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Abstract

We model favoritism with an imperfect monitoring infinitely repeated

game. We find that favoritism is driven by players trading favors over time.

We show that favoritism is harder to maintain in larger groups, group mem-

bers increase their payoff at the expense of others, and favoritism is easier

to sustain in imperfect monitoring case compared to perfect monitoring.

We also prove that for our game the Folk theorem does not hold if the

number of players is 4, and we impose a restriction to the parameters.
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1 Introduction

Favoritism, which is, according to Bramoulle and Goyal (2009) ”the action

of offering jobs, contracts, and resources to members of one’s own social group”

has a widespread impact on the economy. Although there is an extensive research

on favoritism on the data side, only a few papers tried to model it with a game

theoretic approach. The aim of our paper is to create a model, which can capture

the mechanism how favoritism work.

Bramoulle and Goyal (2009) created a simple model, where the mechanism of

favoritism is the following: player 1 do a favor for player 2 because he expects that

player 2 will return the favor. In their model, people are divided in two groups,

and every group can decide whether to practice favoritism or market behavior.

Our model consists of an infinitely repeated game with imperfect monitoring,

where every individual can choose his own strategy. We think imperfect monitor-

ing is important because it can capture the real world phenomenon better, and

also from a game theoretical approach, the Folk theorem will not necessarily hold,

so not every payoff vector could be supported by a Nash equilibrium strategy.

Our main findings are the following: favoritism is harder to maintain in larger

groups, it increases the group’s payoffs who practice favoritism, while decrease

the payoffs of those who does not, moreover, if more than one group practice

favoritism it can happen that everyone is worse off than if they follow the socially

optimal strategy. Finally, we have proven that the Folk theorem does not hold, if

the number of players is four, and if we have a restriction on the parameters.

To get more insight in game theory and repeated games, we used the book

of Ritzberger (2002), the book of Mailath and Samuelson (2006) which is an

introductory book of repeated games and attended Johannes Horner’s course

which was an advanced course on repeated games.

The rest of our paper is organized as follows: section 2 gives a short review of

the literature of the topic, section 3 specifies our model, in section 4 we present

our results, and section 5 concludes our paper.
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2 Literature review

The literature on favoritism is quite extensive, however the vast majority of

the papers are based on data, and there are only a few theoretical ones. The idea

of our paper comes from the model suggested by Bramoulle and Goyal (2009).

Their main idea is the following: the key mechanism that drives favoritism is the

exchange of favors. This means that A gives a favor to B because he expects that

later B will return the favor either by giving a favor to A or by giving a favor to

C, who will give a favor to A.

Their model is the following: they take an infinitely repeated game with n > 3

players, discount rate δ, and each player is assigned to either group G or group

H. At each time t nature chooses randomly with uniform distribution someone

the principal and someone else the expert. Then the principal chooses someone,

which can correspond to hiring an employee. If he chooses the expert, they get

the output of 1, and the principal and the expert share it equally, so they both

get 1/2, everyone else gets 0. If the principal chooses someone else, then the

output is l < 1, the principal, and the employee gets l/2, everyone else gets 0.

The information is perfect, after nature has chosen the principal and the expert,

everyone will know who are they and after the principal chosen someone, everyone

will know who was chosen. If the principal chooses the expert, it is called market

behavior, if he chooses someone else from his group, it is called favoritism.

Then they derive the conditions under which practicing favoritism for one

group (so everyone always practices favoritism) is beneficial for the group. The

main results are the following. First, favoritism is a dominant strategy if and only

if l/ > 1/2. Second, the threshold delta for which favoritism is a subgame perfect

Nash equilibrium is increasing in the group size, which means that favoritism is

harder to sustain in larger groups. Third, in the group which practice favoritism

the expected payoffs are larger then in the other one, and favoritism result in

welfare loss.

Nitzan and Kriesler (2010) studies competitive rent-seeking clubs (CRSC)

with a game-theoretic approach. In a CRSC there are heterogeneous members

who are ranked according to their quality, and at time t a selector randomly

sample a fixed number of members and choose the best, who gets a reward. In

their paper, they examine whether the existing members would admit a new

applicant and how does it depend on the new applicant’s rank, and the size of

the existing group. Their result is the following: even if the new applicant has

a low rank, if the club is already large, he will not get applied as he decrease
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the chance of the members to be sampled by the selector. Although they use

a completely different model then Bramoulle and Goyal (2009), the result, that

there is an upper bound on the group sizes is similar.

Imperfect private monitoring in repeated games is still an ongoing research,

and the necessary and sufficient conditions for a Folk theorem in those kind

of models is not yet known. To find a proof, or a counterexample for the Folk

theorem in my model, we used the paper of Fudenberg and Maskin (1986) which

proves it for complete information, and Fudenberg et al. (1994) and Fudenberg

and Levine (1991) which proves the folk theorem in imperfect monitoring case

with additional restrictions. However the assumption of these papers are not true

for our model, and we have not yet found any papers that proves or disproves the

Folk theorem for our case.
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3 The model

Our model is based on the model of Bramoulle and Goyal (2009), with some

essential changes. Instead of having two groups we consider individuals, who

can use any strategy that depends on the history of the game. In our game

we have imperfect monitoring: at every period t, the identity of the principal is

common knowledge, the identity of the expert is only known to the expert and the

principal, and after the principal has chosen someone, everyone knows whether

he was chosen, but now who was chosen.

So the exact setup of our model is the following: this is an n-player infinitely

repeated game with discounting, where the discount factor is δ. Every period

nature randomly sets someone ”principal” and sets someone else ”expert” with

the same probability, so the probability that player i is the expert and player j

is the principal is 1
n·(n−1) .

The identity of the principal is a common knowledge, but the expert is only

known to the principal and the expert. When nature has set the principal, he has

to choose someone (for a job, or a project). If he chooses the expert, they together

get a payoff of 1 and then share it among themselves, so the principal gets α, the

expert gets 1−α. If the principal chooses someone else, they get L < 1 and they

share it again, so the principal gets βL, the chosen one gets (1−β)L. We assume

that α, β, and L is positive and smaller than 1. We also assume, that α > βL,

so that the principal has the incentive to choose the expert.

A trivial Nash equilibrium of this game is the following: every period the

actual principal chooses the expert. This equilibrium also has the property that

it is socially optimal in the sense that the overall payoff of every stage game is

maximal. This means, that we can compare the payoffs of any other equilibrium

to this one to see the effectiveness of the equilibrium. In the next chapter, we

define a strategy profile which corresponds to favoritism, and then we calculate,

for which δ it is a Nash-equilibrium.

3.1 A strategy profile of favoritism

In our model, people do a favor because they expect to get back the favor

from someone. So for example if there are m people who are ”friends”, they could

achieve favoritism with the following strategy: they are ordered from 1 to m, and

if someone is the principal, he chooses the next one in the order, and the last

one chooses the first one. This means, that player i does a favor to player i + 1
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because he expects to get the favor back from player i− 1. In payoff terms, when

player i chooses player i + 1 instead of the expert, he gets βL instead of α, but

when player i is chosen by player i−1 he gets (1−β)L instead of 0. If he expects

that everyone acts according to his given strategy, if (1− β)L > α− βL, this can

be profitable for him.

So we take the actual following strategy profile S: m out of the n players set

the following rule: if player i is the principal (i < m), he chooses player i + 1,

irrespective of who the expert, and if player m player is the principal, he chooses

player 1. All other (n−m) players always choose the expert.

We have to specify what happens if someone deviates, and we also have to

take into account, that we do not have perfect monitoring. We want to have the

following: first, if one of the group members deviate, the group would have to fall

apart, and second, if someone from outside deviates, nothing would change. For

the first one: if player i sees that player i − 1 did not choose him, he would not

choose player i + 1, because it is a loss for him, and he would not expect to get

compensated by player i − 1 anymore. For the second one: as an outsider does

not get compensated by anyone, he has no incentive to choose someone who is

not the expert, so punishment for deviating is not necessary.

So the continuation strategy if player i does not choose player i + 1 is the

following: after this deviation, player i+ 1 knows, that there were a deviation, so

he will also deviate, and from now on, he always chooses the expert, then, after

player i + 2 saw that player i + 1 deviated, he will also deviate, and so on. This

means that player i will be only punished (which means, that player i− 1 won’t

choose him), after the information of his deviation got to player i − 1, which

requires a lot of time, if m or n is large.

Now we check whether this S strategy profile is a Nash-equilibrium. First,

we calculate the expected payoffs for player one with the given strategy S if, at

time 1 he is the principal and player 2 is not the expert (if he is not principal,

he cannot deviate, if player 2 is expert, he has no incentive to deviate). Then,

we calculate the payoffs for player one, if he deviates (so from now on he always

chooses the expert, so the group falls apart, and in the end, everyone will choose

the expert always). We call the strategy where player 1 deviates, and the others

act according to their continuation strategy, and the group slowly falls apart Sd.

First we calculate, the expected value of the stage game for the first player,

if everyone follows the S strategy profile:
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V ∗ =
1

n

(
1

n− 1
α +

n− 2

n− 1
βL

)
+

1

n

(
1

n− 1
(1− α) +

n− 2

n− 1
(1− β)L

)
+

+
n−m
n

1

n− 1
(1− α)

Here, the first term is the value of being the principal (he has 1/n chance to be

the principal, he chooses the second one, who can be the expert, or a non-expert),

the second term is what he gets, if player m is the principal, and chooses him

according to the rules, and the last term is the value of being an expert, if the

outsiders are the principals.

We can simplify the previous expression to get a more compact form of V ∗:

V ∗ =
1

n

(
1

n− 1
+
n− 2

n− 1
L+

n−m
n− 1

(1− α)

)
(3.1)

Now we introduce the notation usually used in repeated games. Assume that

in the first period, someone gets A, and in the other periods, he gets B and the

discount value is δ. Then for the whole game, he gets the following:

A+ δB + δ2B + ... = A+
δ

1− δ
B

It is more convenient to multiply the equation with 1 − δ, and say, that the

value of the game for that player is equal to (1 − δ)A + δB. With this notation

we calculate the expected value of player 1 if he does not deviate, when at time

1, he is the principal, and player 2 is not the expert:

WS = (1− δ)βL+ δV ∗, (3.2)

as in the first period he chooses player 2, who is a non-expert, and in every other

period, he gets V ∗.

We now calculate what happens if player 1 deviates, and chooses the expert.

For this, we introduce payoffs Vi, 1 < i < m, where Vi is the expected payoff of

player 1 for the stage game, if player i already knows, that there were deviation,

but player i+ 1 does not:
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Vi =
1

n
α +

1

n

(
1

n− 1
(1− α) +

n− 2

n− 1
(1− β)L

)
+
n−m+ i− 1

n

1

n− 1
(1− α)

(3.3)

The only difference between Vi and V ∗ is in first and the last term: in the first

term, he always chooses the expert, and in the last term, the people, who know

about the deviation will always choose the expert instead of the next person in

the group. As i increases, more people will choose always the expert, so that

when player 1 is the expert he will be chosen with a higher chance. If i = m then

everyone knows about the deviation, so everyone always choose the expert, that

means that

Vm =
1

n
α +

1

n
(1− α) =

1

n
.

So Vi is increasing in i from 1 < i < m− 1, and Vm < V1, so after a deviation,

player 1 gets more and more until the information of the deviation gets to player

m when his payoff will drop.

With these payoffs, we can easily write down the expected payoff of player 1

if he chooses to deviate (we denote it with Wdev), and choose the expert instead

of player 2. We need another variable: we use Wi for the expected payoff for the

infinite game, in the state where player i already knows that there were deviation,

but player i+1 does not. (So V ’s denote the stage game payoffs while W ’s denote

the expected payoffs for the infinite game.)

Wdev = (1− δ)α + δW2 (3.4)

here, the first term denotes the first period, where player 1 chooses the expert,

the second term is for the rest periods, as here, player 2 already knows that player

1 deviated, but others do not. Now, W2:

W2 = (1− δ)V2 + δ

(
n− 1

n
W2 +

1

n
W3

)
The first term is the payoff in the actual period, which is V2, and in the next

period, we either stay in the same state, or the principal was player 2, and then

player 3 will also knows about the deviation, so we go to the next state, W3. The
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rest of equations look the same:

Wi = (1− δ)Vi + δ

(
n− 1

n
Wi +

1

n
Wi+1

)
(3.5)

if 1 < i < m and

Wm = Vm =
1

n

So, the S strategy profile is a Nash-equilibrium, if WS > Wdev, so when player

1 has the incentive to not deviate from the S strategy profile. Obviously the

strategy profile is symmetric, so if player 1 does not have the incentive to deviate

then player i < m + 1 does also not have the incentive to deviate. Players who

are not among the first m people, will never have the incentive to deviate, as they

already always choose the expert.

Our objective is to find the threshold delta, where deviating and not deviating

give us the same payoff, so WS = Wdev. If we are above that threshold delta, the

strategy profile S is a Nash-equilibrium, if we are below it, there is a profitable

deviation, so then S is not a Nash-equilibrium.

Apart from calculating δ, we show the welfare effect of favoritism and we

compare our results with the perfect monitoring case. Finally, we show that the

Folk theorem does not hold for our model.
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4 Results

In this section we present our results. First, we state how does the threshold δ∗

depend on the other variables. Second, we calculate the welfare effect of favoritism.

Third, we compare our model with the perfect monitoring case. And finally, we

state that the Folk theorem does not hold for our model and, we prove it for

n = 4 and a restriction on the parameters.

4.1 The threshold δ

First we calculate the lowest discount factor (δ∗) for which our S strategy

profile is a Nash equilibrium. The equation that defines δ∗ is the following:

WS(δ∗) = Wdev(δ
∗), (4.1)

so for players in the group get the same expected payoffs when deviating, or

playing their favoritism strategy.

Proposition 4.1. Suppose, that δ∗ exists. For every δ > δ∗ players will act

according to the S strategy profile and for every δ < δ∗ players in the group of

friends has the incentive to deviate.

Proof. Combining (4.1) with (3.2) and (3.4), we get that

(1− δ)βL+ δV ∗ = (1− δ)α + δW2.

As we know that α > βL, this implies that V ∗ > W2. So if we increase δ, the

LHS gets greater than the RHS, so players have no incentive to deviate, and if we

decrease delta, the RHS gets greater than the LHS, so players will deviate.

Proposition 4.1 also gives us the sufficient and necessary condition for δ∗ to

exist, shown in the next corollary:

Corollary 4.2. If W2 < V ∗, there will exist a 0 < δ∗ < 1, if W2 ≥ V ∗, the S

strategy profile is never a Nash equilibrium.

Proof. If W2 < V ∗, proposition 4.1 has a solution for δ and it is between 0 and 1,

however, if W2 ≥ V ∗, there exists no positive δ for which the equation holds.

Now we have to calculate the exact value of Wdev, which is given by equation

(3.4) and the recursive equations (3.5). Note that the following is only true for
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m ≥ 3, for m = 2, Wdev = (1−δ)α+ δ
n
, as from the second period everyone among

the friends will know about the deviation. First we rewrite Vi using equation (3.1):

Vi = V ∗ +
1

n

(
n− 2

n− 1
(α− βL) +

i− 1

n− 1
(1− α)

)
(4.2)

Second, we have to rewrite equation (3.5), so that Wi is only present at the LHS:

Wi =
cn

δ
·
(

(1− δ)Vi +
δ

n
Wi+1

)
, (4.3)

where

c =
δ

n− δ(n− 1)

is used for making calculation easier. We can solve this recursion, and we get that

Wdev = (1− δ)α + (1− δ)n
c

m−1∑
i=2

ciVi + cm−2
δ

n

Now we expand Vi according to (4.2):

Wdev = (1− δ)α + (1− δ)n
c

(
V ∗ +

1

n

(
n− 2

n− 1
(α− βL)

))
·
m−1∑
i=2

ci+

+
1− δ
c

1− α
n− 1

·
m−1∑
i=2

ci · (i− 1) + cm−2
δ

n

Finally, we calculate the sums, so we get the exact value of Wdev which only

depends on parameters:

Wdev = (1− δ)α + (1− δ)n
c

(
V ∗ +

1

n

(
n− 2

n− 1
(α− βL)

))
· c

m − c2

c− 1
+

+
1− δ
c

1− α
n− 1

· (m− 2)cm+1 − (m− 1)cm + c2

(c− 1)2
+ cm−2

δ

n
(4.4)

As c depends on δ, it is easy to see that we can not solve equation (4.1)

analytically on δ for m > 3. We also tried using Mathematica to get some results,

but it did not help. What we can do is to impose a necessary condition in the

following proposition on the parameters so that the S strategy profile is a Nash-

equilibrium.
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Proposition 4.3. S is not a Nash-equilibrium if α ≥ L.

Proof. First take the case, where m = 2. According to corollary 4.2, it has to be

the case that W2 < V ∗. For m = 2, W2 = 1/n, and V ∗ = 1/n + (n − 2)/(n(n −
1)) · (L− α). It is clear that for m = 2, W2 < V ∗ if and only if L > α.

Second, if we increase m (and every other parameter is fixed), two (and only

two) things will change. First, the Nash equilibrium payoff decreases, as there are

less players outside the group who always choose the expert, and more inside, who

always choose the next player, so if m increases, a group member will be chosen

less often. Second, with increasing m, if a deviation happens, it will spread to the

whole group slower, so there are more periods when the deviator gets more than

V ∗ until the group falls apart and everyone gets the expected payoff of 1/n.

Both effects make the deviation more attractive, which means that if the S

strategy profile was not a Nash equilibrium in the case where m = 2 then it

also would not be a Nash equilibrium with a higher m. So L > α is a necessary

condition.

From the proof of proposition 4.3 we can see the effect of m on δ∗:

Corollary 4.4. If m increases, δ∗ also increases, if other variables are constant.

Proof. As increasing m makes deviation more attractive, δ∗ should increase to

compensate the effect of higher m.

Lastly we prove, that m has a maximum such that S is a Nash equilibrium.

Proposition 4.5. For n > 2 there exists an m∗ such that for any m > m∗ S is

not a Nash equilibrium and for any m ≤ m∗ S is an equilibrium.

Proof. We already proved that the partial derivative of δ∗ with respect to m is

positive. Now we only have to prove, that there exists an m̄ such that S is not a

Nash equilibrium.

Take the case where m = n. The payoff V ∗ is the following:

V ∗ =
1

n

(
1

n− 1
+
n− 2

n− 1
L

)
It is clear that V ∗ > 1/n as L < 1. This means that V ∗ is even less, what a player

would get, if the group falls apart and everyone chooses always the expert, so

trivially, this can not be a Nash equilibrium.

As δ∗ is increasing in m, and there exists an m̄ such that S is not a Nash

equilibrium, there has to exist a maximal m∗ for which S is an equilibrium.
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Here we should make an important remark of our findings. Suppose for a

given δ, β, α and L, we calculate our m∗. This means that we found m∗ number

of equilibria, for group sizes of m where m goes from 1 to m∗. However, that is

not all the equlibria that we have found. When we calculate whether a strategy

profile is a Nash equilibrium, we look at the insiders’ expected payoffs and in that

payoff, the part of the payoff that comes from the outsiders, who are not part

of the group, is constant and independent of deviations and punishments. This

means, that for example if for n = 5 a group of m = 3 is a Nash equilibrium,

then if the other 2 people forms an other group where they trade favors with each

other it would also be an equilibrium. So if we have n and m∗ given, then any

number of groups for which the group size is smaller than m∗ and everyone is a

member of maximum of one group is an equilibrium.

To sum up, threshold δ∗ depends on the following variables. For the equi-

librium to exist, we need that W2 < V ∗ and α ≥ L. In our model, the partial

derivative of δ∗ with respect to m is positive, and also, m has a maximum value,

such that S is a Nash equilibrium for any m smaller than this maximum value,

and not an equilibrium for higher m’s. These results are similar to the results of

Bramoulle and Goyal (2009). We also found that any number of group is a Nash

equilibrium provided that everyone is part of maximum 1 group and every group

is not larger than the maximum value of m.

4.2 Welfare effects

As we already noted, the socially optimal strategy, where the sum of all payoffs

is maximal is that everyone always chooses the expert. Moreover not only the sum

of payoffs is maximal, but everyone gets the same payoff, so it is socially optimal

in that sense also. In the socially optimal strategy the expected payoff for every

player is 1/n.

First take the case when favoritism exists, but there is only 1 group and fix n

and m. From (3.1), the group members get

V ∗ =
1

n

(
1

n− 1
+
n− 2

n− 1
L+

n−m
n− 1

(1− α)

)
,

while the outsiders get

V∗ =
1

n

(
α +

n−m− 1

n− 1
(1− α)

)
,
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as they get α when they are the principal, and they get 1− α when they are the

expert, and another outsider is the principal. The loss of an outsider because of

favoritism is m/(n− 1) · (1− α).

The loss of an outsider does only depend on the number of people who are

in groups, but clearly it does not matter, how many groups are present in the

equilibrium. So take n as given, and there are k groups and every group has mk

members such that
∑
mk = m. Now someone who is not a member of any group

gets V∗, while someone who is a member of group i gets the following payoff:

V ∗k =
1

n

(
1

n− 1
+
n− 2

n− 1
L+

n−m
n− 1

(1− α)

)
,

Where the first two parts correspond to giving and receiving a favor, while the

third part corresponds to the case, when someone is the principal who is not part

of any groups. What we got is that the payoffs does not matter on the number

of groups present only on the number of players who are part of one group.

However with more groups it is possible to get a lower payoff for everyone

than with only one group, because if there are only one group, its size can be

maximum m∗, but if we have more smaller groups, the total number of players

who are part of a group can exceed m∗. For example it is possible that for an

even n everyone is a part of a size 2 group, and then everyone would get a payoff

of

V =
1

n

(
1

n− 1
+
n− 2

n− 1
L

)
, (4.5)

which is clearly smaller then the socially optimal payoff for everyone as L < 1.

So there exists some equilibria, where everyone is worse off then he would be in

the social optimum.

4.3 Comparing our model with the perfect monitoring

case

With imperfect monitoring, after a deviation it takes time for the group to

fall apart and switch to the socially optimal strategy. With perfect monitoring,

as everyone sees the deviation, after a deviation, we can immediately switch to

the socially optimal strategy. So for the perfect monitoring case we create the

new Sp strategy profile, which is almost the same as S, the only difference is in
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the continuation strategies: if someone deviates the group immediately falls apart

and switch to the socially optimal strategy.

Similarly to equation (4.1), in the perfect monitoring case S is a Nash equi-

librium if there exists a 0 < δ∗ < 1 such that

(1− δ)βL+ δV ∗ = (1− δ)α + δ
1

n

The only thing, that changed is the last part, instead of W2 we have 1/n, as

the group falls apart immediately.

Obviously, the perfect monitoring case is the same as the imperfect monitoring

for m = 2, as for m = 2 every group member immediately knows if there was

a deviation. For higher m, we know that W2 > 1/n as after a deviation, the

deviator gets more than what he got in equilibrium until everyone in his group

will know about the deviation, and only when that happens, he will get 1/n.

So for any m > 2, δ∗ is greater for the imperfect monitoring case, which means

that with imperfect monitoring favoritism is harder to sustain with imperfect

monitoring. Also, as with higher m, it takes longer for the information of deviation

to spread to the whole group, the difference between the threshold delta in the

perfect and the imperfect monitoring case is higher.

4.4 Folk theorem

Finally, we tried to prove that the Folk theorem for our model. However it

turned out to be harder than it seemed, and unfortunately we could only prove

it for n = 4 and for a restriction on our parameters.

Theorem 4.6. In this repeated game, if n = 4 and 1
12

(1− α) + 1
4
βL > 1

4
α there

exists a feasible and strictly individually rational payoff vector (u > u, where u is

the minimax payoff) which can not be reached by any Nash-equilibrium strategy

profile.

Proof. To prove this, we assume that the theorem holds, and we find a con-

tradiction. The expected payoff of the players for the repeated game is ui, for

i = 1, 2, 3, 4.

The minimax payoff for a player is u = α/4, as a strategy which minimaxes

for example player 1’s payoff is the following: nobody ever chooses player 1 even

if he is the expert, and player 1 always chooses the expert.
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We define the set A: S ∈ A if and only if S is a strategy profile, for which

u1 + u2 is maximal, such that u3 and u4 is a bit larger then the minimax payoff,

so u3 = u4 = u + ε, where ε is arbitrarily small. Every element of A clearly

satisfies the theorem’s assumption. We will show, that any S ∈ A is not a Nash-

equilibrium. As by assumption, the Folk Theorem holds, so it is enough to look at

the stage games, and assume that 1 and 2’s stage game payoff is maximal while

3 and 4 get more than the minimax payoff. First, we characterize the elements of

A with following lemmata.

Lemma 4.7. For any S ∈ A, if player 1 or 2 is the expert, and player 3 or 4 is

the principal, then the principal chooses the expert.

Proof. By contradiction. Without loss of generality, assume player 3 is the prin-

cipal, player 1 is the expert and player 3 chooses player 2 or 4 with probability

p. Now, there are two cases.

The first is, when player 3 chooses player 2 when 1 is the expert. Now, we

make a new strategy profile, where everything is the same as before, but player 3

chooses player 1 instead of player 2, when player 1 is the expert. Player 3’s payoff

increased, the sum of player 1 and 2’s payoff increased, so we got a contradiction.

The second is, when player 3 chooses player 4 with probability q when 1 is

the expert. Now, a new strategy profile would be the following: everything is the

same as before, but player 3 chooses player 4 with only q − ε′ probability, where

ε′ > 0 is small enough, and player 4 would be compensated by either player 1, 2 or

3, who would choose player 4 more often when he is the expert, so that his payoff

does not decrease. This way player 4’s payoff remains the same, player 3’s payoff

is increased, as he choose the expert more often, and player 1 and 2’s payoff also

increase as they are chosen at least as often as before, but they are chosen more

often when they are the experts, and also they choose the expert not less often.

Lemma 4.8. For any S ∈ A, if player 3 and 4 are both the principal and the

expert, with a p > 0 probability, the principal would choose player 1 or 2.

Proof. By contradiction. Assume that the lemma is not true, so player 3 and 4

always choose the expert (we already know, that player 3 and 4 choose the expert

if player 1 or 2 is the expert). Now we can show that there exists a strategy profile

that makes player 1 better off, player 2 not worse off, while player 3 and 4 stay

above the minimax payoff.

15



Take the following strategy profile: player 1 and 2 always choose each other,

player 3 and 4 choose player 1 when 1 is the expert, player 2 when 2 is the expert,

and when player 3 and 4 are both the principal and the expert then they choose

player 1 with probability 0 < ε′, and choose each other with probability 1 − ε′

such that they are still above their minimax payoff. As L, α, β > 0 such positive

ε′ exists.

Now we have to show, that any S ∈ A is not a Nash-equilibrium. We will

prove that whenever player 3 is the principal, player 4 is the expert, and player

3 should choose player 1 according to the strategy profile, player 3 or player 4

would have a profitable deviation.

In the previous lemmata, we found that without loss of generality, player 3

chooses player 1 with a positive probability even if player 4 is the expert. With the

following lemma, we show, that if player 3 should choose the non-expert player

1, but chooses to deviate then player 1 and 2 cannot identify this deviation.

Lemma 4.9. For any S ∈ A, whenever player 3 is the principal, player 4 is the

expert and according to the strategy profile, player 3 should choose player 1 but

3 deviates and chooses the expert, player 4, player 1 and 2 cannot identify this

deviation.

Proof. The idea is the following: player 1 cannot distinguish between player 2

being the expert and player 3 choosing 2 and not deviating, and between player

4 being the expert and player 3 choosing player 4 and deviating.

Assume player 3 is the principal, player 4 is the expert. Player 1 knows that

3 is the principal, but does not know who is the expert, and does also not know

who is chosen. So for player 1, the following plays are in the same information

set: nature chooses player 2 as the expert, and player 3 chooses 2, and player 3

does not deviate; and nature chooses player 4 as the expert and player 3 chooses

4, and player 3 deviates.

Player 2 does also not see the deviation, as he does not know, who is the

expert, and for him player 1 being the expert, and being chosen by player 3 is in

the same information set as player 4 being the expert and player 1 deviating and

choosing player 4.

Now take a look at continuation strategies if player 3 deviates. We can observe,

that the only profitable deviation for him is to choose player 4 who is the expert

instead of player 1 or player 2. We have two cases: either player 4 can not inform

16



player 1 and 2 about this deviation, and in that case player 4 does not have either

the means nor the incentives to punish player 3, so the deviation was profitable.

The other case is that he can inform players 1 and 2 about the deviation. This

case, the continuation strategy is such that player 3 gets his minimax payoff, so

no players will ever choose him, and he always chooses the expert. As in the

strategy profile, player 3 had the payoff of u + ε, where ε was arbitrarily small,

the only way to make the deviation not profitable is to minimax him.

However, in this case player 4 gets a higher payoff than before: even if in the

continuation strategy, he always chooses a non-expert, and players 1 and 2 never

choose him, his payoff would be 1
12

(1 − α) + 1
4
βL (the first part is the payoff

from player 3, the second is the payoff when he is the principal), which is by the

theorem’s assumption larger than the minimax payoff. So even if player 3 did not

deviate, player 4 has the incentive to tell players 1 and 2 that player 3 deviated,

and as players 1 and 2 can not verify this information, player 4 can always do it.

So S is not a Nash equilibrium.
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5 Conclusion

In our paper we presented a model that explains favoritism in an imperfect

monitoring repeated game. We found, that the favoritism equilibrium exists, how-

ever, if group size increases, it is harder to maintain the equilibrium, and at a

point, if group size is too large, the favoritism is no longer an equilibrium. We

also found, that while favoritism increase the payoffs of players who are in the

group, the overall payoffs decrease, and players outside the group receive smaller

payoffs. Moreover, favoritism is harder to maintain with imperfect monitoring

than with perfect monitoring, as the information of deviation spreads slower in

the imperfect monitoring case. Finally we have proven that the Folk theorem does

not hold for n = 4 and a restriction on the parameters, and hope that we can

extend the proof for a more general set of parameters.
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