
DISSERTATION

Crossing Modeling Paradigms in System Models

Submitted at the Faculty of Electrical Engineering and Information Technology, Vienna
University of Technology in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften (equals Ph.D.)

under supervision of

Univ. Prof. Dr. habil. Christoph Grimm
Institute number: 384

Institute of Computer Technology

and

Prof. Dr.-Ing. Martin Radetzki
Institute of Computer Architecture and Computer Engineering

University of Stuttgart

by

Markus Damm
Matr.Nr. 0628003

February 2nd 2015

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Kurzfassung

Bei der Modellierung und Simulation von eingebetteten und ”cyber-physical” Systemen ist es oft
vorteilhaft, wenn nicht gar notwendig, unterschiedliche Berechnungsmodelle für die verschiedenen
Teile des Systems zu verwenden. Sei es weil diese Subsysteme zu verschiedenen Domänen gehören
(wie z.B. Analog oder Digital), die nach verschiedenen Methoden zur Modellierung verlangen, oder
weil verschiedene Abstraktionsebenen im gleichen Modell verwendet werden.
Was auch immer die Motivation dafür ist, stets werden wohldefinierte Methoden benötigt um
diese unterschiedlich modellierten Systemteile miteinander zu verbinden. In dieser Arbeit werden
solchen Konvertierungsmethoden auf der Basis einer formalen Sichtweise auf Prozesssteuerung
diskutiert, entwickelt, und in einer SystemC-basierten Simulationsumgebung implementiert.

Abstract

In modeling and simulation of embedded and cyber-physical systems, it is often favorable, if not
necessary, to use different Models of Computation for different parts of the system. These system
parts might belong to different domains (e.g. analog or digital) which call for different means of
modeling, or possibly different abstraction levels within the same model are used.
Whatever the motivation, well-defined methods to connect these differently modeled systems
parts are needed. In this thesis, such conversion means are discussed and developed using a formal
framework for process control, and are implemented in a SystemC-based simulation environment.

Acknowledgements

I want to thank my supervisor Prof. Dr. Christoph Grimm for giving me this opportunity and
his support, and my external advisor Prof. Dr. Martin Radetzki. I also want to express my
gratitude to all the contributors of the ANDRES project, especially Dr. Fernando Herrera and
Prof. Dr. Axel Jantsch for the helpful debating of conversion semantics, Dipl.-Inform. Philipp
A. Hartmann for discussing C++ coding, and Dipl.-Ing. Joseph Wenninger for his support with
the Converterchannel data type conversion.
Finally I want to thank all my former colleagues at the Institute of Computer Technology, espe-
cially Dr. Jan Haase and Dr. Fritz Bauer. It was a great time.

II

Table of Contents

1 Introduction 1

2 Models of Computation in System Design 7

2.1 SystemC . 9

2.1.1 Basic Syntax . 9

2.1.2 Simulation Semantics . 11

2.1.3 MoCs in SystemC . 12

2.1.4 SystemC Extensions . 13

2.2 SystemC AMS . 14

2.2.1 Basic Syntax . 14

2.2.2 Simulation Semantics . 16

2.3 TLM 2.0 . 17

2.3.1 TLM2 Transactions . 18

2.3.2 TLM2 interfaces and Coding Styles . 20

2.3.3 What kind of a MoC is TLM? . 23

2.4 Other approaches and related work . 25

3 A formalism for MoCs and computational system models 27

3.1 Computational System Models . 31

3.2 The Discrete Event Model of Computation . 33

3.3 Process Networks . 35

3.4 Synchronous and Timed Data Flow . 38

3.5 Transaction Level Modeling . 40

3.5.1 Transactions . 40

3.5.2 The TLM MoCs . 42

4 Connecting System Models described with different MoCs 47

4.1 Discrete Event models and TDF models . 47

4.1.1 TDF writer . 48

4.1.2 TDF reader . 49

4.1.3 TDF clusters which read from DE signals an write to DE signals 50

4.2 Untimed Process Networks and SDF/TDF models 52

4.3 Discrete Event Process Networks and TDF models 53

4.3.1 TDF reader . 53

4.3.2 TDF writer . 55

III

4.4 Discrete Event Models and Process Networks . 55
4.5 TDF models and TLM models . 56

4.5.1 TLM writer . 57
4.5.2 TDF writer . 61

5 Automatic MoC conversion in SystemC: Converter Channels 64
5.1 Technical Implementation . 65
5.2 MoC conversions . 68

5.2.1 TDF ↔ SC . 68
5.2.2 TDF ↔ FIFO . 69
5.2.3 SC ↔ FIFO . 69
5.2.4 Conversions towards electrical networks . 70
5.2.5 Conversions from electrical networks . 70

5.3 Data type conversion . 71

6 TLM ↔ TDF conversion in SystemC 73
6.1 TLM→TDF conversion . 74

6.1.1 AT-TLM converter . 74
6.1.2 LT-TLM converter . 77

6.2 TDF→TLM conversion . 78
6.2.1 LT-TLM converter . 78
6.2.2 AT-TLM converter . 82

6.3 Application Example . 83

7 Conclusion 88

Literature 90

IV

1 Introduction

For several years now, the electronic design community follows an agenda to automatize the design
process as much as possible, driven by Moore’s Law [Sch97]. Elaborate tools (or tool chains) can
transform an abstract model of an electronic system, for example coded in a hardware description
language like VHDL [LSU89, LG88], into a real chip; generally via several transformation steps.
Some target architectures, like FPGA, offer complete automated design flows already today. For
others, manual transformation or manual intrusion in semi-automated transformation processes
is still necessary. In any case, the means to describe a system will in general be different after
each transformation step: A different tool, a different language, a different abstraction level.
Consequently, the modeling paradigms for these descriptions will differ as well.

Embedded systems [Zav82, GVNG94] are electronic systems which are specifically designed to
fulfill dedicated functions within certain devices or machines. They control, for example, the
motor of a car, or white goods like washing machines. They are typically comprised of a micro-
processor together with analog sensors and actors, i.e. specialized analog electronics. To model
such a system, at least two modeling paradigms are needed for the analog and the digital domain,
respectively; but often it might be even more.

Also, there is the need to capture the tight interaction of embedded systems with their analog
physical environment already early in the design process. One motivation is that most embedded
systems form some kind of feedback loop with their environment. Consider for example an
embedded system implementing the controller in a control system by means of software. An
important part of a model of such a system is the control algorithm. If the model is used to
test the control algorithm by means of simulation, we obviously need to provide an input stream.
But since the output of the control algorithm influences the subsequent input to it, we get this
input stream only by also capturing the physical process (commonly called the plant) which is to
be controlled. This motivated approaches to connect simulation models to real physical plants,
like hardware-in-the-loop [ISS99, Bac05] and software- or model-in-the-loop [YWL02, Plu06].
However, modeling and simulating the physical processes involved (if possible) is less costly, and
definitely preferable in the early stages of the design process.

This is an important difference between embedded software and software in desktop applications
like spreadsheet software or compilers. The latter can be evaluated using benchmark inputs,
e.g. sets to be sorted or C++ code to be mapped to machine code, with evaluation criteria like
runtime or size of the output. With embedded software, such a simple input - output analysis
is usually not sufficient. This is even more true for cyber-physical systems [Lee08, RLSS10], i.e.

1

Introduction

systems which are networked and where the evaluation criteria might concern behavior which
emerges from the network interaction, e.g. when considering wireless sensor/actor networks.

The consequence of these developments is that system models tend to become more and more
heterogeneous. The modeling paradigm for a certain (sub-)system depends on its domain and
the abstraction level, but also on the specific goals behind the model. Figure 1.1 depicts this
situation (With no claim of completeness). Note however that the three axes are not completely
independent. The goals behind a model often heavily influence its abstraction level, e.g. fast
simulation often implies high abstraction. Also, on higher abstraction levels the borders between
the domains often blur, since a certain functionality can often be implemented in several domains,
e.g. as an application specific integrated circuit (ASIC) or in software.

high

low

d o m a i n
physical analog digital software

g
o

a
l

s

fast simulation

verification

software

development

design space

exploration

synthesis

re-use

interoperability

Requirements

elicitation

Figure 1.1: criteria for choosing modeling paradigms

Some examples of system models are

• A list of requirements the system has to fulfill

• A block diagram

• Mathematical descriptions like equation systems or transfer functions

• Algorithms for certain functions implemented by the system, e.g. using C code or any other
programming language

• Models using a modeling language like VHDL, Verilog or SystemC

In this thesis, we are only interested in models that can be executed, i.e. simulated. The means
used to describe a system and the semantics to execute this description make up a Model of
Computation. For now, we will give an informal definition of a Model of Computation before
giving a formal one in Chapter 3:

2

Introduction

Definition 1.1 (Informal MoC Definition). A Model of Computation (MoC1) is a specification
of computational and communicational means for the description of system models.

The modeling goals, the abstraction level and the domain of a system model determine the
Model of Computation to use; maybe directly but mostly indirectly by the choice of the modeling
language or modeling tool. In fact, users will often be oblivious about the underlying MoC of
the simulation tool they use. With heterogeneous system models the MoCs used for certain sub-
systems will in general be different; they might even vary over time with the change of modeling
goals in the course of the system development. Handling the interaction of sub-systems modeled
with different MoCs is the main topic of this thesis.

The general goal behind a system model is mostly to draw conclusions about the (correct) oper-
ation of the implemented system in reality. The ideal case would be a system model representing
an exhaustive virtual image of the system (and its environment) such that it can be tested on
a computer before producing (costly) hardware prototypes. At the same time, computational
feasibility is an issue. The higher the detail of the model the more computational resources it
needs. Therefore it is important to find a suitable level of abstraction: It should be low enough
to capture the phenomena of interest (like functional correctness, timing or power consumption),
but high enough to keep the computational complexity at bay. Here it can also make sense to
mix more than one abstraction level within one system model.

As an example how abstraction levels can vary for the same system, consider a digital circuit
which at the lowest abstraction level can be described as a network of transistors. This network
can be simulated, for example by using SPICE [NP73], but this can get very costly when the
digital circuit is large. The next highest abstraction level is the gate level, where the digital circuit
is described by means of elementary logic blocks and registers. For purposes like simulation, the
logic blocks can be annotated with meta-information like delay times or power consumption. This
meta-information can be obtained by modeling each type of logic block (like a NAND-gate) at
the transistor level and analyzing it (e.g. timing analysis) on this lower abstraction level.

A next possible (higher) abstraction level would be the Register Transfer Level (RTL). Here
the system is described by means of registers and larger functional units (like an ALU), whose
functionality can be simply described by algorithms. Again, information like timing can be
included based on models of sub-components on lower abstraction levels. Above that is the CPU
itself, which in principle can also be modeled in a structural manner like RTL, especially when
designing the CPU itself. For special modeling goals like determining the worst case execution
time of software [FHL+01], it is necessary to have a CPU model with key structural elements
like the pipeline and the cache hierarchy. However, for many applications it is sufficient to use
something like an Instruction Set Simulator (ISS)[LLSV98, ZG99], especially if the modeling goal
is to put the CPU in the context of a larger system.

This abstraction level, which finally encompasses the system as a whole, is commonly called the
System Level, or more specifically, the electronic system level (ESL) [GHP+09, MBP10]. Here,
techniques like Transaction Level Modeling [CG03] became more and more important in recent
years. The goal on the system level these day is often to provide an early system model where
software can be tested (even as a cross-compiled binary) before any real hardware prototypes of
the system are available. Therefore, these models are called virtual prototypes.

Figure 1.2 shows a chain of these abstraction levels, together with the tools/languages (on top
in blue) and the general means (below in green) used on each level. Note that Figure 1.2 is

1In this thesis, the term MoC is used for the singular case, and the term MoCs for the plural case

3

Introduction

not intended to be complete, since there are many tools and techniques available and the borders
between abstraction levels are blurry sometimes. In fact, as Figure 1.2 also indicates, it is possible
to use a lower level model of a sub-system in a higher level model of the overall system, for example
if for this sub-system the higher precision of the lower abstraction level is needed, or the modeling
goal is to analyze the sub-system in the context of a larger system for which the higher abstraction
is sufficient.

CPU

vdd

x0

x1

y

+

ALU

#include <iostream>
#include <vector>
using namespace std;

vector<int> pick_vector_with_biggest_fifth_element(
vector<int> left,
vector<int> right

){
if((left[5]) < (right[5])){

return(right);
};
// else
return(left);

vector<int> right(7);

left[5] = 7;
right[5] = 8;
cout << left[5] << endl;
cout << right[5] << endl;
vector<int> biggest(

pick_vector_with_biggest_fifth_element(left, right)

int main(void){
vector_demo();

}

Software

Bus

RAM ROM

CPU

I/O System

SPICE
VHDL-A

VHDL
VERILOG

Differential
Equations

Netlists
Functions

VHDL
VERILOG
SystemC

Netlists
Functions
Algorithms

SystemC
System-Verilog

Algorithms
ISS

TLM

Figure 1.2: A chain of abstraction levels

Not shown in Figure 1.22 is another key element, especially for embedded systems: the environ-
ment. It is represented indirectly by the I/O block on the system level to the right, since this is
the interface for the direct interaction of the system with the environment. To be able to test
software of an embedded system which interacts with the environment via the I/O (e.g. by read-
ing sensor input and providing control signals for actors), it might be necessary to also provide an
environment model. In the case of control loops mentioned above, the environment model would
be a model of the plant. User models to simulate user interaction are other examples of possible
environment models. Also, there might be indirect environmental factors (e.g. temperature or
humidity) influencing the system behavior.

The MoCs between abstraction levels don’t need to change. The RTL and gate level can be
modeled very similar (e.g. as discrete event models), the main difference here is the granularity of
the functional blocks. From gate level to the transistor level, however, there is a fundamental step
from non-conservative to conservative systems. Transistor level models (and analog circuit models
in general) give rise to equation systems emerging from conservation theorems like Kirchhoff’s
circuit laws, and any simulator for such models needs to solve these equations.

MoCs arise also in other areas like computability theory, and also in the modeling and analysis of
systems other than electronic ones. But in this thesis, the subject will be treated with respect to
electronic system design, concentrating on a special issue: Connecting subsystems modeled using
different MoCs.

Let’s assume we have two models A and B modeled with two different MoCs, and we want to
connect them. There are basically three possibilities:

2because it is not an abstraction level or part of the system

4

Introduction

1. Find a conversion semantic for the connection, i.e. adapt the way information is exchanged
in MoC A such that it can be interpreted in a meaningful way in MoC B (and/or vice versa,
depending on the direction of the information flow).

2. Convert A into the MoC of B (or vice versa).

3. Convert both models into a third MoC

It is obvious that only the first option is viable. Transforming the model of a whole subsystem is
in general too time consuming and error-prone. Also, the MoC might not be suitable, e.g. when
transforming an RTL level model of a digital circuit into a transistor-level model (which can be
done automatically since this is a standard synthesis step) in order to simulate it together with an
analog circuit. The resulting simulation overhead would mostly be not acceptable. Also, nothing
really relevant can be learned about a digital circuit when simulating it as an analog circuit.

The core of this work was done in the course of the ANDRES project3 [HOH+07], which was
an EC-funded project (FP6, IST-5-033511) running from 2006 to 2009. The goal of this project
was to provide a (mainly SystemC-based) design flow for adaptive heterogeneous systems, and
since the heterogeneity implied the usage of different MoCs there was the need for appropriate
conversion means. As an additional requirement, the conversion should be automatic; i.e. if two
subsystem-models are connected by a converter, and one subsystem-model is replaced by another
one using a different MoC, the converter has to adapt automatically such that there is no need
to also replace the converter. This concept was called Converterchannel and builds on the idea
of polymorphic signals [Sch07]. In fact, as a black box a Converterchannel behaves very similar
to a polymorphic signal, but the conversion approaches are very different.

The main publications which stemmed from this work are

• ”Using converter channels within a top-down design flow in SystemC” (conference paper,
Austrochip 2007 [DHHV07]) presents the general concept of the Converterchannels.

• ”Bridging MoCs in SystemC specifications of heterogeneous systems” (journal paper, EURASIP
Journal for Embedded Systems [DHG+08b])contains the approach of connecting process
networks to timed data flow clusters in SystemC

• ”Connecting SystemC-AMS models with OSCI TLM 2.0 models using temporal decou-
pling” (conference paper, FDL 2008 [DGH+08]) presents the first approach for converters
to connect SystemC TLM2 models to TDF models.

The main contributions of this thesis besides the implementation of the Converterchannel concept
are:

• Conversion semantics for certain MoC conversion cases: While the Converterchannels also
use already existing conversion means like the converter-ports provided by SystemC AMS
to connect discrete event signals to timed data flow modules, also new conversion semantics
where developed and integrated into the Converterchannels in case they where missing;
most notably the timed data flow ↔ process network conversion semantics. This includes
also the TLM↔TDF conversion semantics which are not part of the Converterchannels.

3ANalysis and Design of run-time REconfigurable, heterogeneous Systems

5

Introduction

• Conversion corner cases: For most conversion means (even those already available) there
are certain corner cases whose handling depends largely on the modeling goals and therefore
can’t be treated automatically per se. These cases are identified and discussed to derive
appropriate conversion semantics.

• MoC formalism: A formalism for MoCs which is still abstract yet close enough to frame-
works like SystemC such that the conversion semantics derived can be easily implemented.

• An approach to describe transaction level modeling formally as a MoC.

The rest of this thesis is organized as follows: In Chapter 2 we discuss existing work on MoCs
as well as frameworks for system modeling (most notably SystemC and its extensions) and the
MoCs they use. In Chapter 3, a formalism for the description of MoCs is defined and used to
specify the MoCs relevant to this thesis. Chapter 4 describes several MoC conversion approaches
for different pairs of MoCs using the formalism of the previous chapter. In Chapter 5 the SystemC
implementation of the Converterchannels is described, and Chapter 6 covers the implementation
of the converters between transaction level models and timed data flow models; as these converters
are not part of the converter channels, and also provide an application example. After that, we
conclude.

6

2 Models of Computation in System Design

As indicated in the introduction, we treat the subject of MoCs (and the conversion between them)
in the context of modeling and simulation of physical systems, with a focus on electronic system
design. But in general, a MoC is just an abstract model of a computational system. One of the
simplest MoCs is the well-known Finite State Machine (FSM). This MoC is restricted to a finite
set of states S and a finite set of state-transitions T successively triggered by input symbols out
of a finite alphabet Σ; possibly producing an output using a finite output alphabet in the process.
Finite State Machines are the backbones of many MoCs. For example, by giving an FSM access
to an unbounded stack (by using it as additional input and output), we derive the more elaborate
pushdown automaton (PDA); and by using an unbounded tape we get the Turing Machine.

In theoretical computer science, the study of the languages accepted by these computational sys-
tems when considering certain acceptance conditions (e.g. reaching an acceptance state) gave rise
to a rich theory: formal languages [Har78], formal grammars [GL70], and classifications like the
Chomsky hierarchy [Cho56], to name just a few. In computer engineering, these abstract mod-
els are the blue prints for the implementation of computational systems. States and transitions
manifest in registers and clock-cycles, stacks and tapes in various (possibly big but yet finite)
memory forms like RAMs and hard-drives.

In system modeling, MoCs are used to describe how to model and eventually analyze systems;
the latter often by means of simulation. We model existing systems which we want to study, like
simulation models for weather forecasts or economic predictions, or systems which we intend to
build, like vehicles or electronic devices. The analysis means provided by a MoC often include
semantics to simulate system models on some computational system.

In electronic system design, modeling general concurrent systems and simulating them is part
of the design process. In fact, with a hardware description language like VHDL or Verilog it is
possible to define a model of a semiconductor device, simulate it, and then synthesize a physical
implementation which then (ideally) behaves like the model in the simulation. This synthesis
process is largely automated, depending on the target architecture (FPGA, ASIC, standard cells,
...). Note that the target architecture itself inherently defines a MoC, since it specifies compu-
tational (e.g. CLBs, CMOS-transistors) and communicational (e.g. longlines, voltage levels,...)
means.

It is important to choose the suitable MoC for the task at hand, e.g. regarding the complexity or
nature of the system. Simple systems like traffic lights or elevators can well be adequately modeled
as FSMs. A system like a desktop computer could in principle also be modeled as an FSM, since

7

Models of Computation in System Design

it always will be bound to possess finite memory with the different memory configurations forming
the states. However, since the state space explodes exponentially with the available memory in
the system it is neither feasible nor desirable to do so. Here, a MoC with an FSM with added
memory, like a Finite State Machine with Data path (FSMD) [GR94], would be more suitable;
and even more so a higher-level view like the von Neumann architecture [VN93]. And if the system
at hand involves analog phenomena, means like differential equations and respective solvers come
into play.

Also to be considered by a MoC is the treatment of time, especially regarding modeling and
simulation. Again, the means should be suitable to the problem. For example, basically every
digital system today is clocked synchronous; at every tick of the clock the system transitions into
a new state. As a first approach, we can assume that the hardware which computes the state
transitions is fast enough to compute the correct next state before the next clock tick, since the
clock can always be slowed down. To model such a system, it is sufficient to view time as a series
of discrete steps, corresponding to the clock ticks. This MoC is commonly called the Synchronous
Model of Computation.

In this chapter, we look at related work regarding the use of MoCs in system design, as well as
conversion means between different MoCs. Most notably, we introduce SystemC and its extensions
and the MoCs used there. For the purpose of the discussion in this chapter, we now give some
informal definitions of important MoCs. These will be (re-)introduced in a formal manner in
Chapter 3.

• Kahn Process Networks (KPN) [Kah74, LP95] consist of processes communicating via
unbounded FIFOs by writing and/or reading data token. If a process reads from an empty
FIFO, it is blocked until another process writes to that FIFO. This MoC can be varied by
bounding the FIFOS (bounded KPN, or B-KPN), with blocking write. While timing can
be considered, this MoC is usually untimed.

• Synchronous Data Flow (SDF) models [LM87b, LM87a] are like KPN models with the
restriction that the processes produce and/or consume the same amount of token every
time they are executed. The processes of an SDF model can be statically scheduled (if
the different data rates in the model are consistent) such that there is no need for runtime
scheduling, and processes are never blocked by a FIFO access. SDF models are also untimed.

• The Timed Data Flow (TDF) MoC [GBVE08a] is a timed version of SDF; to each
process execution a certain (fixed) time span is associated. This implies also a certain time
span elapsing for each token passed via a FIFO and, in turn, imposes additional consistency
constraints as not only the different data rates have to fit, but also the different process
execution time spans relative to the data rates.

• The Discrete Event (DE) MoC [Fis73, Zei84, ZPK00, CL08] is probably the most common
MoC in digital system design. Time is modeled as a discrete series of events, which are
managed by a simulation kernel. There is no standard communication model, although often
discrete event signals are used where writing to a signal triggers an event which effectively
notifies the processes reading this signal.

8

Models of Computation in System Design

2.1 SystemC

SystemC [IEE05, LMSG02a] is a C++ class library which implements a system modeling lan-
guage. The development of SystemC started 1999, following a decade where the idea of C-based
design became popular. As systems grew more and more complex, describing their functionality
in a high-level language like C was more convenient than using dedicated hardware description
languages like VHDL. The main purpose here was the creation of golden models which could be
used to verify hardware prototypes, e.g. by providing test benches.

This development called for a more formal approach and motivated the development of SystemC
and other formal C or C++-based modeling languages at the end of the nineties, most notably
SpecC [GZD+00, FN01, CGO01], which shares similar ideas with SystemC (like channels, events
and discrete event simulation semantics[MDG02]), but is based on ANSI-C. Unlike SystemC, it
provides explicit constructs to model finite state machines.

Another approach in this category is the C-based Handel-C [Pag96, LWFK02], which targets a
lower abstraction level than SystemC and SpecC and sees a lot of use in FPGA programming.
Also targeting FPGA development is the Java-based JHDL1 [BH98, HBH+99], which was also
developed during this time, but didn’t see any updates now for almost 10 years.

Apart from the description of functionality, these approaches enable to model timing, and (as
the compiled code is executable) come with a straightforward way to simulate system models.
Therefore, such system models are often called executable specifications. In the following, we have
a closer look at how SystemC works.

2.1.1 Basic Syntax

SystemC provides several facilities for modeling and simulation of discrete event models, like
signals, ports or modules. The most important class is the class sc module. It can be used to
either describe atomic entities of a model by means of processes, or to encapsulate a structural
description of a sub-model2.

To define a module, a class (or a struct) must be declared which inherits from sc module, e.g.
class counter:sc module {...};. For convenience, there is a macro SC MODULE available; if
using it the previous class declaration would read as SC MODULE(counter) {...};.If a module
does not encapsulate a structural description, its behavior is described by processes, i.e. functions
of the class. There are essentially3 two kinds of processes in SystemC:

• SC THREADs are processes which are executed only once at the beginning of the simulation.
They can yield to the simulation kernel by calling a function wait(). If they call wait()
with a timespan as argument, they are continued after that timespan (of simulated time)
has passed. By using an event as argument to wait(), they are continued when the event
is triggered. With no argument, they are continued when an event is triggered which they
are sensitive to.

1Just-Another Hardware Description Language
2It therefore corresponds to a combination of ENTITY and ARCHITECTURE in VHDL.
3There is a special kind of thread called SC CTHREAD (i.e. clocked thread) for threads which are triggered by

clock signals. Since they behave like SC THREADs in principal, we will not discuss them in detail.

9

Models of Computation in System Design

• SC METHODs are processes which are sensitive to certain events. If one of these events is
triggered, the method is executed. Unlike an SC THREAD, an SC METHOD is not allowed to
call wait() (directly or indirectly).

SC_MODULE(clockgen) // module declaration using the SC_MODULE macro

{

sc_out<bool> out; // output port

5 SC_CTOR(clockgen) // module constructor using the SC_CTOR macro

{

SC_THREAD(tick); // thread which does everything

state = false; // state of the clock generator

}

10

void tick() // is started once when the simulation starts

{

while(true) // do everything in an endless loop

{

15 out.write(state); // write state to the output port

wait(1,SC_US); // continue in 1 microsecond

state=!state; // invert the state

}

}

20

private:

bool state;

};

25

SC_MODULE(counter)

{

sc_in<bool> clk_in; // input port for clock signal

30 sc_out<int> cnt_out; // output port for counter value

SC_CTOR(counter)

{

SC_METHOD(do_count); // the method which increases the counter value...

35 sensitive << clk_in.pos(); // is sensitive to the positive flanks of the clock

state = 0;

}

void do_count() // is started every time

40 {

cnt_out.write(state); // write the counter value to the output

state++; // increase the counter value

}

45 private:

int state;

};

Listing 2.1: Two example SystemC modules

For the events mentioned above, there is a dedicated SystemC class sc event to represent them.
To trigger them, they provide a method sc event.notify(). The SC THREADs and SC METHODs
of a module have to be declared in the module constructor, as well as the sensitivity of the
processes to events. For the constructor, there is also a macro SC CTOR available. See Listing 2.1

10

Models of Computation in System Design

for two example SystemC modules: a clock-generator with an SC THREAD, and a counter with an
SC METHOD.

Listing 2.1 contains two SystemC (template) classes not yet introduced: sc in<> and sc out<>.
These are ports which have to be connected to signals. In line 35 of Listing 2.1, the SC METHOD

do count is made sensitive to changes of the signal which the port clk is connected to. In this case,
since the data type of the port clk is Boolean, it is even possible to restrict sensitivity to the 0→ 1
transitions (the positive edges) with sensitive << clk in.pos();. In general, after declaring a
class function as a thread or a method with SC THREAD(<name>) or SC METHOD(<name>), it can
be made sensitive to arbitrary many signal changes by using

sensitive << port1 << port2 << ... << portn;

The in- and out-ports have access methods read() and write(), respectively, to access the signals
they are connected to. Listing 2.2 shows how the two modules from Listing 2.1 can be connected
at the top-level with a Boolean signal for the clock. The syntax is module.port(signal), which
is syntactic sugar for module.port.bind(signal) achieved by overloading the ()-operator.

sc_main(int argv, char* argc[])

{

sc_signal<bool> clk_sig; // clock-signal

sc_signal<int> cnt_sig; // signal for the counter value

5

clockgen clk("clk"); // instantiate clock generator

clk.out(clk_sig); // connect its out-port to the clock-signal

counter cnt("cnt"); // instantiate counter

10 cnt.clk_in(clk_sig); // connect its in-port to the clock-signal

cnt.cnt_out(cnt_sig); // connect its out-port to the counter value signal

sc_start(100, SC_US); // run the simulation for 100 microseconds

}

Listing 2.2: Connecting two SystemC modules

Another SystemC communication channel is the sc fifo<> which allows for blocking as well
as non-blocking access via specialized sc fifo in and sc fifo out port classes. In general,
SystemC allows for the definition of custom communication channels and ports, which is crucial
for extending SystemC.

2.1.2 Simulation Semantics

The SystemC DE simulation kernel governs the execution of SC THREADs and SC METHODs by
maintaining a list of runnable processes. At the start of the simulation, all SC THREADs as well
as all SC METHODs are put in this list4. There is no particular order, as the simulation time for
all these executions is 0; in practice (at least with the Accellera reference implementation) it
turns out that the order of the instantiation of the modules containing the processes as well
as the order of the process declaration within the modules impose an order on the processes in
this initial runnable list. However, the SystemC standard imposes no rules here; e.g. it would
be perfectly valid to randomize the order of this initial runnable list. To distinguish processes
executed at the same point of simulated time in the DE MoC, the notion of δ-time (or δ-step) is

4For SC METHODs, this can be prohibited by calling dont initialize() when declaring the method.

11

Models of Computation in System Design

used. If p0, p1, p2, ... are processes executed consecutively at the same simulation time, then p0 is
executed at δ-time 0, p1 is executed at δ-time 1 and so on.

The processes executed now produce new events, either indirectly by writing to an port, or
directly by calling the notify() method of an event. If notify(t) is called with an sc time

value notify(t) (timed notification), the processes waiting for this event will be made runnable
after a span t of simulated time has passed. If t= 0 (δ-notification), they will be added directly
to the runnable list and executed at the same simulation time. And if notify() is called without
any argument (immediate notification), the processes in question will also be executed at the
same simulation time, but from the next δ-step on; i.e. they will be put directly to the front of
the runnable list.

2.1.3 MoCs in SystemC

A fundamental advantage of SystemC is that basically every MoC can be realized; either by
restricting the computational means used by the system model, or by implementing new facilities
using the underlying C++ language, thereby expanding the computational means - or both. For
example, by using only FIFOs for communication between modules, several variants of the Process
Network MoC can be implemented, depending on if...

• FIFO probing is allowed (i.e. blocking vs. non-blocking access)

• the FIFOs are bound in size

• or if timing facilities are used, e.g. the wait() command.

This freedom bears also some risk in the sense that it might be hard to say what MoC is actually
used in a given SystemC model, especially since the full power of the C++ language is available.
For example, a SystemC module can implement a finite state machine, a pushdown automaton
or a Turing machine depending on the C++ facilities used. However, the elements of these MoCs
are not well defined in the context of SystemC. E.g. any class variable x used in a SystemC
module is a potential state variable which enlarges the potential state space by a factor of the
size of the datatype of x. While this is not a problem regarding simulation, it can become an
issue when the model is to be used also for other means, e.g. for synthesis.

One way to handle this situation is to use guidelines like in [LMSG02b], where it is described how
to use the standard SystemC facilities to effectively model in different MoCs. The downside of such
an approach is that not every MoC might be handled computationally effective. A different kind of
guideline is the Accellera standard SystemC Synthesizable Subset [Ope04] which describes a subset
of the SystemC standard which can be used for synthesis, together with synthesis semantics.

12

Models of Computation in System Design

2.1.4 SystemC Extensions

Another way is to extend SystemC with new facilities and/or MoCs, e.g. by implementing new
SystemC channels or even providing additional simulation kernels. There are several examples of
such approaches:

• [PS04] added additional MoCs to SystemC, namely for finite state machines, communicating
sequential processes and synchronous data flow. To this end, the SystemC kernel of the
Accellera reference implementation5 is extended directly, which is possible as it is Open
Source. E.g. for SDF, facilities are added to describe SDF graphs, which then are analyzed
automatically to provide a static schedule which is executed by a static scheduler, i.e. a
dedicated SDF simulation kernel.

• HetSC [HV06] provides a SystemC-library for heterogeneous modeling in SystemC with
additional MoCs. For HetSC, no SystemC kernel manipulations were necessary, but it also
does not provide new simulation kernels. E.g. for SDF, dynamic scheduling is used. In
addition, HetSC comes also with a synthesis approach for embedded software [Her08]. As
HetSC was also part of the overall framework in the ANDRES project [HOH+07], there has
been some work on its interoperability with SystemC AMS [HVG+07, HVG+08].

• In [RRG03] it is described how to use SystemC to implement Petri Nets. The only new
facilities provided are dedicated communication channels for moving token from and to
places, i.e. it partly has a guideline character. The author’s ultimate goal is to synthesize
petri nets.

Apart from these research works, there exist extensions to SystemC which are ”official” in the
sense that they are Accellera-standards. They provide new modeling and simulation facilities,
together with rules how to use them, thereby explicitly or inherently defining new MoCs:

• The SystemC AMS extensions where developed by an OSCI working group to comple-
ment SystemC by means for modeling and simulation of Analog and Mixed Signal systems.
(see Section 2.2).

• Transaction Level Modeling (TLM) provides means to abstract communication in mod-
els of digital systems. While TLM 1.0 and later TLM 2.0 (TLM2 for short) were originally
extensions to SystemC, TLM2 is now an integral part of SystemC since version 2.3. (see
Section 2.3).

Providing facilities to connect sub-systems modeled in a MoC provided by SystemC, SystemC
AMS and TLM2 is an essential part of this thesis and is covered in Chapter 5.

5At the time this was done it was still the OSCI reference implementation

13

Models of Computation in System Design

2.2 SystemC AMS

The idea of SystemC AMS is to provide an extension to SystemC with appropriate facilities to
model analog mixed-signal systems, with a certain focus on signals processing [VGE03a, VGE03b,
VGE05, GBVE08b]. SystemC AMS essentially targets the same or similar domains as VHDL-
AMS [IEE07, SMG05, Rua01] and Verilog-AMS [Acc04, FO00], and partly also Simulink [Hof99],
but aims at a higher abstraction level and better simulation performance.

The development of SystemC AMS started a few years after the development of SystemC [ECN+01,
EGV+02, ES03]. SystemC AMS 1.0 became an OSCI standard in 2010 [Ope10], followed by Sys-
temC AMS 2.0 in 2013 [Acc13], now as a standard of the Accellera SystemC Initiative.

The SystemC AMS extensions provides several new MoCs to support modeling and simulation
of systems which contain analog subsystems and/or systems which are data-flow oriented (signal
processing). It provides three new MoCs:

• Electrical Linear Networks (ELN), i.e. electrical networks consisting of the linear
elements like resistors or capacitors.

• Linear Signal Flow (LSF), i.e. signal-flow graphs to form general linear differential
equations.

• Timed Data Flow (TDF), the timed variant of the SDF MoC.

In this thesis we will only consider the TDF MoC since it is the main MoC of SystemC AMS in the
sense that it also ”drives” the other MoCs: ELN and LSF essentially describe linear differential
equations, but these equation systems are evaluated with the beat of TDF. That is, these two
MoCs contain conversion means from and to TDF like TDF-controlled voltage sources or current
sinks converting currents to TDF signals, and writing to or reading from these converters trigger
the evaluation of the equation systems.

2.2.1 Basic Syntax

SystemC AMS provides its own module class sca core::sca module which is structured very
differently form an sc module. For one, there are no threads or methods to declare, but a fixed
set of class methods with standard names which have to be overloaded in order to implement
the functionality of the module. The most important method here is the method processing(),
since this is actually the process called when the SystemC AMS simulation kernel executes the
static schedule. Another important method is set attributes() which is a method which is
called before the simulation starts and where the data rates of the module ports, as well as the
time steps for a port or the whole module are specified. Listing 2.3 shows a sine-wave source as
an example.

SCA_TDF_MODULE(sine_source)

{

sca_tdf::sca_out<double> out; // output port

sc_core::sc_time timestep; // the timestep of the port

5 int rate; // the data rate of the port

double frequency; // the frequency of the sine wave

sine_source(sc_core::sc_module_name nm,

14

Models of Computation in System Design

sc_core::sc_time _timestep,

10 double _frequency,

int _rate

): out("out"), timestep(_timestep), rate(_rate), frequency(_frequency)

{}

15 void set_attributes() // setting data rate and time step

{

out.set_rate(rate);

out.set_timestep(timestep);

}

20

void processing() // the actual process

{

double val;

for(unsigned int i=0; i < rate; i++)

25 {

val =(sin((get_time().to_seconds() + i*timestep.to_seconds()) * frequency * 2 * 3.14159);

out.write(val,i); // write the output values

}

}

30 };

Listing 2.3: Example SystemC AMS TDF module

As Listing 2.3 shows, SystemC AMS provides also a dedicated TDF port class. Consequently, a
dedicated signal class sca tdf::sca signal<T> is provided as well. Instantiating and connecting
TDF modules via TDF signals works exactly the same way like with DE modules and DE signals,
but their semantics differ, since a sca tdf::sca signal<T> is essentially a FIFO - but it is not
accessed like a FIFO. As Listing 2.3 shows in line 27, the access to the signal works more like
accessing an array. Instead of pushing the output values, the command out.write(val,i)

explicitly refers to the ith position in the FIFO the port out is attached to, i.e. the values could
be written in any order.

This is possible because of the fixed data rates at each port. Similarly, the input token of an
input port in is accessed with the command in.read(i). That is, the FIFO access is not
destructive as in usual FIFO access via a pop() command. Therefore, it is possible that one
sca tdf::sca signal<T> can be connected to several readers.

This might look confusing at first since this does not seem compatible to a MoC commu-
nicating with FIFOs, which have always exactly one writer and one reader 6. However, a
sca tdf::sca signal<T> with more than one reader can be conceptually replaced with a module
that reads from this signal as the only reader, an then writes the data token read to several new
instances of sca tdf::sca signal<T>, one for each reader of the original signal. Therefore we
don’t have to adapt the SDF concept for the SystemC AMS MoC, and can use the usual FIFO
semantics when looking at the TDF MoC from a theoretical point of view.

6Or at most one reader if we consider such FIFOs without a reader as an output stream.

15

Models of Computation in System Design

2.2.2 Simulation Semantics

After starting the simulation with sc start(), the SystemC AMS simulation kernel analyzes
the structure of the TDF modules and their connections and identifies the connected components
(commonly called TDF clusters). If possible, it computes a static schedule for every TDF cluster,
if not, it halts the execution with a runtime error. More information on the schedulability of a
TDF cluster is given in Section 3.4. The SystemC AMS simulation kernel also analyzes the time
steps set at the ports and determines if they are consistent, halting execution with a runtime
error if this is not the case. In fact, the time step only has to be set for at least one module port
in a TDF cluster. The time steps of all other ports in the cluster then can be computed as a
consequence of the data rates involved.

A

C D

EFG

B

50
100

100

1

1

1

1

1

1

111001

Sine-source

Bit-source

Modulation Environment

RectifierLowpassBit-recovery

Schedule: B A A C DEF DEF…DEF G

100×

samling

period

2 ms

20 s

2 ms

20 s

20 s 20 s
20 s

20 s

20 s20 s20 s20 s2 ms
data

rate

Figure 2.1: Example TDF cluster with static schedule, taken from [DHG08a]

Figure 2.1 shows an example of a consistent TDF cluster. The module C, for example, has a
time step of 2ms at the binary input port with data rate 1. Since the data rate of the other two
ports is 100, respectively, these ports have to have a time step of 2ms/100 = 20µs. Note that
the example in Figure 2.1 doesn’t contain a closed loop. If a TDF cluster contains a closed loop,
a delay (in token) has to be set at one port of a module which closes the loop (using the port
method set delay() within the set attributes() method. This port can then also be provided
with initial values for the delayed port.

With SystemC AMS version 2.0, the concept of dynamic TDF was introduced [BEG+11, RE12].
It allows for re-defining data rates and time steps during simulation time. However, in this thesis
this new feature won’t be considered. While it is of great practical use, from a theoretical point
of view it is just a new TDF cluster setup during runtime resulting in another static schedule.
Therefore, it is of no consequence regarding MoC conversion.

SystemC AMS comes already with conversion facilities to be able to connect to DE-signals to
TDF modules, namely the converter ports sca tdf::sc in and sca tdf::sc out. Since a TDF
module can’t be sensitive to value changes, a sca tdf::sc in must be written actively every
time the processing() method is executed. Also, to an sca tdf::sc out can only be written

16

Models of Computation in System Design

to during the execution of processing(). The actual conversion is really just a manipulation of
the static schedule in order to allow the TDF module to read from or write to the DE side at
the most accurate time as possible. However, some inaccuracies are not avoidable. For example,
during two consecutive reads from a DE signal by a TDF module, the value of the DE signal can
in theory change an arbitrary number of times, i.e. there is loss of information. More on this in
Section 3.4

2.3 TLM 2.0

The concept of Transaction Level Modeling is largely motivated by enhancing the simulation
performance for typical digital systems, i.e. containing a microprocessor connected to a set of
additional components (Memory, I/O) via a bus. The transportation of a series of bytes over a bus
or a similar digital communication channel involves a series of events, possibly affecting several
communication lines. Commands, addresses and data are converted into streams of Boolean
values and back, accounting for one event per bit-flip. For example, transmitting 1 kilobyte via
an SPI bus interface causes about 20000 events. If the modeling goal, for example, is the synthesis
of a bus controller, then such low level events have to be considered. But if the goal is a functional
model of a complex bus-based system, this is not necessary. It is enough to model the transfers
of byte arrays as a whole, for example with a method call in a C-based simulation (see Figure
2.2), possibly assigning a certain time-span to the whole transfer for coarse time modeling.

Figure 2.2: TLM vs. RTL

The idea is that the details of the communication can be neglected since they are straightforward
(bus systems in general are well understood) and independent of the application. Even timing
might not be important at first; we simply trust that we can build the communication facilities well
enough such that all data will be delivered in time. Timing estimations, e.g. based on projections
of latencies and data throughput of components and bus, should in general be enough even when
designing for real time constraints. This degree of abstraction regarding communication and (in
part) timing is probably the core of what is known today as Transaction Level Modeling.

There have been many proposals of extending and enhancing the concept of transaction level
modeling, for example transaction events [HR13] or advanced temporal decoupling [Huf14]; some-
times targeting certain use cases like bridging TLM models with bus cycle accurate models
[PDBR04], multi-accuracy modeling and power estimation [BSS07], and even wireless communi-
cation [DMHG10, MDH+12]. However, in this thesis we mainly restrict our view of TLM on the
way it is specified in the SystemC standard.

17

Models of Computation in System Design

2.3.1 TLM2 Transactions

TLM 2.0 [Ayn09] (TLM2 for short) was originally a SystemC extension library and an OSCI
standard, but is now an integral part of SystemC as of SystemC 2.3. The first approach of
defining a TLM methodology was TLM 1.0 [RSP+05], with the release of a SystemC extension
library in 2005. However, TLM 1.0 is very different from TLM 2.0 in that it concentrates on
FIFO-based message passing without defining standard transactions. TLM 1.0 is now also a part
of the SystemC 2.3 standard.

TLM2 implements the concept of a transaction with a standard transaction class called the
generic payload. The most important attributes of the generic payload are the command (read or
write), the target address, the data length and a pointer to a piece of memory holding as many
bytes as defined in the data length. Table 2.1 shows all parameters of the generic payload.

Table 2.1: Parameters of the TLM 2.0 generic payload

Attribute Data-Type
Modifiable by

Target Interconnect

Command tlm_command  

Address sc_dt::uint64  

Data - pointer unsigned char *  

array unsigned char[n]  

length unsigned int  

Byte enable - pointer unsigned char *  

array unsigned char[n]  

length unsigned int  

Streaming width unsigned int  

DMI hint bool  

Response status tlm_response_status  

Extensions pointers
tlm_array

<tlm_extension_base *>
 

Option tlm_gp_option  

In a TLM 2.0 model, every component assumes one of three roles (see also Figure2.3):

• Initiators are abstractions of bus masters (e.g. CPUs) and initiate transactions.

• Interconnects are abstractions of buses or similar means like crossbars and forward trans-
actions. They possibly modify transactions in the process; for example they might change
the target address from the virtual address in the virtual address space of the initiator to
the corresponding physical address within the target.

• Targets are abstractions of bus slaves (e.g. memories or I/O components), and ultimately
process transactions.

18

Models of Computation in System Design

Table 2.1 indicates the ”access rights” of interconnects and targets to the various parameters of
the generic payload; initiators have full access, but have to obey to certain rules when setting up
a transaction (for details see [IEE05]).

Bus
(TLM Interconnect = TLM Initiator and TLM Target)

RAM
(TLM Target)

0x0000-0x3FFF

ROM
(TLM Target)

0x4000-0x4FFF

Processor
(TLM Initiator)

I/O with DMA
(TLM Initiator

and TLM Target)

0x5020-0x502F

I/O
(TLM Target)

0x5000-0x501F

Figure 2.3: Example memory mapped bus system

Standard accesses in TLM 2.0 are always memory-mapped. When a TLM initiator wants to access
a certain TLM target, it does so by accessing a certain piece of memory by its (virtual) address.
This piece of memory can be literal memory (e.g. RAM), but it can also be, for example, a
(number of) control registers of an I/O device like an A/D converter or a PWM driver. Every
TLM target in such a model has an address range within the virtual memory space of the TLM
initiator(s).

To set up a generic payload for such an access, the initiator first allocates memory of adequate
size in the system which hosts the simulation. If it’s a write access, the initiator also fills this
memory space with the data needed, e.g. certain values for the targeted control registers. The
initiator then instantiates a generic payload object and sets the command, the target address
and the data length as needed, and also sets the dedicated data pointer parameter of the generic
payload to the address of the allocated memory. After that, a reference to the generic payload
object is sent to the target (possibly passing one or more interconnects) with a method-call (more
on that later). The target then processes the transaction (e.g. for a read command copy data
from it’s memory to the memory specified by the data pointer, after which the initiator inspects
the result (e.g. the response status and the data read).

Apart from command, address, data and data length, two more parameters are relevant for
the considerations in this thesis: The response status and the streaming width. The response
status is an enumeration type with which a target or an interconnect can specify if the trans-
action was processed without problems (TLM OK RESPONSE), or if there was some error (e.g.
TLM ADDRESS ERROR RESPONSE or TLM COMMAND ERROR RESPONSE).

The streaming width can be used to write to or read from the same address several times with

19

Models of Computation in System Design

just one transaction. If d is the data length, and s is the streaming width, there will be dd/se
reads or writes, respectively. The purpose of this mechanism is to support access to targets which
implement some kind of buffer. For example consider a transaction writing 6 bytes ABCDEF (i.e.
the data length is 6). If the transaction is intended to write to a FIFO which is two bytes wide
(e.g. having 16-bit integers as a data type), the streaming width has to be 2. The target would
then first write AB to the FIFO, then CD, followed by EF.

While it is not relevant for this thesis, it is worth mentioning that the generic payload contains
an extension mechanism which makes it possible to attach arbitrary data to a transaction on the
fly. E.g. an extension might add additional possible commands, which would be an example of a
mandatory extension that every component (or at least all targets) must know. In this case, the
model is leaving the TLM2 standard.

But an extension can also be just meta-data attached by a component for it’s own use, if only for
the sake of simplifying implementation. E.g. an interconnect might attach routing information to
a transaction only relevant to itself. This would be an example of an ignorable extension which
would be still standard conformal.

Figure 2.4: The method interfaces of TLM 2.0

2.3.2 TLM2 interfaces and Coding Styles

A TLM2 generic payload is passed by reference via method calls. To this end, TLM2 provides
different method interfaces for initiators and targets, as shown in Figure 2.4. Initiators and
targets have to implements these interface methods, and then export them via a socket7. By
connecting their sockets, initiators, interconnects and targets can access their interface methods
for communication via transactions. Which interface is used essentially depends on the coding
style chosen:

• The loosely timed coding style typically uses the blocking transport interface, which
only foresees one method on the target side, namely b transport(transaction, delay).
A target which receives a transaction via the blocking interface is allowed to call wait()

7which is similar to a port

20

Models of Computation in System Design

before returning, therefore blocking the initiator for that time span. Therefore, the lifetime
of a transaction in this coding style has two significant points in time: when b transport()

is called, and when it returns.

• The approximately timed coding style typically uses the non-blocking transport inter-
face. Here, we have a method nb transport fw() on the target side (the forward path), as
well as a method nb transport bw() on the initiator side (the backward path). A target
receiving a transaction via nb transport fw() is not allowed to call wait(). However, the
lifetime of a transaction can now be subdivided even further, by sending it back and forth
several times while changing the value of the additional phase parameter.

The semantic of the delay parameter in both interfaces is such that if a transaction arrives at
simulation time t with a delay d, it has to be treated as if it would arrive at time t + d. How
this information is handled depends on the coding style, but also on the modeling goals and the
semantics of the component receiving the transaction.

In the loosely timed coding style, targets can simply wait for the time of the delay; e.g. to avoid
inconsistencies caused by transactions arriving out of order. For example a read-transaction
arriving at time t1 with delay d1 and a write-transaction arriving at time t2 > t1 with delay d2
such that t1 + d1 > t2 + d2, with both transactions accessing the same data.

If such inconsistencies can not occur, or can be neglected w.r.t. the modeling goals, the target
can also process the transaction right away. It would then return the transaction, possibly adding
to the delay to model latencies. This avoids calling wait(), which speeds up the simulation, and
essentially puts the initiator in charge of synchronizing with the global simulation time. It is
possible for an initiator to decouple from the global simulation time even further by maintaining
a local time offset which adds up these delays over several transactions (together with local
latencies), and only synchronize when necessary or based on certain time quanta. This technique
is known as temporal decoupling.

Approximately timed targets can in principle also directly return a transaction that way, but
since the goal of the approximately timed coding style is usually to model transactions more fine-
grained, they are mostly not implemented that way. Since they can’t call wait() they typically
employ a payload event queue, which stores a transaction and calls a callback function when the
delay has passed; only then the transaction is processed. This also resolves eventual out-of-order
transactions.

In any case, the target returns the transaction right away, and indicates via the tlm sync enum

return value of nb transport fw() to the initiator how the transaction has been handled by the
callee. tlm sync enum is an enumeration data type with the following possible values:

• TLM ACCEPTED indicates that the transaction is unchanged and that the target will respond
later via the backward path. This is a typical response when a transaction has been stored
in a payload event queue.

• TLM UPDATED is used when some parts of the transaction (including the delay or the yet to
be explained phase parameter) have changed, but more is yet to come via the backward
path.

• TLM COMPLETED signals that the target is finished with the transaction.

21

Models of Computation in System Design

Note that also nb transport bw() uses these return types; i.e. this is also relevant for initiators.
With different values of the phase parameter (also an enumeration type), the transaction lifetime
is now subdivided into several time-spans:

• BEGIN REQ marks the start of the transaction by the initiator.

• END REQ is set by targets at the (simulated) time when they received the transaction.

• With BEGIN RESP, targets mark the point in time when they start to respond.

• END RESP is used by initiators when they finally received the finished transaction.

The list above already indicates that usage of certain phases also depends on the component’s role
(initiator or target). Moreover, the phases must also be consistent with the tlm sync enum value
returned. The SystemC LRM gives an extensive set of rules for this, which is shown in Figure
2.5. As can be seen, Using all phases is not mandatory. For example, a target can complete
a transaction after the first call to nb transport fw(), which would correspond to the typical
behavior of a loosely timed target. It is also possible to add additional phases, or use a custom
set of phases altogether, which would sacrifice conformity to the standard.

The direct memory interface now can be used to allow initiators to access the memory of TLM
targets directly for even faster simulation. This technique has also be assigned to the loosely
timed coding style as it partially removes the need to model transactions altogether. The debug
interfaces allows simple direct access for debug purposes, i.e. it is not really used for modeling.
These two interfaces won’t be considered any further in this thesis.

This concludes the introduction to the aspects of TLM2 which are relevant to this thesis; for a
complete picture including all relevant coding rules we refer to the LRM [IEE05] which gives a
good introduction to TLM2 going beyond what is usually found in LRMs.

The TLM2 standard looks very complicated (and indeed it is) especially when looking at the
approximately timed coding style. But this complex set-up provides several benefits:

• Fast Simulation: By avoiding the modeling of low-level events, the simulation runs con-
siderably faster.

• Abstractness: The transaction level covers not only bus communication, but also other
approaches like Networks on Chip (NoCs).

• Communication Requirements: With a TLM model of a system, requirements for
the communication like data throughput can be determined, e.g. by simulating typical
applications and workloads.

• Model interoperability If only standard transactions (possibly with ignorable extensions)
and standard phases are used, TLM modules can usually be connected in a plug-and-play
manner.

However, some of the TLM2 concepts also stem from practical C++ coding considerations. For
example, while the phase and the time delay are passed as separate arguments together with the
transaction, they might as well be considered as part of the transaction itself. But keeping them
separate has certain advantages regarding the coding. Therefore, in Section 3.5 we attempt to
describe TLM in a more abstract manner, while also concentrating on the core concepts. Before
that, however, we will ask a crucial question:

22

Models of Computation in System Design

Figure 2.5: The phase rules of the TLM 2.0 base protocol, taken from [IEE05]

2.3.3 What kind of a MoC is TLM?

This is not easy to answer, as the question ”What is transaction level modeling?” itself is not
easily answered. As the overview of SystemC TLM2 above already shows, there are several ways
to employ TLM in SystemC, depending on which interface/coding style is used, and if techniques
like temporal decoupling or direct memory access are applied. In the SystemC LRM itself [IEE05],
it is suggested that the loosely timed coding style should be used for software development, and
the approximately-timed coding style for hardware/architectural analysis and verification. The
precision needed regarding the timing for the task at hand indicates, for example, if temporal
decoupling can be used, or how many phases a transaction has. However, the borders are blurry.

23

Models of Computation in System Design

For example, there is no rule prohibiting the use of temporal decoupling together with the non-
blocking interface, although it is suggested that initiators in the approximately timed coding style
typically run in lock-step with the global simulation.

So transaction level modeling is really a family of approaches, and these approaches are often
classified depending on the modeling goals. Popular terms used are Programmer’s View (PV)
for models which are exact enough to support software development; this is often associated
to untimed models which are sufficient with respect to functional correctness. This view is
extended to the Programmer’s View + Timing (PV+T) if some timing is needed. And the term
Architectural View (AV) is used for models employed in hardware design and verification (with
Verification View (VV) being another variant here), which is often associated to fine-grained
(even cycle accurate) modeling of timing.

In [BAGK07], this use-case based abstraction is criticized. While the authors agree that a Pro-
grammer’s View is reasonably well defined, they argue that certain architectural and verification
activities can be performed just fine with PV models, while others might need cycle accurate
models. In general, they don’t see a viable classification of TLM abstraction levels.

Regarding transactions themselves, the authors propose a simple definition as ”containers for
information that is communicated between multiple components of a system”, and classify the
type of information contained into 12 categories along two dimensions:

• Ownership and stability captures lifetime and mutability of transaction data (the two right-
most columns of Table 2.1 are a flavor of this); here they identify 4 classes.

• For the type of data they identify 3 classes: functional data, performance data and meta
data.

Figure 2.6: TLM classification, taken from [CG03]

In [CG03], transaction level models are classified according to the granularity of timing used for
communication one the one hand, and the timing granularity of the computation on the other

24

Models of Computation in System Design

hand. The authors consider 3 levels of granularity: untimed, approximate-timed, and cycle-
timed. Within this two-dimensional scheme they identify 6 different classes of TLM models
from specification models to implementation models (see Figure 2.6). That is, they also classify
according to the modeling goals (or use cases), but base this classification on timing granularity
considerations.

In [SKR11], a TLM Meta-model is proposed where the communication and communication within
a TLM model is described by an abstract language, given by a grammar, called the Transaction-
level Modeling Language (TLL). TLM models are composed of components with dedicated connec-
tors and transaction handlers, which correspond to the sockets and interface methods in TLM2.
The two TLM2 coding styles are then described by TLL subsets and certain restrictions on the
state of components.

So what does all this mean for a TLM-MoC? While the notion of the information exchanged in
TLM models is relatively clear (and captured well by the TLM2 generic payload), this is not the
case for the treatment of time. The latter ranges from being untimed to being cycle accurate,
with many shades in between. And because of temporal decoupling, transactions might not even
arrive in the right order. In any case, the DE-MoC seems to be an appropriate base for a TLM
MoC, at least when considering the concepts of TLM2.

Since the ultimate goal regarding TLM in this thesis is to define conversion semantics between
TLM2 models and SystemC AMS TDF models, we will base our definition of TLM MoCs in
Section 3.5 on the TLM2 standard in that we will define two MoCs: a loosely timed TLM MoC
(LT-TLM) and an approximately-timed TLM MoC (AT-TLM).

2.4 Other approaches and related work

There are a many modeling and simulation frameworks available, both commercial and Open
Source. Especially those frameworks with a focus on mixed-signal (or mixed-domain) systems
modeling using different MoCs are related to this thesis.

Probably the best known framework in this category is Ptolemy II [EJL+03, LJ99], which is a
Java-based software framework for modeling and simulation of heterogeneous systems. The basic
concept of Ptolemy II is that a set of components called actors are executed concurrently under
the governance of so-called directors, which are software components themselves. The director
now defines the MoC used by the actors under its care.

Therefore, the Ptolemy II framework is extensible by definition, especially as it is an Open Source
framework; i.e. custom directors can be added to support additional MoCs. In particular, there
are directors available for all the MoCs mentioned so far and more, e.g. continuous-timed MoCs
or MoCs similar to the concept of Communicating Sequential Processes as introduced in [Hoa78].
To combine different MoCs, different directors are combined under the control of finite state
machines; a concept which is called model models [GBA+07, LT10].

Most modeling frameworks have, in a way, a ”black box” view on their system components.
While the means of communication, modeling of time and process schedules are well-defined,
these frameworks usually do not strictly define the mode of computation that happens within a
process when it is executed. For example, a SystemC thread can work like a stateless function, a
finite state machine or even (at least conceptually) like a Turing machine by using an unbounded
amount of storage. The facilities of SystemC don’t capture this ”inner” behavior; it is described

25

Models of Computation in System Design

by arbitrary constructs of the underlying programming language, in this case C++. The same
is true for example, for SystemC AMS, SpecC, Ptolemy II (although the last two have dedicated
FSM facilities [FN01, Lee09]), or standard modeling languages like VHDL. Also the formalism
used in this thesis, which will be introduced in the next chapter, follows this path.

The modeling framework ForSyDe (FOrmal SYstem DEsign)[San03, Jan06], which is based on the
functional programming language Haskell [HPJW+92] is different in this aspect, as it defines not
only the communication (which is also modeled by means of signals), but also the computation
completely. It is based on the concept of process constructors [LSV98, Jan04].

f
1
, f

2
, ...

v
1
,v

2
, ...

Process Constructor

ProcessValues

Functions

In
pu

t S
ig

na
ls

O
ut

pu
t S

ig
na

ls
Figure 2.7: General concept of a process constructor, taken from [AND09]

A process constructor (see Figure 2.7) describes a process, e.g. the inputs, outputs, and states,
as well as the functions used to compute specific states and/or outputs. For example an SDF
process constructor

mooreSDF (N,M,Cin = (c1in, ..., c
N
in), Cout = (c1out, ..., c

M
out), g, f = (f1, ..., fM), w0)

describes an SDF process which reads from N inputs with data rates c1in, ..., c
N
in and writes to M

outputs with data rates (c1out, ..., c
M
out). It has an internal state w with start value w0, and the

state transitions are computed with g, which takes the N input signals and w as an input. The
function (f1, ..., fM) compute the M output values from the state. Such a complete description
allows not only to describe and simulate a model, but also to treat the transformation of a model
in a formal manner[SJ04].

Polymorphic signals [Sch07, SGW05, GSWB07] are a predecessor to this work in that they also
provide automatic MoC conversion means for SystemC and SystemC AMS. Some of the C++
programming techniques used in the polymorphic signals to enable them to adapt automatically
to different port classes have also been used in the Converterchannels. However, the conversion
scope of the Converterchannels is broader as it offers more MoC conversions, and also dedicated
options for certain MoC conversions.

Also the internal conversion approach is different. Polymorphic signals transform a signal of MoC
M1 with data type D1 first into a generic internal representation, after which it is transformed
to the target MoC M2 with data type D2. In particular, the values of data type D1are first
converted into double values, and then transformed to data type D2.

In contrast, the Converterchannels have no internal generic representation, but have dedicated
converters for every possible pair of MoCs, as well as every possible pair of data types. Therefore,
the converter channels are more of an convenience layer to automatically choose converters out
of a library, with means to customize them.

26

3 A formalism for MoCs and computational
system models

In this chapter, we introduce a simple formalism to consider MoCs in an operational approach.
This point of view is much closer to the SystemC environment where we ultimately want to
implement these concepts as opposed to the functional view of the denotational approaches in
[LSV98, Jan04]. The basic idea is to just provide a framework for process control without an ex-
plicit communication concept. Communication between processes will exclusively be implemented
with variable access, often supported by helper processes. We start with the following

Definition 3.1 (processes and process control operations). A process p is a sequence of instruc-
tions which can read and manipulate variables using arbitrary mathematical operations, condi-
tional execution and loops. With the following operations it can control its own execution and
that of other processes:

1. End: With this operation p ends its execution.

2. Freeze: With this operation, p can halt its execution (direct freeze) until it is unfrozen by
another process.

3. Call(q): This operation starts another process q. If q freezes, p freezes as well (indirect
freeze). p is continued when q ends. If q is frozen, this operation is inconsequential.

4. Invoke(q): This operation starts another process q or, if q is frozen directly, unfreezes it. p
is continued when q ends or freezes. If q is frozen indirectly, this operation is inconsequential.

If a process q was called by a process p and ends, p is continued before any other process.

No time is associated to the execution of a process.

The idea of Definition 3.1 is to provide a framework which is powerful enough to describe all
Models of Computation of interest. By postulating that the execution of processes does not
consume time (therefore making the whole framework inherently untimed), we avoid confusing
simulated time and simulation time. If a MoC is timed, time will be represented by means of
processes and variables. Figure 3.1 shows an illustration that includes examples for all the rules
given in Definition 3.1.

27

A formalism for MoCs and computational system models

process starts or continues process invokes another process

process freezes process calls another process

process freezes indirectly process ends

processing invoking calling continuing freezing

𝑟

𝑞

𝛼

𝑝

X

X

Figure 3.1: An example illustrating the rules of the formalism

With the Freeze/Invoke concept we can model process control concepts like the event-based con-
trol in SystemC, or the FIFO blocking mechanisms in process networks. How processes continue
after freezing themselves depends on the MoC and how it is implemented in our formalism. For
example, before a process p freezes itself, it can call another process q to pass a reference to
itself (or similar information) such that q (or a third process) can wake it up again later with
Invoke(p). Or there might be a process governing the overall model execution which wakes p up
later.

The restriction that frozen processes can’t be called again until they are unfrozen and end makes
sense regarding hardware modeling: Since a process represents the functionality of a physical
object which can’t be accessed or used by two or more objects during the same time period, we
also don’t need to do so with the process. In fact, for almost all the MoCs considered in this
thesis, the process control concept of Definition 3.1 is sufficient.

There is only one MoC where it isn’t sufficient: The TLM2 loosely timed coding style. Consider
the following example: A TLM-target receives a transaction via a call to b transport(), on
which it calls wait(t) (which corresponds to a Freeze) for some timespan t. Since there can be
more than one initiator in the model, it is possible that during this timespan, a second transaction
arrives via b transport(). In SystemC this works since in C++ this results in the execution of
a new copy of b transport() with a new call stack.

Therefore we yet have to capture this concept. However, we still need means to express the
concept of a call stack. In general, we haven’t specified any inputs or outputs of processes yet. In
fact, we will sacrifice the common concept of input parameters and return values for a paradigm
where processes access variables in an open computational space. The relation of a variable v to
a specific process p is defined implicitly by the way v is accessed by p as well as other processes:

28

A formalism for MoCs and computational system models

Definition 3.2 (variables of a process, state variables, input, output, variable and process refer-
ences). For a process p we define the following:

1. V ar(p) denotes the set of variables of a model which are accessed by p.

2. V arR(p) ⊂ V ar(p) is the set of variables which are read by p.

3. V arEX
R (p) ⊂ V arR(p) is the set of variables which are read exclusively by p.

4. V arW (p) ⊂ V ar(p) is the set of variables which are written by p.

5. V arEX
W (p) ⊂ V arW (p) is the set of variables which are written exclusively by p.

6. In(p) := V arR(p)− V arRW (p) is the input of p.

7. InEX(p) := V arEX
R (p)− V arEX

RW (p) is the exclusive input of p.

8. Out(p) := V arW (p)− V arRW (p) is the output of p.

9. OutEX(p) := V arEX
W (p)− V arEX

RW (p) is the exclusive output of p.

10. State(p) := V arR(p) ∩ V arW (p) is the set of state-variables of p.

11. StateEX(p) := V arEX
R (p) ∩ V arEX

W (p) denotes the exclusive state variables of p.

12. Context(p) := V arEX
R (p) ∪ V arEX

W (p) denotes the context of p.

A reference to a variable v will be denoted as refv.

Process references are represented by the process name.

Figure 3.2: Overview of the subsets of V ar(p).

29

A formalism for MoCs and computational system models

Figure 3.2 visualizes Definition 3.2. Except Context(p), which is shown explicitly with a dashed
box, the other sets encompass all the areas that they touch. The arrows indicate the sets that are
accessed by p, and those accessed by other processes. Incoming arrows indicate reading access,
and outgoing arrows indicate writing access. The access encompass all the areas touched by the
start- or endpoint of the arrow within V ar(p).

Dynamic creation of variables is possible, i.e. p can add new variables to the computational space.
For example, if p maintains a list of variables {v0, v1, ..., vn}, it can add a variable vn+1 to the
list. If p adds a new variable v, then v ∈ V arW (p) first, and by passing references to v to other
processes, p enables v ∈ V ar(p)− Context(p) .

Although important in practice, data types will not be considered here. For the purpose of this
thesis, all variables can be considered as unspecified data token, or references to variables or
processes, respectively. Occasionally we might specify variable domains explicitly for clarity or
convenience, especially when talking about TLM. With respect to practical applications, we can
assume that processes perform data type transformations (if necessary) before writing to inputs
of other processes. The converter channel presented in Chapter 5 also deals with data type
conversion1, but this conversion is implemented in a way independent from (or, in some sense,
orthogonal to) the MoC conversion.

Variables in a model can have initial values. In that sense, variables which are never written can
be considered as constants. These constants can be though of as fixed values which are part of
a model, for example containing (a part of) the structure of a model by means of references to
processes as we will see in the case of discrete event signals.

For convenience, we use for a process p with InEX(p) = {v1, v2, ..., vn} the notation

Call(p(w1, w2, ..., wn))

to express first writing the parameters w1, w2, ..., wn to InEX(p) (i.e. setting v1 = w1, v2 =
w2, ..., vn = wn) and then calling p.

Finally, we define how to handle calling the same process with a different call stack:

Definition 3.3 (Copy, CopyCall, CopyInvoke). With the operation p′ =Copy(p), a process q
can create a copy p′ of a process p.

• Copy(p) also creates a copy Context(p′) of Context(p).

• All other variables in V ar(p′) are the same as in V ar(p), i.e.

V ar(p′)− Context(p′) = V ar(p)− Context(p)

• When a copied process p′ ends, the content of OutEX(p′) is copied to OutEX(p), after which
Context(p′) is discarded.

For convenience, we define two derived operations:

• The operation CopyCall(p) is equivalent to p′ =Copy(p) followed by Call(p′).

1In fact, most of the code in the implementation deals with data type conversion

30

A formalism for MoCs and computational system models

• The operation CopyInvoke(p) is equivalent to p′ =Copy(p) followed by Invoke(p′). In this
case, p′ will always start at the beginning so it makes sense to write CopyInvoke(p(InEX(p))).

While we don’t explicitly forbid it, the idea is that processes which are copied are never called
or invoked themselves, but rather serve as a template. Therefore the copying the values of
StateEX(p) ⊂ Context(p) to StateEX(p′) ⊂ Context(p′) is to be understood as instantiating
StateEX(p′) with initial values. As mentioned above, we will use copied processes only in the
context of the loosely-timed TLM models.

Another way of thinking about processes and variables would be to consider a process p imple-
mented as Turing machine Mp which accesses several tapes.

After reading from the tape, the Automaton goes into a new state, producing as output a symbol
to be written at the current tape position and a direction (left, right or stay) to go next on
the tape. The Turing machines in our model would operate on several tapes, some of them
shared with the other Turing machines in the model. The operations from Definition 3.1 can be
implemented by means of states:

• End: This corresponds to a dedicated end-state.

• Freeze: This corresponds to dedicated freeze-states. Upon unfreezing, the machine con-
tinues from the state it froze. Note that while being frozen, other machines might have
written on a shared tape which might influence the next state transition and output.

• Call(q): On the side of Turing machine Mq implementing q this simply corresponds to
starting Mq in the start state. The Turing machine Mp implementing the caller process
p transitions into a dedicated call-state from where it continues once Mq has reached its
end-state.

• Invoke(q): This corresponds to starting the Turing machine implementing q in the start
state or the state where it last froze. The caller switches into an Invoke state from where
it continues after the callee goes into an End- or Freeze-state.

3.1 Computational System Models

Definition 3.4 (computational system model, sub-model, component). A computational sys-
tem model (CSM) is a tuple M := (P,V), with P being the set of processes and V the
set of variables of the model. In(M) :=

⋃
p∈P

In(p) −
⋃
p∈P

Out(p) are the inputs of M and

Out(M) :=
⋃
p∈P

Out(p)−
⋃
p∈P

In(p) are the outputs of M.

A sub-modelM′ of a CSM M is a tuple (P ′,V ′) with P ′ ⊂ P and V ′ ⊂ V such that⋃
p′∈P ′

V ar(p′) ⊂ V ′

.

We define State(M′) :=
⋃

p′∈P ′ V arR(p′) ∩
⋃

p′∈P ′ V arW (p′) as the state variables of M′, and

StateEX(M′) := {v ∈ State(M′)|v /∈ V − V ′}

31

A formalism for MoCs and computational system models

A Component C of a CSM M is a sub-model (P ′,V ′) such that

∃v ∈ StateEX(C) such that v /∈
⋃

p′∈P ′
StateEX(p′)

That is, a sub-modelM′ has to (naturally) contain all the variables its process access. A compo-
nent is a sub-model that has exclusive state variables which are not exclusive state variables of
one of its processes; i.e. a component cannot be (reasonably) sub-divided into further sub-models.

For simplicity, we will for the most part assume CSMs to be closed in the sense that there are
no dedicated inputs or outputs. In this setting, a test bench which provides inputs to a system
model and checks the results would be a sub-model of the whole model, with the system model
under test being another sub-model. However, any process p in such a closed CSM which acts
as a pure data source (In(p) = ∅) or data drain (Out(p) = ∅) could be considered as an input or
output to the model, respectively.

Definition 3.5 (execution semantics, executable system model). An execution semantic for a
computational system model M is a set of execution variables VEX(M) and execution processes
PEX(M) with a dedicated start process α ∈ PEX(M). An executable system model is the
union of execution semantic and model, and its execution starts by executing α.

For example, the execution processes can constitute the kernel of a simulator, which generates
an execution order for the set of processes in the model. In that case a typical execution variable
would the simulation time or a priority queue to organize dynamic process schedules. An execution
process can also implement other analysis means than simulation. For example, the model could
be a netlist of logic gates, the latter attributed with delays, and the execution process performs
a longest path analysis. Therefore, while an execution semantic is comparable to a director in
Ptolemy [EJL+03], it is broader in scope as it covers also applications beyond simulation.

It is important to note that the (parts of the) models that we investigate in this thesis using this
formalism are considered to be static in the sense that there is no initial analysis or setup phase
performed on them (e.g. like the elaboration phase in SystemC). In other words, the models
we consider here are runnable, the α process has every information it needs (like process-lists or
schedules), as does every process in the model. And if certain variables need initial values (like
initial values in feedback buffers or initial states of processes), this is also been done already.
When it comes to conversion between MoCs, however, we might on occasion we might describe
how a certain item (like a schedule) has to be changed to make conversion work.

We can now finally define what we mean by a MoC in this setting:

Definition 3.6 (Model of Computation for computational system modeling). A MoC for com-
putational system modeling is a restriction on the processes and variables used in a system model,
together with an execution semantic.

Examples:

• Formalizing the data transfer between processes, e.g. by means of FIFOs or signals

• Requiring that (certain) processes can only be called or invoked by an execution semantics
process.

32

A formalism for MoCs and computational system models

• Require that certain processes are only invoked, or only called

• Restricting the use of the Freeze operation.

In the rest of this chapter, the MoCs of interest are described using the introduced formalism.

3.2 The Discrete Event Model of Computation

We start off by discussing discrete event (DE) models first, since this MoC is the base MoC of
SystemC and will therefore be also a basis of our considerations. However, we will use a different,
simpler version of an event for our purposes:

Definition 3.7 (Event). An event in a CSM M = (P,V) is a pair (t, p) ∈ T × P where T is
the time-base. T is usually identified with the positive real numbers R≥0.

An event (t, p) as in Definition 3.7 states that a process p is to be called (or invoked) at simulation
time t. This version of an event is more true to what we colloquially understand when talking
about an event: something that occurs at a specific point in time and then passes, i.e. an event
only happens once. In SystemC, an event is a data structure where processes can subscribe to
(via sensitivity or wait() commands), such that when the event is notified, all the subscribers
are executed. In contrast, our version of a discrete event kernel works as follows:

𝑖 = 𝐸

newEvent(𝑒𝑛𝑒𝑤)

𝑡𝑛𝑒𝑤 < 𝑡𝑖

n = i

n > i

𝑡𝑛𝑒𝑤 ≥ 𝑡𝑖

𝑖 = 0
𝑛 = |𝐸|

i=i+1

𝑒𝑛 = 𝑒𝑛−1
n = n − 1

𝑒𝑖 = 𝑒𝑛𝑒𝑤 End

𝑒𝑛𝑒𝑤=(𝑡𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤)

Figure 3.3: newEvent process of the DE execution semantic

Definition 3.8 (Discrete Event Execution Semantics). The Discrete Event (DE) execution se-
mantics consists of

• a time variable tDE which can be read by every process.

• a list E = {e0, e1, ..., en−1} of events ei = (ti, pi)

• a list F = {f0, f1, ..., fk−1} of processes.

• a start process αDE

• a process newEvent with an input event In(newEvent) = enew = (tnew, pnew)

33

A formalism for MoCs and computational system models

such that

1. E is always ordered according to time, i.e. i < j ⇒ ti ≤ tj.

2. If newEvent is called, it inserts enew into E with the largest possible index. (see Figure
3.3)

3. If αDE is started, it sets tDE = 0 and invokes all processes in F . After that, αDE goes into
a loop where it repeatedly removes (t0, p0) from E, sets tDE = t0 and checks if p0 ∈ F . If
this is the case, it invokes p0, otherwise it calls p0. If E is empty, αDE ends (see Figure
3.4). Only αDE can write to tDE.

α𝐷𝐸

Invoke(p)𝑝 = 𝑓𝑖

E=𝑖 = 𝑖 + 1

End

𝑡𝐷𝐸 = 0
𝑖 = 0

E≠

Invoke(p)

Call(p)

𝑝 ∈ 𝐹

𝑝 ∉ 𝐹

𝑖 < 𝑇 − 1

𝑖 = 𝑇 − 1

𝑡𝐷𝐸 = 𝑡0, 𝑝 = 𝑝0
𝑒0 = 𝑒1, 𝑒1 = 𝑒2, . . .

Figure 3.4: The αDE process of the DE execution semantic

Figure 3.4 shows a diagram visualizing αDE . Throughout this thesis, we will use these diagrams,
which are a mixture of state-chart and flow-chart, to describe processes.

The essential idea of our version of the DE MoC is that the simulations semantics holds a universal
simulation time and a list of events ordered by time. The simulation semantics takes the first
(i.e. earliest) event from the list, sets the simulation time to the time of the event, and calls the
process of the event. Upon finishing (after possibly generating more events for the simulation
kernel’s event list), this process yields again to the simulations semantics, which then repeats this
procedure with the next event from the list.

The processes in the list F correspond to SC THREADs in SystemC. Like SC THREADs, the processes
in F are started at the beginning of the execution of the model, eventually freeze and unfreeze
several times before ending, after which they are never invoked or called again. All other methods
are called, and are not allowed to freeze. We sum this condition up in the following

Definition 3.9 (Discrete Event Models). A CSM M = (P,V) is modeled in the Discrete Event
(DE) MoC if

1. No p ∈ P invokes another process.

2. Each p ∈ P which can freeze (i.e. it uses freeze at least once) is never called by another
q ∈ P but will be included in the list F of the DE execution semantics.

While the idea of the DE-MoC is that processes invoke/call other processes by generating events
that they pass to the newEvent process of the execution semantic, we do not forbid calling other
processes directly if they don’t freeze. If a process freezes itself, it can only be unfrozen by αDE if

34

A formalism for MoCs and computational system models

a corresponding event is contained in the event list E. For example, a process p ∈ P can suspend
itself for a simulated timespan of d ∈ T by passing an event (tDE +d, p) to the newEvent process
before it freezes. In SystemC, this is achieved by calling the function wait(sc-time d).

A common form of communication used in the DE MoC is the discrete event signal :

Definition 3.10 (discrete event signal). A discrete event signal S consists of

• two variables s and sold,

• an access process writes with In(writes) = s, StateEX(writes) = sold and

• a constant list of processes L = {l0, ..., lk−1}

For each discrete event signal s, only one process in a DE-model is allowed to write to In(writes) =
s and call writes. When writes is called and s 6= sold holds, it sets sold = s, after which it calls
newEvent(tDE , p) for each process p ∈ L. After that it ends.

That is, the processes L are the processes which listen to the value changes of s, and if a process
writes on s and signals that by calling writes, events are generated for each process Ps and
passed to the execution semantic processes (see also Figure 3.5). Definition 3.10 corresponds to
the sc signal<> in SystemC. If we remove the test for s 6= sold in Definition 3.10, we get a
definition corresponding to the SystemC sc buffer<>.

write𝑠(𝑠) 𝑠 ≠ 𝑠𝑜𝑙𝑑

𝑠 = 𝑠𝑜𝑙𝑑

𝑖 ≤ 𝑘 − 1

𝑖 > 𝑘 − 1
End

𝑖 = 0
Call(newEvent((𝑡𝐷𝐸 , 𝑙𝑖)))

𝑖 = 𝑖 + 1

Figure 3.5: The access process of a discrete event signal

Note that we didn’t define a dedicated reads method; the process which is called by the event
generated by the write simply reads s (and other variables it is interested in).

3.3 Process Networks

In this work, the term Process Networks (PN) is used to denote the family of MoCs stemming from
processes communicating via FIFOs. A well-known form is the Kahn Process Network (KPN)
[Kah74], where concurrent processes are connected with unbounded FIFOs, writing and reading
so-called tokens, unspecific generic data elements. When a process reads from an empty FIFO, it
is blocked (i.e frozen) until another process writes to the FIFO. We describe the PN-style MoCs
in our processes formalism after quickly fixing the following

35

A formalism for MoCs and computational system models

Definition 3.11 (FIFO). An FIFO F of size nF (nF ∈ N>0∪∞) is a component which consists
of

• a list of nF state variables S = {s0, ..., snF−1},

• an input variable inF ,

• an output variable outF and

• two state variables lF ∈ N and bF ∈ {0, 1}.

Each FIFO is assigned two access processes, a write process pushF and a read process popF ,
such that

• lF and bF are initially set to 0 and are only accessed by pushF and popF .

• If pushF is called then (see also Figure 3.6)

1. if lF = nF then set bF = 1 and Freeze.

2. set slF = slF−1, slF−1 = slF−2, . . . s1 = s0, s0 = inF and lF = lF + 1.

3. if bF = 1, set bF = 0 and Invoke(popF).

4. End.

• If popF is called then (see also Figure 3.7)

1. if lF = 0 then set bF = 1 and Freeze.

2. set outF = slF−1 and lF = lF − 1.

3. if bF = 1, set bF = 0 and Invoke(pushF).

4. End.

push𝐹(𝑖𝑛𝐹)

𝑏𝐹 = 0
𝑰𝒏𝒗𝒐𝒌𝒆(𝑝𝑜𝑝𝐹)

𝑠𝑖 = 𝑠𝑖−1∀𝑖 > 0
𝑠0 = 𝑖𝑛𝐹, 𝑙𝐹= 𝑙𝐹 + 1

𝑙𝐹 = 𝑛𝐹

𝑙𝐹 < 𝑛𝐹

𝑏𝐹 = 1
𝑭𝒓𝒆𝒆𝒛𝒆

𝑏𝐹 = 1

End
𝑏𝐹 = 0

Figure 3.6: The pushF access process

That is, if a process p calls popF on an empty FIFO F , it is frozen by the freeze of popF . If
another process q later calls pushF , pushF will invoke (and therefore unfreeze) popF which will
unfreeze p by ending. According to Definition 3.1 pushF will be unfrozen after p freezes again or
ends.

If p calls pushF on a full FIFO F , it will be unfrozen in a similar manner by a subsequent process
q call popF . Note that we don’t allow for PN processes to test if FIFOs are empty or full (i.e.
non-blocking access). When we come to conversion between MoCs in Chapter 4, however, we
might allow for converting processes to use such tests.

The SystemC implementation of sc fifo<T> is conceptually the same as in definition 3.11. How-
ever, the unblocking of the complementary access process is handled via an event and immediate
notification. With the Invoke mechanism in our formalism, we don’t need to employ a simulation
semantics process for this.

36

A formalism for MoCs and computational system models

po𝑝𝐹

𝑏𝐹 = 0
𝑰𝒏𝒗𝒐𝒌𝒆 𝑝𝑢𝑠ℎ𝐹

𝑜𝑢𝑡𝐹 = 𝑠𝑙𝐹−1
𝑙𝐹 = 𝑙𝐹 − 1

𝑙𝐹 = 0

𝑙𝐹 > 0

𝑏𝐹 = 1
Freeze

𝑏𝐹 = 1

End
𝑏𝐹 = 0

Figure 3.7: The popF access process

Definition 3.12 (Process Network MoC). A CSMM = (P,V) is modeled in the Process Network
(PN) MoC if for each process p ∈ P which is not an access process of a FIFO all of the following
holds:

1. p only calls access processes of FIFOs. It does not invoke processes.

2. In(p) consists only of output variables of FIFOs, Out(p) consists only of input variables of
FIFOs.

3. For every FIFO F ∈ M, at most one process p ∈ P exists with inF ∈ Out(p) that calls
pushF .

4. For every FIFO F ∈ M, at most one process p ∈ P exists with outF ∈ In(p) that calls
popF .

Note that it is possible that the FIFOs in a PN-model carry initial values.

Definition 3.13 (Kahn Process Network MoC). The Kahn Process Network (KPN) MoC is a
PN-MoC where each FIFO has infinite size.

In particular, write access is always non-blocking in a KPN model.

Definition 3.14 (Bounded Kahn Process Network MoC). The Bounded Kahn Process Network
(B-KPN) MoC is a PN-MoC where each FIFO has finite size.

To execute a PN model, the starting process αPN has to execute a schedule on the processes in the
model (by invocation in order to not get frozen by a blocking FIFO access). For KPN it is known
that the order of execution of the processes does not affect the outcome of the computation.
Therefore, αPN could simply invoke processes randomly in an infinite loop; of course, this would
not be efficient for practical purposes. Some caution at least is needed for KPN models in case
that there are processes in the model which run infinite loops to act as an infinite input streams
to the rest of the model. Such a process p might be started while there is no other process frozen
from a blocking read that would be unfrozen by the data token p produces. For example, this is
the case right at the start of the execution of the model. If p does not freeze, the other processes
will never get executed.

This situation could be remedied by imposing a rule on processes that forbids writing infinite
token between invocation and freeze or end. However, we will not be concerned about scheduling
of process network processes, as there is extensive literature on this (e.g. see [PPP95]). We will
assume αPN to provide a valid schedule for the model at hand if such a schedule exists.

37

A formalism for MoCs and computational system models

While process networks are traditionally considered as an untimed MoC, the original paper by
Kahn [Kah74] wasn’t concerned about timing; the focus was the communication of processes via
FIFOs. In fact, it is perfectly viable to consider processes of a process network operating in a
discrete event fashion. This gives rise to the following

Definition 3.15 (Discrete Event Process Network MoC (DE-PN)). A CSM M = (P,V) is
modeled in the Discrete Event Process Network (DE-PN) MoC if each process p ∈ P which is
not an access process of a FIFO fulfills the conditions of Definition 3.9 and Definition 3.12. The
execution of a DE-PN is governed by a DE execution semantics.

3.4 Synchronous and Timed Data Flow

The Synchronous Data Flow Model of Computation is a special case of a PN MoC. The restriction
here is that every time a process executes, it writes and/or reads a fixed finite number of token
to/from each FIFO it accesses. We define the data rate of p with respect to F as follows:

rpF =


n if p writes n token to F when executed
−n if p reads n token from F when executed

0 if p does not access F

For simplicity, we discard here the possibility that a process reads and writes to the same FIFO.
If a process is in need for a FIFO for it’s internal operation the FIFO can just be implemented
as a state variable. Also, we are only interested in SDF models where there is a finite schedule
for the processes such that all FIFOs can be chosen finite. If there is a process which reads and
writes from/to the same FIFO, this is clearly only possible if it reads the same amount of token
as it writes, such that the amount of token in the FIFO after each execution of such a process
would be always 0, which would justify setting rpF = 0.

Definition 3.16 (Synchronous Data Flow MoC). A CSM M = (P,V) is modeled in the Syn-
chronous Data Flow (SDF) MoC if it fulfills all the conditions of Definition 3.12, as well as the
following restrictions on the processes p ∈ P which are not an access processes of some FIFO:

• p does not freeze itself.

• For every FIFO F , −∞ < rpF <∞.

A connected component of processes P ′ ⊂ P is called an SDF-cluster.

If the data rates of an SDF-modelM are consistent, then a finite schedule S for the processes in
M can be found that can be repeated indefinitely such that all the FIFOs in M can be chosen
of finite size. To specify this formally, we define the topology matrix AM = (ai,j) for M where
the rows are indexed by the FIFOs in M and the columns are indexed by the processes which are
not FIFO access processes with entries aF,p = rpF .

Theorem 3.1. Let AM be the topology matrix of an SDF model M = (P,V). If there is a vector
v ∈ N|P| with AM · vT = 0 then a finite schedule S for the processes in M exists which allows for
finite-sized FIFOs in M. v is called a repetition vector.

38

A formalism for MoCs and computational system models

Due to Theorem 3.1, the execution semantic αSDF for an SDF-model M is very simple: It
just executes a static schedule of the processes in M, repeatedly for a given number of times.
This makes this MoC very favorable to use, since after the initial analysis to determine a static
schedule, there is virtually no simulation overhead. Also, the access processes of the FIFOs can
be simplified since there is no need for blocking due to an empty or a full FIFO any more.

There is a certain disadvantage in not having the notion of time available in SDF models. However,
due to the static nature of the SDF MoC, this can be easily remedied by associating the token
production/consumption of a process (which is always fixed) to a certain fixed time period.

Definition 3.17 (Timed Data Flow MoC). The Timed Data Flow (TDF) MoC is a SDF-MoC
where each process p which is not a FIFO-access process has a time period tp ∈ R associated to
its execution, i.e. after each execution of p, a time span of tp has passed. For each FIFO F with
rpF 6= 0 a time span of tpF := tp/

∣∣rpF ∣∣ is passing with each consumption or production of one token.

Every process p holds a time variable tpTDF for the current simulation time which is initialized
with 0. At the end of each execution, p updates it to tpTDF = tpTDF + tp.

The introduction of time periods for each process gives rise to an additional consistency issue.
Theorem 3.1 implies that the data rates rpF within an SDF-model have to be consistent such that
no token accumulate in certain FIFOs in order to allow for a static finite schedule. For a TDF
model, also the different time periods tp for all p ∈ P have to be consistent.

More precisely: Let M = (P,V) be a TDF model and P ′ ⊂ P a TDF-cluster (which is just
corresponding to an SDF-cluster). Consider a repetition vector v = (v0, v1, ..., vn) for the processes
P ′ = {p0, p1, ..., pn} inM. Then vitpi must be the same value for each i = 0, ..., n, and this value
tcP ′ := v0tp0 = ... = vntpn is called the cluster period of P ′.

In Definition 3.17 each process keeps track by itself of the simulation time. Alternatively, we
could have defined a global simulation time variable which is updated by the execution semantic
αTDF (which behaves exactly like αSDF) before executing a process. In fact, the SystemC AMS
extension have implemented a mechanism like that. However, using a time variable which is
maintained locally highlights an important difference between the time semantics of the TDF
MoC and the DE MoC. In the DE MoC, there is a global time variable tDE which either stays
the same (during a δ-step) or increases in between execution of processes. If there was a global
time variable tTDF which holds a copy of the local tpTDF time variable of the currently executed
process p, the values of tTDF would in general also decrease in the course of the execution of the
model.

To illustrate this consider for example a small TDF cluster with two processes p and q connected
by a FIFO F with tp = 3, rpF = 3, tq = 2 and rqF = −2. A possible schedule for this cluster
is p, p, q, q, q, and the values of the local time variable (i.e. tpTDF and tqTDF , respectively) at the
different process executions would be 0, 3, 0, 2, 4 for the first schedule execution, 6, 9, 6, 8, 10 for
the next schedule execution and so on (see Figure 3.8).

This simple example demonstrates that TDF exhibits a form of temporal decoupling, similar to
the TLM 2.0 loosely timed coding style. Moreover, there is also a certain temporal dissociation
within a TDF process p: If, for example, p reads several token d1, d2, d3, ..., dn from one FIFO F
when executed, the time stamps of these token (i.e. the start of the time span associated with the
token’s consumption) are tpTDF , t

p
TDF + tpF , t

p
TDF + 2tpF , ..., t

p
TDF +ntpF , respectively. If p processes

these token in a context where the time when a token is valid matters (e.g. it multiplies the token
with the current time), it has to take these offsets relative to tpTDF into account.

39

A formalism for MoCs and computational system models

qp
-23

F

23

𝑟𝐹
𝑝

𝑟𝐹
𝑞 𝑡𝑞𝑡𝑝 Schedule p p q q q p p q q q

local time at

execution

𝑡𝑇𝐷𝐹
𝑝

0 3 6 9

𝑡𝑇𝐷𝐹
𝑞

0 2 4 6 8 10

Figure 3.8: Example TDF schedule and local times.

There also can be causality violations in the sense that output token might depend on input token
with a later time stamp. Consider for example a process p with tp = 10 which reads from a FIFO
F with rate rpF = −10 and writes to a FIFO G with rpG = 2. The two token it writes have values
depending on all of the 10 input token, for example their maximum and minimum, respectively.
If tpTDF = 0 when p executes, the time span associated to the first output token lasts from 0 to
tpG = tp/r

p
G = 5, but the value of that token depends on input token with a later time stamp.

It would be possible to make a Definition for the TDF MoC which is more strict than Definition
3.17 in that it would demand that when a process p executes, token are read and written in an
order corresponding to their timestamps, with an appropriate update of tpTDF in between. But
since a process will in general read and write from/to different FIFOs with different data rates,
this would be overly complicated and impractical to implement in practice. In the SystemC AMS
extensions, it is the responsibility of the user to handle these issues correctly, or at least in a way
which is correct enough for the problem at hand.

Regarding the connection of TDF models to models using different MoCs, the temporal looseness
of the TDF MoC has to be handled with care, but also presents some opportunities as we will
see in Section 4.5.

3.5 Transaction Level Modeling

In this section, we define a formal framework for TLM as a MoC. TLM (especially SystemC
TLM2) was developed with many practical considerations in mind (like simulation speed, coding
effort, and interoperability). The challenge is now to isolate and abstract the elements of TLM
which are essential to the idea of Transaction Level Modeling.

3.5.1 Transactions

We start with the transaction itself. In SystemC TLM2, this is mainly a command (read or
write), an address, and data. Since only the pointer to the data is passed with the TLM2 generic
payload, the data size has to be passed as well, but in principle this is information inherent
to the data. The elements byte enable and streaming width are already needed only in special
cases (more selective access, modeling of bus lanes, access of buffers); this is basically additional
information for the interpretation of the data. The response status can be regarded as a state of
the transaction.

The remaining elements of the generic payload will be disregarded for our considerations. The
DMI hint is part of mechanism to circumvent the transaction mechanism altogether for even
faster simulation, so it does not really add to the concept of a transaction. However, with respect
to [BAGK07], the DMI hint can be considered as meta-data.

40

A formalism for MoCs and computational system models

The extension pointers are a tricky mechanism to add arbitrary additional information to a trans-
action, like additional commands, transaction states or meta-data. Therefore extensions don’t re-
ally add anything new, with the exception of potential additional meta-data. The tlm gp option

element was added for compatibility reasons and indicates how to interpret the transaction, so
this is also information on how to interpret data.

There are other important elements of the transaction mechanism which are not part of the TLM2
generic payload itself, but are passed as separate elements in the TLM2 method calls: the delay
and the phase (the latter only in the approximately-timed coding style). The phase is again a
state of the transaction. The delay is essentially a time stamp, as it describes the time offset
relative to the SystemC simulation time. If an absolute time stamp would be used instead, most
coding efforts would become more complicated; for example targets which just wait for the delay
before processing the transaction would have to compute the difference between simulation time
and time stamp first. Nevertheless, the information is the same since in the SystemC setting,
there is always a global simulation time.

After these considerations, let’s collect the essence:

• the command: This is essentially read or write, but other commands are possible.

• the data: this would often be just an array, but in principle any kind of data is conceivable
since there is also

• the data descriptor: In the TLM2 generic payload, this includes address, data length,
streaming width and the byte enable information. This is all information to instruct the
recipient of the transaction how to interpret the data. The command could also be viewed
as a data descriptor, but since the command has a certain prominent role, and is also
independent of the other descriptors, we choose to regard it as separate entity.

• the time stamp

• the state: In TLM2 response status and phase, as well as the tlm sync enum} return type
of the nb transport {fw|bw} methods.

• the meta-data: This captures all additional information of a transaction which is not
related to the data directly. Examples are meta-information attached to a generic pay-
load with an ignorable extension relevant to only one system component, but also what in
[BAGK07] is called performance data.

We summarize this in the following

Definition 3.18 (transaction). A transaction is a variable T = (cT , dT , aT , tT , sT ,mT) ∈ C ×
D ×A× T × S ×M where

• C is the set of commands

• D is the data-space

• A is the descriptor-space

• T is the time-base

41

A formalism for MoCs and computational system models

• S is the set of states

• M is the meta-data-space

of the transaction.

As an example, in the case of the TLM2 generic payload, leaving tlm gp option and the extension
mechanism aside, this would look like this:

• C = {TLM IGNORE COMMAND, TLM READ COMMAND, TLM WRITE COMMAND}

• D = N (where values are interpreted as byte-vectors)

• A = {0, . . . , 264− 1}× {0, . . . , 232− 1}× {0, . . . , 232− 1}×N (address, data length, stream-
ing width, and byte enable respectively, the latter interpreted as byte-vector of a size as
indicated by the data length)

• T = {0, . . . , 264−1} (as an sc core::sc time value is essentially an unsigned 64-bit integer
which is interpreted relative to the time resolution)

• S = tlm response status× tlm phase×tlm sync enum

• M = {true, false}

In this thesis, we will use this simplified version of a transaction:

• C = {read,write}

• D = {token-vectors of varying size n} (the type of the token does not matter for our pur-
poses)

• A = N (the address)

• T = R

• S = {INCOMPLETE, ERROR, OK} × {begin req, end req, begin resp, end resp}
. ×{unchanged, updated, completed}

• M = ∅

S is essentially the same state-space as that of the TLM2 standard, except that we just use one
generic ERROR state, and instead of TLM ACCEPTED, ”unchanged” is used. Therefore we refer to
the three parts of the state as response, phase and sync-state, respectively. We could also choose
to add the data length n to the data descriptor by using A = N × N. However, the size of the
data vector will always be an indefinite n in our considerations, so this would just be redundant.

3.5.2 The TLM MoCs

We now define MoCs corresponding to the loosely-timed and the approximately-timed coding
style, respectively. First, we capture what is common to both MoCs:

42

A formalism for MoCs and computational system models

Definition 3.19 (General TLM MoC, interface processes, components). A Transaction Level
Modeling MoC is governed by a DE execution semantics where DE processes communicate via
passing references to transactions. There are three types of components: initiators, interconnects,
and targets. We call a process belonging to such a component an initiator process, interconnect
process, or target process, respectively. For each of these components, there are distinguished
component processes, called interface processes:

• Initiator interface processes receives references to transactions that were generated by
itself or another process of the same component.

• Interconnect interface processes receive references to transactions, possibly change parts
of the referenced transactions, and pass them on to other processes.

• Target interface processes receive references to transactions and possibly change parts of
the referenced transactions. These processes execute the transaction in the sense that they
act in a certain way depending on the transaction parameters, especially the command.

Interface processes obey to the following rules:

• When a reference to a transaction T is passed to an interface process, tT ≥ tDE has to hold.

• Only interconnect or target interface processes can change the state to (ERROR, ”, ”), only
target interface processes can change the state to (OK, ”, ”) (The ’”’ indicates that the other
entries remain unchanged).

We can now define our version of the two TLM coding styles:

Definition 3.20 (Loosely-Timed TLM MoC (LT-TLM)). The Loosely-Timed TLM MoC is a
TLM MoC with the following additional rules:

1. There are no initiator interface processes.

2. Interface processes are only started with CopyCall().

3. Only a reduces state space S = {INCOMPLETE, ERROR, OK} is used.

That is, transactions are passed in a very simple way: initiator processes (i.e. processes belonging
to an initiator component) generate them and pass them by calling interface processes, either of
interconnect components or target components. If they arrive at a target interface process, they
will be processed, possibly resulting the target interface process to freeze, after calling newEvent
to schedule a later Invoke by αDE . In this case the initiator process also freezes. Later, αDE

will invoke the target interface process which eventually ends, such that the initiator process can
continue to inspect the result of the transaction. Figure 3.9 shows an example where a target
interface process freezes before ending.

For simplicity, no interconnect interface process is shown in Figure 3.9. However, they behave in
essence like a target interface process in that they might freeze and block the initiator process.

The reason why interface processes in the LT-TLM MoC are only executed with CopyCall was
already explained at the beginning of this chapter, shortly after definition 3.12: While an interface

2This actually motivated the Definition of CopyCall and CopyInvoke

43

A formalism for MoCs and computational system models

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟

𝛼𝐷𝐸

𝑡𝑎𝑟𝑔𝑒𝑡

𝑛𝑒𝑤𝐸𝑣𝑒𝑛𝑡

Figure 3.9: Example process sequence in a LT-TLM model

process is frozen, there might be other transactions arriving. These are now handled by a copy
of the interface process in question.

If an interface process generally freezes if the timestamp tT of a transaction T is larger than tDE ,
such that is invoked by αDE when tDE = tT , this even sorts transactions arriving out-of-order,
since a frozen process copy processing the transaction with the smallest timestamp is always
invoked first.

We give no formalism or define facilities for temporal decoupling, e.g. unlike [SKR11] where
temporal decoupling based on a quantum keeper is part of the author’s definition of loosely timed
models. While the TLM↔TDF MoC converters in section 4.5 have to deal with transactions which
might have been issued by temporally decoupled initiators, the converters themselves don’t employ
temporal decoupling. However, if an initiator component wants to employ temporal decoupling,
it would simply hold a state variable with its local time offset, which its processes would increase
accordingly instead of calling newEvent. This is straightforward and works like it is described
in the SystemC standard [IEE05].

Definition 3.21 (Approximately-Timed TLM MoC (AT-TLM)). The Approximately-Timed TLM
MoC is a TLM MoC with the following additional rules:

1. Interface processes are only started with CopyInvoke().

2. Only initiator processes can change the state of a transaction to (”, begin req, ”) or (”, end resp, ”)

3. Only target processes can change the state of a transaction to (”, end req, ”) or (”, begin resp, ”)

4. During the lifetime of a transaction, its state can only change in the order (”, begin req, ”)→
(”, end req, ”) → (”, begin resp, ”) → (”, end resp, ”), where omitting (”, end req, ”) and/or
(”, begin resp, ”) is allowed.

The last rule in definition 3.21 represents a simpler version of the TLM2 phase rules as depicted
in Figure 2.5. For our MoC conversion efforts, this will suffice. But in general definition 3.21
can be easily extended with additional phase rules, which might also refer to an extended set of
phases.

It might come as a surprise that we don’t forbid interface processes to freeze, i.e. like the rule
in TLM2 that the non-blocking interface methods are not allowed to call wait(). The reason

44

A formalism for MoCs and computational system models

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟

𝛼𝐷𝐸

𝑡𝑎𝑟𝑔𝑒𝑡

𝑛𝑒𝑤𝐸𝑣𝑒𝑛𝑡

𝑏𝑒𝑔𝑖𝑛_𝑟𝑒𝑞

𝑒𝑛𝑑_𝑟𝑒𝑞

Figure 3.10: Example process sequence in an AT-TLM model, showing the first two transaction phases

is that with the Invoke() operation, our formalism provides an alternative approach to achieve
non-blocking access.

Figure 3.10 shows an example with the first two phases of our protocol: After an initiator process
is invoked, it generates a transaction with phase begin req and calls a target process. Here, the
target process can’t begin the next phase directly, so it calls newEvent, such that it can be invoked
later, and then freezes. This continues the initiator process, which eventually yields to αDE . In
turn, αDE will invoke the target process, which now can sends the transaction reference to the
initiator with an updated phase, in this case end req. Note that the initiator interface process
invoked here is in general not the initiator process which initiated the transaction (although it
could), but of course it has to be a process of the same initiator component according to the
second rule of definition 3.21.

The advantage of this alternative non-blocking access is that we don’t have to deal with facilities
like payload event queues. In the TLM2 approximately-timed coding style, these are common
tools used to schedule the continuation of transaction processing at a later point in simulation
time without calling wait(). They store the transaction reference together with time stamp and a
reference to a callback function in a queue which is sorted according to the time stamp. Using an
event, they then call the callback function (with the transaction reference as the parameter) at the
time given by the time stamp. Then callback function then proceeds to process the transaction.

𝑄 = 𝑞0, 𝑞1, … , 𝑞𝑛𝑄−1

𝑞𝑗 = (𝑟𝑒𝑓𝑇𝑗 , 𝑡𝑗 , 𝑐𝑏𝑗)

𝑝𝑒𝑞𝑖𝑛 𝑟𝑒𝑓𝑇 , 𝑡, 𝑐𝑏
Find the largest position

𝑖 in 𝑄 with 𝑡 ≥ 𝑡𝑖

𝑞𝑗+1 = 𝑞𝑗∀𝑗 > 𝑖

𝑞𝑖+1 = (𝑟𝑒𝑓𝑇 , 𝑡, cb)
𝑛𝑄 = 𝑛𝑄 + 1

EndCall(newEvent((𝑡, 𝑝𝑒𝑞𝑜𝑢𝑡)))

𝑝𝑒𝑞𝑜𝑢𝑡

Invoke(𝑐𝑏0(𝑟𝑒𝑓𝑇𝑜))

𝑞𝑗 = 𝑞𝑗+1∀𝑗 < 𝑛𝑄 − 1

𝑛𝑄 = 𝑛𝑄 − 1
End

Figure 3.11: Example operation of a payload event queue

Figure 3.11 shows how this could look in our formalism: The peqin process takes transaction
reference refT , time stamp t and a callback process reference cb as an input, inserts them in the

45

A formalism for MoCs and computational system models

right place within the queue Q, and then schedules a new event for the process peqout for time t.

When the peqout process is executed, it invokes the callback process of q0, after which it removes
q0. Since there is exactly one pending (peqout, t) event per queue entry, Q is never empty when
called. And since the (peqout, t) events are processed in the same order as the corresponding
entries in Q are ordered, q0 will always be the right entry; in particular t0 = tDE will always hold.

Therefore we could also use a definition of the AT-TLM MoC which is closer to TLM2 in that
we would not allow interface processes to freeze, and employ payload event queues to control
transaction processing. While we won’t do so, we have to employ techniques similar to the
payload event queue for the converters between TLM and TDF models, which will be introduced
within the next chapter.

46

4 Connecting System Models described with
different MoCs

We already discussed the main reasons for the need to connect models using different MoCs in
Chapter 1: The system of interest might consist of subsystems inherently belonging to different
implementation domains, e.g. in a mixed analog/digital system. Also, different subsystems might
use different abstraction levels. Another reason might be the desire to (re-)use existing models.

The difficulty of such a connection depends on the MoCs used. In some cases, the conversion
semantics are obvious and natural, while in other cases, the semantics might depend on the
modeling goals, i.e. are driven by the use case. Certain combinations of MoCs used will make
information loss unavoidable in certain cases. And even if the conversion semantics are well-
defined in normal conditions, there might be the need to handle certain corner-cases where the
conversion semantics are not that obvious.

In this Chapter we analyze several MoC conversion problems in our formalism. For some of
them implementations are available, like the SystemC AMS converter ports, which connect TDF
modules to DE signals. Some are new, like the conversions between TDF and TLM. In the
following, we first make for each pair of MoCs considered general considerations, like in how far
the two executions semantics have to be synchronized, after which we look at the two different
conversion directions, as this in general makes a substantial difference regarding the conversion
semantics. Note the converter processes discussed will in general ”bend” the rules of the MoCs
involved in some way, e.g. by accessing data like the number of token in a FIFO, which is normally
hidden to the outside.

4.1 Discrete Event models and TDF models

We start with the conversion problems between DE models and TDF models since they are
already covered in SystemC-AMS, as outlined in Section 2.2. The general problem to solve is to
allow TDF-processes to generate and/or react to events; however we mainly look at the harder
problem of writing and/or reading from/to discrete event signals step-by-step. We first deduce
the minimum conversion setup for a TDF cluster only writing to DE-signals, then have a look
what we need for reading from DE signals, before putting it together in Section 4.1.3.

47

Connecting System Models described with different MoCs

4.1.1 TDF writer

The most easy and straightforward case is when processes in a TDF cluster only generate events.
Every time a TDF process p fires, it can generate events with time tpTDF + d by calling the
newEvent process of the DE execution semantics, where d ≥ 0 denotes a delay. Since the TDF
cluster is a pure event source for the DE model, we can even execute the whole cluster first for
a certain desired time-span, and afterwards start the DE model with the event queue E of αDE

already filled with events from the TDF cluster. The events subsequently generated by the DE
model will be sorted adequately into the event queue. Therefore, in this simple case there is
no need for any additional synchronization between the TDF execution semantics and the DE
execution semantics.

Of course this does not allow for the transmission of information yet, since no data is passed with
an event per se. Suppose the TDF process p wants to write to a DE signal S as defined in 3.10.
If we still want to execute the TDF cluster before we start the DE model execution, we need to
store the values to be written to S during the execution of the TDF model, and then write them
to S at the right times when the DE model is executed. The following converter achieves this:

Definition 4.1 (TDF→DE converter). A TDF→DE converter consists of

• an unbounded FIFO F

• a process convS(v, t) which takes a value v and a time-value t as arguments

• and a process exec convS

If a TDF process p wants to write a value v to a DE signal S, it calls convS(v, tpTDF). convS
pushes v to the FIFO F, and schedules exec convS to be executed by aDE at time tpTDF by calling
newEvent((tpTDF , exec convS)). If exec convS is executed at tDE = tpTDF , it removes v from the
FIFO and writes it to the Signal S. See also Figure 4.1.

𝑐𝑜𝑛𝑣𝑆(𝑣, 𝑡) 𝑪𝒂𝒍𝒍(𝑝𝑢𝑠ℎ𝐹(𝑣)) End𝑪𝒂𝒍𝒍 𝑛𝑒𝑤𝐸𝑣𝑒𝑛𝑡 𝑡, 𝑒𝑥𝑒𝑐_𝑐𝑜𝑛𝑣𝑆

𝑒𝑥𝑒𝑐_𝑐𝑜𝑛𝑣𝑆 𝑪𝒂𝒍𝒍(𝑝𝑜𝑝𝐹) 𝑪𝒂𝒍𝒍(𝑤𝑟𝑖𝑡𝑒𝑆(𝑜𝑢𝑡𝐹)) End

Figure 4.1: TDF to DE converter

In SystemC AMS, the converter ports sca tdf::sca de::sca out<> implement a mechanism
similar to the one described in Definition 4.1.

To be able to use bounded FIFOs is an important part of the concept of TDF (or SDF in general).
In order to use bounded FIFOs for the TDF→DE converter as well, the TDF execution semantics
and the DE execution semantics have to be synchronized. A simple way to achieve this is to let
the TDF execution semantics yield to the DE execution semantics after each round of schedule
execution. More precisely, we initialize αDE such that αTDF ∈ F (Where F is the ”thread-list”
invoked by αDE at the start of the execution). αTDF contains an infinite loop, and the first
command in that loop is a call to newEvent((tpTDF , αTDF)), followed by a Freeze.

48

Connecting System Models described with different MoCs

Here, p is the first process for αTDF to call according to the static schedule which αTDF executes.
After unfreezing, αTDF executes the static schedule once, and jumps back to the beginning of
the loop. Now the cycle repeats with another call to newEvent((tpTDF , αTDF)), but as described
in Definition 3.17, tpTDF now contains the correct time of the next execution of p.

Effectively, this causes αTDF to be executed by αDE at the times tDE = 0, tcP , 2t
c
P , ..., where tcP

is the cluster period of the processes P of the TDF cluster. We won’t describe this strategy more
formally, since it has an important drawback: While αTDF is executed such that tDE = tpTDF

for the first process p in the static schedule, it is unclear at what δ-step it is executed. It could
be the first δ-step for the time tDE = tpTDF , but it won’t be in general. In the SystemC AMS
PoC implementation, the SystemC AMS simulation kernel (which essentially corresponds to our
αTDF) is always executed during the first δ-step; we will see in Section 4.1.3 why this is the case.

Without loss of generality, we will assume from now on that αTDF only executes one TDF cluster.
If more than one TDF cluster is to be executed, we could either foresee a different αc

TDF for each
cluster c, or define a mechanism in αTDF which checks (according to the current DE simulation
time tDE) which clusters to execute when αTDF is executed.

4.1.2 TDF reader

In the previous section we saw that if the information only flows from a TDF cluster to a DE
model, we can run the two models totally decoupled from each other, although for practical
purposes (bounded FIFOs in the converters) some synchronization is advisable. If a TDF process
has to read from a DE signal, however, we need to synchronize since the DE side has to write on
the signal, and the TDF side needs to read it at the appropriate time before it gets overwritten.
Moreover, we can’t use the listener mechanism of the DE signal for the reading TDF process
because the TDF process still needs to be executed in the right order within the static schedule.

Therefore, the TDF execution semantics αTDF has to yield to αDE each time it is about to
execute a process which reads from a DE signal. To this end, αTDF holds a list of all processes in
the cluster which read from DE signals. If the next process p to execute from the static schedule
is in this list, it calls newEvent(tpTDF , αTDF) and freezes in order to give αDE the chance to
invoke and/or call DE processes which might update the DE signal p reads from.

While this conversion direction is more complicated, there is an upside: There is no need for
an additional converter as in the opposite case. If p is executed at the right time (w.r.t. tDE),
it simply reads from the signal variable. The conversion effort here lies in the synchronization
between the two execution semantics. In SystemC AMS there is a corresponding converter port
sca tdf::sca de::sca in<>, but unlike the previous case it is basically a marker that a process
reads an sc core::sc signal<>, and needs to be treated accordingly.

Yet, there is still a complication: When αTDF is finally unfrozen by αDE , there could be still
events in the event list E with a time tpTDF , i.e. the corresponding processes will be executed in
subsequent δ-steps after αTDF was executed p. These processes, however, could still update the
DE signals p reads from.

We now could make sure that αTDF is executed in the last δ-step, e.g. by giving αTDF access to
the event list E. αTDF would then check if there are still such events present and if so, it would
yield again to αDE , possibly several times until there are no more events with a time tpTDF , such
that it now can execute p. Indeed, this is a viable, well defined strategy if the cluster only reads
from DE signals.

49

Connecting System Models described with different MoCs

In the next section, we will see that we need to execute αTDF in the first δ-step though, and this
means that a TDF process p which reads from a DE signal will always miss the signal updates
happening at tDE = tpTDF . However, a TDF process p reading from a DE signal will in general
be in danger of missing signal updates, even if αDE would be executed only at the last δ-step:
Because in between two executions of p, αTDF yields to αDE , which in turn can trigger arbitrarily
many updates of the DE signal. Therefore, this is a general corner case to handle even if we can
manage to get all updates at time tDE = tpTDF .

If it is a problem for the overall model when a TDF process p is missing the updates of a DE
signal now depends on the use case. For example, p could represent an A/D converter, which
samples an analog signal in fixed intervals. In this case, missing the signal updates in between is
no real problem, since a real A/D converter also will miss the changes of the analog input signal
in between samples. However, this is not a likely scenario since one reason of using TDF signals
in addition to DE signals is to provide better options for the modeling of analog signals. That is,
A DE signal would never be used to model an analog signal in the first place.

In realistic mixed DE-TDF models we will usually see that the DE signal S is a control signal to
influence the TDF process p in some way (e.g. by changing some parameter like the amplification).
And if p misses the updates of S that might indicate that something is not in order. For example,
the DE process updating the signal might do this too frequently because a delay was set to low
or a clock frequency was set too high.

This is a corner case which is not foreseen by SystemC AMS, and while there is no way to remedy
it, we can at least detect it. Therefore the converter channels which will be introduced in Chapter
5 provide an option to detect such missed updates. In our formalism, we can implement this as
follows: Instead of an ordinary DE signal we use a modified DE signal s with an additional
counter variable us which is incremented every time the value of s is updated. us is initialized
to 0 and is reset to 0 by p every time after reading from s. p can now inspect us before reading
from s. If us > 1, there are missed updates and p can e.g. generate a warning.

4.1.3 TDF clusters which read from DE signals an write to DE signals

We now finalize the conversion between DE models and TDF models by considering the general
case: A TDF cluster with processes which read from DE signals as well as processes which write
to DE signals via TDF→DE converters as in Definition 4.1. This includes processes which do
both, although we will see that this does not add additional complexity.

Theorem 4.1. If a TDF cluster contains processes which read from DE signals and write to DE
signals via a TDF→DE converter, respectively, αTDF can’t reliably be executed at the last δ-step
of a given discrete time point tDE.

Proof. Consider a TDF process p reading from a DE signal s as in the previous section, and
assume αTDF is executed in the last δ-step of tDE = tpTDF = T . Suppose further that the static
schedule executed by αTDF is such that there is another TDF process q which is executed before
αTDF yields to αDE such that tqTDF = T (for example p itself), and q writes to a DE signal S via
a TDF→DE converter. That is, after αTDF is started at there is a call convS(v, T) as described
in Definition 4.1.

This generates a new event (T, exec convS), i.e. the process exec convS will be executed after
αTDF yields to αDE in a subsequent δ-step of the time tDE = T . Therefore, αTDF wasn’t executed
at the last δ-step as assumed. q.e.d.

50

Connecting System Models described with different MoCs

This means we have to execute αTDF in the first δ-step of a given discrete time point tDE , since
this is the only other well-defined case. To achieve this, we can for example change αDE such that
every time it increases tDE , it checks if there is an event (tDE , αTDF) somewhere in the event list
E. If this is the case, it removes the event from E and invokes αTDF before executing any other
process.

However, there is still one issue remaining: In general, αTDF will execute other TDF processes
from the static schedule after executing p and before yielding to αDE , and one of these processes
(say q) might write to a DE signal via a TDF→DE converter. As we have seen in Section 3.4, it
can now happen that tqTDF is smaller than the value of tpTDF when p was executed, which means
tqTDF < tDE (see also Figure 4.2).

This obviously constitutes an error, as we can’t schedule an event for a time smaller than the
current time. In these cases, the process q has to write to the DE signal with a delay d such
that tqTDF + d ≥ tDE . With the TDF→DE converter this can simply be achieved by calling
convS(v, tqTDF + d).

The minimum size of d depends on the static schedule for the TDF cluster. Figure 4.2 shows
two different schedules for the same cluster. While in schedule 1, tqTDF − tDE ∈ {−3,−1, 1}, in
schedule 2 we have tqTDF − tDE ∈ {−1, 1}.

Schedule 1 p p q q q p p q q q

local time at

execution

𝑡𝑇𝐷𝐹
𝑝

0 3 6 9

𝑡𝑇𝐷𝐹
𝑞

0 2 4 6 8 10

𝑡𝐷𝐸 0 3 3 3 3 6 9 9 9 9

Difference to 𝑡𝐷𝐸 0 0 -3 -1 1 0 0 -3 -1 1

Schedule 2 p q p q q p q p q q

local time at

execution

𝑡𝑇𝐷𝐹
𝑝

0 3 6 9

𝑡𝑇𝐷𝐹
𝑞

0 2 4 6 8 10

𝑡𝐷𝐸 0 0 3 3 3 6 6 9 9 9

Difference to 𝑡𝐷𝐸 0 0 0 -1 1 0 0 0 -1 1

qp
-23

F

23

𝑟𝐹
𝑝

𝑟𝐹
𝑞 𝑡𝑞𝑡𝑝

DE-signal

𝑇𝐷𝐹 → 𝐷𝐸
converter

Figure 4.2: A TDF cluster reading and writing to DE signals and two schedules for it.

It would be possible to use a different delay d every time, i.e. just large enough such that
tqTDF + d = tDE if tqTDF is not larger than tDE already, in which case d = 0 would be set. But in
the interest of a sound, consistent model, the delay should be constant, i.e. d = 3 for schedule 1,
and d = 1 for schedule 2. And in the interest of precision this constant delay should be as small
as possible, i.e. among the possible static schedules for a TDF cluster, the one which yields the
smallest delay values necessary should be chosen.

We won’t discuss here how to compute such a schedule, the important observation here is that a
it is needed in general. Our converter in definition 4.1 does not to be changed for this, as the TDF
process using the converter can just add the delay on its own by calling convS(v, tpTDF + d). The
converter ports in SystemC AMS offer a method set delay() where this can be done explicitly.
The SystemC simulation kernel also detects during the simulation if the SystemC AMS time is
smaller than the SystemC time, in which case it throws an error and also suggest a minimum
delay value for the culprit converter port.

51

Connecting System Models described with different MoCs

4.2 Untimed Process Networks and SDF/TDF models

We will now look at the problem to connect a PN model with a SDF model. This conversion
promises to be easy to handle since both MoCs are based on processes communicating via FIFOs.
The main difference is that SDF processes never freeze, since the schedule and the size of the
FIFOs are chosen accordingly. Now when an SDF process accesses a FIFO which connects to a
PN process, it can happen that it freezes, e.g. when reading from an empty FIFO that is written
to by a PN process. This has to be handled. However, it turns out that in our formalism, the
PN-SDF connection comes almost for free.

We describe a simple conversion strategy to connect a (bounded or unbounded) PN modelMPN
to an SDF modelMSDF . The idea is that αPN invokes αSDF first before invoking the processes
in MPN . Now some of the processes in MSDF are connected to PN processes via FIFOs, and if
a such a TDF process pSDF accesses one of these FIFOs F connecting to a PN process pPN , it
will eventually freeze. Since αSDF only calls the TDF processes, it is then also frozen which in
turn continues αPN .

Now αPN will at some point invoke the PN process pPN , whose activity will eventually (i.e. after
several invokes or after several freezes and unfreezes) fill F enough to unfreeze pSDF . pSDF now
can end eventually, which continues αSDF . αSDF continues to execute the static schedule until it
freezes again because of some other TDF process freezing due to access of a FIFO which connects
to a PN process. This now continues pPN and, at some point αPN . That way, αPN and αSDF

are running alternately (see Figure 4.3).

Of course it can also happen that a PN process pPN freezes because of accessing a FIFO connecting
to an SDF process (for example when attempt to read from an empty FIFO). But this means that
αSDF is frozen, which implies that some SDF process pSDF is frozen. So as above, by continuing
to execute PN processes, pSDF will be unfrozen, which unfreezes αSDF and eventually pPN .

𝛼𝑆𝐷𝐹

𝛼𝑃𝑁

𝑝𝑆𝐷𝐹

𝑝𝑃𝑁

𝑟𝑒𝑎𝑑𝐹

𝑤𝑟𝑖𝑡𝑒𝐹

Figure 4.3: Alternating execution of αPN and αSDF when executing a combined PN-SDF model

For this strategy to work, the connecting FIFOs between writing SDF processes and reading
PN processes have to be finite; otherwise it could happen that αSDF never freezes, e.g. when

52

Connecting System Models described with different MoCs

the SDF cluster is a pure token producer for the PN model. In this case, if the FIFOs to the
PN processes are all unbounded, the SDF cluster could just keep on going as no SDF process
would ever (indirectly) freeze. But this situation can occur also in PN models in general with
PN-processes which are pure token producers. If αPN has an appropriate scheduling strategy for
this situation, the connection to an SDF cluster poses no further challenges.

The above remarks prove the following

Theorem 4.2. Let MPN be a bounded or unbounded PN model which connects to an SDF
model MSDF with an execution semantic αSDF . Then αPN can schedule the execution of MSDF
together with the execution of MPN by treating αSDF like a PN process.

The exact same strategy can now be used to connect Process Networks to TDF models, since there
is no time adoption necessary as the PN network is untimed. Interestingly, this MoC conversion
could entirely treated globally by invoking αSDF from αPN ; there was no need for any kind of
local converter in between a PN process and a SDF process apart from demanding a bounded
FIFO. When the PN network is timed, however, this is not the case.

4.3 Discrete Event Process Networks and TDF models

According to Definition 3.15, a DE-PN model is basically a DE model where processes commu-
nicate via FIFOs. Since FIFOs are the only means of communication, every process has to be in
the list F of the DE execution semantics to be invoked by αDE .

We will see that conversion between DE-PN models and TDF models is mainly a local problem
handled by TDF processes. Therefore we could also allow for non-blocking (i.e. non-freezing)
access of DE-PN processes to FIFOs, e.g. by allowing them to access nF and lF , as this doesn’t
change the conversion problem.

4.3.1 TDF reader

When a TDF process pTDF reads from a FIFO FDE written by a DE process pDE , it can in
general happen that the FIFO contains not enough token. In the previous Section we had pTDF

freeze itself, effectively yielding control to αPN which would eventually result in the FIFO to be
filled and and pTDF to be unfrozen.

This strategy does not work here, since it can take a certain period of simulated time before pDE

writes on FDE . And when pTDF finally unfreezes, tDE might be (much) larger than tpTDF , i.e.
the token cannot be really used if the model is supposed to be sound.

As a first consequence, we follow the strategy from Section 4.1 and synchronize αDE and αTDF

the same way. And we also synchronize every time before a TDF process is executed which reads
from a FIFO written by a DE-process. That way we give the DE side a maximum chance to fill
the FIFO sufficiently.

However, it can of course still happen that the FIFO does not contain enough token when it is
read by pTDF . This constitutes a corner case, and there are essentially three ways to handle it:

53

Connecting System Models described with different MoCs

1. We could throw an error

2. We could fill the missing token with the last valid value

3. We could fill the missing token with a constant c

Which option is appropriate now depends on the use case: When the combined model should not
exhibit this behavior, option 1 is the right choice. If this communication channel has a ”sample
and hold” style semantics, option 2 should be preferred1. And option 3 could be used if there is
an appropriate default value.

We now construct a converter process fetchpPN which has to be scheduled by αTDF before every
occurrence of p, which is the TDF process supposed to read from the FIFO FDE . Instead of p,
fetchpPN reads from FDE and copies the token to a FIFO F which is read by p.

𝑙𝐹𝐷𝐸 > 0

𝑓𝑒𝑡𝑐ℎ𝑃𝑁
𝑝

End

C𝒂𝒍𝒍 𝑝𝑜𝑝𝐹𝑃𝑁

𝑪𝒂𝒍𝒍 𝑝𝑢𝑠ℎ𝐹 𝑜𝑢𝑡𝐹𝐷𝐸
𝑙𝑎𝑠𝑡 = 𝑜𝑢𝑡𝐹𝐷𝐸

𝑙𝐹 < 𝑟𝐹
𝑝

𝑙𝐹 ≥ 𝑟𝐹
𝑝

𝑙𝐹𝐷𝐸 = 0

𝑜𝑐𝑐 = ′𝑒′

Throw

Error

𝑥 =last
𝑜𝑐𝑐 = ′ℎ′

𝑥 =c

𝑪𝒂𝒍𝒍 𝑝𝑢𝑠ℎ𝐹 𝑥

𝑙𝐹 < 𝑟𝐹
𝑝

𝑙𝐹 ≥ 𝑟𝐹
𝑝

Figure 4.4: The fetchpPN converter process

More precisely: When fetchpPN is executed, it checks if F already contains enough token for p
to read (i.e. checks if lF ≥

∣∣rpF ∣∣). If not, it takes token from FDE and pushes them to F until
there are enough token. If this is not possible because FDE does not contain enough token, then
fetchpPN handles this corner case depending on the value of the option variable occ:

• If occ =’e’ (for ”error”), an error is thrown and the execution of the model is stopped. We
won’t specify in detail what throwing an error exactly means here, for example it could
mean calling a dedicated error process.

• If occ =’h’ (for ”hold”), the missing token in F are filled with a copy of the last token that
could be copied from FDE to F .

1Although one might argue that in this case a DE signal would have been the better choice to use for this
channel in the first place

54

Connecting System Models described with different MoCs

• If occ =’c’ (for ”constant”), the missing token in F are filled with a constant c.

Figure 4.4 shows the diagram of fetchpPN .

4.3.2 TDF writer

When a TDF process pTDF writes to an unbounded FIFO, there is never a problem regardless of
what kind of process read from F . Since pTDF does not need to get blocked in order to yield to
the simulation semantics, and there is obviously always enough space in F . When F is bounded,
however, and read by a DE-PN process pDE−PN it can happen that F is full.

Now we are in a corner case similar to the one in the previous section, but now we have to decide
what to do with the surplus token. Storing it in an internal queue within pTDF to write it to F
later is not a real option, as this is essentially equivalent to enlarge the size of F . There are three
possibilities which are viable:

1. We could throw an error

2. We could discard the oldest token in F and then write the new token to F

3. We could discard the new token, i.e. don’t write to F

As before, thee is no apparent ”correct” way which of these options to choose; it depends on
the use case at hand. So we make all three options available to our converter process writePN

F ,
which is called by pTDF with the token v as an input of calling pushF . writePN

F is an additional
access process of F which simply calls pushF (v) if there is enough space in F . If not, it proceeds
according to the option chosen (see also Figure 4.5:

• If occ =’e’ (for ”error”), an error is thrown and the execution of the model is stopped.

• If occ =’o’ (for ”oldest token discard”), popF is called, followed by pushF (v).

• If occ =’c’ (for ”current token discard”), no action is taken (process ends).

This converter is very simple, as it’s only task is corner case handling. There is also no need to
schedule it in a special way, as it is called by the TDF process directly.

4.4 Discrete Event Models and Process Networks

This is an awkward pair of MoCs to combine, as one of the conversion directions is basically
trivial, while the other direction is very artificial. Therefore we will only sketch this case. There
is an implementation of these conversion within the Converterchannels in Chapter 5.

The trivial direction is if the writing process is a DE process pDE . There is obviously no problem
when the FIFO F is unbounded; pDE just writes to F like an ordinary PN process. If the FIFO
is bounded, pDE might eventually block, which in general should be OK for most use cases. So
there is no need for a converter, unless the blocking behavior is unwanted for some reason. In

55

Connecting System Models described with different MoCs

𝑤𝑟𝑖𝑡𝑒𝐹
𝑃𝑁(𝑣)

𝑙𝐹 = 𝑛𝐹 𝑙𝐹 < 𝑛𝐹

𝑜𝑐𝑐 = ′𝑒′

Throw

Error

𝑜𝑐𝑐 = ′𝑐′
End

𝑪𝒂𝒍𝒍 𝑝𝑜𝑝𝐹

𝑪𝒂𝒍𝒍 𝑝𝑢𝑠ℎ𝐹 𝑣

Figure 4.5: writePN
F converter process

that case we would need a converter convDE→PN for the sole purpose of handling the full FIFO
with corner-case options like in section 4.3.2, i.e. throw an error or discard one token. In fact,
this was done for the Converterchannels for technical reasons (see section 5.2.3).

If the writing process is a PN process pPN , the situation is very different. For example, pPN

might require to be blocked by a bounded FIFO it writes to. If we replace that FIFO with a
DE-signal s, pPN would just keep on writing to s forever without ever blocking. And even if pPN

blocks by itself, e.g. because it’s a DE-PN process, it might write big chunks of data to s at the
same δ-cycle, which effectively constitutes a data loss.

The only remedy to the last two problems is to let pPN write to a (possibly bounded) FIFO F
as usual, and employ a DE converter process convPN→DE which reads the token from F one
by one at a certain pace and then writes their values to s. The time between consecutive reads
would usually be constant, but it could also change in some defined manner, e.g. according to the
number of token in F . If F is empty when convPN→DE reads from it, we just would not write to
s, which is essentially a ”hold” semantic as in section 4.3.1.

That is, in contrast to the previous MoC conversion problems, there is no real ”natural” MoC con-
version semantic for the PN→DE conversion direction. While the Converterchannels in Chapter 5
also contain converters between both MoCs, they were mostly added for the sake of completeness,
as the applications seem limited.

4.5 TDF models and TLM models

The problem of connecting TLM models to TDF models is essentially how to stream transactions
to TDF processes, and how to transform TDF streams into transaction data. We use the simplified
transaction as defined in Section 3.5, i.e. a transaction T = (cT , dT , aT , tT , sT) of the form

(read|write, (d0, ...dn−1), address, timestamp, state)

with the state-space depending on the TLM-MoC (LT-TLM or AT-TLM). In the following we
will consider first the parts of the conversion which are common to both TLM-MoCs before
elaborating on the details with respect to the two variants.

56

Connecting System Models described with different MoCs

4.5.1 TLM writer

The basic idea of writing a transaction (write, (d0, ...dn−1), address, timestamp, state) to a FIFO
F which is read by a TDF process p in a TDF model is to to push the data token (d0, ...dn−1)
successively to F . Note that we simplified the situation compared to SystemC TLM2 in that
there is no data descriptor which states that the data token are written consecutively to the
same address. In the TLM2 generic payload, this is established by choosing a streaming width
sw smaller than the data length dl. In fact, if the size of the data type T of the TDF signal to
be written to is sT , the converter implementation in Chapter 6 has to check if sw = sT holds,
in which case it streams dl/sw token to the TDF side. Otherwise the transaction cannot be
processed.

The converter we need is a TLM Target as in Definition 3.19. We will for now assume that F
is unbounded, and deal with the bounded situation later. The first problem to consider is if F
contains enough token for p to consume when p is executed. Since we don’t make any assumptions
on the arrival rate of transactions, which can arrive asynchronously in general, we can’t ensure
that.

Therefore, we again are in the corner case situation of section 4.3.1, where we have to decide
what to do if we can’t provide an TDF process with enough token. We therefore use the same
option occ ∈ {’e’, ’c’, ’h’} for throwing an error, filling in a constant or holding the last value,
respectively. The use case again drives the choice of the option. If the converter represents a
D/A converter, filling the missing token with zeros is probably fine as an equivalent to having
the D/A converter switched off. However if it represents D/A conversion based on pulse-width
modulation, re-using the last available token might be a better option. And if the initiator was
intended to deliver enough transactions, the converter should raise an error.

However, we can maximize the chances of DE processes to produce sufficient write-transactions
by synchronizing with αDE in the same manner as in section 4.1.2. We can do this every time
before executing p, like in Section 4.3.1 as if p was reading from a DE signal, or implement a
mechanism which does this only if there are not enough token in F . In any case, we can assume
tDE = tpTDF from now on.

The next problem is more subtle: A transaction T can in general arrive with a timestamp
tT > tDE = tpTDF . So if the token (d0, ...dn−1) from T are written to F right away, it might
happen (depending on how many token were already written to F) that when p consumes (some
of) these token, t > tpTDF . This causality issue should be avoided. While we saw in Section 3.4
that TDF itself has some ambiguity regarding causality, it is at least always bound by the cluster
period. In this case, however, the difference between tT and tpTDF can in theory grow arbitrary
large.

We will handle this issue in a way which also minds another potential timing anomaly: Out-
of-order arrival of transactions, i.e. when a transaction T ′ with timestamp tT ′ arrives after a
transaction T with timestamp tT , such that t > t′.

We will therefore use the strategy of storing the transactions first in a queueQ = (T0, T1, ..., TnQ−1)
where they are ordered by time-stamp, i.e. if tTi is the timestamp of Ti, then tTi ≤ tTj iff i < j.
The idea is now to write the token from these transactions to the FIFO F as late as possible.
Whenever F needs to be filled, we look at the transaction T0 at the top of Q. If tT0 ≤ tpTDF , we
remove T0 from Q and write the token of T0 to F , and repeat this process until there are enough

57

Connecting System Models described with different MoCs

token in F for p to read. If tT0 ≤ tpTDF , we are in the corner case situation as described above,
and handle it accordingly.

This strategy achieves the following: It can never happen that token from transactions with
timestamp tT ≤ tpTDF are consumed by p. At the same time, it maximizes the chances that
transactions arriving out-of-order get ”re-ordered” in the queue. It can still happen that after a
transaction T with timestamp tT was removed from the queue and streamed to F , a transaction
T ′ arrives with timestamp tT ′ < tT .

Now it depends again on the nature of the overall model if the modeler would consider this as an
error or not. If so, we can include a check for this case by storing the timestamp tlast of the last
transaction which was streamed to F , compare it with the timestamp tT of the next transaction
T to be streamed, and raise an error (or a warning) if tT < tlast.

Now we look at the parts where we have to treat LT-TLM and AT-TLM differently.

conv𝐿𝑇−𝑇𝐿𝑀→𝑇𝐷𝐹 𝑟𝑒𝑓𝑇
𝑇 = 𝑤𝑟𝑖𝑡𝑒, 𝑑, 𝑎, 𝑡𝑇 , 𝑠

𝑇𝑗 = 𝑇𝑗−1∀𝑗 > 𝑖 + 1

𝑇𝑖+1 = T

𝑛𝑄 = 𝑛𝑄 + 1

𝑠 = 𝑂𝐾
End

Find the largest

position 𝑖 in 𝑄
with 𝑡𝑇 ≥ 𝑡𝑇𝑖

Figure 4.6: convLT−TLM→TDF process

4.5.1.1 LT-TLM converter

In LT-TLM, the converter (being a TLM Target) has to process the transaction before ending.
If it just stores the reference to the transaction in Q and ends (to ultimately process it later),
the initiator which issued it might re-use the transaction, such that its data might have changed
when it is streamed to F . Therefore, we actually have to copy the transaction2. After copying
the transaction T to Q, the converter sets the response of T to OK and ends. This describes the
first converter process convLT−TLM→TDF (See Figure 4.6).

The process which finally writes the token from the ”oldest” transactions in the queue is a TDF
process fetchpTLM , which has to be inserted in the static schedule executed by αTDF in front of
every occurrence of p. Also, fetchpTLM is treated like a process which reads from a DE-signal:
Before executing fetchpTLM , αTDF yields to αDE . That way, we can make sure that DE processes
get the opportunity to provide p with enough token. Figure 4.7 shows fetchpTLM in detail. For
simplicity, all the corner-case handling when there are not enough token available is represented
by one box, since it is handled exactly like in DE-PN to TDF conversion in Section 4.3.1. If the
case tT0 < tlast occurs, the behavior depends on the option variable oord. If oord = ’e’, an error is
raised, if oord = ’w’, a warning is raised and the process continues.

Note that it would also possible that instead of synchronizing with αDE every time before
fetchpTLM is executed to only synchronize with αDE when necessary; i.e. when F contains not

2However, since only the data and the timestamp is needed at this point, in real-world implementations (where
efficiency matters) only those two parts of the transaction are stored in the queue.

58

Connecting System Models described with different MoCs

𝑡𝑇0 ≤ 𝑡𝑇𝐷𝐹
𝑝

𝑇0 = 𝑤𝑟𝑖𝑡𝑒, (𝑑0, 𝑑1, … , 𝑑𝑛−1), 𝑎, 𝑡𝑇0 , 𝑠

corner-case

handling like

DE-PN→TDF

End

𝑪𝒂𝒍𝒍 𝑝𝑢𝑠ℎ𝐹 𝑑𝑖
𝑖 = 𝑖 + 1

𝑖 < 𝑛

𝑖 = 0, 𝑡𝑙𝑎𝑠𝑡 = 𝑡𝑇0
𝑇𝑗 = 𝑇𝑗+1∀𝑗 < 𝑛𝑄 − 1

𝑛𝑄 = 𝑛𝑄 − 1

𝑙𝐹 ≥ 𝑟𝐹
𝑝𝑙𝐹 < 𝑟𝐹

𝑝

𝑛𝑄 = 0 ∨ 𝑡𝑇0 > 𝑡𝑇𝐷𝐹
𝑝

𝑡𝑇0<𝑡𝑙𝑎𝑠𝑡

𝑡𝑇0 ≥ 𝑡𝑙𝑎𝑠𝑡

Warning

𝑓𝑒𝑡𝑐ℎ𝑇𝐿𝑀
𝑝

𝑙𝐹 < 𝑟𝐹
𝑝 𝑙𝐹 ≥ 𝑟𝐹

𝑝

𝑖 = 𝑛

𝑜𝑜𝑟𝑑 = ′𝑒′

Throw

Error

𝑜𝑜𝑟𝑑 = ′𝑤′

Figure 4.7: The fetchpTLM process.

enough token and the transactions in Q also can’t provide enough token. To this end, fetchpTLM

would schedule its wake-up by calling newEvent((tpTDF , fetch
p
TLM)) before freezing. However,

according to the SystemC AMS extensions standard, this can’t be implemented as calling wait()

from a TDF module is not well-defined. And since this strategy does not change the results
(while improving performance due to potentially less context switches), we opt for the simpler
alternative.

The fetchpTLM process writes all the token of a transaction to F at once; since we assumed F to
be unbounded, this always works. To choose for F a fixed finite size, we would have to know an
upper bound N of the number of tokens of transactions in the model. Then F could be chosen
of size N + rpF .

Another option would be to take only as many token from the transaction T0 as needed, and then
take the next token from T0 at the next execution of convLT−TLM→TDF . However, it is possible
that a transaction with a lower timestamp than tT0 might arrive in between. To avoid this kind
of disarray, using an unbounded FIFO F is the better option, especially when considering that
the transaction queue is unbounded as well.

However, in this setting it is possible that token gradually pile up in the transactions within the
queue Q. This would indicate an imbalance in the overall model as the initiator(s) produce more
token than can be consumed. A way to detect such an imbalance would be to bound number of
token in the queue relative to the token consumption of p in the time covered by the queue. More
precisely, let nQtoken be the number of token of all the transactions in the queue Q, and let C > 1
be a constant. By checking if the relation

nQtoken < CrpF

tTnQ−1 − tT0

tp
(4.1)

59

Connecting System Models described with different MoCs

holds (e.g. within the convLT−TLM→TDF process), and throwing an error or a warning if it does
not, it can be ensured that the number of token in Q does not grow to large. E.g. with C = 2,
there would be no more than twice as many token as p can consume within the queue. Having this
kind of wiggle room is important in order to deal with temporal decoupled initiators in LT-TLM.

The convLT−TLM→TDF converter basically copies the token from incoming transactions and then
completes the transaction. The token from the transaction get consumed later, so in a real-life
implementation of the model there has to be some kind of buffer where the converter was. How
big has this buffer to be?

From 4.1 we can derive that the maximum value of

nQtoken

rpF
tTnQ−1

−tT0
tp

(4.2)

in the course of the simulation would be an upper bound on the size of the buffer in the imple-
mentation. This is an example on how the converter can provide additional information useful
at a later refinement or implementation step.

𝑇 = 𝑤𝑟𝑖𝑡𝑒, 𝑑0, 𝑑1, … , 𝑑𝑛−1 , 𝑎, 𝑡𝑇 , 𝑠 = (𝑠0, 𝑠1, 𝑠2)

𝑠 = (𝑂𝐾, end_req, updated)

d = accept delay
Call(newEvent(𝑡𝑇 + 𝑑,conv𝐴𝑇−𝑇𝐿𝑀→𝑇𝐷𝐹))
Freeze

𝑠1 =begin_resp

𝑠3 =completed

𝑛𝐹 − 𝑙𝐹 ≥ 𝑛

𝑛𝐹 − 𝑙𝐹 < 𝑛
𝑠0 =ERROR

𝑠0 =OK

𝑖 = 0

C𝒂𝒍𝒍 𝑝𝑢𝑠ℎ𝐹 𝑑𝑖
𝑖 = 𝑖 + 1

𝑖 < 𝑛

𝑡𝑇 = 𝑡𝐷𝐸 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑙𝑎𝑦

𝑪𝒐𝒑𝒚𝑰𝒏𝒗𝒐𝒌𝒆 𝑝𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑇)

End

conv𝐴𝑇−𝑇𝐿𝑀→𝑇𝐷𝐹(𝑟𝑒𝑓𝑇)

corner-case

handling like

DE-PN→TDF

End

𝑐ℎ𝑒𝑐𝑘𝑇𝐿𝑀
𝑝

𝑙𝐹 < 𝑟𝐹
𝑝 𝑙𝐹 ≥ 𝑟𝐹

𝑝

Figure 4.8: convAT−TLM→TDF and checkpTLM processes

4.5.1.2 AT-TLM converter

In AT-TLM, the streaming to an TDF process can be handled very differently as the target can
respond to an incoming transaction T at a later time if tT > tDE , so it is possible to process the
transaction actually at time tT = tDE and write the token from T directly to F . Now if F is

60

Connecting System Models described with different MoCs

finite, and the transaction causes an overflow to F , it is now possible to reject the transaction by
setting the state to (ERROR, ”, ”).

Figure 4.8 shows the convAT−TLM→TDF process. In this case, we actually model an accept
delay d3, which is a common use case for AT-TLM models. Therefore the transaction is never
processed right away. Instead, the convAT−TLM→TDF schedules its continuation at time tT + d
and freezes, after also updating the transaction state accordingly, in particular by setting the
phase to end req.

After the process is invoked again by αDE, T can be processed directly by pushing its token to
F ; i.e. there is no need for a process like fetchpTLM . Now the transaction state is updated again
by setting the phase to begin resp, and setting the sync-state to complete.

In Figure 4.8 it can be seen that convAT−TLM→TDF also contains a test to check if F has enough
space for the token of T . IF not, T is rejected with an ERROR state. This was not possible with
LT-TLM, as the converter could not know if the token could be written to F at the time T was
processed. However, in the implementation of the TLM→ TDF converters in chapter 6, we will
use an unbounded FIFO.

After the transaction has been processed, the timestamp of the transaction is set to the current
simulation time with an additional delay added to model the time to process the transaction. Then
an interface process pinterface of the component which passed the transaction to the converter is
invoked. Since we set the sync-state to complete, the converter is done with the transaction. In
general, the initiator could call the converter once more with phase end resp, but we leave out
this case for simplicity, as it also does not change the core conversion approach.

Not discussed so far is what to do if F contains not enough token when it is read by a TDF
process p. A simple solution is to use a process similar to fetchpTLM in section 4.5.1.1, which is
scheduled by αTDF just before p. However, this process now has just to check if there are enough
token in F for the execution of p, therefore we call this process checkpTLM . If there are not enough
token, checkpTLM initiates the usual use-case driven corner-case handling as fetchpTLM (see right
side of Figure 4.8).

As a final note we should point out that with the AT-TLM converter, we can get a better picture
than in the LT-TLM case how big a buffer in an implementation has to be if we start off with an
unbounded FIFO F . It now suffices to check what the maximum number of token in F was in
the course of the simulation.

4.5.2 TDF writer

When sending a (read, (d0, ...dn−1), address, timestamp, state) transaction to a converter which
reads from a FIFO F written by a TDF process p, the obvious approach is to remove n token
from F and copy them to (d0, ...dn−1). The obvious corner case is now that there are not enough
token in F , i.e. lF < n.

We now have the same use-case driven options as in section 4.3.1: Throwing an error, repeating the
last valid value, or fill in the missing token with a constant value. However, for the TDF→TLM
conversion direction, two more options make sense:

3How this delay is determined is not important here, but most of the time it would just be a constant value,
i.e. a fixed property of the converter

61

Connecting System Models described with different MoCs

• Dismissing the transaction with an ERROR response. In this case, the initiator can decide
the further actions. It could now throw an error itself, or it could try again after some time.
The latter might be a viable option in certain use cases.

• The converter waits until there are enough token present in F .

In the following we consider only the wait option, as handling the other cases works essentially
like in the conversion problems in section 4.3.1 (error, hold, constant) and section 4.5.1.2 (error
response).

conv𝑇𝐷𝐹→𝐿𝑇−𝑇𝐿𝑀 𝑟𝑒𝑓𝑇

End

Find the largest

position 𝑖 in 𝑄𝑇

with 𝑡𝑇 ≥ 𝑡𝑇𝑖

𝑇 = 𝑟𝑒𝑎𝑑, 𝑑0, 𝑑1, … , 𝑑𝑛𝑇−1 , 𝑎, 𝑡𝑇 , 𝑠𝑄𝑇 = 𝑞0, 𝑞1, … , 𝑞𝑛𝑄𝑇−1

𝑛𝑄𝑇 > 0

𝑞𝑗+1 = 𝑞𝑗∀𝑗 > 𝑖

𝑞𝑖+1 = (𝑟𝑒𝑓𝑇 , 𝑐𝑜𝑛𝑣𝑇𝐷𝐹→𝐿𝑇−𝑇𝐿𝑀)
𝑛𝑄 = 𝑛𝑄 + 1

Freeze

End

𝑞𝑗 = (𝑟𝑒𝑓𝑇𝑗 , 𝑐𝑜𝑛𝑣𝑗)

read𝐹

Push the token

from F to 𝑄𝐹

𝑛𝑄𝑇 > 0

𝑛𝑄𝑇 = 0

Invoke(𝑐𝑜𝑛𝑣0)

𝑞𝑗 = 𝑞𝑗+1∀𝑗 < 𝑛𝑄 − 1

𝑛𝑄 = 𝑛𝑄 − 1
𝑛𝑄𝐹 ≥ 𝑛𝑇0

Copy the first n token from

𝑄𝐹 to 𝑑0, 𝑑1, … , 𝑑𝑛−1 and

remove them from 𝑄𝐹
𝑠 = 𝑂𝐾, 𝑡𝑇 = 𝑡𝐷𝐸 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑙𝑎𝑦

Figure 4.9: convTDF→LT−TLM and readF

4.5.2.1 LT-TLM converter

The general idea is to have a TDF process readF which reads from the FIFO F with the same
data rate as p writes to it. readF now stores the token in an internal queue QF , from which the
actual converter process convTDF→LT−TLM receiving the transactions now can take its token.

If convTDF→LT−TLM receives a read-transaction T , but there are not enough token to read in QF ,
it stores a reference to itself and T in a queue QT similar to a payload event queue as described
at the end of section 3.5.2 (see Figure 3.11 there). After that, it freezes. Note that it is necessary
to store the reference to convTDF→LT−TLM , since it is actually a copy of convTDF→LT−TLM

according to rule 2 of Definition 3.20.

QT is ordered according to the transaction time stamps (like the transaction queue we used for
the LT-TLM→TDF converter in section 4.5.1.1), and is accessed by readF . If readF is executed,
it checks (after copying the token from F to QF) if QF has enough token the first element in
QT to be processed. If so, it invokes the corresponding copy of convTDF→LT−TLM , which then
finishes its transaction.

62

Connecting System Models described with different MoCs

This approach makes it necessary that convTDF→LT−TLM has also to check if there are already
frozen copies of itself waiting in QF . If so, it also has to be enqueued in QF , even if there are
enough token available for its transaction T . Figure 4.9 shows diagrams for the two converter
processes.

4.5.2.2 AT-TLM converter

For the corresponding conversion in the AT-TLM MoC, the same TDF process readF can is
used. The converter convTDF→AT−TLM also works very similar to convTDF→LT−TLM , with some
added steps for the updates of the transaction state. Figure 4.10 shows the diagram of the
convTDF→AT−TLM process.

conv𝑇𝐷𝐹→𝐴𝑇−𝑇𝐿𝑀 𝑟𝑒𝑓𝑇

Find the largest

position 𝑖 in 𝑄𝑇

with 𝑡𝑇 ≥ 𝑡𝑇𝑖

𝑇 = 𝑟𝑒𝑎𝑑, 𝑑0, 𝑑1, … , 𝑑𝑛𝑇−1 , 𝑎, 𝑡𝑇 , 𝑠

𝑄𝑇 = 𝑞0, 𝑞1, … , 𝑞𝑛𝑄𝑇−1

𝑛𝑄𝑇 > 0

𝑞𝑗+1 = 𝑞𝑗∀𝑗 > 𝑖

𝑞𝑖+1 = (𝑟𝑒𝑓𝑇 , 𝑐𝑜𝑛𝑣𝑇𝐷𝐹→𝐿𝑇−𝑇𝐿𝑀)
𝑛𝑄 = 𝑛𝑄 + 1

Freeze

Copy the first n token from

𝑄𝐹 to 𝑑0, 𝑑1, … , 𝑑𝑛−1 and

remove them from 𝑄𝐹
𝑠 = 𝑂𝐾

𝑞𝑗 = (𝑟𝑒𝑓𝑇𝑗 , 𝑐𝑜𝑛𝑣𝑗)
𝑠 = (𝑂𝐾, end_req, updated)

d = accept delay
Call(newEvent(𝑡𝑇 + 𝑑,conv𝐴𝑇−𝑇𝐿𝑀→𝑇𝐷𝐹))
Freeze

𝑠1 =begin_resp

𝑠3 =completed

End
𝑡𝑇 = 𝑡𝐷𝐸 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑙𝑎𝑦

𝑪𝒐𝒑𝒚𝑰𝒏𝒗𝒐𝒌𝒆 𝑝𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑇)

Figure 4.10: convTDF→AT−TLM converter process

63

5 Automatic MoC conversion in SystemC:
Converter Channels

The Converter Channel library is an extension of SystemC and SystemC AMS which allows
for automatic conversion between model parts modeled with different MoCs. It is part of the
ANDRES modeling framework, which was the main technical result of the ANDRES project
[HOH+07], and was documented in the Deliverables D1.5b and D1.6b of the ANDRES project
[DW08, AND09]. Most of the information of this chapter can also be found in these reports.

From a C++ programming perspective, a converter channel is a C++ template-class named
converterchannel<>, which derives from the SystemC class sc core::sc channel, which is the
class all signal-like classes in SystemC have to inherit from. A converter channel is instantiated
as follows:

converterchannel<MOC WRITE, T W, T R1, T R2> conv;

where

• MOC WRITE denotes the MoC of the writing side (mandatory)

• T W denotes the data type of the writing side (mandatory)

• T R1 and T R2 denote the possible data types of the reading sides of this converter channel
(optional)

If only the mandatory writing side data type T W is set, the converter channel doesn’t perform
data type conversion; all ports bound to it have to be of data type T W. In general, the writing
port bound to the converter channel has to be of data type T W, and any reading port bound to
it has to be of one of the data types T W, T R1 or T R2. The MoC MOC WRITE is specified with an
enum type MoC, which has the following members:

• SC denotes the DE MoC of SystemC

• TDF denotes the Timed Synchronous Data Flow (TDF) MoC of SystemC AMS.

• FIFO denotes all Process Network (PN) MoCs. For the conversion, it is not important if the
modules connecting to the converter channel are timed or untimed, or if they use blocking
or non-blocking access.

64

Automatic MoC conversion in SystemC: Converter Channels

• ELEC VOLTAGE and ELEC CURRENT denote the continuous time electrical network (CT-NET)
MoC of SystemC AMS, depending on the electrical quantity of interest

Module

MoC1

Module

MoC1

Module

MoC1

converter
MoC1MoC1

DT1DT2

Module

MoC2

converter
MoC1MoC2

DT1DT1

Module

MoC2

Module

MoC3

converter
MoC1MoC3

DT1DT3

input channel output channel1

output channel2

output channel3

data type T1

data type T2

data type T3

Figure 5.1: Internal structure of a Converterchannel (gray box), from [DHHV07]

An example of how a Converterchannel looks like inside is shown in Figure 5.1: For the writing
side, it has an internal input channel of fitting MoC and data type, and for the writing side it
has output channels for every MoC/data type combination needed.

The Converterchannel can be connected to any SystemC or SystemC AMS standard port (e.g.
sc in<>, sc fifo out<> or sca tdf::sca out<>. The MoCs of the reading side are not explicitly
specified, but are determined automatically. Before we discuss the MoC conversions itself, we
describe the technical implementation that enables this capability.

5.1 Technical Implementation

For the writing side, the Converterchannel contains an object insignal, which is an instance of
a helper class helpersignal, which inherits from the correct signal class depending on the value
of the template parameter MOC WRITE, i.e. the writing side MoC. helpersignal is implemented
as a template class, where one template parameter is of type MoC and the other specifies the data
type. For each MoC, there is a template specialization (See Listing 5.1).

template <MoC THEMOC, typename T> // generic prototype classe

class helpersignal{

public: helpersignal(){} // dummy constructor

public: helpersignal(int x){} // dummy constructor with integer input. This is needed for

5 }; // the FIFO specialization

template <typename T> // FIFO specialization

class helpersignal<FIFO,T>: public sc:core::sc_fifo<T>{ // inheriting from sc_fifo<T>

65

Automatic MoC conversion in SystemC: Converter Channels

public: helpersignal(){}

10 public: helpersignal(int size): sc:core::sc_fifo<T>(size){} // constructor to set FIFO size

};

// the rest of the template specializations are omitted

Listing 5.1: helpersignal helper class

For the writing side, the Converterchannel contains for each port-class it can connect to three
pointers to a fitting channel (like sc signal<>), one for each data type T W, T R1, T R2; see Listing
5.2 for an example.

sca_tdf::sca_signal<T_W>* outsignal_tdf_0; // pointers for tdf signals to be passed to reading ports

sca_tdf::sca_signal<T_R1>* outsignal_tdf_1;

sca_tdf::sca_signal<T_R2>* outsignal_tdf_2;

5 sc_fifo<T_W>* outsignal_fifo_0; // pointers for FIFOs to be passed to reading ports

sc_fifo<T_R1>* outsignal_fifo_1;

sc_fifo<T_R2>* outsignal_fifo_2;

Listing 5.2: output signal pointers for the TDF MoC and the FIFO MoC

These pointers are all instantiated to 0, and corresponding channels will only be created if the
Converterchannel is connected to a corresponding port. Which of the internal signals (the input
signal or the output signals) has to be connected to a specific port is now determined by over-
loading the () operator used in the SystemC syntax module.port(signal) to connect a port of
a module to a signal, for example like in Listing 2.2 of section 2.1.1. How this works for the TDF
ports is shown in Listing 5.3, for the other port classes this works essentially the same.

operator sca_tdf::sca_signal<T_W>& () // operator returns a tdf signal of type T_W

{

if(MOC_WRITE!=TDF) // If TDF is not the writing MoC

{ // we have to return outsignal_tdf_0

5 if(outsignal_tdf_0==0){ // not created yet? => create it

outsignal_tdf_0 = new sca_tdf::sca_signal<T_W>;

}

return *outsignal_tdf_0;

} // if TDF is the writing side MoC

10 else return *(dynamic_cast<sca_tdf::sca_signal<T_W>*>(insignal));

} // we simply return the (casted) input signal

operator sca_tdf::sca_signal<T_R1>& () // operator returns a tdf signal of type T_R1

{ // i.e. outsignal_tdf_1

15 if(outsignal_tdf_1==0){ // which is created now it it has not been created yet

outsignal_tdf_1 = new sca_tdf::sca_signal<T_R1>;

}

return *outsignal_tdf_1;

}

20

operator sca_tdf::sca_signal<T_R2>& () // same procedure (omitted)

Listing 5.3: connecting the Converterchannel to tdf ports

Note that overloading of the () operator together with casting techniques as shown in Listing
5.3 have also been used in [Sch07]. With this mechanism, the Converterchannel creates for each
port it connects to the right signal during the elaboration phase. The sizes of internal FIFOs are
set by passing them either

66

Automatic MoC conversion in SystemC: Converter Channels

• to the constructor of the Converterchannel if FIFO is the writing side MoC.

• or to the method setReadingFIFOSize(int size) if TDF is the writing side MoC.

In the standard SystemC method before end of elaboration() of the sc core::sc channel

class we now connect converter modules to finalize the internal structure as shown in Figure 5.1:

if(outsignal_tdf_1!=0) // tdf output signal 1 is present?

{ // create a converter to the TDF MoC

conv_2tdf_1 = new converter<MOC_WRITE, TDF, T_W, T_R1>("conv_2tdf_1", options_1);

conv_2tdf_1->in(*insignal); // connect it to the input signal

5 conv_2tdf_1->out(*outsignal_tdf_1); // and to outsignal_tdf_1

}

Listing 5.4: Connecting the converters

Listing 5.4 shows how this works for the first tdf output signal; the code for the other out-
put channels is similar. The parameter options 1 passed to the constructor of the converter
is of type converterchannel options<T W, T R1>*, and is used to pass the several conver-
sion options of the Converterchannel to the converter. We won’t get into details regarding the
converterchannel options class, but will discuss the several options regarding MoC-conversion
and data type conversion of the Converterchannels later. .

Listing 5.5 below shows the code for the converter converter<SC, TDF, T WRITE, T READ> from
DE to TDF. It is an sc module which contains a TDF sub-module converter sc2tdf sub

which does the actual conversion, i.e. the MoC conversion (by means of the converter port
sca tdf::sca de::sca in<T WRITE>), as well as the data type conversion (by means of inherit-
ing from datconv<T WRITE, T READ>).

If the option to use the lost val alerter is set, the converter creates another sub-module that
is used to check how many value changes the input signal had in between two executions of the
processing() method of converter sc2tdf sub.

template <typename T_WRITE, typename T_READ>

class converter<SC, TDF, T_WRITE, T_READ>: sc_module // DE to TDF converter, main module

{

public:

5 sc_in<T_WRITE> in; // port for the DE input signal

sca_tdf::sca_out<T_READ> out; // port for the TDF output signal

lost_val_alerter<T_WRITE>* alerter; // determines if DE signal changes have been lost

10 converter_sc2tdf_sub<T_WRITE, T_READ>* tdf_sub; // submodule which contains the actual converter

converter(sc_module_name n, converterchannel_options<T_WRITE, T_READ>* options)

{

if(options->use_lost_val_alerter) // if the option is set

15 { // instantiate the detector for lost DE signals changes

alerter = new lost_val_alerter<T_WRITE>("alerter");

alerter->in(in); // connect it to the input signal with port-to-port mapping

// instantiate the actual converter with a pointer to the alerter

tdf_sub = new converter_sc2tdf_sub<T_WRITE, T_READ>("tdf_sub",options,alerter);

20 }

else

{ // instantiate the actual converter without alerter

tdf_sub = new converter_sc2tdf_sub<T_WRITE, T_READ>("tdf_sub", options);

}

67

Automatic MoC conversion in SystemC: Converter Channels

25 tdf_sub->in(in); // connect the actual converter to the signals

tdf_sub->out(out); // via port-to-port mapping

}

};

30 // The actual MoC converter

template <typename T_WRITE, typename T_READ>

class converter_sc2tdf_sub: sca_tdf::sca_module,

public datconv<T_WRITE, T_READ> // inherit from the right

{ // data conversion class

35 public:

sca_tdf::sca_de::sca_in<T_WRITE> in; // converter port SC -> TDF

sca_tdf::sca_out<T_READ> out; // TDF output port

lost_val_alerter<T_WRITE>* alerter;

40

converter_sc2tdf_sub(sc_module_name n,

converterchannel_options<T_WRITE, T_READ>* options,

lost_val_alerter<T_WRITE>* al = 0)

:datconv<T_WRITE, T_READ>(options) // call constructor of data type converter

45 {alerter=al;}

private:

void processing() {

out.write(conv(in.read())); // write the input to the output after data type conversion

50 if(alerter){ // if the alerter option is used

int lost_vals = alerter->get_count(); // check the number of value changes of the input

if(lost_vals>0){ // report a warning if there where value changes

SC_REPORT_WARNING(...);

}

55 }

};

};

Listing 5.5: DE to TDF converter

5.2 MoC conversions

The converter channels provide conversion means for basically every pair of MoCs in both di-
rections, as shown in Table 5.1. A conversion between voltages and currents has not been im-
plemented, since these are not really different MoCs, and also there is no real use case for this.
SystemC AMS facilities like voltage controlled current sources can be used directly for this. Note
that although electrical networks are treated as a MoC of its own right, they need to be connected
to TDF modules in some way, e.g. with a TDF-controlled current source or a voltage-to-TDF
converter. THis can be done directly, or by using a Converterchannel.

In the following every MoC conversion is described shortly with respect to the corresponding
discussion in chapter 4.

5.2.1 TDF ↔ SC

For these conversions, the SystemC AMS converter ports mentioned in section 2.2 are used.
They provide the basic conversion semantic as discussed in section 4.1. In particular, the

68

Automatic MoC conversion in SystemC: Converter Channels

Table 5.1: Overview on the MoC conversion capabilities, taken from [AND09]

PPPPPPPPPfrom
to

SC TDF FIFO ELEC VOLTAGE ELEC CURRENT

SC X X X X
TDF X X X X
FIFO X X X X
ELEC VOLTAGE X X X X

ELEC CURRENT X X X X

sca tdf::sc in ports trigger the SystemC AMS kernel to yield to the SystemC simulation kernel
before executing processes accessing such ports, and the sca tdf::sc out ports generate events
(possibly with delays) which cause the corresponding sc signal<> to be written at the right
time. Also the static schedule is optimized to minimize the difference between SystemC time and
SystemC AMS time.

For corner case handling, the SC→TDF converter provides the option to detect the value change
events which occur between executions of the reading TDF process as has been shown above in
Listing 5.5. For the TDF→SC conversion direction, there are no real corner cases. However, there
might be applications where knowing the actual points in time the TDF side is written is helpful,
since there are no value change events if consecutive TDF token are equal in vale. Therefore, by
using the method conv.clock tdf(); of a converter channel conv, a Boolean clock signal can be
accessed which runs with the speed of the TDF cluster. Every time the converter channel gets a
new token from the TDF side, there is a rising edge.

5.2.2 TDF ↔ FIFO

The main conversion endeavor here is to manage the corner cases as discussed in section 4.3. For
the FIFO→TDF conversion direction, the corner case is an empty internal FIFO. To set the cor-
ner case option, the Converterchannels have a method setFIFO2TDFemptybuffer(TDF FIFO OPT

opt);, where TDF FIFO OPT is an enum data type with values error (which is the default), hold
and constant. The semantics is as discussed in section 4.3.1. If the constant option is chosen, the
value of the constant can be specified with the method setFIFO2TDFemptybufferConstant(T READ

val).

For the TDF→FIFO conversion, the corner case is a full FIFO. The corner case handling can
be set with the method setTDF2FIFOfullbuffer(TDF FIFO OPT opt), where opt can have the
values error (again the default), discardOldest and discardCurrent.

5.2.3 SC ↔ FIFO

For the con FIFO→SC conversion direction, the periodic reading approach as discussed in section
4.4 has been implemented. The time period has to be set with the Converterchannel method
set sampling period(sc time t); failing to do so raises a run-time error. If the incoming FIFO
is empty, the value of the outgoing sc signal will not be updated, i.e. there is no additional
corner case handling.

69

Automatic MoC conversion in SystemC: Converter Channels

For the SC→FIFO conversion, a corner case handling for a full internal FIFO was implemented
with the same options as in the TDF→FIFO case (which can be set with the Converterchannel
method setSC2FIFOfullbuffer(TDF FIFO OPT opt)). The simple reason for this is that the
Converterchannel is connected to a writing module via an sc out<> port. Therefore, the insignal
is an sc signal<>, read by the internal converter module, which then writes the value to the
internal sc fifo<>. If that internal FIFO is full, a blocking write to it would block the internal
converter, not the module which wrote to the Converterchannel.

So while an SC→FIFO conversion could be in theory trivial (see section 4.4), due to the Con-
verterchannel approach to provide channels of fitting types to the modules connected it cannot
be implemented that way.

5.2.4 Conversions towards electrical networks

These conversions have not been discussed in Chapter 4 since electrical networks in SystemC
AMS are essentially (as mentioned in section 2.2) equation systems that are evaluated every time
there is an access by a TDF facility like a voltage source controlled by a TDF signal.

If an sca eln::sca terminal (e.g. a connector of a resistor) is bound to a converter channel,
it is internally bound to an sca eln::sca node. With the writing side MoC being SC, TDF or
FIFO, the idea is that the incoming signal will control either a voltage or a current source. As the
latter cannot be determined automatically, it has to be set with the Converterchannel method
setElec Mode(MoC M) where M is either ELEC VOLTAGE or ELEC CURRENT.

This generates an appropriate internal voltage or current source, which is either connected directly
to the insignal in case of TDF and SC, as SystemC AMS provides also voltage/current sources
controlled by sc signals, or via an additional FIFO→SC converter if FIFO is the writing side
MoC. In the latter case a sampling period has to be specified.

The internal voltage/current source has a positive and a negative terminal to the electrical side.
While the positive terminal is connected to the internal sca eln::sca node, we also need to
connect the negative terminal. For this there is a second internal node, which can be accessed
with the Converterchannel method neg elec node(). The voltage/current generated can also
be scaled; this can be controlled with the method setElec Scaling(double val), where the
default value is 1.

5.2.5 Conversions from electrical networks

These conversion direction means that an electrical voltage or an electrical current quantity is
measured, and converter to a signal, i.e. SC, TDF or FIFO. Which quantity is measured depends
on the writing side MoC template parameter of the converter channel, i.e. ELEC CURRENT or
ELEC VOLTAGE.

The internal measurement unit has also be connected to two nodes. The internal node is connected
to the positive side. For the negative side, there is also an internal negative node (to be accessed
again with neg elec node(). However, if this node is not connected to a terminal of the electrical
network on the writing side, the negative connector of the internal measurement unit is connected
to ground.

70

Automatic MoC conversion in SystemC: Converter Channels

The quantities measured can also be scaled with setElec Scaling(double val). For reading
FIFOs, the corner case handling can be set with setELEC2FIFOfullbuffer(TDF FIFO OPT opt).

When converting from ELEC CURRENT to another MoC with a converter channel, and the negative
internal electrical node is not connected by the user, the current flow from the converter channels
internal positive electrical node to gnd is measured. However, in some cases the user might want
to account for the resistance of a system part on the converter channel’s reading side, which is
still modeled non-conservatively.

Therefore, the converter channel provides a method setTerminating Resistance(double val)

to insert a terminating resistance with val Ohm, such that the current flow from the internal
positive electrical node through the terminating resistance is measured.

5.3 Data type conversion

The data type conversion capabilities have not been discussed so far. As can be seen in Listing
5.5, the data type capabilities are implemented by letting the internal converter module inherit
from datconv<T WRITE, T READ>, which then provides a method conv(T WRITE val) with return
type T READ.

The nature of the data type conversion depends on the two data types involved. In some cases,
a simple cast is sufficient, but in most cases there will be issues that have to be specified with
methods to choose from different options; for example

• For conversion from floating point types to integer types, it can be chosen if values are
rounded, or a floor/ceiling behavior is performed.

• How overflows are handled in cases when the value range of the writing side data type is
larger than the reading side data type. The values can be clipped, for example, but in other
cases a conversion with a modulo-like behavior can make more sense. This again depends
on the use case.

• To scale value ranges when converting from floating point types to integer types. This is
necessary, for example, when a Converterchannel effectively models an A/D converter which
measures voltages from 0 to 5 Volts, and we want to convert them to the full range of an
16-bit vector

Some conversions are not supported at all, as there are no clear conversion semantics, e.g. when
converting from the SystemC data type sc dt:sc logic, as this data type has beside 0 and 1
values to describe high impedance and undefined. There is no obvious conversion to a numerical
type like float or int for these values.

We won’t go into the details of all the Converterchannel data type conversion approaches. How-
ever, Figure 5.2 on the next page gives an idea on how the different conversion directions are
handled, and what kind options are available for each.

71

Automatic MoC conversion in SystemC: Converter Channels

 bool

 sc_bit

 sc_logic

 uns. short int

 short int

 uns. int

 int

 uns. long int

 long int

 float

 double

 long double

 sc_lv<N>

 sc_bv<N>

 sc_uint<N>

 sc_int<N>

 sc_biguint<N>

 sc_bigint<N>

 sc_ufixed<>

 sc_fixed<>

 sc_ufixed_fast<>

 sc_fixed_fast<>

C
A

S
T

C
A

S
T

L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
X

L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B

C
A

S
T

C
A

S
T

L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
X

L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B
L
S

B

X
X

X
X

X
X

X
X

X
X

X
L
S

B
X

X
X

X
X

X
X

X
X

$
$

$
O

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

X
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

R
I

O
R

I
O

R
I

O
R

I

$
$

$
O

O
C

A
S

T
O

C
A

S
T

C
A

S
T

C
A

S
T

X
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

R
I

O
R

I
O

R
I

O
R

I

$
$

$
O

O
O

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

X
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

R
I

O
R

I
O

R
I

O
R

I

$
$

$
O

O
O

O
C

A
S

T
C

A
S

T
C

A
S

T
X

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
R

I
O

R
I

O
R

I
O

R
I

$
$

$
O

O
O

O
O

C
A

S
T

C
A

S
T

X
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

R
I

O
R

I
O

R
I

O
R

I

$
$

$
O

O
O

O
O

C
A

S
T

C
A

S
T

X
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

R
I

O
R

I
O

R
I

O
R

I

$
$

$
O

R
O

R
O

R
O

R
O

R
O

R
C

A
S

T
X

O
S

R
O

S
R

O
S

R
O

S
R

O
S

R
O

S
R

C
+

W
C

+
W

C
+

W
C

+
W

$
$

$
O

R
O

R
O

R
O

R
O

R
O

R
O

R
X

O
S

R
O

S
R

O
S

R
O

S
R

O
S

R
O

S
R

C
+

W
C

+
W

C
+

W
C

+
W

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

O
B

X
X

X
X

X
X

X
X

X

$
$

$
O

O
O

O
O

O
O

O
X

O
B

O
B

O
B

O
B

2
O

B
O

B
2

O
O

O
O

$
$

$
O

O
O

O
O

O
O

O
X

O
B

O
B

O
B

O
B

O
B

O
B

O
O

O
O

$
$

$
O

O
O

O
O

O
O

O
X

O
B

O
B

O
B

O
B

O
B

O
B

O
O

O
O

$
$

$
O

O
O

O
O

O
O

O
X

O
B

O
B

O
B

O
B

O
B

O
B

O
O

O
O

$
$

$
O

O
O

O
O

O
O

O
X

O
B

O
B

O
B

O
B

O
B

O
B

O
O

O
O

$
$

$
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
C

A
S

T
C

A
S

T
X

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

$
$

$
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
C

A
S

T
C

A
S

T
X

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

$
$

$
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
C

A
S

T
C

A
S

T
X

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

$
$

$
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
C

A
S

T
C

A
S

T
X

O
S

r
O

S
r

O
S

r
O

S
r

O
S

r
O

S
r

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

C
A

S
T

X
$

L
S

B

O
O

R
O

S
R

O
S

r
C

C
R

C
R

S
C

R
S

O
B

O
B

2
O

R
I

lik
e
 o

s
r, b

u
t o

n
ly

 in
te

rg
e
r b

its

C
C

C
+

W
lik

e
 c

a
s
t b

u
t is

s
u
e
s
 ra

n
g
e
 w

a
rn

in
g
s

C
o
n
v
e
rs

io
n
 v

ia
 s

ta
tic

 c
a
s
t w

ith

o
b
v
io

u
s
 s

e
m

a
n
tic

s

s
e
ts

 lo
g
ic

a
l o

u
tp

u
t to

 lo
g
ic

a
l 1

 if

in
p
u
t is

 ≠
 0

, a
n
d
 to

 lo
g
ic

a
l 1

o
th

e
rw

is
e

s
e
ts

 o
u
tp

u
t to

 1
 if in

p
u
t is

 lo
g
ic

a
l

1
, a

n
d
 to

 0
 o

th
e
rw

is
e
. V

e
c
to

rs
:

in
p
u
t is

 c
o
p
ie

d
 to

 L
S

B

o
v
e
rflo

w
 h

a
n
d
lin

g
, b

it-b
y
-b

it

c
o
p
y

o
v
e
rflo

w
 h

a
n
d
lin

g
, b

it-b
y
-b

it

c
o
p
y
, s

c
_
b
v
<

M
>

 h
a
s
 2

-

c
o
m

p
le

m
e
n
t in

te
rp

re
ta

tio
n

C
o
n
v
e
rs

io
n
 is

 n
o
t s

u
p
p
o
rte

d

a
n
d
 le

a
d
s
 to

 ru
n
tim

e
 e

rro
r

o
v
e
rflo

w
 h

a
n
d
lin

g
, b

itv
e
c
to

rs

a
re

 in
te

rp
re

te
d
 a

s
 u

n
s
ig

n
e
d

n
u
m

b
e
rs

o
v
e
rflo

w
 h

a
n
d
lin

g
 a

n
d
 ro

u
n
d
in

g
o
v
e
rflo

w
 h

a
n
d
lin

g
, v

a
lu

e
 ra

n
g
e

s
c
a
lin

g
 a

n
d
 ro

u
n
d
in

g

o
v
e
rflo

w
 h

a
n
d
lin

g
, v

a
lu

e
 ra

n
g
e

s
c
a
lin

g
 a

n
d
 im

p
lic

it ro
u
n
d
in

g

C
o
n
v
e
rs

io
n
 n

o
t n

e
c
e
s
s
a
ry

s
c
_
b

ig
in

t<
M

>

s
c
_
u

fix
e
d

<
>

s
c
_
fix

e
d

<
>

s
c
_
u

fix
e
d

_
fa

s
t<

>

s
c
_
fix

e
d

_
fa

s
t<

>

s
c
_
b

v
<

M
>

s
c
_
lv

<
M

>

s
c
_
u

in
t<

M
>

s
c
_
in

t<
M

>

s
c
_
b

ig
u

in
t<

M
>

u
n

s
. lo

n
g

 in
t

lo
n

g
 in

t

flo
a
t

d
o

u
b

le

lo
n

g
 d

o
u

b
le

b
o

o
l

u
n

s
. s

h
o

rt in
t

s
h

o
rt in

t

u
n

s
. in

t

in
t

s
c
_
b

it

s
c
_
lo

g
ic

Figure 5.2: Datatype conversions handled by the Converterchannels, taken from [AND09]

72

6 TLM ↔ TDF conversion in SystemC

In this chapter, we describe the implementation of the converters between TDF models and TLM
models, using the concepts discussed in Section 4.5. In some cases, we have to deviate from
these concepts a bit for technical reasons. For example some of the converters described get a
transaction as an input, and directly access a TDF FIFO, like the convAT−TLM→TDF process in
Section 4.5.1.2 (see also Figure 4.8). This cannot implemented that way in SystemC/SystemC
AMS, since the TDF ports have to accessed from within the processing() method of a TDF
module.

On the other hand, implementing TLM interfaces within TDF modules is prohibited by the
SystemC AMS standard; even if it might work with the current proof-of-concept implementation,
this might not be the case for future versions or other implementations.

Therefore, each converter is an sc core::sc module, which contains an sca tdf::sca module

as a sub-module. The sc core::sc module contains all interface methods, callbacks and threads
needed to handle the TLM part of the conversion, while the sca tdf::sca module handles the
TDF part, i.e. accessing the TDF signals, but also synchronization with the SystemC simulation
kernel. To this end, each of the TDF sub-modules contains an sca tdf::sca de::sca in<bool>

sync port, which is connected to a dummy DE signal by the sc core::sc module. The TDF
sub-module actually never accesses this port; its presence alone ensures that the processing()

method is executed as close to the SystemC simulation time as possible.

In general, the sub-module will also hold an internal buffer (e.g. a std::dequeue) to either store
TDF read or to take token from to write to TDF. In the latter case these internal buffers hold
surplus token from transactions where some token have been already reads from. This ensures
an equivalent behavior as specified in section 4.5.1, which assumed on an unbounded FIFO.

In the following, we look at both conversion directions and discuss the relevant code parts of the
four converters. In Section 6.3, we will show an application example.

73

TLM ↔ TDF conversion in SystemC

6.1 TLM→TDF conversion

The general approach of conversion from TLM to TDF was discussed in section 4.5.1: The token
from the write-transactions have to be streamed to the TDF side, and as the TDF side needs a
steady supply of token which the TLM side might not be able to oblige, this corner-case has to
be handled according to the three options discussed. The TLM→TDF converters for both coding
styles use an enum type for these options:

enum TLM_2_TDF::conv_option{

ERROR = 0,

HOLD,

CONSTANT

5 };

As also discussed in section 4.5.1, the incoming transactions need to be stored in some way, as
they come in general with an offset to the current simulation time. We now look first at the
AT-TLM converter, and then have a look at the differences to it of the corresponding LT-TLM
converter.

6.1.1 AT-TLM converter

Listing 6.1 shows the constructor prototype of the TLM 2 TDF::conv AT converter. Beside the
necessary parameters for the TDF sub-module, i.e. data rate and time step, and conversion
option parameters, there are also time parameters to model latencies. The conv option enum
type can take the values ERROR, HOLD and CONSTANT.

TLM_2_TDF::conv_AT(

sc_core::sc_module_name nm,

sc_core::sc_time _accept_delay, // accept delay

sc_core::sc_time _latency_per_byte, // latency per byte processed

5 sc_core::sc_time tdf_timestep, // TDF time step

unsigned int _rate = 1, // TDF data rate

conv_option _option = ERROR, // converter option

unsigned int _initial_queue_token = 0, // number of initial token in internal queue

T _empty_fifo_dummy = (T)(0) // value for the converter option CONSTANT

10)

Listing 6.1: constructor prototype of the converter

The T is a template parameter for the data type of the outgoing TDF port. Also, the parameter
initial queue token has to be explained: When the SystemC Simulation starts, the TLM

initiators usually don’t provide write-transactions right away. Depending on the model, it might
take some time (in simulated time); all the while the TDF side needs to consume token. And
when the ERROR conversion option was chosen, this means that the simulation stops in the first
δ-step of time 0.

Therefore the internal queue can be filled with initial values according to the empty fifo dummy

parameter, which therefore has a use even if the CONSTANT corner-case option is not chosen.

In section 3.5.2 we pointed out that in our formalism according to Definition 3.1, the AT-TLM
MoC can be realized in a simpler fashion than in SystemC, as the CopyInvoke operation provides
us with an alternative way for non-blocking access. Because of that, we don’t need to use facilities
like payload event queues (PEQs). Of course in the implementation we have to use PEQs.

74

TLM ↔ TDF conversion in SystemC

In the following, we look at the important code segments of the converter, with the idea to show
how a transaction is passing through the different methods and elements involved. Therefore we
look first at the implementation of the nb transport fw method, where we will also encounter
the PEQ:

tlm::tlm_sync_enum TLM_2_TDF::conv_AT::nb_transport_fw(

tlm::tlm_generic_payload& trans,

tlm::tlm_phase& phase,

sc_core::sc_time& delay)

5 {

switch (phase){

case tlm::BEGIN_REQ: // a fresh transaction arrived

delay += accept_delay; // add accept delay to the transaction delay

trans_queue.notify(trans, delay); // put the transaction on the PEQ

10 phase = tlm::END_REQ; // update phase

return tlm::TLM_UPDATED; // and return

break;

case tlm::END_RESP: // the initiator is done with the transaction

end_resp_event.notify (delay); // "unblock" the converter

15 return tlm::TLM_COMPLETED;

break;

default: // all other phases are errors

SC_REPORT_ERROR(name(), "Bad phase");

return tlm::TLM_COMPLETED;

20 }

}

Listing 6.2: The nb transport fw method of the converter

We come back to the end resp event later. For now it suffices to know that the transaction is
on the PEQ trans queue, which is of type tlm utils::peq with get<>. This kind of PEQ does
not employ callback functions; instead it stores the transactions in order of their time-stamps,
and offers an event (accessible by the PEQ method get event()) which is notified every time a
transaction is ready. With the PEQ method get next transaction(), the transactions can then
be retrieved. The converter method process transaction(), which we look at next in Listing
6.3, is sensitive to the PEQ event:

virtual void TLM_2_TDF::conv_AT::process_transaction(){ // sensitive to trans_queue.get_event()

T value;

unsigned char* data_ptr;

unsigned int data_len, str_wid;

5 tlm::tlm_generic_payload* transp;

sc_core::sc_time delay = sc_core::SC_ZERO_TIME;

// take all transactions which are read from the queue:

while ((transp = trans_queue.get_next_transaction()) != NULL){

if(check_transaction(// check_transaction() checks if the transaction can be processed

10 *transp, // e.g. is streaming width = sizeof(T)?

sizeof(T), // if so, it extracts the data-pointer and the data length

data_ptr, // and returns it, as the last two parameters

data_len // are passed by reference

)){ // note that check_transaction() also sets an error response...

15 str_wid = sizeof(T); // ...in case the transaction does not fit here

delay = data_len*latency_per_byte; // compute processing delay

transp->set_response_status(tlm::TLM_OK_RESPONSE);

for(unsigned int i = 0; i < data_len; i += str_wid){ // copy the values from the

memcpy(&value, data_ptr + i, sizeof(T)); // transaction to the token queue

20 writer.ready_queue.push(value); // of the TDF-sub-module

}

75

TLM ↔ TDF conversion in SystemC

if(writer.ready_queue.size() > writer.max_queue_token) // For statistics: keep track of

writer.max_queue_token = writer.ready_queue.size(); // maximum number of token

} // in the queue

25 tlm::tlm_phase phase = tlm::BEGIN_RESP; // update phase and send via backward path

tlm::tlm_sync_enum status = socket->nb_transport_bw(*transp, phase, delay);

switch (status){

case tlm::TLM_COMPLETED:

30 next_trigger (delay); // continue only after delay is realized

return; break;

case tlm::TLM_ACCEPTED:

next_trigger (end_resp_event); // continue only after end response was received

return; break;

35 default:

SC_REPORT_ERROR(name(), "Bad status");

}

}

next_trigger(trans_queue.get_event()); // restore original sensitivity

40 }

};

Listing 6.3: Taking the transactions from the PEQ and responding via the backward path

Listing 6.3 shows that process transaction() actually removes as many transactions from the
queue as possible. Apart from that, process transaction() works mostly like the convAT−TLM→TDF

process in section 4.5.1.2 after the Freeze: It copies the values from the transaction to the FIFO
(which is the internal token queue in the implementation, updates the phase and responds via
the backward path.

There is no ERROR response resulting from a full FIFO, as the internal token queue is unbounded.
However, process transaction() might return error responses via the backward path because
of other reasons (e.g. streaming width does not fit or wrong command), which are captured by
the check transaction() method.

Here we also see why the end resp event (triggered in in the Listing AT-conv-transport in the
nb transport fw method)is needed: When the initiator returns TLM ACCEPTED, this also means
that the delay is realized there, after which the initiator completes the transaction with a final call
on the forward path. The converter has to to wait for this call, and as wait() cannot be called,
it just changes the sensitivity of process transaction() to the end resp event and returns.
When process transaction() is called next, the original sensitivity is restored1.

We finally look at the processing() method of the TDF sub-module. Here the token from the
internal token queue are copied to the TDF signal. If there are not enough token, this is handled
according to the corner-case option option.

void processing(){

int num_el = (ready_queue.size() < rate) ? ready_queue.size() : rate;

int i;

for(i=0; i < num_el; i++){ // writes as many token from the internal

5 last_written_element = ready_queue.front(); // token queue to the output as possible

out.write(last_written_element , i); // ideally, <rate> many

ready_queue.pop();

}

if(num_el < rate){ // corner case handling

1Unless the next transactions can then already be processed, which might again lead to a TLM ACCEPTED response
by an initiator

76

TLM ↔ TDF conversion in SystemC

10 switch(option){

case CONSTANT: last_written_element = empty_fifo_dummy;

case HOLD: dummy_token_used += rate - num_el; break;

case ERROR: SC_REPORT_ERROR("TLM_2_TDF::conv_AT", "Not enough elements to write to TDF");

}

15 } // write dummy token to the remaining slots:

for(int j=i ; j < rate; j++) out.write(last_written_element , j);

}

Listing 6.4: The processing method of the TDF sub-module

6.1.2 LT-TLM converter

The prototype of the LT-TLM→TDF converter constructor is exactly the same as for the AT-
TLM converter, as can be seen in the Listing below. The main differences to the AT-TLM
converter2 are

• The implementation of the transaction queue: We use a custom reduced transaction type
instead of making full transaction copies and store them in a custom queue which is like a
PEQ without the events.

• Retrieval of the transactions: This is done by the TDF-submodule

TLM_2_TDF::conv_LT(

sc_core::sc_module_name nm,

sc_core::sc_time _accept_delay,

sc_core::sc_time _latency_per_byte,

5 sc_core::sc_time tdf_timestep,

unsigned int _rate = 1,

conv_option _option = ERROR,

unsigned int _initial_queue_token = 0,

T _empty_fifo_dummy = (T)(0)

10)

Listing 6.5: Constructor prototype of the TLM-LT→TDF converter

The b transport() method of the LT-converter acts exactly like the convLT−TLM→TDF converter
in section 4.5.1.1: It puts a copy of the transaction to the transaction queue and returns with an
OK response. The only difference is that we don’t actually copy the whole transaction, but only
the parts which we need, i.e. the time stamp and the data. For this, a struct smalltrans is used:

struct smalltrans{

sc_core::sc_time timestamp;

unsigned int length;

unsigned char* data;

5 };

and the internal transaction queue uses this struct. The next main difference is that the transac-
tions stay in this queue as long as possible. Only if the TDF sub-module needs token to write, it
removes a transaction from the queue and copies the token to the FIFO, which in the implemen-
tation is like in the AT case an internal token queue. Therefore the TDF sub-module acts like the
fetchpTLM process in section 4.5.1.1 (see Figure 4.7) there. Listing 6.6 shows the processing()

method of the TDF sub-module.
2beside the general differences regarding the protocol

77

TLM ↔ TDF conversion in SystemC

void processing(){

while((ready_queue.size() < rate) // not enough token in token queue?

&& (trans_queue.size() > 0) // ...and transactions in queue?

&& (trans_queue.top().timestamp <= get_time()) // ...which can already be used?

5){

T value; // Then we copy the data from the first transaction in the queue

for(unsigned int i = 0; i < trans_queue.top().length; i= i + sizeof(T)){

memcpy(&value, (trans_queue.top().data + i), sizeof(T));

ready_queue.push(value); // to the internal token queue

10 }

trans_queue.pop(); // remove the transaction

}

// the rest is the same as for the TDF sub-module in the AT-TLM case

}

Listing 6.6: The processing method of the TDF sub-module of the LT converter

This concludes the description of the SystemC TLM→TDF converters. Apart from certain tech-
nical adaptations, they implement the conversion strategies as discussed in section 4.5.1.

6.2 TDF→TLM conversion

We now turn to processing read-transactions that want to read token from a TDF input stream.
Similar to the converters in the previous section, the TDF-submodules of the TDF→TLM hold
internal unbounded token queues to copy the incoming TDF token, So this is the FIFO we actually
read from. As discussed in section 4.5.1, the corner-case here is that there not enough token to
read for the transaction, which gives rise to five different ways to deal with this. These can be
chosen in the TDF→TLM converter implementations using the enum type below:

enum TDF_2_TLM::conv_option{

ERROR = 0, // throw an error

HOLD, // use the last value that could be read

CONSTANT, // use a constant value

5 WAIT, // wait until there are enough token

DISMISS // return the transaction with an error

};

We also need to employ a transaction queue. Note, however, that this queue is functionally3 only
needed for of the WAIT option, when the converter waits until the TDF side has supplied the
missing token. This will work, however, very differently now for the two coding styles.

Also, there is a use-case driven functionality added: The converters can be configured such that
read-transactions always leave a certain constant amount of token on the queue, even when
they are copied to the transaction. The reason for this is that many digital signal processing
applications process signals piecewise, where the pieces often overlap. In section 6.3, we will see
an example for this.

6.2.1 LT-TLM converter

Listing 6.7 shows the constructor prototype, which is basically the same as the previous two in
section 6.1, except for the added overlap parameter.

3In AT-TLM it is needed in general for protocol reasons.

78

TLM ↔ TDF conversion in SystemC

TDF_2_TLM::conv_LT(

sc_core::sc_module_name nm,

sc_core::sc_time _accept_delay,

sc_core::sc_time _latency_per_byte,

5 sc_core::sc_time tdf_timestep,

unsigned int _rate = 1,

conv_option _option = ERROR,

T _no_data_dummy = (T)(0),

unsigned int _overlap = 0 // new parameter to support DSP use cases

10)

Listing 6.7: Constructor prototype of the TDF→LT-TLM converter

In section 4.5.2.1 we concentrated on the WAIT option handling, and this option was actually the
only reason we needed to employ a transaction queue for the convTDF→LT−TLM process. If the
WAIT option is not chosen, the most straightforward approach in LT-TLM is to wait until the
transaction is valid (i.e. wait for the delay in the SystemC implementation), and then process
the transaction using the token which are present in the internal token queue4.

If the WAIT option is chosen, the idea is to freeze (i.e. suspend the transaction) until there are
enough token available. In 4.5.2.1 we used a special transaction queue which also held references
to the different process copies which processed the transactions. If there were enough token
present, the readF process invoked the process of the oldest token in the queue.

In the actual SystemC implementation, we have to use a trick to achieve this behavior, since we
can’t simply freeze the b transport() method in an indeterminate manner - we have to wait for
a certain event. Therefore we use a data structure for the transaction queue (which in this case
is a std::priority queue<>) that stores the transaction (and its delay) together with an event:

struct transSuspend{

tlm::tlm_generic_payload* transp; // pointer to the transaction

sc_core::sc_time timestamp; // the timestamp

sc_core::sc_event* event; // event to notify if *transp can be processed

5 };

class comparator{ // comparator function for the std::pririty_queue<transSuspend>

public: comparator(){} // entries are sorted according to time stamp

bool operator() (const transSuspend& lhs, const transSuspend& rhs){

10 return (lhs.timestamp >= rhs.timestamp);

}

};

Listing 6.8: Helper structure for suspending transaction in LT-TLM

The next helper class manages the priority queue with the transSuspend entries:

SC_MODULE(transactionSuspendManager){

std::priority_queue<transSuspend, std::vector<transSuspend>, comparator> trans_queue;

SC_CTOR(transactionSuspendManager){}

5

// put a transaction in the queue:

sc_core::sc_event* checkIn(tlm::tlm_generic_payload& trans, sc_core::sc_time& delay){

transSuspend* susTrans = new transSuspend(); // new transSuspend entry

susTrans->transp = &trans; // copy the pointer

10 susTrans->timestamp = sc_core::sc_time_stamp() + delay; // compute and store time stamp

4Which might not be enough, but then the corner-case handling comes into play

79

TLM ↔ TDF conversion in SystemC

susTrans->event = new sc_core::sc_event(); // create and store the event

trans_queue.push(*susTrans); // push it all to the queue

return susTrans->event; // return the event

}

15

// function that checks if there are transactions in the queue;

// if so, it also suspends the transaction passed and returns the corresponding event

sc_core::sc_event* checkSuspend(tlm::tlm_generic_payload& trans, sc_core::sc_time& delay){

if(trans_queue.size() == 0) // no transactions in queue?

20 return NULL; // => transaction can be processed right away

return checkIn(trans, delay); // otherwise we check it in

}

// this method gets passed the number of token in the internal token queue

25 // ...and un-suspends transactions accordingly

void unsuspend_if_ready(unsigned int _token_ready){

unsigned int token_ready = _token_ready;

unsigned int token_needed;

sc_core::sc_time now = sc_core::sc_time_stamp();

30 sc_core::sc_time time_suspended;

tlm::tlm_generic_payload* transp;

bool go_on = true;

while(go_on && trans_queue.size() > 0){

35 transp = trans_queue.top().transp; // look at the oldest transaction

token_needed = transp->get_data_length()/transp->get_streaming_width();

if(token_needed <= token_ready // enough token available and...

&& trans_queue.top().timestamp <= now){ //...timestamp is not in the future?

// => un-suspend the transaction

40 trans_queue.top().event->notify(sc_core::SC_ZERO_TIME); // notify event

wait(sc_core::SC_ZERO_TIME); //...and wait. After that wait, the transaction is done

delete(trans_queue.top().event); // delete old event

trans_queue.pop(); //...and remove the entry

}

45 else go_on = false;

token_ready -= token_needed; // adjust number of token ready for next round

}

}

};

Listing 6.9: Module to mange transactions suspension in LT-TLM

With the transactionSuspendManager in Listing 6.9, we effectively implement a priority-queue
like mechanism, but for loosely-timed targets (and interconnects), However, while the AT-TLM
PEQs always use a timed notifications on the same event, the transactionSuspendManager uses
one event for each transaction which can be notified individually to react to certain situations.

The next Listing shows the processing() method of the TDF sub-module. It effectively imple-
ments the readF process in section 4.5.2.1.

void processing() {

for(int i=0; i<rate; i++){ // store token in internal queue

read_queue.push_back(in.read(i));

} // call the transactionSuspendManager with an update on the token count:

5 suspendedTransactions->unsuspend_if_ready(read_queue.size());

} // suspendedTransactions is the transactionSuspendManager instance

Listing 6.10: The processing method of the TDF sub-module

80

TLM ↔ TDF conversion in SystemC

Listing 6.11 now shows the relevant parts of the b transport() method of the converter:

virtual void TDF_2_TLM::b_transport(tlm::tlm_generic_payload& trans, sc_core::sc_time& delay){

//check_transaction() etc (ommitted, similar to the previous converters)

sc_core::sc_time call_time = sc_core::sc_time_stamp(); // current time

sc_core::sc_time suspend_time = sc_core::SC_ZERO_TIME; // variable to store suspension time

5 if(option == WAIT){ // WAIT option selected

sc_core::sc_event* waitevent = suspendedTransactions.checkSuspend(trans, delay);

if(waitevent != NULL){ // if previous transactions were suspended

wait(*waitevent); //...this one will also be suspended

}

10 else if(num_token > reader.read_queue.size()){ // if there are not enough token

sc_core::sc_event* waitevent = suspendedTransactions.checkIn(trans, delay);

wait(*waitevent); //... we also suspend

}

suspend_time = sc_core::sc_time_stamp() - call_time; // compute suspension time

15 }

else if(num_token > reader.read_queue.size()){ // corner case handling

if(option == ERROR){ //...for ERROR option

SC_REPORT_ERROR("TDF_2_TLM::conv_LT", "Not enough elements to read from TDF");

}

20 if(option == DISMISS){ //...and DISMISS option

trans.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);

return;

}

}

25 delay += accept_delay + latency_per_byte*data_len; // add latency to delay

if(suspend_time > sc_core::SC_ZERO_TIME) // and if we suspended...

{

if(delay > suspend_time) delay -= suspend_time; //...subtract the suspension time

else delay = sc_core::SC_ZERO_TIME;

30 }

// token_time is a variable which holds the timestamp of the token last read

sc_core::sc_time latest_token_time = token_time + num_token*reader.timestep;

if (sc_core::sc_time_stamp() + delay < latest_token_time){ // adjust delay to the

delay = latest_token_time - sc_core::sc_time_stamp(); //...time stamp of the token

35 }

trans.set_response_status(tlm::TLM_OK_RESPONSE);

dequeIterator it = reader.read_queue.begin();

unsigned int new_dummy_token_used = 0;

for(unsigned int i=0; i<data_len; i = i+str_wid){ // copy token from queue

40 if(it != reader.read_queue.end()){

last_read_element = *it++;

token_time += reader.timestep;

}

else { // this can happen only for options HOLD and CONSTANT

45 new_dummy_token_used++;

if(option == CONSTANT) last_read_element = no_data_dummy; // nothing to do for option = HOLD

} // copy token to transaction:

memcpy(data_ptr+i, reinterpret_cast<unsigned char*>(&last_read_element), str_wid);

}

50 // now we delete only the token not in the overlap, but also consider eventual dummy token

unsigned int effective_overlap = 0;

if(overlap > new_dummy_token_used) effective_overlap = overlap - new_dummy_token_used;

it -= effective_overlap;

token_time -= effective_overlap*reader.timestep;

55 reader.read_queue.erase(reader.read_queue.begin(), it);

}

81

TLM ↔ TDF conversion in SystemC

}

Listing 6.11: b transport method of the TDF→LT-TLM converter

The b transport() method in Listing 6.11 is the most complicated process of the SystemC
TLM↔TDF converter implementation. The reason for this is the elaborate transaction suspen-
sion mechanism, the need to adapt the delay according to the token time stamp and the suspended
time, and the management of the overlap.

6.2.2 AT-TLM converter

The constructor prototype of the TDF→AT-TLM converter is shown below, it takes again the
same parameters as the LT-TLM version.

TDF_2_TLM::conv_AT(

sc_core::sc_module_name nm,

sc_core::sc_time _accept_delay,

sc_core::sc_time _latency_per_byte,

5 sc_core::sc_time tdf_timestep,

unsigned int _rate = 1,

conv_option _option = ERROR,

T _no_data_dummy = (T)(0),

unsigned int _overlap = 0

10)

Listing 6.12: Constructor prototype of the TDF→AT-TLM converter

Regarding the conversion processes, the situation is as in section 4.5.2.2, i.e. they behave very
similar to the LT conversion processes. The convTDF→AT−TLM (Figure 4.10) is just a version of
the convTDF→LT−TLM process (Figure 4.9) which also handles the additional state updates.

Regarding the SystemC implementation, these similarities persist. While the nb transport fw

method of TDF 2 TLM::conv AT looks just like the one of TLM 2 TDF::conv AT, the corresponding
process transaction() looks very much like the b transport() method in Listing 6.11, except
of course the additional call to the backward path.

To suspend a transaction to wait for token to arrive, process transaction() now simply leave
the transaction for a longer time in the PEQ we are using anyway to implement the standard
protocol:

if(option == WAIT && num_token > reader.read_queue.size()){

time_before_suspend = sc_core::sc_time_stamp(); // store time of suspension

next_trigger (reader.token_event); // continue when there are enough token

return;

5 }

Listing 6.13: TDF→AT-TLM converter handling for the WAIT option

Similarly to Listing 6.10, the TDF sub-module notifies the reader.token event when there
are enough token for the oldest transaction to be processed. The other corner-case options are
handled the same way as in Listing 6.11.

82

TLM ↔ TDF conversion in SystemC

6.3 Application Example

In this section we give an application example for the TLM↔TDF converters. The idea is to
demonstrate functionality and show some examples on what kind of conclusions can be drawn
with the help of the converters. To this end, we use an N th order finite impulse response (FIR)
filter [RG75] implemented by a DSP with multiple cores. An FIR filter computes a weighted sum

yn =
N∑
i=0

cixn−i (6.1)

where the ci are the filter coefficients, and xk, yk is the kth input- and output-token, respectively.
That is, to compute m output token, we have to read N +m input token.

Suppose we want to split the computation such that DSP1 computes the first m output token
yn, ..., yn+m−1, and DSP2 computes the next m output token yn+m, ..., yn+2m−1. Obviously, DSP1

has to read the N+m input token xn−N , ..., xn+m−1. However, if DSP2 would take the next N+m
input token xn+m, ..., xN+n+2m−1 to compute ym, ..., y2m−1, then

yn+m+j =

N∑
i=0

cixN+n+m+j−i for j = 0, ...,m− 1

however, according to 6.1, we must have

yn+m+j =
N∑
i=0

cixn+m+j−i for j = 0, ...,m− 1

Therefore, DSP2 needs to read the token xn+m−N , ..., xn+2m−1, which means that the token
xn+m−N , ..., xn+m−1 have to be used in both computations. In other words, there is an overlap of
N token.

23 24 25 26

17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

DSP1 DSP1DSP2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DSP2

Figure 6.1: Example of the FIR parallelization with N = 6, m = 4, and two DSPs

Figure 6.1 shows an example where two DSPs compute m = 4 output token alternately using
an FIR filter of order 6. This yields a simple parallelization approach: Each DSP core reads a
number of N +m token from the input, but consumes only m token, while producing m output
token.

83

TLM ↔ TDF conversion in SystemC

TDF-in

50ps, rate = 32

TDF-out

50ps, rate = 1

Interconnect

TDF_2_TLM::

conv_AT/LT

<float>

TLM_2_TDF::

conv_AT/LT

<float>

DSP2DSP1 DSPn
...

Figure 6.2: Overview of the simulation setup

In our application example, we use an FIR filter of order 31 to implement a low pass filter which
de-modulates an incoming signal which uses amplitude modulation (AM). The frequency of the
carrier signal is 2.4 GHz, and the payload signal is under 100 MHz, so we designed the filter to
cut off at 500 MHz.

The modulated TDF input signal (of type float) is read by a TDF→TLM converter with a data
rate of 32 token (as we need to read at least that many), with a time step of 50 ps. The DSPs
issue READ-transactions for 4 · t bytes (as a float is 4 bytes wide), with a streaming width of 4
bytes, to read t > 32 token. When a DSP gets the data it transforms it back to a series of floats,
takes their absolute value, and then processes these values with the FIR algorithm. The resulting
t − 31 token are then send as transactions with 4(t − 31) bytes to the TLM→TDF converter,
which streams them to the output with a data rate 1. The time step of the TDF input- as well as
the TDF output-signal is 50 ps. Figure 6.2 shows an overview of this setup. Figure 6.3 shows an
example trace of (from top to bottom) the payload signal, the modulated signal, the DSP output,
and, for comparison, the result of filtering the modulated signal with a simple 1st order lowpass
filter modeled in SystremC AMS.

Figure 6.3: Example simulation trace

The converters model a 5 ps accept delay, plus a 0.5 ps delay per byte. The TDF→TLM converter

84

TLM ↔ TDF conversion in SystemC

uses the WAIT option for the empty FIFO corner case. This makes the most sense since for example,
replacing missing token with dummies (with options CONSTANT or HOLD) and then applying the
filter on this corrupted signal would also corrupt the output signal. The TLM→TDF converter
uses the HOLD option, since this shows very well if the DSPs can’t hold up with the pace of the
TDF token stream, although the CONSTANT option would be also suitable for this.

The DSPs can be configured as LT or AT initiators, and model in both cases an internal latency
of 2 ns per transaction, plus 50 ps per token. Note that there is no synchronization mechanism
in place. The idea is now to look how setups with a different number of DSP cores and different
values of m perform. Let’s start with 6 DSPs reading 64 token per transaction (i.e. m = 33) in
a LT model. The simulation trace of the first 100 ns looks like this:

Figure 6.4: Simulation trace of LT model with 6 cores and m = 33

The result looks fine; there is a certain delay which is to be expected as there must be (in this
case) at least a delay of 64 token, i.e. 3.2 ns. And with an FIR Filter of order 31, a 32 token (i.e.
1.6 ns) delay (or phase shift) is inevitable anyway. However, this delay looks bigger. A look at
the reports of the converters will give more insight:

conv-LT-TDF-TLM-1 REPORT on 1212 transactions

Elements in queue: 35

past maximum: 95

suspended transactions: 760 (62.7063%)

5 additional delay: 2589384 ps for 1212 transactions (100%), 2136 ps on average

conv-LT-TLM-TDF-1 REPORT on 39897 token:

Elements in queue: 21

past maximum: 53

dummy token used: 124

Listing 6.14: Converter reports of LT model with 6 cores and m = 33.

The TDF→TLM conversion report states that there have been a maximum of 95 token in the
input queue, which is an indicator of how large a buffer in the implementation has to be. About
63% of the transaction where suspended, and each transaction got an average of 2.1 ns additional
delay (over the whole 1212 transactions), because of suspension and/or to adaption to larger
time-stamps of TDF token. Note that some of the code used to compute these statistics has
been removed from the Listings in section 6.1 and section 6.2 in order to provide a more concise
presentation.

The main information in the TLM→TDF conversion report is the number of 124 dummy tokens
used, which translates to the 6.2 ns delay we can see in Figure 6.4. The transaction suspensions
and the delays added by the TDF→TLM converter tells us that the 6 cores seems to be more
than capable to handle the workload. Let’s see if we can get by with four cores (Figure 6.5):

85

TLM ↔ TDF conversion in SystemC

Figure 6.5: Simulation trace of LT model with 4 cores and m = 33

Apparently not. The TDF→TLM conversion report below tells us that only 4 transaction where
suspended, which would be the first four transactions issued by the four DSP cores at time 0,
as they had to wait for input token to arrive. Instead, more than 5000 token piled up in the
internal queue during the 2µs simulated time. Consequently, the TLM→TDF converter had to
insert more than 5000 token, and the output signal moves more and more out of phase with the
original payload signal.

conv-LT-TDF-TLM-2 REPORT on 1052 transactions

Elements in queue: 5315

past maximum: 5351

suspended transactions: 4 (0.380228%),

5 additional delay: 6700 ps for 4 transactions (0.380228%), 6 ps on average

conv-LT-TLM-TDF-1 REPORT on 34683 token:

Elements in queue: 33

past maximum: 52

dummy token used: 5350

Listing 6.15: Converter reports of LT model with 4 cores and m = 33.

However, 5 DSP cores seem just right for the payload:

conv-LT-TDF-TLM-2 REPORT on 1211 transactions

Elements in queue: 68

past maximum: 108

suspended transactions: 5 (0.412882%),

5 additional delay: 794812 ps for 1211 transactions (100%), 656 ps on average

conv-LT-TLM-TDF-1 REPORT on 39897 token:

Elements in queue: 21

past maximum: 53

dummy token used: 124

Listing 6.16: Converter reports of LT model with 5 cores and m = 33.

Only one more transaction got suspended, and an average of 656ps delay was added to a trans-
action. The dummy token inserted by the TLM→TDF converter is 124 again, as it was with 6
cores. The trace result looks again as in Figure 6.4.

When usingm = 97 (i.e. reading 128 token instead if 64), it turns out that only 3 DSPs are needed,
in which case the TDF→TLM converter adds about 2.4 ns on average per transaction. However,
the delay grows to 188 token, as that many dummy token were added by the TLM→TDF con-
verter. Again, this is to be expected with the larger packet size. However, less computation power
is needed, since the overlap is smaller, i.e. there is a trade-off between preserving computation
power and delay.

86

TLM ↔ TDF conversion in SystemC

Next suppose we have 8 cores at our disposal and want to reduce the delay as much as possible.
How low can we go with m? We start with m = 29, which means a read transaction reads 60
token, and go down in decrements of 4 token. Table 6.1 shows the results:

Table 6.1: Results for 8 cores with varying m

m 29 25 21 17 13

avg. added delay (ps) 835 827 1497 133 2

dummy token used 120 115 111 108 7760

The added delay-spike for m = 21 is unexpected, but the result is clear none the less: The 8 cores
can take the workload of m = 17, i.e. 48 byte packet size, but for m = 13 they cannot hold up
with the incoming data stream.

Finally, we have a look how the AT converters perform. To this end, we take the three optimal
cases from the previous LT analysis and simulate them with an AT model:

Table 6.2: Results for the three optimal LT cases simulated with an AT model

case 3 cores, m = 97 5 cores, m = 33 8 cores, m = 17

avg. added delay (ps) 1182 1352 658

dummy token used 128 64 48

That is, the number of dummy token inserted by the TLM→TDF converter corresponds exactly
to the packet sizes, which means that the AT models with our AT converters were able to simulate
these cases with the minimum delay possible.

87

7 Conclusion

Choosing a MoC (or several MoCs) for a certain use case (or modeling goal) is relatively straight-
forward most of the time. It might be dictated by the domain of the system under consideration,
together with the targeted abstraction level, or simply by the simulation environment which is
habitually used. With MoC conversion, this is not true. Often, the exact conversion semantics
depend on the case at hand.

In this thesis we analyzed several MoC conversion directions with the goal to implement them
in SystemC. To this end, a formalism was used which modeled process control and computation
in an abstract manner, with no predefined notion of communication (other than variable access)
whatsoever. We defined several MoCs in this formalism, and then founded the MoC conversion
analysis on these abstract MoC definitions.

Based on this analysis, SystemC converters were implemented. Converterchannels on the one
hand, which also used already existing converter facilities in SystemC AMS, while also providing
automatic conversion capabilities and data type conversion. And the TLM↔TDF converters on
the other hand, which provide configurable conversion means to stream TDF signals to TLM
models and vice versa.

When looking at the Converterchannels, we have to conclude that in view of the numerous
corner cases that can occur and the multiple options to choose from (especially regarding data
type conversion, although we didn’t go much into detail on this topic), the objective to provide
automatic MoC conversion was missed to a certain degree. There seems to be no way to replace
these options with automated choices, as there are too many factors to consider depending on
the use cases and modeling goals. In its current state, the Converterchannels are more of an API
to a configurable converter library than an automatic conversion facility. This converter library,
however, covers the conversions supported in detail.

The TLM↔TDF converters developed (based on the formal analysis) provide an adequate way
to connect TLM models to TDF models on a high abstraction level at an early design phase. For
example, a real-life implementation of the model in section 6.3 could be implemented in different
ways: There could be a task pulling data from an A/D converter to the memory of the system,
where this (or another) task then also manages distribution of the data to the different cores
including managing the overlaps. Or a hardware component or FPGA could implement an I/O
component that behaves like the TDF→TLM converter internal queue, i.e. keeping a certain
amount of token in the queue even when they are read.

Whatever the final implementation might be, the TLM↔TDF converters provide means to bring
TDF models together with TLM models in a meaningful way for early software development on

88

Conclusion

virtual platforms. Especially the WAIT-style conversion semantics of the TDF→TLM converters
are very suitable for this as they provide an inherent self-synchronization mechanism between
TLM and TDF. Our simple example in section 6.3 also showed how the TLM↔TDF converters
can provide statistics to help with architectural exploration (choice of the number of cores), as
well as application development (choice of m).

Regarding the definition of the TLM MoCs in our formalism, an interesting result apart from
MoC conversion was that the approximately timed coding style could be described in a simpler
manner than in SystemC TLM2 because our formalism provided an alternative way to realize
non-blocking access. It would be interesting to see if this could be implemented in SystemC as
well. The most straightforward way (at least from a semantic perspective) to do so would be
the implementation of a non-blocking variant of the wait() function. That way the non-blocking
transport methods could be implemented in a more straightforward manner, without the need for
PEQs or callback-functions. This and the temporal decoupling techniques of the loosely-timed
coding style show that sacrificing global simulation control for simulation speed by self-controlled
models is an important aspect of TLM2.

89

Literature

[Acc04] Accellera: Verilog-AMS Language Reference Manual Version 2.2. 2004. –
http://www.verilog.org/verilog-ams/

[Acc13] Accellera Systems Initiative, AMS Working Group: Analog/Mixed-signal (AMS)
Language Reference Manual, Release 2.0. 2013

[AND09] ANDRES Consortium: D1.6b Overall Modelling Framework for ANDRES / EC
FP6 Project Deliverable. 2009. – Forschungsbericht

[Ayn09] Aynsley, John: OSCI TLM-2.0 Language Reference Manual.
http://www.systemc.org: Open SystemC Initiative (OSCI), 2009

[Bac05] Bacic, Marko: On Hardware-in-the-Loop Simulation. In: Proceedings of the 44th
IEEE Conference on Decision and Control – European Control Conference (CDC-
ECC) IEEE, 2005, S. 3194–3198

[BAGK07] Burton, Mark ; Aldis, James ; Günzel, Robert ; Klingauf, Wolfgang: Transac-
tion Level Modelling: A Reflection on what TLM is and how TLMs may be classified.
In: Proceedings of the Forum on Design Languages (FDL), 2007, S. 92–97

[BEG+11] Barnasconi, Martin ; Einwich, Karsten ; Grimm, Christoph ; Maehne, Torsten ;
Vachoux, Alain: Advancing the SystemC Analog/Mixed-Signal (AMS) Extensions.
In: Open SystemC Initiative (2011)

[BH98] Bellows, P. ; Hutchings, B.: JHDL – an HDL for reconfigurable systems. In:
FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE Symposium on,
1998, S. 175–184

[BSS07] Beltrame, Giovanni ; Sciuto, Donatella ; Silvano, Cristina: Multi-Accuracy
Power and Performance Transaction-Level Modeling. In: Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 26 (2007), Oct, Nr. 10,
S. 1830–1842. – ISSN 0278–0070

[CG03] Cai, Lukai ; Gajski, Daniel D.: Transaction Level Modeling: An Overview.
In: Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis. New York, NY, USA : ACM, 2003
(CODES+ISSS ’03). – ISBN 1–58113–742–7, S. 19–24

[CGO01] Cai, Lukai ; Gajski, Daniel D. ; Olivarez, Mike: Introduction of System Level
Architecture Exploration using the SpecC Methodology. In: Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS) Bd. 5, 2001, S. 9–12 vol.
5

[Cho56] Chomsky, Noam: Three Models for the Description of Language. In: Information
Theory, IRE Transactions on 2 (1956), Nr. 3, S. 113–124

[CL08] Cassandras, Christos G. ; Lafortune, Stephane: Introduction to Discrete Event

90

LITERATURE LITERATURE

Systems. Springer, 2008
[DGH+08] Damm, Markus ; Grimm, Christoph ; Haase, Jan ; Herrholz, Andreas ; Nebel,

Wolfgang: Connecting SystemC-AMS models with OSCI TLM 2.0 models using
temporal decoupling. In: Proceedings of the Forum on Design Languages (FDL),
2008, S. 25–30

[DHG08a] Damm, Markus ; Haase, Jan ; Grimm, Christoph: Co-Simulation of mixed
HW/SW and Analog/RF systems at architectural level. In: Behavioral Modeling
and Simulation Workshop, 2008. BMAS 2008. IEEE International IEEE, 2008, S.
84–89

[DHG+08b] Damm, Markus ; Haase, Jan ; Grimm, Christoph ; Herrera, Fernando ; Villar,
Eugenio: Bridging MoCs in SystemC Specifications of Heterogeneous Systems. In:
EURASIP J. Embedded Syst. 2008 (2008), S. 1–16. – ISSN 1687–3955

[DHHV07] Damm, Markus ; Haase, Jan ; Herrera, Fernando ; Villar, Eugenio: Using
Converter Channels within a Top-Down Design Flow in SystemC. In: Proceedings
of the 15th Austrian Workshop on Microelectronics Austrochip, 2007

[DMHG10] Damm, Markus ; Moreno, Javier ; Haase, Jan ; Grimm, Christoph: Using transac-
tion level modeling techniques for wireless sensor network simulation. In: Proceedings
of the Conference on Design, Automation and Test in Europe (DATE) European
Design and Automation Association, 2010, S. 1047–1052

[DW08] Damm, Markus ; Wenninger, Joseph: D1.5b Modelling Extensions for Poly-
morphic Signals, final Library Elements / EC FP6 Project Deliverable. 2008. –
Forschungsbericht

[ECN+01] Einwich, Karsten ; Clauss, Christoph ; Noessing, Gerhard ; Schwarz, Peter ;
Zojer, Herbert: SystemC extensions for mixed-signal system design. In: Proceed-
ings of the Forum on Design Languages (FDL), 2001

[EGV+02] Einwich, Karsten ; Grimm, Christoph ; Vachoux, Alain ; Martinez-Madrid,
Natividad ; Moreno, Felipe R. ; Meise, Christian: Analog Mixed-signal Extensions
for SystemC. In: White Paper and Proposal for the Foundation of an OSCI Working
Group (SystemC-AMS working group) (2002)

[EJL+03] Eker, Johan ; Janneck, Jorn ; Lee, Edward A. ; Liu, Jie ; Liu, Xiaojun ; Ludvig,
Jozsef ; Neuendorffer, Stephen ; Sachs, Sonia R. ; Xiong, Yuhong: Taming
Heterogeneity — The Ptolemy Approach. In: Proceedings of the IEEE, Special Issue
on Modeling and Design of Embedded Software 91 (2003), January, Nr. 1, S. 127–144

[ES03] Einwich, Karsten ; Schwarz, Peter: SystemC-AMS Steps towards an Implemen-
tation. In: Proceedings of the Forum on Design Languages (FDL), 2003

[FHL+01] Ferdinand, Christian ; Heckmann, Reinhold ; Langenbach, Marc ; Martin,
Florian ; Schmidt, Michael ; Theiling, Henrik ; Thesing, Stephan ; Wilhelm,
Reinhard: Reliable and Precise WCET Determination for a Real-Life Processor. In:
Embedded Software Springer, 2001, S. 469–485

[Fis73] Fishman, George: Concepts and Methods in Discrete Event Digital Simulation.
Wiley, 1973

[FN01] Fujita, Masahiro ; Nakamura, Hiroshi: The Standard SpecC language. In: Pro-
ceedings of the 14th International Symposium on System Synthesis, 2001, S. 81–86

[FO00] Frey, Peter ; O’Riordan, Donald: Verilog-AMS: Mixed-signal simulation and
cross domain connect modules. In: Proceedings of the IEEE/ACM International
Workshop on Behavioral Modeling and Simulation (BMAS), 2000, S. 103–108

[GBA+07] Goderis, Antoon ; Brooks, Christopher ; Altintas, Ilkay ; Lee, Edward A. ;
Goble, Carol: Heterogeneous Composition of Models of Computation / EECS

91

LITERATURE LITERATURE

Department, University of California, Berkeley. 2007 (UCB/EECS-2007-139). –
Forschungsbericht

[GBVE08a] Grimm, Christoph ; Barnasconi, Martin ; Vachoux, Alain ; Einwich, Karsten:
An Introduction to Modeling Embedded Analog/Mixed-signal Systems using Sys-
temC AMS Extensions. In: DAC2008 International Conference, 2008

[GBVE08b] Grimm, Christoph ; Barnasconi, Martin ; Vachoux, Alain ; Einwich, Karsten.
An Introduction to Modeling Embedded Analog/Mixed-Signal Systems using SystemC
AMS Extensions. June 2008

[GHP+09] Gerstlauer, A. ; Haubelt, C. ; Pimentel, A.D. ; Stefanov, T.P. ; Gajski,
D.D. ; Teich, J.: Electronic System-Level Synthesis Methodologies. In: Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 28 (2009),
Oct, Nr. 10, S. 1517–1530. – ISSN 0278–0070

[GL70] Gross, Maurice ; Lentin, André: Introduction to Formal Grammars. Springer,
1970

[GR94] Gajski, Daniel D. ; Ramachandran, Loganath: Introduction to High-Level Syn-
thesis. In: Design Test of Computers, IEEE 11 (1994), Winter, Nr. 4, S. 44–54. –
ISSN 0740–7475

[GSWB07] Grimm, Christoph ; Schroll, Rüdiger ; Waldschmidt, Klaus ; Brame, Florian:
Mixed-level Simulation heterogener Systeme. In: Proceedings of the ITG/GI/GMM-
Workshop: Multi-Nature Systems, 2007

[GVNG94] Gajski, Daniel D. ; Vahid, Frank ; Narayan, Sanjiv ; Gong, Jie: Specification
and Design of Embedded Systems. Prentice Hall PTR, 1994

[GZD+00] Gajski, Daniel D. ; Zhu, Jianwen ; Domer, Rainer ; Gerstlauer, Andreas ;
Zhao, Shuqing: SpecC: Specification Language and Methodology. (2000)

[Har78] Harrison, Michael A.: Introduction to Formal Language Theory. Addison-Wesley
Longman Publishing Co., Inc., 1978

[HBH+99] Hutchings, B. ; Bellows, P. ; Hawkins, J. ; Hemmert, S. ; Nelson, B. ;
Rytting, M.: A CAD suite for high-performance FPGA design. In: Proceedings of
the Seventh Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, 1999, S. 12–24

[Her08] Herrera, F: Heterogeneous Specification and Automatic Software Generation from
SystemC for Embedded Systems, Ph. D. thesis, University of Cantabria, Diss., 2008

[Hoa78] Hoare, Charles Antony R.: Communicating Sequential Processes. In: Communi-
cations of the ACM 21 (1978), Nr. 8, S. 666–677

[Hof99] Hoffmann, Josef: MATLAB und SIMULINK in Signalverarbeitung und Kommu-
nikationstechnik. Pearson Deutschland GmbH, 1999

[HOH+07] Herrholz, Andreas ; Oppenheimer, E ; Hartmann, Philipp A. ; Schallenberg,
Andreas ; Nebel, Wolfgang ; Grimm, Christoph ; Damm, Markus ; Haase, Jan ;
Brame, E ; Herrera, Fernando [u. a.]: The ANDRES project: Analysis and Design
of Run-Time Reconfigurable, Heterogeneous Systems. In: International Conference
on Field Programmable Logic and Applications (FPL) IEEE, 2007, S. 396–401

[HPJW+92] Hudak, Paul ; Peyton Jones, Simon ; Wadler, Philip ; Boutel, Brian ; Fair-
bairn, Jon ; Fasel, Joseph ; Guzmán, Maŕıa M ; Hammond, Kevin ; Hughes,
John ; Johnsson, Thomas [u. a.]: Report on the Programming Language Haskell:
a non-strict, purely functional language version 1.2. In: ACM SigPlan notices 27
(1992), Nr. 5, S. 1–164

[HR13] Haetzer, Bastian ; Radetzki, Martin: Systemc Transaction Level Modeling with
Transaction Events. In: Proceedings of the Forum on Design Languages (FDL),

92

LITERATURE LITERATURE

2013
[Huf14] Hufnagel, Simon: Towards the Efficient Creation of Accurate and High-

Performance Virtual prototypes, Ph. D. thesis, University of kaiserslautern, Diss.,
2014

[HV06] Herrera, F. ; Villar, E.: A Framework for Embedded System Specification under
different Models of Computation in SystemC. In: Design Automation Conference,
2006 43rd ACM/IEEE, 2006. – ISSN 0738–100X, S. 911–914

[HVG+07] Herrera, Fernando ; Villar, Eugenio ; Grimm, Christoph ; Damm, Markus ;
Haase, Jan: A general Approach to the Interoperability of HetSC and SystemC-
AMS. In: Proceedings of the Forum on Design Languages (FDL), 2007, S. 32–37

[HVG+08] Herrera, Fernando ; Villar, Eugenio ; Grimm, Christoph ; Damm, Markus ;
Haase, Jan: Heterogeneous Specification with HetSC and Systemc-AMS: Widening
the Support of MoCs in SystemC. In: Embedded Systems Specification and Design
Languages. Springer Netherlands, 2008, S. 107–121

[IEE05] IEEE: SystemCTM. 2005. – IEEE Std. 1666
[IEE07] IEEE: VHDL-AMS. 2007. – IEEE Std. 1076
[ISS99] Isermann, R. ; Schaffnit, J. ; Sinsel, S.: Hardware-in-the-Loop Simulation for

the Design and Testing of Engine-Control Systems. In: Control Engineering Practice
7 (1999), Nr. 5, S. 643 – 653. – ISSN 0967–0661

[Jan04] Jantsch, Axel: Modeling Embedded Systems and SoCs: Concurrency and Time in
Models of Computation. Morgan Kaufmann Pub, 2004

[Jan06] Jantsch, A.: Models of Computation for Networks on Chip. In: Proceedings of
the Sixth International Conference on Application of Concurrency to System Design
(ACSD), 2006. – ISSN 1550–4808, S. 165–178

[Kah74] Kahn, G.: The Semantics of a simple Language for Parallel Programming. In:
Rosenfeld, J. L. (Hrsg.): Information Processing. Stockholm, Sweden : North
Holland, Amsterdam, Aug 1974, S. 471–475

[Lee08] Lee, Edward A.: Cyber Physical Systems: Design Challenges. In: Object Ori-
ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International
Symposium on, 2008, S. 363–369

[Lee09] Lee, Edward A.: Finite State Machines and Modal Models in Ptolemy II / EECS
Department, University of California, Berkeley. 2009 (UCB/EECS-2009-151). –
Forschungsbericht

[LG88] Lis, Joe S. ; Gajski, Daniel D.: Synthesis from VHDL. In: Proceedings of the
1988 IEEE International Conference on Computer Design: VLSI in Computers and
Processors (ICCD) IEEE, 1988, S. 378–381

[LJ99] Lee, Edward A. ; John, II. Overview of the Ptolemy Project. 1999
[LLSV98] Liu, Jie ; Lajolo, Marcello ; Sangiovanni-Vincentelli, Alberto: Software Tim-

ing Analysis Using HW/SW Cosimulation and Instruction Set Simulator. In: Pro-
ceedings of the 6th International Workshop on Hardware/Software Codesign. Wash-
ington, DC, USA : IEEE Computer Society, 1998 (CODES/CASHE ’98). – ISBN
0–8186–8442–9, S. 65–69

[LM87a] Lee, E. ; Messerschmitt, D.G.: Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. In: Computers, IEEE Transactions on C-
36 (1987), Jan, Nr. 1, S. 24–35. – ISSN 0018–9340

[LM87b] Lee, Edward A. ; Messerschmitt, David G.: Synchronous Data Flow. In: Pro-
ceedings of the IEEE 75 (1987), Sept, Nr. 9, S. 1235–1245. – ISSN 0018–9219

[LMSG02a] Liao, Thorsten Grötkerand Stan ; Martin, Grant ; Swan, Stuart ; Grötker,

93

LITERATURE LITERATURE

Thorsten: System Design with SystemC. Springer, 2002
[LMSG02b] Liao, Thorsten Grötkerand Stan ; Martin, Grant ; Swan, Stuart ; Grötker,

Thorsten: System Design with SystemC. Springer, 2002
[LP95] Lee, Edward A. ; Parks, Thomas M.: Dataflow Process Networks. In: Proceedings

of the IEEE 83 (1995), May, Nr. 5, S. 773–801. – ISSN 0018–9219
[LSU89] Lipsett, Roger ; Schaefer, Carl F. ; Ussery, Cary: VHDL: Hardware Description

and Design. Bd. 12. Springer, 1989
[LSV98] Lee, Edward A. ; Sangiovanni-Vincentelli, Alberto: A Framework for compar-

ing Models of Computation. In: Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 17 (1998), Nr. 12, S. 1217–1229

[LT10] Lee, Edward A. ; Tripakis, Stavros: Modal Models in Ptolemy. In: EOOLT
Citeseer, 2010, S. 11–21

[LWFK02] Loo, S.M. ; Wells, B.E. ; Freije, N. ; Kulick, J.: Handel-C for Rapid Prototyp-
ing of VLSI coprocessors for Real Time Systems. In: Proceedings of the Thirty-Fourth
Southeastern Symposium on System Theory, 2002. – ISSN 0094–2898, S. 6–10

[MBP10] Martin, Grant ; Bailey, Brian ; Piziali, Andrew: ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan Kaufmann, 2010

[MDG02] Mueller, Wolfgang ; Dömer, Rainer ; Gerstlauer, Andreas: The Formal Ex-
ecution Semantics of SpecC. In: Proceedings of the 15th International Symposium
on System Synthesis, 2002, S. 150–155

[MDH+12] Moreno, Javier ; Damm, Markus ; Haase, Jan ; Grimm, Christoph ; Holleis,
Edgar: Unified and comprehensive electronic system level, network and physics
simulation for wirelessly networked cyber physical systems. In: Proceedings of the
Forum on Design Languages (FDL), 2012, S. 68–74

[NP73] Nagel, Laurence W. ; Pederson, Donald O.: SPICE: Simulation Program with In-
tegrated Circuit Emphasis. Electronics Research Laboratory, College of Engineering,
University of California, 1973

[Ope04] Open SystemC Initiative, Synthesis Working Group: SystemC synthesizable subset,
Draft 1.1.18. 2004

[Ope10] Open SystemC Initiative, AMS Working Group: Standard SystemC AMS Extensions
Language Reference Manual, Release 1.0. 2010

[Pag96] Page, Ian: Closing the Gap between Hardware and Software: Hardware-Software
Cosynthesis at Oxford. In: IEE Colloquium on Hardware-Software Cosynthesis for
Reconfigurable Systems, 1996, S. 2/1–211

[PDBR04] Pasricha, Sudeep ; Dutt, Nikil ; Ben-Romdhane, Mohamed: Extending the
Transaction Level Modeling Approach for Fast Communication Architecture Explo-
ration. In: Proceedings of the 41st Annual Design Automation Conference. New
York, NY, USA : ACM, 2004 (DAC ’04). – ISBN 1–58113–828–8, S. 113–118

[Plu06] Plummer, Andrew R.: Model-in-the-Loop Testing. In: Proceedings of the Institu-
tion of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
220 (2006), Nr. 3, S. 183–199

[PPP95] Parks, Thomas M. ; Parks, Thomas M. ; Parks, Thomas M.: Bounded Scheduling
of Process Networks. 1995. – Forschungsbericht

[PS04] Patel, Hiren D. ; Shukla, Sandeep K.: SystemC Kernel Extensions for Hetero-
geneous System Modeling - a Framework for Multi-MoC Modeling and Simulation.
Kluwer, 2004. – I–XXXII, 1–172 S. – ISBN 978–1–4020–8087–6

[RE12] Reuther, Christiane ; Einwich, Karsten: A SystemC AMS Extension for Con-
trolled Modules and Dynamic Step Sizes. In: Proceedings of the Forum on Design

94

LITERATURE LITERATURE

Languages (FDL), 2012, S. 90–97
[RG75] Rabiner, Lawrence R. ; Gold, Bernard: Theory and Application of Digital Signal

Processing. In: Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975. 777 p. 1 (1975)
[RLSS10] Rajkumar, Ragunathan ; Lee, Insup ; Sha, Lui ; Stankovic, John: Cyber-

physical Systems: The Next Computing Revolution. In: Proceedings of the 47th
Design Automation Conference. New York, NY, USA : ACM, 2010 (DAC ’10). –
ISBN 978–1–4503–0002–5, S. 731–736

[RRG03] Rust, Carsten ; Rettberg, Achim ; Gossens, Kai: From High-Level Petri Nets to
SystemC. In: Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics Bd. 2 IEEE, 2003, S. 1032–1038

[RSP+05] Rose, Adam ; Swan, Stuart ; Pierce, John ; Fernandez, Jean-Michel [u. a.]:
Transaction Level Modeling in SystemC. www.systemc.org: Open SystemC Initia-
tive, 2005

[Rua01] Ruan, Ken G.: Initialization of Mixed-signal Systems in VHDL-AMS. In: Pro-
ceedings of the Fifth IEEE International Workshop on Behavioral Modeling and
Simulation (BMAS), 2001, S. 53–58

[San03] Sander, Ingo: System Modeling and Design Refinement in ForSyDe. (2003)
[Sch97] Schaller, R.R.: Moore’s Law: Past, Present and Future. In: Spectrum, IEEE 34

(1997), Jun, Nr. 6, S. 52–59. – ISSN 0018–9235
[Sch07] Schroll, Rüdiger: Design komplexer heterogener Systeme mit Polymorphen Sig-

nalen, Ph. D. thesis, Institut für Informatik, Universität Frankfurt, Frankfurt, Ger-
many, Diss., 2007

[SGW05] Schroll, Rüdiger ; Grimm, Christoph ; Waldschmidt, Klaus: Verfeinerung von
Mixed-signal Systemen mit polymorphen Signalen. In: ANALOG’05 46 (2005),
S. 79

[SJ04] Sander, Ingo ; Jantsch, Axel: System Modeling and Transformational Design
Refinement in ForSyDe [Formal System Design]. In: Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 23 (2004), Nr. 1, S. 17–32

[SKR11] Salimi Khaligh, Rauf ; Radetzki, Martin: A Metamodel and Semantics for
Transaction Level Modeling. In: Proceedings of the Forum on Design Languages
(FDL), 2011

[SMG05] Schlegel, Michael ; Müller-Glaser, Ing Klaus D.: Mixed-Level-Simulation het-
erogener Systeme mit VHDL-AMS durch Multi-Architecture-Modellierung, Chem-
nitz: Der Fakultät für Elektrotechnik und Informationstechnik der Technischen Uni-
versität Chemnitz, Diss., 2005

[VGE03a] Vachoux, A. ; Grimm, C. ; Einwich, K.: Analog and Mixed-signal Modelling with
SystemC-AMS. In: Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003
International Symposium on Bd. 3, 2003, S. III–914–III–917 vol.3

[VGE03b] Vachoux, A. ; Grimm, C. ; Einwich, K.: SystemC-AMS Requirements, Design
Objectives and Rationale. In: Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), 2003. – ISSN 1530–1591, S. 388–393

[VGE05] Vachoux, A. ; Grimm, C. ; Einwich, K.: Extending SystemC to support Mixed
Discrete-Continuous System Modeling and Simulation. In: Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on, 2005, S. 5166–5169 Vol. 5

[VN93] Von Neumann, John: First Draft of a Report on the EDVAC. In: IEEE Annals
of the History of Computing 15 (1993), Nr. 4, S. 27–75

[YWL02] Yan, Quan-Zhong ; Williams, John M. ; Li, Jim: Chassis Control System Devel-
opment using Simulation: Software in the Loop, Rapid Prototyping, and Hardware

95

LITERATURE LITERATURE

in the Loop / SAE Technical Paper. 2002. – Forschungsbericht
[Zav82] Zave, P.: An Operational Approach to Requirements Specification for Embedded

Systems. In: Software Engineering, IEEE Transactions on SE-8 (1982), May, Nr.
3, S. 250–269. – ISSN 0098–5589

[Zei84] Zeigler, Bernard P.: Multifacetted Modelling and Discrete Event Simulation. Aca-
demic Press Professional, Inc., 1984

[ZG99] Zhu, Jianwen ; Gajski, Daniel D.: A Retargetable, Ultra-Fast Instruction Set
Simulator. In: Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), 1999, S. 298–302

[ZPK00] Zeigler, Bernard P. ; Praehofer, Herbert ; Kim, Tag G.: Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems.
Academic press, 2000

96

	Titlepage
	Introduction
	Models of Computation in System Design
	SystemC
	Basic Syntax
	Simulation Semantics
	MoCs in SystemC
	SystemC Extensions

	SystemC AMS
	Basic Syntax
	Simulation Semantics

	TLM 2.0
	TLM2 Transactions
	TLM2 interfaces and Coding Styles
	What kind of a MoC is TLM?

	Other approaches and related work

	A formalism for MoCs and computational system models
	Computational System Models
	The Discrete Event Model of Computation
	Process Networks
	Synchronous and Timed Data Flow
	Transaction Level Modeling
	Transactions
	The TLM MoCs

	Connecting System Models described with different MoCs
	Discrete Event models and TDF models
	TDF writer
	TDF reader
	TDF clusters which read from DE signals an write to DE signals

	Untimed Process Networks and SDF/TDF models
	Discrete Event Process Networks and TDF models
	TDF reader
	TDF writer

	Discrete Event Models and Process Networks
	TDF models and TLM models
	TLM writer
	TDF writer

	Automatic MoC conversion in SystemC: Converter Channels
	Technical Implementation
	MoC conversions
	TDF SC
	TDF FIFO
	SC FIFO
	Conversions towards electrical networks
	Conversions from electrical networks

	Data type conversion

	TLM TDF conversion in SystemC
	TLMTDF conversion
	AT-TLM converter
	LT-TLM converter

	TDFTLM conversion
	LT-TLM converter
	AT-TLM converter

	Application Example

	Conclusion
	Literature

