
Doctoral Thesis

Quantifying uncertainty components in
flood frequency estimation

submitted in satisfaction of the requirements for the degree of
Doctor of Science in Civil Engineering

of the Vienna University of Technology, Faculty of Civil Engineering

as part of the
Vienna Doctoral Programme on Water Resource Systems

by
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Abstract

During the last decade, a series of large river flooding events (e.g. 2005 in the alpine region, 2013 in

central Europe, or 2014 in northwestern Italy) have caused severe damages in Europe. An improved

concept of integrated flood risk management in necessary, in order to manage and minimize flooding

risks in the future, and to reduce the catastrophic nature of these events. A crucial step in any flood

risk assessment is the accurate estimation of extreme flood peak discharges associated with a very

low exceedance probability, i.e. with high return periods, which are then used for hydraulic design

purposes and risk zone mapping. The uncertainties involved in these estimates need to be quantified,

for reliable decision making in these tasks. The aim of this thesis is to better understand the sources

and nature of different uncertainty components present in flood frequency estimation, and provide

methods for quantifying them at different spatial and temporal scales.

If discharge measurements are not available, flood design values can be computed either from

precipitation data by rainfall-runoff modelling, or by transferring the flood regime information to

the target site from neighboring donor catchments with statistical regionalisation methods. In the

context of the latter, Chapter 2 of this thesis investigates the uncertainties involved in predicting

flood frequencies in ungauged catchments as a function of climate, method, and data availability. A

global meta-analysis of the existing literature in the last twenty years is performed, involving a total

of 3023 catchments worldwide. The reported cross-validation predictive performances of regional-

isation methods are used as a surrogate for the total uncertainty involved in the flood frequency

estimation when no discharge data is available locally. The results indicate that flood predictions

in ungauged catchments are, on average, less accurate in arid than in humid climates and more

accurate in large than in small catchments. There is also a tendency towards a lower performance

of regressions as compared to other methods when they are applied to the same region, while geo-

statistical methods generally tend to perform better than other methods. For the particular case of

arid catchments, index methods yield significantly lower performances than regression methods or

geostatistical approaches.

When flood records are present, design values are usually estimated by flood frequency analysis,

i.e., by applying the statistical theory of extreme values to obtain a probability distribution function

that describes the flood regime for a certain location. If the flood frequency estimation for an entire

region is considered, the choice of a common statistical model for the entire area, also called parent

distribution, becomes the first step in approaches such as the index flood method. Chapter 3 deals

with the uncertainty associated with the flood frequency model choice, by addressing the question

of the existence of a parent flood frequency distribution at a European scale. A simple exploratory

analysis of a newly compiled database of L-moment ratios of flood annual maximum series from

4105 catchments suggests the suitability of the Generalised Extreme Value (GEV) distribution as
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a pan-European flood frequency distribution. However, more detailed Monte Carlo simulations

show that the GEV model underestimates the variability in terms of sample skewness and kurtosis

present in the data, and particularly fails to represent the kurtosis dispersion for longer sample sizes

and medium to high skewness values. Therefore, the GEV distribution was rejected in a statistical

hypothesis testing framework as a single pan-European parent distribution for annual flood maxima.

The results presented in this chapter indicate that one single statistical model may not be able to

fit the entire variety of flood processes present at a European scale.

Chapter 4 further investigates the catchment and climatic factors controlling European flood

regimes and their effects on the underlying flood frequency distributions. In particular, the uncer-

tainty in statistical model choice is linked to catchment size and mean annual precipitation (MAP)

using flood data from a total of 813 catchments with more than 25 years of record from Austria,

Italy and Slovakia. Results shows that the GEV distribution provides a better representation for

regionally averaged values of sample L-moment ratios than the other distributions considered, for

catchments with medium to high MAP independently of catchment area, while the three-parameter

lognormal distribution is a more appropriate choice for the drier (lower MAP) intermediate-sized

catchments, which exhibit higher skewnesses. The results presented in this chapter could be seen as

a first attempt at defining a set of “process-driven” regional parent flood frequency distributions in

a European context.

After analysing the uncertainties in flood frequency across different spatial scales in Chapters 2 to

4, Chapter 5 deals with the flood frequency estimation at a particular location in space, but extends

the temporal scale of the uncertainties several centuries into the past by introducing historical

flood records in the analysis. Knowledge about the historical flood regime is useful because it

gives additional information that may improve the estimates of extreme discharges with high return

periods and, additionally, may reduce the uncertainty in the estimates. In most practical cases, the

information related to historical floods is given in a non-precise manner. This chapter presents a

new approach to dealing with the imprecision present in historical floods, that links the descriptions

in historical records to fuzzy numbers representing discharges. These fuzzy historical discharges are

then introduced in a formal Bayesian inference framework to obtain a fuzzy version of the flood

frequency curve, by combining the fuzzy historical flood events and the instrumental data for a

given location. Two case studies are selected from the historical literature, representing different

facets of the fuzziness typically present in the historical sources. The results are given in the form

of the fuzzy estimates of the flood frequency curves together with the fuzzy credibility bounds for

these curves. The presented fuzzy Bayesian inference framework provides a flexible methodology

to propagate, in an explicit, way the imprecision from the historical records to the flood frequency

estimate, which allows assessing the effects of incorporating non-precise historical information in the

flood frequency regime estimation.

The findings presented in this thesis help better characterize and quantify different facets of

uncertainty involved in the flood frequency estimation process. While these different facets of

uncertainty are usually lumped together, the present work aims at throwing light at possible sources

of these uncertainties, by analysing the model and data related aspects that constrain them, and by

defining the characteristic spatial and temporal scales under which they operate. The results of this

thesis have implications for both hydrological understanding, and applied engineering hydrology. On

the one hand, linking uncertainties in flood frequency estimation with hydrological and climatological
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indicators helps identify regions where an improved hydrological process understanding in needed.

On the other hand, an improved quantification of the uncertainties helps in obtaining more robust

and reliable design decisions and flood risk zones.
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Chapter 1

Introduction

During the last decade, a series of large river flooding events have affected Europe, causing several

billions Euro (only the damages of the 2013 floods in central Europe were estimated as 3bn Euro by

the reinsurance Munich Re). In order to manage and minimize future flooding risks, an improved

and updated concept of integrated flood risk management in necessary, so that the catastrophic

nature of these events is reduced. The first and most crucial step in any flood risk assessment

is the accurate estimation of extreme flood peak discharges associated with a very low exceedance

probability, i.e. with high return periods, which are then used for hydraulic design purposes and risk

zone mapping. The uncertainties involved in these estimates need also to be quantified, for reliable

decision making in these tasks. In this context, the aim of this thesis is to better understand the

sources and nature of different uncertainty components present in flood frequency estimation, and

provide methods for quantifying them at different spatial and temporal scales. While uncertainties

themselves in hydrological modelling can have very different natures (see e.g. Plate, 2002; Merz and

Thieken, 2005; Schumann, 2011), the present dissertation will deal with four particular kinds of

uncertainty, present in different operational setups of flood frequency estimation:

(a) How big is the uncertainty in predicting design floods in an ungauged basin? How is it related

with the catchment attributes, the hydroclimatic characteristics of the region, and the method

used to predict the floods?

(b) How big is the uncertainty caused by statistical model choice, when obtaining a regional parent

distribution? Does the parent distribution need to exist in all spatial scales?

(c) How can we relate the uncertainty in statistical model choice with catchment and climatic

attributes? Are there hydroclimatic regions where a certain model is clearly more appropriate,

and therefore the uncertainty caused by model choice will be much reduced?

(d) Can we incorporate in the flood frequency estimation information about historical floods, even

if these are given in a non-precise way? How does this imprecision propagates to the flood

estimate?

Estimating flood discharges in ungauged basins ist among the most fundamental challenges in

catchment hydrology. There is a long track record in statistical hydrology of developing methods to

estimate, in an optimal way, these discharges from runoff observations in neighbouring catchments

and from catchment characteristics. A classical approach is the index flood method (Dalrymple,
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1960 ) where the flood distribution function scaled by the index flood (e.g. the mean annual flood)

is assumed to be homogenous within the region. The procedure consists of first estimating the

index flood in the ungauged catchment (e.g. by a regression against catchment characteristics) and

then multiplying that index flood with the regional scaled flood distribution function (IH, 1999 ).

Flood quantiles regressions against catchment characteristics have also become popular in the last

decades (see, e.g. Cunnane, 1988, and Griffis and Stedinger, 2007 ). More recently, geostatistical

methods that exploit the spatial correlation of floods either in space (Merz and Blöschl, 2005 ) or

along the stream network (see Skøien et al., 2006 ) have been developed, particulary in regions with

high gauging desities. For a comprehensive review of methods and studies during the last 20 years,

see Blöschl et al, (2013).

When flood records are present, design values are usually estimated by flood frequency analysis,

i.e., by applying the statistical theory of extreme values to obtain a probability distribution function

that describes the flood regime for a certain location. If the flood frequency estimation for an entire

region is considered, the choice of a common statistical model for the entire area, also called parent

distribution, becomes the first step in approaches such as the index flood method. The question

itself of existence of parent distributions at different spatial scales is a topical issue in statistical

flood hydrology (see e.g. Laio et al., 2009 ). For example Matalas et al. (1975), Dawdy and

Gupta (1995), Houghton (1978) and others, found that the variability in terms of sample statistics

was always higher for observed data than for simulated flood peaks for a set of considered parent

distributions, attributing it to different reasons.

Changing from spatial, regional to temporal scales, the incorporation of historical floods in flood

frequency estimation has been perfomed in the literature in several occasions (see e.g. Leese, 1973;

Stedinger and Cohn, 1986; Benito and Thorndycraft, 2005 ), but always with very simplified as-

sumptions about the precision of the historical data. In this sense, fuzzy numbers (Zadeh, 1965)

represent a straightforward model for the non-precise descriptions in historical records, giving indi-

cations about flood events in the past.

The objective of this thesis will be to deeply examine the described facets of uncertainty in

flood estimation, analyse the context in which they appear, an develop formal methodologies to

quantify them. Chapter 2 of this thesis will investigate the uncertainties involved in predicting flood

frequencies in ungauged catchments as a function of climate, method, and data availability. Chapter

3 will deal with the uncertainty associated with the flood frequency model choice, by addressing the

question of the existence of a parent flood frequency distribution at a European scale. Chapter 4

further investigates the catchment and climatic factors controlling European flood regimes and their

effects on the underlying flood frequency distributions. Chapter 5 will deal with the flood frequency

estimation at a particular location in space, but extending the temporal scale of the uncertainties

several centuries into the past by introducing historical flood records in the analysis by means of

a fuzzy model for their imprecission. Finally, Chapter 6 will present an overview of the results,

together with the conclusions.
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Chapter 2

Comparative assessment of flood
predictions in ungauged basins

The present chapter corresponds to the following scientific publication in its original form:

Salinas, J. L., Laaha, G., Rogger, M., Parajka, J., Viglione, A., Sivapalan, M., and Blöschl, G.:

Comparative assessment of predictions in ungauged basins – Part 2: Flood and low flow studies,

Hydrol. Earth Syst. Sci., 17, 2637-2652, doi:10.5194/hess-17-2637-2013, 2013.
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Abstract. The objective of this paper is to assess the perfor-
mance of methods that predict low flows and flood runoff in
ungauged catchments. The aim is to learn from the similari-
ties and differences between catchments in different places,
and to interpret the differences in performance in terms of
the underlying climate-landscape controls. The assessment
is performed at two levels. The Level 1 assessment is a meta-
analysis of 14 low flow prediction studies reported in the lit-
erature involving 3112 catchments, and 20 flood prediction
studies involving 3023 catchments. The Level 2 assessment
consists of a more focused and detailed analysis of individual
basins from selected studies from Level 1 in terms of how
the leave-one-out cross-validation performance depends on
climate and catchment characteristics as well as on the re-
gionalisation method. The results indicate that both flood and
low flow predictions in ungauged catchments tend to be less
accurate in arid than in humid climates and more accurate
in large than in small catchments. There is also a tendency
towards a somewhat lower performance of regressions than
other methods in those studies that apply different methods
in the same region, while geostatistical methods tend to per-
form better than other methods. Of the various flood region-
alisation approaches, index methods show significantly lower
performance in arid catchments than regression methods or
geostatistical methods. For low flow regionalisation, regional
regressions are generally better than global regressions.

1 Introduction

Estimating flood and low flow discharges in ungauged basins
are among the most fundamental challenges in catchment hy-
drology. There is a long track record in statistical hydrology
of developing methods to estimate, in an optimal way, these
discharges from runoff observations in neighbouring catch-
ments and from catchment characteristics. Common to these
statistical methods is the idea of catchment grouping, i.e. the
notion that extreme events that have not been observed in a
particular location could already have been observed some-
where else. Therefore runoff data (on floods or low flows)
from many sites are pooled in order to obtain a representative
sample of what could happen in a particular location. One of
the key aspects of the methods consists of exactly how this
pooling is performed.

There are a number of options. The classical approach con-
sists of subdividing the study domain into a number of fixed,
contiguous regions which are used to regionalise floods or
low flows for all catchments in the area (e.g. as used in the
index flood method, Dalrymple, 1960). The assumption of
this method is that areas close to each other are characterised
by similar climate, topography, geology, soils and land use,
which gives rise to similar catchment hydrological response
and therefore to similar floods or low flows. The grouping
is usually found by geographical boundaries, by combining
maps of the catchment characteristics in some way (Beable
and McKerchar, 1982) or by a diverse set of statistical meth-
ods. These include cluster analysis using catchment char-
acteristics (Nathan and McMahon, 1990), residuals from a

Published by Copernicus Publications on behalf of the European Geosciences Union.
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regression model (Wandle, 1977; Hayes, 1992), regression
trees (Laaha and Blöschl, 2006a), and pattern identification
on the basis of the seasonality of runoff as an indicator of
flood and low flow processes in the catchment (Laaha and
Blöschl, 2006b; Piock-Ellena et al., 1999). An alternative is
the region of influence (ROI) approach (Burn, 1990) which
assigns a different pooling group to each catchment of inter-
est. Similarity between catchments is usually measured by
the root mean square difference of all the catchment and cli-
mate characteristics in a pair of catchments. A typical ap-
plication of the ROI approach is given in the UK Flood Esti-
mation Handbook (IH, 1999). The catchments characteristics
for the grouping usually include mean annual rainfall, catch-
ment area and soil characteristics.

Once the pooling group has been identified there are again
a number of options of how to estimate the flood or low
flow discharges. Again a classical one is the index flood
method (Dalrymple, 1960) where the flood distribution func-
tion scaled by the index flood (e.g. the mean annual flood) is
assumed to be homogenous within the region. The procedure
consists of first estimating the index flood in the ungauged
catchment (e.g. by a regression against catchment character-
istics) and then multiplying that index flood with the regional
scaled flood distribution function (IH, 1999) or by multiply-
ing that index low flow with the regional scaled low flow
distribution function (Clausen and Pearson, 1995; Madsen
and Rosbjerg, 1998). With the advent of geographic informa-
tion systems, alternative methods of using the flood quantiles
or low flow quantiles directly in regressions against catch-
ment characteristics have become popular (see, e.g. Cun-
nane, 1988, and Griffis and Stedinger, 2007, for the case of
floods, and Gustard et al., 1992, and Engeland and Hisdal,
2009, for the case of low flows). More recently, geostatisti-
cal methods that exploit the spatial correlation of floods (or
low flows) either in space (Merz and Blöschl, 2005) or along
the stream network (see Skøien et al. (2006) for the case of
floods and Laaha et al. (2012) for the case of low flows) have
become popular. One of the strengths of the geostatistical
approach is that it directly exploits the spatial correlations
of the discharges and there is no need for defining pooling
groups explicitly, but a relatively dense stream gauge net-
work is needed. There are also methods that estimate flood
statistics in ungauged catchments from rainfall (e.g. Moretti
and Montanari, 2008).

When reviewing the rich literature on estimating extreme
discharges in ungauged basins it is interesting that many of
the statistical methods for floods and low flows are similar
if not identical. Given this similarity, it is quite surprising
that there are very few studies that directly compared the
estimation methods for floods and low flows. Another in-
teresting finding is that the predictive performance for un-
gauged basins strongly depends on the hydrological or cli-
matological setting of the region (Meigh et al., 1997; Far-
quharson et al., 1992). There is no consensus in the literature
on whether one method always outperforms another. This

is because there have been few attempts in generalising the
findings on the predictive performance of estimation meth-
ods beyond individual case studies. Yet, it would be very in-
teresting to understand whether there are general patterns of
performance, i.e. whether particular methods generally per-
form better than others in a given environment. These are
the issues, this paper is concerned with. Specifically, in this
paper we perform a meta-analysis of the literature on predic-
tive performance of flood and low flow estimation methods
in ungauged basins. In a second step we analyse a number
of more detailed datasets, again focusing on the performance
of the methods. The aim is to learn from the similarities and
differences between catchments in different places, and to
interpret the differences in predictive performance in terms
of the underlying climate–landscape controls. The following
research questions are addressed:

i. How good are the predictions of hydrological extremes
in different climates?

ii. Which regionalisation method performs best?

iii. How does data availability impact performance?

iv. To what extent does runoff prediction performance de-
pend on climate and catchment characteristics?

This paper is part of a set of three papers that are all con-
cerned with assessing the performance of estimating runoff
characteristics in ungauged basins. The two companion pa-
pers (Parajka et al., 2013; Viglione et al., 2013) deal with
estimating runoff hydrographs in ungauged basins and es-
timating a set of different runoff characteristics in Austria,
respectively.

2 Method of comparative assessment

For the comparative assessment of both flood and low flow
predictions in ungauged basins, the same two step process as
in Parajka et al. (2013) has been adopted in this paper and is
presented below.

Level 1 assessment: in a first step, a literature survey was
performed. Publications in the international refereed liter-
ature were scrutinised for results of the predictive perfor-
mance of both floods and low flows. The Level 1 assess-
ment is a meta-analysis of prior studies performed by the
hydrological community. The advantage of this type of meta-
analysis is that a wide range of environments, climates and
hydrological processes can be covered that go beyond what
can be reasonably achieved by a single study. It is a compar-
ative assessment that synthesises the results from the avail-
able international literature. However, the level of detail of
the information provided is often limited. The results in the
literature were almost always reported in an aggregated way,
i.e. as average or median performance over the study region
or part of the study region.

Hydrol. Earth Syst. Sci., 17, 2637–2652, 2013 www.hydrol-earth-syst-sci.net/17/2637/2013/
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Level 2 assessment: to complement the Level 1 assess-
ment, a second assessment step was performed, termed Level
2 assessment. In this step, some of the authors of the publica-
tions from Level 1 were approached to provide data on their
floods and low flow predictionsfor individual basins. The
data they provided included information on the catchment
and climate characteristics, on the method used, the data
availability, and predictive performance. The overall num-
ber of catchments involved was smaller than in the Level 1
assessment, so the spectrum of hydrological processes cov-
ered in the assessment could be potentially narrower. How-
ever, the amount and detail of information available in par-
ticular catchments was much higher. As in Level 1, the
cross-validation performance for ungauged basins was anal-
ysed; however, information on individual catchments was
now available. The cross-validation performance was esti-
mated by a leave-one-out strategy, where each gauged catch-
ment was in turn considered as ungauged and the estimated
low flow or flood index was compared with the observed one.

The comparative assessment conducted in this paper strat-
ifies the analyses into three main groups:

1. Analysis of process controls on the predictive perfor-
mance. A number of climate and catchment character-
istics have been identified. A large number of catch-
ments and modelling studies around the world have then
been organised according to these climate and catch-
ment characteristics, with the objective of learning from
their differences and similarities in performance in a
general way.

2. Analysis of predictive performance for different types
of methods. The methods for estimating flood and low
flow indexes in ungauged basins have been grouped into
the classes discussed in Sect. 3. Rather than evaluating
specific methods the focus has been on types of method,
so to be able to generalise beyond individual studies.

3. Analysis of data availability. The quality of predictions
of extremes in ungauged basins not only depends on the
hydrological setting and the regionalisation method but
also, importantly, on the data that are available for the
information transfer. The comparison therefore also ex-
amines the number of stream gauges available in a par-
ticular study as an index to characterise data availability.

3 Studies and datasets used

3.1 Low flow studies

Table 1 lists the 14 low flow prediction studies used in this
paper. It includes summary information about the study re-
gion, regionalisation method applied and the predictive per-
formance in terms of the coefficient of determination (R2),

defined as follows:

R2
= 1−

∑(
Qi,pred− Qi,obs

)2∑(
Qi,obs− Qobs

)2
, (1)

where

Qi,pred: predicted specific discharge in cross-validation at
gaugei,

Qi,obs: observed specific discharge at gaugei,

Qobs: spatial mean of the observed specific discharge.

In the great majority of the papers considered, the per-
formance is given in terms of the described coefficient of
determination in cross validation, which reports the amount
of explained variance by the model, and is also affected by
both bias and dispersion of the estimators. The target low
flow index, on which this performance is reported, is mainly
the q95 specific discharge quantile, i.e. the discharge value
exceeded 95 % of the time divided by the catchment area,
but there were studies presenting performances on other
low flow indicators includingq7,10 (7 days 10 yr specific
runoff), qmon,5 (monthly 5 day minimum),q96, q97 (96–
97 % specific runoff quantiles),q95/qA (q95 specific runoff
quantile normalised by the mean annual specific runoffqA)
and baseflow index (BFI). Both the performance measure
and the low flow index used in the analysis represent a
trade-off between the amount of studies potentially to be
included in the analysis and their need to be comparable; the
same applies to the flood studies. Several studies compare
different regionalisation approaches and/or subsets of data
which results in a total of 28 assessments of predictive
performance. These results are the base for the Level 1
assessment which represents at total of 3112 catchments
(Table 2). Geographically, most of the cross-validation
assessments were performed in Europe and North America
and only a few studies cover Australia and Asia (Fig. 1,
top and Table 1). Six study authors out of the Level 1
assessment provided detailed information about climate and
catchment characteristics in a consistent way and reported
the regionalisation performance for each catchment (Level 2
assessment). In this sense, the potential of learning from the
catchment-by-catchment errors in contrast to the aggregated,
regional measures of Level 1 represents a motivation for the
Level 2 assessment. Predictive performance on a catchment
basis was given as the absolute normalised error (ANE),
defined as

ANEi =

∣∣∣∣Qi,pred− Qi,obs

Qi,obs

∣∣∣∣ . (2)

The dataset for Level 2 assessment combines data from
1895 catchments. Three catchment characteristics are anal-
ysed: aridity index, mean elevation and catchment area.
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Table 1.Summary assessment of studies for low flow estimation in ungauged catchments used in Level 1 assessment. Performance indicates
the leave-one-out assessment of model efficiency in terms of the coefficient of determinationR2. Low flow regionalisation methods include:
process based (PB), global regression (GR), regional regression (RR), geostatistics (G) and short records (SR). Predicted variable indicates
the low flow index estimated in the study and includes: 7 days 10 yr specific runoff (q7,10), monthly 5 day minimum specific runoff (qmon,5),
95–97 % specific runoff quantiles (q95, q96, q97), normalisedq95 specific runoff quantile (q95/qA) and baseflow index (BFI). Ranges or
various values forR2 represent variations of the methods or the same method applied on different subsamples from the same region.

Study Region Climate Number of
catchments

Regionalisation
method

Predicted
variable

Performance
(R2)

Used in Level 2

Eng et al. (2011) eastern USA Humid 516, 125, 422 SR q7,10 0.96, 0.99, 0.97 X

Castiglioni et
al. (2011)

central Italy Humid 51 G q97 0.89

Plasse and
Sauquet (2010)

France Humid 1003 GR, RR, G, G qmon,5 0.43, 0.53–0.74,
0.61, 0.63–0.73

X

Vezza et al. (2010) northwest Italy Cold 41 GR, RR q95 0.57, 0.53–0.69

Engeland and
Hisdal (2009)

southwest Norway Cold 51 RR, PB q96 0.82, 0.32 X

Laaha and
Blöschl (2007)

Austria Cold 325 RR q95 0.75

Laaha et al. (2007) Austria Cold 298 G q95 0.75 X

Laaha and
Blöschl (2006a, b)

Austria Cold 325 GR, RR q95 0.57, 0.59–0.70 X

Laaha and
Blöschl (2005)

Austria Cold 325 SR q95 0.62, 0.93 X

Rees et al. (2002) Himalayas, Nepal
and India

Humid 40 GR q95/qA 0.45, 0.53

Aschwanden and
Kan (1999)

Switzerland Cold 143 GR, RR q95 0.51, 0.59-0.84

Demuth and
Hagemann (1994)

Germany (Baden-
Württemberg)

Humid 54 GR BFI 0.86

Demuth (1993) Germany (Baden-
Württemberg)

Humid 54 GR BFI 0.81, 0.84

Nathan and
McMahon (1990, 1992)

Australia (New
South Wales,
Victoria)

Arid 184 RR, GR BFI 0.75–0.83, 0.71

These characteristics represent a trade-off between the data
availability of the studies, and the literature reports on the
main controls of flood and low flow regimes. Aridity (the ra-
tio of potential evaporationEPA and precipitationPA on a
long-term basis, averaged across the catchment) is an indi-
cator of the competition between energy and water affecting
the water balance. Elevation (average topographic elevation
within the catchment) is a composite indicator including a
range of processes, such as long-term precipitation and hence
soil moisture availability, and air temperature. In some envi-
ronments there is a relationship between elevation and aridity
and elevation and snow processes. Catchment area is an in-
dicator of the degree of aggregation of catchment processes
related to scale effects (Skøien et al., 2003); an indicator of
storage within the catchment. Catchment size also acts as an
indicator of the quality of rainfall data that is available for
runoff estimation in ungauged basins, as for a constant rain-
gauge density, the mean areal rainfall estimation variance de-

creases with increasing the catchment area. This areal rainfall
might also be biased by increasing the number of stations lo-
cated in lower parts of the catchment (Lebel et al., 1987) The
low flow regionalisation methods have been classified into
the following groups.

– Process-based methods (PB): there is only a single
cross-validation study we encountered in the literature
(Engeland and Hisdal, 2009) of this type. The proce-
dure consisted of regionalising the parameters of a con-
ceptual rainfall–runoff model from gauged to ungauged
catchments in the region. The low flow characteristics
were then derived from the simulated daily hydrographs
at the ungauged location of interest.

– Global Regression (GR): in the global regression
approach a single relationship between the low runoff
statistic of interest, such asq95, and catchment/climate
characteristics is established. Both additive and
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Low flows

Floods

Fig. 1. Map indicating the countries included in the meta-analysis
of low flow studies (top) and flood studies (down) reported in the
literature (Level 1 assessment).

multiplicative regression models were used. A critical
issue in the regression is the choice of the catch-
ment/climate characteristics which include mean
annual precipitation and geologic characteristics in
the literature. It has been noted that it is important to
interpret the catchment/climate characteristics that are
found to be significant during a regression analysis from
a hydrological perspective, i.e. to link the statistical
analysis to the hydrological processes operating at the
catchment scale.

– Regional regression (RR): here the procedure is similar,
however the entire domain is subdivided into regions
and a regression model is applied to each region sepa-
rately. The main rationale of regional regression is that
different processes may operate in the regressions so the
catchment/climate characteristics will control low flows
in different ways. A number of methods exist for iden-
tifying the regions or pooling groups, including cluster
analysis of catchment/climate characteristics, residuals
from a regression model and pattern identification on
the basis of the seasonality of runoff.

– Geostatistical methods (G): geostatistical methods ex-
ploit the spatial correlations of low flows based on the
rationale that catchments that are geographically close
to each other may exhibit similar processes. While some
approaches use Euclidean distance as a similarity mea-
sure, other approaches use the correlations along the

Table 2. Number of studies (in brackets number of results) and
number of catchments used. Level 1 refers to an assessment of the
average performance of studies, Level 2 to an assessment of the per-
formance for individual catchments.

Level 1 Level 2

No. of No. of No. of No. of
studies catchments studies catchments

Low flows 14 (28) 3112 6 1895
Floods 20 (57) 3023 5 1422

river network. To account for spatially heterogeneous
regions, the geostatistical method has been extended
to combine it with multiple regressions by using the
residuals of the regression for the spatial geostatistical
estimation.

– Short records (SR): in some instances there may be
short runoff records available for a catchment that is
otherwise ungauged. These runoff records may not be
representative of the longer time period that is normally
used for the estimation of low flows. Methods are there-
fore used that relate the low flow estimates from the
short runoff records to the longer hydrological history
of the basin on the basis of regional information, usually
involving some element of correlation analysis (Laaha
and Bl̈oschl, 2005).

3.2 Flood studies

Table 3 lists the 20 flood prediction studies used in this paper.
It includes summary information about the study region, re-
gionalisation method applied and the predictive performance
in terms of the root mean square normalised error (RMSNE),
defined as follows:

RMSNE=

√
1

n
·

∑(
Qi,pred− Qi,obs

Qi,obs

)2

. (3)

The cross-validation performance is given, in the great ma-
jority of the papers considered, as the defined root mean
squared normalised error, a very common error measure for
estimators, combining both the bias and the dispersion com-
ponent of the error. The target flood index, on which this per-
formance was mainly reported, was the 100 yr specific flood
quantileq100, i.e. the peak discharge value that occurs on
average every 100 yr divided by the catchment area. There
are three exceptions, namely Srinivas et al. (2008), Cunderlik
and Burn (2002), Jingyi and Hall (2004), where the predic-
tive performance is calculated on volumes and not on specific
discharges (Table 3). These studies are plotted as crosses in
Figs. 2–4. It is worth mentioning, that the quantities defined
as observed dischargesQi,obs, are actually the flood quan-
tiles estimated from local data and are subject to a certain
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Table 3. Summary assessment of studies for flood estimation in ungauged catchments used in Level 1 assessment. Error measure indicates
the leave-one-out assessment of model efficiency in terms of the root mean square normalised error RMSNE. Flood regionalisation methods
include: regression methods (R), index methods (IM) and geostatistics (G). Predicted variable indicates the flood discharge estimated in
the study and includes: 100 yr specific flood runoff (q100), 100 yr flood runoff (Q100) and 100 yr flood runoff standardised by the mean
annual flood (Q100/Qm). Ranges or various values for RMSNE represent variations of the methods or the same method applied on different
subsamples from the same region.

Study Region Climate Number
of
catch-
ments

Regionalisation
method

Predicted
variable

Error measure
(RMSNE)

Used in
Level 2

Jimenez et al. (2012) Spain Arid 217 R q100 0.54 X

Walther et al. (2011) Germany (Saxony) Cold 170 G, IM q100 0.46, 0.49 X

Kjeldsen and Jones (2010) United Kingdom Humid 602 IM q100 0.51, 0.50 X

Guse et al. (2010) Germany (Saxony) Cold 90 R qmax 0.81, 0.88

Saf (2009) Turkey Arid 47 IM Q100/Qm 0.43

Chebana and Ouarda (2008) Canada (southern Quebec) Cold 151 R q100 0.44–0.45, 0.49,
0.64

Srinivas et al. (2008) USA (Indiana) Cold 245 IM q100,
Q100

0.69, 0.27 X

Ouarda et al. (2008) Mexico Tropical 29 R, R, IM, IM,
G, G

q100 0.74, 0.66,
0.67, 0.67, 0.51,
0.52

Leclerc and Ouarda (2007) Canada, USA Cold 29 R q100 0.61

Ouarda et al. (2008) Canada (southern Quebec) Cold 63 IM q100 0.40

Merz and Bl̈oschl (2005) Austria Cold 575 G, R, IM q100 0.30, 0.46, 0.43 X

Jingyi and Hall (2004) China (Gan-Ming River) Humid 86 IM Q20,
Q50,
Q100,
Q200

0.31

Chokmani and Ouarda (2004) Canada (southern Quebec) Cold 151 R q100 0.70, 0.51

Cunderlik and Burn (2002) United Kingdom Humid 424 IM Q100/Qm 0.29

Javelle et al. (2002) Canada (Quebec, Ontario) Cold 158 IM q100 0.50

Pandey and Nguyen (1999) Canada (Quebec) Cold 71 R q100 0.64, 0.81

Madsen et al. (1997) New Zealand (South Island) Humid 48 IM q100 0.41, 0.39

Meigh et al. (1997) Brazil, Ivory Coast, Mali,
Guinea, Ghana, Togo,
Benin, Malawi, Namibia,
Zimbabwe, South Africa
and Botswana, Saudi
Arabia, Iran, India

Tropic,
Humid,
Arid

59, 35,
86, 41,
16, 46,
28, 40,
234,
109, 28,
24, 75

IM q100 0.42, 0.47, 0.50,
0.53, 0.59, 0.42,
0.69, 0.63, 0.52,
0.69, 0.73, 0.65,
0.58

GREHYS (1996) Canada (Quebec, Ontario) Cold 33 IM q100 0.45

Farquharson et al. (1992) Arid and semi-arid basins
worldwide

Arid 162 IM q100 0.73
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Fig. 2. Coefficient of determination of predicting low flows in ungauged basins (left) and root mean squared normalised error of predicting
floods in ungauged basins (right), stratified by climate (Level 1 assessment). Each symbol refers to a result from the studies in Tables 1 and
3. Circles represent performances calculated on specific discharges (m3 s−1 km−2), crosses represent performances calculated on discharges
(m3 s−1). Boxes show 25–75 % quantiles.

degree if uncertainty and the same applies to the observed
95 % low flow quantiles. Several studies compare different
regionalisation approaches and/or subsets of data which re-
sults in a total of 57 assessments of predictive performance.
These results are the base for the Level 1 assessment which
represents at total of 3023 catchments (Table 2). Figure 1
(bottom) and Table 3 show that the studies are rather evenly
spread around the world. Five study authors out of the Level
1 assessment provided detailed information about climate
and catchment characteristics in a consistent way and re-
ported the regionalisation performance for each catchment in
terms of the absolute normalised error ANE (Level 2 assess-
ment). This dataset combines data from 1422 catchments. As
in the case of low flows, three catchment characteristics are
analysed: aridity index, mean elevation and catchment area
(see Sect. 3.1). The flood regionalisation methods have been
classified into the following groups:

– Regression methods: the regression methods for flood
discharges are similar to those of low flows where the
flood runoff is related to catchment/climate character-
istics such as catchment area and mean annual precip-
itation. As is the case of low flows, it is important to
interpret the regression coefficients obtained from a hy-
drological perspective (Merz and Blöschl, 2008a, b).

– Index methods: the index methods consist of a group
of approaches where the flood distribution function is
scaled by the index flood (e.g. the mean annual flood or
the median annual flood) and assumed to be homoge-
nous within the region. One first estimates the index
flood in the ungauged catchment (e.g. by a regression
against catchment characteristics) and then multiplies
that index flood with the regional-scaled flood distribu-

tion function. The methods usually differ in terms of
how the homogeneous groups are obtained.

– Geostatistical methods: geostatistical methods are anal-
ogous to those in use for regionalising low flows (see
Sect. 3.1).

4 Results and discussion

4.1 How good are the predictions of hydrological
extremes in different climates?

Figure 2 (left) shows the Level 1 results of estimating low
flows in ungauged basins. The distribution of the studies by
climatic region is as follows: 2 are considered as arid, 12 as
cold and 14 as humid. The highest performance is obtained
for humid catchments, but there are also studies in humid cli-
mates that report a significantly lower performance. In arid
climates, the performance is never very high, but more stud-
ies are needed to clearly show this behaviour. The most likely
reason for this finding is that arid regions tend to be very
heterogeneous with a high variability of low flow produc-
ing processes, and low flows generally tend to be lower and
more variable, and therefore harder to predict. Cold environ-
ments exhibit the largest performance range. This could be
because this class contains sub-polar and mountainous envi-
ronments which may be hydrologically very complex with
many different storage types that complicate low flow be-
haviours (ice/groundwater).

The results for the flood regionalisation (Fig. 2, right)
present 10 studies from arid regions, 12 from tropical, 26
from cold and 9 from humid regions. They show that the pre-
dictions in humid regions exhibit the smallest errors and arid
regions have the largest errors. This means that the predictive
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Fig. 3. Coefficient of determination of predicting low flows in ungauged basins (left) and root mean squared normalised error of predicting
floods in ungauged basins (right), stratified by regionalisation method (Level 1 assessment). Each symbol refers to a result from the studies
in Tables 1 and 3. Circles represent performances calculated on specific discharges (m3 s−1 km−2), crosses represent performances calcu-
lated on discharges (m3 s−1). Lines indicate studies that compared different methods for the same set of catchments. Boxes show 25–75 %
quantiles.

performance clearly decreases with increasing aridity. There
are a number of factors that may contribute to this depen-
dence. The interannual variability (e.g. in terms of coefficient
of variation of the annual peak runoff time series) of floods
in arid regions is usually bigger than in other climates, due to
the associated stronger non-linearities and threshold effects
in drier regions and the the larger interannual variability and
skewness of rainfall intensities more typical for arid climates.
This means that floods are more difficult to estimate from
short records. The stronger non-linearity also implies that the
spatial hydrological variability in the flood producing pro-
cesses will impact more strongly the flood frequency curve,
so catchments that are close to each other may exhibit quite
different flood frequency curves, which reflects poorly on the
regionalised predictions. A possible explanation for this non-
linearity in arid catchments is given in Goodrich et al. (1997),
where the increasingly non-linear response is attributed to the
increasing importance of ephemeral channel losses and par-
tial storm area coverage. In contrast, humid catchments tend
to be more linear, so the predictability is larger. The biggest
range of performances is found in cold climates. This may
be partly related to the larger number of studies available for
these regions. Also, in cold regions a wide variety of flood
producing processes may exist, including snow and rain-on-
snow which may lead to different performance, depending on
the prevailing processes. For example, snow melt floods tend
to be more predictable than rain-on-snow floods (e.g. Sui and
Koehler, 2001).

4.2 Which regionalisation method performs best?

The low flow regionalisation methods represented in the as-
sessment included 1 result from the process-based meth-

ods group (continuous runoff models); 4 results from the
geostatistical group of methods where runoff at the target
site was estimated as a weighted mean of runoff at the sur-
rounding gauges; 11 global regression and 7 regional regres-
sion results from the regression methods group; and 5 re-
sults from the short records group that used various meth-
ods. The assessments in each group are not based on ex-
actly the same regionalisation approach, but the methodol-
ogy is similar. There are also differences in the low flow
indices used. They includeq95 (95 % exceedance probabil-
ity specific runoff),q7,10 (7 days 10 yr specific runoff), and
qmon,5 (monthly 5 day minimum), all standardised by catch-
ment area or mean flow, and the dimensionless BFI. In par-
ticularq95 low flows are usually closely correlated toq7,10 so
that a comparison across the various indices should provide
consistent results at the level of detail used for the compar-
isons. Figure 3 (left) shows a large performance range across
the regionalisation methods. Overall, it is clear that low flow
predictions from short records (R2

= 0.62 to 0.99) perform
best. The method performs significantly better than all other
methods, provided continuous runoff measurements from at
least 3–5 yr of observations at the site of interest are used.
A lower performance (0.62) is obtained when using a single
flow measurement during the low flow period. The perfor-
mance of global regression ranges from 0.43 to 0.86. Studies
from high-mountain environments have a lower performance
(Austria: 0.57, Switzerland: 0.51, Nepal: 0.53, India: 0.45)
perhaps because the heterogeneity of the low flow process in
the landscape (including snow) pose difficulties for applying
one single regionalisation model for the entire domain, so di-
vision into subregions may be necessary. Global regression
is better suited to smaller regions (e.g. the German region of
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Fig. 4. Coefficient of determination of predicting low flows in ungauged basins (left) and root mean squared normalised error of predicting
floods in ungauged basins (right), stratified by the number of catchments within each study (Level 1 assessment). Each symbol refers to a
result from the studies in Tables 1 and 3. Circles represent performances calculated on specific discharges (m3 s−1 km−2), crosses represent
performances calculated on discharges (m3 s−1). Boxes show 25–75 % quantiles.

Baden-Ẅurttemberg) and studies in climates less controlled
by snow seasonality (e.g. New South Wales and Victoria in
Australia). The four results from geostatistical models give
on average the highest performances between 0.61 and 0.89.
A continuous runoff model, tested in only one study used in
the meta-analysis, gave lower performance than the statisti-
cal methods. The studies examined differ in terms of the hy-
drological characteristics and data availability, so a compar-
ison of methods for different regions will involve some un-
certainty. It is therefore useful to apply each different method
to the same catchment. A number of studies are available in
the literature that have performed such a comparison and the
results are indicated as grey lines in Fig. 3 (left). Most of the
studies compare global and regional regressions. The com-
parisons clearly show that the regional regressions always
perform better than the global regressions. The studies that
conduct this comparison show that the average performance
of global regressions is around 0.5 and increases to 0.7 for re-
gional regression. It should be noted that the performance re-
ported is cross-validation performance for ungauged basins,
so better performance is related to better predictions rather
than to improved goodness of fit of the regressions. There
are also a few studies that compared geostatistical methods
with regional regression methods. In one study from France
(Plasse and Sauquet, 2010) the geostatistical method was
based on distance between the catchment centres of gravity.
The performance was larger than for global regression and
lower than that of regional regression. If the stream network
structure is taken into account, the performance of geosta-
tistical methods can in fact be higher than that of regional
regression as illustrated in the Austrian case studies (Laaha
et al., 2007, 2012). Finally, one study (Engeland and His-
dal, 2009) compared process-based methods with regional
regressions and found that the regressions gave better re-

sults. Clearly, application of process-based methods does not
per seinclude the performance of low flow estimation but
their value depends on the amount of information available
for careful parameterisation of the model. However, process-
based methods have more potential to explore the impact of
environmental change than statistical methods.

The flood regionalisation methods represented in the as-
sessment included (i) regression methods, 18 results from
different regression models where the flood quantiles or the
distribution parameters had been transferred to ungauged
basins; (ii) index methods, 34 results where a regional growth
curve had been defined for homogeneous regions; (iii) geo-
statistical methods, 5 results where runoff at the target site
was estimated as a weighted mean of runoff at the sur-
rounding gauges. While the assessments made by each group
are not based on exactly the same regionalisation approach,
the methodology is similar. Figure 3 (right) shows that the
geostatistical methods perform best (RMSNE of 0.30–0.52)
across the studies analysed, although the number of studies is
small compared to the other groups. For example, Merz and
Blöschl (2005) in Austria and Walther et al. (2011) in Saxony
(Germany), provide the combination of the necessary stream
network density and non-arid climate that causes their lower
RMSNE values (0.30 and 0.46 respectively). The regression
methods have the lowest performance, i.e. the largest predic-
tive errors (median RMSNE of 0.62), and the index meth-
ods fall in between. As an illustrative example, we find the
low performances (average RMSNE of 0.57) of the index
flood method in the arid and semi-arid regions of Meigh
et al. (1997) and even lower (RMSNE between 0.81–0.88)
for the regression approaches in a cold climate in Guse et
al. (2010). The result of the overall ranking of methods is
confirmed by studies that compared different approaches in
the same region (grey lines in Fig. 3, right). It appears that it
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Table 4.Methods with the highest and lowest cross-validation performance of runoff predictions in ungauged basins. Arid relates to catch-
ments with an aridity index> 1. Level 1 refers to an assessment of the average performance of studies, Level 2 to an assessment of the
performance for individual catchments. For the number of studies and catchments see Table 2.

Level 1 Level 2

Highest cross-validation
performance

Lowest cross- validation
performance

Highest cross-
validation performance

Lowest cross-
validation performance

Low flows Short records,
Geostatistics

Global regressions Short records,
Geostatistics (arid)

Global regressions

Floods Geostatistics, Index
methods

Regression methods Geostatistics Index methods (arid),
Regression methods

may be difficult to find catchment characteristics that are rep-
resentative of the flood generating processes. For example,
subsurface characteristics are an important control for flood
generation and these are difficult to capture unless detailed
field surveys are available. Index methods and geostatistical
methods are less dependent on the catchment characteristics
as they usually take advantage of both spatial proximity (ei-
ther through spatial correlations or homogeneous regions)
and correlations to catchment characteristics. It is also the
case that the geostatistical studies in Table 3 have been per-
formed in data-rich environments, which may partly explain
their better performance. It is interesting to note that the num-
ber of studies applying regression and index methods is much
larger than those applying geostatistical methods, which is
because they have a longer tradition in hydrology. The first
two columns in Table 4 present a summary of the methods
with the highest and lowest predictive performances in the
Level 1 assessments of low flow and flood studies.

4.3 How does data availability impact performance?

While the information on the data used was never very de-
tailed in the studies examined, some inferences on data avail-
ability can be drawn from the number of catchments used
in the studies. These are usually those catchments used both
for the cross validation and for regionalising runoff to neigh-
bouring catchments. Figure 4 (left) shows the predictive per-
formance (R2) for the case of low flows as a function of the
number of catchments analysed in each study. It is clear that
the studies with less than 100 catchments have, on average,
the lowest performance and performance increases with the
number of catchments used in analysis. Possibly, this is due
to the lower stream gauge density in studies with a smaller
number of stream gauges, but more detailed analyses on the
precise geographic extent of the studies would be needed
to ascertain the data controls on performance. The perfor-
mance decreases for very large datasets (> 250 catchments).
This decrease is related to the higher heterogeneity of larger
study areas and to the fact that a number of the studies used
global regression methods that did not perform very well in
these regions.

Figure 4 (right) shows the RMSNE for the case of floods
as a function of the number of catchments analysed in each
study. The errors clearly decrease and the performance in-
creases with the number of catchments included in the analy-
sis. This is possibly because of the higher stream gauge den-
sity in the larger studies with a bigger number of stations
involved, which makes the transfer of floods across the land-
scape more accurate, in particular if there is a stream gauge
upstream or downstream of the target site. Also, the region-
alisation methods may be more robust if the total number of
stations is larger.

4.4 To what extent does runoff prediction performance
depend on climate and catchment characteristics?

The assessment of the predictive performance of the low
flow regionalisation methods with respect to three climate
and catchment characteristics (Level 2 assessment) is pre-
sented in Fig. 5. The lines indicate the median runoff predic-
tion performance of catchments belonging to the same study.
Overall, the absolute normalised error (ANE, see Sect. 3.1),
clearly increase with increasing aridity. This means that the
performance is consistently lower in drier, and more arid en-
vironments. These are regions that tend to be particularly het-
erogeneous, with a high presence of intermittent rivers (Ja-
cobson and Jacobson, 2013) and where low flows may be
small, which makes them particularly hard to predict.

Figure 5 also indicates that there is a tendency for perfor-
mance to increase with catchment elevation. The average of
all methods shows that errors decrease from 0.37 for low-
land catchments (mean elevation< 200 m a.s.l.) to 0.16 for
high mountain catchments. This may be partially due to the
higher specific discharges of mountainous catchments com-
pared to lowland catchments which may increase predictabil-
ity. Also, in the high mountains, low flows may be of a win-
ter low flow type, so low flows may depend on frost strength
which is closely related to catchment elevation. The bottom
panels in the figure show the performance as a function of
catchment scale. For all methods the performance increases
with catchment scale. This may be related to both data avail-
ability and space–time aggregation of runoff processes in the
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Fig. 5. Absolute normalised error of predictingq95 low flows (m3 s−1 km−2) in ungauged basins as a function of aridity (EPA/PA), mean
elevation and catchment area for different regionalisation methods (Level 2 assessment). Lines connect median errors for the same study.
Boxes are 40–60 % quantiles, whiskers are 20–80 % quantiles.

catchments, which will increase the predictability. The ex-
ceptions are methods that use short runoff records at the site
of interest. In these cases, the performance dependence on
catchment size is less pronounced than for the other meth-
ods. These types of methods may be more dependent on the
representativeness of the short runoff record to the tempo-
ral variability of low flows, so the dependence on the spatial
variability and therefore catchment size may be lower.

The left panels in Fig. 6 summarise the performance for
different regionalisation approaches, stratified by the aridity
index. The left-top, left-middle and left-bottom panels show
the performance for all catchments, catchments with an arid-
ity index below and catchments with an aridity index above
1, respectively. Overall, for all catchments the performance
of the global regression is much lower than that of any other
method. This is consistent with the Level 1 assessment. In
the arid catchments the performance of the global regression
is particularly low and the absolute normalised errors are on
average around 1.1. In the humid regions the short records

perform better than any other method. This is, again, consis-
tent with the Level 1 assessment. However, this is no longer
the case for the arid catchments. For the arid catchments, the
performance of the short records is in fact lower than those of
the geostatistical methods and regional regression. It appears
that, in arid regions, the variability of the low flows between
years may be larger than in other climates, what makes the
method more dependent on an appropriate donor site. The ap-
propriateness of a donor depends on gauging density which
is often lower in the more arid countries. Methods may be
needed in arid regions that specifically account for the runoff
generation processes in the region, and preferably are based
on proxy data that account for these processes.

The Level 2 assessment for flood prediction studies,
i.e. the assessment of the ANE measure with respect to the
three climate and catchment characteristics is presented in
Fig. 7. The lines indicate again the median runoff predic-
tion performance of catchments belonging to the same study.
The top panel shows that the errors clearly increase with
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increasing aridity, i.e. there is a decrease in performance with
aridity for all three methods. This is also supported by the
lines representing comparative studies. This clear trend is in
line with the Level 1 assessment for floods, but also with both
assessment levels for low flows. Arid regions tend to be more
heterogeneous than humid regions and runoff processes are
more non-linear, which makes the predictions for both floods
and low flows more difficult. There is a slight increase in
performance with elevation but, in contrast to aridity, the er-
rors do not change much with elevation. In the studies ex-
amined here, the highest elevation catchments are influenced
by snowmelt, so there is a tendency for the flood predictions
to improve if snow melt is involved in the flood generation
processes.

The results stratified by catchment area (Fig. 7, bottom
panels) indicate a clear increase in performance (decrease of
ANE) with increasing catchment area for all methods. The
increasing performance with catchment size is likely related
to two factors. The first is related to the data availability. As
the catchment size increases the likelihood that gauged sub-
catchments are available as donor stations increases. This
will lead to more reliable transfer of the flood characteristics.
Additionally, for larger catchments, there are aggregation ef-
fects on the flood generating processes, so floods tend to be
less flashy and therefore easier to predict.

The right panels in Fig. 6 summarise the runoff prediction
performance of different regionalisation approaches, strati-
fied by the aridity index. Again, the right-top, right-middle
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and right-bottom panels show the performance for all catch-
ments; catchments with an aridity index below and catch-
ments with an aridity index above 1, respectively. Analy-
sis of the overall performance of the three methods shows
that performance is similar for geostatistical and index meth-
ods, which have a slightly better performance than the re-
gression methods. For humid catchments, again, the perfor-
mance of geostatistical methods is slightly better than index
methods, and the performance of the regression methods is
slightly lower. For dry catchments, however, the index meth-
ods performs significantly worse than the other two methods.
The low performance of the index flood method in arid re-
gions may be related to the underlying assumption of using
the same non-dimensional flood frequency curve (i.e. growth
curve) in the entire regions. Arid regions may be spatially
more heterogeneous, leading to lower performance. More

importantly, most arid catchments have the larger errors for
the index methods, as the result of the prediction overesti-
mate on the 100 yr floods (Fig. 7, top centre). The median
absolute normalised error is 1.0, and the errors were in the
vast majority positive (presented in Blöschl et al., 2013), in-
dicating that typically the methods predict around twice the
floods actually observed. If a homogeneous region contains
both arid catchments with relatively lower floods and wet-
ter catchments with higher floods, the homogeneity assump-
tion will tend to lead to an overestimation in those catch-
ments with the lower floods. The last two columns in Table 4
present a summary of the methods with the highest and low-
est predictive performances in the Level 2 assessments of low
flows and floods.

5 Conclusions

This paper has compared the performance of predicting low
flow and flood discharges in ungauged basins using differ-
ent regionalisation methods. Two kinds of assessments were
performed; a Level 1 assessment which constitutes a meta-
analysis from the literature; and a Level 2 assessment which
analyses individual catchments in more detail. The results in-
dicate that the Level 1 and Level 2 assessments are consistent
while shedding light on different aspects of the prediction
problem. The assessment of flood and low flow estimation
methods in this paper represents the largest existing meta-
analysis of regionalisation studies of hydrological extremes.
However, it is clear that the analysis cannot cover all facets
of hydrological variability worldwide. Arid and tropical cli-
mates are missing in the case of low flows. Arid climates
are especially prone to droughts, so it would be of worth to
pursue more detailed research on assessing predictions of ex-
treme low flows in these areas. Also, some of the methods,
e.g. process-based methods, are under-represented in the lit-
erature and a more detailed analysis of these would be of in-
terest. For the flood regionalisation studies, the coverage of
climates is more uniform, but there is a clear dominance of
the regression-type and index-flood methods over geostatisti-
cal approaches. The increasing trend in the application of the
latter group of methods is likely to lead to a sizeable sample
of studies in the literature which will allow more comprehen-
sive tests of their performance in the near future.

The Level 1 analysis suggests that in humid regions the
performance of predicting both low flows and floods in un-
gauged basins tends to be better than in other climates. For
the case of floods the performance tends to be lowest in arid
regions. For the case of low flows, geostatistical methods
can perform better than regional regressions in regions with
medium to high stream gauge density if the stream network
structure is taken into account. Regional regressions that di-
vide a domain into subregions and apply regression models
separately always perform much better than global regres-
sions. For the case of floods, geostatistical methods tend to
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perform better than the other methods, regressions tend to
have the lowest performance, and index methods lie between
geostatistic and regression methods. This suggests that it may
be difficult to find catchment characteristics that are suitable
for regression methods, both for low flows and floods. Again,
for both low flows and floods the performance tends to in-
crease with number of stations in a region highlighting the
value of stream gauge data in the region of interest, even for
the case of ungauged basins.

The results of the more detailed analysis (Level 2) are
mostly consistent with those of the meta-analysis from the
literature (Level 1). For the case of low flows the predic-
tive performance tends to decrease with increasing aridity
(both Level 1 and Level 2 assessments). The performance
improves with increasing catchment area (Level 2 assess-
ment), apparently because of the presence of longer water
flow pathways that accompany increasing catchment size.
The availability of short records is particularly useful to im-
prove performance of low flow predictions (both Levels 1
and 2), especially in humid regions, and are perhaps not as
useful in arid regions because of the strong interannual vari-
ability together with the usually low stream gauge density
in arid regions (Level 2). Of the various methods, regional
regressions have been shown to be better than global regres-
sions (from Level 1 and Level 2 assessments). For the case of
floods, the predictive performance also tends to decrease with
increasing aridity (both Level 1 and Level 2 assessments).
As expected, predictive performance increases with increas-
ing catchment area (Level 2 assessment). Both Level 1 and
Level 2 assessments indicated that the geostatistical methods
have the best performance (especially when data availability
is high), index methods work next best, and regression meth-
ods have the relatively lowest performance. In arid conditions
the index methods are significantly biased and significantly
overestimate the 100 yr floods in the catchments analysed.
The Level 2 assessment also indicated that index methods do
not work well in arid regions. Arid regions would therefore
need more gauges to capture the temporal and spatial vari-
ability, but achieving this is unrealistic in many arid parts of
the world where (due to economic reasons) data density is
typically lower than in humid regions. Methods that are able
to exploit the specifics of the region would be needed here.
Use of readily available landscape information, such as ero-
sional patterns, based on the idea of reading the landscape,
may assist in improving the predictions of runoff extremes.
More research on arid hydrology is urgently needed. Scale,
uncertainty, and choice of proxy data are likely important
considerations in this body of research (e.g. Blöschl, 2006;
Koutsoyiannis et al., 2009).

The meta-analysis of the literature highlighted that the
results on predictive performance of low flows and floods
are presented in widely diverse ways, using different perfor-
mance measures, different ways of aggregating the informa-
tion of the regions of interest, and different levels of details
on the hydrological characteristics of the regions. It appears
that, to make the results more useful to the hydrological com-
munity, it would be essential to adjust the reporting of results
and make them more comparable. This would assist in gen-
eralising the findings from individual case studies. We need
techniques to exploit information from individual catchment
studies, as well as the compilation of all studies from around
the world. As a community collectively we need to go be-
yond that, and find systematic ways to generate knowledge,
in terms of the patterns that connect across the multitude of
studies and thereby provide a higher level of predictability
as to what will happen next and understanding that will en-
able extrapolation to new situations. This points to the im-
portance of hydrological synthesis as a vehicle for creating
these connections.

Acknowledgements.We are very grateful to K. Eng, E. Sauquet,
H. Hisdal, L. Mediero, R. Merz, T. Kjeldsen and V. V. Srinivas for
providing the hydrologic data and results of their studies. Without
their very useful support the Level 2 analysis of this study would
not have been possible. We would also like to thank the Austria
Science Funds (FWF) as part of the Vienna Doctoral Programme on
Water Resource Systems (DK-plus W1219-N22), the FWF Project
P23723-N21, the Innovative Ideas project of the TU Wien, and the
Austrian Climate and Energy Fund (Project Nr K10AC0K00003,
CILFAD) for financial support.

Edited by: H. H. G. Savenije

References

Aschwanden, H. and Kan, C.: Die Abflussmenge Q347, Eine Stan-
dortbestimmung, Hydrologische Mitteilungen Communications
hydrologiques, Nr. 27, Le d́ebit Landeshydrologie und geologie,
Bern, 1999.

Beable, M. E. and McKerchar, A. I.: Regional flood estimation
in New Zealand, Technical Report No. 20, National Water
and Soil Conservation Organisation, Water and Soil Division,
Christchurch, NZ, 132 pp., 1982.
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Laaha, G. and Blöschl, G.: A comparison of low flow regionali-
sation methods—catchment grouping, J. Hydrol., 323, 193–214,
doi:10.1016/j.jhydrol.2005.09.001, 2006a.
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Abstract. This study addresses the question of the existence
of a parent flood frequency distribution on a European scale.
A new database of L-moment ratios of flood annual max-
imum series (AMS) from 4105 catchments was compiled
by joining 13 national data sets. Simple exploration of the
database presents thegeneralized extreme value(GEV) dis-
tribution as a potential pan-European flood frequency distri-
bution, being the three-parameter statistical model that with
the closest resemblance to the estimated average of the sam-
ple L-moment ratios. Additional Monte Carlo simulations
show that the variability in terms of sample skewness and
kurtosis present in the data is larger than in a hypotheti-
cal scenario where all the samples were drawn from a GEV
model. Overall, thegeneralized extreme valuedistribution
fails to represent the kurtosis dispersion, especially for the
longer sample lengths and medium to high skewness values,
and therefore may be rejected in a statistical hypothesis test-
ing framework as a single pan-European parent distribution
for annual flood maxima. The results presented in this paper
suggest that one single statistical model may not be able to
fit the entire variety of flood processes present at a European
scale, and presents an opportunity to further investigate the
catchment and climatic factors controlling European flood
regimes and their effects on the underlying flood frequency
distributions.

1 Introduction

The first step for any assessment of the flooding potential or
flood hazard is the estimation of the design flood associated
with a given annual exceedance probability, often quoted in
terms of a recurrence intervalT measured in years. This in-
formation is most commonly obtained using flood frequency
estimation techniques based on statistical analyses of series
of observed flood peak discharges. Unsurprisingly, extreme
flood events are seldom observed locally, and hydrologists
have little or no chance of gathering data from an adequate
sample of catastrophes for analysis, especially for prediction
at ungauged sites, with the exception of post-event surveys
(see e.g.Marchi et al., 2010; Gaume et al., 2010). It is there-
fore important that effective and practical procedures are
available, to assist hydrologists in making inferences about
flood risk, both at gauged and at ungauged sites (Blöschl
et al., 2013; Salinas et al., 2013).

When only an estimate of the peak flow value is needed,
at-site and regional statistical extreme value analysis of river
flow data can be used, depending on data availability. How-
ever, it is well-known that such estimates can be associated
with a high degree of uncertainty, and it is therefore impor-
tant to ensure that decisions are robust and are made based on
as much information as possible (Viglione et al., 2013; Merz
and Blöschl, 2008a, b; Martins and Stedinger, 2001). The
choice of method for flood frequency estimation in any par-
ticular situation is often dictated by factors such as national
or institutional tradition, modeller expertise, complexity and

Published by Copernicus Publications on behalf of the European Geosciences Union.
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objective of study, legislative requirements, and data avail-
ability (Castellarin et al., 2012). It is usual though, to as-
sume the existence of a parent flood frequency distribution
within a certain region. The question of the existence itself
of a parent distribution on different spatial scales has puzzled
hydrologists for many years and substantial work has been
done in order to verify or falsify this hypothesis.Matalas
et al. (1975) found that the variance of sample coefficient
of skewness was always higher for observed data than for
simulated flood peaks for a set of considered parent distri-
butions, calling this phenomenon “skew separation”. They
further showed that it could not be attributed either to small
sample properties of the skewness estimator or to autocorre-
lation of the flood peak series.Dawdy and Gupta(1995) re-
lated the magnitude of this “skew separation” to the scaling
structure of flood peaks and the heterogeneity among regions
on the study fromMatalas et al.(1975). Other authors have
also shown that different distributions than those considered
in Matalas et al.(1975) were able to reproduce the skewness
variability; namely,Houghton(1978) for the Wakebydistri-
bution andRossi et al.(1984) for the TCEV (two-component
extreme value distribution), while Ashkar et al.(1992) and
Bobee et al.(1993) provide criticism on using the separation
of skewness for choosing the type of distribution to be used
in regional flood frequency analyses and give more impor-
tance to the step of the definition of homogeneous regions
in order to avoid mixing of different skewness values from
different populations.

More recently, the different behaviour of the tails of the
distribution functions used in environmental extremes has
been investigated byEl Adlouni et al.(2008), andGaál et al.
(2009) or Papalexiou et al.(2013) performed studies on daily
rainfall, similar to the present one, analysing which kind of
extreme value distribution fits best the precipitation extremes

The present paper introduces the first available inventory
of data and statistical methods for flood frequency estimation
across Europe, compiled with the aim to homogenize and
harmonize the current level of knowledge on the approach
to flood frequency estimation used across Europe. The in-
ventory has been created as part of COST (European Coop-
eration in Science and Technology) Action ES0901 (Euro-
pean Procedures for Flood Frequency Estimation – Flood-
Freq), which is a European-Commission-funded project that
develops a network of experts, involved in nationally funded
flood frequency estimation research projects. Their main task
is to undertake a pan-European comparison and evaluation of
methods of flood frequency estimation under the various cli-
matologic and geographic conditions found in Europe, and
promoting a synergic approach to flood hazard assessment,
as requested by the European Flood Directive (Kjeldsen,
2011; Castellarin et al., 2012).

This study addresses explicitly the question of the exis-
tence of a parent flood frequency distribution on a European
scale. It presents the results of an assessment based on the
analysis of a newly established pan-European database of an-

Table 1. FloodFreq streamflow database: number of sites and
station-years of data for the national annual maxima sequences.

No. of Station-years Kind
Country sites of data of data

Austria 676 28 592 Instantaneous
Cyprus 9 382 Daily
Germany 415 22 516 Daily
Denmark 43 2789 Daily
France 1172 45 331 Instantaneous
Ireland 215 6708 Instantaneous
Italy 373 8207 Instantaneous
Lithuania 30 1953 Instantaneous
Norway 104 3120 Daily
Poland 39 3426 Instantaneous
Slovakia 174 7995 Instantaneous
Spain 220 8594 Instantaneous
United Kindom 635 23 200 Instantaneous

FloodFreq 4105 162 813

nual maximum series (AMS) of flood flows and their statisti-
cal characteristics compiled for the FloodFreq project, in or-
der to find the most suitable frequency distributions for mod-
elling the flood frequency regimes in Europe. In the compan-
ion paper bySalinas et al.(2014), the link between catchment
and climate attributes and the choice from a set of potential
parent regional flood frequency distributions is investigated
on a subset of the database presented in this article.

2 Inventory of data and methods and the European
flood database

The first phase of the FloodFreq COST Action focused on
the compilation of inventories of data sets and methods for
flood frequency estimation at a European scale. An extensive
survey was conducted among 15 European countries in order
to assess the availability of flood data and catchment descrip-
tors and to investigate the existence of national guidelines for
flood frequency estimation. Particularly, if these guidelines
existed, related to the issue of large-scale underlying parent
distributions, it was of interest if any type of flood frequency
distribution was recommended. The main results of the sur-
vey relevant to this paper are presented below.

2.1 European flood database

The assessment of flood data availability at national level
for the 15 European countries included in the survey showed
that the AMS of flood flows are the most common standard.
Therefore, it was decided to focus on a collection of AMS of
flood flows considering daily flows, as well as instantaneous
peak flows where available.

From the 15 surveyed countries, 13 agreed to share flood
data in the frame of the FloodFreq COST Action. Due to

Hydrol. Earth Syst. Sci., 18, 4381–4389, 2014 www.hydrol-earth-syst-sci.net/18/4381/2014/
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national policies and regulations that restrict the publication
of some of these data, the flood data themselves were sum-
marized into statistical moments. In particular, the AMS for
a total of 4105 sites was characterized by the number of
observationsn and sample L-moment ratios of orders 2–4
(i.e. sample L-coefficient of variation, sample L-coefficient
of skewness and sample L-coefficient of kurtosis). Table 1
contains a summary of the national AMS data sets available
in the database. The use of L-moments instead of conven-
tional moments offers several advantages such as the possi-
bility of characterizing a wider range of distributions, smaller
bias and higher robustness of the parameter estimators when
applied to short samples. For more details on L-moments see,
for example,Hosking(1990) andHosking and Wallis(1997).

2.2 National guidelines for flood frequency estimation

National guidelines for flood frequency estimation are avail-
able in 9 of the 15 surveyed countries. In Germany, refer-
ence studies are available at the level of the federal states,
and in Belgium for the Flemish part only. Public agencies
and institutions in six countries provide recommendations as
to the most suitable parent distributions to be used for flood
frequency analysis, but in general such guidance appears to
be sparse. In a number of countries, thegeneralized extreme
value(GEV) distribution is among the recommended choices
(e.g. Austria, Germany, Italy, Spain), but a variety of two-,
three- or four-parameter distributions are also used, includ-
ing the Gumbel(GUM) distribution in Finland and Spain,
the three-parametergeneralized Pareto(GPA) distribution in
Belgium, the three-parametergeneralized logistic(GLO) dis-
tribution in the UK, or the four-parameter TCEV in Italy and
Spain. The Slovenian Environment Agency uses five differ-
ent distributions (normal, lognormal, Pearson type 3, log-
Pearson type 3andGumbel) implemented in their own soft-
ware DIST. In Slovakia, thegamma, three-parameter log-
normal, log-Pearson type 3and GEV distributions are often
used. Six countries reported that they have no standard par-
ent distribution and the choice of an appropriate model de-
pends mostly on the region where the analysis is undertaken
(Castellarin et al., 2012).

The existence of some preferred statistical models, pro-
vides a motivation for a further investigation into potential
candidates for pan-European flood frequency distributions,
taking advantage of the uniquely extensive flood data collec-
tion compiled in this study (see Table 1).

3 A pan-European flood frequency distribution?

3.1 L-moment ratio diagram framework

The analyses of the FloodFreq database presented in this
study address the issue of probabilistic model choice in the
L-moment working environment and, in particular, through
the use of L-moment ratio diagrams which enable graph-

ical identification of a suitable regional parent distribution
among several two- and three-parameter candidates (see e.g.
Hosking and Wallis, 1997). The scientific literature seems
to agree on the value of L-moment ratio diagrams for guid-
ing the selection of a regional parent distribution (e.g.Vogel
and Fennessey, 1993; Vogel and Wilson, 1996; Peel et al.,
2001; Strupczewski et al., 2011). An additional advantage of
the diagrams is that L-moments are particularly suitable for
short samples often associated with annual flood sequences,
as sample L-moments tend to be less biased than the cor-
responding estimators of conventional moments (Vogel and
Fennessey, 1993).

Two types of L-moment ratio diagrams are commonly
used in the literature to assess the goodness of fit of regional
parent distributions: (i) a diagram plotting the L-coefficient
of variation against the L-coefficient of skewness (or L-Cs–
L-Cv diagram), and (ii) a plot of the L-coefficient of kurto-
sis against the L-coefficient of skewness (or L-Cs–L-Ck dia-
gram). The former is used to assess the suitability of various
two-parameter distributions, while the latter version of the
diagram is more commonly used when three-parameter dis-
tributions are considered. The suitability of various candidate
parents is assessed by analysing how close the cloud of sam-
ple L-moments computed for the study region lies, relative
to the lines corresponding to the different theoretical mod-
els. This study only presents L-Cs–L-Ck diagrams, as all the
parent distributions considered are three-parametric, while in
the companion paper bySalinas et al.(2014) both L-Cs–L-
Ck and L-Cs–L-Cv diagrams will be used.

3.2 Average behaviour of the FloodFreq database

Figure 1a shows the L-Cs–L-Ck diagram for the entire Flood-
Freq data set (see also Table 1) and includes the sample L-
moment ratios for all of the catchments in the data set (light-
grey circles), together with four lines illustrating the theo-
retical relationship between L-Cs and L-Ck for the three-
parameter frequency distributions that, as highlighted by the
survey commented in Sect.2.2, were preferentially recom-
mended in the national guidelines, namely the GEV, GLO
and three-parameter lognormal(LN3), andPearson type 3
(PE3).

To reduce some of the noise that is present in the em-
pirical data due to sampling uncertainty and better deter-
mine which of the four three-parameter distributions consid-
ered better represents the statistical properties of the sample,
a record length weighted moving average (WMA) is included
in Fig. 1a. In particular, the WMA is computed by taking the
weighted mean of the 50 neighbouring sample L-Cs values,
and plotting it against the weighted mean of the correspond-
ing 50 sample L-Ck values. Each sample L-moment ratio is
weighted proportionally to the record length to reduce the
impact of sampling variability from short records. The WMA
values in Fig. 1a follow closer the theoretical relationship be-
tween L-Cs and L-Ck of the GEV distribution than that of

www.hydrol-earth-syst-sci.net/18/4381/2014/ Hydrol. Earth Syst. Sci., 18, 4381–4389, 2014
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Figure 1. L-Cs–L-Ck diagram for the FloodFreq database with(a) the record length weighted moving average over 50 catchments (red line)
for the whole database and(b) the record length weighted moving averages and standard deviations for stations with more than 60 yr (green
lines and polygon) and less than 20 yr of data (purple lines and polygon) separately.
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Figure 2. Sample length distribution for the entire FloodFreq
database.

any of the other considered distributions. The position of the
WMA indicates therefore that the GEV distribution might be
a better candidate for describing the frequency regime of an-
nual maximum floods at a pan-European level, compared to
the other three extreme value distributions studied.

Given the known relationship between sampling uncer-
tainty of the L-moment ratios and sample lengthn (see e.g.
Viglione, 2010; Hosking and Wallis, 1997), it is necessary at
this point to describe more in detail the distribution ofn in the
database. Figure 2 shows a histogram of the record lengths.
The mean and median values are 40 and 38 yr, respectively.
Later in the analysis, the database is subdivided into fourn

classes with the limits at 20, 40 and 60 yr. The percentage of
stream gauges within each class is 10.8 % (444 stations with
n < 20 yr), 45.0 % (1850 stations with 20 yr≤ n < 40 yr),

33.7 % (1385 stations with 40 yr≤ n < 60 yr), and 10.4 %
(426 stations withn ≥ 60 yr), respectively. This classification
will ease the interpretation of the posterior analyses, trying to
reduce the heterogeneity introduced by mixing stations with
different sample sizes, as can be acknowledged in Fig. 1b.
Here, the intervals corresponding to the moving averages
plus-minus the moving standard deviations of the L-Ck val-
ues (both weighted proportionally to the record length over
50 elements) for the stations withn < 20 yr andn ≥ 60 yr are
depicted. One can see that, while the moving averages con-
tinue to stay closer to the GEV line in both cases, the spread
of the data increases considerably with sample size, and
therefore should be taken into account explicitly in the more
detailed investigation performed in the following section.

3.3 Monte Carlo simulations

The GEV is the statistical model that best represents the av-
eraged statistical properties of the entire database, if com-
pared to the other three-parameter distributions. In order to
falsify or verify the hypothesis that the GEV could actually
be a valid underlying pan-European flood frequency distri-
bution, the spread of the observed data has to be compared
with the theoretical scenario where all stations represent ran-
dom samples drawn from GEV distributions with a variety of
sample lengths, skewness and kurtosis values. This reference
scenario was set up via Monte Carlo simulations. Specifi-
cally, a total of 50 000 European-scale simulations are car-
ried out as follows. As commented in the previous section,
the effect of sample sizen should be taken into account if
the dispersion of the data in the L-moment ratio diagram
needs to be investigated. Therefore, the database is sorted

Hydrol. Earth Syst. Sci., 18, 4381–4389, 2014 www.hydrol-earth-syst-sci.net/18/4381/2014/
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Figure 3. Monte Carlo simulations comparing the distribution of sample L-Ck from 50 000 realisations at the European scale, all randomly
drawn from GEV distributions (green box plots) and the distribution of sample L-Ck from the FloodFreq database (purple box plots). Results
are sorted by station sample lengthn in (a) n < 20 yr, (b) 20 yr≤ n < 40 yr, (c) 40 yr≤ n < 60 yr, and(d) n ≥ 60 yr.

into the record length classes described in Sect.3.2, i.e. 444
stations withn < 20 yr, 1850 stations with 20 yr≤ n < 40 yr,
1385 stations with 40 yr≤ n < 60 yr, and 426 stations with
n ≥ 60 yr. In each class, L-Cs values of flood flow sequences
are assumed to vary randomly between sites as described by
a normaldistribution with means ranging from 0.20 to 0.22
and standard deviations ranging from 0.14 to 0.17, as in all
four cases the sample distributions passed a normality test.
The record length distributions inside eachn class are mod-
elled by a triangular (n < 20 yr), uniform (20 yr≤ n < 40 yr)
andthree-parameter gammadistributions (40 yr≤ n < 60 yr
andn ≥ 60 yr). All parameters from the described distribu-
tions were estimated from the characteristics of the observed
distributions of the database with the method of L-moments.

The types of distribution were chosen based on their respec-
tive probabilistic plots. Record length and L-Cs are assumed
independent, as no significant correlation is found between
the sample values. Then, for each one of the 50 000 simu-
lations and eachn class, two samples of the corresponding
length (444, 1850, 1385 or 426 depending on sample-size
class) are generated from the previously defined distributions
for the record lengths and population L-Cs values, represent-
ing the properties of each of the synthetic European sam-
ples. The population L-Ck values are then obtained from the
functional relationship between skewness and kurtosis for the
GEV model and, without loss of generality, the mean and L-
Cv values are both set to 1. For each of the virtual stations,
a sample from a GEV distribution is generated, with each of

www.hydrol-earth-syst-sci.net/18/4381/2014/ Hydrol. Earth Syst. Sci., 18, 4381–4389, 2014
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the previously simulated population properties. Finally, the
sample L-moment ratios are computed for each of the gen-
erated GEV stations, which will not necessarily be located
on the theoretical GEV line on the L-Cs–L-Ck diagram, due
to both sample variability (finite record lengths) and biases
in the sample estimators of the L-moment ratios (see e.g.
Hosking and Wallis, 1997, p. 29).

To ease the interpretation of the results, the L-Cs–L-Ck
values for both the observed data and the simulations are
binned into five equidistant classes between the L-Cs val-
ues of 0 and 0.55, and the spread of the L-moment ratios is
represented by the 10, 30, 50, 70 and 90 % quantiles of the
sample L-Ck values for each bin and shown in the box plots
of Fig. 3, together with the number of stations that are inside
each of the bins. For the observed data, every bin is associ-
ated with only one value of the 10, 30, 50, 70 and 90 % per-
centiles, respectively, but in the case of the simulations we
obtain 50 000 values for each of the percentiles, one for each
of the European-scale simulations. This means that we ob-
tain sample distributions for all of the quantiles, as is shown
for the case of the medians in Fig. 3. The 10, 30, 70 and 90 %
percentiles for the simulations have their corresponding sam-
ple distributions, but in Fig. 3 only their averaged values are
represented as limits of the box plots for the sake of clarity.

In the Monte Carlo simulations, the explicit assumption
that the underlying parent distribution of all stations in Eu-
rope is given by the GEV model is made, and this assumption
will be verified or falsified with the classical approach of sta-
tistical hypothesis testing. We define the null hypothesis H0
such that, for theith bin, thej% quantile of the sample L-Ck
distribution from the data is not significantly different to the
j% quantile in the same bin, for all stations randomly drawn
from GEV distributions. For each of the percentiles there is
a sample distribution (from the simulations), and an observed
value (from the observed data) available, so we can calculate
the associatedp values, set a significance level and reject or
accept the null hypothesis for all the quantiles.

Table 2 shows these calculatedp values for the plotted
quantiles in Fig. 3. For almost all the cases, and indepen-
dently of sample size, we cannot reject the null hypothesis
that the medians are equal to those from a randomly gener-
ated GEV of Europe. This result from Monte Carlo simula-
tions, i.e. that the mean or median L-Cs–L-Ck behaviour can
be consistently explained by the GEV distribution, is more
robust than the one described in Sect. 3.2 and shown in Fig. 1
on the weighted moving averages. According to, for exam-
ple, Hosking and Wallis (1997, p. 29), the L-moment ratios
in Fig. 1 should be shifted towards the top-right corner of the
diagram if one takes into account the sample bias. This would
probably cause the averages to differ slightly more from the
theoretical GEV curve. In the simulations presented in this
section, sample L-moments from the database are compared
to sample L-moments from GEV generations and are there-
fore subject to the same sample bias.

The results for the dispersion of the L-Ck values show
a more interesting pattern than the median values. Forn <

20 yr, the spreads in the data and the simulations are not sig-
nificantly different from each other for any of the L-Cs bins
in almost all the cases (no rejections with a significance level
α of 5 % and three rejections with anα of 10 %). For in-
creasing sample size, the rate of rejection increases, espe-
cially for L-Cs values larger than 0.22. Except for two cases,
the GEV distribution always fails to explain the dispersion
above the median and for larger record lengths also the dis-
persion below the median, which is significantly higher for
the observed data. It is worth noting at this point that the
robustness of these results is affected by two factors. First,
the number of stations inside each bin after the record length
and L-Cs sorting. For example, one cannot draw any strong
conclusion from the last bin in Fig. 3d, as it contains only
12 elements, while for other bins the results can be consid-
ered more consistent. Second, the biases in the L-moment ra-
tios already commented (see e.g. Hosking and Wallis, 1997,
p. 29), which are particularly large in short to medium sam-
ple sizes and higher L-Cs values, have the potential to shift
some of the stations, whose L-Cs population lies in one bin,
into another bin because their sample L-Cs is lower. How-
ever, checks of the number of stations per bin in the data and
the simulations resulted in a difference of less than 5 %.

3.4 Discussion

Even though the results of the Monte Carlo simulations point
out that selecting the GEV distribution as a pan-European
parent cannot fully describe the observed variability of sam-
ple L-moments, there are some aspects that deserve a deeper
discussion. In fact, it is remarkable that for all the Euro-
pean geographical areas considered, including catchments
with very different sizes, climatic conditions, and geomor-
phologic characteristics covered in the FloodFreq database,
there is not enough statistical evidence to reject the hypothe-
sis that the GEV distribution is a suitable parent distribution
for describing the median behaviour in terms of sample L-
moment ratios. From a purely statistical point of view, this
could be explained by the fact that the GEV distribution is
the theoretical extreme value distribution that expresses in
a closed analytical way the three possible asymptotic distri-
butions derived from any kind of parent population, as de-
scribed in the Fisher–Tippett–Gnedenko theorem (Fisher and
Tippett, 1928; Gnedenko, 1943). Therefore, it offers a theo-
retical justification for using it to reproduce the sample fre-
quency distribution of annual maxima series from many dif-
ferent hydrological and geological extreme phenomena (pre-
cipitation depths, flood flows, earthquake magnitudes, wind
speeds and others) observed in different geographical con-
texts around the world (e.gRobson and Reed, 1999; Castel-
larin et al., 2001; Thompson et al., 2007; Grimaldi et al.,
2011).
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Table 2. Empiricalp values for the observed quantiles of L-Ck given the sample distributions generated from the GEV simulations shown
in Fig. 3. In bold, values rejecting a 5 % significance test. In bold and italic, values rejecting a 10 % significance test.

Range of L-Cs values (n < 20 yr) Range of L-Cs values (20 yr≤ n < 40 yr)

L-Ck quantile 0–0.11 0.11–0.22 0.22–0.33 0.33–0.44 0.44–0.55 0–0.11 0.11–0.22 0.22–0.33 0.33–0.44 0.44–0.55

90 % 0.949 0.968 0.788 0.626 0.965 0.746 0.996 1.000 0.969 0.413
70 % 0.908 0.945 0.129 0.825 0.816 0.806 0.978 0.975 0.757 0.375
50 % 0.271 0.956 0.498 0.562 0.669 0.762 0.478 0.997 0.730 0.025
30 % 0.121 0.822 0.846 0.559 0.515 0.680 0.784 0.489 0.469 0.028
10 % 0.275 0.172 0.926 0.433 0.064 0.069 0.028 0.057 0.026 0.015

Range of L-Cs values (40 yr≤ n < 60 yr) Range of L-Cs values (n ≥ 60 yr)

L-Ck quantile 0–0.11 0.11–0.22 0.22–0.33 0.33–0.44 0.44–0.55 0–0.11 0.11–0.22 0.22–0.33 0.33–0.44 0.44–0.55

90 % 0.990 0.989 0.978 1.000 0.731 0.999 0.999 0.976 0.966 0.999
70 % 0.627 0.890 0.961 0.989 0.316 0.996 0.928 0.457 0.302 0.847
50 % 0.482 0.342 0.194 0.893 0.117 0.813 0.995 0.005 0.163 0.238
30 % 0.119 0.026 0.005 0.728 0.170 0.684 0.420 0.003 0.020 0.010
10 % 0.385 0.202 0.000 0.324 0.010 0.191 0.046 0.001 0.000 0.047

Nevertheless, the results for the Monte Carlo simulations
regarding the spread of the L-moment ratios around the GEV
line show that the dispersion is bigger than expected from
random sampling, particularly for the deviations above the
median for non-short samples. In the terminology used by
Matalas et al.(1975), a “kurtosis separation” appears, if only
the GEV distribution is considered as the underlying parent
across Europe. Intersite correlation is most probably present
in the original annual flood flow series, from which the sam-
ple L-moment ratios have been computed, and this correla-
tion should reduce the observed L-moment variability. In the
Monte Carlo generations, this intercorrelation has been en-
tirely neglected and still the variability of the generated L-
moments is lower than the observed one. Also, sample es-
timation uncertainty, particularly for high values of L-Ck,
could also play a role by augmenting the variability in the
observed L-moments, but the systematic underestimation of
the dispersion points out to the fact that the GEV distribution
alone is not complex enough to fully describe the variability
of sample L-Cs and L-Ck values estimated for the Flood-
Freq database, being these L-moment ratios surrogates for
the entire spectrum of flood generation processes occurring
across Europe responsible for the diversity of shapes of flood
frequency distributions. It is therefore necessary to further in-
vestigate the links of hydrological processes to the L-moment
ratios, and in particular to high values of skewness and kur-
tosis, in order to try to explain these discrepancies.

4 Conclusions

The issue of existence of underlying parent flood frequency
distributions across different processes, places and scales is
directly addressed in this study. One of the most applied and
recommended statistical models, the GEV distribution, has
proven to capture the mean and median statistical properties

of a pan-European database annual maximum flood series,
but the observed variability in the data is larger than what
this model can randomly reproduce. This implies that the
GEV alone cannot be considered as a candidate for a pan-
European flood frequency distribution, as it is not complex
enough to reproduce the entire variety of hydrological pro-
cesses leading to the different shapes of flood frequency
curves. This fact rises the more fundamental question if we
actually need a pan-European flood frequency distribution,
which does not need to be necessarily the case. The investi-
gation of the GEV as a single model for all European catch-
ments was performed based on a very basic inspection of the
flood database, but there are many examples that show that
one single analytic expression across large scales and more
important, across different processes, is not valid for describ-
ing all possible local characteristics at once.Rogger et al.
(2012) proved that step changes appear in the flood frequency
curve when local runoff generation mechanisms are influ-
enced by threshold processes, especially for small mountain-
ous catchments, and these are not captured by any traditional
statistical model so far. The case of several Mediterranean
regions which are characterized by two distinct flood popu-
lations is also very common. These populations are referred
by Rossi et al.(1984) as “ordinary floods”, generated by
frontal-type rainfalls, and “extraordinary floods”, generated
by highly convective rainstorms. For the modelling of these
flood regimes it could be appropriate to use the TCEV model
(see e.g.Francés, 1998) as there is a mixture of popula-
tions, while it could not be suitable in other regional contexts
if there were not such a mixing.Merz and Blöschl(2003)
showed for an Austrian data set that different typologies
of floods classified after their generation mechanisms may
have very different statistical properties and can therefore
lead to distinct flood frequency distributions. In particular, if
many flood generation processes take place in one catchment,
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possibly depending on rainfall or snowfall regimes, the over-
all flood frequency distribution is a result of the combination
of the distributions associated with the single mechanisms
and is not necessarily expressed in terms of a single analyti-
cal model.

The inclusion of information on the underlying hydrologi-
cal processes in the model choice is therefore of high impor-
tance. The companion paper bySalinas et al.(2014) focuses
precisely on defining the controls of catchment and climate
indicators on the averaged L-moment ratios and the regional
flood frequency distributions.
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Abstract. This study aims to better understand the effect
of catchment scale and climate on the statistical properties
of regional flood frequency distributions. A database of L-
moment ratios of annual maximum series (AMS) of peak dis-
charges from Austria, Italy and Slovakia, involving a total of
813 catchments with more than 25 yr of record length is pre-
sented, together with mean annual precipitation (MAP) and
basin area as catchment descriptors surrogates of climate and
scale controls. A purely data-based investigation performed
on the database shows that thegeneralized extreme value
(GEV) distribution provides a better representation of the av-
eraged sample L-moment ratios compared to the other distri-
butions considered, for catchments with medium to higher
values of MAP independently of catchment area, while the
three-parameter lognormaldistribution is probably a more
appropriate choice for drier (lower MAP) intermediate-sized
catchments, which presented higher skewness values. Sam-
ple L-moment ratios do not follow systematically any of the
theoretical two-parameter distributions. In particular, the av-
eraged values of L-coefficient of skewness (L-Cs) are al-
ways larger thanGumbel’s fixed L-Cs. The results presented
in this paper contribute to the progress in defining a set of
“process-driven” pan-European flood frequency distributions
and to assess possible effects of environmental change on
its properties.

1 Introduction

The companion paper bySalinas et al.(2014) presents a
newly established database of flood L-moments from 13 Eu-
ropean countries. Based on a preliminary visual inspection
and some basic averaging, thegeneralized extreme value
(GEV) distribution appeared to be a potential pan-European
flood frequency distribution. However, Monte Carlo simula-
tions showed that there is not enough statistical evidence for
the existence of a single three-parameter distribution suitable
for representing flood frequency regimes all over Europe.
This supports the fact of statistical model selection being a
topical issue in hydrology and flood frequency analysis in
particular (see e.g.Laio et al., 2009). Literature shows re-
cent advances on how to combine different theoretical mod-
els together to improve the representation of the local flood
frequency regime through multimodel approaches when the
reproduction provided by a single theoretical model is not
satisfactory (Bogdanowicz, 2010; Kochanek et al., 2012).

Concerning probabilistic model selection,Hosking and
Wallis (1997), Vogel and Fennessey(1993) and Peel et al.
(2001), among others, recommend using the L-moment ra-
tio diagrams to guide the selection of the most suitable par-
ent flood frequency distribution. L-moment ratio diagrams
have been used for detecting suitable parents for a wide
spectrum of geohydrological extremes (precipitation depths,
flood flows, earthquake magnitudes and others) observed in
different geographical contexts around the world (see e.g.
Vogel and Wilson, 1996; Robson and Reed, 1999; Thompson
et al., 2007). In the hydrological application of L-moment
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ratio diagrams, and referring more specifically to flood fre-
quency analysis, usage of these kind of diagrams requires
sample statistics, which are unavailable or highly uncertain
for ungauged or poorly gauged regions. This is one of the
reasons why many authors have performed data-based anal-
yses trying to find relationships between sample moments
of the flood series and catchment descriptors. Among many
others,Schaefer(1990), Farquharson et al.(1992), Meigh
et al. (1997), Blöschl and Sivapalan(1997), Iacobellis et al.
(2002), Brath et al.(2003), Merz and Blöschl(2003), Di Bal-
dassarre et al.(2006), Merz and Blöschl(2009), Padi et al.
(2011), andViglione et al. (2012) have found regional re-
lationships between sample moments (mainly mean annual
flood and coefficient of variation) and catchment area, mean
annual rainfall, and other lumped climatic indicators such as
aridity. While this correlation may change due to local pro-
cesses, there is more or less a consensus in the literature that
the mean annual specific flood and coefficient of variation of
peak annual discharges increase with decreasing catchment
size, as well as with decreasing mean annual precipitation
(MAP), although this last effect is more clear in arid cli-
mates. The current paper tries to go a step further and relate
the catchment descriptors to the probabilistic model selection
through their controls on the flood moments.

On an applied level, existing guidelines give recommenda-
tions on which statistical model, i.e. regional or local parent
distribution, to use. This choice could have an important ef-
fect on the estimation of high return period flood quantiles
due to the different behaviour of the tails of the distribution
functions (see e.g.El Adlouni et al., 2008). In some occa-
sions, these recommendations are not justified by any evi-
dence from the local data, or are simply inspired or adapted
from analogue guidelines in other countries. Keeping in mind
the need for a more effective use of existing data, a key sci-
entific and practical challenge for improved risk assessment
is a pan-European comparison and evaluation of the con-
sistency of estimates across methods, physiographic regions
and a variety of spatial scales in order to ensure compara-
ble flood frequency estimates and safety measures across Eu-
rope, as requested by the Directive 2007/60/EC. In fact, it is
of utmost importance for the implementation of the Flood
Directive that state-of-the-art and harmonized methods are
used to estimate extreme flood frequencies to obtain consis-
tent values for locations where rivers cross national borders.

On the basis of these considerations, this paper addresses
the two main scientific questions: can we quantify the main
physical controls on the shape of the flood frequency dis-
tribution at a regional scale? Can we represent these con-
trols graphically on L-moment ratio diagrams to guide the
selection of suitable parent distribution on the basis of fun-
damental catchment descriptors? For this purpose, a subset
of the data presented inSalinas et al.(2014) with a total of
1132 catchments from Austria, Italy, and Slovakia is used
to study the control of commonly available physiographic
and climatic characteristics (catchment size and mean annual

precipitation) on the properties of the underlying probability
distribution of flood flow.

2 Description of the data set

The analysis presented in this paper focuses on annual
maximum series (AMS) of peak flow from three national
databases, namely Austrian, Italian and Slovakian, and it ad-
dresses the control of catchment size and climate, respec-
tively, on the flood frequency regime. In particular, the anal-
ysis considers catchment area and MAP as catchment de-
scriptors for the three data sets. The flood data was shared
in the frame of the FloodFreq COST Action ES0901 (Kjeld-
sen, 2011; Castellarin et al., 2012) and constitutes a subset
of the database presented inSalinas et al.(2014). The coun-
tries selected for this study were able to share not only the
discharge data but the two catchment descriptors mentioned
as well, while the rest of the countries had some kind of lim-
itation in this sense.

On the choice of catchment area and mean annual precipi-
tation, previous studies have proven them to exert significant
control on the frequency regime of hydrological extremes
(see e.g.Schaefer, 1990; Blöschl and Sivapalan, 1997; Brath
et al., 2003; Di Baldassarre et al., 2006; Padi et al., 2011).
They can be regarded as lumped catchment descriptors used
as surrogate covariates representing the spatially distributed
and complex hydrological processes controlling the catch-
ment flood response. Precisely, the area of the basin is an in-
dicator of the scale interplays between catchment processes
and rainfall (Blöschl and Sivapalan, 1995), while mean an-
nual precipitation acts as control of probabilistic behaviour
of floods through its effect on antecedent soil moisture condi-
tions (Sivapalan et al., 2005), and also provides an indication
about other local and atmospheric process.

When combined, the three national data sets consist of
AMS from a total of 1132 catchments (Austria, 676 gauges;
Italy, 282 gauges; and Slovakia, 174 gauges). Table 1 de-
scribes the data set in terms of catchment area, MAP, record
length of annual maximum series (n), sample L-coefficient
of variation (L-Cv), L-coefficient of skewness (L-Cs) and
L-coefficient of kurtosis (L-Ck) for the case study. The ge-
ographical locations of the considered stream gauges are
shown on the map in Fig. 1. From a purely visual analysis,
due to the lack of detailed information on the hydrological
regimes, the database is dominated by catchments with hu-
mid and continental climates, with a big proportion of moun-
tainous catchments (where snow is supposed to play a sig-
nificant role, but could not be included in the analysis due to
the lack of this kind of data), and only a small percentage of
catchments that could be considered Mediterranean or arid
located in Italy.

As illustrated in the scatterplot of Fig. 2, the data set
includes a range of values for catchment area and MAP,
and does not show any statistically significant correlation

Hydrol. Earth Syst. Sci., 18, 4391–4401, 2014 www.hydrol-earth-syst-sci.net/18/4391/2014/
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Table 1.Summary of the Austrian, Italian and Slovakian national data sets. Information on the distribution of catchment area, MAP, record
length (n) and sample L-moment ratios of the annual flood sequences is given.

Area MAP n L-Cv L-Cs L-Ck
(km2) (mm yr−1) (yr) (–) (–) (–)

Min. 4.6 501.7 9 0.0152 −0.1209 −0.1583
1st quartile 64.9 902.8 22 0.2194 0.1777 0.1268
Median 157.0 1112.0 34 0.2763 0.2705 0.1905
Mean 2096.5 1163.6 38 0.2945 0.2782 0.2074
3rd quartile 534.0 1369.3 47 0.3558 0.3733 0.2730
Max. 131 488.0 2312.3 182 0.7691 0.7737 0.7132

between the two (i.e. sample Pearson coefficient is equal to
−0.010, and the null hypothesis of zero correlation is associ-
ated with ap value of 0.732). It is worth noting here that, as
illustrated in Fig. 2, very large catchments (catchment areas
larger than 10 000 km2) are associated with medium MAP
values (about 1200 mm yr−1). Therefore, very large catch-
ments in the study area are neither “wetter” nor “drier” catch-
ments (“wetter” and “drier” as defined in Sect. 3.1), and
this is an important element for the analyses described in
Sects. 3.1 and 3.2.

As in the companion paper bySalinas et al.(2014), the
framework used to analyse the flood data is the L-moment
environment, and, in particular, through the use of L-moment
ratio diagrams. Both L-Cs–L-Cv and L-Cs–L-Ck diagrams
are used, as several two- and three-parameter candidate dis-
tributions are investigated.

3 Results

3.1 Area and MAP control on sample L-moments

A detailed exploration was undertaken to better understand
the controls on the flood frequency regime exerted by phys-
iographic and climatological factors, represented here by
area and MAP. To minimize the possible effects of sampling
variability associated with short records when estimating
higher-order sample L-moments (see e.g.Viglione, 2010),
the minimum record length was set to 25 yr of data, reducing
the data set to a total of 813 catchments (Austria, 493
gauges; Italy, 151 gauges; and Slovakia, 169 gauges). The
combined data set was divided into six smaller subsets
based on thresholds defined as the 20 and 80 % quantiles
of the catchment descriptor values. For convenience, the
following subsets are defined to characterize the catchments
according to size: smaller catchments (area< 55 km2),
intermediate catchments (55 km2 < area< 730 km2)
and larger catchments (area> 730 km2). Analogously,
the catchments were classified based on MAP as drier
catchments (MAP< 860 mm yr−1), medium catchments
(860 mm yr−1 < MAP < 1420 mm yr−1) and wetter catch-
ments (MAP> 1420 mm yr−1) (see also Fig. 2). The

adjectives drier and wetter, and smaller and larger are
relative to the distribution of wetness and sizes of the study
data set. The 20 and 80 % quantiles were selected after
a set of preliminary trials as they enabled us to enhance the
representation of the peculiarities in the flood frequency
regimes for drier against wetter and for larger against smaller
catchments for the considered data set.

For each of the wetness and size subsets, the record length
weighted moving average (WMA) values of samples L-Cv,
L-Cs and L-Ck were computed using a window of 70 catch-
ments, where the 70 neighbouring catchments were selected
by taking the closest catchments in terms of the considered
descriptor (area or MAP). For each sample of the 70 catch-
ments, the associated WMA value was plotted against the
corresponding mean of catchment descriptor (area or MAP)
as shown in Fig. 3 for each of the six subsets. Note that
in this context, each individual WMA value has a regional
validity, as it is derived from a pooling group of 70 sites,
defined based on the similarity in terms of catchment size
and rainfall regime (MAP). For example, the first point of
the yellow line in Fig. 3a represents a non-contiguous re-
gion with MAP< 860 mm yr−1 (drier catchments) and the
70 smallest sizes of the subset (in this case, catchment ar-
eas from 36 to 103 km2). The minimum amount of informa-
tion for each point, assuming serial and spatial independence
of the stations, would correspond to 70× 25= 1750 station-
years of data. The width of the window (i.e. 70 sites) provides
a trade-off between the desire to effectively identify and vi-
sualize larger-scale structures in the data set and local devi-
ations from the averaging process, and the conflicting need
to work on larger samples to reduce the effects of sampling
uncertainty.

Considering the WMA values plotted in Fig. 3, an observ-
able feature is a general tendency for all the L-moment ra-
tios to decrease with increasing area and MAP values. This
is a result already reported in the literature for the case of
conventional product moments, with special focus on scale
effect on the coefficient of variation of the flood distribution
(see e.g.Schaefer, 1990; Blöschl and Sivapalan, 1997; Brath
et al., 2003; Merz and Blöschl, 2003; Di Baldassarre et al.,
2006; Merz and Blöschl, 2009; Padi et al., 2011; Viglione

www.hydrol-earth-syst-sci.net/18/4391/2014/ Hydrol. Earth Syst. Sci., 18, 4391–4401, 2014
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Figure 1. Map showing the location of the 1132 considered Austrian, Italian and Slovakian gauging stations (points). Colour scale in the
background represents terrain elevation in metres a.s.l. (above sea level).
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Figure 2. Catchment characteristics of the Austrian, Slovakian and
Italian data sets. For each catchment, MAP is plotted against catch-
ment area (grey circles). Black, dashed lines represent the 20 and
80 % quantiles for each catchment descriptor, defining the subsets as
smaller (area< 55 km2), intermediate (55 km2 < area< 730 km2),
larger (area> 730 km2), drier (MAP< 860 mm yr−1), medium
(860 mm yr−1 < MAP < 1420 mm yr−1), and wetter catchments
(MAP > 1420 mm yr−1).

et al., 2012). Farquharson et al.(1992) and Meigh et al.
(1997) also found an increase of coefficient of variation and
skewness with increasing aridity, which is consistent with
this study, if one takes the lower MAP values as an indicator
for a higher aridity. The largest gradients in Fig. 3 are ob-
served for L-Cv, followed by L-Cs and, finally, L-Ck, con-
firming the lower variability of higher-order L-moments in
space (see e.g. Hosking and Wallis, 1997), and also show-
ing that the lower-order L-moment ratios have a stronger
link to catchment and climate properties than higher-order L-
moment ratios. It is also noticeable that the WMA lines are
not evenly spaced, which indicates a degree of non-linearity
between the flood characteristics and the catchment proper-
ties. This is particularly evident when considering L-Cv plot-
ted against both catchment area and MAP in Figs. 3a and b,
for L-Cs plotted against MAP (subsets defined based on area)
in Fig. 3d and, to some extent, for L-Ck plotted against MAP
(again, subsets defined based on area) in Fig. 3f. In addition
to the general tendency of decreasing averaged L-moment ra-
tios with increasing area and MAP values, an interesting fea-
ture is observed in the L-Cv versus area diagram in Fig. 3a.
If one looks at the single stations (grey dots) there is an
ascending–descending relationship of the L-Cv values with
increasing area, with a maximum located around 100 km2.
This was also found, among others, byBlöschl and Sivapalan
(1997) andIacobellis et al.(2002) in more regional contexts,
and it is relevant to find it as well in the present study.

Hydrol. Earth Syst. Sci., 18, 4391–4401, 2014 www.hydrol-earth-syst-sci.net/18/4391/2014/
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Figure 3. Sample L-Cv, L-Cs and L-Ck values for each catchment (grey points) plotted against catchment area and MAP. Lines show the
record length WMAs over 70 catchments for the subsets smaller, intermediate, larger, drier, medium, and wetter defined in Fig. 2.

3.2 Area and MAP control on regional flood frequency
distribution

Acknowledging the influence of both catchment size and
mean annual precipitation on the L-moment ratios, the next
step in the analysis is to assess the impact of this influence
on the underlying regional parent distribution of annual flood
sequences. This investigation is based on the novel use of L-
moment ratio diagrams, which, in this context, are used to
analyse the sensitivity of the choice of a parent distribution
to the catchment and climate characteristics. The two types
of L-moment ratio diagrams mentioned in Sect. 2 are used,
namely (i) L-Cv–L-Cs and (ii) L-Cs–L-Ck. The former is
used in this study for assessing the suitability of the com-
monly used two-parameter distributions ofGumbel(GUM),

gamma(GAM), two-parameter lognormal(LN2) andexpo-
nential(EXP). The latter is used in connection with the three-
parameter distributionsgeneralized logistic(GLO), gener-
alized extreme value(GEV), three-parameter log-normal
(LN3) and Pearson type 3(PE3). These distributions, pre-
sented in the companion paper bySalinas et al.(2014), were
found to be preferentially recommended in national guide-
lines for flood frequency estimation from several European
countries (Castellarin et al., 2012). The assessment of which
statistical model fits better the averaged statistical properties
of the sample was done visually based on the distance be-
tween the averaged sample L-moment ratios and the theoret-
ical lines, as objective goodness of fit measures require the
flood peak data (Laio, 2004) and, in this case, only the L-
moment ratios were available.
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Figure 4. L-moment ratio diagrams for the subsets defined by(a)
catchment area (smaller, intermediate, larger), and(b) MAP (wetter,
medium, drier) described in Fig. 3. Each point represents the record
length WMA over 70 catchments of L-Cv against corresponding
values of L-Cs and the colour intensity is proportional to(a) MAP
and(b) catchment area.

3.2.1 Two-parameter distributions

The diagrams in Fig. 4 report the WMA values of L-Cs
and L-Cv associated with a given average value of catch-
ment area or MAP for the same moving windows for the
70 catchments defined in the previous section and shown
in Fig. 3, again stratified in smaller, intermediate and larger
catchments (Fig. 4a) and wetter, medium and drier catch-
ments (Fig. 4b). To emphasize the influence of the catch-
ment descriptors (i.e. area or MAP), the colour intensity of
each plotted WMA value has been graded according to the
value of the catchment descriptor that has not been used for
the stratification, with increasing intensity for increasing de-

scriptor value. For example, Fig. 4a shows the WMA values
when the data set is divided by catchment size into smaller,
intermediate and larger catchments, and the colour grading
of the points reflects the mean value of MAP for each sub-
set of the 70 catchments. More precisely, red WMA values
of L-Cv and L-Cs in Fig. 4a correspond to the transect asso-
ciated with smaller basins in the catchment descriptor space
defined by MAP, orange relates to the intermediate-sized-
basins transect in the catchment descriptor space defined by
MAP and brown points stand for the larger-basins transect
in the catchment descriptor space defined by MAP. Analo-
gously, in Fig. 4b, yellow WMA values of L-Cv and L-Cs
represent the transect associated with the drier basins in the
catchment descriptor space defined by catchment area, green
corresponds to the medium MAP basins transect in the catch-
ment descriptor space defined by area, and blue points relate
to the wetter basins transect in the catchment descriptor space
defined by area.

The position of the WMA values of samples L-Cv and L-
Cs relative to the theoretical distributions shown in Figs. 4a
and b indicate that none of the considered two-parameter dis-
tributions fits the statistical properties of the data sets. In par-
ticular, both figures show that the WMA values of sample
L-Cs are always larger than that of theGumbeldistribution
(fixed value of 0.1699) and smaller than that of theexpo-
nential distribution (fixed value of 0.3333), with the excep-
tion of values up to 0.37 for the smallest drier (low MAP)
catchments (less intense yellow points in Fig. 4b). Sample
values of L-moment ratios do not seem to follow system-
atically the shape of any of the lines representing the theo-
retical L-Cv and L-Cs relationships of the considered two-
parameter distributions, but some WMA values tend to lie
closer to the LN2 curve than to any other. This is the case for
the intermediate-sized and medium MAP catchments of the
data set (midintensity orange and midintensity green points
in Figs. 4a and b, respectively). The only subset for which
sample values approach the statistical properties of theGum-
bel distribution, and they do it towards the intersection with
the LN2 curve, is for larger and medium MAP catchments
(intense green points in Fig. 4b and, to some extent, midin-
tensity brown points in Fig. 4a). The subset corresponding to
drier catchments presents the largest L-Cv and L-Cs values,
while the smallest L-moment ratios are found for the subset
of larger catchments lying as mentioned before closer to the
Gumbelline than the rest of WMA values. Inside each sub-
set (i.e. smaller, intermediate, larger, drier, medium or wet-
ter basins) the intensity of gradation increases with decreas-
ing L-Cv and L-Cs values. This means that for larger values
of catchment area and MAP, lower regionally averaged val-
ues of L-Cv and L-Cs are expected. The gradients are clearer
for the smaller and drier catchments (red and yellow points
in Fig. 4), while there is a slight increase of the WMA L-
Cs values for wetter catchments inside the larger catchments
subset. This could be attributed to the fact that, as pointed
out in Sect. 2, all larger catchments have a similar averaged

Hydrol. Earth Syst. Sci., 18, 4391–4401, 2014 www.hydrol-earth-syst-sci.net/18/4391/2014/
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MAP value (between 1000–1400 mm yr−1) belonging to the
same intermediate wetness subset and the differences in the
rainfall regime are not big enough to draw conclusions about
their control on the averaged L-Cs values inside the group.

3.2.2 Three-parameter distributions

Figures 5 and 6 report the L-moment diagrams defined by
plotting WMA values of L-Cs and L-Ck in a similar fash-
ion to Fig. 4. In this case, the two intermediate subsets (i.e
intermediate-sized and medium MAP values) were plotted
separately from the subsets defining smaller, larger, drier
and wetter catchments to ease the visual interpretation of
the plots (as far as possible avoiding overlapping points).
Figure 5a shows the subset of WMA values derived for
the smaller and larger catchments, with the colour inten-
sity representing the average MAP value and Fig. 5b illus-
trates intermediate-sized catchments with the gradation rep-
resenting again the average MAP value. Similarly, Fig. 6a
shows the subset of WMA values representing drier and wet-
ter catchments, with the colour intensity representing catch-
ment size, while Fig. 6b is relative to the subset characterized
by intermediate MAP values.

Figure 5a shows that the WMA values associated with
larger catchments are located closer to the GEV line than to
any other distribution, generally showing slightly higher L-
Ck values than expected for a GEV distribution. For smaller
catchments, the GEV is the distribution that best represents
the statistical properties of the sample, being the scatter of
points much closer to the theoretical curve than that from
the subset of larger catchments. For intermediate-sized catch-
ments, Fig. 5b highlights a strong control of MAP on the ap-
propriate distribution; medium-sized catchments associated
with high MAP values are situated closer the curve of the
GEV distribution, while catchments with lower MAP val-
ues move towards the LN3 distribution. This implies that,
for drier catchments inside the intermediate-sized subset, the
distribution type shifts to a more skewed one (for the same
L-Ck, the LN3 has higher L-Cs values than GEV).

Figure 6a shows the WMA values for the two subsets in-
cluding the drier and wetter catchments as defined by the
MAP values. The WMA values associated with wetter catch-
ments are located closer to the line defining the GEV distri-
bution, suggesting that GEV is an appropriate distribution for
wetter catchments more or less regardless of catchment size
(as determined by the blue colour gradation). In contrast, the
statistical properties of the drier catchments are better repre-
sented by the LN3 distribution, as also illustrated in Fig. 5b.
Catchments with intermediate MAP values are associated
with a larger range of L-Cs values depending on their size
(see Fig. 6b), and lie closer to the GEV line than to any other
distribution considered, with a slight tendency for the small-
est and largest catchments inside the subset to exhibit higher
values of L-Ck than expected from a GEV distribution.

Analogously to Fig. 4, the area and MAP control on the
position of the relative WMA values between the subsets
remain in Figs. 5 and 6, showing again higher averaged L-
moment ratio values when comparing smaller to larger catch-
ments and drier to wetter catchments.

4 Discussion

Previous sections have highlighted the importance of link-
ing the flood generation processes to the observed L-moment
ratios of the annual maxima sequences, and the position of
the regional averages at the diagrams, in order to understand
from the differences between catchments in terms of under-
lying parent distributions. Two lumped-catchment descrip-
tors are used as surrogate covariates representing the spa-
tially distributed and complex hydrological processes con-
trolling the catchment flood response. Precisely, the area of
the basin is an indicator of the scale interplays between catch-
ment processes and rainfall (Blöschl and Sivapalan, 1995),
while mean annual precipitation acts as control of probabilis-
tic behaviour of floods through its effect on antecedent soil
moisture conditions (Sivapalan et al., 2005), and also pro-
vides an indication about other local and atmospheric pro-
cess.

For example, low MAP values could indicate regions with
prevalence for more localized and variable storms, usually
flashier in time and with higher rainfall intensities. This
higher between-years variability and skewed distribution of
rainfall extreme intensities translates into higher L-Cv and
L-Cs values of annual floods, as Figs. 4b and 6a suggest. In
contrast, long-duration frontal or advective events, associated
with larger spatial extensions and lower rainfall intensities,
are expected at catchments presenting higher MAP values,
more clearly shown in Fig. 6a. These two kinds of precipita-
tion regimes will also have an effect on the co-evolution of
landform with hydrological processes (Gaál et al., 2012), in
which rainfall plays an important role at multiple timescales.
The variability of flood magnitude between years, and the L-
coefficient of variation as a measure of this variability, tends
to be higher in smaller and intermediate-sized catchments,
compared to the larger ones, as shown in Fig. 4. The main
reasons are both the spatial heterogeneity of rainfall and the
interaction between the spatial and temporal scales of rainfall
and catchment size taking place. This interplay causes the
catchment to resonate with storms of similar spatio-temporal
extension. In the case of smaller basins this corresponds to
short duration, high intensity, spatially concentrated storms
(i.e. convective events or flash floods), which are also typical
of drier climates; while in larger catchments the resonance
appears with longer storms, usually associated with lower
intensities, with a bigger spatial extension (i.e. advective or
frontal events), more typical of wetter environments (see e.g.
Blöschl and Sivapalan, 1995; Sivapalan and Blöschl, 1998).
These two differentiated regimes for rainfall extremes will
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Figure 5. L-moment ratio diagrams for the subsets defined by catchment area:(a) smaller, larger, and(b) intermediate described in Fig. 3.
Each point represents the record length WMA over 70 catchments of L-Ck against corresponding values of L-Cs and the colour intensity is
proportional to MAP.
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Figure 6. L-moment ratio diagrams for the subsets defined by MAP:(a) drier, wetter, and(b) medium described in Fig. 3. Each point
represents the record length WMA over 70 catchments of L-Ck against corresponding values of L-Cs and the colour intensity is proportional
to catchment area.

cause not only a higher L-coefficient of variation but also
a higher L-coefficient of skewness in the flood distributions
for smaller and drier catchments compared to the larger and
wetter ones, as shown in Fig. 5a. Aside from precipitation
input, other catchment processes can also play an important
role in shaping the properties of the flood distribution. The
presence of non-linearities in runoff production and routing
in smaller, drier basins (Medici et al., 2008) in contrast to
the aggregation of processes in larger catchments (Sivapalan
et al., 2002) will translate in decreasing values of L-Cv and

L-Cs with increasing values of MAP and, more strongly,
catchment size. One visible consequence of the higher dis-
persion and skewness of the flood frequency distributions
with decreasing catchment area and increasing aridity is the
fact that predicting flood magnitudes and exceedance proba-
bilities in ungauged basins is more difficult in smaller, more
arid catchments, as compared to bigger, less arid ones (see
e.g.Salinas et al., 2013).

Therefore, the main findings from the analysis presented in
the previous sections need to be interpreted in a hydrological
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way, instead of in a merely statistical sense. For example, the
fact that the GEV distribution is found to be the model rep-
resenting better the averaged statistical properties of catch-
ments with medium to high values of MAP regardless of
size, is probably because few of the catchments in arid re-
gions with highly skewed distributions of rainfall extremes
are present in these subclasses. In contrast, there is a clear in-
dication that the LN3 distribution, which has a higher skew-
ness than GEV for a given kurtosis, reproduces better the
sample properties of the drier, intermediate-sized subset, rep-
resenting most likely other flood generation processes than
for the data subsets more affine to the GEV distribution. Nev-
ertheless, the limited number of catchments classified simul-
taneously as smaller and drier, larger and wetter, or larger and
drier prevents these conclusions from being extended further.

The LN2 distribution represents in some circumstances
a valid alternative to the other commonly used three-
parameter distributions, especially for intermediate-sized,
medium MAP catchments. The fact of having one parameter
less than the GEV or the LN3 allows the LN2 to reproduce
only a limited range of hydrological processes maybe not
able to capture the extreme cases of the smaller or drier catch-
ments. Sample L-Cs values are shown to be, on a regional
average, higher than the ones of theGumbeldistribution, be-
ing the larger and medium MAP catchments the ones closer
to its theoretical curve. This is likely due to the fixed skew-
ness value of theGumbeldistribution, relatively low for the
regional averages of the given data set and the selected ag-
gregation levels, corresponding substantially to the smoother
processes in larger catchments. Also, for the smaller, wet-
ter, and drier catchment subclasses, none of the considered
two-parameter distributions is capable of accurately repre-
senting the averaged values of the subset.

Recalling the scientific questions presented in the intro-
duction, this study has been able to quantify the controls of
area and mean annual precipitation on the sample L-moment
ratios of annual maximum flood discharges, and has shown
how these controls may guide the selection of suitable par-
ent distributions in an L-moments diagram framework. Ad-
ditionally, the novel use of traditional L-moment ratio dia-
grams presented in Figs. 4, 5 and 6 may be very informative,
and could help to better understand the changes in flood haz-
ard resulting from different sources of environmental change.
By explicitly accounting for the conceptual process controls
through catchment descriptors (catchment area and MAP in
this study), the sensitivity of the flood frequency distribution
to changes in process controls can be determined. For ex-
ample, Figs. 5b and 6a show that for medium-sized catch-
ments the most appropriate distribution changes from a GEV
to a LN3 distribution as MAP decreases. Thus, if future cli-
mate projections indicate a reduction of MAP, then the re-
sults in Figs. 5b and 6a suggest that the corresponding change
in flood distribution is likely to be characterized by a move
towards a larger skewness (e.g. from a GEV to a LN3 distri-
bution), assuming that the current relationship between MAP

and storm rainfall intensity distributions holds in future cli-
mates. This sensitivity analysis could be extended by includ-
ing additional catchment descriptors representing processes
likely to change, e.g. land cover and urbanization, and by
weighting each distribution type in case a multimodel ap-
proach is selected for representing the regional flood fre-
quency distribution (see e.g.Laio et al., 2009).

5 Conclusions

This study has shown that the inclusion of information on
the underlying hydrological processes in the model choice
is of high importance. Each catchment has been character-
ized in terms of size and mean annual precipitation, as these
properties have previously been found to be rough surrogates
for the different flood generation processes, but also because
a survey presented in the companion paper bySalinas et al.
(2014) showed that only these, the most elemental catchment
properties, are readily available across Europe. Some pre-
liminary conclusions can be drawn, such as the shift from a
GEV to a LN3 as a more appropriate distribution for decreas-
ing MAP values in intermediate-sized catchments. However,
the robustness of these statements is limited due to the lack
of more data from simultaneous extremes of the subclasses
(e.g. smaller and drier catchments) but maybe more due to
the absence of better catchment attributes that allow us to
fully describe the flood generation processes.

Several studies of flood hydrology have also highlighted
the potential utility of soil and land-use data for character-
izing flood frequency curves in ungauged European catch-
ments. Thus, there are potentially larger benefits associated
with future development of consistent pan-European catch-
ment descriptor data sets as a fundamental step in harmoniz-
ing methods. In particular for this database, there is a variety
of other catchment and climatic descriptors that could poten-
tially improve the analysis. As pointed out in Sect. 2, there is
a large number of catchments that could be strongly affected
by snow processes. Its control on the flood regimes could be
analysed through surrogates such as median (or maximum)
catchment elevation, mean annual air temperature or by more
specific ones like the fraction of solid to liquid precipitation.
Also, having information on a station basis about the dom-
inant event types and the precipitation that most likely trig-
gers the hydrological extremes (convective rainfall, long rain
events, etc.) might allow us to have a better understanding of
the whole hydrological regime which could be used to more
accurately sort the database. For example, a recent study by
Gaál et al.(2014) suggested the use of lightning data as an in-
dicator of convectivity in rainfall events. Additionally, there
are other climatic indicators related to the energy and wa-
ter balance, such as the aridity index (ratio between potential
evapotranspiration and mean annual precipitation), that could
provide together with rainfall and temperature valuable infor-
mation on the climate type.
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The original utilization of the traditional L-moment ratio
diagrams presented in this study, in conjunction with a more
refined characterization of European catchments based upon
a richer catchment descriptor data set, could also contribute
to better understanding the modifications in flood hazard re-
sulting from different sources of environmental change, and
to move further towards the definition of a set of “process-
driven” pan-European flood frequency distributions.
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Chapter 5

Fuzzy Bayesian flood frequency
estimation with historic data

The present chapter corresponds to the following scientific publication, to be submitted:

Salinas, J. L., Kiss, A., Viglione, A., Viertl, R., and Blöschl, G.: A Fuzzy Bayesian approach

to flood frequency estimation with historical information, to be submitted to Water Resources

Research, 2015.

Abstract

Efforts of the historical environmental extremes community during the last decades have resulted

in the obtention of long time series of historical floods, which in some cases range longer than 500

years in the past. In hydrological engineering, historical floods are useful because they give additional

information which improves the estimates of discharges with low annual exceedance probabilities,

i.e. with high return periods, and additionally might reduce the uncertainty in those estimates. In

order to use the historical floods in formal flood frequency analysis, the precise value of the peak

discharges would ideally be known, but in most of the cases, the information related to historical

floods is given, quantitatively, in a non-precise manner.

This work presents an approach on how to deal with the non-precise historical floods, by linking

the descriptions in historical records to fuzzy numbers representing discharges. These fuzzy historical

discharges are then introduced in a formal Bayesian inference framework, taking into accoung the

arithmetics of non-precise numbers modelled by fuzzy logic theory, to obtain a fuzzy version of the

flood frequency curve combining the fuzzy historical flood events and the intrumental data for a

given location. Two case studies are selected from the historical literature, representing different

facets of the fuzziness present in the historical sources. The results from the cases studies are given

in the form of the fuzzy estimates of the flood frequency curves together with the fuzzy 5% and 95%

Bayesian credibility bounds for these curves.

The presented fuzzy Bayesian inference framework provides a flexible methodology to propagate

in an explicit way the imprecision from the historical records into the flood frequency estimate,
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which allows to assess the effect that the incorporation of non-precise historical information can

have in the flood frequency regime.

5.1 Introduction

Due to recent great flood events during the last decades, an increased scientific and media

interest turns attention towards historical floods, both in terms of individual past extremes and

the understanding of long-term flood behaviour. Following this interest, a rapidly growing amount

of scientific literature is available in the subject of historical records of flood events in a diversity

of spatial and temporal scales. Examples range from a compilation of flood evidences during the

middle-ages in the entire Carpathian basin (Kiss and Laszlovszky , 2013), to the reconstruction of the

largest floods of the Rhine river at the Swiss city of Basel during the last 750 years (Wetter et al.,

2011). European overviews for the main research results applied to specific regions can be found in

e.g. Brázdil et al. (2006, 2012); Glaser et al. (2010); Hall et al. (2014). Information about these

historical floods often provides a very useful insight for flood risk assessments, given the extended

lenght of the period considered, and can and should be used in flood frequency estimation (Kjeldsen

et al., 2014).

In the context of flood frequency hydrology (see Merz and Blöschl , 2008a,b; Viglione et al., 2013),

temporal information expansion refers to the collection of information on the flood behavior outside

the period of discharge observations (i.e. outside the systematic or instrumental data period). There

are formal statistical methods to combinine information about historical floods with available flood

discharge measurements (e.g., Leese, 1973; Stedinger and Cohn, 1986; Cohn et al., 1997; O’Connell

et al., 2002; England et al., 2003; Reis and Stedinger , 2005; Benito and Thorndycraft , 2005), which

would be considered temporal information expansion.

In this paper, the Bayesian framework is chosen, as it combines different sources of information

obtaining a probabity distribution for the parameters of a given statistical model, giving therefore

information about their predictive uncertainty. In flood hydrology, Bayesian methods have been used

in the literature to incorporate additional information such as historic floods (e.g., Stedinger and

Cohn, 1986; O’Connell et al., 2002; Parent and Bernier , 2003; Reis and Stedinger , 2005; Neppel

et al., 2010; Payrastre et al., 2011) with the aim of fitting a flood frequency distribution, either

regional or at-site.

Information about historical floods presents itself almost always, from the quantitative point of

view, in a non-precise way, and would require previous treatment to be used in formal statistical

methods, such as Bayesian inference for flood frequency estimation. In the present study, the

mathematical theory of fuzzy numbers is used to model the unprecision of these historical discharges.

Fuzzy numbers originated with the generalized concept of indicator function of Menger (1951), and

the term “fuzzy sets” was first coined by Zadeh (1965) in the field of control theory in electrical

engineering. Applicatons of fuzzy numbers in water resources have dealt with fuzzy regression

analysis (Bárdossy et al., 1990a; Chachi et al., 2014), fuzzy geostatistical approaches (Bárdossy

et al., 1988, 1989, 1990c,b), modelling parts of the hydrological cycle (Bárdossy and Disse, 1993;

Bárdossy , 1996; Schulz and Huwe, 1997; Özelkan and Duckstein, 2001; Nasseri et al., 2014), and

classification purposes (Bárdossy et al., 1995; Bárdossy and Samaniego, 2002). But maybe the most
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common application has been in decision making and optimal control theory for water resources

planning or flood forecasting (Esogbue et al., 1992; Shrestha et al., 1996; Russell and Campbell ,

1996; Bender and Simonovic, 2000; Prodanovic and Simonovic, 2002; Simonovic and Verma, 2008;

Bárdossy , 2008; Schumann and Nijssen, 2011). More examples of fuzzy logic applied in water

resources related research is presented in Bogardi et al. (2003).

The aim of this paper is to exploit the benefit of the additional information that historical records

have to offer for flood frequency estimation, even if they are expressed in a non-precise way, and

include them in a Bayesian estimation procedure incorporating the aritmetics of fuzzy numbers,

something that up to this date has not been reported in the hydrological literature. Section 2

describes, from a historical point of view, the typical sources and nature of historical floods records.

Due to their inherent unprecision, a central point of this paper will be on how to link specific

information about historical flood events with their fuzzy model, so they can be incorporated in a

formal fuzzy Bayesian inference framework (see e.g Viertl , 2008a,b); this is done in section 3. Two

case studies are presented in section 4, where the methodology described in section 3 is applied

to time series, which feature two different aspects of the typical fuzziness that can be present in

historical records. Finally, the last section presents a discussion of the results together with the

conclusions.

5.2 Historical Data is Fuzzy

Historical time series refer to the pre-instrumental period, developed based on various writ-

ten documentary evidence such as narratives (e.g. chronicles, annals, diaries), institutional sources

namely economic-administrative (accounts) and legal-administrative (e.g. charters, official/administrative

letters, notes, reports) evidence, epigraphic evidence (e.g. flood marks, paintings/drawings), media

information (e.g. newspapers, pamphlets) etc. Depending on source availability, quality and the

regularity of observations and recording practices, flood series might be built based on one source

type (e.g. accounts, flood marks, charters/letters etc.), but most of the flood series are based on the

combination of various source types (e.g. narratives or the combination of narratives, epigraphic

and institutional sources).

A good example of the fuzzy character of historical documentary evidence is the general termi-

nology applied. In medieval and early modern times texts are often written in Latin where - apart

from other important information such as the caused damages, casualties, height/extension of water

and duration of flood - in narratives a clear term of an extreme flood of exceptional magnitude is

deluge (“diluvium”). This term is not really used before the beginning of the 14th century, and

typically used for extreme cases such as 1315, 1342, 1343, 1374 or 1501 (see e.g. Rohr , 2004).

While deluge is a term for describing an extreme flood in narrative sources, an extreme flood is

sometimes mentioned (for example in narratives and charters) as “inundatio maxima” (very great

flood), for example the 1343 Upper-Rhine flood (Generallandesarchiv Karlsruhe Urk. 1345, Sept.

30, GLA. 16/97, Konv. 22), while “nimia inundatio” in the documentation means a great flood:

usually great but not extraordinary in magnitude.

In some other cases the word “deluge” (Latin: diluvium) is a clear definition people usually

applied in the medieval early modern times (for terminological discussion and other examples, see e.g.
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Rohr , 2004)) only for the most exceptional huge flood events. This was, for example, on the Werra

and other Thüringen rivers the “Diluvium Thuringiacum” in Latin or the “Thüringishe Sintflut”

in German (see Deutsch and Pörtge, 2003). Another frequent expression in describing catastrophic

floods is “maximae aquarum inundationes” that could be translated as “very great floods of water”

(e.g. February 1342, by Franciscus Pragensis: Loserth 1875). A similarly simple but direct way of

flood characterisation is when basic damage measures are applied, such as in summer 1275: “Festo

Petri et Pauli Rhenus pontem Basiliensem destruxit, submersis plus minus 100 hominibus.” (source

published in Latin: Pertz 1861) - which reference may define an exceptionally great flood event saying

“On the day of Peter and Paul (29 June in Julian Cal.) the bridge of Basel was destroyed, and around

100 people submerged” (thus, with no precise information in maximum water levels). Similarly large

floods, suggested to be of extraordinary in magnitude, are described as the one that has not seen or

heard about in human memory (i.e. human lifetime): “de a memoria hominum, non visa non audita”

for the extreme ice jam flood of February 1775 in Budapest (see Kiss 2007 ; referred in the town

protocols of /Buda/Pest: BFL Pest. IV. 1202a. 355a. 22 Feb, 1775). Almost the same expression

is used for the catastrophic 1343 summer flood event of the Constance sea (Austrian-German-Swiss

border): “quod antea non est visum, ut antiquiores tunc temporis referebant” (reported by J. von

Winterthur: Brun and Baethigen 1924 ). Great, but not catastrophic floods may often mentioned

as “gross güß” or “nimia/magna/ingens inundatio aquarum” — in both cases in the meaning of

“great flood” – and are the most frequent in all document types (e.g. annals, chronicles, accounts,

charters, diaries etc. – see e.g. Rohr 2006, Kiss 2007, 2009, Kiss and Laszlovszky 2013; Wetter et

al. 2011 ).

Despite describing the extension and duration of the flood, and also its economic-social impacts

(e.g. casualties, houses destroyed etc.), other assumptions – reflecting on highest water levels of the

flood – like “die Brücken einem Holz-floß auff dem Wasser gleich gesehen” (referring to the 1570

great flood event; see Fig. 1) meaning “the bridge looked like a raft on the water” (Wetter et al.

2011: in the Kurtze Bassler Chronik: Gross 1624, p. 210) or “the town looked like an island in the

water” (e.g. Kiss 2007 : Pressburger Zeitung I March, 1784) often as well appear in documentary

evidence, generally helping in estimating the very approximate extension of water and the magnitude

of flood. A typical feature, applied for fixing an approximate height of maximum flood levels (of

extreme high flood events) in the Basel reconstruction was the impression when standing on the

bridge “people could wash hands in the water”: “Etiam homines in ponte stantes facile in Reno

manus lavare poterant”, in this case talking about the extreme flood event of 1424 (mentioned by

Kaplan Hieronymus Brilinger, published in: Bernouli 1915).
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Figure 1. Original archival record from the “Kurtze Bassler Chronik” containing the description

for the 1570 river Rhine flood event in Basel.

When enough information is available, discharge reconstruction is possible via hydraulic mod-

elling. Examples of such reconstructions are Benito et al. (2003); Brázdil et al. (2005, 2006); Herget

and Meurs (2010); Wetter et al. (2011); Elleder et al. (2013). For an overview on the methodology

of reconstructing discharges with historical data, see Herget et al. (2014). One of such examples

(Basel-series: Wetter et al. (2011)) will be applied in the analysis and discussed in more detail in a

later part of this paper.

Some of the pre-instrumental, documentary-based, historical flood series are classified into mag-

nitude categories, and each magnitude class receives a numerical value (indices). Although the most

usual index classification is based on 3 flood intensity categories/values (see Table 1), depending on

the detailedness of the available documentary evidence, there exist 4 and 5 index value classifications,

too (e.g. Rohr , 2006; Retsö, 2014).

Table 1. Criteria used for classifying documentary evidence on historical floods into indices (see

e.g. Sturm et al., 2001; Glaser and Stangl, 2004).

Table 1 provides the most widespread method of classifying the information derived from the

flood descriptions available in various source types listed above: a good example for the application

of the 3 category index classification is the 500-year long flood series of the Werra river (published

in Mudelsee et al. (2006); discussed and analysed later in more detail). Although in most historical
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series, the 3-scaled index classification is applied, in some other studies (when detailed source evi-

dence is available) 4 or even 5-scaled classification are in use (see e.g. Rohr , 2006). In these cases,

the precise wording described at the beginning of this section (i.e. “diluvium”, “inundatio maxima”,

“gross güß”, etc.) is of great help in classifying the events.

In building up historical time series, the best-quality evidence can be found in contemporary

sources written around the time or short after the event (and location). If sources are non-

contemporary (i.e. written decades or even longer after the event), they can be subject to various

types of errors, for example, concerning the dating, magnitude, impacts etc. of an actual event.

Therefore, their qualitative analysis prior to converting them into numerical values is of crucial

importance. Even if based on good-quality sources, pre-instrumental, historical data are fuzzy:

sources are made for various purposes other than precisely recording the hydrological parameters of

the actual flood event. Therefore, while some parameters such as seasonality can be often precisely

provided, considering other parameters they contain description of a flood event that - in hydrologi-

cal sense - can be only treated as a non-precise information referring to, for example, the magnitude

of flood events in terms of peak discharge.

5.3 A mathematical model for non-precise historical floods

Section 2 has explained in detail the nature of historical hydrological data, in particular infor-

mation about historical floods. These data is inherently non-precise and we need a mathematical

model to capture this characteristic. Fuzzy numbers (Menger , 1951; Zadeh, 1965) are a model for

the unprecison of a certain magnitude, for example an analogue measurment, or more interesting for

this paper, the linguistic nature of expressions describing the magnitude of historical floods, or the

discharge threshold between indexed historical floods. The contents of this section aim to familiarize

the reader with the main mathematical aspects of Bayesian inference with fuzzy numbers, and its

application to flood frequency estimation with non-precise historical information. For more details

on the topic of statistics with fuzzy numbers, see e.g. Viertl (2011a).

5.3.1 Fuzzy numbers, samples and functions

In the context of flood frequency modelling in the presence of fuzzy historical information, we will

consider a single non-precise historical discharge as a fuzzy number; a collection of historical events

as a fuzzy sample; and the operations (mainly of statistical nature) involving these fuzzy numbers as

fuzzy-valued function. This subsection will introduce some theoretical properties of these elements.

We can understand a fuzzy number x∗, as a mathematical model for representig a certain magnitude

which is non-precise by nature, as opposite to a random variable, which has a precise value, but

we do not know it with full certainty. Fuzzy numbers are therefore valid for modelling magnitudes

occupying a certain range or interval on the real line. Examples of fuzzy quantities could be time

of sunset (we can consider it a time interval), linguistic expressions like “very cold” (will cover a

range of temperatures, probably dependent on the context), or like in our case, peak discharges

corresponding to historical floods descriptions. Mathematically, a non-precise or fuzzy number x∗ is
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uniquely determined by its characterizing function ξ (·), a real-valued function of one real variable x

giving values between 0 and 1. The heuristic interpretation of the characterizing function ξx∗ (x), is

the degree of membership of each value x ∈ R to the fuzzy number x∗, that’s why the characterizing

function is also denoted as membership function. For each value between 0 and 1, denoted usually

as δ, the δ-cuts of the fuzzy number x∗ are defined as Cδ (x∗) := {x ∈ R : ξ (x) ≥ δ}. These δ-

cuts must be constructed by a finite union of compact intervals (i.e. bounded intervals including

the limit points), but most commonly consist of a single compact interval [aδ; bδ] for each δ value.

Furthermore, it can be demonstrated, that the characterizing function ξ (·) of a fuzzy number x∗ can

be reconstructed from entire the family of δ-cuts Cδ (x∗), with δ ∈ (0; 1]; i.e. they contain the same

information. This is important, because on a practical basis all operations are done on the base

of δ-cuts, and the membership function for the result is reconstructed afterwards. In this paper,

mostly trapezoidal fuzzy numbers (see Fig. 2) will be used for simplicity.
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Figure 2. Depiction of a trapezoidal fuzzy discharge Q∗, represented by it membership function

ξQ∗ (·). The δ-cut corresponding to δ = 0.3 is shown.

In inferencial statistics, fuzzy numbers usually will not appear isolated. One will deal with a

collection of k fuzzy quantities that we can define as fuzzy sample x∗ = {x∗1, x∗2, . . . , x∗k}. In order

to further operate with the fuzzy sample, it necessary to create a so-called fuzzy valued vector. In

practice, this will correspond to establish a mapping between the k characterizing functions ξi (·) of

the k elements of the fuzzy sample and the vector-characterizing function ξ (x1, x2, . . . , xk), which is

a generalization to k-dimensions of the one dimensional characterizing function defined above. The

mapping is done via the so-called triangular norms (or t-norms), which are Rk → R functions that

need to fullfill a series of conditions to be well defined, in a similar fashion to the copula functions,

or the metric functions in a vector space. It turns out that the most advantageous way, having

some desired properties when estimating sample averages and other sample statistics, is to use the

minimum t-norm, defined by

ξ (x1, x2, . . . , xk) = min [ξ1 (x1) , ξ2 (x1) , . . . , ξ1 (xk)] , ∀ (x1, x2, . . . , xk) ∈ Rk

One important feature of the minimum t-norm is that the corresponding δ-cuts Cδ (x∗) of the

fuzzy sample can be computed by simply performing the cartesian product of the δ-cuts Cδ (x∗i )
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of the k fuzzy numbers belonging to the sample, which makes the operations with multiple fuzzy

numbers easier.

The mathematical concept of a real-valued function f with k real arguments can also be gen-

eralized to a fuzzy-valued function with a k-dimensional fuzzy vector argument via the so-called

extension principle, whose exact formulation is not simple to interpret, but has the following conse-

quence for the δ-cuts of the fuzzy value f (x∗):

Cδ [f (x∗)] =

[
min

x∈Cδ(x∗)
f (x) ; max

x∈Cδ(x∗)
f (x)

]
Knowing the δ-cuts, one can reconstruct the membership function for f (x∗), as stated above.

Generaliziling, we can say that for any fuzzy-valued function f∗ (·), the functional equivalent of

δ-cuts are the so-called δ-level functions or curves, defined by Cδ [f∗ (·)] =
[
f
δ

(·) ; f̄δ (·)
]
.

Particularizing for monotonic functions with k fuzzy arguments x∗i (merged into a fuzzy vector

x∗ with the minimum t-norm), if we know the δ-cuts Cδ (x∗i ) = [aδ,i; bδ,i] for each argument, the

δ-level curves of f∗ (x∗) can be evaluated as follows:

Cδ [f∗ (x∗)] = [min {f (aδ) , f (bδ)} ; max {f (aδ) , f (bδ)}] ,

where aδ = (aδ,1, aδ,2, . . . , aδ,k) and bδ = (bδ,1, bδ,2, . . . , bδ,k). This means, one can calculate the

δ-level curves of f∗ (x∗) by evaluating the equivalent real-valued function f at the limits of the

δ-cuts for the different elements x∗i of the fuzzy sample. This property will be used when estimating

fuzzy flood frequency distribution with historical data.

Once the main properties for the generalization from real to fuzzy numbers and functions have

been explained, the following subsection will deal with the analogous generalization of the Bayesâ

theorem.

5.3.2 Fuzzy Bayesian Inference

Bayesian inference is a statistical framework in which the Bayesâ theorem is used to combine

prior information with observed data, in order to obtain updated information on the distribution of

the parameters of a given model. In flood frequency analysis, this corresponds with combining the

information provided by the locally observed flood data with additional information independent

from those data, which in our case will be the historical floods. By condidering the parameters of the

flood distribution as random variables themselves, the Bayesian framework considers the uncertainty

inherent to the different sources of information used, and provides a computationally convenient way

to estimate the uncertainty in parameters and quantiles metrics. These are given usually in terms of

credibility bounds, the Bayesian counterpart of the confidence intervals in frequentist frameworks.

For a flood frequency distribution with parameters θ, the Bayesâ theorem states that

p (θ|D) =
l (D|θ) · π (θ)∫

Θ
l (D|θ) · π (θ) dθ

where p (θ|D) is the posterior distribution of the parameters θ , after having observed the data

D; l (D|θ) is the likelihood function; π (θ) is the prior distribution of the parameters. The integral
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in the denominator, computed on the whole parameter space Θ, serves as a normalization constant

to obtain a unit area under the posterior probability density function p (θ|D). For a more detailed

exposition of the Bayesian approach to flood frequency hydrology, see e.g. Viglione et al. (2013).

Fuzzy Bayesian Inference (Viertl , 2008a,b) is a generalized framework for Bayesian inference

when fuzzy samples D∗ and/or fuzzy prior probability distributions π∗ (θ) are present, which will be

precisely the case in our treatment of non-precise historical floods. In this context, fuzzy probability

distributions will be fuzzy-valued functions, as defined in the previous section, with some normal-

izing properties, analogous to the unit integral over the entire parameter for traditional probability

distributions. Denoting the fuzzy posterior probabilty distribution as p∗ (θ|D∗), the fuzzy-valued

likelihood of the fuzzy sample D∗ as l∗ (D∗|θ), and the fuzzy prior probability distribution as π∗ (θ),

the generalized Bayesâ theorem reads for their respective δ-level curves

p
δ

(θ|D∗) =
lδ (D∗|θ) · πδ (θ)∫

Θ
1
2

[
lδ (D∗|θ) · πδ (θ) + lδ (D∗|θ) · πδ (θ)

]
dθ

The expression for the upper δ-level curve pδ (θ|D∗) is analogous, i.e. taking the upper δ-level

curves in the numerator and keeping the same denominator. The normalizing contant must be equal

for pδ (θ|D∗) and p
δ

(θ|D∗), in order to keep the sequential nature of the updating procedure in

Bayesâ theorem (see e.g. Viertl , 2011b).

From the point of view of application, since the integral in the denominator cannot be generally

expressed in closed form, simulation-based Monte Carlo sampling techniques such as the Markov

chain Monte Carlo (MCMC) approaches are used. MCMC methods (including random walk Monte

Carlo methods) are a class of algorithms for sampling directly from probability distributions by

letting a Markov chain evolve, whose steady-state distribution is the desired one; here the interest

lies on the posterior probability model (see e.g. Robert and Casella, 2004; Gelman et al., 2004).

Several MCMC algorithms have been used in flood frequency hydrology (e.g., Kuczera, 1999; Reis

and Stedinger , 2005; Ribatet et al., 2007). In this paper, we use the delayed rejection and adaptive

Metropolis algorithm (Haario et al., 2006; Soetaert and Petzoldt , 2010) to obtain the δ-level curves

of the fuzzy posterior probability density function p∗ (θ|D∗).
As a general formulation, the fuzzy likelihood function will be expressed as

l∗ (D∗|θ) = l∗H (D∗hist|θ) · lS (Dsyst|θ)

where Dhist
∗ will correspond to the fuzzy sample containing the non precise historical discharges,

and Dsyst stands for the systematic series, i.e. the discharges directly measured during the instru-

mental period. Note that the function l∗H (·) is fuzzy-valued, while lS (·) is not, as the fuzzyness of

the systematic discharges are considered negligible if compared to the historical period.

Conceptualizing single historical events as fuzzy numbers representing the fuzzy peak discharges,

and merging them into a fuzzy sample, the fuzzy likelihood function for historical discharges, simply

a generalization of the non-fuzzy case as used in the literature (see e.g. Stedinger and Cohn, 1986;

Neppel et al., 2010; Viglione et al., 2013), can be evaluated as

l∗H (D∗hist|θ) =

(
h
k

)
FQ (Q0|θ)

(h−k)
k∏
j=1

f∗Q
(
Q∗j |θ

)
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where h stands for the number of years corresponding to the historical period considered, k is the

fuzzy sample size (i.e. number of fuzzy historical discharges), FQ (·) is the cumulative distribution

function for the peak discharges, Q0 is a discharge threshold (only historical floods exceeding this

thresholds are recorded), and f∗Q (·) is the probability density function for the peak discharges, taken

as a fuzzy function, as it is evaluated at each historical fuzzy peak discharge Q∗j . The methodology

on how to obtain the membership functions describing the fuzzy historical discharges represents

the core of this study and is fully explained in the next subsection. In this paper, the Generalized

Extreme Value (GEV) distribution is used as the statisical model for the frequency of peak annual

discharges, and the cumulative distribution function has then the expression

FQ (q|θ) = exp

[
−
(

1− θ3 ·
q − θ1
θ2

)1/θ3
]

when θ3 6= 0, while the distribution converges to the Gumbel or EV1 model for θ3 → 0. The GEV

model has been chosen, as it has been recently reported in the literature that to better represent the

average flood regime of European rivers (see e.g. Salinas et al., 2014b,a). Nevertheless, any other

3-parameter extreme value distribution (e.g. Generalized Pareto, Generalized Logistic, Log-Pearson

type 3, . . . ) could also be used, with local or regional justification, as they offer a similiar degree of

flelixibility in the sense that they all possess a shape parameter to adjust the skewness of the flood

frequency.

In case the flood perception threshold is considered to vary during the historical period analized,

as it is usually the case, one can divide the historical period in q sub-periods with different perception

thesholds, such that h = h1 + h2 + . . . + hq, apply the expression above for each sub-period with

its own perception threshold, and multiply the values for all subperiods to obtain the expression for

the fuzzy likelihood function for the entire period.

The expression of lS (Dsyst|θ) does not require any special treatment, as the systematic dis-

charges are considered as precise (i.e. non-fuzzy), and would correspond to the product of the

probability density function fQ (·) evaluated at all measured peak discharges.

The choice of a prior probability distribution π (θ) is a crucial step in every Bayesian inference

approach. If one has some kind of prior knowledge about the parameters of the flood frequency

distribution coming from any other independent piece of evidence (like a regional distribution of

flood frequency parameters, or results from a rainfall-runoff model; see e.g. Viglione et al., 2013),

an informative prior can and should be used in a real world application. In this paper, the focus is

not on the selection of prior distributions for Bayesian inference frameworks, and therefore, if the

information about historical floods is introduced in the likelihood function, a non-informative flat

prior is taken, i.e. π (θ) ∝ 1 for all values of θ.

Nevertheless, in the situation where historical floods are presented in indexed form (as described

in sect. 2), introducing the information about the historical floods in form of a fuzzy prior probability

distribution presents conceptual advantages, as will be justified in the following subsection, with the

rationale on how and why the indexed time series where initially constructed. If one chooses a

3-parameter statistical model, as is the case in this paper with the GEV distribution, an indexed

historical floods time series with 3 indices is needed, as a biyective mapping between indices and

parameters will be stablished. From a practical point of view, this is not a problem, as historical
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time series consist almost always at least 3 indices, and in the case of more indices, two or more

classes can be merged to obtain the required 3 indices. Then, given a 3 index-valued historical

time series, a probability distribution containing information about the flood frequency could be

evaluated as follows.

First, one can estimate the mean interarrival times between events inside each index. It can

be demonstrated that, for a stationary stochastic process, consisting of a sequence of idependent

identically distributed variables (in our case, the flood peak time series, modelled as a sequence of

independent GEV realizations), the mean inter-arrival time of events larger than a given threshold

has an Inverse-Gamma sampling distribution (see e.g. Kottegoda and Rosso, 1997 ). Given the

estimated sample means of the inter-arrival times between events inside each index, we can get an

expression for the three Inverse-Gamma sampling distributions. In this context, the sample mean

inter-arrival time can be considered an estimator for the return period associated to the discharge

value that conceptually in censoring the index-classes. Via e.g. copula modelling, we can construct a

trivariate distribution with the obtained Inverse-Gamma’s as marginals. This trivariate distribution,

which can be interpreted as a trivariate sampling distribution for the three return periods associated

to the three threshold discharges, can be uniquely transformed in a trivariate distribution for the

parameters of the parent distribution. In this step, the Jacobian of the transformation from return

periods T = (T1, T2, T3) to parameters θ = (θ1, θ2, θ3), needs to be evaluated as a function of the

threshold discharges. If one chooses a set of 3 fuzzy discharge thresholds, as will be conceptually

justified in the following subsection, the resulting probabilty distribution is a well defined fuzzy-

valued probability distribution that can be used as a fuzzy prior in the generalized Bayesâ theorem,

incorporating the information about the historical floods. Note that for this approach, the likelihood

function is non-fuzzy, as it contains only information about the systematic discharges.

5.3.3 Linking historical records with fuzzy discharges

In the two previous sections we have briefly discussed the theoretical aspects of modelling non-

precision of data with fuzzy numbers (sect. 3.1), and set the basis for a Bayesian inference framework

with that non-precise information via the generalized Bayesâ theorem (sect. 3.2). The aim of this

section is to link the exposed theoretical aspects of fuzzy statistical modelling with the inclusion of

non-precise information about historical floods in a formal Bayesian flood frequency analysis, i.e.

transforming the descriptions found in historical records into fuzzy peak discharges.

As stated in sect. 2, information about historical floods may present itself in different ways. It

is usual, though, that some indication about the maximum water level during the flood is reported

in a written way. In flood events affecting settlements, these indications could reference iconical

buildings, bridges, squares, fountains, markets. In many cases, the issues reported correspond to

some disturbance in a certain economic activity, e.g. a road or bridge damage limiting some sort of

supply. Given that for a certain location, some kind of systematism in reporting flood extents and

damages exists, one may set a series of locations where the flood extents are mentioned on a regular

basis during the period considered.

This is the approach taken for the case study of the Rhine river at Basel (see sect. 4.1). For this

particular location, the water level has been systematically reported to reach the locations listed
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in Fig. 3. The altitudes with respect to the river bed datum for these location can be considered

constant, as there is enough evidence that they have not undergone any significant reconstruction

(Wetter et al., 2011). Information about the rating curve is given in Wetter et al. (2011), as pairs

of discharge–water level values obtained with a one-dimensioanl hydraulic model, and are depicted

in Fig. 3.
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Figure 3. Rating curve (blue line) for the river Rhine at Basel, cross section at the Rheinsbrucke

(taken from Wetter et al., 2011). Blue points stand for the locations mentioned systematically in

the documentary evidence. An example of the construction of the membership function for the fuzzy

water level corresponding to the description “...Guesthouse Krone fully flooded” is depicted in red.

The aim of this paper is not to assess the validity or uncertainties related with the hydraulic

modelling itself for the Basel case study, therefore the estimated rating curve is taken as the real

one. Therefore, we can focus on constructing fuzzy numbers for the water levels, and then obtain

the memebership functions for the fuzzy peak discharges as a fuzzy function(as described in sect.

3.1.) given by the raing curve, with the fuzzy water level as argument. For a series of flood events,

there is written evidence that the peak water level reached a certain location, and that the following

one had not been flooded. As an example, the event of 1852, where the water level is reported to

reach the Guesthouse “Tete D’Or”, which allows us to infer that the building itself was not flooded,

and therefore gives an indication of the possible maximum value of water level. As a general rule for

this kind of information, we could build a trapezoidal characteristic function representing the fuzzy

water level as follows. A memebership value of 0 is given to the water levels of the previous and

following locations to the one described as flooded. Memebership values of 1 are given within half

of the water level ranges between locations, modelling the non-precise written information that if

one location has been flooded, e.g. a market square, the water level could range from the beginning

until the end of the of the square, as seen from the advancing flood water front. Finally, the lower

(and upper) δ-cuts of values 0 and 1 are linked by a linear increasing (and decreasing) membership

function, as the modelled fuzzy water level is considered to have a trapezoidal membership function

(see a schematic of such construction in Fig. 3). Previous to the year 1480, there is “vague written

information”, as described in Wetter (2012), about some of the peak water levels being reached
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during the flood events. These descriptions may include several locations, even contradictory in

some instances, in their temporal or spatial evoulution. In such cases, a similar construction as the

one described might be used, extending the membership function for the fuzzy water level to two,

or even three locations, depending on the precision or confidence in the written evidence.

In some instances the indication about the maximum water level could come in terms of some

narrative, as described in sect. 2, like “...the bridge looked like a raft on the river”, or “...boats were

boarded through the windows of the Guildhouse”. These descriptions fit perfectly the nature of

fuzzy modelling, in terms of being able to process non-precise linguistic expresions, and transform

them in a fuzzy number determined by its membership function. Focusing on the example of the

1424 flood event in Basel, where the description “... people could wash their hands in the river”,

one could construct a fuzzy peak water level attending to a series of considerations. On the one

hand, the peak water level almost surely did not exceed the level of the brigde, as it would have

been probably reported otherwise. On the other hand, if people could wash their hands in the river

while standing on the bridge, the water level could not have been lower than 20-40 cm below the

level of the bridge itself. Given these assumptions, one could define a fuzzy water level, as the one

depicted in Fig. 4 for that particular event. Other narratives could be transform into membership

functions describing peak water levels in an analogous way, taking into account that most of these

historical description depend strongly on human perception of the flood magnitude, and can be

therefore subject to an extra level of unprecission in the fuzzification process.
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Figure 4. Depiction of the trapezoidal membership function (blue line), representing the fuzzy

water level for the flood event of 1424 at Basel, described as “...people could wash their hands in

the river [while standing on the bridge]” in the chronicles of Kaplan Hieronymus Brilinger.

As described in sect. 2, in occasions information about historical floods in presented in indexed

form. These indexed are based on combination of economical/infrastructre damage, flood duration

in time, extension of the flooded areas, etc (see Table 2). If an overlapping period exists, between the

instrumental period (where measured peak discharges can be retreived) and the indexed historical

series, one can establish a relationship between peak discharges and flood indices. This relationship

must, and most probably will not be consistent, as the classification has been made in base of more



56 Fuzzy Bayesian flood frequency estimation with historic data

indicators than peak discharges alone. It could happen therefore, that a certain peak discharge could

belong to one flood class in some cases, and to another class in other occasions, depending on the

rest of the indicators considered (i.e. damage, duration, or extension). Conceptually, we can model

the nature of this imprecision in the discharge threshold between flood indices as fuzzy thresholds

defined by membership functions. In this manner, and follwing the construction described in sect.

3.2, a trivariate fuzzy probabilty distribution for the parameters of the flood frequency curve can

be obtained, which will be used as a prior in the fuzzy Bayesian inference framework.

The construction of the fuzzy discharge thresholds between flood indices can be performed in

principle in many different ways. One simple methodology is described based on the case study of

the Werra river at Meiningen (see sect. 4.2). Taking as subsample, the peak annual discharges from

the overlapping period, we can assign to each value an index of 0, 1, 2 and 3 (an index of 0 represents

flood peaks that have not been classified as 1, 2, or 3). Then, the discharge averages for each index

are estimated. These values will correspond to membership values of 0 for the fuzzy thresholds. For

example, the fuzzy threshold between indices 1 and 2, as can be seen in Fig. 5, is a trapezoidal fuzzy

number ranging from 141 m3s−1 (average discharge for index 1) and 170 m3s−1 (average discharge

for index 2). The fact of giving these two discharges a 0 value for the characteristic function of

the fuzzy threshold between 1 and 2, can be conceptually understood as giving a possibility of 0

membership to the threshold, to discharge values lower (or larger) than the central values of each

class. The rest of the trapezoidal fuzzy threshold, i.e. the δ-cut for δ equal to 1, is computed as one

third (lower bound) and two thirds (upper bound) of the range defined by the index averages.

Figure 5. Trapezoidal membership functions (blue lines) for the three fuzzy discharge thresholds

between flood indices. The data corresponds to the river Werra case study (see sect. 4.2). Grey,

dark yellow, dark red, and green circles depict floods with index values 0, 1, 2, and 3, respectively.

Red dashed vertical lines represent the average discharges for each flood index.

This approach for fuzzifying the discharge threshold has been taken for the sake of simplicity.

More refined mathematical techniques could be applied; e.g. compute the kernel density estimation

(Rosenblatt , 1956) for the discharges belonging to the different indexes, and construct the fuzzy

thresholds taking into account the overlapping area of the densities. This particular tecnique has

been applied to the data from the Werra case study, and the results in terms of fuzzy thesholds

did not differ more than a 5%. Therefore, and given that for application purposes more complex

mathematical methods could present more obstacles, the first approach described (i.e. the use of
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the averages in each flood index class) is recommended.

The following section presents the application of the described methodologies of (a) obtaining a

fuzzy sample from historical descriptions, and (b) constructing a fuzzy prior probabilty distribution

based on historical flood indices, to the case studies of the river Rhine at the swiss city of Basel and

the river Werra at the german city of Meiningen, respectively.

5.4 Case Studies

5.4.1 Reconstruction based on maximum water levels descriptions since
year 1256 – River Rhine at Basel (Switzerland)

The flood discharge (and index) series of the town of Basel, published by Wetter et al. (2011;

also Wetter 2012) starting from the mid-13th century, is further applied for fuzzy analysis in the

present study. This series forms an excellent basis of fuzzy investigations, because the discharge

values were mainly calculated based on definite descriptive information related to the maximum

level of flood event (e.g. people on the bridge could wash their hands in the water, or the water

reached specific streets/squares or buildings in defined heights), and this information is available in

published form and/or in the form of source references. Due to the fact that the river bed had no

significant changes (i.e. not biased by sedimentation process), the height of the bridge was suggested

to be around the same level throughout the study period, and the roughness of the built-up area in

the town centre did not significantly change over time, basic environmental characteristics remained

approximately the same over time. This is another characteristics that made this long historical

time series suitable for further application in fuzzy Bayesian analysis.

From the methodological point of view, membership functions based on the records were given to

single historical events, as described in sect 3.3. In this way, a fuzzy sample containing 36 historical

floods is combined with a non-fuzzy sample containing the measured peak annual discharges from

the available instrumental period (1869-2010). During the historical period (from 1256 to 1867), the

flood perception threshold is considered to have varied four times, given the kind of evidence and

sources presented in Wetter et al. (2011). Until the year 1500, the threshold discharge is taken as

5611 m3s−1, from 1501 to 1650 as 5261 m3s−1, from 1651 to 1780 as 4816 m3s−1, and from 1781

to 1868 as 4300 m3s−1. In all four cases, the perception threshold is taken as the lower bound for

the smallest fuzzy discharge during each sub-period.

It is reported in Wetter et al. (2011) that two important river diversions reducing the magnitude

of floods at Basel took place in the years 1714 and 1877. In the same study an average peak

discharge reduction of 630 and 900 m3s−1 was assessed via hydraulic modelling for only one and

the two diversions simulataneously. In order to apply the fuzzy Bayesian inference framework

described in sect. 3, the entire time series has been harmonized to present day conditions, simply

by substracting the estimated peak discharge reduction in the corresponding period. The full mixed

data sample (fuzzy and non-fuzzy) is depicted in Fig. 6, with the original time series in blue and

the harmonized version in red.
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Figure 6. Fuzzy sample containing the historical floods (period 1256-1867; membership functions

depicted vertically), together with the systematic peak discharges time series, river Rhine at Basel,

cross section Rheinsbrucke. Timing of the 2 main hydraulic works (river diversions) shown as

vertical dashed lines. Color blue stands for original reported/measured discharges, red includes the

correction due to river diversions.

Figure 7 shows the fuzzy flood frequency curve (different δ-level curves represented by blue

transparent polygons), with its fuzzy 5% and 95% Bayesian credibility bounds (cyan transparent

polygons), resulting from the application of the fuzzy Bayesian inference process described in sect.

3.

Figure 7. δ-level curves with δ = 0, 0.33, 0.66, and 1, for the fuzzy posterior flood frequency curve

(blue polygons) and the 5% and 95% fuzzy Bayesian credibility bounds (cyan polygons) using fuzzy

historical floods for the river Rhine at Basel. Non-fuzzy flood frequency curve obtained from using
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only the systematic data (dark blue dots) is depicted as a red solid line, with 5% and 95%

credibility bounds drawn as red dashed lines.

5.4.2 500-year series based on mixed source evidence – River Werra at
Meiningen (Germany)

The exceptionally good quality historical flood series of the River Werra (in the eastern part of

Germany), that formed the basis of the analyses carried out by Mudelsee et al. (2006), were developed

by Deutsch and Pörtge (2003) (see also Deutsch et al., 2004), based on various types of local sources

(e.g. chronicles, annals, diaries, newpapers, pamphlets etc.). Based on the index classification

methodology provided in Table 1, a 3-scaled flood magnitude classification was obtained. This

series is available in publication in its original, indexed form (see in Mudelsee et al., 2006).

The time series contains a total of 128 indexed floods from the year 1500 until 2003. Systematic

discharge measurments were available for the period 1918-2012, therefore the overlapping period

ranges from 1918 to 2003. For an indexed historical floods time series, as presented in sect. 3.2,

one can include the information about the historical floods in the form of a fuzzy prior probability

distribution. This has been the case for this example, where the fuzzy thresholds, obtained by the

methodology described in sect. 3.3, were depicted in Fig. 5.

Figure 8 shows the results of the fuzzy Bayesian inference process of combining the systematic

flood sample and a fuzzy prior probability distribution containig the information of the historical

flood indices. These results are again in terms of a series of δ-level curves for the fuzzy posterior

flood frequency curve and the fuzzy 5% and 95% credibility bounds (color code as in Fig.7)

Figure 8. δ-level curves with δ = 0, 0.33, 0.66, and 1, for the fuzzy posterior flood frequency curve

(blue polygons) and the 5% and 95% fuzzy Bayesian credibility bounds (cyan polygons) using fuzzy

historical floods for the river Werra at Meiningen. Non-fuzzy flood frequency curve obtained from
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using only the systematic data (dark blue dots) is depicted as a red solid line, with 5% and 95%

credibility bounds drawn as red dashed lines.

5.5 Discussion and Conclusions

The methodology proposed for tranforming historical records into fuzzy numbers representing

peak discharges during historical flood events, has shown to flexible in terms of being able to adapt

to various types of linguistic evidence. In one of the case studies analized, fuzzy numbers for peak

discharges could be obtained from historical records describing floodings reaching certain locations.

The particular kind of descriptions describing the evidences of floodings need to be carefully studied

for each case study before transforming them into fuzzy information, as they can vary strongly

between regions, or even for similar locations different types of historical sources can differ in the

way they report the flood events. The obtention of all the documentary and archival information

usually requires a considerable amount of specialised work, therefore it is recommended to use

historical series already published, assuming that their validity has been checked. Trying to find

a general rule to construct fuzzy numbers from historical information, represents itself a challenge

from a scientific point of view, as the degree of fuzziness present in the records changes from case to

case. In this sense, this paper pretends to show the viability of the particular methodology applied

in the first case study to obtain a fuzzy sample of historical floods, which fullfill the mathematical

requirements to be used in a fuzzy Bayesian inference framework, while or other cases of interest,

the approach might and possibly should be changed and adapted in order to succesfully retreive a

well defined time series of fuzzy historical floods.

For the case study representing the indexed flood time series, a simple averaging approach has

been defined to the fuzzy discharge thresholds between flood classes, but has been done so for

the sake of applicability. The only general requirement of this type of historical flood time series,

is an overlapping period between the historical (i.e. indexed) and the instrumental period (i.e.

with measured peak discharges). In this sense, the approach used for constructing the fuzzy prior

probability distribution with the historical information is more straightforward to generalize to

analogous indexed time series.

The final results for both case studies are presented in terms of a fuzzy estimate of the flood

frequency curve, plus the fuzzy 5% and 95% Bayesian credibility bounds. Analogous studies from the

literature, which combine systematic with historical discharges in a non-fuzzy Bayesian framework,

also report the results in the same terms, but in their non-fuzzy counterparts (see e.g. Gaume et al.,

2010; Neppel et al., 2010; Viglione et al., 2013).

The fuzzy Bayesian inference framework applied for flood frequency estimation in presence of non-

precise historical floods presents two main novelties, if compared with the existent flood hydrology

literature. On the one hand, it allows the inclusion of information about historical floods events

defined by an arbitrary expression for their imprecision, described by memebership functions of

peak discharges. Note that in this study, mainly trapezoidal characteristic functions have been used

for simplicity, but any other analytic expresion giving normalised values between 0 and 1 can be

used. So far in the literature, only precisely known historical discharges, or information about a
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lower and upper bound for historical discharges, was included in formal methods for flood frequency

estimation. Fuzzy modelling offers therefore a higher flexibility in representing all the information

that can be retreived from the historical records via membership functions, than just a lower and

upper bound. This will help to better exploit the information on historical flood events to be

included in the Bayesian framework.

On the other hand, the representation of non-precise historical discharges with fuzzy number,

and their incorporation in the fuzzy Bayesian inference, depicts in an explicit way the propagation of

imprecision from the fuzzy imput (non-precise historical floods) to the fuzzy output (δ-level curves

for the fuzzy posterior flood frequency curve and the fuzzy 5% and 95% credibility bounds), which

has not been reported before in the flood frequency literature. This propagation of imprecision or

fuzziness represents the entire range of possible values that the output (e.g. a fuzzy 100-yr flood

quantile) can take, with different membership values, as opposed to the traditional probabilistic

framework, in which the uncertainty in the inputs (expressed in terms of error probability distribu-

tions) propagates into the outputs. Heuristically, the propagation of fuzziness could be understood

as the propagation of a perfectly correlated error structures, where the input membership functions

would play the role of the input uncertainty distributions. While the overall ranges obtained with

the fuzzy Bayesian inference procedure could not be appropiate for flood design purposes, where

a precise value is required, they give a valuable insight on the effect that the incorporation of

non-precise historical information can have in the flood frequency regime.

Future lines of research related with this study, could include e.g. developing some kind of

formal set of rules or mapping between non-precise descriptions of historical flood events and their

fuzzy numbers, in a similar fashion as performed in the present paper, but in more general grounds,

so they can be applied in a wider variety historical records. These kind of analysis would require

a closer collaboration between hydrologists and environmental historians, exploiting the potential

synergies and feedbacks between the two disciplines.
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Bárdossy, A., I. Bogardi, and W. E. Kelly (1990c), Kriging with imprecise (fuzzy) variograms. I:

Theory, Mathematical Geology, 22 (1), 63–79, doi:10.1007/BF00890297.
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floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence,

Hydrological Sciences Journal, 56 (5), 733–758, doi:10.1080/02626667.2011.583613.

Zadeh, L. A. (1965), Fuzzy sets, Information and Control, 8 (3), 338–353, doi:10.1016/S0019-

9958(65)90241-X.



69

Chapter 6

Summary of results and overall
conclusions

The findings presented in this thesis help better characterize and quantify different facets of uncer-

tainty involved in the flood frequency estimation process. While these different facets of uncertainty

are usually lumped together, the present work aims at throwing light at four well defined sources of

these uncertainties, by analysing the model and data related aspects that constrain them, and by

defining the characteristic spatial and temporal scales under which they operate.

The uncertainties computed and analysed in Chapter 2 of this thesis, will be only applicable in

the case of absence of local discharge data, while the spatial scale at which it has been assessed is

the entire globe. In this sense, the patterns in these uncertainties need to be taken as avergaged

behaviours. The results showed that predictive performance of flood tends to decrease with increas-

ing aridity and tends to increase with increasing catchment area. In particular, index methods are

significantly biased for arid catchments and tend to overestimate the 100 yr floods in the catchments

analysed. Arid regions would therefore need more gauges to capture the temporal and spatial vari-

ability in order to reduce the uncertainties in the estimates, but achieving this is unrealistic in many

arid parts of the world where (due to economic reasons) data density is typically lower than in humid

regions. Methods that are able to exploit the specifics of the region would be needed here. Use of

readily available landscape information, such as erosional patterns, based on the idea of reading the

landscape, may assist in improving the predictions of runoff extremes.

The uncertainites induced by statistical model selection have been assessed on a regional scale,

covering the entire European continent for Chapter 3 and three countries in Chapter 4. In this

context, the quantification of the uncertainty has been expressed in terms of sample variabilities of

L-moments, and has a regional validity, as at-site statistical model choice is subject ot other sources

of uncertainties, given mostly by lack of knowledge in local flood generation processes. The results

for these chapters showed that that the GEV alone can not be considered as a single candidate

for a pan-European flood frequency distribution, being not able to reproduce the entire variety of

hydrological processes leading to the different shapes of flood frequency. The inclusion of information

on the underlying hydrological processes is therefore of high importance in reducing the uncertainty

in the model choice. curves. Furthermore, the results presented Chapter 4 could be seen as a

first attempt at defining a set of âprocess-drivenâ regional parent flood frequency distributions in a

European context. By defining hydro-climatical regional with some prevalence of a given statistical
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model, the facet of uncertainty associated with model selection could be very much reduced.

In Chapter 5, a different facet of unertainty is presented, in term of imprecision of historical data.

Given the new framework presented for extracting that imprecision and propagating it into the flood

estimate, the modeller perception of the non-precise historical records may have a significant effect

in the quantification of this particular kind of uncertainty. So far in the literature, only precisely

known historical discharges, or information about a lower and upper bound for historical discharges,

was included in formal methods for flood frequency estimation. Fuzzy modelling offers therefore a

higher flexibility in representing all the information that can be retreived from the historical records

via membership functions, than just a lower and upper bound. This will help to better exploit the

information on historical flood events to be included in the Bayesian framework. The propagation

of the modelled imprecision from the historical records to the flood frequency estimate is then

computed in an explicit way, allowing to the modeller to assess the effects of incorporating different

levels of non-precise historical information in the flood frequency regime estimation.

Table 6.1 reports a summary of the general framework developed in the thesis, for identifying

the nature of the diferent facets of uncertainties described, and quantifying them.

Table 6.1. Framework developed in this PhD thesis for characterising and quantifying uncertainty

components in flood frequency estimation.

The results presentd in this thesis have implications for both hydrological science base knowl-

edge, and applied engineering hydrology. On the one hand, linking uncertainties in flood frequency

estimation with hydrological and climatological indicators helps identify regions where an improved

hydrological process understanding in needed. For example, for the case of arid regions, both the

uncertainties in prediction of floods in ungauged catchments and the regional uncertainties caused
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by model selection, resulted significantly higher than in humid cathments.

On the other hand, an improved quantification of the uncertainties helps in obtaining more

robust and reliable design decisions and flood risk zones, tasks that belong to the very essence of

applied flood hydrology. For example, by including the information about the historical floods in the

flood frequency estimation, long term features of the flood regime could be captured and expressed,

even in a non-precise way in terms of the fuzzy estimates for flood quantiles.
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