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Kurzfassung 

Das vermehrte Verlangen nach individuellen Produkten steigert den Bedarf an 

flexibleren Produktionslinien. Ein zukunftsweisendes System hierfür könnte der 

„Wurftransport-Ansatz“ sein, bei dem sich Roboterarme die zu transportierenden Güter 

gegenseitig zuwerfen. Obwohl auf diesem Gebiet schon viel geforscht wurde, ergab sich bis 

dato noch keine völlig zufriedenstellende Lösung für dieses Transportsystem. Ein neuer, 

biologisch inspirierter Ansatz könnte die Antwort auf dieses Problem darstellen. Wenngleich 

dieses System bereits hinsichtlich seiner Genauigkeit untersucht wurde, so ist die Erforschung 

seiner Echtzeitfähigkeit noch ausständig. Diese Arbeit zeigt, dass die Detektion des Balls und 

die Vorhersage seiner Flugbahn schnell genug durchführbar sind, um das Kamerasystem bei 

einer Bildwiederholungsrate von 130 FPS arbeiten lassen zu können. Mit Hilfe einer NVidia 

GTX 560 Ti GPU ist es möglich gewesen, alle nötigen Berechnungen hierfür, in 

durchschnittlich, unter 7,7 ms durchzuführen. Für Bildwiederholungsraten von über 85 FPS 

wird jedoch ein Puffer benötigt, der selten auftretende Rechenzeiten von bis zu 11,7 ms 

kompensiert. Darüber hinaus zeigen die Resultate ebenso ein um das 3,46- bis 7,17-fach 

schnellere Ausführen des implementierten Programmes, wenn anstelle einer CPU eine GPU, 

für die nötigen Berechnungen, verwendet wird. Basierend auf diesen Resultaten können nun 

weitere Forschungen angestellt werden, um die Zuverlässigkeit und mögliche Einschränkungen 

des Systems zu untersuchen. Etwaige zukünftige Programmänderungen, im Zuge weiterer 

Forschungen, könnten zu längeren Ausführungszeiten führen. Jedoch ist es möglich, diese 

unter Verwendung einer aktuelleren GPU oder mit Hilfe einer Rechenschrittaufteilung auf 

verschiedene GPUs zu kompensieren.  
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Abstract 

Advanced personalized customer needs and requirements lead to the demand for more 

flexible types of production lines. One trendsetting system apt to replace the old and static 

conveyor belt could be Transport-by-Throwing, which consists of robotic arms throwing 

objects to each other. Much research has been carried out in the field of robotic catching, but 

more needs to be done to meet the challenges involved. Despite many novel approaches, no 

fully satisfactory solution to catching a ball has been developed so far. A new approach that 

deals with this problem in a biologically-inspired way could be the answer. While it has 

already been proven that such a solution can lead to accurate results, its real-time constraints 

have not been examined. This thesis shows that computing ball detection and flightpath 

prediction can be done fast enough to capture the scene with a frame rate of 130 FPS. With 

the help of a NVidia GTX 560 Ti graphics processing unit, it was possible to execute all 

necessary calculations for the predictions in less than 7.7 ms on average. Because of 

maximum times of up to 11.7 ms, a small buffer is required for frame rates over 85 FPS. The 

results here demonstrate that the use of a GPU greatly accelerates the entire procedure and 

can lead to executions 3.5 to 7.2 times faster than on a CPU. Based on these results, further 

research can be carried out to examine the prediction system’s reliability and limitations. 

Possible changes in the algorithm that lead to additional demand for computational power 

can be made when using a newer GPU or distributing the tasks on different GPUs. 
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1. Introduction 

In 1886, Carl Friedrich Benz presented the first automobile to the public [1]. At that time, 

the far-reaching impact of this invention was beyond imagination. Not only have the pace of 

human society and the interactions among people become faster and more flexible through 

eased mobility, the entire industry has been radically transformed by the advent of cars. In 

the early days of the automobile, each unit was handmade, one at a time. This would be 

downright unimaginable in today’s automotive market. This pivotal change to the 

automotive industry came in 1913 when Henry Ford revolutionized his factory through 

assembly line work [2]. For the first time, it was possible that workers could work 

simultaneously on several cars. With his idea, Ford transformed the entire concept of 

manufacturing, making it possible to raise manufacturing efficiency. The invention of the 

assembly line led to the conveyor belt, which eventually became fully automated. However, 

the idea of using a continuous transport system is not new; it was first conceived by Oliver 

Evans who lived in the early 19th century [3]. Nowadays, most factories are equipped with 

these fully automated transport systems to speed up production. With this fast 

transportation and robot-assisted assembly, it is possible to produce annually about 83 

millions cars [4]. Due to the transportation of passengers and goods as well as ease of 

communications today, people’s life is becoming faster and more flexible. As a result of these 

changes, customer needs and requirements are becoming increasingly personalized in almost 

all product fields. Thus, manufacturers have to produce a lot of products that are similar, but 

not completely the same. The use of automatized fabrication processes leads to cheaper 

production costs and more precisely manufactured products. The challenge consists in finding 

a solution that allows enhancing the variabilty of products without losing the price advantage 

of mass production [Pon09, 1]. This could be summarized with the term mass 

customization [5] and describes the conflict between two requirements in manufacturing: 

automation and flexibility [GH03, 2]. Hence, a demand for other more flexible types of 

product lines already exists. As the economy becomes increasingly fast-paced and more 

flexible, there is a need for exchangeability in technical and manufacturing environments, 

such as a flexible and easily reconfigurable product line. 

1.1 Motivation 

Since not every personalized product passes through the same production stages, the 

currently used static conveyor belt no longer matches the application profile. There are 
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already approaches to solutions for a replaceable production line, including appliances such as 

transport carts and trollies that can carry goods autonomously from A to B. As a result, it 

has become possible to eliminate the necessity of navigating through the same production 

stages each time. The transport route is adaptable and the goods can be carried to the 

stations as needed. Drawbacks of such solutions include the slower velocity of locomotion as 

well as the lack of facilities for easy reconfiguration and rerouting. Such a modification would 

cause long production breaks, which prohibit a high-load output. [Pon09, 1] 

Werfen Fangen

Trajektorieprognose

Beobachten

Trajektorie-Prognose

Throwing Catching

Trajectory 

predicton

Tracking

 

Figure 1: The Transport-by-Throwing approach deals with robot arms that throw and catch goods. 

The picture shows the transportation of an object from the left station to the right station. [PP12, 2] 

Another solution for this rising demand for individual products is represented by the 

Transport-by-Throwing approach, which facilitates changing routes or even the whole 

production line. Through the frequent use of robots [6], it seems obvious to develop a system 

that would be based on robot arms that pass their payload: one throws it and another one 

catches it (Figure 1). This passing is being repeated until the transport good reaches its final 

destination in the production process, similar to communication networks with hop-by-hop 

routing [PP12, 2]. A system like this would be a lot sleeker than a conveyor belt that runs 

through the whole industrial hall. Furthermore, it would be extremely flexible because 

different objects could be conveyed to various stations. It would be much easier to adapt to 

different circumstances; which means that a reconfiguration of the transport route would not 

stop the whole production as is the case with transport trollies and conveyor belts [Pon09, 1]. 

Avoiding idle periods not only saves time and money, the transport system would be the 

fastest way to transport goods from A to B [BFP09]. The only requirements for the setup of 

the robot arms would be the communication between them. Hence, the robots would only 

have to exchange information about their location and the production steps done at their 

places. 

In addition to the flexibility and lack of fixed transport routes, another big benefit of this 

solution would be the increased availability of the whole transport system. This is again 

similar to communication networks in that a drop-out of one station can be masked through 

bypassing the goods with the help of other devices [BFP09]. As shown in Figure 2 above, the 

drop-out of station B leads to a transport route A-D-E-C instead of A-B-C. 
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Figure 2: A drop-out of station B could be masked through bypassing it with the help of stations D 

and E. 

It would be mistaken to assume that this solution is applicable only in manufacturing 

processes; indeed, it also could be used in supermarkets to stock goods anywhere in the store 

and place them on the shelves in the appropriate location. Another application could be the 

sorting of letters and parcels in a post office. The Transport-by-Throwing approach could be 

applied in almost every field where humans can throw things to each other to get them to the 

right place. [Pon09, 69] 

1.2 Problem statement 

Much research in this field has been carried out previously, including computer vision, object 

detection, and Transport-by-Throwing in general. Interest in such an approach to 

transportation should not be confined to universities wishing to demonstrate robot technology 

for academic purposes, but is of interest to industry as well [PP12, 1]. Despite many novel 

approaches, a fully satisfactory solution has not yet been developed. The approach that is in 

focus of this thesis shall solve the problem of catching in a biological way. For this purpose, 

predictions of trajectories shall not be forecasted by physical laws and calculations as is done 

in many other studies [FBH01][HS91][HS95][YLJ10]. The goal is to prognosticate the 

flightpath by benefitting from already gathered practical experiences [PKH10]. Think about a 

child who is learning to catch a ball. It does not contemplate about physics when trying to 

catch. A child only learns from its experiences: after numerous failed attempts, it will be able 

to catch an object in the right way. By analogy, many flightpaths from thrown objects were 

recorded and saved in a trajectory database. If an item flies to a catching robotic arm, the 

flight parameters such as distance, velocity, and flight altitude, shall be measured and 

compared with the already known trajectories in the database to enable a prediction about 

this actual throw. 

In addition, it is very important to catch the object in a soft manner. That means that the 

robot arm follows the object’s trajectory for a short while after grabbing it. That way of 

proceeding, the bulk of kinetic energy should be dissipated to catch the object safely and 

softly. On the other hand, hard catching would involve a robot arm waiting at the right 

interception position followed by grabbing its target without following its trajectory. The 

forces originating from this sudden deceleration can harm the object or destroy it altogether. 

[PP12, 3][PMB13] 

Pongratz wrote in his diploma thesis [Pon09, 65] that it is possible to develop such a 

transport system, however, the real-time constraints have not been examined until now 

[PKH10]. Not only is accuracy important, the system also has to be fast enough to catch the 
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ball [Pon09, 52]. Image processing as well as comparison of the determined data with all the 

numerous database entries require a huge number of calculation steps. If calculating takes too 

much time, the object will pass the interception point before the robot arm moves in its 

direction. In this scenario, the thrown object would make impact with the ground and could 

be harmed by incidental forces. To manage the massive amount of computation in a short 

period of time, usage of a GPU (“Graphics Processing Unit”) is an obvious option. Such 

hardware has a massively parallel architecture and can perform many computational steps 

very fast. For a GPU it is normal to have 4 to 120 multiprocessors, which have again 

between 16 and 48 cores (Figure 3). [CUD14, 191][OCL09, 51] 

Control
ALU

ALU

ALU

ALU

Cache

DRAM

CPU

DRAM

GPU  

Figure 3: A CPU with four ALUs (Arithmetic Logic Units) and a GPU with eight multiprocessors are 

to be seen. Each of these multiprocessors has 16 cores. A program which runs on a GPU could be 

accelerated a lot through the massive parallelism of this device. Modified from [CUD14, 3] 

That brings up some questions that will be answered in theframework of this diploma thesis: 

 Does the use of a GPU reduce the time needed to compute a flight prediction?  

 Is it possible to achieve a frame rate of 110 fps?  

 Which developement platform should be used to implement the program?  

Besides performance check and comparison between similar flight forecasting programs on a 

GPU as well as on a CPU, this thesis will deal with different implementations of different 

program parts. 
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2. Related Work and State of the Art 

For almost 25 years, scientists have been trying to develop robots that can catch objects. 

Throughout this entire period, catching a ball was the challenge or benchmark for developing 

robots and testing other key technologies [BSW11]. Such a system can be assessed by its 

catching rate, which is the proportion of caught to thrown objects or conversely, by quoting 

the percentage of dropped objects, the so-called dropping rate. [Pon09, 14] 

There has been a lot of research in the various fields of this project: apart from the subject of 

Transport-by-Throwing, also the use of a GPU for General Purpose Computation, object 

detection, and object recognition has been studied. For this thesis, some studies are more 

important than others, but in the following subchapters these themes will be introduced and 

briefly discussed. Furthermore, results of other research will be shown to provide an idea 

about the various strategies, changes, and trends in the last three decades. 

2.1 Transport-by-Throwing 

While there have been a large number of publications on Transport-by-Throwing [BWH10] 

[HS91][HS95][NIN97][FBH01][RA02][NI03][MHM04][SC07], it has only recently become a 

focus of scientific research. Proposed by Frank [PKH10] in 2010, this topic has gained 

momentum at the Vienna University of Technology.  

In summary, a robot has to know how the object is moving in space and time to enable the 

arm to catch it. To meet this challenge, it is necessary to know how the object will move in 

order to correctly position the robot arm. The concept of this type of transport includes four 

different activities that have to be performed more or less consecutively: Throwing, Tracking, 

Prediction, and Catching. [PP12, 3] 

2.1.1 Related work 

Flightpath forecasting has enjoyed much attention long time before Transport-by-Throwing 

came into the focus of reseach. As aforementioned, the Transport-by-Throwing approach 

would be interesting for industrial purposes, but at this point in time, research is only done in 

academic fields [PP12][PMB13][PKH10][MPD14]. At the turn of the millennium, the situation 

was similar regarding the studies of Namiki and his colleagues [NNI99][NI03][NII03][INH04] 

from the University of Tokyo. These applications have not the aim to transport goods by 



Related Work and State of the Art 

 6 

throwing and catching, they only should demonstrate the skills of robots [PP12, 4]. The 

system was equipped with a low-resolution black-and-white vision system, which worked at 

1000 frames per second. Namiki’s team constructed a three-finger hand to grab objects, and 

they implemented a special algorithm for tracking these items and holding them in the center 

of the image. This algorithm was tailored for this application and, therefore, is not 

comparable to other algorithms that are made for tracking objects [INI96]. While [NII03] 

enabled the robot hand to catch foam balls and foam cylinders, [SNI05] was about dribbling a 

ball on a plane ground. Although not all of these papers directly pertain to the Transport-by-

Throwing approach, they demonstrate the skills of robots and connect the field of computer 

vision with that of mechanized interacting. Therefore, they constitute the basis for further 

researches in this sector like those summarized below. 

In 1995, Hong and Slotine from the Massachusetts Institute of Technology published a 

paper [HS95] about the topic of robotic catching. The goal of this research was the 

implementation and improvement of the Hand-Eye Coordination. In this connection, a 

robotic arm should catch a ball, which was thrown over a distance of about 1.5 to 2.5 meters. 

The system they created was based on a simple parabolic function, into which the ball’s 

trajectory was fitted. Therefore, the estimation unit needed two points from the trajectory of 

the actual throw to be able to evaluate the movement of the object and to predict the further 

pathway. With less than two of these points, it would not be possible to calculate the vectors 

of velocity and direction [HS91, 383]. The prediction unit received this important information 

about the trajectory from a two-camera system, which consisted of CCD (Charge-Coupled 

Device) video cameras with a baseline distance of 0.8 m between them. The researchers did 

not use a throwing device for tossing the specially painted ball, but a person threw it with an 

under-hand toss. The ball flew approximately for half a second in the air and was localized 

through color BLOB detection. For this purpose a simple BLOB detector vision 

board [Wri93, 3] was used, which compared the input frames from the two color cameras with 

a color histogram to display the location of the specially painted ball. The success rate of 

catching the balls ranged between 70 and 80 percent, and the longest run was 14 consecutive 

successful catches. In addition, this was the first instance of robotic catching in a soft way. 

Catching the ball was only possible if the prediction resulted in a deviation from the 

inception point not larger than 1.5 cm and a variance of timing less than 5 ms. Their aim was 

not to develop a perfectly working complete system, but to establish a basis for further 

research. [HS95, 1] 

Additionally, they provided with their research another important insight and proposed that 

the unsuccessful or abortive attempts at catching were caused by noisy data. Insufficient 

compensation of time delays as well as bad exposure leads to such noise in the data. In this 

context, they wrote about the problem of alternating lighting conditions during the flight of a 

ball: When the ball gets closer to the light source, the reflections of light on the ball are 

considerably larger than when it is further away. [HS95, 8] 

In 2001, Frese, Bäuml, and other colleagues of the Institute of Robotics and Mechatronics at 

the German Aerospace Center published a paper [FBH01] on their solution of a catching 

robot arm. The project’s goal was to develop a well working catching system made out of off-

the-shelf hardware as all of the previous studies [And98][HS91][HS95] had made use of special 
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hardware, which is usually very expensive. In order to create a low-cost system, they used 

two standard PAL video cameras in a stereo vision configuration. They were vertically 

positioned with a baseline distance of 1 meter and enabled a localization of the thrown ball 

with a precision of about 3 cm. The captured images were sent to two standard frame-

grabber cards, which digitalized and forwarded them to a computer with a 300 MHz Pentium 

II processor. The captured frame was compared with the background of the scene to detect 

the ball. If the difference between a pixel of the recorded frame and that of the background is 

larger than a previously set threshold, then it can be identified as belonging to the ball. A 

Kalman filter was used to track the ball and predict the further flightpath taking into 

account the air drag. The work was presented at a fair in Hannover and various guests were 

invited to throw balls to the catching device. Of approximately 100 throws, two thirds of 

these balls were caught. The main reason every third ball was dropped was due to the 

coverage of the cameras as throws that partially went beyond the captured scene led to a late 

prediction and caused many faults. Three problems had to be dealt with using off-the-shelf 

hardware. Firstly, they had to handle interlaced frames from the PAL cameras. Secondly, the 

implemented program had to use the MMX (Multi Media Extension) instruction set to make 

the processor more efficient by working on more pixels simultaneously. Thirdly, the limited 

memory bandwidth of the CPU led to huge performance losses. To circumvent this drawback, 

comparison was only done with a small subframe, called Region of Interest, which constituted 

2 and 40 percent of the entire image. [FBH01, 1623ff] 

Almost one decade later, in 2010, Bäuml presented another paper [BWH10] with a similar 

setup as his previous study [FBH01]. The differences were the higher computational power 

provided by a 32 CPU big cluster as well as the use of a robotic arm coupled with a hand of 

four fingers. The main challenge was to grab the flying object in the right moment with the 

claw and preserve the DLR-Hand-II [BGL01] from getting harmed by the impact forces of the 

throw. In this context, there were three different catching modes: soft, latest, and cool. With 

the reuse of the Kalman filter, it was possible to achieve a success rate of over 80 percent for 

the soft and latest mode. [BWH10, 2592ff] 

The last point in this subchapter is the research [PP12] carried out by the KOROS Initiative 

at the Vienna University of Technology and constitutes the basis of this work. A KUKA 

LWR 4 robot arm is available for testing different approaches. For studies in this field, it is 

of particular interest to use state-of-the-art equipment to ensure a cheap solution that is 

affordable for industry. Furthermore, a solution involving a soft catching strategy is at the 

center of attention to minimize the forces occurring when catching the object [PMB13]. 

Again, it is a tennis ball that will be fired by a coil-based throwing device that stands about 

2.5 meters away from the catching robotic arm. A stereo vision-based detection shall create a 

prediction as accurate as possible for the ball traveling at approximately 5 m/s. The bio-

inspired approach, which implies a comparison with recorded reference trajectories of thrown 

objects, enables such a manner of transportation and considers these constraints. This 

solution is the base of this master’s thesis and will be explained more detailed in 

Subchapter 2.2.7. [PP12, 2, 5] 
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2.1.2 Throwing, catching, working area, and interception point 

Obviously, before an object can be caught, it has to be thrown. The catching device must, 

therefore, know the trajectory of the thrown object and the best interception point. To create 

a forecast of the flightpath, it is important to recognize and locate the object. Different 

techniques to obtain a prediction of the trajectory will be shown in the following Section 2.2. 

While throwing will not be part of this thesis, it will still be briefly introduced to help 

understand the topic as a whole. During its launch, the object will be accelerated until it has 

gathered enough speed to negotiate the way from the sender to the receiver [PP12, 3]. In 

addition to the speed with its underlying acceleration, the throwing direction, too, must meet 

certain requirements. When looking at the xy-plane (left side of Figure 4), the operation area 

of such a robot arm looks like a circle with the catching device placed in the middle. When 

looking at the yz-plane (right side of Figure 4), the area where the robot arm can interact 

looks like some sort of circle. Considering the 3D view, this leads to a sphere-like working 

zone where the catching device can grab the object. Furthermore, it is important to clarify 

that this zone does not necessarily have to look exactly like that; it solely depends on the 

robots construction and movement. Not every robot has to have a spherical leeway of 

movement! The shape of the area as shown in Figure 4 shall only serve for the better 

understanding of the following explanations. 

z

y
x

y

xz

flightpath

maximum radius

minimum radius

flightpath

 

Figure 4: On the left side is the operation area of a robot arm viewed on the xy-plane, on the right side 

on the yz-plane. The ball can only be caught when it flies through the robot’s working area. Modified 

from [HS95, 5] 

The inception point where the thrown object touches the catching device must be in the 

working area of the robot. If it is beyond the reachability of the catching unit, the robot will 

not be able to catch it. That raises the question of the correct direction, in which the object 

should be thrown. Evidently, the flightpath must pass through the section between the two 

red lines on the xy-plane (Figure 4, left). Additionally, there is one fact to consider regarding 

the soft catching strategy. If the flightpath runs close to the borders of the robot’s working 

area, the object’s trajectory is likely to be traced less accurately. Additional forces that will 

come with such redirection will impact on the object and have to be taken into account as 

well [PP12, 3]. 
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Flight altitude and distance are also very important for transportation and direction (Figure 

4, right). As previously mentioned, the initial acceleration has to be set to a value high 

enough to provide a velocity, needed to traverse the desired range considering the set 

throwing angle. To catch the ball is theoretically possible when the flightpath runs through 

the operating zone of the catching device [HS91, 382]. On the other hand, acceleration and 

velocity must not be so high that the thrown object overflies the catching zone or possibly 

even damages the catching robot or the object itself. They might also get damaged when the 

thrown object weighs too much to be grabbed safely by the robot. 

2.2 Prediction of the object‘ s trajectory  

Predicting the future was always a desire and a great challenge for humans [Pon09, 11], be it 

the weather forecast [7], which interests the general public, be it rocket ballistics, which is of 

military interest. A prominent example of the second case is the Iron Dome [8], which is used 

in the Israeli military defense system. If a missile flies in Israel’s direction, this guard system 

will track the flightpath of the launched rocket to predict its further flight and destroy it 

with own rockets. If the prediction of the enemy’s missile projectile is accurate, it will be 

destroyed by the Iron Dome, hereby eliminating danger for the country. If not, the rocket will 

plunge to the ground and hit something or someone. 

To successfully catch a thrown object, it is necessary to have a system that estimates the 

object’s trajectory. This prediction unit has to “know” the movement of this object, which 

means that its trajectory must be observed [BFP09]. To understand the ball’s movement in 

space and time, a 3D view of the surrounding area is indispensable, therefore, most of the 

projects handle this challenge with video-based systems. There are solutions with single-

camera- [BFK08], two-camera- [PKH10][INI96][NI05][INH04], and multiple-camera-

systems [BSW11]. 

inception point

throwing point

tflight

testimate

 

Figure 5: The ball is flying from left to right and after a few captured positions of it (done after 

testimate), the further flightpath can be estimated. 

In the majority of researches, the basis for obtaining a prediction of the ball’s trajectory is 

the same. The ball will be localized through a stereo vision system to determine its movement 

in the 3D space [SPV05][BWH10, 1]. After the time testimate all necessary information of the 

ball’s movement is known (Figure 5) and a first forecast for its further flightpath will be 
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made [HS91, 383]. The duration testimate depends on the method of predicting and the whole 

setup of the vision system. Accuracy of the prediction, too, depends on these two facts and 

determines whether the catching will be successful. 

For reasons of simplification, all works so far have only dealt with highly symmetrical (point-

symmetrical or axial-symmetrical) objects [HS91][HS95][FBM08][BFK08][FMS09][BFP09] 

[PKH10]. Subchapter 2.3 describes different kinds of object detection and shows that it is 

much easier to detect symmetrical objects such as a tennis ball or a cylinder. When 

complexity rises, requirements for the object detection unit will also increase [PP12, 4] and 

necessitate a higher development effort as well as a longer computation period [PKH10]. 

Therefore, this work deals with the forecasting of the trajectory of a thrown tennis ball to 

avoid additional difficulties. 

2.2.1 The importance of timing 

The term “catching” describes the process of controlled decelerating of a thrown object by the 

catching device, no matter the manner of catching: soft or hard. Whether the object is fixed 

after touching, lands in a basket, or is only held by friction is irrelevant here and depends on 

the construction of the robot. [PP12, 3] 

 

tflight

testimate + tmove

inception pointthrowing point

robot‘s idle 

position

 

Figure 6: The ball takes the time tflight in order to traverse the distance from the throwing device to the 

inception point. To move the catching device of the robot arm to the same point, two things are 

necessary: estimating the location of the inception point and moving the robot to this position, which 

need testimate respectively tmove. 

The working area of the catching device depends also on the swiftness of the arm’s 

movement [HS91, 381] and its starting point as well as on the moment when the prediction of 

the flight appears. Catching will fail when the flight estimation arrives too late or the 

distance of the robot’s idle position to the interception point is too far for it to reach in time. 

In a nutshell, there are three periods of time that affect the outcome of a successful transport: 

tflight, testimate, and tmove. The thrown object will only be caught if the following condition 

(shown in Equation 2.2.1) is fulfilled. In other words, the time needed for estimation plus the 
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time taken to move the robot arm to the inception point have to be less or equal to the 

duration of the flight (Figure 6). If this condition is not fulfilled, the robot arm will arrive too 

late at the correct position, therefore, the ball will be missed. 

flightmoveestimate ttt    (2.2.1) 

2.2.2 Demand for a reliable prediction 

Catching would simply not work without a prediction. In other words, grabbing the thrown 

object is possible only when the forecasting is more precise than the coverage of the catching 

device [PKH10][FBW07]. Table 1 shows that the flightpath of such a ball will be influenced 

by several forces, which can be classified into two groups: mass forces and aerodynamic 

forces [9]. 

 

mass forces aerodynamic forces 

gravity drag 

coriolis force lift 

centrifugal force magnus 

 pitch damping 

 transversal magnus 

Table 1: These two groups of forces influence the flightpath of a thrown object [9]. 

Although the effect of some of these forces on the trajectory of the flying body varies in 

significance, they each have an effect. Consideration of these forces thoroughly depends on 

the chosen method of predicting. However, there are more than these ascendancies influencing 

the trajectory of the thrown ball: local air flow, different air density, and differences of flying 

properties of different objects [Pon09, 2]. Even small variations in the manufacturing of such 

a ball or in the launching speed of the throwing device can modify the trajectory significantly. 

[PKH10] 

After the tennis ball is discovered and its movement known, different algorithms can 

calculate its further course. However, a proper model that well describes the monitored 

behavior has to be found to enable a reliable prediction. If the model describes the movement 

of the ball not good enough, it has to be revised or replaced by another. When the model 

accurately depicts the behavior, the further flightpath can be predicted in an acceptable way. 

[Pon09, 11] 

2.2.3 Physical-based predictions 

The most logical choice of an approach for predicting the physical behavior of a flying object 

would be a physics-based model. The simplest of these would only involve the impact of 

gravity, which forces the ball to fall towards the ground. The velocity vector of the thrown 

object consists of three particular vectors in different directions (Figure 7). The advantage of 

this model is its simplicity since it calculates all velocity vectors separately. 
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Figure 7: The object’s velocity can be described by its three components. 

Equation 2.2.2, Equation 2.2.3, and Equation 2.2.4 show the velocities in the different 

directions while the ball is in the air. Gravity only affects the object’s movement in direction 

z. Therefore, velocities in direction x and y absolutely correspond to the initial velocity, 

which came from the throwing device in direction x and y. For calculating the position of the 

object in the x, y, and z direction for a given time, Equation 2.2.5, Equation 2.2.6, and 

Equation 2.2.7 are necessary. But the simplicity of this model is not only an advantage, it is 

a drawback as well. On the one hand, the calculations are so easy that the model does not 

need much computational power, but on the other hand, it neglects far too many influencing 

variables for predicting the trajectory in an accurate manner. [Pon09, 11] 

  0xx vtv    (2.2.2) 

  0yy vtv    (2.2.3) 

  tgvtv zz  0   (2.2.4) 

  tvxtx x  00   (2.2.5) 

  tvyty y  00   (2.2.6) 

  2
00 tgtvztz z    (2.2.7) 

Aerodynamic forces are not linear and, therefore, it is not possible to separately 

calculate the three components without further simplifications [PKH10]. These 

simpler equations (Equations 2.2.8, 2.2.9, and 2.2.10) make it possible to calculate the 

three directions separately [BFK08]. However, they result in minor mistakes, which 

depend on the proportion of the velocity components (vx, vy, and vz). [Pon09, 13] 

[PKH10] 

2

x

x

x
x v

v

v
kv   (2.2.8) 
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v
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y 
2  (2.2.9) 
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kv   (2.2.10) 

2.2.4 Trajectory Fitting Model / Polynomial Model 

If the parameters of the object launch such as its velocity, direction, etc. are not known, it 

will only be possible to evaluate the flight regarding its movement in space and time. Since 

the trajectory depends on these parameters, they are implicit in this progress of movement. 

Therefore the first step is to record the various object’s positions during its flight (Figure 5). 

Afterwards, a polynomial function (Equation 2.2.11) can be fitted into the measured data in 

the best possible way. Indeed, the polynomial model is the simplest approach of all. 

n

ni tptptppp  ...2

210  (2.2.11) 

An example for a solution to finding such a polynomial function like the one described in 

Equation 2.2.11 is shown in Equation 2.2.12. This error function should be as small as 

possible, which means that the smaller E(p) is the better fitting of the chosen polynomial 

function in the captured trajectory [Pon09, 13]. This approach to finding an appropriate 

function is called Method of Least Squares and was formulated by Joseph-Louis 

Lagrange [10]. 

    



N

i

ii fxppE
0

2
 (2.2.12) 

In theory, order n of the polynomial function determines how closely it fits to the trajectory 

of the flying object [PKH10]. In testing this approach in the field, it was recognized that a 

function of third-, fourth-, or higher order barely provides a better result. Indeed, functions of 

higher orders tend to be unstable at higher frame rates of the captured scene [PKH10]. 

According to paper [PKH10], a second order function is a good compromise between 

sensitivity and a stable behavior. 

2.2.5 Kalman filter 

Another approach is the dynamic model, which uses a Kalman filter for predicting the next 

steps. Two steps are alternately carried out when using the Kalman filter: a predicting step 

and an updating step (Figure 8) [11]. 

Time Update
(„Predict“)

Measurement Update
(„Correct“)

 

Figure 8: The Kalman filter consists of two steps that are processed alternately. Modified from [11] 
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Since the “normal” Kalman filter does not involve non-linear influencing variables, the 

estimation of the flightpath is not sufficient for our purposes. One remedy of this drawback is 

the use of the extended Kalman filter [11][12], which is able to consider those non-linear 

effects. However, it contains Jacobian matrices that are sometimes hard to calculate. 

Therefore, the process is not always reliable. Furthermore, the algorithm is hard to 

implement and presents a very sophisticated task for computation [11][12]. These big 

disadvantages led to the development of another approach to predict through using the so-

called Unscented Kalman filter. With its faster computation, this algorithm is the better 

choice for estimations of real-world problems [JU97, 2]. Nonetheless, this algorithm does not 

offer the perfect solution as well: it assumes a random Gaussian variable, which does not lead 

to an adequate calculation of all the different problems [VSH04, 1]. 

2.2.6 Comparison of the presented models 

In the direct comparison between physical and polynomial models, two different assertions 

were made. Various works and papers [Pon09][PKH10] suggest that the polynomial model 

performed the worst. The physical approach performed better, but slightly worse than the 

separated physical model that consider the non-linear effects. However, they still do not 

provide the perfect solution. Most recent works that deal with catching flying objects have 

been based on solutions with a Kalman filter [FBH01][BWH10] or a physical model 

[FBH01][BFK08]. A direct comparison between these two methods of prediction was not 

found, but as previously stated in Section 2.1.1, no study achieved perfect results, regardless 

of the model used. The best results achieved a success rate of about 80 percent, which is high 

but not high enough to be considered a consistent catching device! Although some models 

consider more factors affecting the flightpath, none of the methods take into account all the 

leverages that play a role in modeling such a flightpath. 

magnus force

 

Figure 9: The spin of a ball can greatly affect its flightpath. Modified from [13] 

For example, the spin of an object is not being considered in most models. The throwing 

device is responsible for the rotation around the thrown ball’s own axis (Figure 9), which 

leads to the flight-path-changing Magnus Effect. A low speed spin means a slow rotation of 

the ball and can be neglected in most cases1, whereas a high-speed spin has to be considered 

[ATW07, 327]. The spin of a tennis ball in some test scenarios was about 1000 min-1 and 

therefore it has to be considered for a successful capture [PKH10][ATW07, 326]. Figure 10 

demonstrates this issue by means of a table tennis shot. 

                                                 
1 This only applies for point-symmetrical objects like a ball. 
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TOPSPIN SHOT

UNDERSPIN SHOT

FLAT SHOT
 

Figure 10: The spin of a ball greatly affects its flightpath. Top spin means the ball is spinning forward 

and leads to its rapid descent. If the ball is hit with an underspin, it behaves the other way round. 

Modified from [14] 

For a stereovision system, measurement of such a spin is very difficult, sometimes almost 

impossible, and its influence on the flighpath varies because of production variances from 

tennis ball to tennis ball [PKH10]. Therefore, it is important to search for other solutions to 

consider this effect in the prediction progress to enable a reliable estimation system. To 

improve the throwing device or only use flat and hairless balls would not solve the problem, 

but it would lead to better results [Pon09, 68]. For example, while a table tennis ball is flat 

and hairless, its trajectory is still affected by the spin given by the bat when playing it 

(Figure 10).  

In addition, a catching device should be in a position to catch all kinds of objects, regardless 

of the throwing device used. Hence, there is a demand for another model, which will be able 

to handle all these influences. The diploma thesis of Pongratz [Pon09, 68] must be mentioned 

in this context. Following a summary of the different models, a vision of a future model, 

whose approach will be to compare the captured flightpath with a small set of earlier recorder 

reference trajectories, was presented. 

2.2.7 Bio-Inspired approach / k-Nearest Neighbors algorithm 

This method represents one of the newer approaches in the field of Transport-by-Throwing 

research and is very similar to the way a human catches something in motion. Hence, this is 

the biological approach based on experiences such as a child improving his ball-catching 

skills. With each attempt at catching it, another experience with the ball’s movement will be 

ingrained in the child’s memory. Analogously, numerous flight trajectories have been 

recorded and stored in a database. When an object is flying towards the catching device, the 

parameters of its flight will be captured and compared with a set of stored reference throws 

to enable a prediction about the trajectory as well as the point where it can be caught 

[PP12, 6]. 

The wealth of experiences of the catching system significantly determines the quality of 

prediction and the results obtained. All the factors influencing a flightpath can be 

theoretically taken into account when the trajectory database is sufficiently comprehensive. 

Not only will gravity and air drag be considered, the Magnus Effect, which is caused by the 
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spinning of the ball, receives attention as well. To find a well-fitting trajectory by comparing 

the actual flight with the entire database, a k-NN (k-Nearest Neighbors) searching algorithm 

is used [MPD14]. This method was primarily used for the assignment of pattern classification 

in the field of computer vision [CH67, 1] and later for a time series forecasting as well 

[Yak87, 235]. 





k

i

ix
k

y
1

1
 (2.2.13) 

To predict the further flightpath of the actually thrown ball, the average of the k best fitting 

trajectories from the database is calculated [AC13,  1]. This procedure is shown in 

Equation 2.2.13 where y is the output flightpath and xi is one of the k best fitting trajectories 

from the database. 

Besides this “normal” k-NN approach, there is also another method where the k chosen tracks 

are weighted by means of their resemblance to the actual flightpath (Equation 2.2.14). 





k

i

ii xwy
1

 (2.2.14) 

Whereby both below-stated conditions (Equation 2.2.15) have to be fulfilled:  

10&1
1




i

k

i

i ww  (2.2.15) 

To get a better understanding of this method, a simplified example will be explained: Imagine 

that the flightpaths are only two-dimensional and the parameter k is equal to 2. With these 

simplifications, the trajectories would look similar to the ones in Figure 11. Furthermore, 

imagine that curve C is the trajectory of the actual flying object whereas tracks A and B are 

the most similar matches from the database. The fact that the new trajectory is between 

those two sheds light on its further movement and permits the calculation of the point where 

the ball will land [MPD14]. 

 

Figure 11: Flightpaths in a 2D aspect would look like these [MPD14]. 
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A possible simplification of the design would be a consequence of neglecting some of the 

influencing factors when projecting the captured points on a 2D plane. It can be called Plane 

of Flight and is collinear to gravity and the speed the object gets at its launch [MPD14]. 

Figure 12 shows an optional object coordination system stretched between x* and z*, in 

which the Plane of Flight could lie. The results of this simplified approach depend on the 

foreign influences that could cause the flightpath to deviate. However, in general, the 

outcomes of this simplified approach (caused by neglecting some possible forces) will be 

slightly worse than the “normal” one without the Plane of Flight. 

 

Figure 12: The plane of flight is a simplification in predicting [MPD14]. 

Mironov and Pongratz published a work [MPD14] about the implementation of a Matlab 

Code for predicting an object’s trajectory with above-mentioned biological approach. 

Simulations showed that it produces better results than past approaches that were based on 

physical laws, the Kalman filter, or the fitting of a simple polynomial function. It was 

possible to estimate the correct inception point for soft catches in 90% of the simulated 

throws. [MPD14] 

2.3 Object detection and localization 

As previously explained, detection of the flying ball is absolutely essential to making a 

prediction about its future movement. It is impossible to catch a ball if one doesn’t know 

where it is! This subchapter will provide an overview of the different techniques of object 

detection and localization. 

Catching a ball is not the only application for detecting an object. Modern cars often have 

safety-relevant features like a pedestrian detector [DWS12, 743f] that warns the driver or 

breaks the car when a human is on the street. Other developments in the automotive field go 

one step further, like the autonomously-driven cars from Google or Audi [15], which are 

currently tested in the USA. A “simple” pedestrian detector would not be enough for this 

task because cars have to see everything around them: from pedestrians and other obstacles 

to street signs and road markings as well as other traffic participants. Additionally, there are 

other non-safety-relevant applications like the “Hawk Eye” [16], which are used in various 
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sports and tournaments to reproduce the ball’s movement to support the referee in difficult 

decisions. 

While much has been published on object detection, projective geometry, and triangulation 

[FLP01] [HZ03][MGV09][Sze10], in this framework we will only discuss the basics. 

2.3.1 Triangulation, stereo vision, localization 

Depth information is essential to knowing the ball’s movement in space and time. Using two 

or more cameras for locating the ball is advisable because to do this with only one camera is 

a very ill-conditioned problem [FBH01, 1623][BFK08]. Triangulation, which can be done with 

a stereoscopic vision system, is a good and cheap option to obtain a 3D view [SPV05]. These 

two cameras are located side by side with a predefined distance between each other and 

should synchronously acquire their images [Pon09, 18]. The way to turn two 2D pictures into 

a 3D scene is similar to the biological way a human assembles the two images obtained from 

the left and the right eye to one three-dimensional image [17]. 

f

f

xl

xr

x

camera  R

camera  L

baseline b

z

Z

x - b

P = (x, z)
 

Figure 13: Triangulation enables to calculate the location of the object when some properties are 

known: baseline distance (b), focal length (f), and the measured disparity (d = xl – xr). Modified 

from [18] 

However, knowing only the distance between the two cameras, called baseline, is not 

sufficient. Other important and relevant intrinsic parameters of the cameras are used: the 

focal length, the principal point coordinates, the skew coefficient, and the image distortions 

coefficients [18][SPV05]. Pinpointing the object of interest (the thrown ball) in an accurate 

way is only possible when all these specifications are known [19]. Finding the same point of 

the same object in both pictures is necessary to determine the location of this object and can 

be described with the term Correspondence Problem [SPV05]. In subject literature, this point 

is called point of interest, and there are several ways to find it. As shown in Figure 13, it is 

possible to measure the disparity of the two positions from the point of interest in the two 

captured frames. Equations 2.3.1 and 2.3.2 show that it is possible to calculate the distance z 

to the chosen point when the information about the base length b, the focal length f, and 

disparity d is known. [Sze10, 48ff] 
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The question of finding the point of interest is easy to answer. In the case of a tennis ball, 

one particular point of reference makes the most sense: the center point; in a 2D-view, a ball 

has the shape of a circle and, therefore, it makes sense to look for its center. The way the 

center of the ball can be identified in the left and the right image will be shown in 

Subchapter 2.3.3. The coordinates of the ball’s center in both frames can be transformed to a 

coherent World Coordinate System, so that the catching device is able to catch the ball 

(Figure 14). [Pon09, 36] 

Transform to World 
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 000

 

Figure 14: The location of the ball has to be transformed into coherent World Coordinates to enable 

the robot to catch it. 

The precision of object localization depends not only on the resolution and other intrinsic 

parameters of the cameras, but also on their position and alignment. Figure 15 shows the 

three ways for setting up the camera alignment, which lead to different visual views: 

divergent, parallel, and convergent. [Pon09, 17] 

 

Figure 15: The three different alignments for a stereo vision system from left to right: divergent, 

parallel, and convergent. Modified from [PON09, 17] 

The divergent variant is inadequate for the task of getting a 3D view through triangulation 

because the point of interest has to be present in both images [Pon09, 17][Sze10, 537]. The 

parallel alignment has the advantage of not needing a keystone correction, which is normally 

needed to remove the distortion of a picture caused by recording in an angle other than 90° 

to the filmed plane of interest (Figure 16) [20]. 
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Figure 16: The left side shows a distortion-free image while at the right side a distorted picture is 

imaged. 

Again, the advantage of using a ball as a transported good is in its shape. A ball does not 

have a plane, and it will not be distorted regardless from which angle filmed. It will always 

look like a circle! But distortion is not the only impact of filming from a slanted angle. A 

convergent stereo vision setup possibly leads to a smaller quantization error, which leads to 

the deviation distance Δp, than a parallel setup [SSL01, 1]. As shown in Figure 17, the 

smallest localization error Δp can be achieved at an angle of 90 degrees between the two 

cameras [Pon09, 18]. 

 

Figure 17: Various filming angles with the convergent camera setup lead to different quantization 

errors [Pon09, 18]. 

2.3.2 The position of the Stereo Vision System 

The object can be localized more precisely when it is closer to the Stereo Vision System. For 

this reason, positioning the cameras behind the throwing device is advantageous for achieving 

better results. When filming from this position, the tracking and predicting of the ball’s 

trajectory will already be as accurate as possible in the early flight phase [FBH01, 1629], 

which leads to a quick estimation of the inception point. As a result, the robot arm has more 

time to move to this point. The study [FBH01, 1629] showed that a position behind the 

throwing robot, with a baseline distance of 1 m between the cameras, leads to better results 

than trials from other positions. However, placing the cameras behind the throwing device 

will not work in every application because of the need for an information channel between the 

Vision System and the catching device. 
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2.3.3 Point of interest 

Finding the point of interest is essential for the purpose of localizing the flying object through 

triangulation. Choosing the center of the ball as the point of interest appears obvious and 

logical. The following subchapters will present a few techniques to detect circles and their 

centers. 

2.3.3.1 BLOB Detection based on Difference Image forming 

A BLOB (Binary Large Object) is a connected region in an image that represents an object 

and is associated with a local minimum or maximum [Lin93, 33][FBH01, 1624].  

BLOB Detection can be simply calculated through a difference image and can, therefore, be 

done very quickly.There exist two methods that will be briefly presented here. AFD 

(Adjacent Frame Difference) is the procedure of making a difference image from two 

consecutive frames [Pon09, 5]. The ball can be localized at the place where the changes of 

pixels have been bigger than a previously set threshold [GW07][TKB99, 3]. This approach is 

independent of changes that are slower than the frame rate of the Vision System, which in 

turn means that problems can occur when the movement of the ball is not fast enough for the 

chosen frame rate. In this case, the ball in the actual frame would overlap with the one in the 

previous image. This problem is called ghosting (Figure 18) and leads to an inaccurate 

localization of the ball’s new position. 

 

Figure 18: Ghosting describes the fact that object is overlapped in two adjacent frames. Left, the ball 

in the previous frame, right, the ball in the actual one. [Pon09, 5] 

The other feasible solution makes use of a difference image made out of the captured frame 

and a picture of the scene‘s background. But this method is not without problems either 

because of the possibility of an alternating scene that differs from the recorded background. 

Such changes can be caused by outside influences such as varying lighting conditions or 

flickering lamps. Hardware features, too, can lead to problems such as automatic gain control 

of the cameras or frame-grabber cards. A way around this problem is the use of a slow, 

adaptive background image that accommodates changes of the scene [FBH01, 1625]. 

However, Pixel Jitter effects [21] or the interlacing of the cameras also lead to a difference of 

the background and can disturb the detection algorithm. These issues can be avoided when 

using a reference interval instead of fixed thresholds for determining pixel changes (Figure 

19). If the intensity shift of a pixel is so large that it exceeds or falls below the reference 

band, this picture element will be counted as BLOB-related. 



Related Work and State of the Art 

 22 
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Figure 19: The continuous change of a pixel’s intensity is caused by Pixel Jitter effects. A real change 

of a Pixel is indicated when its intensity that exceeds or falls below the reference band as it happens at 

the time tps. Modified from [FBH01, 1625] 

The main drawback is in the possible inaccuracy of finding the ball’s center. Basically, it is 

not very complicated to detect the center of such a created BLOB, but it will not be in the 

right position if pixels that are not part of the same object are counted to the BLOB and, 

vice versa, if pixels from the ball are not counted to the BLOB. This error can be enhanced 

by well-deliberated motion detection algorithms, but a total prevention of this behavior is not 

possible [Pon09, 7]. To make a prediction as accurate as possible, localization has to be 

extremely precise. Therefore, another approach is needed to detect the flying ball. 

2.3.3.2 BLOB Detection based on Color Histogram comparison 

Besides making a difference image, there is another possibility to create BLOBs. The 

captured frames can also be compared with a color histogram when the ball is specially 

painted for this job [FBH01, 1623][HS95, 2]. The use of a color that does not occur again in 

the rest of the scene is essential; otherwise this colored area would also count as a ball. One 

drawback of this method is again the inaccurate center detection of the discovered ball, as 

described in the previous Subchapter 2.3.3.1. But this is not the only problem: the ball could 

appear in different colors, which might be caused by the different lighting conditions in the 

room in which it is flying. This would make it difficult to detect it through color comparison 

[FBH01, 1623]. 

2.3.3.3 Edge Detection as preparatory work for accurate Object Detection 

BLOB detection can be computed extremely fast, especially when only processing an Area of 

Interest that can be determined through the correlation of consecutive frames. The ball in the 

actual frame will have a similar color and will be around the same place as in the previous 

frame [SPV05]. However, the tendency to provide inaccurate results makes this approach 

useless and raises the demand for other solutions. 
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Input Image Edge Magnitude Map of the Input Image

 

Figure 20: Transformation from Input Image to Edge Image through the Canny Edge Detector [22]. 

Due to widespread occurrence of circles and spheres in nature, Circle Detection is one of the 

most important and most frequently used applications in the field of Computer Vision 

[SPV05]. Various methods for detecting circles exist [DAC02], but two of them are very well-

known and often used for object Detection: the Hough Transformation and the RANSAC 

algorithm (Random Sample Consensus). Both algorithms will be discussed in the following 

two subchapters, but they require a preparatory step [YR08, 2][Pon09, 33], which will be 

explained here. An analysis made with the Hough Transformation or the RANSAC algorithm 

requires an edge magnitude map. Therefore, a filter is needed that transforms the input 

frames (Figure 20, left) into images where only edges, or rather local changes in intensity 

(gradients), are drawn (Figure 20, right) [JWD13]. These filters are called Edge Detectors 

and can either be first derivate filters or second derivate filters. The advantage of first 

derivate filters is in their fast computation resulting from simple algorithms, but they are 

very sensitive to noise in the image [Pon09, 7]. In contrast, second derivate filters need more 

calculations steps, but provide better results. One of these last-mentioned filters is the Canny 

Edge Detector, which was published by John Canny in 1986 [CAN86, 1]. This filter consists 

of more than just a simple convolution with one matrix, it is carried out in four steps: 

Gaussian filtering, Sobel filtering, doing non-maximum suppression, hysteresis thresholding 

[OIN10]. After these four steps, an edge magnitude map like that on the right side of Figure 

20 is achieved [GW07]. The Canny Edge Detector distinguishes itself from other edge filters 

through its global inspection of the entire image with the opportunity of detecting possible 

closed loops [SHB07]. As it tends to achieve good results, this filter is nowadays very popular 

among developers whenever an edge image is required [YR08, 1]. However, the iterative 

process of the Canny Edge Detector’s hysteresis step could lead to longer execution times: the 

more pixels are present, the more time will be needed [YR08, 7]. 

2.3.3.4 Hough Circle Transformation 

The Hough Transformation was developed by Paul Hough in 1959 [Hou62] and is a possible 

procedure to detect objects on the basis of their parameters [Pon09, 33] out of a created edge 

image [HP62]. Its original task was to detect lines in images [Kol02, 313]. Soon however, 

improvements and extensions were made such as another way of calculating with polar 
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coordinates [DH72] or an algorithm that involves the direction of the gradients [OC76, 544]. 

Furthermore, a method for the detection of circles and arcs [IK88, 93] was developed, which 

is of interest here for the task of finding the center of the thrown ball. 

 

Figure 21: Every edge point "looks" around itself for a potential center point. 

To perform the Hough Circle Transformation, each edge point will be considered part of a 

dedicated circle with the radius r. This will enable looking for potential center points (Figure 

21). This is done by writing in an array called Hough Space, which is the storage for this 

voting process. At the beginning of this algorithm, every field of this array has the value zero. 

And every time one of these fields (pixels) is voted to be a potential center point, the value of 

this field will be incremented by 1. With an accurately defined radius, we will only need a 2D 

array, which represents the various pixels. After the voting process is completed, the local 

maximum can be determined. The field with the most votes represents the center of the 

circle. In other words: k edge points belonging to one circle with a radius r will lead to a k 

times increment of the field in the Hough Space, which is representing their center point 

(Equation 2.3.3). 

kyxA ),(  (2.3.3) 

Figure 22 shows the Hough Space superimposed with the edge pixels of the corresponding 

circle. As can be seen, the most votes are in the center of the circle. 

 

Figure 22: The Hough Space with its votes superimposed with the edge of the corresponding circle 

[PKH10]. 
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Rarely will we know the exact radius r and, therefore, a range of radiuses to be voted for has 

to be defined. If one looks for circles with different radiuses, a 3D-Hough Space will be 

needed: one dimension for x, one for y, and one for the different radiuses. Figure 23 shows 

when every edge point is voting for potential center points for different radiuses. Ultimately, 

the result will be the same: the field with the most votes is the center of the circle. 

[SPV05][Pon09, 9][PKH10] 

circles 
of vote

original 
circle

x0

r

y0

 

Figure 23: The 3D Hough Space for detecting Circles with a radius in the defined range of radiuses. 

Modified from [DH72] 

On the one hand, the Hough Transformation achieves accurate results, on the other hand, it 

requires much computational power. Therefore, enhanced approaches are welcome to simplify 

the procedure. A growing Hough Space leads to an exponential increase in the process’ 

complexity. As stated above, when detecting circles with an unknown radius, the voting 

process has to cover three instead of two parameters in the Hough Space [AME13, 216]. 

Therefore, another method was developed and used in various works [RFQ03][KBS75][MS81]. 

Instead of examining the image only on the basis of its single edge points, a segment of a 

circle, an arc, will be analyzed regarding its direction. As soon as the direction of the arc is 

identified, a line along the normal of the arc’s tangent will be drawn (Figure 24). The pixel 

where most of these lines intersect is the center of the circle. Storing straight lines instead of 

circles in the Hough Space leads to a reduction from three parameters to two [SPV05]. 

 

Figure 24: Another approach of the Hough Circle Transformation consists in drawing lines along the 

normal of the various arcs of the circle. Modified from [SPV05] 
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However, this approach does not offer the perfect solution because it might achieve 

inaccurate results caused by noise. When some of the circle’s segments have more pixels than 

they should, the edge image will not be well-defined, and the drawn lines will not be exactly 

perpendicular to the tangents. Conditions of the edge images and the desired accuracy have 

to be considered to fulfill all requirements for the system. Furthermore, an algorithm 

optimally matching the hardware’s capabilities will be needed. 

To sum up: the Hough Transformation is noise tolerant, highly stable, and achieves accurate 

results [JWD13]. In addition, it can be adapted for objects of different shapes. All these 

features render it a viable option for this project’s purposes. A possible drawback could be its 

costly computational requirements. 

2.3.3.5 RANSAC algorithm 

Another popular method for detecting objects, called RANSAC algorithm, is a non-

deterministic technique [JWD13] and was published by Fischler and Bolles in 1981 [FB81, 1]. 

Lines, circles, planes, and other shapes are detectable with RANSAC just as with the Hough 

Transformation. Since this thesis deals with the catching of a ball, circle detection will be 

explained here (Figure 25, left). In the first step, three edge points are randomly chosen to 

draw a circle through them. Then, the distances between the image’s edge points and the 

circle’s points are examined. If the distance of one of these edge points to the circle is smaller 

than a predefined parameter, the pixel belongs to the circle and is called an Inlier. If the edge 

point is not close enough, it does not belong to the circle and is called an Outlier. A circle has 

been detected when the quantity of Inliers exceeds a predefined threshold. Subsequently, 

three further edge points will be randomly chosen and the procedure repeats. These steps will 

be repeated for a predefined period. An example for finding a circle is shown in Figure 25. 

Besides the parameter of the maximum distance for qualifying as an Inlier, other parameters 

have to be set as well: the number of iterations (how often new random pixels will be 

chosen), and the minimum distance these random points must have to each other. 
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choose randomly 
three edge points

draw a circle 
through them

does this circle have 
enough inlier?

circle detected no circle detected

yes no

have all trials been 
done already?

yes no

end of the 
algorithm

   

Figure 25: Left Left: steps of the RANSAC algorithm; right: possible results of the algorithm. Modified 

from [23] 

The accuracy of the achieved results depends on the number of iterations and the amount of 

edge points that are not part of the circle. The more frequently random points for searching 

are chosen, the higher the likelihood of finding a circle. The more edge points not belonging 

to a circle are in the image, the less the likelihood of finding a circle. 

2.3.3.6 Hough Circle Transformation vs. RANSAC algorithm 

Both procedures allow detecting various shapes such as lines, quadrangles, circles, plains, etc. 

Additionally, edge magnitude maps, which were presented in Section 2.3.3.3, are essential for 

executing one of these algorithms. 

One published work [JWD13] made a direct comparison between the Hough Transformation 

and the RANSAC algorithm. The experiments were about finding lines in data sets from 

radar, which were partly experimentally recorded and partly artificially generated. The first 

conclusion seems very logical and stated that both procedures do their jobs better when there 

is no noise in the images. 

However, the Hough Transformation was highlighted as being more accurate when detecting 

lines in the presence of noise. This algorithm was still highly stable and able to detect in an 

accurate way [JWD13]. The reason for these good detecting qualities is the search algorithm, 

which examines each edge point as to whether it is part of the wanted shape. In case of 

circles, their center will be searched for in a predefined range of radiuses around each edge 

point. This leads to the assumption that detection will work properly if the image is not 

totally overloaded with noise and the correct radius is present in this range of radiuses. On 

the other hand, RANSAC is a stochastic algorithm and strongly depends on various 

characteristics of the image and some other predefined parameters. The quantity of edge 
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points present, the number of iterations, and the predefined minimum distance between 

randomly chosen points are crucial for the success of the procedure [JWD13]. 

The comparison of the two approaches showed that the Hough Transformation was better 

than the RANSAC algorithm at detecting lines in the experimental data. However, RANSAC 

achieved better results than Hough when examining the generated data [JWD13]. The issue 

of the algorithms’ required calculation times is not covered here in depth, but another paper 

states that the Hough Circle Transformation is fast enough for real-time applications at a 

frame rate of 70 FPS [Wei08, 7]. The duration of this algorithm depends on the quantity of 

pixels in the edge image [WL12]: the more pixels are present, the more time will be needed 

because of the necessity to examine each of them. In comparison, the time required by the 

RANSAC algorithm mainly depends on the number of iterations and will probably be less 

than with the Hough Transformation. The voting process for various radiuses carried out by 

the Hough Transformation requires more computation steps than the RANSAC algorithm. 

Furthermore, an edge image will probably have more edge points than the number of 

iterations needed for finding a circle with the RANSAC algorithm. The smallest possible 

distance between the chosen points might be affecting the temporal behavior as well: When 

the chosen points are too close to each other, new points have to be chosen until all three of 

them fulfill the requirement of minimum distance. If this happens frequently, the entire 

process will take more time. 

2.4 GPU programming 

Programs or parts of them can be accelerated through the massively parallel architecture of a 

GPU (Graphics Processing Unit), which leads to shorter computation times 

[SHH07, 1][FM05]. Previously, using the computer’s graphics card for general purpose 

computing was only possible with the help of a trick. It was necessary to wrap the necessary 

program parts in a graphics framework to fool the GPU into “believing” that it computes a 

normal monitor frame while its capacity was used for other purposes. Coding in this manner 

was a hard task, therefore, it could not be expected to be carried out by the general public, 

only by a selected few developers who were up to the challenge [YR08, 1]. Driven by the 

demand of the market to have a programmable graphics processing unit for general purpose 

computing, called GPGPU (General-Purpose Computing on Graphics Processing Units), 

NVidia eventually developed CUDA (Compute Unified Device Architecture) in 2006. Since 

then, it has been possible to use this programming platform to easily implement programs 

running on a GPU and speed them up with the huge number of parallel computing 

processors. [CUD14, 4][OLG07, 7] 

2.4.1 The necessity of using a GPU 

The real-time constraints of the bio-inspired Transport-by-Throwing approach are an open 

topic until now. The arm of the catching device has to move early and quickly to the 

interception point to be there on time [PKH10]. The following example shall help understand 

the challenge of timing and what it means to do the prediction in real-time. In case of the 
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robot used, the KUKA LBR 4+, the interception point must be known at least 33.5 ms 

before the object arrives there. The flight of the thrown object takes approximately 780 ms if 

the ball travels with a speed of 5.3 m/s over a distance of 2.5 m with a launching angle of 42 

° [PMB13]. Consequently, the result of the prediction of the inception point has to be ready 

roughly 746.5 ms after the object was thrown. This short period between the launching of the 

ball to the time when the trajectory estimation is needed provides an illustration of the 

required speed of computation, however, the major challenge are the high FPS rates (Frames 

per Seconds) of the recording cameras. 

FPS
t

1
  (2.4.1) 

Table 2 shows various exposure times of frames when filming with various frame rates. These 

times can be calculated with Equation 2.4.1. 

FPS time interval 

24 41,6 ms 

25 40,0 ms 

30 33,3 ms 

48 20,8 ms 

60 16,7 ms 

90 11,1 ms 

110 9,1 ms 

120 8,3 ms 

Table 2: Different frame rates lead to different exposure times of frames. 

Pongratz and colleagues showed in their paper [PKH10] that accuracy of prediction not only 

depends on higher resolution, it also critically depends on the frame rate. In general, a 

prediction is better when working with a higher FPS rate. Indeed, in some cases it can even 

be useful to downscale the resolution to have more bandwidth on hand to operate on a higher 

frame rate. [PKH10] 

Frame 4

Frame 3

Frame 2

Frame 1

9,1 ms

9,1 ms

9,1 ms

 

Figure 26: For a capture with 110 FPS, the time interval between the frames is 9.1 ms long. 
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For example, when capturing the scene with a frame rate of 110 FPS, the interval between 

two frames will be about 9.1 ms. All steps of image processing, object detection, and 

flightpath prediction have to occur in this short span. To accomplish this in real-time, all 

necessary calculations have to be completed in less than 9.1 ms (Figure 26). The deadline for 

the GPU or CPU to compute one frame is 9.1 ms after it has appeared in the computational 

device. To ensure that there will be sufficient free capacity for calculating the next frame 

when it appears, all procedures have to be completed before the deadline. However, if the 

estimation algorithm takes up too much of the processor’s capacity, computation time will 

interfere with the camera’s sample rates [HS95, 8]. In this case, treatment of some frames at 

the beginning of the flight would be completed only shortly after the deadline. Whether that 

is necessarily a serious problem, is unclear. It depends on the frequency of the occurrence and 

the length of the delay. To be on the safe side, however, every execution should be on time! 

For example, the Hough Transformation needs huge computational power [SPV05]. How long 

it takes depends on its implementation and the quantity of pixels present in the edge image. 

As explained in Section 2.3.3.6, the more edge points there are in the input frame, the more 

time the Hough Transformation will take to execute a frame [WL12]. An adaptation of this 

method for detecting more complex shapes could even lead to a higher computational 

demand. Performing the Hough Transformation on a GPU was tested and documented in 

some studies [CJ11][AME13] [WL12], which came to the same conclusion that execution was 

much faster on a GPU than on a CPU. The obtained acceleration was measured with 

differing result: from 45.7x in [WL12] and 65.4x in [AME13, 220] to 400x in [CJ11]. 

The RANSAC algorithm and the k-NN search for predicting a flightpath will need much 

computational power [MPD14] as well. However, they are also partially suited for parallel 

computing. To shorten execution time, it makes sense to swap these program parts on a 

GPU. 

 

Figure 27: Floating-Point Operations per Second for the CPU and GPU [CUD14]. 
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It is obvious that there are differences in computational power and execution time when using 

different hardware. That means that different GPUs will take different time to execute the 

program; the same is true for different CPUs. However, generally speaking, a GPU has 

considerably more theoretical computational power than a CPU (Figure 27). GPUs are based 

on the SIMT (single-instruction, multiple-thread) architecture, which is akin to SIMD (Single 

Instruction, Multiple Data). In other words, a single instruction processes a complete data set 

all at once; therefore, a GPU is the perfect hardware for processing images [OCL09, 14]. Such 

images consist of huge amounts of pixels that have to be processed by the same instructions. 

However, the implementation has to be optimized to process the data sets parallel and in an 

efficient way [FBH01, 1625]. 

It is no coincidence that a graphics card computes the frames for a computer monitor; after 

all, it is designed for such graphical tasks. Therefore, it seems natural to outsource program 

parts for image processing to the GPU to speed up the whole procedure. Another possible 

solution would be the use of a FPGA (Field Programmable Gate Array), which could also 

accelerate the execution of the algorithm [Pon09, 67], but this would probably lead to much 

higher development costs than an implementation for an off-the-shelf hardware such as a 

GPU. 

2.4.2 The functionality of a GPU 

There are a few fundamental issues to consider when implementing a program that will run 

on a GPU. Such a graphics card has its own memory and it is necessary to swap data to be 

processed by the GPU onto this memory first. Accordingly, a distinction is made between 

host code and device code. Like a regular program, the host code runs on the CPU and only 

processes the data sets on its main memory. On the other hand, the device code is executed 

on the graphics processor and edits only the data of the GPU’s memory. The latter consists 

of so-called kernels, which are functions that run on one or more multiprocessors of a GPU. 

Such a Kernel creates a couple of light-weight processes, called threads, which run 

simultaneously on different processors (cores) of a multiprocessor to simultaneously process 

multiple data (Figure 28 and Figure 29). [CUD14, 9f] [OCL09, 11f] 

To understand the connection between threads, multiprocessors and cores, it should be 

explained that threads are pooled together in blocks (Figure 28), which can contain between 

1 and 1024 threads each. Blocks, which run on several multiprocessors of the GPU, are also 

pooled to a so-called grid. [CUD14, 11f][OCL09, 12ff] 
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Figure 28: Up to 1024 threads are combined in a structure, which is called block. The sum of all 

various blocks is pooled in one grid. Modified from [CUD14, 11] 

The program runs through the following steps: at first, all necessary data sets are moved to 

the memory of the GPU for further processing in the next step. After the GPU has processed 

this data, the results can be swapped back to the main memory of the host where they can be 

used or displayed [CUD14, 14, 225]. 

It should be noted that such a graphics chip contains, apart from this single device memory, 

also several other memories shown in global memory, has the advantage that all blocks can 

read from it and write on it. Despite two associated caches, which can considerably accelerate 

reading accesses on the global memory, it is the slowest of the GPU. Another storage, called 

shared memory, which is assigned to the various blocks, is much smaller than the global 

memory and can only be edited by its assigned block, yet, it is much faster than the global 

memory. [CUD14, 12, 187f][OCL09, 18] 

However, this is not all: Each of a multiprocessor’s several cores has its own registers, which 

can be used only by the assigned thread running on this core. Such registers have a much 

smaller memory than the other two types of storages, but they are by far the fastest on the 

GPU. [OCL09, 14f] 
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Figure 29: The schematic view of a GPU shows a device memory (supported by two caches) that can 

be read and written from all cores of the whole Grid. There is a faster storage, called shared memory 

and it is only accessible to the threads of the same assigned block. Additionally, each processor has its 

own registers, which are only useable for a thread assigned to it. However, these registers are the 

fastest storages on the GPU. Modified from [OCL09, 16] 

When trying to improve the performance of the implemented algorithm, it makes more sense 

to optimize the program by using the shared memory instead of the two caches, which 

accelerate reading from the global memory. This course of action brings about a reduction in 

slow global storage accesses and, therefore, leads to a minimization of the program’s 

execution time [LWT12, 1]. It is also important to mention that such optimization requires 

developers with broader knowledge and experience. The risk of a deadlock or other failures 

exists when the program is not correctly implemented. To avoid these problems, such 

optimization will not be carried out in the framework of this thesis. 

2.4.3 CUDA vs. OpenCL 

Besides CUDA, there exists another option for programming a graphics processor: OpenCL 

from the Khronos Group [24]. Subchapters 2.4.3.1 and 2.4.3.2 will show the existing research 

on the two platforms. The differences as well as the similarities between them will be worked 

out. 

2.4.3.1 Formal differences between the two platforms 

While OpenCL represents an open software standard to implement portable programs for 

GPUs and Multi-Core CPUs from various vendors, CUDA is proprietary software that works 
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only with NVidia graphics cards [KDH10, 1][FVS11, 9]. Nevertheless, these two different 

platforms show a lot of similarities: both of them are an extension for C (the programming 

language) and are used to program a host- as well as a device code. They have the same 

memory model and are both equipped with an equal segmentation of blocks and threads. The 

various interface-dependent expressions and their relations to each other are displayed in 

Table 3. This provides a simple way to translate programs from CUDA to OpenCL and vice 

versa [MGW11, 1]. 

 

CUDA OpenCL 

global memory global memory 

constant memory constant memory 

shared memory local memory 

local memory private memory 

thread work-item 

block work-group 

Table 3: Terminological differences between CUDA and OpenCL [FVS11, 2]. 

Besides these terminological differences, the two platforms are very different regarding the 

compilation of a program. The pure C-Code is not the only program part being translated 

into an executable file when compiling the CUDA program, the device- and the host code will 

be compiled at the same time. At runtime, both of them can be executed without any 

additional preparatory steps. When developing an OpenCL program, the software designer 

has to ensure that the device code will be compiled at the beginning of the execution time. As 

a consequence, the duration of the initialization of an OpenCL program needs more time than 

a CUDA program. On the other hand, compiling the device code at runtime can be of great 

advantage; it offers the possibility of optimizing the code for the hardware used for executing 

the program at that moment. [KDH10, 10] 

2.4.3.2 Performance differences between the two platforms 

Karimi, Dickson, and Hamze stated in their study [KDH10, 9f] that CUDA is preferable if the 

focus is on performance and shorter execution time. If the developer intends to implement the 

program platform on hardware from various vendors, the development environment of 

OpenCL should be used. Karimi’s team wrote two nearly-identical programs for various tasks 

to compare the performance differences between the two platforms. The measured data and 

results read as follows: Execution times of the OpenCL kernels were about 13 to 63 percent 

longer than those of the CUDA kernels. There were also similar outcomes regarding the two 

programs’ overall execution time: the OpenCL program was about 16 to 67 percent slower. 

However, this is not the only paper comparing the performance of both platforms. Fang, 

Varbanescu, and Sips wrote [FVS11, 1, 9] that an unfair comparison used in other works 

accounted for about 30% of the performance gaps. Additionally, they implied that there 

occurred illegal storage accesses, which accelerated execution and were camouflaged as an 

access to a texture cache when using the CUDA interface. Moreover, the CUDA compiler 
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optimizes in a better way than its OpenCL counterpart. If the texture cache is turned off and 

the program manually optimized, the performances of both programs will be roughly equal. 

As conflicting statements have been made in several papers, the most straightforward way for 

continuing this project seems to make a comparison of our own between these two platforms. 

To avoid redundancy by creating another program, the Canny Edge Detector, which is 

needed as a preparatory step for object detection (explained in Section 2.3.3.3), will be 

implemented for both programming interfaces. 
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3. Setup, Procedure, and Concept 

At this point in time, all Transport-by-Throwing research is only at the level of academic 

research. Therefore, the experimental setup of this work is shaped accordingly and makes use 

of some simplifications. The transport system examined in this project consists of various 

parts that can be considered and treated separately: developing a throwing device, setting up 

the vision system, detecting the thrown object, creating a flightpath prediction, and 

developing a catching device. Since each of these parts require a huge amount of research and 

work, this diploma thesis will only deal with an accurate detection and prediction of the 

flying tennis ball. The advantage of using such a ball lies in its easier detection resulting from 

its point-symmetrical shape. 

3.1 Environment 

The ball was synchronously captured by two IDS uEye UI-3370CP cameras that were aligned 

convergent with a baseline distance of approximately 0.92 m. A coil-based throwing device 

accelerated the ball to overcome the distance of about 2.5 m. Four 500 W halogen floodlights 

were used for a sufficient illumination of the scene. A Matlab toolbox [25] was used to 

calibrate the stereo vision system to achieve accurate results from the triangulation of the 

two images. Furthermore, the toolbox provided all necessary intrinsic parameters of the 

vision system: distortion, skew coefficient, etc. [PKH10]. The two cameras support a 

resolution of 2048-by-2048 pixels at a frame rate of 80 FPS and 2048-by-800 pixels at 

110 FPS. 

Because of the need for highly accurate detection, processing these large images would need 

too much computational power and time to predict the flightpath in time. To maintain the 

advantages of the higher resolution, which leads to more accurate results (see 

Subchapter 2.4.1), a system is required that acquires only the relevant area of the full image. 

To retain any important information and be able to determine the ball’s exact position, the 

subimage has to show the ball; in addition, information about the location of the subframe 

must be provided. Figure 30 shows a possible subframe that is delivered with the parameters 

xoffset and yoffset, which provide a back-calculation of the ball’s location in the large image. 
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Figure 30: An already existing unit crops the big images to smaller subframes with the ball more or 

less in the middle. The offset parameters enable the calculation of the ball’s center point in the big 

images. 

The cropping system, which is not part of this thesis, already exists and provides output 

images with 300-by-300 pixels, where the ball is roughly in the center. A technique similar to 

BLOB detection, which calculates difference images based on a comparison with the scene’s 

background, enables cropping large images to small regions of interest. It would be possible to 

make a flightpath prediction based solely on BLOB detection. However, this would probably 

lead to an inaccurate detection, which in turn would result in an insufficiently accurate 

prediction. In the framework of this thesis, a system that detects the ball in the cropped 

images and predicts its flightpath will be designed, implemented, and tested. 

The Institute of Computer Technology at the Vienna University of Technology provides the 

hardware for these tasks: A computer with an i7-4770S CPU clocked at 3.10 GHz, 8 GB main 

memory clocked at 667 MHz and an NVidia GeForce GTX 560 Ti graphics card [26] with 384 

cores assigned to 8 multiprocessors clocked at 822 MHz. The GPU features compute 

capability 2.1, 1024 MB global memory, and 48 KB shared memory per multiprocessor. A 64-

Bit version of Windows 7 Enterprise was chosen as operating system and Microsoft Visual 

Studio 2012 as development environment. The CUDA platform is at Version 6.5 [27] and its 

OpenCL counterpart at 1.0 [28]. 

3.2 Tasks 

The project described here deals with the following tasks: detection of the ball in both of the 

300-by-300 pixels images, its localization in 3D space, and forecast of its flightpath 

(highlighted in Figure 31). 

For reasons of convenience and reproducibility as well as to enable practical implementation, 

the small subframes of some flights were recorded to analyze them instead of always 

capturing real-time flights. Without these recordings, it would be necessary to throw the ball 

each time when testing the written software, which would add an undue amount of work for 

the developer. Implementing software in this manner has the benefit of easier troubleshooting 
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when an error occurs. It is easier to find a software failure when it is possible to precisely 

reproduce the malfunction. 

cropping the 

image to small 

sub frames

detecting the 

ball in these 

two images

catching the 

ball

making a 

prediction of 

the further 

flight path  

Figure 31: This diploma thesis deals with the detection and prediction of a flying ball. An already 

existing unit crops the big images to smaller 300-by-300 pixel subframes, in which the ball has to be 

detected. The prediction of the ball’s flightpath will be sent to the robot arm to enable it to catch the 

ball. 

The procedural steps, which are highlighted in Figure 31, can be broken down into multiple 

smaller tasks: load the trajectory database, load the subframes from the hard disk, convert 

them to uniform 8-Bit grayscale images, create edge magnitude maps, detect the ball’s center 

on this maps, triangulate the two received center points, and make an estimation of the 

flightpath. Figure 32 shows the entire procedure that will be implemented in the framework 

of this thesis. 

The following subchapters will show the procedure respectively its implementation step-by-

step. A distinction must be made between preliminaries that have to be carried out 

specifically for the experimental setup and preliminaries that are generally necessary for 

object detection. The former consist of loading the images and convert them to data that can 

be processed in the appropriate manner. While these preliminary measures are necessary for 

this setup, they will probably not be needed for real world applications. In contrast, edge 

detection, for example, is a necessary preparatory step for accurate object detection and must 

be executed both in the experimental setup as well as in real world applications. 

The focus is on detection, localization, and prediction of the ball, but preliminaries, like 

loading the picture and converting it will also be briefly explained. Following these 

fundamentals, the Canny Edge Detector, which was chosen to produce the edge images, will 

be explained. 

Another preliminary measure can be taken to improve the quality of the edge images. In this 

step, the background of the scene is subtracted so that the resulting image will only display 

the ball. Removing all objects present except the one to be localized, minimizes the 

probability of detecting wrong edge points. For this reason, both cameras recorded the scene 

without the ball. These images were stored with the cameras’ maximum resolution (2048-by-

800 pixels) to have all the information about the background available. Again, the parameters 

xoffset and yoffset (see Section 3.1) are needed as additional information to use the correct 300-

by-300 pixels of the big image. Only the ball’s pixels should remain when making such a 

difference image. 

Two different techniques will be tested to detect the object: the Hough Circle Transformation 

and the RANSAC algorithm. On the one hand, it has to be assumed that RANSAC will 

probably be faster than Hough, but on the other hand, the Hough Transformation will 

probably provide more accurate results. To validate these assumptions, both have to be 

implemented. Subsequently, implementation of the localization, which is done through 



  Setup, Procedure, and Concept   

 

 39 

triangulation, will be explained. The prediction, which constitutes the final step, will be 

explained in the last subchapter. 
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Figure 32: After the trajectory database has been loaded, the first set of stereo frames can be loaded 

and converted to grayscale images. Afterwards, edge magnitude maps will be created so that the ball’s 

center can be detected. The next step is the localization of its position in the 3D space to examine its 

movement. The actual flight positions will be compared with the database to find the most similar 

trajectory. 

3.3 Preliminaries 

As explained in Chapter 3.2, some steps have to be made to enable localization and 

estimation of the ball. The following subchapter will give an insight into the implementation 

of these preliminaries. After all these steps have been carried out, the main tasks can begin. 
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3.3.1 Loading the trajectory database 

The first step is about loading the trajectory database from the hard disk to the main 

memory of the CPU. The database is stored as a CSV-file (Comma-Separated Values), which 

makes it a simple task to load it. The only functions needed are in the stdio-library (standard 

input/output) [29], which comes with every normal C/C++ compiler. Subsequently, all 

trajectories, which are stored in multiple arrays filled with the 3D positions, will be copied 

from the CPU’s main memory to the global memory on the GPU. 

An optional procedure would be to load the trajectories when the positions of the flight are 

already known. However, the accruing latency times, which occur when loading the database 

from the hard disk to the main memory and then to the global memory, would most probably 

make an on-time forecast impossible. 

3.3.2 Loading two of the flight’ s subimages 

As stated in Section 3.2, the 300-by-300 pixel subimages have been recorded to provide an 

easier implementation of the detection software. The images are stored as BMP-files (Bitmap) 

and can be opened with different libraries that can be downloaded from the Internet. 

OpenCV [30] is one of the most popular library packages for opening, editing and processing 

pictures as well as videos. Because of the easy-to-use libraries as well as the vast amount of 

explanations and tutorials, OpenCV will be used to load the images from the hard disk to the 

main memory of the CPU. This procedure will be done by an instruction called imread [31].  

In the case of processing frames from a live scene, a video stream would be directly captured 

instead of loading stored images from the hard disk. This would probably lead to much 

shorter and more regular latency times. Therefore, the time needed for moving the required 

data sets of a frame to the main memory will not be treated in great detail here. 

Copying frames from the host’s main memory to the GPU’s global memory is quite another 

thing than loading them from hard disk to main memory. This step is always necessary when 

processing images with a GPU. Therefore, the time needed to do this will be worked out here. 

This copying task is embedded in another step that will be explained in Subchapter 3.5.1.  

3.3.3 Converting the frames to uniform grayscale images 

It would also be possible to process the 32-Bit color images, sent by the cropping unit, on the 

GPU. However, further calculation steps only require images with intensities; colors are not 

needed. To reduce host-to-device workload and save memory on the GPU, the 32-Bit images 

will be converted to 8-Bit grayscale images. Another OpenCV function, called cvtColor [32], 

can be used for executing this conversion on the CPU. Subsequently, the 8-Bit grayscale 

images will be moved to the GPU to be processed in the following computation steps. 

Why do we use a CPU to convert the images when a GPU would probably do the job faster? 

It would also be possible to obtain the images in this grayscale format directly from the 

cameras. This approach would render conversion unnecessary; therefore, the time needed for 

converting the frames to 8-Bit grayscale images will be addressed here only marginally. 
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3.4 Subtracting the scenes background 

This step may be executed, but is not mandatory. The idea here is to improve the quality of 

the edge images, which means reducing the possibility of detecting wrong edge points. The 

following implementation of the Canny Edge Detector (see Section 3.5) will be the same, 

regardless whether the background subtraction will be performed or not. However, the input 

frame for the Canny Edge Detector will be an image in which, more or less, only the ball is 

present; therefore, the edge images will be of a higher quality. 

     offsetoffsetBGIS yyxxPyxPyxP  ,,,  (3.4.1) 

Therefore, 2048-by-2048 pixel images, without the ball, have been recorded from the left and 

the right camera. The resolution of these two images is equal to the highest resolution of the 

cameras. In other words, having these images is equal to having complete information about 

the background of the entire scene. To subtract the background (Equation 3.4.1) means to 

make a difference image of the input image2 as well as of the background image: the value of 

the resulting pixel’s value PS with the coordinates x and y is equal to the pixel’s value PI 

from the grayscale image (in place x and y) minus the pixel’s value PBG of the background 

image (in place x + xoffset and y + yoffset). The offset parameters, which are delivered with the 

300-by-300 pixel subimages, are important for this task. Without them, it would be 

impossible to use the right part of the big image for this subtraction (Figure 30). 

 

Figure 33: Background subtraction. 

Because of changing lighting conditions, the difference image will probably not be perfect. 

The recorded background image can be slightly brighter or darker than the actual frame with 

the thrown ball. As shown in Figure 33, there are still contours of other objects in the 

resulting difference image. However, these remaining contours are very weak and, therefore, it 

will be no problem to remove them in the Hysteresis step of the Canny Edge Detector, which 

will be explained in Subchapter 3.5.4. 

Additionally, it is important to note that the subtraction of a pixel must not result in a 

negative number. This would happen if the value of the background image was higher than 

its counterpart on the grayscale image. Because 2D arrays of Unsigned Char data type are 

                                                 
2 In the case of performing a background subtraction, the subimages will be transferred from the main to the 
device memory in this step. 
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used for storing the subimages, a negative value would cause an overflow of the pixel value. 

In other words, the pixel in the difference image would not become negative or 0; rather, it 

would have a very high value if the subtraction’s result would be negative. A pixel with such 

a high intensity would be wrongly interpreted as an edge point. Therefore, subtractions of 

pixels that would lead to a negative result will not be calculated with Equation 3.4.1, they 

will set to 0. 

3.5 Canny Edge Detector 

If no background subtraction is carried out, the Canny Edge Detector will be the first 

program step executed on the GPU3. A GPU can be programmed in two different ways: with 

CUDA or OpenCL. Based on statements from different papers about the two platforms’ 

performances, the Canny Edge Detector will be implemented for both. The time needed to 

complete all four steps of this algorithm will be measured to obtain authentic information 

about possible performance differences. The procedure will be explained in detail in the 

following subchapters and the results (shown in Subchapter 4.1.1) will determine which 

interface will be used in the following steps of the prediction algorithm. 

3.5.1 Gaussian filter to smooth the images 

The Canny Edge Detector’s centerpiece, which will be explained in the next subchapter, 

examines the gradients of all pixels. If the magnitude of a pixel’s gradient is high, it will be 

an edge point. However, a camera frame does not contain only high gradient magnitudes that 

represent edges. Indeed, superimposed white Gaussian noise may lead to high gradient 

magnitudes as well. This would disturb accurate edge detection and result in detecting false 

edge points. Therefore, the Gaussian noise has to be removed as effectively as possible. 

Therefore, the first step of the Canny Edge Detector is a Gaussian filter whose 

implementation will be discussed now. 

1 2 1

2 4 2

1 2 1

16

1

 

Figure 34: The center field of the Gaussian filter matrix has to lie on the pixel to be calculated. Its new 

value will be the accumulation of its own initial value multiplied by 4 and its neighbor’s values 

multiplied by 2 respectively 1. The calculated value is then divided by the sum of all factors. 

Besides its good performance, the Gaussian filter is also predestinated to run on hardware 

with parallel architecture. Because of its linear separability in x- and y-direction, it is possible 

to calculate each pixel value independently of others. In other words: All pixels can be 

calculated simultaneously and do not have to wait for other results of the Gaussian filter 

                                                 
3 Therefore, the subimages will be transferred from the main to the device memory in this step. 
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operation [GSW03][LWT12, 2] [YR08, 3]. The value of a smoothed pixel is the result of its 

own initial value and the initial value of its direct neighbors. Figure 34 shows an example of a 

Gaussian filter matrix that will be convolved with the input image. A pixel’s value can be 

calculated when the center field of the matrix lies directly on it. In this example, the new 

value of the center pixel would be an accumulation of its own initial value multiplied by 4 

and the neighboring pixels multiplied by 2 respectively 1. Since the sum of all factors has to 

amount to 1, the calculated pixel value has to be divided by 16. For the new intensity IP2|2 

pixel P2|2 with the coordinates x = 2 and y = 2, the intensity would be calculated with 

Equation 3.5.1. The results of all of these pixel calculations will be stored in a 2D array 

located in the global memory. 

16

1
)22422( 3|32|31|33|22|22|11|31|21|12|2  PPPPPPPPPP IIIIIIIIII    (3.5.1) 

As mentioned in Section 2.4.2, the host program can invoke a kernel on the GPU that starts 

as many threads as needed. Because of the resolution of 300-by-300 pixels, 90,000 threads 

have to be created for calculating all pixels simultaneously; every thread is assigned to one 

pixel. 
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Figure 35: If the matrix’ center field lies on one of the outermost pixels, some fields would read 

undefined memory. Therefore, it is not allowed to calculate the edge lines and columns in the same 

way. 

However, it should be noted that calculating the pixels on the image border with such a 3x3 

matrix is not allowed. If the matrix’ center field lies on one of the outermost pixels, three of 

the fields would read undefined memory. When calculating the corner of the image, indeed, 

five of the fields would read undefined memory (Figure 35). Two options are available to 

obtain values for the pixels in the outermost lines and columns: inherit the pixel’s initial 

value directly or calculate it with the help of a 4x4 matrix that is placed in a way all fields lie 

on the image. To consider the outermost lines and columns in the following calculations steps, 

a 4x4 matrix will be used to process them. 

Additionally, to accelerate the procedure, a configuration of a part of the main memory, 

called page-locked memory, was used that is only supported at compute capability 2.0. A 



Setup, Procedure, and Concept 

 44 

special conversation between two defined pointers in the program can be made: one of the 

two points to an address in the host’s memory and the other one to an address in the 

device’s memory. This setup qualifies the GPU to access the main memory directly. This 

access is a slightly slower than the access to the device memory, but it obviates exclusive 

copying between the two memories. 

3.5.2 Sobel operator to create edge magnitude maps 

After the image has been smoothed, the Canny Edge Detector’s centerpiece will process the 

image with the so-called Sobel operator, which consists of two 3x3 matrices. Because of its 

linear separability, it is possible to invoke multiple kernels for every pixel; just like in the 

previous step. The pixel that should be calculated has to lie in the matrices’ center field as 

well. Therefore, it is not possible to calculate the gradients of these lines. The difference to 

the Gaussian filter is the use of two matrices instead of only one that produce two different 

parameters, which represent the derivations in x and y direction for every pixel: Gx and Gy. 

+1 +2 +1

-1 -2 -1+1

+2

+1-1

-2

-1

Gx Gy

 

Figure 36: The parameters Gx und Gy can be calculated by the two Sobel matrices. 

As an example, the direction-dependent gradients Gx2|2 and Gy2|2 for the pixel P2|2 with the 

coordinates x = 2 and y = 2 would be calculated with Equations 3.5.2 and 3.5.3. 

3|33|12|32|11|31|12|2 22 PPPPPPx IIIIIIG   (3.5.2) 

3|33|23|11|31|21|12|2 22 PPPPPPy IIIIIIG   (3.5.3) 

However, an edge magnitude map is required for the following step of the Canny Edge 

Detector. Therefore, further calculations have to be made to obtain the magnitude |G| of a 

pixel’s gradient (Equation 3.5.4).  

22

yx GGG   (3.5.4) 

The right side of Figure 37 shows the resulting edge magnitude map that has to be stored in 

the global memory for further processing in the next step. 
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Figure 37: On the left, result of image smoothing, on the right, magnitude edge map. 

3.5.3 Non-maximum suppression to thin the edges 

As Figure 37 shows on the right side, the Sobel operator outputs edges that are too thick. 

This is the result of bad lighting, a rather vague focus, and, of course, the first step of the 

Canny Edge Detector, which smoothed the image. Since clear and thin edges are required for 

detecting the object as accurately as possible, non-maximum suppression has to be performed. 

The pixel’s gradients have to be reconsidered to “thin” the edges. However, this time the 

direction, which is represented by the angle  , has to be known and can be calculated with 

Equation 3.5.5.  











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x

y

G

G
arctan  (3.5.5) 

When a pixel’s gradient is fully known, the pixel’s magnitude can be compared to the ones in 

positive and negative direction of the gradient to find a local maximum of intensities. A 

maximum found in this way will be preserved for further computation, the others will be 

suppressed. The result, which is again calculated simultaneously by as many threads as pixels 

are contained in the image, is shown in Figure 38. 

  

Figure 38: The non-maximum suppression function leads to thinner and more precise edges. 
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3.5.4 Hysteresis to track edges 

The hysteresis function is the final step of the Canny Edge Detector and will be explained 

next. Another look at Figure 38 shows that some pixels are already present although they 

should not count as edge points. On the other hand some pixels that should count as edge 

points have too little intensity. Therefore, the goal of this step is the perfection of less marked 

pixels and the removing of false edge points. 

Two predefined thresholds will pass judgment on the given edge points. Is a point’s intensity 

less than the lower threshold, it is not an edge point and will be removed. However, is the 

intensity bigger than the higher threshold, it is definitely an edge point and will be preserved. 

If the intensity is between the two thresholds, the pixel is a potential edge point and will be 

upgraded to a definite edge point if it is either directly or indirectly, that is, through other 

potential edge points, connected to a definite edge point. As stated in Subchapter 2.1.1, 

lighting conditions change during the flight: The ball reflects more light when it is closer to a 

light source and less when it is further away. Therefore, the threshold values will be changed 

in the course of a ball’s flight. 

maximum itensity

minimum itensity

lower threshold

higher threshold

 

Figure 39: Hysteresis is an iterative procedure whereby all pixels are divided into three groups. If the 

intensity of a pixel is above the higher threshold, it is a definite edge point and will persist. If it is 

below the lower threshold, it is not an edge point and will be removed. If the intensity is between the 

two thresholds, the pixel is a potential edge point and will be upgraded to a definite edge point if it is 

either directly or indirectly, that is, through other potential edge points, connected to a definite edge 

point. 

The hysteresis function (Figure 39) is an iterative procedure whereby all pixels’ intensities 

will be checked. Here again, one thread will be used for each pixel. If the intensity of a pixel 

is above the higher threshold, it will enter a queue, in which all definite edge pixels will be 

registered4. Subsequently, the next kernel will be started and will invoke as many threads as 

there are definite pixels in the queue. Each of these pixels will be set to maximum intensity5 

and their neighbors will be checked. If the intensity of a neighboring pixel is bigger than the 

                                                 
4To improve performance and save time, the first queue will be filled in the non-maximum procedure. 
5 The maximum intensity value in an 8-Bit grayscale image is 255. 
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lower threshold, it will be upgraded to a definite pixel and registered in a new queue. If the 

intensity is below the lower threshold, its value will be set to 0 and will not be registered in 

the queue. Now a new iteration can start, and every neighbor of the new definite pixels will 

be checked. The procedure ends when no pixels are registered in a queue (the result is shown 

in Figure 40). 

  

Figure 40: The image shows a result of hysteresis, which constitutes the Canny Edge Detector’s last 

step. 

Attention should be paid to the fact that neighbors of a definite pixel have to be ignored if 

they have already been checked. Their reexamination would lead to an endless loop. 

3.6 Hough Circle Transformation 

When an edge image is available, object detection can start. This subchapter deals with the 

implementation of one of two different detection algorithms: the Hough Circle 

Transformation. This technique usually achieves highly accurate results, but it can be 

computationally costly and time-consuming. A faster version of the Hough Circle 

Transformation, whereby the center is detected through lines perpendicular to the tangents, 

was suggested in Subchapter 2.3.3.4. However, because of the partially blurred recordings 

and, hence, moderate edge images, this algorithm will not be applied. Its use would probably 

lead to an inaccurate detection, as happened in [SPV05]. There, only 90 percent of wrong 

detections could be avoided. Furthermore, such implementation will not fit perfectly on a 

parallel architecture. 

To enable detection as accurately as possible, the “normal” Hough Circle version was chosen. 

The studies [AME13][CJ11] describe two different approaches to this “normal” Hough Circle 

Transformation: the Straightforward Strategy (see Section 3.6.1) and the Inverse-checking 

Strategy (see Section 3.6.2). Both of them will be implemented and tested to identify the 

strategy that better meets the timing requirements for Transport-by-Throwing. 

3.6.1 Straightforward Strategy of Hough Circle Transformation 

At the beginning of this algorithm, a kernel invokes as many threads T as pixels make up the 

image multiplied by the range of radiuses (Equation 3.6.1), which is the same number as the 
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Hough Space has fields. To save memory and execution time, the radius range was set to 10. 

However, since the ball flies in the direction of the cameras, the minimum and maximum 

radiuses that have to be considered will change with the progress of the flight. This ensures 

the searching for circles of the correct size. 

 1minmax  rrPPT yx  (3.6.1) 

Figure 41 provides an example of how the Hough Space could look if the image’s resolution 

would be 6-by-4 pixels and the circle would have a radius between 2 and 4 pixels. 

block 0, 
thread 0:

pixel 0|0, 
radius 2

block 0, 
thread 1:

pixel 1|0, 
radius 30

block 0, 
thread 2:

pixel 2|0, 
radius 30

block 0, 
thread 3:

pixel 3|0, 
radius 30

block 0, 
thread 4:

pixel 4|0, 
radius 30

block 0, 
thread 5:

pixel 5|0, 
radius 30

block 0, 
thread 6:

pixel 0|1, 
radius 2

block 0, 
thread 1:

pixel 1|1, 
radius 30

block 0, 
thread 2:

pixel 2|1, 
radius 30

block 0, 
thread 3:

pixel 3|1, 
radius 30

block 0, 
thread 4:

pixel 4|1, 
radius 30

block 0, 
thread 5:

pixel 5|1, 
radius 30

block 0, 
thread 12:

pixel 0|2, 
radius 2

block 0, 
thread 1:

pixel 1|2, 
radius 30

block 0, 
thread 2:

pixel 2|2, 
radius 30

block 0, 
thread 3:

pixel 3|2, 
radius 30

block 0, 
thread 4:

pixel 4|2, 
radius 30

block 0, 
thread 5:

pixel 5|2, 
radius 30

block 0, 
thread 18:

pixel 0|3, 
radius 2

block 0, 
thread 1:

pixel 1|3, 
radius 2

block 0, 
thread 2:

pixel 2|3, 
radius 2

block 0, 
thread 3:

pixel 3|3, 
radius 2

block 0, 
thread 4:

pixel 4|3, 
radius 2

block 0, 
thread 5:

pixel 5|3, 
radius 2

block 1, 
thread 0:

pixel 0|0, 
radius 3

block 0, 
thread 1:

pixel 1|0, 
radius 30

block 0, 
thread 2:

pixel 2|0, 
radius 30

block 0, 
thread 3:

pixel 3|0, 
radius 30

block 0, 
thread 4:

pixel 4|0, 
radius 30

block 0, 
thread 5:

pixel 5|0, 
radius 30

block 1, 
thread 6:

pixel 0|1, 
radius 3

block 0, 
thread 1:

pixel 1|1, 
radius 30

block 0, 
thread 2:

pixel 2|1, 
radius 30

block 0, 
thread 3:

pixel 3|1, 
radius 30

block 0, 
thread 4:

pixel 4|1, 
radius 30

block 0, 
thread 5:

pixel 5|1, 
radius 30

block 1, 
thread 12:

pixel 0|2, 
radius 3

block 0, 
thread 1:

pixel 1|2, 
radius 30

block 0, 
thread 2:

pixel 2|2, 
radius 30

block 0, 
thread 3:

pixel 3|2, 
radius 30

block 0, 
thread 4:

pixel 4|2, 
radius 30

block 0, 
thread 5:

pixel 5|2, 
radius 30

block 1, 
thread 18:

pixel 0|3, 
radius 3

block 0, 
thread 1:

pixel 1|3, 
radius 3

block 0, 
thread 2:

pixel 2|3, 
radius 3

block 0, 
thread 3:

pixel 3|3, 
radius 3

block 0, 
thread 4:

pixel 4|3, 
radius 3

block 0, 
thread 5:

pixel 5|3, 
radius 3

block 2, 
thread 0:

pixel 0|0, 
radius 4

block 2, 
thread 1:

pixel 1|0, 
radius 4

block 2, 
thread 2:

pixel 2|0, 
radius 4

block 2, 
thread 3:

pixel 3|0, 
radius 4

block 2, 
thread 4:

pixel 4|0, 
radius 4

block 2, 
thread 5:

pixel 5|0, 
radius 4

block 2, 
thread 6:

pixel 0|1, 
radius 4

block 2, 
thread 7:

pixel 1|1, 
radius 4

block 2, 
thread 8:

pixel 2|1, 
radius 4

block 2, 
thread 9:

pixel 3|1, 
radius 4

block 2, 
thread 10:

pixel 4|1, 
radius 4

block 2, 
thread 11:

pixel 5|1, 
radius 4

block 2, 
thread 12:

pixel 0|2, 
radius 4

block 2, 
thread 13:

pixel 1|2, 
radius 4

block 2, 
thread 14:

pixel 2|2, 
radius 4

block 2, 
thread 15:

pixel 3|2, 
radius 4

block 2, 
thread 16:

pixel 4|2, 
radius 4

block 2, 
thread 17:

pixel 5|2, 
radius 4

block 2, 
thread 18:

pixel 0|3, 
radius 4

block 2, 
thread 19:

pixel 1|3, 
radius 4

block 2, 
thread 20:

pixel 2|3, 
radius 4

block 2, 
thread 21:

pixel 3|3, 
radius 4

block 2, 
thread 22:

pixel 4|3, 
radius 4

block 2, 
thread 23:

pixel 5|3, 
radius 4

 

Figure 41: An example of the Hough Space for an image with the resolution of 6-by-4 pixels and a 

wanted circle with a radius between 2 and 4 pixels. 

Each of these threads is assigned to one pixel and starts its procedure by examining the 

pixel’s intensity. If the pixel is an edge point, the hysteresis function will set its intensity to 

the maximum value. Therefore, examining the intensity of a pixel means checking whether it 

is an edge point or not. If the pixel is not an edge point, the assigned thread will terminate 

itself instantly. However, if the pixel is an edge point, an iterative algorithm will start: the 

thread “goes” in a circular course around this pixel and votes all fields (in increments of 1) in 

the distance of the thread’s assigned radius. The Hough Space is represented by a 3D array 

(Figure 42) where the multiple planes outline the multiple radiuses. For example: A circle 

with a radius between 2 and 4 pixels shall be found in the image with a resolution of 6-by-4 

pixels. When considering Equation 3.6.1, a Hough Space with 6 x 4 x 3 fields will be needed. 

For radius 2 every edge point will vote around itself in the zeroth plane (z = 0) of the Hough 

space array, for radius 3 in the first plane (z = 1) and for radius 4 in the second plane (z = 

2). Because of the possibility of two threads “wanting” to increment the same field at the 

same time, a solution has to be found for dealing with this critical section. Therefore, atomic 

functions have to be used to fulfill requirements of mutual exclusion. If normal functions were 

used, the voting process could be totally wrong. 
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Figure 42: Straightforward Strategy: On the left, some votes in the Hough Space when looking on the 

xy-plane of the 3D array, on the right, the same votes when looking on the xz-plane. 

After all edge points have voted for the multiple radiuses, the maximum value in the Hough 

Space has to be found since it represents the estimate of the circle’s center point. Due to the 

maximum number of 1024 threads per block [CUD14, 10], many blocks are necessary to have 

sufficient threads available for the voting process. It is not possible to synchronize different 

blocks with each other [SW10, 1]. Therefore, it is necessary to terminate the voting kernel 

after all votes were given and start another kernel for finding the maximum in the Hough 

Space. The algorithm for finding it will be explained in Subchapter 3.6.4.  

It would be also possible to iterate over all radiuses of interest instead of creating so many 

threads. However, this would lead to a loop that is nested in another one: the outer loop for 

iterating over all radiuses and the inner loop for going in a circular course around the edge 

point. This amended version of the voting process would most probably greatly decelerate the 

procedure. Therefore, it will not be implemented. 

An alternative version would be if a kernel counts all edge points and puts them in a queue 

to let these points vote in the next step. On the one hand, filling up such a queue would lead 

to more global memory accesses, which takes a bit of time, on the other hand, a lot less 

threads would be necessary for the procedure. The first kernel invokes as many threads as 

pixels are in the image. These threads put the pixel coordinates in the queue if it is an edge 

point. The following kernel invokes as many threads as there are points in the queue 

multiplied by the radius range (Equation 3.6.2). That means that the second kernel has to 

process only edge points and not all the pixels. 

)1( minmax  rrBA qt  (3.6.2) 

When comparing Equation 3.6.1 with Equation 3.6.2 and neglecting the additional memory 

accesses, this version of the voting process will be faster when following Equation 3.6.3 is 

fulfilled. 

PyPxBq   (3.6.3) 

In other words, it can accelerate the procedure if there are a lot less edge points than pixels 

in the image. This version will also be implemented and tested to obtain information about 

the performance differences in the project on hand. 
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3.6.2 Inverse-checking Strategy of Hough Circle Transformation 

As mentioned in the previous subchapter, when pursuing the Straightforward Strategy, every 

thread that processes an edge point votes around itself for its possible center point. In other 

words: every edge point “thinks” that it belongs to a circle and “tries” to find its center point. 

When using the Inverse-checking Strategy, the voting process is in the opposite direction. 

Every field in the Hough Space, which represents a pixel with a defined radius, “thinks” that 

it is the center point of a circle with this radius r and “counts” its assigned edge points 

(Figure 43). The advantage of this method is that each thread votes only in its own field. 

Therefore, no atomic operations will be needed to fulfill the requirements of mutual exclusion 

for critical sections. Avoiding such operations greatly accelerates the voting process. 

y
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r

+12

+12

 

Figure 43: Inverse-checking Strategy: On the left, some votes in the Hough Space when looking on the 

xy-plane of the 3D array, on the right, the same votes when looking on the xz-plane. 

For the Inverse-checking Strategy as many threads are needed as for the Straightforward 

Hough version. The drawback of this strategy is the fact that every field invariably has to 

iterate through the various points, which represent the possible circle around. On the other 

hand, the Straightforward Strategy’s kernels only start this loop if their field is an edge point. 

Studies [AME13, 220][CJ11] stated that the Inverse-Checking Strategy is faster than the 

Straightforward version. However, I assume that it will be faster only if there are many edge 

points in the image, so that the Straightforward version would invoke many threads that 

have to iterate through all points of the circle. 

 

Figure 44: All various radiuses’ planes of the Hough Space summed to one 2D image. 
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Figure 44 shows the Hough Space when all different radiuses’ planes of the Hough Space are 

summed to one 2D Hough Space. In other words, this image shows the Hough Space in a way 

for giving a better understanding, but should not be used for finding the circles center. 

3.6.3 Voting in a circular course around an edge point 

As it is necessary to vote, the fields of the Hough Space have to observe or vote around 

themselves. Therefore, a loop will be started where all coordinates of these circle pixels (for a 

given radius) will be calculated. There are two different approaches to calculating all these 

coordinates along a circle: using trigonometric functions or the Pythagoras theorem. No 

studies have been found that compared these two approaches on a GPU. Therefore, both will 

be implemented and tested. 

3.6.3.1 Drawing a circle with trigonometric functions 

The left side of Figure 45 shows that the trigonometric version of “drawing” a circle consists 

in a loop that iterates over the variable theta ( ). Equation 3.6.4 and Equation 3.6.5 will be 

performed inside this loop to calculate the coordinates of circle points based on the angle  . 

)cos( rx  (3.6.4) 

)sin( ry  (3.6.5) 

However, one important fact has to be considered to guarantee a fair voting procedure: 

Variables x and y, which represent coordinates, are discrete values and of the integer data 

type. However, the trigonometric functions return floating point values that have to be 

rounded to fit the results (Equations 3.6.4 and 3.6.5) in the coordinate variables. The smaller 

the circle, the more often the same coordinates will be calculated (Figure 45, right). To avoid 

voting more than once during an iterative step, the newly calculated coordinates have to be 

compared with the previous ones and ignored if they are the same. Additionally, when the 

radius is very long, the iteration steps have to be finer than an increment of 1. Otherwise, 

some pixels could be skipped through roundings (Figure 45, right). 
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Figure 45: On the left, calculation of the circle point’s coordinates, on the right, multiple and skipped 

votes. 
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3.6.3.2 Drawing a circle with the Pythagoras theorem 

The Pythagoras version consists of a loop, which iterates over the coordinate x. In this loop, 

the Pythagoras theorem (Equation 3.6.6) calculates the coordinate y for every x to navigate 

to each of the circle’s points (Figure 46, left). 

22 xry   (3.6.6) 

Because of the iteration of one of the two coordinates, this version has the advantage of not 

calculating the same coordinates twice as was the case with the trigonometric functions. 

However, some fields will be skipped when the circle is big enough so that some adjacent 

points have the same x coordinates (Figure 46, right). To overcome this drawback, the actual 

y coordinate has to be compared with the previous one. If the difference of the two y 

coordinates is greater than 1, additional points have to be “drawn”. 
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Figure 46: On the left, calculation of the circle point’s coordinates, on the right, skipped votes. 

3.6.4 Finding the maximum value in the Hough Space 

Finding the maximum is the final step of the Hough Circle Transformation and two 

approaches will be implemented. This step can be done in two different manners: by using 

the global memory or the shared memory. Since using the global memory alone is easier to 

implement, the shared memory can greatly accelerate the program [CUD14, 12, 187f]. 

3.6.4.1 Parallelized maximum search algorithm based on global memory 

Since threads from different blocks cannot get synchronized, two different kernels are 

required. Figure 47 shows the flowchart of the algorithm for an example when searching the 

maximum value inside the Hough space (with reduced number of threads and blocks). The 

first kernel starts as many threads as the Hough Space has fields and each of these threads 

compares its value with a global maximum variable that has been initialized with 0. If the 

thread’s own value is greater than the actual stored maximum, the thread will set this 

variable to its own value, which represents the actual maximum. An atomic function for 

comparing and updating has to be used to fulfill the requirements of mutual exclusion. 
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After each thread had the chance to update the maximum value, the kernel terminates and 

another kernel starts. It invokes as many threads as the last one and now these threads 

compare their own value with the maximum variable. The field that has the same value as 

the maximum variable represents the maximum of the Hough Space and is, therefore, the 

center point of the wanted circle. 

block 0, thread 0

is mine value bigger 

than global maximum?

set global maximum 

variable to mine value

find the maximum – 

kernel (invoke pixels * 

rrange threads) 

set global maximum 

variable to 0

block 0, thread 7

is mine value bigger 

than global maximum?

block 4, thread 9

is mine value bigger 

than global maximum?

set global maximum 

variable to mine value

set global maximum 

variable to mine value

terminate thread terminate thread terminate thread

where is the maximum 

- kernel

yes yes yes

block 0, thread 0

is mine value equal to 

the global maximum?

i am the maximum, my 

coordinates are: x, y
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is mine value equal to 

the global maximum?

block 4, thread 9

is mine value equal to 

the global maximum?

i am the maximum, my 

coordinates are: x, y
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coordinates are: x, y

terminate thread terminate thread terminate thread

yes yes yes
no no no
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Figure 47: Flowchart of the algorithm for finding the maximum value in the Hough Space (based on 

global memory). The number of blocks and threads are just examples. In reality, there will be much 

more of them. The numbering of these items is also arbitrarily chosen, other blocks and threads could 

be invoked. 

3.6.4.2 Parallelized maximum search algorithm based on shared memory 

However, this procedure can be easily accelerated through the use of the shared memory (an 

example with reduced number of blocks and threads is provided in Figure 48). This memory 

has the disadvantages of being much smaller and only accessible from the same block. 

Therefore, the shared memory can only be used to determine the local maximum from a 

block. Then again, it is much faster than the global memory. Every block has its own shared 

maximum variable which will be set to zero at the beginning of the procedure. Subsequently, 

each thread compares its own value with the maximum variable in the block’s shared 

memory. If the thread’s own value is greater than the shared variable, the shared maximum 

will be updated. Since the access to the shared variable is also a critical section, comparing 

and setting must be done in an atomic function as well. Afterwards, a synchronization 

command forces all threads of the block to wait for each other. This must be done to be sure 

that every thread of the block had the chance to set the shared maximum variable. 
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Figure 48: Flowchart of the algorithm for finding the maximum value in the Hough Space (based on 

shared memory). The number of blocks and threads are just examples. In reality, there will be much 

more of them. The numbering of these items is also arbitrarily chosen, other blocks and threads could 

be invoked. 
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In the next step each thread again compares its own value with the shared variable. If it is 

the local maximum, it will save its value in a field (with index being equal to the block id) of 

a global array. That means that block 0 will save its maximum value at field 0, block 1 at 

field 1, and so on. Subsequently, a new kernel invokes as many threads as blocks had been in 

the previous step, which is the number of filled fields of the global array. If it is less than 

1024, only one block will be created, and the maximum of the entire Hough Space can be 

found again with the help of the shared memory. If more than 1024 threads are needed, all 

(new) local maxima will be written in a global array again. This is repeated until all 

remaining local maxima fit in one block so that the maximum of the Hough Space can be 

found. 

As explained above, the shared maximum variable has also been processed with atomic 

functions, which serialize some parts of the algorithm and slow down the procedure. However, 

the various blocks do not share the same variable and, therefore, they can process it totally 

independently from other blocks. It is assumed this algorithm will be faster than the first one. 

To validate this assumption, the times of both algorithms will be compared. 

3.7 RANSAC algorithm 

This subchapter deals with the implementation of another detection algorithm that will also 

be carried out in the framework of this thesis: the RANSAC algorithm. This detection 

algorithm requires an edge image as well. Whereas the Hough Transformation can be 

computationally costly and its processing time depends on the number of edge points present 

in the picture, the RANSAC algorithm should be much faster and its processing time depends 

on the number of iterations done to find the best-fitting circle. 

The first question to a developer should concern the number of blocks and threads 

respectively the extent of tasks to be executed in a thread. It can be assumed that the Canny 

Edge Detector (see Section 3.5) will output edge images of high quality if both threshold 

parameters are set properly. At least, good edge images will be created if the background of 

the scene is subtracted (see Section 3.4) from the original image before the Canny Edge 

Detector begins to work. The better the quality of such an edge image, the less false edge 

points will be in this picture, the less iterations will be needed to find the ball’s center. 

As mentioned in Subchapter 2.4.2, a block can consist of up to 1024 threads, and threads of 

the same block are able to share information among each other with the help of the shared 

memory. Accessing this shared memory takes a lot less time than accessing the global 

memory, which is accessible from all threads, independent of the block they are associated 

with. It seems obvious that the various trials to find the circle should be processed parallel 

instead of in sequential iterations. Therefore, the term trial will be used from now on. Each of 

these trials will be performed by a thread of its own, which outputs a possible center point of 

the wanted circle. After all suggestions have been made, the best-fitting circle will be picked 

and the coordinates of its center point chosen as those of the wanted circle. Performing the 

RANSAC algorithm with a number of trials (threads) less or equal to 1024 will lead to a 

demand for only one block and only one kernel. Therefore, finding the best-fitting circle can 

be done without using the global memory and will greatly accelerate the entire procedure. In 
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contrast, the Hough Transformation (see Subchapter 3.6.1) needs as many threads as pixels 

make up the image multiplied by the range of radiuses. Because of the huge quantity of 

threads, many blocks will be needed and another kernel has to be started to find the 

maximum in the Hough Space. This forces the developer to make the algorithm use the 

global memory. The next subchapters show the implementation of the individual RANSAC 

steps. 

3.7.1 Selecting randomly three edge points 

At the start, three edge points have to be randomly selected. Therefore, a queue is needed in 

which all edge points are registered. This preliminary work will be done by a kernel that 

invokes as many threads as pixels are in the image. If a thread’s pixel is an edge point, it will 

registered in the queue, if not the thread will be terminated instantly. 

x0

y0

x1

y1

x2

y2

x3

y3

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

x10

y10

x11

y11

x12

y12

x13

y13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x4

y4

0

1

indices

 

Figure 49: All edge points’ coordinates will be registered in a queue. 

Figure 49 shows a 2D array that represents such a queue: one dimension stands for the 

various edge points and the other dimension for the coordinates of these points. To choose 

randomly one of these points means to generate a random number between 0 and the highest 

index of the queue. Generating the random number r leads to picking the r’th point, with the 

coordinates xr and yr, of the queue. 

However, it is more complicated to generate a random number on a GPU than on a CPU. 

First of all, the curand [33] library has to be installed and included in the program to use it. 

Like in “normal” C programs, an initialization function has to be called before it is possible to 

generate random numbers. More precisely, the initialization function in a host program is not 

necessary for generating a number, but it enables a quasi-random generation. Without the 

initialization function, the generated numbers will only be pseudo-random numbers, which 

means that the numbers and their sequence will always be the same. On the other hand, the 

initialization function is necessary to get a random number on a GPU, regardless of the type 

of numbers: quasi-random or pseudo-random. This function, called curand_init6, needs a 

variable of the curandState data type, which is used to save the state of the curand function 

that generates the random numbers. Because of the demand of three random numbers per 

trial respectively thread, an array of these states will be allocated with as many fields as 

trials will be performed. Additionally, the initialization function decides on the random-

number generator to be used and, in further consequence, on the type of random numbers. 

Pseudo-random numbers are easier to handle and, therefore, they will be used in this 

                                                 
6 This has to be done only once when starting the program. The generator will output 267 random numbers before 
the sequence of numbers will be repeated. The huge amount of random numbers is above and beyond sufficient for 
testing this algorithm in the framework of this thesis. 
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experimental setup [33]. However, it is possible to make the pseudo-random generator behave 

similarly to its quasi-random counterpart. A so-called seed, which is an arbitrary value, has 

to be defined when initializing the random generator. All generated values will be based on 

this seed, which means that values will always be the same when initializing the generator 

with the same seed value. To overcome this drawback without using another more 

complicated quasi-random generator, the seed will be generated by the rand function [34] in 

the host program. The initialization of this random number generator will be based on the 

actual date and time to guarantee a quasi-random-generated seed for the GPU function. 

E
n Prr mod)10( 10    (3.7.1) 

After the initializing step has been completed, the curand_uniform function can be executed 

to generate a floating point value r0-1 between 0 and 1. Subsequently, this floating point value 

has to be converted to an integer r between 0 and the queue’s highest index that represents 

the amount of the image’s edge points (Equation 3.7.1). First, the random number r0-1 will be 

multiplied by 10n, which means that the decimal point of the floating point is shifted n digits 

to the right. This leads to a random number between 0 and 10n when neglecting the digits 

after the decimal point and, therefore, the lower bound is set. To set the upper bound, the 

result of this calculation has to be divided by the quantity of queue members. However, the 

remainder of this division is the needed random number, not the result of the division itself. 

Therefore, the modulo operator will be used, which outputs this remainder. 

3.7.2 Calculating the circle that is described by these three points 

Each point around the periphery (represented by the coordinates x and y) of a circle is 

related to the circle’s center point (represented by the coordinates xc and yc) through 

Equation 3.7.2. 

    222
ryyxx cc   (3.7.2) 

Since it is possible to describe a circle through three points, three random numbers have to be 

generated to point at three different fields of the queue’s array. With the help of these points, 

a system of three equations with three unknowns can be set up (Equation 3.7.3, Equation 

3.7.4, and Equation 3.7.5). 

    22

1

2

1 ryyxx cc   (3.7.3) 

    22

2

2

2 ryyxx cc   (3.7.4) 

    22

3

2

3 ryyxx cc   (3.7.5) 

It is obvious that rearranging and transforming these three equations will lead to results for 

xc, yc, and r. 

3.7.3 Drawing a circle with these three points 

In the next step, a circle with the parameters calculated in the previous subchapter, can be 

“drawn”. More precisely, each thread draws such a circle with different points (Figure 50) 
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that were selected in Section 3.7.1. However, it is not necessary to save these drawn circles in 

the memory as was the case with the Hough Transformation. Figure 50 shall only serve for a 

better understanding. 

As explained in Subchapter 3.6.3.1 and Subchapter 3.6.3.2, drawing a circle can be 

accomplished either with trigonometric functions or the Pythagoras theorem. The same 

applies to the RANSAC algorithm; both will be tested and the faster approach chosen. 

 

Figure 50: Various possible circles from different trials. 

Figure 51 shows the example of an edge image and the circle’s dependence on the selected 

edge points. Because of noise respectively the detection of wrong edge points in the image, 

the possibility for detecting a wrong circle is higher when the selected points are close to each 

other (left side of Figure 51). Introducing a minimum distance between the three selected 

points would reduce wrong detection caused by noise and “unclean” edge images (right side of 

Figure 51). This would require to calculate the Euclidian distances among all three points: P1 

to P2, P2 to P3, and P1 to P3. If the distance between two points is lower than a predefined 

value, the trial will not be valid. 

 

Figure 51: Selecting points that are close to each other increases the likelihood of detecting the wrong 

circle. 

Another approach to circumventing selection of points that describe a wrong circle would be 

a provision requesting a radius in a predefined range. The drawback of this approach is the 

need to calculate the center point and the radius regardless of whether the points will be 
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used. However, because of the amount of edge points and their distribution, it is assumed 

that the likelihood of selecting three far off points is higher than three points that are close to 

each other. Therefore, in sum, calculating the Euclidian distances for all three points and 

subsequently calculating center point and radius will take more time than calculating only 

the center point and the radius even if it might be in vain. Because of these considerations, 

the radius will be examined instead of the Euclidian distances to detect the ball as fast as 

possible. 

Furthermore, it would be possible to repeat the process of finding three points if they do not 

meet abovementioned requirements. However, this could lead to a distinctly longer processing 

time if one or more trials kept failing to meet these requirements and the thread would be 

forced to repeat selection again and again. Therefore, a thread that picked wrong points will 

be terminated instantly in this implementation; with the consequence of losing as many trials 

as wrong selections have been made. Still, this simplification can be made because the 

possibility for one trial making wrong selections many times in a row is much higher than all 

trials making wrong selections given that there will be numerous trials (1000 or more). 

Nevertheless, the percentage of valid trials relative to the total amount of trials will be 

examined to ensure that not all trials will be terminated. 

3.7.4 Finding the best-fitting circle 

The last step of the algorithm is to find the drawn circle that fits best to the circle of the 

edge image. Therefore, every thread (trial) counts the inliers, which represent the points of 

the drawn circle that match the edge points. Normally, this is done by calculating the 

Euclidian distances between all points of the drawn circle and all edge points. As described in 

Subchapter 2.3.3.5, an edge point will be counted as inlier if the distance is less than or equal 

to a predefined value. If the distance is higher, the edge point is an outlier. The circle with 

the most inliers will be chosen. 

However, here a further simplification will be introduced. A GPU that features compute 

capability 3.x would enable calling a kernel out of another kernel. This means that every 

point of the drawn circle could start as many threads as edge points are contained in the 

image to enable parallel examinations of the distances. The GPU used in this framework 

features “only” compute capability 2.1 and, therefore, each point of the drawn circle would 

have to start a loop to examine all distances to the various edge points. It is obvious that two 

nested loops would take too much time. Therefore, each point of a drawn circle checks 

whether it lies directly on an edge point or not. A local inlier count variable will be 

incremented by 1 for every matching point. 

For a better understanding, Figure 52 shows the complete RANSAC procedure as explained 

in the previous subchapters. 
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Figure 52: Flowchart of the RANSAC algorithm. 

3.8 Obtaining the object’ s 3D position 

Knowing about the ball’s movement in space and time is essential for predicting its further 

flightpath. Until now, all the previous steps “only” had the task to detect the ball in 2D 

images. However, this does not predict the ball’s movement in space. Nevertheless, the 

outputs of the previous detection procedures are absolutely important for this step: the so-

called triangulation makes it possible to convert the information of the 2D images from the 

left and right camera to the wanted 3D view of the scene. This procedure is very similar to 

the way humans see 3D. Since it already exists as a Matlab implementation, it could be 

readily applied for the purposes of this thesis. 

First of all, the coordinates of the ball’s center in the left and right images are needed; 

without them, triangulation will not work. Therefore, the coordinates of the maximum field of 

the Hough Space (Figure 40) or the center point’s coordinates of the best-fitting circle from a 
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RANSAC trial (Figure 50) are required. Whether Hough is used or RANSAC, triangulation 

will work either way. However, the results of the 3D position can be slightly different. As 

stated in Subchapter 2.3.3.6, these detection procedures are totally different and lead to 

different results, which means that they can be more precise or less. The accuracy of a 

calculated 3D position depends on the accuracy of the results from the center point detection 

in the 2D images. 

Additionally, one needs to pay attention to the following: the coordinates resulting from both 

of the detection algorithms describe the ball’s position in the small 300-by-300 pixels 

subimages. To obtain the correct 3D position of the ball, these coordinates have to be 

calculated back to coordinates that describe the ball’s location in the large 2048-by-2048 

images. Therefore, the offset parameter values of the subimages (Figure 30) will be required 

again. 

Because procedures such as the background subtraction, the creation of edge images, and the 

object detection in 2D images include many operations that have to process many datasets 

with the same instructions, it is possible to carry them out parallel. Therefore, it is reasonable 

to perform these procedures on a GPU. On the other hand, triangulation only converts the 

coordinates of the 2D images to the coordinates of the ball’s position in 3D space. This 

procedure does not process multiple datasets with the same instructions, which means that it 

is not possible to parallelize the required calculations. An algorithm should be executed on 

the most appropriate hardware. In other words, tasks like the previous ones, which process 

entire images, perform better on a GPU and tasks, like triangulation, which computes in a 

serial way, perform better on a CPU. Therefore, the triangulation algorithm will be placed in 

the host program. The drawback of this approach is in the necessity to move the required 

data (the coordinates) from the device to the host. On the one hand, this move requires some 

time, but on the other hand, this extra time will be more or less compensated by the faster 

execution of the triangulation on the CPU. Additionally, this approach provides useful 

information about transaction times. For example, if detection and prediction will take too 

much time when performing them on one GPU, it would be possible to perform these tasks 

on two different devices. This would also lead to the necessity of swapping the required 

datasets from one device over the host to the other device. 

3.8.1 Triangulation 

The triangulation process converts the two positions of the point of interest, which in this 

case is the center point of the ball, to one 3D position. As shown in Figure 13, the 

fundamental principle of this procedure is based on simple arithmetic operations 

(Equation 2.3.2). Because of the imperfect alignment of the stereo vision system, the 

distortion of the cameras, and other effects, such a simple solution would only lead to 

extremely inaccurate results. For this reason, the vision system has to be calibrated. This 

step, which is not part of this thesis, has been carried out with the help of a Matlab toolbox 

[19]. Following calibration, several parameters needed for accurate triangulation are available: 

focal lengths, principle points, skew- and distortion coefficients, rotation- and translation 

vector between the right and left camera. 
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For an accurate triangulation, a Rodrigues rotation matrix [35] is required that contains the 

rotation vector, which was calculated by abovementioned Matlab toolbox. This step consists 

of a matrix multiplication and is only done once during execution time and is, therefore, one 

of the first steps of the program. 

Once the Rodrigues matrix and the other parameters are known, an accurate triangulation 

can be made. Now, the only factors that impact the 3D position’s accuracy are the preceding 

detection algorithms that were explained in Subchapter 3.6 and Subchapter 3.7. 

The first step of the triangulation will be the normalization of the image projection according 

to the intrinsic parameters. This procedure should remove respectively compensate the 

distortions of the two cameras and has to be performed for both images: the left and the 

right. This step requires: the coordinates of the center point, the focal length, the principle 

point, the distortion- and the skew coefficient. It is obvious that the normalization of the left 

image has to be calculated with the coordinates and parameters of the left side and, vice 

versa, the right side with the right coordinates and parameters. The normalization function 

provides distortion-free coordinates of the images. 

Subsequently, with the help of the Rodrigues matrix, these distortion-free coordinates can be 

calculated to the desired 3D coordinates. More precisely, triangulation will result in two sets 

of 3D coordinates: for the view of the left and the right cameras each. 

3.8.2 Coordinate translation 

Since the robot arm catches the ball and not one of the cameras, the resulting coordinates 

have to be converted to a so-called world coordinate system. This coordinate system describes 

the view from the catching device, which means that the catching robot lies in its origin. 

Figure 53 shows an example of a possible alignment of one camera and the catching device. A 

transformation matrix is required to translate the 3D coordinates to the world coordinate 

system. This matrix is created as part of the calibration process and translates the 

coordinates from the left camera to the world coordinate system. Therefore, the 3D 

coordinates of the right camera will not be required in any further calculation steps. 

P
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Figure 53: One point has different coordinates in different coordinate systems. Modified from [36] 



  Setup, Procedure, and Concept   

 

 63 

The catching system can be placed and aligned in various ways: the cameras can be aligned 

horizontally or vertically, they can be placed behind the catching device or in front, etc. 

However, for every configuration, a calibration has to be done to obtain all parameters 

necessary for an accurate triangulation, and a transition matrix for correct coordinate 

translation is also needed. 

3.9 Prediction 

Besides detection of the ball, prediction of its flightpath is the other focus of this thesis. A 

bio-inspired prediction is the basis for this thesis and, therefore, its implementation will be 

explained in this subchapter. To recap, this prediction system shall estimate the ball’s further 

flightpath based on a wealth of experiences. 
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Figure 54: After the ball’s actual flight has been compared with the trajectory database, its future 

positions can be transmitted to the robot arm to enable successful capture. 

Numerous flights have been recorded and their trajectories stored in a database for this 

purpose. After the parameters of the flying ball have been captured, they can be compared 

with all the stored reference throws (Figure 54). It is comparable to a k-NN searching 

algorithm, which finds the k-nearest neighbors. Therefore, in the case of a flightpath 

prediction, the k most similar trajectories shall be found in the database. These trajectories 

can be averaged to get information about the ball’s further movement. If k is equal to 1, only 

the most similar trajectory will be selected for predicting the flightpath. 

The number of actual flight positions required for a reasonably accurate estimation is difficult 

to determine, but this issue is not part of this thesis. Currently, Pongratz works on his 

dissertation to answer this question among other things. Probably between 5 and 10 positions 

have to be known for the first prediction, but this is only an estimation. Nonetheless, it is 

obvious that the more positions are known, the more precise the prediction will be. Moreover, 

without any doubt, the wealth of entries in the trajectory database significantly determines 

the quality of the prediction and the results obtained. In other words, the more entries in the 

database, the more accurate the prediction will be. 

This thesis focuses on the real-time ability of detection and prediction, based on the bio-

inspired approach. Such a k-NN search may take a lot of time as a result of the huge amount 
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of comparisons with all the database entries [MPD14]. A good algorithm has to be 

implemented that perfectly fits the target hardware. This raises the question: CPU or GPU? 

Because of the huge amount of comparisons, which means the same instruction is processed 

with different data, it seems natural to execute this searching algorithm on a GPU. 
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Figure 55: The trajectory database will be stored in a 3D array. 

The trajectory database is saved as a CSV-file that has to be read in as part of a program 

initialization step. Because of the data’s structure, a 3D array is the best solution for storing 

each coordinate of each position from each trajectory. Figure 55 shows the array’s structure: 

one dimension for the trajectories, one for the positions, and one for the coordinates. After all 

data have been loaded from the hard disk to the main memory, they will be moved to the 

GPU global memory to make the comparison as fast as possible at runtime. Loading the data 

just in time would lead to much longer execution times. The trajectory database will be saved 

in the GPU’s memory in the exact same way as it is saved in the main memory: as a 3D 

array (Figure 55). 

Two different approaches exist for estimating a flightpath based on this bio-inspired 

technique: comparing directly the ball’s positions with their counterparts in the database, or 

comparing the rates of change from one position to the next. This can be done through 

additional subtractions: the actual coordinate minus the previous one results in the change of 

the ball’s position from its previous to its current position (Equations 3.9.1, 3.9.2, and 3.9.3). 

1 iii xxx  (3.9.1) 

1 iii yyy  (3.9.2) 

1 iii zzz  (3.9.3) 
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Obviously, rates of change according to the database trajectories must also be calculated to 

compare them with those of the actual flight. The drawback of this approach is the demand 

for additional subtractions, but they probably will lead to just a slight increase in execution 

time. On the other hand, the advantage of this solution would be the independence of the 

ball’s prediction from its launching position. The ball will have a similar movement no matter 

from where it is thrown. This could lead to more accurate predictions with the same wealth 

of database entries. However, as mentioned above, the achieved accuracy of the prediction is 

not part of this diploma thesis. Nevertheless, both approaches shall be implemented to obtain 

information about the required execution times. The next two subchapters deal with the 

implementations of both approaches. 

3.9.1 Comparison of coordinates 

This algorithm shall find the trajectory that best fits the actual flight’s positions. For this 

purpose, the Euclidian distances of all the actual flight’s positions (composed of xaf, yaf, and 

zaf) to their counterparts in the database trajectories (xdb, ydb, and zdb) will be added up to a 

total distance dtotal (Equation 3.9.4). The database trajectory that leads to the smallest sum 

of distances, when comparing it with the actual flight, will be the most similar trajectory and 

can be selected to predict future movement. To find the minimum distance, an atomic 

function has to be used to fulfill the requirements of mutual exclusion. Unfortunately, the 

CUDA’s instruction set contains only an atomic function for integer values and is, therefore, 

not able to handle the calculated rational numbers resulting from Equation 3.9.4. To 

overcome this drawback, the calculated value has to be transformed to an integer value that 

describes the distance with the same accuracy. After converting the calculated distances, the 

minimum of all distances can be obtained. 
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However, the challenges of this algorithm lie in the various possibilities to fit the actual flight 

in a reference trajectory. Figure 56 shows four examples of possible flightpaths compared with 

one trajectory of the database. While the first example represents a fairly good match 

between the two trajectories, the second example shows a lack of congruence between the 

actual flightpath and the database trajectory. 
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positions of the actual flightpaths

positions of a database trajectory

 

Figure 56: Four examples comparing actual flightpaths with the same database trajectory. While the 

first example represents a fairly good match between the two trajectories, the second example shows a 

lack of congruence between the actual flightpath and the database trajectory. Examples 3 and 4 are 

also good matches, but they do not fit completely into the database trajectory. 

However, it is possible that some of the actual flight’s positions are not present in the 

database trajectory that still fits best (example 3 and 4 of Figure 56). Therefore, the actual 

flightpath must be compared to the database trajectories in a way that some positions can be 

outside of the array boundaries. In other words, the recorded positions of the actual 

flightpath have to be “shifted” over the various trajectories of the database, and it must be 

guaranteed that not all of the actual positions have to lie on their counterpart database 

trajectory (Figure 57). That way, points of the actual flight not lying on a database position 

will not be included in the sum of all distances. However, it is logical that a trial that 

examines fewer positions can have a smaller distance although it fits less than one that 

examines more positions. An exaggerated example would be a comparison of two trials where 

one of the trials calculates only 3 distances and the other one 30 distances. It does not matter 

whether the 30 distances are very small, the sum of only 3 distances will probably be smaller. 

However, selecting this trajectory for the prediction could be a mistake. To circumvent such 

errors, all distance calculations have to be normalized, which means that the sum of distances 

dtotal of a trial has to be divided by the number of distances calculated in this trial. Therefore, 

the Equation 3.9.4 will be expanded by an additional division (Equation 3.9.5). 
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 (3.9.5) 

In this connection, a predefined parameter will determine the number of positions that are 

allowed to cross the boundaries of the database trajectories. Because the number of these out-

of-range positions should be proportionate to the length of the actual flight’s trajectory, the 

parameter will represent a percentage of this length. As an example, 2 out of 10 positions are 

allowed to be beyond the trajectory’s boundaries when the parameter’s value is set to 20. 
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Figure 57: An actual flightpath is “shifted” over a database trajectory to find the place where the sum 

of all Euclidian distances is the smallest. A predefined parameter decides how many of the actual flight 

positions (Paf) are allowed to be outside of the database trajectory. 

A good concept is required, that is, an appropriate amount of threads and blocks must be 

chosen, to accelerate this procedure with the help of a GPU’s parallel architecture. Each 

database trajectory will be examined in a separate block. Therefore, the number of blocks B 

will be equal to the number of trajectories ntraj stored in the database (Equation 3.9.6). 

trajnB   (3.9.6) 

Choosing the right number of threads to be invoked, proves to be a challenge. Each possible 

alignment of the actual flight with a database trajectory will be examined in a separate 

thread. Separating these comparisons in different threads is equal to parallelizing the act of 

shifting the actual flight over a database trajectory. However, the number of possible 

alignments has to be known to determine the number of required threads. Figure 58 shows an 

example for a required number of threads T for a given length of the database trajectory ltraj 

and the current length of the actual flight laf when neglecting the out-of-range positions. 

However, the database trajectories’ lengths can vary, but all blocks must contain the same 

number of threads. Therefore, the required number of threads T depends on the length ltraj,max 

of the longest database trajectory. This interrelationship of T, ltraj,max, and laf is described by 

Equation 3.9.7. 

 1max,  aftraj llT  (3.9.7) 
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Figure 58: Number of possible alignments of an actual flight with a database trajectory when 

neglecting the out-of-range positions of the actual flight. 

As explained above, a percentage parameter Poor will determine the maximum number of out-

of-range positions that will be accepted. This inevitably leads to a higher number of threads 

T that have to be invoked. The amount of threads has to be increased by the number of 

these out-of-range positions multiplied by 2 since these positions can lie outside the 

boundaries either before the first entry of the database trajectory or after it. Therefore, 

Equation 3.9.7 needs to be adjusted accordingly (Equation 3.9.8). 

 
100

21max,

afoor

aftraj

lP
llT


  (3.9.8) 

The number of required threads can deviate from the result (Equation 3.9.8) if the algorithm 

makes use of the shared memory to accelerate the procedure. In this case, every block loads 

the recent coordinates of the actual flight’s positions and the positions of the block’s database 

trajectory from the global memory to the shared memory to circumvent a huge amount of 

global memory accesses. More precisely, the first thread from a block loads the first position 

of the actual flight and the associated database trajectory, the second thread loads the second 

position, and so forth. If this swapping of data from the global to the shared memory were 

omitted, the various threads of a block would load the same datasets of the global memory 

numerous times, which would lead to higher execution times.  

However, the more positions of an actual flight are known, the smaller the calculated number 

of required threads T (Equation 3.9.8). Therefore, it is possible that the number of invoked 

threads will be smaller than the length of the longest database trajectory if the additional 

number of out-of-range positions is smaller than the current length of the actual flight 

(decremented by 1). This would lead to an incomplete move of the positions stored in the 

global memory to the shared memory and could cause a wrong prediction. However, a 

sufficient number of threads T has to be ensured. If the calculated value T is smaller than the 

length of the longest database trajectory or the actual flight, the value T has to be set to the 

length of the longest database trajectory (Equation 3.9.9) respectively the actual flight 

(Equation 3.9.10). The number of invoked threads has to be big enough to move all positions 
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of the database trajectories and all positions of the actual flight from the global memory to 

the shared memory. 

max,trajlT   (3.9.9) 

aflT   (3.9.10) 

3.9.2 Comparison of rates of change 

As mentioned in the introduction of this subchapter, there is another approach to finding the 

best-fitting trajectory from the database: comparing the rates of change. 

 

Figure 59: Comparing the vectors of the actual flight with those of the database trajectory instead of 

their positions. 

Figure 59 shows this abstraction from the trajectory points to the movement vectors of the 

thrown ball. The algorithm is nearly the same as the one that compares the trajectories’ 

points in the previous subchapter. The only difference is the additional step of subtractions 

from the coordinates (Equations 3.9.1, 3.9.2, and 3.9.3) of one point Pi and its previous point; 

see Equation 3.9.11. 

1 iii PPP  (3.9.11) 

The assumption here is that this approach will require somewhat more execution time, but 

this will be tested and described in Section 4.1.6. 
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4. Results and Discussion 

In line with the research goal stated in the Introduction (see Chapter 1), the real-time ability 

of a GPU-based prediction system was investigated here. For this purpose, related research 

(see Chapter 2) has been examined to obtain state-of-the-art information about required 

methods and possible approaches to performing the various procedures. This enabled 

implementation of the algorithms needed to detect the thrown ball and to perform a bio-

inspired flightpath prediction. The deliberations regarding adequate implementation of the 

various program steps developed in the framework of this diploma thesis have been described 

in Chapter 3. The following subchapters will provide information about execution times, 

accuracy, and real-time behavior of the entire program. Each of the following line charts with 

frame numbers plotted on the abscissa represents an entire flight of the ball. The times 

represent the average, maximum, and minimum measured at these frames. 

4.1 Comparing different approaches implemented 

This subchapter deals with the results of several trials that have been examined and tested to 

find the best-fitting solution as well as to prove the assumptions made. 

4.1.1 Performance comparison between CUDA and OpenCL 

Conflicting statements have been made by [KDH10, 9f] and [FVS11, 9] regarding performance 

of the two platforms, CUDA and OpenCL, when programming a GPU. Therefore, a program 

part was implemented and tested on both platforms. Following examination of the execution 

times, a decision regarding the appropriate platform could be made. Since the creation of an 

edge image is among the program’s first steps, the Canny Edge Detector was chosen for this 

comparison. 

At the time of performance comparison, the learning process for programming a GPU was 

still in progress. Therefore, code optimization was omitted. In other words, the execution 

times needed by the two programs slightly deviate from later versions. However, this was not 

decisive for comparing the two platforms. Extreme manual optimization of the OpenCL 

program and pruning of the CUDA program, as done in [FVS11, 6] was not carried out here. 

Such actions were not considered to be useful when trying to make the right choice regarding 

the development of a program that will satisfy real-time constraints. Besides the nearly 

identical implementation of both programs, it was important to make sure that the computer 
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was in the same state when each of the programs was tested. Therefore, the computer was 

rebooted each time before program start. Additionally, the Internet connection was shut 

down during testing. Otherwise updating processes of the operating system or another 

program might have impaired the time measurements. 

To make a clear statement about the performance gap, the execution times of each subframe 

of a flight, from the left camera, was measured 100 times in a row. The average time the 

Canny Edge Detector needed to process one image of an entire flight was calculated for every 

repetition of this flight. Each bar in Figure 60 represents the average execution time needed 

to create an edge image of a flight. 

 

Figure 60: One flight of the ball was processed by the Canny Edge Detector 100 times in a row. The 

average execution times for one frame of each flight are illustrated in this bar diagram. The green bars 

are the execution times needed by the CUDA program and the blue bars are those needed by OpenCL. 

Figure 60 illustrates the better performance of a Canny Edge Detector algorithm on a GPU 

when implementing it on the CUDA platform. The OpenCL program was about 28.25 

percent slower than its CUDA counterpart. When examining the minimum and maximum 

execution times, a similar behavior was discerned: 26.34 % respectively 63.64 %. In absolute 

numbers, the CUDA program took between 2.45 ms and 2.58 ms, with an average of 2.53 ms. 

Because of better performance, easier handling of its platform, and the more comprehensive 

availability of documents as well as tutorials, CUDA was selected as development 

environment for further implementation steps. OpenCL would only be advantageous with 

regard to its use on different hardware from different vendors. However, this ability is not 

required here. 

4.1.2 Canny Edge Detector with and without background subtraction 

A background subtraction can be done as an additional step to improve the quality of an 

edge image. The execution times were measured, and the results are shown in Figure 61. One 
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flight was processed 1000 times in a row to obtain reliable measurement results. The diagram 

shows the background subtraction’s minimum, maximum, and average execution times of 

these 1000 iterations for each of the 92 frames of a flight. 

 

Figure 61: The background subtraction’s execution times of an entire flight. 

 The average execution time for processing two subimages (left and right) is under 0.3 ms 

and is highly consistent. This behavior proves the independence of the background 

subtraction procedure from what the images show: whether the ball is near the cameras or far 

away, whether the ball is big or small, the average execution time is always the same. 

Background subtraction is a deterministic procedure and, therefore, the required time will 

always be fairly the same. However, the fluctuation of the maximum execution time is 

approximately between 0.35 and 0.5 ms and is most probably caused by cache missed. 

As explained in Subchapter 3.5.4, a higher number of edge points in an image leads to a 

higher computation time for the Canny Edge Detector. Therefore, execution times for 

detecting edges can vary after the background was subtracted. A ball’s flight was processed 

by the Canny Edge Detector 1000 times in a row to get information about the execution 

times of this procedure. 
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Figure 62: The Canny Edge Detector’s execution times of an entire flight. 

Figure 62 shows the execution time of the Canny Edge Detector processing left and right 

images without a background subtraction and after the background has been removed. The 

slight slope of the graphs is caused by the ball approaching the cameras from frame to frame. 

The more the flight advances, the larger the ball’s shape will be displayed on the images. 

Because of the larger ball, more edge pixels are present in the frames and the iterative 

hysteresis procedure takes more time. At the beginning and the end of the flight, the Canny 

Edge Detector takes much more time to process the images with background than those 

without background. This behavior is caused by other objects that are present in these frames 

and lead to more edge points. The Canny Edge Detector takes more time when more edge 

points are present in the image. These additional edge points are not present when 

performing the background subtraction and, therefore, the execution time of these few frames 

is much shorter when subtracting the background. 

However, the background subtraction itself also requires time. Therefore, this time should be 

added to the execution time for detecting edges. Figure 63 shows the ratio of the sum of 

execution times of background subtraction plus Canny Edge Detector to the Canny Edge 

Detector without a background subtraction. 
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Figure 63: The ratio of the sum of execution times of background subtraction plus Canny Edge 

Detector to the Canny Edge Detector without a background subtraction. 

Performing the background subtraction and the Canny Edge Detector takes slightly more 

time than creating edge images without subtracting the background when there are no other 

objects present in the images. In the case of other objects displayed in the image, the Canny 

Edge Detector without a background subtraction can take up to 1.7 times more time than 

performing both steps combined (compare Figure 63). 
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Figure 64: Differences of one edge image when the background had been subtracted. 
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Expressed in absolute numbers, subtracting the background and detecting edges took 

between 1.54 ms and 3.42 ms with an average of 2.1 ms when considering all 1000 iterations 

of the whole flight. In contrast, only detecting edges took between 1.49 ms and 4.02 ms with 

an average of 1.92 ms. 

When subtracting the background, edge images of high quality are still possible when other 

objects are in the picture (Figure 64) and the execution time jitter is less. Therefore, 

substracting the background is preferable when considering execution time and accuracy. 

4.1.3 Pythagoras vs. trigonometric functions 

The Hough Circle Transformation and the RANSAC algorithm have to draw circles as a 

subroutine. This iterative procedure can be done with the help of trigonometric functions or 

the Pythagoras theorem. Both object detection algorithms have been examined with both 

approaches to drawing a circle. 

 

Figure 65: The Hough Circle Transformation’s execution times for each frame of an entire flight when 

drawing circles with trigonometric functions and the Pythagoras theorem. 

Figure 65 shows the execution times of both circle drawing approaches when performing the 

Hough Circle Transformation. Since a trigonometric function will be performed in one of the 

four SFUs (Special Function Unit) of a multiprocessor [Gla09, 21], the Pythagoras version is 

much faster. Additionally, it can be seen that execution times increase as the flight advances. 

Similarly to the Canny Edge Detector results (see Section 4.1.2), the more the flight 

advances, the larger the ball’s shape will appear in the images. Therefore, more edge pixels 

will be present in the frames and the voting process of the Hough Circle Transformation will 

take more time. 
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Figure 66: The RANSAC algorithms’ execution times of an entire flight when drawing circles with 

trigonometric functions and the Pythagoras theorem. 

Just as the Hough Circle Transformation, the RANSAC algorithm was also tested with both 

circle-drawing techniques. However, the results illustrate different behaviors. Because the 

RANSAC algorithm draws considerably less circles than the Hough Circle Transformation, 

the difference in their execution times is small. Because each iteration is performed over an 

angle and not a radius, the average time of the trigonometric version is fairly constant 

throughout the entire flight. However, because the radius increases as the flight advances, the 

Pythagoras version becomes slower from frame to frame. At the beginning of the flight, the 

Pythagoras version is faster than its counterpart and at the end, it is the other way round. 

4.1.4 Two Hough Circle Transformation Strategies 

Referring to Section 3.6, two different approaches to the Hough Circle Transformation have 

been implemented and compared with each other: the Straightforward Strategy and the 

Inverse-checking Strategy. For this comparison, frames of the same flight were processed 1000 

times in a row and the execution times were recorded to analyze the results (Figure 67). Since 

the Pythagoras theorem completed the task of drawing circles faster (Figure 65) when 

performing the Hough Circle Transformation, this approach was chosen. 

The Inverse-checking strategy requires considerably more time to detect the ball in both 

images. This is because each thread must start a loop to draw a circle when performing the 

Inverse-checking Strategy and only the threads that are assigned to an edge point have to 

start a loop when performing the Straightforward Strategy. The data obtained do not confirm 

the statements made in the studies [AME13, 220][CJ11]. Possibly, they had images with a 

huge amount of edge points, in which case it might be better to perform the Inverse-checking 

strategy. 
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Figure 67: The different execution times of an entire flight when performing the Straightforward or 

Inverse-checking Strategy of the Hough Circle Transformation. 

Additionally, the gradual increase in the Inverse-checking Strategy’s execution times is 

noticeable. This behavior is caused by the radius profile created to save memory and 

execution time (see 3.6). Circles with a bigger radius have to be searched for when the ball is 

getting closer to the cameras and, therefore, the iterative procedure of drawing circles takes 

more time. Since the frames contain relatively few edge points, the Straightforward Strategy 

draws considerably less circles than the Inverse-checking.  

4.1.5 Object Detection with and without background subtraction 

Already in Subchapters 4.1.3 and 4.1.4 it was proven that the Hough Circle Transformation 

requires more time when more edge points are present. Therefore, it was assumed that there 

would be a difference when performing it after or without a background subtraction. Figure 

68 shows both of these cases and illustrates the similarity between the Canny Edge Detector 

and the Hough Circle Transformation in connection with other objects present in the images 

(for comparison see Section 4.1.2). 
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Figure 68: The Hough Circle Transformation’s execution times of an entire flight after and without a 
background subtraction. 

In contrast to the Hough Circle Transformation, the RANSAC algorithm’s execution time 

does not depend on the number of edge points. Only the number of trials is responsible for 

the required time taken by this procedure. However, the detected center point can vary when 

more edge points are displayed. Two frames were picked out and processed 1000 times in a 

row to examine this variance in different situations: one with other objects in the frame and 

one only with the ball. 

 

Figure 69: A frame with other objects besides the ball was examined. Above are the coordinates’ 

histograms when the background has been subtracted and below the histograms when the background 

was not removed. 
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Figure 69 shows the results for a frame with other objects besides the ball in the frame. There 

is almost no variance in the coordinates calculated when the background was subtracted. In 

contrast, if the background was not removed, the resulting coordinates were highly scattered. 

 

Figure 70: A frame without other objects besides the ball was examined. Above are the coordinates’ 

histograms when the background was subtracted and below the histograms when the background was 

not removed. 

On the other hand, Figure 70 shows the results of a frame that displays more or less only the 

ball. There is no big difference between the detection in the images with background and 

those without. However, the background-subtracted image leads to a variance of less than one 

pixel and that with background leads to a small variance. 

detection algorithm background average tracking error 

Hough Circle Transformation subtracted 2,73 mm 

Hough Circle Transformation untouched 25,81 mm 

RANSAC algorithm subtracted 2,78 mm 

RANSAC algorithm untouched 25,96 mm 

Table 4: The standard deviation from the calculated position in world coordinates to the world 

coordinates of the smoothed flightpath. 

To obtain reliable statements about the average tracking error of the determined and the real 

center point, the results of the Hough Circle Transformation and the RANSAC algorithm 

were additionally analyzed with the help of the Rauch-Tung-Striebel filter [37]. More 

precisely, the results of the detection were analyzed after they had been triangulated (see 

Section 3.8.1) and translated (see Section 3.8.2) to the world coordinate systems. This filter 

examines the recorded flightpath from front to back and reverse to create a smoothed 

flightpath. This means, physically impossible detections will be corrected through this 
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smoothing process. The average tracking error for the different approaches can be seen in 

Table 4. The results obtained show that the detection algorithm enables an accurate 

localization of the ball’s center point when the background was subtracted. In this case, the 

localized position is only about 2 to 3 mm away from the real one away. Because of the 

better results when detecting the ball after subtracting the background, this additional step is 

preferable when considering accuracy. 

4.1.6 Comparison of the two prediction algorithms 

Now let's shift our attention to the last step of the program, which enables a prediction of 

the ball’s further flightpath. The accuracy of two different approaches to this bio-inspired 

prediction technique shall be examined in future works: comparison between positions and 

comparison between rates of change. However, execution times of both have been measured 

to make a statement of their temporal behavior and will be illustrated in the following two 

subchapters. All of the following measurements have been made by processing one flight 1000 

times in a row to obtain reliable measurement results. 

4.1.6.1 Dependence on the number of reference trajectories 

Because of the execution time’s dependence on the number of reference trajectories and the 

parameter Poor (see Subchapter 3.9.1), two measurements were made to obtain sufficient 

information about the temporal behavior. The reference trajectories’ lengths will affect the 

execution time as well, but considering these values would exceed the scope of this diploma 

thesis. Moreover, to provide an accurate prediction, it would not make sense to shorten these 

trajectories. To make a statement about realistic scenarios, typical lengths were chosen for 

these examinations. 

To analyze the execution time’s dependence on the number of reference throws, a database 

with trajectories of the same length was required. Otherwise, the comparison of the various 

trials with their different database sizes would not be fair. For this purpose, the database was 

filled with 200 dummy trajectories all with a length of 92, which is equivalent to the longest 

trajectories of an already existing database. To conduct this measurement, 21 samples were 

used, starting with one trajectory, then 10, 20, etc. up to 200. The parameter Poor was set to 0 

for the duration of these tests. 

Figure 71 shows the execution times of the two different prediction approaches: comparison of 

positions and comparison of rates of change. Average and minimum time rise fairly linearly as 

the number of reference trajectories in the database increases. While the minimum execution 

time increases very slowly, the average time’s graph definitively illustrates the impact of 

including a higher number of reference throws. This behavior is caused by Equation 3.9.6, 

which leads to a higher number of blocks when more trajectories are in the database. The 

maximum execution time’s graph is also rising and its fluctuation is probably caused by 

cache misses. The temporal behavior of the two approaches is almost even, but the time 

required is a bit different. While a database with up to 120 trajectories leads to nearly 

identical execution times, a small difference is observed when the number of reference throws 

increases. In other words, a higher number of reference trajectories leads to a bigger difference 
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between the two approaches’ execution times. However, this performance gap, caused by 

additional subtractions (see Section 3.9), is not very big. 

 

Figure 71: The prediction’s execution time as a function of the number of reference trajectories for the 

comparison of positions and rates of change. 

4.1.6.2 Dependence on the number of out-of-range-positions 

The execution time’s dependence on the out-of-range parameter has also been measured and 

will be described as well. This parameter determines how many positions of the actual flight 

are allowed to cross the boundaries of the database trajectories. For this purpose, an 

authentic database was loaded containing 188 different trajectories with an average length of 

74.4 positions, whereby the shortest trajectory had only 55 and the longest 95 positions. 

Figure 72 shows the execution times of the two different prediction approaches: comparison of 

positions and comparison of rates of change. The temporal behavior of the two different 

prediction approaches is nearly similar. It seems that the minimum execution times are more 

or less independent from the number of out-of-range positions; the two graphs neither fall nor 

rise. The linear rise of the average time was assumed and can be explained with Equation 

3.9.8. More threads will be invoked when the parameter Poor has been set to a higher value, 

which leads to a higher execution time. 
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Figure 72: The prediction’s execution time as a function of the out-of-range positions for comparison of 

positions and rates of change. 

4.2 Testing worst-case execution times with artificially generated data 

Some of the procedure’s tasks are independent of the input data and some are not. To get 

information about the theoretical worst-case execution times of the procedure, such tasks as 

the Canny Edge Detector and the Hough Circle Transformation have been tested. The 

prediction task’s execution time depends on the number of reference trajectories, the lengths 

of these trajectories, and the number of out-of-range positions. However, a clear statement 

can be given without an examination: an infinite number of reference trajectories would cause 

an infinite high execution time7. The execution times of the remaining tasks do not depend on 

the subimages loaded and the required time will always be almost the same. Therefore, they 

were not examined here. 

 

Figure 73: Such an image was injected into the hysteresis function to cause a maximum number of 

iterations. 

Figure 74 shows the worst-case execution times measured with the help of artificially 

generated data. To be able to examine these times, it is necessary to understand when these 

cases will occur. The Canny Edge Detector will take the most time if the hysteresis procedure 

has to iterate as often as possible. For this reason, a special image was inserted into the 

                                                 
7 The maximum number of reference throws is limited by the GPU’s memory capacity. 
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hysteresis function: one corner pixel had a value higher than the upper threshold and all of 

the other pixels had values between the two thresholds (Figure 73). Starting with this pixel, 

until the image’s borders are reached, every following iteration step finds neighbors that are 

above the lower threshold which will, therefore, be registered in the queue of the next 

iteration. In other words, the hysteresis procedure must go from one corner to the opposite 

corner. The result of the procedure will be an image full of edge points and can be directly 

used for the worst-case execution time measurement of the Hough Circle Transformation. 

Referring to Section 3.6, the more edge points in an image, the more time will be required by 

the Hough Circle Transformation. As Figure 67 shows, the circle detection also depends on 

the radiuses that have to be searched for. To examine the theoretically possible worst-case 

times for the given images, the radius range was set to detect the ball when it is displayed as 

large as the largest ball in the frames recorded: 50 to 60 pixels. The following worst-case 

execution times relate to the processing of both images: the left and the right. 

 

Figure 74: The worst-case execution times of the Canny Edge Detector and the Hough Circle 

Transformation implemented. 

Such an input image provides a totally unrealistic scenario and would never lead to any 

correct detection or prediction. However, it shows that the Canny Edge Detector depends on 

the input data. Its worst-case execution time does not provide any information about the 

maximum time required in a real-time application, but it shows that the execution time can 

drastically increase if lighting conditions are poor or hysteresis thresholds badly adjusted. 

Such a statement cannot be generally applied to the Hough Circle Transformation. When 

comparing Figure 67 and Figure 74, it can be seen that the worst-case execution times of the 

Inverse-checking Strategy do not deviate much from the times in a normal scenario. There, it 

took the Hough Circle Transformation about 111 ms to detect a circle with a radius between 

50 and 60 pixels and the worst-case execution time is about 117 ms. In both scenarios, the 

procedure is the same: a loop, which draws a circle, will be started for every field in the 

Hough Space. The only difference is that every field of the Hough Space will be voted in the 

worst-case and, therefore, every value has to be stored. Because of the rise in global memory 

accesses, the required time is about 6 ms higher. On the other hand, a thread of the 

Straightforward Strategy only starts such circle drawing loop when its own pixel is an edge 
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point. Every thread has to start this iterative drawing procedure in the worst-case scenario. 

Although both approaches draw the same number of circles, the worst-case execution times 

totally differ from each other. While threads vote only their own fields when performing the 

Inverse-checking strategy, their Straightforward version’s counterparts vote various fields in 

the Hough Space. Atomic functions, which are needed to fulfill the requirements of mutual 

exclusion, lead to a partial serialization of the process. In the case of an image full of edge 

points, a lot of threads want to vote the same field at the same time and, therefore, most of 

the votes will be serialized. Therefore, the statements made in [AME13, 220][CJ11] can be 

true if the images used contained many edge points. 

4.3 Results of the entire procedure 

The question of the time required to detect the ball and predict its further flightpath runs 

like a golden thread through this diploma thesis. The previous subchapters provided 

information about different approaches, and the best solution for each step was selected to 

examine the execution time of the entire procedure. Each pair of frames had to run through 

the following tasks: clearing the GPU storage, background subtraction, Canny Edge Detector, 

RANSAC algorithm, triangulation, coordinate translation, and prediction. The RANSAC 

algorithm drew its circles with the Pythagoras theorem and the prediction consisted in 

comparisons of the coordinates determined. 

Figure 75 shows the combined execution times of five different flights that have been 

processed 1000 times in a row. The fluctuation of the maximum execution time’s graph is 

caused by cache misses. The shorter time at the beginning of the flight and its fast increase is 

caused by the throwing device that partially covered the ball. Therefore, the images showed 

fewer pixels in the first frames. Since the ball’s image becomes larger from frame to frame, 

the execution time of the Canny Edge Detector and of the RANSAC algorithm (Pythagoras) 

increases as the flight goes on. A kind of light profile was created to set the hysteresis 

thresholds to values appropriate for the position of the ball. In other words, the ball flew 

toward the cameras and the light source and, therefore, the thresholds had to be increased in 

stated intervals of the flight phase. Without such a light-profile, execution times would 

greatly increase and detection would not work that well. 
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Figure 75: The execution times of five flights were processed, examined, and combined for this chart. 

The maximum of the average times of the different flights was about 7.69 ms and enables a 

frame rate of 130 FPS (Equation 2.4.1). The highest frame rate of the camera system used is 

110 FPS, which should not be a problem, but a small buffer is required to compensate for the 

maximum execution times that were, in rare cases, over 10 ms. Without such a buffer, there 

would not be sufficient computational power on hand to process the next frames when they 

appear. 

 

Figure 76: The different bars show the differences between the average and maximum times of the 

various program tasks when performing it on a GPU and on a CPU. 
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The last question concerns the speedup achieved through the use of a GPU instead of a CPU. 

For this purpose, the entire program was rewritten and slightly adapted to be executable on a 

CPU. To compare execution times, one flight was processed 1000 times in a row and the 

required times for the various steps were measured (Figure 76). The largest increases in speed 

were measured for the Canny Edge Detector and the prediction, followed by the RANSAC 

algorithm and the background subtraction. Clearing the storage also makes a difference, but 

the difference in performance is not extremely high. Triangulation and coordinate translation 

was performed on the CPU in both versions of the program, but because of the required data 

transfer from GPU to CPU, its average time is higher in the GPU version. In short, a single 

frame was processed 3.46 to 7.17 faster on a GPU than on a CPU. 
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5. Conclusion and Future Work 

In the introduction, the Transport-by-Throwing approach, which consists of robotic arms 

throwing objects to each other, is described as one possible system for a more flexible type of 

production line. Catching a ball is still a challenge or benchmark for developing robots and 

various strategies, and approaches have been tried without achieving a perfect solution. This 

diploma thesis deals with a biologically-inspired prediction of a ball’s flightpath. While the 

accuracy of this system is beyond the scope of this work, its temporal behavior was examined 

here. 

5.1 Conclusion 

One of the main questions of this thesis whether ball detection and flightpath prediction can 

be performed fast enough to achieve a frame rate of 110 FPS can be clearly answered in the 

affirmative. It was possible to fulfill and exceed this requirement. The examined execution 

times enable a computation fast enough for processing data at 130 FPS with a four-year-old 

GPU: NVidia GTX 560 Ti. Moreover, using a GPU for the required calculations proved to be 

a brilliant idea. The implemented program was 3.46 to 7.17 faster when running on a GPU 

instead of on a CPU. On the one hand, the CPU program made use only of one core and, 

therefore, some optimizations could accelerate execution, but on the other hand, the CPU 

used was a just one-year-old Intel i7-4770S. Using a newer GPU (Figure 77) and enabling the 

CPU to make use of its four cores would accelerate the programs, yet, the speedup would 

most probably remain almost unchanged. 

Performing all required tasks in such a short time is easier said than done. Numerous 

optimizations had to be made to enable such high-speed computation on the GPU used. 

Well-thought-out algorithms and letting some data make a detour over the faster shared 

memory were the keys to success. However, some constraints still have to be considered to 

achieve an execution time short enough for this frame rate: Firstly, a small buffer is needed 

to compensate for the maximum execution times, which can be slightly too high for 110 FPS. 

Without this buffer, not enough computational power would be on hand to process the next 

frames when they appear. Secondly, the Hough Circle Transformation turned out to be 

computationally too costly and time-consuming. Therefore, the RANSAC algorithm had to be 

used to achieve the desired execution time. 
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However, there are more issues to contemplate: Without the additional background 

subtraction, other objects displayed in the images could lead to a considerably higher number 

of edge points and, in further consequence, to an execution time that is too high for 110 FPS. 

This additional computational step also enables a more precise detection. The accuracy of the 

prediction system was not part of this thesis, but a more accurate detection will probably 

lead to a more accurate prediction. Therefore, it is strongly recommended to perform a 

background subtraction regardless of whether a newer GPU is used or not. 

Additionally, a good light-profile was created that changed the Canny Edge Detector’s 

thresholds as the flight progressed. Rather low thresholds are necessary to enable detection of 

the ball in the early flight phase when it is still far away from the cameras and light sources. 

However, the light reflections on the ball’s surface are becoming considerably larger and lead 

to much more edge points as the ball approaches. Without this profile, the thresholds would 

have to be set to a rather small value to detect the ball in the early flight phase. 

Deterioration in the detection in the last frames of a flight would not be the only drawback of 

this approach. The badly adjusted thresholds could lead to too many edge points and, hence, 

to an execution time too high for 110 FPS. Bad lighting conditions could also lead to the 

necessity to lower the thresholds. Therefore a sufficient and homogenous lighting should be 

present to achieve accurate results and an execution time short enough for 100 FPS. 

5.2 Future work 

Although this diploma thesis covered a great number of investigations, approaches, and 

implementations, open questions still remain and appropriate research will have to be carried 

out in the future. A distinction must be made between research pertaining to the accuracy of 

the bio-inspired prediction approach and additional research to improve the performance of 

the program introduced in this work. However, because of the complexity of the Transport-

by-Throwing approach, these two domains are often linked with each other. 

In the future, the number of required reference trajectories as well as the limitations of this 

prediction approach will have to be examined. Furthermore, the required number of the 

actual flight’s positions and the differences between the two models compared are of great 

interest. 

Additionally, the database could be filled with artificially generated data or extended with 

actual flights to improve prediction accuracy. In the future, the transport system should be 

used to transport goods of different sizes and shapes, not only tennis balls. Therefore, much 

research still needs to be done to find a solution that provides a prediction as accurate as 

necessary to catch a thrown object safely and softly. The throwing and catching robots could 

communicate with each other about their payload and the time of its launching. This 

communication would simplify some tasks of the prediction system, but a good detection will 

still be needed. 
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Figure 77: The theoretical speedup when using a newer graphics card can be read in this diagram, 

which shows the benchmarks of different GPUs [38]. 

Additional calculations or the use of a more complex detecting algorithm such as the Hough 

Transformation could overload the GPU used. Figure 77 shows that a more advanced GPU is 

theoretically four times faster than the one used. In other words, using a newer GPU would 

be a strategy to reduce execution times and meet these upcoming challenges.  
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Figure 78: The required tasks could be distributed to different GPUs to increase performance. 

To use two or more GPUs to separate the program tasks would be another alternative 

strategy. Figure 78 shows two possible approaches: separating detection and prediction or, 

additionally, separating detection from the left side and the right side. Possible future 

changes in algorithms and approaches notwithstanding, this work has clearly shown that the 

flightpath of an object can be predicted in a very fast manner. 
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