
DIPLOMA THESIS

Object Detection and Flightpath Prediction

A Parallelized Approach Using a Graphics Processing Unit

Submitted at the

Faculty of Electrical Engineering and Information Technology,

 Vienna University of Technology

in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur (equals Master of Sciences)

under the supervision of

Em.O.Univ.Prof. Dipl.-Ing. Dr.techn. Dietmar Dietrich

Institute number: 384

Institute of Computer Technology

and

Univ.Ass. Dipl.-Ing. Martin Pongratz

Institute number: 384

Institute of Computer Technology

by

Maximilian Götzinger BSc

0826279

Krottenbachstraße 110

A-1190, Wien

May 30, 2015

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

 II

Kurzfassung

Das vermehrte Verlangen nach individuellen Produkten steigert den Bedarf an

flexibleren Produktionslinien. Ein zukunftsweisendes System hierfür könnte der

„Wurftransport-Ansatz“ sein, bei dem sich Roboterarme die zu transportierenden Güter

gegenseitig zuwerfen. Obwohl auf diesem Gebiet schon viel geforscht wurde, ergab sich bis

dato noch keine völlig zufriedenstellende Lösung für dieses Transportsystem. Ein neuer,

biologisch inspirierter Ansatz könnte die Antwort auf dieses Problem darstellen. Wenngleich

dieses System bereits hinsichtlich seiner Genauigkeit untersucht wurde, so ist die Erforschung

seiner Echtzeitfähigkeit noch ausständig. Diese Arbeit zeigt, dass die Detektion des Balls und

die Vorhersage seiner Flugbahn schnell genug durchführbar sind, um das Kamerasystem bei

einer Bildwiederholungsrate von 130 FPS arbeiten lassen zu können. Mit Hilfe einer NVidia

GTX 560 Ti GPU ist es möglich gewesen, alle nötigen Berechnungen hierfür, in

durchschnittlich, unter 7,7 ms durchzuführen. Für Bildwiederholungsraten von über 85 FPS

wird jedoch ein Puffer benötigt, der selten auftretende Rechenzeiten von bis zu 11,7 ms

kompensiert. Darüber hinaus zeigen die Resultate ebenso ein um das 3,46- bis 7,17-fach

schnellere Ausführen des implementierten Programmes, wenn anstelle einer CPU eine GPU,

für die nötigen Berechnungen, verwendet wird. Basierend auf diesen Resultaten können nun

weitere Forschungen angestellt werden, um die Zuverlässigkeit und mögliche Einschränkungen

des Systems zu untersuchen. Etwaige zukünftige Programmänderungen, im Zuge weiterer

Forschungen, könnten zu längeren Ausführungszeiten führen. Jedoch ist es möglich, diese

unter Verwendung einer aktuelleren GPU oder mit Hilfe einer Rechenschrittaufteilung auf

verschiedene GPUs zu kompensieren.

 III

Abstract

Advanced personalized customer needs and requirements lead to the demand for more

flexible types of production lines. One trendsetting system apt to replace the old and static

conveyor belt could be Transport-by-Throwing, which consists of robotic arms throwing

objects to each other. Much research has been carried out in the field of robotic catching, but

more needs to be done to meet the challenges involved. Despite many novel approaches, no

fully satisfactory solution to catching a ball has been developed so far. A new approach that

deals with this problem in a biologically-inspired way could be the answer. While it has

already been proven that such a solution can lead to accurate results, its real-time constraints

have not been examined. This thesis shows that computing ball detection and flightpath

prediction can be done fast enough to capture the scene with a frame rate of 130 FPS. With

the help of a NVidia GTX 560 Ti graphics processing unit, it was possible to execute all

necessary calculations for the predictions in less than 7.7 ms on average. Because of

maximum times of up to 11.7 ms, a small buffer is required for frame rates over 85 FPS. The

results here demonstrate that the use of a GPU greatly accelerates the entire procedure and

can lead to executions 3.5 to 7.2 times faster than on a CPU. Based on these results, further

research can be carried out to examine the prediction system’s reliability and limitations.

Possible changes in the algorithm that lead to additional demand for computational power

can be made when using a newer GPU or distributing the tasks on different GPUs.

 IV

Many thanks to myself ;)

 V

Contents

1. Introduction .. 1

1.1 Motivation ... 1

1.2 Problem statement .. 3

2. Related Work and State of the Art .. 5

2.1 Transport-by-Throwing ... 5

2.2 Prediction of the object‘s trajectory .. 9

2.3 Object detection and localization .. 17

2.4 GPU programming .. 28

3. Setup, Procedure, and Concept ... 36

3.1 Environment .. 36

3.2 Tasks ... 37

3.3 Preliminaries .. 39

3.4 Subtracting the scenes background ... 41

3.5 Canny Edge Detector .. 42

3.6 Hough Circle Transformation .. 47

3.7 RANSAC algorithm ... 55

3.8 Obtaining the object’s 3D position .. 60

3.9 Prediction .. 63

4. Results and Discussion .. 70

4.1 Comparing different approaches implemented .. 70

4.2 Testing worst-case execution times with artificially generated data 82

4.3 Results of the entire procedure .. 84

5. Conclusion and Future Work .. 87

5.1 Conclusion ... 87

5.2 Future work ... 88

Literature .. 90

Internet references ... 94

Abbreviations

2D Two-Dimensional
3D Three-Dimensional
AFD Adjacent Frame Difference
ALU Arithmetic Logic Unit
BMP Bitmap
CSV Comma-Separated Values
CUDA Compute Unified Device Architecture
FPGA Field Programmable Gate Array
FPS Frames per Second
GPU Graphics Processing Unit
GPGPU General-Purpose Computing on Graphics Processing Units
k-NN k-Nearest Neighbors
MMX Multi Media Extension
OpenCL Open Computing Language
OpenCV Open Source Computer Vision
RANSAC Random Sample Consensus
SIMD Single Instruction, Multiple Data
SIMT Single-Instruction, Multiple-Thread
SFU Special Function Unit
STDIO Standard Input/Output

1. Introduction

In 1886, Carl Friedrich Benz presented the first automobile to the public [1]. At that time,

the far-reaching impact of this invention was beyond imagination. Not only have the pace of

human society and the interactions among people become faster and more flexible through

eased mobility, the entire industry has been radically transformed by the advent of cars. In

the early days of the automobile, each unit was handmade, one at a time. This would be

downright unimaginable in today’s automotive market. This pivotal change to the

automotive industry came in 1913 when Henry Ford revolutionized his factory through

assembly line work [2]. For the first time, it was possible that workers could work

simultaneously on several cars. With his idea, Ford transformed the entire concept of

manufacturing, making it possible to raise manufacturing efficiency. The invention of the

assembly line led to the conveyor belt, which eventually became fully automated. However,

the idea of using a continuous transport system is not new; it was first conceived by Oliver

Evans who lived in the early 19th century [3]. Nowadays, most factories are equipped with

these fully automated transport systems to speed up production. With this fast

transportation and robot-assisted assembly, it is possible to produce annually about 83

millions cars [4]. Due to the transportation of passengers and goods as well as ease of

communications today, people’s life is becoming faster and more flexible. As a result of these

changes, customer needs and requirements are becoming increasingly personalized in almost

all product fields. Thus, manufacturers have to produce a lot of products that are similar, but

not completely the same. The use of automatized fabrication processes leads to cheaper

production costs and more precisely manufactured products. The challenge consists in finding

a solution that allows enhancing the variabilty of products without losing the price advantage

of mass production [Pon09, 1]. This could be summarized with the term mass

customization [5] and describes the conflict between two requirements in manufacturing:

automation and flexibility [GH03, 2]. Hence, a demand for other more flexible types of

product lines already exists. As the economy becomes increasingly fast-paced and more

flexible, there is a need for exchangeability in technical and manufacturing environments,

such as a flexible and easily reconfigurable product line.

1.1 Motivation

Since not every personalized product passes through the same production stages, the

currently used static conveyor belt no longer matches the application profile. There are

Introduction

 2

already approaches to solutions for a replaceable production line, including appliances such as

transport carts and trollies that can carry goods autonomously from A to B. As a result, it

has become possible to eliminate the necessity of navigating through the same production

stages each time. The transport route is adaptable and the goods can be carried to the

stations as needed. Drawbacks of such solutions include the slower velocity of locomotion as

well as the lack of facilities for easy reconfiguration and rerouting. Such a modification would

cause long production breaks, which prohibit a high-load output. [Pon09, 1]

Werfen Fangen

Trajektorieprognose

Beobachten

Trajektorie-Prognose

Throwing Catching

Trajectory

predicton

Tracking

Figure 1: The Transport-by-Throwing approach deals with robot arms that throw and catch goods.

The picture shows the transportation of an object from the left station to the right station. [PP12, 2]

Another solution for this rising demand for individual products is represented by the

Transport-by-Throwing approach, which facilitates changing routes or even the whole

production line. Through the frequent use of robots [6], it seems obvious to develop a system

that would be based on robot arms that pass their payload: one throws it and another one

catches it (Figure 1). This passing is being repeated until the transport good reaches its final

destination in the production process, similar to communication networks with hop-by-hop

routing [PP12, 2]. A system like this would be a lot sleeker than a conveyor belt that runs

through the whole industrial hall. Furthermore, it would be extremely flexible because

different objects could be conveyed to various stations. It would be much easier to adapt to

different circumstances; which means that a reconfiguration of the transport route would not

stop the whole production as is the case with transport trollies and conveyor belts [Pon09, 1].

Avoiding idle periods not only saves time and money, the transport system would be the

fastest way to transport goods from A to B [BFP09]. The only requirements for the setup of

the robot arms would be the communication between them. Hence, the robots would only

have to exchange information about their location and the production steps done at their

places.

In addition to the flexibility and lack of fixed transport routes, another big benefit of this

solution would be the increased availability of the whole transport system. This is again

similar to communication networks in that a drop-out of one station can be masked through

bypassing the goods with the help of other devices [BFP09]. As shown in Figure 2 above, the

drop-out of station B leads to a transport route A-D-E-C instead of A-B-C.

 Introduction

 3

A B

D

C

E

A B

D

C

E

Figure 2: A drop-out of station B could be masked through bypassing it with the help of stations D

and E.

It would be mistaken to assume that this solution is applicable only in manufacturing

processes; indeed, it also could be used in supermarkets to stock goods anywhere in the store

and place them on the shelves in the appropriate location. Another application could be the

sorting of letters and parcels in a post office. The Transport-by-Throwing approach could be

applied in almost every field where humans can throw things to each other to get them to the

right place. [Pon09, 69]

1.2 Problem statement

Much research in this field has been carried out previously, including computer vision, object

detection, and Transport-by-Throwing in general. Interest in such an approach to

transportation should not be confined to universities wishing to demonstrate robot technology

for academic purposes, but is of interest to industry as well [PP12, 1]. Despite many novel

approaches, a fully satisfactory solution has not yet been developed. The approach that is in

focus of this thesis shall solve the problem of catching in a biological way. For this purpose,

predictions of trajectories shall not be forecasted by physical laws and calculations as is done

in many other studies [FBH01][HS91][HS95][YLJ10]. The goal is to prognosticate the

flightpath by benefitting from already gathered practical experiences [PKH10]. Think about a

child who is learning to catch a ball. It does not contemplate about physics when trying to

catch. A child only learns from its experiences: after numerous failed attempts, it will be able

to catch an object in the right way. By analogy, many flightpaths from thrown objects were

recorded and saved in a trajectory database. If an item flies to a catching robotic arm, the

flight parameters such as distance, velocity, and flight altitude, shall be measured and

compared with the already known trajectories in the database to enable a prediction about

this actual throw.

In addition, it is very important to catch the object in a soft manner. That means that the

robot arm follows the object’s trajectory for a short while after grabbing it. That way of

proceeding, the bulk of kinetic energy should be dissipated to catch the object safely and

softly. On the other hand, hard catching would involve a robot arm waiting at the right

interception position followed by grabbing its target without following its trajectory. The

forces originating from this sudden deceleration can harm the object or destroy it altogether.

[PP12, 3][PMB13]

Pongratz wrote in his diploma thesis [Pon09, 65] that it is possible to develop such a

transport system, however, the real-time constraints have not been examined until now

[PKH10]. Not only is accuracy important, the system also has to be fast enough to catch the

Introduction

 4

ball [Pon09, 52]. Image processing as well as comparison of the determined data with all the

numerous database entries require a huge number of calculation steps. If calculating takes too

much time, the object will pass the interception point before the robot arm moves in its

direction. In this scenario, the thrown object would make impact with the ground and could

be harmed by incidental forces. To manage the massive amount of computation in a short

period of time, usage of a GPU (“Graphics Processing Unit”) is an obvious option. Such

hardware has a massively parallel architecture and can perform many computational steps

very fast. For a GPU it is normal to have 4 to 120 multiprocessors, which have again

between 16 and 48 cores (Figure 3). [CUD14, 191][OCL09, 51]

Control
ALU

ALU

ALU

ALU

Cache

DRAM

CPU

DRAM

GPU

Figure 3: A CPU with four ALUs (Arithmetic Logic Units) and a GPU with eight multiprocessors are

to be seen. Each of these multiprocessors has 16 cores. A program which runs on a GPU could be

accelerated a lot through the massive parallelism of this device. Modified from [CUD14, 3]

That brings up some questions that will be answered in theframework of this diploma thesis:

 Does the use of a GPU reduce the time needed to compute a flight prediction?

 Is it possible to achieve a frame rate of 110 fps?

 Which developement platform should be used to implement the program?

Besides performance check and comparison between similar flight forecasting programs on a

GPU as well as on a CPU, this thesis will deal with different implementations of different

program parts.

5

2. Related Work and State of the Art

For almost 25 years, scientists have been trying to develop robots that can catch objects.

Throughout this entire period, catching a ball was the challenge or benchmark for developing

robots and testing other key technologies [BSW11]. Such a system can be assessed by its

catching rate, which is the proportion of caught to thrown objects or conversely, by quoting

the percentage of dropped objects, the so-called dropping rate. [Pon09, 14]

There has been a lot of research in the various fields of this project: apart from the subject of

Transport-by-Throwing, also the use of a GPU for General Purpose Computation, object

detection, and object recognition has been studied. For this thesis, some studies are more

important than others, but in the following subchapters these themes will be introduced and

briefly discussed. Furthermore, results of other research will be shown to provide an idea

about the various strategies, changes, and trends in the last three decades.

2.1 Transport-by-Throwing

While there have been a large number of publications on Transport-by-Throwing [BWH10]

[HS91][HS95][NIN97][FBH01][RA02][NI03][MHM04][SC07], it has only recently become a

focus of scientific research. Proposed by Frank [PKH10] in 2010, this topic has gained

momentum at the Vienna University of Technology.

In summary, a robot has to know how the object is moving in space and time to enable the

arm to catch it. To meet this challenge, it is necessary to know how the object will move in

order to correctly position the robot arm. The concept of this type of transport includes four

different activities that have to be performed more or less consecutively: Throwing, Tracking,

Prediction, and Catching. [PP12, 3]

2.1.1 Related work

Flightpath forecasting has enjoyed much attention long time before Transport-by-Throwing

came into the focus of reseach. As aforementioned, the Transport-by-Throwing approach

would be interesting for industrial purposes, but at this point in time, research is only done in

academic fields [PP12][PMB13][PKH10][MPD14]. At the turn of the millennium, the situation

was similar regarding the studies of Namiki and his colleagues [NNI99][NI03][NII03][INH04]

from the University of Tokyo. These applications have not the aim to transport goods by

Related Work and State of the Art

 6

throwing and catching, they only should demonstrate the skills of robots [PP12, 4]. The

system was equipped with a low-resolution black-and-white vision system, which worked at

1000 frames per second. Namiki’s team constructed a three-finger hand to grab objects, and

they implemented a special algorithm for tracking these items and holding them in the center

of the image. This algorithm was tailored for this application and, therefore, is not

comparable to other algorithms that are made for tracking objects [INI96]. While [NII03]

enabled the robot hand to catch foam balls and foam cylinders, [SNI05] was about dribbling a

ball on a plane ground. Although not all of these papers directly pertain to the Transport-by-

Throwing approach, they demonstrate the skills of robots and connect the field of computer

vision with that of mechanized interacting. Therefore, they constitute the basis for further

researches in this sector like those summarized below.

In 1995, Hong and Slotine from the Massachusetts Institute of Technology published a

paper [HS95] about the topic of robotic catching. The goal of this research was the

implementation and improvement of the Hand-Eye Coordination. In this connection, a

robotic arm should catch a ball, which was thrown over a distance of about 1.5 to 2.5 meters.

The system they created was based on a simple parabolic function, into which the ball’s

trajectory was fitted. Therefore, the estimation unit needed two points from the trajectory of

the actual throw to be able to evaluate the movement of the object and to predict the further

pathway. With less than two of these points, it would not be possible to calculate the vectors

of velocity and direction [HS91, 383]. The prediction unit received this important information

about the trajectory from a two-camera system, which consisted of CCD (Charge-Coupled

Device) video cameras with a baseline distance of 0.8 m between them. The researchers did

not use a throwing device for tossing the specially painted ball, but a person threw it with an

under-hand toss. The ball flew approximately for half a second in the air and was localized

through color BLOB detection. For this purpose a simple BLOB detector vision

board [Wri93, 3] was used, which compared the input frames from the two color cameras with

a color histogram to display the location of the specially painted ball. The success rate of

catching the balls ranged between 70 and 80 percent, and the longest run was 14 consecutive

successful catches. In addition, this was the first instance of robotic catching in a soft way.

Catching the ball was only possible if the prediction resulted in a deviation from the

inception point not larger than 1.5 cm and a variance of timing less than 5 ms. Their aim was

not to develop a perfectly working complete system, but to establish a basis for further

research. [HS95, 1]

Additionally, they provided with their research another important insight and proposed that

the unsuccessful or abortive attempts at catching were caused by noisy data. Insufficient

compensation of time delays as well as bad exposure leads to such noise in the data. In this

context, they wrote about the problem of alternating lighting conditions during the flight of a

ball: When the ball gets closer to the light source, the reflections of light on the ball are

considerably larger than when it is further away. [HS95, 8]

In 2001, Frese, Bäuml, and other colleagues of the Institute of Robotics and Mechatronics at

the German Aerospace Center published a paper [FBH01] on their solution of a catching

robot arm. The project’s goal was to develop a well working catching system made out of off-

the-shelf hardware as all of the previous studies [And98][HS91][HS95] had made use of special

 Related Work and State of the Art

 7

hardware, which is usually very expensive. In order to create a low-cost system, they used

two standard PAL video cameras in a stereo vision configuration. They were vertically

positioned with a baseline distance of 1 meter and enabled a localization of the thrown ball

with a precision of about 3 cm. The captured images were sent to two standard frame-

grabber cards, which digitalized and forwarded them to a computer with a 300 MHz Pentium

II processor. The captured frame was compared with the background of the scene to detect

the ball. If the difference between a pixel of the recorded frame and that of the background is

larger than a previously set threshold, then it can be identified as belonging to the ball. A

Kalman filter was used to track the ball and predict the further flightpath taking into

account the air drag. The work was presented at a fair in Hannover and various guests were

invited to throw balls to the catching device. Of approximately 100 throws, two thirds of

these balls were caught. The main reason every third ball was dropped was due to the

coverage of the cameras as throws that partially went beyond the captured scene led to a late

prediction and caused many faults. Three problems had to be dealt with using off-the-shelf

hardware. Firstly, they had to handle interlaced frames from the PAL cameras. Secondly, the

implemented program had to use the MMX (Multi Media Extension) instruction set to make

the processor more efficient by working on more pixels simultaneously. Thirdly, the limited

memory bandwidth of the CPU led to huge performance losses. To circumvent this drawback,

comparison was only done with a small subframe, called Region of Interest, which constituted

2 and 40 percent of the entire image. [FBH01, 1623ff]

Almost one decade later, in 2010, Bäuml presented another paper [BWH10] with a similar

setup as his previous study [FBH01]. The differences were the higher computational power

provided by a 32 CPU big cluster as well as the use of a robotic arm coupled with a hand of

four fingers. The main challenge was to grab the flying object in the right moment with the

claw and preserve the DLR-Hand-II [BGL01] from getting harmed by the impact forces of the

throw. In this context, there were three different catching modes: soft, latest, and cool. With

the reuse of the Kalman filter, it was possible to achieve a success rate of over 80 percent for

the soft and latest mode. [BWH10, 2592ff]

The last point in this subchapter is the research [PP12] carried out by the KOROS Initiative

at the Vienna University of Technology and constitutes the basis of this work. A KUKA

LWR 4 robot arm is available for testing different approaches. For studies in this field, it is

of particular interest to use state-of-the-art equipment to ensure a cheap solution that is

affordable for industry. Furthermore, a solution involving a soft catching strategy is at the

center of attention to minimize the forces occurring when catching the object [PMB13].

Again, it is a tennis ball that will be fired by a coil-based throwing device that stands about

2.5 meters away from the catching robotic arm. A stereo vision-based detection shall create a

prediction as accurate as possible for the ball traveling at approximately 5 m/s. The bio-

inspired approach, which implies a comparison with recorded reference trajectories of thrown

objects, enables such a manner of transportation and considers these constraints. This

solution is the base of this master’s thesis and will be explained more detailed in

Subchapter 2.2.7. [PP12, 2, 5]

Related Work and State of the Art

 8

2.1.2 Throwing, catching, working area, and interception point

Obviously, before an object can be caught, it has to be thrown. The catching device must,

therefore, know the trajectory of the thrown object and the best interception point. To create

a forecast of the flightpath, it is important to recognize and locate the object. Different

techniques to obtain a prediction of the trajectory will be shown in the following Section 2.2.

While throwing will not be part of this thesis, it will still be briefly introduced to help

understand the topic as a whole. During its launch, the object will be accelerated until it has

gathered enough speed to negotiate the way from the sender to the receiver [PP12, 3]. In

addition to the speed with its underlying acceleration, the throwing direction, too, must meet

certain requirements. When looking at the xy-plane (left side of Figure 4), the operation area

of such a robot arm looks like a circle with the catching device placed in the middle. When

looking at the yz-plane (right side of Figure 4), the area where the robot arm can interact

looks like some sort of circle. Considering the 3D view, this leads to a sphere-like working

zone where the catching device can grab the object. Furthermore, it is important to clarify

that this zone does not necessarily have to look exactly like that; it solely depends on the

robots construction and movement. Not every robot has to have a spherical leeway of

movement! The shape of the area as shown in Figure 4 shall only serve for the better

understanding of the following explanations.

z

y
x

y

xz

flightpath

maximum radius

minimum radius

flightpath

Figure 4: On the left side is the operation area of a robot arm viewed on the xy-plane, on the right side

on the yz-plane. The ball can only be caught when it flies through the robot’s working area. Modified

from [HS95, 5]

The inception point where the thrown object touches the catching device must be in the

working area of the robot. If it is beyond the reachability of the catching unit, the robot will

not be able to catch it. That raises the question of the correct direction, in which the object

should be thrown. Evidently, the flightpath must pass through the section between the two

red lines on the xy-plane (Figure 4, left). Additionally, there is one fact to consider regarding

the soft catching strategy. If the flightpath runs close to the borders of the robot’s working

area, the object’s trajectory is likely to be traced less accurately. Additional forces that will

come with such redirection will impact on the object and have to be taken into account as

well [PP12, 3].

 Related Work and State of the Art

 9

Flight altitude and distance are also very important for transportation and direction (Figure

4, right). As previously mentioned, the initial acceleration has to be set to a value high

enough to provide a velocity, needed to traverse the desired range considering the set

throwing angle. To catch the ball is theoretically possible when the flightpath runs through

the operating zone of the catching device [HS91, 382]. On the other hand, acceleration and

velocity must not be so high that the thrown object overflies the catching zone or possibly

even damages the catching robot or the object itself. They might also get damaged when the

thrown object weighs too much to be grabbed safely by the robot.

2.2 Prediction of the object‘ s trajectory

Predicting the future was always a desire and a great challenge for humans [Pon09, 11], be it

the weather forecast [7], which interests the general public, be it rocket ballistics, which is of

military interest. A prominent example of the second case is the Iron Dome [8], which is used

in the Israeli military defense system. If a missile flies in Israel’s direction, this guard system

will track the flightpath of the launched rocket to predict its further flight and destroy it

with own rockets. If the prediction of the enemy’s missile projectile is accurate, it will be

destroyed by the Iron Dome, hereby eliminating danger for the country. If not, the rocket will

plunge to the ground and hit something or someone.

To successfully catch a thrown object, it is necessary to have a system that estimates the

object’s trajectory. This prediction unit has to “know” the movement of this object, which

means that its trajectory must be observed [BFP09]. To understand the ball’s movement in

space and time, a 3D view of the surrounding area is indispensable, therefore, most of the

projects handle this challenge with video-based systems. There are solutions with single-

camera- [BFK08], two-camera- [PKH10][INI96][NI05][INH04], and multiple-camera-

systems [BSW11].

inception point

throwing point

tflight

testimate

Figure 5: The ball is flying from left to right and after a few captured positions of it (done after

testimate), the further flightpath can be estimated.

In the majority of researches, the basis for obtaining a prediction of the ball’s trajectory is

the same. The ball will be localized through a stereo vision system to determine its movement

in the 3D space [SPV05][BWH10, 1]. After the time testimate all necessary information of the

ball’s movement is known (Figure 5) and a first forecast for its further flightpath will be

Related Work and State of the Art

 10

made [HS91, 383]. The duration testimate depends on the method of predicting and the whole

setup of the vision system. Accuracy of the prediction, too, depends on these two facts and

determines whether the catching will be successful.

For reasons of simplification, all works so far have only dealt with highly symmetrical (point-

symmetrical or axial-symmetrical) objects [HS91][HS95][FBM08][BFK08][FMS09][BFP09]

[PKH10]. Subchapter 2.3 describes different kinds of object detection and shows that it is

much easier to detect symmetrical objects such as a tennis ball or a cylinder. When

complexity rises, requirements for the object detection unit will also increase [PP12, 4] and

necessitate a higher development effort as well as a longer computation period [PKH10].

Therefore, this work deals with the forecasting of the trajectory of a thrown tennis ball to

avoid additional difficulties.

2.2.1 The importance of timing

The term “catching” describes the process of controlled decelerating of a thrown object by the

catching device, no matter the manner of catching: soft or hard. Whether the object is fixed

after touching, lands in a basket, or is only held by friction is irrelevant here and depends on

the construction of the robot. [PP12, 3]

tflight

testimate + tmove

inception pointthrowing point

robot‘s idle

position

Figure 6: The ball takes the time tflight in order to traverse the distance from the throwing device to the

inception point. To move the catching device of the robot arm to the same point, two things are

necessary: estimating the location of the inception point and moving the robot to this position, which

need testimate respectively tmove.

The working area of the catching device depends also on the swiftness of the arm’s

movement [HS91, 381] and its starting point as well as on the moment when the prediction of

the flight appears. Catching will fail when the flight estimation arrives too late or the

distance of the robot’s idle position to the interception point is too far for it to reach in time.

In a nutshell, there are three periods of time that affect the outcome of a successful transport:

tflight, testimate, and tmove. The thrown object will only be caught if the following condition

(shown in Equation 2.2.1) is fulfilled. In other words, the time needed for estimation plus the

 Related Work and State of the Art

 11

time taken to move the robot arm to the inception point have to be less or equal to the

duration of the flight (Figure 6). If this condition is not fulfilled, the robot arm will arrive too

late at the correct position, therefore, the ball will be missed.

flightmoveestimate ttt  (2.2.1)

2.2.2 Demand for a reliable prediction

Catching would simply not work without a prediction. In other words, grabbing the thrown

object is possible only when the forecasting is more precise than the coverage of the catching

device [PKH10][FBW07]. Table 1 shows that the flightpath of such a ball will be influenced

by several forces, which can be classified into two groups: mass forces and aerodynamic

forces [9].

mass forces aerodynamic forces

gravity drag

coriolis force lift

centrifugal force magnus

 pitch damping

 transversal magnus

Table 1: These two groups of forces influence the flightpath of a thrown object [9].

Although the effect of some of these forces on the trajectory of the flying body varies in

significance, they each have an effect. Consideration of these forces thoroughly depends on

the chosen method of predicting. However, there are more than these ascendancies influencing

the trajectory of the thrown ball: local air flow, different air density, and differences of flying

properties of different objects [Pon09, 2]. Even small variations in the manufacturing of such

a ball or in the launching speed of the throwing device can modify the trajectory significantly.

[PKH10]

After the tennis ball is discovered and its movement known, different algorithms can

calculate its further course. However, a proper model that well describes the monitored

behavior has to be found to enable a reliable prediction. If the model describes the movement

of the ball not good enough, it has to be revised or replaced by another. When the model

accurately depicts the behavior, the further flightpath can be predicted in an acceptable way.

[Pon09, 11]

2.2.3 Physical-based predictions

The most logical choice of an approach for predicting the physical behavior of a flying object

would be a physics-based model. The simplest of these would only involve the impact of

gravity, which forces the ball to fall towards the ground. The velocity vector of the thrown

object consists of three particular vectors in different directions (Figure 7). The advantage of

this model is its simplicity since it calculates all velocity vectors separately.

Related Work and State of the Art

 12

x

y

z

v

xv

yv

zv

Figure 7: The object’s velocity can be described by its three components.

Equation 2.2.2, Equation 2.2.3, and Equation 2.2.4 show the velocities in the different

directions while the ball is in the air. Gravity only affects the object’s movement in direction

z. Therefore, velocities in direction x and y absolutely correspond to the initial velocity,

which came from the throwing device in direction x and y. For calculating the position of the

object in the x, y, and z direction for a given time, Equation 2.2.5, Equation 2.2.6, and

Equation 2.2.7 are necessary. But the simplicity of this model is not only an advantage, it is

a drawback as well. On the one hand, the calculations are so easy that the model does not

need much computational power, but on the other hand, it neglects far too many influencing

variables for predicting the trajectory in an accurate manner. [Pon09, 11]

  0xx vtv  (2.2.2)

  0yy vtv  (2.2.3)

  tgvtv zz  0 (2.2.4)

  tvxtx x  00 (2.2.5)

  tvyty y  00 (2.2.6)

  2
00 tgtvztz z  (2.2.7)

Aerodynamic forces are not linear and, therefore, it is not possible to separately

calculate the three components without further simplifications [PKH10]. These

simpler equations (Equations 2.2.8, 2.2.9, and 2.2.10) make it possible to calculate the

three directions separately [BFK08]. However, they result in minor mistakes, which

depend on the proportion of the velocity components (vx, vy, and vz). [Pon09, 13]

[PKH10]

2

x

x

x
x v

v

v
kv  (2.2.8)

gv
v

v
kv y

y

y

y 
2 (2.2.9)

 Related Work and State of the Art

 13

2

z

z

z
z v

v

v
kv  (2.2.10)

2.2.4 Trajectory Fitting Model / Polynomial Model

If the parameters of the object launch such as its velocity, direction, etc. are not known, it

will only be possible to evaluate the flight regarding its movement in space and time. Since

the trajectory depends on these parameters, they are implicit in this progress of movement.

Therefore the first step is to record the various object’s positions during its flight (Figure 5).

Afterwards, a polynomial function (Equation 2.2.11) can be fitted into the measured data in

the best possible way. Indeed, the polynomial model is the simplest approach of all.

n

ni tptptppp  ...2

210 (2.2.11)

An example for a solution to finding such a polynomial function like the one described in

Equation 2.2.11 is shown in Equation 2.2.12. This error function should be as small as

possible, which means that the smaller E(p) is the better fitting of the chosen polynomial

function in the captured trajectory [Pon09, 13]. This approach to finding an appropriate

function is called Method of Least Squares and was formulated by Joseph-Louis

Lagrange [10].

    



N

i

ii fxppE
0

2
 (2.2.12)

In theory, order n of the polynomial function determines how closely it fits to the trajectory

of the flying object [PKH10]. In testing this approach in the field, it was recognized that a

function of third-, fourth-, or higher order barely provides a better result. Indeed, functions of

higher orders tend to be unstable at higher frame rates of the captured scene [PKH10].

According to paper [PKH10], a second order function is a good compromise between

sensitivity and a stable behavior.

2.2.5 Kalman filter

Another approach is the dynamic model, which uses a Kalman filter for predicting the next

steps. Two steps are alternately carried out when using the Kalman filter: a predicting step

and an updating step (Figure 8) [11].

Time Update
(„Predict“)

Measurement Update
(„Correct“)

Figure 8: The Kalman filter consists of two steps that are processed alternately. Modified from [11]

Related Work and State of the Art

 14

Since the “normal” Kalman filter does not involve non-linear influencing variables, the

estimation of the flightpath is not sufficient for our purposes. One remedy of this drawback is

the use of the extended Kalman filter [11][12], which is able to consider those non-linear

effects. However, it contains Jacobian matrices that are sometimes hard to calculate.

Therefore, the process is not always reliable. Furthermore, the algorithm is hard to

implement and presents a very sophisticated task for computation [11][12]. These big

disadvantages led to the development of another approach to predict through using the so-

called Unscented Kalman filter. With its faster computation, this algorithm is the better

choice for estimations of real-world problems [JU97, 2]. Nonetheless, this algorithm does not

offer the perfect solution as well: it assumes a random Gaussian variable, which does not lead

to an adequate calculation of all the different problems [VSH04, 1].

2.2.6 Comparison of the presented models

In the direct comparison between physical and polynomial models, two different assertions

were made. Various works and papers [Pon09][PKH10] suggest that the polynomial model

performed the worst. The physical approach performed better, but slightly worse than the

separated physical model that consider the non-linear effects. However, they still do not

provide the perfect solution. Most recent works that deal with catching flying objects have

been based on solutions with a Kalman filter [FBH01][BWH10] or a physical model

[FBH01][BFK08]. A direct comparison between these two methods of prediction was not

found, but as previously stated in Section 2.1.1, no study achieved perfect results, regardless

of the model used. The best results achieved a success rate of about 80 percent, which is high

but not high enough to be considered a consistent catching device! Although some models

consider more factors affecting the flightpath, none of the methods take into account all the

leverages that play a role in modeling such a flightpath.

magnus force

Figure 9: The spin of a ball can greatly affect its flightpath. Modified from [13]

For example, the spin of an object is not being considered in most models. The throwing

device is responsible for the rotation around the thrown ball’s own axis (Figure 9), which

leads to the flight-path-changing Magnus Effect. A low speed spin means a slow rotation of

the ball and can be neglected in most cases1, whereas a high-speed spin has to be considered

[ATW07, 327]. The spin of a tennis ball in some test scenarios was about 1000 min-1 and

therefore it has to be considered for a successful capture [PKH10][ATW07, 326]. Figure 10

demonstrates this issue by means of a table tennis shot.

1 This only applies for point-symmetrical objects like a ball.

 Related Work and State of the Art

 15

TOPSPIN SHOT

UNDERSPIN SHOT

FLAT SHOT

Figure 10: The spin of a ball greatly affects its flightpath. Top spin means the ball is spinning forward

and leads to its rapid descent. If the ball is hit with an underspin, it behaves the other way round.

Modified from [14]

For a stereovision system, measurement of such a spin is very difficult, sometimes almost

impossible, and its influence on the flighpath varies because of production variances from

tennis ball to tennis ball [PKH10]. Therefore, it is important to search for other solutions to

consider this effect in the prediction progress to enable a reliable estimation system. To

improve the throwing device or only use flat and hairless balls would not solve the problem,

but it would lead to better results [Pon09, 68]. For example, while a table tennis ball is flat

and hairless, its trajectory is still affected by the spin given by the bat when playing it

(Figure 10).

In addition, a catching device should be in a position to catch all kinds of objects, regardless

of the throwing device used. Hence, there is a demand for another model, which will be able

to handle all these influences. The diploma thesis of Pongratz [Pon09, 68] must be mentioned

in this context. Following a summary of the different models, a vision of a future model,

whose approach will be to compare the captured flightpath with a small set of earlier recorder

reference trajectories, was presented.

2.2.7 Bio-Inspired approach / k-Nearest Neighbors algorithm

This method represents one of the newer approaches in the field of Transport-by-Throwing

research and is very similar to the way a human catches something in motion. Hence, this is

the biological approach based on experiences such as a child improving his ball-catching

skills. With each attempt at catching it, another experience with the ball’s movement will be

ingrained in the child’s memory. Analogously, numerous flight trajectories have been

recorded and stored in a database. When an object is flying towards the catching device, the

parameters of its flight will be captured and compared with a set of stored reference throws

to enable a prediction about the trajectory as well as the point where it can be caught

[PP12, 6].

The wealth of experiences of the catching system significantly determines the quality of

prediction and the results obtained. All the factors influencing a flightpath can be

theoretically taken into account when the trajectory database is sufficiently comprehensive.

Not only will gravity and air drag be considered, the Magnus Effect, which is caused by the

Related Work and State of the Art

 16

spinning of the ball, receives attention as well. To find a well-fitting trajectory by comparing

the actual flight with the entire database, a k-NN (k-Nearest Neighbors) searching algorithm

is used [MPD14]. This method was primarily used for the assignment of pattern classification

in the field of computer vision [CH67, 1] and later for a time series forecasting as well

[Yak87, 235].





k

i

ix
k

y
1

1
 (2.2.13)

To predict the further flightpath of the actually thrown ball, the average of the k best fitting

trajectories from the database is calculated [AC13, 1]. This procedure is shown in

Equation 2.2.13 where y is the output flightpath and xi is one of the k best fitting trajectories

from the database.

Besides this “normal” k-NN approach, there is also another method where the k chosen tracks

are weighted by means of their resemblance to the actual flightpath (Equation 2.2.14).





k

i

ii xwy
1

 (2.2.14)

Whereby both below-stated conditions (Equation 2.2.15) have to be fulfilled:

10&1
1




i

k

i

i ww (2.2.15)

To get a better understanding of this method, a simplified example will be explained: Imagine

that the flightpaths are only two-dimensional and the parameter k is equal to 2. With these

simplifications, the trajectories would look similar to the ones in Figure 11. Furthermore,

imagine that curve C is the trajectory of the actual flying object whereas tracks A and B are

the most similar matches from the database. The fact that the new trajectory is between

those two sheds light on its further movement and permits the calculation of the point where

the ball will land [MPD14].

Figure 11: Flightpaths in a 2D aspect would look like these [MPD14].

 Related Work and State of the Art

 17

A possible simplification of the design would be a consequence of neglecting some of the

influencing factors when projecting the captured points on a 2D plane. It can be called Plane

of Flight and is collinear to gravity and the speed the object gets at its launch [MPD14].

Figure 12 shows an optional object coordination system stretched between x* and z*, in

which the Plane of Flight could lie. The results of this simplified approach depend on the

foreign influences that could cause the flightpath to deviate. However, in general, the

outcomes of this simplified approach (caused by neglecting some possible forces) will be

slightly worse than the “normal” one without the Plane of Flight.

Figure 12: The plane of flight is a simplification in predicting [MPD14].

Mironov and Pongratz published a work [MPD14] about the implementation of a Matlab

Code for predicting an object’s trajectory with above-mentioned biological approach.

Simulations showed that it produces better results than past approaches that were based on

physical laws, the Kalman filter, or the fitting of a simple polynomial function. It was

possible to estimate the correct inception point for soft catches in 90% of the simulated

throws. [MPD14]

2.3 Object detection and localization

As previously explained, detection of the flying ball is absolutely essential to making a

prediction about its future movement. It is impossible to catch a ball if one doesn’t know

where it is! This subchapter will provide an overview of the different techniques of object

detection and localization.

Catching a ball is not the only application for detecting an object. Modern cars often have

safety-relevant features like a pedestrian detector [DWS12, 743f] that warns the driver or

breaks the car when a human is on the street. Other developments in the automotive field go

one step further, like the autonomously-driven cars from Google or Audi [15], which are

currently tested in the USA. A “simple” pedestrian detector would not be enough for this

task because cars have to see everything around them: from pedestrians and other obstacles

to street signs and road markings as well as other traffic participants. Additionally, there are

other non-safety-relevant applications like the “Hawk Eye” [16], which are used in various

Related Work and State of the Art

 18

sports and tournaments to reproduce the ball’s movement to support the referee in difficult

decisions.

While much has been published on object detection, projective geometry, and triangulation

[FLP01] [HZ03][MGV09][Sze10], in this framework we will only discuss the basics.

2.3.1 Triangulation, stereo vision, localization

Depth information is essential to knowing the ball’s movement in space and time. Using two

or more cameras for locating the ball is advisable because to do this with only one camera is

a very ill-conditioned problem [FBH01, 1623][BFK08]. Triangulation, which can be done with

a stereoscopic vision system, is a good and cheap option to obtain a 3D view [SPV05]. These

two cameras are located side by side with a predefined distance between each other and

should synchronously acquire their images [Pon09, 18]. The way to turn two 2D pictures into

a 3D scene is similar to the biological way a human assembles the two images obtained from

the left and the right eye to one three-dimensional image [17].

f

f

xl

xr

x

camera R

camera L

baseline b

z

Z

x - b

P = (x, z)

Figure 13: Triangulation enables to calculate the location of the object when some properties are

known: baseline distance (b), focal length (f), and the measured disparity (d = xl – xr). Modified

from [18]

However, knowing only the distance between the two cameras, called baseline, is not

sufficient. Other important and relevant intrinsic parameters of the cameras are used: the

focal length, the principal point coordinates, the skew coefficient, and the image distortions

coefficients [18][SPV05]. Pinpointing the object of interest (the thrown ball) in an accurate

way is only possible when all these specifications are known [19]. Finding the same point of

the same object in both pictures is necessary to determine the location of this object and can

be described with the term Correspondence Problem [SPV05]. In subject literature, this point

is called point of interest, and there are several ways to find it. As shown in Figure 13, it is

possible to measure the disparity of the two positions from the point of interest in the two

captured frames. Equations 2.3.1 and 2.3.2 show that it is possible to calculate the distance z

to the chosen point when the information about the base length b, the focal length f, and

disparity d is known. [Sze10, 48ff]

 Related Work and State of the Art

 19

rl xxd  (2.3.1)

rl xx

bf

d

bf
z







 (2.3.2)

The question of finding the point of interest is easy to answer. In the case of a tennis ball,

one particular point of reference makes the most sense: the center point; in a 2D-view, a ball

has the shape of a circle and, therefore, it makes sense to look for its center. The way the

center of the ball can be identified in the left and the right image will be shown in

Subchapter 2.3.3. The coordinates of the ball’s center in both frames can be transformed to a

coherent World Coordinate System, so that the catching device is able to catch the ball

(Figure 14). [Pon09, 36]

Transform to World
Coordinate System

y

x

z

 111 zyx

 222 zyx

 zyx

 000

Figure 14: The location of the ball has to be transformed into coherent World Coordinates to enable

the robot to catch it.

The precision of object localization depends not only on the resolution and other intrinsic

parameters of the cameras, but also on their position and alignment. Figure 15 shows the

three ways for setting up the camera alignment, which lead to different visual views:

divergent, parallel, and convergent. [Pon09, 17]

Figure 15: The three different alignments for a stereo vision system from left to right: divergent,

parallel, and convergent. Modified from [PON09, 17]

The divergent variant is inadequate for the task of getting a 3D view through triangulation

because the point of interest has to be present in both images [Pon09, 17][Sze10, 537]. The

parallel alignment has the advantage of not needing a keystone correction, which is normally

needed to remove the distortion of a picture caused by recording in an angle other than 90°

to the filmed plane of interest (Figure 16) [20].

Related Work and State of the Art

 20

Figure 16: The left side shows a distortion-free image while at the right side a distorted picture is

imaged.

Again, the advantage of using a ball as a transported good is in its shape. A ball does not

have a plane, and it will not be distorted regardless from which angle filmed. It will always

look like a circle! But distortion is not the only impact of filming from a slanted angle. A

convergent stereo vision setup possibly leads to a smaller quantization error, which leads to

the deviation distance Δp, than a parallel setup [SSL01, 1]. As shown in Figure 17, the

smallest localization error Δp can be achieved at an angle of 90 degrees between the two

cameras [Pon09, 18].

Figure 17: Various filming angles with the convergent camera setup lead to different quantization

errors [Pon09, 18].

2.3.2 The position of the Stereo Vision System

The object can be localized more precisely when it is closer to the Stereo Vision System. For

this reason, positioning the cameras behind the throwing device is advantageous for achieving

better results. When filming from this position, the tracking and predicting of the ball’s

trajectory will already be as accurate as possible in the early flight phase [FBH01, 1629],

which leads to a quick estimation of the inception point. As a result, the robot arm has more

time to move to this point. The study [FBH01, 1629] showed that a position behind the

throwing robot, with a baseline distance of 1 m between the cameras, leads to better results

than trials from other positions. However, placing the cameras behind the throwing device

will not work in every application because of the need for an information channel between the

Vision System and the catching device.

 Related Work and State of the Art

 21

2.3.3 Point of interest

Finding the point of interest is essential for the purpose of localizing the flying object through

triangulation. Choosing the center of the ball as the point of interest appears obvious and

logical. The following subchapters will present a few techniques to detect circles and their

centers.

2.3.3.1 BLOB Detection based on Difference Image forming

A BLOB (Binary Large Object) is a connected region in an image that represents an object

and is associated with a local minimum or maximum [Lin93, 33][FBH01, 1624].

BLOB Detection can be simply calculated through a difference image and can, therefore, be

done very quickly.There exist two methods that will be briefly presented here. AFD

(Adjacent Frame Difference) is the procedure of making a difference image from two

consecutive frames [Pon09, 5]. The ball can be localized at the place where the changes of

pixels have been bigger than a previously set threshold [GW07][TKB99, 3]. This approach is

independent of changes that are slower than the frame rate of the Vision System, which in

turn means that problems can occur when the movement of the ball is not fast enough for the

chosen frame rate. In this case, the ball in the actual frame would overlap with the one in the

previous image. This problem is called ghosting (Figure 18) and leads to an inaccurate

localization of the ball’s new position.

Figure 18: Ghosting describes the fact that object is overlapped in two adjacent frames. Left, the ball

in the previous frame, right, the ball in the actual one. [Pon09, 5]

The other feasible solution makes use of a difference image made out of the captured frame

and a picture of the scene‘s background. But this method is not without problems either

because of the possibility of an alternating scene that differs from the recorded background.

Such changes can be caused by outside influences such as varying lighting conditions or

flickering lamps. Hardware features, too, can lead to problems such as automatic gain control

of the cameras or frame-grabber cards. A way around this problem is the use of a slow,

adaptive background image that accommodates changes of the scene [FBH01, 1625].

However, Pixel Jitter effects [21] or the interlacing of the cameras also lead to a difference of

the background and can disturb the detection algorithm. These issues can be avoided when

using a reference interval instead of fixed thresholds for determining pixel changes (Figure

19). If the intensity shift of a pixel is so large that it exceeds or falls below the reference

band, this picture element will be counted as BLOB-related.

Related Work and State of the Art

 22

t

I

tpc

Figure 19: The continuous change of a pixel’s intensity is caused by Pixel Jitter effects. A real change

of a Pixel is indicated when its intensity that exceeds or falls below the reference band as it happens at

the time tps. Modified from [FBH01, 1625]

The main drawback is in the possible inaccuracy of finding the ball’s center. Basically, it is

not very complicated to detect the center of such a created BLOB, but it will not be in the

right position if pixels that are not part of the same object are counted to the BLOB and,

vice versa, if pixels from the ball are not counted to the BLOB. This error can be enhanced

by well-deliberated motion detection algorithms, but a total prevention of this behavior is not

possible [Pon09, 7]. To make a prediction as accurate as possible, localization has to be

extremely precise. Therefore, another approach is needed to detect the flying ball.

2.3.3.2 BLOB Detection based on Color Histogram comparison

Besides making a difference image, there is another possibility to create BLOBs. The

captured frames can also be compared with a color histogram when the ball is specially

painted for this job [FBH01, 1623][HS95, 2]. The use of a color that does not occur again in

the rest of the scene is essential; otherwise this colored area would also count as a ball. One

drawback of this method is again the inaccurate center detection of the discovered ball, as

described in the previous Subchapter 2.3.3.1. But this is not the only problem: the ball could

appear in different colors, which might be caused by the different lighting conditions in the

room in which it is flying. This would make it difficult to detect it through color comparison

[FBH01, 1623].

2.3.3.3 Edge Detection as preparatory work for accurate Object Detection

BLOB detection can be computed extremely fast, especially when only processing an Area of

Interest that can be determined through the correlation of consecutive frames. The ball in the

actual frame will have a similar color and will be around the same place as in the previous

frame [SPV05]. However, the tendency to provide inaccurate results makes this approach

useless and raises the demand for other solutions.

 Related Work and State of the Art

 23

Input Image Edge Magnitude Map of the Input Image

Figure 20: Transformation from Input Image to Edge Image through the Canny Edge Detector [22].

Due to widespread occurrence of circles and spheres in nature, Circle Detection is one of the

most important and most frequently used applications in the field of Computer Vision

[SPV05]. Various methods for detecting circles exist [DAC02], but two of them are very well-

known and often used for object Detection: the Hough Transformation and the RANSAC

algorithm (Random Sample Consensus). Both algorithms will be discussed in the following

two subchapters, but they require a preparatory step [YR08, 2][Pon09, 33], which will be

explained here. An analysis made with the Hough Transformation or the RANSAC algorithm

requires an edge magnitude map. Therefore, a filter is needed that transforms the input

frames (Figure 20, left) into images where only edges, or rather local changes in intensity

(gradients), are drawn (Figure 20, right) [JWD13]. These filters are called Edge Detectors

and can either be first derivate filters or second derivate filters. The advantage of first

derivate filters is in their fast computation resulting from simple algorithms, but they are

very sensitive to noise in the image [Pon09, 7]. In contrast, second derivate filters need more

calculations steps, but provide better results. One of these last-mentioned filters is the Canny

Edge Detector, which was published by John Canny in 1986 [CAN86, 1]. This filter consists

of more than just a simple convolution with one matrix, it is carried out in four steps:

Gaussian filtering, Sobel filtering, doing non-maximum suppression, hysteresis thresholding

[OIN10]. After these four steps, an edge magnitude map like that on the right side of Figure

20 is achieved [GW07]. The Canny Edge Detector distinguishes itself from other edge filters

through its global inspection of the entire image with the opportunity of detecting possible

closed loops [SHB07]. As it tends to achieve good results, this filter is nowadays very popular

among developers whenever an edge image is required [YR08, 1]. However, the iterative

process of the Canny Edge Detector’s hysteresis step could lead to longer execution times: the

more pixels are present, the more time will be needed [YR08, 7].

2.3.3.4 Hough Circle Transformation

The Hough Transformation was developed by Paul Hough in 1959 [Hou62] and is a possible

procedure to detect objects on the basis of their parameters [Pon09, 33] out of a created edge

image [HP62]. Its original task was to detect lines in images [Kol02, 313]. Soon however,

improvements and extensions were made such as another way of calculating with polar

Related Work and State of the Art

 24

coordinates [DH72] or an algorithm that involves the direction of the gradients [OC76, 544].

Furthermore, a method for the detection of circles and arcs [IK88, 93] was developed, which

is of interest here for the task of finding the center of the thrown ball.

Figure 21: Every edge point "looks" around itself for a potential center point.

To perform the Hough Circle Transformation, each edge point will be considered part of a

dedicated circle with the radius r. This will enable looking for potential center points (Figure

21). This is done by writing in an array called Hough Space, which is the storage for this

voting process. At the beginning of this algorithm, every field of this array has the value zero.

And every time one of these fields (pixels) is voted to be a potential center point, the value of

this field will be incremented by 1. With an accurately defined radius, we will only need a 2D

array, which represents the various pixels. After the voting process is completed, the local

maximum can be determined. The field with the most votes represents the center of the

circle. In other words: k edge points belonging to one circle with a radius r will lead to a k

times increment of the field in the Hough Space, which is representing their center point

(Equation 2.3.3).

kyxA ),((2.3.3)

Figure 22 shows the Hough Space superimposed with the edge pixels of the corresponding

circle. As can be seen, the most votes are in the center of the circle.

Figure 22: The Hough Space with its votes superimposed with the edge of the corresponding circle

[PKH10].

 Related Work and State of the Art

 25

Rarely will we know the exact radius r and, therefore, a range of radiuses to be voted for has

to be defined. If one looks for circles with different radiuses, a 3D-Hough Space will be

needed: one dimension for x, one for y, and one for the different radiuses. Figure 23 shows

when every edge point is voting for potential center points for different radiuses. Ultimately,

the result will be the same: the field with the most votes is the center of the circle.

[SPV05][Pon09, 9][PKH10]

circles
of vote

original
circle

x0

r

y0

Figure 23: The 3D Hough Space for detecting Circles with a radius in the defined range of radiuses.

Modified from [DH72]

On the one hand, the Hough Transformation achieves accurate results, on the other hand, it

requires much computational power. Therefore, enhanced approaches are welcome to simplify

the procedure. A growing Hough Space leads to an exponential increase in the process’

complexity. As stated above, when detecting circles with an unknown radius, the voting

process has to cover three instead of two parameters in the Hough Space [AME13, 216].

Therefore, another method was developed and used in various works [RFQ03][KBS75][MS81].

Instead of examining the image only on the basis of its single edge points, a segment of a

circle, an arc, will be analyzed regarding its direction. As soon as the direction of the arc is

identified, a line along the normal of the arc’s tangent will be drawn (Figure 24). The pixel

where most of these lines intersect is the center of the circle. Storing straight lines instead of

circles in the Hough Space leads to a reduction from three parameters to two [SPV05].

Figure 24: Another approach of the Hough Circle Transformation consists in drawing lines along the

normal of the various arcs of the circle. Modified from [SPV05]

Related Work and State of the Art

 26

However, this approach does not offer the perfect solution because it might achieve

inaccurate results caused by noise. When some of the circle’s segments have more pixels than

they should, the edge image will not be well-defined, and the drawn lines will not be exactly

perpendicular to the tangents. Conditions of the edge images and the desired accuracy have

to be considered to fulfill all requirements for the system. Furthermore, an algorithm

optimally matching the hardware’s capabilities will be needed.

To sum up: the Hough Transformation is noise tolerant, highly stable, and achieves accurate

results [JWD13]. In addition, it can be adapted for objects of different shapes. All these

features render it a viable option for this project’s purposes. A possible drawback could be its

costly computational requirements.

2.3.3.5 RANSAC algorithm

Another popular method for detecting objects, called RANSAC algorithm, is a non-

deterministic technique [JWD13] and was published by Fischler and Bolles in 1981 [FB81, 1].

Lines, circles, planes, and other shapes are detectable with RANSAC just as with the Hough

Transformation. Since this thesis deals with the catching of a ball, circle detection will be

explained here (Figure 25, left). In the first step, three edge points are randomly chosen to

draw a circle through them. Then, the distances between the image’s edge points and the

circle’s points are examined. If the distance of one of these edge points to the circle is smaller

than a predefined parameter, the pixel belongs to the circle and is called an Inlier. If the edge

point is not close enough, it does not belong to the circle and is called an Outlier. A circle has

been detected when the quantity of Inliers exceeds a predefined threshold. Subsequently,

three further edge points will be randomly chosen and the procedure repeats. These steps will

be repeated for a predefined period. An example for finding a circle is shown in Figure 25.

Besides the parameter of the maximum distance for qualifying as an Inlier, other parameters

have to be set as well: the number of iterations (how often new random pixels will be

chosen), and the minimum distance these random points must have to each other.

 Related Work and State of the Art

 27

choose randomly
three edge points

draw a circle
through them

does this circle have
enough inlier?

circle detected no circle detected

yes no

have all trials been
done already?

yes no

end of the
algorithm

Figure 25: Left Left: steps of the RANSAC algorithm; right: possible results of the algorithm. Modified

from [23]

The accuracy of the achieved results depends on the number of iterations and the amount of

edge points that are not part of the circle. The more frequently random points for searching

are chosen, the higher the likelihood of finding a circle. The more edge points not belonging

to a circle are in the image, the less the likelihood of finding a circle.

2.3.3.6 Hough Circle Transformation vs. RANSAC algorithm

Both procedures allow detecting various shapes such as lines, quadrangles, circles, plains, etc.

Additionally, edge magnitude maps, which were presented in Section 2.3.3.3, are essential for

executing one of these algorithms.

One published work [JWD13] made a direct comparison between the Hough Transformation

and the RANSAC algorithm. The experiments were about finding lines in data sets from

radar, which were partly experimentally recorded and partly artificially generated. The first

conclusion seems very logical and stated that both procedures do their jobs better when there

is no noise in the images.

However, the Hough Transformation was highlighted as being more accurate when detecting

lines in the presence of noise. This algorithm was still highly stable and able to detect in an

accurate way [JWD13]. The reason for these good detecting qualities is the search algorithm,

which examines each edge point as to whether it is part of the wanted shape. In case of

circles, their center will be searched for in a predefined range of radiuses around each edge

point. This leads to the assumption that detection will work properly if the image is not

totally overloaded with noise and the correct radius is present in this range of radiuses. On

the other hand, RANSAC is a stochastic algorithm and strongly depends on various

characteristics of the image and some other predefined parameters. The quantity of edge

Related Work and State of the Art

 28

points present, the number of iterations, and the predefined minimum distance between

randomly chosen points are crucial for the success of the procedure [JWD13].

The comparison of the two approaches showed that the Hough Transformation was better

than the RANSAC algorithm at detecting lines in the experimental data. However, RANSAC

achieved better results than Hough when examining the generated data [JWD13]. The issue

of the algorithms’ required calculation times is not covered here in depth, but another paper

states that the Hough Circle Transformation is fast enough for real-time applications at a

frame rate of 70 FPS [Wei08, 7]. The duration of this algorithm depends on the quantity of

pixels in the edge image [WL12]: the more pixels are present, the more time will be needed

because of the necessity to examine each of them. In comparison, the time required by the

RANSAC algorithm mainly depends on the number of iterations and will probably be less

than with the Hough Transformation. The voting process for various radiuses carried out by

the Hough Transformation requires more computation steps than the RANSAC algorithm.

Furthermore, an edge image will probably have more edge points than the number of

iterations needed for finding a circle with the RANSAC algorithm. The smallest possible

distance between the chosen points might be affecting the temporal behavior as well: When

the chosen points are too close to each other, new points have to be chosen until all three of

them fulfill the requirement of minimum distance. If this happens frequently, the entire

process will take more time.

2.4 GPU programming

Programs or parts of them can be accelerated through the massively parallel architecture of a

GPU (Graphics Processing Unit), which leads to shorter computation times

[SHH07, 1][FM05]. Previously, using the computer’s graphics card for general purpose

computing was only possible with the help of a trick. It was necessary to wrap the necessary

program parts in a graphics framework to fool the GPU into “believing” that it computes a

normal monitor frame while its capacity was used for other purposes. Coding in this manner

was a hard task, therefore, it could not be expected to be carried out by the general public,

only by a selected few developers who were up to the challenge [YR08, 1]. Driven by the

demand of the market to have a programmable graphics processing unit for general purpose

computing, called GPGPU (General-Purpose Computing on Graphics Processing Units),

NVidia eventually developed CUDA (Compute Unified Device Architecture) in 2006. Since

then, it has been possible to use this programming platform to easily implement programs

running on a GPU and speed them up with the huge number of parallel computing

processors. [CUD14, 4][OLG07, 7]

2.4.1 The necessity of using a GPU

The real-time constraints of the bio-inspired Transport-by-Throwing approach are an open

topic until now. The arm of the catching device has to move early and quickly to the

interception point to be there on time [PKH10]. The following example shall help understand

the challenge of timing and what it means to do the prediction in real-time. In case of the

 Related Work and State of the Art

 29

robot used, the KUKA LBR 4+, the interception point must be known at least 33.5 ms

before the object arrives there. The flight of the thrown object takes approximately 780 ms if

the ball travels with a speed of 5.3 m/s over a distance of 2.5 m with a launching angle of 42

° [PMB13]. Consequently, the result of the prediction of the inception point has to be ready

roughly 746.5 ms after the object was thrown. This short period between the launching of the

ball to the time when the trajectory estimation is needed provides an illustration of the

required speed of computation, however, the major challenge are the high FPS rates (Frames

per Seconds) of the recording cameras.

FPS
t

1
 (2.4.1)

Table 2 shows various exposure times of frames when filming with various frame rates. These

times can be calculated with Equation 2.4.1.

FPS time interval

24 41,6 ms

25 40,0 ms

30 33,3 ms

48 20,8 ms

60 16,7 ms

90 11,1 ms

110 9,1 ms

120 8,3 ms

Table 2: Different frame rates lead to different exposure times of frames.

Pongratz and colleagues showed in their paper [PKH10] that accuracy of prediction not only

depends on higher resolution, it also critically depends on the frame rate. In general, a

prediction is better when working with a higher FPS rate. Indeed, in some cases it can even

be useful to downscale the resolution to have more bandwidth on hand to operate on a higher

frame rate. [PKH10]

Frame 4

Frame 3

Frame 2

Frame 1

9,1 ms

9,1 ms

9,1 ms

Figure 26: For a capture with 110 FPS, the time interval between the frames is 9.1 ms long.

Related Work and State of the Art

 30

For example, when capturing the scene with a frame rate of 110 FPS, the interval between

two frames will be about 9.1 ms. All steps of image processing, object detection, and

flightpath prediction have to occur in this short span. To accomplish this in real-time, all

necessary calculations have to be completed in less than 9.1 ms (Figure 26). The deadline for

the GPU or CPU to compute one frame is 9.1 ms after it has appeared in the computational

device. To ensure that there will be sufficient free capacity for calculating the next frame

when it appears, all procedures have to be completed before the deadline. However, if the

estimation algorithm takes up too much of the processor’s capacity, computation time will

interfere with the camera’s sample rates [HS95, 8]. In this case, treatment of some frames at

the beginning of the flight would be completed only shortly after the deadline. Whether that

is necessarily a serious problem, is unclear. It depends on the frequency of the occurrence and

the length of the delay. To be on the safe side, however, every execution should be on time!

For example, the Hough Transformation needs huge computational power [SPV05]. How long

it takes depends on its implementation and the quantity of pixels present in the edge image.

As explained in Section 2.3.3.6, the more edge points there are in the input frame, the more

time the Hough Transformation will take to execute a frame [WL12]. An adaptation of this

method for detecting more complex shapes could even lead to a higher computational

demand. Performing the Hough Transformation on a GPU was tested and documented in

some studies [CJ11][AME13] [WL12], which came to the same conclusion that execution was

much faster on a GPU than on a CPU. The obtained acceleration was measured with

differing result: from 45.7x in [WL12] and 65.4x in [AME13, 220] to 400x in [CJ11].

The RANSAC algorithm and the k-NN search for predicting a flightpath will need much

computational power [MPD14] as well. However, they are also partially suited for parallel

computing. To shorten execution time, it makes sense to swap these program parts on a

GPU.

Figure 27: Floating-Point Operations per Second for the CPU and GPU [CUD14].

 Related Work and State of the Art

 31

It is obvious that there are differences in computational power and execution time when using

different hardware. That means that different GPUs will take different time to execute the

program; the same is true for different CPUs. However, generally speaking, a GPU has

considerably more theoretical computational power than a CPU (Figure 27). GPUs are based

on the SIMT (single-instruction, multiple-thread) architecture, which is akin to SIMD (Single

Instruction, Multiple Data). In other words, a single instruction processes a complete data set

all at once; therefore, a GPU is the perfect hardware for processing images [OCL09, 14]. Such

images consist of huge amounts of pixels that have to be processed by the same instructions.

However, the implementation has to be optimized to process the data sets parallel and in an

efficient way [FBH01, 1625].

It is no coincidence that a graphics card computes the frames for a computer monitor; after

all, it is designed for such graphical tasks. Therefore, it seems natural to outsource program

parts for image processing to the GPU to speed up the whole procedure. Another possible

solution would be the use of a FPGA (Field Programmable Gate Array), which could also

accelerate the execution of the algorithm [Pon09, 67], but this would probably lead to much

higher development costs than an implementation for an off-the-shelf hardware such as a

GPU.

2.4.2 The functionality of a GPU

There are a few fundamental issues to consider when implementing a program that will run

on a GPU. Such a graphics card has its own memory and it is necessary to swap data to be

processed by the GPU onto this memory first. Accordingly, a distinction is made between

host code and device code. Like a regular program, the host code runs on the CPU and only

processes the data sets on its main memory. On the other hand, the device code is executed

on the graphics processor and edits only the data of the GPU’s memory. The latter consists

of so-called kernels, which are functions that run on one or more multiprocessors of a GPU.

Such a Kernel creates a couple of light-weight processes, called threads, which run

simultaneously on different processors (cores) of a multiprocessor to simultaneously process

multiple data (Figure 28 and Figure 29). [CUD14, 9f] [OCL09, 11f]

To understand the connection between threads, multiprocessors and cores, it should be

explained that threads are pooled together in blocks (Figure 28), which can contain between

1 and 1024 threads each. Blocks, which run on several multiprocessors of the GPU, are also

pooled to a so-called grid. [CUD14, 11f][OCL09, 12ff]

Related Work and State of the Art

 32

thread (0, 0) thread (1, 0) thread (2, 0) thread (3, 0)

thread (0, 1) thread (1, 1) thread (2, 1) thread (3, 1)

thread (0, 2) thread (1, 2) thread (2, 2) thread (3, 2)

block (1, 1)block (0, 1) block (2, 1)

block (1, 0)block (0, 0) block (2, 0)

block (1, 1)

grid

Figure 28: Up to 1024 threads are combined in a structure, which is called block. The sum of all

various blocks is pooled in one grid. Modified from [CUD14, 11]

The program runs through the following steps: at first, all necessary data sets are moved to

the memory of the GPU for further processing in the next step. After the GPU has processed

this data, the results can be swapped back to the main memory of the host where they can be

used or displayed [CUD14, 14, 225].

It should be noted that such a graphics chip contains, apart from this single device memory,

also several other memories shown in global memory, has the advantage that all blocks can

read from it and write on it. Despite two associated caches, which can considerably accelerate

reading accesses on the global memory, it is the slowest of the GPU. Another storage, called

shared memory, which is assigned to the various blocks, is much smaller than the global

memory and can only be edited by its assigned block, yet, it is much faster than the global

memory. [CUD14, 12, 187f][OCL09, 18]

However, this is not all: Each of a multiprocessor’s several cores has its own registers, which

can be used only by the assigned thread running on this core. Such registers have a much

smaller memory than the other two types of storages, but they are by far the fastest on the

GPU. [OCL09, 14f]

 Related Work and State of the Art

 33

shared memory

registers

processor 1

registers

processor 2

registers
Instruction

unit

constant cache

texture cache

device memory

multiprocessor 1

multiprocessor 2

multiprocessor n

device

processor m

Figure 29: The schematic view of a GPU shows a device memory (supported by two caches) that can

be read and written from all cores of the whole Grid. There is a faster storage, called shared memory

and it is only accessible to the threads of the same assigned block. Additionally, each processor has its

own registers, which are only useable for a thread assigned to it. However, these registers are the

fastest storages on the GPU. Modified from [OCL09, 16]

When trying to improve the performance of the implemented algorithm, it makes more sense

to optimize the program by using the shared memory instead of the two caches, which

accelerate reading from the global memory. This course of action brings about a reduction in

slow global storage accesses and, therefore, leads to a minimization of the program’s

execution time [LWT12, 1]. It is also important to mention that such optimization requires

developers with broader knowledge and experience. The risk of a deadlock or other failures

exists when the program is not correctly implemented. To avoid these problems, such

optimization will not be carried out in the framework of this thesis.

2.4.3 CUDA vs. OpenCL

Besides CUDA, there exists another option for programming a graphics processor: OpenCL

from the Khronos Group [24]. Subchapters 2.4.3.1 and 2.4.3.2 will show the existing research

on the two platforms. The differences as well as the similarities between them will be worked

out.

2.4.3.1 Formal differences between the two platforms

While OpenCL represents an open software standard to implement portable programs for

GPUs and Multi-Core CPUs from various vendors, CUDA is proprietary software that works

Related Work and State of the Art

 34

only with NVidia graphics cards [KDH10, 1][FVS11, 9]. Nevertheless, these two different

platforms show a lot of similarities: both of them are an extension for C (the programming

language) and are used to program a host- as well as a device code. They have the same

memory model and are both equipped with an equal segmentation of blocks and threads. The

various interface-dependent expressions and their relations to each other are displayed in

Table 3. This provides a simple way to translate programs from CUDA to OpenCL and vice

versa [MGW11, 1].

CUDA OpenCL

global memory global memory

constant memory constant memory

shared memory local memory

local memory private memory

thread work-item

block work-group

Table 3: Terminological differences between CUDA and OpenCL [FVS11, 2].

Besides these terminological differences, the two platforms are very different regarding the

compilation of a program. The pure C-Code is not the only program part being translated

into an executable file when compiling the CUDA program, the device- and the host code will

be compiled at the same time. At runtime, both of them can be executed without any

additional preparatory steps. When developing an OpenCL program, the software designer

has to ensure that the device code will be compiled at the beginning of the execution time. As

a consequence, the duration of the initialization of an OpenCL program needs more time than

a CUDA program. On the other hand, compiling the device code at runtime can be of great

advantage; it offers the possibility of optimizing the code for the hardware used for executing

the program at that moment. [KDH10, 10]

2.4.3.2 Performance differences between the two platforms

Karimi, Dickson, and Hamze stated in their study [KDH10, 9f] that CUDA is preferable if the

focus is on performance and shorter execution time. If the developer intends to implement the

program platform on hardware from various vendors, the development environment of

OpenCL should be used. Karimi’s team wrote two nearly-identical programs for various tasks

to compare the performance differences between the two platforms. The measured data and

results read as follows: Execution times of the OpenCL kernels were about 13 to 63 percent

longer than those of the CUDA kernels. There were also similar outcomes regarding the two

programs’ overall execution time: the OpenCL program was about 16 to 67 percent slower.

However, this is not the only paper comparing the performance of both platforms. Fang,

Varbanescu, and Sips wrote [FVS11, 1, 9] that an unfair comparison used in other works

accounted for about 30% of the performance gaps. Additionally, they implied that there

occurred illegal storage accesses, which accelerated execution and were camouflaged as an

access to a texture cache when using the CUDA interface. Moreover, the CUDA compiler

 Related Work and State of the Art

 35

optimizes in a better way than its OpenCL counterpart. If the texture cache is turned off and

the program manually optimized, the performances of both programs will be roughly equal.

As conflicting statements have been made in several papers, the most straightforward way for

continuing this project seems to make a comparison of our own between these two platforms.

To avoid redundancy by creating another program, the Canny Edge Detector, which is

needed as a preparatory step for object detection (explained in Section 2.3.3.3), will be

implemented for both programming interfaces.

36

3. Setup, Procedure, and Concept

At this point in time, all Transport-by-Throwing research is only at the level of academic

research. Therefore, the experimental setup of this work is shaped accordingly and makes use

of some simplifications. The transport system examined in this project consists of various

parts that can be considered and treated separately: developing a throwing device, setting up

the vision system, detecting the thrown object, creating a flightpath prediction, and

developing a catching device. Since each of these parts require a huge amount of research and

work, this diploma thesis will only deal with an accurate detection and prediction of the

flying tennis ball. The advantage of using such a ball lies in its easier detection resulting from

its point-symmetrical shape.

3.1 Environment

The ball was synchronously captured by two IDS uEye UI-3370CP cameras that were aligned

convergent with a baseline distance of approximately 0.92 m. A coil-based throwing device

accelerated the ball to overcome the distance of about 2.5 m. Four 500 W halogen floodlights

were used for a sufficient illumination of the scene. A Matlab toolbox [25] was used to

calibrate the stereo vision system to achieve accurate results from the triangulation of the

two images. Furthermore, the toolbox provided all necessary intrinsic parameters of the

vision system: distortion, skew coefficient, etc. [PKH10]. The two cameras support a

resolution of 2048-by-2048 pixels at a frame rate of 80 FPS and 2048-by-800 pixels at

110 FPS.

Because of the need for highly accurate detection, processing these large images would need

too much computational power and time to predict the flightpath in time. To maintain the

advantages of the higher resolution, which leads to more accurate results (see

Subchapter 2.4.1), a system is required that acquires only the relevant area of the full image.

To retain any important information and be able to determine the ball’s exact position, the

subimage has to show the ball; in addition, information about the location of the subframe

must be provided. Figure 30 shows a possible subframe that is delivered with the parameters

xoffset and yoffset, which provide a back-calculation of the ball’s location in the large image.

 Setup, Procedure, and Concept

 37

captured frame

sub frame

yoffset

xoffset

Figure 30: An already existing unit crops the big images to smaller subframes with the ball more or

less in the middle. The offset parameters enable the calculation of the ball’s center point in the big

images.

The cropping system, which is not part of this thesis, already exists and provides output

images with 300-by-300 pixels, where the ball is roughly in the center. A technique similar to

BLOB detection, which calculates difference images based on a comparison with the scene’s

background, enables cropping large images to small regions of interest. It would be possible to

make a flightpath prediction based solely on BLOB detection. However, this would probably

lead to an inaccurate detection, which in turn would result in an insufficiently accurate

prediction. In the framework of this thesis, a system that detects the ball in the cropped

images and predicts its flightpath will be designed, implemented, and tested.

The Institute of Computer Technology at the Vienna University of Technology provides the

hardware for these tasks: A computer with an i7-4770S CPU clocked at 3.10 GHz, 8 GB main

memory clocked at 667 MHz and an NVidia GeForce GTX 560 Ti graphics card [26] with 384

cores assigned to 8 multiprocessors clocked at 822 MHz. The GPU features compute

capability 2.1, 1024 MB global memory, and 48 KB shared memory per multiprocessor. A 64-

Bit version of Windows 7 Enterprise was chosen as operating system and Microsoft Visual

Studio 2012 as development environment. The CUDA platform is at Version 6.5 [27] and its

OpenCL counterpart at 1.0 [28].

3.2 Tasks

The project described here deals with the following tasks: detection of the ball in both of the

300-by-300 pixels images, its localization in 3D space, and forecast of its flightpath

(highlighted in Figure 31).

For reasons of convenience and reproducibility as well as to enable practical implementation,

the small subframes of some flights were recorded to analyze them instead of always

capturing real-time flights. Without these recordings, it would be necessary to throw the ball

each time when testing the written software, which would add an undue amount of work for

the developer. Implementing software in this manner has the benefit of easier troubleshooting

Setup, Procedure, and Concept

 38

when an error occurs. It is easier to find a software failure when it is possible to precisely

reproduce the malfunction.

cropping the

image to small

sub frames

detecting the

ball in these

two images

catching the

ball

making a

prediction of

the further

flight path

Figure 31: This diploma thesis deals with the detection and prediction of a flying ball. An already

existing unit crops the big images to smaller 300-by-300 pixel subframes, in which the ball has to be

detected. The prediction of the ball’s flightpath will be sent to the robot arm to enable it to catch the

ball.

The procedural steps, which are highlighted in Figure 31, can be broken down into multiple

smaller tasks: load the trajectory database, load the subframes from the hard disk, convert

them to uniform 8-Bit grayscale images, create edge magnitude maps, detect the ball’s center

on this maps, triangulate the two received center points, and make an estimation of the

flightpath. Figure 32 shows the entire procedure that will be implemented in the framework

of this thesis.

The following subchapters will show the procedure respectively its implementation step-by-

step. A distinction must be made between preliminaries that have to be carried out

specifically for the experimental setup and preliminaries that are generally necessary for

object detection. The former consist of loading the images and convert them to data that can

be processed in the appropriate manner. While these preliminary measures are necessary for

this setup, they will probably not be needed for real world applications. In contrast, edge

detection, for example, is a necessary preparatory step for accurate object detection and must

be executed both in the experimental setup as well as in real world applications.

The focus is on detection, localization, and prediction of the ball, but preliminaries, like

loading the picture and converting it will also be briefly explained. Following these

fundamentals, the Canny Edge Detector, which was chosen to produce the edge images, will

be explained.

Another preliminary measure can be taken to improve the quality of the edge images. In this

step, the background of the scene is subtracted so that the resulting image will only display

the ball. Removing all objects present except the one to be localized, minimizes the

probability of detecting wrong edge points. For this reason, both cameras recorded the scene

without the ball. These images were stored with the cameras’ maximum resolution (2048-by-

800 pixels) to have all the information about the background available. Again, the parameters

xoffset and yoffset (see Section 3.1) are needed as additional information to use the correct 300-

by-300 pixels of the big image. Only the ball’s pixels should remain when making such a

difference image.

Two different techniques will be tested to detect the object: the Hough Circle Transformation

and the RANSAC algorithm. On the one hand, it has to be assumed that RANSAC will

probably be faster than Hough, but on the other hand, the Hough Transformation will

probably provide more accurate results. To validate these assumptions, both have to be

implemented. Subsequently, implementation of the localization, which is done through

 Setup, Procedure, and Concept

 39

triangulation, will be explained. The prediction, which constitutes the final step, will be

explained in the last subchapter.

load the trajectory

database

load the first set of

images (left and right)

convert it to 8-Bit

grayscale images

create edge magnitude

maps

find the ball‘s center

points in both maps

find the ball‘s center

points in both maps

triangulate the points

for a 3D view

store the position of the

ball

load the the second set

of images

convert it to 8-Bit

grayscale images

create edge magnitude

maps

find the ball‘s center

points in both maps

find the ball‘s center

points in both maps

triangulate the points

for a 3D view

store the position of the

ball

load the the third set of

images

convert it to 8-Bit

grayscale images

create edge magnitude

maps

find the ball‘s center

points in both maps

find the ball‘s center

points in both maps

triangulate the points

for a 3D view

store the position of the

ball

search for the most

similar trajectory in the

database

load the the fourth set

of images

search for the most

similar trajectory in the

database

search for the most

similar trajectory in the

database

Figure 32: After the trajectory database has been loaded, the first set of stereo frames can be loaded

and converted to grayscale images. Afterwards, edge magnitude maps will be created so that the ball’s

center can be detected. The next step is the localization of its position in the 3D space to examine its

movement. The actual flight positions will be compared with the database to find the most similar

trajectory.

3.3 Preliminaries

As explained in Chapter 3.2, some steps have to be made to enable localization and

estimation of the ball. The following subchapter will give an insight into the implementation

of these preliminaries. After all these steps have been carried out, the main tasks can begin.

Setup, Procedure, and Concept

 40

3.3.1 Loading the trajectory database

The first step is about loading the trajectory database from the hard disk to the main

memory of the CPU. The database is stored as a CSV-file (Comma-Separated Values), which

makes it a simple task to load it. The only functions needed are in the stdio-library (standard

input/output) [29], which comes with every normal C/C++ compiler. Subsequently, all

trajectories, which are stored in multiple arrays filled with the 3D positions, will be copied

from the CPU’s main memory to the global memory on the GPU.

An optional procedure would be to load the trajectories when the positions of the flight are

already known. However, the accruing latency times, which occur when loading the database

from the hard disk to the main memory and then to the global memory, would most probably

make an on-time forecast impossible.

3.3.2 Loading two of the flight’ s subimages

As stated in Section 3.2, the 300-by-300 pixel subimages have been recorded to provide an

easier implementation of the detection software. The images are stored as BMP-files (Bitmap)

and can be opened with different libraries that can be downloaded from the Internet.

OpenCV [30] is one of the most popular library packages for opening, editing and processing

pictures as well as videos. Because of the easy-to-use libraries as well as the vast amount of

explanations and tutorials, OpenCV will be used to load the images from the hard disk to the

main memory of the CPU. This procedure will be done by an instruction called imread [31].

In the case of processing frames from a live scene, a video stream would be directly captured

instead of loading stored images from the hard disk. This would probably lead to much

shorter and more regular latency times. Therefore, the time needed for moving the required

data sets of a frame to the main memory will not be treated in great detail here.

Copying frames from the host’s main memory to the GPU’s global memory is quite another

thing than loading them from hard disk to main memory. This step is always necessary when

processing images with a GPU. Therefore, the time needed to do this will be worked out here.

This copying task is embedded in another step that will be explained in Subchapter 3.5.1.

3.3.3 Converting the frames to uniform grayscale images

It would also be possible to process the 32-Bit color images, sent by the cropping unit, on the

GPU. However, further calculation steps only require images with intensities; colors are not

needed. To reduce host-to-device workload and save memory on the GPU, the 32-Bit images

will be converted to 8-Bit grayscale images. Another OpenCV function, called cvtColor [32],

can be used for executing this conversion on the CPU. Subsequently, the 8-Bit grayscale

images will be moved to the GPU to be processed in the following computation steps.

Why do we use a CPU to convert the images when a GPU would probably do the job faster?

It would also be possible to obtain the images in this grayscale format directly from the

cameras. This approach would render conversion unnecessary; therefore, the time needed for

converting the frames to 8-Bit grayscale images will be addressed here only marginally.

 Setup, Procedure, and Concept

 41

3.4 Subtracting the scenes background

This step may be executed, but is not mandatory. The idea here is to improve the quality of

the edge images, which means reducing the possibility of detecting wrong edge points. The

following implementation of the Canny Edge Detector (see Section 3.5) will be the same,

regardless whether the background subtraction will be performed or not. However, the input

frame for the Canny Edge Detector will be an image in which, more or less, only the ball is

present; therefore, the edge images will be of a higher quality.

     offsetoffsetBGIS yyxxPyxPyxP  ,,, (3.4.1)

Therefore, 2048-by-2048 pixel images, without the ball, have been recorded from the left and

the right camera. The resolution of these two images is equal to the highest resolution of the

cameras. In other words, having these images is equal to having complete information about

the background of the entire scene. To subtract the background (Equation 3.4.1) means to

make a difference image of the input image2 as well as of the background image: the value of

the resulting pixel’s value PS with the coordinates x and y is equal to the pixel’s value PI

from the grayscale image (in place x and y) minus the pixel’s value PBG of the background

image (in place x + xoffset and y + yoffset). The offset parameters, which are delivered with the

300-by-300 pixel subimages, are important for this task. Without them, it would be

impossible to use the right part of the big image for this subtraction (Figure 30).

Figure 33: Background subtraction.

Because of changing lighting conditions, the difference image will probably not be perfect.

The recorded background image can be slightly brighter or darker than the actual frame with

the thrown ball. As shown in Figure 33, there are still contours of other objects in the

resulting difference image. However, these remaining contours are very weak and, therefore, it

will be no problem to remove them in the Hysteresis step of the Canny Edge Detector, which

will be explained in Subchapter 3.5.4.

Additionally, it is important to note that the subtraction of a pixel must not result in a

negative number. This would happen if the value of the background image was higher than

its counterpart on the grayscale image. Because 2D arrays of Unsigned Char data type are

2 In the case of performing a background subtraction, the subimages will be transferred from the main to the
device memory in this step.

Setup, Procedure, and Concept

 42

used for storing the subimages, a negative value would cause an overflow of the pixel value.

In other words, the pixel in the difference image would not become negative or 0; rather, it

would have a very high value if the subtraction’s result would be negative. A pixel with such

a high intensity would be wrongly interpreted as an edge point. Therefore, subtractions of

pixels that would lead to a negative result will not be calculated with Equation 3.4.1, they

will set to 0.

3.5 Canny Edge Detector

If no background subtraction is carried out, the Canny Edge Detector will be the first

program step executed on the GPU3. A GPU can be programmed in two different ways: with

CUDA or OpenCL. Based on statements from different papers about the two platforms’

performances, the Canny Edge Detector will be implemented for both. The time needed to

complete all four steps of this algorithm will be measured to obtain authentic information

about possible performance differences. The procedure will be explained in detail in the

following subchapters and the results (shown in Subchapter 4.1.1) will determine which

interface will be used in the following steps of the prediction algorithm.

3.5.1 Gaussian filter to smooth the images

The Canny Edge Detector’s centerpiece, which will be explained in the next subchapter,

examines the gradients of all pixels. If the magnitude of a pixel’s gradient is high, it will be

an edge point. However, a camera frame does not contain only high gradient magnitudes that

represent edges. Indeed, superimposed white Gaussian noise may lead to high gradient

magnitudes as well. This would disturb accurate edge detection and result in detecting false

edge points. Therefore, the Gaussian noise has to be removed as effectively as possible.

Therefore, the first step of the Canny Edge Detector is a Gaussian filter whose

implementation will be discussed now.

1 2 1

2 4 2

1 2 1

16

1

Figure 34: The center field of the Gaussian filter matrix has to lie on the pixel to be calculated. Its new

value will be the accumulation of its own initial value multiplied by 4 and its neighbor’s values

multiplied by 2 respectively 1. The calculated value is then divided by the sum of all factors.

Besides its good performance, the Gaussian filter is also predestinated to run on hardware

with parallel architecture. Because of its linear separability in x- and y-direction, it is possible

to calculate each pixel value independently of others. In other words: All pixels can be

calculated simultaneously and do not have to wait for other results of the Gaussian filter

3 Therefore, the subimages will be transferred from the main to the device memory in this step.

 Setup, Procedure, and Concept

 43

operation [GSW03][LWT12, 2] [YR08, 3]. The value of a smoothed pixel is the result of its

own initial value and the initial value of its direct neighbors. Figure 34 shows an example of a

Gaussian filter matrix that will be convolved with the input image. A pixel’s value can be

calculated when the center field of the matrix lies directly on it. In this example, the new

value of the center pixel would be an accumulation of its own initial value multiplied by 4

and the neighboring pixels multiplied by 2 respectively 1. Since the sum of all factors has to

amount to 1, the calculated pixel value has to be divided by 16. For the new intensity IP2|2

pixel P2|2 with the coordinates x = 2 and y = 2, the intensity would be calculated with

Equation 3.5.1. The results of all of these pixel calculations will be stored in a 2D array

located in the global memory.

16

1
)22422(3|32|31|33|22|22|11|31|21|12|2  PPPPPPPPPP IIIIIIIIII (3.5.1)

As mentioned in Section 2.4.2, the host program can invoke a kernel on the GPU that starts

as many threads as needed. Because of the resolution of 300-by-300 pixels, 90,000 threads

have to be created for calculating all pixels simultaneously; every thread is assigned to one

pixel.

0,25 1,251,25

1,25

1,25

0,06250,0625

0,0625 0,0625 0,25 1,251,25

1,25

1,25

0,06250,0625

0,0625 0,0625

Figure 35: If the matrix’ center field lies on one of the outermost pixels, some fields would read

undefined memory. Therefore, it is not allowed to calculate the edge lines and columns in the same

way.

However, it should be noted that calculating the pixels on the image border with such a 3x3

matrix is not allowed. If the matrix’ center field lies on one of the outermost pixels, three of

the fields would read undefined memory. When calculating the corner of the image, indeed,

five of the fields would read undefined memory (Figure 35). Two options are available to

obtain values for the pixels in the outermost lines and columns: inherit the pixel’s initial

value directly or calculate it with the help of a 4x4 matrix that is placed in a way all fields lie

on the image. To consider the outermost lines and columns in the following calculations steps,

a 4x4 matrix will be used to process them.

Additionally, to accelerate the procedure, a configuration of a part of the main memory,

called page-locked memory, was used that is only supported at compute capability 2.0. A

Setup, Procedure, and Concept

 44

special conversation between two defined pointers in the program can be made: one of the

two points to an address in the host’s memory and the other one to an address in the

device’s memory. This setup qualifies the GPU to access the main memory directly. This

access is a slightly slower than the access to the device memory, but it obviates exclusive

copying between the two memories.

3.5.2 Sobel operator to create edge magnitude maps

After the image has been smoothed, the Canny Edge Detector’s centerpiece will process the

image with the so-called Sobel operator, which consists of two 3x3 matrices. Because of its

linear separability, it is possible to invoke multiple kernels for every pixel; just like in the

previous step. The pixel that should be calculated has to lie in the matrices’ center field as

well. Therefore, it is not possible to calculate the gradients of these lines. The difference to

the Gaussian filter is the use of two matrices instead of only one that produce two different

parameters, which represent the derivations in x and y direction for every pixel: Gx and Gy.

+1 +2 +1

-1 -2 -1+1

+2

+1-1

-2

-1

Gx Gy

Figure 36: The parameters Gx und Gy can be calculated by the two Sobel matrices.

As an example, the direction-dependent gradients Gx2|2 and Gy2|2 for the pixel P2|2 with the

coordinates x = 2 and y = 2 would be calculated with Equations 3.5.2 and 3.5.3.

3|33|12|32|11|31|12|2 22 PPPPPPx IIIIIIG  (3.5.2)

3|33|23|11|31|21|12|2 22 PPPPPPy IIIIIIG  (3.5.3)

However, an edge magnitude map is required for the following step of the Canny Edge

Detector. Therefore, further calculations have to be made to obtain the magnitude |G| of a

pixel’s gradient (Equation 3.5.4).

22

yx GGG  (3.5.4)

The right side of Figure 37 shows the resulting edge magnitude map that has to be stored in

the global memory for further processing in the next step.

 Setup, Procedure, and Concept

 45

Figure 37: On the left, result of image smoothing, on the right, magnitude edge map.

3.5.3 Non-maximum suppression to thin the edges

As Figure 37 shows on the right side, the Sobel operator outputs edges that are too thick.

This is the result of bad lighting, a rather vague focus, and, of course, the first step of the

Canny Edge Detector, which smoothed the image. Since clear and thin edges are required for

detecting the object as accurately as possible, non-maximum suppression has to be performed.

The pixel’s gradients have to be reconsidered to “thin” the edges. However, this time the

direction, which is represented by the angle  , has to be known and can be calculated with

Equation 3.5.5.













x

y

G

G
arctan (3.5.5)

When a pixel’s gradient is fully known, the pixel’s magnitude can be compared to the ones in

positive and negative direction of the gradient to find a local maximum of intensities. A

maximum found in this way will be preserved for further computation, the others will be

suppressed. The result, which is again calculated simultaneously by as many threads as pixels

are contained in the image, is shown in Figure 38.

Figure 38: The non-maximum suppression function leads to thinner and more precise edges.

Setup, Procedure, and Concept

 46

3.5.4 Hysteresis to track edges

The hysteresis function is the final step of the Canny Edge Detector and will be explained

next. Another look at Figure 38 shows that some pixels are already present although they

should not count as edge points. On the other hand some pixels that should count as edge

points have too little intensity. Therefore, the goal of this step is the perfection of less marked

pixels and the removing of false edge points.

Two predefined thresholds will pass judgment on the given edge points. Is a point’s intensity

less than the lower threshold, it is not an edge point and will be removed. However, is the

intensity bigger than the higher threshold, it is definitely an edge point and will be preserved.

If the intensity is between the two thresholds, the pixel is a potential edge point and will be

upgraded to a definite edge point if it is either directly or indirectly, that is, through other

potential edge points, connected to a definite edge point. As stated in Subchapter 2.1.1,

lighting conditions change during the flight: The ball reflects more light when it is closer to a

light source and less when it is further away. Therefore, the threshold values will be changed

in the course of a ball’s flight.

maximum itensity

minimum itensity

lower threshold

higher threshold

Figure 39: Hysteresis is an iterative procedure whereby all pixels are divided into three groups. If the

intensity of a pixel is above the higher threshold, it is a definite edge point and will persist. If it is

below the lower threshold, it is not an edge point and will be removed. If the intensity is between the

two thresholds, the pixel is a potential edge point and will be upgraded to a definite edge point if it is

either directly or indirectly, that is, through other potential edge points, connected to a definite edge

point.

The hysteresis function (Figure 39) is an iterative procedure whereby all pixels’ intensities

will be checked. Here again, one thread will be used for each pixel. If the intensity of a pixel

is above the higher threshold, it will enter a queue, in which all definite edge pixels will be

registered4. Subsequently, the next kernel will be started and will invoke as many threads as

there are definite pixels in the queue. Each of these pixels will be set to maximum intensity5

and their neighbors will be checked. If the intensity of a neighboring pixel is bigger than the

4To improve performance and save time, the first queue will be filled in the non-maximum procedure.
5 The maximum intensity value in an 8-Bit grayscale image is 255.

 Setup, Procedure, and Concept

 47

lower threshold, it will be upgraded to a definite pixel and registered in a new queue. If the

intensity is below the lower threshold, its value will be set to 0 and will not be registered in

the queue. Now a new iteration can start, and every neighbor of the new definite pixels will

be checked. The procedure ends when no pixels are registered in a queue (the result is shown

in Figure 40).

Figure 40: The image shows a result of hysteresis, which constitutes the Canny Edge Detector’s last

step.

Attention should be paid to the fact that neighbors of a definite pixel have to be ignored if

they have already been checked. Their reexamination would lead to an endless loop.

3.6 Hough Circle Transformation

When an edge image is available, object detection can start. This subchapter deals with the

implementation of one of two different detection algorithms: the Hough Circle

Transformation. This technique usually achieves highly accurate results, but it can be

computationally costly and time-consuming. A faster version of the Hough Circle

Transformation, whereby the center is detected through lines perpendicular to the tangents,

was suggested in Subchapter 2.3.3.4. However, because of the partially blurred recordings

and, hence, moderate edge images, this algorithm will not be applied. Its use would probably

lead to an inaccurate detection, as happened in [SPV05]. There, only 90 percent of wrong

detections could be avoided. Furthermore, such implementation will not fit perfectly on a

parallel architecture.

To enable detection as accurately as possible, the “normal” Hough Circle version was chosen.

The studies [AME13][CJ11] describe two different approaches to this “normal” Hough Circle

Transformation: the Straightforward Strategy (see Section 3.6.1) and the Inverse-checking

Strategy (see Section 3.6.2). Both of them will be implemented and tested to identify the

strategy that better meets the timing requirements for Transport-by-Throwing.

3.6.1 Straightforward Strategy of Hough Circle Transformation

At the beginning of this algorithm, a kernel invokes as many threads T as pixels make up the

image multiplied by the range of radiuses (Equation 3.6.1), which is the same number as the

Setup, Procedure, and Concept

 48

Hough Space has fields. To save memory and execution time, the radius range was set to 10.

However, since the ball flies in the direction of the cameras, the minimum and maximum

radiuses that have to be considered will change with the progress of the flight. This ensures

the searching for circles of the correct size.

 1minmax  rrPPT yx (3.6.1)

Figure 41 provides an example of how the Hough Space could look if the image’s resolution

would be 6-by-4 pixels and the circle would have a radius between 2 and 4 pixels.

block 0,
thread 0:

pixel 0|0,
radius 2

block 0,
thread 1:

pixel 1|0,
radius 30

block 0,
thread 2:

pixel 2|0,
radius 30

block 0,
thread 3:

pixel 3|0,
radius 30

block 0,
thread 4:

pixel 4|0,
radius 30

block 0,
thread 5:

pixel 5|0,
radius 30

block 0,
thread 6:

pixel 0|1,
radius 2

block 0,
thread 1:

pixel 1|1,
radius 30

block 0,
thread 2:

pixel 2|1,
radius 30

block 0,
thread 3:

pixel 3|1,
radius 30

block 0,
thread 4:

pixel 4|1,
radius 30

block 0,
thread 5:

pixel 5|1,
radius 30

block 0,
thread 12:

pixel 0|2,
radius 2

block 0,
thread 1:

pixel 1|2,
radius 30

block 0,
thread 2:

pixel 2|2,
radius 30

block 0,
thread 3:

pixel 3|2,
radius 30

block 0,
thread 4:

pixel 4|2,
radius 30

block 0,
thread 5:

pixel 5|2,
radius 30

block 0,
thread 18:

pixel 0|3,
radius 2

block 0,
thread 1:

pixel 1|3,
radius 2

block 0,
thread 2:

pixel 2|3,
radius 2

block 0,
thread 3:

pixel 3|3,
radius 2

block 0,
thread 4:

pixel 4|3,
radius 2

block 0,
thread 5:

pixel 5|3,
radius 2

block 1,
thread 0:

pixel 0|0,
radius 3

block 0,
thread 1:

pixel 1|0,
radius 30

block 0,
thread 2:

pixel 2|0,
radius 30

block 0,
thread 3:

pixel 3|0,
radius 30

block 0,
thread 4:

pixel 4|0,
radius 30

block 0,
thread 5:

pixel 5|0,
radius 30

block 1,
thread 6:

pixel 0|1,
radius 3

block 0,
thread 1:

pixel 1|1,
radius 30

block 0,
thread 2:

pixel 2|1,
radius 30

block 0,
thread 3:

pixel 3|1,
radius 30

block 0,
thread 4:

pixel 4|1,
radius 30

block 0,
thread 5:

pixel 5|1,
radius 30

block 1,
thread 12:

pixel 0|2,
radius 3

block 0,
thread 1:

pixel 1|2,
radius 30

block 0,
thread 2:

pixel 2|2,
radius 30

block 0,
thread 3:

pixel 3|2,
radius 30

block 0,
thread 4:

pixel 4|2,
radius 30

block 0,
thread 5:

pixel 5|2,
radius 30

block 1,
thread 18:

pixel 0|3,
radius 3

block 0,
thread 1:

pixel 1|3,
radius 3

block 0,
thread 2:

pixel 2|3,
radius 3

block 0,
thread 3:

pixel 3|3,
radius 3

block 0,
thread 4:

pixel 4|3,
radius 3

block 0,
thread 5:

pixel 5|3,
radius 3

block 2,
thread 0:

pixel 0|0,
radius 4

block 2,
thread 1:

pixel 1|0,
radius 4

block 2,
thread 2:

pixel 2|0,
radius 4

block 2,
thread 3:

pixel 3|0,
radius 4

block 2,
thread 4:

pixel 4|0,
radius 4

block 2,
thread 5:

pixel 5|0,
radius 4

block 2,
thread 6:

pixel 0|1,
radius 4

block 2,
thread 7:

pixel 1|1,
radius 4

block 2,
thread 8:

pixel 2|1,
radius 4

block 2,
thread 9:

pixel 3|1,
radius 4

block 2,
thread 10:

pixel 4|1,
radius 4

block 2,
thread 11:

pixel 5|1,
radius 4

block 2,
thread 12:

pixel 0|2,
radius 4

block 2,
thread 13:

pixel 1|2,
radius 4

block 2,
thread 14:

pixel 2|2,
radius 4

block 2,
thread 15:

pixel 3|2,
radius 4

block 2,
thread 16:

pixel 4|2,
radius 4

block 2,
thread 17:

pixel 5|2,
radius 4

block 2,
thread 18:

pixel 0|3,
radius 4

block 2,
thread 19:

pixel 1|3,
radius 4

block 2,
thread 20:

pixel 2|3,
radius 4

block 2,
thread 21:

pixel 3|3,
radius 4

block 2,
thread 22:

pixel 4|3,
radius 4

block 2,
thread 23:

pixel 5|3,
radius 4

Figure 41: An example of the Hough Space for an image with the resolution of 6-by-4 pixels and a

wanted circle with a radius between 2 and 4 pixels.

Each of these threads is assigned to one pixel and starts its procedure by examining the

pixel’s intensity. If the pixel is an edge point, the hysteresis function will set its intensity to

the maximum value. Therefore, examining the intensity of a pixel means checking whether it

is an edge point or not. If the pixel is not an edge point, the assigned thread will terminate

itself instantly. However, if the pixel is an edge point, an iterative algorithm will start: the

thread “goes” in a circular course around this pixel and votes all fields (in increments of 1) in

the distance of the thread’s assigned radius. The Hough Space is represented by a 3D array

(Figure 42) where the multiple planes outline the multiple radiuses. For example: A circle

with a radius between 2 and 4 pixels shall be found in the image with a resolution of 6-by-4

pixels. When considering Equation 3.6.1, a Hough Space with 6 x 4 x 3 fields will be needed.

For radius 2 every edge point will vote around itself in the zeroth plane (z = 0) of the Hough

space array, for radius 3 in the first plane (z = 1) and for radius 4 in the second plane (z =

2). Because of the possibility of two threads “wanting” to increment the same field at the

same time, a solution has to be found for dealing with this critical section. Therefore, atomic

functions have to be used to fulfill requirements of mutual exclusion. If normal functions were

used, the voting process could be totally wrong.

 Setup, Procedure, and Concept

 49

+1

+1

+1

+1

+1

+1+1

+1

+1+1+1+1

x

y

+1

x

z

+1+1+1+1+1+1+1

Figure 42: Straightforward Strategy: On the left, some votes in the Hough Space when looking on the

xy-plane of the 3D array, on the right, the same votes when looking on the xz-plane.

After all edge points have voted for the multiple radiuses, the maximum value in the Hough

Space has to be found since it represents the estimate of the circle’s center point. Due to the

maximum number of 1024 threads per block [CUD14, 10], many blocks are necessary to have

sufficient threads available for the voting process. It is not possible to synchronize different

blocks with each other [SW10, 1]. Therefore, it is necessary to terminate the voting kernel

after all votes were given and start another kernel for finding the maximum in the Hough

Space. The algorithm for finding it will be explained in Subchapter 3.6.4.

It would be also possible to iterate over all radiuses of interest instead of creating so many

threads. However, this would lead to a loop that is nested in another one: the outer loop for

iterating over all radiuses and the inner loop for going in a circular course around the edge

point. This amended version of the voting process would most probably greatly decelerate the

procedure. Therefore, it will not be implemented.

An alternative version would be if a kernel counts all edge points and puts them in a queue

to let these points vote in the next step. On the one hand, filling up such a queue would lead

to more global memory accesses, which takes a bit of time, on the other hand, a lot less

threads would be necessary for the procedure. The first kernel invokes as many threads as

pixels are in the image. These threads put the pixel coordinates in the queue if it is an edge

point. The following kernel invokes as many threads as there are points in the queue

multiplied by the radius range (Equation 3.6.2). That means that the second kernel has to

process only edge points and not all the pixels.

)1(minmax  rrBA qt (3.6.2)

When comparing Equation 3.6.1 with Equation 3.6.2 and neglecting the additional memory

accesses, this version of the voting process will be faster when following Equation 3.6.3 is

fulfilled.

PyPxBq  (3.6.3)

In other words, it can accelerate the procedure if there are a lot less edge points than pixels

in the image. This version will also be implemented and tested to obtain information about

the performance differences in the project on hand.

Setup, Procedure, and Concept

 50

3.6.2 Inverse-checking Strategy of Hough Circle Transformation

As mentioned in the previous subchapter, when pursuing the Straightforward Strategy, every

thread that processes an edge point votes around itself for its possible center point. In other

words: every edge point “thinks” that it belongs to a circle and “tries” to find its center point.

When using the Inverse-checking Strategy, the voting process is in the opposite direction.

Every field in the Hough Space, which represents a pixel with a defined radius, “thinks” that

it is the center point of a circle with this radius r and “counts” its assigned edge points

(Figure 43). The advantage of this method is that each thread votes only in its own field.

Therefore, no atomic operations will be needed to fulfill the requirements of mutual exclusion

for critical sections. Avoiding such operations greatly accelerates the voting process.

y

x

r

+12

+12

Figure 43: Inverse-checking Strategy: On the left, some votes in the Hough Space when looking on the

xy-plane of the 3D array, on the right, the same votes when looking on the xz-plane.

For the Inverse-checking Strategy as many threads are needed as for the Straightforward

Hough version. The drawback of this strategy is the fact that every field invariably has to

iterate through the various points, which represent the possible circle around. On the other

hand, the Straightforward Strategy’s kernels only start this loop if their field is an edge point.

Studies [AME13, 220][CJ11] stated that the Inverse-Checking Strategy is faster than the

Straightforward version. However, I assume that it will be faster only if there are many edge

points in the image, so that the Straightforward version would invoke many threads that

have to iterate through all points of the circle.

Figure 44: All various radiuses’ planes of the Hough Space summed to one 2D image.

 Setup, Procedure, and Concept

 51

Figure 44 shows the Hough Space when all different radiuses’ planes of the Hough Space are

summed to one 2D Hough Space. In other words, this image shows the Hough Space in a way

for giving a better understanding, but should not be used for finding the circles center.

3.6.3 Voting in a circular course around an edge point

As it is necessary to vote, the fields of the Hough Space have to observe or vote around

themselves. Therefore, a loop will be started where all coordinates of these circle pixels (for a

given radius) will be calculated. There are two different approaches to calculating all these

coordinates along a circle: using trigonometric functions or the Pythagoras theorem. No

studies have been found that compared these two approaches on a GPU. Therefore, both will

be implemented and tested.

3.6.3.1 Drawing a circle with trigonometric functions

The left side of Figure 45 shows that the trigonometric version of “drawing” a circle consists

in a loop that iterates over the variable theta (). Equation 3.6.4 and Equation 3.6.5 will be

performed inside this loop to calculate the coordinates of circle points based on the angle  .

)cos( rx (3.6.4)

)sin( ry (3.6.5)

However, one important fact has to be considered to guarantee a fair voting procedure:

Variables x and y, which represent coordinates, are discrete values and of the integer data

type. However, the trigonometric functions return floating point values that have to be

rounded to fit the results (Equations 3.6.4 and 3.6.5) in the coordinate variables. The smaller

the circle, the more often the same coordinates will be calculated (Figure 45, right). To avoid

voting more than once during an iterative step, the newly calculated coordinates have to be

compared with the previous ones and ignored if they are the same. Additionally, when the

radius is very long, the iteration steps have to be finer than an increment of 1. Otherwise,

some pixels could be skipped through roundings (Figure 45, right).

x

y


 cos

 sin

+2

+2

+2+2

+1

+1

+1

+1

+0

+1

Figure 45: On the left, calculation of the circle point’s coordinates, on the right, multiple and skipped

votes.

Setup, Procedure, and Concept

 52

3.6.3.2 Drawing a circle with the Pythagoras theorem

The Pythagoras version consists of a loop, which iterates over the coordinate x. In this loop,

the Pythagoras theorem (Equation 3.6.6) calculates the coordinate y for every x to navigate

to each of the circle’s points (Figure 46, left).

22 xry  (3.6.6)

Because of the iteration of one of the two coordinates, this version has the advantage of not

calculating the same coordinates twice as was the case with the trigonometric functions.

However, some fields will be skipped when the circle is big enough so that some adjacent

points have the same x coordinates (Figure 46, right). To overcome this drawback, the actual

y coordinate has to be compared with the previous one. If the difference of the two y

coordinates is greater than 1, additional points have to be “drawn”.

x

y
+1

+1+1

+1

+1+1+1+1

+0

+0

+0

+0

Figure 46: On the left, calculation of the circle point’s coordinates, on the right, skipped votes.

3.6.4 Finding the maximum value in the Hough Space

Finding the maximum is the final step of the Hough Circle Transformation and two

approaches will be implemented. This step can be done in two different manners: by using

the global memory or the shared memory. Since using the global memory alone is easier to

implement, the shared memory can greatly accelerate the program [CUD14, 12, 187f].

3.6.4.1 Parallelized maximum search algorithm based on global memory

Since threads from different blocks cannot get synchronized, two different kernels are

required. Figure 47 shows the flowchart of the algorithm for an example when searching the

maximum value inside the Hough space (with reduced number of threads and blocks). The

first kernel starts as many threads as the Hough Space has fields and each of these threads

compares its value with a global maximum variable that has been initialized with 0. If the

thread’s own value is greater than the actual stored maximum, the thread will set this

variable to its own value, which represents the actual maximum. An atomic function for

comparing and updating has to be used to fulfill the requirements of mutual exclusion.

 Setup, Procedure, and Concept

 53

After each thread had the chance to update the maximum value, the kernel terminates and

another kernel starts. It invokes as many threads as the last one and now these threads

compare their own value with the maximum variable. The field that has the same value as

the maximum variable represents the maximum of the Hough Space and is, therefore, the

center point of the wanted circle.

block 0, thread 0

is mine value bigger

than global maximum?

set global maximum

variable to mine value

find the maximum –

kernel (invoke pixels *

rrange threads)

set global maximum

variable to 0

block 0, thread 7

is mine value bigger

than global maximum?

block 4, thread 9

is mine value bigger

than global maximum?

set global maximum

variable to mine value

set global maximum

variable to mine value

terminate thread terminate thread terminate thread

where is the maximum

- kernel

yes yes yes

block 0, thread 0

is mine value equal to

the global maximum?

i am the maximum, my

coordinates are: x, y

block 0, thread 7

is mine value equal to

the global maximum?

block 4, thread 9

is mine value equal to

the global maximum?

i am the maximum, my

coordinates are: x, y

i am the maximum, my

coordinates are: x, y

terminate thread terminate thread terminate thread

yes yes yes
no no no

no no no

Figure 47: Flowchart of the algorithm for finding the maximum value in the Hough Space (based on

global memory). The number of blocks and threads are just examples. In reality, there will be much

more of them. The numbering of these items is also arbitrarily chosen, other blocks and threads could

be invoked.

3.6.4.2 Parallelized maximum search algorithm based on shared memory

However, this procedure can be easily accelerated through the use of the shared memory (an

example with reduced number of blocks and threads is provided in Figure 48). This memory

has the disadvantages of being much smaller and only accessible from the same block.

Therefore, the shared memory can only be used to determine the local maximum from a

block. Then again, it is much faster than the global memory. Every block has its own shared

maximum variable which will be set to zero at the beginning of the procedure. Subsequently,

each thread compares its own value with the maximum variable in the block’s shared

memory. If the thread’s own value is greater than the shared variable, the shared maximum

will be updated. Since the access to the shared variable is also a critical section, comparing

and setting must be done in an atomic function as well. Afterwards, a synchronization

command forces all threads of the block to wait for each other. This must be done to be sure

that every thread of the block had the chance to set the shared maximum variable.

Setup, Procedure, and Concept

 54

block 0, thread 0

is mine value bigger

than shared maximum

set shared maximum

variable to mine value

set shared maximum

variable to 0

block 0, thread 7

is mine value bigger

than shared maximum

block 4, thread 9

is mine value bigger

than shared maximum

set shared maximum

variable to mine value

set shared maximum

variable to mine value

synchronize block 0

yes yes yesno no no

block 4, thread 12

is mine value bigger

than shared maximum

set shared maximum

variable to mine value

yes no

set shared maximum

variable to 0

synchronize block 4

block 0, thread 0

is mine value equal to

the shared maximum

set the field [0] from

the global maximum

array to my value

block 0, thread 7

is mine value equal to

the shared maximum

yes yesno no

block 4, thread 9

is mine value equal to

the shared maximum

block 4, thread 12

is mine value equal to

the shared maximum

yes yesno no

find the maximum –

kernel (invoke pixels *

rrange threads)

terminate thread

set all fields of the

global maxium array to

0

set the field [0] from

the global maximum

array to my value

set the field [4] from

the global maximum

array to my value

set the field [4] from

the global maximum

array to my value

terminate threadterminate thread terminate thread

where is the maximum

– kernel (invoke length

of the maximum array

threads)

block 0, thread 3

is value of array field

[3] bigger than shared

maximum

set shared maximum

variable to mine value

set shared maximum

variable to 0

block 0, thread 5

is value of array field

[5] bigger than shared

maximum

set shared maximum

variable to mine value

synchronize block 0

yes yesno no

block 0, thread 3

is mine value equal to

the shared maximum

block 0, thread 5

is mine value equal to

the shared maximum

yes yesno no

terminate thread terminate thread

is mine value equal to

the global maximum

is mine value equal to

the global maximum

Figure 48: Flowchart of the algorithm for finding the maximum value in the Hough Space (based on

shared memory). The number of blocks and threads are just examples. In reality, there will be much

more of them. The numbering of these items is also arbitrarily chosen, other blocks and threads could

be invoked.

 Setup, Procedure, and Concept

 55

In the next step each thread again compares its own value with the shared variable. If it is

the local maximum, it will save its value in a field (with index being equal to the block id) of

a global array. That means that block 0 will save its maximum value at field 0, block 1 at

field 1, and so on. Subsequently, a new kernel invokes as many threads as blocks had been in

the previous step, which is the number of filled fields of the global array. If it is less than

1024, only one block will be created, and the maximum of the entire Hough Space can be

found again with the help of the shared memory. If more than 1024 threads are needed, all

(new) local maxima will be written in a global array again. This is repeated until all

remaining local maxima fit in one block so that the maximum of the Hough Space can be

found.

As explained above, the shared maximum variable has also been processed with atomic

functions, which serialize some parts of the algorithm and slow down the procedure. However,

the various blocks do not share the same variable and, therefore, they can process it totally

independently from other blocks. It is assumed this algorithm will be faster than the first one.

To validate this assumption, the times of both algorithms will be compared.

3.7 RANSAC algorithm

This subchapter deals with the implementation of another detection algorithm that will also

be carried out in the framework of this thesis: the RANSAC algorithm. This detection

algorithm requires an edge image as well. Whereas the Hough Transformation can be

computationally costly and its processing time depends on the number of edge points present

in the picture, the RANSAC algorithm should be much faster and its processing time depends

on the number of iterations done to find the best-fitting circle.

The first question to a developer should concern the number of blocks and threads

respectively the extent of tasks to be executed in a thread. It can be assumed that the Canny

Edge Detector (see Section 3.5) will output edge images of high quality if both threshold

parameters are set properly. At least, good edge images will be created if the background of

the scene is subtracted (see Section 3.4) from the original image before the Canny Edge

Detector begins to work. The better the quality of such an edge image, the less false edge

points will be in this picture, the less iterations will be needed to find the ball’s center.

As mentioned in Subchapter 2.4.2, a block can consist of up to 1024 threads, and threads of

the same block are able to share information among each other with the help of the shared

memory. Accessing this shared memory takes a lot less time than accessing the global

memory, which is accessible from all threads, independent of the block they are associated

with. It seems obvious that the various trials to find the circle should be processed parallel

instead of in sequential iterations. Therefore, the term trial will be used from now on. Each of

these trials will be performed by a thread of its own, which outputs a possible center point of

the wanted circle. After all suggestions have been made, the best-fitting circle will be picked

and the coordinates of its center point chosen as those of the wanted circle. Performing the

RANSAC algorithm with a number of trials (threads) less or equal to 1024 will lead to a

demand for only one block and only one kernel. Therefore, finding the best-fitting circle can

be done without using the global memory and will greatly accelerate the entire procedure. In

Setup, Procedure, and Concept

 56

contrast, the Hough Transformation (see Subchapter 3.6.1) needs as many threads as pixels

make up the image multiplied by the range of radiuses. Because of the huge quantity of

threads, many blocks will be needed and another kernel has to be started to find the

maximum in the Hough Space. This forces the developer to make the algorithm use the

global memory. The next subchapters show the implementation of the individual RANSAC

steps.

3.7.1 Selecting randomly three edge points

At the start, three edge points have to be randomly selected. Therefore, a queue is needed in

which all edge points are registered. This preliminary work will be done by a kernel that

invokes as many threads as pixels are in the image. If a thread’s pixel is an edge point, it will

registered in the queue, if not the thread will be terminated instantly.

x0

y0

x1

y1

x2

y2

x3

y3

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

x10

y10

x11

y11

x12

y12

x13

y13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x4

y4

0

1

indices

Figure 49: All edge points’ coordinates will be registered in a queue.

Figure 49 shows a 2D array that represents such a queue: one dimension stands for the

various edge points and the other dimension for the coordinates of these points. To choose

randomly one of these points means to generate a random number between 0 and the highest

index of the queue. Generating the random number r leads to picking the r’th point, with the

coordinates xr and yr, of the queue.

However, it is more complicated to generate a random number on a GPU than on a CPU.

First of all, the curand [33] library has to be installed and included in the program to use it.

Like in “normal” C programs, an initialization function has to be called before it is possible to

generate random numbers. More precisely, the initialization function in a host program is not

necessary for generating a number, but it enables a quasi-random generation. Without the

initialization function, the generated numbers will only be pseudo-random numbers, which

means that the numbers and their sequence will always be the same. On the other hand, the

initialization function is necessary to get a random number on a GPU, regardless of the type

of numbers: quasi-random or pseudo-random. This function, called curand_init6, needs a

variable of the curandState data type, which is used to save the state of the curand function

that generates the random numbers. Because of the demand of three random numbers per

trial respectively thread, an array of these states will be allocated with as many fields as

trials will be performed. Additionally, the initialization function decides on the random-

number generator to be used and, in further consequence, on the type of random numbers.

Pseudo-random numbers are easier to handle and, therefore, they will be used in this

6 This has to be done only once when starting the program. The generator will output 267 random numbers before
the sequence of numbers will be repeated. The huge amount of random numbers is above and beyond sufficient for
testing this algorithm in the framework of this thesis.

 Setup, Procedure, and Concept

 57

experimental setup [33]. However, it is possible to make the pseudo-random generator behave

similarly to its quasi-random counterpart. A so-called seed, which is an arbitrary value, has

to be defined when initializing the random generator. All generated values will be based on

this seed, which means that values will always be the same when initializing the generator

with the same seed value. To overcome this drawback without using another more

complicated quasi-random generator, the seed will be generated by the rand function [34] in

the host program. The initialization of this random number generator will be based on the

actual date and time to guarantee a quasi-random-generated seed for the GPU function.

E
n Prr mod)10(10   (3.7.1)

After the initializing step has been completed, the curand_uniform function can be executed

to generate a floating point value r0-1 between 0 and 1. Subsequently, this floating point value

has to be converted to an integer r between 0 and the queue’s highest index that represents

the amount of the image’s edge points (Equation 3.7.1). First, the random number r0-1 will be

multiplied by 10n, which means that the decimal point of the floating point is shifted n digits

to the right. This leads to a random number between 0 and 10n when neglecting the digits

after the decimal point and, therefore, the lower bound is set. To set the upper bound, the

result of this calculation has to be divided by the quantity of queue members. However, the

remainder of this division is the needed random number, not the result of the division itself.

Therefore, the modulo operator will be used, which outputs this remainder.

3.7.2 Calculating the circle that is described by these three points

Each point around the periphery (represented by the coordinates x and y) of a circle is

related to the circle’s center point (represented by the coordinates xc and yc) through

Equation 3.7.2.

    222
ryyxx cc  (3.7.2)

Since it is possible to describe a circle through three points, three random numbers have to be

generated to point at three different fields of the queue’s array. With the help of these points,

a system of three equations with three unknowns can be set up (Equation 3.7.3, Equation

3.7.4, and Equation 3.7.5).

    22

1

2

1 ryyxx cc  (3.7.3)

    22

2

2

2 ryyxx cc  (3.7.4)

    22

3

2

3 ryyxx cc  (3.7.5)

It is obvious that rearranging and transforming these three equations will lead to results for

xc, yc, and r.

3.7.3 Drawing a circle with these three points

In the next step, a circle with the parameters calculated in the previous subchapter, can be

“drawn”. More precisely, each thread draws such a circle with different points (Figure 50)

Setup, Procedure, and Concept

 58

that were selected in Section 3.7.1. However, it is not necessary to save these drawn circles in

the memory as was the case with the Hough Transformation. Figure 50 shall only serve for a

better understanding.

As explained in Subchapter 3.6.3.1 and Subchapter 3.6.3.2, drawing a circle can be

accomplished either with trigonometric functions or the Pythagoras theorem. The same

applies to the RANSAC algorithm; both will be tested and the faster approach chosen.

Figure 50: Various possible circles from different trials.

Figure 51 shows the example of an edge image and the circle’s dependence on the selected

edge points. Because of noise respectively the detection of wrong edge points in the image,

the possibility for detecting a wrong circle is higher when the selected points are close to each

other (left side of Figure 51). Introducing a minimum distance between the three selected

points would reduce wrong detection caused by noise and “unclean” edge images (right side of

Figure 51). This would require to calculate the Euclidian distances among all three points: P1

to P2, P2 to P3, and P1 to P3. If the distance between two points is lower than a predefined

value, the trial will not be valid.

Figure 51: Selecting points that are close to each other increases the likelihood of detecting the wrong

circle.

Another approach to circumventing selection of points that describe a wrong circle would be

a provision requesting a radius in a predefined range. The drawback of this approach is the

need to calculate the center point and the radius regardless of whether the points will be

 Setup, Procedure, and Concept

 59

used. However, because of the amount of edge points and their distribution, it is assumed

that the likelihood of selecting three far off points is higher than three points that are close to

each other. Therefore, in sum, calculating the Euclidian distances for all three points and

subsequently calculating center point and radius will take more time than calculating only

the center point and the radius even if it might be in vain. Because of these considerations,

the radius will be examined instead of the Euclidian distances to detect the ball as fast as

possible.

Furthermore, it would be possible to repeat the process of finding three points if they do not

meet abovementioned requirements. However, this could lead to a distinctly longer processing

time if one or more trials kept failing to meet these requirements and the thread would be

forced to repeat selection again and again. Therefore, a thread that picked wrong points will

be terminated instantly in this implementation; with the consequence of losing as many trials

as wrong selections have been made. Still, this simplification can be made because the

possibility for one trial making wrong selections many times in a row is much higher than all

trials making wrong selections given that there will be numerous trials (1000 or more).

Nevertheless, the percentage of valid trials relative to the total amount of trials will be

examined to ensure that not all trials will be terminated.

3.7.4 Finding the best-fitting circle

The last step of the algorithm is to find the drawn circle that fits best to the circle of the

edge image. Therefore, every thread (trial) counts the inliers, which represent the points of

the drawn circle that match the edge points. Normally, this is done by calculating the

Euclidian distances between all points of the drawn circle and all edge points. As described in

Subchapter 2.3.3.5, an edge point will be counted as inlier if the distance is less than or equal

to a predefined value. If the distance is higher, the edge point is an outlier. The circle with

the most inliers will be chosen.

However, here a further simplification will be introduced. A GPU that features compute

capability 3.x would enable calling a kernel out of another kernel. This means that every

point of the drawn circle could start as many threads as edge points are contained in the

image to enable parallel examinations of the distances. The GPU used in this framework

features “only” compute capability 2.1 and, therefore, each point of the drawn circle would

have to start a loop to examine all distances to the various edge points. It is obvious that two

nested loops would take too much time. Therefore, each point of a drawn circle checks

whether it lies directly on an edge point or not. A local inlier count variable will be

incremented by 1 for every matching point.

For a better understanding, Figure 52 shows the complete RANSAC procedure as explained

in the previous subchapters.

Setup, Procedure, and Concept

 60

RANSAC – kernel

(invoke threads as

many as trials shall be

made)

set shared maximum of

found inliers to 0

select randomly three

edge points

calculate xc, yc, and r

is the calculated r in a

predefined range?

yes no

set local inlier count

variable to 0

calculate the next point

along the periphery of

the circle

does this point lie on an

edge point?

yes no

increment the local

inlier variable by 1

are there more points

along the periphery of

the circle?

yes no

synchronize the block

is the local inlier

variable higher than the

shared one?

yesno

set shared inlier

variable to the local

inlier value

is local value equal to

the shared maximum?

this trial fits best

terminate thread

yesno

Figure 52: Flowchart of the RANSAC algorithm.

3.8 Obtaining the object’ s 3D position

Knowing about the ball’s movement in space and time is essential for predicting its further

flightpath. Until now, all the previous steps “only” had the task to detect the ball in 2D

images. However, this does not predict the ball’s movement in space. Nevertheless, the

outputs of the previous detection procedures are absolutely important for this step: the so-

called triangulation makes it possible to convert the information of the 2D images from the

left and right camera to the wanted 3D view of the scene. This procedure is very similar to

the way humans see 3D. Since it already exists as a Matlab implementation, it could be

readily applied for the purposes of this thesis.

First of all, the coordinates of the ball’s center in the left and right images are needed;

without them, triangulation will not work. Therefore, the coordinates of the maximum field of

the Hough Space (Figure 40) or the center point’s coordinates of the best-fitting circle from a

 Setup, Procedure, and Concept

 61

RANSAC trial (Figure 50) are required. Whether Hough is used or RANSAC, triangulation

will work either way. However, the results of the 3D position can be slightly different. As

stated in Subchapter 2.3.3.6, these detection procedures are totally different and lead to

different results, which means that they can be more precise or less. The accuracy of a

calculated 3D position depends on the accuracy of the results from the center point detection

in the 2D images.

Additionally, one needs to pay attention to the following: the coordinates resulting from both

of the detection algorithms describe the ball’s position in the small 300-by-300 pixels

subimages. To obtain the correct 3D position of the ball, these coordinates have to be

calculated back to coordinates that describe the ball’s location in the large 2048-by-2048

images. Therefore, the offset parameter values of the subimages (Figure 30) will be required

again.

Because procedures such as the background subtraction, the creation of edge images, and the

object detection in 2D images include many operations that have to process many datasets

with the same instructions, it is possible to carry them out parallel. Therefore, it is reasonable

to perform these procedures on a GPU. On the other hand, triangulation only converts the

coordinates of the 2D images to the coordinates of the ball’s position in 3D space. This

procedure does not process multiple datasets with the same instructions, which means that it

is not possible to parallelize the required calculations. An algorithm should be executed on

the most appropriate hardware. In other words, tasks like the previous ones, which process

entire images, perform better on a GPU and tasks, like triangulation, which computes in a

serial way, perform better on a CPU. Therefore, the triangulation algorithm will be placed in

the host program. The drawback of this approach is in the necessity to move the required

data (the coordinates) from the device to the host. On the one hand, this move requires some

time, but on the other hand, this extra time will be more or less compensated by the faster

execution of the triangulation on the CPU. Additionally, this approach provides useful

information about transaction times. For example, if detection and prediction will take too

much time when performing them on one GPU, it would be possible to perform these tasks

on two different devices. This would also lead to the necessity of swapping the required

datasets from one device over the host to the other device.

3.8.1 Triangulation

The triangulation process converts the two positions of the point of interest, which in this

case is the center point of the ball, to one 3D position. As shown in Figure 13, the

fundamental principle of this procedure is based on simple arithmetic operations

(Equation 2.3.2). Because of the imperfect alignment of the stereo vision system, the

distortion of the cameras, and other effects, such a simple solution would only lead to

extremely inaccurate results. For this reason, the vision system has to be calibrated. This

step, which is not part of this thesis, has been carried out with the help of a Matlab toolbox

[19]. Following calibration, several parameters needed for accurate triangulation are available:

focal lengths, principle points, skew- and distortion coefficients, rotation- and translation

vector between the right and left camera.

Setup, Procedure, and Concept

 62

For an accurate triangulation, a Rodrigues rotation matrix [35] is required that contains the

rotation vector, which was calculated by abovementioned Matlab toolbox. This step consists

of a matrix multiplication and is only done once during execution time and is, therefore, one

of the first steps of the program.

Once the Rodrigues matrix and the other parameters are known, an accurate triangulation

can be made. Now, the only factors that impact the 3D position’s accuracy are the preceding

detection algorithms that were explained in Subchapter 3.6 and Subchapter 3.7.

The first step of the triangulation will be the normalization of the image projection according

to the intrinsic parameters. This procedure should remove respectively compensate the

distortions of the two cameras and has to be performed for both images: the left and the

right. This step requires: the coordinates of the center point, the focal length, the principle

point, the distortion- and the skew coefficient. It is obvious that the normalization of the left

image has to be calculated with the coordinates and parameters of the left side and, vice

versa, the right side with the right coordinates and parameters. The normalization function

provides distortion-free coordinates of the images.

Subsequently, with the help of the Rodrigues matrix, these distortion-free coordinates can be

calculated to the desired 3D coordinates. More precisely, triangulation will result in two sets

of 3D coordinates: for the view of the left and the right cameras each.

3.8.2 Coordinate translation

Since the robot arm catches the ball and not one of the cameras, the resulting coordinates

have to be converted to a so-called world coordinate system. This coordinate system describes

the view from the catching device, which means that the catching robot lies in its origin.

Figure 53 shows an example of a possible alignment of one camera and the catching device. A

transformation matrix is required to translate the 3D coordinates to the world coordinate

system. This matrix is created as part of the calibration process and translates the

coordinates from the left camera to the world coordinate system. Therefore, the 3D

coordinates of the right camera will not be required in any further calculation steps.

P

a

b

dP,a

db,a

dP,b
qb,a

b,a

Figure 53: One point has different coordinates in different coordinate systems. Modified from [36]

 Setup, Procedure, and Concept

 63

The catching system can be placed and aligned in various ways: the cameras can be aligned

horizontally or vertically, they can be placed behind the catching device or in front, etc.

However, for every configuration, a calibration has to be done to obtain all parameters

necessary for an accurate triangulation, and a transition matrix for correct coordinate

translation is also needed.

3.9 Prediction

Besides detection of the ball, prediction of its flightpath is the other focus of this thesis. A

bio-inspired prediction is the basis for this thesis and, therefore, its implementation will be

explained in this subchapter. To recap, this prediction system shall estimate the ball’s further

flightpath based on a wealth of experiences.

pos1pos2pos3pos4pos5 traj1

traj2

traj3

traj4

traj5

traj6

traj7

traj8

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 ...

pos14pos13pos12pos11pos10pos9pos8pos7pos6

Figure 54: After the ball’s actual flight has been compared with the trajectory database, its future

positions can be transmitted to the robot arm to enable successful capture.

Numerous flights have been recorded and their trajectories stored in a database for this

purpose. After the parameters of the flying ball have been captured, they can be compared

with all the stored reference throws (Figure 54). It is comparable to a k-NN searching

algorithm, which finds the k-nearest neighbors. Therefore, in the case of a flightpath

prediction, the k most similar trajectories shall be found in the database. These trajectories

can be averaged to get information about the ball’s further movement. If k is equal to 1, only

the most similar trajectory will be selected for predicting the flightpath.

The number of actual flight positions required for a reasonably accurate estimation is difficult

to determine, but this issue is not part of this thesis. Currently, Pongratz works on his

dissertation to answer this question among other things. Probably between 5 and 10 positions

have to be known for the first prediction, but this is only an estimation. Nonetheless, it is

obvious that the more positions are known, the more precise the prediction will be. Moreover,

without any doubt, the wealth of entries in the trajectory database significantly determines

the quality of the prediction and the results obtained. In other words, the more entries in the

database, the more accurate the prediction will be.

This thesis focuses on the real-time ability of detection and prediction, based on the bio-

inspired approach. Such a k-NN search may take a lot of time as a result of the huge amount

Setup, Procedure, and Concept

 64

of comparisons with all the database entries [MPD14]. A good algorithm has to be

implemented that perfectly fits the target hardware. This raises the question: CPU or GPU?

Because of the huge amount of comparisons, which means the same instruction is processed

with different data, it seems natural to execute this searching algorithm on a GPU.

x1|0 x1|1 x1|2 x1|3 x1|5 x1|6 x1|7 x1|8 x1|9 x1|10 x1|11 x1|12 z1|13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x1|4

0

1

x2|0 x2|1 x2|2 x2|3 x2|5 x2|6 x2|7 x2|8 x2|9 x2|10 x2|11 x2|12 z2|13x2|4

x3|0 x3|1 x3|2 x3|3 x3|5 x3|6 x3|7 x3|8 x3|9 x3|10 x3|11 x3|12 z3|13x3|4

x4|0 x4|1 x4|2 x4|3 x4|5 x4|6 x4|7 x4|8 x4|9 x4|10 x4|11 x4|12 z4|13x4|4

x0|0 x0|1 x0|2 x0|3 x0|5 x0|6 x0|7 x0|8 x0|9 x0|10 x0|11 x0|12 z0|13x0|4

x5|0 x5|1 x5|2 x5|3 x5|5 x5|6 x5|7 x5|8 x5|9 x5|10 x5|11 x5|12 z5|13x5|4

x6|0 x6|1 x6|2 x6|3 x6|5 x6|6 x6|7 x6|8 x6|9 x6|10 x6|11 x6|12 z6|13x6|4

z7|0 z7|1 z7|2 z7|3 z7|5 z7|6 z7|7 z7|8 z7|9 z7|10 z7|11 z7|12 z7|13z7|4

2

3

4

5

6

7

y1|0 y1|1 y1|2 y1|3 y1|5 y1|6 y1|7 y1|8 y1|9 y1|10 y1|11 y1|12 y1|13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

y1|4

0

1

y2|0 y2|1 x2|2 x2|3 x2|5 x2|6 x2|7 x2|8 x2|9 x2|10 x2|11 y2|12 y2|13x2|4

y3|0 y3|1 x3|2 x3|3 x3|5 x3|6 x3|7 x3|8 x3|9 x3|10 x3|11 y3|12 y3|13x3|4

y4|0 y4|1 x4|2 x4|3 x4|5 x4|6 x4|7 x4|8 x4|9 x4|10 x4|11 y4|12 y4|13x4|4

y0|0 y0|1 y0|2 y0|3 y0|5 y0|6 y0|7 y0|8 y0|9 y0|10 y0|11 y0|12 y0|13y0|4

y5|0 y5|1 x5|2 x5|3 x5|5 x5|6 x5|7 x5|8 x5|9 x5|10 x5|11 y5|12 y5|13x5|4

y6|0 y6|1 y6|2 y6|3 y6|5 y6|6 y6|7 y6|8 y6|9 y6|10 y6|11 y6|12 y6|13y6|4

y7|0 y7|1 y7|2 y7|3 y7|5 y7|6 y7|7 y7|8 y7|9 y7|10 y7|11 y7|12 y7|13y7|4

2

3

4

5

6

7

x1|0 x1|1 x1|2 x1|3 x1|5 x1|6 x1|7 x1|8 x1|9 x1|10 x1|11 x1|12 x1|13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x1|4

0

1

x2|0 x2|1 x2|2 x2|3 x2|5 x2|6 x2|7 x2|8 x2|9 x2|10 x2|11 x2|12 x2|13x2|4

x3|0 x3|1 x3|2 x3|3 x3|5 x3|6 x3|7 x3|8 x3|9 x3|10 x3|11 x3|12 x3|13x3|4

x4|0 x4|1 x4|2 x4|3 x4|5 x4|6 x4|7 x4|8 x4|9 x4|10 x4|11 x4|12 x4|13x4|4

x0|0 x0|1 x0|2 x0|3 x0|5 x0|6 x0|7 x0|8 x0|9 x0|10 x0|11 x0|12 x0|13x0|4

x5|0 x5|1 x5|2 x5|3 x5|5 x5|6 x5|7 x5|8 x5|9 x5|10 x5|11 x5|12 x5|13x5|4

x6|0 x6|1 x6|2 x6|3 x6|5 x6|6 x6|7 x6|8 x6|9 x6|10 x6|11 x6|12 x6|13x6|4

x7|0 x7|1 x7|2 x7|3 x7|5 x7|6 x7|7 x7|8 x7|9 x7|10 x7|11 x7|12 x7|13x7|4

2

3

4

5

6

7

positions

coordinates

tr
aj

ec
to

ri
es

Figure 55: The trajectory database will be stored in a 3D array.

The trajectory database is saved as a CSV-file that has to be read in as part of a program

initialization step. Because of the data’s structure, a 3D array is the best solution for storing

each coordinate of each position from each trajectory. Figure 55 shows the array’s structure:

one dimension for the trajectories, one for the positions, and one for the coordinates. After all

data have been loaded from the hard disk to the main memory, they will be moved to the

GPU global memory to make the comparison as fast as possible at runtime. Loading the data

just in time would lead to much longer execution times. The trajectory database will be saved

in the GPU’s memory in the exact same way as it is saved in the main memory: as a 3D

array (Figure 55).

Two different approaches exist for estimating a flightpath based on this bio-inspired

technique: comparing directly the ball’s positions with their counterparts in the database, or

comparing the rates of change from one position to the next. This can be done through

additional subtractions: the actual coordinate minus the previous one results in the change of

the ball’s position from its previous to its current position (Equations 3.9.1, 3.9.2, and 3.9.3).

1 iii xxx (3.9.1)

1 iii yyy (3.9.2)

1 iii zzz (3.9.3)

 Setup, Procedure, and Concept

 65

Obviously, rates of change according to the database trajectories must also be calculated to

compare them with those of the actual flight. The drawback of this approach is the demand

for additional subtractions, but they probably will lead to just a slight increase in execution

time. On the other hand, the advantage of this solution would be the independence of the

ball’s prediction from its launching position. The ball will have a similar movement no matter

from where it is thrown. This could lead to more accurate predictions with the same wealth

of database entries. However, as mentioned above, the achieved accuracy of the prediction is

not part of this diploma thesis. Nevertheless, both approaches shall be implemented to obtain

information about the required execution times. The next two subchapters deal with the

implementations of both approaches.

3.9.1 Comparison of coordinates

This algorithm shall find the trajectory that best fits the actual flight’s positions. For this

purpose, the Euclidian distances of all the actual flight’s positions (composed of xaf, yaf, and

zaf) to their counterparts in the database trajectories (xdb, ydb, and zdb) will be added up to a

total distance dtotal (Equation 3.9.4). The database trajectory that leads to the smallest sum

of distances, when comparing it with the actual flight, will be the most similar trajectory and

can be selected to predict future movement. To find the minimum distance, an atomic

function has to be used to fulfill the requirements of mutual exclusion. Unfortunately, the

CUDA’s instruction set contains only an atomic function for integer values and is, therefore,

not able to handle the calculated rational numbers resulting from Equation 3.9.4. To

overcome this drawback, the calculated value has to be transformed to an integer value that

describes the distance with the same accuracy. After converting the calculated distances, the

minimum of all distances can be obtained.

     



n

i

afidbiafidbiafidbitotal zzyyxxd
0

2

,,

2

,,

2

,, (3.9.4)

However, the challenges of this algorithm lie in the various possibilities to fit the actual flight

in a reference trajectory. Figure 56 shows four examples of possible flightpaths compared with

one trajectory of the database. While the first example represents a fairly good match

between the two trajectories, the second example shows a lack of congruence between the

actual flightpath and the database trajectory.

Setup, Procedure, and Concept

 66

example 1 example 2

example 3 example 4

positions of the actual flightpaths

positions of a database trajectory

Figure 56: Four examples comparing actual flightpaths with the same database trajectory. While the

first example represents a fairly good match between the two trajectories, the second example shows a

lack of congruence between the actual flightpath and the database trajectory. Examples 3 and 4 are

also good matches, but they do not fit completely into the database trajectory.

However, it is possible that some of the actual flight’s positions are not present in the

database trajectory that still fits best (example 3 and 4 of Figure 56). Therefore, the actual

flightpath must be compared to the database trajectories in a way that some positions can be

outside of the array boundaries. In other words, the recorded positions of the actual

flightpath have to be “shifted” over the various trajectories of the database, and it must be

guaranteed that not all of the actual positions have to lie on their counterpart database

trajectory (Figure 57). That way, points of the actual flight not lying on a database position

will not be included in the sum of all distances. However, it is logical that a trial that

examines fewer positions can have a smaller distance although it fits less than one that

examines more positions. An exaggerated example would be a comparison of two trials where

one of the trials calculates only 3 distances and the other one 30 distances. It does not matter

whether the 30 distances are very small, the sum of only 3 distances will probably be smaller.

However, selecting this trajectory for the prediction could be a mistake. To circumvent such

errors, all distance calculations have to be normalized, which means that the sum of distances

dtotal of a trial has to be divided by the number of distances calculated in this trial. Therefore,

the Equation 3.9.4 will be expanded by an additional division (Equation 3.9.5).

     







n

i

afidbiafidbiafidbinormalizedtotal zzyyxx
n

d

0

2
,,

2
,,

2
,,,

1

1
 (3.9.5)

In this connection, a predefined parameter will determine the number of positions that are

allowed to cross the boundaries of the database trajectories. Because the number of these out-

of-range positions should be proportionate to the length of the actual flight’s trajectory, the

parameter will represent a percentage of this length. As an example, 2 out of 10 positions are

allowed to be beyond the trajectory’s boundaries when the parameter’s value is set to 20.

 Setup, Procedure, and Concept

 67

Pdb, 0 Pdb, 1 Pdb, 2 Pdb, 3 Pdb, 5 Pdb, 6 Pdb, 7 Pdb, 8 Pdb, 9Pdb, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

<> <> <> <>

Pdb, 0 Pdb, 1 Pdb, 2 Pdb, 3 Pdb, 5 Pdb, 6 Pdb, 7 Pdb, 8 Pdb, 9Pdb, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

<> <> <> <> <>

Pdb, 0 Pdb, 1 Pdb, 2 Pdb, 3 Pdb, 5 Pdb, 6 Pdb, 7 Pdb, 8 Pdb, 9Pdb, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

<> <> <> <> <> <>

Pdb, 0 Pdb, 1 Pdb, 2 Pdb, 3 Pdb, 5 Pdb, 6 Pdb, 7 Pdb, 8 Pdb, 9Pdb, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

<> <> <> <> <> <>

Pdb, 0 Pdb, 1 Pdb, 2 Pdb, 3 Pdb, 5 Pdb, 6 Pdb, 7 Pdb, 8 Pdb, 9Pdb, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

<> <> <> <> <>

Pdb, 0 Pdb, 1 Pdb, 2 Pdb, 3 Pdb, 5 Pdb, 6 Pdb, 7 Pdb, 8 Pdb, 9Pdb, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

<> <> <> <>

Figure 57: An actual flightpath is “shifted” over a database trajectory to find the place where the sum

of all Euclidian distances is the smallest. A predefined parameter decides how many of the actual flight

positions (Paf) are allowed to be outside of the database trajectory.

A good concept is required, that is, an appropriate amount of threads and blocks must be

chosen, to accelerate this procedure with the help of a GPU’s parallel architecture. Each

database trajectory will be examined in a separate block. Therefore, the number of blocks B

will be equal to the number of trajectories ntraj stored in the database (Equation 3.9.6).

trajnB  (3.9.6)

Choosing the right number of threads to be invoked, proves to be a challenge. Each possible

alignment of the actual flight with a database trajectory will be examined in a separate

thread. Separating these comparisons in different threads is equal to parallelizing the act of

shifting the actual flight over a database trajectory. However, the number of possible

alignments has to be known to determine the number of required threads. Figure 58 shows an

example for a required number of threads T for a given length of the database trajectory ltraj

and the current length of the actual flight laf when neglecting the out-of-range positions.

However, the database trajectories’ lengths can vary, but all blocks must contain the same

number of threads. Therefore, the required number of threads T depends on the length ltraj,max

of the longest database trajectory. This interrelationship of T, ltraj,max, and laf is described by

Equation 3.9.7.

 1max,  aftraj llT (3.9.7)

Setup, Procedure, and Concept

 68

Pdb, 0 Pdb, 1 Pdb, 2 Pdb, 3 Pdb, 5 Pdb, 6 Pdb, 7 Pdb, 8 Pdb, 9Pdb, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

Paf, 0 Paf, 1 Paf, 2 Paf, 3 Paf, 5Paf, 4

ltraj

T = Itraj – (Iaf – 1)

laf

Figure 58: Number of possible alignments of an actual flight with a database trajectory when

neglecting the out-of-range positions of the actual flight.

As explained above, a percentage parameter Poor will determine the maximum number of out-

of-range positions that will be accepted. This inevitably leads to a higher number of threads

T that have to be invoked. The amount of threads has to be increased by the number of

these out-of-range positions multiplied by 2 since these positions can lie outside the

boundaries either before the first entry of the database trajectory or after it. Therefore,

Equation 3.9.7 needs to be adjusted accordingly (Equation 3.9.8).

 
100

21max,

afoor

aftraj

lP
llT


 (3.9.8)

The number of required threads can deviate from the result (Equation 3.9.8) if the algorithm

makes use of the shared memory to accelerate the procedure. In this case, every block loads

the recent coordinates of the actual flight’s positions and the positions of the block’s database

trajectory from the global memory to the shared memory to circumvent a huge amount of

global memory accesses. More precisely, the first thread from a block loads the first position

of the actual flight and the associated database trajectory, the second thread loads the second

position, and so forth. If this swapping of data from the global to the shared memory were

omitted, the various threads of a block would load the same datasets of the global memory

numerous times, which would lead to higher execution times.

However, the more positions of an actual flight are known, the smaller the calculated number

of required threads T (Equation 3.9.8). Therefore, it is possible that the number of invoked

threads will be smaller than the length of the longest database trajectory if the additional

number of out-of-range positions is smaller than the current length of the actual flight

(decremented by 1). This would lead to an incomplete move of the positions stored in the

global memory to the shared memory and could cause a wrong prediction. However, a

sufficient number of threads T has to be ensured. If the calculated value T is smaller than the

length of the longest database trajectory or the actual flight, the value T has to be set to the

length of the longest database trajectory (Equation 3.9.9) respectively the actual flight

(Equation 3.9.10). The number of invoked threads has to be big enough to move all positions

 Setup, Procedure, and Concept

 69

of the database trajectories and all positions of the actual flight from the global memory to

the shared memory.

max,trajlT  (3.9.9)

aflT  (3.9.10)

3.9.2 Comparison of rates of change

As mentioned in the introduction of this subchapter, there is another approach to finding the

best-fitting trajectory from the database: comparing the rates of change.

Figure 59: Comparing the vectors of the actual flight with those of the database trajectory instead of

their positions.

Figure 59 shows this abstraction from the trajectory points to the movement vectors of the

thrown ball. The algorithm is nearly the same as the one that compares the trajectories’

points in the previous subchapter. The only difference is the additional step of subtractions

from the coordinates (Equations 3.9.1, 3.9.2, and 3.9.3) of one point Pi and its previous point;

see Equation 3.9.11.

1 iii PPP (3.9.11)

The assumption here is that this approach will require somewhat more execution time, but

this will be tested and described in Section 4.1.6.

70

4. Results and Discussion

In line with the research goal stated in the Introduction (see Chapter 1), the real-time ability

of a GPU-based prediction system was investigated here. For this purpose, related research

(see Chapter 2) has been examined to obtain state-of-the-art information about required

methods and possible approaches to performing the various procedures. This enabled

implementation of the algorithms needed to detect the thrown ball and to perform a bio-

inspired flightpath prediction. The deliberations regarding adequate implementation of the

various program steps developed in the framework of this diploma thesis have been described

in Chapter 3. The following subchapters will provide information about execution times,

accuracy, and real-time behavior of the entire program. Each of the following line charts with

frame numbers plotted on the abscissa represents an entire flight of the ball. The times

represent the average, maximum, and minimum measured at these frames.

4.1 Comparing different approaches implemented

This subchapter deals with the results of several trials that have been examined and tested to

find the best-fitting solution as well as to prove the assumptions made.

4.1.1 Performance comparison between CUDA and OpenCL

Conflicting statements have been made by [KDH10, 9f] and [FVS11, 9] regarding performance

of the two platforms, CUDA and OpenCL, when programming a GPU. Therefore, a program

part was implemented and tested on both platforms. Following examination of the execution

times, a decision regarding the appropriate platform could be made. Since the creation of an

edge image is among the program’s first steps, the Canny Edge Detector was chosen for this

comparison.

At the time of performance comparison, the learning process for programming a GPU was

still in progress. Therefore, code optimization was omitted. In other words, the execution

times needed by the two programs slightly deviate from later versions. However, this was not

decisive for comparing the two platforms. Extreme manual optimization of the OpenCL

program and pruning of the CUDA program, as done in [FVS11, 6] was not carried out here.

Such actions were not considered to be useful when trying to make the right choice regarding

the development of a program that will satisfy real-time constraints. Besides the nearly

identical implementation of both programs, it was important to make sure that the computer

 Results and Discussion

 71

was in the same state when each of the programs was tested. Therefore, the computer was

rebooted each time before program start. Additionally, the Internet connection was shut

down during testing. Otherwise updating processes of the operating system or another

program might have impaired the time measurements.

To make a clear statement about the performance gap, the execution times of each subframe

of a flight, from the left camera, was measured 100 times in a row. The average time the

Canny Edge Detector needed to process one image of an entire flight was calculated for every

repetition of this flight. Each bar in Figure 60 represents the average execution time needed

to create an edge image of a flight.

Figure 60: One flight of the ball was processed by the Canny Edge Detector 100 times in a row. The

average execution times for one frame of each flight are illustrated in this bar diagram. The green bars

are the execution times needed by the CUDA program and the blue bars are those needed by OpenCL.

Figure 60 illustrates the better performance of a Canny Edge Detector algorithm on a GPU

when implementing it on the CUDA platform. The OpenCL program was about 28.25

percent slower than its CUDA counterpart. When examining the minimum and maximum

execution times, a similar behavior was discerned: 26.34 % respectively 63.64 %. In absolute

numbers, the CUDA program took between 2.45 ms and 2.58 ms, with an average of 2.53 ms.

Because of better performance, easier handling of its platform, and the more comprehensive

availability of documents as well as tutorials, CUDA was selected as development

environment for further implementation steps. OpenCL would only be advantageous with

regard to its use on different hardware from different vendors. However, this ability is not

required here.

4.1.2 Canny Edge Detector with and without background subtraction

A background subtraction can be done as an additional step to improve the quality of an

edge image. The execution times were measured, and the results are shown in Figure 61. One

Results and Discussion

 72

flight was processed 1000 times in a row to obtain reliable measurement results. The diagram

shows the background subtraction’s minimum, maximum, and average execution times of

these 1000 iterations for each of the 92 frames of a flight.

Figure 61: The background subtraction’s execution times of an entire flight.

 The average execution time for processing two subimages (left and right) is under 0.3 ms

and is highly consistent. This behavior proves the independence of the background

subtraction procedure from what the images show: whether the ball is near the cameras or far

away, whether the ball is big or small, the average execution time is always the same.

Background subtraction is a deterministic procedure and, therefore, the required time will

always be fairly the same. However, the fluctuation of the maximum execution time is

approximately between 0.35 and 0.5 ms and is most probably caused by cache missed.

As explained in Subchapter 3.5.4, a higher number of edge points in an image leads to a

higher computation time for the Canny Edge Detector. Therefore, execution times for

detecting edges can vary after the background was subtracted. A ball’s flight was processed

by the Canny Edge Detector 1000 times in a row to get information about the execution

times of this procedure.

 Results and Discussion

 73

Figure 62: The Canny Edge Detector’s execution times of an entire flight.

Figure 62 shows the execution time of the Canny Edge Detector processing left and right

images without a background subtraction and after the background has been removed. The

slight slope of the graphs is caused by the ball approaching the cameras from frame to frame.

The more the flight advances, the larger the ball’s shape will be displayed on the images.

Because of the larger ball, more edge pixels are present in the frames and the iterative

hysteresis procedure takes more time. At the beginning and the end of the flight, the Canny

Edge Detector takes much more time to process the images with background than those

without background. This behavior is caused by other objects that are present in these frames

and lead to more edge points. The Canny Edge Detector takes more time when more edge

points are present in the image. These additional edge points are not present when

performing the background subtraction and, therefore, the execution time of these few frames

is much shorter when subtracting the background.

However, the background subtraction itself also requires time. Therefore, this time should be

added to the execution time for detecting edges. Figure 63 shows the ratio of the sum of

execution times of background subtraction plus Canny Edge Detector to the Canny Edge

Detector without a background subtraction.

Results and Discussion

 74

Figure 63: The ratio of the sum of execution times of background subtraction plus Canny Edge

Detector to the Canny Edge Detector without a background subtraction.

Performing the background subtraction and the Canny Edge Detector takes slightly more

time than creating edge images without subtracting the background when there are no other

objects present in the images. In the case of other objects displayed in the image, the Canny

Edge Detector without a background subtraction can take up to 1.7 times more time than

performing both steps combined (compare Figure 63).

Canny

Canny

b
ac

kg
ro

u
n

d

su
b

tr
ac

ti
o

n

Figure 64: Differences of one edge image when the background had been subtracted.

 Results and Discussion

 75

Expressed in absolute numbers, subtracting the background and detecting edges took

between 1.54 ms and 3.42 ms with an average of 2.1 ms when considering all 1000 iterations

of the whole flight. In contrast, only detecting edges took between 1.49 ms and 4.02 ms with

an average of 1.92 ms.

When subtracting the background, edge images of high quality are still possible when other

objects are in the picture (Figure 64) and the execution time jitter is less. Therefore,

substracting the background is preferable when considering execution time and accuracy.

4.1.3 Pythagoras vs. trigonometric functions

The Hough Circle Transformation and the RANSAC algorithm have to draw circles as a

subroutine. This iterative procedure can be done with the help of trigonometric functions or

the Pythagoras theorem. Both object detection algorithms have been examined with both

approaches to drawing a circle.

Figure 65: The Hough Circle Transformation’s execution times for each frame of an entire flight when

drawing circles with trigonometric functions and the Pythagoras theorem.

Figure 65 shows the execution times of both circle drawing approaches when performing the

Hough Circle Transformation. Since a trigonometric function will be performed in one of the

four SFUs (Special Function Unit) of a multiprocessor [Gla09, 21], the Pythagoras version is

much faster. Additionally, it can be seen that execution times increase as the flight advances.

Similarly to the Canny Edge Detector results (see Section 4.1.2), the more the flight

advances, the larger the ball’s shape will appear in the images. Therefore, more edge pixels

will be present in the frames and the voting process of the Hough Circle Transformation will

take more time.

Results and Discussion

 76

Figure 66: The RANSAC algorithms’ execution times of an entire flight when drawing circles with

trigonometric functions and the Pythagoras theorem.

Just as the Hough Circle Transformation, the RANSAC algorithm was also tested with both

circle-drawing techniques. However, the results illustrate different behaviors. Because the

RANSAC algorithm draws considerably less circles than the Hough Circle Transformation,

the difference in their execution times is small. Because each iteration is performed over an

angle and not a radius, the average time of the trigonometric version is fairly constant

throughout the entire flight. However, because the radius increases as the flight advances, the

Pythagoras version becomes slower from frame to frame. At the beginning of the flight, the

Pythagoras version is faster than its counterpart and at the end, it is the other way round.

4.1.4 Two Hough Circle Transformation Strategies

Referring to Section 3.6, two different approaches to the Hough Circle Transformation have

been implemented and compared with each other: the Straightforward Strategy and the

Inverse-checking Strategy. For this comparison, frames of the same flight were processed 1000

times in a row and the execution times were recorded to analyze the results (Figure 67). Since

the Pythagoras theorem completed the task of drawing circles faster (Figure 65) when

performing the Hough Circle Transformation, this approach was chosen.

The Inverse-checking strategy requires considerably more time to detect the ball in both

images. This is because each thread must start a loop to draw a circle when performing the

Inverse-checking Strategy and only the threads that are assigned to an edge point have to

start a loop when performing the Straightforward Strategy. The data obtained do not confirm

the statements made in the studies [AME13, 220][CJ11]. Possibly, they had images with a

huge amount of edge points, in which case it might be better to perform the Inverse-checking

strategy.

 Results and Discussion

 77

Figure 67: The different execution times of an entire flight when performing the Straightforward or

Inverse-checking Strategy of the Hough Circle Transformation.

Additionally, the gradual increase in the Inverse-checking Strategy’s execution times is

noticeable. This behavior is caused by the radius profile created to save memory and

execution time (see 3.6). Circles with a bigger radius have to be searched for when the ball is

getting closer to the cameras and, therefore, the iterative procedure of drawing circles takes

more time. Since the frames contain relatively few edge points, the Straightforward Strategy

draws considerably less circles than the Inverse-checking.

4.1.5 Object Detection with and without background subtraction

Already in Subchapters 4.1.3 and 4.1.4 it was proven that the Hough Circle Transformation

requires more time when more edge points are present. Therefore, it was assumed that there

would be a difference when performing it after or without a background subtraction. Figure

68 shows both of these cases and illustrates the similarity between the Canny Edge Detector

and the Hough Circle Transformation in connection with other objects present in the images

(for comparison see Section 4.1.2).

Results and Discussion

 78

Figure 68: The Hough Circle Transformation’s execution times of an entire flight after and without a
background subtraction.

In contrast to the Hough Circle Transformation, the RANSAC algorithm’s execution time

does not depend on the number of edge points. Only the number of trials is responsible for

the required time taken by this procedure. However, the detected center point can vary when

more edge points are displayed. Two frames were picked out and processed 1000 times in a

row to examine this variance in different situations: one with other objects in the frame and

one only with the ball.

Figure 69: A frame with other objects besides the ball was examined. Above are the coordinates’

histograms when the background has been subtracted and below the histograms when the background

was not removed.

 Results and Discussion

 79

Figure 69 shows the results for a frame with other objects besides the ball in the frame. There

is almost no variance in the coordinates calculated when the background was subtracted. In

contrast, if the background was not removed, the resulting coordinates were highly scattered.

Figure 70: A frame without other objects besides the ball was examined. Above are the coordinates’

histograms when the background was subtracted and below the histograms when the background was

not removed.

On the other hand, Figure 70 shows the results of a frame that displays more or less only the

ball. There is no big difference between the detection in the images with background and

those without. However, the background-subtracted image leads to a variance of less than one

pixel and that with background leads to a small variance.

detection algorithm background average tracking error

Hough Circle Transformation subtracted 2,73 mm

Hough Circle Transformation untouched 25,81 mm

RANSAC algorithm subtracted 2,78 mm

RANSAC algorithm untouched 25,96 mm

Table 4: The standard deviation from the calculated position in world coordinates to the world

coordinates of the smoothed flightpath.

To obtain reliable statements about the average tracking error of the determined and the real

center point, the results of the Hough Circle Transformation and the RANSAC algorithm

were additionally analyzed with the help of the Rauch-Tung-Striebel filter [37]. More

precisely, the results of the detection were analyzed after they had been triangulated (see

Section 3.8.1) and translated (see Section 3.8.2) to the world coordinate systems. This filter

examines the recorded flightpath from front to back and reverse to create a smoothed

flightpath. This means, physically impossible detections will be corrected through this

Results and Discussion

 80

smoothing process. The average tracking error for the different approaches can be seen in

Table 4. The results obtained show that the detection algorithm enables an accurate

localization of the ball’s center point when the background was subtracted. In this case, the

localized position is only about 2 to 3 mm away from the real one away. Because of the

better results when detecting the ball after subtracting the background, this additional step is

preferable when considering accuracy.

4.1.6 Comparison of the two prediction algorithms

Now let's shift our attention to the last step of the program, which enables a prediction of

the ball’s further flightpath. The accuracy of two different approaches to this bio-inspired

prediction technique shall be examined in future works: comparison between positions and

comparison between rates of change. However, execution times of both have been measured

to make a statement of their temporal behavior and will be illustrated in the following two

subchapters. All of the following measurements have been made by processing one flight 1000

times in a row to obtain reliable measurement results.

4.1.6.1 Dependence on the number of reference trajectories

Because of the execution time’s dependence on the number of reference trajectories and the

parameter Poor (see Subchapter 3.9.1), two measurements were made to obtain sufficient

information about the temporal behavior. The reference trajectories’ lengths will affect the

execution time as well, but considering these values would exceed the scope of this diploma

thesis. Moreover, to provide an accurate prediction, it would not make sense to shorten these

trajectories. To make a statement about realistic scenarios, typical lengths were chosen for

these examinations.

To analyze the execution time’s dependence on the number of reference throws, a database

with trajectories of the same length was required. Otherwise, the comparison of the various

trials with their different database sizes would not be fair. For this purpose, the database was

filled with 200 dummy trajectories all with a length of 92, which is equivalent to the longest

trajectories of an already existing database. To conduct this measurement, 21 samples were

used, starting with one trajectory, then 10, 20, etc. up to 200. The parameter Poor was set to 0

for the duration of these tests.

Figure 71 shows the execution times of the two different prediction approaches: comparison of

positions and comparison of rates of change. Average and minimum time rise fairly linearly as

the number of reference trajectories in the database increases. While the minimum execution

time increases very slowly, the average time’s graph definitively illustrates the impact of

including a higher number of reference throws. This behavior is caused by Equation 3.9.6,

which leads to a higher number of blocks when more trajectories are in the database. The

maximum execution time’s graph is also rising and its fluctuation is probably caused by

cache misses. The temporal behavior of the two approaches is almost even, but the time

required is a bit different. While a database with up to 120 trajectories leads to nearly

identical execution times, a small difference is observed when the number of reference throws

increases. In other words, a higher number of reference trajectories leads to a bigger difference

 Results and Discussion

 81

between the two approaches’ execution times. However, this performance gap, caused by

additional subtractions (see Section 3.9), is not very big.

Figure 71: The prediction’s execution time as a function of the number of reference trajectories for the

comparison of positions and rates of change.

4.1.6.2 Dependence on the number of out-of-range-positions

The execution time’s dependence on the out-of-range parameter has also been measured and

will be described as well. This parameter determines how many positions of the actual flight

are allowed to cross the boundaries of the database trajectories. For this purpose, an

authentic database was loaded containing 188 different trajectories with an average length of

74.4 positions, whereby the shortest trajectory had only 55 and the longest 95 positions.

Figure 72 shows the execution times of the two different prediction approaches: comparison of

positions and comparison of rates of change. The temporal behavior of the two different

prediction approaches is nearly similar. It seems that the minimum execution times are more

or less independent from the number of out-of-range positions; the two graphs neither fall nor

rise. The linear rise of the average time was assumed and can be explained with Equation

3.9.8. More threads will be invoked when the parameter Poor has been set to a higher value,

which leads to a higher execution time.

Results and Discussion

 82

Figure 72: The prediction’s execution time as a function of the out-of-range positions for comparison of

positions and rates of change.

4.2 Testing worst-case execution times with artificially generated data

Some of the procedure’s tasks are independent of the input data and some are not. To get

information about the theoretical worst-case execution times of the procedure, such tasks as

the Canny Edge Detector and the Hough Circle Transformation have been tested. The

prediction task’s execution time depends on the number of reference trajectories, the lengths

of these trajectories, and the number of out-of-range positions. However, a clear statement

can be given without an examination: an infinite number of reference trajectories would cause

an infinite high execution time7. The execution times of the remaining tasks do not depend on

the subimages loaded and the required time will always be almost the same. Therefore, they

were not examined here.

Figure 73: Such an image was injected into the hysteresis function to cause a maximum number of

iterations.

Figure 74 shows the worst-case execution times measured with the help of artificially

generated data. To be able to examine these times, it is necessary to understand when these

cases will occur. The Canny Edge Detector will take the most time if the hysteresis procedure

has to iterate as often as possible. For this reason, a special image was inserted into the

7 The maximum number of reference throws is limited by the GPU’s memory capacity.

 Results and Discussion

 83

hysteresis function: one corner pixel had a value higher than the upper threshold and all of

the other pixels had values between the two thresholds (Figure 73). Starting with this pixel,

until the image’s borders are reached, every following iteration step finds neighbors that are

above the lower threshold which will, therefore, be registered in the queue of the next

iteration. In other words, the hysteresis procedure must go from one corner to the opposite

corner. The result of the procedure will be an image full of edge points and can be directly

used for the worst-case execution time measurement of the Hough Circle Transformation.

Referring to Section 3.6, the more edge points in an image, the more time will be required by

the Hough Circle Transformation. As Figure 67 shows, the circle detection also depends on

the radiuses that have to be searched for. To examine the theoretically possible worst-case

times for the given images, the radius range was set to detect the ball when it is displayed as

large as the largest ball in the frames recorded: 50 to 60 pixels. The following worst-case

execution times relate to the processing of both images: the left and the right.

Figure 74: The worst-case execution times of the Canny Edge Detector and the Hough Circle

Transformation implemented.

Such an input image provides a totally unrealistic scenario and would never lead to any

correct detection or prediction. However, it shows that the Canny Edge Detector depends on

the input data. Its worst-case execution time does not provide any information about the

maximum time required in a real-time application, but it shows that the execution time can

drastically increase if lighting conditions are poor or hysteresis thresholds badly adjusted.

Such a statement cannot be generally applied to the Hough Circle Transformation. When

comparing Figure 67 and Figure 74, it can be seen that the worst-case execution times of the

Inverse-checking Strategy do not deviate much from the times in a normal scenario. There, it

took the Hough Circle Transformation about 111 ms to detect a circle with a radius between

50 and 60 pixels and the worst-case execution time is about 117 ms. In both scenarios, the

procedure is the same: a loop, which draws a circle, will be started for every field in the

Hough Space. The only difference is that every field of the Hough Space will be voted in the

worst-case and, therefore, every value has to be stored. Because of the rise in global memory

accesses, the required time is about 6 ms higher. On the other hand, a thread of the

Straightforward Strategy only starts such circle drawing loop when its own pixel is an edge

Results and Discussion

 84

point. Every thread has to start this iterative drawing procedure in the worst-case scenario.

Although both approaches draw the same number of circles, the worst-case execution times

totally differ from each other. While threads vote only their own fields when performing the

Inverse-checking strategy, their Straightforward version’s counterparts vote various fields in

the Hough Space. Atomic functions, which are needed to fulfill the requirements of mutual

exclusion, lead to a partial serialization of the process. In the case of an image full of edge

points, a lot of threads want to vote the same field at the same time and, therefore, most of

the votes will be serialized. Therefore, the statements made in [AME13, 220][CJ11] can be

true if the images used contained many edge points.

4.3 Results of the entire procedure

The question of the time required to detect the ball and predict its further flightpath runs

like a golden thread through this diploma thesis. The previous subchapters provided

information about different approaches, and the best solution for each step was selected to

examine the execution time of the entire procedure. Each pair of frames had to run through

the following tasks: clearing the GPU storage, background subtraction, Canny Edge Detector,

RANSAC algorithm, triangulation, coordinate translation, and prediction. The RANSAC

algorithm drew its circles with the Pythagoras theorem and the prediction consisted in

comparisons of the coordinates determined.

Figure 75 shows the combined execution times of five different flights that have been

processed 1000 times in a row. The fluctuation of the maximum execution time’s graph is

caused by cache misses. The shorter time at the beginning of the flight and its fast increase is

caused by the throwing device that partially covered the ball. Therefore, the images showed

fewer pixels in the first frames. Since the ball’s image becomes larger from frame to frame,

the execution time of the Canny Edge Detector and of the RANSAC algorithm (Pythagoras)

increases as the flight goes on. A kind of light profile was created to set the hysteresis

thresholds to values appropriate for the position of the ball. In other words, the ball flew

toward the cameras and the light source and, therefore, the thresholds had to be increased in

stated intervals of the flight phase. Without such a light-profile, execution times would

greatly increase and detection would not work that well.

 Results and Discussion

 85

Figure 75: The execution times of five flights were processed, examined, and combined for this chart.

The maximum of the average times of the different flights was about 7.69 ms and enables a

frame rate of 130 FPS (Equation 2.4.1). The highest frame rate of the camera system used is

110 FPS, which should not be a problem, but a small buffer is required to compensate for the

maximum execution times that were, in rare cases, over 10 ms. Without such a buffer, there

would not be sufficient computational power on hand to process the next frames when they

appear.

Figure 76: The different bars show the differences between the average and maximum times of the

various program tasks when performing it on a GPU and on a CPU.

Results and Discussion

 86

The last question concerns the speedup achieved through the use of a GPU instead of a CPU.

For this purpose, the entire program was rewritten and slightly adapted to be executable on a

CPU. To compare execution times, one flight was processed 1000 times in a row and the

required times for the various steps were measured (Figure 76). The largest increases in speed

were measured for the Canny Edge Detector and the prediction, followed by the RANSAC

algorithm and the background subtraction. Clearing the storage also makes a difference, but

the difference in performance is not extremely high. Triangulation and coordinate translation

was performed on the CPU in both versions of the program, but because of the required data

transfer from GPU to CPU, its average time is higher in the GPU version. In short, a single

frame was processed 3.46 to 7.17 faster on a GPU than on a CPU.

87

5. Conclusion and Future Work

In the introduction, the Transport-by-Throwing approach, which consists of robotic arms

throwing objects to each other, is described as one possible system for a more flexible type of

production line. Catching a ball is still a challenge or benchmark for developing robots and

various strategies, and approaches have been tried without achieving a perfect solution. This

diploma thesis deals with a biologically-inspired prediction of a ball’s flightpath. While the

accuracy of this system is beyond the scope of this work, its temporal behavior was examined

here.

5.1 Conclusion

One of the main questions of this thesis whether ball detection and flightpath prediction can

be performed fast enough to achieve a frame rate of 110 FPS can be clearly answered in the

affirmative. It was possible to fulfill and exceed this requirement. The examined execution

times enable a computation fast enough for processing data at 130 FPS with a four-year-old

GPU: NVidia GTX 560 Ti. Moreover, using a GPU for the required calculations proved to be

a brilliant idea. The implemented program was 3.46 to 7.17 faster when running on a GPU

instead of on a CPU. On the one hand, the CPU program made use only of one core and,

therefore, some optimizations could accelerate execution, but on the other hand, the CPU

used was a just one-year-old Intel i7-4770S. Using a newer GPU (Figure 77) and enabling the

CPU to make use of its four cores would accelerate the programs, yet, the speedup would

most probably remain almost unchanged.

Performing all required tasks in such a short time is easier said than done. Numerous

optimizations had to be made to enable such high-speed computation on the GPU used.

Well-thought-out algorithms and letting some data make a detour over the faster shared

memory were the keys to success. However, some constraints still have to be considered to

achieve an execution time short enough for this frame rate: Firstly, a small buffer is needed

to compensate for the maximum execution times, which can be slightly too high for 110 FPS.

Without this buffer, not enough computational power would be on hand to process the next

frames when they appear. Secondly, the Hough Circle Transformation turned out to be

computationally too costly and time-consuming. Therefore, the RANSAC algorithm had to be

used to achieve the desired execution time.

Conclusion and Future Work

 88

However, there are more issues to contemplate: Without the additional background

subtraction, other objects displayed in the images could lead to a considerably higher number

of edge points and, in further consequence, to an execution time that is too high for 110 FPS.

This additional computational step also enables a more precise detection. The accuracy of the

prediction system was not part of this thesis, but a more accurate detection will probably

lead to a more accurate prediction. Therefore, it is strongly recommended to perform a

background subtraction regardless of whether a newer GPU is used or not.

Additionally, a good light-profile was created that changed the Canny Edge Detector’s

thresholds as the flight progressed. Rather low thresholds are necessary to enable detection of

the ball in the early flight phase when it is still far away from the cameras and light sources.

However, the light reflections on the ball’s surface are becoming considerably larger and lead

to much more edge points as the ball approaches. Without this profile, the thresholds would

have to be set to a rather small value to detect the ball in the early flight phase.

Deterioration in the detection in the last frames of a flight would not be the only drawback of

this approach. The badly adjusted thresholds could lead to too many edge points and, hence,

to an execution time too high for 110 FPS. Bad lighting conditions could also lead to the

necessity to lower the thresholds. Therefore a sufficient and homogenous lighting should be

present to achieve accurate results and an execution time short enough for 100 FPS.

5.2 Future work

Although this diploma thesis covered a great number of investigations, approaches, and

implementations, open questions still remain and appropriate research will have to be carried

out in the future. A distinction must be made between research pertaining to the accuracy of

the bio-inspired prediction approach and additional research to improve the performance of

the program introduced in this work. However, because of the complexity of the Transport-

by-Throwing approach, these two domains are often linked with each other.

In the future, the number of required reference trajectories as well as the limitations of this

prediction approach will have to be examined. Furthermore, the required number of the

actual flight’s positions and the differences between the two models compared are of great

interest.

Additionally, the database could be filled with artificially generated data or extended with

actual flights to improve prediction accuracy. In the future, the transport system should be

used to transport goods of different sizes and shapes, not only tennis balls. Therefore, much

research still needs to be done to find a solution that provides a prediction as accurate as

necessary to catch a thrown object safely and softly. The throwing and catching robots could

communicate with each other about their payload and the time of its launching. This

communication would simplify some tasks of the prediction system, but a good detection will

still be needed.

 Conclusion and Future Work

 89

Figure 77: The theoretical speedup when using a newer graphics card can be read in this diagram,

which shows the benchmarks of different GPUs [38].

Additional calculations or the use of a more complex detecting algorithm such as the Hough

Transformation could overload the GPU used. Figure 77 shows that a more advanced GPU is

theoretically four times faster than the one used. In other words, using a newer GPU would

be a strategy to reduce execution times and meet these upcoming challenges.

create edge magnitude

maps (left and right)

find the ball‘s center

points (left and right)

triangulate the points

for a 3D view

predict the ball‘s

further flightpath

one single GPU

create edge magnitude

maps (left and right)

find the ball‘s center

points (left and right)

triangulate the points

for a 3D view

predict the ball‘s

further flightpath

fi
rs

t
G

P
U

se
co

n
d

 G
P

U

create edge magnitude

maps (left)

find the ball‘s center

points (left)

triangulate the points

for a 3D view

predict the ball‘s

further flightpath

fi
rs

t
G

P
U

th
ir

d
 G

P
U

create edge magnitude

maps (right)

find the ball‘s center

points (right)

se
co

n
d

 G
P

U

Figure 78: The required tasks could be distributed to different GPUs to increase performance.

To use two or more GPUs to separate the program tasks would be another alternative

strategy. Figure 78 shows two possible approaches: separating detection and prediction or,

additionally, separating detection from the left side and the right side. Possible future

changes in algorithms and approaches notwithstanding, this work has clearly shown that the

flightpath of an object can be predicted in a very fast manner.

90

Literature

[AC13] Al-Qahtani, F. H., Crone, S. F.: Multivariate k-Nearest Neighbour Regression for
Time Series data - a novel Algorithm for Forecasting UK Electricity Demand, The
2013 International Joint Conference on Neural Networks (IJCNN), pp. 1-8.

[AME13] Askari, Meisam and Ebrahimpour, Hossein and Bidgoli, Azam Asilian and Hosseini,
Farahnaz: Parallel GPU Implementation of Hough Transform for Circles, 2013.

[And98] R.L. Anderson. A Robot Ping-Pong Player. MIT Press, 1998.
[ATW07] F. Alam, W. Tio, S. Watkins, A. Subic, J. Naser, P. Jacobs, T. McIntyre, M. Cleary,

D. Buttsworth, D. Mee, R. Clements, R. Morgan, and C. Lemckert, “Effects of spin on
tennis ball aerodynamics: An experimental and computational study,” 2007. [Online].
Available: http://espace.library.uq.edu.au/view/UQ:120801

[BFK08] D. Barteit, H. Frank, F. Kupzog: Accurate prediction of interception positions for
catching thrown objects in production systems. In Proceedings on 6th IEEE
International Conference on Industrial Informatics, 13 - 16 July, Daejeon, Korea, 2008

[BFP09] Barteit, D., Frank, H., Pongratz, M., Kupzog, F. (2009): Measuring the Intersection of
a Thrown Object with a Vertical Plane. Paper is accepted for 7 th IEEE International
Conference on Industrial Informatics (INDIN 2009), June 24 -26, 2009, Cardiff, UK.

[BGL01] J. Butterfaß, M. Grebenstein, H. Liu, and G. Hirzinger, “DLR-Hand II: Next
generation of a dextrous robot hand,” in Proceedings of the IEEE/RSJ International
Conference Robotics and Automation (ICRA), 2001, pp. 109–114.

[BSW11] Bäuml, B.; Schmidt, F.; Wimböck, T.; Birbach, O.; Dietrich, A.; Fuchs, M.; Friedl,
W.; Frese, U.; Borst, C.; Grebenstein, M.; Eiberger, O.; Hirzinger, G. (2011) Catching
Flying Balls and Preparing Coffee: Humanoid Rollin'Justin Performs Dynamic and
Sensitive tasks.

[BWH10] Bauml, B.; Wimbock, T.; Hirzinger, G., "Kinematically optimal catching a flying ball
with a hand-arm-system," Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, vol., no., pp.2592,2599, 18-22 Oct. 2010

[CAN86] Canny, John, "A Computational Approach to Edge Detection," Pattern Analysis and
Machine Intelligence, IEEE Transactions on , vol.PAMI-8, no.6, pp.679,698, Nov. 1986

[CH67] Cover, T. M., Hart, P. E.: Nearest Neighbor Pattern Classification, IEEE Transactions
in Information Theory, Vol. IT-13, 1967, pp. 21-27.

[CJ11] Chen, S. and Jiang, H.: Accelerating the Hough Transform with CUDA on Graphics
Processing Units, 2011.

[CUD14] NVidia Corporation: “CUDA C Programming Guide”, PG-02829-001_v6.5, August 2014
[DAC02] T. D’Orazio, N Ancona, G. Cicirelli, M. Nitti, ”A Ball Detection Algorithm for Real

Soccer Image Sequences”, IEEE, 1051-4651, 2002.
[DH72] R. Duda and P. Hart: “Use of Hough transform to detect lines and curves in pictures”,

Communication of the ACM, 15(1), pp.11-15, 1972.
[DWS12] Dollar, P.; Wojek, C.; Schiele, B.; Perona, P., "Pedestrian Detection: An Evaluation of

the State of the Art,"Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol.34, no.4, pp.743,761, April 2012

[FB81] Martin A. Fischler and Robert C. Bolles. 1981. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM 24, 6 (June 1981), 381-395.

[FBH01] Frese, U.; Bauml, B.; Haidacher, S.; Schreiber, G.; Schaefer, I.; Hahnle, M.; Hirzinger,
G., "Off-the-shelf vision for a robotic ball catcher," Proceedings of 2001

 Conclusion and Future Work

 91

[FBM08] H. Frank, D. Barteit, M. Meyer, A. Mittnacht, G. Novak, S. Mahlknecht: Optimized
Control Methods for Capturing Flying Objects with a Cartesian Robot. In Proceedings
on 3rd IEEE International Conference on Robotics, Automation and Mechatronics, 22
- 24 September, Chengdu, China, 2008

[FBW07] H. Frank, D. Barteit, N. Wellerdick-Wojtasik, T. Frank, G. Novak, and S.
Mahlknecht, “Autonomous mechanical controlled grippers for capturing flying objects,”
Industrial Informatics, 2007 5th IEEE International Conference on, 2007.

[FLP01] Olivier Faugeras, Quang-Tuan Luong, and T. Papadopoulou. 2001. The Geometry of
Multiple Images: The Laws that Govern the Formation of Images of a Scene and some
of their Applications. MIT Press, Cambridge, MA, USA.

[FM05] J. Fung and S. Mann, “Openvidia: parallel gpu computer vision,” in MULTIMEDIA
’05: Proceedings of the 13th annual ACM international conference on Multimedia. New
York, NY, USA: ACM, 2005, pp. 849–852.

[FMS09] Frank, H., Mittnacht, A., Scheiermann, J. (2009): Throwing of Cylinder Shaped
Objects. Proceedings on 2009 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM 2009), July 14-17, 2009, Singapore, pp. 59-64

[FVS11] Jianbin Fang; Varbanescu, A.L.; Sips, H., "A Comprehensive Performance Comparison
of CUDA and OpenCL," Parallel Processing (ICPP), 2011 International Conference on
, vol., no., pp.216,225, 13-16 Sept. 2011

[GH03] Günther W.A.; Heinecker, M.: Modulare Materialusssysteme für wandelbare
Fabrikstrukturen - Bewertungs- und Gestaltungsrichtlinien für wandelbare
Materialusssysteme. (2003)

[Gla09] Peter N. Glaskowsky. NVidia fermi: The first complete GPU computing architecture.
Technical report, 2009.

[GSW03] Geusebroek, J.-M.; Smeulders, A.W.M.; van de Weijer, J., "Fast anisotropic Gauss
filtering," Image Processing, IEEE Transactions on , vol.12, no.8, pp.938,943, Aug.
2003

[GW07] Gonzalez, Rafael C.; Woods, Richard E.: Digital Image Processing. 3rd Edition.
Prentice Hall, August 2007. - ISBN 013168728X

[Hou62] P. Hough: “A method and means for recognizing complex patterns”, U.S. Patent No.
3,069,654, 1962.

[HP62] Hough V, Paul C.: Method and means for recognizing complex patterns. December
1962.

[HS91] Hove, Barbara; Slotine, Jean-Jacques E., "Experiments in Robotic Catching,"
American Control Conference, pp.380-386, 26-28 June 1991

[HS95] Hong, Won; Slotine, Jean-Jacques E., "Experiments in Hand-Eye Coordination Using
Active Vision," Lecture Notes in Control and Information Sciences, pp.130-139, 1995

[HZ03] Richard Hartley and Andrew Zisserman. 2003. Multiple View Geometry in Computer
Vision (2 ed.). Cambridge University Press, New York, NY, USA.

[IK88] J.Illingworth and J. Kittler: “A survey of the Hough transform”, Computer Vision,
Graphics and Image Processing, vol.43, pp.221-238, 1988

[INH04] Y. Imai, A. Namiki, K. Hashimoto, and M. Ishikawa, “Dynamic active catching using
a high-speed multifingered hand and a high-speed vision system,” Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
2004.

[INI96] Ishii, I.; Nakabo, Y.; Ishikawa, M., "Target tracking algorithm for 1 ms visual
feedback system using massively parallel processing," Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on, vol.3, no., pp.2309,2314 vol.3,
22-28 Apr 1996

[JU97] Julier, S.J.; Uhlmann, J.K.: A new extension of the Kalman Filter to nonlinear
systems. In: Proceedings of AeroSense: The 11th International Symposium on
Aerospace=Defence Sensing, Simulation and Controls, 1997, 1997

[JWD13] Jacobs, L.; Weiss, J.; Dolan, D., "Object tracking in noisy radar data: Comparison of
Hough transform and RANSAC," Electro/Information Technology (EIT), 2013 IEEE
International Conference on , vol., no., pp.1,6, 9-11 May 2013

[KBS75] C.Kimme, D.Ballard, and J.Sklansky, ”Finding circles by an array of accumulators”,
Proc. ACM 18, pp: 120-122, 1975.

[KDH10] K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison of CUDA and
OpenCL,” May 2010.

Conclusion and Future Work

 92

[Kol02] M. Kolazwole: Radar Systems, Peak Detection and Tracking, Newnes/Elsevier, 2002.
[Lin93] T. Lindeberg. Detecting salient blob-like image structures and their scales with a

scale-space primal sketch: a method for focus-of-attention. International Journal of
Computer Vision, 11(3):283-318, 1993.

[LWT12] Lourenco, L.H.A.; Weingaertner, D.; Todt, E., "Efficient Implementation of Canny
Edge Detection Filter for ITK Using CUDA," Computer Systems (WSCAD-SSC),
2012 13th Symposium on , vol., no., pp.33,40, 17-19 Oct. 2012

[MGV09] Theo Moons, Luc van Gool, and Maarten Vergauwen. 2009. 3D Reconstruction from
Multiple Images, Part 1: Principles. Now Publishers Inc., Hanover, MA, USA.

[MGW11] Martinez, G.; Gardner, M.; Wu-chun Feng, "CU2CL: A CUDA-to-OpenCL Translator
for Multi- and Many-Core Architectures," Parallel and Distributed Systems
(ICPADS), 2011 IEEE 17th International Conference on, vol., no., pp.300,307, 7-9
Dec. 2011

[MHM04] R. Mori and K. Hashimoto and F. Miyazaki (2004), Tracking and Catching of 3D
Flying Target based on GAG Strategy; Proceedings of the 2004 IEEE Int. Conf. on
Robotic & Automation, April, 5189-5194.

[MPD14] K. Mironov, M. Pongratz, D. Dietrich, "Predicting the Trajectory of a Flying Body
Based on Weighted Nearest Neighbors"; in: "Proceedings ITISE 2014", Copicentro
Granada S.L, 2014, 12 S.

[MS81] L.Minor and J.Sklansky, ”Detection and segmentation of blobs in infrared images”,
IEEE Trans. SMC 11, pp: 194-201, 1981.

[NI03] A. Namiki and M. Ishikawa (2003), Robotic Catching Using a Direct Mapping from
Visual Information to Motor Command; IEEE Int. Conf. on Robotics and
Automation, September, 2400-2405.

[NI05] A. Namiki and M. Ishikawa, “The analysis of high-speed catching with a multifingered
robot hand,” Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, 2005.

[NII03] Namiki, A.; Imai, Y.; Ishikawa, M.; Kaneko, M., "Development of a high-speed
multifingered hand system and its application to catching," Intelligent Robots and
Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference
on, vol.3, no., pp.2666,2671 vol.3, 27-31 Oct. 2003

[NIN97] Nishiwaki, K.; Ionno, A.; Nagashima, K.; Inaba, M.; Inoue, H., "The humanoid Saika
that catches a thrown ball," Robot and Human Communication, 1997. RO-MAN '97.
Proceedings., 6th IEEE International Workshop on , vol., no., pp.94,99, 29 Sep-1 Oct
1997

[NNI99] Namiki, A.; Nakabo, Y.; Ishii, I.; Ishikawa, M., "High speed grasping using visual and
force feedback," Proceedings of IEEE International Conference on Robotics and
Automation, 1999, pp.3195-3200 vol.4, 1999

[OC76] F. O’Gorman and M. Clowes: “Finding picture edges through collinearity of feature
points”, IEEE Transactions on Computers, vol.25(4), pp.449-456, 1976.

[OCL09] NVidia Corporation: “OpenCL Programming Guide for the CUDA Architecture“,
Version 2.3, August 2009

[OIN10] Ogawa, K.; Ito, Y.; Nakano, K., "Efficient Canny Edge Detection Using a GPU,"
Networking and Computing (ICNC), 2010 First International Conference on, vol., no.,
pp.279,280, 17-19 Nov. 2010

[OLG07] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kr¨uger, A. E. Lefohn, and T.
J. Purcell, “A Survey of General-Purpose Computation on Graphics Hardware,”
Computer Graphics Forum, vol. 26, pp. 80–113, March 2007.

[PKH10] Pongratz, M.; Kupzog, F.; Frank, H.; Barteit, D., "Transport by throwing - A bio-
inspired approach," Industrial Informatics (INDIN), 2010 8th IEEE International
Conference on , vol., no., pp.685,689, 13-16 July 2010

[PMB13] Pongratz, M.; Mironov, K.; Bauer, F.; “A Soft-Catching Strategy for Transport by
Throwing and Catching”, International Conference "Information Technologies for
Intelligent Decision Making Support", Ufa, Russia, 2013, TU Wien, April 2013

[Pon09] M. Pongratz, Object Touchdown Position Prediction: A Stereo Vision Based
Approach, Diploma Thesis, TU Wien, Wien 2009.

[PP12] M. Pongratz, KOROS Initiative: Automatized Throwing and Catching for Material
Transportation, TU Wien, Wien 2012.

http://www.zib.de/Publications/abstracts/ZR-04-19
http://www.zib.de/Publications/abstracts/ZR-04-19

 Conclusion and Future Work

 93

[RA02] M. Riley and C. G. Atkeson, “Robot catching: Towards engaging human-humanoid
interaction,” Autonomous Robots, vol. 12, pp. 119—128, 2002.

[RFQ03] Ali Ajdari Rad, Karim Faez, Navid Qaragozlou, ”Fast Circle Detection Using Gradient
Pair Vectors”, Proc. VIIth Digital Image Computing: Techniques and Applications,
December 2003.

[SC07] C. Smith and H. I. Christensen (2005), Using COTS to Construct a High Performance
Robot Arm, In Proc. IEEE International Conference on Robotics and Automation,
April 2007, Roma, Italy, pp. 4056-4063.

[SHB07] Sonka, Milan ; Hlavac, Vaclav ; Boyle, Roger: Image Processing, Analysis, and
Machine Vision. 3rd Edition. Cengage-Engineering, March 2007. – ISBN 049508252X

[SHH07] S. S. Stone, H. Yi, J. P. Haldar, W. mei W. Hwu, B. P. Sutton, and Z. pei Liang,
“How gpus can improve the quality of magnetic resonance imaging,” in In The First
Workshop on General Purpose Processing on Graphics Processing Units, 2007.

[SNI05] Shiokata, D.; Namiki, A.; Ishikawa, M., "Robot dribbling using a high-speed
multifingered hand and a high-speed vision system," Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, (IROS 2005)., pp. 2097-
2102, 2-6 Aug. 2005

[SPV05] Scaramuzza, D.; Pagnottelli, S.; Valigi, P., "Ball Detection and Predictive Ball
Following Based on a Stereoscopic Vision System,"Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on, vol., no.,
pp.1561,1566, 18-22 April 2005

[SSL01] Slabaugh, Greg ; Schafer, Ron ; Livingston, Mark: Optimal Ray Intersection For
Computing 3D Points From N-View Correspondences. (2001)

[SW10] Shucai Xiao; Wu-chun Feng, "Inter-block GPU communication via fast barrier
synchronization," Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on , vol., no., pp.1,12, 19-23 April 2010

[Sze10] Richard Szeliski, “Computer Vision: Algorithms and Applications”, September 3, 2010
draft

[TKB99] Toyama, K.; Krumm, J.; Brumitt, B.; Meyers, B.: Wallower: principles and practice of
background maintenance. In: Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on 1 (1999), S. 255-261 vol.1

[VSH04] VanDyke, M. C. ; Schwartz, J. L. ; Hall, C. D.: Unscented Kalman Filtering for
Spacecraft Attitude State And Parameter Estimation. In: 2004 AAS/AIAA Space
Flight Mechanics Meeting, Maui, Hawaii, 2004

[Wei08] J. Weiss: „Real-Time Feature Detection Using the Hough Transform“, Proceedings of
the ISCA 21st International Conference on Computer Applications in Industry and
Engineering, pp.168-173, Nov 2008

[WL12] Suping Wu and X. Liu, "Parallelization Research of Circle Detection Based on Hough
Transform," IJCSI International Journal of Computer Science, vol. 9, 2012, pp. 6.

[Wri93] A. Wright, A high speed low latency portable vision sensing system, SPIE, September
1993

[Yak87] Yakowitz, S.: Nearest-Neighbour Methods for time series analysis, Journal of Time
Series Analyses, Vol. 8, No. 2, 1987, pp. 235-247.

[YLJ10] Wang Yingshi; Sun Lei; Liu Jingtai; Yang Qi; Zhou Lu; He Shan, "A novel trajectory
prediction approach for table-tennis robot based on nonlinear output feedback
observer," Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference
on, vol., no., pp.1136,1141, 14-18 Dec. 2010

[YR08] Yuancheng Luo; Duraiswami, R., "Canny edge detection on NVIDIA CUDA,"
Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE
Computer Society Conference on , vol., no., pp.1,8, 23-28 June 2008

94

Internet references

[1] http://www.profil.at/home/autoindustrie-wirtschafts-motor-86604
May 2015

[2] http://history1900s.about.com/od/1910s/a/Ford--Assembly-Line.htm
May 2015

[3] http://www.gracesguide.co.uk/Oliver_Evans
May 2015

[4] http://www.live-counter.com/autos/
May 2015

[5] https://hbr.org/1997/01/the-four-faces-of-mass-customization
May 2015

[6] http://www.quest-trendmagazin.de/artikel-archiv/einsatz-von-robotern-steigt-2011.html
 May 2015
[7] http://www.britannica.com/EBchecked/topic/638321/weather-forecasting/49626/Numerical-

weather-prediction-NWP-models
May 2015

[8] http://www.theweek.co.uk/world-news/middle-east/59368/iron-dome-how-israels-missile-
defence-system-works

 May 2015
[9] www.nennstiel-ruprecht.de/bullfly/index.htm.
 May 2015
[10] http://graphics.stanford.edu/~jplewis/lscourse/SLIDES.pdf
 May 2015
[11] https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
 May 2015
[12] http://homes.cs.washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf
 May 2015
[13] http://ffden-2.phys.uaf.edu/webproj/211_fall_2014/Max_Hesser-

Knoll/max_hesserknoll/Slide3.htm
 May 2015
[14] https://www.linkedin.com/pulse/20140920022202-82311677-virtual-tennis-academy-lesson-1-

slice-topspin-in-tennis
 May 2015
[15] http://www.extremetech.com/extreme/197262-its-2015-self-driving-cars-are-more-than-a-

promise
 May 2015
[16] http://www.hawkeyeinnovations.co.uk

May 2015
[17] http://www.intorobotics.com/fundamental-guide-for-stereo-vision-cameras-in-robotics-

tutorials-and-resources/
May 2015

[18] https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect16.pdf
 May 2015
[19] http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
 May 2015
[20] http://www.rmm3d.com/3d.encyclopedia/keystone/keystone.html
 May 2015
[21] http://www.sensoray.com/support/appnotes/pixjiter.htm
 May 2015
[22] http://www.mathworks.com/matlabcentral/fileexchange/40737-canny-edge-detector

May 2015

http://www.profil.at/home/autoindustrie-wirtschafts-motor-86604
http://www.gracesguide.co.uk/Oliver_Evans
https://hbr.org/1997/01/the-four-faces-of-mass-customization
http://www.quest-trendmagazin.de/artikel-archiv/einsatz-von-robotern-steigt-2011.html
http://www.britannica.com/EBchecked/topic/638321/weather-forecasting/49626/Numerical-weather-prediction-NWP-models
http://www.britannica.com/EBchecked/topic/638321/weather-forecasting/49626/Numerical-weather-prediction-NWP-models
http://www.theweek.co.uk/world-news/middle-east/59368/iron-dome-how-israels-missile-defence-system-works
http://www.theweek.co.uk/world-news/middle-east/59368/iron-dome-how-israels-missile-defence-system-works
http://www.nennstiel-ruprecht.de/bullfly/index.htm
http://graphics.stanford.edu/~jplewis/lscourse/SLIDES.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://homes.cs.washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf
http://ffden-2.phys.uaf.edu/webproj/211_fall_2014/Max_Hesser-Knoll/max_hesserknoll/Slide3.htm
http://ffden-2.phys.uaf.edu/webproj/211_fall_2014/Max_Hesser-Knoll/max_hesserknoll/Slide3.htm
http://www.extremetech.com/extreme/197262-its-2015-self-driving-cars-are-more-than-a-
http://www.extremetech.com/extreme/197262-its-2015-self-driving-cars-are-more-than-a-
http://www.hawkeyeinnovations.co.uk/
http://www.intorobotics.com/fundamental-guide-for-stereo-vision-cameras-in-robotics-tutorials-and-resources/
http://www.intorobotics.com/fundamental-guide-for-stereo-vision-cameras-in-robotics-tutorials-and-resources/
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect16.pdf
http://www.rmm3d.com/3d.encyclopedia/keystone/keystone.html
http://www.sensoray.com/support/appnotes/pixjiter.htm
http://www.mathworks.com/matlabcentral/fileexchange/40737-canny-edge-detector

 Conclusion and Future Work

 95

[23] https://github.com/oleander/ransac-and-hough-transform-java
 May 2015
[24] https://www.khronos.org/opencl/
 May 2015
[25] http://www.vision.caltech.edu/bouguetj/calib_doc/
 May 2015
[26] http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-560ti
 May 2015
[27] https://developer.nvidia.com/cuda-toolkit-65
 May 2015
[28] https://developer.nvidia.com/opencl
 May 2015
[29] http://www.cplusplus.com/reference/cstdio/
 May 2015
[30] http://www.opencv.org
 May 2015
[31] http://docs.opencv.org/doc/tutorials/introduction/display_image/display_image.html
 May 2015
[32] http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor
 May 2015
[33] http://docs.nvidia.com/cuda/curand/#axzz3Zxtl60vR
 May 2015
[34] http://www.cplusplus.com/reference/cstdlib/rand/
 May 2015
[35] http://mathworld.wolfram.com/RodriguesRotationFormula.html
 May 2015
[36] http://chronoengine.info/mediawiki/index.php/ChronoEngine:Coordinate_transformations
 May 2015
[37] http://becs.aalto.fi/en/research/bayes/ekfukf/
 May 2015
[38] http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-560ti/performance
 May 2015

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-560ti
https://developer.nvidia.com/cuda-toolkit-65
https://developer.nvidia.com/opencl
http://www.cplusplus.com/reference/cstdio/
http://docs.opencv.org/doc/tutorials/introduction/display_image/display_image.html
http://docs.nvidia.com/cuda/curand/#axzz3Zxtl60vR
http://www.cplusplus.com/reference/cstdlib/rand/
http://mathworld.wolfram.com/RodriguesRotationFormula.html
http://chronoengine.info/mediawiki/index.php/ChronoEngine:Coordinate_transformations
http://becs.aalto.fi/en/research/bayes/ekfukf/
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-560ti/performance

