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Kurzfassung II

Kurzfassung

Hartmagnetische Materialien haben zahlreiche Anwendungen in Alltagsgeräten, in
der Medizin, in der Energietechnik, sowie in der Elektronik und Spintronik. Die
Seltene-Erd-Magnete zeichnen sich durch ausgezeichnete intrinsische Eigenschaften
(magnetokristalline Anisotropie, Sättigungsmagnetisierung) aus, die zu hohen
Koerzitivfeldern, Remanenzen und Energiedichteprodukten führen. Das kurz- und
langfristige Angebotsrisiko der Seltenen Erden, speziell der schweren Seltenen Erden
wie Dy und Tb, motivieren die Suche nach Methoden zur Reduktion des Seltenen-
Erd-Anteils oder nach komplett Seltenen-Erd-freien Alternativen.

Das Ziel des geförderten europäischen ROMEO Forschungsprojektes war es, die
magnetischen Eigenschaften von Nd2Fe14B Magneten ohne Zusatz von schweren
Seltenen-Erd Elementen wie Dy, Tb durch Optimierung der Kornstruktur und der
Korngrenzen zu verbessern. Das Ziel des REFREEPERMAG Projektes war die
Suche nach neuen, Seltenen-Erd-freien magnetischen Phasen und die Entwicklung
nanostrukturierter Magnete auf Eisen und Kobalt-Basis.

Im Rahmen dieser Dissertation wurden für beide Projekte Simulationen durch-
geführt, um die theoretischen Grenzen dieser Ansätze zu beleuchteten und
Voraussagen der endgültigen Materialeigenschaften zu machen. Die hier
vorgestellten Ergebnisse lieferten so einen wesentlichen Beitrag für den Erfolg dieser
Forschungsprojekte und wurden in wissenschaftlichen Fachzeitschriften publiziert.

Diese Dissertation beschreibt einen Mehrskalen-Ansatz der computergestützten
Materialentwicklung. Die intrinsischen Materialeigenschaften von Seltenen-Erd-
freien Alternativen wurden auf Basis der Dichtefunktionaltheorie (DFT) berechnet.
Mithilfe der DFT kann der Ursprung der intrinsischen Eigenschaften verstanden
und Vorschläge zur Verbesserung bestehender oder neuartiger Materialien gemacht
werden, zum Beispiel durch Optimierung des c/a Verhältnisses.

Die uniaxiale magnetokristalline Anisotropie-Energie für (Fe0.6Co0.4)2B beträgt
1.4MJ/m3 obwohl die Anisotropie der Legierungen Fe2B und Co2B planar ist.
Die Temperaturabhängigkeit der Anisotropie von MnBi wurde berechnet und die
Anisotropie kann mit einem c/a Verhältnis von 1.375 optimiert werden (2.0 −
2.3MJ/m3, abhängig von der Größe der Einheitszelle).

Die intrinsischen Eigenschaften aus den DFT Berechnungen dienen als Eingabe
für die mikromagnetischen Simulationen. Simulationen basierend auf der Finiten
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Element Methode von realistischen Korn- und Nanostrukturen wurden durchgeführt,
um die inkohärenten Ummagnetisierungsprozesse und deren Auswirkungen auf die
makroskopischen Hysterese-Eigenschaften zu berechnen.

Der erste Teil der mikromagnetischen Simulationen dient der Optimierung von
Nd2Fe14B Magneten, die mit dem Schmelzschleuderverfahren (melt spinning)
hergestellt wurden. Basierend auf den Ergebnissen von TEM Untersuchungen in
der Literatur wurden Finite Element-Modelle von realistischen Kornstrukturen mit
Hilfe eines eigens implementieren Algorithmus erstellt. Simulationen von Korn- und
Plättchenstrukturen mit unterschiedlicher Größe, Materialparametern in Körnern
und Korngrenzen und unterschiedlichen Verteilungen der leichten Richtungen in
den hartmagnetischen Körnern wurden durchgeführt.

Die Ergebnisse zeigen, dass die indirekte Kopplung der Körner über ferro-
und para-magnetische Korngrenzen verantwortlich für die Reduktion der
Koerzivität gegenüber dem Anisotropiefeld ist (Brown’sches Paradox). Durch
die Entkopplung der Körner mit nicht-magnetischen Korngrenzen könnten die
Hysterese-Eigenschaften von Nd2Fe14B Magneten bedeutend verbessert werden. Mit
ferro- bzw. paramagnetischen Korngrenzen erreicht das Koerzitivfeld 25% bzw. 36%
des Anisotropiefeldes, mit nichtmagnetischen Korngrenzen könnte dieser Wert auf
72% erhöht werden.

Der zweite Teil der mikromagnetischen Simulationen beschäftigt sich mit dem
Aufbau von nanostrukturierten Magneten mit Nanoteilchen. Mirkomagnetische
Simulationen von isolierten, zylindrischen Nanoteilchen wurden durchgeführt um
ihre Form und Seitenverhältnis zu optimieren. Der zweite Schritt ist die Simulation
von zwei interagierenden Nanoteilchen um die Auswirkungen des magnetostatischen
Austauschs auf die Hysterese-Eigenschaften zu untersuchen. Ein Modell von perfekt
ausgerichteten Nanoteilchen (Matrix-Modell) wurde erstellt, um die theoretischen
Grenzen (Koerzitivfeld, Energiedichteprodukt) von nanostrukturierten Magneten zu
erforschen.

Ein Algorithmus basierend auf Gravitation und Kollisionskräften wurde entwickelt,
um mikromagnetische Modelle von realistisch gepackten Nanoteilchenstrukturen
zu erstellen. Die Auswirkungen von Misorientierung und Packungsdichte auf das
Koerzivfeld, die Remanenz und das Energiedichteprodukt wurden untersucht. Beide
Modelle – Matrix-Modelle und gepackte Strukturen – beschreiben experimentell
herstellbare Nanostrukturen: Regelmäßige Matrizen können mit Elekro-Deposition
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von hartmagnetischen Materialien in porösen Aluminiumoxid-Schablonen hergestellt
werden; gepackte Strukturen beschreiben die Verdichtung von Nanoteilchen-Pulver,
dass mittels Nasschemie-Synthese hergestellt wurde. Die Simulationsergebnisse von
beiden Modellen stimmen gut mit den experimentell gemessenen Werten überein.
Energiedichteprodukte von bis zu 200 kJ/m3 können erreicht werden, ein 5-fach
höherer Wert verglichen zu konventionellen Hartferriten (40 kJ/m3)
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Abstract

Permanent magnetic materials are found in many everyday devices and have
applications in medicine, energy engineering and microsensoric and spintronic
devices. The rare-earth Nd2Fe14B alloy has outstanding intrinsic properties
(magnetocrystalline anisotropy, saturation magnetization) leading to high coercive
fields and energy density products. However, rare earths, especially heavy rare earths
such as Dy and Tb, are under high short- and long-term supply risk. The search
for rare-earth lean or free alternatives is therefore of great scientific and economic
interest.

The goal of the European funded ROMEO research project was the improvement of
Nd2Fe14B magnets without heavy rare-earth elements (Dy, Tb) by optimizing the
grain structure and grain boundary engineering. The REFREEPERMAG project
searched for novel, rare-earth free magnetic phases and developed nanostructured
permanent magnets on iron and cobalt basis.

In the course of this thesis, simulations have been performed for both projects
in order to explore the theoretical limits of these approaches and to predict the
properties of the final materials. The results presented in this work provided an
essential contribution to the success of the two research projects and have been
published in scientific journals.

This thesis describes a multiscale approach to computational material design.
Density functional theory (DFT) calculations on rare-earth free candidate materials
have been performed in order to obtain the intrinsic material properties. DTF is a
valuable tool to understand the origin of the intrinsic properties and is able to give
guidelines to improve existing or novel materials, for example by optimization of the
tetragonal distortion (c/a ratio).

The uniaxial magnetocrystalline anisotropy energy of (Fe0.6Co0.4)2B is 1.4 MJ/m3,
although the Fe2B and Co2B alloys have negative anisotropy energies describing
in-plane anisotropy. The temperature dependence of anisotropy of MnBi has been
calculated and the anisotropy is optimized by a c/a ratio of 1.375 reaching values
between 2.0 and 2.3 MJ/m3, depending on the unit cell volume.

The obtained intrinsic properties act as input for micromagnetic simulations.
Simulations based on the finite element method have been performed on realistic
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grain and nanostructures in order to calculate the incoherent reversal processes
leading to the macroscopically observed hysteresis properties.

The first part of micromagnetic simulations is about grain structure optimization
of melt-spun Nd2Fe14B magnets. Based on the results of TEM studies found in
literature, an algorithm that creates finite element models realistic grain / grain
boundary structures has been implemented. Micromagnetic simulations have been
performed on grain and platelet structures with varying grain size, grain and grain
boundary properties and easy axis distribution in the hard magnetic grains.

The results show that the indirect coupling of grains over ferro- and paramagnetic
grain boundaries reduces the coercive field significantly and causes Brown’s
paradox. The simulations show that decoupling the grains with non-magnetic grain
boundaries would increase the coercivity of Nd2Fe14B magnets substantially. With
ferro- and paramagnetic grain boundaries the coercive field reaches 25% and 36% of
the anisotropy field, respectively. This value is increased to 72% with non-magnetic
grain boundaries.

The second part of micromagnetic simulations describes a bottom-up approach to
create composite nanostructured permanent magnets. Micromagnetic simulations
on single, cylindrical nanorods have been performed to optimize the shape and aspect
ratio. In a second step, the magnetostatic interactions and between nanorods and
their influence on the coercivity have been examined. A model of regular nanorod
arrangements has been created to explore the theoretical limits of coercivity and
energy density product in nano-composite magnets.

A packing algorithm based on gravity and collision forces has been implemented
to create models of realistically packed nanorods in order to examine the losses
in remanence, coercivity and energy density product due to the misalignment and
packing of nanorods.

Both models describe structures an experimental production route. Regular nanorod
matrices are created by electrodeposition of the magnetic material in a porous
aluminium oxide template. Irregularly packed nanorods are produced by compaction
of nanorod powder synthesized with a wet chemistry process. The simulation results
of both models are in good agreement with experimental measurements. Energy
density products of up to 200 kJ/m3 are obtained, a five-fold increase compared to
conventional hard ferrites (40kJ/m3)
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1. Introduction 1

1. Introduction

1.1. Motivation

Many everyday devices contain permanent magnets: cars, hard disc drives,
loudspeakers, and microphones. Besides that, permanent magnets have a wide
range of applications in medicine and industry: magnetic resonance imaging (MRI),
motors, sensors, and power generators [92]. The global market for permanent
magnets is estimated at USD 15.1 billion in 2013 and is expected to increase to
USD 22.9 billion in 2018 with a compound annual growth rate of 8.7% [122]. 9%
of the global magnet production are rare-earth magnets, but they generate 65% of
the global revenue. However, rare earths, especially heavy rare earths like Dy and
Tb, are under a high short- and long-term supply risk [98]. The search for ways to
reduce the usage of rare-earths in permanent magnets or completely rare-earth free
alternatives is therefore of great scientific and economic interest.

The macroscopic magnetic properties highly depend on the crystalline micro-
structure [32, 97]. By optimizing the micro-structure it is possible to improve the
magnetic properties of rare earth magnets without the need of heavy rare earth
dopants [129]. Micromagnetic simulations on realistic grain structures based on
TEM investigations [29, 35, 132] have been performed in order to give guidelines to
create optimal grain structures. In addition, ab-initio calculations on rare-earth free
alternatives have been performed.

Nano-structured materials are an interesting candidate to produce rare-earth free
permanent magnets [99, 104, 114]. A possible prototype are structures of elongated
cylindrical Co nanorods with the crystallographic c axis parallel to the long cylinder
axis. The idea is to exploit both magnetocrystalline and shape anisotropy to increase
the coercive field.

There are several possible ways to optimize this material. The magnetic properties
of a single nanorod are optimized by tuning diameter, height and aspect ratio.
It is possible to seal the nanorods’ tips with an antiferromagnetically coupled
material with high uniaxial anisotropy. Optimizing the shape of the tips reduce
the demagnetizing field and prevent nucleation.

After a single nanorod has been optimized, the interactions between nanorods have
been examined. The most simple model consists of two parallel nanorods to study
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the influence of the distance between the nanorods on the coercivity. There are two
production routes for nanorods leading to different structures: Regular matrices of
nanorods are produced by filling alumina templates with Co via electrodeposition
[96, 111]. Irregular arrangements of nanorods are created by packing and aligning
nanostructured powder created by a polyol process [85, 120].

In this work, finite element micromagnetics has been utilized to model all of
the mentioned structures to optimize the geometric properties and to predict the
resulting macroscopic magnetic properties. Another, drastically different approach
is the use of novel materials in the nano structure. The intrinsic magnetic properties
such as magnetocrystalline anisotropy and saturation magnetisation have been
calculated ab-initio calculations based on the density functional theory (DFT).
The results from the atomistic DFT calculations act as input for the mesoscopic
micromagnetic simulations leading to a multi-scale approach in computational
material design (see fig. 1).

Fig. 1: Multiscale computational material design of nano-structured permanent
magnets
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1.2. Permanent Magnetism

Ferromagnetic materials can store their own magnetization M or polarization J =
µ0M and create their own persistent magnetic field. The most important tool to
characterize permanent magnets is the hysteresis loop. The M -H (or J-H) loop
plots the magnetization (or polarization) over the external magnetic field Hext. It
is also common to plot the total magnetic flux density B = µ0H + J through the
magnet over the external field (B-H loop).

Fig. 2: (a) Characteristic points on the M -H and B-H loop. (b) Calculation of the
energy density product (BH)max

Characteristic points in the hysteresis loop are (see fig. 2a)

• Ms saturation magnetization, the highest magnetization induced in the magnet
with the help of an external field

• Js: saturation polarization, analogous to Ms

• Mr: remanence magnetization, the remaining magnetization in the magnet
without an magnetic field

• Jr, Br: remanence polarization, analogous to Mr. Because the external field
is zero at the remanent point, the remanence polarization is equivalent to the
remanence flux density

• Hc, HcJ : coercive field, the external field that is necessary to demagnetize the
magnet. More formally, the point where the mean magnetization parallel to
the external field direction is zero.
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• HcB: coercive field that is necessary to set the total flux density through the
magnet to zero

Soft magnetic materials have a narrow hysteresis loop (small coercivity) and are used
in transformers to keep the losses in the magnet low. Permanent or hard magnetic
materials have high coercivity and are able to retain their magnetization even in
external fields directed opposite to the magnetization. The energy density product
(BH)max describes the ability of a magnetic material to store magnetic energy and
be calculated from the hysteresis loop (see fig 2b). A high energy density product is
important for high performance applications such as power generation and electro
motors, but also for miniaturization because with high energy density products it is
possible to store the same magnetic energy in a smaller magnet (loudspeakers, hard
disk drives, microsensoric devices). Assuming perfectly rectangular hysteresis loops,
an estimation of the maximum possible energy product is given by:

(BH)theomax = J2
s

4µ0
= µ0M

2
s

4 (1.1)

It is possible to refine the formula ifHc and Br are known [123, 147]. The dependence
of the energy density product on the coercivity given by equation (1.2) is shown in
fig. 3.

(BH)max ≈

 B2
r/4µ0 if µ0Hc ≥ Br/2

(Br − µ0Hc)Hc if µ0Hc ≤ Br/2
(1.2)

Fig. 3: Dependance of the theoretical energy density product (BH)max on the
coercive field Hc expressed as function of the remanence Br
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Magnetic materials have a preferred direction of magnetization, the so-called easy
axis. Because this effect is caused by the crystal structure of the material it is called
magnetocrystalline anisotropy. The magnetocrystalline anisotropy is described by
one or multiple anisotropy constants K1 . . . Kn. For further information on the
definition of the anisotropy constants, see chapter 2.2.3.

Stoner and Wohlfarth analytically calculated the coercivity of magnetic materials
based on the intrinsic properties Js andK1 by assuming an ellipsoidal, single domain
particle and coherent rotation as reversal mechanism [9, 10]. The key finding is the
anisotropy field

HA = 2K1

Js
(1.3)

as measure of the coercivity. Considering the demagnetizing field (chapter 2.2.4) of
an elongated particle, the coercivity is expressed by

Hc = 2K1

Js
− (N‖ −N⊥) ·Ms (1.4)

Stoner and Wolfarth also calculated the dependence of the switching field Hsw on
the angle θ between easy axis and external field

Hsw = (1− t2 + t4)1/2

1 + t2
with t = tan1/3 θ (1.5)

In literature, the terms switching field and coercive field are often used
interchangeably [81, 116], there is a subtle difference: The coercive field is the field
where the magnetization is zero, the switching field is the field where the "jump"
in magnetization occurs (more formally, the field where the derivative dM/dH is
maximal). While the two definitions lead to equal fields for low misorientation
angles θ, for θ > 45◦ the switching field is higher than the coercive field (see fig. 4).

Due to the idealized conditions assumed in the Stoner-Wohlfarth model, the
anisotropy field HA is referred as the upper theoretical limit of coercivity in
literature. The coercivity of sintered magnets is typically limited to 40% of the
anisotropy field (Brown’s Paradox) [105]. This is also confirmed by micromagnetic
simulations of grain structures (chapter 4). However, chapter 5 shows that it is
possible to compensate this loss with the shape anisotropy term (N‖ −N⊥)Ms and
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that coercivities higher than the anisotropy field are realized in both theory and
experiment.

Fig. 4: (a) Angular dependance of switching field Hsw and coercive field Hc

according to the Stoner-Wohlfarth model. (b) Two hysteresis loops with
the same switching field, but different coercive fields

1.3. Overview of Permanent Magnetic Materials

The oldest known magnetic materials are so-called lodestones (naturally magnetised
magnetite Fe3O4) and have been described by antique Greece, India and China.
Iron and its oxides have been the only known magnetic material for a long time.
The development of magnetic steels have coined the terms hard and soft magnetic
because of the higher coercivity of the mechanically hard steels compared to the
softer pure iron [105]. A more formal definition of hard and soft magnetic materials
is based on the coercive field: hard or permanent magnets have coercivities above
250mT ; soft magnets have coercivities in the order of 1mT or below [81].

Most ferrites have a low saturation magnetization due to the metal-oxide bonds
and a low magnetocrystalline anisotropy because of the cubic crystal structure.
Hexagonal hard ferrites are an exception and are cheap but moderately performing
permanent magnets. Hard ferrites have a MO · 6 Fe3O4 (sum formula MFe12O19)
structure where M is a metal, usually Sr or Ba. The non-magnetic MO oxides
build a hexagonally closed packed lattice. The magnetic smaller iron oxides are
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placed in the interstitial positions of the hexagonal MO lattice, leading to a high
magnetocrystalline anisotropy [54].

Another class of magnetic materials with high magnetocrystalline anisotropy are
alloys with a tetragonal L10 structure. In the 1930s, FePt and CoPt magnets have
been discovered and had the best permanent magnetic properties available until
the 1950s. These platinum alloys are very expensive but are also highly corrosion
resistant and are still commonly used in magnetic recording. A newer compound
with L10 structure is MnAl. The MnAl L10 phase metastable and some carbon is
added during production to stabilize the phase [88, 107].

AlNiCo magnets are based on the Mishima alloy (Fe0.58Ni0.30Al0.12, discovered in
1931) which showed surprisingly high coercivity. The addition of Co, Cu and Ti
increased the coercivity and energy density product further. The microstructure
of AlNiCo magnets consist of elongated hard magnetic, FeCo-rich precipitates
embedded in a soft magnetic, AlNi-rich phase. The coercivity of AlNiCo magnets
is not based magnetocrystalline anisotropy, but on the shape anisotropy of the hard
magnetic precipitates [15, 105].

In the 1940s elongated single domain particles (ESD) of Fe, Co and FeCo have been
successfully synthesized and pressed to permanent magnets under the commercial
name Lodex. Historically, the later discovery of rare-earth permanent magnets based
on SmCo5 and Nd2Fe14B (see instrinsic properties in table 1) made the comparatively
expensive ESD production unattractive. The supply shortage of rare earth metals
in 2011 caused the funding of research programs to reduce the rare-earth content in
permanent magnets and to develop rare-earth free alternatives. The rare-earth free
nano-structured magnets discussed in this thesis are based on ESD magnets.

Structure Material K1[MJ/m3] Js[T ] A[pJ/m] TC[K] Ref.
hcp Co 0.45 1.76 13 1360 [82]
L10 FePt 6.60 1.43 11 750 [59]
L10 CoPt 4.90 1.01 10 840 [105]
L10 MnAl 1.70 0.70 10 650 [59]
AuCu MnBi 0.90 0.73 12 633 [105]

BaFe12O19 0.33 0.48 6 740 [105]
SmCo5 17.20 1.07 12 1020 [105]
Nd2Fe14B 4.90 1.61 8 588 [105]

Table 1: Intrinsic Properties of Hard Magentic Materials with Uniaxial Anisotropy
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2. Theoretical Background

This chapter is not meant to give a complete, in-depth description of density
functional theory (DFT), micromagnetism and numerical methods, as it would go
far beyond the scope of this thesis. Rather, section 2.1.1 tries to motivate why DFT
calculations are used and to give a general idea how the Wien2k code works. Section
2.2 is the link between the ab-initio and the micromagnetic world and explains with
examples how the intrinsic material parameters that act as input for micromagnetic
simulations are calculated by DFT methods. Section 2.3 introduces the Landau-
Lifshitz-Gilbert equation and explains the way from differential equations to a set
of linear equations.

Sing and Nordström [77] wrote a great introduction into the LAPW method and
the official Wien2k guide by Blaha et al. [60] is a thorough reference for Wien2k
users. The micromagnetic energy terms and their atomistic origin are explained by
Skomski [81]. For the implementation of finite element element micromagentics, see
references [55, 68, 78].

2.1. Density Functional Theory

2.1.1. From the Schrödigner to the Kohn-Sham Equation

In order to calculate the intrinsic magnetic properties, the electronic structure of the
magnetic material has to be calculated by solving the Schrödinger equation for each
electron. The most basic form is the stationary free electron Schrödinger equation
[2]:

(
− ~2

2me

∇2 + V (r)
)

Ψ = E Ψ (2.1)

In crystalline solids, the potential V (r) is periodic (V (r) = V (r + T ) with a
translation vector T ) which means that it is enough to consider a single unit cell
when calculating the electronic structure. Under a periodic potential, the electrons’
wave functions are Bloch Functions in the form

Ψ(r) = eikr · u(r) (2.2)
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with a lattice-periodic function u(r) = u(r + T ) and a phase factor eikr [3]. Every
wave vector k has a corresponding wave vector in the first Brillouin zone: k = k+G

with the reciprocal lattice vector G [25].

A further common approximation is the distinction between core and valence
electrons. The core electrons are considered as a part of the potential V (r) and the
Schrödinger equation is only solved for the valence electrons. For iron (two Fe atoms
per unit cell) this reduces the number of electrons from 52 to 16. Considering crystal
symmetries this number is reduced to 8 because the two Fe atoms are equivalent.

While 8 electrons seems a manageable number, there are two problems. Firstly there
are many magnetic materials with a higher number of atoms per unit cell than iron
(Nd2Fe14B for example) and secondly, the many-electron problem cannot be solved
exactly due to the interaction between the electrons [4].

This is where the density functional theory (DFT) comes in. Hohenberg and
Kohn showed that the total energy of a many-electron system is a functional of
a continuous electron density ρ [18]:

Etot =
∫
V (r) ρ(r) · dr + F [ρ] (2.3)

Kohn and Sham refined the functional by splitting it into the kinetic energy T0,
the influence of the external potential V (r), the Coulomb repulsion between the
electrons and the exchange correlation functional Exc [19]:

Etot = T0[ρ] +
∫
V (r) ρ(r) · dr + 1

2

∫ ρ(r)ρ(r′)
|r′ − r|

· dr′dr + Exc[ρ] (2.4)

This leads to the Kohn-Sham equation, a Schrödinger-esque equation on the
continuous electron density. The Kohn-Sham equation is a eigenvalue problem to
find the energy εi for each Kohn-Sham orbital ϕi

(
− ~2

2me

∇2 + Veff (r)
)
ϕi = εi ϕi (2.5)

The Kohn-Sham equation has to be solved in a self-consistent manner. Based on an
initial guess of the electron density ρ the effective potential Veff has to be calculated.
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Solving the Kohn-Sham equation with the potential Veff yields the eigenvalues εi
and eigenfunctions ϕi. The new electron density is given by

ρ =
∑
i

|ϕi|2 (2.6)

This electron density acts as input for a new cycle until self-consistency is reached.

2.1.2. The Wien2k Package

Wien2k is a full-potential, linearised augmented plane wave code [60] that solves the
self-consistency problem (2.5). Wien2k decomposes the space into non-overlapping
atomic spheres and an interstitial region (see fig. 5). Inside the spheres the
full atomic potential is taken into account - inclusive the 1/r2 singularity. This
singularity causes many oscillations of the atomic functions and are difficult to
converge. The advantage of full-potential calculations over faster solvable pseudo-
potential methods is the higher precision of the results [60, 77, 136] (see fig. 6).

In the interstitial region the potential is nearly constant which means that the
wave functions are plane waves. At the border of the the atomic spheres, the plane
waves are augmented in order to create a continuous transition between atomic wave
functions and the plane waves.

By default, the Wien2k code treats the core states fully relativistic and takes scalar
relativistic effects for the valence states into account. Relativistic effects such as
spin-orbit coupling and orbital contraction in heavier elements are treated within
the framework of the perturbation theory on a fully converged scalar-relativistic
calculation.

Although the density functional theory is analytically proven to be exact, the exact
form of the exchange correlation functional Exc[ρ] in equation (2.4) is still unknown
[77]. Wien2k offers multiple approximations for this functional. The simplest
functional is the Local Density Approximation (LDA) in the form of

Exc[ρ] ≈ ELDA
xc =

∫
ρ(r) εxc[ρ(r)] · dr (2.7)

The functional εxc[ρ(r)] of a free electron gas is proportional to ρ(r)1/3, Wien2k uses
a more sophisticated LDA functional formulated by Perdew and Wang [40].
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Fig. 5: Decomposition of the unit cell into touching spheres (bue) and an interstitial
region (red)

Fig. 6: The pseudo-potential V PS is a good approximation of the full potential V
outside the core radius rc but elimitates the 1/r2 singularity. The resulting
wave functions ϕPS are in good agreement with all-electron wave functions
outside rc but show no oscillations near the core.



2.1 Density Functional Theory 12

Another important class of exchange correlation functionals are the Generalized
Gradient Approximations (GGA) which take not only the electron density but also
its derivative into account:

Exc[ρ] ≈ EGGA
xc =

∫
ρ(r)F [ρ(r),∇ρ(r)] · dr (2.8)

There are multiple GGA functionals implemented in Wien2k, Blaha et al. [60]
recommend the formulation of Perdew, Burke and Ernzerhof (PBE-GGA [47]) as
well-balanced, general purpose GGA.

The Wien2k package allows the ab-initio calculation of mechanical, optical and
magnetic properties of crystalline solids. In this thesis, the focus lies on the
calculation of intrinsic magnetic properties that act as input for the micromagnetic
simulations, summarized in chapter 3:

• the saturation magnetization Ms (magnetic moment per unit cell volume)

• the exchange stiffness constant A (see examples in section 2.2.2.1, p. 14)

• the magnetocrystalline anisotropy energy, a measure of the anisotropy constant
K1 (method explained in section 2.2.3.3, p. 20)

Another common application is the calculation of the ferromagnetic Curie
temperature TC (for example in [117]).
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2.2. Magnetic Energies

2.2.1. Zeeman Energy

The Zeeman energy is the energy of a magnetic moment m in an external field H
and is given by

EZ = −µ0 ·m ·H (2.9)

The Zeeman energy is minimal, if the moment is aligned parallel to the external
field and has a maximum, if the moment is aligned antiparallel to the external
field. This causes the Zeeman split of spin-up and spin-down electron energies with
E = ±µ0 µBH. The macroscopic Zeeman energy is calculated by summation of
the energies per moment or by an volume integral over a continuous magnetization
M = 1

V

∑m:

EZ = −µ0

∫
M(r)H(r) · dV (2.10)

2.2.2. Exchange Energy

The most fundamental mechanism to explain spontaneous magnetization and ferro-
magnetism is the exchange interaction between spins. According to the Heisenberg
model, the exchange energy Eex is expressed as

Eex = −1
2
∑
i6=j

Jij · si · sj (2.11)

where Jij is the exchange integral between the electron spins si and sj. The spin
configuration depends on the sign of the exchange integral: If Jij is positive, the
spins are aligned parallel (ferromagnetic configuration) and if Jij is negative, the
spins are aligned antiparallel (antiferromagnetic configuration). If Jij = 0, there is
no exchange between spins which corresponds to para- or diamagnetic materials.

Although the exchange integrals are anisotropic, the exchange energy is
approximated by a single, isotropic exchange stiffness constant A in continuum
theory:
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Eex = A
∫

(∇ · s)2 · dV (2.12)

The exchange energy term is minimized, if the magnetisation is homogenous and
the divergence is zero in the whole volume.

2.2.2.1. Calculating Exchange Stiffness with Wien2k

The macroscopic exchange stiffness has been determined with DFT calculations.
The energy difference between a non-magnetic (MN) and a spin-polarized (SP)
configuration is the energy gain due to the exchange interaction: Eex ≈ ESP −EMN .
The exchange integrals are approximated with the exchange stiffness: Jij ≈
A · rij, where rij is the distance between the spins si and sj. Substituting these
approximations into the Heisenberg exchange and solving for A yields

A = 2 (ESP − EMN) ·
∑
i6=j

rij · si sj

−1

(2.13)

Name bcc Fe
Space Group 229 Im-3m
a, b, c 2.860 Å
α, β, γ 90◦

Atom Wyckoff x y z
Fe 2a 0 0 0

Fig. 7: Lattice parameters, unit cell and atomic environment of bcc Fe

The Wien2k calculations have been performed with 10.000 k-points and the general
gradient approximation in the formulism of Perdew, Burke and Ernzerhof (PBE-
GGA) as exchange correlation potential. The non-magnetic case has been initialized
with init_lapw -numk 10000 and the self-consistency cycle has been performed
with the run_lapw script with a convergence criterion of 10−9Ry. The spin-polarized
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configuration has been initialized with init_lapw -numk 10000 and calculated with
the runsp_lapw script [60].

The energy difference between non-magnetic and spin-polarized case is 41.4mRy.
The unit cell consists of two equivalent Fe atoms. The atomic environment consists of
14 Fe atoms: 8 at a distance rij = 2.477 Å and 6 at a distance rij = 2.860 Å forming
a rhombic dodecahedron (see fig 7). Because all spin moments are aligned parallel,
all scalar products sisj equal +1. The resulting exchange stiffness is A = 24.4pJ/m
which is in good agreement with the experimentally measured value A = 22pJ/m
[105].

Name hcp Co
Space Group 194 P63/mmc
a, b 2.505 Å
c 4.070 Å
α, β 90◦

γ 120◦

Atom Wyckoff x y z
Co 2c 1/3 2/3 1/4

Fig. 8: Lattice parameters, unit cell and atomic environment of hcp Co

The hcp Co unit cell also consists of two equivalent atoms. The atomic environment
consists of 6 atoms at a distance rij = 2.497 Å and 6 atoms at rij = 2.505 Å
forming an anticuboctahedron. The energy difference between non-magnetic and
spin-polarized configuration is 37.7mRy, corresponding to an exchange stiffness of
A = 27.4pJ/m, experimental values range from 9.9 to 31.0pJ/m [59, 105].

2.2.3. Magnetocrystalline Anisotropy Energy

2.2.3.1. Phenomenological Description

Magnetocrystalline anisotropy describes the effect that the energy of a magnet
depends on the direction of magnetization with respect to the crystallographic axes.
The magnetocrystalline anisotropy is described by anisotropy constants K1 . . . Kn

which are in the order of 10kJ/m3 (bbc Fe) to 10MJ/m3 (rare-earth permanent
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magnets). The exact definition of the anisotropy constants depends on the crystal
system. The simplest model to describe this energy difference is uniaxial anisotropy

EA
V

= K1 sin2 θ +K2 sin4 θ + . . . (2.14)

where θ is the polar angle of the magnetisation measured from the crystallographic c
axis. The exact anisotropy type depends on the sign ofK1 andK2. If both constants
are positive the system has an easy axis (the c axis), if both constants are negative
the system has an easy plane (the ab plane). For cases with mixed signs the ratio of
K1 to K2 decide whether the resulting anisotropy is easy axis, easy plane, or easy
cone (see fig. 9).

Fig. 9: Anisotropy type depending on the uniaxial anisotropy constants K1 and K2.
The inlays show typical energy surfaces.

The uniaxial anisotropy constantsK1 andK2 are usually accurate enough to describe
the anisotropy of hexagonal and tetragonal crystal systems, but they cannot describe
an anisotropy in the basal plane. For basal plane anisotropy, a sixth order term in
the form
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K3,hex · sin6 θ · cos 6ϕ
or

K3,tet · sin6 θ · cos 4ϕ
(2.15)

must be introduced, where ϕ is the azimuth angle of the magnetization measured
from the crystallographic a axis.

For cubic systems it is convenient to use an other definition for the anisotropy
constants:

EA
V

= K1
(
α2β2 + α2γ2 + β2γ2

)
+K2

(
α2β2γ2

)
(2.16)

where α, β, γ are the direction cosines of the normalized magnetization direction. It
is possible to transform the spherical coordinates θ and ϕ to the direction cosines
α, β, γ:

α = sin θ · cosϕ
β = sin θ · sinϕ
γ = cos θ

(2.17)

Fig. 10 visualizes the energy surfaces of a single positive and negative K1 and K2

terms. If K1 is positive, the <100> axes are easy and <111> axes are hard and vice-
versa for negative K1 values. The <110> axes are intermediate axes in both cases.
If K2 is positive, the system has 3 easy planes (ab, ac, bc) and hard <111> axes. If
K2 is negative the <111> axes are easy and <100> and <110> are equally hard
axes. Depending on the sign and ratio of K1 and K2 all permutations of <100>,
<110>, <111> and easy, intermediate and hard axis are possible (see fig. 11)
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Fig. 10: Energy surfaces for positive and negative cubic anisotropy constants K1 and
K2

Fig. 11: Easy, intermediate and hard axes in dependence on the cubic anisotropy
constants K1 and K2
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An important quantity derived from the anisotropy constants is the anisotropy field
HA

HA = 2K1

Js
(2.18)

The anisotropy field equals the coercive field of an ideal single domain particle
with coherent rotation. In practice, only coercivity values between 1% (for as-
cast materials) and 40% (highly optimised sintered and annealed magnets) of the
anisotropy field are realized (Brown’s Paradox). This discrepancy is explained with
local nucleations and an inhomogeneous magnetization reversal modes.

The inclusion of higher order anisotropy terms leads to the saturation field Hsat

Hsat = 2 (K1 +K2 + . . . )
Js

(2.19)

which equals the external field necessary to saturate the magnet in the hard
direction. However, the coercivity of an ideal uniaxial magnet does not depend
on higher-order terms and HA remains a valid approximation for coercivity.

2.2.3.2. Microscopic Origin of Magnetocrystalline Anisotropy

Magnetocrystalline anisotropy is a consequence of two competing effects: spin-orbit
coupling and crystal field interaction. Classically speaking, the spin-orbit coupling is
caused by the orbital movement of the electrons around the nucleus. This movement
creates a magnetic field which interacts with the electron’s spin. However, the
movement of the electron is impaired by the crystal field of neighbouring nuclei.
In fact, for delocalized d electrons in transition metals the orbital movement is
fully quenched and the electrons oscillate in the energy valleys of the crystal field
potential. Localized f electrons (rare earths) are not influenced by the crystal field
and are able to orbit the nucleus freely. [38]

In free space, all d orbitals have the same energy, but the crystal field splits the
energies based on the symmetry of the orbitals - the so-called eg − t2g split. In a
primitive cubic lattice the orbitals pointing directly to a neighbour (eg symmetry:
x2 − y2, z2) are energetically unfavourable due to the electrostatic repulsion from
neighbouring negative charges. The orbitals with t2g symmetry (xy, yz, xz)
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point between the neighbours have lower energy. It is possible that these energy
levels are further split by a tetragonal distortion of the lattice, an external field
(Zeeman split) or spin-orbit coupling (see fig. 12). These energy splits are the
reason that different magnetization directions have different energies and cause the
macroscopically observed magnetocrystalline anisotropy. [81]

Fig. 12: eg and t2g split of d orbitals due to crystal field interaction. The energy
levels are further split by tetragonal distortion, external fields or spin-orbit
coupling

2.2.3.3. Calculating Anisotropy Energies with Wien2k

Because the spin-orbit coupling yields a small perturbation from the total energy,
the spin-orbit coupling should be performed on a fully converged spin-polarized
calculation. [57, 117, 136, 144]

Technically, the spin-orbit coupling is initialized with the interactive initso_lapw

script. Because the spin-orbit coupling breaks the symmetry, the script generates a
new *.struct file with fewer symmetry operations and a lower space group [60].

For example, bcc Fe has a highly symmetric crystal structure and four symmetry
operations are shown in fig. 13: three mirror planes (xy, yz, xz) and the 3 fold
rotation axis [111]. Adding a magnetization direction breaks some some symmetries:
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with magnetisation along [100] or [001] the rotation around [111] and mirroring
at planes normal to the magnetisation direction are disallowed. The resulting
structures are equivalent (they have the same number and type of symmetries) but
differ in the exact symmetry operations. With magnetization along [111] all mirror
planes are broken, but the rotation around [111] is still allowed.

Fig. 13: Symmetry breaking in a bcc crystal due to magnetization directions.

There are multiple strategies to account for the symmetry breaking due to different
magnetization directions. The labels initso_111, initso_one and initso_all will be
used for quick reference throughout this thesis, but are by no means official names. It
is recommenced to state the magnetisation direction used for the symmetry breaking
and/or the resulting space group in publications.

initso_111 is a popular choice for structures with low symmetry. The idea is to
call initso_lapw only once for magnetization along the hard axis because that
breaks the most symmetry operations. After that, the same structure is used
for all magnetization directions and the direction is only changed in the *.inso

file. However, breaking symmetry by the hard axis does not necessarily break
all symmetries for the easy directions (e.g. high-symmetry structures like bbc
Fe)

initso_one is the methodically cleanest approach. The spin-polarized calculation is
copied multiple times and in each copy the script initso_lapw is called once for
the different magnetization directions. The advantage is that each direction
is calculated with the correct symmetry operations while maintaining the
maximum possible symmetry. However, the resulting structures for different
directions may have different space groups. This has to be kept in mind while
analyzing the results.
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initso_all breaks all symmetries by multiple calls of initso_lapw. Each subsequent
call of initso_lapw with a different direction will remove additional allowed
symmetry operations. Calling initso_lapw for the directions [001], [100], [110]
and [111] on a bcc structure will break all symmetry operations except identity
and inversion symmetry while keeping all symmetries defined by space group
229 (Im-3m). The same low-symmetry structure is used for all magnetisation
directions by changing the direction in the *.inso file. The advantage of
this method is that the same structure with the lowest common dominator
of symmetry operations is consistently used for all magnetization directions.
The disadvantage is that higher computational time because of the reduction
of symmetry. Due to the higher degrees of freedom the calculation is more
difficult to converge and may for some cases even diverge.

Table 2 summarizes the calculation of the magnetocrystalline anisotropy of bcc Fe
with different initialisation methods (see fig. 7 in 2.2.2.1 for lattice parameters). All
calculations yield the correct magnetic moments, but only initso_one and initso_all
predict the anisotropy correctly (experimental value: K1 = 45 − 48kJ/m3 K2 =
5− 15kJ/m3). Due to the wrong handling of symmetry breaking of the initso_111
method, the magnetocrystalline anisotropy is an order of magnitude wrong and fails
to predict the cubic nature of the anisotropy (MAE[100]−[001] 6= 0)

initso_111 initso_one initso_all
µFe [µB] 2.22 2.22 2.22
Js [T ] 2.217 2.217 2.217
MAE[100]−[001] [kJ/m3] -1760 0 0
MAE[110]−[001] [kJ/m3] -216 15 18
MAE[111]−[001] [kJ/m3] -636 37 30

Table 2: Calculated magnetocrystalline anisotropy energies for bcc Fe.

2.2.4. Magnetostatic Interaction and Shape Anisotropy

The shape anisotropy is based on the long-range dipolar interaction of magnetic
moments. The magnetostatic interaction energy for each pair of moments mi,j at
the position ri,j is given by

EMS(i, j) = − 1
4πµ0

·
3 ·miRij ·mjRij −R2

ij ·mimj

R5
ij

(2.20)
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with Rij = ri− rj. The total magnetostatic energy is calculated by summation over
each pair of magnetic dipoles. In continuum theory the summation over magnetic
moments is replaced by an integration of magnetisation over volume. A further
simplification is the introduction of an effective self-interaction or demagnetizing
field HD:

EMS = µ0

2 ·
∫
M(r) ·HD(r) · dV (2.21)

For general cases the demagnetizing field can only be calculated numerically (e.g.
with the finite element method), however, an analytical solution for homogeneously
magnetized ellipsoids is possible and the total magnetostatic interaction energy is
expressed as

EMS = µ0

2 M
2
s ·
(
Nxα

2 +Nyβ
2 +Nzγ

2
)
· V (2.22)

with the demagnetizing factors Ni and the directional cosines α, β, γ. The sum
of the demagnetizing factors equals 1 and they describe the demagnetising field in
the respective axis: HD,i = −NiMi. The limitation to rotational ellipsoids (Nx =
Ny, Nz = 1− 2Nx) allows the formulation of a shape anisotropy constant

Ksh = µ0

2 M
2
s · (Nx −Nz) = µ0

4 M
2
s · (1− 3Nz) (2.23)

Analogous to the anisotropy field caused by the magnetocrystalline anisotropy, the
shape anisotropy contribution Hsh to the coercive field is

Hsh = 2Ksh

Js
= (Nx −Nz) ·Ms (2.24)

Theoretical limits for the shape anisotropy factor (Nx −Nz) are

• 0 for spheres (Nx = Ny = Nz = 1/3)

• +1/2 for indefinitely long cylinders (Nx = Ny = 1/2, Nz = 0)

• −1 for indefinitely thin surfaces (Nx = Ny = 0, Nz = 1).

Considering both magnetocrystalline and shape anisotropy for the coercive field
results in Kronmüller’s formula
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Hc = α · 2K1

Js
−Neff ·Ms (2.25)

where α is a phenomenological parameter that models the coercivity loss due to
incoherent reversal processes in real magnets [33]. Typical values for α range from
0.01 to 0.40 [105].

2.3. Finite Element Micromagnetics

2.3.1. Static and Dynamic Micromagnetism

There are multiple options for computational magnetism. If the magnetisation curve
M(H) is known it is possible to solve Maxwell’s equation

∇ ·B = 0
with B = µ0(H + M) = µ0 (H + M(H))

(2.26)

This approach is suitable for large scale systems, however, all micromagnetic effects
are hidden in the material law M(H). A true micromagnetic approach would be the
minimization of the free energy

Etot = EZ + Eex + EA + EMS (2.27)

with the Zeeman energy EZ , the exchange energy Eex, the magnetocrystalline
anisotropy energy EA and the magnetostatic interaction energy EMS as discussed
in chapter 2.2. This approach is known as static micromagnetism. Energy
minimisation yields two important relations. Firstly,

δEtot
δJ

= Heff (2.28)

which means that every energy term has a corresponding effective field:

Heff = Hext + Hex + HA + HD (2.29)
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with the (total) effective fieldHeff, the external fieldHext, the exchange fieldHex the
anisotropy fieldHA and the demagnetizing fieldHD. Secondly, energy minimization
gives a condition for a energy minimum:

J×Heff = 0 (2.30)

which means that in an equilibrium state the effective field creates no torque on
the magnetic polarization. These findings motivate the formulation of the dynamic
Landau-Lifshitz-Gilbert equitation

∂J
∂t

= −|γ| · J×Heff + α

Js
· J× J×Heff (2.31)

or equivalently

∂J
∂t

= −|γ| · J×Heff + α

Js
· J× ∂J

∂t
(2.32)

with the gyromagnetic ratio γ and the phenomenological Gilbert damping parameter
α. The first term describes the precession of the magnetic polarization around the
effective field the second term damps this precession and forces the polarization to
align to the effective field (see fig. 14).

Fig. 14: Precession and damping term in the Landau-Lifshitz-Gilbert equation.
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2.3.2. Finite Element Method

2.3.2.1. Weak Formulation

The finite element method for discretizing and solving differential equations is based
on the Galerkin Method [64, 65]. Firstly. the strong formulation of a differential
equation, e.g. the Poisson problem

−∆u = f

u = 0
in Ω
on ∂Ω

(2.33)

with u = u(x) and f = f(x) is converted to the weak formulation. The strong
formulation is multiplied by a test function v and integrated over the open region
Ω.

−
∫

Ω
∆u v · dV =

∫
Ω
f v · dV (2.34)

Using Green’s First Identity [63, 64] gives the weak formulation of the Poisson
problem

∫
Ω
∇u∇v · dV −

∫
∂Ω
∇u v · n · dS =

∫
Ω
f v · dV ∀v = v(x) (2.35)

The integral over the boundary ∂Ω is eliminated or evaluated by boundary
conditions. The advantage of the weak formulation is that the solutions u(x) must
only be differentiable once as opposed to twice in the strong formulation. It is clear
that the solution to the strong formulation is also a solution to the weak formulation,
the reverse is not always true. However, the solutions of the weak formulation can
approximate the solution of the strong formulation with arbitrary precision [113].

2.3.2.2. Basis Functions

The weak formulation of the Poisson problem requires that equation 2.35 must be
true for all test functions v(x). While it is impossible to check all test functions
in the infinite-dimensional function space, it is possible to restrict the problem to
a finite-dimensional subspace. Examples of subspaces are the space of polynomials
(constructed by a Taylor series), the space of periodic functions (constructed by
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a Fourier series) or the space of piecewise linear functions (constructed by linear
interpolation between supporting points). In a n-dimensional subspace it is sufficient
to test with all n basis functions ϕi(x) because any function fn(x) in this subspace
is a linear combination of basis functions and coefficients or weights αi.

f(x) ≈ fn(x) =
n−1∑
i=0

αiϕi(x) (2.36)

The function fn(x) is an approximation of the exact function f(x) in the infinite-
dimensional function space. For example, fn(x) could be a polynomial of degree
(n− 1) with the basis functions

ϕi(x) = xi (2.37)

Fig. 15 shows a polynomial approximation with two exemplary weighted basis
functions αiϕi(x).

Fig. 15: Exact function f(x) (red) and a polynomial approximation fn(x) (blue)
with two weighted basis functions (dashed).

The finite element method uses the subspace of piecewise linear functions with hat
functions as basis. Hat functions ϕi between equidistant supporting points xi = i ·h
are defined as

ϕi(x) =


+ 1
h
x+ 1− i for (i− 1)h ≤ x ≤ ih

− 1
h
x+ 1 + i for ih ≤ x ≤ (i+ 1)h

0 otherwise
(2.38)
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The hat functions as basis have a couple of nice properties. First of all, they fulfill

ϕi(xj) = δij (2.39)

for fall supporting points xj. Secondly, there is no need to solve a system of equations
to extract the coefficients αi, because they are directly defined by the supporting
points (see fig. 16).

αi = f(xi) (2.40)

Lastly, and most importantly, the hat functions are sufficiently smooth to be used in
the weak formulation of the Poisson problem and are differentiable once. The second
derivative of hat functions (or piecewise linear functions in general) is constant zero,
which means that they are not solutions to the strong formulation of the Poisson
problem. Without the weak formulation it would be impossible to approximate the
correct solution with piecewise linear functions [113].

Fig. 16: Exact function f(x) (red) and a piecewise linear approximation fn(x) (blue)
with three weighted basis functions (dashed). The weights are simply the
function value f(xi) at the supporting points.

2.3.2.3. Constructing a System of Linear Equations

With the choice of basis functions it is possible to find a solution to the weak
formulation of the Poisson problem. The n basis functions ϕi = ϕi(x) act as test
functions that must fulfill the weak formulation
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∫
Ω
∇u∇ϕi · dV =

∫
Ω
f ϕi · dV i = 1 . . . n (2.41)

Furthermore, it is possible to construct the functions u and f with the basis
functions. For the unknown function u we need to introduce n unknown weights αj,
whereas the weights for f are simply the function value at the supporting points xj
when using hat functions as basis.

∫
Ω

n−1∑
j=0

αj∇ϕj∇ϕi · dV =
∫

Ω

n−1∑
j=0

f(xj)ϕj ϕi · dV i = 1 . . . n (2.42)

Exploiting the linearity of the integrals, equations 2.42 are transformed to system
of linear equations A ·α = b


∫
∇ϕ0∇ϕ0 · · ·

∫
∇ϕn−1∇ϕ0

... . . . ...∫
∇ϕ0∇ϕn−1 · · ·

∫
∇ϕn−1∇ϕn−1


︸ ︷︷ ︸

A

·


α0
...

αn−1


︸ ︷︷ ︸

α

=


∑
j f(xj)

∫
ϕj ϕ0

...∑
j f(xj)

∫
ϕj ϕn−1


︸ ︷︷ ︸

b

(2.43)

Solving this equation yields the coefficients αj. The weak formulation yields an
approximate solution un(x) to the exact solution u(x) of the strong formulation:

u(x) ≈ un(x) =
n−1∑
j=0

αjϕj(x) (2.44)

Because the hat functions are non-zero on a very small range (ϕi(xj) = δij) the
integrals

∫
ϕiϕj and

∫
∇ϕi∇ϕj are zero except for neighbouring hat functions.

Instead of calculating all integrals which are mostly zero anyway, it is more practical
to calculate the integrals based on the finite elements between the supporting points
xi and fill the corresponding places in the matrix A. The finite elements are lines
defined by two supporting points xi in a one-dimensional problem, triangles defined
by three supporting points in a two-dimensional problem, or tetrahedrons defined
by four supporting points in a three-dimensional problem.
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The matrix A is sparse (has very few non-zero elements) which is advantageous
for numerical solving in both computational time and memory requirements. A is
sparse because of the choice of hat functions as basis which means that this property
is independent of the actual problem. A bad choice of basis functions (for example
the polynomials in eq 2.37) would result in a fully filled (or dense) matrix [113].

Depending on the problem the matrix A may also be symmetric, which further cuts
computational time and memory requirement in half. This is the case for the Poisson
problem but not for the Landau-Lifshitz-Gilbert equation solved in computational
micromagnetics.
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3. DFT Calculations of Hard Magnetic Phases

3.1. MnAl

The L10 or τ phase is a highly-ordered phase of the Al-Mn system with promising
magnetic properties. Although it has been known since the 1960’s [16, 17, 39] it has
gotten attention again in recent years [88, 117]. In bulk, the phase is only meta-
stable [51], but it is possible to stabilize the phase in in thin films or by adding small
dopants such as carbon to the bulk material [107].

The intrinsic magnetic properties of L10 MnAl have been calculated with Wien2k
[60] using 10000k-points and PBE-GGA [47] as exchange correlation potential. The
aim of these calculations is to replicate theoretical and experimental results to verify
the correct usage of Wien2k.

3.1.1. The L10 structure

The L10 structure (prototype AuCu) is a highly ordered tetragonal structure
consisting of alternating monoatomic layers of Mn and Al. The same structure can
be described by a face centered and body centered unit cell, which are equivalent
with the transformation afct =

√
2 · abct (see fig. 17)

Both unit cell choices have the same space group (123, P4/mmm), however, Pearson
assigned different symbols and structure prototypes to the configurations (body
centered: tP2, HgMn, face centered: tP4, AuCu [39]).

Atom Wyckoff x y z
Al1 1a 0 0 0
Al2 1c 1/2 1/2 0
Mn 2e 0 1/2 1/2

Atom Wyckoff x y z
Al 1a 0 0 0
Mn 1d 1/2 1/2 1/2

Fig. 17: Atomic positions of body centered and face centered unit cell choices of L10
MnAl
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3.1.2. Results and Discussion

The first set of lattice parameters are taken from a thin film experiment [107]. The
authors chose the body centered configuration with a = 2.77 Å and c = 3.54 Å
(c/a = 1.278). Wien2k calculations with 10000 k-Points in the first Brillouin zone
PBE-GGA [47] as exchange correlation functional. After convergence was reached
with a criterion of ∆E = 10−9Ry in a scalar-relativistic calculation, the spin-orbit
coupling has been introduced with the initso_one method (for details see section
2.2.3.3, p. 21)

Table 3 summarizes the spin moments per atom in the unit cell. The macroscopic
saturation polarization is calculated by

Js = µ0
µu.c.
Vu.c.

(3.1)

with the magnetic moment per unit cell µu.c. and the unit cell volume Vu.c.. The
small fluctuations of magnetic moment for different spin-orbit directions are caused
numerical error. The main contribution to the magnetic moment comes from the
Mn atoms, whereas the Al atoms only exhibit a small magnetic moment aligned
antiparallel to the Mn moments. Density matrix calculations make it possible to
decompose the total moments into its orbital contributions and show that the Mn-
d electrons are responsible for the magnetic moment in MnAl (see table 4). By
comparing the total energies of fully converged simulations with different spin-orbit
directions, the magnetocrystalline anisotropy energy (MAE) is determined to be
2.09 MJ/m3 (see table 5).

To verify the results and that both configurations are indeed equivalent, the same
calculation has been performed on the face centered tetragonal (f.c.t) unit cell choice
with afct =

√
2·abct = 3.92Å and cfct = cbct = 3.54Å. The spin-orbit coupling split the

Mn atom at the 2e into two inequivalent positions, but both saturation polarization
and magnetocrystalline anisotropy are in good agreement with the body centered
unit cell choice (see tables 6 and 7).

The total energies and the absolute energy differences between magnetization
directions are by a factor of two higher compared to the body centered unit cell
choice, but the MAE per volume stays constant in the face centered structure (see
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Spin Moments sp so001 so100 so110 so111
Al [µB/atom] -0.0773 -0.0772 -0.0772 -0.0772 -0.0772
Mn [µB/atom] 2.4520 2.4519 2.4524 2.4522 2.4521
Interstitial [µB/u.c.] -0.0014 -0.0011 -0.0012 -0.0012 -0.0011
Total [µB/u.c.] 2.3733 2.3737 2.3740 2.3738 2.3738
Js [T ] 1.022 1.022 1.022 1.022 1.022

Table 3: Spin moments per atom and resulting macroscopic saturation polarization
in MnAl (b.c.t.) sp is the scalar-relativistic spin-polarized calculation,
soXXX includes spin orbit coupling in the direction XXX .

Spin Moments s p d f Sum of Site
Al -0.0302 -0.0612 0.0098 0.0032 -0.0784
Mn 0.0222 0.0233 2.4041 0.0013 2.4510
SUM of SPI -0.0081 -0.0378 2.4139 0.0046

Table 4: Per-orbital contributions to the spin magnetic moment in MnAl (b.c.t.)

sp so001 so100 so110 so111
TOT +2802 Ry -0.99249 -0.99335 -0.99332 -0.99333 -0.99334
MAE [Ry/u.c.] 2.612E-05 1.71E-05 7.301E-06
MAE [kJ/m3] 2.093 1.369 0.585

Table 5: Total Energy (TOT) and magnetocrystalline anisotropy energy (MAE) of
MnAl (b.c.t.)
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table 6). This is caused by the higher number of atoms in the face centered structure
and the higher unit cell volume.

The calculated magnetic moments (µMn = 2.45µB, µMnAl = 2.37µB/f.u. are in
good agreement with both theoretical and experimental literature values between
2.29 and 2.41 µB/f.u. [42, 88, 107, 117]. The calculated MAE of 2.1 MJ/m3 is
higher than experimental results (1.4 MJ/m3 [107]) but in good agreement with
other calculations (SPR-KKR: 1.95MJ/m3 [117], force theorem: 1.98MJ/m3 [126],
perturbation theory: 2.15 MJ/m3 [126])

Spin Moments sp so001 so100 so110 so111
Al 1 [µB/atom] -0.0778 -0.0777 -0.0777 -0.0777 -0.0777
Al 2 [µB/atom] -0.0778 -0.0777 -0.0777 -0.0777 -0.0777
Mn 1 I [µB/atom] 2.4555 2.4534 2.4535 2.4542 2.4541
Mn 1 II [µB/atom] 2.4534 2.4535 2.4542 2.4541
Interstitial µB/u.c.] -0.0035 -0.0034 -0.0034 -0.0033 -0.0033
Total [µB/u.c.] 4.7519 4.7481 4.7481 4.7497 4.7495
Js [T ] 1.021 1.021 1.021 1.021 1.021

Table 6: Spin moments per atom and resulting macroscopic saturation polarization
in MnAl (f.c.t.)

sp so001 so100 so110 so111
TOT +5605Ry -0.98498522 -0.98669174 -0.986638 -0.986658 -0.986678
MAE [Ry/u.c.] 5.37E-05 3.37E-05 1.37E-05
MAE [kJ/m3] 2.155 1.353 0.551

Table 7: Total Energy (TOT) and magnetocrystalline anisotropy energy (MAE)
of MnAl (f.c.t.) sp is the scalar-relativistic spin-polarized calculation,
soXXX includes spin orbit coupling in the direction XXX .
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3.2. LTP MnBi

The low temperature phase of MnBi is a stable phase of the Bi-Mn system has a
couple of interesting properties, that are not yet fully understood. [24, 26, 34, 130]

• At T = 0K it has an in-plane magnetocrystalline anisotropy

• At T = 80K a spin reorientation takes place and the anisotropy changes to
uniaxial

• At T > 80K the magnetocrystalline anisotropy increases with increasing
temperature

• At T = 593K a first order transition that decreases the c/a ratio takes place

• At T = 720K the LTP decomposes into a high-temperature phase and Bi

Fig. 18: Magnetocrystalline anisotropy constant (a) and lattice parameters (b) as
function of temperature, based on [34] and [144]. The color gradient shows
the investigated region (see fig. 21).

The moderate saturation polarization combined with the increasing
magnetocrystalline anisotropy make it an interesting material for high temperature
applications. These properties motivate a systematic study of the magnetic
properties of MnBi as function of the lattice parameters [144].

LTP MnBi has a hexagonal closely packed structure with altering mono-atomic Mn
and Bi layers in ABAC stacking. The A layers have the Wyckoff position 2a, the
B and C stacks have Wyckoff positions 2c (see fig. 19. It is noteworthy that the
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2a and 2c sites have different atomic environments (see fig. 20). This means, that
exchanging the positions of Mn and Bi in the structure lead to different systems.
To distinguish the configurations, the system with Mn at the origin (2a site) will be
calledMnBi and the system with Bi at the origin will be called BiMn throughout the
thesis. Both configurations are mentioned in the literature (MnBi: [26, 39, 109, 130];
BiMn: [20, 39, 105]).

Name LTP MnBi
Space Group 194 P63/mmc
a, b 4.28 Å
c 6.11 Å
α, β 90◦
γ 120◦

Atom Wyckoff x y z
Mn 2a 0 0 0
Bi 2c 1/3 2/3 1/4

Fig. 19: Lattice parameters and unit cell of LTP MnBi [26]

Fig. 20: Atomic Environments of the 2a and 2c sites in space group 194
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3.2.1. MnBi at 0K

3.2.1.1. Lattice Parameters

Wien2k calculations have been performed with 10000 k-points and PBE-GGA [47] as
exchange correlation functional. After convergence of a scalar-relativistic calculation
(criterion: ∆E = 10−9Ry, relativistic effects (spin-orbit coupling with initso_one
[p. 21] and orbital contraction of Bi-s states by local orbitals) have been included.

The equilibrium lattice parameters have been calculated by minimizing the total
energy as function of volume (with constant c/a ratio) and then function of c/a ratio
(with constant volume). The effects of spin-orbit coupling and orbital contraction
have been included in the calculation of lattice parameters. The calculated lattice
parameters a = 4.3408 Å and c = 5.7142 Å deviate from experimental results ([24,
20, 34, 39], see also figs. 18 and 19) but are in good agreement with other DFT
calculations ([57, 130]).

3.2.1.2. Magnetocrystalline anisotropy

The magnetocrystalline anisotropy energy (MAE) was calculated as difference of
total energy between two fully converged calculations including relativistic effects.
For the MnBi system the calculated MAE of −0.11MJ/m3 [144] is higher then the
experimentally measured value of −0.2MJ/m3 [34, 109] but better than previous
DFT calculations (−2.1MJ/m3 [53, 130]). However, the value of −2.1MJ/m3 has
been reproduced by using the initso_111 initialization method.

Calculations on the BiMn configuration showed a MAE of +1.55MJ/m3 which
corresponds to a uniaxial anisotropy that is not found experimentally at low
temperatures. Only the MnBi system describes the low temperature behavior of
LTP MnBi correctly.

3.2.2. Magnetic Moments

The MnBi system has a total spin magnetic moment of 3.72µB/f.u.; the main
contribution are the Mn-d states with 3.68µB. The spin-moments of Bi are aligned
anti-parallel to the Mn moments lowering the total magentic moment (see table 8).
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These values are in agreement with other DFT calculations, but are lower than the
experimental values in the range of µMn = 3.82− 4.25µB [109, 130].

Considering the orbital contributions as well (µMn,orb = 0.07µB), it is possible
to reach the lower bound of experimental results without the need of a
phenomenological Hubbard U potential (LDA+U [67], GGA+U [76])

3.2.3. Temperature Dependance of MAE

For the temperature dependence of the intrinsic properties, only lattice expansion
has been considered. Other effects (phonons, temperature smearing of bands) have
been neglected. The lattice parameters have been varied in the range of lattice
parameters found experimentally between 300K and 700K (see colored region in fig
18). The unit cell volume was in the range between 97 Å3 and 101 Å3 and the c/a
ratio between 1.35 and 1.45.

The MAE of the MnBi system stayed negative throughout the examined lattice
parameter range. This means that the spin reorientation cannot be explained
by lattice expansion alone. However, the BiMn system shows MAEs between
1.35MJ/m3 and 2.25MJ/m3 which is the experimentally found K1 range (compare
fig. 18b and 21). The MAE increases with unit cell volume at all c/a ratios, which
explains the general trend of increasing K1 values with temperature. The optimal
c/a ratio for maximizing the magnetocrystalline anisotropy is 1.375, which could be
realized by dopants [106].

3.2.4. Conclusion

With the help of density functional theory calculations it was possible to verify that
exchanging Mn and Bi positions in the unit cell lead indeed to different systems.
Both configurations have been reported in literature. The MnBi system (Mn at
2a) describes the magnetocrystalline anisotropy and magnetic moments correctly
at 0K. The BiMn correctly decribe the magnetic moments and the temperature
dependance of magnetocrystalline anisotropy above room temperature. The results
suggest that the unusual properties of MnBi could be a consequence of a subtle
phase transition between MnBi and BiMn configuration.



3.2 LTP MnBi 39

s p d f sum
Mn 0.05770 0.02721 3.68389 -0.00008 3.76872
Bi 0.02100 -0.15420 0.01055 0.00432 -0.11833
interstitial 0.07154
sum 0.07870 -0.12699 3.69444 0.00424 3.72193

Table 8: Spin Moments of MnBi at T = 0K in µB

p d f sum
Bi -0.00011 0.07802 0.00020 0.07811
Mn -0.00413 -0.00015 -0.00010 -0.00438
sum -0.00424 0.07787 0.00010 0.07373

Table 9: Orbital Moments of MnBi at T = 0K in µB

s p d f sum
Bi 0.02437 -0.07656 0.01122 0.00558 -0.03539
Mn 0.08713 0.04057 3.81380 0.00024 3.94174
interstitial 0.28596
sum 0.11150 -0.03599 3.82502 0.00582 4.19231

Table 10: Spin Moments of BiMn at T = 0K in µB

p d f sum
Bi -0.00754 -0.00046 -0.00052 -0.00852
Mn -0.00171 0.10225 0.00026 0.10080
sum -0.00925 0.10179 -0.00026 0.09228

Table 11: Orbital Moments of BiMn at T = 0K in µB
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Fig. 21: BiMn. Dependance of MAE as function of unit cell volumne and c/a ratio.
The blue to red line connects the best fits to experimentally found lattice
parameters as function of temperature. The dotted region marks the first
order phase transition at 593K reducing the c/a ratio

3.3. Fe-Co-B

The (Fe1−xCox)2B ternary alloys are another material that has been known for
a long time, but got recently new attention due to the rare earth crisis. Iga [22]
measured the (Fe1−xCox)2B system over a wide composition and temperature range.
He showed that the ternary (Fe1−xCox)2B alloys with a composition 0.1 ≤ x ≤ 0.5
exhibit an uniaxial magnetocrystalline anisotropy although the binaries Fe2B and
Co2B have in-plane anisotropy. The maximum anisotropy at x = 0.3 was later
verified in single crystal measurements [127].

3.3.1. Binary alloys

The first step to understand the (Fe1−xCox)2B system is the study of the two parent
binary alloys Fe2B and Co2B. Experimental lattice parameters were taken from
[75] for Fe2B and [28] for Co2B (see fig. 23). The equilibrium lattice parameters
have been calculated using Wien2k with PBE-GGA [47], 10000 k-points and a
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Fig. 22: The temperature dependence of K1 of (Fe1−xCox)2B alloys reported by [22].
y-axis scale is in 106 erg/cm3 or 0.1MJ/m3

Name Fe2B Co2B
Space Group 140 I4/mcm
a, b 5.1204 Å 5.014 Å
c 4.2588 Å 4.215 Å
α, β, γ 90◦

Atom Wyckoff x y z
Fe/Co 8h 1/6 2/3 0
B 4a 0 0 1/4

Fig. 23: Lattice parameters and atomic positions for Fe2B [75] and Co2B [28]
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convergence criterion of 10−5Ry. The inclusion of spin-orbit effects had no significant
influence on the obtained lattice parameters.

The calculated equilibrium lattice parameters for Fe2B are smaller than the
experimental values (a = 5.0693 Å, c = 4.2226Å compared to a = 5.1204 Å and
c = 4.2588 Å) but the c/a ratio of 0.832 changed only by 0.62%. For Co2B a lower
a lattice parameter but a higher c lattice parameter was found (a = 4.9617 Å,
c = 4.2402Å compared to a = 5.0140 Åand c = 4.2150 Å) leading to an increase of
the c/a ratio by 1.66%. These values are in good agreement with other DFT results
[135]

The calculations of the magnetic moments and the magnetocrystalline anisotropy
have been performed with a stricter convergence criterion (∆E = 10−9Ry) and
are summarized in table 3.3.1. The spin moments deviate only slightly from the
experimental results. The calculations predict the anisotropy type correctly, but
underestimate the MAE for Fe2B and overestimate the MAE for Co2B. Fixed spin
moment calculations revealed that the MAE is very sensitive to changes of the spin
moments and forcing the experimentally spin moments in the calculation yield the
correct values for MAE [136]

Fe2B Co2B
Spin Moments
Fe/Co I [µB/atom] 1.961 1.088
Fe/Co II [µB/atom] 1.961 1.088
B [µB/atom] -0.112 -0.047
Interstitial [µB/u.c.] -0.197 -0.140
Total [µB/u.c.] 7.424 4.117
Js [T ] 1.596 0.924
MAE [100] - [001]
MAE [µeV/f.u.] -58 -132
MAE [MJ/m3] -0.344 -0.811

Table 12: Magnetic moment and MAE of Fe2B and Co2B

3.3.2. Virtual Crystal Approximation

The Virtual Crystal Approximation (VCA, [5, 6]) allows us to calculate the
properties of (Fe1−xCox)2B ternary alloys for an arbitrary composition x in a single
unit cell. The lattice parameters and atomic positions are linearly interpolated
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between the binaries Fe2B and Co2B. Each Fe/Co position is occupied by a virtual
atom with a non-integer atomic number 26+x. When using Wien2k, the x electrons
per Fe/Co atom have to inserted manually in the *.in2 file as valence electrons and
the occupations in the *.inc have to be adopted manually [60].

VCA gives surprisingly good results given how simple the method is. However, it is
only possible to use VCA with neighboring atoms such as Fe (atomic number 26) and
Co (27). Fe-Ni alloys could not be calculated with VCA. As alternatives the coherent
potential approximation [23], super cells and special quasirandom structures [37]
should be mentioned.

3.3.3. Results

The magnetic properties of the (Fe1−xCox)2B ternary alloys have been calculated
with two sets of lattice parameters. The first set of calculations uses the literature
lattice parameters of the binary alloys directly and interpolates linearly between
them. The second set of calculations finds equilibrium lattice parameters for each
ternary composition separately before the magnetic properties are calculated. Table
13 summarizes the lattice parameters. The lattice optimization has also been
performed with Perdew’s and Wang’s LDA formulation [40] for comparison, but
these values have not been used in follow-up calculations.

The calculated equilibrium unit cells are smaller than the literature values, which is
expected when comparing finite temperature measurements with 0K calculatations.
The Co-rich side shows an increase of c/a ratio that was also predicted for pure
Co2B and is consistent with other DFT calculations [135, 136]. The LDA lattice
parameters for Fe2B are in slightly better agreement than the PBE-GGA values,
but LDA underestimates the lattice parameters for all other compositions and
overestimates the c/a ratio for the Co-rich side (see fig. 24).

The magnetocrystalline anisotropy energy (MAE) has been calulated as the
difference between total energies of fully converged calulations including spin-orbit
coupling effects in [100] and [001] direction (initso_111 method).

The calculations predict the maximum MAE around x = 0.3 correctly and the
minimum MAE around x = 0.8 but fail to exactly quantify the MAE especially on
the Co-rich side. SPR-KKR calculations are in better agreement on the Fe-rich side,
but completely fail on the Co-rich side [136]. Using the finite-temperature lattice
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parameters from literature leads to a better agreement with finite-temperature
measurements (see fig. 25).

In conclusion, the virtual crystal approximation is a good tool to archive fast
qualitative results, but in order to get good quantitative agreement it is necessary to
use more sophisticated and computational intensive methods, as for example super
cells and special quasirandom structures [49, 136]

a, b [Å] c [Å]
lit. LDA PBE lit. LDA PBE

Fe2B = 0.0 [75] 5.1204 5.0628 5.0718 [75] 4.2588 4.2384 4.2226
0.2 5.0991 5.0343 5.0533 4.2500 4.1972 4.2159
0.4 5.0778 5.0234 5.0381 4.2413 4.1796 4.2036
0.6 5.0566 5.0166 5.0210 4.2325 4.1651 4.2000
0.8 5.0353 4.9448 4.9867 4.2238 4.2767 4.2414

Co2B = 1.0 [28] 5.0140 4.9523 4.9890 [28] 4.2150 4.2553 4.2402

Table 13: Comparison of literature, LDA, and PBE-GGA lattice parameters for the
(Fe1−xCox)2B ternary alloys. The italic lattice parameters are linearly
interpolated between the literature values of the binary alloys.
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Fig. 24: Literature and calculated lattice parameters of (Fe1−xCox)2B

Fig. 25: Calculated MAE (red) and magnetic moments (blue) using the literature
lattice parameters (dashed) and equilibrium lattice parameters (solid)
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4. Microstructural Optimization of Nd-Fe-B Magnets

4.1. Introduction

Rare earth permanent magnetic materials exhibit outstanding intrinsic properties
(high saturation polarization, high magnetocrystalline anisotropy) leading to high
coercive fields and energy density products. These properties explain their usage
in high energy (motors, generators) and medical applications (magnetic resonance
tomography) [140, 141]. The high energy density product is also a key feature for
miniaturization (hard disk drives, sensors and microsensoric devices) [59].

The most common rare earth magnetic materials are Nd2Fe14B and SmCo5. Due to
its high iron content, Nd2Fe14B magnets have a high saturation polarization leading
to a high energy density product. The disadvantage of Nd2Fe14B its relatively low
Curie temperature (588 K) making it unsuitable for continuous application at high
temperatures. SmCo5 magnets have a higher Curie temperature (1020 K), higher
magnetocrystalline anisotropy (17.2MJ/m3 compared to 4.9MJ/m3 for Nd2Fe14B )
but a lower saturation polarization (1.07T instead of 1.61T ). SmCo5 is therefore the
material to use at high temperatures at the cost of a lower energy density product
compared to Nd2Fe14B [105].

A lot of research effort has been focused on improving the temperature behavior of
Nd2Fe14B by doping the magnet with heavy rare earths such as Dysprosium [32, 110,
137, 138] or Terbium [102, 124]. The doping is performed with a grain boundary
diffusion process. The heavy rare earths harden the surface of the grains due to their
higher magnetocrystalline anisotropy [115, 133] and suppress nucleation effects and
increase coercivity [58, 119]. Due to the supply risk of heavy rare earths, there are
also ways to reduce the heavy rare earth content [140] or complete replacements of
heavy rare earths [73, 142] under development.

TEM investigations and micromagnetic simulations suggest a strong relationship
between the microstructure and the macroscopic properties of Nd2Fe14B magnets
[46, 97, 119, 121, 129, 148, 146]. This motivates the optimization of the
microstructure of Nd2Fe14B magnets with the help of micromagnetic simulations
without the need for heavy rare earth dopants.
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4.2. Micromagnetic Modelling

4.2.1. Experimental Input and Dimensioning

TEM investigations revealed that typical grain sizes for melt-spun Nd2Fe14B
magnets range from ten to several hundred nanometers [73, 79, 83, 90]. Depending
on the production route, the grains can be equiaxed (grains) or flat (platelets, see
fig. 26). Sintered and annealed Nd2Fe14B magnets have typically grain sizes in
the order of several micrometers [94, 102, 132]. The grains are separated by grain
boundaries that are Nd-O-rich or Fe-rich with a thicknesses ranging from 5nm up
to 30nm [29, 35, 121, 125, 128, 148].

Micromagnetic simulations have been performed on computationally generated,
realistic structures with equiaxed grains or flat platelets. Grain sizes between 10nm
and 50nm have been examined. The platelet structures have a mean diameter of
100nm and 20nm thickness.

Micromagnetic models with and without grain boundary region of 5nm have been
generated for both grain and platelet structures. Omitting the grain boundary region
describes the limit of perfectly exchange coupled grains.

Three different grain boundary types have been examined: non-magnetic (describing
the limit of perfectly exchange decoupling of grains), paramagnetic (Nd-oxides) and
ferromagnetic (Fe-rich) [145]. The material parameters are summarized in table 14.

Fig. 26: (a) TEM image of Nd2Fe14B platelets with 20nm thickness [90]. (b) TEM
image of nanocrystalline Nd2Fe14B [83]
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K1[MJ/m3] Js[T ] A[pJ/m]
Nd2Fe14B 4.9 1.610 7.700
non-magnetic 0 0.001 0.000
paramagnetic 0 0.750 0.077
ferromagnetic 0 0.750 2.500

Table 14: Material parameters for Nd2Fe14B grain structures

4.2.2. Model Creation

The micromagnetic grain structure is based on a Voronoi decomposition [1] of the
magnetic volume. Each grain is defined by its center, the so-called seeding-point.
The boundaries of each grain are created by intersecting the bisecting planes of the
connection lines of neighbouring seeding points. The Wigner-Seitz cell [7] is a special
case of general three dimensional Voronoi constructions.

There are many open source and freeware Voronoi algorithms implemented and
published. Both qhull [45] and voro++ [84] have been considered for the creation
of the micromagnetic models but voro++ is more user-friendly and the output is
easier to process with Python [71]. The input for voro++ is a text file containing
the seeding points:

1 50.0 50.0 50.0
2 150.0 50.0 50.0
3 50.0 150.0 50.0

A small helper-script has been implemented to generate the seeding points. The
script creates seeding points in a regular grid and applies random displacements to
each point. The mean size of the final grains is controlled by the initial distance
between seeding points. The script supports three different starting grids for cubic,
hexagonal and irregular grains. Fig. 27 shows the voro++ output for the three grids
without random distortion.

The output of voro++ acts as input for a Salome. Salome is an open source pre- and
postprocessing platform with both a graphical and a scripting user interface [80].
A Python script for Salome that creates a finite element mesh for a given Voronoi
structure has been implemented.
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Fig. 27: Voronoi structures with regularly arranged seeding points, top view. a)
cubic grid b) hexagonal grid c) irregular grid

Fig. 28: Creation of grain and platelet structures with and without grain a boundary
phase based on the same Voronoi model [145]
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The procedure is the following:

1. Read the input from voro++ or qhull results

2. Create a logical grain structure

3. (Optional) Transform the logical grain structure

4. Create Salome vertices, lines, faces and volumes for each grain

5. (Optional) Create a grain boundary

6. Mesh the grain structure

Transformations include the scaling of the whole structure (for creating platelets out
of a grain structure) and the shrinking of each grain to create space for the grain
boundary.

The grain boundary is constructed by creating a bounding cuboid and Boolean
volume operations that cut the grains out of the cuboid. The creation of grain and
platelet structures with and without grain boundary is summarized in fig. 28.

All models have been simulated with both oriented and isotropic K1 distribution.
In the oriented model, the polar angle θ follows a Gaussian distribution with a
mean misorentation of 7◦ and a standard deviation of 3◦. The isotropic model has
a uniform θ distribution between 0◦ and 90◦ (see fig. 29). The azimuthal angle ϕ is
uniformly distributed between −180◦ and +180◦ in both cases.

Fig. 29: Oriented and isotropic K1 distribution
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4.3. Results and Discussion

4.3.1. Grains without Grain Boundary

4.3.1.1. Perfect Exchange Coupling

The basic model consists of 30 directly coupled grains with a mean diameter of
50nm. The 1D mesh size for the finite element model is 2.5nm which is below the
Bloch domain wall width δw = 3.9nm (see inlay in fig. 30b). The domain wall width
is derived from the intrinsic material parameters [81]:

δw = π ·
√
A

K1
(4.1)

It is possible in micromagnetic simulations to switch the calculation of the
demagnetizing field off. By comparing simulations with demagnetizing field (Hmag =
ON) and without demagnetizing field (Hmag = OFF ) it is possible to determine
the influence of the stray field on the magnetization reversal exactly (see fig. 30a).
The demagnetizing field lowers the coercivity of the grain structure by inducing an
early nucleation in the hard magnetic grains.

Although the switching seems to occur immediately, the micromagnetic simulations
are able to resolve the switching process and reveal complex micromagnetic states
during magnetization reversal (see fig. 30).

The coercivity values obtained with demagnetizing field are compared to the
predictions of the Stoner-Wolfarth model (see p. 5). The coercive fields of the
oriented (ori) and isotropic (iso) structures are normalized to the anisotropy field
of Nd2Fe14B (µ0HA = 2K1/Ms = 7.65T ) and plotted as horizontal lines in fig. 31.
The vertical lines are the mean (dashed) and maximum (solid) misorientation angle
θ in the structure.

The results suggest that the weakest grain (and not the mean misorientation)
dominates the coercive field in the whole grain structure, if we assume perfect
exchange coupling between the grains. The results for the isotropic model are
in good agreement with experimental results (1.0 − 3.6T [86, 100, 142]), but the
oriented model overestimates the coercivity. Considering the magnetic properties of
the grain boundary phase will improve the results for both models.
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Fig. 30: (a) Demagnetization curves of oriented (red) and isotropic (blue) grain
structures with a mean diameter of 50nm. The simulations with
demagnetizing field (solid) exhibit lower coercivities than the simulations
without (dashed). (b) Micromagnetic state during magnetization reversal
of the isotropic model. The inlay shows the finite element discretization
[145]

Fig. 31: Coercivity values obtained from micromagnetic simulations (horizontal
lines) and mean and maximum misorientation angle θ (vertical lines)
compared to the Stoner-Wohlfarth model (green) [10, 145]
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4.3.1.2. Influence of Grain Size

By scaling down the structure it is possible to change the grain size while leaving all
other parameters such as grain shape, magnetocrystalline anisotropy and easy axis
distribution constant. This allows us to determine the influence of grain size on the
coercive field separately.

Micromagnetic simulations show that decreasing the mean grain size from 50nm
to 20nm increase the coercive field by 14%. Decreasing the size to 10nm increases
the coercivity by 18%. Comparing the results with and without demagnetizing
field shows that the main contribution to this effect are stray field effects (see fig.
32). At small grain sizes (10nm) the demagnetizing field has even a small, positive
contribution to the coercivity.

Fig. 32: Dependence of coercivity on grain size with (filled circles) and without (open
circles) demagnetizing field. The red line plots the influence of the stray
field [145].

4.3.2. Grains with Grain Boundary

The model of perfectly coupled grains can predict the coercivity of isotropic
Nd2Fe14B magnets, but overestimates the coercive field of the oriented model. No
real grain structure has perfectly coupled grains. The grains are indirectly coupled
over a para- or ferromagnetic grain boundary phase instead.

Based on the Voronoi model with 50nm grains, each grain is shrunk by
approximately 2.5nm in each direction leaving space for a 5nm thick grain boundary.
In addition to para- and ferromagnetic grain boundaries, calculations with a (nearly)
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non-magnetic grain boundary have been performed. These calculations represent the
case of perfectly exchange decoupled grains. The grains are only coupled via the
long-range dipolar interaction described by the stray field.

The small, non-zero moment in the non-magnetic grain boundary phase in table
14 has numerical reasons. The micromagnetic solver uses normalized magnetization
vectors. Normalizing them with a total saturation of zero would lead to a singularity
[69].

The simulations show that para- and ferromagnetic grain boundaries reduce
the coercivity and that ferromagnetic grain boundaries leave the remanence
intact. The stray field from the hard magnetic grains is enough to reverse the
magnetization of paramagnetic grain boundaries leading to a reduction of the
remanent magnetization. However, models with paramagnetic grain boundaries
have a higher coercivity than models with ferromagnetic grain boundaries (see fig.
33).

Fig. 33: Demagnetization curves of oriented (solid) and isotropic (dashed= grain
structures with a non- (red), para- (blue), and ferromagnetic (green) grain
boundary [145].

The oriented and isotropic structures have similar coercive fields, which is consistent
with experiments on real Nd2Fe14B magnets but it seems to contradict the Stoner-
Wohlfarth model. However, the truth is that these structures are simply out of
scope of the Stoner-Wohlfarth model which only applies to a single domain particle
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with a homogenous demagnetizing field (spheres and ellipsoids) [81]. It is actually
more surprising that the Stoner-Wohlfarth model correctly predicted the coercivity
of the perfectly exchange coupled grains as discussed before.

The simulations show that the models with non-magnetic grain boundaries exhibit
the highest coercive field. A way to improve existing Nd2Fe14B based magnets
would be to magnetically decouple the grains by introducing a "non-magnetic"
(paramagnetic with nearly zero saturation magnetization) grain boundary phase.

4.3.3. Platelets with and without Grain Boundary

Platelet structures with and without a grain boundary phase have been generated
based on the same Voronoi model as the grain structures (see fig. 28). The platelet
structures have the same material parameters (table 14) and the same easy axis
distributions (see fig. 29) as the grain models. The platelets have a mean diameter
of 100nm and a mean thickness of 20nm. The grain boundary is on average 5nm
thick.

Both perfect coupling and perfect decoupling maximize the coercivity of the oriented
models (see fig. 34a). Para- and ferromagnetic grain boundaries reduce the
coercivity by inducing an early nucleation in the hard magnetic platelets. Similar
to the grain models, paramagnetic grain boundaries lead to higher coercivity but
lower remanence than ferromagnetic grain boundaries. In contrast to the grain
structures, ferromagnetic grain boundaries also decrease the remanence of platelet
structures because the volume fraction of the grain boundaries is higher in the
platelet structures than in the grain structures.

In the isotropic case, the coupling has a lesser effect on the coercivity compared to
the oriented platelets (see fig. 34b). The coercivity of the perfectly coupled structure
depends on the platelet with the largest misorientation, similar to the findings on
the grain structures. Para- and ferromagnetic grain boundaries hardly reduce the
coercive field, but decrease remanence and squareness of the hysteresis loop. The
only way to improve coercivity in the isotropic case is the magnetic decoupling of
the platelets.
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Fig. 34: Demagnetization curves of (a) oriented and (b) isotropic platelet structures
with perfect exchange coupling (no grain boundary, black), perfect
exchange decoupling (non-magnetic grain boundaries, red), para- (blue)
and ferromagnetic (green) grain boundaries.

4.3.4. Microstructural Parameter Analysis

Kronmüller’s equation (4.2) is a phenomenological model to describe the
experimentally measured coercivity of magnets [33]. The parameter α describes
the effective reduction of the anisotropy field due to misorientation and interaction
between grains, the parameter Neff is the effective demagnetization factor.

Hc = α ·HA −Neff ·Ms (4.2)

Usually the microstructural parameters α and Neff are obtained by linear fitting
experimental data in a so-called Kronmüller plot (for example in [41, 43, 112]) but
the ability to switch off the calculation of the demagnetizing field makes it possible
to calculate the microstructural parameters exactly:

Hc,OFF = α ·HA −
=0︷ ︸︸ ︷
Neff ·Ms ⇒ α = Hc,OF F

HA

Hc,ON = α ·HA︸ ︷︷ ︸
Hc,OF F

−Neff ·Ms ⇒ Neff = Hc,OF F−Hc,ON

HA

(4.3)

Table 15 summarizes the coercive field obtained from grain and platelet models and
table 16 extracted α and Neff from these results.



4.3 Results and Discussion 57

oriented isotropic
Hc,OFF Hc,ON ∆Hc Hc,OFF Hc,ON ∆Hc

grains
no GB 4.909 4.597 -0.312 1.787 1.139 -0.648
GB:non 5.537 4.756 -0.781 3.846 3.512 -0.334
GB:para 2.744 2.282 -0.462 2.379 2.031 -0.348
GB:ferro 1.922 1.581 -0.341 1.879 1.513 -0.366
platelets
no GB 4.980 4.140 -0.840 1.865 1.499 -0.366
GB:non 5.538 4.192 -1.346 3.846 3.327 -0.519
GB:para 2.308 1.830 -0.478 1.742 1.523 -0.219
GB:ferro 2.107 1.669 -0.438 1.714 1.399 -0.315

Table 15: Summary of grain and platelet structures. Hc,OFF is the coercivity
obtained when the calculation of the stray field is switched off, Hc,ON

is the result of a full micromagnetic simulation. The influence of the stray
field is quantified by the difference ∆Hc between these two calculations.

oriented isotropic
α Neff α Neff

grains
no GB 0.642 0.194 0.234 0.402
GB:non 0.724 0.485 0.503 0.207
GB:para 0.359 0.287 0.311 0.216
GB:ferro 0.251 0.212 0.246 0.227
platelets
no GB 0.651 0.522 0.244 0.227
GB:non 0.724 0.836 0.503 0.322
GB:para 0.302 0.297 0.228 0.136
GB:ferro 0.275 0.272 0.224 0.196

Table 16: Microstructural parameters of grain and platelet structures. The
parameters are directly calculated from the coercivity values with and
without stray field from table 15 with equation (4.3)
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The obtained parameters are in good agreement with other theoretical work (α =
0.2− 0.3, Neff = 0.2− 2) [44] but experimental values have a much higher variance.
Kou et. al reported α = 0.59 . . . 0.85 and Neff = 1.01 . . . 2.45 at temperatures
below 175K and α = 0.18 . . . 0.26 and Neff = −0.61 . . . 0.09 at temperatures above
220K [41]. Bauer et al. showed that increasing the wheel speed in the melt-spinning
prodecure reduces and that the annealing treatment increases both parameters (α =
0.88 . . . 1.02, Neff = 0.77 . . . 0.95) [43]. Yu et al. demonstrated that Dy doping
increases α from 1.39 to 1.67 and Neff from 1.75 to 2.31 [112].

The variation of the microstructural parameters α and Neff with different grain
boundary types is relatively high for the oriented models. This is because they
theoretically have high coercivity values due to the small misorientation angles, but
suffer high coercivity losses with the introduction of para- and ferromagnetic grain
boundaries.

The effective demagnetization parameter Neff for the oriented grain structures
is higher compared to the oriented plane structures. This effect is attributed to
the negative shape anisotropy contribution of oblate particles [145]. However, the
reverse effect is observed at the isotropic models with para- or ferromagnetic grain
boundaries: The oblate platelets exhibit lower demagnetization parameters Neff

than the round grains.

Changing the easy axis distribution from oriented to isotropic does not only change
the parameter α (as expected) but also the effective demagnetization factor Neff .
Neff is commonly associated with the shape of the magnetic grains which does not
change in the models. However, the isotropic easy axis orientation also changes
the micromagnetic magnetization structure at low fields. This change leads to a
differently shaped demagnetizing field that is described by a new demagnetization
factor Neff .

If para- or ferromagnetic grain boundaries are present, the change from oriented
to isotropic distribution lowers both parameters α and Neff . This effect plausibly
explains how it is possible that isotropic magnets exhibit a higher coercivity than
oriented magnets in experiment.

If the loss due to the misorientation (αori > αiso) is smaller than the gain due to the
changed demagnetizing field structure (−Neff,ori < −Neff,iso), the overall coercivity
of the isotropic magnet is higher. However, we have not seen this effect in our
micromagnetic simulations yet.
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4.3.5. Importance of Magnetocrystalline Anisotropy

Magnetocrystalline anisotropy is an important factor for the macroscopic coercivity,
because it directly increases the anisotropy field. Fig. 35 summarizes the coercivity
of oriented and isotropic platelet structures with varying magnetocrystalline
anisotropy. Three value for the anisotropy constant K1 have been examined: 1.64,
3.30, and 4.90MJ/m3, the other material parameters stayed constant.

Due to the complex grain structure and stray field interactions, the coercivity losses
are higher than expected from reduction of the anisotropy field. The obtained
coercivities are normalized to the corresponding anisotropy field (2.49, 5.02 and
7.65T ) in fig. 35.

Decreasing the anisotropy from 4.9 to 3.3MJ/m3 (32%) decreases the coercivity by
43% for oriented and by 40% for isotropic models. Decreasing the anisotropy from
4.9 to 1.64MJ/m3 (66%) decreases the coercivity by 88% for oriented and 79% for
isotropic models.

For the softest examined material parameter (1.64MJ/m3) the coercivity of the
isotropic model surpasses the coercivity of the oriented model. In this case the
coercivity losses due to the misorientation are compensated by lower losses due to
the demagnetizing field structure.

Fig. 35: Normalized coercivity values for different magnetocrystalline anisotropy
in oriented and isotropic platelet structures with non-magnetic grain
boundaries
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4.4. Conclusion

It has been shown that it is possible to quantify and predict the coercive field
values of nanocrystalline Nd2Fe14B magnets by micromagnetic simulations taking
into account realistic microstructures. The results are in good agreement with
experimentally measured values and micromagnetic simulations are able to quantify
the experimentally measured coercivity values of Nd2Fe14B based magnets. The
results suggest that Brown’s paradox is a direct consequence of the complex grain
structure consisting of hard magnetic grains or platelets separated by para- or
ferromagnetic grain boundary phases.

The exchange coupling between the grains and between grains and grain boundaries
reduces the coercive field. Nd2Fe14B magnets could be improved significantly by
magnetically decoupling the grains with a "non-magnetic" (paramagnetic with very
low saturation magnetization by reducing the iron content) grain boundary phase.

Another common paradox result from experiment could be explained: how it
is possible that isotropic magnets have higher coercivity than oriented ones.
Kronmüller parameter analysis of the simulation results show that the isotropic
easy axis distribution indeed reduces the anisotropy field term, however, due to
the different magnetization structure in isotropic magnets the structure of the
demagnetizing field also changes, which has an positive effect on the coercive field.

This hypothesis has been verified by systematically reducing the magnetocrystalline
anisotropy in a simulation of platelet structures, until the stray field effects outweigh
the losses due to the misorientation of easy magnetization axes.
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5. Micromagnetic Modelling of Nanostructured
Permanent Magnets

In the previous chapter the micromagnetic cause of Brown’s Paradox has been
examined. We found that the grain structure and the grain boundary phases are
the reason that only up to 40% of the anisotropy field HA = 2K1/Js are reached as
coercivity in real magnets.

The idea of nanostructured magnetic materials is to exploit both shape and
magnetocrystalline anisotropy to increase coercivity [15, 61]. The theoretical
limits of shape anisotropy effects will be discussed in section 5.1 and compared to
simulation results on ideal nanorods. The interaction between two or more nanorods
and the limits of the energy density product will be discussed in section 5.2. Section
5.3 contains realistically packed nanorods. The thermal stability of the nanorods are
discussed in section 5.4. Two ways to further improve nanostructured permanent
magnets are discussed in section 5.5 and the results are concluded in chapter 6.

5.1. Single Nanorods

5.1.1. Analytical Considerations

5.1.1.1. Coherent Rotation

Nanorods are approximately described as an cylindrical single domain particle. The
easy axis of magnetization is parallel to the long axis of the particle and perfectly
aligned to the external switching field. Assuming coherent rotation as reversal
mechanism, the coercive field of an individual particle is expressed as

Hc = HA +Hsh = 2K1

Js
+ (N⊥ −N‖)Ms (5.1)

There is an explicit formula for the demagnetization factors N⊥ and N‖ of ellipsoids.
For ellipsoids of revolution with an aspect ratio of n (rotation axis / minor axis) the
demagnetization factors are given by [8]:
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N‖ = 1
n2 − 1 ·

[
n

2(n2 − 1)1/2 · ln
(
n+ (n2 − 1)1/2

n− (n2 − 1)1/2

)
− 1

]

N⊥ = n

2(n2 − 1) ·
[
n− 1

2(n2 − 1)1/2 · ln
(
n+ (n2 − 1)1/2

n− (n2 − 1)1/2

)] (5.2)

To evaluate demagnetization factors of cuboids and cylinders, elaborate integrals
have to be solved [11, 27] but Sato and Ishii [36] gave approximate solutions for
cuboids

N‖ = 1
2n− 1

N⊥ = n

2n− 1

(5.3)

and cylinders

N‖ = 1
2(2n/

√
π)− 1

N⊥ = 2n/
√
π

2(2n/
√
π)− 1

(5.4)

The error of these approximations is at most 6.2% in the range of aspect ratios n
between 0.1 and 100. All demagnetization factors fulfill N‖+ 2N⊥ = 1 and converge
to N‖ → 0 and N⊥ → 1/2 for n → ∞. The theoretical maximum coercivity of an
enlongated single domain particle is therefore

Hc,max = 2K1

Js
+ 1

2Ms (5.5)

Anisotropy field and theoretical coercive field for several materials are summarized
in table 17.
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anisotropy K1 K2 Js µ0HA µ0Hc,max
type [kJ/m3] [kJ/m3] [T ] [T ] [T ]

Fe cubic 46 15 2.15 0.054 1.129
Ni cubic -5 -2 0.61 0.014? 0.319
CoFe cubic -15 -0.1 2.45 0.010? 1.235
Fe3O4 cubic -13 0.60 0.036? 0.336
Co uniaxial 450 1.76 0.643 1.523
MnAl uniaxial 2150 1.02 5.298 5.808
MnBi min uniaxial 1350 0.91 3.728 4.183
MnBi max uniaxial 2250 0.91 6.214 6.669
(Fe0.6Co0.4)2B uniaxial 1460 1.44 2.548 3.268
Nd2Fe14B uniaxial 4900 1.61 7.649 8.454

Table 17: Anisotropy field and maximum coercive field of an elongated single domain
particle for selected materials.
? The anisotropy field for materials with cubic anisotropy and K1 < 0 is − 4K1

3Js
[81]

5.1.1.2. Curling and Buckling

While the assumption of coherent rotation (fig. 36a) is useful to explore the
theoretical limits of coercivity, there are losses due to incoherent reversal processes
in reality. The most common studied incoherent processes are curling and buckling.

The coercive field for the curling mode (fig. 36b) is given by [66]:

Hc,curl = 2K1

Js
−N‖Ms + 2πk A

D2Js
(5.6)

The parameter k depends on the shape of the nanoparticle and is for our
considerations a value between 1.08 (indefinitely long cylinders) and 1.39 (spheres)
[13]. Equation (5.6) shows an explicit dependence on the diameter D of the
nanoparticle and the exchange stiffness A of the material. The coercive field of
the curling mode reversal decreases with increasing diameter, whereas the coercive
field of the coherent reversal mode is only dependent on the aspect ratio n = H/D.

The coercive field of the buckling mode (fig. 36c) is [66]:

Hc,buck = 2K1

Js
+ 2A
Js

(1.84
R

)2
− 1

2Ms(1− ε[D]) (5.7)
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Fig. 36: Schematic illustration of a) coherent rotation, b) curling, c) buckling
reversal modes.

Fig. 37: Analytical coercive fields of coherent rotation (blue) and curling (red) of
cylindrical Co nanorods as function of aspect ratio H/D. The height H is
held constant at 300nm.
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The parameter ε[D] models the influence of the alternating surface charges of the
buckling magnetization follows a D−2/3 law [21].

Figure 37 shows the analytical coercive fields of coherent rotation and curling modes
for cylindrical Co nanorods (K1 = 450kJ/m3, Js = 1.76T,A = 13pJ/m) with
constant height H = 300nm and varying diameter D and aspect ratio H/D.

The shape anisotropy effect for the coherent reversal mode is already saturated
at rather low aspect ratios of around 5 − 10, so nanorods with a length of several
hundred of nanometers should have the same coercive fields as nanowires with several
micrometers length. The coercive field of the curling reversal mode follows a 1/D2

law and approaches zero for D →∞ or H/D → 0 (see fig 37).

5.1.2. Micromagnetic Simulations

Iron and cobalt are inexpensive base materials for producing magnetic nanowires and
nanorods [15, 99, 120, 139]. The advantage of Fe and Fe-Co is the higher saturation
magnetization, the advantage of Co is the higher and uniaxial magnetocrystalline
anisotropy. Micromagnetic simulations on a single, isolated nanorod with diameter
D = 20nm and height H = 400nm with different materials show that Co has the
highest coercivity of these materials (see fig. 38).

Fig. 38: Anisotropy fieldHA and shape anisotropy contributionHsh to the coercivity
of Co, Fe and CoFe nanorods
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The coercivities obtained from micromagnetic simulations are lower than the
analytical results (see table 17) although the shape anisotropy effect should easily
be saturated at aspect rations H/D of 20 (see fig. 37). The reason are incoherent
reversal mechanisms. The nucleation starts at the tips of the nanorods as vortex
structure. As the external field increases, the vortices form a reversed domain
separated by a domain wall. The domain walls move toward the center and
annihilate when the magnetization of the nanorod is fully reversed (see fig 39).

Fe nanorods show broader and more stable vortex structures than Co nanorods,
because of the cubic anisotropy. The x, y and z axes are equally easy axes and
therefore it is more energetically more favorable to align the moments completely
in-plane. The rounded demagnetization curves of Fe and CoFe in fig. 38 hint at the
formation of the vortex seen in fig. 39.



5.1 Single Nanorods 67

Fig. 39: Incoherent reversal processes in Co (top) and Fe (bottom) nanorods with
D = 30nm and H = 1000nm. The nucleation starts as vortex structure at
the tips and ends as domain wall propagation through the nanorod
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5.1.3. Influence of Aspect Ratio

Out of the three candidates, Co seems the most promising material because of its
high shape and magnetocrystalline anisotropy contribution to coercivity. The next
step is optimizing the shape of the nanorod in order to maximize the coercivity.

The simulation result in fig. 38 shows that that only 53% of the maximum
possible coercivity is reached although analytically the shape anisotropy contribution
saturates around H/D = 5.

Simulations of nanorods with H = 300nm on a wider array of aspect ratios H/D
have been performed. The results show that increasing the aspect ratio beyond
20 increases the coercivity. The simulation results lay between the theoretical
predictions of coherent rotation and the curling mode (see fig 40a), implying that
the magnetization reversal is a mixture of these reversal mechanisms as seen in fig.
39.

The next step is the variation of the nanorod height. Micromagnetic simulations
on nanorods with height H = 100, 600nm and the same diameters D =
10, 15, 20, 25, 30, 40, 60nm used for H = 300nm have been performed. The results
show the paradox behavior that longer nanorods need higher aspect ratios in order
to maximize the coercive field (see fig. 40b). However, grouping the same data not
by height, but per diameter (fig. 40c) shows that the coercivity depends primarily
on the diameter. D10 nanorods have a constant coercive field that is higher than
the coercivity of D15 nanorods over the examined range of aspect ratios. Only
nanorods with large diameters D ≥ 40nm profit from aspect ratios H/D > 50 (fig.
40d).

The reason is the formation of vortices at the tips of the nanorods. As analytically
calculated, the vortices nucleate at lower external fields as the diameter increases
(equation (5.6), fig. 40a). The curling mode dominates the nucleation process in the
nanorods, but not the whole switching process. This is the reason the micromagnetic
simulations show this strong relationship between coercivity and diameter, but with
higher coercive fields than predicted by the analytical solutions for the curling
reversal mode.



5.1 Single Nanorods 69

Fig. 40: a) Simulation results of single Co nanorods with height H = 300nm and
different diameters compared to analytical calculations. b) Coercivity of
single Co nanorods with different height H and diameter D as function of
aspect ratio H/D. c) Same data as in (b), but grouped by diameter instead
of height. d) Overlay of (b) and (c).
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5.2. Regular Nanorod Arrangements

5.2.1. Magnetostatic Interaction Between Nanorods

After the properties of single, isolated nanorods have been determined, the
interactions between nanorods were examined. The simplest case are two nanorods
with perfect alignment as shown in fig. 41a. The nanorods with height H and
diameter D are displaced by a center-to-center distance d or a surface-to-surface
distance ∆ = d−D along the x axis.

The coercive fields of two D10H100, D20H100 and D30H100 nanorods with varying
distance ∆ are summarized in fig. 41b. The interaction between the nanorods lowers
the coercive field and with higher distance between the nanorods the coercive field
increases. The value obtained from a single nanorod simulation acts as upper limit
for the coercivity.

Fig. 41: a) Diameter D, center-center-distance d and surface-surface-distance ∆ of
two interacting nanorods. b) Coercivity as function of distance ∆ of two
nanorods with varying diameters.

Nanorods with a lower diameter exhibit higher losses due to the stay field interaction.
This can be explained by the fact that two competing factors – the shape anisotropy
and stray field – have the same source: the magnetostatic interaction. The coercivity
increase for thinner nanorods is higher than for thicker nanorods, therefore the
coercivity losses are higher if the shape of the stray field changes.
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The role of the magnetostatic interactions has been confirmed in simulations without
demagnetizing field calculation. Without the demagnetizing field, all simulations
yielded the anisotropy field µ0HA,Co = 0.64T as coercivity, regardless of diameter,
height or distance.

The trend that nanorods with a lower diameter have higher coercive fields, but also
suffer higher coercive losses due to magnetostatic interactions can be observed over
a wider range of nanorod dimensions (see fig. 42).

The nanorod height (and therefore the aspect ratio H/D) has only a minor influence
on the coercivity of two interacting nanorods. Increasing the height from 100nm
to 600nm slightly increases the coercivity of the D40 nanorods, because the aspect
ratio of the D40H100 (H/D = 2.5) is not sufficient to saturate the shape anisotropy
effect (compare fig. 42 a and b).

Fig. 42: Coercive field of two interacting Co nanorods with a height of 100nm (a)
and 600nm (b) with varying diameter and surface-surface distance. The
distance is color-coded from 1nm (red) to 60nm (teal); the blue curves are
results from a single nanorod and the upper limit of coercivity for indefinite
distances.
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5.2.2. Influence of Packing Density

After the interactions between two perfectly aligned nanorods has been studied, the
next step is to examine an ensemble of many nanorods. In a first approximation we
assume the packing of aligned nanorods in a perfect hexagonal or quadratic lattice.
Such ensembles can be created by nanolithography or filling porous anodic alumina
templates by electro-deposition with a wide range of materials [61, 96, 99, 139].

While this production route is not suitable to create bulk magnets, it has its
applications in microsensoric and spintronic devices, bit-patterned recording media
and magnetic random access memory [48, 72].

The packing density of a perfect arrangement of nanorods or nanowires is calculated
by dividing the area of the nanorod’s base circle of the nanorod through the area of
the surrounding hexagonal or quadratic cell (see fig. 43):

phex = D2π

2d2
√

3
pquad = D2π

4d2 (5.8)

Example packing densities caclulated with (5.8) are found in fig. 43.

∆[nm] phex pquad

0 0.907 0.785
1 0.750 0.649
2 0.630 0.545
3 0.537 0.465
4 0.463 0.401
5 0.403 0.349
10 0.227 0.196
15 0.145 0.126
20 0.101 0.087
30 0.057 0.049
40 0.036 0.031

Fig. 43: Calculation of packing density for a regular packing of nanorods in a
hexagonal or quadratic grid. The table lists packing densities for D = 10nm

Assuming that the coercivity does not change with the number of neighboring
nanorods and a perfectly rectangular hysteresis loop, the maximum energy density
product is given by [123, 147]:
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(BH)max ≈

 B2
r/4µ0 if µ0Hc ≥ Br/2

(Br − µ0Hc)Hc if µ0Hc ≤ Br/2
(5.9)

where the flux density at the remanence has to be scaled down by the magnetic
volume fraction or packing density p: Br = p · Js.

Using the dependence of packing density on the distance between nanorods (5.8),
the results in the previous section (coercivity as function of distance) have been
transformed to coercivity as function of packing density (see fig. 44). The coercivity
at p = 0 has been obtained from the simulation of a single nanorod, the coercivity
at ∆ = 0 has been extrapolated from the data with non-zero ∆.

The energy density prodcut (BH)max shows a perfect quadratic behavior as function
of packing density p because the condition µ0Hc ≥ Br/2 = pJs/2 is fulfilled over all
distances ∆ and packing densities p.

Theoretical calculations only based on shape anisotropy predict the optimal
packing density at p = 2/3. This optimum moves to higher packing densities if
magnetocrystalline anisotropy K1 > 0 is present [89]. However, packing densities in
this order would require very small mean distances between nanorods (compressed
nanorod powder) or very thin template walls (electro-deposited nanorods).

Realistic packing densities of cylindrical nanorods are in the order of 40 − 60%
[87, 104, 114, 147]. At packing densities around 50%, energy density products in
the order of 200kJ/m3 are possible to reach in Co-based nanostructured magnets.

Fig. 44: a) Coercivity of Co D10H100 nanorods as function of surface-surface-
distance ∆. b) Coercivity and predicted maximum energy density product
of regularly packed D10H100 nanorods [147].
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To confirm that the distance between nanorods is the key factor that reduces
coercivity, micromagnetic simulations on regular matrices of nanorods with
hexagonal and quadratic packing have been performed (see fig. 45a). Two different
types of models have been created: nanorod matrices with perfect alignment and
matrices with a small misalignment. The misalignment angle is measured between
the long cylinder axis and the z axis and follows a Gaussian distribution with a
standard deviation σ = 1.7◦

Fig. 45b plots the coercive field of the matrix structures consisting of D20H100
nanorods as function of the inverted surface-surface distance ∆−1. At ∆−1 = 0, the
value of a single nanorod is shown. The difference between hexagonal and quadratic
matrices is negligible and in the same order than misorientations in the order of
±1.7◦.

Plotting the same data as function of the packing density (fig. 45c) shows a split
between hexagonal and quadratic packing. This splitting occurs because hexagonal
structures have a higher packing density than quadratic structures with the same
distance between the nanorods.

Fig. 45: a) Micromagnetic State of a hexagonal nanorod matrix right before the
magnetization reversal in the inner nanorods occurs. b) Coercivities of
hexagonal (blue circles) and quadratic (red squares) nanorod matrices with
perfect alignment (filled) and small misalignments (open) as function of the
inverted surface-surface-distance ∆−1 c) Same coercive fields as in (b) but
as function of packing density.
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In summary, hexagonal nanorod matrices should be preferred because they realize
higher coercivities at the same packing density than quadratic matrices. Increasing
the packing density by decreasing the distances between the nanorods potentially
improves the energy density product, but reduces the coercive field.

The coercive field of D10 nanorods is high enough to fulfill the condition µ0Hc > pJs

at realistic packing densities around 50%. The D20 nanorods do not fulfill this
condition, which means that the energy density product is not limited by packing
density or saturation magnetization, but by the coercive field.

5.2.3. Using Novel Materials

The open question is now how the nanorod or nanowire matrices are improved by
using other materials. Micromagnetic simulations on two D20H100 nanorods with
a surface-surface distance ∆ = 5nm (corresponds to a packing density p = 0.58 in
a hexagonal arrangement) with varying material parameters have been performed.
The intrinsic material parameters obtained from the ab-initio calculations presented
in chapter 3 and summarized in table 17, p. 63 have been used as input for these
simulations. For comparison, simulations on Nd2Fe14B nanorods have been included
as well.

The first two columns in table 18 are theoretical energy density products based on
the saturation polarization and packing density:

(BH)pmax = (p · Js)2

4µ0
(5.10)

The last energy density product in table 18 is based on the simulation results as
calculated by equation (5.9). The column "cond." is derived from the condition in
equation (5.9):

cond. = 2µ0 ·Hc − p · Js (5.11)

If cond. < 0, the energy density product is limited by the coercivity. The energy
density product could potentially improved by lowering the diameter of the nanorods
(and keeping the packing density constant) or by improving the magnetocrystalline
anisotropy of the material without lowering the saturation polarization.
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If cond. > 0, the energy density product is limited by the packing density or the
saturation polarization. While the shape anisotropy of the nanorods improves the
coercivity, much of the potential energy density product is lost due to the packing
alone (see fig. 46).

With p = 0.58 the energy density product of Nd2Fe14B is limited at 174kJ/m2,
a value that is below sintered or melt-spun Nd2Fe14B magnets [86] and has been
experimentally reached using Co nanorods [114, 120], which makes this production
route with rare-earth containing materials unattractive.
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theory simulation
(BH)p=1

max (BH)p=0.58
max µ0Hc cond. (BH)max

[kJ/m3] [kJ/m3] [T ] [T ] [kJ/m3]
Co 616 208 0.741 0.230 208
MnAl 207 70 5.111 4.815 70
MnBi min 165 55 3.647 3.383 55
MnBi max 165 55 6.031 5.767 55
(Fe0.6Co0.4)2B 413 139 2.376 1.958 139
Nd2Fe14B 516 174 7.016 6.548 174

Table 18: Theoretical energy density products of hexagonal D20H100 nanorod
matrices with a surface-surface distance ∆ = 5nm and a packing
density p = 0.58. Material parameters and predicted coercive fields are
summarized in table 17, p. 63

Fig. 46: Energy density products (red) of hexagonal D20H100 nanorod matrices
with a packing density p = 0.58 for various materials. The sign of cond. =
2µ0Hc − pJs (blue) is an indication of the limiting factor of the energy
density product. cond. > 0 means that the limiting factors are packing
density and/or saturation polarization. Higher values of cond. indicate
higher potential increases of the energy density product by increasing the
packing density and/or saturation polarization.
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5.3. Irregularly Packed Nanorods

The results obtained from micromagnetic models of nanorod matrices are interpreted
as a model of nanorods created by electro-deposition and as a study of the upper
limits of remanence, coercivity and energy density product of nanostructured
permanent magnets.

Besides electro-deposition and lithography there is another approach to create
nanorods: wet chemistry. Co-laureate is dissolved in NaOH and 1,2-butanediol and
mixed with Ruthenium-Chloride particles that act as nucleation sites. Under the
right temperature conditions, hcp Co nanorods crystallize in the solution. The result
are single crystal Co nanorods with tunable diameter and height[85]. The nanorods
are processed to nanostructured magnets by drying and compacting under a external
field [114, 120].

The advantage of this route is that it easier to realize higher packing densities,
because this production-route is template-free. The disadvantage is the irregular
packing with misalignments lowering the coercive field and remanence [104, 131].

5.3.1. Model Creation

5.3.1.1. Packing of Nanorods

The micromagnetic model is created with a packing algorithm based on the bullet
physics library [101]. The advantage of the bullet library is that it supports collision
detection of basic geometries (cubes and cuboids, spheres and ellipsoids, cylinders)
natively and allows easy implementation of custom forces and torques in C++.
The library has a strong focus on real-time applications suitable for cross-platform
computer games, but it is possibly to sacrifice the real-time capabilities for precision.
The bullet physics library has been successfully used for the packing of nanoparticles,
for example for granular recording media [87].

The packing algorithm starts with a loose, unaligned arrangement of nanorods (fig.
47a). The nanords are packed with gravity and collision forces until an equilibrium
state has been found (fig. 47b). The positions, normalized orientation vectors, and
sizes of the nanorods are written to a simple, semicolon-separated file:
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pos-x;pos-y;pos-z;ori-x;ori-y;ori-z;size-x;size-y;size-z;
pos-x;pos-y;pos-z;ori-x;ori-y;ori-z;size-x;size-y;size-z;
...
pos-x;pos-y;pos-z;ori-x;ori-y;ori-z;size-x;size-y;size-z;

The file format and the bullet physics library support cylinders with elliptic bases.
It is noteworthy that in bullet physics the long cylinder axis is described by size-x.
After the cylinder configuration has been saved, the gravity is inverted until a new
equilibrium of forces has been found (fig. 47c). In general, each subsequent structure
has a better overall alignment than the structures before.

Fig. 47: Packing algorithm based on the bullet physics library. a) Sparse, misaligned
starting configuration b) First equilibrium structure c) Second equilibrium
structure with better alignment after gravity inversion

Besides performing more gravity inversions, there two other main ways to improve
alignment and packing density of the final structure. (1) Using a starting
configuration with better alignment. (2) Introducing a torque on each nanorod
that aligns the nanorods into the (100) direction. This torque mimics the alignment
of magnetic dipoles in an external field.
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In order to reduce the influence of the hard wall boundaries on the nanorod structure,
the packing algorithm is used on 5000 nanorods. A sub-sample in the order of
200 nanorods is taken from the core packed structure and used as input for the
micromagnetic model.

5.3.1.2. Meshing

Two methods to create a mesh of a packed nanorod structures have been
implemented. The first implementation is a Python [71] script for Salome [80].
The Salome script reads the nanorod data from the text file and creates cylinders for
each entry. The complete structure of nanorods is then meshed at once. The Salome
script is also capable of creating the necessary input files for the micromagnetic code
FEMME [69]. Particularly important is the *.krn file that contains the material
parameters. The automatic generation of the *.krn file makes it possible to align
the easy axis of each nanorod along the long cylinder axis.

The second implementation is a C program called meshtransform. meshtransform
needs a already existing finite element mesh as input and creates multiple copies of
the mesh in a single file. The vertices of the mesh are transformed to fit the cylinders
in the packed structure. The tetrahedron data has not to be transformed, only their
vertex indices increase. The advantage ofmeshtransform over the Salome script is its
speed. Meshing structures with 5000 nanorods takes five hours, the same structure
can be generated with meshtransform in ten seconds. The only disadvantage of
meshtransform is that it does not check for mesh overlaps so the input data has to
be trusted. The micromagnetic simulation on a mesh with overlapping regions will
crash.

Both programs use the same transformations to create the mesh of the packed
structure. The only difference is that the Salome script applies the transformations
on a unit cylinder at the origin and meshtransform applies the transformations on
each vertex of an already existing cylinder mesh.

The first transformation is a scaling of the mesh to the actual nanorod dimensions.
The second transformation is a rotation of the cylinder or mesh into the orientation
of the nanorod. The last transformation is a translation of the cylinder to the
nanorod’s position.
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The first step of the rotation is extracting the polar angle θ and the azimuthal angle
ϕ from the orientation vector. These angles can be reused in the generation of the
*.krn file.

θ = arccos z√
x2 + y2 + z2

ϕ = atan2(y, x) =


π
2 · sgn(y) if x = 0
arctan y

x
if x > 0

arctan y
x

+ π · sgn(y) if x < 0

(5.12)

The sgn(x) function returns the sign of x and atan2(y, x) is a helper function
available in most programming languages and mathematical libraries that returns
angles between ±π in the correct quadrant specified by the coordinates (x, y).

Geometrically speaking, the polar angle θ describes a rotation around the y axis
and the azimuthal angle ϕ describes a rotation around the z axis. The rotation
matrix Rθ,ϕ describing both rotations at once can be calculated by multiplying the
two rotation matrices:

Rθ,ϕ =


cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 ·


cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



=


cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ
− sin θ 0 cos θ


(5.13)

Transforming the mesh directly has another advantage: it is possible to use different
base shapes, such as ellipsoids or prisms, as long as the shape can be inscribed in a
cylinder (see fig. 48). The bullet physics library and both meshing programs support
the packing of cylinders with a high size distribution (see fig. 49). The implemented
packing algorithm can also be used to create packed structures of barium ferrite
particles (see fig. 50) used as tape recording media [91, 93].
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Fig. 48: Finite element mesh of packed cylinders, ellipsoids and prisms based on the
same packing simulation of cylinders with D = 10nm and H = 70nm.
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Fig. 49: Packing of cylinders with a high size distribution. Mean diameter and height
are 10nm and 70nm, standard deviations of diameter and height are 1nm
and 10nm, respectively.

Fig. 50: Packing of hexagonal prisms with D = 60nm and H = 20nm.
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5.3.2. Results and Discussion

Depending on the starting configuration, the packing algorithm creates nanorod
structures with a packing density between 40% and 58%, depending on the starting
configuration, the aligning torque and the number of iterations. Fig. 51 shows the
evolution of packing density and misalignment of the structure with the number of
iterations for different alignment torques.

Fig. 52 shows an example packed structure and the evaluation of the packing density
with Paraview [134]. As measurement of misalignment serves the standard deviation
of azimuthal angles σϕ. In a perfectly aligned structure, all nanorods are aligned
parallel to the x axis, because the z axis is reserved for the gravity in the bullet
physics library.

In general, both packing density and alignment improve with the number of
iterations of the algorithm. However, it is possible that the packing density oscillates
with the number of iterations, because the nanorod pattern is more beneficial for
the "gravity-up" than the "gravity-down" iteration (or vice-versa, see fig. 51a).

Stronger alignment torques create structures with higher packing density, but also
create the problem that the nanorods may interlock causing the oscillating packing
density. The alignment of the early iterations is better with a higher alignment
torque, but after three iterations the same nanorod alignment can be reached with
lower torques as well.

Fig. 51: Evolution of packing density p and misalignment σϕ as function of
the number of iterations. The models use a very misaligned starting
configuration and a high (a) or low (b) alignment torque.
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Fig. 52: a) Packed structure containing 4900 nanorods. b) Evaluation of the packing
density. A cuboid is cut out of the packed structure to reduce the influence
of outliers and the borders of the structure. The magnetic volume fraction
of nanorods in this cuboid is automatically determined by Paraview.

Three types of micromagnetic simulations have been performed on the packed
nanorod structures:

Hmag = ON is a full micromagnetic simulation including the numerical solution
of the demagnetizing field. This simulation type includes all mechanisms
contributing to the reversal behavior: magnetostatic (stray field) interactions,
magnetocrystalline and shape anisotropy and incoherent reversal processes.

Hmag = OFF is a micromagnetic simulation omits the calculation of the
demagnetizing field and therefore neglects stray field and shape anisotropy
effect. The difference of coercive fields between Hmag = OFF and ON

calculations is the gain due to shape anisotropy (∆2 in fig. 53b).

macro spin calculations have only one macroscopic magnetic spin per magnetic
nanorod. The demagnetizing field is still evaluated in this calculation mode,
but all incoherent reversal processes are omitted, because it is not possible to
reflect them with a signle magnetic moment. The difference to theHmag = ON

calculation are the losses due to incoherent reversal processes (∆1 in fig. 53b).

Micromagnetic simulations on a full packed structure with 4900 nanorods as shown
in fig 52 are not feasible due to memory and computational time requirements.
Simulations with the Hmag = ON and OFF modes have been performed on sub-
samples of 100− 250 nanorods (see fig. 53a). However, macro spin calculations are
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possible on the full structures because the number of magnetic spins is reduced from
390,000 (number of vertices in the structure) to 4900 (number of nanorods).

All calculation modes yield the same value for the remanence, but different coercive
fields (see fig. 53b). This makes it possible to obtain a correct remanence value
for the full packed structure with the macro spin mode. However, the macro spin
calculations overestimate the coercivity because incoherent reversal processes are
neglected.

Fig. 54 summarizes the remanence and coercive fields of packed structures over
a wide range of misalignment. There are more remanence values than coercivity
values, because the remanence can also be obtained from the full packed structures
with 4900 nanorods, whereas a correct coercivity value can only be calculated with
Hmag = ON , which is limited to the sub-samples of 100− 250 nanorods.

Both remanence and coercivity show a linearly decreasing trend with increasing
misalignment σϕ, the standard deviation of azimuthal angles ϕ (see fig. 54b).
Plotting the same data over the mean misalignment of angles µϕ shows no clear
dependency between µϕ and remanence and coercivity (see fig. 54a). This is the
reason the standard deviation σϕ was chosen as measure of misalignment of packed
structures.
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Fig. 53: a) Micromagnetic state during magnetization reversal [147]. b) Hysteresis
loop of the structure shown in (a). Different calculation modes make it
possible to determine the losses due to incoherent reversal processes (∆1)
and the gain due to shape anisotropy (∆2) [146]
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Fig. 54: Remanence and coercivity as function of (a) mean and (b) standard
deviation of misalignment angles ϕ.

Fig. 55: a) Calculation of the exact energy density product from the demagnetization
curve. b) Coercivity and energy density product of packed nanorods as
function of packing density. [147]

Fig. 55a shows the exact calculation of the energy density product from the
hysteresis loop. The packing density as to be considered in the calculation of the
magnetic flux density: B = µ0 · H + p · J . Otherwise the energy density product
would be severely overestimated (thin line).

The energy density product generally increases with the packing density (see fig.
55b). The outlier is a structure with very high coercivity indicating an exceptionally
good alignment of the nanorods in this structure.

The coercive field peaks around packing densities p = 0.56. The reason are two
competing factors: lower packing densities generally mean a higher misalignment of
the nanorods lowering the coercivity. Higher packing densities decrease the mean
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distance between the nanorods, decreasing the coercivity due to the magnetostatic
interaction between the nanorods.

The simulated energy density products in the order of 80 − 100kJ/m3 are in good
agreement with nanostructured permanent magnets produced by compacting dry
nanorod powder [104]. A newer production technique, drying the nanorods and
compacting them in an external field in a single step, produces better oriented
structures with high packing density and energy density products up to 180kJ/m3

[114]. Because of the high orientation in coercivity in these samples, they are better
described by a regular arrangement of nanorods with small misalignments discussed
in section 5.2.

Experimentally produced nanorods are covered by a small layer of Co oxides. While
the Co oxides are antiferromagnetic at low temperatures, they are considered non-
magnetic at room temperature, because room temperature lies above the Neel-
Temperature of cobalt oxides [108, 118]. The oxide layer acts as spacer between
the nanorods which reduces the magnetostatic interactions between the nanorods,
improving the coercivity at the cost of packing density of the ferromagnetic material.
The oxide layer effectively reduces the diameter of the Co nanorods, increasing the
coercivity by suppressing the vortex nucleation at the tips of the nanorods.

Fig. 56: Micromagnetic model of a Co nanorod covered with an oxide layer. The
oxide layer is considered non-magnetic at room temperature. This leaves
only the mesh of the Co core in the micromagnetic simulation.
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5.4. Thermal Stability

In this chapter, the thermal stability of the nanorods is discussed. An easy
approximation compares the magnetocrystalline energy stored in the particle with
the thermal energy:

∆E = K1 · V = kB · T (5.14)

If ∆E > 100kBT , the particle is considered thermally stable at temperature T ,
in the sense that the probability that the thermal activation alone reverses the
magnetization in nanorod is negligible in all practical applications, including long-
term magnetic storage [62, 131].

Micromagnetic simulations have been performed to obtain exact energy barriers for
nanorods. Calculations based on the elastic band method determine the minimum
energy path between two, in opposite directions fully saturated micromagnetic
states. The energy barrier is the difference between the minimum and maximum
energy along the path (see fig. 57).

Fig. 57: a) Minimum energy path of a Co (blue) and Fe (red) D10H100 nanorod
from the fully up to the fully down saturated state. The inlays show the
micromagnetic configuration of the Co nanorods along the path [131]. b)
Complex thermal switching behavior of a Fe nanorod.

The energy barriers for Co and Fe nanorods with dimensions D10H50, D10H100,
D20H100 and D30H100 are summarized in fig. 58. Both analytical approximations
and micromagnetic simulations predict that the Co nanorods are thermally stable
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at room temperature. The linear relationship between particle volume and energy
barrier is confirmed by micromagnetic simulations.

The energy barriers for the Fe D10 nanorods lie below the critical limit of 100kBT
which means that they are thermally unstable and unsuitable for hard magnetic
applications. The reason is the low magnetocrystalline anisotropy compared to Co.
However, the micromagnetic simulations show that the shape anisotropy increases
the energy barrier as well.

The shape anisotropy contribution increases the energy barrier of Fe nanorods over
the limit of 100kBT , making Fe nanorods thermally stable at room temperature
as well. The energy barriers of both Co and Fe D10H50 nanorods satisfy the
100kBT criterion at 900K which is sufficient for most applications even at elevated
temperatures (see fig 58).

Fig. 58: Energy barriers obtained by analytical and micromagnetic simulations of Fe
(red) and Co (blue) nanorods as function of volume. The difference between
Hmag = ON and OFF simulations indicate that the shape anisotropy also
contributes to the thermal stability of the nanorods
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5.5. Further Optimization

5.5.1. Optimizing the Nanorod Shape

Until now, we only changed dimensions in order to optimize the magnetic properties
of Co nanorods, but kept the cylindrical base shape intact. The flat tip with the
sharp edges at the tips of the nanorod promote the formation of vortex nucleations.
The question is, how (if at all) does the shape of the nanorod tips influence the
magnetic properties?

Micromagnetic simulations on a single D15H150 have been performed. The cap was
rounded by placing a perfect half-sphere on the tips with the same radius as the
nanorods itself (cap 1.0). In addition, a model with a flatter cap has been created.
In this model (cap 0.5) the half-sphere has been scaled down by 50% along the z
axis before assembling it with the nanorod (see fig. 59a).

The results in fig. 59b show that the flat cap has no measurable influence on the
coercivity of the nanorod. The perfect spherical cap increases the coercivity by 94mT
or 9.7%. The round shape decreases the stray field at the tips and the nucleation
forms at a higher external field. The result is the observed increase of coercivity.

Fig. 59: a) D15H150 nanorods without a cap, a flat rounded cap and a spherical
cap. b) Section of the demagnetization curves of these three models.
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The shape of the nanorods is altered by slightly tuning the experimental conditions
at the crystallization process of the nanorods. Gandha et al. [120] measured a
coercivity of 1.06T in packed nanorod structures with a mean diameter of 15nm.
This value lies above the simulated coercive field of a single, cylindrical nanorod
(0.97T ), and the misalignment and the magnetostatic interaction should further
decrease the coercivity. Coercive fields above 1T in Co D15 nanorods are explained
with the rounded caps reducing the stay field at the tips.

5.5.2. Magnetic Hardening with Antiferromagnetic Caps

Suppressing the nucleation process at the tips of the nanorods is the key to improve
coercivity. In the previous sections, the nucleation process has been suppressed
by geometrical adjustments: lowering the diameter and rounding the caps of the
nanorods. In this section, the nanorods will be magnetically hardened by capping
the nanorods with a thin layer of an antiferromagnetic material with high uniaxial
anisotropy.

As nanorod material Fe has been chosen because it is cheaper than Co and has a
higher saturation polarization leading to a potentially higher energy density product
[139]. As shown in fig. 39 (p. 67), the vortex state is more stable for materials with
cubic anisotropy compared to uniaxial anisotropy, leading to a higher coercivity loss
due to the vortex nucleation.

A wide range of materials come into question for the antiferromagnetic caps. Using
an antiferromagnetic material has the additional advantage that the stray field at
the tips is completely suppressed because of the zero net magnetization. The metal
monoxides are interesting candidates because of the wide range of magnetocrystalline
anisotropy: K1 = 0.5, 3.1, 27.0MJ/m3 for NiO, FeO, and CoO, respectively [14,
50, 103]. (FexCo1−x)3O4 are ferrimagnetic, but also have an interesting range of
magnetocrystalline anisotropy between 0.1 and 0.4MJ/m3 [12].

Micromagnetic simulations have been performed to predict the influence of the
antiferromagnetic or ferrimagnetic caps on the hysteresis properties and to give
guidelines about necessary capping thickness and beneficial intrinsic properties of
the capping material.
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5.5.2.1. Micromagnetic Model

The micromagnetic model consists of a D20H100 iron nanorod, antiferromagnetic
capping layers with varying thickness t and a 1nm thick interface layer where the
antiferromagnetic exchange takes place. The antiferromagnetic coupling over the
interface layer is calculated by a mesh-less method that adds the inter-granular
exchange the surface vertices ri of the cap and the surface vertices rj with

Eint,ij ∝ Aint · |ri − rj| (5.15)

The interface exchange is typically between 1% and 10% of the bulk exchange [74].
Detailed micromagnetic simulations have been performed on the values Arel =
Aint/ANR = −2.5% and −5.0%. The negative sign indicates antiferromagnetic
exchange.

The model can be used for both antiferromagnetic caps (Js,cap = 1mT , zero
saturation would lead to numerical problems) and antiferromagnetically coupled,
ferrimagnetic capping layers.

Fig. 60: Micromagnetic model of a nanorod with antiferromagnetically coupled
capping layers.

5.5.2.2. Results and Discussion

Fig. 61 shows the hysteresis loop of a Fe D20H100 nanorod with a 5nm thick
antiferromagnetic cap with K1,cap = 100K1,NR = 4600kJ/m3 with an interface
exchange Aint = −0.1ANR = −2.5pJ/m. The hysteresis loop is asymmetric or
biased, which means that the coercive fields in positive and negative field direction
(H+

c and H−c ) are not equal. This behaviour is typical for antiferromagnetically
coupled systems [52].
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Fig. 61: Hysteresis loop of a Fe D10H100 nanorod with 5nm thick antiferromagnetic
capping layer and micromagnetic states. The antiferromagnetic exchange
introduces a bias field causing a asymmetric hysteresis loop.

The effective coercive field Hc and the bias field Hbias are given by

Hc = H+
c −H−c

2

Hbias = H+
c +H−c

2

(5.16)

The antiferromagnetic caps suppress the nucleation at the tips of the nanorod and
increase the negative coercive field from −0.47T (no caps, see fig. 38, p. 65) to
−0.75T (fig. 61, (2)). However, the external field is not strong enough to change
the configuration of the antiferromagnetic cap (4). The antiferromagnetic exchange
introduces an early nucleation in the nanorod (5) causing a decrease of H+

c from
0.47T to 0.27T . Because the gain of H−c outweighs the loss of H+

c , the effective
coercivity increases from 0.47T to 0.51T or 8.5%.

Given that the intrinsic properties seem to be optimal (high K1,cap, high Aint) the
maximum realistically achievable coercivity increase seems to be 8.5%. However,
using the same geometry and interface exchange but lowering the anisotropy of
the cap to K1,cap = 10K1,NR = 460kJ/m3 gives an unbiased hysteresis loop with
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Hc = H+
c = H−c = 0.59T . Doubling the anisotropy constant to K1,cap = 20K1,NR

keeps the symmetric hysteresis loop intact and increases the coercivity to 0.66T .

Fig. 62 summarized the coercivity and the exchange bias field over a wide range of
interface exchange (−Aint/ANR = 0 . . . 0.1) for three different anisotropy constants
in the capping layer and three different cap thicknesses. The results show that at low
interface exchange values the coercivity barely increases, but an exchange bias field
is introduced. After a critical interface exchange is reached, the bias field becomes
zero and the capped nanorods exhibit a symmetrical increase of coercivity. For the
hardest examined caps (K1,cap = 100K1,NR = 4600kJ/m3), the transition to the
unbiased state could not be observed in the realistic range of interface exchange
values.

A condition for the introduction of a exchange bias field is given by [52]

K1,cap · tcap > Jint =
∣∣∣∣Ainta

∣∣∣∣ (5.17)

where a is the lattice parameter perpendicular to the interface [69]. This means
if the magnetocrystalline anisotropy energy in the capping layer is high enough to
overcome the interface exchange energy, it is energetically more favorable that the
magnetic spins in the nanorods and in the caps rotate independently from each
other, causing the exchange bias as seen in fig. 61.

Conversely, if condition (5.17) is not fulfilled, the spins in the cap and the nanorod
rotate together, causing the exchange bias field to disappear. This results in a
symmetric hysteresis loop with increased coercivity.

Fig. 63 shows another view on this relation. Increasing the anisotropy in the capping
layer increases the symmetric coercivity, until the capping layer becomes too hard
and is decoupled from the nanorod. The previous coercivity gains are lost and an
exchange bias field is introduced.

This critical point depends on the interface exchange and on the cap thickness, which
means it it is possible to tune the coercivity of the capped nanorods by changing
the thickness of the capping layer in experiment.

With the knowledge that too hard caps can actually be harmful for the coercivity,
a new way to improve templated CoFe nanowires has been developed. After
electrodeposition the alumina template is removed to let the tips of the wires oxidize.
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The magnetocrystalline anisotropy of the cobalt ferrites (FexCo1−x)3O4 is in an
interesting region, where it is possible to achieve symmetric coercivity increases at
medium-low interface exchange. With this method the coercivity of D20 and D40
nanowires could be increased by 7% and 20%, respectively [139].
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Fig. 62: Coercivity Hc and exchange bias field Hbias of a Fe D20H100 nanorod with
antiferromagnetically coupled caps with thickness t = 3nm (blue), 5nm
(red), 7nm (green) as function of the relative interface exchange−Aint/ANR.
The anisotropy constant K1,cap is (a) 10, (b) 20, (c) 100K1,NR

Fig. 63: Coercivity Hc and exchange bias field Hbias of a Fe D20H100 nanorod
with antiferromagnetically coupled caps with thickness t = 3nm (blue),
5nm (red), 7nm (green) as function of the relative anisotropy constant
K1,cap/K1,NR. The interface exchange constant Aint is (a) −0.025ANR and
(b) −0.050ANR
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6. Conclusion

This thesis describes a multiscale modelling approach of the computational material
design for novel permanent magnetic materials. It has been demonstrated that it
is possible to obtain intrinsic material properties such as saturation polarization,
magnetocrystalline anisotropy and exchange stiffness, which are necessary for
micromagnetic simulations, with the help of density functional theory (DFT)
calculations.

While it is relatively easy to get qualitative results with DFT calculations, it takes
effort to achieve results with a high accuacy in order to get a good, quantitative
agreement with experiments (for example the magnetocrystalline anisotropy of
(Fe1−xCox)2B alloys in section 3.3). The problem is caused by the still unknown
form of the exchange-correlation energy functional Exc[ρ].

Improving the approximations of these functionals (local density approximation
LDA, generalized gradient approximation GGA) is still a promising field of research
and the most recent development are the Meta-GGA methods [70]. Until the exact
form of the exchange-correlation functional is revealed, DFT calculations have to rely
on experimental input for corrections in special cases (for example LDA/GGA+U
[130] and fixed spin moment calculations [136])

Nevertheless, DFT calculations are a valuable tool to understand the origin of
unusual material properties (e.g. MnBi calculations in section 3.2) and to give
guidelines to optimize existing materials (e.g. the c/a optimization of MnBi and
(Fe1−xCox)2B alloys).

With micromagnetic simulations in the mesoscopic scale it is possible to understand
the microscopic magnetic reversal mechanisms causing the macroscopically observed
hysteresis loop. Although the mathematical foundation (Landau-Lifshitz-Gilbert
equation, finite element method) has not changed recently, the micromagnetic
simulations are not limited to qualitative predictions and are able to achieve
quantitative results if the complex microstructure is taken into account in the
computer model.

A major drawback of the micromagnetic simulations are the length scales. To
give exact results, the finite element discretization has to be below the Bloch
domain wall parameter δB =

√
A
K1

in the order of 2 − 5nm for hard magnetic
materials. Considering typical grain sizes in sintered magnets in the order of several
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micrometers, a correct, fine enough discretization takes several billion elements per
grain resulting in huge computational time and memory requirements.

These restrictions force the use of simplified models which give qualitative or semi-
quantitative results at best and confirm theoretical predictions with not much added
value. The perfectly coupled grain structures in section 4.3.1 are an example how
simplified models yield nearly the same results as the analytical Stoner-Wolfarth
model.

The recent advances in nanotechnology brought the structures to a length scale
where exact micromagnetic simulations are feasible. By creating models with
realistically shaped grains and grain boundaries, it is possible to give quantitative
results.

The micromagnetic simulations revealed that the indirect coupling of grains over
para- or ferromagnetic grain boundaries is the driving factor behind Brown’s
paradox, that only up to 40% of the theoretical anisotropy field are realized as
coercivity in real magnets (section 4.3.4).

With the help of the analysis of micromagnetic simulations it was also possible to
explain how isotropic magnets exhibit higher coercive fields than oriented magnets.
The analysis of the microstructural parameters α and Neff revealed that the
isotropic easy axis distribution does not only change the parameter α because of
the higher misalignment with respect to the external field, but it also changes the
structure of the demagnetizing field described by Neff . The loss in coercivity due to
the misalignment is compensated by the lower demagnetizing fields (section 4.3.5).

Micromagnetic simulations on the nanostructured permanent magnets followed a
bottom-up approach. From the optimization of single nanorods (section 5.1),
examination of the dipolar interaction between nanorods (section 5.2.1), influence
of packing density in perfectly aligned nanorod matrices (section 5.2.2) to the
realistically packed structures in section 5.3.

The micromagnetic simulations give guidelines for the development of
nanostructured permanent magnets and for new ideas and applications, such as
the hardening of iron nanorods with antiferromagnetically coupled capping layers
(section 5.5.2).

The micromagnetic simulations showed that the elongated nanoparticles are and
adequate way to improve coercivity, however, a significant amount of potential
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energy density product is lost due to the volume fraction of the magnetic material
(section 5.2.3). Nd2Fe14B would perform similarly to Co in a nanorod-based
structure, because the saturation polarization and packing density are the limiting
factors, and not the coercivity of the structures.

In the framework if this thesis it has been demonstrated that the multi-scale
approach consisting of density functional theory calculations and micromagnetic
simulations gives exact quantitative predictions for intrinsic properties and the
resulting macroscopically observed hysteresis properties.
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