurrences of intensities in a specified direction
and distance to describe and recognize texture in an image. A texture can be described, for ex-
ample, as fine, coarse or smooth, rippled, moulded, irregular or lined [34]. Like edges, texture
is less sensitive to illumination changes than colour [90].

3.2 Segmentation

From Section 2.4 can be concluded that segmentation and 2D-to-3D conversion share some
similarities. The goal of segmentation is to partition the image or video into segments that are
homogeneous in a certain feature space (e.g., colour) [76]. A fixed label is assigned to each
segment. In 2D-to-3D applications the video can also be grouped into segments. However,
2D-to-3D conversion identifies parts in a video related to their depth position and assigns depth
values to each pixel. Furthermore, those depth values can vary inside an object due to roundness
or skewed surfaces. As discussed in Section 2.4, many 2D-to-3D conversion approaches use
segmentation techniques to partition the image or video and further use other techniques or user
interaction to assign depth to the objects.

Segmentation techniques can be classified into spatial methods, which work on images, and
spatio-temporal methods, which are applied to videos and result in segments that extend over
time. The latter are often based on spatial approaches to detect segments in individual frames
and further track them from frame to frame. Other approaches analyse the whole video at once
to perform a segmentation.

Image Segmentation

Image segmentation methods can be classified into region-based techniques (e.g. [23], [72], [88])
and contour-based techniques (e.g. [43], [59]). While region-based methods use features such
as colour to group neighbouring pixels into regions, contour-based methods typically exploit
edges.

In the group of region-based approaches, the mean shift algorithm and graph cuts approaches
are popular. The mean shift algorithm ( [23], [29]) finds peaks in the multidimensional spatial
and colour space [l, u, v, x, y]. Here [l, u, v] are the colour components of the earlier mentioned
CIE L*u*v* colour model and [x, y] is the spatial position of a pixel. First, cluster centres, which
at the end represent the peak of a found cluster, are randomly defined over the discrete data.
During each mean shift iteration, an ellipsoid is positioned at the cluster centre and examines
the mean of the data inside the ellipsoid. Next, the centre is moved to the mean value [90]. This
process is repeated until the cluster centre does not change the position anymore and thus, a
peak is found. It may happen that during the iterations some cluster centres are merged. Finally,
every cluster centre represents a peak in the multidimensional space and is defined as a segment.
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Figure 3.2: Segmentation of the image in (a), by using mean-shift in (b) and using normalized
cuts in (c) [90].

All points that belong to that segment can be identified by taking all points from the input space
that climb to the segment’s peak. As a result, similar pixels in colour and space are part of the
same segment. For a resulting segmentation see Figure 3.2(b). It can be seen that the resulting
segments are similar in colour (and intensity). The algorithm works automatically, thus, the user
only sets a few parameters to obtain a better segmentation.

In another region-based approach [72], the authors are treating the segmentation problem as
a graph partition problem. In their approach of the normalized cut, a node represents a pixel in
an image. Each node is connected to its neighbours by an undirected weighted edge. The weight
determines the similarity between two nodes regarding the used feature space, e.g., colour or tex-
ture similarity. The goal is to partition the graph into disjoint subgraphs by pruning the weighted
edges to generate subgraphs that are not similar enough. A cut is defined as the total weight of
the pruned edges between two subgraphs [79]. In [88], the authors’ segmentation is based on
finding the minimum cut value that divides the graph. This approach leads to oversegmentation,
i.e. many small segments. Thus, the normalized cut was further developed in [72]. In [72],
both the similarities and dissimilarities between different groups of nodes are studied to separate
groups that are not similar enough. The value of the cut not only depends on the total weight
of pruned edges but is also computed as part of the total edge connections to all nodes in the
graph [72]. The result of a normalized cuts segmentation is shown in Figure 3.2(c). As can be
recognised compared to the mean shift algorithm (cf. Figure 3.2(b)), the normalized cut method
leads to less oversegmention. The method of [72] requires only a few parameters and works
automatically.

The concept of cost volume filtering (CVF) can also be used to solve the segmentation
problem, e.g., with the interactive object segmentation of [11], which is actually a video object
segmentation approach. After an interactive step by the user, a foreground and background
segmentation is computed. With a CVF approach the result is generated in a temporally-coherent
way to perform a binary segmentation. CVF and the video object segmentation algorithm of [11]
are discussed in more detail in Section 3.3.

The second group, contour-based approaches, detect object boundaries based on image-
domain based properties such as edges. An example are active contours [79]. Active contours
may be initialised by user annotations around the boundaries of an object. In [43], the resulting
closed contours which surround the object region are called snakes. After the initialisation the
algorithm seeks for a spline, which is a function that piecewise defines a polynomial curve [84].
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The method from [59] works interactively and snaps the contour to boundaries of an object,
while the user is still moving and drawing rough boundaries around an object. To this end,
the image is first pre-processed to link low costs with edges which are likely to be part of a
boundary. The algorithm continuously seeks for the lowest cost path between the starting point
and the current end position of the user drawn path.

Video Segmentation

Video segmentation partitions a video into segments, which are uniform in a feature space, e.g.,
motion. There are two common approaches to perform a video segmentation: (i) the segmen-
tation is done frame by frame or (ii) the whole video is analysed and processed at once. In
both cases motion estimation can be incorporated to achieve temporally consistent results. A
well-known technique is the already discussed optical flow estimation (cf. Section 3.1), which
computes optical flow vectors of each pixel in consecutive frames. Furthermore, tracking is used
to estimate motion of points, contours or regions. Since tracking is a challenging problem there
are a lot of different approaches and so this thesis can only provide a short overview of some
selected methods. A good overview of object tracking algorithms can be found in [90].

The goal of tracking is to locate an object’s position in every frame of the video. The object
may be represented in the form of different models such as points, contours or regions. As
discussed in Section 2.4, the authors of [87] used an adapted version of the KLT tracker [73]. The
tracker iteratively computes the translation of a region centred on an interest point in consecutive
frames. In the case of [87] the object’s contour is used to detect interest points and to track them
to successive frames. Afterwards, the object’s contour is recovered by using snakes [43], the
earlier discussed active contours algorithm. In that way, objects and their segments are tracked
frame by frame through the video.

The snakes algorithm [43] can also be used for segmentation without any additional track-
ing method. Therefore, the resulting snake from one frame is used as rough contour in the
consecutive frame. Thus, an object’s contour is tracked through the whole video.

CVF was already mentioned in the discussion of image segmentation algorithms. The con-
cept can also be used to solve the segmentation problem in the temporal space, e.g., [11]. After
sparse user input, an object segmentation is processed frame by frame in a temporally coherent
way. The concept of CVF and the approach of [11] are discussed in the following Section 3.3.

The second approach is to analyse and process the whole video at once. Graph-based ap-
proaches such as [26] can be extended to video. Therefore, nodes which represent pixels in a
video frame are connected by edges not only to their spatial neighbours but also temporally,
i.e., an edge connects a pixel to the pixel at the same location in the previous and next frame.
In [32] the authors further improve the temporal component by using dense optical flow vectors
to temporally connect the nodes. Other approaches (e.g., [13], [48], [60]) use optical flow to
generate long-term motion paths and enhance a segmentation with this additional information.
Long motion paths are built by following the optical flow vectors from frame to frame (as dis-
cussed in more detail in Section 3.3). The long motion paths are used to group paths according
to similar motion. By taking not only neighbouring paths into account but also all similar paths
in the whole video, objects are rediscovered after an occlusion occurred [48], [60].
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3.3 Cost-Volume Filtering

Interactive segmentation can also be formulated as a labelling problem, where the aim is to
assign each object a different label. Therefore, the user predefines some labels on objects, e.g.,
with scribbles. Interactive segmentation solves the problem of assigning each pixel to one of
these user-defined labels. Not only segmentation, but also other computer vision applications
can be formulated as label-based including stereo matching [40], optical flow estimation [40] or
colourisation [47].

A common approach to solve such problems is by minimising an energy function, where
the label costs are expressed in a data term Edata and the spatial smoothness with edge-aligned
label changes is enforced by a smoothness term Esmooth for the unknown solution J . Without
smoothing the cost volume the result would be noisy, as can be seen in the case of a stereo
matching application in Figure 3.3(b).

E(J) = Edata(J) + λ ∗ Esmooth(J) (3.1)

This energy function can, e.g., be solved by global minimisation techniques [40]. Such global
methods are, typically, computationally expensive. The main idea of CVF is to overcome this
problem by splitting up the two terms and replacing the smoothness term by an efficient edge
aware filtering operation.

More precisely, the authors of [40] propose three steps to efficiently solve multi-labelling
problems: (i) constructing a cost volume, (ii) fast cost volume filtering and (iii) winner-take-all
(WTA) label selection. This means, the final selection of the label is done by choosing the label
with the lowest cost at each pixel.

Consider a labelling problem that aims to assign each pixel i with coordinates (x, y) to a
label l from a set of all labels L = (1, ..., L). After computing the costs of each pixel i for
choosing label l, the cost volume C is a three-dimensional array (x, y, l).

In a second step the L slices of the cost volume C are filtered. The filtering step locally
smooths the label costs spatially or spatio-temporally, when a temporal filter is used. Thus,
the solution is regularised and higher quality in the final result is achieved [40] as can be seen in
Figure 3.3(c) and (d). For this purpose, different filters can be used. In the following, three filters
are discussed: At the beginning, the box filter [15] and an extended version that enables temporal
filtering following the motion of points between frames, as done in [47], are presented. Then,
the guided filter [37] as an extended spatio-temporal implementation like the authors of [40]
used it, is discussed.

Box Filter

The box filter is a linear filter which computes the average of pixels in a K × K window in
order to smooth the image and remove noise. More precisely, the box filter is applied on the
neighbourhood of a given pixel i = (x, y) in the input image I and computes a weighted sum in
order to define the new filtered output value in the output image G [79].

Gi =
∑
k

Ii+kHk. (3.2)
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Figure 3.3: Cost volume filtering used for stereo matching by [40]. (a) Zoom of the green line
in the input image, (b) slice of cost volume (white/black/red: high/low/lowest cost) for line in
(a), (c) and (d) cost slice smoothed along x and y-axes (y is not shown here) with box filter and
guided filter [37], respectively, (f) ground truth labelling. [40]

Figure 3.4: Linear filtering with a box filter: (a) input image, (b) filtered with a 3× 3 box filter
and (c) filtered with a 8 × 8 box filter. Because of the larger filter kernel in (c) the image is
smoother, but diffuse.
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Figure 3.5: Box filtering of a video with 5 frames in various versions. (a) shows a spatial box
filter in two dimensions where each coloured kernel is a separate filter operation with a 3 × 3
filter kernel. (b) shows one filter operation of a spatio-temporal box filter in three dimensions
with a 3× 3× 3 filter kernel. (c) shows one filter operation of a motion-based box filter in three
dimensions along long motion paths.

The size and the weights of the filter kernel Hk specify the effect of the filter. k = (m, l)
is the weight at position (m, l) in the filter kernel. The entries of the filter kernel, the filter
coefficients, of a box filter are all equal [15], e.g. a 3× 3 box filter kernel looks as follows:

Hk =

1
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1
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1
9

1
9

1
9

1
9

1
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1
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 =
1

9
∗

1 1 1
1 1 1
1 1 1

 . (3.3)

Each of the pixels in the filter kernel receives a weight of 1
9 . In that way, the box filter smooths

the input image. The larger the filter kernel is, the smoother is the output image (cf. Figure 3.4).
The two-dimensional filter kernel K ×K can perform a spatial filtering (cf. Figure 3.5(a)).

To extend this to the spatio-temporal space, a three-dimensional filter kernel K × K × K is
needed (cf. Figure 3.5(b)). By doing that, the frames of a video can be temporally filtered. With
this extension, not only spatial neighbours, i.e., pixels from the current frame, but also temporal
neighbours, are included in the weighted sum for the output value.

The box filter can be used to remove details in an image, e.g., noise. However, these details
may also include edges which we want to preserve. Edge-preserving filers such as the guided
filter [37] can be applied to preserve edges.
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Figure 3.6: Filtering of scribble propagation results: (a) the colour input image, (b) the result
of the spatio-temporal box filter, which filters straight through the video and (c) the result of the
extended motion-based box filter, which filters along long motion paths. As can be seen, the
regions around the edges are clearly improved in (c). [47]

Motion-based Box Filter

The authors of [47] present an extended box filter which filters the temporal direction in a dif-
ferent way than the above presented spatio-temporal box filter. More precisely, the temporal
filtering step follows the motion of points between frames. The main motivation of this ap-
proach is to prevent information from being incorrectly averaged across object boundaries in
order to achieve improved results [47].

The motion-based box filter is based on long motion paths, which are generated using optical
flow fields. Such a path is defined as the sequence of vectors of pixels that correspond to the
motion of one point over time [47]. It is computed by following the optical flow vector from one
frame to the next. A path ends, when one of the following three cases occurs [47]:

1. The path has to end, if it leaves the scene.

2. If multiple paths converge on the same pixel, just one of them continues (picked ran-
domly).

3. If a pixel does not belong to a path in the previous frame, a new path starts.

Considering these properties, every pixel belongs to exactly one path. The motion-based
box filter is following the paths to filter in the temporal direction (cf. Figure 3.5(c)). Compared
to the common spatio-temporal box filter, which filters straight through the video volume, the
edge regions are improved by using the motion-based box filter (cf. Figure 3.6). Thus, the
motion-based box filter can preserve temporal edges.

Guided Video Filter

The guided filter was first introduced for images [37] to perform an effective and efficient edge-
preserving smoothing operation. The filtered output is generated by considering the content of a
given guidance image [37]. The guidance image can either be the input image itself or another
image. The filter kernel of the guided filter can be extended to a spatio-temporal kernel [39] to
use the filter for temporal video filtering as well.



3.3. COST-VOLUME FILTERING 29

Figure 3.7: Guided Image Filter with a colour guidance image. (a) input image and guidance
image and (b) colour-guided result. [37]

The filtered output qi at pixel i = (x, y) is a weighted average [37]:

qi =
∑
j

Wi,j(I)pj , (3.4)

where i and j are pixel indeces, Wi,j the guided filter kernel. I is the guidance image and
p denotes the input image to be filtered. The spatio-temporal filter kernel [39] with coloured
guidance image I is defined as [39]:

Wi,j =
1

|w|2
∑

k:(i,j)∈wk

(1 + (Ii − µk)T (Σk + εU)−1(Ij − µk)) (3.5)

Ii and Ij are 3× 1 colour vectors. µk and Σk are the mean and covariance matrix of I and p in a
temporal window wk with dimensions wx×wy×wz , centred at pixel k. The mean µk is a 3× 1
vector, while the covariance matrix Σk and the identity matrix U are of size 3× 3. The number
of pixels in the window is denoted |w| and ε is a smoothness parameter. The filter weights can be
implemented by determining some linear coefficients ak and bk and computing the filter output
q:

ak = (Σk + εU)−1(
1

|w|
∑
i∈wk

Iipi − µkp̄k), (3.6)

bk = p̄k − aTk Iiµk, (3.7)

qi = āTk + b̄i. (3.8)

Here p̄i = 1
|w|Σi∈wk

pi is the mean of p in wk, āi = 1
|w|Σi∈wk

ak and b̄i = 1
|w|Σi∈wk

bk. All
summations (Σi∈wk

fi) in these equations are spatio-temporal box filters.
With the guided filter it is possible to transfer structure to the output image q, even if there

is no structure in the input image p, but in the guidance image I . With this property the guided
filter is used in different applications like in stereo matching [39], alpha matting [37], HDR
compression [37] or to denoise a no-flash image under the guidance of its flash version [37].
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Figure 3.8: Histogram computation by [11]. (a): the foreground histogram Hf based on the
user-marked pixels (red scribble) and the background histogram Hb based on randomly cho-
sen background samples (blue dots). (b): the resulting object segmentation, the foreground F
(white) and the background B (black). [11]

In Figure 3.3(c) and (d) the authors of [40] smoothed the cost volume of a stereo matching
application with various filters to demonstrate the importance of the filter choice. As can be seen
in Figure 3.3(b), the unfiltered cost volume slice is noisy and the lowest costs (red points) are not
consistent within regions. The cost volume filtered by the box filter is shown in Figure 3.3(c).
The resulting lowest costs are smooth, but the edges in the image are blurred. Finally, the au-
thors of [40] applied the guided filter [37] in Figure 3.3(d), which, as mentioned above, has
edge-preserving properties.

Finally, after applying a filter to L slices of the cost volume C, the filtered cost volume is
denoted as C ′. In a last step, the assigned label fi is chosen as the label l with the lowest cost
(e.g., the highest probability) at pixel i = (x, y).

fi = arg min
l

C ′i,l. (3.9)

In the case of object segmentation, e.g. [11], the result is a segmentation where each pixel is
assigned to either the foreground or the background. The video object segmentation algorithm
of [11] is discussed in the following in more detail.

Video Object Segmentation via Efficient Cost-Volume Filtering

The framework of [11] performs a fast, interactive object segmentation and allows users to ex-
tract objects from a video. Therefore, the user has only to annotate a few foreground scribbles
in order to mark pixels which belong to the foreground. Afterwards, a fast optimisation is per-
formed, which is based on spatio-temporal cost volume filtering. At the end, the filtered cost
volume is thresholded to get a binary segmentation, which extracts the foreground object from
the background.

For simplicity, users only have to mark the foreground object. Thus, a few scribbles are
necessary for object segmentation and the amount of user effort stays low. After scribbling
on one frame, colour models are built, which are used to compute costs. As colour models
colour histograms are used, which sum up to one. Each histogram has K bins and in total two
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Figure 3.9: Video Object Segmentation of a video with eight frames with the algorithm of [11].
Results in the first row present the first frame of the video, and in the second row results of
the last frame are shown. The costs in the cost volume representations ((b) and (d)) are shown
in grey values, where black are high costs (1) and white are low costs (zero). (a) shows the
input first frame with user-assigned scribbles and the last frame, (b) the unfiltered computed
cost volume, (c) the result after thresholding the unfiltered cost volume from (b), (d) the guided
video filtered cost volume and (e) the resulting segmentation after thresholding the filtered cost
volume from (d). The segmentation is performed without any additional region filling or alpha
matting step.

histograms are computed. Hf is the foreground histogram and is built from the user-marked
pixels. The background histogram Hb is built from randomly chosen background samples (cf.
Figure 3.8). Hence, it is possible that not all background samples truly belong to the background.
In [11] the colour models are improved step-by-step, while users interact with the scribble-based
user interface (UI). Since this UI, which supports local and progressive editing, is not relevant
for the further extension to a depth propagation (cf. Chapter 4), it is not further discussed.

After computing the foreground colour model Hf and the background colour model Hb, the
assignment of each pixel to either the foreground F or the background B has to be done (cf.
Figure 3.8). Thus, to achieve a spatio-temporal result, cost volume filtering is applied. First of
all, a cost volume is built (cf. Figure 3.9(b)), then the cost volume is filtered (cf. Figure 3.9(d))
and one out of the two labels is assigned to each pixel in the video (cf. Figure 3.9(e)). As
discussed in Chapter 3.3, a cost volume is built by computing the costs ccol(i) of each pixel
i = (x, y, t) per label l out of all labels L = (1, ..., L). In the context of the binary video object
segmentation there are only two labels L = (F,B), the foreground F and the background B.
Thus, only one cost volume slice is necessary. The cost volume C is three-dimensional (x, y, t),
which determines the costs of a pixel (x, y) in frame t to belong to the foreground F . The costs
ccol(i) are based on the comparison of the frequencies of i’s bin in the histograms Hf and Hb:

ccol(i) = 1−
Hf (i)

(Hf (i) +Hb(i))
. (3.10)

The costs of all user-marked pixels, which belong to the foreground, are set to 0 (cf. Figure 3.9(b)
first row). To achieve a spatio-temporal result, the guided video filter [39], which was discussed
in Section 3.3, is applied on the computed cost volume. In that way, pixels are spatially and



32
CHAPTER 3. PRINCIPLES OF VIDEO SEGMENTATION AND COST VOLUME

FILTERING

temporally smoothed while edges are preserved, which results in a spatio-temporally coherent
cost volume. A comparison of the cost volume without and with the filtering step is shown in
Figure 3.9(b) and (d), respectively. After the filtering step, a threshold is used to assign each
pixel either to the foreground (< 0.5) or the background (≥ 0.5) (cf. Figure 3.9(e)). Finally,
in [11] an additional, temporally coherent matting step is optionally performed to obtain a soft
segmentation for mixed pixels at objects borders.

3.4 Summary

This chapter summarised different aspects of video segmentation and cost volume filtering in
the context of their relevance in the field of 2D-to-3D conversion. First, a general overview of
segmentation was given including respresentation forms and features of segmentation. Then,
several segmentation techniques were presented. On the one hand, these include spatial meth-
ods, which work on images, and on the other hand there are spatio-temporal methods, which are
applied to videos and result in segments that extend over time. In the case of spatio-temporal
methods, the segmentation algorithm can either be based on spatial approaches to detect seg-
ments in individual frames and further track them from frame to frame, or can analyse the whole
video at once to perform a segmentation. Finally, interactive segmentation described as a la-
belling problem was discussed. The main idea of cost volume filtering was presented as well.
Since the algorithm proposed in this thesis is based on a video object segmentation algorithm
that exploits the concept of cost volume filtering, such a algorithm was discussed in more detail
in the final section of this chapter.



CHAPTER 4
Cost Volume Filtering-based Depth

Propagation

This chapter presents a new semi-automatic 2D-to-3D conversion approach. The proposed ap-
proach is motivated by the interactive video object segmentation algorithm from [11]. The in-
teractive segmentation from [11] performs a binary segmentation of a video into foreground
objects and background objects (cf. Section 3.3) based on user-performed foreground scrib-
bles. By contrast, our proposed approach focuses on a different and more complex application
domain, i.e., 2D-to-3D conversion. Therefore, specific challenges concerning a comfortable
3D viewing experience have to be taken into account additionally to the increased label set in
2D-to-3D conversion, i.e., multiple disparities contrary to only fore- and background. Thus, in
Section 4.1 we describe a naive extension of [11] to a 2D-to-3D conversion method. Contrary
to [11], our extension performs a multi-label segmentation into depth-layers and propagates a
user-assigned depth value to each pixel in an image or video. For this purpose, user-assigned
depth scribbles are used. In our case of 2D-to-3D conversion, a depth-layer is a part in the video
defined by its position in depth. Thus, an object can consist of multiple depth-layers with differ-
ent assigned depth values, which increases the complexity of the 2D-to-3D conversion compared
to the segmentation. The goal of further extensions is to achieve a temporally coherent depth
map with additionally identified depth-layers.

The naive extension of [11] to a simple depth propagation framework mentioned above (cf.
Section 4.1), is further improved in several steps. The temporal consistency improvement (cf.
Section 4.2) implements an enhanced filter, the spatial influence extension (cf. Section 4.3) adds
an additional spatial influence term, and the temporal depth change extension (cf. Section 4.4)
enables temporal depth changes. Those extensions and improvements are presented in the fol-
lowing.

33
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Figure 4.1: (a) the first frame of the video, (b) the first frame annotated with scribbles by the
user. The depth values are represented in the form of scribbles that are colour coded according
to the hue scale.

4.1 Naive Extension to a Simple Depth Propagation Framework

We first extend the video object segmentation of [11] to a naive extension (NE), that is a simple
depth propagation method that is based on multiple scribble-based depth annotations instead of
the originally used foreground scribbles in [11]. Below, we briefly explain the annotations used
and the propagation using the cost-volume filtering framework [40].

User-assigned depth scribbles Prior to the execution of the propagation algorithm, users an-
notate objects in the first input frame with colour scribbles. The colour of the scribbles
encodes their depth, whereby each scribble l has exactly one depth value assigned. Specif-
ically, the hue of the scribble l defines the assigned depth value d(l) (cf. Figure 4.1).
Given these sparse depth values, the propagation algorithm’s goal is to assign each pixel
(x, y) in each frame t to one of the user defined scribbles l from the set of all scribbles
L = (1, ..., L) and their associated depth values. Analogue to [11], we generate a four-
dimensional cost volume C(x, y, t, l), where the costs c(i, l) of each pixel i = (x, y, t) for
assigning the depth of scribble l are computed.

Colour models Our main assumption is that similar colours result in similar depth in the fi-
nal depth propagation. It has been shown (e.g., [8], [11]) that such an assumption can
be implemented using colour models. Similar to [11], binned colour histograms that were
generated from the user-assigned scribbles are used to perform the cost computation. Con-
trary to [11] (cf. Section 3.3), we compute fore- and background colour histograms for
each scribble l separately. Figure 4.2 gives an example of the cost computation that is per-
formed in the case of 2D-to-3D conversion. Trimaps shown in Figure 4.2 are grey scale
images used for the generation of the histograms of each scribble, where white pixels are
pixels from the current scribble l, black pixels are pixels from all other scribbles except
the current scribble and grey pixels are not covered by any scribble. The foreground his-
tograms Hf,l are built from all pixels that are covered by the current scribble l (white
pixels in the trimap in Figure 4.2). The background colour histogram Hb,l is built from all
user-marked pixels without the pixels of the current scribble l (black pixels in the trimap
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Figure 4.2: In the first row, trimaps of each user defined scribble from Figure 4.1 are shown.
White pixels in the trimaps mark the current scribble l and are used for the generation of the
foreground histograms Hf,l. Black pixels mark all other scribbles L \ l and are used for the
generation of the background histograms Hb,l. Grey pixels are not covered by any user scribble
and have no influence on the computation of the histograms. The resulting guided filtered cost
volume slices for each scribble l are shown in the second row for the first frame.

in Figure 4.2). In [11] the background histogram was built according to randomly chosen
pixels from the background.

Cost volume generation A cost volume slice C(l) is computed for each scribble l. For each
pixel i = (x, y, t) the costs for each label l are computed according:

ccol(i, l) = 1−
Hf,l(i)

(Hf,l(i) +Hb,l(i))
. (4.1)

Here, ccol(i, l) describes the probability that pixel i belongs to scribble l. The last part of
Eq. (4.1) is the actual cost computation. Low costs refer to a high probability that pixel i
belongs to scribble l and vice versa. In the following, ccol is referred to as cost computation
and both terms, small costs (i.e., values close to 0) and high probability (i.e., values close
to 1) are used synonymously. Subsequently, the l slices, i.e., costs for a specific label l, of
the cost volume are filtered with the guided video filter (cf. Section 3.3). Following the
CVF framework [40], the costs of all user-marked pixels are set to either 0 or 1, depending
on whether the pixel belongs to the current scribble l or to one of the other scribbles. An
example of a filtered cost volume is shown in Figure 4.2. It can be seen that those pixels
which are similar in colour to pixels covered by the user-assigned scribble l have low
costs/high probabilities (white pixels in cost volume in Figure 4.2).

Depth assignment We experimented with two approaches for the final depth propagation d(i)
of each pixel i = (x, y, t): (i) the winner-take-all approach (WTA) (cf. Section 3.3) and
(ii) depth blending (DB). In the winner-take-all approach, the final propagated depth value
of scribble f and therefore the depth value d(f) is chosen from the scribble l and their
corresponding depth value d(l) with the lowest cost at pixel i = (x, y, t) (cf. Eq. (3.9)).
In that case, the resulting depth map contains only depth values which the user originally
assigned with the colour coded scribbles at the beginning (cf. Figure 4.3(b)). Since no
variations inside an object are given, this leads to the cardboard effect.
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Our newly introduced depth blending approach avoids the above mentioned cardboard
effect and enables other depth values as well. The basic idea of this approach is to compute
a mean of disparities weighted by their costs. In [89] the authors used this approach in
the context of a colourization application. They compute a weighted average of various
colours in the provided set of scribbles for the finally assigned colour value. Similarly, the
finally assigned depth value at pixel i is an average of all different depth values d(l) which
the user assigned at the beginning, weighted by the computed costs at each scribble l:

d(i) =
Σl∈Lci,ld(l)

Σl∈Lci,l
(4.2)

This depth blending approach eliminates the cardboard effect, since there are now depth
variations within objects. A further extension is to compute a weighted mean value of the
n lowest cost volume slices (out of all cost volumes slices for each scribble l) at each pixel
(cf. Figure 4.3). By this means, labels with the highest costs which may indicate outliers
do not have any influence on the depth propagation.

Experimental Results

Figure 4.3 gives an example for both depth assignment strategies. Results of the first approach
are presented in Figure 4.3(b). It is shown that all three user-assigned depth values are prop-
agated to the final depth map. There are sharp depth changes near object borders. Moreover,
the depth borders are well aligned with object borders. However, noise occurs, e.g., at the top
left borders of the head. The most noticeable errors are the small holes within the object, e.g.,
at the bottom (cf. red arrows in Figure 4.3). These holes occur because the colour similarity to
one of the background (yellow scribbles in Figure 4.3) scribbles is higher than to the foreground
object. Thus, the user-assigned depth of the background scribbles is assigned to those pixels.
These holes within the object could easily be corrected with a simple region filling algorithm,
e.g., [27]. As mentioned earlier, a disadvantage of the winner-take-all approach is the limitation
to the user assigned depth values. Since only the initial depth values are propagated, no depth
variations within an object can be modelled, which causes a cardboard effect. After using a
rendering algorithm, e.g., [25], to generate the second image and viewing the video in 3D, the
objects in the video appear to be flat. The results of depth blending are presented in Figure 4.3(c)
and (d). While in Figure 4.3(c) only the n = 2 lowest cost volume slices are used to compute
depth blending values for the propagation, Figure 4.3(d) shows depth blending of all n = 4 cost
volume slices. As can be seen, the results in Figure 4.3(d) are smoother than in Figure 4.3(c),
which can be attributed to the inclusion of cost volume slices with the largest costs. The differ-
ence is especially noticeable in the background, where various depth values are propagated. The
depth propagation with this approach enables depth variations within the object. However, the
holes that are caused by colour ambiguities between objects and which were noticeable when
using the WTA approach for depth propagation in Figure 4.3(b), are also occurring in the results
when using the depth blending strategy.
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Figure 4.3: Resulting depth propagation. (a) shows frame 1, 5 and 8 of the input video, (b)
the depth propagation due to the winner-take-all approach, (c) and (d) show the final depth
propagation due to the depth blending approach. (c) shows the depth propagation of n = 2
lowest cost volume slices, while in (d) all n = 4 cost volume slices are used for the depth
blending propagation. Red arrows point to holes within the object caused by colour similarity.

4.2 Temporal Consistency Improvement

In the naive extension of the interactive segmentation algorithm to a 2D-to-3D conversion algo-
rithm, the temporal consistency of the conversion result is limited by the filter radius. Specifi-
cally, fast motion can cause an object to move out of the static spatio-temporal filter window of
the guided video filter. Since the additional information provided by the neighbouring frames
includes information of various objects with different depth values, temporal filtering mixes up
depth values of various objects and noise occurs at depth borders (cf. Figure 4.4). The described
problem can, depending on the size of the filter window, easily occur in videos that contain
dynamic objects.

We address this problem by extending the temporal filtering and improve the temporal con-
sistency of our 2D-to-3D conversion results. Therefore, the temporal consistency improvement
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(TCI) extends the guided video filter (cf. Section 3.3) used in the CVF process. To this end, the
motion-based box filter (cf. Section 3.3), which filters along motion paths, is implemented and
used within the guided filter computation instead of the common spatio-temporal box filter as
done in [40]. Thus, an optical flow implementation and further the generation of long motion
paths have to be performed.

For this purpose, an optical flow estimation provided by OpenCV [62] is used (unless ex-
plicitly stated otherwise in this thesis). The estimated motion vectors are used to build motion
paths throughout the video. Specifically, motion paths are built by following the estimated
flow vectors w = (u, v) of each pixel i = (x, y, t) to the new position in the next frame
it+1 = ((xt+1 = xt + ut, yt+1 = yt + vt), t + 1). As the flow vectors are floating point
numbers, it+1 = (xt+1, yt+1, t+ 1) usually ends up between pixels. Thus, after a rounding op-
eration the new pixel position is determined. In Section 3.3, a few constraints for building these
motion paths were already discussed: (i) a path has to end, when it leaves the scene, (ii) when
multiple paths converge on the same pixel, only one path continues randomly and (iii) when a
pixel does not belong to a path in the previous frame, a new path starts at this pixel’s position.
Now an additional constraint is introduced in order to further improve the paths. Thus, (iv) a
path should end, when it gets occluded in order to avoid paths that contain pixels of different
objects. We detect occlusions by a tolerant consistency check of the forward and backward op-
tical flow [78]. Hence, flow vectors are computed once from frame t to the next frame t + 1,
which describes the forward flow vectors w = (u, v), and a second time from frame t+ 1 back
to frame t, which denotes the backward flow vectors w̄ = (ū, v̄). Using this notation, the flow
vectors in the non-occlusion case equal

ut(xt, yt) = −ūt(xt + ut, yt + vt) (4.3)

and
vt(xt, yt) = −v̄t(xt + ut, yt + vt). (4.4)

If Eq. (4.3) and Eq. (4.4) are not fulfilled, the vector does not point back and it is either occluded
in frame t+ 1 or an estimation error occurred. Either way, the path should stop at such a point.
However, small estimation errors are tolerated by the following constraint:

|w − w̄| < 0.5 (4.5)

If this condition is not satisfied, the path breaks up and a new one starts at frame t + 1. With
this additional condition, the long motion paths are built and further used in the motion-based
box filter, which is used in the guided video filter implementation from Section 3.3. Thus, the
guided video filter uses the long motion paths to filter in the temporal direction.

Experimental Results

Figure 4.4 gives an example of the temporal consistency improvement which was discussed in
this section. As described above, the flow vectors are further used to generate the long motion
paths. Figure 4.4(a) shows the results of the naive extension of [11] discussed in the previ-
ous Section 4.1, and Figure 4.4(b) presents results after applying the above discussed temporal
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Figure 4.4: Comparison of the naive extension of [11] of Section 4.1 shown in (a) and the
results of the temporal consistency improvement shown in (b). To the left the resulting depth
propagation using the WTA approach is shown, while to the right the resulting depth propagation
using the depth blending is shown. As can be seen, the noise especially at depth borders is being
reduced.

consistency improvement. As can be seen in Figure 4.4(b), the before mentioned noise at the ob-
ject’s boundary is corrected in both approaches, the winner-take-all approach (cf. Figure 4.4(a)
left hand side) and the depth blending approach (cf. Figure 4.4(b) right hand side). Hence, an
improvement, especially at depth boundaries, is achieved, because the enhanced filter uses the
long motion paths to filter in the temporal direction. The filter window moves along the built
long motion paths and thus, together with the object. Hence, the filter window is centred on
the same point of the same object in the previous and next frames. With the common guided
video filter implementation (cf. Section 3.3) it might happen that pixels with similar colours in
the previous or next frame belong to a different object and thus the filtering process results in
artefacts (cf. Figure 4.4(a)).

4.3 Spatial Influence Extension

We believe that users typically prefer local changes. In other words, they assume that a scribble
on an object influences only the scribbled object and not similarly coloured objects that are far
away from the scribble. Thus, the assumption is that pixels close to a scribble have lower costs
(i.e., high probability to belong to the depth of the scribbled object) than pixels that are far away
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Figure 4.5: (a) shows frame 1, 13 and 20 (from left to right) of the input video. (b) presents
the movement of points belonging to the red coloured scribble in the first frame by showing
their long motion path pixels in frame 1, 13 and 20. (c) visualizes the distance maps with a
spatial threshold tspatial = 100. Black pixels are the tracked scribble points of scribble l, while
white pixels result in total costs of 0. Grey values in between are reducing linearly the colour
probability ccol(i, l) and result in higher total costs.

from the current scribble. This assumption was not included in the naive extension of [11].
Since costs are calculated due to colour similarity, wrong pixels with low costs can appear. Such
wrong pixels are occurring when pixels have a similar colour as the scribbled object, while
actually belonging to another object. This case is shown in Figure 4.7, where wrongly computed
costs cause a mis-assignment of depth in the final depth propagation (cf. Figure 4.7(b) and (c)
first row).

Therefore, the idea of this spatial influence extension (SIE) is to update the calculation of the
total costs c(i, l) for each pixel i belonging to scribble l, by adding an additional spatial influence
term csp(i, l). This spatial influence term csp(i, l) describes the influence of pixel i on the cost
computation based on its spatial distance to scribble l. The basic idea is that the spatial influence
term csp(i, l) increases the total costs of wrong pixels, which are far from the current scribble l.
Below, we describe the computation of these spatial costs and the accordingly performed update
of the cost volume in detail.

The computation of spatial costs in the first frame is straightforward. The distance of each
pixel i to the user-assigned scribble l in the first frame is determined in order to calculate the
spatial influence. To this end, a distance map for each scribble l is computed, which establishes
the distance to the closest pixel from scribble l. Therefore, a distance transform method using the
algorithm from [7] is implemented. The result of the distance transformation method for each
scribble l is an image where all non-scribble pixels have a distance value, which is the distance
to the nearest scribble pixel of scribble l [7]. Commonly, metrics like the Euclidean distance
or the Manhattan distance are used for the distance calculation. However, these approaches
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are complex and therefore in [7] the author introduced a faster and local approach, where the
function consists of basic shifts in horizontal, vertical and diagonal direction and the distance is
calculated as a sum of these basic distances. The resulting distance map of scribble l defines the
distance, given in pixels, to the closest scribble point of l.

In a next step, a spatial threshold tspatial is defined, which determines the maximal distance
to scribble points, where costs are weighted due to their distance to the scribble points. This
threshold tspatial is set in pixels. In the following dst(i, l) is the distance of pixel i = (x, y, t) to
scribble l in frame t in pixels. csp(i, l) are the spatial costs at pixel i regarding scribble l:

csp(i, l) =

{
1.0, if dst(i, l) ≥ tspatial
dst(i, l)/tspatial, otherwise

(4.6)

As a result, scribble points from scribble l have a distance value 0.0 (black pixels in Fig-
ure 4.5(c)) and pixels with a distance ≥ tspatial are set to 1.0 (white pixels in Figure 4.5(c)).
Thus, the resulting spatial costs csp(i, l) are in a range between 0.0 and 1.0.

To calculate spatial costs csp(i, l) in the following frames, the position of the user-assigned
scribbles in the first frame have to be identified in each of the following frames t. To this end,
we use the long motion paths that were introduced in Section 4.2 to track scribble points in each
frame. Paths which start at scribble points of l in the first frame are followed throughout the
video. Thus, in each frame t the position of the scribble points of l can be determined and a
distance map can be computed.

Finally, the computed spatial costs csp(i, l) are combined with the costs based on colour sim-
ilarity ccol(i, l) in order to determine total costs c(i, l), i.e., the probability of pixel i belonging
to scribble l:

c(i, l) = ccol(i, l) ∗ (1− csp(i, l)) (4.7)

The right term of this equation (Eq. (4.7)), determines the probability that a pixel i is close to a
point of scribble l. By combining this probability with the colour probability (cf. Eq. (3.10)), the
cost of a pixel close to scribble l hardly changes, while the costs of pixels further away increase
until the threshold tspatial is reached, i.e., the probability belonging to scribble l decreases. Pix-
els further than tspatial have costs of 1.0 and are excluded of belonging to scribble l. By this
means, wrong pixels with similar colour are eliminated.

Since users typically prefer local editing over global editing, we additionally allow the defi-
nition of the spatial costs influence specific for each scribble. This means we allow expert users
to define separate tspatial(l) for each scribble l. To allow an easier choice of the area of in-
creased influence for a specific scribble l, the respective distance map (e.g., as in Figure 4.5) can
be visualised.

Experimental Results

Figures 4.6 to 4.11 show the effect of the spatial influence extension. In these examples, ground
truth optical flow [16] was used. In the following, different aspects of the spatial influence exten-
sion are discussed: (i) the general impact of the additional spatial costs term, (ii) the influence of
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the spatial threshold tspatial, (iii) the additional feature of separated spatial thresholds, and (iv)
the combination with the temporal consistency improvement from Section 4.2.

Impact of the additional spatial costs term The influence of the additional cost term can be
seen in the cost volumes shown in Figure 4.6 and the corresponding resulting depth maps
shown in Figure 4.7. In the following discussion, the resulting cost volume with simple
calculated costs as presented in the naive extension of [11] (cf. Section 4.1) is called the
basic cost volume, while the spatial cost volume refers to costs calculated with the addi-
tional spatial influence term as introduced in this spatial influence extension. For better
understanding, details discussed in the following passages are highlighted and numbered
in Figure 4.6 and Figure 4.7.

The basic cost volume slice of scribble l = 1 (the yellow scribble shown in Figure 4.6(a)
with the corresponding basic cost volume slice in (a) first row), which marks the back-
ground region, clearly shows wrong cost values in the region of the person’s tank top, and
thus, propagates a wrong depth value to the final depth map (cf. arrow nr. 1 in Figure 4.6
and Figure 4.7). These wrong costs are occurring due to the colour similarity of the tank
top and the marked background. In the corresponding spatial cost volume slice of the
scribble l = 1 (cf. Figure 4.6(b) second row), those costs are eliminated because those
pixels are too far from scribble l = 1.

The contrary case can be seen in the basic cost volume slice of scribble l = 3 (the red
scribble shown in Figure 4.6(a) with the corresponding basic cost volume slice shown
in (d) first row), which marks the person in the foreground. Here, the structure in the
background shows low costs (cf. arrow nr. 2 in Figure 4.6 and Figure 4.7), because of
the colour similarity to the marked tank top. These wrong costs have no effect on the
final depth propagation of the WTA approach as can be seen in the final depth propagation
shown in Figure 4.7(b) in the first row. Due to the fact that the background region has
already low costs in the cost volume slice of scribble l = 1, the depth value of scribble
l = 1 is assigned. However, due to the weighted mean computation of all cost volume
slices, these wrong costs effect the final depth propagation of the DB approach as shown
in Figure 4.7. However, the wrongly computed low costs in the top right part of the frame
(cf. arrow nr. 3 in Figure 4.6 and Figure 4.7) in the basic cost volume slice of scribble
l = 2 (the blue scribble shown in Figure 4.6(a) with the corresponding basic cost volumes
shown in (c) first row), are resulting in erroneous depth propagation (cf. Figure 4.7(a)).

Influence of the threshold tspatial By looking at the person’s head in the second row of Fig-
ure 4.7(b), one recognizes that the depth borders of the depth propagation using the spa-
tial cost volume show more artefacts than in the first row. This is the result of a too small
spatial threshold, e.g., visible in the middle frame of Figure 4.6(b).

In Figure 4.9 the effect of various spatial threshold values tspatial is demonstrated. A
higher threshold value leads to less noise in the head’s border region, but also induces
erroneous depth propagation in the tank top region. The result of a depth propagation with
a large depth range and more detailed scribble input is presented in Figure 4.8. There, the
effect of the spatial influence term is visible at the boxes at the left hand side of the scene
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Figure 4.6: Visualization of the effect of the spatial influence extension with the additional
spatial costs csp(i, l). (a) shows the user-assigned scribbles and frames 1, 13 and 20. (b)-(d) show
the cost volume slice entries for each of the input scribbles. The first row per scribble l presents
the result from the cost computation without spatial costs as in the naive extension of [11] (cf.
Section 4.1), while the second row shows the results from the cost volume slices of scribble l
with spatial costs csp(i, l). (b) corresponds to the cost volume slice entries of the yellow user-
assigned scribble marking the background. (c) corresponds to the cost volume slice entries of
the blue user-assigned scribble marking the object at the right hand side. (d) corresponds to the
cost volume slice entries of the red user-assigned scribble marking the person in the foreground.
Highlighted and numbered regions refer to details discussed in the Experimental Results section.
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Figure 4.7: Final depth propagation. (a) shows frames 1, 13 and 20 of the input video, (b) shows
results of the winner-take-all approach and (c) results of the depth blending approach. The first
row in (b) and (c) shows the results of the depth propagation with a cost computation without
spatial costs as in the naive extension of [11] (cf. Section 4.1). The second row in (b) and (c)
shows the results of propagation with a cost computation with spatial costs. Highlighted and
numbered regions refer to details discussed in the Experimental Results section.



4.3. SPATIAL INFLUENCE EXTENSION 45

Figure 4.8: Final depth propagation of a more advanced scribbling with 16 scribbles and 7 dif-
ferent depth values. (a) shows results of the winner-take-all approach and (b) results of the depth
blending approach. The first row in (a) and (b) shows depth propagation with the common cost
computation as presented in Section 4.1, while the second row in (a) and (b) shows propagation
after adding the additional spatial influence term with tspatial = 130 to the cost computation.
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Figure 4.9: Final depth propagation after the winner-take-all approach with various spatial
threshold tspatial values.

and the structure at the façade in the background. The similar colours of the boxes cause
wrong costs at the façade and, therefore, the final depth propagation looks erroneous (cf.
Figure 4.8(a) and (b) first rows). Using the spatial cost volume the propagation result
improves (cf. Figure 4.8(a) and (b) second rows).

Separate spatial thresholds It is difficult to use a spatial threshold tspatial globally for all
scribbles. For example, in the case of the background in Figure 4.10, a global thresh-
old tspatial = 100 results in an erroneous segmentation. Therefore a separate setting of
tspatial(l) is introduced and illustrated in Figure 4.10.

Combination with the Temporal Consistency Improvement Finally, the results of both in-
troduced improvements shall be discussed. On the one hand, there is the temporal consis-
tency improvement from Section 4.2 and, on the other hand, the spatial influence extension
presented in this section. In Figure 4.11, the combination of both is presented. The spa-
tial influence extension can eliminate wrong pixels. However, it may still lead to noisy
pixels around the object borders (cf. Figure 4.11 second row, red framed regions). By
applying the temporal consistency improvement from Section 4.2, some noisy pixels can
be removed, as can be seen in the last row of Figure 4.11 (green framed regions). Hence,
making use of both introduced extensions can result in enhanced depth propagation.

4.4 Temporal Depth Change Extension

Dynamic objects in videos are typically not fixed at a single depth. For example, objects can
move towards the camera or the camera zooms in. Our final extension enables temporal depth
changes of objects. For this purpose, our 2D-to-3D conversion algorithm is extended by the
temporal depth change extension (TDCE) by the following steps: (i) users mark the last frame
with colour coded scribbles additionally to the first frame, (ii) matching scribble pairs from the
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Figure 4.10: Comparison of the global threshold for all scribbles, shown in (a), versus a separate
threshold for each scribble, shown in (b). In the first row of (a) and (b), the input scribbles
on the first frame, and input frame 16 are shown, respectively. (a) shows in the second row
the resulting CVF segment of frame 16 of the background (red scribble), by using a global
threshold tspatial = 100 for all scribbles in the video. In the third row, the resulting depth map
(WTA approach) is shown. (b) shows results by using separate thresholds for each scribble. For
the background (red scribble) no spatial influence term is added at all, the thresholds tspatial of
the other objects in the video are chosen between 100 and 300 to achieve the final depth map
(WTA approach) in the third row. In the second row of (b), the resulting CVF segment of the
background (red scribble) without any spatial threshold for this scribble is shown.
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Figure 4.11: Effect of the temporal consistency improvement (cf. Section 4.2) in combination
with the spatial influence extension. The first row shows frame 1, 13 and 20 of the input video.
The second row presents results of CVF (winner-take-all) with the spatial influence extension
(highlighted regions in red), while the last row shows CVF (winner-take-all) with the temporal
consistency improvement and the spatial influence extension (highlighted regions in green). In
the third, some regions are compared with each other. As can be seen, most of the noisy pixels
at borders are removed by using the spatial influence extension.

first and last frame are identified, (iii) the cost computation is adapted, (iv) a depth order of the
objects is determined to ensure a perceptual consistent depth change, and (v) based on the depth
order, a depth change model for each scribble pair is determined. These steps are discussed in
detail in the following.

(i) User Interface

In order to define the depth change of an object, the user has to add scribbles on the last frame
as well (cf. Figure 4.12). A positive side effect of additionally adding scribbles in the last frame
is that objects that enter the scene at a later point can be assigned with scribbles, e.g., the wing
of the big dragon in the last frame in Figure 4.12.
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Figure 4.12: First (left) and last (right) frame with annotated scribbles of a video with 18 frames.
By assigning differently coloured scribbles in the first and last frame, e.g., on the person or the
small dragon, the user defines a depth change between the first and the last frame.

(ii) Identify matching scribble pairs

Subsequent to the user annotation, the propagation algorithm determines scribble pairs, i.e.,
one scribble in the first and one scribble in the last frame that cover the same object (e.g., the
yellow and purple scribble of the small dragon in Figure 4.12). By assigning different depth
values to an object in the first and last frame, users define a depth change over time. Based
on these different depths, models for smooth depth changes can be defined at a later point of
the algorithm. To identify the above mentioned matching scribble pairs, we adapt the motion
segmentation algorithm of [30]. This algorithm merges long motion paths with similar motion
to one segment. The basic idea is that matching scribbles of the same object will contain the
same segment. These matching scribbles are merged to a single scribble pair.

In the following, we briefly review the segmentation algorithm of [30]. It works by merging
similar (in terms of motion) neighbour paths to segments according to two adaptive thresholds
(see [30] for details). Only a few adoptions are made to use the algorithm in the course of this
thesis. The motion segmentation algorithm uses the built long motion paths for the temporal
consistency improvement (cf. Section 4.2). To achieve a segmentation into segments of sim-
ilar moving paths, the efficient graph-based segmentation algorithm from [26] is implemented
(see [26] for more details). The long motion paths are grouped due to a similarity measure by
taking the pixel positions of the paths and their movement, i.e., their flow vectors, into account1.
Contrary to [30], we add an additional step: Initially, each node presents a region of its own. We
further join all paths which belong to a user-assigned scribble l, independently from their edge
weights. By this means, it is made sure that the user-assigned scribble belongs to exactly one
segment of the video (cf. Figure 4.13). The following grouping of similar paths in segments
is applied as in [30]. Finally, the graph-based segmentation of similar moving paths results in
segments as can be seen in Figure 4.13.

The resulting segments (cf. Figure 4.13(b) and Figure 4.14(c) and (d)) are further used to
identify matching scribble pairs. In this context, a scribble from the first or the last frame belongs
to exactly one segment. However, it is worth to note that a segment can contain none, one or
more than one scribble. The goal is to group scribbles so that each scribble belongs to one of the
following definitions:

1In [30], an additional depth component is added, which is not used in this implementation.
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Figure 4.13: Illustration of resulting segments (a) without merging segments belonging to the
user-assigned scribble l, and (b) with merging segments belonging to the user-assigned scribble
l. User-assigned scribbles are shown in Figure 4.12.

Single start scribble One scribble from the first frame, e.g., yellow framed scribbles in Fig-
ure 4.14(f). This scribble belongs to exactly one segment and has a user-assigned depth
value. No other scribble from the first frame with the same user-assigned depth value is
in the same segment.

Grouped start scribble More than one scribble from the first frame. All start scribbles in this
group belong to exactly one segment and have the same user-assigned depth value. Note
that other scribbles from the first frame in the same segment but with a different user-
assigned depth value might exist in the first frame. However, if they are assigned to a
different depth value, they are not part of this grouped start scribble.

Single end scribble One scribble from the last frame, e.g., blue framed in Figure 4.14(f). This
scribble belongs to exactly one segment and has a user-assigned depth value. No other
scribble from the last frame with the same user-assigned depth value is in the same seg-
ment.

Grouped end scribble More than one scribble from the last frame. All end scribbles in this
group belong to exactly one segment and have the same user-assigned depth value. Note
that other scribbles from the last frame in the same segment but with a different user-
assigned depth value might exist in the last frame. However, if they are assigned to a
different depth value, they are not part of this grouped end scribble.

Scribble pair A pair of a (grouped) start scribble from the first and a (grouped) end scribble
from the last frame, e.g., green framed in Figure 4.14(f). All scribbles in a scribble pair
belong to exactly one segment, where the (grouped) start scribble(s) have a different user-
assigned depth value than the (grouped) end scribble(s).
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Figure 4.14: Identifying matching scribble pairs. (a) shows the first frame with user-assigned
start scribbles and (b) shows the last frame with end scribbles. A depth change of the person is
noticeable between the first and last frame scribbles. (c) shows the resulting segments in the first
frame, while (d) shows segments in the last frame. (e) presents the scribble matching process.
The grouped start scribble s2 has five possible matches with (grouped) end scribbles e1, e2, e4,
e5 and e10, where the grouped end scribble e4 achieves the highest correlation and is chosen for
a scribble pair match. (f) shows all resulting single start scribbles (yellow framed), single end
scribbles (blue framed) and joined scribble pairs (green framed)

.
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Depth changes are indicated by corresponding (grouped) start and (grouped) end scribbles
that exhibit different depths. To identify pairs (i.e., scribble pairs) of corresponding (grouped)
start and (grouped) end scribbles we perform a matching step. Each of the (grouped) start
scribbles is examined according to corresponding (grouped) end scribbles in the same segment.
It is possible that there is more than one possible match (cf. Figure 4.14(e)). Hence, a matching
probability is computed for each candidate scribble pair. In particular, the colour correlation is
calculated by comparing the colour histograms of points belonging to the (grouped) start scribble
si and to the (grouped) end scribble ei:

mcol(Hs, He) =
Σn(Hsi(n)− H̄si)(Hei(n)− H̄ei)√

Σn(Hsi(n)− H̄si)
2Σ(Hei(n)− H̄ei)

2
(4.8)

Here,Hsi is the colour histogram with a total number ofN bins of the (grouped) start scribble si
and Hei the colour histogram of the (grouped) end scribble ei. Then n is the nth bin of the start
or end scribble histogram and H̄k = 1

N ΣnHk(n). The resulting metric values of mcol(Hs, He)
range between 0.0 and 1.0. The larger the value, the larger is the colour similarity between the
two (grouped) scribbles. Because the start and end scribbles of a scribble pair belong to the
same object, the colour similarity should be large and the (grouped) start and end scribble with
the largest match are joined to a scribble pair (cf. Figure 4.14(e)). However, it is possible that
scribbles which are not match are in the same segment. Therefore, a threshold tcolour is defined,
and only pairs with a correlation higher than tcolour are joined to a scribble pair. The threshold
is set to tcolour = 0.6 by default. Following this matching procedure, single start scribbles (cf.
Figure 4.14(f) yellow framed), grouped start scribbles, single end scribbles (cf. Figure 4.14(f)
blue framed), grouped end scribbles and scribble pairs with scribbles from the first and last frame
(cf. Figure 4.14(f) green framed) can be identified. Objects represented by such scribble pairs
with different depth values in the first and last frame are defined by the user to change depth
over the time.

(iii) Adapt cost computation

Since there are now (grouped) start scribbles, (grouped) end scribbles and scribble pairs, the cost
computation has to be adapted. In particular, the pixels used to built the foreground histogram
Hf,l and the background histogram Hb,l are newly defined. Additional to the colour information
of the user-assigned scribbles on the first frame, the colour information of the user-assigned
scribbles on the last frame is used as well. The foreground histogramHf,l is built from all pixels
covered by the (grouped) start scribble, (grouped) end scribble or the scribble pair l. In the case
of a scribble pair, pixels from the first and last frame are used to build the foreground histogram.
Similarly, the background histogram Hb,l is built, i.e., all pixels from scribbles on the first and
last frame not belonging to the current scribble l are used.

(iv) Determining a depth order

In order to define the depth change of an object corresponding to a scribble pair, a depth order
in each frame of the video is determined by analysing the motion in the video, i.e., occlusions
that are caused by moving objects. For example, the occlusion of an object A by another object
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B is identified, i.e., B is in front of A. Thus, depth restrictions for the depth change can be
defined, i.e., B > A, the depth value of object A is not allowed to be larger than the depth value
of object B, because it is occluded by B. Those depth restrictions are important for achieving a
perceptually consistent depth change.

As mentioned above, a rough depth order of a frame can be established by analysing the
motion in the video. Specifically, motion-caused occlusions and disocclusions carry these depth
order restrictions. The depth order and depth restrictions are defined for each frame separately
in three steps: (i) a pairwise depth order is estimated by finding occlusions and disocclusions
between two segments corresponding to a (grouped) scribble or scribble pair, (ii) the relative
depth orders of a frame are stored in a directed acyclic graph (DAG) in order to achieve a global
depth order for each frame, and (iii) depth restrictions are defined due to the order in the DAG.
Below, these three steps are explained in detail.

In order to identify occlusions/disocclusions between two segments, those segments were
obtained by previous steps in the 2D-to-3D conversion. Thus, the segments used for the pair-
wise occlusion/disocclusion detection are either from the CVF or from the motion segmentation.
Their difference and characteristics are explained below:

CVF segments A segment corresponds to a (grouped) scribble or scribble pair, which results
from CVF. In particular, a segment resulting from CVF is based on the user-assigned
scribbles and covers pixels which are similar in colour and close to the user-assigned
scribble. Hence, a pixel in frame I(t) belongs to exactly one segment corresponding to
scribble l, which enables finer depth ordering, e.g., in front of slanted surfaces, since par-
tial occlusions of a moving object in front of a slanted surface can be detected. However,
if the resulting segmentation from CVF is noisy, the depth order can be erroneous. Fig-
ure 4.15(e)-(h) shows resulting CVF segments of the brown slanted surface due to the
input scribbles shown in (a) and (d). Due to of the separated segments, partial occlusions
and disocclusions of the brown slanted surface that were caused by blue rectangle can be
detected.

Motion segments These segments result from the motion segmentation. Contrary to the CVF
segments, motion segments are based on similar motion and not on colour. Since motion
segments covered by a user-assigned scribble are joined during the motion segmentation
procedure, the user can influence these segments with the scribbles as well. Hence, as
mentioned above, a motion segment can correspond to one or more (grouped) scribbles
or scribble pairs. Thus, a slanted surface typically is represented by one motion segment,
since the whole surface is moving and has the same motion, with more than one scribble
with different assigned depth values, e.g., as shown in Figure 4.15(i). However, each of
the scribbles on the slanted surface corresponds to the same motion segment. When an
object A moves in front of a slanted surface B and a partial occlusion is detected, the
resulting depth order would be A > B, even if A occludes only the furthest part of B,
e.g., Figure 4.15(i). Since the brown slanted surface in Figure 4.15 is used as shown in (i)
for the occlusion/disocclusion detection, it is assumed that the blue rectangle occludes the
whole slanted object, even if only the furthest part is occluded.
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Figure 4.15: A video with a slanted surface (brown object). (a)-(d) show the first frame with
user-assigned scribbles (coloured lines), frame 8, frame 12 and the last frame with one user-
assigned scribble (coloured line) of a video with 17 frames. As can be seen, the blue rectangle
moves in front of the brown slanted surface closer to the camera. (e)-(h) show the separated
segments of frame 1 resulting from CVF of the brown slanted surface with a fix assigned depth
value, which is used to determine depth restrictions. Since the brown slanted surface is separated
in multiple segments, each with different assigned depth values (coloured lines), a step-by-step
occlusion/disocclusion detection of each separate segment can be performed, which results in a
smooth depth change of the blue moving rectangle. (i) shows the resulting motion segment of
the brown slanted surface in frame 1 with a fix assigned depth value, which is used to determine
depth restrictions. The fix assigned depth value is the largest user-assigned depth value on the
slanted surface, since the maximum occluded depth value is used to determine the minimum
restriction of the blue moving rectangle. Furthermore, no partial occlusions can be detected by
using the motion segment. Thus, no matter which part of the slanted surface is occluded by the
blue rectangle, it is supposed that the whole brown slanted surface is occluded.
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Figure 4.16: Illustration of occlusions and disocclusions. In both representations, i.e., (a) and
(b), A is an object moving in front of the background B to the right bottom direction. Forward
flow vectors in (a) from I(t− 1) to I(t), and backward flow vectors in (b) from I(t+ 1) to I(t),
of pixels ia and ib are illustrated by white arrows. (a) shows the occlusion of pixels from frame
I(t − 1) to I(t). Both pixels, ia = (x1, y1, t − 1) and ib = (x2, y2, t − 1), move to the same
pixel iocc = (x3, y3, t) in frame I(t). The dark green region in I(t) illustrates occluded pixels,
i.e., pixels which were visible in I(t− 1) and are not visible in I(t). The occluding segment can
be identified at pixel iocc. Thus, A > B. (b) shows the disocclusion of pixels from frame I(t)
to I(t + 1). Both pixels, ia = (x1, y1, t + 1) and ib = (x2, y2, t + 1), move to the same pixel
idis = (x3, y3, t) in frame I(t). The grey region in I(+1) illustrates disoccluded pixels, i.e.,
pixels which were not visible in I(t) and are visible in I(t+ 1). The occluding segment can be
identified at pixel idis. Thus, A > B.

Those segments are further used to determine the depth order by performing an occlu-
sion/disocclusion detection. Several algorithms in the literature (e.g., [63], [82]) propose depth
ordering systems by finding occlusions between a pair of segments. To identify occlusions, the
algorithms of [63] and [82] use an optical flow estimation. As described in Section 4.2, occlu-
sions can be detected by a consistency check of the forward and backward flow. However, to
identify which segment is occluded and, thus, is behind the occluding segment, more informa-
tion is needed. Similar to the approach in [63], we use three frames I(t− 1), I(t) and I(t+ 1)
to detect occlusions and disocclusions. Occluded pixels are pixels which become invisible from
I(t − 1) to I(t), and disoccluded pixels are pixels which become invisible from I(t + 1) to
I(t). In Figure 4.16(a), the occlusion of pixels from frame I(t − 1) to frame I(t) is illustrated.
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Object A moves diagonally to the right bottom of the image and thus, occludes pixels of object
B in I(t), which are at the right and bottom edge (cf. Figure 4.16 dark green region). Similarly,
Figure 4.16(b) shows the disocclusion of pixels from object B from frame I(t) to I(t + 1) (cf.
Figure 4.16 grey region). As suggested by the authors of [63], we use the bijection property of
the optical flow wt to detect occluded pixels. Thus, in the non-occlusion case, the optical flow
wt−1 creates a bijection between I(t− 1) to I(t), i.e., the flow vector of exactly one pixel from
I(t − 1) points to a pixel ix in I(t). However, when there is an occlusion, there are two pixels
ia = (x1, y2, t − 1) and ib = (x2, y2, t − 1) pointing to the same pixel iocc = (x3, y3, t) in
frame I(t). This case is shown in Figure 4.16(a). Similarly, the backward optical flow w̄t+1 from
the frame I(t + 1) to I(t) is used to detect disoccluded pixels (cf. Figure 4.16(b)). According
to [63], an occlusion is identified, if

ia + wia,t−1 = ib + wib,t−1 = iocc, ia 6= ib, (4.9)

and a disocclusion, if

ia + w̄ia,t+1 = ib + w̄ib,t+1 = idis, ia 6= ib. (4.10)

After detecting occluded and disoccluded pixels between two segments m and n, the occluding
segment k can be identified, which is the segment at pixel iocc in the occlusion case, or pixel idis
in the disocclusion case in frame I(t). Therefore, segment k is in front of the other segment.
Due to estimation errors of the optical flow estimation, it might occur that there are misleading
occlusion or disocclusion detections. Therefore, Nm is the number of pixels iocc or idis, that
determine segment m to be in front and vice versa Nn. To establish occlusion/disocclusion
relations between segments, the occluding segment k is chosen as follows:

k =

{
m, Nm > Nn.

n, Nn > Nm.
(4.11)

Vice versa the segment l, which is behind the segment k, is defined. Additionally, a confidence
value dconf is defined to determine the strength of the depth order relation. This value is used to
achieve a frame-wide depth order and to eliminate contradicting depth order relations. If such
contradicting depth order relations occur, the confidence value is used to decide for the strongest
depth order relation to be true. Thus, the depth order relation with the smaller confidence value
dconf is not taken into account for the frame-wide depth order. The confidence value dconf is
defined as follows:

dconf = abs(Nm −Nn). (4.12)

The occlusion/disocclusion detection described above is used for spatial neighbouring segments
in a frame to determine their relative depth order. Therefore, detection is only performed for
segments which are in the same frame and occlude each other.

Subsequent to the pairwise occlusions/disocclusions detection, the resulting relative depth
orders of a single frame t are stored in the DAG of frame t in order to achieve a global depth
order per frame, similar to the depth ordering algorithms of, e.g., [63] or [82]. In this graph,
nodes represent segments and directed edges between nodes represent the detected depth order
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Figure 4.17: Illustration of pairwise checked segments and the resulting depth order graphs
of frames 15 and 16 of the video shown in Figure 4.12. In the first row the resulting motion
segments of each (grouped) scribble and scribble pair at frame 15 (left) and frame 16 (right)
are shown. The corresponding resulting depth order graphs are shown below. Nodes at top are
occluded by their child nodes, i.e., are further away from the camera. While each (grouped)
scribble has a fixed assigned depth value (nodes 0, 6, 7, 8 and 9), scribble pairs (nodes 1 and
2) have minimum rmin and maximum rmax restrictions assigned resulting from their parent and
child nodes depth values. Additionally, the depth order graphs are built regarding the determined
depth levels of each node, i.e., the longest path from the artificial root nodeR to each node (grey
dotted paths). Blue dotted paths also show detected depth order relations, but are not used
to determine the depth level. Considering scribble pair/node 2, the change of the minimum
restriction can be seen. Since the object corresponding to node 2 is moving in front of the object
corresponding to node 9, its depth level and minimum depth value restriction rmin changes.
Thus, while the object can have a minimum depth value of 4 in frame 15, i.e., it is only moving
in front of the background, its depth value in frame 16 has to be at least 189, i.e., it is now
moving in front of the big dragon’s wing, which has a fixed assigned depth value of 188.
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relations between two segments (e.g., Figure 4.17). Thus, parent nodes have a smaller depth
value than their child nodes, i.e., they have a larger distance from the camera than their child
nodes, also child nodes occlude their parent nodes. In order to avoid ambiguous depth order
relations, cyclic edges are removed similar to [82]. Thus, each time a depth order relation is
added to the graph, a cycle check is performed. Therefore, a depth-first-search strategy [80] is
used to identify cyclic edges and the edges with the smallest confidence value dconf , which was
described above, is removed from the graph. Thus, a global depth order graph for each frame is
established.

Finally, after adding all depth order relations of a single frame to the DAG of a frame, the
depth level of each node in the DAG is determined by searching for the longest path from an
artificial root node to each node in the graph. The artificial root node is additionally added and
has a directed edge to all nodes in the DAG of a single frame. Since there is not always an explicit
root node, the artificial root node is added in order to determine the longest path to each node in
the graph. The depth level determines the maximal number of nodes one has to pass to reach a
specific node, i.e., the hierarchy level in the graph. Moreover, the depth level of each node in a
single frame is used together with the parent’s and child’s depth value to determine final depth
restrictions in order that nodes at different depth levels differ at least by one in their assigned
depth. To determine the depth level and thus, solve the longest path problem, the Bellman-Ford
algorithm, [3], [28] is used. For this purpose, all edges have the same negative edge weight,
which is set to −1. Thus, the longest path from the artificial root node to all nodes in the DAG
of a frame can be determined. The distance from the artificial root node to each node agrees
with the depth level (cf. Figure 4.17). The depth level λ(i, t) of a segment (node) i in frame t is
further used to define depth restrictions, which are identified in the next step. The incorporation
of the depth level into the determination of the restrictions makes sure that the depth value of a
scribble pair i is at least one depth value larger than the maximal parent node of i, and at least
one depth value smaller than the minimal child node of i. This is especially important in the
advanced case, that multiple moving scribble pairs occlude each other, which is described in the
following in more detail.

Depth restrictions for scribble pairs in a single frame are identified by traversing the estab-
lished DAG. Each of the (grouped) start and end scribbles, which do no change depth over time,
have a fixed assigned depth value, e.g., scribbles (nodes) 0, 6, 7, 8 and 9 shown in the depth
order graph in Figure 4.17. Therefore, these depth values are used to determine depth restric-
tions for scribble pairs, e.g., scribbles (nodes) 1 and 2 in the depth order graph in Figure 4.17.
Thus, for each scribble pair i in frame t, restrictions to a minimal rmin(i, t) depth value and a
maximal rmax(i, t) depth value are determined. These minimum and maximum depth restric-
tions define a range for each scribble pair in each frame. The depth values of the object change
so that the assigned depth value d(i, t) in frame t is in between the range of the determined
minimum and maximum depth restrictions, i.e., rmin(i, t) ≤ d(i, t) ≤ rmax(i, t). Considering
these minimum and maximum restrictions, a depth change without causing perceptual conflicts
can be established.

Since a scribble pair i occludes all its parent nodes, i has to have a depth value larger than the
parent node, which is the closest to the camera, i.e., has the largest depth value. Thus, the min-
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imum restriction is established by taking the maximum value of all parent nodes, i.e., all nodes
corresponding to segments which are occluded by the current node i. Basically, the restriction
of a scribble pair i in frame t to a minimal depth value of rmin(i, t), i.e., the smallest depth value
the scribble pair i is allowed to have at frame t, results from the maximal assigned depth value
of all n parent nodes. Following, n is the total number of parent nodes of scribble pair i, and
j is the parent node with the maximal assigned depth value. The minimal restriction value is
determined by the maximal assigned depth value of parent node j plus the difference between
the depth levels of the current node i and the parent node j, i.e., |λ(i, l) − λ(parent(i, j, t))|,
where 0 < j < n.

rmin(i, t) = max
j

(d(parent(i, j, t)) + |λ(i, t)− λ(parent(i, j, t))|) (4.13)

Contrary, since a scribble pair i is occluded by all its child nodes, i has to have a depth value
smaller than the child node, which is the farthest away from the camera, i.e., has the smallest
depth value. Hence, the maximum restriction is determined by taking the minimum value of
all child nodes, i.e., all nodes corresponding to segments, which are occluding the current node
i. Thus, the restriction of a scribble pair i in frame t to a maximal depth value of rmax(i, t),
i.e., the largest depth value the scribble pair i is allowed to have at frame t, results from the
minimal assigned depth value of all n child nodes. Following, n is the total number of child
nodes of scribble pair i, and j is the child node with the minimal assigned depth value. The
maximal restriction is determined by the minimal assigned depth value of child node j minus
the difference between the depth levels of the current node i and the child node j, i.e., |λ(i, t)−
λ(child(i, j, t))|, where 0 < j < n.

rmax(i, t) = min
j

(d(child(i, j, t))− |λ(i, t)− λ(child(i, j, t))|) (4.14)

In order to handle the more advanced case that multiple moving scribble pairs occlude each
other, a special conditioning is necessary. In case that a scribble pair is occluded by another
scribble pair, it is neither possible to determine a maximum restriction for the occluded scribble
pair nor to determine a minimum restriction for the occluding scribble pair. To this end, an order
of examination has to be defined in order to determine and update temporal restrictions. Thus,
nodes are traversed and restrictions are determined regarding their depth levels, in an ascending
order. Considering the DAG, this order is chosen so that parent nodes are processed before
their child nodes, i.e., segments which are farther away from the camera are examined before
segments which are closer. Let us consider two scribble pairs A and B, where scribble pair A is
occluded by scribble pair B in frame t, i.e., B is a child node of A in the DAG of frame t. Since
B has no fixed depth value, a temporal restriction of the maximal depth value for A has to be
defined. For this purpose, all child nodes of B are explored until a node F with a fixed assigned
depth value is found. The maximum restriction of A is set to rmax(A) = d(F )−|λ(A)− l(F )|.
The difference between the depth levels guarantees that all scribble pairs between A and the
found node F have at least a range of one possible depth value, since the difference between
the restriction values is always exactly 1. Moreover, a temporal restriction of the minimal depth
value of B is set to rmin(B) = rmin(A) + 1. Considering the examination order mentioned
above, depth values of the segment corresponding to node A are established before B. After the
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assignment A has a fixed assigned depth value at frame t and the temporally set restriction to
the minimal depth value for B can be updated. Note that with these temporal restrictions and
the update procedure, it is also possible to handle a video where all objects are moving in depth,
i.e., all nodes in the DAG are scribble pairs. In that case, the root node R in the DAG starts with
a restriction of the minimal depth value of rmin(R) = 0 and the node Z with the largest depth
level has a restriction of the maximal depth value of rmax(Z) = 255. The minimum restrictions
of all other nodes increase by one per depth level distance to R and vice versa, the maximum
restrictions of all other nodes decrease by one per depth level distance to Z. Hence, at the end
Z has a temporal restriction of the minimal depth value of rmin(Z) = λ(Z). Subsequently, the
depth change models are established by starting at node R. After each computed depth change
model, the temporal restrictions of the remaining nodes are updated.

Thus, a possible depth range for interpolating the depth of each scribble pair is determined.
The depth ranges are further used to establish a perceptually consistent depth change of objects
in a video. The following section introduces depth change models, which incorporate depth
order information and restrictions in order to model a depth change over time.

(v) Depth change model generation

After adding scribbles to the end frame, identifying matching scribble pairs, adapting the cost
computation and determining depth orders of objects in the video, the actual computation of the
depth change over time can be accomplished. Therefore, two models are presented: (i) the basic
depth change model interpolates depth values between the user-assigned depth values at the first
and last frame, and (ii) the advanced depth change model interpolates depth values by using
the object’s size to determine depth between the user-assigned depth values at the first and last
frame. Both models incorporate the above established depth order information and the resulting
depth restrictions in order to model perceptually consistent depth changes. In the following, the
initialisation of both models is first described separately without considering the depth informa-
tion. Then, the incorporation of the additional depth restrictions is presented. Please note, that
objects closer to the camera have larger depth values than objects further away from the camera.

Basic depth change model The basic depth change model simply uses the user-assigned depth
values of start and end frame of each scribble pair to interpolate depth values linearly
between start and end frame. Thus, the depth value of scribble pair i in frame t is computed
as follows:

d(i, t) = d(i, 0) +
d(i, n)− d(i, 0)

n
∗ t. (4.15)

Here, n is the total number of frames in the video, d(i, 0) is the user-assigned depth value
of scribble pair i in the first frame, and vice versa d(i, n) defines the depth value in the last
frame. Thus, a linear depth change is modelled, i.e., the depth value of the object changes
by the same amount between each frame of the video. Hence, the object appears to come
closer or go further away with the same velocity throughout the video, which is reasonable
for a person, e.g., walking continuously away from the camera. However, if the person
stops walking, pauses and then continues walking the basic depth change model produces
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Figure 4.18: Results of the basic ((a), (b)) and advanced ((c), (d)) depth change model. Here,
the depth values of the two objects corresponding to segments 2 and 9 are compared in frames
15, 16 and 17. (a) shows the resulting depth maps (WTA approach) using the basic depth change
model without the incorporation of the depth order information. As can be seen in frame 16, this
leads to conflicting depth values. The object corresponding to segment 2 (cf. Figure 4.17) has
a smaller depth value propagated than the object corresponding to segment 9, although segment
2 is in front of segment 9. (b) shows the resulting depth maps (WTA approach) using the basic
depth change model with the incorporation of the depth order information. As can be seen in
frame 16, the previous conflict is eliminated and both objects have perceptually consistent depth
values propagated. (c) shows the resulting depth maps (WTA approach) using the advanced
depth change model without the incorporation of the depth order information. As can be seen,
propagated depth values differ to values in (a), since an object’s size is considered to interpolate
depth. However, resulting depth values in frame 16 induce a conflict again. (d) shows the result-
ing depth maps (WTA approach) using the advanced depth change model with the incorporation
of the depth order information. The previous conflict is eliminated.
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unrealistic depth changes, since the person’s depth values keep changing even when the
person stopped walking. To additionally handle the second case, we further propose an
advanced depth change model computation.

Advanced depth change model The idea of the advanced depth change model is to consider
the case of an irregularly moving object as described above. To this end, the size of the
object is incorporated in the interpolation. The object size is one of several pictorial depth
cues in a 2D image [91]. Since the size of an object can be determined in each frame and,
additionally, the depth value of the object’s size in the first and last frame is known, it is
possible to interpolate depth values corresponding to a determined object size between the
object’s start size and the object’s end size. Since an object becomes larger the closer it
moves to the camera, the depth values of an object coming closer become larger as well.
Thus, the depth value of scribble pair i with an object size of s(i, t) in frame t is computed
as follows:

d(i, s(i, t)) = d(i, s(i, 0)) +
d(i, s(i, n))− d(i, s(i, 0))

s(i, n)− s(i, 0)
∗ (s(i, t)− s(i, 0)). (4.16)

Here, n is the total number of frames in the video, d(i, s(i, 0)) is the user-assigned depth
value of scribble pair i with the start size s(i, 0) in the first frame 0, while d(i, s(i, n)) is
the user-assigned depth value of scribble pair i with the end size s(i, n) in the last frame
n.

Hence, the depth values between two frames only change when the object’s size changes,
i.e., the object is moving closer or further. Additionally, the depth change depends on the
observed object motion. Moreover, when an object moves horizontally, i.e., its size does
not change, or moves in another way without changing its size, e.g., a ball falling down in
front of the camera, the depth values do not change between two frames. Additionally, it is
also possible to model a movement that under- or overruns the start or end size of an object.
For example: Object A starts with size s(0) = 10 and depth value d(A, s(A, 0)) = 100 in
the first frame. A moves closer to the camera until it has a size of s(A, 10) = 20 in frame
10, and then moves away again. The size in end frame n = 15 is s(A, 15) = 17 and the
known depth in the last frame is d(A, s(A, 15)) = 180. Therefore, the depth value of A
in frame 10 can be calculated and is d(A, s(A, 10)) = 214. With the basic depth change
model, such a movement can not be modelled because only values between the start and
end depth are possible. Thus, the advanced depth change model enables a depth change
based on the object’s movement structure. Note that if the depth change indicated by the
user does not agree with the depth change indicated by the object size, i.e., the object is
coming closer regarding the depth values in the first and last frame, but becomes smaller
regarding the object size in the first and last frame, the advanced depth change model is
not applied for this object. Instead, the basic depth change models that does not take the
object size into account is used.

To determine the object size, two approaches are implemented: (i) by using the resulting
CVF segment of the scribble corresponding to the object, or (ii) by analysing paths of
the user-assigned scribbles corresponding to the object throughout the video. In both
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cases, the object size corresponds to the height of the object, because typically growth in
vertical direction delivers the necessary information about the movement in depth. Since
an object can become larger in horizontal direction without coming closer to the camera,
e.g., a person stretching out the arm to the left side, growth in X-direction is not usable to
determine motion in depth2.

CVF segments This method basically examines the resulting CVF segment of scribble
pair i in frame t. As described above, a segment resulting from CVF is based on
colour regarding the user input. In order to determine the object size of a CVF seg-
ment, the largest ymax(i, t) and lowest ymin(i, t) points of the segment are detected.
Thus, the object size s(i, t) of scribble pair i in frame t is defined as follows:

s(i, t) = ymax(i, t)− ymin(i, t). (4.17)

Thus, the size of fixed sized objects visible throughout the whole video can be de-
termined. It is worth to note that this approach is limited by partial occlusions of
objects. If an object is only partly visible, e.g., until frame 5, and then becomes fully
visible in frame 6, there is a big jump between the object size between frame 5 and
6. Moreover, the resulting depth values can cause an unrealistic depth change.

Path object size This approach makes use of the long motion paths. Therefore, all long
motion paths belonging to pixels of the user-assigned scribbles going throughout the
whole video, are chosen to determine the size, i.e., those paths have the same length
as the video has frames. Next, the highest ymax(i, t) and lowest ymin(i, t) points
are detected. This time, points from the chosen paths of scribble pair i in frame t
are examined to detect those points. Contrary to the approach above, this method
determines size by only considering points which are visible throughout the whole
video. Thus, the size of, e.g., a partly occluded object, which becomes fully visible
after some frames, can be determined. However, the scribble has to cover parts of the
corresponding segment which are visible throughout the whole video, and to achieve
a good result, at least 30 long motion paths belonging to the scribble pair and having
the video’s length are necessary. Note that if no long motion paths are found, the
basic depth change model is generated instead.

In the following, we discuss the effect of the approaches described above in more detail us-
ing examples. With the advanced depth change model it is possible to model a more realistic
object movement in depth. However, if the object occludes or is occluded by another object,
it is important that the depth values are consistent with the depth order, i.e., the front object’s
depth has to be larger than the back object’s depth. Otherwise a perceptual conflict is the result,
e.g., Figure 4.18(a) and (c). As can be seen in Figure 4.18, the small dragon is moving closer
and occludes from frame 16 on the wing of the big dragon. Thus, the depth value of the small
dragon has to be larger than the depth value of the wing of the big dragon starting from frame
16. In Figures 4.18(a) and (c) it can be seen that this requirement is not fulfilled, neither with

2Similar cases, e.g., a person stretching its arm upwards, can occur as well. However, such a case appears less
often.
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Figure 4.19: Illustration of the frame-wise restrictions check for the advanced depth change
model of an object. Minimum rmin and maximum rmax restrictions are presented. Light and
dark red shaped areas showing the range of depth values, which results in conflicts. Thus, the
interpolated values are not allowed to be in any red shaped area. The green graph with start size
point ss and end size point se illustrates the object size at each frame. As can be seen, regarding
the object’s size the object starts moving constantly (frames 1 to 5), then slows down (frames 5
to 7), stops a moment (frames 7 and 8) and continues with a fast movement (frames 8 to 10).
The blue graph with start depth point ds and end depth point de illustrates the assigned depth
values at each frame. (a) shows the interpolation graph after initialising depth values using the
advanced depth change model. Conflicting depth values can be identified at frame 2 and frame
8 caused by minimum restrictions and at frames 3 to 5 caused by maximum restrictions. (b)
shows the updated interpolation graph after adding an interpolation point d1 at frame 2, because
of an identified conflict regarding the minimum restriction at this frame. (c) shows the final
interpolation graph after adding in total four new interpolation points and updating after each
identified conflict. The interpolation points are numbered due to their adding and updating the
interpolation graph. Thus, interpolation points d1 and d2 were added due to a found conflict
with the minimum restriction at frame 2 and frame 8, respectively. Interpolation points d3 and
d4 were added due to a found conflict with the maximum restrictions at frames 3 and 4. The
final interpolation graph does not show any violations any more.

the basic depth change (cf. Figure 4.18(a)) model nor with the advanced depth change model
(cf. Figure 4.18(c)) without considering the depth order. Therefore, the above established depth
order information and depth restrictions are incorporated in both depth change models in a next
step.
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Incorporating depth restrictions In a first step depth values are initalised as described above
for the chosen deph change model, without condidering depth restrictions. In a next step,
a frame-wise restriciton check is accomplished. Basically, this restriction check is a recur-
sive method, alternating between checking violations against the minimum and maximum
restrictions in a bounded range after a conflict is found until all frames are verified to have
valid depth values. If a conflict is found a new fix assigned depth value is added and the
depth change model is updated. A demonstration of the step-by-step incorporation for the
advanced depth change model is presented in Figure 4.19. In Figure 4.19, the movement
of the object is illustrated by the green graph and the initalised depth values by the blue
graph. According to the size of the object, it moves irregular. As can be seen in Fig-
ure 4.19 the object moves constantly in the beginning (frames 1 to 5), then slows down
(frames 5 to 7), stops (frames 7 and 8), and moves fast (frames 8 to 10) in the last frames.
Additionally, the minimum and maximum restrictions are illustrated in Figure 4.19, i.e.,
rmin and rmax. Figure 4.19(c) shows a resulting interpolation graph after the frame-wise
restriction check. As can be seen, four conflicts were found in total (points d1 to d4),
where the points are numbered by the order of detection of conflicts. In Figure 4.19(c)
no more violations can be identified, and, thus, a perceptual consistent depth change is
established.

As mentioned above, if a scribble pair A is occluded by another scribble pair B the min-
imum restriction value is set to a temporally value and has to be updated after the deter-
mination of the depth values of A. Therefore, the depth change models for each scribble
pair are examined in the depth order of the first frame and after each examination the re-
striction values of all child nodes are updated. Thus, scribble pair B has valid minimum
and maximum restrictions, when its depth change model is established.

Experimental Results

Figure 4.18 gives an example of the effect of both established depth change models. In this
example, ground truth optical flow [16] was used. Segments used to detect pairwise occlu-
sions/disocclusions result from the motion segmentation. To determine the object’s size for the
advanced depth change model, the path object size approach, which analyses paths of the user-
assigned scribbles throughout the video, is used. This approach was chosen because the small
dragon moves its wings up and down throughout the video, which would result in large and small
alternating object size values, when the CVF segment size would be used. As already discussed
above, it can be seen in Figure 4.18(a) and (c) that without incorporating the depth order in the
depth change models, a perceptual inconsistent depth change is the result.

Another example of the effect of the temporal depth change extension is given in Fig-
ure 4.20, a video with two objects, a brown slanted object and a blue rectangle. In this ex-
ample optical flow is estimated with the method of [51]. Segments used for the pairwise occlu-
sions/disocclusions detection result from CVF. Since the rectangle’s form is fixed and not partly
occluded throughout the video, the CVF segment object size approach is used to determine the
object’s size for the advanced depth change model. The blue rectangle is moving in front of
the brown slanted surface closer to the camera. As can be seen in Table 4.1 the blue rectangle’s
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Figure 4.20: Depth change results of a video with 17 frames and a slanted surface. (a) shows
frames 2, 4, 10, 13 and 16. (b) WTA approach results from the basic change model without
incorporation of the depth order, (c) WTA approach results of the basic change model with
incorporation of the depth order, (d) WTA approach results from the advanced change model
without incorporation of the depth order, (e) WTA approach results from the advanced change
model with incorporation of the depth order and (f) depth blending approach results with the
n = 2 lowest cost volume slices averaging the propagated depth value from the advanced change
model with incorporation of the depth order.
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frame (size) B,N B,Y A,N A,Y rmin rmax

1 (123) 21 21 21 21 - -
2 (125) 31 38 25 36 7 255
3 (128) 40 55 31 57 7 255
4 (130) 50 72 35 72 72 255
5 (134) 60 81 43 84 72 255
6 (136) 70 90 47 90 72 255
7 (138) 80 98 51 95 72 255
8 (142) 89 107 59 107 107 255
9 (145) 99 109 66 113 107 255

10 (150) 109 127 76 122 107 255
11 (154) 119 137 84 129 129 255
12 (159) 128 148 94 138 129 255
13 (164) 138 158 104 148 129 255
14 (169) 148 168 114 157 129 255
15 (179) 158 178 136 178 178 255
16 (188) 167 178 155 178 178 255
17 (200) 178 178 178 178 - -

Table 4.1: Detailed illustration of the established depth change model of the blue rectangle
shown in Figure 4.20. The first column shows the frame and the object’s size per frame. Columns
annotated with B show the results of the basic depth change model without (N) and with (Y)
incorporated depth order. Columns annotated with A show the results of the advanced depth
change model without (N) and with (Y) incorporated depth order. rmin and rmax show the
determined depth order restrictions per frame. Conflicting depth values are bold.

size changes irregularly between frames. The user-assigned depth values of the brown slanted
surface are from right to left, i.e., from back to front, 71, 106, 128 and 177. The propagated
depth values per frame of the blue rectangle can be seen in detail in Table 4.1. Bold printed
depth values show perceptually conflicting depth values due to the determined depth restrictions
rmin and rmax.

As shown in Table 4.1, without incorporating the determined depth order conflicting depth
values are propagated. Thus, the blue rectangle has at, e.g., frame 4 a lower depth value assigned
than the brown slanted surface, which is occluded by the blue rectangle. The resulting 3D view
would induce a perceptual inconsistency and the blue rectangle would appear to be further away
than the brown slanted surface, although occlusions cues induce the opposite case. Furthermore,
the difference between the basic (b) and advanced (A) depth change model can be seen in Ta-
ble 4.1 in columns B,N and A,N. While the basic depth change model increases the propagated
depth value equally from one frame to the next, i.e., the interval is about 9 due to rounding, the
advanced basic depth change model increases the propagated depth values from one frame to
the next according to the object’s size at each frame. Thus, it changes irregularly, since the size
of the blue rectangle increases in irregular intervals as well. Regarding the size, the depth of
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the blue rectangle increases more slowly than by using the basic depth change model. However,
both models induce conflicting depth values without incorporating depth order. As shown in
columns B,Y and A,Y those conflicts are eliminated after the depth order is incorporated in both
depth models. Thus, a perceptually consistent depth change of the blue rectangle is established
and the resulting 3D view would show a smooth movement of the blue rectangle towards the
camera.

4.5 Summary

The 2D-to-3D conversion algorithm proposed in this chapter performs a semi-automatic depth
propagation based on only little user input. By annotating scribbles on the first and last frame
of the video, the user assigns depth values which are propagated to the video based on a cost
volume filtering-based video object segmentation (cf. Section 4.1). For each user-assigned
scribble, costs are computed for each pixel regarding their similarity to pixels covered by the
scribble. Thus, the final depth of the scribble with the lowest costs is propagated. The pro-
posed algorithm focuses on several problems by applying the above introduced extensions. The
temporal consistency improvement (TCI) addresses the problem of edge-sharpness and tempo-
ral consistency by improving depth propagation at depth boundaries in videos with fast moving
objects by filtering along the objects’ movement throughout the video (cf. Section 4.2). The
spatial influence extension (SIE) addresses wrong propagations caused by segmentation issues.
The SIE reduces wrong depth assignments by adding a spatial influence term to the cost compu-
tation. Thus, pixels which are similar in colour but different in depth have less influence on the
final depth propagation (cf. Section 4.3). Finally, the temporal depth change extension (TDCE)
addresses temporal depth changes and enables perceptually consistent depth changes of objects
throughout the video by generating depth change models that achieve a significant improvement
in videos with movement in depth.



CHAPTER 5
Evaluation

In this chapter we evaluate our proposed temporally coherent cost volume filtering-based depth
propagation algorithm using ground truth depth maps. The evaluations are performed system-
atically for all described extensions (cf. Chapter 4) of the proposed algorithm. Additionally,
a comparison with a similar depth propagation algorithm [42] is performed. Section 5.1 dis-
cusses our evaluation strategy, including the dataset and the error metrics that are used in our
evaluations. In Section 5.2 the impact of each extension is quantitatively evaluated using the
evaluation strategy mentioned before. Furthermore, we show and discuss various depth maps
that were generated with the 2D-to-3D conversion algorithm that is proposed in this thesis. In
Section 5.3 we quantitatively and visually compare our proposed depth propagation algorithm
to a related 2D-to-3D conversion algorithm, i.e., [42]. Depending on the characteristics of the
video, we show that each of the extensions can achieve a significant improvement. Moreover,
high-quality results can be achieved by using a robust optical flow estimation and a robust scrib-
ble annotation by the user.

5.1 Evaluation Methodology

In total, the algorithm is applied to 19 test videos. The results of all 19 test videos were obtained
using user-assigned scribbles on the first and last frame to propagate depth. Generally, the used
test videos can be separated in two sets: (i) eight test videos from the MPI-Sintel data set [16]
used to quantitatively evaluate the impact of each extension in Section 5.2, and (ii) 11 test videos
from the data set used in [42] to quantitatively compare our resulting depth maps with results
of [42]. In the following, data of both sets are presented in more detail.

MPI-Sintel Dataset [16]

Sintel [68] is an animated open source short film created by Blender [1]. [16] modified the film
in order to achieve a useful data set for optical flow evaluation with naturalistic video sequences
addressing challenges such as large motion, long sequences or motion blur. The MPI-Sintel data

69
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Figure 5.1: Test videos from the MPI-Sintel data set [16]. The first frame, the corresponding
depth ground truth and corresponding optical flow ground truth of the eight test videos used
in the evaluation are shown. Test videos (from left to right, two test videos in a row): alley1,
ambush2, ambush5, ambush7, shaman2, shaman3, sleeping1 and temple3.

Nr. Name Frames Resolution tspatial c min OS
1 alley1 50 1024× 436 256 450 10 Cvseg
2 ambush2 5 1024× 436 256 250 10 Cvseg
3 ambush5 31 1024× 436 256 250 10 path
4 ambush7 38 1024× 436 256 250 10 path
5 shaman2 50 1024× 436 256 250 40 path
6 shaman3 50 1024× 436 256 250 10 path
7 sleeping1 48 1024× 436 256 250 10 path
8 temple3 18 1024× 436 256 300 40 path

Table 5.1: Test videos from the MPI-Sintel data set [16] using the albedo training set, which
were used for the evaluation in Section 5.2. The table shows the name of the test video, the
total number of frames of the test video, the resolution, the spatial threshold tspatial used for the
spatial influence extension, the maximal segment size c and the minimal segment size min used
for the motion segmentation, and the used approach to determine the object size (OS) used for
the advanced depth change model of the temporal depth change extension.

set [16] contains optical flow ground truth and depth ground truth (cf. Figure 5.1) for each test
video, which allows us to use the data set in the context of our evaluation. Both the optical flow
and depth ground truth are used to evaluate the results in Section 5.2. The MPI-Sintel data set
provides different level passes for each scene that gradually increase complexity. In the context
of the evaluation, we use the albedo pass which is the simplest rendering pass and renders flat,
unshaded surfaces that exhibit constant albedo over time [16]. However, since the MPI-Sintel
data set [16] provides only forward optical flow vectors, in our algorithm only those are used
to detect occlusions and further establish a depth order. Since optical flow ground truth is used,
the forward flow vectors are sufficient to achieve a valid depth order. However, we also want to
validate the impact of the optical flow in our proposed depth propagation algorithm. Therefore,
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Figure 5.2: 10 of 11 test videos used to compare resulting depth maps with [42]. The first frame,
the corresponding depth ground truth/reference depth and corresponding optical flow ground
truth/estimated optical flow of the test videos used in the evaluation are shown. Test videos (from
left to right, two test videos in a row): Child [10], Head [10], Interview [10], Soccer [12], Pa-
rade [12], Palace [12], City [12], Staircase [12], Tsukuba380-397 [56] and Tsukuba50-66 [56].

we compute an estimated optical flow by using the method of [51] and additionally compute
depth maps by using the estimated forward and backward optical flow fields in the proposed
depth propagation algorithm. The parameters set for the estimation of the optical flow stayed
the same for all test videos. Ground truth depth values are resulting from the available depth
video that is normalised by its maximal depth value. Thus, depth values can be compared with
the results of the proposed depth propagation algorithm.

Figure 5.1 presents the eight test videos from the albedo training set of the MPI-Sintel data
set [16] used to evaluate the impact of each extension in Section 5.2. Table 5.1 gives an overview
of the attributes and parameters of the eight test videos. Generally, the MPI-Sintel data set
provides video sequences with 50 frames per sequence. For the evaluation we used subsequences
of test videos ambush2 (frames 1-5), ambush5 (frames 1-31), ambush7 (frames 1-38), sleeping1
(frames 1-48) and temple3 (frames 5-22). Other test videos listed in Table 5.1 use the provided
50 frames of the video sequences. The user-assigned scribbles were annotated by the author and
stayed unchanged for all test results in this chapter.

Comparison Dataset

Figure 5.2 presents the 11 test videos used to compare our proposed algorithm with the depth
propagation algorithm from [42]. Table 5.2 gives an overview of the attributes and parameters
of the 11 test videos. All test videos shown in Table 5.2 were used in [42] for evaluation as well.
Test videos 1 to 5 are test videos from [12]. Reference depth maps for these test videos were
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Nr. Name Frames Resolution tspatial c min OS
1 City 18 699× 282 175 130 20 CVseg
2 Parade 11 689× 282 172 130 20 CVseg
3 Palace 10 702× 278 176 130 20 CVseg
4 Staircase 20 702× 278 176 130 20 CVseg
5 Soccer 21 669× 282 167 130 20 path
6 Child 21 600× 338 150 130 20 Cvseg
7 Head 81 600× 330 150 130 20 CVseg
8 Interview 101 600× 480 150 130 20 CVseg
9 Tsukuba50-66 21 640× 480 160 100 20 CVseg
10 Tsukuba380-397 18 640× 480 160 100 20 path
11 Tsukuba1-100 100 640× 480 160 100 20 path

Table 5.2: Test videos, which are used for the evaluation and comparison with the depth prop-
agation algorithm from [42] in Section 5.3. The table shows the name of the test video, the
total number of frames, the resolution, the spatial threshold tspatial used for the spatial influence
extension, the maximal segment size c and the minimal segment size min used for the motion
segmentation, and the used approach to determine the object size (OS) used for the advanced
depth change model of the temporal depth change extension.

generated in [42] with a stereo matching algorithm from [6] for all frames. Test videos 6 to 8
are from [10]. For these test videos ground truth depth maps for some frames are available, but
not for all frames as for the other test videos. Therefore, results of test videos 6 to 8 are only
using the available ground truth depth maps to compute the difference between the results and
the ground truth. Test videos 9 to 11 are subsequences of the Tsukuba stereo data set [56], [65].
Ground truth depth maps are available for all frames of the Tsukuba test videos. Contrary to [42],
the method of [51] is used to compute forward and backward optical flow vectors, because the
occlusion/disocclusion check requires flow vectors in both directions in order to determine the
depth order. The same user-assigned scribbles as in [42] are used on the first and last input frame.
Contrary to [42], no additional user-assigned scribble input is given on key frames between the
first and the last frame.

Evaluation Strategy

In order to compute depth maps for the evaluation, some constant parameters are used for all
test videos to achieve the results shown in this chapter: the Guided Filter parameters are set to
r = 11, rt = 5, ε = 0.0016, the colour matching threshold to avoid wrongly joined scribble
pairs is set to tcolour = 0.6, and for all test videos resulting CVF segments are used to identify
a frame-wide depth order. Furthermore, the spatial threshold of the spatial influence extension
is set to the quarter of each test video’s width tspatial = width/4. All results showing the depth
blending (DB) approach used the n = 2 lowest cost volume slices for the depth propagation, i.e.
the n = 2 cost volumes slices with the lowest costs are averaged to determine the depth value.



5.1. EVALUATION METHODOLOGY 73

Figure 5.3: (a) Depth ground truth, (b) resulting depth map using our proposed algorithm, and
(c) difference to depth ground truth. The lighter a pixel is, the higher is the difference at this
pixel.

Additional parameters for the motion segmentation and the determination of the object size for
the advanced depth change model (aM) of the temporal depth change extension (TDCE) are set
individually per test video and can be seen in Table 5.1 and Table 5.2.

Our resulting depth maps are compared with depth ground truth or, if this is not available,
reference depth maps computed by a stereo matcher [6]. As already mentioned, video scribbles
for each test video are annotated on the first and last frame of the video. To enable a compar-
ison of our depth propagation results with the depth ground truth, we propagate depth values
at scribble positions instead of user-assigned depth values at scribble positions. Since our pro-
posed approach is restricted to the assignment of a single depth value per scribble l, we compute
the mean depth value of all depth values which the user-assigned scribble l covers in the depth
ground truth:

d(l) =
1

n

n∑
i=1

d̂(i) (5.1)

Here, n is the total number of pixels belonging to scribble l, i is one of the pixels belonging
to scribble l, and d̂(i) is the depth value at pixel i in the ground truth depth map. Thus, each
user-assigned scribble uses the mean value of the ground truth for the propagation.

Error Metric

We quantitatively compare the ground truth depth maps and our resulting depth maps by calcu-
lating the difference to the depth ground truth with the mean squared error emse [58]:

emse =
1

n

n∑
i=1

(d̂(i)− d(i))2 (5.2)

Here, n is the total number of pixels in the video, d(i) is the depth value at pixel i = (x, y, t) of
the resulting depth map applying the proposed algorithm, and ˆd(i) is the depth value at pixel i in
the ground truth depth map. In the following evaluation, for better readability the mean squared
error emse is multiplied by 100. Moreover, emse is illustrated by grey scale error images. The
lighter a pixel is, the higher is the error at this pixel, and thus, the difference to the ground truth at
this position (cf. Figure 5.3). To better recognise the difference, the contrast and the brightness
of the error images are increased by 30%.
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5.2 Evaluation with Depth Ground Truth

In this section, the introduced extensions (cf. Chapter 4) are evaluated and their impact on results
is discussed, i.e., the naive extension of [11] (NE) (cf. Section 4.1), the temporal consistency
improvement (TCI) (cf. Section 4.2), the spatial influence extension (SIE) (cf. Section 4.3),
and the temporal depth change extension (TDCE) (cf. Section 4.4) with the basic depth change
model (bM) and the advanced depth change model (aM). Therefore, for each of the test videos
shown in Table 5.1, depth is propagated by using one or a combination of the proposed exten-
sions. Thus, in total 16 resulting depth maps of eight variants for both final depth propagation
approaches are computed, i.e., eight resulting depth maps by using the winner-take-all (WTA)
approach (cf. Table 5.3) and eight resulting depth maps by using the depth blending (DB) ap-
proach (cf. Table 5.4). In order to evaluate the impact of the optical flow in our proposed
algorithm, we computed these 16 depth maps by using the provided optical flow ground truth
from the MPI-Sintel data set (cf. Table 5.3 and Table 5.4), and additionally with an estimated
optical flow (cf. Table 5.5 and Table 5.4). Below, we give an overview over the tested variants of
our depth propagation algorithm. Their results are shown in Tables 5.3- 5.6, where bold printed
values show the best resulting variant of each test video.

NE Results of the naive extension. No additional spatial influence term is added to the cost
computation. Results are shown without the TCI (left column), and with the TCI (right
column).

TCI The temporal consistency improvement is added to each of the extensions in order to ad-
ditionally improve the results with the enhanced guided filter.

SIE Results of the spatial influence extension. An additional spatial influence term using a
spatial threshold of tspatial = width/4 is added to the cost computation. Results are
shown without TCI (left column), and with the TCI (right column).

TDCE - bM Results of the temporal depth change extension using the basic depth change
model. An additional spatial influence term using a spatial threshold of tspatial = width/4
is added to the cost computation. Results are shown without TCI (left column), and with
the TCI (right column).

TDCE - aM Results of the temporal depth change extension using the advanced depth change
model. An additional spatial influence term using a spatial threshold of tspatial = width/4
is added to the cost computation. Results are shown without TCI (left column), and with
the TCI (right column). Note that, as mentioned before, if the start and end depth values
contradict with the start and end object size values or there are not enough paths to deter-
mine the object’s size, the basic depth change model is computed instead for this specific
scribble pair with contradicting values.

Following, results of the variants shown in Tables 5.3- 5.6 are represented and discussed. As
can be seen in Tables 5.3- 5.6, there is no variant which shows distinctly the best result, neither
with the optical flow ground truth (cf. Table 5.3 and Table 5.4) nor with the estimated optical
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flow (cf. Table 5.5 and Table 5.6). This indicates that for both depth propagation approaches,
i.e., the WTA and the DB approach, the impact of the extensions depends on the test video and
its details.

WTA - emse × 100 (optical flow ground truth)
NE SIE TDCE - bM TDCE - aM

Video TCI TCI TCI TCI
alley1 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03
ambush2 1.09 0.28 1.02 0.22 1.00 0.20 1.01 0.25
ambush5 0.99 1.00 0.43 0.44 0.43 0.43 0.43 0.43
ambush7 0.69 0.69 0.20 0.20 0.20 0.23 0.20 0.23
shaman2 0.67 0.70 0.26 0.25 0.26 0.25 0.26 0.25
shaman3 1.91 1.91 1.86 1.86 0.37 0.39 0.41 0.42
sleeping1 3.65 3.66 3.56 3.57 0.50 0.49 0.55 0.54
temple3 0.17 0.12 0.51 0.34 0.51 0.34 0.51 0.34

Table 5.3: Quantitative evaluation of the MPI-Sintel data set test videos. The difference emse×
100 of resulting depth maps using optical flow ground truth and applying the WTA approach to
the depth ground truth is computed. Variants of the introduced extensions are evaluated using
the test videos shown in Table 5.1 from the MPI-Sintel data set [16]. Results of each extension
are evaluated once without and once with the temporal consistency improvement (TCI), i.e.,
the naive extension (NE), the spatial influence extension (SIE), and the temporal depth change
extension (TDCE) with the basic depth change model (bM) and the advanced depth change
model (aM). The best variant of each test video is marked bold.

By comparing results using the optical flow ground truth of the WTA approach in Table 5.3
with results of the DB approach in Table 5.4, it can be seen that the WTA and the DB approach
act similarly, i.e., the best variant of each test video is identical for the WTA and the DB ap-
proach. Moreover, a similar performance between the different variants can be observed, e.g.,
the error decreases for the WTA and the DB approach in the case of test video ambush2 by addi-
tionally applying the TCI to the NE. Although the difference between the decreased error values
differs, a similar behaviour by applying the different variants can be noticed. However, neither
the WTA approach nor the DB approach achieves the best result for all test videos. In a follow-
ing discussion, both approaches are compared with each other and the causes for achieving a
better result than the other approach are explored.

Resulting depth maps using an estimated optical flow (cf. Table 5.5 and Table 5.6) behave
similar to the above discussed results using optical flow ground truth. Moreover, comparing
results using the optical flow ground truth with results using the estimated optical flow, it can be
seen that the best variant of each test video is not always identical. This indicates that the optical
flow has a significant impact on the resulting depth maps. The amount of the impact are part
of the following discussions. Furthermore, it can be recognised that in the case of some videos
and variants, e.g., all variants of test video alley1, results using the estimated optical flow are
slightly better, i.e., the error decreases by >0.07 using the estimated optical flow. This behaviour
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DB - emse × 100 (optical flow ground truth)
NE SIE TDCE - bM TDCE - aM

Video TCI TCI TCI TCI
alley1 0.07 0.07 0.03 0.02 0.02 0.02 0.02 0.02
ambush2 0.94 0.32 0.83 0.20 0.83 0.19 0.83 0.22
ambush5 0.88 0.88 0.58 0.58 0.58 0.58 0.58 0.58
ambush7 0.63 0.63 0.20 0.20 0.21 0.23 0.21 0.23
shaman2 0.93 0.95 0.41 0.40 0.41 0.40 0.41 0.40
shaman3 1.85 1.85 1.82 1.83 0.29 0.30 0.32 0.33
sleeping1 3.67 3.67 3.53 3.54 0.42 0.42 0.47 0.47
temple3 0.31 0.20 0.56 0.35 0.56 0.35 0.56 0.35

Table 5.4: Quantitative evaluation of the MPI-Sintel data set test videos. The difference emse×
100 of resulting depth maps using optical flow ground truth and applying the DB approach to
the depth ground truth is computed. Various variants of the introduced extensions are evaluated
using test videos shown in Table 5.1 from the MPI-Sintel data set [16]. Results of each extension
are evaluated once without and once with the temporal consistency improvement (TCI), i.e.,
the naive extension (NE), the spatial influence extension (SIE), and the temporal depth change
extension (TDCE) with the basic depth change model (bM) and the advanced depth change
model (aM). The best variant of each test video is marked bold.

WTA - emse × 100 (estimated optical flow)
NE SIE TDCE - bM TDCE - aM

Video TCI TCI TCI TCI
alley1 0.04 0.04 0.02 0.03 0.02 0.02 0.02 0.02
ambush2 1.05 0.29 1.05 0.68 1.04 0.67 1.06 0.78
ambush5 1.61 1.62 1.52 1.53 1.05 1.13 3.27 2.93
ambush7 0.71 0.72 0.21 0.21 0.24 0.23 0.23 0.23
shaman2 0.75 0.78 0.25 0.24 0.44 0.43 0.38 0.37
shaman3 1.91 1.91 1.87 1.87 0.27 0.31 0.37 0.41
sleeping1 3.71 3.72 3.61 3.62 0.54 0.54 0.65 0.65
temple 3 0.49 0.62 1.88 4.25 9.81 11.23 11.86 16.72

Table 5.5: Quantitative evaluation of the MPI-Sintel data set test videos. The difference emse×
100 of resulting depth maps using an estimated optical flow and applying the WTA approach to
the depth ground truth is computed. Variants of the introduced extensions are evaluated using
the test videos shown in Table 5.1 from the MPI-Sintel data set [16]. Results of each extension
are evaluated once without and once with the temporal consistency improvement (TCI), i.e.,
the naive extension (NE), the spatial influence extension (SIE), and the temporal depth change
extension (TDCE) with the basic depth change model (bM) and the advanced depth change
model (aM). The best variant of each test video is marked bold.
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DB - emse × 100 (estimated optical flow)
NE SIE TDCE - bM TDCE - aM

Video TCI TCI TCI TCI
alley 1 0.05 0.05 0.02 0.02 0.02 0.02 0.02 0.02
ambush 2 0.92 0.32 0.86 0.64 0.86 0.65 0.87 0.74
ambush 5 1.89 1.88 1.54 1.63 1.02 1.13 2.70 2.69
ambush 7 0.63 0.63 0.21 0.21 0.23 0.23 0.23 0.23
shaman 2 0.86 0.87 0.38 0.38 0.50 0.49 0.46 0.46
shaman 3 1.89 1.89 1.83 1.83 0.21 0.25 0.30 0.34
sleeping 1 4.18 4.18 3.60 3.61 0.48 0.48 0.59 0.59
temple 3 0.55 0.56 1.75 3.97 7.94 10.13 10.25 14.75

Table 5.6: Quantitative evaluation of the MPI-Sintel data set test videos. The difference emse×
100 of resulting depth maps using an estimated optical flow and applying the DB approach to
the depth ground truth is computed. Various variants of the introduced extensions are evaluated
using test videos shown in Table 5.1 from the MPI-Sintel data set [16]. Results of each extension
are evaluated once without and once with the temporal consistency improvement (TCI), i.e.,
the naive extension (NE), the spatial influence extension (SIE), and the temporal depth change
extension (TDCE) with the basic depth change model (bM) and the advanced depth change
model (aM). The best variant of each test video is marked bold.

can be explained by rounding errors in the context of the long motion path generation in favour
of the estimated optical flow. Since optical flow fields are floating point numbers, the new pixel
position of the long motion path is determined by a rounding operation. Thus, it might happen
that long motion paths using the estimated optical flow are built in a way that the error slightly
decreases compared to results using the ground truth optical flow. In the following, first the
impact of each extension is discussed separately regarding the optical flow ground truth and the
estimated optical flow. Since the behaviour of both depth propagation approaches, i.e., the WTA
and the DB approach, is similar, discussed issues are valid for both approaches unless otherwise
noted. Subsequently, results of the two depth propagation approaches, i.e., the WTA and the DB
approach, are compared with each other.

Temporal Consistency Improvement (TCI)

Examining results using the optical flow ground truth in Table 5.3 and Table 5.4, it can be seen
that resulting depth maps either significantly improve, i.e., the improvement is > 0.1, or that
there is no or only a slight improvement, i.e., the improvement is < 0.03. Exploring test videos
with a significant improvement, i.e., test videos ambush2 and temple3, one can recognise that
both test videos contain large object movements. That is, objects are moving fast in front of other
objects or the background. Thus, through the cost volume filtering process without the TCI, costs
of different objects are filtered and costs are wrongly propagated. Finally, a wrong depth value is
propagated. Figure 5.4 shows an example of the discussed issue. Figure 5.4 presents the results
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Figure 5.4: Comparison of results of test video ambush2 with and without the TCI by using the
WTA approach for the final depth propagation. (a) shows the input frames 1, 3 and 5 of the test
video with user-assigned scribbles on the first and last frame. (b) shows the ground truth depth
maps. (c) shows results of the SIE and a threshold of tspatial = 256. (d) shows the corresponding
error image of (c) compared to the ground truth (emse × 100 = 1.02). (e) shows results of the
SIE with a threshold of tspatial = 256 combined with the TCI. (f) shows the corresponding error
image of (e) compared to the ground truth (emse× 100 = 0.22). The highlighted area shows the
improved assignment of depth caused by the TCI.
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of test video ambush2 without and with the TCI, i.e., without and with the enhanced guided
filtering of the cost volumes, using the SIE in order to eliminate wrong pixels. The wrong depth
propagation caused by a filtering over different objects can be seen in Figure 5.4(c) and (d). The
head of the bold person is moving fast in front of the background. Thus, a part of the head is
wrongly assigned to the background depth value.

Contrary, looking at results using the estimated optical flow in Table 5.5 and Table 5.6, it
can be seen that the impact of the TCI is similar with the exception of test videos ambush5 and
temple3. In both cases the TCI degrades the resulting depth maps. Since the test videos contain
large object movements, the method of [51] fails in estimating robust optical flow fields. Due to
the inaccurate optical flow, long motion paths are built containing different objects and filtering
along the long motion paths increases the error. An example is shown in Figure 5.5 where the
optical flow ground truth is compared with the estimated optical flow by [51]. As can be seen,
the estimated optical flow fields are oversmoothed at borders (cf. Figure 5.5(c)) which results
in long motion paths containing different objects. Thus, a robust optical flow estimation which
achieves robust results for videos with large movements is necessary.

Additionally applying the TCI when using a robust optical flow estimation, the results in-
crease significantly for videos with large object movement as can be seen in the case of test
video ambush2 (cf. Figure 5.4(e) and (f)). However, if there are no large object movements in
the video, the additional computational effort of the TCI can be hold back.

Spatial Influence Extension (SIE)

As can be seen in Tables 5.3- 5.6, the results improve, i.e., the error emse decreases, for almost
all test videos (cf. Table 5.1) by applying the SIE with a threshold of tspatial = 256. Test
video temple3 is the only exception. This applies to results using the optical flow ground truth
(cf. Table 5.3 and Table 5.4) and to results using the estimated optical flow (cf. Table 5.5 and
Table 5.6). Figure 5.6 and Figure 5.7 show results of two test videos when applying the NE and
when applying the SIE, i.e., without and with reducing the influence of wrong pixels by adding
spatial costs to the cost computation, respectively. In the case of test video temple3, the SIE
degrades the results as can be seen in Figure 5.6(e)-(f). The increasing error results from the
wrong assignment of a background region to a foreground depth. This error is caused by the
occlusions of the background throughout the video. When tracking the scribbles from frame to
frame these occlusions causing the loss of scribble points of user-assigned background scribble
points (red scribble in Figure 5.6(a)) and the SIE increases costs in this region. By annotating
additional scribbles covering the background on the last frame, the error could be decreased.
However, the user effort would increase as well.

Figure 5.7 gives an example of a test video where the error decreases by 0.04 when applying
the SIE, i.e., the results improve. Since the shown test video alley1 contains regions with similar
colours (e.g., the background and the person’s tank top) but different depth positions, the SIE
reduces the impact of wrongly assigned pixels, and thus, improves the results. For example, it
can be seen that the background noise in Figure 5.7(c) is reduced by applying the SIE.

The impact of the optical flow in this extension is small. Since the SIE uses the optical flow
vector fields only to track scribble points throughout the video, no large error occurs. Moreover,
since every test video presented in Table 5.1, except test video temple3, contains various regions
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Figure 5.5: Comparing results of test video temple3 using the estimated optical flow when
applying the NE and when additionally applying the TCI. (a) shows the first and last input frame
with user-assigned scribbles. (b) shows the optical flow ground truth of frames 2 and 7. (c)
shows the estimated optical flow by [51] of frames 2 and 7. (d) shows the resulting depth map of
frame 7 when applying the NE (left) and when additionally applying the TCI (right). (e) shows
the corresponding error images when applying the NE (left) and when additionally applying the
TCI (right).
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Figure 5.6: Comparison of results of test video temple3 with and without the SIE by using the
WTA approach for the final depth propagation. (a) shows the input frames 5, 14 and 22 of the
test video with user-assigned scribbles on the first and last frame. (b) shows the ground truth
depth maps. (c) shows results of the NE without the SIE. (d) shows the corresponding error
images of (c) compared to the ground truth (emse × 100 = 0.17). (e) shows results of the SIE
and a threshold of tspatial = 256. (f) shows the corresponding error images of (e) compared to
the ground truth (emse × 100 = 0.51). The highlighted scope shows the wrong assignment of a
region belonging to the background caused by the SIE.
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Figure 5.7: Comparison of results of test video alley1 with and without the SIE by using the
DB approach for the final depth propagation. (a) shows the input frames 1, 25 and 50 of the test
video with user-assigned scribbles on the first and last frame. (b) shows the ground truth depth
maps. (c) shows results of the NE without the SIE. (d) shows the corresponding error images
of (c) compared to the ground truth (emse × 100 = 0.07). (e) shows results of the SIE and a
threshold of tspatial = 256. (f) shows the corresponding error images of (e) compared to the
ground truth (emse × 100 = 0.03). The highlighted scope shows the reduction of errors caused
by the SIE.
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with similar colours but different positions in depth, the SIE improves the results by reducing the
impact of wrong pixels as described in Section 4.3. Therefore, if a video contains objects unique
in their colour and depth position, the additional computation of spatial costs is not necessary
and could degrade the results (e.g., in the case of test video temple3).

Temporal Depth Change Extension (TDCE)

Examining results using the optical flow ground truth in Table 5.3 and Table 5.4 shows that only
in the case of two test videos, shaman3 and sleeping1, a significant improvement is achieved
when applying the TDCE. A characteristic of both test videos, shaman3 and sleeping1, is a
large camera zoom-in. The zoom causes all objects in the video coming closer to the camera
which changes their depth distinctly and visibly. Regarding the other test videos, no significant
achievement is recognisable in the results. Although some of them contain objects moving
closer to the camera, they contain smaller movements in depth than test videos shaman3 and
sleeping1. Figure 5.8 shows results of test video sleeping1 without and with the TDCE, i.e.,
without and with enabling depth changes. As can be seen in Figure 5.8, the error for both
variants, i.e., without the TDCE (cf. Figure 5.8(c) and with the TDCE (cf. Figure 5.8(f)), in
the first frame is identical, since in both cases the user-assigned depth values are propagated to
the first frame. However, in Figure 5.8(c) and (d) it can be seen that those depth values do not
change throughout the video, since no depth change is performed. Thus, the error increases with
the number of frames. Contrary to that, Figure 5.8(e) and (f) show results of the performed depth
change by the TDCE.

Looking at the results using the estimated optical flow in Table 5.5 and Table 5.6, the same
behaviour of test videos shaman3 and sleeping1 can be observed, i.e., a significant improvement
is achieved when applying the TDCE. However, in the case of two test videos, i.e., shaman2
and temple3, the error increases by applying the TDCE. In the case of test video temple3 (cf.
Figure 5.9) the large error can be explained by scribble matching and depth ordering issues. As
already mentioned above, the method of [51] has problems in estimating optical flow fields in
videos with large object movements. Due to that, the optical flow fields are oversmoothed at
borders and wrong depth order relations are detected which further result in a wrong interpola-
tion of depth values (cf. arrows nr. 1 and nr. 2 in Figure 5.9). Moreover, the performed motion
segmentation in order to identify matching scribble pairs is inaccurate and scribbles from the
first frame are matched with a wrong scribble from the last frame (cf. Figure 5.9(b) and arrow
nr. 3 in Figure 5.9). Further, wrong depth change model values are computed according to
wrong matched scribble pairs which leads to such a large error when applying the TDCE, i.e.,
emse > 7.9. In the case of test video shaman2 the increasing error can be explained by a depth
ordering issue due to the above mentioned problems with the estimated optical flow.

Therefore, the TDCE can significantly improve the results of videos with large depth changes.
However, in order to correctly identify matching scribbles, an optical flow estimation algorithm
which can deal with large movements is needed. Additionally, the estimated optical flow should
contain sharp borders in order to detect correct depth order relations and compute the corre-
sponding depth change model. Generally, the additional effort of the TDCE can be hold back
for videos without large depth changes.
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Figure 5.8: Comparison of results of test video sleeping1 with and without the TDCE by using
the WTA approach for the final depth propagation. (a) shows the input frames 1, 25 and 48
of the test video with user-assigned scribbles on the first and last frame. (b) shows the ground
truth depth maps. (c) shows results of the SIE and a threshold of tspatial = 256. (d) shows the
corresponding error images of (c) compared to the ground truth (emse× 100 = 3.56). (e) shows
results of the SIE with a threshold of tspatial = 256 combined with the TDCE using the basic
depth change model. (f) shows the corresponding error images of (e) compared to the ground
truth (emse × 100 = 0.50).
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Figure 5.9: Comparing results of test video temple3 using the estimated optical flow when using
optical flow ground truth and when using an estimated optical flow by [51]. (a) shows the first
and last frame with user-assigned scribbles. (b) shows the correct identification of a single end
scribble (left), i.e., the big wing of the dragon in the last frame, and the wrong match of a scribble
pair containing two scribbles from the first frame (white scribbles) and a scribble from the last
frame (grey scribble). (c) shows the optical flow ground truth of frame 1 (left) and the estimated
optical flow by [51] (right). (d) shows the depth ground truth of frames 6 and 17. (e) shows the
resulting depth maps applying the TDCE of frames 6 and 17. Arrows nr. 1 and nr. 2 show wrong
propagated depth values due to a depth ordering issue. Arrow nr. 3 shows wrong propagated
depth value due to a scribble matching issue, i.e., shown in (b).
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Basic (bM) vs. Advanced (aM) Depth Change Model

In the case of results using the optical flow ground truth there is no significant difference between
results using the basic depth change model and results using the advanced depth change model
as can be seen in Table 5.3 and Table 5.4. Since in all test videos (cf. Table 5.1), objects are
moving in depth continuously, e.g., in the case of camera zoom-ins in test videos shaman3 and
sleeping1, the advantages of the aM does not appear, i.e., the recognition when an objects stops
moving in depth. Moreover, it happened that the start and end depth value contradicted with the
start and end object size, or that not enough paths go throughout the whole video to determine the
object’s size. As mentioned above, in such cases the basic depth change model was computed
for the scribble pair. This instance occurred for test videos 1-4 (cf. Table 5.1). The aM depends
on a valid determination of the object size in each frame.

Contrary, examining the results using the estimated optical flow shown in Table 5.5 and
Table 5.6, some significant differences can be seen. In the case of three test videos, i.e., ambush5,
sleeping1 and temple3, the aM degrades the results significantly, i.e., the difference is > 0.1.
This can be explained by wrongly identified scribble pairs for reasons already discussed above,
i.e., inaccurate motion segmentation due to the optical flow estimation. Since all of the three
test videos are using paths to identify the object’s size per frame, wrongly matched scribbles can
influence the depth change and lead to wrong depth propagation.

Therefore, the extensive aM can be hold back, when objects in the video are changing
without any interruptions their position in depth. In such cases, the basic depth change model
achieves good and perceptually consistent results.

Comparing our approaches: Winner-take-all and Depth Blending

When examining results in Tables 5.3-5.6, it can be seen that neither the WTA approach nor
the DB approach achieves the best results for all test videos. However, comparing results using
optical flow ground truth (cf. Table 5.3 and Table 5.4) with results using an estimated optical
flow (cf. Table 5.5 and Table 5.6), it can be seen that for almost each test video the same
approach achieves the best results, e.g., in the case of test video shaman2 the WTA approach
achieves the best results using the optical flow ground truth and using an estimated optical flow.
This indicates, that the impact of the two approaches depends on the test video and its details.

Thus, analysing test videos where the WTA approach significantly (i.e., difference between
WTA and DB approach > 0.06) achieves the best results, i.e., test videos ambush5, shaman2
and temple3, it can be seen that all these test videos contain little depth variations inside objects
(cf. Figure 5.10 (a)) compared to test videos where the DB approach clearly achieves the best
results, i.e., test videos shaman3 and sleeping1 (cf. Figure 5.10 (b)). Moreover, objects are
far from each other regarding their position in depth in the case of test videos where the WTA
approach wins.

However, in the case of test video ambush5, the WTA approach achieves better results when
using the ground truth optical flow, but the DB approach when using the estimated optical flow.
Test video ambush5 contains large movements but also little depth variations inside objects.
Moreover, the objects are close to each other regarding their position in depth. As mentioned
above, the estimated optical flow fields computed by [51] cannot handle large movements and
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Figure 5.10: Comparing our approaches: Winner-take-all and Depth Blending. In the first
row of (a) and (b) the first frame of each test video is shown. In the second row of (a) and (b)
the corresponding depth ground truth is shown. (a) shows test videos ambush5, shaman2 and
temple3 (from left to right), where the WTA approach achieves the best results. (b) shows test
videos shaman3 and sleeping1 (from left to right), where the DB approach achieves the best
results.

depth is wrongly propagated. Thus, the DB approach improves the result of wrongly propagated
depth values by computing a weighted mean and smoothing the result.

Figure 5.11 shows results of test video shaman2, where the WTA approach achieves better
results. As can be seen in the highlighted area, the DB approach wrongly increases the depth
values of the background object. Since the foreground object which occludes the background
object is similar in colour to the background, pixels close to the border of both objects have low
costs assigned in two cost volume slices, e.g., the cost volume corresponding to the background
scribble (orange in Figure 5.11(a)) and the cost volume corresponding to the foreground object
(light blue in Figure 5.11(a)). Due to the computation of the weighted mean of those two cost
volume slices, wrong depth values are assigned. Since there is a huge difference in depth be-
tween the two objects and DB increases the depth values of the back object, the resulting depth
value degrades the result.

Contrary, Figure 5.12 shows results of test video sleeping1, where the DB approach achieves
better results. As can be seen in the highlighted area, the DB approach corrects a misassign-
ment of a region, where two cost volume slices achieve low costs. Due to the computation
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Figure 5.11: Comparing the two depth propagation approaches: winner-take-all and depth
blending. Results of test video shaman2. The TDCE using the basic depth change model and
a threshold of tspatial = 256 combined with the TCI is applied in order to show the difference
between the WTA and the DB approach. (a) shows the input frames 1, 25 and 50 of the test video
with user-assigned scribbles on the first and last frame. (b) shows the corresponding ground
truth depth maps. (c) shows results using the WTA approach. (d) shows the corresponding error
images with an error of emse × 100 = 0.25. (e) shows results using the DB approach. (f) shows
the corresponding error images with an error of emse× 100 = 0.40. The highlighted area shows
the region which is degraded in the result caused by the DB approach.
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Figure 5.12: Comparing the two depth propagation approaches: winner-take-all and depth
blending. Results of test video sleeping1. The TDCE using the basic depth change model and
a threshold of tspatial = 256 is applied in order to show the difference between the WTA and
the DB approach. (a) shows the input frames 1, 25 and 48 of the test video with user-assigned
scribbles on the first and last frame. (b) shows the corresponding ground truth depth maps. (c)
shows results using the WTA approach. (d) shows the corresponding error images with an error
of emse × 100 = 0.49. (e) shows results using the DB approach. (f) shows the corresponding
error images with an error of emse×100 = 0.42. The highlighted scope shows the region which
is smoothed by the DB approach.
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of a weighted mean of the two cost volume slices with the lowest costs, this misassignment is
smoothed and reduces the error. Moreover, the DB approach can improve the result of regions
containing slanted or rounded surfaces. In such cases, depth values are smoothed between the
change of two segments of the slanted or rounded surface.

Thus, the WTA approach achieves better results in videos with a large depth range and little
depth variations inside objects. Contrary, DB improves the result within an object by smoothing
various depth values (cf. Figure 5.12) and thus, corrects misassignments between two scribbles
with low costs by smoothing. But the DB approach can also degrade the result, especially at
borders of two objects with similar colour but a huge difference in depth (cf. Figure 5.11).

Conclusions

Summing up, each of the extensions achieves an improvement depending on the content of the
video: The TCI achieves significant improvements for videos with large object movements by
filtering along the object movements if a robust optical flow estimation is used and long motion
paths contain only the movement of one object. The SIE improves results for videos with objects
similar in colour but different positions in depth by reducing the influence of wrong pixels. The
accuracy of the optical flow estimation has less impact when applying the SIE. Finally, the TDCE
improves results for videos with a significant depth change of either the whole scene of the video
(e.g., camera zooms), or of objects moving in depth by establishing depth change models.

Note that results depend on a robust optical flow estimation as well as on a robust scribble
annotation by the user. We notice limitations concerning the scribble placement. Since the
user effort is kept low, i.e., only two keyframes with user-assigned scribbles are necessary, the
user has to keep in mind colour similarities between objects, the depth position of each object
and the movement throughout the video. In order to achieve a valid segmentation, the scribble
should only cover pixels belonging to the current object. Each covered pixel belonging to the
background or another object degrades the segmentation. Moreover, if there are objects similar
in colour but different in depth and the SIE is used, the user should be aware of the chosen spatial
threshold when annotating scribbles on the different objects. Finally, when the depth change is
enabled by the TDCE, the motion in the video should be considered in order to correctly identify
matching scribble pairs. Since the annotated scribbles for all test videos in this evaluation stayed
the same for all variants, an improvement of the results could be achieved by adapting scribbles
according to the used variant.

5.3 Comparison with a Similar Algorithm

In this section, test videos shown in Table 5.2 are compared with results of the algorithm of [42].
The result of the best variant of both depth propagation approaches, i.e., the WTA and the DB,
are compared with resulting depth maps of [42]. Therefore, all test videos shown in Table 5.2
were evaluated concerning the computing results for the WTA and the DB approach of the same
eight variants presented in Section 5.2. For the comparison with the algorithm of [42], the best
variant of each video for the WTA and the DB approach (cf. Table 5.7) was chosen.
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The comparison is performed on 11 test videos (cf. Table 5.2) and compared to their re-
spective ground truth. To enable a fair comparison, the results of both algorithms are based on
the same user-input, i.e., scribbles and depth values. Specifically, for each user-annotated scrib-
ble both algorithms are assigned the average depth value from the corresponding covered pixels
in the depth ground truth or reference depth map. In this context, it should be noted that [42]
supports multiple depths per scribble. However, in order to have a fair comparison, [42] uses
the same input as our proposed algorithm, i.e., a single depth per scribble. Thus, both algo-
rithms start the depth propagation process with the same assigned depth values. The scribble
annotations stayed the same as in [42] with annotations on the first and last frame.

our best variant emse × 100

Video WTA DB WTA DB [42]
City TDCE-aM + TCI SIE 1.01 0.82 0.47
Parade SIE SIE 0.72 0.56 0.28
Palace TDCE-aM + TCI SIE 1.16 0.98 1.20
Staircase SIE + TCI SIE + TCI 0.69 0.62 0.51
Soccer SIE SIE 0.44 0.29 0.40
Child SIE TDCE-aM + TCI 0.57 0.54 0.58
Head TDCE-bM + TCI TDCE-bM + TCI 0.49 0.37 0.65
Interview SIE + TCI SIE + TCI 0.72 0.69 0.56
Tsukuba50-66 TDCE-bM + TCI TDCE-bM + TCI 0.20 0.17 0.15
Tsukuba380-397 TDCE-aM + TCI SIE 0.34 0.38 0.21
Tsukuba1-100 TDCE-bM + TCI TDCE-bM + TCI 0.08 0.05 0.15

Table 5.7: Comparison with a similar segmentation-based depth propagation algorithm from
[42]. The table shows the variant (cf. Section 5.2) achieving the best results regarding the WTA
and the DB approach and the mean squared error emse × 100 of the best result of the WTA
approach and the DB approach. Those are compared with the results achieved by the algorithm
of [42]. Bold printed values represent the best result and approach of each test video.

As can be seen in Table 5.7 by comparing results of the WTA and the DB approach, in
the case of this comparison data set (cf. Table 5.2), DB always achieves better results. As
mentioned above, due to the weighted mean computation, DB smooths mixed assignments of
different depth values and thus, smooths the result which can reduce the error. Additionally, we
observed as can be seen in Table 5.7 that the best resulting variants (cf. Section 5.2) applied the
SIE with a threshold of tspatial = width/4. Moreover, unlike results in Section 5.2, the best
variant of the WTA and the DB approach are not always the same. Contrary to test videos in
the previous Section 5.2, the impact of the optical flow in the context of the comparison data
set (cf. Table 5.2) is not evaluated additionally, i.e., only the estimated optical flow is used to
compute depth maps. Due to the used estimated optical flow fields, the motion segmentation
is not as accurate as with ground truth data, which makes the identification of scribble pairs
more difficult as mentioned above. Therefore, note that not in all test videos all scribble pairs
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were identified correctly. However, as mentioned above in Section 5.2, if there is no large depth
change in the video, a missing match of a scribble pair has no big effect on the results.

Moreover, results in Table 5.7 show that for almost all test videos the best approach is dis-
cernable, i.e., the difference between the best and second best result is > 0.10. However, neither
our DB approach nor the algorithm of [42] achieves distinctly the best results. The causes are
discussed in the following. Figures 5.13 to 5.16 show results of final depth maps of our WTA
and DB approaches and of the algorithm from [42].

Figure 5.13 shows results of the test video Palace, where our DB approach achieves the best
results (emse × 100 = 0.98). This test video contains two main challenges: Colour similarity
of a foreground object with the background (arrow nr. 1 in Figure 5.13), and the fine structured
borders of the tree (arrow nr. 2 in Figure 5.13). Analysing the colour ambiguity in case one, the
advantages of the SIE can be seen (arrow nr. 1 in Figure 5.13). [42] propagates too many pixels
of the background with the foreground object’s depth value (cf. Figure 5.13(c) arrow nr. 1).
Thus, the actual foreground object is hard to identify in front of the background. By applying
the SIE with additionally enabling depth changes by the TDCE, the WTA approach achieves
that the background is definitely separated from the foreground object (cf. Figure 5.13(g) arrow
nr. 1). However, the DB approach increases again the depth value of the background due to
the weighted mean approach. But the foreground object is still recognisable as a separate ob-
ject. Moreover, DB smooths regions at the fine structured borders of the tree (arrow nr. 2 in
Figure 5.13) and, thus, reduces the error from emse × 100 = 1.16 (WTA) to emse × 100 = 0.98
(DB), which is the best result achieved by the three methods, i.e., our approach using WTA, our
approach using DB and the algorithm of [42].

Figure 5.14 shows results of the test video Parade, where the algorithm of [42] achieves
the best results (emse × 100 = 0.28). However, as can be seen in Figure 5.14, all three ap-
proaches struggle especially with the foreground object (cf. arrow nr.1 in Figure 5.14). Since
the foreground object contains many different colours and the background, i.e., the people in the
back, is multi-coloured as well, it is hard for both algorithms, i.e., the algorithm of [42] and our
proposed algorithm, to segment only pixels belonging to the foreground object. Moreover, anno-
tated scribbles on the foreground object cover pixels not belonging to the actual corresponding
object but to the background. Thus, additionally pixels from the background are assigned to
the foreground object’s depth value. An equal case can be observed regarding the three persons
walking in the background (cf. arrow nr.2 in Figure 5.14). The scribble in the form of a cross
(cf. in Figure 5.14(a) lila scribble) annotating these three persons covers many pixels belonging
to the street and the background. The result is the same as described above, i.e., the foreground
object’s depth value is propagated to the background as well. While the results of our WTA
approach (cf. Figure 5.14(g)) with a mean squared error of emse × 100 = 0.72 show a mix
of different depth values at the object borders, the DB approach smooths the result by comput-
ing a weighted mean of the depth values belonging to the foreground and background object.
Thus, the DB approach (cf. Figure 5.14(d)) reduces the error to emse × 100 = 0.56. However,
the algorithm of [42] can handle the above described issues the best, since contrary to our ap-
proach, the segmentation algorithm used in [42] is independent from the user-assigned scribbles.
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Figure 5.13: Results of test video Palace. (a) shows the input frames 1, 5 and 10 with user-
assigned scribbles on the first and last frame. (b) shows the corresponding reference solution
depth maps. (c) shows results of [42] and (d) the corresponding error with emse×100 = 1.20. (e)
shows our results of the DB approach and (f) the corresponding error with emse×100 = 1.16. (g)
shows our results of the WTA approach and (h) the corresponding error with emse×100 = 0.98.
This video contains persons moving differently, colour similarity between a foreground object
and the background (arrow nr. 1) and fine border structures (arrow nr. 2).
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Figure 5.14: Results of test video Parade. (a) shows the input frames 1, 5 and 11 with user-
assigned scribbles on the first and last frame. (b) shows the corresponding reference solution
depth maps. (c) shows results of [42] and (d) the corresponding error with emse × 100 = 0.28.
(e) shows our results of the DB approach and (f) the corresponding error with emse×100 = 0.56.
(g) shows our results of the WTA approach and (h) the corresponding error with emse = 0.72.
This video contains many different colours (e.g., arrow nr. 1) and weak scribble annotations
(e.g, arrow nr. 2).
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Hence, compared to our DB approach, [42] achieves a result with an error of emse×100 = 0.28.

Figure 5.15 shows results of the test video Head, where our DB approach achieves the best
results (emse × 100 = 0.37). As can be seen, the test video contains only one foreground
object, i.e., the rotating person, occluding the background. As can be observed while the per-
son is rotating throughout the video, a hole between the hand and the body appears through
which the background can be seen (cf. Figure 5.15 red arrow). As resulting depth maps of [42]
show (cf. Figure 5.15(c)), the algorithm can not recognise this hole. Due to the graph-based
segmentation approach which requires regions with the same depth value to be connected, the
algorithm of [42] wrongly propagates the depth value corresponding to the scribble annotated
on the person. This wrong propagation results in an high error (emse × 100 = 0.65) compared
to our DB approach result (emse× 100 = 0.37). Contrary to the algorithm of [42], our proposed
algorithm performs a global segmentation by using CVF. Thus, the appearing hole is correctly
segmented and propagated with the backgrounds depth value. The final WTA depth maps (cf.
Figure 5.15(g)) only contain two different depth values, i.e., one for the background and one
for the foreground object, which results in the cardboard effect, i.e., a flat 3D viewing experi-
ence caused by missing depth variation within the object. Contrary, the DB approach achieves a
smoother result. Especially smooth borders in the region of the hair improve the results.

Figure 5.16 shows results of test video Tsukuba1-100, where our DB approach achieves the
best results (emse× 100 = 0.08). As can be seen in Figure 5.16(c) and (d) in the red highlighted
region, the algorithm of [42] struggles with recognising the hole in the foreground object. This
issue was already discussed above in the context of test video Head. Figure 5.16(g) and (h)
show an enlarged comparison between the result of [42] and our DB approach result. As can be
seen, the occurring misassignment of the background region is prevented in the context of our
algorithm due to a global segmentation approach. Moreover, Figure 5.16(i) and (j) show another
enlarged region green highlighted. In Figure 5.16(i) and (j) it can be seen that the depth change,
which appears throughout the video, can be better modelled by our proposed basic depth change
model. The divergence of the depth values propagated by [42] compared with the ground truth
is larger than with our DB approach.

Conclusion

As seen in the results and discussions presented above, the quality of our depth propagation
results depends on the scribble placement. Thus, as discussed above, annotated scribbles that
addtionally cover pixels of background objects complicate a valid segmentation and effect the
final depth maps, e.g., in the case of test video Parade. Such cases can be better handled by the
algorithm of [42] since the underlying segmentation process is independent from the annotated
scribbles. Therefore, in above mentioned cases, [42] achieves better results. However, due to the
global segmentation based on colour, our approach is able to identify regions not connected with
each other but belonging to the same object, e.g., a background partly occluded by foreground
objects. This, on the one hand, reduces the user effort, since not every disconnected region has to
be annotated with a scribble. On the other hand, global segmentation enables the identification
of disconnected regions that occur during the video as, e.g., in test videos Head and Tsukuba1-
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Figure 5.15: Results of test video Head. (a) shows the input frames 1, 41, 61 and 81 with user-
assigned scribbles on the first and last frame. (b) shows the corresponding ground truth depth
maps. (c) shows results of [42] and (d) the corresponding error with emse × 100 = 0.65. (e)
shows our results of the DB approach and (f) the corresponding error with emse×100 = 0.37. (g)
shows our results of the WTA approach and (h) the corresponding error with emse×100 = 0.49.
This video contains occlusions of the background caused by the rotating foreground object. The
highlighted area shows a disoccluded hole which appears during the video and represents a
difficulty for [42].
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Figure 5.16: Result of test video Tsukuba1-100. (a) shows the input frames 1, 50 and 100 with
user-assigned scribbles on the first and last frame. (b) shows the corresponding ground truth
depth maps. (c) shows results of [42] and (d) the corresponding error with emse × 100 = 0.15.
(e) shows our results of the DB approach and (f) the corresponding error with emse×100 = 0.08.
(g) and (h) shows an enlargement of the region highlighted in (c)-(f) in frame 1 (first row). (i)
and (j) show an enlargement of the region highlighted in (c)-(f) in frame 100 (third row). This
video contains a smooth camera movement closer to the scene.
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100. Moreover, our algorithm is able to reduce the influence of wrong pixels due to colour
ambiguity by applying the spatial influence extension, e.g., in test video Palace. Additionally,
the DB approach can improve results by smoothing depth values at finely structured borders and
enabling depth variants within objects.

In summary, when the user keeps colour similarity, depth positions and movement in the
video in mind while annotating scribbles on the first and last frame, the quality is improved by
our algorithm. Moreover, the amount of scribble annotations can be kept low by such a robust
scribble annotation.



CHAPTER 6
Summary and Outlook

In this thesis, we have proposed a semi-automatic 2D-to-3D depth propagation algorithm which
propagates depth on all frames of a video based on scribble-based user input. In particular, we
focused on good quality while keeping the user input low. To this end, we extended the video ob-
ject segmentation algorithm from [11], which performs a colour-based segmentation, to a depth
propagation algorithm that achieves temporally coherent depth maps by using cost volume fil-
tering. Only sparse user input is necessary in order to achieve robust depth maps. Thus, the user
annotates colour coded scribbles on two frames, i.e., the first and the last frame, which encodes
the favoured depth. Moreover, in this thesis we focused on problems such as edge-sharpness,
temporal consistency, erroneous propagation caused by segmentation issues and temporal depth
changes over time. Therefore, we proposed several extensions addressing these problems. The
temporal consistency improvement (TCI) addresses the problem of edge-sharpness and tempo-
ral consistency by improving depth propagation at depth boundaries in videos with fast moving
objects by filtering along an object’s movement throughout the video (cf. Section 4.2). The
spatial influence extension (SIE) addresses wrong propagation caused by segmentation issues.
The SIE reduces wrong depth assignments by adding a spatial influence term to the cost compu-
tation. Thus, pixels which are similar in colour but different in depth have less influence on the
final depth propagation (cf. Section 4.3). Finally, the temporal depth change extension (TDCE)
addresses temporal depth changes and enables perceptually consistent depth changes of objects
throughout the video by generating depth change models that achieve a significant improvement
in videos with movement in depth. As our results of the performed evaluation show (cf. Chap-
ter 5), these proposed extensions can achieve a significant improvement of the quality of the
computed depth maps depending on the content of the video.

In order to achieve high-quality depth maps, a robust user input is necessary. Therefore, the
user has to consider colour similarities between objects, and the depth position and movement
of each object throughout the whole video. Moreover, the depth propagation result is dependent
on a robust optical flow estimation. Our proposed 2D-to-3D conversion algorithm requires only
little user interaction and generates spatio-temporally coherent depth maps with perceptually
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consistent depth changes for objects that change their depth in time by incorporating the depth
order of the video.

Future work may include a more efficient implementation of the described algorithms since
we have focused on quality rather than efficiency. This improvement could be achieved by
implementing computationally parts of the algorithm on the GPU (e.g., as in [42]). Moreover,
a subjective evaluation could be performed in order to elaborate the visual quality of novel
views generated from the computed depth maps using our proposed algorithm. Additionally, an
evaluation regarding the scribble placement could be a next step in order to examine the impact
of scribble placement on the algorithm.
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