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Abstract

In this diploma thesis generalized linear models are adapted to compositional data.

Compositional data describe the parts of some whole and carry only relative information.

They should not be used directly with generalized linear models as the interpretation of

the model can become misleading. The data need to be appropriately transformed. We

use the isometric logratio (ilr) transformation proposed by Hron et al. (2010, 2012). In

application of this special ilr transformation a meaningful interpretation of the unknown

parameters and the inference statistics is possible.

We implemented generalized linear models with compositional data sets in the statistical

software R. A model for binary data and a model for count data were adapted. We used a

compositional data set resulting from the GEMAS (Geochemical mapping of agricultural

and grazing land soils) project to investigate the difference in soil composition in northern

and southern Europe. Furthermore we used another compositional data set from the

project "Biogeochemical exploration of forests as a base for the long-term landscape

exploitation in the Czech Republic" to find a relation between traffic volume and chemical

composition of moss and thus model traffic induced pollution in Czech Republic.

I



Kurzfassung

In dieser Diplomarbeit wurden generalisierte lineare Modelle für Kompositionsdaten

angepasst. Kompositionsdaten beschreiben Teile einer Gesamtheit und tragen nur rela-

tive Informationen in sich. Sie sollten nicht direkt mit generalisierten linearen Modellen

verwendet werden, da damit die Interpretation des Modells zu verfälschten Ergebnissen

führen kann. Die Kompositionsdaten müssen vor Anwendung im generalisierten linearen

Modell in angemessener Weise transformiert werden. Wir verwenden die ilr (isometric

logratio) - Transformation nach Hron et al. (2010, 2012). In Anwendung dieser speziellen

Transformation ist eine sinnvolle Interpretation der unbekannten Parameter und der In-

ferenzstatistik möglich.

Generalisierte lineare Modelle für Kompositionsdaten wurden auch in der Statistiksoft-

ware R implementiert. Jeweils ein praktisches Modell für binäre Daten und für Zähldaten

wurde angepasst. Dazu wurden zunächst Kompositionsdaten aus dem GEMAS (Geo-

chemical mapping of agricultural and grazing land soils) - Projekt verwendet, um die

chemische Bodenzusammensetzung in Nord- und Südeuropa zu untersuchen. Daten aus

einem Biomonitoringprojekt in der Tschechischen Republik (Biogeochemical exploration

of forests as a base for the long-term landscape exploitation in the Czech Republic) wur-

den dazu verwendet, um einen Zusammenhang zwischen dem Verkehrsaufkommen und

der chemischen Bodenzusammensetzung zu finden.
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1 Introduction

1.1 Scope

The aim of this thesis is the adaptation of generalized linear models to compositional

data. Generalized linear models constitute an extension of classical linear models. Com-

positional data are quantitative descriptions of the parts of some whole, providing only

relative information between their components. A data set out of the GEMAS (Geo-

chemical mapping of agricultural and grazing land soils) project, a cooperation project

between EuroGeoSurveys and Eurometaux, and a data set of a biomonitoring project in

Czech Republic are used to illustrate the methods. The statistical software R is used in

the application.

1.2 Outline of the contents of the thesis

Chapter 2 develops the main concepts of generalized linear models (as defined by Nelder

and Wedderburn (1972)). It is about the exponential family of distributions, which

includes the Normal, Poisson and binomial distributions. Methods of estimation and of

statistical inference for generalized linear models are described.

Chapter 3 outlines the basic concepts and procedures regarding compositional data. The

first consistent approach of treatment of such data has been proposed by J. Aitchison in

the 1980’s (Aitchison, 1986). Since then compositional data analysis has made further

progress.

In chapter 4 generalized linear models with compositional data are introduced. We

consider generalized linear models where a multivariate (non compositional) response

variable is predicted by compositional explanatory variables.

Chapter 5 concerns the practical application with the statistical software R. We focus

on models for binary and count data. Compositional data sets representing chemical

soil composition are used to study the difference in soil composition in northern and

southern Europe and the traffic induced pollution in Czech Republic.
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2 Generalized linear models

2.1 Introduction

The term "generalized linear models" (GLMs) was introduced by Nelder and Wedderburn

(1972). Generalized linear models constitute an extension of classical linear models.

Classical linear models may be summarized in the form:

E(Y) = µ where µ = Xβ.

The components of the random variable Y (called response variable) are independent

normal variables with constant variance σ2. E(Y) is the expected value of the response

variable Y. β is the vector of parameters, whose values are usually unknown and have

to be estimated from the data. X is the model matrix, whose elements are constants

representing levels of categorical explanatory variables or measured values of continuous

explanatory variables.

Thus classical linear models are based on the assumption, that the errors follow a Gaus-

sian or normal distribution with constant variance σ2 and the mean is a linear function

of the explanatory variables.

Generalized linear models represent the following generalization of the classical linear

models (Dobson, 2002):

• Response variables can have distributions other than the normal distribution and

they may even be categorical rather than continuous.

• The relationship between the response and explanatory variables (called link) need

not be of the simple linear form.

In the following sections we will describe the theory regarding generalized linear models

based mainly on McCullagh and Nelder (1989), Dobson (2002) and Fox (2008).

2.2 Components of generalized linear models

A generalized linear model consists of three components (Dobson, 2002):
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2 Generalized linear models

1. A random variable Yi (for the ith of n independently sampled observations), whose

components are independent. In the original work of Nelder and Wedderburn

(1972) the variable had to be a distribution from the so called exponential family

of distributions. Further work extended generalized linear models to multivariate

exponential families, to certain non-exponential families and to situations, where

the distribution of Yi is unknown (Fox, 2008),

In this work the statistical theory for generalized linear models will be revisited on

the basis of the exponential families.

2. A set of parameters β and explanatory variables x1, x2, ..., xN , that produce a

linear predictor η given by

η =
N∑

j=1

xjβj ,

where β = (β1, ..., βN )T .

3. A monotone link function g(·) which transforms the expectation of the response

variable, µi = E(Yi), to the linear predictor

ηi = g (µi) ,

with µ = (µ1, ...µn)T .

2.2.1 Exponential family of distributions

A single random variable Y has a distribution in the exponential family if its probability

function can be written in the form (McCullagh and Nelder, 1989)

fY (y; θ, φ) = exp

{
yθ − b(θ)

a (φ)
+ c (y, φ)

}

for some specific functions a(·), b(·) and c(·) and parameters θ and φ.

The parameter φ is called the dispersion parameter and constant over observations. In

some families, φ takes on a fixed known value; in other families the parameter has to

be estimated from the data. The parameter θ is called the canonical parameter and is

a function of the expectation µ = E(Y ). The functions a(·), b(·) and c(·) vary from one

distribution out of the exponential family to another and are known functions. For b(·)
the first and second derivative with respect to θ have to exist. The function a(φ) has

generally the form

3



2 Generalized linear models

a(φ) = φ/w,

where the parameter w is a known prior weight, usually 1.

The mean and variance of Y are given as:

E(Y ) = µ = b′(θ)

var(Y ) = b′′(θ)a(φ)

b′′(θ) depends on the canonical parameter, and therefore on the mean and is called the

variance function V (µ).

Many well-known distributions are a member of the exponential family of distributions,

such as the Gaussian (normal), binomial, Poisson, Gamma or inverse-Gaussian families

of distributions.

For example, the probability function for the normal distribution is

fY (y; θ, φ) =
1√

(2πσ2)
exp

{
− 1

2σ2
(y − µ)2

}

This can be rewritten as

fY (y; θ, φ) = exp

{
(yµ − µ2/2)/σ2 − 1

2

(
y2/σ2 + log(2πσ2)

)}

so that θ = µ, φ = σ2, and

a(φ) = φ, b(θ) = θ2/2, c(y, φ) = −1

2

{
y2/σ2 + log(2πσ2)

}
.

An other example out of the exponential family of distributions is the binomial distri-

bution. The binomial distribution is defined as the discrete probability distribution of

the number of successes in a sequence of n independent yes/no experiments in which the

probability of success π is the same in all trials. The binomial probability distribution

function is

fY (y; θ, φ) =

(
n

y

)
πy(1 − π)n−y.

Taking logs and collecting terms this can be written as

log fY (y; θ, φ) = y log

(
π

1 − π

)
+ n log(1 − π) + log

(
n

y

)
,

which corresponds to the general exponential form

4



2 Generalized linear models

log fY (y; θ, φ) =

{
(yθ − b(θ))

a (φ)
+ c (y, φ)

}

for the following equivalences:

The canonical parameter is the logit of π

θ = log

(
π

1 − π

)
.

Solving this term for p and rewriting it, we can see that log(1 − p) = −log(1 + eθ) and

therefore

b(θ) = n log(1 + eθ).

Finally,

c (y, φ) = log

(
n

y

)
.

We see that a(φ) = φ and φ = 1.

Calculating the mean and the variance according to the exponential family of distribu-

tion, we get the known results from elementary statistics:

E(y) = µ = b′(θ) = n
eθ

1 + eθ
= nπ

var(y) = b′′(θ)a(φ) = n
eθ

(1 + eθ)2
= nπ(1 − π).

2.2.2 Linear predictor

The linear predictor is a linear function of regressors

ηi =
N∑

j=1

xijβj .

The regressors are prespecified functions of the explanatory variables and may therefore

include quantitative explanatory variables, transformations of quantitative explanatory

variables, dummy regressors and so on.

In classical linear models the linear predictor η and the expected value µ are identical.

In generalized linear models η is related to µ by a so called link function.

5



2 Generalized linear models

2.2.3 Link functions

The link function g(·) relates the linear predictor η to the expected value µ.

ηi = g (µi)

Examples of common link functions are the identity, log, reciprocal, logit and probit

functions (see Table 2.1).

Table 2.1: Common link functions

Link η = g(µ)

Identity µ

Log ln(µ)

Inverse µ−1

Inverse-square µ−2

Square-root
√

µ

Logit ln µ
1−µ

Probit Φ−1(µ)

Log-log −ln [−ln(µ)]

Complementary log-log ln [−ln(1 − µ)]

Note: µ is the expected value of the response; η is the linear predictor; Φ(·)is the cumulative

distribution function of the standard-normal distribution (Fox, 2008).

Each distribution out of the exponential family has a special link function, for which there

exists a sufficient statistic equal in dimension to β in the linear predictor η =
∑N

j=1 xjβj .

These link functions associated to a certain family are called canonical links. They occur

when θ = µ with θ the canonical parameter (McCullagh and Nelder, 1989).

Table 2.2 shows the canonical links, together with the range of variation of the response

variable and the variance functions for the commonly used exponential families.

Using the canonical link simplifies the generalized linear models, but other link functions

may be used as well. These link functions that can be used vary from family to family.

For example, logit, probit, log-log or complementary log-log links are for binomial data.

However, it would not be promising to use the identity, log, inverse, inverse-square or

square-root links with binomial data (Fox, 2008).

6



2 Generalized linear models

Table 2.2: Canonical link, response range, and conditional variance function for exponential fam-

ilies (Fox, 2008)

Family Canonical link Range of Yi var(Yi/ηi)

Gaussian Identity (-∞,+∞) φ

Binomial Logit 0,1,...,ni

ni

µi(1−µi)
ni

Poisson Log 0,1,2,... µi

Gamma Inverse (0,∞) φµ2
i

Inverse-Gaussian Inverse-square (0,∞) φµ3
i

Note: φ is the dispersion parameter, ηi is the expectation of Yi (the response). In the binomial

family, ni is the number of trials.

2.3 Estimation

The principal method of estimation used for all generalized linear models is maximum

likelihood. Fitting the models to data by this method, yields estimates of the regression

coefficients and also estimated asymptotic standard errors of the coefficients are provided

(Fox, 2008).

2.3.1 Maximum likelihood estimation

Let f(y; θ) be the joint probability density function or probability distribution for an

observation vector y = [y1, ..., yn]T given the parameter vector θ = [θ1, ..., θp]T . The

likelihood function L(θ; y) is algebraically the same as the probability function, but the

probability function is a function of the data with the value of the parameter fixed, while

the likelihood function is a function of the parameter with the data fixed.

L(θ; y) = f(y; θ)

The maximum likelihood estimator of θ is the value θ̂ which maximizes the likelihood

function for all θ in the parameter space Ω.

L(θ̂; y) ≥ L(θ; y) for all θ in Ω

θ̂ is the value that maximizes also the log-likelihood function l(θ; y) = log L(θ; y), since

the logarithmic function is monotonic.

l(θ̂; y) ≥ l(θ; y) for all θ in Ω

7



2 Generalized linear models

The work with the log-likelihood function is often easier than the work with the likelihood

function itself.

The estimator θ̂ is usually obtained by differentiating the log-likelihood function with

respect to each element θj of θ and solving the simultaneous equations

δl(θ; y)

δθj
= 0 for j = 1, ..., p.

To check that the solutions do correspond to maxima it is necessary to verify that the

matrix of second derivatives

δ2l(θ; y)

δθjδθk

is negative definite (Dobson, 2002).

In practice however, numerical approximations are used to find θ̂. McCullagh and Nelder

(1989) show, that for generalized linear models the maximum-likelihood estimates of the

parameters θ̂ in the linear predictor η can be obtained by an algorithm based on iterative

weighted least squares. This algorithm applies to the entire family of distributions for any

choice of link function. This is the reason for restricting GLMs to this family (Agresti,

2002). The algorithm McCullagh and Nelder (1989) proposed is equivalent to Fisher

scoring and leads to maximum likelihood estimates. Another numerical approximation

is the Newton-Raphson method. For the canonical links, where the expected value and

the canonical parameter coincide, these two algorithms are equivalent.

2.4 Inference for generalized linear models

2.4.1 Deviance and goodness of fit

McCullagh and Nelder (1989) define the process of fitting a model as replacing a set of

data values y by a set of fitted values µ̂ derived from a model using usually a relatively

small number of parameters. The µ′s equal in general the y′s not exactly. The goodness

of fit depends on the discrepancy between data values and fitted values. A measure of

discrepancy is the so called deviance. For n observations, models can be fitted to these

containing up to n parameters. In the simplest case the model has only one parameter:

a common µ for all the y′s. This model is called the null model.

The model containing n parameters, one per observation is called full model or saturated

model. The µ′s derived from the full model match the data exactly. A full model explains

8



2 Generalized linear models

all variation by the systematic component of the model.

Actually the null model is usually too simple and the full model is not useful. The full

model does not summarize the data (and thus not provide data reduction) but repeats

them only in full. The full model though is used as baseline for measuring the discrepancy

for an intermediate model with p parameters.

The log likelihood can be expressed conveniently in terms of the mean-value parameter

µ rather than the canonical parameter θ (McCullagh and Nelder, 1989). For f(y, θ) as

density function or probability distribution for the observation y given the parameter θ,

then the log likelihood, expressed as a function of the mean-value parameter µ = E(Y ),

is

l(µ; y) = log f(y; θ).

The log likelihood based on a set of independent observations y1, ..., yn is calculated as

the sum of the individual distributions:

l(µ; y) =
∑

i

logfi(yi; θ) where µ = (µ1, ...µn)T .

Let l(µ̂; y) for observations y = (y1, ..., yn)T and means µ = (µ1, ..., µn)T denote the

maximum of the log likelihood for the model. For all possible models, the maximum

achievable log likelihood is l(y; y) in a full model.

Now as goodness of fit criterion is used the so called "scaled deviance", which is propor-

tional to twice the difference between the maximum log likelihood achievable and the

maximum log likelihood achieved by the model under investigation. The greater the

scaled deviance, the poorer the fit:

D∗(y; µ) = 2l(y; y) − 2l(µ; y).

Table 2.3 summarizes the forms of the deviances for the distributions given in Table 2.2.

The deviance is the likelihood-ratio statistic for testing the null hypothesis that the model

holds against a more general alternative (i.e. the full model). The deviance function in

general though is useful not as absolute measure of goodness of fit but for comparing

two nested models (McCullagh and Nelder, 1989; Agresti, 2002). In GLMs for which

the dispersion parameter is fixed to 1 (binomial and Poisson GLMs), the likelihood-ratio

test statistic is the difference in the deviances for nested models. This difference has

under regularity conditions approximate chi-squared null distribution with degrees of

freedom equal to the difference between the numbers of parameters in the two models.

For GLMs in which there is a dispersion parameter to estimate (Gaussian, gamma, and

9



2 Generalized linear models

Table 2.3: Forms of deviances; summation being over i = 1,...,n (McCullagh and Nelder, 1989)

Gaussian
∑

(y − µ̂)2,

Binomial 2
∑ {ylog(y/µ̂) − (y − µ̂)},

Poisson 2
∑ {ylog(y/µ̂) + (m − y)log[(m − y)/(m − µ̂)]},

Gamma 2
∑ {−log(y/µ̂) + (y − µ̂)/µ̂)},

Inverse-Gaussian
∑

(y − µ̂)2/(µ̂2y).

inverse-Gaussian GLMs), nested models were compared instead by an incremental F-test

(Fox, 2008; Agresti, 2002).

2.4.2 Residuals for GLMs

The dependent variate for normal models can be expressed in the form

y = µ̂ + (y − µ̂),

which is datum = fitted value + residual. Residuals can help to explore the adequacy

of fit of a model regarding choice of variance function, link function and terms in the

linear predictor. Moreover, residuals can give a hint about the presence of anomalous

values. For generalized linear models an extended definition of residuals applicable to

all the distributions is necessary.

McCullagh and Nelder (1989) define among others the following forms of generalized

residuals: Pearson and deviance residuals.

The Pearson residual is the raw residual scaled by the estimated standard deviation of

Y .

ri,P =
yi − µi√

V (µ)

The Pearson residual is the signed square root of the component of the Pearson X2

goodness of fit statistic, so that
n∑

i=1

r2
P = X2.

The deviance residual uses components of the deviance. The deviance is a measure of

discrepancy of a generalized linear model. Each unit contributes a quantity di to that

measure, so that
∑n

i=1 di = D. The deviance residual for observation i hence is

ri,D = sign(yi − µi)
√

di.

rD increases with yi − µi and
∑n

i=1 r2
i,D = D.

10



2 Generalized linear models

Table 2.4: Choices for the argument family for glm() function in R

Family Variance Link

gaussian Gaussian Gaussian

binomial binomial logit, probit or cloglog

poisson Poisson log, identity or sqrt

gamma Gamma inverse, identity or log

inverse.gaussian inverse Gaussian 1/mu^2

quasi user-defined user-defined

2.4.3 Akaike’s Information Criterion (AIC)

The Akaike’s Information Criterion (AIC) is defined as

AIC = −2(maximized log likelihood − number of parameters in model)

This criterion can help to select a good model in terms of estimating quantities of in-

terest. It judges a model by how close its fitted values tend to be to the trues values.

The model, that tends to have fit closest to reality is optimal. It is the model with the

minimum AIC value (Agresti, 2002).

2.5 Implementation in R

The free and open-source programming language and software environment R provides

the glm() function to fit generalized linear models, specified by giving a symbolic de-

scription of the linear predictor and a description of the error distribution. The function

has the following general structure:

> glm(formula, family, data, weights, subset, ...)

The argument to glm() is a model formula with the response on the left of the tilde

(read "is modeled as") and a Wilkinson-Rogers model specification formula on the right.

The argument family is needed to specify the variance and link function. There are six

choices of families available (see Table 2.4). Every family has an associated variance

function and a default link function.

11



3 Compositional data

3.1 Introduction

Compositional data are very common in all experimental fields, especially in environ-

mental and biological sciences. Examples are chemical compositions (chemistry), geo-

chemical elements in geology, body composition in medicine, food composition or soil

contamination (environmental sciences). These data are non-negative and sum up to a

whole. Hence, no part of this whole can be varied independently from the others. This

has wider implications on the treatment of such data. The application of standard sta-

tistical methods, that rely mostly on the Euclidean geometry, directly to compositional

data can lead to biased and unrealistic results (see, e.g., Filzmoser et al., 2009, 2010).

The first consistent approach of treatment of such data has been proposed by J. Aitchi-

son in the 1980’s (Aitchison, 1986). This approach is based on the statistical analysis

of log-ratios of the original data. Since then in the last 30 years, compositional data

analysis has made further progress. The most updated complete work on status and en-

hancement regarding methods in compositional data analysis is provided by Pawlowsky-

Glahn and Buccianti (2011). The analysis of compositional data in this work is reduced

to three steps, called principle of working in coordinates (Mateu-Figueras et al., 2011):

the representation of data in log-ratio type coordinates, the traditional analysis of these

coordinates like real random variables, and the interpretation of the resulting models ei-

ther in coordinates or expressing the results in terms of the original units. Based mainly

on the publication edited by Pawlowsky-Glahn and Buccianti (2011) in the following sec-

tions we will describe the basic concepts and procedures regarding compositional data.

3.2 Definition of compositional data

Compositional data (or closed data) in Egozcue and Pawlowsky-Glahn (2011) are de-

fined as data, that quantitatively describe the parts of some whole and provide only

relative information between their components. These data are given in form of D-part

compositions. A D-part composition is a vector x = (x1, x2, ..., xD), where the single

components - called parts - are positive and carry relative information in form of per-

12



3 Compositional data

centages, proportions, concentrations, frequencies or similar. The units of these parts

can be percentages, parts per unit, parts per million, molar concentrations or similar.

An example for such data is the geochemical composition of rocks. Aitchison (1986)

published data sets presenting the mineral compositions of rock specimens. Each com-

position in this data set consists of the percentages by weight of five minerals (albite,

blandite, cornite, daubite and endite). In Table 3.1 an excerpt from a published data

set is presented which displays the characteristic features of a compositional data set.

Table 3.1: Excerpt from a data set published in Aitchison (1986). This data set displays the

characteristic features of a compositional data set: 1. Each row of the data array

corresponds to a single rock specimen, more generally to a composition; 2. each

column corresponds to a single mineral, more generally to a part of each composition;

3. each entry is non-negative; 4. the sum of the entries in each row is 1 or equivalently

100 per cent.

Specimen

no.

Percentages by weight of minerals

albite blandite cornite daubite endite

H1 48.8 31.7 3.8 6.4 9.3

H2 48.2 23.8 9.0 9.2 9.8

H3 37.0 9.1 34.2 9.5 10.2

H4 50.9 23.8 7.2 10.1 8.0

H5 44.2 38.3 2.9 7.7 6.9

The single parts being components of a whole cannot vary independently of each other.

The relevant information is contained in (log)ratios of compositional parts and not in

the analytical values themselves. A single part keeps the characteristics of compositional

data also if measured alone without other components. This fact is widely neglected as

indicated by Filzmoser et al. (2009) in their work.

Compositional data analysis has to fulfill the following principles: Scale invariance,

subcompositional coherence and permutation invariance.

Scale invariance means, that scaling the positive components of a vector by a constant

leaves equivalent the information carried by the vector. An example would be the change

from parts per unit to percentages. Thus vectors with proportional components represent

the same composition and form an equivalence class. Such an equivalence class can

be represented by a so called closed vector. This is a normalized vector, where the

components sum to a given constant κ. This constant can be 1 (in case of proportions),

or 100 (in case of percentages) or 106 (in case of mg/kg) or any other positive constant.

The closure operation, that normalizes any D-part composition x = (x1, x2, ..., xD) to

13



3 Compositional data

the given constant κ (Aitchison, 1986) is defined as:

Cx =

(
κx1∑D
i=1 xi

,
κx2∑D
i=1 xi

, ...,
κxD∑D
i=1 xi

)
.

All compositions equivalent to x and the corresponding equivalence class are represented

by the closed vector Cx. Similar to the denotation of x, the components of Cx are called

parts relative to a total κ.

A subcomposition is defined as a subset of parts of a composition. The analysis of a

subcomposition cannot be controversial to the results obtained by an analysis of the full

composition. Subcompositional coherence covers the following two criteria:

1. scale invariance is valid for all possible subcompositions;

2. a distance or divergence in the full composition data set shall be greater than

or equal to that comparing the corresponding subcompositions (subcompositional

dominance).

The second item refers to the fact, that the measurement of distances between compo-

sitions and subcompositions should follow the rule of a projection: distances become

smaller in a projection.

Permutation invariance means, that the order of the single components has no influence

on the results of a compositional analysis. A change in the order produces no different

results in the analysis.

3.3 Aitchison geometry

The vector x = (x1, x2, ..., xD) denotes a D-part composition with sample space the

simplex

SD =

{
x = (x1, x2, ..., xD) : xi > 0 (i = 1, 2, ..., D),

D∑

i=1

xi = κ

}
.

On the simplex Aitchison (1986) introduced the following two operations: perturbation

and powering.

Considering the compositions x, y ∈ SD, perturbation of x with y is defined as the

composition

x ⊕ y = C(x1y1, x2y2, ..., xDyD).

14
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Powering of x by a real number α is defined as the composition

α ⊙ x = C(xα
1 , xα

2 , ..., xα
D).

Both perturbation and powering defined in SD satisfy the requirements of operations of

a vector space and induce a real vector space structure on the simplex.

An inner product on the simplex, with its associated norm and distance are defined as

(Pawlowsky-Glahn and Egozcue, 2002; Mateu-Figueras et al., 2011):

〈x, y〉a =
1

D

∑

i<j

ln
xi

xj
ln

yi

yj
, (3.1)

‖x‖a =

√√√√√ 1

D

∑

i<j

(
ln

xi

xj

)2

, (3.2)

da (x, y) =

√√√√√ 1

D

∑

i<j

(
ln

xi

xj
− ln

yi

yj

)2

; (3.3)

where x, y ∈ SD.

Equipped with this inner product, the vector space on the simplex (SD, ⊕, ⊙) is a finite

(D-1)-dimensional Hilbert space. It is a Euclidean vector space structure on the simplex.

The algebraic-geometric structure on the simplex as defined above is called Aitchison

geometry with Aitchison inner product, Aitchison norm and Aitchison distance. Thus

the subindex a is used in Equations (3.1) to (3.3). The Aitchison inner product, norm

and distance as well as perturbation and powering satisfy the principles of compositional

analysis. Compositional data are represented in the Aitchison geometry on the simplex.

Within the Aitchison geometry, w1, w2, ..., wD with wi = C(1, 1, ..., e, ..., 1) (being e the

ith component) for i = 1, 2, ..., D constitute a generating system of SD. Any vector

x ∈ SD can be written as

x = (lnx1 ⊙ w1) ⊕ (lnx2 ⊙ w2) ⊕ ... ⊕ (lnxD ⊙ wD)

or equivalently as

x = (ln
x1

gm(x)
⊙ w1) ⊕ (ln

x2

gm(x)
⊙ w2) ⊕ ... ⊕ (ln

xD

gm(x)
⊙ wD), gm(x) =

(
D∏

i=1

xi

)1/D
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where the coefficients are the centered log-ratio transformation (clr) defined in Aitchison

(1986).

From the previous generating system a basis can be obtained by taking any (D − 1)

vectors such as w1, w2, ..., wD−1. Then any vector x ∈ SD can be written as

x = (ln
x1

xD
⊙ w1) ⊕ (ln

x2

xD
⊙ w2) ⊕ ... ⊕ (ln

xD−1

xD
⊙ wD−1).

The coefficients correspond to the additive log-ratio transformation (alr) introduced by

Aitchison (1986).

The basis w1, w2, ..., wD−1 is not orthogonal. However, the Euclidean space structure of

the simplex allows the construction of an orthonormal basis (or a generating system)

and to express the compositions therein. Then all standard statistical methods can be

applied to the coordinates and transferred to the simplex.

Such an orthonormal basis can be obtained by applying the usual Gram-Schmidt or-

thonormalization process to any basis. The constructed basis is not unique. Though

the basis should be selected in accordance to the stated problem, which is a not obvious

endeavor (Mateu-Figueras et al., 2011).

In SD as stated in Egozcue and Pawlowsky-Glahn (2011) an orthonormal basis consists

of a set of compositions e1, e2, ..., eD−1 with 〈ei, ej〉a = 0 for i 6= j, and ‖ei‖a = 1. The

coordinates of a composition are obtained for a fixed basis as

x∗ = ilr(x) = (〈x, e1〉a , 〈x, e2〉a , ..., 〈x, eD−1〉a),

with inverse

x = ilr−1(x∗) =
D−1⊕

j=1

x∗
j ⊙ ej .

This construction of orthonormal coordinates has been called isometric log-ratio trans-

formation (ilr) (Egozcue et al., 2003). The coordinates x∗
j = ilrj(x) are scale invariant

log-ratios (called log-contrasts) and isometric:

ilr((α ⊙ x) ⊕ (β ⊙ y)) = α · ilr(x) + β · ilr(y),

〈x, y〉a = 〈ilr(x), ilr(y)〉 ,

‖x‖a = ‖ilr(x)‖ ,

da(x, y) = d(ilr(x), ilr(y)).

A particular orthonormal basis e1, e2, ..., eD−1 is given in Egozcue et al. (2003) with
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ei = C




exp

(
1√

i(i + 1)

)
, ..., exp

(
1√

i(i + 1)

)

︸ ︷︷ ︸
i elements

, exp


−

√
i

i + 1


 , 1, ..., 1




and coordinates

x = (y1 ⊙ e1) ⊕ (y2 ⊙ e2) ⊕ ... ⊕ (yD ⊙ eD−1)

with

yi =
1√

i(i + 1)
ln

(
x1x2 · · · xi

(xi+1)i

)
, i = 1, 2, ..., D − 1.

The coordinates correspond to a particular case of the isometric log-ratio transformation

(ilr). The problem with such ilr coordinates (often called balances) is, that they have

no interpretation in the sense of the original compositional parts due to the definition of

compositional data which contain only relative information. This makes a meaningful

interpretation of such variables impossible (Hron et al., 2010).

Another way to construct an orthonormal basis is a method based on sequential binary

partitioning of the parts of a composition. With this tool a particular basis in the sim-

plex can be designed, which makes the corresponding coordinates directly interpretable

as balances between two groups of parts appearing in some order of the sequential bi-

nary partition (Egozcue and Pawlowsky-Glahn, 2005). The Cartesian coordinates of a

composition in such a basis are called balances.

Based on sequential binary partition, Hron et al. (2010, 2012) propose the selection of an

orthonormal basis, which results in a (D−1)-dimensional real vector z = (z1, z2, ..., zD−1),

where the components are defined as

ilr(x) = z = (z1, z2, ..., zD−1).

zi =

√
D − i

D − i + 1
ln

xi

D−i

√∏D
j=i+1 xj

for i = 1, ..., D − 1. (3.4)

The inverse transformation of z to the original composition is given (before closure) by
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x1 = exp

(√
D − 1√

D
z1

)

xi = exp


−

i−1∑

j=1

1√
(D − j + 1) (D − j)

zj +

√
D − 1√

D − i + 1
zi


 for i = 1, ..., D − 1

xD = exp


−

D−1∑

j=1

1√
(D − j + 1)(D − j)

zj




In Equation (3.4) all the relative information of the part x1 is separated from the re-

maining parts x2, ..., xD. The balance z1 contains all the relative information of part

x1 to all the remaining parts, which are represented by z2, ..., zD−1. z1 explains all the

ratios between x1 to the other parts of x. The interpretation of z1 remains unaltered

after permutation of the parts x2, ..., xD or also when the remaining balances are chosen

randomly according to a sequential binary partition of the subcomposition x2, ..., xD.

Apparently, z2 does not explain all the relative information about x2, because the part

x1 is not contained therein. z2 explains the remaining ratios concerning x2.

As described in Hron et al. (2012) now an orthonormal basis can be constructed, where

the first ilr coordinate explains the compositional part of interest. For it the indices in

Equation (3.4) were permuted, so that the compositional part of interest takes the role

of x1. Actually, D different ilr transformations have to be constructed, where the first

ilr coordinate explains a different compositional part, respectively.

The D-tuple (x1, x2, ..., xD) in (3.4) is replaced for l = 1, ..., D by

(xl, x1, ..., xl−1, xl+1, ..., xD) := (x
(l)
1 , x

(l)
2 , ..., x

(l)
l , x

(l)
l+1, ..., x

(l)
D ).

The resulting ilr transformation is

z
(l)
i =

√
D − i

D − i + 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

for i = 1, ..., D − 1. (3.5)

We have z
(1)
i = zi for i = 1, ..., D−1. The above constructed different ilr transformations

(see Equation (3.5)) result as expressions of x in different orthonormal bases on SD; they

are orthogonal transformations of each other (Egozcue et al., 2003).
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3.4 Inference in models with compositional explanatory variables

Modeling with compositional explanatory variables can be misleading if the original un-

transformed data are directly used in the model, because compositional data are not

represented in the Euclidean space.

Hron et al. (2012) proposed the following approach in a study about linear regression

with compositional explanatory variables. They selected the ilr basis like described

above (see Equation (3.4)), where the first ilr coordinate contains all the relative infor-

mation about one particular compositional part. Thus parameter estimation and also

inference statistics for this parameter referred completely to this part. No hypotheses

for the parameters referring to the other ilr variables were tested, as the corresponding

predictor ilr variables are not assigned to one single compositional part and therefore

not immediately interpretable. These variables were only used for regression, but not

for interpretation.

Then another ilr basis was chosen, where again the first ilr coordinate contains all infor-

mation about another specific part. This was done for every explanatory variable.

The fit of every model was exactly the same, as the different ilr transformations are

orthogonal rotations of the corresponding bases.

3.5 Treatment of zeros

The application of log-ratio transformations to model compositional data demands no

zeros in the data matrix, a requirement of both ratios and logarithms. In compositional

data analysis there can be distinguished three different types of zeros: rounded zeros,

count zeros and essential zeros.

Rounded zeros appear mostly when dealing with continuous data (e.g. weights, time,

length) and are not real zeros. They result from the rounding to zero of very small

observed data (called "rounded zeros"). The observed value lays below a particular max-

imum possible rounding-off error (ǫ = 10d). Martín-Fernández et al. (2011) assign to

this category of zeros also the zeros resulting from very small values, that cannot be

recorded. These values are called below-detection values. Both zeros, the rounded zeros

and the below detection values are treated in the same way.

Another category of zeros are the count zeros. A count represents a number of times an

event occurs. A vector of counts represents categorical data, where every count expresses

the number of items falling into each category. A zero value in one category means no

observation. This missing observation can be caused by limited size of the sample and

19



3 Compositional data

is in this case called a count zero.

Essential zeros, however, mean components, which are real zeros.

Martín-Fernández et al. (2011) summarized the recent techniques of the treatment of

zeros in compositional data analysis.

3.6 Implementation in R

Within the free and open-source programming language and software environment R

the package RobComposition provides tools for compositional data analysis. The pack-

age contains methods for imputation of compositional data including robust methods,

(robust) outlier detection for compositional data, (robust) principal component anal-

ysis for compositional data, (robust) factor analysis for compositional data, (robust)

discriminant analysis (Fisher rule) and (robust) Anderson-Darling normality tests for

compositional data as well as popular log-ratio transformations (alr, clr, ilr, and their

inverse transformations) (Templ et al., 2015).

The ilr transformation is implemented with the special choice of the balances according

to Hron et al. (2010). The function in R is called isomLR(). The isomLR() transforma-

tion moves D-part compositional data from the simplex into a (D-1)-dimensional real

space isometrically. From this choice of the balances, all the relative information of the

part x1 from the remaining parts is separated. The input of the function consists of an

object of the classes data frame or matrix with positive entries. The function provides

the ilr transformed data (Templ et al., 2015).
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4 Generalized linear models with compositional data

In this work we consider generalized linear models with compositional explanatory vari-

ables. The aim is to estimate parameters from a generalized linear model, when a multi-

variate (non compositional) response variable is predicted by compositional explanatory

variables.

4.1 Generalized linear models with compositional explanatory variables

Generalized linear models are a generalization of the general linear model. They differ

from the general linear model in two principal aspects: The response variable can be

non-normal distributed and does not have to be continuous; the response variable is con-

nected to a linear combination of explanatory variables (the so called linear predictor)

via a so called link function, which has not to be linear.

Generalized linear models in real space are defined in terms of a set of independent

random variables Y1, ..., YN from a distribution in the exponential family. The explana-

tory variables x1, ..., xN are related to a vector η1, ..., ηN through a linear model. This

linear combination of explanatory variables is the linear predictor η =
∑N

j=1 xjβ, where

β = (β1, ..., βp)T , p < N . For model specification a smaller set of parameters β1, ..., βp

(where p < N) is of interest.

Let the expectation of the response variable be E(Yi) = µi, i = 1, ..., N . The model

links then µi to ηi by ηi = g(µi), where the link function g is a monotone differentiable

function. Thus, g links E(Yi) to the explanatory variables through the formula

g(µi) =
p∑

j=1

xijβj for i = 1, ..., N.

The unknown parameters β1, ..., βp need to be estimated.

In summary, a GLM is a linear model for a transformed mean of a response variable

that has distribution in the natural exponential family (Agresti, 2002).

Generalized linear models though are based on the usual Euclidean geometry and on

data that carry absolute information. The application with compositional data, where

the components of the explanatory variables xi carry only relative information, is not
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reasonable. Compositional data do not plot into Euclidean space because they have their

own geometry which is not linear but curved in the Euclidean sense (Filzmoser et al.,

2010). They are represented in the Aitchison geometry on the simplex.

As a solution, the ilr (isometric logratio) transformation can be applied on the compo-

sitional explanatory data. Such a transformation expresses the original compositions in

D − 1 orthonormal coordinates with respect to the Aitchison geometry. The construc-

tion of the orthonormal coordinates is crucial for the interpretability of the results. Hron

et al. (2012) propose an orthonormal basis, where the first ilr coordinate explains the

compositional part of interest. A detailed explanation of the equations can be found in

Section 3.3.

For a sample of n independent observations of the response variable Yi ∈ ℜ, i = 1, ..., n,

and a set of explanatory variables xi ∈ SD, i = 1, ..., n, a generalized linear model of Yi,

i = 1, ..., n, on the ilr transformed explanatory variables zi ∈ RD−1 of Equation (3.4)

with the unknown parameters bj , j = 0, ..., D − 1, can be described as follows:

g(µi) = b0 +
D−1∑

j=1

zijbj for E(Yi) = µi, i = 1, .., n.

The parameters bj , j = 0, ..., D−1, can be estimated by the maximum likelihood method.

b0, the intercept term, is independent of the choice of the orthonormal basis, as it is

related only to the response variable Yi. The other parameters b1, ..., bD−1 are directly

connected to the ilr coordinates.

As Hron et al. (2012) described for the linear regression model with compositional data,

we can consider the lth ilr-basis according to Equation (3.5), which leads to the following

generalized linear model:

g(µ) = b0 + b
(l)
1 z

(l)
1 + ... + b

(l)
D−1z

(l)
D−1

z
(l)
1 explains all the relative information about the compositional part x

(l)
1 , and therefore

the coefficient b
(l)
1 can be assigned to this part. The interpretation of the other parameters

b
(l)
j , j = 2, ..., D − 1, is difficult, since they are directly connected to all ilr coordinates.

Altogether, D different generalized linear models have to be considered. The resulting

generalized linear model is

g(µi) = b0 + b1zi1 + ... + bD−1zi,D−1 + ei for i = 1, .., n.

ei stands for the error variability that cannot be accounted for by the predictors. The

explanatory variables zi = (1, zi1, ..., zi,D−1)′ represent the ilr transformation of xi (in-
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cluding 1 for the intercept).

The intercept term b0 and the model fit remain unchanged, since the different ilr bases

are orthogonal (Hron et al., 2012).
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In this chapter, generalized linear models are practically implemented for compositional

data sets. Models for binary data (binomial distribution) and for count data (Poisson

distribution) are studied. We use a compositional data set resulting from the GEMAS

(Geochemical mapping of agricultural and grazing land soils) project, a cooperation

project between EuroGeoSurveys and Eurometaux, to implement a model for binary

data. A compositional data set resulting from a biomonitoring campaign in Czech Re-

public is used to implement a model for count data.

5.1 Binary variables, binomial regression and logistic model

In this section we apply generalized linear models with binomial random component and

a compositional explanatory data set.

5.1.1 The GEMAS Project

GEMAS is an acronym for Geochemical Mapping of Agricultural and Grazing land Soil

and identifies a cooperation project between the EuroGeoSurveys Geochemistry Expert

Group and Eurometaux.

The EuroGeoSurveys Geochemistry Expert Group is a not-for-profit organization repre-

senting 33 national Geological Surveys and some regional Surveys in Europe. EuroGeo-

Surveys provides the European institutions with advice and information in areas such

as (EuroGeoSurveys, 2015):

• the use and the management of on- and off-shore natural resources;

• the identification of natural hazards of geological origin, their monitoring and the

mitigation of their impacts;

• environmental management, waste management and disposal; land-use planning;

• sustainable urban development and safe construction;

• e- government and the access to geoscientific meta data and data;
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• the development of interoperable and harmonized geoscientific data at the Euro-

pean scale.

Eurometaux is the European Association of Metals, the Brussels-based association ser-

vicing and representing the European non-ferrous metals industry.

The GEMAS project started in 2008 and ended with the launch of the GEMAS Geo-

chemical Atlas in December 2013. The project provides high quality harmonized, freely

and interoperable geochemical data for ploughed agricultural soil and for non-cultivated

grass land (non-cultivated for at least 10 years).

Within the project more than 4.000 samples of agricultural soil (0 - 20 cm) and grazing

land soil (0 - 10 cm) were collected at an average sample density of 1 site per 2.500 km2

across 33 European countries, following strictly a field manual. The concentration of al-

most 60 chemical elements, and the parameters determining their availability and binding

in agricultural and grazing soils at the scale of a continent (Europe - 5.6 million km2

were sampled) were documented (GEMAS, 2015). The data sets were harmonized with

respect to

1. land-use (agricultural soil, 0 - 20 cm and grazing land soil, 0 - 10 cm);

2. spatial scale (homogeneous sampling density: 1 site/2.500 km2 (grid of 50 x 50 km);

3. sample preparation (<2 mm grain size);

4. analytical methodology: Aqua regia extractable (ICP-MS 53 elements), total (XRF,

41 elements) and mobile metal ion (MMI
R©

, 55 elements) concentrations, lead iso-

tope ratios, pH (0.01M CaCl2), Total Organic Carbon, Total Carbon, Total Sul-

phur, Effective Cation Exchange Capacity (eCEC at pH of the soil, silver thiurea

method), mid-infra red (MIR) spectra, Texture (sand, silt, clay) and Partitioning

coefficients (kD-values) for selected elements.

For more information on data, methodology and results of the GEMAS project, in

April 2014 was released a set of two volumes, accompanied by a DVD with all the ana-

lytical data, maps, diagrams and tables:

• Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O’Connor, P. (Edi-

tors), 2014. Chemistry of Europe’s agricultural soils - Part A: Methodology and

interpretation of the GEMAS data set. Geologisches Jahrbuch (Reihe B 102),

Schweizerbarth, Hannover, 528 pp. + DVD
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• Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O’Connor, P. (Editors),

2014. Chemistry of Europe’s agricultural soils - Part B: General background in-

formation and further analysis of the GEMAS data set. Geologisches Jahrbuch

(Reihe B 103), Schweizerbarth, Hannover, 352 pp.

5.1.2 Data set

The GEMAS data set used in this work consists of 2108 observation of 144 variables.

Only samples of agricultural soils are included in this data set. The elimination of all

incomplete observations leads to a data set with 2056 observations. The following list

contains all the variables names.

names

[1] "ID" "COUNTRY" "C_ID"

[4] "TYPE" "TYPE2" "XCOO"

[7] "YCOO" "XLAEA" "YLAEA"

[10] "ALT" "CIA" "sand"

[13] "silt" "clay" "sand_norm"

[16] "silt_norm" "clay_norm" "soiltype"

[19] "soilclass" "climate" "MeanTemp"

[22] "AnnPrec" "PM" "CEC"

[25] "pH_CaCl2" "TOC" "C_totF"

[28] "C_tot" "N_totF" "S_totF"

[31] "S_tot" "CNratio" "Ag"

[34] "Al" "As" "Au"

[37] "B" "Ba" "Be"

[40] "Bi" "Ca" "Cd"

[43] "Ce" "Co" "Cr"

[46] "Cs" "Cu" "Fe"

[49] "Ga" "Ge" "Hf"

[52] "Hg" "In" "K"

[55] "La" "Li" "Mg"

[58] "Mn" "Mo" "Na"

[61] "Nb" "Ni" "P"

[64] "Pb" "Pd" "Pt"

[67] "Rb" "Re" "S"

[70] "Sb" "Sc" "Se"

[73] "Sn" "Sr" "Ta"
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[76] "Te" "Th" "Ti"

[79] "Tl" "U" "V"

[82] "W" "Y" "Zn"

[85] "Zr" "C_tot.1" "S_tot.1"

[88] "SiO2" "Si_XRF" "TiO2"

[91] "Ti_XRF" "Al2O3" "Al_XRF"

[94] "Fe2O3" "Fe_XRF" "MnO"

[97] "Mn_XRF" "MgO" "Mg_XRF"

[100] "CaO" "Ca_XRF" "Na2O"

[103] "Na_XRF" "K2O" "K_XRF"

[106] "P2O5" "P_XRF" "LOI"

[109] "As_XRF" "Ba_XRF" "Bi_XRF"

[112] "Ce_XRF" "Co_XRF" "Cr_XRF"

[115] "Cs_XRF" "Cu_XRF" "Ga_XRF"

[118] "Hf_XRF" "La_XRF" "Mo_XRF"

[121] "Nb_XRF" "Ni_XRF" "Pb_XRF"

[124] "Rb_XRF" "Sb_XRF" "Sc_XRF"

[127] "Sn_XRF" "Sr_XRF" "Ta_XRF"

[130] "Th_XRF" "U_XRF" "V_XRF"

[133] "W_XRF" "Y_XRF" "Zn_XRF"

[136] "Zr_XRF" "X208_207" "X207_208"

[139] "X208_206" "X206_208" "X206_207"

[142] "X207_206" "SUSCEPTIBILITY" "SUSCEPTIBILITY.FE2O3"

5.1.3 Difference in soil composition in northern and southern Europe

In the GEMAS project large differences in the concentration of many chemical elements

between the soil of northern and southern Europe could be observed. In young soils

from northern Europe the concentrations for many elements is 2-3 times lower than in

older and more weathered southern European soil. Figure 5.1 shows the arsenic (As)

map, produced in the GEMAS project. Arsenic concentrations in agricultural soil are

clearly higher in southern and western compared to northern Europe.

Given a compositional data set of chemical elements and a binary variable representing

the geographical position north or south, we try to fit a generalized linear model that

describes the observation made in the GEMAS project.

The compositional explanatory data set used in this work consists of the total concen-

tration of 10 major elements of a soil sample plus Loss on Ignition (LOI). The total
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Figure 5.1: Distribution maps for arsenic (As), in agricultural soils (left) and grazing landes

(right) (GEMAS, 2015).

concentrations were determined by wavelength dispersive X-ray fluorescence spectrom-

etry (WD-XRFS) using PAN2400 and AXIOS WD-SRFs with Cr- and Rh-anode X-ray

tubes, respectively (Reimann et al., 2012). The 10 major elements are Al2O3, CaO,

Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2. Loss on Ignition (LOI) in the

GEMAS project was determined on all samples via slowly heating to 1030◦C, keeping

them at this temperature for 15 min in a muffle furnace, letting them cool to room

temperature in a desiccator and reporting the weight loss. As cited in Reimann et al.

(2012) this set of total concentrations of the 10 major elements plus LOI is a "classical"

example of a "closed" data set.

The respective variables of the data set are the following:

Al_XRF, Ca_XRF, Fe_XRF, K_XRF, Mg_XRF, Mn_XRF, Na_XRF, P_XRF, Si_XRF,

Ti_XRF and LOI.

As mentioned above, 2056 samples are provided with the data set.

The binary response outcome for each sample is the geographical classification "north"

and "south". To create this geographical classification the variable "climate" was used,

which consists of the four climate classes Spbo, BoTe, Temp and Medi. The climate

classes Spbo and BoTe were grouped into the category "north" and Temp and Medi into

the category "south". Figure 5.2 depicts the climate classification for the single sample

sites.
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Climate classes

BoTe
Med
Spbo
Temp

Climate classes

BoTe
Med
Spbo
Temp

Figure 5.2: Sample sites in the GEMAS study. The single points are colored according to the

climate classification.
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Thus, the input data is given by a matrix X1, representing 2056 compositions of 10

chemical elements, the variable LOI and the vector north, consisting in a logical operator

with TRUE/FALSE elements. If R is forced to do arithmetic on logical values, then it

takes TRUE to be 1 and FALSE to be 0.

X1 = (Al_XRF, Ca_XRF, Fe_XRF, K_XRF, Mg_XRF, Mn_XRF, Na_XRF, P_XRF,

Si_XRF, Ti_XRF, LOI)

north = (FALSE FALSE TRUE TRUE TRUE FALSE ...)

Goal is to obtain a model that describes the relationship between north-south geograph-

ical position and the ilr-transformed variables AL_XRF, ..., LOI.

north ~ Al_XRF + Ca_XRF + Fe_XRF + ... + Zn_XRF + Zr_XRF + LOI

It is important to note, that the ilr transformed variables are ratios and therefore di-

mensionless numbers, which have not an obvious meaning to a geochemist studying the

concentration of the chemical elements. Reimann et al. (2012) though show, that ele-

ments with high concentrations have high ilr variables.

The implementation in R is based on the functions lmCoDaX() and glm(), already im-

plemented in R. The function lmCoDaX(), available in the R-package robCompositions,

delivers appropriate inference for regression of y on a compositional matrix X. Classical

and robust regression can be applied with compositional explanatory variables. The

approach is based on the isometric logratio (ilr) transformation with a special choice of

the balances according to Hron et al. (2010).

The function glm() is used to fit generalized linear models, specified by giving a sym-

bolic description of the linear predictor and a description of the error distribution.

The code of the function lmCoDaX() was adapted to the use with generalized linear

models and the function glm(). The respective R-Code of this new function called

glmCoDaX() can be found in the appendix of this work.

The R input for a binomial GLM with logit link function and our data is given by:

glmCoDaX(X1,north,binomial)

At first we split the compositional data set into two parts, a training set to fit a model

and a test set to assess the generalization error for the chosen model. For the training

set, randomly 2/3 of all observations are selected; this corresponds to 1370 observations.
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Consequently the test set comprehends the remaining 1/3 of all observations, which cor-

responds to 686 observations. With the compositional training set we try to fit three

models. In the first model we use the ilr transformed compositional data set according

to Hron et al. (2012). In the second model we use the original compositional data set.

Due to the skewness of the data though, we apply a log transformation on them. And

finally in the third model we fit clr transformed compositional data.

In the case of ilr transformed variables we get the following result. For the exact structure

of the input data see the R-code in the appendix.

glmCoDaX

Call:

glm(formula = y ~ ., family = family, data = d)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9093 -0.4347 -0.1156 0.1615 2.9469

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 20.8193 3.0824 6.754 1.44e-11 ***

X.Al_XRF -11.1659 1.0285 -10.856 < 2e-16 ***

X.Ca_XRF -0.3374 0.1704 -1.980 0.0477 *

X.Fe_XRF 3.1446 0.5114 6.149 7.80e-10 ***

X.K_XRF 4.0287 0.4768 8.449 < 2e-16 ***

X.Mg_XRF 0.4614 0.2911 1.585 0.1129

X.Mn_XRF -1.3963 0.2739 -5.097 3.45e-07 ***

X.Na_XRF 5.7517 0.3978 14.459 < 2e-16 ***

X.P_XRF -0.2094 0.2572 -0.814 0.4156

X.Si_XRF -1.2826 0.2674 -4.797 1.61e-06 ***

X.Ti_XRF -0.2293 0.3901 -0.588 0.5567

X.LOI 1.2345 0.2693 4.585 4.54e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 1559.19 on 1369 degrees of freedom

Residual deviance: 775.85 on 1359 degrees of freedom

AIC: 797.85

Number of Fisher Scoring iterations: 7

Seven iterations were required to fit this model. R flags significant coefficients with one,

two or three stars depending on their p-values. We can see that some of the ilr trans-

formed variables are highly significant. These variables are Al_XRF, Ca_XRF, Fe_XRF,

K_XRF, Mn_XRF, Na_XRF, Si_XRF and LOI. It is important to note, that Na_XRF for exam-

ple has a very positive effect on the response variable, Al_XRF a negative effect. There

is also an intercept term, which is very positive and highly significant.

R returns two forms of deviances, the null deviance and the residual deviance. The

deviance is a measure of goodness of fit of a GLM. Higher numbers indicate a worse fit.

The "null deviance" is a measure for how well the response variable is predicted by a

model that includes only the intercept. All other terms are excluded. Since the null

deviance is 1559.19 on 1369 degrees of freedom, the null model is a poor fit. The degrees

of freedom for this model are the number of data points n minus 1 if an intercept is

fitted. Including the 10 independent variables decreased the deviance to 775.85 points

on 1359 degrees of freedom. The residual deviance refers to the fitted model, which has

n − p degrees of freedom, where n is the number of data points and p is the number of

parameters, including any intercept.

The AIC-value for this model is 797.85. This number though is only meaningful when

comparing different models (not necessary nested).

This approach uses 10 different ilr transformations according to the number of explana-

tory variables. For every ilr transformation the first ilr coordinate contains all informa-

tion about another specific part. The model fit in this approach however is independent

of the ilr transformation selection, since the different ilr transformations are orthogonal

rotations of the corresponding bases.

To compare the results, a logistic regression with generalized linear models has been

carried out for the original data (log transformed).

In this case the R input is given by:

glmfit<-glm(y~.,data=data.frame(y=north,X=log(X1)),family=binomial)
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R returns the following warning message:

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

This warning means that the data is possibly linearly separable.

A detailed information on the fit can be obtained with the summary() function:

summary(glmfit)

The following result can be obtained:

Call:

glm(formula = y ~ ., family = binomial, data = data.frame(y =

north_train, X = log(X1_train)))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.8113 -0.4287 -0.1166 0.1555 2.9417

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.37676 12.08901 0.362 0.7173

X.Al_XRF -10.46106 0.98703 -10.598 < 2e-16 ***

X.Ca_XRF -0.29372 0.16344 -1.797 0.0723 .

X.Fe_XRF 2.97309 0.49009 6.066 1.31e-09 ***

X.K_XRF 3.77559 0.45604 8.279 < 2e-16 ***

X.Mg_XRF 0.46269 0.27889 1.659 0.0971 .

X.Mn_XRF -1.34103 0.26165 -5.125 2.97e-07 ***

X.Na_XRF 5.47714 0.37953 14.431 < 2e-16 ***

X.P_XRF -0.16028 0.24704 -0.649 0.5165

X.Si_XRF -0.09774 0.84183 -0.116 0.9076

X.Ti_XRF -0.23100 0.37350 -0.618 0.5363

X.LOI 1.46626 0.33052 4.436 9.16e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 1559.19 on 1369 degrees of freedom

Residual deviance: 773.89 on 1358 degrees of freedom

AIC: 797.89

Number of Fisher Scoring iterations: 7

The null deviance is the same for both the logistic regression using the original data and

the logistic regression using the coordinates. This is obvious, since the null deviance

shows how well the response variable is predicted by a model that includes only the

intercept and excludes all other therms, and both models have the same response vari-

ables. Also the residual deviance and the AIC-value are very similar for both models.

The big difference can be seen in the variables: Both models do not have the same sig-

nificant variables. Si_XRF is highly significant in the model with coordinates, but does

not describe the response variable significantly in the model with the original data. The

original data are not represented in the usual Euclidean space, therefore the results and

the interpretation of these results can be misleading.

For the last model, the compositional data are clr transformed by the cenLR() function

implemented in R and available in the R-package robCompositions. The clr transformed

compositional data set leads to the following result:

Call:

glm(y~.,data=data.frame(y=north,X=cenLR(X1)$ x.clr), family=binomial);

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9093 -0.4347 -0.1156 0.1615 2.9469

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 20.8193 3.0824 6.754 1.44e-11 ***

X.Al_XRF -11.8233 1.1048 -10.702 < 2e-16 ***

X.Ca_XRF -1.4988 0.3604 -4.158 3.20e-05 ***

X.Fe_XRF 1.8212 0.5475 3.326 0.00088 ***

X.K_XRF 2.6641 0.4524 5.889 3.89e-09 ***
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X.Mg_XRF -0.7371 0.3568 -2.066 0.03885 *

X.Mn_XRF -2.5084 0.3565 -7.036 1.97e-12 ***

X.Na_XRF 4.3070 0.3510 12.271 < 2e-16 ***

X.P_XRF -1.3767 0.4405 -3.125 0.00178 **

X.Si_XRF -2.4000 0.3977 -6.035 1.59e-09 ***

X.Ti_XRF -1.3957 0.4374 -3.191 0.00142 **

X.LOI NA NA NA NA

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1559.19 on 1369 degrees of freedom

Residual deviance: 775.85 on 1359 degrees of freedom

AIC: 797.85

Number of Fisher Scoring iterations: 7

Null deviance, residual deviance and AIC are the same for both models with ilr and

clr transformed compositional data. The significance of the single variables is differ-

ent though. The coefficients for the coordinate representing LOI is not defined by the

model because of singularities. The clr (centered logratio) transformation is an isomet-

ric transformation and is defined by the logratio to the geometric mean of all variables

(Filzmoser and Hron, 2009). The composition is mapped to a D-dimensional Euclidean

vector subspace; thus, the transformation is not injective. The resulting transformed

data are always singular.

A classical way to get rid of the singularity of the classical covariance matrix of compo-

sitional data is to erase one component. Certainly this procedure is not permutation-

invariant, as results will largely depend on which component is erased (Pawlowsky-Glahn

et al., 2007).

Summarizing we can state, that the isometric logratio (ilr) transformation has the most

preferable properties among the transformations selected, as it avoids data singularity

(see Hron et al. (2012)). With the application of the ilr transformation we can handle

the fact, that compositional data follow the Aitchison geometry on the simplex and not

the usual Euclidean geometry.
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Now we select the final model using the ilr transformed variables by estimating the per-

formance of different models in order to choose the best one. We create 100 training

and test data sets and fit a model for every training data set with the help of the Akaike

Information Criterion (AIC). The model selection is based on a stepwise selection proce-

dure similar to backward selection in linear regression. This backward AIC elimination

procedure starts with all predictors in the model and removes predictors until the AIC

stops decreasing. The basic structure of this procedure is:

1. Remove each variable currently in the model, fit the model and calculate the AIC.

2. Choose the variable that leads to the model with the smallest AIC.

3. If the AIC of this model without this variable is lower than the AIC of the model

containing the variable, drop the variable and go back to step 1. Otherwise, do

not drop the variable and stop.

For our randomly selected 100 training data sets out of the GEMAS project with the

glmCoDaX() we get in total 100 different models. In order to evaluate the performance

of the single models, we use the corresponding test data sets to make a prediction for

the response variable and compare the prediction with the real observation. In that way

we can understand the accuracy of a prediction. The predict.glm() function in R can

be used to predict the north - south localization of the observations. We supply the test

data set to the predict() function, then probabilities are computed for the test data set.

In order to make a prediction as to whether the observation is localized in northern or

southern Europe, the predicted probabilities have to be converted into a logical operator

with TRUE/FALSE elements. The table() function can be used to produce a confu-

sion matrix in order to determine how many observations were correctly or incorrectly

classified. The mean() function can be used to compute the fraction of observations for

which the prediction was correct. In our case, logistic regression correctly predicted the

localization of the test observation sites between 85,28% and 90,67% of the time. The

test error rates of all models lie therefore between 9.33% and 14.72%. In Figure 5.3 the

distribution of the rate of proper classified observations is shown. Figure 5.4 depicts the

distribution of the test error rate for all 100 models. We see, that all models work quite

well.

The 100 different fitted models can be grouped into the following 7 model classes:
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Figure 5.3: Histogramm of proper classificated observations.
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Figure 5.4: Histogramm of classification error for test data.
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Model 1

NORTH ~ Al_XRF + Ca_XRF + Fe_XRF + K_XRF + Mg_XRF + Mn_XRF + Na_XRF +

P_XRF + Si_XRF + LOI

Model 2

NORTH ~ Al_XRF + Ca_XRF + Fe_XRF + K_XRF + Mg_XRF + Mn_XRF + Na_XRF +

Si_XRF + Ti_XRF + LOI

Model 3

NORTH ~ Al_XRF + Ca_XRF + Fe_XRF + K_XRF + Mg_XRF + Mn_XRF + Na_XRF +

Si_XRF + LOI

Model 4

NORTH ~ Al_XRF + Ca_XRF + Fe_XRF + K_XRF + Mn_XRF + Na_XRF + Si_XRF +

Ti_XRF + LOI

Model 5

NORTH ~ Al_XRF + Ca_XRF + Fe_XRF + K_XRF + Mn_XRF + Na_XRF + Si_XRF + LOI

Model 6

NORTH ~ Al_XRF + Fe_XRF + K_XRF + Mn_XRF + Na_XRF + Si_XRF + Ti_XRF + LOI

Model 7

NORTH ~ Al_XRF + Fe_XRF + K_XRF + Mn_XRF + Na_XRF + Si_XRF + LOI

The barplot in Figure 5.5 depicts the single model frequency. Model 3 with the ilr trans-

formed variables Al_XRF, Ca_XRF, Fe_XRF, K_XRF, Mg_XRF, Mn_XRF, Na_XRF, Si_XRF

and LOI is the most selected by the backward AIC elimination procedure. 45 training

data sets resulted in model 3.

The mean test error rate for these 45 versions of model 3 amounts to 12,00%. On average

these 45 models predicted correctly 88,00% of all observations.

We can also perform statistical tests to determine if subsets of the regression coefficients

differ from zero. To perform this test we select the model out of the above 45 models

with the minimal AIC.

glmCoDaX
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Figure 5.5: Barplot of model frequency

Call:

glm(formula = y ~ ., family = family, data = d)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.68021 -0.40777 -0.07923 0.21395 2.77996

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 18.5426 2.7634 6.710 1.94e-11 ***

X.Al_XRF -11.9704 1.0123 -11.825 < 2e-16 ***

X.Ca_XRF -0.5833 0.1855 -3.145 0.001660 **

X.Fe_XRF 3.0305 0.5109 5.932 2.99e-09 ***

X.K_XRF 4.2233 0.4561 9.260 < 2e-16 ***

X.Mg_XRF 0.9666 0.3328 2.904 0.003682 **

X.Mn_XRF -1.7847 0.2944 -6.061 1.35e-09 ***

X.Na_XRF 6.1263 0.4036 15.178 < 2e-16 ***
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X.Si_XRF -0.9274 0.2444 -3.794 0.000148 ***

X.LOI 0.9192 0.2276 4.038 5.39e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1580.13 on 1369 degrees of freedom

Residual deviance: 746.13 on 1361 degrees of freedom

AIC: 764.13

Number of Fisher Scoring iterations: 8

For this model, the ilr transformed variables Al_XRF, Fe_XRF, K_XRF, Mn_XRF, Na_XRF,

Si_XRF and LOI are highly significant.

For this special model, logistic regression correctly predicted the localization of the test

observation 86,44% of the time. The test error rate is therefore 13,56%.

We compare this model with the full model by a likelihood ratio test. The full model

for the same training data set is the following:

glmCoDaX

Call:

glm(formula = y ~ ., family = family, data = d)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.69449 -0.41085 -0.07658 0.20428 2.77418

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 19.3710 3.1774 6.096 1.08e-09 ***

X.Al_XRF -12.0758 1.0659 -11.329 < 2e-16 ***

X.Ca_XRF -0.5913 0.1856 -3.186 0.001443 **

X.Fe_XRF 3.0314 0.5429 5.583 2.36e-08 ***

X.K_XRF 4.2958 0.4787 8.974 < 2e-16 ***
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X.Mg_XRF 0.9404 0.3300 2.849 0.004382 **

X.Mn_XRF -1.7496 0.2936 -5.958 2.55e-09 ***

X.Na_XRF 6.1632 0.4250 14.503 < 2e-16 ***

X.P_XRF -0.2365 0.2675 -0.884 0.376587

X.Si_XRF -0.9248 0.2793 -3.311 0.000930 ***

X.Ti_XRF 0.1029 0.3970 0.259 0.795477

X.LOI 1.0444 0.2722 3.838 0.000124 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1580.13 on 1369 degrees of freedom

Residual deviance: 745.31 on 1359 degrees of freedom

AIC: 767.31

Number of Fisher Scoring iterations: 8

Our reduced and the full model are nested models. Both models can be compared using

the deviance D. Considering the full model

logit(p(x1, x2, ..., xp)) = β0 + β1x1 + ... + βqxq + βq+1xq+1 + ... + βpxp,

we want to test the null hypothesis

H0 : βq+1 = ... = βp = 0,

versus the alternative hypothesis that at least one of these coefficients differs from zero.

If H0 is true, then the regressor variables xq+1, ..., xp are redundant in the full model

and can be dropped. In order to test H0 in practice, the respective deviances for both

models were compared. The test statistic is:

X2 = Dreduced − Dfull.

Both deviances in the above equation involve the evaluation of the log-likelihood for the

saturated model, as the deviance D is defined as

D = 2[log-likelihood(saturated model) − log-likelihood(proposed model)].
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The saturated model has as many parameters as observations. When we take in the

test statistic the differences of the deviances (reduced - full), the log-likelihood for the

saturated model cancels out. Therefore the test statistic X2 can be written as

X2 = 2[log-likelihood(full model) − log-likelihood(reduced model)] :

This test statistic is sometimes referred to as the log-likelihood ratio statistics.

If H0 is true, then the test statistic X2 has an approximate chi-squared distribution

whose degrees of freedom is equal to the difference in the number of parameters between

the full and reduced models: p − q. When testing at a level of significance α, then we

reject H0 if X2 > χα,p−q, the α critical value of the chi-squared distribution on p − q

degrees of freedom.

The residual deviance for the full model is 745.31 on 1359 degrees of freedom, the resid-

ual deviance for the reduced model 746.13 on 1361 degrees of freedom. The value of

the log-likelihood ratio statistics is X2 = 0.82. Since the full and reduced models differ

by 2 parameters, we can compare this test statistic to a chi-squared distribution on 2

degrees of freedom. The p-value for this test is p = 0.6637. Thus we conclude, that there

is insufficient evidence that the coefficients regarding the variables P_XRF and Ti_XRF

differ from zero. We can select the model without these two coefficients.

Finally we are interested in the information about which observations are how often

misclassified by the 45 versions of model 3, which we selected as final model. The mis-

classification is tested for every model with the full data sets. In Figures 5.6 and 5.7 the

results are depicted. It is interesting to note, that almost all observations in the area of

the Baltic states were misclassified.

5.2 Count data, Poisson regression and log-linear model

In this section we apply generalized linear models with a Poisson random variable and

a compositional explanatory data set.

5.2.1 Biomonitoring campaign in Czech Republic

The project "Biogeochemical exploration of forests as a base for the long-term landscape

exploitation in the Czech Republic" (CZ0074) was implemented between July 2008 and

March 2011 by the Silva Tarouca Research Institute for Landscape and Ornamental
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Figure 5.6: Misclassification of observations. Black color means misclassification 100% of the

time; white color no misclassification.
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Figure 5.7: Misclassification of observations. White color means misclassification 100% of the

time; black color no misclassification.
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Gardening, Public Research Institution (abbrev VÚKOZ) in co-operation with the Ge-

ological Survey of Norway (Norges geologiske undersøkelse, abbrev NGU). The project

was supported by a grant from Norway through the Norwegian Financial Mechanism

and the Revolving Fund of the Ministry of the Environment of the Czech Republic.

The project focuses were the acquirement of complex information about forests bio-

geochemistry and especially anomalies in the concentration distributions of toxic and

high-risk elements in chosen bio-indicators of environmental quality in the Czech Re-

public.

Samples of big red stem moss (Pleurozium schreberi), wavy hairgrass (Deschampsia flex-

uosa) and annual and biennial Norway spruce needles (Picea abies) receiving chemical

elements mainly from atmospheric deposition, forest floor humus and upper and lower

mineral forest soils (depleted and enriched B horizons) were collected in parallel over the

territory of the Czech Republic at an average sample density of about 1 site/300 km2. In

total 250-280 plots evenly spread over the Czech territory were selected (see Figure 5.8).

The sample sites are part of the "permanent monitoring plots" used for the European

and national moss monitoring campaigns (UNECE ICP-Vegetation).

Concentrations of in total 39 elements were determined using inductively-coupled atomic-

emission spectrometry (ICP-AES) and dynamic reaction cell inductively-coupled plasma

mass spectrometry (DCR ICP-MS, Perkin Elmter) instruments. These elements were

Ag, Al, As, Ba, Be, Bi, (Ca), Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hg, (K), La, Li, (Mg),

Mn, Mo, (Na), Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn (the major

nutrients Ca, K, Mg and Na were not analyzed in moss). The quality of the analytical

results was checked through analyzes of standard reference plant materials.

The aim of the project was to synthesize obtained data of relatively high concentrations

of toxic and high-risk elements and deficiencies of biologically active elements in investi-

gated bio-indicators. Potential risks for forests ecosystems and human health in case of

determination of extreme accumulation of the monitored elements should be evaluated.

The project should supply the information to relevant public authorities as a basis for

possible corrective actions. This would improve the quality of decision-making processes

in the sphere of long-term land use, nature conservation and health protection in the

Czech Republic.

5.2.2 Data set

The data set of the project "Biogeochemical exploration of forests as a base for the

long-term landscape exploitation in the Czech Republic" (CZ0074) consists in the con-
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Figure 5.8: Location of study sites within Czech Republic.
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centration of several chemical elements for every bioindicator selected. The sample

number amounts to 254 for Norway spruce needles, 249 for grass, 259 for humus and

280 for moss. For every plot there has been collected also data like elevation, annual

precipitation or geomorphology. Additionally data about nearest distance to road and

the respective average number of cars and trucks (in 24 hours) traveling on certain roads

in the year 2005 is provided in the project. The distance to the nearest road is indicated

in metres. Minimum distance is null, maximum distance 1.959 m. No information about

number of cars and trucks is indicated if there is no road up to 2000 m from the sampling

plot or no data about traffic at the given road segments - usually very small roads with

a negligible traffic intensity. In total 116 plots dispose of an information about traffic

volume.

5.2.3 Traffic induced pollution in Czech Republic

The project "Biogeochemical exploration of forests as a base for the long-term landscape

exploitation in the Czech Republic" (CZ0074) showed, that it can be possible to find

an appropriate bioindicator for a certain task (atmospheric dust level, urban contami-

nation,...) and a certain group of elements. Results of the study let suppose, that an

universal bioindicator reflecting anthropogenic input 1:1 does not exist. One of the best

bioindicators for monitoring atmospheric contamination at a regional-scale appears to

be moss. Moss can not provide a reflection of the complete atmospheric deposition but

rather a picture that is biased towards certain elements like V, Pb and Sb. Thus moss

may preferably reflect traffic emissions (Suchara et al., 2011).

The aim of our investigation is the identification of relations between traffic volume and

chemical composition of moss. The traffic volume is included in the investigation via

the count data representing the average number of cars and trucks traveling on certain

roads. The chemical composition of moss is available as compositional data set including

the following chemical elements: Ag, Al, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe,

Ga, Hg, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y, Zn.

Using both data sets, we try to fit a generalized linear model that describes a relation

between them. We use the whole data set and select the final model via backward AIC

elimination procedure. The R-function glmCoDaX() is used. The input for a Poisson

GLM with log link and our data is given by:

glmCoDaX(X,y,poisson),

with X a matrix representing 280 compositions of ilr transformed concentrations of 35

chemical elements and y a vector with count data representing traffic volume. As in

48



5 Application with R

the previous section about binomial regression already indicated, the ilr transformed

variables are ratios and therefore dimensionless numbers, which have not an obvious

meaning.

After application AIC elimination procedure only the variable Al is eliminated. All the

other variables are highly significant. The function delivers the following result:

glmCoDaX

Call:

glm(formula = y ~ ., family = family, data = d)

Deviance Residuals:

Min 1Q Median 3Q Max

-107.709 -33.769 -9.557 18.291 117.220

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 18.168606 0.283059 64.187 < 2e-16 ***

X.Ag -1.005612 0.012062 -83.372 < 2e-16 ***

X.As -0.569064 0.011047 -51.513 < 2e-16 ***

X.Ba 0.283509 0.008681 32.657 < 2e-16 ***

X.Be 0.220710 0.009904 22.285 < 2e-16 ***

X.Bi -0.371845 0.011668 -31.869 < 2e-16 ***

X.Cd -0.076522 0.009672 -7.912 2.53e-15 ***

X.Ce -2.207928 0.091325 -24.177 < 2e-16 ***

X.Co 0.256049 0.010997 23.283 < 2e-16 ***

X.Cr 0.054836 0.015149 3.620 0.000295 ***

X.Cs -0.204661 0.005918 -34.581 < 2e-16 ***

X.Cu 2.573601 0.020032 128.476 < 2e-16 ***

X.Fe 1.638624 0.015247 107.471 < 2e-16 ***

X.Ga 0.288644 0.028879 9.995 < 2e-16 ***

X.Hg 0.588192 0.012569 46.798 < 2e-16 ***

X.La 5.914467 0.070625 83.745 < 2e-16 ***

X.Li -0.644279 0.017682 -36.438 < 2e-16 ***

X.Mn -0.080779 0.004695 -17.206 < 2e-16 ***

X.Mo -0.871924 0.014192 -61.438 < 2e-16 ***

X.Nd -8.936795 0.138837 -64.369 < 2e-16 ***
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X.Ni -0.517476 0.014043 -36.850 < 2e-16 ***

X.Pb 0.304473 0.012587 24.190 < 2e-16 ***

X.Pr 3.835915 0.166693 23.012 < 2e-16 ***

X.Rb -0.100429 0.005575 -18.015 < 2e-16 ***

X.S -2.817398 0.022305 -126.312 < 2e-16 ***

X.Sb 0.945839 0.015101 62.633 < 2e-16 ***

X.Se 0.303421 0.011450 26.499 < 2e-16 ***

X.Sn -0.300137 0.021134 -14.201 < 2e-16 ***

X.Sr -0.097788 0.010273 -9.519 < 2e-16 ***

X.Th 1.330992 0.023146 57.503 < 2e-16 ***

X.Tl 0.376190 0.006262 60.072 < 2e-16 ***

X.U -0.127732 0.012328 -10.361 < 2e-16 ***

X.V -1.621152 0.025010 -64.819 < 2e-16 ***

X.Y 0.913852 0.027569 33.147 < 2e-16 ***

X.Zn 0.722205 0.013097 55.143 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 314314 on 115 degrees of freedom

Residual deviance: 183118 on 82 degrees of freedom

AIC: 184250

Number of Fisher Scoring iterations: 6

In order to evaluate the performance of the model, we use the same compositional data

set to make a prediction for the response variable and compare the prediction with the

real observation. A comparison between the really observed data and the predicted data

provides the following result, where the variable y stands for the observations, and the

variable pred for the predictions:

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

86.0 730.5 1557.0 2681.0 3438.0 21230.0

> summary(pred)
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Figure 5.9: Plot of observed and predicted data regarding traffic volume for 116 sample plots

over Czech Republic

Min. 1st Qu. Median Mean 3rd Qu. Max.

459.5 1526.0 2142.0 2681.0 3254.0 15870.0

Figure 5.9 depicts the results for the single plots (number of plots n = 116).

The mean is the same for the predicted and the observed values. The model obviously

is not ideal: the data are clearly overdispersed as it underestimates the variance in the

data. Dispersion is an important concept in the analysis of discrete data. The dispersion

parameter describes if variance is greater than the mean (overdispersed) or lower (under-

dispersed). McCullagh and Nelder (1989) say, that overdispersion is the rule rather than

the exception; underdispersion is rare in practice. In GLM for every distribution a cer-

tain ratio between mean and variance is assumed. For Poisson distribution the variance

is identical to the mean. If the Poisson model is a good fit to the data, then it follows

that the deviance should be roughly equal to the deviance degrees of freedom which is
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the sample size n minus the number of estimated coefficients. If the deviance greatly

exceeds the degrees of freedom, then that is an indication of an overdispersion problem.

In R, the glm() function uses the residual deviance. The problem of overdispersion can

be caused by the specification of the model. Another reason overdispersion can occur

is that a different count distribution is needed to model the data. Probably in our case

a negative Binomial or quasi-Poisson model would be more appropriate. Further data

investigation is in any case needed.
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In recent years linear regression with compositional data has been investigated (Hron

et al., 2010, 2012). Hron et al. (2012) used an approach based on the isometric logratio

(ilr) transformation. The resulting model turned out to be easy to handle with param-

eter estimation like in usual linear regression. In addition they used the ilr variables for

inference statistics in order to obtain appropriate interpretation of the model.

Generalized linear models with compositional data however is a rather missing topic in

statistics so far. The aim of this study thus was to implement generalized linear models

with compositional data sets.

Generalized linear models are a generalization of the classical linear regression. The term

"generalized linear models" - introduced by Nelder and Wedderburn (1972) and popu-

larized by McCullagh and Nelder (1989) - refers to a larger class of models. In these

models, the response variable yi is assumed to follow an exponential family distribution

with mean µi, which is assumed to be some linear function of xT
i β.

In these models compositional data can not be used directly. Compositional data con-

sist of a vector, where the single components are positive, describe the parts of some

whole and carry only relative information. These data are not represented in the usual

Euclidean space, but follow the so-called Aitchison geometry on the simplex. The in-

terpretation of the model, and also the inference statistics for the estimated parameters

are only valid if the data are represented in the appropriate Euclidean space.

We apply a transformation on the compositional explanatory data set in order to ex-

press the original compositions in orthonormal coordinates with respect to the Aitchison

geometry. The construction of such orthonormal coordinates is crucial for the inter-

pretability of the results. The isometric logratio (ilr) transformation according to Hron

et al. (2012) is applied. Here the first ilr coordinate explains the compositional part

of interest. In application of this special ilr transformation a meaningful interpretation

of the unknown parameters and the inference statistics is possible. Anyway, isometric

logratio transformation shows the most preferable properties among the transformations

selected in this study. The log transformed original data are not represented in the usual

Euclidean space, therefore the results and the interpretation of these results can be mis-

leading. The centered logratio (clr) transformation is not appropriate because it results
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in singularity.

We implemented generalized linear models with compositional data sets in R. The re-

spective R-Code for this new function called glmCoDaX() can be found in the appendix

of this work.

Generalized linear models are most commonly used to model binary or count data.

Therefore we focused on models for these types of data. We used a compositional data

set resulting from the GEMAS (Geochemical mapping of agricultural and grazing land

soils) project, a cooperation project between EuroGeoSurveys and Eurometaux, to im-

plement a model for binary data. The compositional data set consisted in the total

concentration of 10 major elements of a soil sample plus Loss on Ignition for 2056 ob-

servations across 33 European countries. The response variable consisted in a binary

variable expressing whether the observation is localized in northern or southern Europe.

Our model, a binomial GLM with logit link function correctly predicted the localization

of the test observation sites between 85,28 % and 90,67 % of the time. Only evident dis-

crepancy was found in the area of the Baltic state. Almost all observations in this area

were misclassified by the model. Apart from this discrepancy a strong relation between

localization of the observation sites within northern or southern Europe and the chemical

soil composition was found. A similar result was found in the GEMAS project, where

large difference in the concentration of many chemical elements between the young soils

from northern Europe and the older and more weathered southern European soil could

be observed.

Moreover we used a compositional data set from the project "Biogeochemical exploration

of forests as a base for the long-term landscape exploitation in the Czech Republic" to

implement a model for a Poisson random variable and a log-linear model. The aim of our

investigation was the identification of relations between traffic volume and chemical com-

position of moss. The resulting model was not ideal, the data is clearly overdispersed.

The problem of overdispersion can be caused by the specification of the model regard-

ing for example omitted variables and functional forms. Another reason overdispersion

can occur is that a different count distribution is needed to model the data. Probably

a negative Binomial or quasi-Poisson model would lead to results that are more accurate.
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glmCoDaX <- function(X,y,family){

# delivers appropriate inference for generalized linear models of y

# on a compositional matrix X

# At first a classical generalized linear model is implemented

# to build the structure of the output, which is then filled with

# the results of isomLR generalized linear models.

d <- data.frame(y=y,X=X)

suppressWarnings(glmcla <- glm(y~.,data=d,family=family))

glmcla.sum <- summary(glmcla)

# isomLR generalized linear models

require(robCompositions)

ilrglm.sum <- glmcla.sum

for (j in 1:ncol(X)){

Zj <- -robCompositions::isomLR(cbind(X[,j],X[,-j]))

dj <- data.frame(y=y,Z=Zj)

res <- glm(y~.,data= dj,family=family)

res.sum <- summary(res)

if (j==1){

ilrglm.sum$coefficients[1:2,] <- res.sum$coefficients[1:2,]

ilrglm.sum$deviance.resid<- res.sum$deviance.resid

ilrglm.sum$deviance <- res.sum$deviance

ilrglm.sum$null.deviance <- res.sum$null.deviance

ilrglm.sum$aic <- res.sum$aic

ilrglm.sum$df.residual <- res.sum$df.residual

}

else{

ilrglm.sum$coefficients[j+1,] <- res.sum$coefficients[2,]
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}

}

list(glmCoDaX=ilrglm.sum)

}
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