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Abstract 

For the determination of the Young’s modulus of bone tissues several methods are widely in 

use, among them quasi-static mechanical tests, ultrasound tests, and nanoindentation tests. 

However, the key question of how an elastic modulus can be reliably retrieved from such 

tests, is surprisingly unsettled. In this Master’s thesis, a new method for determination of the 

elastic modulus of extracellular bone matrix from very many nanoindentation results is 

developed, based on an earlier contribution in the field of brittle ceramics used in bone tissue 

engineering (Kariem et al., 2015). 

576 nanoindentation tests were performed on carefully polished bovine femoral bone samples, 

and the results were statistically analyzed,by fitting a number of Gaussian distribution 

functions to the histogram made up by all indent-specific elastic moduli, each of them being 

retrieved from Oliver and Pharr’s solution for the elastic half space. The fitting procedure was 

based on an evolutionary algorithm (Weicker, 2007; Jaindl et al., 2009), and revealed the 

existence of several material phases with distinct expected values for their corresponding 

elastic moduli, according to the premises of the statistical or grid nanoindentation technique 

(Ulm et al, 2007). The stiffest of these moduli refers to the undamaged elastic modulus of 

extracellular bone tissue, while all other moduli reflect influences of microcracks in the 

vicinity of the indent, or directly branching off from the microcracks; this was explicitly 

confirmed by a preliminary nanoindentation test series performed under a Scanning electron 

microscope (SEM). 

The value obtained with our new method for the undamaged extracellular femoral bovine 

bone matrix, amounting to 31.4±2.5 GPa, appears remarkably well to the results obtained 

from unloading quasi-static compression tests on single-micro-sized micropillars which were 

SEM-FIB-milled from the same type of bone (Luczynski et al., 2015); and to predictions of a 

carefully validated micromechanical model for bone (Morin and Hellmich, 2014). 

 

This is regarded as major step toward reliable determination of the elastic properties of bone 

at a scale, where „universal“ composition and elasticity laws can be retrieved (Vuong and 

Hellmich, 2011); and hence, to drive forward bone mechanics to a level which would finally 

allow for predictive fracture risk assessment in biomedicine up to the level which have been 

reached in traditional civil or mechanical engineering, and for advanced, computer-aided 

design of materials for bone replacement.  
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1. Introduction  

The idea of developing and implementing a fundamentally new evaluation protocol for 

nanoindentation measurements originated in the fact that this mechanical testing method is 

used to measure the load and displacement behavior of materials with very different types of 

structure and parameters.  According to our observed measurements, the Young modulus of 

elasticity obtained from nanoindentation tests shows a relatively wide range of results, 

depending on the indentation location - especially in brittle or porous materials. This can 

easily also be concluded from literature, as many studies report very different values for the 

Young modulus from nanoindentation for one and the same material. 

This led us to the theory that the results of nanoindentation tests could be affected by fine, 

visually not detectable cracks, i.e. a damage of the material could occur. This damage could 

be a result of sample preparation, as well as a consequence of the nanoindentation procedure 

itself. Usual evaluation methods only filter out the most evident measurement failures or 

incorrect data, but none of them takes into account possible material damage. The results are 

usually fitted with one distribution, or an average of more measurements is calculated, which 

may also include results for damaged material; this is the reason why nanoindentation tests 

usually deliver a lower Young’s modulus than quasi-static mechanical or ultrasonic tests. 

This Master’s Thesis is focused on determining the exact Young’s modulus of pure, non-

damaged bovine cortical bone. The description of the method and the results, which have 

been put together in a paper that builds the core of this thesis (and has been submitted to the 

Journal of the Mechanical Behavior of Biomedical Materials), describes how the Young 

modulus of the undamaged material phase was extracted. For this we performed 576 

nanoindentation tests on finely polished samples obtained from an 18-month-old bovine 

femur bone, and developed an evaluation method which excludes damaged material phases 

with high certainty. This was achieved by fitting a different number of cumulative 

distributions (in our case from 1 to 10) - i.e. different distribution groups - to the measurement 

data with the help of the evolution strategy. This strategy iteratively changes the normal 

cumulative distribution functions and their weights, until their summarized combination best 

fits the original data.  

The optimal number of distributions for fitting our experimental nanoindentation results was 

chosen to be that for which the relative error to the original data was minimal. Within this 

group, the very last distribution corresponded to the intact material, its mean representing the 

Young modulus of pure, non-damaged bovine cortical bone – while all other distributions 

were considered to represent several damaged material phases. The results obtained with this 
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protocol were compared with those previously obtained from micropillar compression tests, 

and the agreement was very good. 

At the end of this thesis, a short future outlook is offered, presenting further possibilities for 

proving the existence of damage that could affect the results of nanoindentation tests. 
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2. Paper entitled ”A new nanoindentation protocol for 

identifying the elasticity of undamaged extracellular bone 

tissue” 
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A new nanoindentation protocol for identifying the elasticity 

of undamaged extracellular bone tissue 

Irina Furin, Maria-Ioana Pastrama, Hawraa Kariem, Krzysztof W. Luczynski, Olaf Lahayne, 

Christian Hellmich
1
 

 

Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Austria 

 

Abstract 

We here describe a new method for nanoindentation-based identification of the undamaged 

extracellular bone matrix. The underlying premise is that the tested bovine bone sample is 

either initially damaged (i.e. shows some microcracks) or that the nanoindentation process 

induces such microcracks, or both. Then, hundreds of indentations may partially relate to an 

intact material phase (sufficiently far away from microcracks), and partially relate to 

differently strongly damaged material phases. Corresponding elastic phases properties are 

identified from the statistical evaluation of the measured indentation moduli, through 

representation of their histogram as a weighted sum of Gaussian distribution functions. The 

resulting undamaged elastic modulus of bovine femoral extracellular bone matrix amounts  to 

31 GPa, a value agreeing strikingly well with both direct quasi-static modulus tests performed 

on SEM-FIB-produced micropillars (Luczynski et al, 2015), and with the predictions of a 

widely validated micromechanics model (Morin and Hellmich, 2014). Further confidence is 

gained through observing typical indentation imprints under an SEM, indeed confirming the 

above stated premise on the types of microcracks present on the tested bone surface. 

 

Keywords: statistical nanoindentation, bovine bone, micromechanics, elastic modulus, 

evolutionary strategy  

                                                 
1 Corresponding author 
E-mail address: christian.hellmich@tuwien.ac.at (Christian Hellmich) 
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List of symbols 

   projected area of the elastic indentation contact 

        stiffness matrix of the extracellular bone matrix 

      
    inverse of the extracellular bone stiffness matrix 

            component of the extracellular compliance tensor 

      experimental cumulative distribution function (CDF) of the measured data 

       weighted sum of the Gaussian cumulative distribution function 

  
       Gaussian model cumulative distribution function for material phase j 

         extracellular compliance tensor 

      relative error 

    elastic modulus of the indentor tip 

    reduced elastic modulus 

    elastic modulus of the extracellular bone matrix 

      i
th

 experimental value of   , as determined by nanoindentation 

     elastic modulus of undamaged, intact extracellular bone tissue material 

    weighting factor of the Gaussian cumulative distribution function related to 

material phase j 

   indexing the number of indentations i   [1,  ] 

k  number of mutation cycles 

   total number of indentations 

o   optimal number of Gaussian cumulative distribution functions 

P  number of pixels in each scan edge 

R
2  

coefficient of determination 

    root-mean-squared average roughness (RMS) of the topography of the surface 

   stiffness 

   variable of the normal distribution function 

zij  measured height at position (i,j) from the mean plane 

ℰ  sum of squares of residuals 

    mean value related to material phase j 

    Poisson’s ratio of the indentor tip 

    Poisson’s ratio of solid bone matrix 

    standard deviation related to material phase j 

        characteristic time of relaxation 

 ̇         dependence of the holding portion of the load data on time 
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1 Introduction  

Ever since the famous paper of Oliver and Pharr (1992), indentation techniques have re-

gained a very prominent role in material characterization, by extending their application to get 

smaller and smaller scales, and coining a new term for these developments: nanoindentation. 

Originally applied to materials such as fused silica, soda–lime glass, and single crystals of 

aluminum, tungsten, quartz, and sapphire, the method was, soon thereafter, extended to 

biological materials such as bone (Rho et al., 1997; Rho and Roy, 1999; Zysset et al., 1999; 

Hengsberger and Zysset, 2002; Rho and Zioupos, 2002). These applications were motivated, 

according to Rho et al. (1997), by the wish to measure the “intrinsic” elastic properties of 

several of the microstructural components of bone. In this context, „intrinsic“ refers to the 

properties of bone tissue or extracellular bone matrix defined at the scale of several to several 

tens of micrometers, rather than to those of a macroscopic (typically millimeter-sized) sample 

of cortical or trabecular bone. The aforementioned references revealed important new insight 

into these “intrinsic” bone properties. On the one hand, this insight concerned heterogeneity 

of bone tissue properties at different (small) observation scales; e.g. it was found that the bone 

tissue elastic properties of vertebrae are much smaller than those of tibiae (Rho et al., 1997); 

that tibial osteonal regions are softer than interstitial ones (Rho et al., 1997); and that human 

femoral trabecular bone tissue is softer than cortical bone tissue (Zysset et al., 1999). On the 

other hand, such tests revealed that bone tissue properties are, on average, independent of 

adult tissue age (Hoffler et al., 2000; Rho et al., 2002; Feng and Jasiuk, 2010; Wolfram et al., 

2010).  

Hence, while the method was very successful in terms of evidencing local differences (exactly 

as the pioneers of the method had actually hoped for), the reconciliation of the quantitative 

values it provided, with those of other methods delivering elastic properties, such as ultrasonic 

and quasi-static mechanical testing, turned out as challenging: In more detail, applying 

ultrasonic signals in the MHz frequency regime to bone samples, as reported by Ashman et al. 

(1984), Lees et al. (1979), and Lees and Ahern (1983), results in the propagation of waves the 

wavelengths of which are typically less than one millimeter; and according to the separation 

of scales principle in continuum (micro-)mechanics (Zaoui, 2002; Drugan and Willis, 1996) 

and the continuum theory of elastic waves (Fedorov, 1968), the aforementioned wavelengths 

need to be much larger than the characteristic material volume (also called representative 

volume element) whose elastic properties are characterized by the ultrasonic waves 

(Kohlhauser and Hellmich, 2013). Accordingly, MHz-regime-related ultrasonic tests reveal 

the elastic properties at the bone tissue scale (i.e. that of a material volume with several 
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microns characteristic length), averaged over the size of the ultrasonically tested sample 

(Fritsch and Hellmich, 2007; Vuong and Hellmich, 2011). 

However, such ultrasonically determined elastic stiffness values are, as a rule, consistently 

larger, than those obtained (on average) from nanoindentation campaigns (Malandrino et al., 

2012). And the same discrepancy was very recently found in the context of unloading 

mechanical tests on SEM-FIB-produced micropillars (Luczynski et al., 2015), again 

delivering results in line with ultrasonic tests, but stiffer than those obtained from 

nanoindentation. 

 

This discrepancy motivates the present study, aiming at an improved nanoindentation protocol 

that may indeed deliver results, which are consistent with the aforementioned well-established 

and well-understood methods for elasticity determination, namely ultrasonics tests and 

unloading mechanical tests. Our proposition is that the aforementioned discrepancy may stem 

from bone microcracks measuring several to several tens of micrometers (Schaffler et al., 

1994; Wenzel et al., 1996; O'Brien et al., 2000; Chapurlat et al., 2007), which may be - to 

some extent - initially present close to the indentation sites, but may be also actively induced 

by the indentation process itself. The basis for this proposition is that bone tissue is known to 

behave plastically at the level of several microns, as revealed by nanoindentation test imprints 

studied in the context of plasticity theory for nanogranular materials (Tai et al., 2006), by 

advanced micromechanics theories validated through various biochemical and biomechanical 

experiments (Fritsch et al., 2009), and by mechanical tests of single micrometer-sized 

micropillars (Luczynski et al., 2015; Schwiedrzik et al., 2014); while it shows a quasi-brittle 

behaviour at the scale of tens to hundreds of micrometers (Ritchie, 2011). 

Accordingly, we here target at distinguishing between tests conducted sufficiently far from 

microcracks and not inducing any neighbouring cracking events, from tests conducted in the 

absence of such events, and hence fulfilling more appropriately the conditions needed for 

nanoindentation evaluation as proposed by Oliver and Pharr in 1992. Therefore, we take 

inspiration from the so-called statistical or grid nanoindentation technique developed in the 

late 2000s (Constantinides and Ulm, 2007; Ulm et al., 2007; Vandamme and Ulm, 2009), 

where a statistical evaluation of very many indentation results allows for assignment of 

subgroups of these results, to different chemical material phases present in a highly micro-

heterogeneous material; and basically extend this idea from purely chemical differences 

between phases, to different degrees of mechanical damage present in the phases, or in other 
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words, to indents differently close to crack-type defects. Thereby, our interest focusses 

exclusively on the one undamaged phase, and its elastic properties. 

 

The corresponding experimental and data evaluation steps are given in greater detail in 

Section 2, and the corresponding results for the elasticity of the undamaged phase are then 

compared to tests giving direct access to this elasticity, namely to micropillar tests, and to 

ultrasonic tests in combination with advanced micromechanical theories (Morin and 

Hellmich, 2014). This comparison is further discussed in Section 4, which concludes the 

paper. 

2 Materials and Methods 

2.1 Sample preparation 

 A diamond saw (Isomet, Buehler, USA) was used to cut, under constant distilled water 

irrigation, four plane-parallel cortical bone samples with a thickness of 3.5 mm, and 

measuring roughly 10 times 12 mm in the two other directions, from an 18-month old bovine 

femur, normal to the longitudinal bone axis. The samples then underwent a number of 

preparation steps, between which they were kept in a freezer at -20 degrees C, in order to 

preserve their mechanical properties (Fölsch et al., 2011; Nazarian et al., 2009; Linde & 

Sørensen, 1993). As a first processing step, the samples were glued onto glass slides and 

polished with a polishing machine (PM5, Logitech, Scotland), in order to provide flat, i.e. 

low-roughness, surfaces, as they are needed for meaningful nanoindentation. Thereby, the 

polishing machine was operated in the “sweeping arm” mode with 10 sweeps/minute. In this mode 

the polishing paper undergoes a rotating movement only, while the sample holder with the sample is 

not only rotating, but also translating. In the first polishing step, all four samples were polished 

with coarse polishing paper (particle size 18.3 µm) for 3 minutes, in order to make sure that 

the top of the sample is completely parallel to the bottom of sample attached to the glassy 

specimen holder; this provides an even surface during indentation without any tilt. The 3-

minute coarse grinding procedure resulted in a loss of approximately 0.5 mm in thickness for 

each sample. In the second polishing step the samples were polished with a napped cloth 

impregnated with 1 µm, high performance, polycrystalline diamond spray (DP-Spray P), for 

different amounts of time (see Table 1 for details), so as to achieve an even, finely polished 

surface with a minimized roughness. According to the protocol of Miller et al. (2008), the use 

of only one size of diamond suspension for the finishing of the sample surface increases the 
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repeatability of the procedure. A visual comparison of the differently long polished sample 

surfaces was performed with a microscope (Zeiss Imager Z1m), together with a comparison 

of the surface roughness, as described in the next section. 

 

Table 1: Polishing protocol for sample preparation 

Sample number Particle size of sandpaper [µm]   Polishing time [min] Plate Speed [rpm] 

1 
18.3 3 10 

1 (diamond suspension on a cloth) 120 20 

2 
18.3 3 10 

1 (diamond suspension on a cloth) 180 20 

3 
18.3 3 10 

1 (diamond suspension on a cloth) 240 20 

4 
18.3 3 10 

1 (diamond suspension on a cloth) 300 20 

 

 

2.2 Roughness determination 

 The roughness of Sample 1 (120 minutes of 1 µm polishing) and Sample 4 (300 

minutes of 1 µm polishing) was measured using the scanning probe microscopy (SPM) mode of a 

TriboIndenter system (Hysitron Inc., USA). Two topographic images were made at two 

different locations using scan sizes of 15×15 µm
2
. The root-mean-squared average roughness 

(RMS) of the topography of the surface,   , was calculated as 

    √
 

  
∑∑   

 

 

   

 

   

 (1) 

where P denotes the number of pixels in both scan edges, and     is the height at position (   ) 

from the mean plane (Miller et al., 2008). 

 

2.3 Nanoindentation 

 In order to check the undamaged elasticity of cortical bovine bone, nanoindentation 

tests were performed on the four prepared samples, using a Berkovich diamond tip attached to 

a TriboIndenter nanoindenting system (Hysitron Inc., Minneapolis, MN). Displacement 

control to a depth of 250 nm with a loading- and unloading rate of 40 nm/s and a holding time 

of 20 s was used, according to a previously published protocol for bone testing (Reisinger et 

al., 2011). On each sample a grid of 12x12 indents with 5 µm spacing was defined, resulting 
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in altogether 576 indentations. The measurements were evaluated according to the method of 

Oliver and Pharr (1992), which defines the stiffness S as the ratio of load and displacement at 

the peak load end of the unloading curve,  

   
 

√ 
  √  (2) 

and introduces the reduced modulus,    which considers both the displacement of the sample, 

  , as well as that of the Berkovich indenter tip,   :  

 
 

  
 

     
  

  
 

     
  

  
 (3) 

with    and    as the corresponding Poisson ratios. The elastic modulus of the sample results 

then from the above equation: 

 
   

     
  

 
  

 
     

  
  

 
(4) 

 Determination of    according to (4) requires knowledge of Poisson’s ratio of 

extracellular bone matrix, ν=0.3 (van Rietbergen et al., 1995), as well as of the Poisson ratio 

and the elastic modulus of the diamond indenter tip, amounting to    = 0.07 and  

   = 1141 GPa. 

 The   = 576 test results for the value of the elastic modulus     ,           were 

evaluated considering the potential (initial or penetration-induced) presence of microcracks 

close to the performed indents, effecting the values obtained from Eq.(1) – (4), resting on 

half-space theory for homogeneous (crack-free) solid domains. In order to discriminate 

“damaged” from “non-damaged” halfspaces charactrerized by nanoindentation, the concept of 

statistical or grid nanoindentation (Constantinides et al., 2006; Constantinides and Ulm, 2007; 

Ulm et al., 2007) was adopted and modified, in the line of (Kariem et al., 2015): The data for 

the values of Es were fitted by n Gaussian Cumulative Distribution Functions (CDFs) with 

weighting factors   , ∑      
 , out of which only one represented the intact, undamaged 

material; namely the one with the largest mean value. The latter was considered as the 

(average) elastic modulus of undamaged (extracellular) bone tissue. All other Gaussian CDFs 

represented material damaged to varying extents. This fitting process was repeated for several 

numbers of phases, and it can be written in mathematical detail as follows: Each one of the n 

Gaussian CDFs are written in standard form as   
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  √  
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)
  

  

   (5) 

 The weighted sum of these distributions is then  

            ∑    
     (        )

 

 

 (6) 

 Next, the CDF representing the (sorted) experimental data from nanoindentation,     , 

         is constructed according to  

     (    )  
 

 
 

 

  
 (7) 

with    [1,  ],   = 576 indentations. Optimal fit of the experimental CDF through the 

superposition of n Gaussian CDFs with mean values mu and standard deviations sigma was 

obtained through the following minimization problem  

   ∑(                 (    ))
 

     

 

   

 (8) 

  

The minimization procedure (8) was realized by means of a evolutionary algorithm that starts 

with a set of approximated CDF parameters (mean   , standard deviation    and the weighting 

factor   ), and, through several so-called “mutation cycles”, converges towards the optimal 

parameters    and   , which, for a chosen number   of phases, provide the minimum given in 

Eq.(8). The algorithm was stopped based on a criterion involving the coefficient of 

determination, reading as: 

      
∑ [      (    )      (    )]

  
   

∑ [    (    )  
 
 

∑     (    )
 
   ]

 
 
   

 (9) 

 

The chosen criterion was inspired by the deliberations of Weicker et al. (2007), and reads as: 

           [  
  (

 

    
∑   

 

 

      

)] AND          (10) 

with   as the number of mutation cycles; i.e. the attained coefficient of determination is larger 

than 0.98 and not more 0.00009 different form those attained in the last 1000 mutations.  
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 In order to finally select the optimal number of Gaussian CDFs,    , for each 

superposition of Gaussian cumulative distribution functions, the relative error between 

experimental and model CDF was determined according to  

          
 

                   
∫ (      (    )      (    ))  

         

         

 (11) 

with           and           as the maximum and minimum values of the Young modulus 

obtained from nanoindentation tests, their difference representing the total range of 

experimental values, while the integral on the right hand side of the equation represents the 

difference between the      specific values of the model CDF (based on   Gaussians) and of 

the experimental CDFs. The number of Gaussian distributions   that best fit the experimental 

data was chosen to be that which resulted in the minimum relative error     . The 

corresponding mean value    is regarded as the undamaged bone tissue modulus,    . 

 

3 Results 

3.1 Microscopic investigation of the sample surfaces 

 The initial, coarse polishing of the specimens mainly aimed at milling off enough 

material, so as to remove a potential tilt of the sample; this left scratch-type traces on the 

surface, as seen in the light microscopic image of Figure 1, illustrating the only roughly 

polished, somewhat “scratched” surface of Sample 1. In contrast, subsequent polishing with 

the 1 µm diamond suspension clearly revealed, under light microscopic magnifications, the 

finer bone microstructures, see Table 2 for a comparison of different polishing times and 

resulting surfaces for each of the four samples. The images show no optical differences 

between the samples finished with different polishing times. All bone samples exhibited a 

transitional state between plexiform (lamellar) and haversian (osteonal) bone structures, as 

they are common for young growing cows: stacks of long, parallel lamellae separated by 

vascular spaces, with osteons in between. (Katz et al., 1984; Locke, 2004). 
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Figure 1: The surface of Sample 1 after 3 minute of coarse polishing (particle size 18.3 µm)(100x) 

3.2 Surface roughness 

 The roughness determination for the Samples 1 and 4 delivered an average RMS 

roughness of 11,61 and 9.12 nm, respectively. The results show that the different polishing 

times (120 and 300 min, respectively) did not result in any significant difference in the 

average RMS roughness of the samples, the small difference in the two values being due to 

the variability of the data. With the current protocol, the maximum indentation depth  

(250 nm) was more than one order of magnitude larger than the average roughness, thus 

ensuring that the latter does not influence the results of the nanoindentation tests (Bobji and 

Biswas, 1998). The surface topography of Sample 1 with visible indentation marks is shown 

in Figure 2.  
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Table 2: Visual comparison of the four sample surfaces by light microscopy after polishing with 1 µm diamond 

suspension on a cloth 

Sample 
Polishing time 

[min] 

Surface appearance 

100x magnification 200x magnification 

1 120  

 .  

2 180 

  

3 240 

  

4 300 
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Figure 2: A surface topography of the indented area of Sample 1 generated in the SPM mode for roughness determination, 

with visible indentation marks 

3.3 Undamaged elastic modulus of bovine bone 

 A. Figure 3 shows all the 576 values for the elastic modulus according to Eq.(4) in 

ascending order. A typical load-displacement curve for undamaged bone material is shown in 

Figure 4. 

 

Figure 3: The experimental elastic moduli received from the nanoindentation measurements of cortical bovine femur bone, in 

ascending order 
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Figure 4: Typical load-displacement curve of a non-damaged cortical bovine femur bone, with an obtained elastic modulus of 

   = 30.53 GPa at 250 nm maximal displacement 

 With the optimization procedure described in Section 2, all the obtained data was 

fitted with a number of distributions varying from 1 to 10. The best fit, that minimized the 

relative error      between the experimental and the summed model CDF to 0.62%  

(see Table 3), was obtained for five distributions, of which four are considered to represent 

damaged material phases and one corresponds to the intact material; the mean value of the 

elastic modulus of the latter being the highest of all and thus representing the Young modulus 

of the undamaged, intact bovine bone material, amounting to     = 31.4±2.5 GPa.  

The experimental, as well as model single and summed distributions of elastic moduli values 

are shown as cumulative distribution functions (CDFs) and histograms in Figures 5 and 6, 

respectively. 

  



20 

 

Table 3: Results for different numbers of distributions used to fit the experimental data: mean value of the 

Young modulus for the distribution corresponding to intact bone material (   ); standard deviation ( ); 

coefficient of determination (  ); relative error (    ) 

Number of 

distributions 
    [GPa]           [%] 

1 24.6651 9.1864 0.8891 13.7157 

2 28.0215 5.7494 0.9833 3.8431 

3 29.7854 3.0053 0.9935 2.0848 

4 30.8070 2.4301 0.9957 1.1774 

5 31.3892 2.4858 0.9967 0.6221 

6 31.9549 2.0082 0.9949 0.6587 

7 32.2018 1.9942 0.9943 0.6326 

8 32.4607 1.9967 0.9932 0.6786 

9 32.7463 1.9947 0.9928 0.7211 

10 33.8508 0.9211 0.9899 3.3354 

 

 

Figure 5: The Gaussian cumulative distribution functions (CDF) of all experimental data, as well as  

of the model single and summed distributions 
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Figure 6: Histogram of experimental values of elastic moduli obtained by nanoindentation and fitting of the data 

with five distributions, four of them representing damaged material and the last one representing  

intact bovine bone 

4 Discussion  

  

 We here presented a new method for identification of the undamaged elastic modulus 

of a solid phase within a (partially) microcracked medium tested through nanoindentation. 

Therefore, very many indents were performed on bovine bone samples, and the corresponding 

histogram of elastic moduli was represented in terms of the weighted sum of Gaussian 

distribution functions.  

This representation turned out as very precise, so that the different Gaussians could be 

interpreted as reflecting the elastic behavior of differently stiff material phases: the stiffest of 

which would be the undamaged matrix phase, and the others would refer to different levels of 

mechanical damage. It is interesting to compare our result for the undamaged phase, 

   =31.4 ± 2.5 GPa, to independent, alternative experimental results concerning extracellular 

bovine bone matrix. 

 

In fact, on the very same type of bone, unloading quasi-static tests on SEM-FIB-produced 

micropillars with only one micron side length and a couple of micrometers height, performed 

by Luczynski et al (2015), revealed a strikingly similar value, amounting to 29.9 ± 2 GPa. 
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Furthermore, our results can be compared to the predictions of advanced micromechanical 

material modeling of bone (Morin and Hellmich, 2014): Feeding the composition and 

hierarchical interaction rules documented in the aforementioned paper with the bone tissue 

mass density reported as 2.044 ± 0.43 g/cc (Lees et al., 1979b), yields an axial Young’s 

modulus of bone tissue amounting to 30.1 GPa, again in virtually perfect agreement with the 

outcome of our new experimental method. Coincidently, this micromechanics model predicts 

the corresponding axial Poisson’s ratio as 0.30; fully confirming the choice of Rietbergen et 

al. (1995), as used in Section 2. 

 

Finally, the underlying idea of microcracks, either positioned at different distances from the 

indents (and therefore affecting the result stemming from Oliver and Pharr’s half-space 

problem), or directly emanating from the indents indicated direct sample damaging by the 

very indentation process, can be checked through observation of indentation processes in an 

SEM.  

A preliminary small number of tests done exactly under these conditions reveal indeed the 

existence of the aforementioned types of cracks, see Figure 7. 

 

Figure 7: Image made by a Scanning Electron Microscope (SEM) during nanoindentation tests,  

showing cracks and holes inside the grid of indents  
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3. Additional activities and future work 

Roughness measurements and surface scanning of Sample 1 (120 minutes of polishing with a 

cloth impregnated with 1 µm diamond suspension) and Sample 4 (300 minutes of 1 µm 

polishing) were made with the TriboIndenter equipment of Hysitron at a scanning rate of 3 

Hz. The topographic images were made at different locations using scan sizes of  

15 µm× 15 µm2. Table 3 shows a summary of the roughness measurement results. The 

surface scan was repeated to visually examine the indentations, the topographic image of 

which can be found in the paper. Figure 1 shows image statistics, as well as surface scanning 

pictures from the Hysitron software. 

 

Table 3: Results of roughness calculation (Projected Area = scanned area; RMS Roughness = Root Mean Squared 

Roughness; Peak-to-Valley = Max Height – Min Height) 

 Sample 1 Sample 4 

1. 

 

Projected Area = 225 µm^2 

RMS Roughness (Rq) = 6.30226 nm 

Average Roughness (Ra) = 5.00147 nm 

Mean Height = -0.0225375 nm 

Max Height = 18.2878 nm 

Min Height = -26.6414 nm 

Peak-to-Valley = 44.9292 nm 

 

Projected Area = 225 µm^2 

RMS Roughness (Rq) = 9.60791 nm 

Average Roughness (Ra) = 6.75024 nm 

Mean Height = -0.0126778 nm 

Max Height = 50.6187 nm 

Min Height = -48.8577 nm 

Peak-to-Valley = 99.4764 nm 

2. 

 

Projected Area = 225 µm^2 

RMS Roughness (Rq) = 16.9212 nm 

Average Roughness (Ra) = 13.9889 nm 

Mean Height = 0.00886825 nm 

Max Height = 43.2585 nm 

Min Height = -48.6319 nm 

Peak-to-Valley = 91.8904 nm 

 

Projected Area = 225 µm^2 

RMS Roughness (Rq) = 8.62437 nm 

Average Roughness (Ra) = 6.9733 nm 

Mean Height = -0.0143238 nm 

Max Height = 25.1513 nm 

Min Height = -29.4411 nm 

Peak-to-Valley = 54.5924 nm 

AVG Average RMS = 11,61 nm Average RMS = 9,12 nm 
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Figure 1: Roughness measurement and surface scanning 

For future work it could be of great interest to work out the possibilities of a visual 

examination of the damages that may occur as a result of sample preparation or during the 

nanoindentation process. An initiative of picoindentation tests (PI 85 Picoindenter, Hysitron, 

shown in Figure 2) and high resolution imaging in a Scanning Electron Microscope (SEM) 

environment at nanometer scale has already been started by the Institute for Mechanics of 

Materials and Structures, in collaboration with USTEM (Service Center for Transmission and 

Electronmicroscopy) at the Vienna University of Technology.  



30 

 

 

Figure 2: Picoindenter mounted on the SEM stage 

The following images present the indentation process in vivo. Figure 3 demonstrates as the 

indentor tip approaches the sample surface, while Figure 4 shows the surface, with the clearly 

detectable indentation grid. It is hoped that, in the future, the correlation of such images with 

the results obtained from picoindentation tests could give additional information on the 

existence of damage in the tested samples (pre- or post-testing). This could shed light on the 

dynamics of the cracking and damaging processes, and how exactly these affect the 

determination of elastic material properties from nanoindentation tests. 
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Figure 3: Sample indentation inside picoindentor 

 

Figure 4: Sample indentation inside picoindentor with the indentation matrix visible 
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A. Appendix I: Microscopic images of the samples 

High resolution microscope pictures of prepared bovine femur bone samples. 

 

Figure 5: The surface of Sample 1 after 3 minute grinding with 1000 m diamond grit 

 

Figure 6: Sample 1 after 120 min of polishing with cloth sprayed with 1 µm diamond suspension (100x magnification) 
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Figure 7: Sample 1 after 120 min of polishing with cloth sprayed with 1 µm diamond suspension (200x magnification) 

 

 

Figure 8: Sample 2 after 180 min of polishing with cloth sprayed with 1 µm diamond suspension (100x magnification) 
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Figure 9: Sample 2 after 180 min of polishing with cloth sprayed with 1 µm diamond suspension (200x magnification) 

 

Figure 10: Sample 3 after 240 min of polishing with cloth sprayed with 1 µm diamond suspension (100x magnification) 
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Figure 11: Sample 3 after 240 min of polishing with cloth sprayed with 1 µm diamond suspension (200x magnification) 

 

 

Figure 12: Sample 4 after 300 min of polishing with cloth sprayed with 1 µm diamond suspension (100x magnification) 
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Figure 13: Sample 4 after 300 min of polishing with cloth sprayed with 1 µm diamond suspension (200x magnification)  
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B. Appendix II: Matlab source code used to identify the Young 

modulus of the damaged and undamaged material phases 

 

Script  

The main script initiates function “Sample_all” a given number of times, in order to define the 

convergence value of the means of       and     . 

 

clear all; 

my_files={'Sample_all.m'}; %'Sample_1.m''Sample_2.m''Sample_3.m''Sample_4.m' 

ntimes=100; %The number of runs 

n=ntimes; 

str_n=num2str(ntimes); 

Max_number_of_fits=10; %The maximum number of distributions, we would like to analyze 

    e_ntimes=zeros(Max_number_of_fits,n+1); 

    sigma_ntimes=zeros(Max_number_of_fits,n+1); 

    r2_ntimes=zeros(Max_number_of_fits,n+1); 

    rel_err_ntimes=zeros(Max_number_of_fits,n+1); 

    e_ntimes(:,1)=(1:1:Max_number_of_fits)'; 

    sigma_ntimes(:,1)=(1:1:Max_number_of_fits)'; 

    r2_ntimes(:,1)=(1:1:Max_number_of_fits)'; 

    rel_err_ntimes(:,1)=(1:1:Max_number_of_fits)'; 

 

for n=1:ntimes 

    filename=char(my_files); 

    [Results,e]=Sample_all(Max_number_of_fits); 

    e_ntimes(:,n+1)=Results(:,2); 

    sigma_ntimes(:,n+1)=Results(:,3); 

    r2_ntimes(:,n+1)=Results(:,4); 

    rel_err_ntimes(:,n+1)=Results(:,5); 

end 

 

    mean_e=mean(e_ntimes(:,2:end),2); 

    mean_sigma=mean(sigma_ntimes(:,2:end),2); 

    mean_r2=mean(r2_ntimes(:,2:end),2); 

    mean_rel_err=mean(rel_err_ntimes(:,2:end),2); 

 

    Results_means=[(1:Max_number_of_fits)',mean_e,mean_sigma,mean_r2,mean_rel_err]; 
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    %plot the E, std, R2 and rel_err means by number of distributions 

clf; 

f=figure; 

hold on; 

x=1:Max_number_of_fits; 

Y = Results_means(:,4); 

grid on 

hArray = plot(x,Y,'-rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',5); 

set(gca,'XLim',[0 Max_number_of_fits+1],'Layer','top') 

xlabel('Number of fitted curves','FontSize',14) 

ylabel('Coefficient of Determination','FontSize',14) 

title(['Mean of Coefficient of Determination for ',str_n,' Mutation Cycles'],'FontSize',16) 

print(f,'-dtiff',['All_data_',str_n,'_times_R2.tiff']); 

 

clf; 

f=figure; 

hold on; 

x=1:Max_number_of_fits; 

Y = Results_means(:,5); 

grid on 

hArray = plot(x,Y,'-rs', 'LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',5); 

set(gca,'XLim',[0 Max_number_of_fits+1],'Layer','top') 

xlabel('Number of fitted curves','FontSize',14) 

ylabel('Relative Error','FontSize',14) 

title(['Mean of Ssq of Relative Error for ',str_n,' Mutation Cycles'],'FontSize',16) 

print(f,'-dtiff',['All_data_',str_n,'_times_rel_err.tiff']); 

 

clf; 

f=figure; 

hold on; 

x=1:Max_number_of_fits; 

Y = Results_means(:,2); 

grid on 

hArray = plot(x,Y,'-rs', 'LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',5); 

set(gca,'XLim',[0 Max_number_of_fits+1],'Layer','top') 

xlabel('Number of fitted curves','FontSize',14) 

ylabel('E-Modulus [GPa]','FontSize',14) 

title(['Mean of E-Modulus for ',str_n,' Mutation Cycles'],'FontSize',16) 

print(f,'-dtiff',['All_data_',str_n,'_times_E.tiff']); 
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clf; 

f=figure; 

hold on; 

x=1:Max_number_of_fits; 

Y = Results_means(:,3); 

grid on 

hArray = plot(x,Y,'-rs', 'LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',5); 

set(gca,'XLim',[0 Max_number_of_fits+1],'Layer','top') 

xlabel('Number of fitted curves','FontSize',14) 

ylabel('Sigma','FontSize',14) 

title(['Mean of Sigma (E-Modulus) for ',str_n,' Mutation Cycles'],'FontSize',16) 

print(f,'-dtiff',['All_data_',str_n,'_times_sigma.tiff']); 

close(f); 

%%Plot the way, the means stabilize after a number of runs to adjust the number of necessary runs 

%Rel_error means 

AA=zeros(Max_number_of_fits,(n-1)); 

fig=figure; 

hold on 

x=(1:(n-1)); 

LegHandles = []; LegText = {}; 

Fit_color=[1 .7 .5;1 0 1;1 0 0;0 1 1;0 1 0;0 0 1;0 0 0;0.5 0.5 1;0.5 0 0.5;0 0.5 1]; 

for j=1:Max_number_of_fits 

    jstr=num2str(j); 

    for i=1:size(rel_err_ntimes,2)-2 

        F=sum(rel_err_ntimes(j,2:i+2)/(i+1)); 

        AA(j,i)=F; 

    end 

    hLine=plot(x,AA(j,:),'Color',Fit_color(j,:),'LineStyle','-', 'LineWidth',2,'Marker','none', 'MarkerSize',6); 

        LegHandles(end+1) = hLine; 

        LegText{end+1} = ['Means of relative error',jstr]; 

end 

xlabel('number','FontSize',14) 

ylabel('means of relerr','FontSize',14) 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'Location', 'NorthWest'); 

printname=['means_rel_err_',str_n,'runs.tiff']; 

print(fig,'-dtiff',printname) 

hold off; 

 

%R2 means 

BB=zeros(Max_number_of_fits,(n-1)); 
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fig=figure; 

hold on 

x=(1:(n-1)); 

LegHandles = []; LegText = {}; 

Fit_color=[1 .7 .5;1 0 1;1 0 0;0 1 1;0 1 0;0 0 1;0 0 0;0.5 0.5 1;0.5 0 0.5;0 0.5 1]; 

for j=1:Max_number_of_fits 

    jstr=num2str(j) 

    for i=1:size(r2_ntimes,2)-2 

        F=sum(r2_ntimes(j,2:i+2)/(i+1)); 

        BB(j,i)=F; 

    end 

    hLine=plot(x,BB(j,:),'Color',Fit_color(j,:),'LineStyle','-', 'LineWidth',2,'Marker','none', 'MarkerSize',6); 

        LegHandles(end+1) = hLine; 

        LegText{end+1} = ['Means of R^2 Fit',jstr]; 

end 

xlabel('number','FontSize',14) 

ylabel('means of R^2','FontSize',14) 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'Location', 'SouthEast'); 

printname=['means_r2_',str_n,'runs.tiff']; 

print(fig,'-dtiff',printname) 

hold off; 

h=msgbox('We''re ready!'); 

save(['Sample_all_',str_n,'times.mat']); 

 

 

  



41 

 

Function “Sample_all”  

Function “Sample_all” calculates the elastic modulus of the undamaged material phase and 

provides the coefficient of determination and the relative error of the fitted, weighted normal 

cumulative distribution functions for a different number of fitting curves.  

 

function[Results,e]=Sample_all(Max_number_of_fits) 

 

filename='Sample_all_E_calculated'; 

load(filename,'emodulus'); 

 

e=sort(emodulus); 

e=unique(e); 

e=e'; 

fits_data=struct(); 

a=0.001;  %initial p (mean and std deviation) scatter ratio 

b=1;      %initial weight scatter ratio 

Results=zeros(Max_number_of_fits,5); 

 Fit_color=[1 .7 1;1 0 1;1 0 0;0 1 1;0 1 0;0 0 1;0 0 0;0.5 0.5 1;0.5 0 0.5;0 0.5 1]; 

  

% plot original values 

    fig=figure; 

    grid on; 

    plot(e); 

    title('Original E-modulus Data from Indentation Experiments'); 

    xlabel('Number of Indents'); 

    ylabel('E-modulus Values [GPa]'); 

    print(fig,'Sample_all_E_modulus.tiff','-dtiff'); 

    close(fig); 

 

% ECDF - Empirical Cumulative Distribution Function of measured E moduli 

[f,x_e]=ecdf(e); 

f=f'; 

x_e=x_e'; 

 

mean_f=sum(f)/length(f); 

sst=sum((f-mean_f).^2); 

 

% NCDF - Normal Cumulative Distribution Function fitted on the original data 



42 

 

 

for fits=1:Max_number_of_fits 

    fits_str=['fit',num2str(fits)]; 

    Printfn=['Sample_all_estimated_pd',fits_str,'.tiff']; 

 

    % CreateFit - We create estimated parent values of mu and sigma of normal distribution fits 

    [pd_mean,pd_std]=CreateFit(emodulus,Printfn,fits); 

    fits_data.(fits_str).p_mean=pd_mean; 

    fits_data.(fits_str).p_std=pd_std; 

    fits_data.(fits_str).r2=0; 

 

%Initiating the Mutate function based on the parent values from the CreateFit function 

        c=a; %initial scatter ratio for mean and std will be adjusted 

        d=b; %initial scatter ratio for weight will be adjusted 

        k=1; % break 

 

 while fits_data.(fits_str).r2<0.98 

       if fits==1 && fits_data.(fits_str).r2>0.8 

        break 

       end 

    fits_data.(fits_str).w=zeros(1,fits); 

    for i=1:fits 

        fits_data.(fits_str).w(i)=1/fits; 

    end 

 % Mutate – evolution of ncdfs 

[ncdf_p,ncdf_p_fits,p_mean,p_std,w,ssr,r2]=Mutate(fits_data.(fits_str).p_mean,fits_data.(fits_str).p_std,fits_d

ata.(fits_str).w,e,f,sst,fits,c,d); 

fits_data.(fits_str).ncdf=ncdf_p; 

fits_data.(fits_str).ncdf_fits=ncdf_p_fits; 

fits_data.(fits_str).p_mean=p_mean; 

fits_data.(fits_str).p_std=p_std; 

fits_data.(fits_str).w=w; 

fits_data.(fits_str).ssr=ssr; 

fits_data.(fits_str).r2=r2; %coefficient of determination 

    c=c*1.2; %scatter ratio for mean and std  

    k=k+1; 

    if k>100 

       d=d*1.2; %scatter ratio for weight  

       if k==300 

        break 
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       end 

    end 

 end 

 

% relative error 

E_max=max(e); 

E_min=min(e); 

Integral_ncdf=trapz(ncdf_p,e); 

Integral_ecdf=trapz(f(2:end),e); 

fits_data.(fits_str).rel_err=abs(Integral_ncdf-Integral_ecdf)/(E_max-E_min)*100; 

 

% %plot the mutated weighted distributions 

Printfn=['Sample_all_fitted_pd_',fits_str,'.tiff']; 

[Fit]=PrintFit(emodulus,fits_data.(fits_str).p_mean,fits_data.(fits_str).p_std,w,Printfn,fits); 

 

% %plot the cumulated mutated weighted ncdfs 

figure 

hold on; 

 LegHandles = []; LegText = {}; 

 str_i=num2str(fits); 

 hLine = plot(e,fits_data.(fits_str).ncdf,'LineWidth',3,'Color','Red'); 

 LegHandles(end+1) = hLine; 

 LegText{end+1} = ['Theoretical: cumulation of ',str_i,' Gaussian CDFs']; 

hold all 

    for i=1:fits 

     hLine = plot(e,fits_data.(fits_str).ncdf_fits(:,i)*fits_data.(fits_str).w(i),'LineWidth',1,'Color',Fit_color(i,:)); 

     LegHandles(end+1) = hLine; 

     str_i=num2str(i); 

     LegText{end+1} = ['Theoretical: Gaussian CDF of Fit',str_i]; 

     hold on 

    end 

 hLine = plot(x_e,f,'MarkerEdgeColor','b','MarkerFaceColor','b','MarkerSize',10); 

     LegHandles(end+1) = hLine; 

     LegText{end+1} = 'Experimental Data'; 

hold off 

set(gca,'XTick') 

     hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'Location', 'NorthWest'); 

    set(gca,'XTickLabel') 

    title('ECDF &  NCDF, Empirical and Normal Cumulative Distribution Functions of all Samples'); 

    xlabel('Elastic modulus E [GPa]'); 
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    ylabel('Cumulative distribution function'); 

    grid on; 

    Printfn=['Sample_all_ecdf_',fits_str,'_ncdf.tiff']; 

    print(figure,'-dtiff',Printfn); 

    Printfn=['Sample_all_ecdf_',fits_str,'_ncdf.fig']; 

close(figure); 

 

%%Acquiring output data – mean, std, r2 and relative error 

Results(fits,:)=[fits,max(fits_data.(fits_str).p_mean),max(fits_data.(fits_str).p_std),fits_data.(fits_str).r2,fits_

data.(fits_str).rel_err]; 

end 

save('Sample_all_experiment.mat'); 

end  
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Function “CreateFit”  

Function “CreateFit” creates evenly distributed Gaussian probability distribution functions 

(pdf) on the original data, according to the required number of distributions. The mean and 

standard deviation of the pdf will serve as the original ‘parent’ value for the evolutionary 

mutation sequence. 

 

function [pd_mean,pd_std] = CreateFit(emodulus,Printfn,fits) 

%CREATEFIT    Create plot of datasets and fits 

 

% figfunc=figure; 

e=sort(emodulus); 

e = e(:); 

fits_str=num2str(fits); 

mfd=6; %minimum number of fitted data 

w=zeros(fits); 

for i=1:fits 

    w(i)=1/fits; 

end 

 

%%Prepare figure 

  clf; 

  hold on; 

  LegHandles = []; LegText = {}; 

% --- Plot data originally in dataset "emodulus data" 

  [CdfF,CdfX] = ecdf(e,'Function','cdf');    compute empirical cdf 

  BinInfo.rule = 3; 

  BinInfo.nbins = 50; 

  [~,BinEdge] = internal.stats.histbins(e,[],[],BinInfo,CdfF,CdfX); 

  [BinHeight,BinCenter] = ecdfhist(CdfF,CdfX,'edges',BinEdge); 

  hLine = bar(BinCenter,BinHeight,'hist'); 

  set(hLine,'FaceColor',[.8 .8 .8],'EdgeColor','black',... 

      'LineStyle','-', 'LineWidth',1); 

  title('The Empirical Cumulative Distribution Function Histogram and the Fitted Probability Distribution 

Functions'); 

   xlabelText=('Elastic Modulus E [GPa]'); 

  xlabel(xlabelText); 

   ylabel('Density') 

  LegHandles(end+1) = hLine; 

  LegText{end+1} = 'Empirical Cumulative Distribution Histogram'; 
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  % Create grid where function will be computed 

  XLim = get(gca,'XLim'); 

  XLim = XLim + [-1 1] * 0.01 * diff(XLim); 

  XGrid = linspace(0,XLim(2),100); 

 

%% Creating estimated exclusion limits: the values where the fitted data is divided, where the new curve 

begins. 

 

    e_min=min(e); 

    e_max=max(e); 

    place_e_min=find(e==e_min); 

    place_e_max=find(e==e_max); 

 

        % 1. we exclude the first smallest measured values, which have a  difference greater, than the interval 

of the fits, as they obviously represent a measurement error 

 

    for i=2:length(e) 

        if e(i)-e(i-1)>(e_max-e_min)/fits 

           place_e_min=i; 

           e_min=e(place_e_min); 

        end 

    end 

 

        % 2. we make sure that the number of data to be fitted equals or is greater, than the minimum 

 

      if (place_e_max-place_e_min)/fits<mfd 

              Message_mfd=('Not enough data for this number of fits!'); 

              Icon=('warn'); 

              h=msgbox(Message_mfd,Icon); 

      end 

 

        % 3. Calculating the exclusion limits of the fitted intervals 

    if fits==1 

        ex=1; 

    else 

        ex=zeros(fits-1,1); 

    end 

    for i=1:(fits-1) 

     ex(i)=(e_max-e_min)*i/fits+e_min; 
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    end 

 

    % Checking if Fit is possible on the interval: number of minimum fitted data is reached. If not, the limits 

are moved. 

   interval=zeros(fits,1); 

 for i=1:fits 

        if  i==1 

                interval(i)=length(e(e >= e_min & e < ex(i))); 

        elseif i==fits 

                interval(i)=length(e(e > ex(i-1) & e <= e_max)); 

                ex(i)=e_max; 

        else 

                interval(i)=length(e(e > ex(i-1) & e < ex(i))); 

        end 

 end 

 

if fits>1 

     for i=1:fits 

     k=1; 

         while interval(i)<mfd 

          %de1=0; 

          %de2=0; 

          lim_int_up=place_e_min-1; 

          lim_int_low=place_e_min; 

            for j=1:i 

                 lim_int_up=lim_int_up+interval(j); 

                 %de1=e(lim_int_up+1)-e(lim_int_up); 

                 if j==i 

                     break 

                 end 

                 lim_int_low=lim_int_low+interval(j); 

                 %de2=e(lim_int_low)-e(lim_int_low-1); 

             end 

             if i==1 

                   ex(i)=e(lim_int_up+1); 

                   interval(i)=interval(i)+1; 

                   interval(i+1)=interval(i+1)-1; 

             end 

             if i==fits 

                    ex(i-1)=e(lim_int_low-1); 
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                    interval(i)=interval(i)+1; 

                    interval(i-1)=interval(i-1)-1; 

             end 

             if i<fits %&& interval(i+1)>mfd+1 %&& de1<de2 

                   ex(i)=e(lim_int_up+1); 

                   interval(i)=interval(i)+1; 

                   interval(i+1)=interval(i+1)-1; 

             end 

             k=k+1; 

             if k==100 

                    break 

             end 

         end 

     end 

 end 

 

%%Create fit 

 

        pd_mean=zeros(1,fits); 

        pd_std=zeros(1,fits); 

 

if fits==1 

        pd1 = fitdist(e, 'normal'); 

          YPlot = pdf(pd1,XGrid); 

          hLine = plot(XGrid,YPlot,'Color','green',... 

              'LineStyle','-', 'LineWidth',2,'Marker','none', 'MarkerSize',6); 

        pd_mean(i)=mean(pd1); 

        pd_std(i)=std(pd1); 

else 

    for i=1:fits 

        if i==1 

            Excluded = (e > e_min & e < ex(i)); 

        elseif i==fits 

            Excluded = (e > ex(i-1) & e < e_max); 

        else 

            Excluded = (e > ex(i-1) & e < ex(i)); 

        end 

            Data = e(Excluded); 

            pd1 = fitdist(Data, 'normal'); 

            pd_mean(i)=mean(pd1); 
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            pd_std(i)=std(pd1); 

              YPlot = pdf(pd1,XGrid)*w(i); 

              hLine = plot(XGrid,YPlot,'Color','green',... 

                  'LineStyle','-', 'LineWidth',2,... 

                  'Marker','none', 'MarkerSize',6); 

    end 

   end 

           LegHandles(end+1) = hLine; 

          LegText{end+1} = [fits_str,' initial Gaussian Probability Distribution Functions']; 

   % Create legend from accumulated handles and labels 

   hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'Location', 'NorthWest'); 

   % Adjust figure 

  box on; 

  hold off; 

  print(figfunc,'-dtiff',Printfn); 

  savefig(Printfn); 

  close(figfunc); 

end 
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Function “Mutate”  

Function “Mutate” fits ncdf functions on the original data using evolutionary strategy. 

 

function[ncdf_p,ncdf_p_fits,p_mean,p_std,w,ssr,r2]=Mutate(p_mean,p_std,w,e,f,sst,fits,c,d) 

%Deifining variables 

    p_mean_mut=zeros(1,fits); 

    p_std_mut=zeros(1,fits); 

    w_mut=zeros(1,fits); 

    % (z,z_std,z_w: random parameters for max. 5000 mutations) 

    z=normrnd(0,1,fits,5000); 

    z_std=normrnd(0,1,fits,5000); 

    z_w=rand(fits,5000); 

    s_mean=(rand(1,fits))*c; % scattering for mean with ratio (c,d): weight scatter to mean and std scatter 

    s_std=(rand(1,fits))*c; % scattering for std 

    s_w=(rand(1,fits))*d; % scattering for w 

    h=0.85; % stepsize 

    k=0; % counter 

    t=0; % counter w_mut 

    tol=0.00009; %tolerance 

    pm=ones(1,5000); 

    RR=ones(1,5000); 

 

  %%%%%%% Mutation sequence 

 

     for i=1:size(z,2) 

        %mutation mean values & standard deviation=parent value+scatter*normal random 

        for j=1:size(z,1) 

        p_mean_mut(j)=p_mean(j)+(s_mean(j)*z(j,i)); 

        p_std_mut(j)=p_std(j)+(s_std(j)*z_std(j,i)); 

        end 

        %mutation of weighting factor 

        for j=1:size(z_w,1) 

           w_mut(j)=w(j)+(s_w(j)*z_w(j,i)); 

        end 

        while (sum(w_mut)~=1) % sum of w must be 1! 

            w_mut=w_mut/sum(w_mut); 

            t=t+1; 

            if (t>1000) 

               break; 
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            end 

        end 

 

          ncdf_p_fits=zeros(size(e,1),fits); 

          ncdf_p_mut_fits=zeros(size(e,1),fits); 

          ncdf_p=zeros(size(e,1),1); 

          ncdf_pmut=zeros(size(e,1),1); 

          ncdf_wmut=zeros(size(e,1),1); 

          ncdf_pmut_wmut=zeros(size(e,1),1); 

 

        for j=1:fits 

          ncdf_p_fits(:,j)=normcdf(e,p_mean(j),p_std(j)); % ncdf curves for all the fits 

          ncdf_p_mut_fits(:,j)=normcdf(e,p_mean_mut(j),p_std_mut(j)); % mutated ncdf curves for all the fits 

          ncdf_p=ncdf_p+ncdf_p_fits(:,j)*w(j); % 1. original distribution & original weighting 

          ncdf_wmut=ncdf_wmut+ncdf_p_fits(:,j)*w_mut(j); % 2. calculating offspring with original     

distribution & mutated weighting 

          ncdf_pmut=ncdf_pmut+ncdf_p_mut_fits(:,j)*w(j); % 3. mutated distribution & original weighting 

          ncdf_pmut_wmut=ncdf_pmut_wmut+ncdf_p_mut_fits(:,j)*w_mut(j); % 4. calculating offspring with 

mutated distribution & mutated weighting 

        end 

 

       %calculating error for all combiniations 

        e_ncdf_p=zeros(length(e)); 

        e_ncdf_wmut=zeros(length(e)); 

        e_ncdf_pmut=zeros(length(e)); 

        e_ncdf_pmut_wmut=zeros(length(e)); 

 

        for j=1:length(e) 

            e_ncdf_p(j)=(ncdf_p(j)-f(j+1))^2; 

            e_ncdf_wmut(j)=(ncdf_wmut(j)-f(j+1))^2; 

            e_ncdf_pmut(j)=(ncdf_pmut(j)-f(j+1))^2; 

            e_ncdf_pmut_wmut(j)=(ncdf_pmut_wmut(j)-f(j+1))^2; 

        end 

 

        error_ncdf_p=sum(e_ncdf_p(:)); 

        error_ncdf_wmut=sum(e_ncdf_wmut(:)); 

        error_ncdf_pmut=sum(e_ncdf_pmut(:)); 

        error_ncdf_pmut_wmut=sum(e_ncdf_pmut_wmut(:)); 

 

        err=[error_ncdf_p error_ncdf_wmut error_ncdf_pmut error_ncdf_pmut_wmut]; 
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        % find minimum error to decide parents for next generation 

        if (min(err)==err(2))%p original w mutated 

            w=w_mut; 

            k=k+1; 

        end 

        if (min(err)==err(3))%p mutated w original 

            p_mean=p_mean_mut; 

            p_std=p_std_mut; 

            k=k+1; 

        end 

        if(min(err)==err(4))%p mutated w mutated 

            p_mean=p_mean_mut; 

            p_std=p_std_mut; 

            w=w_mut; 

            k=k+1; 

        end 

 

        ifp=fits*3-1; 

        if (mod((i/ifp),10)==0) %ifp=number of independently fitted paramters 

            if (k < (ifp*2)) % 1/5 success rule 

                s_mean=s_mean/h; % adapt step size 

                s_std=s_std/h; % adapt step size 

                s_w=s_w/h; 

            end 

            if (k > (ifp*2)) 

                s_mean=s_mean*h; 

                s_std=s_std*h; % adapt step size 

                s_w=s_w*h; % adapt step size 

            end 

        end 

         if (mod((i/ifp),10)==0) 

            k=0;   %reset counter 

         end 

 

         % if parameters are within the tolerance in the 1000 cycles 

         ncdf_p=zeros(size(e,1),1); 

         ncdf_p_fits=zeros(size(e,1),fits); 
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              for j=1:fits 

                  ncdf_p_fits(:,j)=normcdf(e,p_mean(j),p_std(j)); 

                  ncdf_p=ncdf_p+ncdf_p_fits(:,j)*w(j); 

              end 

         ssr=sum((f(2:end)-ncdf_p').^2); 

         r2=1-(ssr/sst); 

         pm(i)=r2; 

 

         %relative error within the mutation cycle 

             E_max=max(e); 

             E_min=min(e); 

             Integral_ncdf=trapz(ncdf_p,e); 

             Integral_ecdf=trapz(f(2:end),e); 

         rel_err(i)=abs(Integral_ncdf-Integral_ecdf)/(E_max-E_min)*100; 

 

         if (i>1000) 

             con=abs(pm(i)-(mean(pm(i-1000):pm(i)))); 

             if con<tol 

             break; 

             end 

         end 

     end % end of mutation sequence 

 

     %%%Print the evolution of R2 and relative error within the mutation cycle 

      fig=figure; 

      hold on; 

      grid on; 

      ix=[1:1:i]; 

      [AX,PM,RR]=plotyy(ix,pm(1,1:i),ix,rel_err(1,1:i)); 

         set(get(AX(1),'Ylabel'),'String','Coefficient of determination') 

         set(get(AX(2),'Ylabel'),'String','Relative error [%]') 

         xlabel('Mutation cycles') 

         title('Development of R2 and relative error within the evoltution process') 

         legend('R^2','Relative error') 

        fits_str=num2str(fits); 

     box on; 

     hold off; 

      print(fig,'-dtiff',['plotyy',fits_str,'.tiff']); 

      close(fig); 
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Function “Printfit”  

Function “Printfit” plots the original data as histogram and the fitted probability distribution 

functions as curves. 

 

function [Fit]=PrintFit(emodulus,p_mean,p_std,w,Printfn,fits) 

 

figfunc=figure; 

emodulus = emodulus(:); 

 

%%% Prepare figure 

clf; 

hold on; 

LegHandles = []; LegText = {}; 

 

% --- Plot data originally in dataset "emodulus data" 

 

[CdfF,CdfX] = ecdf(emodulus,'Function','cdf');  % compute empirical cdf 

BinInfo.rule = 3;  

BinInfo.nbins = 50; 

[~,BinEdge] = internal.stats.histbins(emodulus,[],[],BinInfo,CdfF,CdfX); 

[BinHeight,BinCenter] = ecdfhist(CdfF,CdfX,'edges',BinEdge); 

hLine = bar(BinCenter,BinHeight,'hist'); 

set(hLine,'FaceColor',[.8 .8 .8],'EdgeColor','black',... 

    'LineStyle','-', 'LineWidth',1); 

title('The Empirical Cumulative Distribution Function Histogram and the Mutated Probability Distribution 

Functions'); 

xlabel('Elastic Modulus E [GPa]'); 

ylabel('Density') 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Empirical Cumulative Distribution Histogram'; 

 

% Create grid where function will be computed 

XLim = get(gca,'XLim'); 

XLim = XLim + [-1 1] * 0.01 * diff(XLim); 

XGrid = linspace(0,XLim(2),100); 

 

% --- Create fit 

SumFit=0; 

for i=1:fits 



55 

 

    fits_str=num2str(i); 

    Fit= ProbDistUnivParam('normal',[ p_mean(i), p_std(i)]); 

    YPlot = pdf(Fit,XGrid)*w(i); 

   if i==fits 

        hLine = plot(XGrid,YPlot,'Color','red',... 

            'LineStyle','-', 'LineWidth',3,... 

            'Marker','none', 'MarkerSize',6); 

            LegHandles(end+1) = hLine; 

            LegText{end+1} = ['Theoretical distribution number ',fits_str,' - intact phase']; 

    else 

        hLine_blue = plot(XGrid,YPlot,'--rs','Color','blue',... 

            'LineWidth',1,... 

            'Marker','none', 'MarkerSize',6); 

    end 

   SumFit=SumFit+YPlot; 

end 

        if i~=1 

            LegHandles(end+1) = hLine_blue; 

            LegText{end+1} = ['Theoretical distributions - damaged material phases']; 

        end 

            hLine = plot(XGrid,SumFit,'Color','k',... 

            'LineStyle','-', 'LineWidth',1,... 

            'Marker','none', 'MarkerSize',6); 

            LegHandles(end+1) = hLine; 

            LegText{end+1} = ['Sum of ',fits_str,' theoretical distributions']; 

 

% Adjust figure 

grid on; 

box on; 

hold off; 

 

% Create legend from accumulated handles and labels 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'Location', 'NorthWest'); 

set(hLegend,'Interpreter','none'); 

print(figfunc,'-dtiff',Printfn); 

fits_str=num2str(fits); 

Printfn=['Sample_all_fitted_pd_',fits_str,'.fig']; 

close(figfunc); 

Published with MATLAB® R2012b  

http://www.mathworks.com/products/matlab
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