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Abstract

Load-pull is a non-linear measurement setup which operates by presenting a specific
impedance to a device under test. One type of such setups is active load-pull which
retransmits a modified received wave back to the device under test. Generally, a
load-pull system is intended to characterize non-linear devices like transistors and
can also be used to test devices under different operating conditions. Traditional
load-pull measurement systems are narrowband in nature.

During the course of this thesis an active FPGA based load-pull measurement
system capable of synthesizing reflections with a constant reflection coefficient over
a bandwidth of 20 MHz was developed and verified in measurements. The goals were
achieved by synthesizing and filtering the reflection waveform digitally in baseband.
This filtering allowed to apply phase correction to the synthesized waveforms for
a cyclic signal which was used to achieve a zero phase delay between the reflected
wave and a later cycle of the received wave at the load reference plane. Furthermore,
an iterative target algorithm based on measurements using an also realized 1-port
vector network analyzer was developed to achieve accurate reflection coefficients.
This algorithm needs no calibration and allows the verification of highly non-linear
devices under test which can exhibit load dependent behaviour.

The digital reflection generation was implemented in hardware on an FPGA. In
combination with an efficient pipelined design this allows for fast update rates.
Additionally, software running on a processor contained within the FPGA was de-
veloped to control the digital hardware via Ethernet which is needed for automated
test bench setups.

Finally, the implementation was verified by comparing the realized reflection coeffi-
cients to measurements carried out using a commercially available vector network
analyzer connected to the load-pull setup as the device under test.



Kurzfassung

Load-Pull ist eine nicht lineare Messtechnik bei der einem Prüfobjekt während einer
Messung verschiedene Terminierungen angeboten werden. Aktive Load-Pull Syste-
me lösen diese Aufgabe mit zurück transmittieren einer modifizierten Version des
Ausgangssignals an das Prüfobjekt. Diese Art Messung wird benötigt um nicht li-
neare Bauteile, wie z.B. Transistoren, zu charakterisieren und kann auch verwendet
werden um Bauteile unter realen Bedingungen zu testen. Traditionelle Load-Pull
Systeme sind von ihrer Natur aus eher Schmalbandsysteme.

Im Zuge dieser Diplomarbeit wurde ein aktives Load-Pull Messsystem aufgebaut
und charakterisiert, das Reflexionen über eine Bandbreite von 20 MHz mit konstan-
ten Reflexionskoeffizienten erzeugen kann. Dies wurde mittels digitaler Reflexions-
synthese und Filterung im Basisband erzielt. Die Filterung ermöglicht das Ausglei-
chen der Gruppenlaufzeit verursacht durch Kabel im Messaufbau unter Nutzung
eines zyklisch periodischen Eingangssignals durch angleichen der Phase des syn-
thetisierten reflektierten Signals an zukünftige Signalperioden. Weiters wurde ein
iterativer Algorithmus entworfen, der, basierend auf Messungen eines zusätzlich
implementierten Netzwerkanalysators, den gewünschten Reflexionskoeffizienten er-
reichen kann. Dieser Algorithmus setzt keine Kalibration voraus und wird benötigt
um Prüfobjekte mit lastabhängigem Verhalten testen zu können.

Die digitale Reflexionsynthese ist in einem FPGA implementiert. Diese effizien-
te, pipeline-basierende Implementierung erlaubt hohe Aktualisierungsraten. Wei-
ters wurde eine Kommunikationssoftware entwickelt die auf dem in dem FPGA
integrierten Prozessor läuft. Damit wird die Fernsteuerung der digitalen Hardware
mittels Ethernet ermöglicht was in automatisierten Prüfaufbauten benötigt wird.

Abschließend wurde das Messsystem verifiziert indem die erzeugten Reflexionsko-
effizienten mit Messungen eines kommerziell erhältlichen Netzwerkanalysators ver-
glichen wurden.
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1 Introduction

At radio frequency (RF) and microwave (MW) frequencies, the circuit theory with
lumped elements, where voltage and current do not vary over the physical dimension
of the elements, is of limited value. The wavelength at these frequencies is of the
order of the circuit element dimensions. This means that transmission line theory
has to be used instead [1]. This theory applies circuit theory to infinitesimally small
pieces of the lumped elements and introduces the concept of forward and backward
traveling power waves.

For this reason, instead of impedance- and admittance matrices, scattering pa-
rameters (S-parameters) are commonly used in RF and MW circuit engineering
to describe N-ports (see figure 1.1 and equation (1.1) for a 2-port). ak denotes
the incident and bk the reflected power wave. The complex valued Skk represents
the part of ak that gets reflected at port k, where as Skl is the part of al that is
transmitted to bk. A set of S-parameters is only valid for a specific frequency, the
characteristic impedance Z0 of the system, and a well defined reference plane (port
1 and port 2 in figure 1.1).

a1
S21

b2

b1
S12 a2

S11 S22

Port 1 Port 2

Figure 1.1: S-parameters of a 2-port

(
b1
b2

)
=

(
S11 S12

S21 S22

)(
a1
a2

)
(1.1)

For a 1-port there is only the parameter S11, which is equivalent to the reflection co-
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1 Introduction

efficient Γ and can be also expressed by the input impedance Zin (see equation (1.2)
as shown in [1]). This does not necessarily hold for 2-ports, since for a generic
multi-port configuration, also reflections from the devices connected at the other
ports can be seen.

Γ = S11 =
Zin − Z0

Zin + Z0

(1.2)

One way to evaluate the S-parameters at a specific frequency would be connecting
the reference impedance Z0 to the ports which are not under test. For example,
to measure S11 of a 2-port, a matching impedance equal to the ports reference
impedance has to be connected to port 2. According to equation (1.2) the reflected
wave a2 at port 2 is zero in this case. This means that measurements at port 1 can
only see the reflections caused by S11. Consequently S11 can now be calculated by
measuring the incident and reflected wave at port 1 (see equation (1.3)) [2].

S11 =
b1
a1

∣∣∣∣
a2=0

(1.3)

S21 =
b2
a1

∣∣∣∣
a2=0

(1.4)

Because of connectors and cabling it is often impossible to connect exact matches.
Therefore, S-parameters are measured by sending a power wave into port 1 of the
device under test (DUT), measuring ak and bk. After that the measurement is re-
peated with port 2. With measurements from both ports and calibration measure-
ments, which are necessary to account for systematic errors in the measurement
setup, it is possible to determine every S-parameter. Vector network analyzers
(VNAs) use this method and can make automated measurements at various fre-
quencies.

As long as a network behaves linearly, what is typical for small incident signals, the
S-parameters fully describe this network at a specific frequency. Thus S-parameters
can also be used to model transistors, as long as those exhibit controlled and linear
behaviour. For example, transistors used in class-A power amplifiers (PAs) behave
nearly linear and S-parameters can therefore be used to describe the small signal
behaviour. But those PAs exhibit a very low efficiency of around 50 %. In modern
RF and MW applications the efficiency is increased with specially designed input
and output matching networks, that improve the performance. This comes at the
cost of non-linear behaviour of the transistor in use [3].

Because of these non-linearities more complex models and verification systems are
needed. One way to measure the characteristics of a non-linear device is the so
called load-pull (LP) technique (see figure 1.2). This measurement system presents
a controllable load impedance (output tuner) to the DUT. The fixed input tuner is
needed to match the input of the DUT to the source. LP can be used for obtaining

2



1 Introduction

the DUT characteristics and/or for verifying an implementation. LP also allows to
test the DUT under realistic operational conditions.

Fixed Input Tuner

DUT

Output Tuner
Z0

Load Reference Plane

ZL

a2
b2

ΓL

Figure 1.2: Load reflection coefficient

The equations (1.5) and (1.6) show the relations between the load reflection coeffi-
cient ΓL, the incident wave a2, the reflected wave b2, and the load impedance ZL

at port 2 of figures 1.1 and 1.2. Z0 is the reference impedance of the system where
the DUT is going to be used [4].

ΓL =
a2
b2

(1.5)

ΓL =
ZL − Z0

ZL + Z0

(1.6)

The output tuner in figure 1.2 synthesizes a desired ΓL either by varying the phase
and magnitude of the reflected wave a2 or by varying the load impedance ZL. This
means, that it is possible to build a LP setup by either using a passive tuner, or
feeding a modified wave back to the DUT.

There are various types of LP measurement setups, which have different character-
istics. One important feature of a LP setup is the repeatability of reflection coeffi-
cients. The repeatability is needed to ensure accurate application specific device
models. Another important factor is the tuning range, which depicts the maximal
achievable range of the reflection coefficient |ΓL| (e.g. figure 1.3). Usually passive
LP systems have a more limited tuning range than active ones, but provide a bet-
ter repeatability [3]. Tuner resolution is an additional performance characteristic
of LP measurement systems. High resolution is needed since PAs are often highly
sensitive to impedance variations. However a high resolution incurs a high num-
ber of measurement points which increases the overall measurement time. Power
handling capability is another extremely important factor. The LP setup has to be
capable to sustain the power presented to the tuner without damage. Which LP
setup to choose for a specific DUT depends on these requirements.

3
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0.2 0.5 1 2 5
0

0.2

0.5
1

2

5

−0.2

−0.5 −1
−2

−5

Figure 1.3: Achievable tuning range passive LP system

Passive LP systems are based on the block diagram in figure 1.2. Depending on the
desired measurements, additional circuit elements like directional couplers, power
meters, and oscilloscopes are needed. For higher power measurements additional
amplifiers might also be needed. These additional components, the cabling, and
connectors add additional loss on the reflection path, leading to achievable reflection
levels |ΓL| < 1 with a maximum usually around 0.75 at the load reference plane [5]
(see figure 1.3).

Typically used tuners consist of a transmission line and a probe that introduces
a mismatch by adding a parallel susceptance. Varying the position of the probe
along the transmission line changes the phase of the impedance mismatch and the
distance the magnitude [4]. Automated positioning can be achieved by adding
motors. These tuners are called electromechanical tuners (EMTs). Those have to
be calibrated before use and typically synthesize around 10,000 points [3].

If higher |ΓL|-levels are needed (even levels >1), active LP setups have to be used.
There are two categories: Closed- and open-loop.

Active closed loop LP setups synthesize a modified reflected wave a2 by modifying
the phase and magnitude of b2 and feeding it back to the DUT. The functional
block diagram, which can be seen in Figure 1.4, is an example of such an active
closed loop LP setup. With the circulator the power wave b2 is fed to a variable
attenuator, a phase shifter and an amplifier. These elements modify the phase
and the magnitude of b2, which is again fed back to the DUT with the circulator.
Because of limited isolation provided by real world circulators the loop will oscillate
if the loop gain exceeds the isolation [3]. The isolation can be improved with an
additional isolator after the amplifier. Another way to improve the stability of the
loop is to introduce a bandpass filter into the loop which prevents oscillations at
frequencies outside the band of interest.

4



1 Introduction

DUT

Attenuator Phase Shifter

Amplifier

b 2

a
2

Load Reference Plane

ZL

a2
b2

ΓL

Figure 1.4: Active closed loop LP block diagram

Active open loop LP setups work by synthesizing a phase coherent wave with an
external signal generator (see figure 1.5). The open loop approach has the advan-
tage, that no loop oscillations are possible, since there is no closed loop. It works
by synthesizing a signal with a source that is locked to the generator driving the
source port of the DUT. Phase and magnitude can be adjusted with the attenua-
tor and phase shifter. Additionally the amplifier has to be protected from possibly
damaging input signals with an isolator. A disadvantage of the open loop system is
that the synthesized waves a2 are not derived from b2. This implies that the reflec-
tion coefficient ΓL not only depends on the phase shifter and attenuator settings,
but also on the DUT itself. Therefore, an iterative approach is needed to achieve
desired ΓL [6].

DUT

Amplifier

Phase Shifter

Attenuator

Phase Locked Source
a2

Load Reference Plane

ZL

a2
b2

ΓL

Figure 1.5: Active open loop LP block diagram

In order to provide a realistic termination with an LP setup the variation of the
reflection coefficient ΓL should be minimized at the load reference plane. Because
of phase variations caused by cable connections needed to reach the DUT, all of
the above mentioned setups are only capable of synthesizing narrowband reflec-
tions. Therefore, a phase correction is needed for wideband measurements which
are needed for modulated signals used in modern communication systems.
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1 Introduction

During the course of this thesis an active closed loop LP system that uses a digital
filter for phase correction is presented. With this filter reflections with minimal ΓL

variation at the load reference plane over a bandwidth of 20 MHz can be synthesized.
This wideband system works by modifying the incoming wave b2 according to the
desired ΓL, applying an overall negative phase correction at the load reference
plane by filtering the signal, and sending the modified wave back to the device.
The negative phase correction is only possible for a later repetition of the signal.
Therefore, cyclic signals have to be used which allow completely compensating the
group delay by matching the phase of the reflected wave a2 to the phase of the
incident wave b2 at a later signal cycle at the load reference plane.

6



2 FPGA-based Load-Pull
Measurement System

The aim of this thesis was to setup a wideband active LP measurement system,
capable of providing a bandwidth of 20 MHz. As mentioned in chapter 1 traditional
classic LP systems can only synthesize narrowband reflections. To overcome these
limitations an envelope load-pull (ELP) measurement system, which synthesizes
the reflections in the digital domain, was chosen as the base for this work. This
approach solves part of the stability problem and the problem of the intermediate
frequency (IF) calibration with a fully configurable digital finite impulse response
(FIR) filter. Furthermore, this filter is capable of compensating the group delay
caused by the measurement setup and the cabling needed to reach the DUT. This
allows synthesizing constant reflection coefficients over a wide bandwidth, which
in turn allows the use of modulated signals used in modern applications during
measurements.

Instead of traditional active closed loop LP, this system synthesizes the load co-
efficient at baseband or IF. The basic principle of this ELP system can be seen in
figure 2.1. A circulator is used to split the incident and reflected wave. The mixer
mix1 is used for shifting the spectrum to the baseband and for in-phase/quadrature-
phase (IQ) demodulation. This IQ signal is then multiplied by the complex valued

DUT
circ

amp mix2

mix1

mul ΓL,set = X + jY f0

b2

a2

Load Reference Plane

ZL

a2

b2
ΓL,set

Figure 2.1: Generic block diagram ELP
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ΓL,set (mul1), thus creating a specific reflection coefficient ΓL. Mixer mix2 is used
for modulating the IQ signal and upconverting the signal back to the desired fre-
quency [7].

The multiplication can be done in the analog domain, as has been described by [7].
But this has the disadvantage that an additional image will be generated by the
multiplicator mul1 (figure 2.1), if there are amplitude imbalances in the output of
the demodulator mix1. Since this image is very close to the carrier signal, it can’t
be filtered out [8].

Phase variation with the frequency at the reference plane caused by the cabling
needed to reach the DUT prevents the ELP measurement system from synthesizing
realistic terminations. Additionally, the frequency responses of the components
used to build the measurement setup cause variations in the magnitude and phase
of ΓL with the frequency. Therefore, a negative phase correction and a magnitude
correction is needed. The design in [9] solves this problem with a configurable digital
delay line which is able to compensate the phase for cyclic signals. This works
by matching the phase of the reflected wave a2 to the phase of the incoming wave
b2 at a later signal cycle at the load reference plane. However, the design in [9]
uses direct conversion, which creates additional direct current (DC) components in
the IQ signals. Since these have to be removed by filters, the band around 0 Hz
in the baseband is not usable for reflection synthesis. Furthermore, the delay line
approach can only compensate phase differences and has a limited resolution.
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Figure 2.2: System overview

As can be seen in figure 2.2, instead of direct conversion a superheterodyne design
with digital IF processing was used. With this design the band around 0 Hz is
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usable and the measurement system can’t exhibit IQ imbalances. Furthermore,
the delay line was replaced by a fully configurable filter fir1. This filter is able to
provide a negative phase correction for a later repetition of the measured signal
b2. Therefore, this filter allows synthesizing reflections with a nearly frequency
independent ΓL over the required bandwidth of 20 MHz for cyclic signals. The
setup consists of three distinct parts:

1. A one port VNA, to measure the current ΓL. This part is needed, to reach
a specific ΓL,target iteratively and is described in detail in section 2.1. The
iterative algorithm can be found in section 4.3.

2. The analog part, which contains the mixers for the frequency shifting oper-
ation, necessary filters, a digital-to-analog converter (DAC), an analog-to-
digital converter (ADC), and an amplifier. A detailed description can be
found in section 2.2.

3. A digital processing chain is implemented in an field programmable gate array
(FPGA), which is controlled with a personal computer (PC) running Matlab.
The FPGA implementation is described in chapter 3. The software running on
the processor contained in the FPGA, as well as the Matlab code, in chapter 4.

2.1 One Port VNA

The one port VNA in figure 2.3 consists of a directional coupler dir1 and a sampling
oscilloscope. The directional coupler is needed to split up the signal into the incident
power wave b′2 and the reflected power wave a′2. With the help of the oscilloscope
both signals can be measured in the time domain. Additionally a PC connected to
the oscilloscope is needed for extracting the wave parameters from the measured
samples and the necessary error correction calculations, which are explained in the
rest of this section.

According to

Γ′
L =

a′2
b′2

=
|a′2|
|b′2|

ej(arg a′2−arg b′2)

(2.1)

only a′2
b′2

is of interest for calculating Γ′
L. Since only the ratio of the magnitudes and

the phase difference is needed, the exact point in time, when the signals are taken
does not matter, as long as both are measured at the same time which is guaranteed

9
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Figure 2.3: One port VNA part

by the use of the oscilloscope. Therefore, no special triggering or synchronization
is necessary.

Magnitude and phase of the measured waves can be calculated by using the discrete
Fourier transform (DFT). If multiple frequency components are of interest, the
computational power needed can be lowered by using the fast Fourier transform
(FFT). With both methods spectral leakage will occur, which is caused by the
windowing since only a limited number of samples is used [10]. Another problem
is that the frequency resolution ∆f is limited by the sampling frequency and the
number of recorded samples:

∆f =
fs
N

(2.2)

Higher resolutions can be achieved with a higher sample rate fs and/or more sam-
ples N . Both are oscilloscope and setup dependent parameters and potentially in-
crease the time needed for transferring the data to the PC. A preferably way to
improve the results is applying a window function to the measured samples.

The window function used in this work (see section 4.3) is the flat top window.
This window function has a very high amplitude accuracy [11]. Since it’s frequency
response is very flat in a small frequency range around the selected ∆f -bin, fre-
quency components leak into the surrounding bins with the same amplitude as
in the original bin. This enables acquiring frequency components, that are not
∆f -aligned [11]. In this work, the periodic version of the built-in Matlab flat top
window flattopwin was used (see section 4.3 and [12]).
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k =

⌊
f

∆f

⌋
(2.3)

w[n] = flattopwin(N, 'periodic') (2.4)
A′[n] = DFT (a′[n]w[n]) (2.5)
B′[n] = DFT (b′[n]w[n]) (2.6)

Γ′
L,k =

A′[k]

B′[k]
(2.7)

Using equations (2.2) to (2.7) the reflection coefficient ΓL at frequency f (frequency
bin k), with the measured N samples a′[n] of wave a′2 and b′[n] of wave b′2, can be
calculated. First, the frequency resolution ∆f is needed, to calculate the index k
of the frequency bin, which contains the frequency f . Next, the window function
w with length N is obtained with the Matlab function flattopwin as mentioned
earlier. This window function is element-wise multiplied with the input signal in
equations (2.5) and (2.6) before applying the DFT. After the transformation A′[n]
and B′[n] contain the signals in the frequency domain. Because of the linearity of
the DFT [13], the value at index k can be directly used in equation (2.1) leading
to equation (2.7).

The measurements acquired using this type of setup contain systematic errors.
These are caused by mismatches and imperfections in the equipment, which are
the limited directivity of the coupler and imperfect connectors and distort the
measurements. Furthermore, the needed cabling causes the reference plane to be
shifted to another place, than depicted in figure 2.3. Those errors can be corrected
using vector error correction. By measuring the systematic errors with known
calibration standards it is possible to calculate the error model and use this model
to remove the systematic errors from the subsequent measurements [14].

Figure 2.4 depicts the error model for the measurement system in figure 2.3. It
consists of the DUT and an error box, containing all the systematic errors of the
measurement system. This error model can cancel out three different errors:

1. Source match S22, the mismatch between the measurement system and the
DUT.

2. Directivity S11, which characterizes signal leakage and imperfections in the
coupler.

3. Reflection tracking S12, which characterizes the difference in the frequency
response between the two oscilloscope ports, including loss in the couplers,
transmission lines, and other components.
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a1,e = a′2
1 b2,e = a2,dut

b1,e = b′2
S12 a2 = b2,dut

S11 S22 ΓL

Oscilloscope Load Reference Plane

DUTError box

Figure 2.4: Error box for the one port VNA

From the error model in figure 2.4 the following equations can be derived:

b2,e = a1,e + S22a2,e (2.8)
b1,e = S11a1,e + S12a2,e (2.9)
a2,e = ΓLb2,e (2.10)

Equations (2.7) to (2.10) can be combined into

ΓL,corr =
S22 − b1,e

a1,e

S11S22 − S11
b1,e
a1,e

− S12

=
S22 − Γ−1

L,k

S11S22 − Γ−1
L,kS11 − S12

(2.11)

With the help of this equation the corrected reflection coefficient ΓL can be cal-
culated. ΓL,k is the measured value from the oscilloscope (see equation (2.7)) and
S22, S11, and S12 denote the different error terms mentioned above, that have to be
measured and calculated, which is discussed in the following paragraphs.

Since there are three error terms, at least three different measurements have to
be taken. These measurements are usually conducted using short, open, and load
reflection standards from commercially available calibration kits, where load is nor-
mally the characteristic impedance of the system [14]. Other impedances could
also be used, which is done for example at higher frequencies with different shorts,
because it is more difficult to characterize open and loads at these frequencies [15].
Another way commonly used in commercial VNA is the electronic calibration, where
different impedances are available via a semiconductor switch through the same
connector. With this technique it isn’t necessary to change the connections be-
tween the different targets, therefore minimizing calibration time and risk for an
operator error. Nevertheless, the calibration used in this work was carried out with
short, open, and load (see Section 5.1).
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Open targets are usually specified by a frequency-dependent capacitance (see equa-
tion (2.12)) and a transmission line length. Short targets use the same specifica-
tions, but instead of a capacitance a frequency-dependent inductance is needed (see
equation (2.13)). For loads, a shunt capacitance, a series inductance, a resistance,
and the transmission line length are needed.

C = C0 + C1f + C2f
2 + C3f

3 (2.12)
L = L0 + L1f + L2f

2 + L3f
3 (2.13)

Because of the inherent transmission line, the impedance on the input of this line
has to be calculated. As shown in [1] this can be achieved using equations (2.14)
and (2.15). In these equations the impedances calculated from the capacitance/in-
ductance provided by equations (2.12) and (2.13), the material dependent propa-
gation velocity c, the frequency f and the transmission line length l are needed.
Therefore the actual frequency dependent impedances can be calculated using the
values from the data sheet of the used calibration kit.

β =
2π

λ
=

2πf

c
(2.14)

Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

(2.15)

These values don’t incorporate eventual adapters needed for the measurements.
Hence it is important to use the calibration kit with the correct (the same as the
DUT) gendered connectors, or the connectors have to be additionally accounted
for in the error corrections.

By using three different ΓL,k measurements, acquired with each of the three differ-
ent calibration standards in place of the DUT in figure 2.3, a system of three equa-
tions (2.16) to (2.18) can be set up from equation (2.11). The three different ΓL

and ΓL,k represent the short (ΓS), the open (ΓO) and the match (ΓM) calibration
standard.

ΓLS
=

S22 − Γ−1
L,kS

S11S22 − Γ−1
L,kS

S11 − S12

(2.16)

ΓLO
=

S22 − Γ−1
L,kO

S11S22 − Γ−1
L,kO

S11 − S12

(2.17)

ΓLM
=

S22 − Γ−1
L,kM

S11S22 − Γ−1
L,kM

S11 − S12

(2.18)

Solving these equations for the error terms S11, S12 and S22 leads to equations (2.21)
to (2.23) with the common term g from equation (2.20) and Γ1 from equation (2.19).
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Those terms were used to enable a more compact representation. These equa-
tions were derived using Wolfram Mathematica and are implemented in a Wolfram
Mathematica generated Mathworks Matlab module (see section 4.3).

Γ1 =
a1,e
b1,e

= ΓL,k (2.19)

g = (Γ1O − Γ1S)Γ1MΓLO
ΓLS

+ ΓLM
((Γ1M − Γ1O)Γ1SΓLO

+ (Γ1S − Γ1M )Γ1OΓLS
)

(2.20)

S11 =
(Γ1O − Γ1S)ΓLO

ΓLS
+ ΓLM

((Γ1M − Γ1O)ΓLO
+ (Γ1S − Γ1M )ΓLS

)

g
(2.21)

S12 =
(Γ1O − Γ1M )(Γ1M − Γ1S)(Γ1O − Γ1S)(ΓLM

− ΓLO
)(ΓLM

− ΓLS
)(ΓLO

− ΓLS
)

g2

(2.22)

S22 =
(Γ1S − Γ1O)Γ1MΓLM

+ (Γ1M − Γ1S)Γ1OΓLO
+ (Γ1O − Γ1M )Γ1SΓLS

g
(2.23)

2.2 Analog Part

The analog part, which was designed for the ELP system can be seen in figure 2.5. It
consists of everything needed to prepare the signal for analog-to-digital conversion
and back. Furthermore it contains a circulator (circ1), which is needed for splitting
the incident power wave b2 and the reflected power wave a2. Instead of a circulator
a directional coupler could be used (see chapter 5 for an example) [3].

The upper analog processing chain in figure 2.5 handles the incident power wave
b2. It is responsible for shifting the frequency spectrum of the power wave from
RF to an IF of 70 MHz. This superheterodyne design, with baseband mixing im-
plemented in the digital part (see section 2.3), was chosen because it exhibits no
amplitude imbalances between I and Q. This setup has the additional feature, that
the DC-component caused by the analog mixer mix1 is outside the band of interest
at IF. Therefore, there is no gap around 0 Hz in baseband and the whole band-
width is usable. 70 MHz was chosen as IF, because it is a widely used IF in radar
and microwave applications [16–19] leading to many available components for this
frequency band and compatible microwave laboratory equipment [20].

After shifting the band of interest to the IF, the signal is converted from analog to
digital (bp1 and adc1). For the sampling rate 100 MS/s was chosen, since it provides
enough headroom to support the earlier mentioned bandwidth. Furthermore the
chosen vector signal generator supports this sample rate at the digital input port.
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Figure 2.5: Analog part

To fulfill the sampling theorem, this sampling rate is too low for the chosen IF,
therefore bandpass sampling was used. This necessitates that a bandpass filter is
used as alias filter bp1.

Figure 2.6 explains the frequency spectra for the complete down conversion chain
(including the digital mixer). The first plot sketches the spectrum of interest in
RF around the frequency f0. After the mixer mix1, the spectrum of interest lies at
70 MHz and 2f0 + 70 MHz, which is caused by the analog mixer. Because of this,
even if only single tones within the determined bandwith around f0 are generated,
at least a low pass has to be used as filter bp1. As mentioned earlier, the mixer
also generates a DC component, which is depicted as vertical dashed arrow. During
sampling spectral aliases occur. These are located at (k100 MHz + 70 MHz) and
in mirrored form at (k100 MHz − 70 MHz). This mirroring would cause mixing of
frequency components around (f0−40 MHz) into the band of interest, if no bandpass
filter is used. The last step is the digital mixer, which shifts the spectrum by
−70 MHz which is equivalent to +30 MHz caused by the 100 MHz sampling. After
that the band of interest lies around 0 Hz (see section 2.3).

The ADC chosen for this work was an LTC2274. This 16 bit ADC has an input
bandwidth of 700 MHz and is capable of 105 MS/s [21]. With these specifications
and above discussed filtering techniques for limitation of the signal bandwidth it
is suited for sampling the IF of 70 MHz with the sample rate of 100 MS/s. This
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digital mixer

Figure 2.6: Down conversion frequency spectra (fs = 100 MHz)

ADC has a JESD204 compliant high speed serial interface [21]. This interface uses
8b/10b line coding over a low voltage differential signalling (LVDS) connection [22].
The line coding is responsible for keeping a balanced number of ones and zeros
on the line, therefore keeping a long term DC balance on the line. This allows
transmitting the data stream through a high pass channel. Clock recovery is also
possible, since this protocol ensures frequent transitions in the bit stream. Any
other ADC capable of handling these requirements and a similar digital interface
can be used as a drop in replacement for this ELP system.

Digital to analog conversion and up conversion is handled by the lower analog
processing chain in figure 2.5. In this work the signal vector generator SMBV100A
from Rohde & Schwarz with digital IQ input support (R&S SMBV-K18 [23]) was
used for these tasks. Like for the ADC a different signal vector generator can be
used as a drop in replacement, if it uses the same digital interface (see section 2.3).

2.3 Digital Part

The digital part in figure 2.7 consists of a single 16 bit digital signal processing chain
operating at 100 MS/s. It is responsible for the reflection synthesis. This reflection
synthesis is achieved with the filter fir1 and the multiplicator mul1. Furthermore
it contains the mixer mix2. This mixer is needed for IQ-demodulation and down
conversion from IF to baseband. The filter fir1 needs a static digital representation
of the samples for the filter calculations. Therefore, the additional sample buffers
buffer1 and buffer2 are included into the signal processing chain.
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Figure 2.7: Digital part

As can be seen in figure 2.7, a digital representation of the IF signal b2 is provided by
the analog part. As mentioned in section 2.2 the LTC2274 with a JESD204 compat-
ible high speed serial interface was chosen as ADC. Instead of special sequences
marking word and byte boundaries during communication the receiver interface
has to be synchronized before data can be received. During this synchronization
mode a JESD204 compatible serial interface sends a specific code sequence instead
of data. This code sequence can be used to detect word boundaries and byte order-
ing. This synchronization mode has to be requested explicitly via dedicated pins
of the ADC. In order to minimize needed cabling a communication scheme was de-
veloped that initiates synchronization mode by briefly stopping the clock signal.

To minimize the hardware development time, a Linear Technology DC1151A-D
evaluation board including the ADC was used in this work. This board consists
of a sub-miniature version A (SMA) connector for the analog input, two SMA
connectors for data+ and data– of the LVDS connection, an SMA connector for
clock input and two pins to enable the synchronization mode. For easier wiring an
adapter circuit board was designed to use a serial AT attachment (SATA) cable
for clock and data. Furthermore, a synchronization circuit which implements the
above mentioned synchronization method was developed.

The synchronization circuit in figure 2.8 consists of three parts. The first part is
the power detector IC1 which is connected via C5 to the TX+ pin of the SATA
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Figure 2.8: Synchronization signal generator for ADC

connector. The TX– pin of the SATA connector is directly connected to an SMA
connector. This enables clocking the ADC board using a clock signal delivered by
the FPGA. The second part is the comparator IC2A. It is used to define a minimum
threshold of about 15 mVRMS for valid clock signals which is determined by R1, R2,
and the power detector IC1. The last part is a time delay element. This time delay
starts after a valid clock signal is detected and lasts for about 30 ms. During this
time the pins SYNC1 and SYNC2 are connected via the optocoupler OK1, which
enables the synchronization mode of the ADC. The implemented adapter circuit
board atop the ADC evaluation board can be seen in figure 2.9.

analog in

power supply

data+

data-

clock

sync circuit

SATA

Figure 2.9: ADC adapter board with disconnected clock atop LTC2274 demo board
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Samples provided via this connection by the ADC are stored in the sample buffer
buffer1. As mentioned earlier this LP system needs a cyclic signal for reflection syn-
thesis. Therefore, the buffer needs to store one or multiple periods of the signal. The
signal periodicity additionally allows averaging the signal which helps improving
the signal-to-noise ratio (SNR) of the ADC [24]. This averaging was implemented
by increasing the sample size of this buffer to 19 bit. Furthermore, samples can be
accumulated from up to eight consecutive signal cycles. Averaged samples can then
be read by dividing the accumulated samples by the number of cycles.

After this buffer, the IF sampled data is IQ-demodulated into baseband with mixer
mix2. The local oscillator (LO) lo3 synthesizes the needed −70 MHz (≡ +30 MHz
with 100 MHz sampling) sine and cosine waveforms using a fixed lookup table. This
approach has the advantage of a highly accurate IQ-demodulation without any
amplitude or phase imbalances. After baseband conversion, a low pass filter would
be needed to suppress the aliases generated from the sampling process, as can be
seen in figure 2.6. This task can also be achieved with the configurable filter fir1
in the next processing step. Therefore, the aliasing filter was left out of the design
to keep resource usage at a minimum.

Next in the signal processing chain is the FIR filter fir1. As mentioned earlier this
filter is needed to compensate the group delay and frequency responses caused by
the measurement setup. In combination with a cyclic signal this filter is capable
of synthesizing negative phase shifts which is needed to compensate the group de-
lay introduced by cabling needed between the DUT and the measurement setup.
Implementing FIR filters consisting of a high number of filter coefficients uses sig-
nificantly more resources with a tapped delay line than with the FFT. Therefore,
the filter fir1 was implemented with linear convolution:

y[n] = h[n] ∗ x[n] =
nfft−1∑
m=0

h[n]x[n−m]

= DFT −1 {DFT (x[n])H[n]}
(2.24)

with
H[n] = DFT (h[n]) (2.25)

This filter is a causal FIR filter with the input x[n], the length nfft, the impulse
response h[n], and the output y[n]. The input samples x[n] represent the samples
in buffer buffer1 and the output samples y[n] the samples in buffer buffer2. To
further reduce the needed hardware resources the implemented filter fir1 uses the
transfer function H[n] instead of the impulse response h[n] (see equation (2.25)).

Since implementing the FFT in hardware uses a lot of resources, overlap add was
used to allow for larger signal periods than nfft. As shown by [25] this algorithm
splits the signal x[n] into non-overlapping subsequences of length L (see figure 2.10).
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Figure 2.10: Overlap add algorithm (linear convolution, with circular in red)

Therefore, x[n] can be expressed by a sum of shifted finite-length sequences:

x[n] =
∞∑
i=0

xi[n− iL] xi[n] =

{
x[k + iL] k = 0, 1, . . . , L− 1

0 else
(2.26)

Applying the linear convolution to this sum leads to

y[n] = h[n] ∗ x[n] =
∞∑
i=0

xi[n− iL] ∗ h[n] =
∞∑
i=0

yi[n− iL] (2.27)

where yi[n] is the linear convolution of xi[n] with h[n]. Because every y[n] is of
length N = L + nfft − 1, equation (2.24) utilizing n-point FFTs can be used to
calculate the results. Every convoluted subsequence yi[n] overlaps by nfft − L.
Since this overlapping points are summed up by equation (2.27), this method is
called overlap add. A visualisation can be seen in figure 2.10. The red part in the
figure is the circular extension of the linear convolution, which is done by adding
the nfft − L points after the sequence y[n] to the beginning of y[n].

The filter fir1 needs exclusive access to the output samples during computation.
Another requirement is, that samples are continuously output to the DAC. This
is needed to ensure that the DUT does not leave eventual operating points during
measurements. Therefore, the buffer buffer2 after the filter was implemented with
double buffering. This means that this sample buffer consists of an active and an
inactive buffer. The active buffer is used to continuously play back the output sig-
nal, while the inactive buffer can be used during the filter calculations. After a new
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signal period has been computed the buffers can be swapped without interrupting
the output signal.

The last element in the processing chain is the complex multiplier mul1. This
multiplier is responsible for the actual reflection generation. It allows adjusting
the phase and amplitude of the reflection coefficient ΓL,set by varying X and Y .
Samples from buffer2 are continuously multiplied with this reflection coefficient
and output to the analog part as signal a2.

The digital interface needed to forward the processed samples to the analog part
was implemented according to the digital IQ interface supported by the used
SMBV100A signal generator from Rohde & Schwarz. According to [26], this inter-
face is implemented according to the channel link serializer described in [27]. This
serializer uses eight LVDS data lines and one LVDS clock line. Each of the lines
is clocked at 700 MHz for a sample rate of 100 MHz. An adapter board was de-
veloped for this work that allows connecting pin headers of an FPGA board with
the needed mini D ribbon connector [26]. The connector and the wiring schema
for the adapter were laid out according to the data sheet in [26]. One missing de-
tail from the documentation, which was found out empirically during this work, is
that the S_CLK pin of the connector has to be connected to ground. This signal
is marked for future use in the data sheet [26]. Without this ground connection the
SMBV100A signal generator does not recognize a connected peripheral at the digi-
tal IQ port. A photo of the implemented pin header to digital IQ adapter including
the fix can be seen in figure 2.11.

Figure 2.11: Digital IQ adapter circuit board with S_CLK fix

The complete digital signal processing chain described in this section was imple-
mented in an FPGA. A detailed description of the digital hardware implementation
can be seen in chapter 3.
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The digital part, as described in section 2.3, was realized in very high speed in-
tegrated circuit hardware description language (VHDL). It was specifically tai-
lored to a Xilinx Virtex-5 FXT on an ML507 evaluation board. The FPGA
model XC5VFX70T on this evaluation board provides the necessary high speed
transceivers, sufficient block random access memories (RAMs), and dedicated dig-
ital signal processing hardware [28]. Furthermore the ML507 board contains an
SATA connector needed for the ADC and pin headers with high speed differential
signal routing to the FPGA which can be used for the digital IQ interface. Addi-
tionally, the board contains an Ethernet port enabling high speed data exchange
with a PC. Although, according to [29], the SATA headers are only rated up to
1.5 Gbit/s, it was confirmed during tests that the necessary 2 Gbit/s, as required
by the ADC [21], are also technically feasible. This FPGA also contains a hard-
wired PowerPC central processing unit (CPU), which was used for controlling the
digital components and as a communication bridge to the PC.
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Figure 3.1: FPGA design overview and digital signal processing chain with color
coded modules

The design overview, as can be seen in figure 3.1a, describes the high level modules
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of the design and connections between them. Names used in this design overview
and the following overviews in this chapter are the actual module names used in
the source code. The overall design was split into two parts. The first part is the
digital signal processing chain in figure 3.1b (see section 2.3) implemented in the
main module. The main module is described in section 3.1. The second part is
the processor module which contains a complete embedded processor system. This
module was used to implement the necessary protocols for communicating with a
PC in software. It is described in section 3.2.

This design uses the unrelated clocks from the processor local bus (PLB) and
the ADC. Therefore clock synchronization was needed to minimize the chance of
metastable processes. This was achieved using a two-stage synchronizer as the base
synchronization circuit. Signals with short pulses were synchronized with an addi-
tional pulse shaping to prevent lost pulses. Signal buses were synchronized with an
open loop approach. This approach leaves out the acknowledgement of the synchro-
nization which is sufficient for this design because the processor module is not fast
enough to change the bus value within the synchronization period. Block RAMs
in the used FPGA are true dual port memories. Therefore no synchronization is
necessary for read access. If one port is used for writes to the memory the other
port must not be used to access the same location at the same time [30]. Care
was taken to avoid this situation by disallowing memory access from the other port
during writes.

To ease software development a full operating system (OS) was used as software for
the CPU. Linux was chosen as the OS for the processor module, since it is freely
available and can be configured specifically for this target. As will be discussed
in section 3.2 the processor design includes the modules needed to use Linux. An
overview of the complete Linux implementation can be seen in chapter 4.

A reference to all hardware source codes and project files, which are needed to
generate the hardware, can be found in appendix A.1.

3.1 Digital Signal Processing Chain — main

The main module contains the digital signal processing chain. As can be seen in
figure 3.2 the different parts of the processing chain (figure 3.2b) are mapped to
three modules (figure 3.2a). The module inbuf contains the digital receive inter-
face for the ADC and the sample buffer buffer1. This module is described in sec-
tion 3.1.1. The core module contains the frequency mixer mix2, the LO lo3, and
the digital filter fir1 with the accompanying buffer H containing the transfer func-
tion H[n]. A detailed description can be seen in section 3.1.2. The third part is
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the outbuf module. This module contains the sample buffer buffer2, the multiplier
mul1, and the digital IQ interface and is described in section 3.1.3. The filter fir1
is not capable of handling a continuous data stream (see section 3.1.2). Therefore
the auto module was implemented to emulate continuous behaviour by sequentially
activating the modules inbuf , core, and outbuf . A more detailed description of the
auto module can be seen in section 3.1.4.
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Figure 3.2: main module overview and digital signal processing chain with color
coded modules

Necessary bit width truncations throughout the digital signal processing chain use
convergent rounding. This rounding mode was used to prevent DC offsets. It
rounds to even integers in case of a tie. For example rounding 4.5 with this method
results in 4. The same would be true for 3.5. Thus rounding does not introduce an
offset towards infinity or zero, as would be the case for round half up. Additionally,
overflows are signalled and saturation is used where applicable.

The sample buffer size was chosen according to the available block RAM in the
FPGA. A maximum number of 148 block RAMs capable of storing up to 36 kbit
is available in the Virtex-5 on the ML507 board [28]. Those block RAMs can also
be used as two independent 18 kbit block RAMs. As mentioned in section 2.3, the
digital signal processing chain needs to support a sample width of 16 bit. Input
averaging was chosen to support a maximum of 8 averages, resulting in an overall
needed bit with of 19 bit for the input buffer. Since the output buffer uses double
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buffering and needs to store IQ signals, two buffers with a bit width of 32 bit are
needed. In order to achieve a high memory utilization, constrained by the possible
block RAM bit widths, a single data bit of a buffer was realised with a 36 kbit
and an 18 kbit block RAM. This leads to a total number of 124.5 block RAMs
where 0.5 denotes an 18 kbit block RAM. This leaves enough for the embedded
processor and the FFT implementation. Using this memory layout only a 2-to-1
multiplexer for the output is needed. Since the highest address line can be used as
selection between both block RAMs, no address decoder is needed. This ensures
fast operation of the overall memory. In one bit mode only 32 kbit (16 kbit) are
available. This leads to a theoretical buffer depth of 49,152 samples. However as
will be explained in section 3.1.2 (see also section 2.3), if circular convolution with a
block size of L and an FFT size of nfft is used for the FIR filter, the full buffer depth
is not usable. This is caused by the implementation of the overlap add algorithm
which needs additional buffer space of L− nfft samples after the signal.

The memory buses of the inbuf module and the outbuf module are connected
to the core module. The same bus connections are also exposed via a memory
interface of the core module. To prevent access violations the exposed memory
interface can’t access the internal modules while one of them is active. Also further
module activations are not possible during this period. With these restrictions
in place no memory corruptions can occur. The core module also exposes every
configuration and status signal of the internal modules. These signals are used by
the processor interface described in section 3.2.1 for controlling the whole signal
processing chain.

3.1.1 Data Acquisition — inbuf

The inbuf module is responsible for serial to parallel conversion of the ADC data,
descrambling, triggering, averaging, and storing the acquired samples. As can be
seen in figure 3.3, this module consists of the main modules receiver , which handles
receiving the data stream from ADC, and average_mem, which handles storing the
samples in a buffer and averaging. The additional modules trigger , prepare, and
wallclk are responsible for controlling the data acquisition and keeping the time,
which is needed for the IQ demodulation that will be explained in section 3.1.2.

The serial to parallel conversion of the received data was implemented using the
built in GTX transceiver. Since the ML507 board features two SATA ports, two
identical receivers were implemented. Since the GTX blocks need a lot of config-
uration settings, they were instantiated using the recommended method, which is
the transceiver wizard documented in [31]. The settings used in this work were
chosen according to the data sheet of the ADC [21]. The receiver was configured
to handle the specifications as described in the section 2.3. These are 8b/10b line
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Figure 3.3: Block diagram of the inbuf module

coding, a data width of 16 bit and a target line rate of 2 Gbit/s. Synchronization
was configured for an enabled idle synchronization mode (ISMODE) of the ADC.
In this mode the transmitter of the ADC sends idle ordered sets instead of commas
during synchronization [21]. An idle ordered set is a special sequence used for syn-
chronization consisting of a K28.5 comma followed by either D5.6 or D16.2 code
word. A comma is a special code sequence of the 8b/10b line coding, which does
not represent valid data [32]. To synchronize the GTX receiver according to these
specifications, the comma alignment was set to align to even byte boundaries and to
detect the K28.5 comma. After serial to parallel conversion, the endianness is con-
verted to the internal representation. The recovered clock from the received data
stream is used as the internal sampling clock. This setup allows the use of an ex-
ternally provided sampling clock, by connecting it to the ADC instead of the clock
provided by the ADC adapter circuit board mentioned in section 2.3. The receiver
and the transmitter share the internal clock generation of the GTX. Therefore the
transmitter had to be configured for the same line rate. To transmit a clock signal
with the transmitter, the 8b/10b line coding was disabled for the transmitter and
a fixed clock pattern was applied to the parallel input.

It is not possible to provide an externally generated clock directly to the SATA
connected GTX transceivers because of design limitations of the ML507 evaluation
board. Since using a clock, which is routed through the global clock network of the
FPGA introduces jitter [32], an externally provided sampling clock connected to
the ADC is the preferred mode of usage.

The module align controls the clock signal, which is transmitted using the GTX.
This module contains a state machine that blanks the clock signal for 41 ms after
a loss of sync of the receiver. In combination with the synchronization circuit

26



3 FPGA Implementation

described in section 2.3 this clock blanking enables synchronization mode for the
ADC. A loss of sync is detected if either a comma value or a value that is not part
of the 8b/10b line coding is detected. After the blanking period the clock signal is
reactivated and the GTX is put into alignment mode, which searches for the above
mentioned comma K28.5. If no comma is detected during a further 41 ms period
the synchronization re-starts from the beginning.

Succeeding the GTX transceiver, the descrambler module descrambles the data
according to the data sheet of the ADC [21]. Data scrambling is used to lessen
the noise caused by the digital transmission in the analog part. The scrambler
implemented in the ADC is based on the generator polynomial given in equa-
tion (3.1) [22]. This scrambler can be bypassed if a different ADC is used.

g(x) = 1 + x14 + x15 (3.1)

Averaging the data is handled by the average_mem module. This module consists
of the above mentioned (19 × 49,152) bit memory. Averaging is achieved by reading
the appropriate sample from the buffer and adding it to the current value. For the
first run the read sample is replaced with the value zero. Using this method the
sampled values are accumulated over a configurable number of zero, two, four, or
eight rounds. Averaging is achieved during memory access from outside the module
by shifting the accessed values by zero, one, two, or three bit. This is equal to
dividing the samples by the number of rounds used for averaging. This method
needs to read the sample from the last round from the buffer while writing the
current sample to the buffer. Therefore, both ports of the memory are needed by
the implementation which implies that the synchronization technique using different
ports for the different clock domains as described above is not feasible. Hence,
the memory interface allowing access to the sample buffer from outside the inbuf
module needs to share the ports with the averaging mechanism. Since those two
parts don’t share the same clock, clock multiplexing with dedicated FPGA hardware
was implemented.

If the data acquisition is not in use, the average_mem is powered by the PLB clock.
Before data acquisition, the prepare module transitions the clock signal to the ADC
clock. Undefined behaviour can occur if the timing conditions of the address signals
of the block RAM are violated while the enable signal is high. This can lead to
memory corruption even if write enable is not asserted [30]. Therefore, the enable
signal of the block RAM is switched to low by the prepare module before the clock
transition. Since this is not possible for an unstable ADC clock, the validity of the
sample buffers is not guaranteed after connecting or disconnecting an ADC. After
the data acquisition finishes, the prepare module transitions the clock signal back to
the PLB clock. Write operations to the memory are ignored during data acquisition.
Read operations during data acquisition don’t interfere with the process but the
read out data is invalid.
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The trigger module generates the start signal for the average_mem and the wallclk
module. During the first run and after a reset, the trigger can either be triggered
externally or internally. The external trigger is sampled from the pin AN33 of
the FPGA, which is connected to HDR1_64 on the evaluation board. After the
first successful trigger, consecutive triggers are only generated at multiples of the
configured signal period N .

Subsequent to a trigger event, the wallclk module takes a snapshot of the jiffy
counter which marks the time the first sample of the current acquisition was ac-
quired. A jiffy is 10 ns in this FPGA design which is the time needed for one sample
for a sample period of 100 MHz. The 30 MHz signal for the IQ demodulation is
not generated in real time. Therefore the snapshot of the jiffy counter is neces-
sary for the core module to generate the 30 MHz signal with the correct phase (see
sections 2.3 and 3.1.2).

The inbuf module is fully runtime configurable. Changing the active receiver or
connecting an ADC resets the whole module automatically. This prevents undefined
behaviour which could result from the clock change. Since the trigger source is
only decisive for the first trigger event changing the source is only possible if the
trigger module has not fired yet. Therefore, the trigger module should be reset after
changing the source. Trigger events, averaging finished, and ADC connection status
are reported with separate signals. The memory interface of the inbuf module has
a 16 bit wide data bus, a 16 bit wide address bus, and a read access latency of 2
cycles. Accessing samples at addresses ≥49,152 result in undefined behaviour.

3.1.2 Overlap Add — core

An overview of the core module can be seen in figure 3.4. It consists of the buffer
H , which is needed to store the transfer function, and the module overlap_add,
which contains the signal processing. The overlap_add module itself contains the
module wave, which is responsible for IQ demodulation, the fft module, which can
calculate the FFT and inverse-FFT, a complex adder, a complex multiplier, and
additional block RAM, needed as temporary buffer space (scratch).

The IQ demodulation module wave consists of a hard coded look up table, that
generates a 30 MHz sine and cosine waveform for a sampling rate of 100 MHz.
Furthermore it contains multipliers, which multiply the incoming samples with
the sine and cosine waveforms, for converting the signal into I and Q samples.
Instead of performing this demodulation in real time, it is performed during filter
processing. To ensure the correct phase of the 30 MHz waveform it is evaluated at
the point in time calculated from the jiffy counter and the position of the currently
processed sample. The jiffy counter is contained in the wallclk module as explained
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Figure 3.4: Block diagram of the core module

in section 3.1.1. This counter marks the time the first sample of the current signal
was taken.

A Xilinx LogiCore IP was used as the fft module [33]. In order to minimize block
RAM usage and increase the performance the pipelined version was used. A fur-
ther reduction in block RAM usage was achieved by limiting the IP core to the
minimum setting of three stages in block RAM. The remaining stages needed for
this configuration are implemented in distributed RAM which results in a higher
lookup table (LUT) usage of the fft [30, 33]. Distributed RAM was preferred over
block RAM because LUT usage was not a limiting factor in this design. The fft
implementation was set to allow a modification of the FFT length at runtime, with
a maximum length of 4,096. A further runtime configuration setting is, that this
core can be switched between FFT and inverse FFT. This allowed using only one
fft module. Therefore reducing the resource usage further. Every computational
part of the FFT, called a butterfly, consists of an addition and a multiplication that
preserves the magnitude of the complex valued input of the butterfly. The addition
increases the needed bit width after every butterfly by one bit to represent every
possible value. The multiplication can result in an overall bit width growth of one
bit for the whole FFT if the magnitude represented by the complex valued input is
greater than one. Combining both factors leads to equation (3.2) given in [33].

bitsout = bitsin + log2 (nfft)︸ ︷︷ ︸
addition per butterfly

+ 1︸︷︷︸
complex rotation

(3.2)

According to equation (3.2), keeping every bit for an FFT length nfft of 4,096 and
input width bitsin of 16 bit would result in a maximum output width bitsout of
29 bit. Using such high bit widths is not possible because of resource constraints.
Therefore, scaling was used and is implemented with a divider after every group,
where one group consists of two butterflies. Every divider can divide the samples
by one, two, four, or eight. Since the possibility of overflows depends on the input
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data the right scaling schedule can’t be determined beforehand. According to [33]
the best scaling schedule for the FFT and inverse FFT is found by starting with a
divider schedule of one and incrementing the divider schedule until the computation
stops overflowing. Input data for the FFT core needs to be in natural order and
output data is in bit reversed order [33].

The complex multiplier was implemented with a runtime changeable scaling sched-
ule. This schedule can be set to shift the result by 14 to 17 bits. Therefore, the
transfer function should always be scaled to the maximum possible values. The
best overall scaling schedule can be found by first configuring the scaling schedule
of the FFT, then the complex multiplier and after that the inverse FFT.
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Figure 3.5: Overlap add algorithm hardware implementation

The overlap add algorithm, as explained in section 2.3, was implemented with two
separate state machines. This allows speeding up the process since some parts
can be calculated in parallel. The first state machine controls the FFT and the
complex multiplication part of the algorithm. It is called fftncmul. Inverse FFT
and complex addition is handled by ifftnadd. The overall process is described in
figure 3.5. Every block of size L needs to be processed within four steps. In the
first step (figure 3.5a), the fft module is loaded with L IQ demodulated samples
from the source memory x. According to the overlap add algorithm, after L samples
the data input of the fft is switched to zero. After the fft module has finished
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processing, the second step (figure 3.5b) starts. In this step the data is multiplied
with H and stored in the scratch buffer. During the next step (figure 3.5c), the fft
module is switched to inverse operation and the samples from the scratch buffer
are loaded into the fft module. At the same time the scratch buffer is filled with
the previous computed block from the target memory y. After the fft module has
finished the computation, the last step (figure 3.5d) is executed. During this step
the overlapping part from the previous block is added and the samples are unloaded
into the target memory. Since the FFT module is pipelined, step one of the next
block is started after step three of the current block has finished. This means, that
the FFT module computes the samples of two different blocks at the same time.
With this technique, the duration of the overlap add algorithm is reduced by one
stage per L sized block. If the circular mode is enabled, then the block after the
signal is added to the beginning (see section 2.3). Since this process needs L− nfft
samples after the end of the signal, the sample buffer can’t be used to the full
extent.

The overall module is freely configurable and accepts FFT sizes 8, 16, 32, 64, 128,
256, 512, 1,024, 2,048, and 4,096. The signal size N has to be between 8 and 65,535
and the block size L between 1 and 4,096. There are no plausibility checks in
the hardware, which means that wrong settings will lead to undefined behaviour.
The core module can be stopped by issuing a reset signal. Numerical overflows are
separately reported for FFT, inverse FFT, and complex multiplication.

3.1.3 Vector Signal Generator Interface — outbuf

The outbuf module consists of two independent sample buffers mem_0 and mem_1,
a complex multiplier and the digital IQ interface transmitter . The two sample
buffers are both 32 bit wide, to store the 16 bit wide I and Q signals. Both can
store up to 49,152 samples. A general overview can be seen in figure 3.6.

PLB clock ADC clock

mem_0

mem_1

× transmitter

outbuf

Figure 3.6: Block diagram of the outbuf module
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Sample buffers mem_0 and mem_1 can only be accessed by the logical names
active and inactive from outside the outbuf module. The active sample buffer
contains the sample data, which is streamed via the transmitter module to the
digital IQ interface. This memory can only be used in read mode via the internal
interface. The inactive sample buffer can be read and written to. Maintaining this
logical to physical assignment is handled by the network, indicated to the left of
the sample buffers, and the multiplexer in figure 3.6. Both sample buffers consist
of true dual port block RAMs. In combination with the unsupported writes to the
active sample buffer, this ensures that no timing conditions are violated, due to the
different clocks.

The outbuf module uses a configurable signal period N . This period can only be
changed by resetting the module or by asserting the resync signal. Sample data of
length N is continuously read from the active buffer. Swapping the active and the
inactive buffer can be initiated by asserting the toggle_buf signal for one cycle. To
prevent signal distortion, the actual swapping occurs only before reading sample
zero from the buffer. Accesses to the sample buffers during this operation result in
undefined behaviour and can corrupt the buffer content. This is prevented by the
access protection mechanism implemented in the core module.

The complex multiplier, between the multiplexer and the transmitter module in fig-
ure 3.6, is responsible for the reflection generation. It multiplies the signal output
to the transmitter with ΓL,set (see section 2.3). As mentioned earlier, this multi-
plier features a bit shifter at the output. This bit shifter shifts the output by a
configurable range of 2 bit–17 bit. With that operation it is possible to reach full
scale output also for small input signals. This is necessary if, for example, a high
scaling factor is needed for the core module (see section 3.1.2). After this scaling
and convergent rounding, the multiplier is also capable of saturating the output in
case of overflows. This would prevent a wrap around and therefore limit signal dis-
tortion.

According to [26] the Rohde & Schwarz digital IQ interface uses the encoding
scheme and digital interface of a DS90CR485 channel link serializer. This serializer
encodes data from a 24 bit input on both clock edges resulting in a total of 48 bit
per clock cycle [27]. As specified by [26] 20 bit I data, 20 bit Q data, enable, valid,
marker bits, and trigger bits need to be encoded in these 48 bit. Enable and valid
are connected to high in this implementation. The marker and trigger bits are not
supported by the Rohde & Schwarz SMBV100A vector signal generator in digital
IQ input mode. Therefore, these were permanently disabled in this work. The
FPGA internal 16 bit IQ implementation was mapped onto the 20 bit link by left
shifting the data by 4 bit.

The transmitter module is an implementation of the DS90CR485 channel link se-
rializer specification in VHDL. Since [26] does not mention which operating mode
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of the channel link serializer is needed, the full DS90CR485 specification accord-
ing to [27] was implemented during this work. According to this specification, the
48 bit, as mentioned in the last paragraph, need to be partitioned onto eight LVDS
links clocked at 700 MHz. It is not possible to achieve such high frequencies in the
FPGA fabric. Therefore the serialization was implemented utilizing output serial-
izer/deserializers (OSERDES) in 4 bit double data rate (DDR) mode. The DDR
mode reduces the necessary clock rate to 350 MHz for the OSERDES. Furthermore,
the 4 bit mode decreases the needed clock for the parallel data to 175 MHz. By con-
necting a test implementation of the transmitter it was verified that the Rohde
& Schwarz digital IQ interface uses the DS90CR485 channel link serializer with
switched off DC Balance mode.

The outbuf module is runtime configurable. After changing the signal length N the
outbuf module has to be reset or a resync operation needs to be initiated. Overflows
from the multiplicator are reported with a status signal which has to be manually
reset. This prevents interrupt storms if the signal is used as an interrupt. The
memory interface of the outbuf module has a 16 bit wide data bus, a 16 bit wide
address bus, and a read access latency of 2 cycles. Accessing samples at addresses
≥49,152 results in undefined behaviour.

3.1.4 Auto Module

For the complete signal computation, the previously described blocks inbuf (see
section 3.1.1), core (see section 3.1.2) and outbuf (see section 3.1.3) need to be
triggered in this order. To minimize the delay and CPU usage, the auto module
contains a state machine that performs this task. It supports single shot and
continuous operation.

During a single run, the auto module first triggers the inbuf module. After data
acquisition is finished, the filter operation is carried out by starting the core module.
If an overflow occurs during core module operation, the automatic mode is stopped.
After a successful filter operation the outbuf buffer is toggled. If the auto module
is switched to continuous mode, then the whole process repeats.

Because of the way the auto module was implemented for this thesis, it is neces-
sary to clear eventual overflows of the core module before enabling the automatic
mode.
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3.2 Processor

The embedded processor design was realized using the Xilinx Platform Studio
(XPS). The design consists of every additional module needed to run Linux and
communicate via Ethernet. As can be seen in figure 3.7, this includes a dynamic
random access memory (DRAM) controller, an Ethernet controller, a RS232 inter-
face, a System ACE controller, a general-purpose input/output (GPIO) module,
and an additional memory controller with a connected block RAM. Additionally,
an interrupt controller is needed which is not included in figure 3.7.
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Storage Sys ACE

LEDs
Switches GPIO

CPU
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Figure 3.7: Block diagram of the processor module

The internal block RAM is needed because the PowerPC 440 embedded in the used
FPGA has a reset address which resides in the highest addressable page [34]. Since
the DRAM is mapped at the lowest address and is only 256 MiB large [29], the
processor would try to access a non existing address after a reset. The CPU starts
executing code before the complete setup is finished initializing. To prevent such
undefined behaviour after programming the FPGA, a memory has to be placed at
this address. This memory needs to be filled with a boot loop which is a simple
program consisting of an endless loop. Since Linux also uses this address range,
this small memory can’t be implemented as a read only memory (ROM).

To enable communication with a computer the RS232 module and the Ethernet
module are needed. The RS232 module is not necessary for production use, but
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needed for debugging purposes. The System ACE module is required to provide
access to the compact flash (CF) card on the ML507 board. With this module, a
network boot setup is unnecessary, therefore enabling easier deployment of the
whole system. The GPIO module was included into this setup, to provide the
OS with access to the light emitting diodes (LEDs) and switches for indicating
purposes.

3.2.1 Processor Interface

The processor interface, allowing the processor to control the digital signal process-
ing chain, consists of three modules. An XPS module which interfaces with the
PLB, called proc2fpga, a module implementing the registers, called proc_register ,
and a module implementing a small memory controller, called proc_memory. Sep-
arating the PLB interface into an XPS module allowed keeping the whole processor
module fixed during development. See section 4.1 for a description of the software
needed to control the processor interface.

The PLB interface was implemented with the peripheral wizard in XPS. It uses the
burst variant of the PLB slave [35]. This module exposes four user memories with
16 bit addressing and 32 bit data bus, six 32 bit registers, and 16 interrupt lines to
the FPGA fabric. The interrupt lines are triggered on the positive edge. In order
to enable wide memory access the burst variant is needed to use memory mapping
in Linux. In this mode, Linux handles the size of the memory access, which results
in reading or writing in whole cache lines. The PLB is 128 bit wide, therefore, the
non burst variant can’t handle these operations, since the module interface is only
32 bit wide. The burst variant handles this situation by queuing four consecutive
32 bit operations. Without this, a bus error would be generated.

An overview of the register contents can be seen in appendix A.2. These registers
and the interrupt generation are implemented in the proc_register module. Every
register has an access time of a single cycle.

The memory controller implemented in the proc_memory module generates the
necessary acknowledge signals for the processor. Furthermore it generates the write
and enable signals from the chip select and write request signals of the processor
interface. Special care was taken to allow multi cycle requests as described above.

A description of a Linux kernel module implementation using this interface and the
needed infrastructure can be seen in chapter 4.
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As described in chapter 3, the FPGA contains a general purpose processor. To en-
able controlling the digital signal processing chain described in sections 2.3 and 3.1
with a PC, software was developed for this processor. This software is needed,
for instance, to control the filter transfer function which is needed for correcting
the frequency response (see section 3.1.2) or setting the targeted hardware reflec-
tion coefficient ΓL,set (see section 3.1.3). To allow high speed transfers of the filter
transfer function or sample data, Ethernet was chosen as the communication in-
terface. Furthermore this communication interface is cheap, widely supported by
PC-hardware, and can be used by PC-software such as Matlab with the Instrument
Control Toolbox.

To simplify the needed development process an OS was used as the base which
provides the necessary drivers supporting the needed peripherals and network com-
munication. Linux was chosen since it can be targeted specifically for this platform
due to its open nature. The cross compilation tool chain needed for compiling the
software components and the base system were built using buildroot [36]. A ref-
erence to the configuration files needed for configuring buildroot can be found in
appendix A.1 and a guide for building the base software in appendix B.2.

Controlling the hardware from within the Linux operating system can be achieved
with either memory mapping /dev/mem or by writing a kernel module [37]. Mem-
ory mapping has the disadvantage that interrupts cannot be used and concurrent
access leads to undefined behaviour. Another disadvantage is that directly using
/dev/mem is only possible by the privileged user [37]. In opposition to that a ker-
nel module can provide an easy application programming interface (API) that can
be used by any programming language, shell script, or even shell commands like
echo. Because of these advantages a kernel module was implemented. A descrip-
tion of this kernel module can be found in section 4.1.

A background process, called a daemon, providing access via network to the API
exposed by the kernel module was implemented. Additionally a web-based user
interface (UI) was developed to allow manual control and provide a visual feedback
of events like ADC connected (see section 3.1.1) or output multiplier overflow (see
section 3.1.3). This web-based UI communicates with the daemon with JavaScript
Object Notation (JSON) messages via the websocket protocol. In addition to the
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websocket based protocol a text based protocol enabling simple communication
with software like Matlab was implemented. An overview of the complete software
architecture including the communication paths can be seen in figure 4.1. A detailed
description of the implemented daemon can be found in section 4.2.

Digital Part Interface Processor

Kernel
Module

Kernel
Daemon

PC

Matlab/Browser

OS

Ethernet
Hardware

Software

Figure 4.1: Soft- and hardware architecture including communication paths. FPGA
on the left and PC on the right.

The calibration and error correction routines needed for the one port VNA func-
tionality were implemented as Matlab scripts. These scripts automate the measure-
ments and are able to perform the calculations needed for correcting the systematic
errors (see section 2.1). Furthermore, a Matlab function for performing an iter-
ative target algorithm in order to achieve a specific ΓL,target was developed. This
algorithm is necessary, because reflections caused by the measurement setup and
non-linear DUTs influence the resulting effective ΓL which is controlled by the ΓL,set

setting provided by the digital signal processing chain. Using this algorithm the
calibration routine for the digital filter was implemented. This filter enables the
frequency response compensated broadband reflection synthesis (see section 2.3).
A description of the implemented Matlab scripts can be found in section 4.3.

4.1 Kernel Module

The kernel module implemented specifically for the processor interface in the FPGA
takes care of initializing the hardware, provides direct access to the sample buffers,
provides access to hardware knobs via registers, and enables utilizing the interrupts
(see section 3.2.1 and appendix A.2). Since these tasks are handled independently,
the following description is split into the parts memory access (section 4.1.1), reg-
ister access (section 4.1.2), and interrupts (section 4.1.3).

To keep the driver as generic as possible a platform device driver [38] was devel-
oped. Platform device drivers are matched against a hardware description called a
device tree [38]. The kernel takes care of invoking the probe and remove functions
upon device tree initialization. Besides the common needed module configuration
macros in listing 4.1 line 28 only a struct describing the driver (line 16), a list
of device names (line 9), and the accompanying platform driver macros in lines 14
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static int emce_of_probe(struct platform_device *ofdev) {

...

}

5 static int emce_of_remove(struct platform_device *of_dev) {

...

}

static const struct of_device_id emce_of_match[] = {

10 { .compatible = "xlnx,proc2fpga−3.00.b", },

{ /* end of list */ },

};

MODULE_DEVICE_TABLE(of, emce_of_match);

15
static struct platform_driver emce_of_driver = {

.driver = {

.name = DRIVER_NAME,

.owner = THIS_MODULE,

20 .of_match_table = emce_of_match,

},

.probe = emce_of_probe,

.remove = emce_of_remove,

};

25
module_platform_driver(emce_of_driver);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Gernot␣Vormayr␣<notti@fet.at>");
30 MODULE_DESCRIPTION("driver␣for␣custom␣fpga␣interface");

Listing 4.1: Basic elements of a platform driver module

and 26 are needed. These macros create the module instantiation code. The only
code that needs to be supplied are the bodies of the probe and remove functions
(lines 1 and 5). The probe function needs to perform device initialization, has
to allocate memory for the device data, reserve ownership of device associated
memories, allocate devices and files, setup the interrupt function, and initialize the
interrupt registers. For freeing the resources, everything has to be released in the
remove function. Omitting this prevents unloading the driver cleanly which causes
locked resources that can only be used again after a reboot. All the code examples
in this chapter are taken from the developed kernel module source. A reference to
the complete source code can be found in appendix A.1.

4.1.1 Memory Access

The sample buffers inbuf and outbuf as well as the transfer function H of the filter
(see section 3.1) are exposed to user space via character devices [37]. A character
device is a special file that can be opened, closed, read, and written to. Instead
of operating on a real file in the file system, these operations are handled by the
attached kernel module. Read and write operations are possible in byte sized
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#define USER_MEM 4

struct user_mem

{

5 unsigned long start;

unsigned long size;

void __iomem *base_address;

};

10 struct emce_device {

struct cdev cdev;

dev_t dev;

...

struct user_mem mem[USER_MEM];

15 ...

};

...

20 static const struct file_operations emce_fops = {

.owner = THIS_MODULE,

.read = mem_read,

.write = mem_write,

.open = mem_open,

25 .mmap = mem_mmap,

.llseek = mem_lseek,

};

static struct class *emce_class;

30
static int emce_of_probe(struct platform_device *ofdev)

{

struct emce_device *edev = NULL;

...

35
cdev_init(&edev−>cdev, &emce_fops);

kobject_set_name(&edev−>cdev.kobj, "mem");

if(cdev_add(&edev−>cdev, edev−>dev, USER_MEM)) {

...

40 }

emce_class = class_create(THIS_MODULE, DRIVER_NAME);

if(IS_ERR(emce_class))

...

45
for(minor = 0; minor < USER_MEM; minor++)

device_create(emce_class, dev, MKDEV(MAJOR(edev−>dev), minor),

NULL, "emce%d", minor);

...

50 }

Listing 4.2: Character device initialization
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chunks, hence the name character device.

Character device initialization was implemented in the probe function mentioned
above. To set up a character device a struct file_operations [37] is needed.
This struct has an entry for every possible file operation which needs to point
to the implementation of this operation. Not implemented functions need to be
null pointers which is taken care of by leaving out the fields in the GNU style
initialization seen in listing 4.2 line 20. In the example in listing 4.2 the close
function is left out, since it is not needed. This function would normally be used
for cleaning up allocations done in the open function. However, in this kernel
module only physical memory, which is owned by this module, is accessed via the
character devices. Therefore, no allocations are necessary.

Allocating the necessary character devices and initialization is taken care of by
the functions in lines 36 to 48 in listing 4.2. The most important functions are
cdev_init which allocates the driver structure and initializes the operations, and
device_create which allocates and creates the actual devices [37]. Every device
needs a major and a minor number which are used to identify which device a file be-
longs to. In this example the major number is automatically allocated and assigned
and the minor number corresponds to the internal memory number. The rest of the
code causes the kernel to create the device nodes /dev/emce0 to /dev/emce3. With-
out these routines these nodes would need to be created manually using mknod.

ssize_t mem_read (struct file *file, char __user *buf,

size_t count, loff_t *ppos) {

struct user_mem *mem = file−>private_data;

5 if(*ppos >= mem−>size)
return 0; //EOF

if(*ppos + count >= mem−>size)
count = mem−>size − *ppos;

10
if(copy_to_user(buf, mem−>base_address+*ppos, count))

return −EFAULT;

*ppos+=count;

15 return count;

}

static int mem_open(struct inode *inode, struct file *file) {

struct emce_device *edev;

20
if(MINOR(inode−>i_rdev)>=USER_MEM)

return −ENODEV;

edev = container_of(inode−>i_cdev, struct emce_device, cdev);

25 file−>private_data = &edev−>mem[MINOR(inode−>i_rdev)];
return 0;

}

Listing 4.3: Character device access functions
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If user space calls the function open on one of those device nodes, the kernel deduces
from the major number that this driver is the owner and calls mem_open (see line 18
in listing 4.3). As mentioned earlier, almost no setup needs to be done in this
function. This function only checks if the minor number is out of range. The minor
number is used as an index into the four memories inbuf , H , inactive outbuf , and
active outbuf . After the range check the memory area pointer is assigned to the
private data of the inode [37]. Storing this information within the inode provides
the other access functions (e.g. read, write) directly with information about the
memory operated on.

Since the read and write operations are very similar, only mem_read is shown in
listing 4.3 line 2. Upon invoking the read function user space provides a buffer to
write to (buf) and the number of bytes to read (count). The current file position
is provided with the variable ppos. Since the requested information is already in
memory, the only things that need to be done are:

1. Boundary check (lines 5 to 9).

2. Copy the data to user space (line 11). This must be done with the kernel
provided copy_*_user macros. Kernel memory and user memory must never
be mixed, since this can cause security problems [37].

3. Advance the file position (line 14).

4. Return the number of bytes actually read.

In addition to the traditional access methods the function mmap was implemented.
This function allows user space to directly map the memory represented by the
character device. With this technique a user space program can access the memory
directly via a pointer, which avoids the copy operation mentioned above. In this
case memory protection is handled by the memory management unit instead of
the above mentioned copy_*_user macros. This method is different to mapping
/dev/mem directly by providing the correct offset and bounds of the access buffer.
Therefore, this method doesn’t bear the risks of system crashed by writing to the
wrong address.

4.1.2 Register Access

Access to the registers is provided via files in sysfs [39]. To ease user space handling
and following the guidelines of sysfs with one setting per file, every single flag from
the registers is implemented as a file in sysfs. A sysfs file can be allocated with
a device_attribute structure, which needs a function pointer to a show and a
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store function, access rights, and a file name. Setting one of the function pointers
to NULL disallows the respective access. show is called if user space reads from a file
and store if user space writes to a file. Since these files are supposed to represent
a single value there are no open and close functions.

If user space writes a value to one of these files, then the store function is called.
Additionally, a pointer to a single page containing the written contents and the
number of written bytes is passed to the function. The show function is called if
user space reads from a file in sysfs. A pointer to one pre-allocated page is provided
to the function. The function has to return the number of bytes written.

The sysfs files have to be assigned to attribute groups which in turn represent
subdirectories below the driver directory [39]. For easier handling generalized
show and store functions were developed. The generalized store function named
fpga_flag_store converts the textual representation of the passed number to an
integer and performs out of bound checking. This number is then shifted to the
right position in the register and the memory mapped register updated with a read
modify write cycle. This read modify write cycle is protected by a spin lock to en-
sure that possibly concurrent write operations to the registers don’t interfere. This
spin lock isn’t actually needed by a uniprocessor system and gets optimized away
during the compilation. Since this code could also be used on a different pro-
cessor it is best practice to keep the spin lock. The generalized show function
fpga_flag_show reads the desired value from the register, shifts it to the cor-
rect position, and truncates the value to the correct length. This value is then
converted to a textual representation and written to the buffer.

Since the digital signal processing chain features a lot of configuration options,
macros that allow instantiating a single configuration option with one line of code
were developed. A single configuration option is called flag and it possesses a
register address, a bit position within the register, a bit width, and possibly a
maximum value. The following macros allow instantiating the above mentioned
sysfs functions:

FPGA_FLAG(base, name, access, register, bit, length)
This macro creates a flag which represents a part of a register within the group
base with the name name and access rights access. The physical base address
of the register has to be provided with register, the bit number within the
register with bit, and the length of the flag with length.

FPGA_FLAGM(..., max)
This macro has the same arguments as FPGA_FLAG with an additional max,
which is the maximum value + 1, that is allowed.

FPGA_FLAGC(..., show, store)
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Same as FPGA_FLAGM but with the two additional arguments show and store
which allow the use of custom functions.

A reference to the source code implementing and using this macros can be found
in appendix A.1 and an overview of the registers including the flags can be seen in
appendix A.2.

4.1.3 Interrupts

With the function request_irq a function can be registered that is supposed to
handle the interrupt with a specific interrupt number [37]. The interrupt number
is set by the hardware implementation in XPS. An example usage of the register
function can be seen in listing 4.4 line 24. In this example the function edev_isr
in line 1 is registered as the interrupt handler.

static irqreturn_t edev_isr(int irq, void *dev_id)

{

struct device *dev=(struct device*)dev_id;

struct emce_device *edev = dev_get_drvdata(dev_id);

5
u32 status;

int i;

status = in_be32(edev−>base_address + EMCE_INTR_IPISR_OFFSET);

10 out_be32(edev−>base_address + EMCE_INTR_IPISR_OFFSET, status);

for(i=0; edev−>int_nodes[i]; i++)

if((status >> (15 − i)) & 1)

sysfs_notify_dirent(edev−>int_nodes[i]);
15

return IRQ_HANDLED;

}

static int emce_of_probe(struct platform_device *ofdev)

20 {

struct emce_device *edev = NULL;

...

if(request_irq(edev−>irq, edev_isr, IRQF_SHARED, DRIVER_NAME, dev))

25 {

...

}

...

}

Listing 4.4: Driver interrupt routine

Upon invocation the interrupt handler reads the interrupt register (listing 4.4
line 9). This register contains the different interrupt sources of the processor in-
terface (see appendix A.2). The hardware does not clear the interrupts automati-
cally after this read operation. Therefore, the interrupts are cleared by writing the

43



4 Software Implementation

read value back to the interrupt register (line 10). This call resets only the inter-
rupts registered in status. Next the different interrupt sources are checked and
the sysfs_notify_dirent function called with a sysfs directory entry accordingly
(lines 12 to 14). Those sysfs entries are created in the emce_of_probe function.
After successfully handling the interrupt the handler has to return IRQ_HANDLED to
notify the kernel. Without this the kernel searches for other interrupt handlers for
this interrupt number.

The sysfs_notify_dirent function wakes up user space processes that wait with
the poll system call for POLLPRI and POLLERR events [40]. An example program
using this interface can be seen in listing 4.5. In order to receive the notifications,
the file passed as the first argument to the script is opened for reading in line 5.
In lines 6 to 7 the poll system call is configured with the above mentioned event
codes on the opened file. In order for the notification to work, the file has to be
read completely which is dictated by the kernel API. This is done by resetting
the file position to 0 (line 9) followed by reading the complete contents (line 10).
Resetting the file position ensures that further invocations after the first event also
work. Next the poll system call is invoked which blocks execution of the program
until the interrupt occurs (line 11). After an interrupt occurrence a line is printed
and the waiting procedure is repeated.

#!/usr/bin/python

import select

import sys

5 with open(sys.argv[1], "r") as f:

p = select.poll()

p.register(f, select.POLLPRI | select.POLLERR)

while 1:

f.seek(0)

10 f.read()

p.poll()

print sys.argv[1], "fired!"

Listing 4.5: Wait for interrupt example in Python

During the blocked wait the program is not running and, therefore, not consuming
CPU cycles. Multiple programs and threads can wait for events on the same file
utilizing this mechanism.

4.2 Network Daemon and Web-Interface

A network daemon with an accompanying web interface was developed to allow
controlling the digital signal processing chain via Ethernet. This daemon is writ-
ten in Python using the event-driven network library Twisted [41]. This network
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library encapsulates the different network layers and protocols into Python classes
simplifying network development.

Protocol classes in Twisted provide a Received method. This method is called with
the received data as argument after a complete line for a text based protocol, a
complete packet for a packet based protocol, or binary chunk for a binary protocol
was received. By sub-classing base protocols two communication methods were
implemented. A websocket based protocol for a web interface and a text based
protocol to enable communication with Matlab.

The web interface uses JSON encoded packets for communication. The JSON
packets contain an object with at least a "cmd" parameter. This parameter provides
the allowed commands "set", "do", and "get". With the additional parameters
"target" and "value" the signal processing setting specified by target can be set
to a specific value or can be queried. An example can be seen in listing 4.6. The
daemon replies with "update" set as "cmd", the specific target name and the new
value. Additionally interrupts are reported with "update" set as the "cmd" value
and the interrupt target name. The target names directly correspond to the sysfs
files provided by the kernel module described in section 4.1. Therefore, the daemon
just opens the file given by target and performs the required read or write operation.
The "do" command is the same as "set" except that a value of 1 is assumed.

{

"cmd": "set",

"target": "core/L",

"value": "2000"

5 }

Listing 4.6: Example JSON formated packet to set L = 2000

The web interface utilizing this protocol was developed in HyperText Markup Lan-
guage (HTML) version 5 and JavaScript and exposes every possible setting of the
kernel module. This web interface can be reached by opening the internet protocol
(IP) address of the FPGA module in the web browser. The web interface is served
by a small web server built into the daemon. The IP address is hard coded in the
software image and defaults to 192.168.2.2. A screen shot of the web interface
can be seen in figure 4.2.

The Matlab communication protocol consists of two different protocols. It is not
possible to use asynchronous and synchronous network communication over a sin-
gle connection within Matlab. Therefore, a synchronous line based protocol was
implemented. One command can be transmitted per line and every line starts with
a command, followed by a space separated list of arguments. The commands are
the same as in the JSON based protocol (get, set, do). Since this protocol is syn-
chronous, the do command waits for the appropriate interrupt before replying. The
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Figure 4.2: Screen shot of the web interface

daemon replies OK in the case of success or ERROR in case of an error (e.g. timeout).
An example command can be seen in listing 4.7. The additional commands read
and write implement interacting with the sample buffers. Both commands need
the name of the target memory as the first argument (emce0 to emce3) and the
number of bytes as the second argument. The write command has to be followed
by the specified number of bytes of raw data after the newline. The read command
provides the specified number of raw bytes instead of the OK reply. The raw data
is composed of 16 bit signed integers with big endian byte ordering. This proto-
col implementation can be reached via the transport control protocol (TCP) port
8000.

set core/L 2000

Listing 4.7: Example line to set L = 2000 with the text based protocol

Additionally to this protocol a second asynchronous protocol was implemented
that allows to be notified about interrupts. Any input to this protocol is ignored.
Interrupts are reported via this protocol with the name of the interrupt followed
by a newline. The asynchronous protocol listens on TCP port 8001.

This daemon is started automatically during the OS boot sequence. The JSON-
and text based protocol both provide an additional shutdown command that allows
shutting down the OS. The OS should always be shut down before switching off
the FPGA to prevent file system corruption. A reference to the source code for the
daemon can be found in appendix A.1.
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4.3 Matlab Algorithms

The text based protocol described in section 4.2 was implemented in a set of Matlab
classes to ease controlling the hardware. These Matlab classes depict the same
naming scheme as the sysfs interface with a dot instead of a slash as the path
separator. The sample buffers can be accessed via the properties inbuf for inbuf ,
H for H , out_inactive for inactive outbuf , and out_active for active outbuf (see
section 3.1). Those dependent properties automatically convert the raw data to
complex vectors and vice versa. The interrupts are exposed via Matlab events.
All the classes are fully documented with Matlab comments and a reference to the
source codes can be found in appendix A.1. A description of all the properties can
be found in appendix A.2. An example usage can be seen in listing 4.8.

ml507 = ML507.ML507(); %instantiate the class

ml507.depth = 20000; %set signal period N = 20,000
ml507.transmitter.mul = 32767; %set ΓL,set = 32,767

5 ml507.transmitter.shift = 5; %set output multiplier shift to 5

ml507.core.n = 4096; %set nfft = 4,096
ml507.core.L = 2000; %set L = 2,000
ml507.core.scale_sch(1:6) = [2 0 0 0 0 0]; %schaling schedule for FFT

ml507.core.scale_schi(1:6) = [2 1 0 0 0 0]; %schaling schedule for inverse FFT

10 ml507.core.scale_cmul = 1; %complex multiplier scaling

ml507.core.iq = 1; %enable iq decode

ml507.core.circular = 1; %enable circular convolution

ml507.transmitter.resync(); %resync transmitter to set signal period

ml507.trigger.arm(); %arm trigger

15 ml507.trigger.fire(); %fire trigger

Listing 4.8: Example usage of the Matlab driver for the hardware

Utilizing these classes the one port VNA as described in section 2.1 was imple-
mented in a Matlab script. A description of this script can be found in section 4.3.1.
Additional reflections caused by the measurement setup and the DUT cause the
setup to exhibit a different ΓL than was set by ΓL,set. These imperfections can be
compensated with an error box as has been done for the one port VNA (see sec-
tion 2.1). Since highly non-linear DUT can experience load-dependent S22, this ap-
proach could prove futile. Therefore, an iterative target algorithm was developed
to find the correct ΓL,set needed to achieve a specific ΓL,target. This algorithm is
described in section 4.3.2. Using this target algorithm the filter calibration script,
described in section 4.3.3, was developed.

4.3.1 One Port VNA

The one port VNA as described in section 2.1 determines the reflection coefficient
ΓL by measuring the magnitude and the phase of the incident and reflected power
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waves. This measurement has to be corrected for systematic errors with the error
box described in section 2.1. To use this error box additional calibration measure-
ments have to be carried out beforehand.

The sampled data and the timebase from the oscilloscope were acquired using
the Instrument Control Toolbox in Matlab. To extract the magnitude and the
phase with high accuracy for specific frequencies the samples were multiplied with
a flat top window (see section 2.1). Next, this modified data was transformed
with the FFT into the frequency domain. After that the reflection coefficient was
calculated by dividing the transformed data from the incident and the reflected
power wave at the indices corresponding to the desired frequencies. The Matlab
function implementing this functionality can be seen in listing 4.9.

function [rho, A, B] = manyRho(xincrement, a, b, freqs)

A = fft(a.*flattopwin(length(a), 'periodic'));

B = fft(b.*flattopwin(length(b), 'periodic'));

5 df = 1/xincrement/length(A);

freqs = floor(freqs./df)+1;

A = A(freqs);

B = B(freqs);

10
rho = A./B;

end

Listing 4.9: Function for calculating a
b

from sampled data at multiple frequencies

The calibration of the error box was realized by measuring three different targets
at multiple frequencies. In order to enable measurements with the possible fre-
quency resolution of the oscilloscope, the calibration measurements were linearly
interpolated. A Rohde & Schwarz Z132 (female) calibration kit was used for this
calibration. To calculate the impedance values of the calibration kit the Matlab
function calcZ132 was developed. This function calculates the short, match, and
open impedance for a given frequency according to the data sheet [42]. The Mat-
lab function called calcErrorBoxM was generated with a Mathematica notebook
which was used to solve the equations derived from the error box in section 2.1.
With the impedance values from the calibration kit and the calibration measure-
ment values this function calculates the S-parameters of the error box.

The developed function calcGl is able to calculate a corrected ΓL with these S-
parameters and a reflection coefficient calculated with manyRho from acquired sam-
ples. A reference to the described functions and the example script measureVNA
can be found in appendix A.1. This example script is split into four parts. The
first part initializes the used instruments, the second part carries out the calibra-
tion measurements, and the third part implements the interpolation and error box
calculations. The fourth part contains the measurement used to generate the veri-
fication data for section 5.1.
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4.3.2 Target Algorithm

As described above, the resulting ΓL of the complete setup is influenced by addi-
tional reflections resulting from imperfections in the measurement setup. Further-
more, highly non-linear DUT can experience load-dependent S22 which influence
the resulting ΓL additionally. Therefore, the following iterative target algorithm
was developed.

The iterative target algorithm used in this work makes the following steps:

1. Start at arbitrary start point by setting ΓL,set.

2. Measure the resulting ΓL.

3. If |ΓL − ΓL,target| < accuracy then the algorithm is done. The accuracy used
in this work was a magnitude difference <10−3 and a phase difference <0.25°.

4. Scale ΓL,set according to ΓL,target

ΓL
.

5. Pause to compensate for lag time introduced by the digital signal processing
chain.

6. Repeat from step 2.

The pause is needed, because the digital signal processing chain experiences lag
times up to 1 ms. Since the target algorithm and the digital signal processing
chain run completely independent, the algorithm can experience stability issues if
the pause of the algorithm is too short. A visualization of the different phases of
the digital signal processing chain and the algorithm can be seen in figure 4.3. In
this visualisation it can be seen that the algorithm starts by measuring ΓL. After
the new ΓL,set is set, the wave a2 is modified immediately, which in turn results
in a new b2. After the next acquire, filter, and switch cycle of the digital signal
processing chain, a new wave a2 is generated, which results again in a new b2. If
the pause of iterative algorithm is too short, then the next step will be based on a
wrong ΓL measurement, which can lead to a high number of algorithm steps.

Preliminary tests showed that this iterative target algorithm is capable of reach-
ing multiple specific ΓL,target. Therefore, the algorithm is capable of compensating
the reflections introduced by the measurement setup. These are caused by con-
nectors and mismatches between the components. The iterative target algorithm
also worked after additional reflections have been introduced intentionally in the
measurement setup. A more detailed verification of this algorithm can be found in
section 5.2.1.
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Figure 4.3: Visualization of the different phases of the FPGA implementation and
target algorithm over time (not to scale)

The iterative target algorithm was implement in the Matlab function findTarget.
The needed arguments are a ML507 object for controlling the signal processing chain,
the target, a function handle to a function implementing the ΓL-measurement,
and the pause time. Additionally, a start point can be specified. The findTarget
function returns upon algorithm termination the actual ΓL and the needed ΓL,set.
Additionally, the complete trajectory consisting of every reached ΓL, including start
and stop point, is returned.

4.3.3 Filter Calibration

The digital filter in the signal processing chain is needed to synthesize a constant
ΓL over a wide frequency range. This filter is required to compensate the group
delay caused by the measurement setup and cabling needed for reaching the DUT.
This is achieved with a negative phase correction for cyclic signals which works by
modifying the phase of the signal to achieve a zero phase delay between the reflected
wave and the incident wave at a later signal cycle. Furthermore, it is able to
compensate the frequency responses of the components used in the measurement
setup.

Calibrating this filter was carried out by measuring the needed ΓL,set for a specific
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calibration point over the required frequency range. This calibration data was
linearly interpolated to cover every frequency point of the digital filter. Since the
measured values experience very high phase differences, the data was split into
magnitude and unwrapped phase for the interpolation. After interpolation, the
ΓL,set values were added to the filter by multiplying them with the transfer function.
An example of the resulting transfer function can be seen in section 5.2.2.

A reference to an example script named filterCalibration is provided in ap-
pendix A.1 which acquires a filter calibration for the points 1, −1, 0.5∠135° and
0.5∠−45°. Additionally it calculates filters for the mean of the measurements 1
and −1, and 0.5∠135° and 0.5∠−45°. After these calculations the script performs
verification measurements for the different filter calibrations. The results of these
measurements can be found in section 5.2.2.
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5 Verification of the Measurement
System

The implemented ELP design was tested with the setup presented in figure 5.1
at a center frequency f0 of 900 MHz. This test setup consists of the three parts
which have been described in chapter 2. As mentioned in section 2.2, instead
of a circulator, the directional coupler dir2 in combination with attenuator att1
was used. Furthermore, since during verification only waves synthesized inside the
specified bandwidth of 20 MHz were used, the low-pass filter lp2 was used instead
of a bandpass filter. A detailed list of used equipment can be seen in appendix C.
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Figure 5.1: Measurement system verification test setup

The overall setup consists of two independent systems. The one port VNA and the
reflection generation consisting of the analog and the digital part. The one port
VNA is needed to measure the current ΓL (see section 2.1). Verification of this
part can be found in section 5.1. As described in section 2.2, the analog part
is responsible for separating the incident wave b2, converting it to IF, and dig-
itally sampling the signal. Furthermore it handles digital-to-analog conversion,
up-conversion to RF and feeding back the reflected wave a2 to the DUT. The digi-
tal part as described in section 2.3 handles filtering the signal to enable broadband
reflection synthesis and applying the reflection coefficient ΓL,set. Since analog and
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digital part can’t be verified separately, verification of the combined reflection syn-
thesis part can be found in section 5.2. During these measurements, a noticeable
phase drift was observed, and, therefore, an additional measurement was acquired,
as seen in section 5.3, to verify the origin of this phase drift.

5.1 One Port VNA Verification

For the calibration and verification of the one port VNA, the modulator of the
vector signal generator was turned off. Stepping through the frequency range was
achieved by stepping the local oscillator lo4 (see figure 5.1). This allowed for easier
test automation since only the vector signal generator had to be controlled. The
vector signal generator was set to an output power of 0 dBm which results in about
−10 dBm at the load reference plane (see figure 5.1). A ZV-Z132 (female) calibra-
tion kit from Rohde & Schwarz was used for the calibration setup in place of the
DUT. Since the calibration is only valid for a single frequency, the full calibration
measurements were acquired for 21 ∆f -aligned points within a 25 MHz range at
a center frequency of 900 MHz. This was achieved by connecting the appropriate
port of the calibration kit and acquiring ΓL,f values for every frequency point. Af-
ter the measurement, the different ΓL,f were linearly interpolated at every ∆f bin.
Finally, the S-parameters of the error box (see section 2.1) were pre-calculated for
every bin utilizing the values from the data sheet of the calibration kit [42].

For the verification of the calibration, a stub tuner from Maury Microwave was
tuned to a specific position and then measured utilizing the one port VNA in this
work. Measurements were acquired over the whole 25 MHz bandwidth at the cali-
brated points. Additional measurements were acquired at an offset of 1

2
∆f , to test

the performance of the chosen window function. The performance of the interpola-
tion was further tested by measurements between the calibrated points. To verify
the ΓL, which was measured using the above described setup, those measurements
were compared to a measurement acquired using a commercially available VNA.
The VNA used for verification was an Agilent Technologies E8364A, calibrated with
an Agilent Technologies N4433A calibration kit (see appendix C). VNA settings
used were −10 dBm test port power, 35 kHz IF bandwidth, and 1,601 measurement
points.

Every point was measured 100 times to quantify the non systematic errors. With
those N observations of every point, the measured samples x, and the mean of
the measured samples x, the corrected sample standard deviation s was calculated
according to equation (5.1). With the sample standard deviation s the standard
error SE was calculated according to equation (5.2).
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s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (5.1)

SE =
s√
N

(5.2)

The standard error and the difference to the results from the Agilent VNA roughly
stay the same over the complete 25 MHz range. There is also no noticeable difference
between the three different types of points. Thus, the linear interpolation and the
chosen window function seem to be appropriate for this type of measurement. Since
there are only passive parts involved in the one port VNA, it should also be possible
to use less calibration points to achieve a faster calibration. The measurement
result of three exemplary points can be seen in table 5.1.

frequency mean standard error ∆VNA
MHz 1 1 1

887.5 (cal) 581.0232 × 10−3 37.6 × 10−6 2.1 × 10−3

887.505 (1
2
∆f) 581.0589 × 10−3 38.2 × 10−6 2.2 × 10−3

888.095 (between cal) 582.3070 × 10−3 36.6 × 10−6 2.1 × 10−3

(a) Magnitude

frequency mean standard error ∆VNA
MHz ° ° °

887.5 (cal) −157.5029 8.7 × 10−3 2.2
887.505 (1

2
∆f) −157.4787 8.1 × 10−3 2.3

888.095 (between cal) −157.7972 9.7 × 10−3 2.3

(b) Angle

Table 5.1: Measured reflection coefficient with standard error and difference to Ag-
ilent VNA

The setup of the one port VNA consists of an oscilloscope and only passive com-
ponents. Therefore, the standard error notably depends on the performance of the
oscilloscope. It is mainly caused by the ADCs contained in the oscilloscope and
imperfections in the triggering and sampling. This also means that these results
are only valid for the used oscilloscope in this work.

The difference to the results from the Agilent VNA are mainly caused by the used
calibration kit. This is caused by the performance of the error box as described in
section 2.1 which was used to correct the systematic errors. The calibration of the
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error box depends only on measurements of the calibration standard. Therefore,
the performance can be increased with a better calibration kit or by additional
calibration measurements.

Further care should be taken to always ensure a strong enough signal power at
the oscilloscope ADCs. According to [43] the SNR caused by quantization noise
of ADCs depends on the bit width and the amplitude. Therefore, small signals
cause a low SNR. Additionally, a small ΓL value implies a small reflected wave and
therefore a lower SNR. Therefore, the resolution decreases for small |ΓL|. This can
be compensated with averaging which would increase the effective bit width at the
cost of longer measurement times [24].

5.2 Reflection Generation Verification

The reflection measurements were carried out using a test setup as displayed in
figure 5.1. Here an Agilent VNA was connected instead of the DUT to verify the
synthesized reflection coefficients. Furthermore, the Agilent VNA was synchronized
to the setup using the same 10 MHz reference in order to synthesize the needed
phase coherent signals for the test setup. This allowed verifying the synthesized
ΓL, and calibrating the FIR filter fir1 more accurately, than using the built in one
port VNA.

All the reflection generation verification measurements used 20,000 samples as sig-
nal period N , an overlap add block size L of 2,000, and an FFT width nfft of
4,096 (see figure 2.10). The filter fir1 was preloaded with the impulse response of
a low pass filter with a cut off frequency of 25 MHz to filter out the aliases (see
section 2.3). For the duration of these measurements, the FPGA implementation
was switched to automatic mode which emulates continuous signal processing (see
section 3.1.4). Changes at the input of the digital part propagate with a lag time
of about 1 ms to the output using automatic mode and the above mentioned signal
processing configuration.

The reflection generation consists of two tasks. First, the iterative target algorithm
described in section 4.3 is needed, to synthesize specific ΓL. The performance of
this algorithm can be seen in section 5.2.1. Second, this algorithm was then used
for calibrating and verifying the filter fir1. Measurement results for the verification
measurements utilizing the previously calibrated filter can be seen in section 5.2.2.
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5.2.1 Iterative Target Algorithm

The target algorithm is able to find the correct ΓL,set with a given ΓL,start in order to
synthesize a given ΓL,target. It works by setting the current ΓL into relation with the
given ΓL,target and scaling ΓL,set accordingly (see section 4.3). This iterative target
algorithm is needed to reach a specific ΓL even with highly non-linear DUT. These
DUT can exhibit load dependent S22 which renders error box based approaches
unsuitable.

As mentioned above, the digital reflection generation introduces a large latency
on the order of about 1 ms. Therefore, a delay time of 100 ms was used for the
iterative algorithm (see section 4.3). This allows the system to settle on a ΓL

before continuing with the algorithm. If the wait time is too short, the iterative
target algorithm can start to cause stability issues and the completion time of the
algorithm actually increases while a long wait time increases the completion time.
The high delay time of 100 ms was chosen since the Matlab function pause is not
capable of short delays and exhibits very high inaccuracy [44].
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Figure 5.2: Exemplary trajectories of the target algorithm

Two descriptive example trajectories can be seen in figure 5.2. In figure 5.2a the
algorithm terminated just after three steps, whereas in figure 5.2b the worst ob-
served case can be seen. The trajectory in figure 5.2b oscillates around the target
before reaching it. The reason can either be found in a too stringent termination
condition or in a bad resolution of the VNA used for measuring ΓL or the digital
part of the reflection synthesis in the target range.

Depending on the starting point ΓL,start and the target ΓL,target the performance of
the algorithm varied. A histogram showing 108 different observations for different
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ΓL,start different ΓL,target and different frequencies can be seen in figure 5.3. The
trajectory in figure 5.2b is the only one where 8 iterations have been observed.
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Figure 5.3: Histogram of algorithm iterations needed to find a specific ΓL

As can be seen in figures 5.2 and 5.3 the algorithm is capable of reaching a specified
reflection coefficient ΓL,target within a reasonable amount of time. Keeping the
limitations above in mind, the algorithm can further be accelerated by adjusting
the termination condition and the settling time.

5.2.2 Filter Performance

For verification, the filter fir1 in figure 5.1 was calibrated by measuring the needed
ΓL,set to achieve a specific ΓL over a baseband range from −13 MHz to 13 MHz
at a RF of 900 MHz. The filter calibration is necessary to correct the frequency
response of the reflection generation setup (see chapter 2). The needed ΓL,set were
acquired in 1 MHz steps. Those values were normalized to represent the needed
multiplier in order to achieve a constant ΓL over the whole bandwidth. Afterwards
the multipliers were interpolated at the frequency points of the FFT of the FIR
filter (see section 4.3).

Filter calibration was carried out at the following ΓL values: 1, −1, 0.5∠135°
and 0.5∠−45°. Additional verification measurements were carried out with the
mean of the acquired measurements at 1 and −1 as well as with the mean of the
measurements at 0.5∠135° and 0.5∠−45°.

For the following verification measurements, the respective calibration measurement
was combined with a 12.5 MHz low-pass filter by applying the acquired ΓL,set to
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the transfer function of the filter. This calibrated filter transfer function was then
loaded in the filter implementation fir1. An example of the uncalibrated low pass
transfer function and two different calibrated filter transfer functions can be seen
in figure 5.4.
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Figure 5.4: Uncalibrated and calibrated filter transfer functions

The verification measurements were acquired with the Agilent VNA at frequencies
ranging from 895 MHz to 905 MHz in 1 MHz steps with a settling time of 0.5 s for
every frequency point. This settling time was needed to ensure the digital signal
processing chain has settled on the changed input. To verify the performance
across the whole range, measurements were acquired over the possible ΓL,set range
by stepping through an 11 by 11 grid. These measurements were acquired with
the different filter calibrations mentioned above to compensate for the frequency
response of the reflection generation setup.

The results, which can be seen in figure 5.5, contain every acquired trajectory in
blue and the calibration point in red. Since only the filter fir1 was calibrated, but
neither the target algorithm nor an error model was used for the ΓL,set values,
the overall grid is slightly distorted. As can be seen in these smith charts, the
trajectories spread out at points far away from the calibration points. As expected,
the filter calibrations utilizing the mean values achieve better trajectories between
the calibration points. Since the trajectories around the calibration points show
the best performance, it is advisable to use calibration points near the expected
target ΓL and avoid calibration points at |ΓL| = 1. Noticeable trajectory spreading
near the calibration points is caused by the limited numerical precision of the filter
implementation of fir1 (see section 3.1.2).
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Figure 5.5: 11 by 11 grid of reflection measurements over maximum range of ΓL,set

values with calibrated filter at distinct calibration points
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5.3 Phase Drift

During the measurements a phase drift could be noticed. In order to examine the
cause of these phase drifts, a test measurement was acquired to observe the extent
of the phase drift. For this measurement the test setup displayed in figure 5.1 and,
again, the Agilent VNA (see appendix C) was used as DUT. The VNA was also
connected to the 10 MHz reference, in order to synthesize phase coherent signals.
The same settings for the FPGA implementation have been used (N = 20,000,
L = 2,000, nfft = 4,096). According to section 2.3 fir1 needs to be a low pass filter
to filter out the aliases and was preloaded with the impulse response of a 25 MHz low
pass filter. For the duration of the measurements, the FPGA implementation was
switched to automatic mode to achieve continuous signal processing (see chapter 3).
After those preparations the system was set up to realize a reflection coefficient
ΓL = 1 with the target algorithm. Measurements were acquired every 10 s for a
duration of 1,000 min. The results of those phase drift measurements can be seen
in figure 5.6, which shows the angle of ΓL over time. Since the magnitude did not
change noticeably during those measurements it was left out of the plot.

0 100 200 300 400 500 600 700 800 900 1,000

−10

−5

0

5

10

time / min

an
gl

e
/

°

Figure 5.6: Phase drift of ΓL over time (ΓL,start = 1)

These results indicate that the phase drift is not caused by the filter implementation
of fir1, which could only cause constant offsets or linear drifts. Because of that,
the test setup in figure 5.7 was extended to additionally measure the phase drift
of all the used local oscillators in the setup. This setup consists of oscilloscopes
to measure the different signals synthesized by the signal generators. To keep the
setup as close to the previous measurements as possible, the vector signal genera-
tor was chosen as the reference source. Since the frequencies of the generators were
830 MHz, 100 MHz and 900 MHz, the additional function generator trigger (see fig-
ure 5.7) was needed to synthesize the greatest common divisor of those frequencies,
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which is 10 MHz. Unfortunately, it was not possible to synthesize a stable and spec-
trally clear trigger signal using the function generator trigger that allowed reliably
triggering for measuring the phase of the different signals. Therefore, the signal of
the function generator trigger was also recorded. To measure all the signals, a sec-
ond oscilloscope had to be used. Since triggering the second oscilloscope with the
first one resulted in a worse performance than feeding both oscilloscopes with the
same trigger, a chained setup was not used. Finally, after the measurement had
taken place the different signals were corrected by the phase offset caused by the
trigger signal, to achieve a phase offset of the trigger signal equal to zero. Con-
sequently, the results of both oscilloscopes would be the same if the oscilloscopes
would have been triggered perfectly. As before, a phase offset was acquired every
10 s for 1,000 min.
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Figure 5.7: Phase drift measurement setup

The measurement results, which can be seen in figure 5.8, show a trend of the phase
drift of every instrument. The phase drift is dominantly caused by the low reference
frequency of 10 MHz. During a single period of the reference signal, a lot of periods
need to be synthesized by the instruments, allowing for few synchronisation points.
This means that a better result can be achieved by using a faster reference clock.
This is also reflected in figure 5.8, which shows that the generators with the higher
frequencies (lo1, lo4, VNA) experience more phase drift than the slower ones (lo2).
This is caused by the fact that higher frequencies have shorter signal periods and,
therefore, small time intervals cover bigger parts of a signal period as would be the
case with low frequencies.

A further component is temperature drift, since the room temperature of the lab-
oratory was not held constant. For these reasons the measurement results in fig-
ure 5.8 are only exemplary and are not accurate, since the trigger source trigger
and the two oscilloscopes also experience phase drift. It is impossible to remove
those measurement errors from the results.
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Figure 5.8: Phase drift of signal generators over time

The above mentioned phase drift needs to be kept in mind during measurements.
This drift causes additional phase errors in the resulting ΓL and, depending on the
accuracy needed of the measurements, limits the valid time of the calibration of
the different parts of the measurement setup.
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Within this thesis an active FPGA based load-pull measurement setup capable
of synthesizing an almost constant reflection coefficient over a wide bandwidth
was realized. This is required, for instance, to characterize PAs used in modern
communication systems. Furthermore, the realized setup allows using modulated
signals which enables testing PAs with modulated signals as they are found in high
speed communication applications [3]. Additionally, the presented active load-pull
measurement system is capable of providing highly reflective environments with
reflection coefficients |ΓL| = 1 which is needed for e.g. class F PAs [3].

These objectives were achieved by implementing the reflection generation digitally
in baseband. Additionally, the system uses digital IQ demodulation instead of
a direct conversion approach which also allows using the frequency band around
0 Hz and minimizes IQ imbalance. Performing the reflection synthesis digitally
allowed the use of a digital filter with fully configurable frequency response which
would have been impossible in the analog domain. This filter allows, for instance,
compensating the frequency response or the group delay introduced by the cabling
needed in the setup. As has been presented in section 5.2.2, this filter allows
synthesizing almost constant ΓL values over approximately a bandwidth of 20 MHz.
Additionally, this filter helps to mitigate oscillations at frequencies outside the band
of interest.

Since the components of the measurement setup can cause additional reflections
and highly non-linear DUT can experience load-dependent S-parameters, an it-
erative target algorithm was developed. Therefore, an additional one port VNA
was integrated into the setup in order to allow the target algorithm to determine
the current ΓL. As has been verified in section 5.2.1, this algorithm is capable of
reaching specific ΓL,target values within the accuracy of this measurement system.
Furthermore, given a calibrated one port VNA, this target algorithm needs no fur-
ther calibration allowing for faster setup times.

The implementation of the digital hardware used within this thesis provides easy
to use communication interfaces. For automated test bench setups a text based
interface operating via TCP was developed. Accompanying Matlab classes allow
controlling the complete digital part from within Matlab. Additionally, a web based
interface using a websocket based protocol was designed for manual control and
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status feedback.

This work can be used as a base to build a harmonic load-pull setup capable of
synthesizing an almost constant reflection coefficient over a wide bandwidth. This
could be achieved, for instance, using triplexers for splitting and combining the
signal into the frequency components and three load-pull modules [45]. Each con-
sisting of down-mixing, an ADC, an FPGA, and a vector signal generator. Many
of the components of the digital signal processing chain could be shared between
those modules. Nevertheless, extending the implementation to such a setup will
need a larger FPGA containing more memory.

For future work on the realized load pull setup several improvements or extensions
can be thought of. For instance, the duration which was needed to reach a specified
ΓL by the target algorithm can be accelerated. Furthermore, using for instance RF
signal sources that are capable of using reference signals with a higher frequency
or direct RF synchronization seems promising. This would, for example, minimize
the phase drift which has been observed during the verification measurements (see
section 5.3), minimize noise, or allow for more easily achieving a synchronous active
broadband load-pull measurement system capable of directly handling modern high
bandwidth communication standards.

64



A Sources and Documentation

A.1 Source Codes

The VHDL sources and project files needed to generate the hardware can be found
at https://github.com/notti/load_pull-hw. Buildroot configuration files for
building the OS necessary for the integrated processor design can be found at
https://github.com/notti/load_pull-buildroot. The kernel module neces-
sary for controlling the developed hardware, web interface and protocol server,
Matlab source codes, and raw verification results can be found at https://github.
com/notti/load_pull-sw. The complete LuaLATEX source code and processed ver-
ification results necessary to build this document can be found at https://github.
com/notti/load_pull.

A.2 Register Assignment and Protocol Reference

The following list of registers includes every signal exposed by the main module
which can be used to control the complete digital signal processing chain. Addi-
tionally, the path names of the sysfs interface implemented by the kernel module
are listed (see section 4.1).

The Matlab source code repository (see appendix A.1) contains a package named
ML507 which in turn contains the class ML507.ML507. This class can be used to
control the hardware implementation. If not otherwise noted, the Matlab prop-
erty is the same as the path names listed in the following tables with a dot in-
stead of a slash. For instance L can be set to 2,000 with the Matlab command
instance.core.L = 2000; where instance is an instance of ML507.ML507.
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Reset

Signal name Path name r/w Description
rec_rst receiver/rst w Reset receiver.
rec_stream_valid receiver/stream_valid r Indicates a valid data stream.
rec_input_select receiver/input_select rw Select active receiver.
rec_data_valid(n) gtx(n)/rec_data_valid r Indicates a valid data stream.
rec_rxeqmix(n) gtx(n)/rxeqmix rw Controls equalizer of receiver [32].
rec_descramble(n) gtx(n)/descramble rw Enables descrambler (see sec-

tion 3.1.1).
rec_polarity(n) gtx(n)/polarity rw Controls polarity of LVDS pair [32].
rec_enable(n) gtx(n)/enable rw Enables transceiver.

Figure A.1: Register 0 (0x00)

av
g_
rs
t

0

31

Rese
rve

d

0

30 28

av
g_
er
r

0

27

av
g_
ac
ti
ve

0

26

av
g_
wi
dt
h

0

25 24

tr
ig
_r
st

0

23

au
to
_r
st

0

22

au
to
_s
in
gl
e

0

21

au
to
_r
un

0

20

tr
ig
_i
nt

0

19

tr
ig
_a
rm

0

18

Rese
rve

d

0

17

tr
ig
_t
yp
e

0

16

de
pt
h

0

15 0

Reset

Signal name Path name r/w Description
avg_rst average/rst w Reset average_mem.
avg_err average/err r Indicates error during last acquisition.
avg_active average/active r Indicates active data acquisition.
avg_width average/width rw Number of samples for averaging.
auto_rst auto/rst w Reset auto.
auto_single auto/single w Execute single auto cycle (see sec-

tion 3.1.4).
auto_run auto/run rw Enable automatic mode (see section 3.1.4).
trig_rst trigger/rst w Reset trigger .
trig_int trigger/int w Manually trigger.
trig_arm trigger/arm rw Arm trigger.
trig_type trigger/type rw 0: Internal trigger. 1: External trigger.
depth depth rw Number of samples to acquire (1–49,152).

Figure A.2: Register 1 (0x04)
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Signal name Path name r/w Description
core_scale_sch core/scale_sch(n) rw Scaling Schedule for FFT (see

section 3.1.2)core_scale_schi core/scale_schi(n) rw

Figure A.3: Register 2 (0x08)
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Signal name Path name r/w Description
core_rst core/rst w Reset core.
core_circular core/circular rw Enable circular convolution.
core_ov_cmul core/ov_cmul r Indicates complex multiplication overflow.
core_ov_ifft core/ov_ifft r Indicates inverse FFT overflow.
core_ov_fft core/ov_fft r Indicates FFT overflow.
core_start core/start rw Start filter execution.
core_iq core/iq rw Enable IQ demodulation.
core_n core/n rw Transform size in log2(nfft) (3–12).
core_scale_cmul core/scale_cmul rw Scaling schedule for complex multiplica-

tion.
core_L core/L rw L. See section 3.1.2.

Figure A.4: Register 3 (0x0C)
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Signal name Path name r/w Description
tx_muli transmitter/muli

transmitter.mul
rw

ΓL,set
tx_mulq transmitter/mulq rw

Figure A.5: Register 4 (0x10)
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Signal name Path name r/w Description
tx_shift transmitter/shift rw Scaling schedule output multiplier

(0–15).
tx_ovfl transmitter/ovfl r Indicates output multiplier over-

flow. Write a 0 to reset overflow.
tx_sat transmitter/sat rw Enable saturation for complex

multiplier.
tx_rst transmitter/rst w Reset outbuf .
tx_resync transmitter/resync w Resynchronize sample buffer to

input buffer.
tx_toggle transmitter/toggle w Toggle output buffers.
tx_dc_balance transmitter/dc_balance rw Enable DC balance for output

[27].
tx_deskew transmitter/deskew w Start deskew cycle [27].
tx_frame_offset transmitter/frame_offset rw Frame offset.

Figure A.6: Register 5 (0x14)
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Signal name Path name Description
auto_stop intr/auto_stop Automatic mode stopped.
auto_start intr/auto_start Automatic mode started.
tx_ovfl intr/tx_ovfl Transmitter overflow.
tx_toggled intr/tx_toggled Output buffer toggled.
core_done intr/core_done Filtering done.
avg_done intr/avg_done Averaging done.
trigd intr/trigd Triggered.
stream_invalid intr/stream_invalid Stream data invalid (ADC disconnected).
stream_valid intr/stream_valid Stream data valid (ADC connected).
rec(n)_invalid intr/rec(n)_invalid Receiver n data invalid (ADC disconnected).
rec(n)_valid intr/rec(n)_valid Receiver n data valid (ADC connected).

Figure A.7: Interrupt Register (0x220)
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B Build Instructions

B.1 Hardware

A reference to the project files needed to build the netlist and FPGA configuration
files can be found in appendix A.1. For compiling the project files, the Xilinx ISE
Design Suite version 14.7 including all updates is needed. Since this design has
very strict timing conditions, the design needs to be built using the SmartXplorer
iterating different cost tables.

B.2 Software

To build the complete software, the buildroot-add repository as specified in ap-
pendix A.1 and buildroot version 2015.02 [36] need to be downloaded. Further-
more, all the prerequisites listed at [36] need to be installed. After downloading
buildroot-add and buildroot, both need to be extracted into a temporary directory.
Next the following commands need to be executed from within the buildroot direc-
tory:

make BR2_EXTERNAL=/path/to/buildroot -add ml507_defconfig
make

These commands build the complete image including all the necessary software.
The target image can be found in the directory output/images/. The kernel image
called simpleImage.virtex440-final.elf needed for booting the processor is in
the folder output/build/linux-3.18.6/arch/powerpc/boot/.
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C Used Equipment

Directional coupler dir1 Krytar Model 1850
Directional coupler dir2 Krytar Model 1850
Attenuator att1 10 dB Mini-Circuits VAT-10W2+
Frequency mixer mix1 Hittite HMC208MS8E
Low pass filter lp2 Mini-Circuits SLP-90+
ADC adc1 Linear Technology 1151A-D Eval Board (LTC2274)
FPGA Xilinx ML507 Eval Board (XC5VFX70T)
Vector signal generator Rohde & Schwarz SMBV100A
LO lo1 Rohde & Schwarz SMIQ 06B
LO lo2 Rohde & Schwarz SMGU
Oscilloscope Agilent Technologies MSO7104A
2. Oscilloscope Agilent Technologies MSO7104A
Trigger Hewlett Packard 33120A
Stub tuner Maury Microwave 1819B
Calibration kit Rohde & Schwarz ZV-Z132 (female)
VNA (DUT) Agilent Technologies E8364A

calibrated with Agilent Technologies N4433A
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