
Integrating fUML into Enterprise
Architect

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Uwe Brunflicker, BSc
Matrikelnummer 0625178

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Mitwirkung: Dipl.-Ing. Dr. Tanja Mayerhofer, BSc

Wien, TT.MM.JJJJ
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Integrating fUML into Enterprise
Architect

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Uwe Brunflicker, BSc
Registration Number 0625178

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Assistance: Dipl.-Ing. Dr. Tanja Mayerhofer, BSc

Vienna, TT.MM.JJJJ
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Uwe Brunflicker, BSc
Erdbergstraße 160/49, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

I would like to use this opportunity to express my gratitude to all the people who have supported
me in completing this thesis. I am thankful for their guiding ideas, as well as their advice on
issues I could not have solved without their continued help.

Firstly, I want to express my warmest thanks to Ms. Tanja Mayerhofer, who has guided me
through creating this thesis, has provided a number of solutions to problems and whom I could
always count on for advice.

Secondly, I want to express my gratitude to Mr. Richard Deininger from LieberLieber Soft-
ware GmbH. Mr. Deininger, the lead developer of the Advanced Modeling Using Simulation
and Execution (AMUSE) plugin, has provided numerous insights into the inner workings of
the plugin, and has supported me extensively in altering it so it can be used for the prototype.
Furthermore, I would like to thank Mr. Daniel Siegl from LieberLieber Software GmbH for pro-
viding the infrastructure (both hardware and software) that was utilized to create the prototype
itself.

Lastly, I want to thank Mrs. Kappel and her staff for supervising my thesis, and ensuring
that the whole process went over smoothly.

Thank you!

Uwe Brunflicker

iii

Abstract

The rise of Model Driven Development (MDD) has renewed the interest in the execution of
models. The predominant modeling language applied in MDD is the Unified Modeling Lan-
guage (UML). Unfortunately, UML lacks clear execution semantics. This has lead to a plethora
of different interpretations both in academia and industry, hindering the interoperability of UML
tools supporting the execution of models. A possible solution to this problem is the so-called
Foundational Subset For Executable UML Models (fUML) standard published by the Object
Management Group (OMG). fUML is an extension of UML, defining a standardized execution
semantics for a subset of UML. fUML has, however, not yet been widely adopted in commercial
tooling.

This thesis investigates the integration of fUML with existing commercial UML modeling
tools to contribute to the adoption of fUML and identify challenges arising in the integration. To
this end, this thesis aims to answer the following research questions:

1. Can fUML be integrated into a proprietary UML model execution environment? Which
challenges arise in the integration?

2. Does the standardized fUML model execution environment provide the same functionality
as a proprietary UML model execution environment?

3. Is the performance of the standardized fUML model execution environment comparable
to the performance of a proprietary UML model execution environment?

To explore these questions, a prototypical integration of fUML into the commercial UML mod-
eling tool Enterprise Architect (EA) has been implemented in this thesis. The goal of the pro-
totype is to allow execution and debugging of UML state machines and sequence diagrams via
EA’s execution environment, in conjunction with the execution of UML activity diagrams via
the fUML execution environment.

The evaluation of the prototype has shown that the integration of the execution environments
has been completed successfully. The prototype is capable of executing and debugging state
machines, sequence diagrams and fUML compliant activity diagrams in conjunction, while still
providing the same functionality as the proprietary execution environment. The performance
analysis has shown that the prototype is slower than the proprietary execution environment pro-
vided by EA. This is mostly due to the necessity of running two different execution environments
in parallel.

v

Kurzfassung

Die Verbreitung von Model Driven Development (MDD) hat zu einem erhöhten Interesse an
der direkten Ausführung von Modellen geführt. Die vorherrschende Modellierungssprache im
MDD-Bereich ist die Unified Modeling Language (UML). Jedoch verursaucht das Fehlen einer
vollständigen und präzisen Definition des Ausführungsverhaltens von UML Modellen Inkom-
patibilitäten zwischen Ausführungswerkzeugen und -umgebungen für UML. Eine mögliche Lö-
sung für dieses Problem ist der Foundational Subset For Executable UML Models (fUML) Stan-
dard der Object Management Group (OMG). Dieser Standard ist eine Erweiterung des UML
Standards, die das Ausführungsverhalten einer Teilmenge von UML definiert. fUML findet bis-
lang jedoch nur geringe Anwendung in kommerziellen UML Werkzeugen.

Diese Diplomarbeit untersucht die Möglichkeit, fUML in ein existierendes UML Ausfüh-
rungswerkzeug zu integrieren, um zur Verbreitung von fUML beizutragen. Insbesondere wer-
den die Herausforderungen, die durch eine solche Integration entstehen, untersucht. Folgende
wissenschaftliche Fragestellungen werden behandelt:

1. Ist es möglich, fUML in ein existierendes UML Ausführungswerkzeug zu integrieren?
Welche Herausforderungen entstehen hierbei?

2. Stellt die standardisierte Ausführungsumgebung von fUML dieselbe Funktionalität wie
eine proprietäre Ausführungsumgebung zur Verfügung?

3. Ist die Performanz der standardisierten Ausführungsumgebung von fUML vergleichbar
mit jener einer proprietären Ausführungsumgebung?

Um diese Fragen zu beantworten, wurde ein Prototyp entwickelt, der fUML in das UML Aus-
führungswerkzeug Enterprise Architect (EA) integriert. Das Ziel des Prototypen ist es, das Aus-
führen und Debuggen von UML Zustandsautomaten und Sequenzdiagrammen mittels der Aus-
führungsumgebung von EA zu ermöglichen, und zwar in Kombination mit der Ausführung von
UML Aktivitätsdiagrammen mittels der Ausführungsumgebung von fUML.

Die Evaluierung des Prototypen hat gezeigt, dass die Integration der Ausführungsumgebun-
gen erfolgreich durchgeführt werden konnte. Der Prototyp ist in der Lage, eine Kombination von
Zustandsautomaten, Sequenzdiagrammen und fUML-konformen Aktivitätsdiagrammen auszu-
führen und zu debuggen. Der verfügbare Funktionsumfang ist vergleichbar mit der proprietären
Ausführungsumgebung von EA. Die Performanz-Analyse hat gezeigt, dass der Prototyp schlech-
tere Ausführungszeiten als die proprietäre Lösung von EA aufweist. Dies ist hauptsächlich auf
die Notwendigkeit zweier paralleler Ausführungsumgebungen zurückzuführen.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 4
1.4 Methodological Approach . 5
1.5 Structure of the Work . 5

2 Background 7
2.1 Modeling with UML . 7
2.2 Model Execution . 23
2.3 Tools . 30

3 State of the Art 37
3.1 Execution of UML Activity Diagrams and State Machines 37
3.2 Formal Specification of UML Diagram Types and Interactions 39
3.3 Model Interpretation vs. Code Generation . 42

4 Prototype 45
4.1 Overview . 45
4.2 fUML Executor Implementation . 49
4.3 Integration . 62

5 Evaluation 71
5.1 Case Studies . 71
5.2 Functionality Analysis . 77
5.3 Performance Analysis . 84
5.4 Usability . 92
5.5 Stability . 96
5.6 Discussion of the Evaluation Results . 97

6 Conclusion and Future Work 99
6.1 Summary . 99
6.2 Future Work . 101

ix

Bibliography 105

x

CHAPTER 1
Introduction

1.1 Motivation

With the application of Model-Driven Development (MDD) [23], creating and using models is
turning into a central part of the software development process. Models are used throughout
the whole lifecycle. The main goal when using MDD is generating source code directly from
the models themselves. Furthermore, MDD can be utilized within the entire software develop-
ment process. The first step of this approach is utilizing models to specify the requirements of
the system. These requirement models provide a very coarse overview of the system, which is
then subsequently refined until it represents the whole architecture. The architectural models,
in turn, provide the basis for the actual implementation of the system by generating the source
code. Additionally, the models can be used for documenting the deployment artifacts and for
documenting issues in production systems, further completing the application lifecycle. Because
of this notion of using models as the core building block of the whole system, MDD also pro-
vides multiple techniques to validate the models in question, e.g., techniques for automatically
executing behavioral models to analyze the behavior they describe.

The predominant modeling language in the field of MDD is the Unified Modeling Language
(UML) [21]. It offers a large number of different modeling concepts and diagram types that
cover a wide variety of different applications. However, herein also lies one of its main problems.
Because of its general purpose nature, most modeling concepts are intentionally defined vague
which, however, leaves room for ambiguities and misinterpretations. To counteract this, the
Object Management Group (OMG) has released the standard called Foundational Subset For
Executable UML Models (fUML) [22]. This standard deals with a subset of UML consisting
of a subset of modeling concepts for defining activity diagrams and class diagrams. For these
modeling concepts, the fUML standard defines a clear semantic meaning. This removes the
ambiguities in the semantics of the modeling concepts included in fUML. The main purpose
behind the fUML standard is to make UML models machine interpretable and executable. This
enables additional use cases for the models, such as analysis via debugging, testing, and dynamic
analysis methods. All of these use cases can be supported via the visualization of the execution of

1

the model, for example by displaying object flows in UML activity diagrams via the visualization
of movements of tokens flowing through the diagrams. The fUML standard defines the semantics
of its subset of modeling concepts by defining a completely functional virtual machine, which
is able to execute UML models that adhere to the standard. This fUML virtual machine applies
a strictly interpreter-based approach. This means that the virtual machine defines all rules and
processes for the execution of models. The models are loaded into this virtual machine and
transformed into a runtime representation, which is then manipulated accordingly. The fUML
virtual machine consists of an execution environment, which fulfills the actual execution of
the model, and a so-called locus, which acts as a storage for the objects that are created and
manipulated [22]. In the strictly interpretative approach, the models are the source code. This
stands in contrast to another widely-used approach for executing models, which depends on
generating and running additional source code to perform the model execution.

The aforementioned ambiguities in the UML standard have lead to the development of a
plethora of different interpretations of UML models both in academia and industry, hindering
the interoperability of UML tools supporting the execution of models. The formally defined
semantics of fUML may aid in establishing interoperability of UML execution tools and elimi-
nating the risk of non-conformance and vendor lock-in.

1.2 Problem Statement

Multiple open source and commercial UML execution tools support MDD. These tools provide
model execution capabilities to analyse behavioral models. The fUML standard does not have a
significant market penetration yet. UML execution tools mostly rely on proprietary and largely
incompatible model execution environments, leading to migration and compatibility problems.
Currently, only the UML modeling tool MagicDraw supports the fUML compliant execution of
models via the Cameo Simulation Toolkit1.

The main goal of this thesis is to contribute to the adoption of fUML by integrating the
fUML virtual machine into an existing model execution tool and by identifying the challenges
that arise from this integration.

This master’s thesis focuses on the commercial UML tool Enterprise Architect (EA)2, and
the execution environment provided by the plugin AMUSE3, which is a proprietary UML ex-
ecution tool based on code generation. The goal of this thesis was to modify the execution
environment of AMUSE such that fUML standard-compliant models are executed using the vir-
tual machine specified in the fUML standard instead of using its own, proprietary engine. In
doing so, the following challenges have been addressed in this master’s thesis:

Integration with Existing Execution Environment

AMUSE uses a proprietary execution environment not only for simulating activity diagrams, but
1http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-

toolkit.html, Accessed: 6.11.2014
2http://www.sparxsystems.com/products/ea/index.html, Accessed: 27.1.2015
3http://www.lieberlieber.com/amuse/, Accessed: 16.08.2014

2

http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.sparxsystems.com/products/ea/index.html
http://www.lieberlieber.com/amuse/

also for state machines and sequence diagrams. Additionally, it provides mechanisms to actu-
ally realize the connections that can exist between the different diagram types. For example, a
state defined in a state machine might have an attached activity diagram to specify its behavior.
For these connections, AMUSE is able to provide a cohesive flow of execution through these
diagrams. This means that the execution itself can be coherently visualized by dynamically
switching between diagrams according to the execution progress. This causes one of the chal-
lenges in integrating fUML with the AMUSE execution environment. As already mentioned,
fUML only covers activity diagrams, but neither sequence diagrams nor state machines, and
thus also does not provide support for linking these different kinds of diagrams. Nevertheless,
the intended prototype shall support the interaction of activities executed using the fUML vir-
tual machine and state machines as well as sequence diagrams executed using the proprietary
execution environment of AMUSE.

Model Interpretation vs. Code Generation

Model interpretation and code generation are different approaches for executing models. AMUSE
uses a hybrid of interpreting a model and generating code for the actual execution, while fUML
is a strictly interpretative approach.
Therefore, the code generated by AMUSE must be adapted to enable the interaction with the
virtual machine of fUML when executing an activity diagram connected with other UML dia-
gram types. This master’s thesis also surveys the available literature on the topic of combining
model interpretation and code generation, and investigates the challenges that result from the
combination of these approaches. A mechanism for achieving this combination is implemented
in the developed prototype.

Handling Dynamically Created Objects

One additional side-effect of the discrepancy between interpretative and code generation ap-
proaches is the different way in which objects are handled. AMUSE requires that the objects
involved in the model execution are known before the execution starts, while fUML creates them
on-the-fly, with no prior indication whether they will be created at all, or when that would be.
Furthermore, the respective execution approaches use different internal representations of the
created and manipulated objects. On the one hand, AMUSE generates code based on the class
definitions contained in the UML model and uses it to directly instantiate the respective classes.
The interpreter approach of fUML, on the other hand, provides no possibilities for creating ac-
tual instances of the defined classes. Instead, it stores class information and objects in a custom
representation format. For example, class information (name, number and type of attributes,
etc.) is stored in instances of the type Class of the API of the fUML virtual machine. Similarly,
instances of type Object, which are also provided by this API, are used as representations of
class instances. Nevertheless, the execution environment of AMUSE needs to be able to refer to
these dynamically created objects and process the object representation of fUML. For instance,
a state machine might trigger an activity diagram to create objects, and thereafter has to check a
guard condition that refers to an attribute of one of these objects. It was also a goal of this mas-

3

ter’s thesis to elaborate a mechanism for handling differences in the creation and representation
of objects between distinct execution environments.

fUML Interpreter

A valid implementation of the virtual machine specified in the fUML standard needs to be in-
corporated into the prototype and made fully accessible to AMUSE. As the specification of the
fUML virtual machine is based on Java code and AMUSE is developed in C#, either the fUML
virtual machine code needs to be converted or the language barrier needs to be bridged in another
way. Implementing a full virtual machine in C# is not in the scope of this master’s thesis.

1.3 Aim of the Work

The aim of this master’s thesis is to contribute to the adoption of fUML through integrating
fUML into a commercial UML modeling tool and exploring the challenges arising in the inte-
gration. Therefore a prototypical integration of the fUML reference implementation4 with EA
has been developed. In doing so, this master’s thesis has aimed at answering the following
research questions:

1. Can fUML be integrated into a proprietary UML model execution environment? Which
challenges arise in the integration?

2. Does the standardized fUML model execution environment provide the same functionality
as a proprietary UML model execution environment?

3. Is the performance of the standardized fUML model execution environment comparable
to the performance of a proprietary UML model execution environment?

The prototype shall provide the functionality of executing and debugging state machines and
sequence diagrams via EA’s execution environment, in conjunction with executing activity dia-
grams via the fUML execution environment. The visualization and control of the resulting com-
bined execution is handled by EA and the EA model execution plugin AMUSE. The AMUSE
plugin is adapted to use the fUML reference implementation instead of its proprietary model ex-
ecution environment for activity diagrams, while leaving the remaining functionality of AMUSE
unchanged.
The integration of the fUML reference implementation represents a clear break in the homo-
geneous implementation of AMUSE’s execution environment. As has been described in the
previous section, both execution environments follow different approaches for executing UML
models. Therefore, the prototype also includes functionalities to smoothly integrate both of these
execution environments.

4http://portal.modeldriven.org/project/foundationalUML, Accessed: 27.1.2015

4

http://portal.modeldriven.org/project/foundationalUML

1.4 Methodological Approach

This master’s thesis has been carried out in three steps:

1. Literature Study. In this step, the necessary knowledge for carrying out the subsequent
steps was acquired, by exploring existing approaches on the following topics:

• Integration of different UML diagram types

• Combination of code generation and interpreter-based model execution approaches

• Utilizations of the fUML standard (especially in commercial tools)

• Approaches for conducting performance evaluations of model execution environ-
ments

2. Conceptualisation and Realisation. This step consisted of developing a prototype ca-
pable of executing fUML compliant activity diagrams with the fUML execution environ-
ment, and utilizing the AMUSE framework for the execution of state machines and se-
quence diagrams. Furthermore, the prototype was to enable the interaction between these
two execution environments to provide a cohesive flow of execution between activity di-
agrams, state machines and sequence diagrams. A substantial part of the development of
the prototype has dealt with adapting the existing functionalities of AMUSE (e.g., the user
interface), which has been expanded and modified whenever the need arose.

3. Evaluation. In this step, a comparison of both features and performance provided by
the prototype developed in Step 2 and those of the proprietary execution environment
provided by AMUSE has been conducted. This comparison has served as a basis for
evaluating the success of the integration of the execution environments, as well as the
general applicability of the approach proposed by this master’s thesis.

1.5 Structure of the Work

The remainder of this thesis is structured as described in the following.
In Chapter 2, we provide information on both the theoretical background, as well as the tools

utilized in this master’s thesis. In particular, we take a look at the fundamentals of both UML
and fUML, as well as the functionality of the EA plugin AMUSE and the MOLIZ project.

In Chapter 3, we explore the current state-of-the-art related to this thesis. The focus lies on
the topics of UML model execution, integration of UML diagram types and the formalization of
UML.

In Chapter 4, we describes the developed prototype, starting with the overall goal of the
implementation and then going into detail on some technical intricacies, steps taken to integrate
the execution environments, and the tools used for developing the prototype.

In Chapter 5, we discuss both the approach, as well as the results of the evaluation of the
prototype. The evaluation is done regarding functionality, performance, usability and stability.

Finally, in Chapter 6, we provide a conclusion of the thesis, as well as an outlook on possible
future work.

5

CHAPTER 2
Background

This chapters discusses the necessary background information for understanding both the con-
text and the functionality of the approach proposed by this thesis.

In Section 2.1, we provide an overview for the modeling language UML. Special focus is
placed on the different behavioral diagram types within UML, as well as interactions between
these behavioral diagram types. In Section 2.2, we discuss the two model execution technologies
used by the prototype developed for this thesis, namely model interpretation and code genera-
tion. Furthermore, an introduction to both the fUML standard, as well as the model execution
environment defined by it, is provided. Lastly, in Section 2.3 we present the software tools used
by the prototype developed for this thesis. The main focus lies on EA and the fUML reference
implementation.

2.1 Modeling with UML

This section introduces the basic principles of models and the modeling language UML. Further-
more, it takes an extensive look at the behavioral diagram types defined within UML, and at the
interactions between the behavioral diagram types. The latter is important to fully understand
the interaction of the execution environments of fUML and EA.

2.1.1 Introduction to UML

A model is an abstraction of an existing entity. Specifically, a model needs to fulfill three specific
criteria [28]:

• The model applies to an entity.

• The model is a minimal representation of the entity that includes only the attributes rele-
vant to the model.

• The model serves a specific purpose.

7

Naturally, with a purpose as broadly defined as that of the discipline of modeling, there exist a
myriad of different approaches and methodologies which are utilized all over the world. Their
variety, as well as their incompatibility to one another, can complicate a broad spectrum of tasks,
such as comparing different models or switching between approaches.

The Unified Modeling Language (UML) is a graphical modeling language developed by the
OMG [25]. UML is currently in version 2.4.11, and provides a number of different modeling
concepts applicable to a variety of different domains and scenarios.

One of the main goals of UML is to unify all these different modeling approaches, thereby
increasing their compatibility. The unifying character of UML can be seen on various aspects of
the language itself. Firstly, the history of UML shows that it has been created in an effort to con-
solidate various existing modeling languages [25]. The consolidation also led to the integration
of many proven strategies and best-practices into the resulting UML specification.

UML aims to be a general-purpose language that can be applied in a variety of different
scenarios and situations, irrespective of their specific nature. Specifically, UML is independent
of the following factors [25, p. 11]:

• Application domain

• Used programming languages and platforms

• Development process

• Internal concepts

As a result of the general-purpose nature of UML, the definitions contained within UML need
to be kept intentionally vague. However, this vagueness results in a lack of clear specifications
of the semantics of the modeling concepts defined within UML, which is especially problematic
in the context of model execution [25, p. 11].

UML itself is defined by four parts [11]:

• The Infrastructure, which defines foundational language constructs2.

• The Superstructure, which defines user level constructs3.

• The Object Contraint Language (OCL), which is a language for defining expressions
on UML models4.

• The Diagram Definition, which specifies a basis for modeling and interchanging graphi-
cal notations5.

The following sections give a brief overview of the core UML modeling concepts, which are
relevant in the context of this thesis. For a more detailed look into the inner workings, please
refer to the UML standard itself [21].

1http://www.omg.org/spec/UML/2.4.1/, Accessed: 10.11.2014
2http://www.omg.org/spec/UML/2.4.1/, Accessed: 10.11.2014
3http://www.omg.org/spec/UML/2.4.1/, Accessed: 10.11.2014
4http://www.omg.org/spec/OCL/, Accessed: 10.11.2014
5http://www.omg.org/spec/DD/1.0/, Accessed: 10.11.2014

8

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/DD/1.0/

2.1.2 Overview of UML Diagram Types

Figure 2.1 illustrates the different UML diagram types, which correspond to different types of
models that can be created. The figure provides an overview of all available diagram types—not
just the ones that are in the focus of this thesis. All diagram types that are explicitly relevant to
this thesis are discussed in detail in the following sub-sections.

class UML Diagram Types

Diagram

Structure

Diagram
Behavior

Diagram

Class Diagram

Component

Diagram Object Diagram

Composite

Structure

Diagram

Deployment

Diagram

Package

Diagram

Actitvity Diagram Use Case

Diagram

State Machine

Diagram

Interaction

Diagram

Sequence

Diagram

Communication

Diagram

Interaction

Overview

Diagram

Timing Diagram

Figure 2.1: UML diagram types

There are two main types of diagrams: structural diagrams, which describe the static properties
of the modelled object, and behavioral diagrams, which describe its dynamic parts. In the
following, we highlight the properties of the diagram types which are relevant to this thesis,
namely class diagrams, activity diagrams, sequence diagrams and state machine diagrams.

2.1.3 Class Diagram

Classes are templates for creating objects with specific characteristics. A class diagram describes
a set of classes, as well as their relations. An example is shown in Figure 2.2.

The structural aspects of a class are specified by properties. A property defines a set of
values, which may be directly owned by the instance of the defining class. Thereby, values
may be instances of classes or primitive values. The class Person depicted in Figure 2.2 has a
property name of type char.

9

class Student Class Diagram

Person

- name :char

Student

- student_id :int

+ take_course(int) :void

Legend:

1.) Class 2.) Property 3.) Operation 4.) Generalization

Figure 2.2: UML class diagram

The behavioral aspects of the class are defined by operations, which specify name, type and
parameters for invoking an associated behavior. The class Student depicted in Figure 2.2 has an
operation take_course, which takes a parameter of type int.

The class diagram has multiple mechanisms for defining relationships between classes. In
addition to using associations for defining horizontal hierarchies of classes, the class diagram
also supports the specification of generalizations to define the inheritance of attributes and op-
erations from a more general to a more specific class. Figure 2.2 depicts such a generalization
relationship between the classes Person and Student, resulting in the inheritance of the name
attribute by the class Student.

2.1.4 Activity Diagram

An activity diagram shows the behavior of a single activity, which is a model of the behavior of
an object. This model consists of atomic actions that are executed in a pre-defined order. An
example is shown in Figure 2.3.

Action

The core element defining an activity is the action, which is an atomic operation within the
activity. Because of this broad definition of scope, there exists an equally broad range of inter-
pretations of actions, which largely depend on the context. If the model is used to define, for
instance processes in an easily human-readable form, the actions often contain plain text that
describes the expected effects.

If the model is used in the context of execution, however, the actions need to contain addi-
tional information. Therefore, the UML standard defines a set of specific action types, forming a
computationally complete action language. These actions have more clearly-defined semantics,
which are expressed by additional properties and associations. The preciseness by which these
actions are defined in the standard makes activity diagrams machine-interpretable, which is the
reason why the fUML standard is largely based on them.

10

act Take Course

course_id :Integer

Take Course

course_id :Integer

Call_Find_Course :

Find Course

:Resultid

ActivityInitial

Read_Enrollment
ReadStructuralFeature

object
result

ActivityFinal

Add_Student
AddStructuralFeatureValue

object

value

Read_Student
ReadSelf

result

[10]

«DecisionInputFlow»

Legend:

1.) Initial node 2.) Action 3.) Control flow 4.) Decision node

5.) Pin 6.) Parameter 7.) Fork node

Figure 2.3: UML activity diagram

The example shown in Figure 2.3 represents such a machine-interpretable activity. and
demonstrates a number of commonly-used action types:

• It calls a separate behavior named “Find_Course” via a call behavior action.

• A read structural feature action “Read_Enrollment” is utilized to determine the number of
enrolled students of the course supplied by the “Find_Course” behavior.

• A read self action “Read_Student” is used to determine the student object that is perform-
ing the activity.

• An add structural feature value action “Add_Student” is used to add the student to the list
of students enrolled in the course.

For passing input and output values, the actions define pins. In the example, the call behavior
action “Find_Course” has an input pin to receive the course id, as well as an output pin to provide
the result of the course lookup.

Control Nodes

An activity diagram can contain a number of different control nodes to allow for a more fine-
grained control of the flow of execution. The example in Figure 2.3 contains the following
control nodes:

• An initial node “ActivityInitial” to denote the starting point of the execution of the activity.

11

• A decision node to branch the further path of execution based upon the number of enrolled
students determined by the read structural feature action “Read_Enrollment”.

• A fork node to pass on the course object to multiple recipients that require this object as
input.

• A final node “ActivityFinal” to denote the end point of the execution of the activity.

Activity Edges

Actions and control nodes are connected by activity edges, which represent a specific relation
between the connected elements. The actual semantics of the activity edge depend on its subtype,
of which there are control flow and object flow. The visual reprsentation gives no clear indication
as to what type of activity edge is represented—this information can only be inferred from the
specific elements connected by the activity edge.

The control flow represents the flow of control. Each control flow connects either two actions
or an action and a control node. The flow of control originates at the initial node, and usually
consists of a path leading to one (or more) final nodes. There are multiple possibilities for
introducing decisions and parallelisms into the flow of control, which are discussed in the section
on control nodes above.

The object flow represents the flow of information within the activity. It connects either two
pins of two respective actions, or a pin and a control node.

A vital component of both control flows and object flows is the concept of guard conditions.
These conditions specify specific criteria, which have to be met in order for tokens to be passed
along the control or object flow. In the provided example, a guard condition is utilized for the
decision made by the decision node. The path with guard condition “10” will only be taken if
ten students are already enrolled in the course.

Execution Semantics

The execution semantics of activity diagrams are based on token-flow semantics applied to a
directed graph, consisting of vertices (actions and control nodes) and edges (the activity edges).
The activity diagram defines two distinct graphs—one for the flow of control, the other for the
flow of information.

The flow of control is a representation of the order of execution in the activity through
control flow edges. It originates at the initial node of the activity, where a single control token
is generated at the start of the execution. This token is then passed on to each following action,
which keeps the token while performing its designated operations, and passes it onwards once it
has finished, thereby enabling the execution of the next action. Finally, the final node consumes
control tokens, ending the execution of the activity.

It has to be noted that the presence of fork nodes in the flow of control causes the creation
and handling of multiple control tokens in parallel. Furthermore, actions without an incoming
flow of control can fire instantly once all of their required input parameters are provided.

The main flow of execution within the activity is defined by the object flow. It passes along
object tokens, which contain data that is processed or produced by actions and control nodes.

12

The data stored by these object tokens can range from primitive values to complex data struc-
tures. The flow of control serves as a support structure for the flow of information within the
activity.

If we apply these execution semantics to the example provided in Figure 2.3, this would
result in the following execution steps:

1. The course id is provided to the call behavior action “Find_Course”.

2. The read self action “Read_Student” is executed, providing a reference to the context
object (i.e., the Student object excuting the activity) to the add structural feature value
action “Add_Student” once the flow of control reaches it.

3. The initial node creates a token of control and passes it to the call behavior action
“Find_Course”.

4. The call behavior action “Find_Course” is executed and passes the obtained Course object
to the fork node. Furthermore, a control token is passed to the read structural feature action
“Read_Enrollment”.

5. The fork node produces two identical copies of the Course object received from the call
behavior action “Find_Course”. One of these objects is passed on to the read structural
feature action “Read_Enrollment”, the other is passed on to the add structural feature
value action “Add_Student”.

6. The read structural feature action is executed, taking the result of the call behavior action
as input. The read structural feature action “Read_Enrollment” reads the number of en-
rolled students from the Course object and transfers it to the decision node as a decision
input value. Additionally, the read structural feature action “Read_Enrollment” provides
a control token to the decision node.

7. Depending on the value returned by the read structural feature action “Read_Enrollment”,
the decision node either passes a control token directly to the merge node or to the add
structural feature value action “Add_Student”.

8. Should the add structural feature value action “Add_Student” be executed, it adds the
Student object to the list of Students enrolled in the Course. Afterwards, the add structural
feature value action sends a control token to the merge node.

9. As soon as the merge node receives a control token, it passes it on to the final node “Ac-
tivityFinal”.

10. The execution of the activity is finished by the execution of the final node “ActivityFinal”.

13

2.1.5 State Machine

A state machine models the behavior of an object via a system of discrete states and transitions.
The object switches between the states via the transitions when the conditions for the respective
transition are met. The process of transitioning between the states serves as the description of
the behavior of the object itself.

stm StateMachine

Green

entry / LightOn

BlinkGreen

entry / GreenBlink

Yellow

entry / LightYellow

Red

entry / LightRed

RedYellow

entry / LightRedYellow

Initial

Wait 1Wait 7

Wait 1

Wait 1

ButtonWait 7

Legend:

1.) Initial state 2.) State 3.) Transition 4.) Guard

Figure 2.4: UML state machines

Figure 2.4 illustrates the functionality of a state machine based on a model of a simple traffic
light with a button for pedestrians to signal that they want to cross the road.

State

Each state contained by a state machine represents a situation in which the object fulfills a pre-
defined condition. In the example shown in Figure 2.4, each state corresponds to a distinct
combination of lights shown on the traffic light. As with the definition of the activity diagrams
discussed before, the behavior of a state can be described in a number of ways, reaching from
prose to machine-interpretable commands. For the purpose of model execution, the behavior of
a state may be defined via separate behaviors, such as activities. By dividing a state within a
state machine up into orthogonal regions, it is given the possibility to execute multiple sub state
machines, while still residing in the same parent state. This allows for a hierarchical decomposi-
tion of the state machine, which enables to detail a complex state into a set of sub states. Another
distinct advantage of using regions is the introduction of parallelism, as each orthogonal region
is executed in parallel and can independently react to events.

Transition

A transition connects either two states, or a state and a region. It denotes both the possibility of
switching between the two connected elements, as well as the conditions that must be fulfilled
for such a switch to occur.

14

The core information contained in the definition of a transition is the trigger which will cause
the transition to occur. This trigger is a description of an event that is observed by the state
machine, and which will cause the corresponding transition to fire. The example in Figure 2.4
shows three possible mechanisms for triggering a transition. Firstly, there is a transition from
the initial state to the “Red” state without any condition. Secondly, all of the distinct color states
are connected with transitions with time triggers. Lastly, the transition marked with the number
4 has the condition “Button”, which refers to an event caused by pressing the pedestrian button
connected to the traffic light.

Execution Semantics

The core mechanism by which the state machine operates is the processing of events. By pro-
cessing events, the state machine advances from one state to the next until it reaches the final
state, upon which the execution is completed.

One of the important properties of a state machine is that it is always in a consistent state dur-
ing the execution. This is ensured by utilizing the mechanism of run-to-completion processing.
This mechanism consists of executing sequential run-to-completion steps, with each execution of
such a step only starting once the previous one has completely finished. The run-to-completion
step itself is defined as the complete transition from one state to the next.

Additionally, the execution semantics of a state machine ensures that only a single event is
processed at any given time. This accomplishes two major goals:

• The execution does not have to handle concurrency during the execution of a state ma-
chine.

• The state machine is always in a consistent state, as it is simply unresponsive to queries
during the processing of an event.

Aside from guaranteeing that the state machine is always in a consistent state, the usage of this
mechanism also reduces the complexity of handling the execution of state machines consider-
ably.

2.1.6 Sequence Diagram

Sequence diagrams are used to model interactions between objects. The interactions are repre-
sented by messages, which are exchanged by objects represented by lifelines.

The example modeled in Figure 2.5 represents a transaction between a customer and a sup-
plier, consisting of acquiring an offer from the supplier and then performing a purchase.

Lifeline

The lifeline is the quintessential element of the sequence diagram. Each lifeline represents one
of the objects participating in an interaction. In the case of the example shown in Figure 2.5,
an object of type Customer and one of type Supplier are represented. The lifeline serves as
a connection point for both incoming and outgoing messages. Furthermore, it represents the

15

sd Transaction

Customer Supplier

Request_Offer() : Offer

Order_Product()

Request_Payment()

Perform_Payment()

Send_Product()

Legend:

1.) Lifeline 2.) Synchronous message 3.) Asynchronous message 4.) Execution occurrence

Figure 2.5: UML sequence diagram

chronological order in which the messages shall be exchanged. In the visualization used in
Figure 2.5, the chronological order is represented by the position of the message along the line
component of the lifeline, with a position further down the line representing a message that is
sent after one positioned further up. Normally, the sequence diagram only represents the order
in which the messages are exchanged. However, the sequence diagram also supports message
properties for more precisely defining time constraints.

Message

Each message represents a particular communication between the connected objects. There are
two main types of message exchange mechanisms:

• Synchronous communication, in which the sender waits for the receiver’s answer. The
message “Request_Offer” in Figure 2.5 is sent synchronously, indicating that the offer
is provided immediately by the supplier (e.g., because the process is conducted via an
e-commerce portal).

• Asynchronous communication, in which the sender resumes his execution immediately
after sending the message.

Messages can be used for directly invoking operations provided by the receiver. Such operation-
based messages are used in Figure 2.5, with each exchanged message corresponding to an op-
eration invocation. Furthermore, they can be used for exchanging signals, as well as creating

16

and destroying objects. In the context of this thesis, only the message types for transmitting
operation calls and signals will be considered, while message types dealing with the creation
and deletion of objects will be omitted.

Execution Semantics

The execution of a sequence diagram consists of the exchange of messages between the objects
denoted by the respective lifeline. As has been noted in the paragraph on lifelines above, they
represent the chronological order in which the messages are sent, and therefore imply the order
of execution of the sequence diagram. Additionally, the execution occurrences, which are de-
noted as thicker sections along the lifelines, indicate which of the objects currently is the active
element in the context of the execution, and is therefore currently able to send messages.

2.1.7 Interactions Between UML Behaviors

As has been noted in the previous chapter, the fUML standard does not define the execution
semantics of interactions between different behavioral diagrams because it only considers UML
activity diagrams. To counteract this problem, different sources have been consulted on possible
interaction mechanisms between different UML behavioral diagram types. An important source
of information used for this purpose was the UML standard itself. This section goes into detail
on the various mechanisms specified in the UML standard, which deal with interactions between
different types of behaviors corresponding to the different types of behavioral diagrams.

Behavior

Before going into details on the specific types of behaviors defined in the UML standard, it is
necessary to take a closer look into the parent metaclass of all types of behavior detailed below,
which is the metaclass Behavior. Figure 2.6 shows an excerpt of the UML metamodel, which
includes both the meta class Behavior, as well as its accociations to other metaclasses defining
possible interactions between the defined modeling concepts. All of these interactions will be
discussed in detail in the following sub-sections.

As shown in Figure 2.6, the metaclass Behavior does not define any particular forms of
interactions between behavioral diagram types by itself. Indeed, the only universal property of
all types of behaviors is the definition of a context object of type BehavioredClassifier, which
is explained in the following section. All other interaction capabilities need to be introduced by
the associations of the subclasses of the metaclass Behavior.

BehavioredClassifier

The metaclass BehavioredClassifier serves as a base class for various types of classifiers of
objects that are usable within UML. The most prominent sub-class of BehavioredClassifier is
Class.

A single behavior connected to the behaviored classifier is declared as the classifier behavior,
i.e., the behavior which describes the behavior of the classifier itself. The actual behavior of this
classifier is tied to the classifier itself, and to the respective objects. In the moment the classifier

17

class Behavior

Class
Behavior

CallAction
BasicActions::

CallBehavior

Action

Complete

Activities::

ObjectFlow

ControlNode
Intermediate

Activities::

DecisionNode

Behavioral

Feature

Classifier
Behaviored

Classifier

Namespace
RedefinableElement

Vertex
BehaviorStateMachines::State

Namespace
RedefinableElement

BehaviorStateMachines::Transition

BehavioralFeature
Kernel::Operation

*

+effect

0..1

* +doActivity 0..1

* +entry 0..1

* +exit 0..1

*

ownedBehavior

0..*

*

classifierBehavior

0..1

*

method

0..*

*

+decisionInput

0..1

*

+selection

0..1

*

+transformation

0..1

*

+behavior

1

Figure 2.6: UML metaclass Behavior

is instantiated, the classifier behavior begins execution and controls the entire behavior of the
instance, as well as its interactions with other objects. As such, the classifier behavior also
represents the ”lifespan” of the object itself, which is discarded as soon as the classifier behavior
has completed.

Additionally, a behaviored classifier is able to declare an arbitrary number of owned behav-
iors, with which it can interact. The UML standard does not contain a specification for when or
how these owned behaviors are executed.

Class

The Class is a specialization of the metaclass BehavioredClassifier. The specification of Class
also does not explain how the class interacts with its owned behaviors. A possible interaction
mechanism is the execution of operations to which the owned behaviors are attached. Some
additional information on this approach can be gathered from the fUML standard. Therein
the following restriction for owned behaviors of a behaviored classifier are defined: “An owned
behavior must be either the classifier behavior of or the method for an operation of its behaviored
classifier.” [22]. As has been discussed in the previous chapter, the fUML standard only deals
with classes and activies, which means that this restriction also applies to classes specifically.
This implies that the method of invoking the owned behaviors via operations is indeed the correct
approach.

18

Activity

There are three ways in which activities may interact with over behaviors. Firstly, the activity
may contain actions that directly invoke other behaviors. Such an invocation can be performed
directly by utilizing a call behavior action, or by invoking an operation via call operation action,
which is in turn connected to a behavior. Both actions support synchronous and asynchronous
execution, as well as using both input and output parameters.

A different approach to invoke behaviors from within an activity is to utilize actions for
creating instances of behaviored classifiers. This is accomplished via a create object action.
A similar, more roundabout approach based on instances is also available. As behaviors are
themselves classifier behaviors, they can also be directly instantiated and then executed via a start
object behavior action. This possibility allows for additional use cases, such as modifying the
behavior object before execution. Similarly, an object may passed to a start classifier behavior
action which automatically executes its associated classifier behavior.

Aside from directly invoking behaviors, the activity contains a variety of different mecha-
nisms designed to support both the flow of control and the flow of information via the invocation
of additional behaviors. An example is the decision node. The decision node can be provided
with a number of inputs, based on which it will decide how to pass on the flow of execution.
These inputs can be processed by an additional behavior to make this decision. Similarly, ob-
ject flows can be equipped with additional behaviors to both transform or discard tokens before
passing them on.

State Machine

The main mechanism with which a state machine invokes other behaviors is by defining the
behavior associated with its states.

Each state may contain up to three different behaviors. Firstly, an entry behavior can be
defined for the state, which is executed to completion before the state is entered through an
arbitrary transition. Next, the state can define a behavior that is executed while the execution
resides in the state. When such a behavior is defined, the execution resides in this state until
either the execution of this behavior has been completed or externally terminated. After the
execution of this behavior has finished, an executable transition is automatically triggered and
the state is left. Finally, a behavior to be executed on leaving the state can be defined. This
behavior will also be executed to completion before continuing on with the transition. Aside
from invoking behaviors directly while residing in a state, each transition also has the capability
to define an effect, which can also refer to an arbitrary behavior.

When considering all of the aforementioned possibilities for connecting to other behaviors
available in the state machine, we need to reconsider the run-to-completion mechanics of the
state machine. The run-to-completion mechanism requires that the state machine only performs
complete run-to-completion steps, with each step transitioning from one consistent state to the
next. During a run-to-completion step, the state machine is unresponsive to external events.
While this mechanism reduces the complexity of handling state machines considerably, one
should also consider the potential pitfalls and limitations this mechanism brings with it.

Consider, for example, the execution of the model depicted in Figure 2.7.

19

act B

ActivityInitial

Call_C :C

ActivityFinal

stm C

Initial

Wait

Final

Signal

stm A

Initial Final

State

entry / Call_B

Figure 2.7: Model that depicts possible issues with the run-to-completion mechanics of state
machines

Executing this model results in the following execution order:

1. State machine A contains state “State” with the entry action “Call_B”, which executes
activity B.

2. Activity B synchronously invokes state machine C with the call behavior action “Call_C”.

3. State machine C waits for the occurrence of a signal to advance from state “Wait” to the
final state.

The model depicted in Figure 2.7 is valid according to the UML standard. However, the run-
to-completion mechanics lead to a potentially indefinitely blocking of state machine A, as it is
trying to complete its entry-action. This, in turn, blocks the completion of the run-to-completion
step of state machine A. These sort of interdependencies need to be considered when designing
models.

Sequence

The UML standard does not specify any type of direct interaction betweem sequence diagrams
and other behaviors. The only available mechanism for invoking behaviors is therefore to send
a message requesting the start of an operation, which is connected to a behavior.

20

Invocation of Emergent Behavior

A number of diagram types within UML do not describe the behavior of specific entities. In-
stead, they describe emergent behavior, which refers to the behavior of a system that results from
interactions of entities within this system. Two examples for such diagram types are interaction
diagrams and use case diagrams. The execution semantics of these diagram types is not well
defined by the UML standard and out of scope for this thesis.

Signals

Aside from directly invoking other behaviors, behaviors are also able to communicate with each
other by utilizing signals. The UML standard defines these signals in terms of requests, which
are exchanged by the instances capable of receiving signals. To further specify these requests,
signals can hold additional data in the form of arbitrary attributes [21, p. 464].

Sending signals is a functionality that is reserved exclusively for activities. There are three
separate types of actions for sending signals. Firstly, there is the send signal action, which
generates a signal and sends it to a specified target. Secondly, the broadcast signal action also
generates a signal, but transmit it to all possible recipients. Lastly, there is a variation of the
broadcast signal action called the send object action. The send object action allows for sending
an already existing signal object to all available recipients. Similarly to the start object behavior
action discussed above, this allows for further manipulating the signal object before transferring
it.

As for the execution semantics of these actions, all three transmit the signals asynchronously
and immediately resume the execution. There is neither a possibility to wait for a reception
notification, nor for a possible reply from the recipient(s).

Determining which types of model elements are able to respond to signals is rather difficult,
as the UML standard does not contain a straightforward definition. Nevertheless, an analysis of
the standard has revealed two mechanisms for receiving signals and reacting to them.

The first mechanism in place for handling signals relies on the concept of receptions. A
reception indicates that a classifier can react to a signal [21, p. 463]. The snippet of the UML
metamodel that defines the metaclass Reception is shown in Figure 2.8. The figure displays
two pieces of key information: the metaclass Reception is a specialization of the metaclass
BehavioralFeature, and its instances are owned by classes. The metaclass BehavioralFeature,
in turn, is the base class for the metaclass Operation. Operations can be utilized by classes to
execute arbitrary behaviors as discussed previously in the analysis of the execution capabilities
of classes.

The second available mechanism for handling signals are triggers. A trigger specifies an
event that leads to the execution of a behavior on a classifier instance. The UML standard
defines three elements which incorporate triggers. They are listed and explained in Table 2.1.

The snippet of the UML metamodel that defines the metaclass Trigger is shown in Figure
2.9. The figure depicts the relation between the trigger and the event. The connection between
the event and handling signals is defined by the metaclass SignalEvent, which defines an event
that is caused by receiving a signal. As such, it can be argued that the trigger is able to respond

21

class Reception

Communications::

Reception

Feature

Communications::BehavioralFeature

BehavioredClassifier

Communications::Class

Classifier

Communications::

Interface

Classifier

Communications::Signal

BehavioralFeature

Kernel::Operation

*

+ownedReception

*

*

+ownedReception

*

*
+signal

1

Figure 2.8: UML metaclass Reception

Control Node Sub-Type Description
Accept event action An accept event action defines a set of triggers to indicate which

types of events it accepts.
Transition Transitions within a state machine may define sets of triggers

which cause the transition to fire.
State A state holds a list of deferrable triggers. If events arrive for

these triggers and are not immediately consumed by a transition,
the state holds these events until they can be consumed.

Table 2.1: Elements which incorporate triggers

to signals by virtue of the fact that it is able to respond to any type of event. This functionality
is not explicitly stated in the standard, however.

The functionality of triggers is especially relevant to this thesis. Even though the exact
interpretation of the functionality is unclear, it is implemented in both EA and the AMUSE
plugin. Thus, it is also implemented in the prototype integrating fUML with AMUSE.

In general, the execution semantics behind sending and receiving signals are not well-
defined. For example, the following points of consideration are not explicitly defined [21]:

• Handling a signal with multiple possible recipients

• Handling a signal with no possible recipients

• Time intervals between event occurrences

22

class Trigger

Communications::Trigger
Action

CompleteActions::AcceptEventAction

Action

CompleteActions::ReplyAction

Element

Kernel::NamedElement

PackageableElement

Communications::Event

Namespace

RedefinableElement

Vertex

BehaviorStateMachines::State

Namespace

RedefinableElement

BehaviorStateMachines::Transition
*

+trigger

*

*

+deferrableTrigger

*

*

+replyToCall

1

*

+trigger

1..*

*

+event

1

Figure 2.9: UML metaclass Trigger

2.2 Model Execution

This section explores various different mechanism for executing models in general and UML
models in particular. Therefore, two of the main paradigms in model execution, interpreter-based
execution and execution via code generation, are explored. This section only discusses pure
implementations of both model interpretation and code generation. A more thorough discussion
of the differences between model interpretation and code generation, as well as approaches of
integrating and combining the respective approaches, is provided in Section 3.3.

In addition to to the basic approaches of model interpretation and code generation, we de-
scribe the the fUML standard in detail. Both the syntax employed by fUML, as well as the
execution model and the execution semantics of fUML are discussed.

2.2.1 Model Interpretation

Model interpretation is an approach that utilizes a virtual machine to directly execute a given
model6. A virtual machine is an abstract computing machine which holds objects in a desig-
nated memory space and performs a set of instructions on these objects. In the case of model
execution, the objects held by the virtual machine are instances of modeling concepts, and the
intructions manipulate these instances to simulate their behavior [24]. The complexity of the set
of instructions provided by a virtual machine depends on the functionality. In the case of model
execution, a complete virtual machine has to be able to interpret any type of model that is valid
and executable according to the modeling language.

6http://modeling-languages.com/executable-models-vs-codegeneration-vs-
model-interpretation-2/, Accessed: 16.08.2014

23

http://modeling-languages.com/executable-models-vs-code generation-vs-model-interpretation-2/
http://modeling-languages.com/executable-models-vs-code generation-vs-model-interpretation-2/

The technology for implementing such a virtual machine is in principle not bounded by any
specific constraints. Any type of system that is able to apply the instructions for model execution
is applicable. This form of model execution is applied by the fUML virtual machine.

Model and Object Instantiation

One of the main challenges in integrating the execution environments of fUML and AMUSE is
the integration of their respective object representations. Therefore, the implementation of these
object representations in both of the model execution paradigms will be discussed in more detail.

The object space of the virtual machine must be constructed such that it can hold all instances
that are valid according to the model specification. Therefore, the data structure that holds these
objects need to be suitably generic.

To illustrate a possible implementation of such an object space, we will consider the ob-
ject space used by the fUML execution environment. Figure 2.10 depicts the classes used for
maintaining objects within the fUML execution environment.

class fUML Objects

Object Class

FeatureValue StructuralFeature

ValueExtensionalValue

CompoundValue

1

values

0..*

*1 *

type

1

*

types

*

Figure 2.10: Class structures used by fUML objects

These classes fulfill the following roles:

• All objects are represented by instances of the type Object, which is a generic representa-
tion of an instance of a classifier.

• Each instance of type Object references an instance of type Class to represent the classifier
it instantiates.

• As the class Object is an extension of the class CompoundValue, objects can hold a number
of different instances of type FeatureValue to represent the properties of the instantiated
classifier. A FeatureValue references a specific instance of type StructuralFeature that
specifies the property itself, as well as a number of objects of type Value to denote the
values.

24

To further illustrate the usage of the interpretative approach, we will reconsider the class
diagram example introduced in Section 2.1 and depicted in Figure 2.2. Specifically, we will
discuss instances of the class Student. This class holds two properties, namely the property name
of type char and the property student_id of type int. Figure 2.11 depicts the objects maintained
by the fUML execution environment to represent an instance of the class Student.

object Student fUMLObjects

Student :Object Student :Class

Name_FV :

FeatureValue

Student_id :

FeatureValue

Name_SF :

StructuralFeature

name = "name"

Student_id :

StructuralFeature

name = "student_id"

Name :Value

value = "Adam"

Student_id :Value

value = 124

Figure 2.11: Class structures used by fUML objects

In particular, this involves the following objects:

• An object of type Class representing the class Student

• An object of type Object representing an instance of the class Student

• Two objects of type StructuralFeature, each representing a property of the class Student

• The Student object holds two instances of the class FeatureValue referenceing the two
StructuralFeature instances. Each of the FeatureValue instances holds an instance of type
Value which holds the value of the property.

2.2.2 Code Generation

Code generation is an approach that generates and compiles additional source code for each exe-
cuted model, which can be run to perform the actual model execution. In contrast to the interpre-
tation approach, the generated code is specifically tailored to only represent the functionalities
of one specific model, which leaves a less complex, model-specific unit for the execution of the
model. However, the complexity of the whole model execution system required for this execu-
tion method might not necessarily be smaller, as the component responsible for the generation
of the necessary code still needs to be able to handle all possible models. The technology for

25

generating code usually employs a templating engine, which is a piece of software that fills in
a pre-built template file. The template file contains all static elements of the code that needs to
be generated, as well as specific keywords to indicate positions at which the dynamic, model-
specific information needs to be inserted. The resulting is the source code used for the execution.
This form of model execution is applied by AMUSE.

Model and Object Instantiation

By generating code based on the classes defined in a specific UML model that is supposed to
be executed, the code generation approach is able to create model-specific representations of the
classes. The instances used during the model executions are then created by instantiating these
generated classes.

To further illustrate the usage of the code generation approach, we will reconsider the class
diagram example introduced in 2.1 and depicted in Figure 2.2, as it is processed by the AMUSE
plugin. The source code generated for the class Student is depicted in Listing 2.1.

c l a s s S t u d e n t
{

i n t s t u d e n t _ i d ;
s t r i n g name ;

}

Listing 2.1: Code generated by AMUSE for the class Student (cf. Figure 2.2)

Instantiating this class results in a single object of type Student, with a property name of type
string, and a property student_id of type int.

2.2.3 fUML

In addition to the UML standard discussed in the Section 2.1, the OMG has also released a
document detailing the Foundational Subset For Executable UML Models (or fUML for short).
This fUML standard is concerned with defining precise semantics for a subset of UML. The
fUML specification consists of three major parts [16]: The syntax, the execution model and the
model library. Each of these components is discussed in the following. Furthermore, we discuss
the execution semantics which are defined by fUML in a separate sub-section.

Syntax

As fUML deals with a subset of modeling concepts of UML, the syntax used for creating fUML
models is identical to the syntax used within UML. The fUML standard deals primarily with
implementing the elements of the UML kernel, which includes classes, associations, and pack-
ages [21].

Classes are utilized for describing the structures used during the model execution—i.e., in-
stances, their properties and their relations to each other. fUML does not include the full range
of functionality provided by UML classes, however. For example, the fUML execution environ-
ment does not support using interfaces within class diagrams.

26

Behavioral features are modeled exclusively by activity diagrams. Again, a number of dif-
ferent specific features of UML activity diagrams are omitted within fUML. This includes all
actions for using static variables, as well as the broadcast signal action.

The fUML syntax is restricted to these reduced versions of class diagrams and activity dia-
grams, and does not go into any further detail on the other types of behavioral diagrams. Fur-
thermore, the fUML standard does not offer any insights on possible interactions with these
behavioral diagram types. However, the aim of this thesis is not only to integrate fUML with
AMUSE for executing activity diagrams, but also to enable the integration of the execution of ac-
tivity diagrams with the execution of state machines and sequence diagrams. These interactions
therefore are not governed by the fUML standard.

Execution Model

The execution model of fUML is a model that specifies how UML models are represented and
interpreted for their execution. This model is written in fUML itself. The execution model
of fUML is built as an extension of the UML metamodel. The execution semantics are added
via the visitor pattern, a software pattern defined by Gamma et al. [8]. By applying the visitor
pattern, the fUML execution model is able to add execution semantics to the definitions of UML
modeling concepts, while leaving the original definitions of the modeling concepts unchanged.
By extending the metaclasses of UML with this visitor pattern, the execution model is largely
decoupled from the UML metamodel.

Locus. An important concept defined by the execution model is the locus, which serves as a
persistent storage facility for all value specifications created or modified during the execution.
The locus holds a single instance of the executor component, which provides the model execu-
tion facilities. This executor is linked to the locus instance, and can only operate upon the value
specifications stored by it. The specification mentions the possibility of behaviors interacting
across multiple loci, but does not specify a mechanism by which this could be accomplished.
Furthermore, the locus may provide access to additional services and objects to be used by the
executions. These additional services are defined by the model library.

Executor. The executor component provides the model execution facilities. It provides the
following three key services [22]:

• Execute: Synchronously executes a behavior for given input parameter values and returns
output parameter values.

• Start: Asynchronously starts the execution of a stand-alone or classifier behavior, return-
ing a reference to the instance of the executing behavior.

• Evaluate: Evaluates a value specification, and returns the resulting value.

The functionalities provided by the executor are implemented by utilizing the visitor pattern
discussed above. A separate execution factory, which also resides within the locus, provides
the required visitor instances. The execution factory instaniates the respective visitors for the

27

elements contained by the model to be executed. It provides instances of the following visitor
types:

• Execution: An execution visitor performs the execution of a specified behavior. The fol-
lowing implementations are available:

– ActivityExecution: Implements the execution semantics of activities.

– OpaqueBehaviorExecution: Used to execute pre-defined behaviors, which are pro-
vided by the fUML execution environment.

– FunctionBehaviorExecution: Basic functionality, such as comparison of objects and
definitions of binary and unary operations.

• Activation: An activation visitor defines the behavior of a specific activity node. fUML
provides an implementation of an activation visitor for each activity node type defined
within UML, with the exception of the BroadcastSignalAction.

• Evaluation: An evaluation visitor is used to create a value instance based on a value spec-
ification. The value specification may represent a primitive value, such as an Integer or a
String value, as well as links between objects.

Model Library

The model library provides supporting structures for the execution environment of fUML. This
includes both primitive datatypes, as well as reusable behaviors, such as basic arithmetic func-
tions. The fUML standard also mentions the possibility of providing access to external systems
via such behaviors, but does not go into further detail on how these behaviors could be imple-
mented.

Execution Semantics

The execution semantics fUML gives to activity diagrams are nearly identical to the execution
semantics given to an activity diagram in the UML standard, albeit more precise. The execu-
tion model of fUML is based on token-passing semantics. Two different flows of tokens are
implemented—the flow of control tokens, which signify which actions are currently being exe-
cuted, and the flow of object tokens, which serve to store and transport information during the
execution.

The execution of an activity is conducted in the following way [18]: As a first step, the
available input parameter values are provided to the input parameter nodes of the activity, from
where they can be passed on via object flows. Secondly, the initially executable action nodes
are determined. This includes the initial node, as well as all activity nodes with no incoming
control flows. All these nodes are provided with control tokens. When the initial control tokens
have been distributed, the execution model continuously repeats the following steps until no
additional activity node can be executed:

28

1. Determine all executable activity nodes. For a node to be executable, all incoming control
flows must hold a control token. Furthermore, depending on multiplicity, all input pins
must hold a corresponding object token.

2. Execute all executable action nodes. During the execution, each respective node:

a) Consumes all incoming control and object tokens

b) Performs its associated behavior

c) Provides outputs of the behavior on output pins via object tokens, if applicable

d) Generates a new control token on each outgoing control flow

Lastly, after the execution of all executable nodes has concluded, the output values generated by
the activity are placed on the output parameter nodes.

Semantic Variation Points. The fUML standard introduces two semantic variation points.
The fUML execution model contains explicit implementations of these functionalities, which
may however be adapted by the concrete implementation.

• Event dispatch scheduling: The fUML execution model handles all events on a first-in,
first-out basis.

• Polymorphic operation dispatching: In the case of multiple implementations of an oper-
ation, the fUML execution model decides which implementation to execute based upon
both the context of the invocation and the target of the operation call.

For these semantic variation points, the fUML standard incorporates the strategy pattern, which
allows interchanging different algorithms [8]. The strategy pattern is also used to incorporate
non-deterministic behavior, e.g., choosing which clause body of a conditional node is to be
executed if their respective tests are positive [22].

Furthermore, the fUML standard does not require a specific implementation of the following
features:

• The semantics of time: The standard does not restrict the way time should be handled.

• The semantics of concurrency: The execution of activities according to the fUML stan-
dard is implicitly concurrent, as long as the token passing mechanics allow it. The stan-
dard does not require an implementation to actually execute multiple actions in parallel,
however.

• The semantics of inter-object communications mechanisms: The methods of exchanging
values and signals within the model execution are not specified. Furthermore, both reli-
ability of the communication and possible delays are solely in the hands of the specific
implementation.

29

2.3 Tools

The prototype created for this thesis is implemented as an integration of multiple existing tools.
These tools include both the main integrated components (Enterprise Architect and the fUML
reference implementation), as well as multiple additional tools and plugins that are utilized
specifically for the integration. Each of the following subsections will provide a short overview
of a specific tool, and will then present the functionality of the tool that is relevant to the proto-
type created for this thesis.

2.3.1 Enterprise Architect

Enterprise Architect (EA) is a commercial UML modeling tool developed by Sparx Systems.
EA aims to provide a complete modeling tool for the UML standard, i.e., all elements described
therein can be modeled.

The strictness with which EA adheres to the UML standard varies with the elements in
question. A more detailed examination of this topic including the description of measures taken
to overcome certain limitation of EA can be found in Section 5.2.3.

The prototype created for this thesis utilizes the following functionality of EA:

• Creation of models

• Validation of models before execution

• Generation of code

A core feature of EA is its inherent expandability via the creation of plugins. EA provides a
fairly extensive API, which provides access to a large number of EA’s functionalities. A plugin
has access to all of the information stored in a model, and is also able to modify the user interface
of EA, e.g., by adding custom user interface elements or context-sensitive menu entries.

In the professional edition and above editions, EA provides an extensive mechanism for
executing models based on an interpretative approach. This model execution mechanism is
capable of executing a combination of activity diagrams, state machines and sequence diagrams.
This model execution mechanism, however, supports only limited interactions between specific
behaviors. Communication between behaviors can only be realized via signals broadcasted by
pre-defined triggers7.

2.3.2 AMUSE

The toolkit called Advanced Modeling Using Simulation and Execution (AMUSE) is a plugin
for EA developed by LieberLieber Software GmbH8. The purpose of AMUSE is to provide
an alternative execution environment for behavioral models created within EA based on code
generation.

7http://www.sparxsystems.com/enterprise_architect_user_guide/10/model_
simulation/model_simulation.html, Accessed: 27.1.2015

8http://www.lieberlieber.com/amuse/, Accessed: 16.08.2014

30

http://www.sparxsystems.com/enterprise_architect_user_guide/10/model_simulation/model_simulation.html
http://www.sparxsystems.com/enterprise_architect_user_guide/10/model_simulation/model_simulation.html
http://www.lieberlieber.com/amuse/

Figure 2.12 depicts the components of AMUSE, as well as the basic relationships between
them, which are both described in the following.

composite structure AMUSE

Visualization

ControlPanel

Simulation ExecutionEnvironment

State Machine

Executor

Activity Diagram

Executor

Sequence Diagram

Executor

Simulation Events

Simulation

Commands
Behavior Execution

Commands

Behavior Execution Events

(Execution Coordination)

Figure 2.12: Main components of AMUSE

Simulation (Execution Coordination)

The Simulation component serves as the central component of the AMUSE plugin. The Sim-
ulation component accepts commands from the ControlPanel component, controls the Execu-
tionEnvironment component and continuously provides information about the current state of
the model executions to the Visualization component. The Simulation component is also able to
conduct several Sub-Simulations, with each Sub-Simulation providing the same functionality as
the original Simulation component. When Sub-Simulations are present, the Simulation compo-
nent propagates events between Sub-Simulations, which allows them to communicate with each
other without being tightly coupled. In fact, the respective Sub-Simulations do not know of each
other’s existence at all.

Execution Environment

The ExecutionEnvironment component provides an implementation of the entire execution en-
vironment of the AMUSE plugin. This component is responsible for both the execution of
behavioral diagrams, as well as the constant propagation of the current execution state, which is
interpreted and further distributed by the Simulation component.

Supported Combination of UML Diagram Types. The execution semantics provided by
the AMUSE execution environment are built for a very specific combination of structural and
behavioral UML diagram types, which must be adhered to by the user for the execution to be
performed successfully.

31

The core element of each execution conducted by AMUSE is a single Class element. The
whole execution is centered around a single instance of this class, with all attached behavioral
diagrams describing the behavior of this class. The ExecutionEnvironment component executes
all behaviors in the context of this single instance. To distinguish this class within this description
of the execution semantics, it is referred to as the main class, with the instance being referred to
as the main instance.

A single state machine is used as the behavioral model for the main instance. This state
machine represents the classifier behavior of the main instance, which implies that it represents
both the entire behavior of the instance, as well as all forms of communication available to it.

Furthermore, the main instance may hold an arbitrary number of activity diagrams. These
activity diagrams can be invoked by the state machine either as entry/do/exit actions on a state,
or as an effect of a transition. The execution of such an activity diagram is conducted asyn-
chronously, i.e., the state machine immediately resumes execution after the execution of an
activity diagram has been invoked.

Furthermore, a single sequence diagram may be defined for the main instance. This sequence
diagram only serves the purpose of creating objects in addition to the main instance, which will
be used during the execution.

Execution Preparation. Before conducting the actual execution of the main instance, the Ex-
ecutionEnvironment component performs a preparation phase to set up the necessary structures
for performing the execution. In this phase, the source code needed for the model execution is
generated and compiled. The generated source code consists of the following components:

• Representations of all behavioral models used during the execution. Each of these rep-
resentations only contained the model information that is specifically required for the
execution, and is stored in a separate code file. A representation is generated both for the
state machine and the sequence diagram connected to the main class, as well as for all
activity diagrams that are referenced by this state machine.

• Representations of all classes that are required during the execution. This includes both
the main class, as well as all classes that are linked to either the main class or one of the
behavioral models that have been processed during the first step. An example for the latter
would be the class referenced by a create object action within one of the activity diagrams.

• An implementation of an additional BehaviorContainer, which contains references to all
objects required for the execution. This includes the main instance, as well as representa-
tions of the behavioral models generated in the first step. This BehaviorContainer serves
as the object space used by the ExecutionEnvironment component.

Execution. As soon as the code generation has been completed, the ExecutionEnvironment
component starts the execution of the main instance. The actual execution of each specific
behavioral model is conducted by a separate Executor instance, which is instantiated by the Ex-
ecutionEnvironment component and then responsible for the execution of the behavioral model.
Three separate types of executors are available to the ExecutionEnvironment component, each

32

of which is responsible for a specific type of behavioral diagram, namely activity diagram, state
machine and sequence diagram.

The execution performed by an Executor is strictly based on the representation of a behav-
ioral model, which has been generated by the ExecutionEnvironment component beforehand.
The implementations of the respective Executors are built to only serve their specific purpose in
the previously described execution semantics of AMUSE.

The execution semantics for state machines implemented in AMUSE adhere to the execution
semantics for state machines defined in the UML standard, as described in Section 2.1.

The execution semantics for activity diagrams supported by AMUSE are very limited. All
of the control nodes are available for usage. However, only a single, generic action type is
supported. The actual behavior of each action must be implemented through C# code.

The execution semantics for sequence diagrams are only built for the purpose of instanti-
ating objects and assigning the created objects to specific attributes of other objects within the
object space. Each instance defined with a separate lifeline within a sequence diagram will be
instantiated within the object space. Links between these objects can be established by exchang-
ing pre-defined messages. Additionally, the invocation of operations defined on the instantiated
objects is also supported. However, this mechanism cannot be used to invoke behaviors attached
to this operation as discussed in Section 2.1. Instead, it is only able to execute C# source code
that has been attached to the specific operation within the model.

The combination of the Executor instances and the code files generated by the ExecutionEn-
vironment component are sufficient to provide the full execution environment of AMUSE. These
components are compiled into a single library which is then dynamically loaded and used by the
Simulation component. This library can also be used as a stand-alone execution environment for
the main instance, which can be used independently of both EA and the AMUSE plugin.

Control Panel and Visualization

The ControlPanel provides functionalities for controlling the execution to the user via an ad-
ditional user interface that is directly integrated with the user interface of EA. The available
functionalities are:

• Starting and stopping the execution

• Advancing the execution by a single step

• Setting breakpoints

• Inspecting the current execution state (e.g., created objects and their respective values)

• Manual triggering of transitions and dispatching signals

The Visualization component displays the current state of the running executions to the user. The
on-screen display of the execution is created by layering a Scalable Vector Graphics (SVG) [29]
overlay over the display of the model itself, which is used to convey information about the cur-
rent execution state, e.g., the currently active node. The propagation of user interface updates is

33

done strictly via events. Therefore, the Visualization component receives updates on the current
state of the executions from the Simulation component, which passes the corresponding events
along from the ExecutionContext component.

2.3.3 MDE Plugin

The MDE Plugin is a plugin developed by LieberLieber Software GmbH that provides an object-
oriented interface for accessing models created within EA. This interface encapsulates the infor-
mation contained within the models in classes and objects that adhere to the UML standard.

Even though EA’s API provides access to all of the data contained within a model, accessing
them via the provided functionalities can be cumbersome. Especially accessing information on
specific types of UML modeling elements, e.g., specific action types, requires querying the EA
models directly via SQL queries. This information is made available by the MDE plugin in a
more direct way.

At the time of developing the prototype for this thesis, the MDE plugin was still under
development, and therefore did not encompass the whole UML standard yet. Therefore, the
MDE plugin could not be used exclusively for accessing the EA database, and the prototype still
needs to use direct SQL queries to the EA database to acquire a part of the required model data.

2.3.4 fUML Reference Implementation

The fUML reference implementation is an implementation of the fUML virtual machine as de-
scribed in the fUML standard [22], which is provided by modeldriven.org9. The implementation
is done in the Java programming language. For a more detailed description of the inner workings
of the fUML execution environment, please refer to Section 2.2.3.

The purpose of the fUML reference implementation is to provide a reference for tool vendors
seeking to implement the fUML standard. As such, the implementation covers all the features
described in the standard, but includes no additional features aside from those explicitly specified
therein.

The fUML reference implementation provides a single main functionality. It executes a
UML conformant model specified in an XMI file and produces an execution trace as output.
The execution is carried out as a single, synchronous method-call, with no possible points of
interaction with the execution environment during the actual execution.

This holds the following key implications for utilizing the fUML reference implementation
in the context of this thesis:

• Pausing / resuming the execution is not possible

• There is no way to influence the execution path in scenarios where there are multiple
execution paths due to parallelism

• No feedback on the current state of the execution can be obtained during the execution

• No information about objects present at the locus can be obtained during the execution

9http://portal.modeldriven.org/project/foundationalUML, Accessed: 16.08.2014

34

http://portal.modeldriven.org/project/foundationalUML

2.3.5 MOLIZ fUML Debug API

Mayerhofer et al. have implemented an extension of the aforementioned fUML reference im-
plementation [19] called the MOLIZ fUML Debug API, which aims to overcome the previously
described limitations.

This implementation extends the original fUML reference implementation by utilizing As-
pect Oriented Programming, and thereby adding additional functionality while leaving the orig-
inal source code untouched.

Stepwise Execution

The MOLIZ API allows the stepwise execution of fUML models. This provides control over the
actual execution, and allows observing the execution state (by querying the locus via its built-in
access functionalities) after every step in order to react to it accordingly.

Multiple execution may be ongoing in parallel. The fUML reference implementation dis-
tinguishes these executions based on the fact that each execution is conducted by a separate
ActivityExecution instance. The MOLIZ API assigns unique ids to each of these currently run-
ning executions. This provides an approach to both track and refer to specific executions. These
unique ids are also used in controlling the execution. When advancing a single execution by
a step, the unique id of the respective execution must be provided. The actual definition of a
step is based on the concept of an ActivityNodeActivation, a singular object that encapsulates the
execution behavior for a single node (either an action or a control node). For each step executed,
one such ActivityNodeActivation is run.

Event Mechanisms

The MOLIZ API also incorporate event mechanisms, which propagate changes in the current
execution state. The following types of events are provided:

• Begin and end of the execution of an activity

• Begin and end of the execution of an action

• Events pertaining to objects residing at the locus (e.g., the creation or modification of an
object).

2.3.6 IKVM

IKVM10 enables the invocation of Java libraries from within the .Net Framework. This is ac-
complished by applying a process to convert Java Archives (JARs) into Dynamic Link Libraries
(DLLs, libraries for C# code). The created DLLs provide full representations of all classes and
functionalities contained within the JARs. Whenever a method within one of these classes is
invoked, the DLLs invoke a custom-built virtual machine that executes the original JARs.

10http://www.ikvm.net/, Accessed: 5.1.2014

35

http://www.ikvm.net/

The process of converting JARs to DLLs via IKVM requires the user to provide both the
JARs that should be used, as well as all referenced JARs (including JARs referenced by the
referenced JARs themselves). Unfortunately, the version of IKVM used for the development of
the prototype does not provide a concise way of determining if all required references have been
added, and instead requires the analysis of log-files produced during the conversion to determine
which required JARs could not be loaded. The resulting process of determining the correct set
of JARs is therefore both tedious and error-prone.

36

CHAPTER 3
State of the Art

This chapter provides an overview of the existing work which relates to this thesis, thereby
outlining the relations between the existing work and the contributions of this thesis.

In Section 3.1, we discuss the various existing tools and approaches for executing both UML
activity diagrams and state machines. In Section 3.2, we present the work that specifically deals
with implementing interactions between UML behioral diagram types in the context of model
execution. This section also focusses on the topic of formalizing UML, as specific formalizations
also deal with formalizing the specific interaction mechanisms. Lastly, as has been discussed in
the introduction, the prototype implemented during this thesis also has to overcome the technol-
ogy gap between two major approaches to model execution, namely model interpretation and
code generation. Therefore, we discuss the literature on this topic in Section 3.3.

3.1 Execution of UML Activity Diagrams and State Machines

The fUML standard seeks to provide a clear and concise semantics specification for a subset
of UML. However, defining the semantics of UML has been a topic of research for a number
of years before the creation of fUML, leading to a variety of different interpretations of the se-
mantics of UML. The thesis of Hausmann [10, pp. 23–28] discusses 25 different formalizations,
each built for a specific application purpose and built upon a specific formal technique.

The number of tools which support the execution of UML models has increased steadily
over the past years. Aside from the fUML reference implementation and the AMUSE toolkit,
which are both the focus of this thesis, a substantial body of work exists which includes multiple
open source and commercial tools1 with varying degrees of adherence to the UML standard.

There are a couple of commercial tools that deal with the execution of UML models. The
most prominent example is IBM’s Rational Rhapsody2, which provides execution capabilities

1http://modeling-languages.com/list-of-executable-uml-tools/, Accessed:
27.1.2015

2http://www-03.ibm.com/software/products/en/ratirhapfami, Accessed: 6.11.2014

37

http://modeling-languages.com/list-of-executable-uml-tools/
http://www-03.ibm.com/software/products/en/ratirhapfami

for UML state machines and activity diagrams via code generation. Another example is the
Cameo Simulation Toolkit3, which is an extension of the UML Tool MagicDraw4 that includes
a model execution framework based on fUML and the SCXML standards of W3C.

However, as the fUML standard has only recently been released in February 2011 [22],
and the adoption of such a new standard in the industry usually requires considerable time and
resources, we also look into the academic literature on this topic.

This section discusses both the literature, as well as the tools that either provide model exe-
cution capabilities based on fUML, or specifically deal with the execution of activity diagrams
and state machines. Table 3.1 provides an overview of the discussed work.

Author UML Version Diagram Types Basis of Execution
Environment

Sarstedt [26] UML 2 Activity diagrams Abstract State Machines
Crane and
Dingel [5]

UML 2 Activity diagrams
Compositions of state
machines

Hoefig et al. [12] UML 2 State machines
Model interpretation,
code generation

Cameo Simulation
Toolkit

UML 2, fUML 1.1
Activity diagrams,
state machines

fUML standard, SCXML
standard of W3C

Pópulo [7] UML 2
Activity diagrams,
state machines

UML Action Language

Table 3.1: Related work on execution of UML activity diagrams and state machines

The work of Sarstedt [26] defines an interpreter for activity diagrams similar to the one defined
in the fUML standard. The approach is defined theoretically on the basis of Abstract State Ma-
chines [2], and a corresponding prototype implementation is provided. However, no evaluation
of the interpreter and implementation concepts is conducted, leaving the actual practicability of
this approach unproven.

The work of Crane and Dingel [5] introduces another proprietary implementation of an UML
model execution tool for activity diagrams. This work is especially interesting in the context of
this thesis because of its approach to formalizing the execution semantics of activity diagrams.
The formalization of the lower-level components, which actions and activities are composed of,
is based on compositions of state machines [5]. Therefore, even though the specific interpreter
described in this work only deals with activity diagrams, it could theoretically also be expanded
to incorporate state machines. The introduced prototype also provides multiple modes for exe-
cuting the activity diagrams, including random and guided modes. The work does not provide
an evaluation of the presented prototype.

The work of Hoefig et al. [12] discusses an implementation of two variants of UML model
execution environments for executing state machines. One of these execution environments is

3http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-
toolkit.html, Accessed: 6.11.2014

4http://www.nomagic.com/products/magicdraw.html, Accessed: 6.11.2014

38

http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.nomagic.com/products/magicdraw.html

based on model interpretation, the other one is based on code generation. The goal of the work
of Hoefig et al. is to evaluate the performance differences between these two approaches of
executing state machines. To accomplish this goal, both described approaches have also been
implemented in prototypical form. Aside from the implemented prototype and the performance
evaluation, this work also discusses a number of different challenges when executing state ma-
chines, as well as the accuracy of the specification of the execution semantics of some state
types, e.g., the history state.

From the currently available tools for UML model execution, the functionality of the Cameo
Simulation Toolkit most closely resembles the functionality of the developed prototype devel-
oped for this thesis. The Cameo Simulation Toolkit is a plugin for the commercial UML mod-
eling tool MagicDraw. It provides model execution capabilities for both activity diagrams and
state machines5. The remarkable feature of the Cameo Simulation Toolkit is its adherence to
two specific standards for implementing the provided UML model execution capabilities. For
the execution of state machines, the Cameo Simulation Toolkit utilizes an open-source execution
environment based on the SCXML standard of W3C, which is in turn based in Harel’s speci-
fication of statecharts [9]. The execution environment used for activity diagrams is a custom
implementation based upon the fUML standard.

Another UML model execution tool that offers model execution features similar to those
offered by the developed prototype implemented for this thesis is the Pópulo tool [7]. Pópulo
defines a fully UML compliant interpreter for the UML Action Language, which is capable
of executing actions and activities. The official website of the Pópulo tool6 also indicates that
the current version of Pópulo supports the execution of state machines. This functionality is
discussed as future work in the original publication [7], but is not further defined in the available
documentation of the tool. Pópulo offers full debugging support during the execution, such as
step by step execution or breakpoint-based debugging. The tool provides a feature-set similar to
the one offered by the developed prototype. Also, the tool relies on XMI files as a basis for the
interpretation, which is a standardized storage format for UML models. This allows it to exist
as a stand-alone tool, which is interoperable with every UML tool that can create a valid XMI
representation of UML models.

3.2 Formal Specification of UML Diagram Types and Interactions

The tools discussed in Section 3.1 share a common weakness, which is also one of the topics
covered in this thesis—they simulate a very limited range of diagram types, with most tools
only focussing on one behavioral diagram type (usually activity diagrams or state machines).
Therefore, these tools are not concerned with the mechanisms required for implementing com-
munication mechanisms between different diagram types.

One of the core problems in successfully implementing the various communication mecha-
nisms between different types of UML diagrams is the intentionally vague nature of the UML
standard, which does not go into detail on the relations between diagram types. Nevertheless, a

5http://www.nomagic.com/files/manuals/Cameo%20Simulation%20Toolkit%
20UserGuide.pdf, Accessed: 27.1.2015

6http://caosd.lcc.uma.es/populo/index.htm, Accessed: 22.12.2014

39

http://www.nomagic.com/files/manuals/Cameo%20Simulation%20Toolkit%20UserGuide.pdf
http://www.nomagic.com/files/manuals/Cameo%20Simulation%20Toolkit%20UserGuide.pdf
http://caosd.lcc.uma.es/populo/index.htm

number of possible approaches have been proposed to give the elements of the UML standard
a concise meaning. Most of these approaches, again, only deal with one specific diagram type,
while only a few approaches look at a more broad spectrum. In this section, we focus on the
literature that tries to interpret multiple behavioral diagram types in an integrated way.

As discussed in Section 2.1, one of the key problems of UML in the context of model ex-
ecution is the ambiguity with which modeling concepts and their semantics are defined within
the UML standard. The semantics are mostly defined in English prose, and therefore cannot
be directly utilized for machine-based execution of UML models. The fUML standard defines
precise semantics for classes and activity diagrams, but does not address the other behavioral
diagram types. Additionally, the fUML standard has only been published in 2011. Therefore,
there is a large body of work on formalizing (parts of) UML with the goal of enabling model
execution. One of the main sources for this section is the thesis of Hausmann [10, pp. 23–28],
which discusses 25 different formalization of UML.

The literature discussed in this section is especially relevant to this thesis because each work
considers multiple types of behavioral diagram types which have been integrated with each other.
Such an integration, in turn, is also one of the goals of the prototype created for this thesis. Table
3.2 provides an overview of the discussed work.

Author UML Version Diagram Types Approach
Kohlmeyer and
Guttmann [15]

UML 2
Activity diagrams,
state machines

Abstract State Machines

Jürjens [13] UML 1
Activity diagrams,
state machines

Abstract State Machines

Börger et al. and
Cavarra [3] [4]

UML 1.4
Activity diagrams,
state machines

Abstract State Machines

Kirshin et al. [14] UML 2
Activity diagrams,
state machines

General model execution
framework

Nitto et al. [20] UML 1.3
Class diagrams,
activity diagrams,
state machines

Process models

Baresi et al. [1] MADES UML
State machines,
sequence diagrams

TRIO metric temporal
logic

Table 3.2: Related work on formal specification of UML diagram types and interactions

The work of Evans et al. [6] provides a very useful starting point in exploring formalization of
the UML standard. It discusses a number of different approaches to formalizing models. The
main presented ideas are either to try to formalize the existing, informal definitions, or to use
an existing formal mechanism for creating models. Evans et al. propose the implementation
of a variant of UML called Precise UML (PUML). The focus of PUML is the formalization of
core UML concepts, as well as the creation of a formal reference manual [6]. Unfortunately, it
seems that the work on this interpretation has ended, as the website of the Precise UML project7

7http://www.cs.york.ac.uk/puml/, Accessed: 27.1.2015

40

http://www.cs.york.ac.uk/puml/

indicates no new publications after the year 2000.
The work of Kohlmeyer and Guttmann [15] describes the existing mechanisms in UML for

defining interactions between different diagram types, such as associating an activity with the
entry action of a state or a call behavior action. It also defines formal semantics for these interac-
tions, again using Abstract State Machines. Because of the formal nature of the specification, the
resulting interaction model is platform-independent and could theoretically be integrated with
fUML as well as the proprietary execution environment of AMUSE.

The work of Jürjens [13] takes a strictly formal approach for defining the semantics underly-
ing UML behavioral diagrams. The formalization is done by transforming all relevant concepts
to a formalism based on Abstract State Machines. The proposed formalism handles state ma-
chines, activities and a newly introduced modeling concept called a “subsystem”. A subsystem
consists of a class diagram, an activity diagram, as well as a set of state machines describing the
behavior of single instances. Furthermore, a subsystem also includes all the relevant interfaces
and messages relevant for connecting the aforementioned diagram types. The work includes an
outline of the proposed formalisms for state machines and activity diagrams, as well as a number
of specific examples to illustrate the fundamentals. It goes into detail on possible applications
of this formalism, such as proving behavioral equivalence based on the generated Abstract State
Machines. This work is still based on the notion of activity diagrams being a specialized ver-
sion of state machines defined in the UML versions 1.x. Nevertheless, it shows a very clear-cut
approach to formalize UML behavioral diagrams and breaking them down to a common demon-
inator. Unfortunately, the work contains no discussion of the practicability of the introduced
approach, and therefore only serves as a theoretical guideline. As for the context of this the-
sis, the approach of modifying the complete execution mechanism for all behavioral types far
surpasses the scope, and can instead only be seen as a possible alternative approach.

The work of Börger et al. and Cavarra [3] [4] presents a formalism designed to formalize
UML behavioral models (specifically state machines and activity diagrams) by converting them
to Abstract State Machines. A complete model for this conversion is provided. This conversion
is also applicable to actions based on their definition in UML 1.4. The semantics of activity
diagrams have been changed in UML 2.0, however. The semantics are no longer tied to state
machines as in UML 1.4. Therefore, the approach presented in this work is not applicable to the
current version of the UML standard. An interesting advantage mentioned in the work of Börger
et al. is that Abstract State Machines are directly executable by a variety of different tools.
Therefore, a complete conversion of all behavior diagram types might possibly be sufficient for
enabling a homogenous execution of models containing the different behavioral diagram types.

From a conceptual point of view, defining model execution semantics is also discussed by
Kirshin et al. [14]. They describe a general model execution framework, which can be adapted
to fit to execute models conforming to an arbitrary modeling language (such as UML). It oper-
ates on the basis of so called “Instances”, which are the run-time representations of the model
elements. However, as the described approach is a very general-purpose one, it resides on a very
high level of abstraction, and can only be used as a conceptual framework in the context of this
master’s thesis.

The work of Nitto et al. [20] introduces a very specific use case for formalizing UML. They
use UML for defining process models. Process models provide a description of a process, which

41

can then be executed fully automatically by a process executor. The work of Nitto et al. intro-
duces specific restrictions for a model consisting of class diagrams, activity diagrams and state
machines, with each representing a specific component of the process description. A model
that conforms to these specific restrictions can be directly converted into code, which is in turn
interpretable by the process executor OPSS.

The work of Baresi et al. [1] introduces a formalization of a combination of UML class
diagrams, state machines and sequence diagrams. The formalization is conducted by translating
a model consisting of these diagram types into formulae adhering to the TRIO metric temporal
logic, which has well-defined execution semantics. The main goal of the work of Baresi et al.
is to provide automatic verification of UML models based upon this conversion, which can be
accomplished by using a satisfiability checker tool on the formulae resulting from translating the
UML models to the TRIO metric temporal logic.

3.3 Model Interpretation vs. Code Generation

One of the key challenges this thesis addresses is integrating two separate execution environ-
ments with a different approach to executing models, namely model interpretation and code
generation. For an introduction to these model execution environments, please refer to Section
2.2. In this section, we present the literature which deals with both the differences between
model interpretation and code generation, as well as the integration of these two approaches.

3.3.1 Comparison of Model Interpretation and Code Generation

The differences between model interpretation and code generation, as well as their respective
merits, are an ongoing topic of discussion in the industry8 9. In the following, we contrast them
regarding functionality, performance and UML standard compliance.

Functionality

A wide variety of different implementations for both model interpretation and code generation
are available, making an exhaustive comparison of their respective functionalities rather point-
less. Therefore, an alternative approach for this analysis needs to be taken.

A theoretical comparison of the expressiveness of both model interpretation and code gen-
eration can be conducted based on the concept of turing-completeness. Turing-completeness
refers to a set of properties of a program, which enable it to complete an arbitrary computation.
Specific implementations of both model interpretation [17] and code-generation [27] have been
shown to possess this specific property. Therefore, both approaches can theoretically provide
equivalent functionality.

A practical approach for comparing model interpretation and code-generation is to apply a
specific implementation of the respective approaches to a pre-defined set of case studies. This

8http://modeldrivensoftware.net/profiles/blogs/model-driven-development-
code, Accessed: 16.08.2014

9http://www.linkedin.com/groups/CodeGeneration-is-better-than-50539.S.
54241224, Accessed: 16.08.2014

42

http://modeldrivensoftware.net/profiles/blogs/model-driven-development-code
http://modeldrivensoftware.net/profiles/blogs/model-driven-development-code
http://www.linkedin.com/groups/Code Generation-is-better-than-50539.S.54241224
http://www.linkedin.com/groups/Code Generation-is-better-than-50539.S.54241224

approach enables the verification of the functional equivalence of the approaches based on these
case studies. Furthermore, a direct performance comparison can be conducted based on the
execution of these case studies. This approach has been used in the evaluation of the prototype
created for this thesis.

Performance

The work of Höfig et al. [12] deals with both model interpretation and code generation. It
provides an extensive analysis of both model execution environments in the context of UML
state machines. Furthermore, it gives a detailed description of an implementation of a UML
interpreter, which is compared to an equivalent code-generation implementation.

The findings of this work show a distinct lack of existing tools or benchmarks for performing
an actual performance comparison between the model interpretation and the code generation
approach. The benchmarking process that has been used in this work relies on taking time-
stamps at specific execution points in the implementations of both approaches. This approach of
benchmarking is also used for the evaluation of the prototype created for this thesis.

The performance evaluation conducted by Hoefig et al. [12] has found the following results
in comparing the execution of code generated for the execution of models with interpreting the
model directly:

• the interpreted approach is about 3 to 460 times slower (with a noted average of 20)

• the interpreted approach utilizes 60 to 80 times more memory

The authors of this study have not provided specific information on the execution time and
memory capacities required for generating the source code they were utilizing in their tests.

Unfortunately, both specific data, as well as general research on comparing the performance
of model interpretation and code generation is scarce.

Standard Compliance

The work of Riehle et al. [24] introduces a difference between model interpretation and code
generation that is exclusive to the context of model execution itself. The code generation ap-
proach generates source code classes representing the model classes it needs to instantiate. The
model element and generated code, however, are not directly connected to each other. Therefore,
the source code classes exist outside of the definitions of the UML standard. Conversely, with
an interpretative approach, it is possible to interpret the UML model utilizing only concepts de-
fined within UML itself, thereby providing a causal connection between the modeled classes and
the resulting instances [24]. Furthermore, by utilizing the behavioral semantics defined within
UML, even the execution of the model can be built strictly with concepts defined within UML,
further ensuring the UML-compliance of the model execution approach.

3.3.2 Combination of Model Interpretation and Code Generation

In practice, a combined approach is often employed, which utilizes both model interpretation and
code generation—albeit in different phases of the development process. A possible configuration

43

is to utilize model interpretation in the early stages of the modeling process, while still utilizing
the code generation approach for generating the software artifacts for operational use10.

As for the approach that is followed in this thesis—which is the application of both ap-
proaches side-by-side (only for the execution of different diagram types), the literature study
has not found a significant amount of work on this specific topic.

The framework proposed by Kirshin et al. [14] deals with the issue of different model exe-
cution techniques. Specifically, it includes two different approaches: one is strictly interpreter-
based, while the other one uses code generation. The most interesting aspect of this framework
in the context of this master’s thesis is that it is able to apply both code generation and inter-
pretation simultaneously. The work mentions the possibility to apply interpretation for some
model elements, while utilizing code generation for the rest. A similar mechanism for switching
between interpretation and code generation is also implemented in the prototype developed for
this thesis. However, the prototype developed for this thesis switches between interpretation
and code generation based on the type of the behavioral diagram, and not based on the specific
model element.

10blog.abstratt.com/2010/08/07/model-interpretation-vs-codegeneration-both/,
Accessed: 16.08.2014

44

blog.abstratt.com/2010/08/07/model-interpretation-vs-code generation-both/

CHAPTER 4
Prototype

In Chapter 2, we have extensively discussed the UML standard, with a specific focus on inter-
actions between specific behavioral diagram types. Furthermore, we have discussed the topic of
model execution. We have introduced two different model execution techniques — interpreta-
tion and code generation. All of the findings presented in Chapter 2 are based on a theoretical
evaluation of both the UML standard, as well as the fUML standard. The gained knowledge built
the foundation for integrating fUML with EA in a prototype. This prototype utilizes both the
knowledge on the integration of different behavioral diagram types, as well as different model
execution techniques discussed in Chapter 2.

In this chapter, the prototype is discussed in detail. In Section 4.1 gives a general overview
of the created prototype, present its main goals, and discuss the ways in which the prototype
utilizes external tools. In Section 4.2, we provide a detailed look into the functionalities the
prototype provides, as well as technical details of the implementation and important design
decisions. Finally, in Section 4.3 we discuss the adaptations that were performed on the used
external tools to complete the integration of EA and the fUML reference implementation.

4.1 Overview

This section provides a general overview of the prototype created for this thesis. The main goals
achieved by the prototype are discussed, as well as the expected results of creating the prototype.
Lastly, external tools used by the prototype are summarized, and the context in which they are
used is presented.

4.1.1 Goal

The main goal of the prototype was to adapt the EA model execution plugin AMUSE so that all
executions of activity diagrams are done via the fUML reference implementation, while leaving
the remaining functionality of the AMUSE plugin intact. This goal has been accomplished by
replacing the proprietary model execution environment AMUSE utilizes for executing activity

45

diagrams with a fUML standard compliant model execution environment in the form of the
fUML reference implementation. Thereby, the execution of activity diagrams via AMUSE is
made fully fUML compliant. Furthermore, this allows for increased interoperability of AMUSE
with other tools which also fulfill the fUML standard.

The rational behind basing the prototype on the AMUSE plugin instead of the model exe-
cution capabilities of EA is two-fold. Firstly, the AMUSE plugin incorporates a larger number
of interaction mechanisms between behavioral diagram types, such as exchanging parameters
between behavioral diagrams, which are currently not available in the model execution envi-
ronment of EA. Secondly, adapting AMUSE for the prototype has given us the opportunity to
combine an interpretation-based execution environment with a code generation-based execution
environment and explore the implications of combining these two model execution approaches.

Supported Activity Diagram Elements. By utilizing the fUML reference implementation,
the prototype supports all model elements of activity diagrams depicted in Table 4.1. The fUML
reference implementation provides support for all model elements defined within the fUML
standard and therefore supports more model elements than those supported by the prototype.
The main reason for this discrepancy in supported model elements is that EA does not support
the modeling of a number of specific action types.

Executor Integration. As discussed in Section 2.3, the AMUSE plugin incorporates an Exe-
cutionEnvironment component that instantiates separate Executors for each behavioral diagram,
with specific types of Executor available for each behavioral diagram type. The main goal in
implementing the prototype was therefore to replace the proprietary Executor type AMUSE uses
for activity diagrams with a custom implementation that uses the fUML reference implementa-
tion for executing the activity diagram, which is referred to as the “fUML executor”. The fUML
executor must provide the following functionalities to correctly fulfill the specification of an
Executor component within the AMUSE plugin:

• Execution of an activity diagram with a given context object and a list of parameters

• Mechanisms to pause, continue and abort a running execution

• Notifications for both the start and the end of the execution, as well as the entry and exit
of a specific action

To enable the fUML reference implementation to execute activity diagrams modeled within
EA, both the activity diagrams and the class diagrams of classes instantiated therein must be
converted from EA’s internal format into a format interpretable by the fUML reference imple-
mentation. For this conversion to succeed, the prototype must also be able to determine which
specific class diagrams and activity diagrams need to be known to the fUML reference imple-
mentation before the execution starts.

All instances available within the AMUSE object space during the model execution also
have to be made available to the fUML reference implementation and vice versa. This includes,
for instance, objects instantiated by an activity diagram call operation. For this purpose, the
fUML executor must provide a mechanism to convert instances in one of the format into a usable

46

Model Element Model Element Type
Create object action Action
Value specification action Action
Add structural feature value action Action
Call behavior action Action
Send signal action Action
Read self action Action
Read structural feature action Action
Remove structural feature value action Action
Reduce action Action
Input pin Object node
Output pin Object node
Activity parameter node Control node
Initial node Control node
Final node Control node
Fork node Control node
Join node Control node
Decision node Control node
Merge node Control node
Expansion region Structured acivity node
Control flow Activity edge
Object flow Activity edge

Table 4.1: Model elements of activity diagrams supported by the prototype

representation in the other format. This also involves instantiating objects in both formats, which
requires a substantially different approach in each object space due to the usage of both model
interpretation and code generation. To provide constant synchronization of the respective object
spaces, the prototype must monitor both object spaces for any occurring changes originating
from model executions, and immediately replicate any changes in the other object space.

To provide the necessary functionalities for controlling the currently running executions, the
prototype must expose the corresponding functionalities of the MOLIZ fUML Debug API. Fur-
thermore, the fUML executor must propagate an event both at the start and end of the execution
of the activity diagram, as well as at the entry and exit of a model element. The event fired at the
entry and exit of a model element needs to contain a reference to the correct EA model element.
The MOLIZ fUML Debug API allows the prototype to observe the corresponding events for
element entry and exit during the execution in the fUML reference implementation. However,
it is necessary to determine which element in the EA model corresponds to the element that has
been entered or exited during the execution in the fUML reference implementation. For this
purpose, a complete mapping between all EA model elements and their representations in the
fUML reference implementation must be maintained by the prototype.

47

4.1.2 External Tools

A number of external tools are used by the prototype created for this thesis. This section specif-
ically discusses how these tools are utilized in implementing the prototype, as well as the used
versions of the tools. For a more detailed explanation of the tools, please refer to Section 2.3.

The UML modeling tool EA is used for creating the models used for the model execution.
The prototype has been evaluated with version 10 of EA. The AMUSE plugin requires at least
version 7.5.850 of EA. Every license version of EA is compatible with the AMUSE plugin, and
therefore also compatible with the prototype.

The EA plugin AMUSE is used and modified for conducting the model execution. The
prototype is based upon version 2.5 of the AMUSE plugin.

The MDE plugin for EA is used to simplify the access to the EA database and to access the
data stored therein via UML compliant data structures. The prototype uses a development build
of the MDE plugin that is deployed as part of AMUSE 2.5. The used version for the prototype
is the version shipped with the AMUSE version 2.5.

The fUML reference implementation is used for executing activity diagrams from within the
AMUSE plugin. The prototype uses a version of the fUML reference implementation based on
fUML 1.1.0.

The MOLIZ fUML Debug API developed by Mayerhofer et al. is used as an extension of the
fUML reference implementation. This API is used to enable the stepwise execution of activity
diagrams via the fUML reference implementation, and to continuously monitor the execution
state. The prototype uses a development build of the MOLIZ fUML Debug API, which was
downloaded on August 3, 2014.

4.1.3 Expected Results

By only replacing one specific Executor implementation of the AMUSE plugin, the prototype
implemented for this thesis is able to transparently execute activity diagrams using the fUML
reference implementation, while leaving the remaining functionality of the execution environ-
ment of AMUSE unchanged. The prototype provides a complete implementation of the Execu-
tor component, including both commands and events. Therefore, all of the model execution
features of AMUSE are also applicable to the execution of activity diagrams via the newly im-
plemented Executor, and therefore to the execution of activity diagrams via the fUML reference
implementation.

Firstly, this allows the ControlPanel component of AMUSE to control the execution of ac-
tivity diagrams via the fUML reference implementation. The ControlPanel component is able
to both execute the activity diagram stepwise, as well as set breakpoints on the execution.

Secondly, the Visualization component is able to correctly display the execution of activity
diagrams based on the events propagated by the fUML executor. This includes marking the
currently active model element, as well as displaying the diagram that is associated with the
currently running execution.

48

4.2 fUML Executor Implementation

The fUML executor is the main component of the prototype developed for this thesis.
As discussed in Section 2.3, the name Executor in the context of the AMUSE plugin refers

to a component which is instantiated by the ExecutionEnvironment component of AMUSE, and
which is responsible for the execution of a specific behavioral diagram. The role of the fUML
executor is to replace the proprietary Executor implementation AMUSE instantiates for exe-
cuting activity diagrams with an implementation that conducts an fUML compliant execution
of activity diagrams via the fUML reference implementation. Figure 4.1 provides a high-level
overview of the role the fUML executor fulfills. The figure depicts both the main functionality
provided by the fUML executor to AMUSE, as well as the functionality provided to the fUML
executor by other components.

cmp fUML_Executor_Environment

fUML Executor

Enterprise

Architect

AMUSE fUML Reference

Implementation

fUML-Compliant Activity

Execution

Database Access

Execution Control

Execution of Activities

Figure 4.1: Environment of the fUML executor

The main functionality provided by the fUML executor is the execution of an fUML compli-
ant activity diagram modelled in EA. The fUML executor does not directly implement the fUML
compliant execution of an activity diagram. Instead, it utilizes the fUML reference implemen-
tation to conduct the execution. For this purpose, it loads the models from the EA database and
converts them into fUML models.

The fUML executor is composed of separate components, each of which fulfills a specific
purpose in the context of the model execution. These components are depicted in Figure 4.2.
Note that, while AMUSE may instantiate multiple instances of the fUML executor itself to
execute multiple activity diagrams in parallel, these components are shared by all instances of
the fUML executor. Figure 4.3 provides an overview of the specific functionalities of each of
the components of the fUML executor and will be referenced throughout the following sections.

49

composite structure fUML Executor

ObjectSynchronizer

Activ ityExecutor

Execution of

Activities

Execution Control

ModelConv erter

OpaqueBehav iorFactory

Access to Model

Element Mappings

Convert between EA and

fUML Object

Representations

Create Opaque

Behavior

Convert Model

Elements to

FUML

Representation

Figure 4.2: Components of the fUML executor

class fUML Executor

fUML Executor::ActivityExecutor

+ AddClasses(Dictionary<string, Type>) :void

+ Continue(int) :void

+ ExecuteStep(int) :void

+ ExecuteStepWise(string, object, Dictionary<string, object>) :int

+ Pause(int) :void

+ Terminate(int) :void

fUML Executor::ModelConverter

+ ConvertActivity(EA.Activity) :FUML.Activity

+ ConvertClass(EA.Class) :FUML.Class

+ GetEAClass(FUML.Class) :EA.Class

+ GetEAModelElement(FUML.ModelElement) :EA.ModelElement

+ GetFUMLClass(EA.Class) :FUML.Class

+ GetFUMLModelElement(EA.ModelElement) :FUML.ModelElement

fUML Executor::OpaqueBehaviorFactory

+ GetGuidBehavior() :OpaqueBehavior

+ GetRandomBehavior() :OpaqueBehavior

fUML Executor::ObjectSynchronizer

+ ConvertAMUSEObject(AMUSE.Object) :FUML.Object

+ ConvertFUMLObject(FUML.Object) :AMUSE.Object

+ GetAMUSEObject(AMUSE.Object) :FUML.Object

+ GetFUMLObject(FUML.Object) :AMUSE.Object

«use»

«use»

«use»

«use»

Figure 4.3: Functionalities of the components of the fUML executor

50

The ActivityExecutor component provides the activity diagram execution facilities within
the fUML executor, and utilizes the remaining components to conduct the activity diagram exe-
cutions. The implementation of this component is presented in Section 4.2.1.

Both AMUSE and the fUML reference implementation use different representations of
model elements. The fUML executor loads the diagrams stored within EA, and converts them
into a format which is interpretable by the fUML reference implementation. This representation
is then executed by the fUML reference implementation. This conversion is conducted by the
ModelConverter component and explained in Section 4.2.2. Furthermore, both AMUSE and
the fUML reference implementation have separate object spaces, each which their own respec-
tive formats for objects. The fUML executor synchronizes both of these object spaces so that
AMUSE has access to the object that reside on the locus of the fUML reference implementation
and vice versa. This synchronization is conducted by the ObjectSynchronizer component. The
implementation of this component is explained in Section 4.2.3.

The execution of an activity diagram via the fUML executor is started immediately and con-
tinuously. However, the fUML executor also provides a number of operations for controlling
a currently running execution, which are also provided by the ActivityExecutor. These opera-
tion include pausing and resuming the execution, or setting stopping points on specific model
elements via breakpoints. We discuss the implementation of these features in Section 4.2.4.

The fUML executor propagates specific information about currently running model execu-
tions. Firstly, every change of the status of the execution is propagated, e.g., the start of the ex-
ecution. Additionally, the fUML executor indicates whenever the execution of a specific model
element is started or stopped. All of this information is both collected and propagated by the
ActivityExecutor component. We discuss this functionality in Section 4.2.5.

Lastly, in addition to executing diagrams modelled directly within EA, the fUML executor
provides a number of additional opaque behaviors which may be utilized within the diagrams
modelled within EA. These opaque behaviors provide specific pre-implemented behaviors in
addtion to the opaque behaviors available via the fUML reference implementation, such as gen-
erating a unique identifier. The OpaqueBehaviorFactory component manages the instantiation
of these additional opaque behaviors. The implementation of this component is presented in
Section 4.2.6.

4.2.1 Execution of Activities

The fUML executor invokes the ActivityExecutor component to conduct the execution of a spe-
cific activity diagram. Similarly to the fUML reference implementation itself, there is only a
single ActivityExecutor instance which conducts and coordinates all the concurrent executions
of activity diagrams which are requested by the different fUML executor instances. Addition-
ally, the ActivityExecutor component provides functionalities to give commands to and monitor
the status of all running executions.

The ActivityExecutor component represents a clear interface between the AMUSE and fUML
representations of both model elements and objects. All parameters passed to the ActivityExecu-
tor component are given in AMUSE’s representations of model elements and objects. Inter-
nally, the ActivityExecutor component converts these model elements and objects into a format
interpretable by the fUML reference implementation by utilizing the ModelConverter compo-

51

nent and the ObjectSynchronizer component, conducts the execution of the activity diagram and
transforms all feedback during the execution via events into a format interpretable by AMUSE.

When invoking the execution of a specific activity diagram by the ActivityExecutor compo-
nent via the ExecuteStepWise operation, the fUML executor must provide a number of parame-
ters:

• The unique id of the activity diagram, which is required to load the model from the EA
database.

• The context object

• A list of input parameters values

All of this information is provided to the fUML executor by the execution environment of
AMUSE.

Assigning input parameters when executing an activity via the fUML execution environment
presents a specific challenge, as AMUSE and fUML identify specific parameters differently. In
AMUSE, parameters are referenced by name, while in fUML, one needs to refer to a specific
parameter by reference. Therefore, a strict one-to-one mapping can not be automatically accom-
plished by the prototype. However, each of the parameters in fUML specifies a name, which is
assumed to be unique in the context of the activity it is defined in. Based on this assumption,
the prototype performs a name-based matching of the parameters and provided input parameter
values accordingly.

The execution of an activity diagram conducted by the ActivityExecutor consists of a multi-
step process:

1. Load EA representation of the activity diagram which should be executed from the database.

2. Convert the loaded EA representation of the activity diagram into an fUML-interpretable
format, using the ConvertActivity operation of the ModelConverter component.

3. Convert the context object, as well as all received input parameter values into an fUML-
interpretable format, using the ConvertEAObject operation ObjectSynchronizer compo-
nent.

4. Start the execution of the activity diagram on the fUML reference implementation via the
MOLIZ fUML Debug API.

5. Perform a stepwise execution of the activity diagram via the MOLIZ fUML Debug API
until the execution is completed.

Note that the fUML executor only invokes the execution of a single activity diagram, which
may in turn invoke the execution of several additional activity diagrams. Should the execution
encounter an additional activity diagram, the entire process described above is repeated for this
activity diagram before the execution continues.

52

Additionally, note that the execution process for an activity diagram does not involve de-
termining or converting the required classes for representing the instances used during the ex-
ecution. Instead, the classes are loaded separately during the initialization of the execution
environment of AMUSE.

The MOLIZ fUML Debug API assigns a unique id to each invoked execution of an activity
diagram. Whenever a fUML executor wants to interact with a specific execution via the Activi-
tyExecutor component, it must provide the unique id which has been assigned to this execution.
Furthermore, all events generated by the MOLIZ fUML Debug API carry the unique id that has
been assigned to the execution from which the event originates. Therefore, the ActivityExecutor
returns the unique id of the invoked execution to the fUML executor. The fUML executor stores
this unique execution id so that it is able to invoke specific control commands for this execution,
which are discussed in the Section 4.2.4.

4.2.2 Conversion of Model Elements

The ModelConverter component provides functionality for converting a model defined within
EA into a format interpretable by the fUML reference implementation. It provides both the
ConvertActivity operation for converting an entire activity diagram, as well as the ConvertClass
operation for converting classes. Before we explain these conversions, we discuss the conversion
method chosen in the prototype implementation.

Conversion Method

For realizing the conversion of class diagrams and activity diagrams created with EA to fUML,
we identified 4 approaches. In the following, we discuss these approaches, including their advan-
tages and disadvantages. Subsequently, we elaborate on the chosen approach for implementing
our prototype.

XMI Export. The arguably most straightforward approach would be to utilize EA’s XMI ex-
port for the integration of the fUML reference implementation. This method would allow us to
use the interface given by the fUML reference implementation. Thereby, the amount of sup-
ported functionality would be determined by the extensiveness and correctness of the supplied
XMI input. However, work conducted by LieberLieber in the context of the ARTIST project1

has shown that the XMI export provided by EA is inconsistent with the standard. Furthermore,
due to the additional degree of separation resulting from converting the model elements to and
from an XMI file during the conversion process, there is no trivial way of establishing corre-
spondences between the EA model elements and the created fUML model elements, which is
critical for the correct operation of the fUML executor.

Own Converter Instantiating fUML Representation Directly. A second option that allows
direct control over the conversion for a given EA model is to let the ModelConverter directly

1http://blog.lieberlieber.com/2012/11/13/export-your-ea-models-for-
eclipse/, Accessed: 16.08.2014

53

http://blog.lieberlieber.com/2012/11/13/export-your-ea-models-for-eclipse/
http://blog.lieberlieber.com/2012/11/13/export-your-ea-models-for-eclipse/

instantiate the fUML model element representations. By using this method, the ModelCon-
verter has total control over all model elements that are instantiated on the fUML execution
environment, and can implement any correspondence between the EA model elements and their
representations within fUML. Conversely, this approach requires a complete, manual implemen-
tation of the mapping mechanism between the EA representation and the fUML representation
of the model elements.

Converter Utilizing MOLIZ fUML Debug API. The third option is a slight variation of the
second option. The MOLIZ fUML Debug API includes the ActivityFactory, which is used for
creating instances of commonly used fUML model elements and is used extensively in unit-
testing the API itself. The ActivityFactory provides features for instantiating all common model
elements found in activity diagrams. By utilizing these features, it is possible to instantiate com-
plete and extensively tested representations of activity diagram model elements, while still being
able to implement the correspondence between the EA representation and the fUML representa-
tion of the model elements. In essence, this approach is very similar to option number two, but
reuses functionality developed for the MOLIZ fUML Debug API that would otherwise need to
be reproduced. The disadvantage of this approach is that instantiating a model element not cov-
ered by the ActivityFactory must be achieved by another method, leading to an implementation
that requires multiple conversion mechanisms to work in parallel.

Based on the analysis results of the available approaches listed above, the decision was made
to implement the creation of fUML objects via option 3, namely by utilizing the MOLIZ Activity-
Factory. The lack of trivial ways to establish the correspondence between EA and fUML model
elements had eliminated the XMI-based approach 1, and the existing quality assurance of utiliz-
ing the already unit-tested methods of the ActivityFactory was the main reason to implemented
option 3 instead of option 2.

An important consideration when choosing between the aforementioned approaches are the
performance penalties incurred by each one. A key difference here is that the first approach
leaves the initialization to the fUML reference implementation (by only passing in XMI infor-
mation), while the other approaches build up the required model element structures themselves,
and pass them to the Executor of the fUML reference implementation directly. However, at this
moment, no direct performance comparisons between these model element conversion mech-
anisms has been conducted due to the fact that the direct-XMI approach is not usable for our
prototype because of the discussed disadvantages. The performance difference is assumed to be
not significant enough to warrant the extra implementation effort to utilize this approach in the
context of the prototype.

Conversion of Classes

The conversion of a class conducted by the ConvertClass operation of the ModelConverter com-
ponent involves creating a Class instance in the fUML model and initializing its associations
and generalization relationships. Most of the properties can be directly mapped from the EA
representation to the fUML representation. The only conversion that needs to be explicitly done
by the ModelConverter component is to determine the corresponding primitive type that should
be given to the fUML attribute based on the type information assigned in the EA representation.

54

Due to the fact that EA supports a number of types for attributes that are not available in the
fUML reference implementation, multiple EA types are currently not supported by the proto-
type. This includes, for example, the byte type, which has no direct representation within the
fUML reference implementation.

The conversion of all classes required for the execution of a particular activity diagram is di-
rectly invoked by the ExecutionEnvironment component of AMUSE during its own initialization
and before any actual execution of a behavioral diagram is conducted. The ExecutionEnviron-
ment component determines all classes that are relevant for the ActivityExecutor. This includes
both class of the executed instance, as well as all classes that are either linked to this class or one
of its behavioral diagrams. Such a link may be represented by an association between the classes,
or the additional class may be used as a classifier in one of the behaviors that are associated with
the class of the executed instance.

Conversion of Activities

The conversion an activity diagram from its EA representation to an fUML interpretable format
conducted by the ConvertActivity operation of the ModelConverter component starts by creating
an Activity instance, and then subsequently generating fUML representations of the nodes con-
tained within the activity diagram. During the conversion of a single activity diagram, no further
linked activity diagrams are considered for conversion. Instead, the conversion of additional
activity diagrams is conducted only when these particular activity diagrams are executed. With
this conversion approach, only activity diagrams that are actually executed are converted, which
potentially avoids unnecessary conversions in larger models. The results of each conversion are
cached by the ActivityExecutor component. Therefore, multiple executions of the same activity
diagram do not lead to multiple conversions.

Pins. The conversion of most available types of nodes from their EA representation to their
fUML representation involves a simple one-to-one mapping of the respective properties. How-
ever, during the conversion of action nodes, the conversion of their pins needs to be handled
separately. Each of the action types available in UML has a specific configuration of input and
output pins. An action holds separate variables for each pin, e.g., the implementation of the
AddStructuralFeatureValueAction holds an input pin named object and a output pin named re-
sult. During the conversion process, the pins need to be converted into their fUML representation
and then assigned to these separate variables.

Expansion Region. The only element that may be contained within an activity diagram that
needs to be handled separately is the expansion region. The expansion region defines a kind
of “sub-activity” within an activity diagram. This sub-activity is invoked for a collection of
instances, and is run once for each instance in the collection. When converting such an expan-
sion region, all model elements contained therein need to be assigned explicitly as part of the
expansion region itself, and not as part of the parent activity. This enables the fUML reference
implementation to determine which nodes need to be carried out in the context of the expansion
region. An additional issue needs to be considered when converting expansion regions. EA does

55

not offer the possibility to mark input and output expansion nodes of an expansion region as
such. Only a generic expansion node type is provided. However, in the context of the fUML
reference implementation, this distinction is required for the execution to work correctly. There-
fore, each expansion node of an expansion region modeled within EA must be marked either
with the “Input” or “Output” stereotype to indicate which type of node it represents. These
specific stereotypes are then considered when converting the nodes attached to an expansion
region.

Mapping

Each model element might potentially need to be converted multiple times with no possible
distinction between the first and following conversion requests. Therefore, every time a model
element is converted from the EA representation to the fUML representation, a correspondence
between the two repesentations is stored in a cache held by the ModelConverter component.
This serves a dual purpose: Firstly, it results in a considerable performance increase. For model
elements that have already been converted, the ModelConverter component is able to retrieve
the resulting fUML model element from the previous conversion and the conversion does not
need to be repeated. Secondly and more importantly, multiple conversions would result in pos-
sible problems with the referential integrity of the system. Each model element is converted
separately during the conversion of an activity diagram. However, multiple EA model elements
may contain a reference to the same model element. In each scenario in which the EA model
elements A and B reference model element C, it is vitally important that the fUML representa-
tions of A and B also reference exactly the fUML representation of C. This property is ensured
by the caching mechanism — whenever model element C is referenced a second time during the
conversion of the activity diagram, the cache returns a reference to the already existing fUML
representation of C.

The ModelConverter component provides separate operations for querying the maintained
cache. These operations are used for determining which EA model element has been mapped to
which fUML model element. This type of lookup is used, for example, when converting fUML
events to their AMUSE representation, or during the synchronization of the object spaces. For
this purpose, the ModelConverter component provides the following operations:

• GetEAClass retrieves the EA class an fUML class is based on.

• GetFUMLClass retrieves the fUML class an EA class has been converted into.

• GetEAModelElement retrieves the EA model element an fUML model element is based
on.

• GetFUMLModelElement retrieves the fUML model element an EA model element has
been converted into.

4.2.3 Synchronization of Object Spaces

Both AMUSE and the fUML reference implementation hold separate object spaces, which are
data structures in which they create and modify objects. As these object spaces are independent

56

of one another, the execution environments are unable to utilize objects that are stored in the ob-
ject space of the other execution environment. The ObjectSynchronizer provides mechanisms to
synchronize these object spaces, thereby allowing each execution environment to interact with
objects which have not been originally created within their own object space. For this purpose,
the ObjectSynchronizer component constantly monitors the object spaces of AMUSE and the
fUML reference implementation to detect the creation or modification of objects. Whenever
either the creation of a new object or the change of a feature value of an object is detected, the
operation to update the object in the other object space is invoked. Depending on the object
space in which the change was detected, either the ConvertAMUSEObject operation is invoked
to convert the AMUSE object to an fUML object, or the ConvertFUMLObject operation is in-
voked to convert the fUML object into an AMUSE object, which is automatically added to the
target object space. Note that the mapping mechanism employed by the ObjectSynchronizer
component ensures that each AMUSE object is represented by one fUML object and vice versa.
Should the conversion be triggered multiple times for the same object, only the feature values
are newly propagated.

Creating New Objects

Creating new objects in the respective object spaces requires considerably different approaches,
which is mostly due to the different representations of objects within the respective object spaces.
The differences between the representations of objects in both the AMUSE and the fUML object
space have been discussed in Section 2.2. The main difference is that AMUSE creates objects
by instantiating generated classes, while objects in fUML hold generic objects of type Object.

The process of creating a new fUML object starts with creating a new Object instance at the
locus. This new object has no connection to a class and no feature values. In the next step, the
fUML class instantiated by this object is determined by invoking the GetFUMLClass operation
of the ModelConverter component. This fUML class is then used as a basis for generating the
necessary feature values of the created object.

When creating an AMUSE object based on an existing fUML object, the first step is to de-
termine and load the correct class to be instantiated for the AMUSE object. The ObjectSynchro-
nizer component first determines the instantiated fUML class, which is referenced by the fUML
object it is trying to convert. Based upon this fUML class, the ObjectSynchronizer component
determines the corresponding class EA class by performing via the GetEAClass operation of the
ModelConverter component. For instantiating this class, it accesses the C# implementation of
this class that has been generated by the ExecutionEnvironment component of AMUSE. For this
purpose, the ExecutionEnvironment component provides a correspondence of the modeled EA
classes to their generated and compiled implementations to the ActivityExecutor component via
the AddClasses operation before the model execution commences, which subsequently passes it
on to the ObjectSynchronizer component. After the correct C# class has been determined, the
AMUSE object can be created by instantiating it.

As soon as the instantiation of the object has been completed, the ObjectSynchronizer can
conduct the propagation of the feature values from the existing object to the newly created object.

57

Propagating Feature Values of Objects

When propagating the feature values of an AMUSE object to an fUML object, the first step is
to extract the values stored in the attributes of the AMUSE object based on the attribute defini-
tions contained in the C# class. As these attributes are not known at compile-time, they need to
be accessed via reflection2. Reflection in the C# programming language enables accessing at-
tributes of objects based on their names. After the EA feature values have been determined, they
need to be converted to an fUML value specification. Based on the type of the attribute within
the instance of the fUML class, a specific sub-type of the ValueSpecification class needs to be
instantiated, which holds the primitive value of the feature value of the AMUSE object. The last
step is to assign the resulting value specification to the feature value of the fUML object.

Similarly, the transfer of attributes from the fUML object to the AMUSE object starts by
extracting the values of all structural features of the fUML object based on the fUML class.
Afterwards, these values are converted to their EA representation. Lastly, the resulting EA
representations of the EA feature values are assigned to the attributes of the AMUSE object via
reflection.

Each feature value may consist of a set of primitive values. These primitive values require
no further conversion, as they are represented equally in both object spaces. Note that, due to the
C# implementation of the classes AMUSE uses to instantiate objects, structural feature that are
modelled to only include a single feature value cannot be extended by additional feature values.
Therefore, should additional feature values be added to such an object in fUML, this change
cannot be propagated to the AMUSE object space.

Additionally, the feature value may be connected to different feature values via links, which
are tuples of values that represent a particular association. Changes within these links are also
propagated between the object spaces.

Mapping

Whenever the ObjectSynchronizer component creates a fUML object based on an AMUSE ob-
ject or vice versa, it stores a correspondence between these object in a cache.

This serves a dual purpose. Firstly, it increases the performance of the prototype by avoiding
multiple conversions. Secondly, the caching mechanism ensures that each object in the AMUSE
object space is only represented by a single object in the fUML object space and vice versa.
ObjectSynchronizer component provides the following operations for accessing the cached cor-
respondences:

• GetAMUSEObject retrieves the AMUSE object an fUML is connected to.

• GetFUMLObject retrieves the fUML object an AMUSE is connected to.

Detecting Changes in Object Spaces

The ObjectSynchronizer immediately propagates all changes it detects in one object space to the
other object space.

2http://msdn.microsoft.com/en-us/library/ms173183.aspx, Accessed: 16.08.2014

58

http://msdn.microsoft.com/en-us/library/ms173183.aspx

Changes within the fUML object space can be easily detected. The MOLIZ fUML Debug
API triggers events that inform about any changes that have occured within the locus of the
fUML execution environment. These events also include information on creation or modification
of either an object or a link. Therefore, changes in the fUML object space can be immediately
propagated to the AMUSE object space by invoking the ConvertFUMLObject operation of the
ObjectSynchronizer component for the modified objects.

Detecting changes within the object space of AMUSE is not trivially possible. The main in-
stance executed by the plugin has individual events that inform the ExecutionEnvironment about
any changes in attributes, which are then visualized by the ControlPanel component. These
events are not propagated to the individual Executors, however. Furthermore, additional objects
created by the AMUSE plugin do not propagate events for changed feature values at all. This
means that changes in the object space of AMUSE can not be immediately propagated to the
fUML object space. The fUML executor is only able to detect changes of objects of the AMUSE
object space once it uses them for its own execution. For this purpose, the ActivityExecutor com-
ponent automatically invokes the ConvertEAObject operation for the context object as well as
all input parameter values on invocation of the ExecuteStepWise operation. Thereby, the objects
within the fUML object space are always correctly updated before an execution.

4.2.4 Controlling the Execution

In addition to providing the functionality for executing activity diagrams, the ActivityExecutor
component also provides mechanisms to control the currently running executions. The following
features are available:

• Execute a single step of the execution of an activity diagram via the ExecuteStep operation

• Pause the execution via the Pause operation

• Resume the execution via the Resume operation after a pause

• Abort the execution via the Terminate operation

The definition of breakpoints on which the execution stops automatically is implemented directly
in the AMUSE execution environment and therefore also supported by the prototype. Whenever
the execution reaches a model element with a defined breakpoint, AMUSE automatically invokes
the Pause operation of the ActivityExecutor via the fUML executor, and invokes the Resume
operation when the user wants to resume the execution.

The implementation of all of these execution control features within the ActivityExecutor
component is straightforward, as all of the execution control functionalities are directly provided
by the MOLIZ fUML Debug API. The fUML executor invokes the corresponding functionalities
of the API when asked to pause, resume or abort an execution. Each of these features is invoked
by the fUML executor that has invoked the specific execution, which also must provide the
corresponding unique execution id.

59

4.2.5 Propagation of Events and Signals

The fUML executor is able to propagate all major event events that are produced by the MOLIZ
fUML Debug API. This includes:

• Start and end of the execution of an activity

• Start and end of the execution of an action

• Events pertaining to objects residing at the locus (e.g., the creation or modification of an
object).

However, the fUML executor does not directly propagate the events received by the MOLIZ
fUML Debug API. Instead, re-implementations of all of these events are provided, which con-
tain references to AMUSE objects instead of fUML objects. To determine the corresponding
AMUSE object, the fUML executor performs a reverse-lookup of the EA object in the cache of
either the ModelConverter or the ObjectSynchronizer component.

Similarly, the fUML executor does not directly propagate signals sent by the fUML reference
implementation. Whenever a signal is sent within the fUML reference implementation, the
fUML executor determines the corresponding target object within the AMUSE object space and
also sends a signal to this AMUSE object with the signal mechanism of AMUSE. Should the
original signal contain parameters which reference fUML objects, the corresponding AMUSE
object are determined via the GetAMUSEObject operation of the ObjectSynchronizer component
and given as parameters for the propagated signal.

4.2.6 Implementation of Additional Opaque Behaviors

A core feature of fUML is the model library, which provides opaque behaviors. These opaque
behaviors are stored at the locus and can be executed by invoking them via call behavior actions.

To further explore the possibilities of directly extending the fUML reference implementa-
tion, the fUML executor incorporates additional opaque behaviors. The implementation of these
behaviors works by directly extending the original OpaqueBehaviorExecution class provided
by the fUML reference implementation (the implementation of these opaque behaviors is dis-
cussed in more detail in Section 4.3.4). Via this mechanism, the behaviors described in Table
4.2 are provided as part of the prototype. The prototype currently only provides a very limited
set of additional opaque behaviors. Each of the implemented opaque behaviors has been built
specifically because one of the evaluation scenarios requires the provided functionality.

Both the original opaque behaviors provided by the fUML reference implementation, as
well as the additional opaque behaviors implemented within the prototype are hardcoded within
the respective implementation. Therefore, these opaque behaviors cannot be directly referenced
when creating a model within EA. Instead, each opaque behavior is invoked by declaring an
atomic action in the EA model (an atomic action in the context of EA is an action without a
specific action type) and assigning a particular stereotype to this atomic action. The stereotypes
required for executing the opaque behaviors provided by the prototype are also listed in Table
4.2.

60

Opaque Behavior Action Stereotype Description
GuidBehaviorExecution Guid Generates a new Global Unique

Identifier and returns it.
RandomBehaviorExecution Random Returns a single, randomly se-

lected value from all input values.
ReduceAddBehaviorExecution ReduceAdd Returns the sum of an arbitrary list

of numeric input values. Used as a
replacement for the reduce action,
which cannot be modelled within
EA.

ReduceCountBehaviorExecution ReduceCount Returns the count of an arbitrary
list of numeric input values. Used
as a replacement for the reduce
action, which cannot be modelled
within EA. This opaque behavior
is an alternative implementation of
the ListSize opaque behavior of the
fUML reference implementation.

Table 4.2: Opaque behaviors provided by the fUML executor

Discussion of Including Opaque Behaviors in EA

The implementation of the opaque behaviors provided by the prototype at the moment is hard-
coded and offers only a limited set of behaviors, with no possibility for the user to include other
behaviors or to modify the existing ones. A far more accessible approach would be to include
the existing opaque behaviors within the AMUSE plugin and enable the user to refer to them via
call behavior actions when needed.

Because of the direct access to the EA database, the prototype would easily be able to inject
completed opaque behaviors into a model. However, defining a clear interface with which to
describe how the opaque behaviors should be represented in the model is not trivial. Ideally,
the models for the opaque behaviors would be implementable as regular activity diagrams and
which are indicated as opaque behaviors via a stereotype application. Then, the opaque behavior
could be re-used in the whole model (or even be provided to other EA models).

A second possible approach would be to let the user only define the name and the parameters
of the opaque behavior, in conjunction with the code that is run on execution of the opaque
behavior. This approach would be more in line with the actual definition of how an opaque
behavior is supposed to work according to the UML standard.

However the case, the exploration of these possibilities is out of the scope of this thesis, and
they are therefore only mentioned as points for future consideration.

61

4.3 Integration

The previous section has introduced the fUML executor, a newly developed Executor compo-
nent for the AMUSE plugin which enables AMUSE to execute activity diagrams via the fUML
reference implementation. This section covers the necessary steps to fully integrate the fUML
executor with both the AMUSE plugin, as well as the fUML reference implementation.

4.3.1 Integration of the fUML Executor into AMUSE’s Execution Environment

As has been noted in Chapter 2.3, the AMUSE plugin instantiates separate Executor components
for executing behavioral diagrams. The plugin is set up so that the ExecutionEnvironment com-
ponent can utilize multiple Executor instances together cohesively and transparently. Therefore,
the prototype replaces the Executor for activity diagrams with the fUML executor, while leaving
the rest of the AMUSE plugin in its original state as far as possible.

The replacement of the proprietary activity diagram Executor of AMUSE with the fUML
executor is largely straightforward. AMUSE uses a factory class for instantiating the executors.
This factory class has been modified to instantiate the fUML executor instead of the propriety
activity diagram executor. The main challenge of the integration lies within adapting the mecha-
nism AMUSE uses to provide the executor with the required information so that it can correctly
perform the execution.

An executor has access to the following generated C# classes for executing an activity dia-
gram:

• C# implementations of all classes that are used during the execution (please refer to Listing
2.1 for an example)

• A C# representation of the specific behavioral diagram to execute

As the execution semantics for activity diagrams supported by AMUSE are limited to control
nodes and a single generic action for executing C# code, the executor only requires very limited
set of information about the executed activity diagram. The generated code contains a list of
objects of type Node, which only contain a reference to a piece of C# which they execute as their
behavior, as well as separate lists of incoming and outgoing edges. These edges are represented
by objects of type Edge, which denote objects of type Node as their source and their target.

62

In the following, we discuss the source code generated by AMUSE for the “Check Activity”
activity diagram depicted in Figure 4.4, which is part of the Behavior As Activity case study
introduced in Section 5.1.1.

act CheckActiv ations ActDiag

ActivityInitial

decision

Action2

 End = true

Action3

 End = false

ActivityFinal

merge

[ActivateCount > 5]

Figure 4.4: Activity diagram “Check Activity” of the Behavior As Activity case study

Listing 4.1 displays a part of the code AMUSE generates for the “Check Activity” activity
diagram depicted in Figure 4.4. The main component of the generated code is the operation
Init_CheckActivations, which instantiates an activity object of type IBehavior for the execution,
as well as the following nodes and activity edges:

• The action node “Action_2” (line 6). The parameters are a reference to the activity, the
name of the node, a unique identifier, as well as the type of node.

• A merge node (line 9).

• An edge between the node “Action_2” and the merge node (lines 12 to 15).

All remaining nodes and activity edges are initialized in a similar way.
Additionally, the generated source code contains the operation “Action_node_Action2”,

which contains the C# code assigned to the action “Action_2” in the EA model and which will
be subsequently executed as its behavior. A similar operation is also generated for the action
node “Action_3”. These operation are able to directly manipulate attributes of the context object
during the execution.

1 p u b l i c p a r t i a l c l a s s A c t i v i t y T e s t
2 {
3 p u b l i c I B e h a v i o r I n i t _ C h e c k A c t i v a t i o n s ()
4 {
5 G e n e r i c B e h a v i o r b e h a v i o r = new G e n e r i c B e h a v i o r (t h i s , "

C h e c k A c t i v a t i o n s _ A c t " , "{66DCC393−C70B−43f4−A5E8−0
C6C31B1265D } ") ;

63

6 Node node_Act ion2 = new Node (b e h a v i o r , " Ac t ion2 " , " {
D6E92D2A−60D9−404a−AAD9−678F3F72DD2C } " , NodeTypes .
Node) ;

7 node_Act ion2 . Ac t i o n = A c t io n _n od e _A c t i on 2 ;
8 node_Act ion2 . Incoming = 1 ;
9 Node node_merge = new Node (b e h a v i o r , " merge " , " { 3 7 C4AE93

−6F89−4059−B81E−267BB3A8AE08 } " , NodeTypes . Merge) ;
10 node_merge . Incoming = 2 ;
11 / / Sn ipped r e m a i n i n g node i n i t i a l i z a t i o n s
12 Edge edge = new Edge (" " , "{12244833−DA88−4f0e −8211−4

EFBC5CA6C77 } ") ;
13 node_Act ion2 . Outgo ing . Add (edge) ;
14 edge . Source = node_Act ion2 ;
15 edge . T a r g e t = node_merge ;
16 / / Sn ipped r e m a i n i n g edge i n i t i a l i z a t i o n s
17 r e t u r n b e h a v i o r ;
18 }
19
20 p r i v a t e vo id A c t io n _n od e _A c t i on 2 (o b j e c t p a r a m e t e r)
21 {
22 End = t r u e ;
23 }
24
25 / / Sn ipped b e h a v i o r o p e r a t i o n o f node " Ac t ion_3 "
26 }

Listing 4.1: Example C# code generated to represent an activity diagram

The fUML executor, however, requires significantly more information about the activity dia-
gram than is provided in these generated C# files. The generated C# code needs to provide the
following information so that the fUML executor can correctly execute the activity diagram.

• Each type of action must be represented by objects of a specific class that contains the
properties of the specific action type, e.g., an object representing a read structural feature
action must contain a reference to a structural feature.

• Pins must be represented in the generated code.

• Control nodes must be represented by objects of specific types so that they can be correctly
distinguished.

• Parameters must be stored in the generated code.

Multiple possible approaches to overcome this challenge were considered, each with advantages
and drawbacks discussed in the following.

64

The arguably least-intrusive approaches to integrate the fUML executor would be to modify
the generated C# code so that it provides all the information the fUML executor requires for the
model execution. The advantage of this approach is that the implementation of AMUSE can be
left largely intact, resulting in a reduced integration effort. The main challenge of this approach
is that the generation of code for the execution of activity diagrams needs to be completely
reworked to incorporate the additional required information. Furthermore, the fUML execu-
tor only has access to the C# representation of the specific activity diagram it should execute.
However, the fUML reference implementation may trigger the execution of additional activity
diagrams during the execution of the first activity diagram. Therefore, the fUML executor must
be able to access the C# representations of all activity diagrams that may possibly be executed
during the execution of the first activity diagram for the purpose of converting them to fUML.

A different approach would be to implement the fUML executor as a purely interpretative
component, which does not rely on generated code at all. For this approach to work correctly,
the ExecutionEnvironment component of AMUSE must be able to provide access the fUML
executor with access to the EA database. The main advantage of this approach is that no C#
code of the activity diagrams needs to be generated. Instead, the fUML executor can load the
the model directly from the EA database. Additionally, this allows the fUML executor to load
information at any time during the execution. Conversely, this approach makes the generated
autonomous execution environment unable to execute activity diagrams at all. This implies that
the autonomous usage of the generated execution environment is no longer possible.

Both approaches constitute a considerably different approach to integrating the fUML ex-
ecutor, and also have major implications on the actual implementation of the fUML executor
itself. Ultimately, we have decided to use the second approach and implement the fUML ex-
ecutor as a purely interpretative component with direct access to the EA database. The reason
is twofold. Firstly, the purely interpretative approach fits better with the nature of the fUML
reference implementation as an execution environment. Secondly, a cursory evaluation of both
approaches has shown that adapting the generated C# representation of activity diagrams to fit
the requirements of the fUML executor would require significantly more changes to the AMUSE
plugin than enabling the fUML executor to access the EA database.

4.3.2 Exchange of Signals

In the context of model execution, signals serve as an important mechanism for communication
between behaviors. They are used both to transfer information, as well as possibly advance the
execution of a behavior, e.g., because it is waiting for the activation of a trigger. Therefore, the
prototype must enable the propagation of signals between the execution environments of fUML
and AMUSE.

Propagation of Signals to AMUSE

The fUML executor propagates all signals sent within the fUML execution environment to the
corresponding recipient in the AMUSE execution environment. Thereby, the distribution of
signals is supposed to take place asynchronously according to the UML standard [21]. However,
as discussed in Section 2.2, the semantics of concurrency are left as a semantic variation point in

65

fUML, and consequently, in the fUML reference implementation. Therefore, the transmission of
signals is handled in separate threads for each signal, which is also equivalent with the signalling
mechanics within AMUSE.

Broadcast Signals via fUML

For sending signals to a defined object, fUML supports the implementation of the send signal ac-
tion, but not the broadcast signal action. AMUSE, on the other hand, only supports broadcasting
signals.

AMUSE broadcasts signals by directing a signal directly to the ExecutionEnvironment com-
ponent itself. The ExecutionEnvironment component automatically distributes the signal to all
elements known to it, which includes all currently running executors as well as the parent Simu-
lation. The Simulation, in turn, passes the signal to all known Sub-Simulations, which effectively
guarantees the distribution of the signal to all known objects in the current execution. The fUML
executor incorporates this mechanism by interpreting broadcast signal actions as send signal ac-
tions aimed at the ExecutionEnvironment component.

4.3.3 Visualization

Large parts of the visualization of the execution of fUML activity diagrams is conducted by
utilizing the existing mechanisms of AMUSE. This section discusses the necessary steps for
integrating the fUML execution visualization based on the Package Center case study presented
in detail in Section 5.1.3.

Execution State

As the visualization of the actual execution is strictly based on events pertaining to the entry
and exit of a specific behavior or element, the fUML executor needs to properly indicate these
events. As discussed in Section 4.2, the fUML executor uses re-implementations of the events
propagated by the MOLIZ fUML Debug API to accomplish this. The resulting visualization is
shown in Figure 4.5.
The figure shows the visualization of 4 concurrent sub-simulations done by the AMUSE plugin.
In each sub-simulation the currently active element is highlighted with a red color. The inactive
elements are displayed in blue. Figure 4.5 depicts the following concurrent sub-simulations:

• The top left depicts the execution state of the package center object, which is executing
an expansion region within an activity diagram. The single element within the expansion
region is active.

• The bottom left depicts the execution state of the post office object, which is starting the
execution of an activity diagram. As the execution is processing the initial state, no node
is marked as active.

• The top and bottom right depict two separate postman objects. Both of the postmen objects
are executing their main state machine, both of which are within the idle state.

66

Figure 4.5: Visualisation of the execution state in AMUSE

All 4 concurrent sub-simulations are triggered by the start of the simulation of the package center
object itself.

Object Space

Aside from visualizing the state of the currently executing behaviors, it is equally important to
show the current state of the objects created and modified during the execution. Therefore, the
AMUSE simulation control panel provides a periodically updated display of objects maintained
by the current execution. As the fUML executor also has access to these objects and might possi-
bly modify them, it has to propagate any object manipulation accordingly. This is accomplished
by synchronizing the fUML object space and the AMUSE object space as described in Section
4.2.3.

The visualization of the object space is shown in Figure 4.6. The figure shows the AMUSE
control panel, which depicts all currently running executions in a list. When expanding one of
these executions, the control panel displays information on all the objects that are present in the
object space of this execution.

Furthermore, a new panel has been introduced to the AMUSE visualization for the purpose
of providing more detailed information on the objects stored in the object space. Figure 4.7
shows the newly introduced panel. All objects are displayed in a tree-based visualization, which
can be expanded to show feature values of the objects as well as links to other objects. The
visualization is updated based on the events propagated by the fUML executor, which indicate
changes or creations of objects.

67

Figure 4.6: Visualization of executions and objects in AMUSE control panel

Figure 4.7: Detailed visualization of the object space in AMUSE

Tracing Information

Lastly, the AMUSE framework is also able to provide extensive tracing information for an exe-
cution both during the execution itself, as well as in a persistent log file. Due to the utilization of
the AMUSE mechanisms for indicating both element activations and object changes, the fUML
executor can also be consistently traced. Figure 4.8 shows the trace output when executing the
Package Center case study.

68

Figure 4.8: Visualization of tracing information in AMUSE

The trace output that is displayed contains a single entry for each occurence of one of the fol-
lowing events:

• Feature value of an object has been updated

• The execution of a new behavior has started or ended

• The execution of an element of a behavior has started or ended

4.3.4 Integration of the fUML Executor with the fUML Reference
Implementation

The MOLIZ fUML Debug API has been used for integrating the fUML reference implemen-
tation with the fUML executor. The difference in programming languages between the fUML
executor implemented in C# and the MOLIZ fUML Debug API implemented in Java needed to
be overcome. This has been accomplished by utilizing the IKVM toolkit to convert the entire
MOLIZ fUML Debug API into DLLs, which are then utilized by the fUML executor.

Interestingly, the C# classes contained within the DLLs produced by the IKVM toolkit for
the Java API can not only be executed, but also extended by C# classes, as shown in Listing 4.2.

1 p u b l i c c l a s s RandomBehaviorExecut ion : OpaqueBehav io rExecu t ion
2 {
3 p u b l i c o v e r r i d e Value new_ ()
4 {
5 r e t u r n new RandomBehaviorExecut ion () ;
6 }
7
8 p u b l i c o v e r r i d e vo id doBody (P a r a m e t e r V a l u e L i s t

i n p u t P a r a m e t e r s ,

69

9 P a r a m e t e r V a l u e L i s t o u t p u t P a r a m e t e r s)
10 {
11 V a l u e L i s t v a l u e L i s t = new V a l u e L i s t () ;
12 i n t c o u n t = i n p u t P a r a m e t e r s . g e t V a l u e (0) . v a l u e s . s i z e () ;
13 i n t s e l e c t i o n = new Random () . Next (c o u n t) ;
14 Value s e l e c t e d V a l u e = i n p u t P a r a m e t e r s . g e t V a l u e (0) . v a l u e s .

g e t (s e l e c t i o n) a s Value ;
15 v a l u e L i s t . addValue (s e l e c t e d V a l u e) ;
16 o u t p u t P a r a m e t e r s . g e t V a l u e (0) . v a l u e s = v a l u e L i s t ;
17 }
18 }

Listing 4.2: C# implementation of the “Random” behavior

Listing 4.2 shows the definition of the execution semantics of a new OpaqueBehavior, specif-
ically the RandomBehaviorExecution, as described in Section 4.2.6. As shown, both the C#
classes (RandomBehaviorExecution) and the Java classes originating from the fUML reference
implementation (ParameterValueList, ValueList and Value) can be used in conjunction with the
C# language constructs, such as the random number generation via new Random().Next(count) .

Due to utilizing the MOLIZ fUML Debug API implemented in Java via the IKVM toolkit,
both debugging and exception handling in the implementation of the fUML executor written in
C# are difficult.

In principle, the IKVM toolkit is able to provide detailed debugging information and even
enables stepping through the associated Java code. However, as has been discovered during de-
bugging the fUML reference implementation, the debugging capabilities are not fully stable, and
cannot be used to completely step through the execution of the fUML reference implementation.
This issue is discussed in more detail in Section 5.2.6.

Analyzing exceptions occurring in the Java code can be also be cumbersome, as IKVM can
often not determine the exact type of an exception that has occurred in the Java code. Fortunately,
IKVM provides a mechanism to print information about the original Java exception, which can
be used to determine the exception source based on the original JAVA code.

70

CHAPTER 5
Evaluation

In Chapter 2, we have introduced the theoretical foundations for integrating fUML with EA,
with a special focus on the integration of both different behavioral diagram types and different
model execution techniques. Based upon these theoretical foundations, a prototypical integration
of fUML within EA has been implemented. This prototype has been discussed in detail in
Chapter 4. The created prototype has been extensively evaluated to determine the applicability
of the proposed approach of integrating fUML into a proprietary model execution tool. In the
evaluation we compared the created prototype to the model execution capabilities of AMUSE.
The evaluation has been conducted based on three specific case studies, which are introduced in
detail in Section 5.1.

Based upon these case studies, the prototype has been evaluated under multiple aspects, each
of which is presented in a separate section within this chapter. Section 5.2 focusses on the model
execution functionalities provided by the prototype, and compares them to the functionality
AMUSE provides. Section 5.3 presents the results of a performance analysis that has been
conducted to compare the two approaches both in terms of execution speed, as well as memory
consumption. Section 5.4 presents a general comparison of the two approaches in terms of
usability, with a focus on the user interface of EA. Section 5.5 presents an analysis of the stability
of the model execution of the two approaches.

Finally, Section 5.6 provides an overall analysis of the presented evaluation results, and
provides answers to the research questions proposed in Section 1.3 based upon these results.

5.1 Case Studies

This section presents the main case studies that are used as the basis of the evaluation.

5.1.1 Behavior As Activity

In this case study, we examine one of the example models distributed with the AMUSE plugin.

71

Figures 5.1, 5.2 and 5.3 illustrate the diagrams contained by this model. Thereby, Behavior
As Activity refers to the name of this model.

stm Activ ityTest StateChart

Initial

State1

exit / OnExit

ActivateCount++;

State2

exit / OnExit

ActivateCount++;

State3

exit / OnExit

ActivateCount++;

State4

exit / OnExit

ActivateCount++;

Final

[End == true]/CheckActivations()

[End == false]

Figure 5.1: State machine of the Behavior As Activity case study

act Activ ityTest Act

ActivityInitial

RS
ReadSelf

result

RSF
ReadStructuralFeature

object result

ActivityFinal

Action1 :ChangeEnd

VS_6
ValueSpecification

result

«Less»

Less

Value 1

Value 2

result

«DecisionInputFlow»

[true]

[false]

Figure 5.2: Activity diagram Check Activations of the Behavior As Activity case study

This model represents one of the introductory examples of AMUSE, and therefore only consists
of the most basic model elements supported by AMUSE. In the state machine shown in Figure
5.1, each state increases a counter variable “Activate Count” by 1. The transition between states
1 and 2 calls the activity diagram “Check Activations” shown in Figure 5.2 to check if the end
condition (a counter variable value above 5) has been met. In this case, the end-variable “End”
is set, and the state machine can proceed to its final state.

72

act ChangeEnd

ReadSelf
ReadSelf

result

ActivityInitial

VS_False
ValueSpecification

result :

Boolean

RSFV
RemoveStructuralFeatureValue

object
value

ReadSelf_2
ReadSelf

result

VS_True
ValueSpecification

result :

Boolean

ASFV
AddStructuralFeatureValue

object
value

ActivityFinal

Figure 5.3: Activity diagram Change End of the Behavior As Activity case study

5.1.2 Traffic Light

The Traffic Light model is one of the more complex examples distributed with the AMUSE
plugin. Figure 5.4 depicts the state machine defined in this model. The state machine represents
a combination of a vehicle and a pedestrian traffic light, which are simulated by two sub-state
machines running in parallel. These sub-state machines use activities to broadcast signals, which
are then received by the respective other state machine. The signals are used to synchronize the
light-phases of the traffic lights, in order to guarantee that only one traffic light shows green at
any given time.

stm Traffic StateChart

Running

[Car]

[Pedestrian]

CarGreen

entry / LightOn

Initialize

entry / InitDLP

exit / startButtonTimer

AllOn

exit / AllOff

entry / AllOn
Initial

Final

Initial

AllOff

entry / AllOff

Dispose

exit / Dispose

entry / EndTimer

demonstrates simulation of traffic light using mock-ups of the graphic user interface.

The internal logic of the car lights as well as of pedestrian lights is modeled within the

model. The traffic lights UI is implemented as a Visual Studio project and connected to

the model. At model start, it start also the UI. The user can control the running model

via UI (Pedestrian and Exit buttons) as well as directly in the AMUSE simulation control

Initial

BlinkGreen

entry / GreenBlink

CarYellow

entry / LightOn

CarRed

entry / LightOn

PRed

do / LightOn

PGreen

do / LightOn

History

CheckEnd

entry / IncreaseCounter

Final

ExitSent

The ExitSent node serves

no practical purpose.

However, the effect of

the transition is not

triggered by AMuSE

when the target is a

Final-Node.

Wait7

Wait5

CarRed

CarGreen

Exit

Wait1

Exit

Wait1 /CarRed

Wait7 /CarGreen

Button

Button

/CarGreen

Button

[counter <= 1]

[counter > 1]

/Exit

Wait1

Figure 5.4: State machine of the Traffic Light case study

A custom user interface, which is depicted in Figure 5.5, is connected to the Traffic Light

73

state machine. This user interface illustrates the current light configuration of the two traffic
lights modeled in the state machine. Furthermore, the user interface contains a button that indi-
cates to the state machine that a pedestrian wants to cross. When this button is pressed, the state
machine immediately begins the process of switching the car traffic light first to green-blinking,
then to yellow and then to red before finally switching the pedestrian traffic light from red to
green.

Figure 5.5: User interface provided by the Traffic Light case study

5.1.3 Package Center

While the two aforementioned case studies cover the basic functionality of activity diagrams,
they are not complex enough to fully illustrate and test all the functionalities provided by the
prototype. Therefore, the Package Center case study has been constructed.

class PackageCenter

Package

+ GUID :string

+ Status :int

PackageCenter

- counter :int

- NumberOfPostmen :int = 2

+ AddPostmen() :void

+ CalculatePackagesToDeliver() :void

+ IncreaseCounter() :void

+ NotifyPostmen() :void

Postman

+ Deliver() :void

+ Load() :void

PostOffice

+ SendPackageToPackageCenter() :void
0..1

Packages

0..*

1

PostOffice

0..*

0..1

CurrentPackage

0..1

1

Postmen

1..*

0..1

PackagesToDeliver

0..*

0..1

Packages

0..*

Figure 5.6: Domain of the Package Center case study

74

The Package Center case study is a model describing the basic delivery process of packages
as it is used by postal services world-wide. Figure 5.6 shows the class diagram describing the
domain used for the definition of this case study.

While the exact definitions of the models are omitted for brevity, the following sections give
a brief overview of the inner workings of the state machines and activity diagrams defining the
behavior of the classes.

Post Office. The post office is responsible for creating the packages to be processed. Its be-
havior is defined by a state machine which loops between the following states:

1. The state machine of the post office resides in an Idle state. After a fixed period of time,
the state machine triggers the transition to the “Send Package” state.

2. Upon entry of the “Send Package” state, the “Send Package” activity diagram is invoked.
This activity diagram creates a new package, assigns a new GUID and the status 0 (new
package) to it, and finally adds it to package center’s list of stored packages via an add
structural feature value action.

3. Upon completion of “Send Package” activity diagram, the state machine returns to the
“Idle” state.

Package Center. The package center has the role of processing the packages generated by the
post office and assigning them to postmen for delivery. The state machine of the package loops
between the following states:

1. The state machine of the package center resides in an Idle state. After a fixed period of
time, the state machine triggers the transition to the “Calculate Packages” state.

2. Upon entry of the “Calculate Packages” state, the “Calculate Packages” activity diagram
is invoked. This activity diagram creates a list of all packages stored packages which shall
be delivered via the postmen based on the list of all stored packages.

3. Upon completion of the “Calculate Packages” activity diagram, the state machine transi-
tions immediately to the “Assign Packages” state.

4. Upon entry of the “Assign Packages” state, the “Assign Packages” activity diagram is in-
voked. This activity diagram assigns each package which shall be delivered to a randomly
chosen postman.

5. Upon completion of the “Assign Packages” activity diagram, the state machine transitions
immediately to the “Notify Postmen” state.

6. Upon entry of the “Notify Postmen” state, the “Notify Postmen” activity diagram is in-
voked. This activity diagram sends a signal to all postmen, which informs them that they
can now start with their respective deliveries.

7. Upon completion of “Notify Postmen” activity diagram, the state machine returns to the
“Idle” state.

75

Postman. The postman carries out the task of delivering all the packages that have been as-
signed to him, which is represented in the model by the assignment of a different status to the
package. The state machine of the postman loops between the following states:

1. The state machine of the postman resides in an Idle state. After receiving a signal from
the package center which indicates that each package has been assigned to a postman, the
state machine triggers the transition to the “Load” state.

2. Upon entry of the “Load” state, the “Load” activity diagram is invoked. This activity
diagram assigns the status 1 to each package, which indicates that the package has been
successfully loaded into the delivery vehicle.

3. Upon completion of the “Load” activity diagram, the state machine transitions to the “De-
liver” state.

4. Upon entry of the “Deliver” state, the “Deliver” activity diagram is invoked. This activity
diagram assigns the status 2 to each package, which indicates that the package has been
successfully delivered to the recipient.

5. Upon completion of “Deliver” activity diagram, the state machine returns to the “Idle”
state.

Package. The package object represents the physical package. It is only used for storing the
state of the package, as well as a unique identifier. A package object does not have a behavior.

Object Initialization. The Package Center case study includes a sequence diagram used for
initializing the used instances before running the simulation. This sequence diagram is shown
in Figure 5.7.

sd PackageCenter

PackageCenter

PostOffice

alt init

The Postmen cannot be

instantiated via the lifeline

mechanism because multiple

instances are required/used.

Therefore, this instantiation is

carried out in the code of

AddPostmen.

PostOffice=

PackageCenter= :this

AddPostmen()

Figure 5.7: Sequence diagram used for initializing the execution of the Package Center case
study

76

The sequence diagram shown in Figure 5.7 is the first behavioral diagram that is executed
during the overall execution. It initializes all required instances, namely one package center, one
post office and multiple postmen objects. Furthermore, the sequence diagram establishes the
correct links between these objects.

5.2 Functionality Analysis

The functionality of the prototype has been evaluated based on the presented case studies, as
well as a number of additional test cases for specific features. The main goal of the functionality
evaluation was to compare the activity diagram execution capabilities of the prototype with those
provided by AMUSE. Furthermore, the activity diagram execution capabilities of the prototype
have been compared with those of the fUML reference implementation.

5.2.1 Approach

The first step in evaluating the functionality of the prototype is the creation of a reasonable set
of different models that cover all the expected functionalities. This set includes several basic
models, which each cover a very specific functionality. These models have been also used as
the basis for implementing the prototype itself in a Test-Driven-Development approach. The
implemented test cases are shown in Table 5.1.

Model Contents Functionality Under Test
Two initial nodes connected by control flows Execution of invalid models
Single initial node Running a basic activity diagram
Two groups of create object action, value specifi-
cation and add structural feature value action

Creation of objects and assignment of
feature values

Activities of the Behavior As Activity case study Changing feature values, calling an ac-
tivity from another activity

Add structural feature value action that adds a new
value to the existing values of a feature value

Manipulation of collections of values

Expansion region that applies an add structural
feature value action with a static value

Expansion region with all expansion
node types

Send signal action Sending signals with object parameters
to a specified recipient

Table 5.1: Basic test cases used for the evaluation of the prototype’s functionality

This collection of tests seeks to replicate the tests available for the MOLIZ fUML Debug API,
and therefore covers every basic piece of functionality that is provided therein. However, the
MOLIZ fUML Debug API provides much more in-depth tests for specific features, which are
not explicitly tested for the prototype.

An important point to consider is that while all of these tests consist of models constructed
directly in EA, not all of them can be run directly from within it, as they are encapsulated test

77

cases with all external factors mocked away. Instead, these models can only be used via the
Model Test Execution Framework described in the following.

Model Test Execution Framework

The basic idea behind the Model Test Execution Framework is to enable the creation of regular
unit tests based on the MSTest framework integrated in Microsoft Visual Studio. These tests
are able to execute a complete UML model created with EA using the developed prototype
and assert the correctness of the model execution. To accomplish this, the Model Test Execution
Framework accesses the same functionalities for executing fUML models used by the prototype,
and conducts the same basic process:

1. Load a specified diagram from an EA model

2. Execute it via the fUML executor

3. Observe all fired events

The Model Test Execution Framework has access to all information about the execution that is
also available to the prototype. Most importantly, the Model Test Execution Framework has the
possibility to process all the events propagated by the fUML reference implementation. These
events are used to verify the correct execution order of model elements, such as actions and
control nodes. Additionally, the Model Test Execution Framework also has access to both the
EA and the fUML representation of all objects created and updated during the execution.

The current implementation is based on performing the execution of the test in its entirety
and only verifying the results afterwards. This solution was chosen to keep the structure of the
tests equivalent with their implementation in the MOLIZ fUML Debug API.

5.2.2 Provided Features

The current version of the prototype is able to successfully execute all basic test cases described
above, as well as all the case studies described in Section 5.1 consistently and without error.
Table 5.2 provides a detailed comparison between the activity diagram execution capabilities of
the prototype and AMUSE.

As shown in Table 5.2, the prototype supports all model elements of activity diagrams which
are also supported by AMUSE. Additionally, the prototype even supports model elements cur-
rently not supported by AMUSE in the form of call behavior actions and expansion regions.

During the development of the prototype as well as testing it, several limitations of the
integrated tools have been identified. These limitations are discussed in the following sections.

78

Model Element Model Element
Type

Supported by the
Prototype

Supported by
AMUSE

Create object action Action Yes Yes
Value specification action Action Yes Yes
Add structural feature
value action

Action Yes Yes

Call behavior action Action Yes No
Send signal action Action Yes Yes
Read self action Action Yes Yes
Read structural feature
action

Action Yes Yes

Remove structural feature
value action

Action Yes Yes

Reduce action Action Yes Yes
Input pin Object node Yes No
Output pin Object node Yes No
Activity parameter node Control node Yes Yes
Initial node Control node Yes Yes
Final node Control node Yes Yes
Fork node Control node Yes Yes
Join node Control node Yes Yes
Decision node Control node Yes Yes
Merge node Control node Yes Yes

Expansion region
Structured acivity
node

Yes No

Control flow Activity edge Yes Yes
Object flow Activity edge Yes Yes

Table 5.2: Comparison of activity diagram execution capabilities of the prototype and AMUSE

5.2.3 Limitations of Enterprise Architect

Previous chapters have mentioned various deviations of EA from the UML standard. In the
following, we will discuss these deviations, as well as the workarounds applied in the imple-
mentation of the prototype.

Value Specifications

One of the most glaring deviations is the representation of value specifications in EA. The UML
standard [21] specifies multiple different types of value specifications, each having the capability
of specifying a value of a specific type. In EA, however, there is no direct representation of
these value specifications. Instead, for example, the value specification action simply provides
an input field for the value specified, with no further restrictions or any selection options for the

79

type of value. This discrepancy requires the prototype to approximate the type of a value based
on the value itself, which is not only cumbersome, but may also lead to possible errors during
the model execution.

Missing Features of Specific Elements

A couple of features of fUML cannot be explicitly modelled in EA. Both the features, as well as
the workarounds used in the prototype, are listed in Table 5.3.

Missing Feature Workaround
Output pin of the write structural feature action Custom pin with name “output” is recog-

nized as the output pin.
Reduce action Generic actions tagged with specific

stereotypes are interpreted as calls to spe-
cific opaque behaviors. For example,
a generic action tagged with the “Re-
duceAdd” is interpreted as a call to the
opaque behavior “ReduceAdd”. This
mechanism is explained in more detail in
Section 4.2.6.

Decision input flow Object flows that are assigned the stereo-
type “DecisionInputFlow” are interpreted
as decision input flows by the prototype

UnlimitedNatural type Currently not supported by the prototype.

Table 5.3: Features of the fUML standard missing in EA

General Problems in Utilizing EA for the Prototype

The version of EA used for the prototype, namely version 10, has a significant problem with
generating code for collections. EA supports specifying that any attribute of a class represents
a collection. This collection mechanism is used by defining setting an additional “collection”
marker for the attribute which should be handled as a collection. However, the C# code generated
for such an attribute is incorrect, and, in fact, does not even compile. The reason for this is an
error in the code generation template used for the attribute.

While it is possible to fix the code generation template as part of the prototype, this approach
has the possibility of interfering with custom changes the user has made to the code generation
templates. The workaround applied in the case studies is not to use collection attributes at all.
Instead, the type of the attribute is declared as “List”. This leads to the generation of an attribute
of type list, which is the name of the list implementation within C#. The generated code is
correct when applying this approach and the created classes and instances are interpretable by
the prototype.

80

5.2.4 Limitations of AMUSE

Differences in Complexity of Models of AMUSE and fUML

When using AMUSE, the behavior of an activity is mostly defined by attaching C# code to
generic actions. However, in fUML, the action types for manipulating objects and performing
calculations, have to be used. Due to this difference, the structure of activity diagrams executed
by AMUSE is fundamentally different from activity diagrams executed by the prototype. This
difference results in a large difference in the complexity of models used by both approaches.
The Behavior As Activity case study is revisited here to illustrate this difference. The fUML
conformant models for this case study (depicted in figures 5.2 and 5.3) consist of 11 actions, 20
activity edges and 15 pins in total.

For comparison, consider the AMUSE conform model for the activity diagram, which is
depicted in Figure 5.8. It consists of 2 actions, 6 activity edges and 0 pins. However, note that
this model also contains 3 additional C# statements for depicting the behavior of 2 actions and a
guard condition.

act CheckActiv ations ActDiag

ActivityInitial

decision

Action2

 End = true

Action3

 End = false

ActivityFinal

merge

[ActivateCount > 5]

Figure 5.8: Activity diagram “Check Activity” of the Behavior As Activity case study

Limited Support of Behavior Call Mechanisms

The version of AMUSE utilized for the prototype, namely version 2.5, does not support some
behavior call mechanisms, either because of limitations of EA itself, or because the generated
code does not support it. Table 5.2 shows the mechanisms currently not supported by AMUSE.
The most prominent omission of AMUSE is that it does not support using call behavior actions
within activity diagrams. This mechanism is used extensively within the package center case
study, however. Therefore, AMUSE is unable to interpret the model of the Package Center case
study in its original form. To work around these limitations, a replica of the Package Center case

81

study has been created, which only uses the behavior call mechanisms supported by AMUSE
instead of call behavior actions.

Limited Functionality of Sequence Diagrams

AMUSE does not support calling behaviors from sequence diagrams. In fact, the implemen-
tation for the sequence diagrams fulfills only a very specific functionality , namely initializing
additional objects before the execution is started. For a detailed description of this mechanism,
please refer to Section 2.3.2.

For an illustration of a model that incorporates this functionality, we kindly refer to Figure
5.7. Aside from illustrating the functionality given to the sequence diagrams in AMUSE, this
figure also illustrates one of the drawbacks of the implementation. EA imposes the restriction
of only allowing a single lifeline corresponding to a class. Therefore, the modelled initialization
routine is unable to define an initialization of multiple instances of the same class, as required
in the Package Center case study. To overcome this limitation, the package center class defines
a method with attached C# code to manually initialize the objects. This method is invoked from
within the sequence diagram used to initialize the package center object.

As sequence diagrams were not within the primary scope of the prototype, this implemen-
tation has been left unchanged and was used for the purpose it was designed for, namely the
initialization of the Package Center case study as explained in Section 5.1.3. Aside from this
specific use case, sequence diagrams have not been dealt with further in the course of the evalu-
ation.

5.2.5 Limitations of the fUML Reference Implementation

Many of the problems in utilizing the fUML reference implementation, such as the inability
to observe a running execution, have been successfully solved through the MOLIZ API. How-
ever, the nature of the fUML reference implementation still caused problems in the execution of
models.

Validation Capabilities

The most critical weakness of the fUML reference implementation in the context of the prototype
is its inability to correctly validate models before execution.

The fUML reference implementation expects—according to its own definition—a “confor-
mant UML model”. A reasonable assumption might be that this would refer to a model that is
created according to the fUML specification. However, a model can be created that invalidates
this hypothesis. For instance, a model containing an empty expansion region would be assumed
to be fUML conformant, but such a model causes an undesired behavior of the execution envi-
ronment.

When executing the model, the fUML reference implementation crashes when trying to in-
terpret the empty expansion region, and produces an exception. This exception, stays unhandled
by the entire execution environment, and is instead passed on directly to the entity triggering the
execution. The key observation here is that it performs no validation of models before execution.

82

The point of this observations is not to expect the fUML reference implementation to be
completely bug-free and stable at all times. In fact, the described case likely represents an over-
sight in the implementation itself. However, it shows that the fUML reference implementation
is lacking in mechanisms to deal with errors both in the provided models, as well as in its own
implementation. Overall, this severely hinders the prototype—or, in fact, any user of the fUML
reference implementation—in providing meaningful user feedback in the case of errors in the
model, which in turn impacts the usability of the whole approach negatively.

Retrieval of Execution Identifiers

A specific technical problem in utilizing the MOLIZ API is the assignment and discovery of
execution ids, which the API assigns to each running execution to be able to separate them.
While this allows for a greater amount of control over the execution, the actual discovery of
the associated execution IDs is not trivial. When invoking the execution of an activity diagram
via the MOLIZ fUML Debug API, the unique execution id assigned to this execution is not
immediately indicated. Instead, the fUML executor is required to explicitly query the list of
executions that are currently being executed by the fUML virtual machine after the invocation
to determine the execution id. This implementation is not only cumbersome, but might also
lead to using wrong execution ids during parallel executions. A method of directly determining
the execution id of a started execution would be a desirable improvement of the MOLIZ fUML
Debug API.

5.2.6 Complications from Utilizing IKVM

Overall, the IKVM toolkit fulfills the task of bridging the gap between C# and Java remarkably
well. The prototype is able to access, instantiate and even extend the classes of both the fUML
reference implementation and MOLIZ transparently and without issue.

However, the debugging capabilities of IKVM incur problems when used with such a large
number of different libraries as used by this prototype. Both the fUML reference implementation
and the MOLIZ API utilize a variety of different dependencies to other libraries, each of which
must be converted to DLLs as well.

IKVM provides functionality to debug the converted code. In the case of the prototype, these
debugging functionalities could not be utilized at all during the first development cycles because
IKVM could not fully interpret one of the dependencies of the fUML reference implementation.
These problems were reported to the lead developer of IKVM, and subsequently fixed in a later
version. However, even when the debugging capabilities were functional, they could only be
used very scarcely. Specifically, the debugger oftentimes disconnected itself from the virtual
machine while stepping through the execution for only a minor number of steps (between five
and ten), which made fully tracing the fUML execution largely impossible.

The actual performance overhead of utilizing IKVM (for example in contrast to utilizing the
fUML reference implementation from Java code) has not been analyzed in the context of this
thesis. However, as the tests in Section 5.3 note a total execution time of few milliseconds, the
actual overhead is assumed to be insignificant for the purposes of this prototype.

83

In general, even though IKVM seems to be the most widely distributed C# / Java intercon-
nectivitiy tool, it is still a tool with only a handful of developers, and should therefore not be
expected to have the same kind of robustness and support as a commercial tool.

5.3 Performance Analysis

An extensive analysis of the performance of both the implemented prototype, as well as the
AMUSE plugin, has been conducted. This analysis has focussed on two main aspects, namely
the model execution time and the memory consumption during the execution. The main goal
of this analysis was to perform a comparison of the performance of both model execution ap-
proaches (interpretation vs. code generation). The analysis is based on the execution of the
case studies presented in Section 5.1, which are executed by both the prototype and the AMUSE
plugin to produce comparable performance results.

5.3.1 Approach

The first step in setting up the performance analysis was determining an appropriate number of
executions. The main concern was to generate a usable amount of data, while still allowing for
a reasonable timeframe of the analysis. Therefore, the decision was made to conduct each exe-
cution 10 times, and expand the number of runs for specific case studies if necessary. The data
of different runs has been shown to be largely consistent. The only exception is the Traffic Light
case study, which shows large variations in memory consumption between each different exe-
cution. These fluctuations are inherent to the Traffic Light case study due to the frequent usage
of signals and the external user interface. Thus, an increase in the number of executions would
not yield any additional information. Therefore, no additional executions have been conducted
at this time.

As for the method of combining the results of the separate executions, the decision was
made to rely on the median. The reason is that during preliminary testing, the first run of each
simulation was shown to have significantly higher execution times, which would skew the results
if averages were taken as basis for the evaluation.

All test runs for the performance evaluation have been conducted on the development ma-
chine itself. The specifications are shown in Table 5.4.

Component Specification
Processor Intel I7 @ 2,67 GHz
Video Card AMD Radeon HD 5700
Memory 4 GB
Operating System Windows 7, 64 Bit

Table 5.4: Hardware used for the performance evaluation

84

5.3.2 Analysis of Execution Time

For the evaluation of the execution time, both the prototype and the AMUSE plugin have been
extended with performance measuring capabilities. As the ExecutionEnvironment component
of AMUSE is responsible for both triggering and tracking the execution, it is the most suit-
able point to integrate the performance logging mechanism. Both the start and end of the code
generation phase, as well as the start and end of the execution are under direct control of the
ExecutionEnvironment component.

Performance Tests within EA

The first phase of the performance evaluation was conducted by executing the models of the three
different case studies described in Section 5.1 directly in EA. The results of these executions are
shown in Table 5.5, 5.6 and 5.7. Each presented table contains the following information about
the specific executions:

• Total preparation time. This measurement indicates the execution time required by the
ExecutionEnvironment component to prepare the model execution. For the AMUSE plu-
gin, this includes generating the source code for all behavioral diagram types. For the
prototype, this includes generating the source code for state machines and sequence dia-
grams, as well as the initialization of the fUML executor. The initialization of the fUML
executor comprises converting all classes required for the execution to their fUML repre-
sentation so they can be used by the fUML reference implementation.

• Total model execution time. This measurement indicates the execution time required for
performing the model execution after the preparation has been completed. This measure-
ment is calculated by measuring the total time difference between the start and the end
of the overall execution, and subtracting all known delays that occur when executing the
specific model (e.g., the Traffic Light state machine waits a specified amount of seconds
before switching lights).

• Total execution time. A sum of total preparation time and total model execution time.

• Number of executed elements. This measurement indicates the number of different ac-
tions and states that were encountered and executed during the overall model execution.
This number is always significantly higher for the prototype compared to the AMUSE
plugin, as the AMUSE plugin uses actions with attached C# code for the execution, while
the prototype uses the action types provided by fUML. This difference is discussed in
more detail in Section 5.2.4.

Table 5.5 shows the results of the execution time evaluation of the Behavior As Activity case
study. The table shows the basic premise of all following performance evaluation results. Both
the preparation and the model execution time in the prototype are significantly higher compared
to those of the AMUSE plugin.

Table 5.6 shows the results of the execution time evaluation of the Traffic Light case study.
Unfortunately, the performance impacts of the external UI used by the Traffic Light model cannot

85

fUML AMUSE
Total preparation time 1.776 ms 761,5 ms
Total model execution time 572,5 ms 181,5 ms
Total execution time 2.340 ms 931 ms
Number of executed elements 70 42

Table 5.5: Execution time of the Behavior As Activity case study

be accurately determined. Therefore, the evaluation results for this case study are not as relevant
as the results for the other two case studies. Nevertheless, the difference in pure execution time is
suitably minimal when comparing the prototype and AMUSE, which is a result of the structure
of the case study—only the send signal actions can be executed in fUML, while the remainder
of the behavioral diagrams are executed identically by both the prototype and AMUSE.

fUML AMUSE
Total preparation time 2.806 ms 2635,5 ms
Total model execution time 7.573 ms 7.298 ms
Total execution time 10.388 ms 9.924,5 ms
Number of executed elements 72 62

Table 5.6: Execution time of the Traffic Light case study

Table 5.7 shows the results of the performance evaluation of the Package Center case study.
The Package Center case study is the biggest case study used for this evaluation, and therefore
shows the performance discrepancies between the approaches most clearly. The difference in
preparation time shows that both approaches seem to scale relatively evenly, with the prototype
requiring about 50 percent more time than AMUSE. The difference between model execution
times, however, is significant both by itself, as well as in comparison to the other case studies.
A key factor that could be observed during the execution was that the constant re-rendering of
the newly added detailed object display seemed to significantly slow down the execution.

fUML AMUSE
Total preparation time 4.291 ms 2.792 ms
Total model execution time 31.807 ms 288 ms
Total execution time 36.118,5 ms 3.072,5 ms
Number of executed elements 206 48

Table 5.7: Execution time of the Package Center case study

A decisive problem of the prototype shown by all three case studies is the performance
overhead induced by the preparation phase, as it requires both generating the source code for
state machines and sequence diagrams, as well as the initialization of the fUML executor. The
comparison of the preparation times shows that the time required to initialize the fUML executor

86

is significantly higher than the time required to generate and compile the additional source code
for the activity diagrams.

The difference in pure execution time is an expected side effect of the virtual machine. As
shown by the evaluation of the three presented case studies, the difference in total performance
is already over 1000 percent. However, aside from the inherent problems of the fUML reference
implementation in comparison to the code generation approach, there are also additional factors
that effect the performance of the prototype, namely the constant synchronization of objects
between the fUML and AMUSE execution environments and the detailed visualization of the
current objects. Finally, the larger number of nodes in the fUML conformant model also leads
to a higher model execution time.

Peformance Tests outside of EA

The second step taken in evaluating the execution time of the prototype was to execute the
models outside of EA. This removes the following factors influencing the performance mea-
surements:

• Performance overheads caused by EA

• Performance overhead caused by visualizations in EA (diagram visualization, execution
state, objects view)

• Simulation delays for correct visualization

• Code generation and interpretation of the models

Unfortunately, it is not possible to utilize the code generation facilities of EA without a running
EA instance. Therefore, this evaluation focusses strictly on the model execution and neglects
the preparation step. For executing the models, the model execution framework described in
Section 5.2 is used. For this performance analysis, the Model Test Execution Framework was
modified such that it logs both the start and the end of the execution at the same points the
AMUSE framework does.

Table 5.8 shows the results of the evaluation of the case studies outside of EA. Compar-
ing these results to the results obtained in EA shows the expected reduction in execution time
through the elimination of the factors mentioned above.

The execution times for the Behavior As Activity case study show a significant reduction
of execution time for both the prototype and AMUSE. However, it should be noted that the
reduction is much higher for AMUSE, which retains only a very low execution time.

fUML AMUSE
Execution time of the Behavior As Activity case study 460 ms 35,5 ms
Execution time of the Traffic Light case study 7.815 ms 7.349 ms
Execution time of the Package Center case study 838,5 ms 65 ms

Table 5.8: Execution time evaluation of the case studies outside of EA

87

The external UI used by the Traffic Light case study is retained in this form of model execu-
tion. Comparing the results of this execution to the one conducted in EA shows no significant
impact on the total execution time, which may support the assumption that the external UI is
causing the performance problems of this particular case study.

The execution times for the Package Center case study show the biggest differences when
compared to the evaluation conducted directly in EA. Through isolating the model execution
from EA, the measured execution times of both AMUSE and the prototype are reduced signifi-
cantly. While the overall relation between the execution times measured for fUML and AMUSE
remains the same, both times are reduced by at least 90 percent, indicating that most of the
performance overhead is not caused by the respective execution environments.

5.3.3 Performance Comparison with Hand-Written Code

The last step of the evaluation was to determine a general measure of overhead imposed by
simulating models compared to executing C# code implementing the same functionality. To
illustrate this approach, Listing 5.1 depicts a unit-test equivalent to the Behavior As Activity case
study, which was implemented in C#.

1 [TestMethod]
2 p u b l i c vo id B e h a v i o r A s A c t i v i t y C o d e d ()
3 {
4 Per formanceLog per fo rmanceLog = new PerformanceLog ("

C o d e d _ B e h a v i o r A s A c t i v i t y " , f a l s e , 0) ;
5 per fo rmanceLog . S t a r t () ;
6 per fo rmanceLog . AddEntry (" E x e c u t i o n s t a r t e d . ") ;
7 i n t i = 0 ;
8 boo l end = f a l s e ;
9 w h i l e (t r u e)

10 {
11 i ++;
12 i f (i%4 == 1)
13 {
14 i f (i > 5)
15 {
16 end = t r u e ;
17 }
18 }
19 i f (i%4 == 2)
20 {
21 i f (end)
22 {
23 b r e a k ;
24 }
25 }

88

26 }
27
28 per fo rmanceLog . AddEntry (" E x e c u t i o n comple t ed . ") ;
29 per fo rmanceLog . F i n i s h () ;
30 }

Listing 5.1: C# implementation of the Behavior As Activity case study

Table 5.9 shows the measured execution time for the implemented C# code. Comparing these
results with the previously shown evaluation shows that the model execution approaches of both
the prototype and AMUSE induce significant performance overheads. While the reduction to
only the execution-mechanics performed in the previous section shows massive performance
increases, the re-implementation by hand shows that both approaches still induce significant
overheads.

This is especially true in the case of the Behavior As Activity case study, for which none of
the executions takes even a single millisecond. Also, the coded implementation of the Traffic
Light case study allows us to evaluate the actual impact of purely loading and controlling the
user interface without the event mechanism, as this coded version directly manipulates the UI
by calling the methods otherwise triggered by events.

Execution-Time
Behavior As Activity 0 ms
Traffic Light 237,5 ms
Package Center 4,5 ms

Table 5.9: Performance Evaluation of the coded representations of the case studies

5.3.4 Analysis of Memory Consumption

Measuring performance strictly based on execution time neglects a very crucial performance
factor, namely the memory consumption.

Both Java and C# are programming languages that employ garbage collection mechanisms.
Any approach that tries to determine memory consumption has to take this mechanism into
account, and is therefore prone to errors resulting from inaccurate measurements.

Nevertheless, the Model Test Execution Framework attempts to estimate the memory con-
sumption of the respective of both the prototype and AMUSE by implementing the following
approach:

1. Dispose all unused objects

2. Measure current memory allocation

3. Start execution

4. Measure memory allocation every time the execution enters a new element

89

Figure 5.9 shows a comparison of the memory consumed during the execution of the Behavior
As Activity case study. As can be seen in the figure, the memory consumption of the prototype
is significantly higher than that of AMUSE. Furthermore, the memory profile of the prototype
shows a far more volatile behavior, with two major peaks in memory consumption that seem to
largely coincide with the invocations of the fUML executor.

Figure 5.9: Memory comsumption of the Behavior As Activity case study

Figure 5.10 shows the comparison of consumed memory during the execution of the Traffic Light
case study.

The memory consumption of the Traffic Light case study is inherently volatile due to the im-
plementation of the UI component, which relies on polling mechanisms and constant triggering
of events to communicate with the state machine. Each significant peak of memory consumption
during the execution coincides with a change of one of the lights of the UI component. Further-
more, both the prototype and AMUSE show a very similar memory consumption pattern. The
shift between the peaks in memory consumption stems from the different number of model el-
ements that are contained in the models executed by the respective approaches. However, an
analysis of the memory consumption during the individual executions of the Traffic Light case
study has shown large differences in consumed memory at all measurement points. Therefore,
the memory consumption analysis of this particular case study is only of limited meaning.

90

Figure 5.10: Memory comsumption of the Traffic Light case study

Figure 5.11: Memory comsumption of the Package Center case study

Figure 5.11 shows the comparison of consumed memory during the execution of the Package
Center case study. It shows that while the code generation approach of AMUSE seems to require

91

only very little memory in performing the execution of this case study, the prototype requires a
far greater amount.

The reason for the high amount of required memory lies in the constant parallel execution of
several activity diagrams. The fUML reference implementation allocates a minimum of 400 KB
of memory for each newly started activity diagram execution. Furthermore, this memory is not
always deallocated directly after the execution of the activity diagram has been completed. This
behavior of the fUML reference implementation is directly reflected by the measured memory
consumption during the execution of the Package Center case study. The package center object
executes two activity diagrams for each package that must be delivered. Each of these executions
consecutively increases the memory consumption. This increase starts when the execution of the
Package Center case study has reached 50 percent completion, and is depicted in Figure 5.11.
Additionally, all package objects created during the execution of the Package Center case study
are stored until the end of the execution, requiring additional memory.

A preliminary evaluation of the Package Center case study with a reduced number of post-
man objects (1 or 0, respectively) has shown a decrease of 1,5 MB of memory consumed per
postman, providing further evidence that the conduction of multiple parallel activity diagram
executions causes the increased memory consumption.

5.4 Usability

The usability of both the prototype and AMUSE have been evaluated based on the presented
case studies. The goal of this evaluation was to compare the usability of the respective tools, and
their utilization of EA.

5.4.1 Approach

As has been noted in Section 5.2, AMUSE and the prototype utilize significantly different im-
plementations of activity diagrams. Therefore, two separate versions of the activity diagrams
used within the case studies have been created for the evaluation. The evaluation of the usability
is based upon the experiences we have gained while creating these diagrams.

5.4.2 Results

Insufficient Expressiveness of EA Models

As has been discussed extensively in the previous chapters, fUML is a very precise modeling lan-
guage which requires models to be very detailed. With the exception of the problems mentioned
in Section 5.2.3, EA supports the creation of such models. However, it lacks the capabilities to
represent certain key properties of fUML model elements in an easily perceivable manner.

Consider, for example, the activity diagram shown in Figure 5.12, which is part of the Pack-
age Center case study.

92

act SendPackageToPackageCenter_Activ ity

ActivityInitial

RS
ReadSelf

result

AddPackage
AddStructuralFeatureValue

object value

Read PackageCenter
ReadStructuralFeature

object

result

Read CurrentPackage
ReadStructuralFeature

object

result

ActivityFinal

CreatePackageObject :

CreatePackageObject_Activ ity

Figure 5.12: Activity diagram SendPackageToPackageCenter of the Package Center case study

The following information is not visible from the diagram, and must be inferred from determined
by opening separate properties windows for each action:

• The structural feature referenced by the add structural feature value action is not shown

• The structural feature referenced by the read structural feature action is not shown

• Both control flows and object flows are displayed identically. The type of an activity edge
can only be determined via the properties window in which this type is defined, or inferred
from the model elements the activity edge connects.

Similar problems exist in a majority of the diagrams used for the Package Center case study.
For example, input and output expansion nodes of expansion regions cannot be visually distin-
guished. Their only differentiating factor is the applied stereotype, which is not displayed in the
diagram, and can only be seen in the “stereotype” sub-window of the properties window.

Inefficiency of the EA User Interface

While the user interface of EA covers all of the functionalities needed for specifying the models
used for evaluating the prototype (aside from those covered explicitly in Section 5.2.3), the
general experience of using EA to create the models has been perceived as being cumbersome.

The main reason lies in the design of the user interface itself. Commonly used model ele-
ments, such as classes and their corresponding attributes, can be easily and intuitively defined.
Configuring the more specific model elements that are used for an fUML compliant activity dia-
gram, such as an add structural feature value action, however, requires the navigation of various
properties windows for each model element. Additionally, these properties windows vary based
on the actual type of model element, requiring extensive knowledge of the menu structure of EA
for creating fUML models.

93

Consider, for example, the following list of steps required for modeling an add structural
feature value action correctly:

1. Drag a generic action onto the model

2. Select “AddStructuralFeatureValueAction” as the type

3. Drag the pins of the add structural feature value action onto the action from the project
browser. The pins are automatically created upon creation of the add structural feature
value action, but are not automatically added to the diagram

4. Navigate to the entry “Advanced—Set Structural Feature” of the context menu of the
action

5. Select the correct from a list of structural features contained in the model

As can be seen, the definition takes a multitude of steps, each of which needs to be carried out
correctly in order for the model to be valid according to fUML. A similar procedure needs to be
applied for all other action types, as well as for some of the control nodes.

Inconsistencies Between the EA User Interface and Stored Models

Aside from the need to extensively use properties windows to define fUML conform models,
creating models with EA mostly consists of dragging and dropping elements onto the modeling
canvas and connecting them. However, for model execution, the visual representation is largely
irrelevant, as only the model elements stored in the database and displayed in the project browser
are processed.

One particularly frustrating case that is related to this discrepancy is the modeling of expan-
sion regions. When dragging elements onto an expansion region, they are not actually registered
as being owned by the expansion region itself, which leads to an incorrect model execution. The
only way the user can fix this is to manually drag the respective elements onto the expansion
region in the project browser so they are properly registered as children thereof.

Model Execution Visualization Issues

The version of AMUSE utilized in the prototype uses a custom SVG layer to display the state
of running executions. The actual visualization needs to be implemented manually for each
model element. However, as the AMUSE plugin only supports a limited set of model elements
for activity diagrams, the visualization for the model elements required for an fUML compliant
activity diagram are not sufficiently implemented. Unfortunately, this leads to an incomplete
visualization of the execution state of activity diagrams by the prototype.

Consider, for example, the differences between the model of the SetupForDelivery activity,
which is shown in Figure 5.13, and its visualization during the execution, which is shown in
Figure 5.14.

94

act SetupForDeliv ery_Activ ity

Packages :

Package

SetupForDeliv ery_Activ ity

Packages :

Package

Packages

ExpansionRegion«iterative»

Packages

Call_SetupPackageForDeliv ery :

SetupPackageForDeliv ery_Activ ity

Package :

Package

Figure 5.13: SetupForDelivery activity diagram of the Package Center case study

Figure 5.14: Visualization of the execution state SetupForDelivery activity diagram of the Pack-
age Center case study

The activity diagram contains an expansion region, which in turn contains a call behavior action
to be executed for every element passed on to the expansion region. However, a number of
elements included in the model cannot be correctly visualized. This includes:

• The activity parameter node of the activity

• The expansion region

• The input and output expansion nodes of the expansion region, as well as all activity edges
connected to them

95

After the analysis of the current implementation and a consultation with the lead developer of
the AMUSE plugin, the necessary implementation effort to resolve these visualization issues has
been deemed out of scope for the prototype. However, the version of AMUSE currently under
development completely revamps the visualization aspects so that it may reuse the internal visu-
alization of EA. The possibility of incorporating the new version of AMUSE into the prototype
is discussed in Section 6.2.

5.5 Stability

The stability of the prototype has been analyzed based on the test cases covered by the Model
Test Execution Framework described in Section 5.2, as well as the presented case studies. The
goal of this evaluation was to determine whether the respective tools are able to execute a given
set of models repeatedly without errors and with identical results.

5.5.1 Approach

The stability analysis is based on logging information of both the prototype and AMUSE. This
includes both the detailed model execution trace information that is produced by both tools, as
well as the additional logging capabilities that have been implemented for both the functionality
analysis, as well as the performance analysis. Additionally, the stability of the protoype has been
further examined by using the Model Test Execution Framework to conduct and verify repeated
automated executions of the case studies.

5.5.2 Results

Stability of the fUML Executor

During all model executions conducted for the evaluations discussed in this chapter, no errors
or inconsistencies could be detected in the model executions carried out by the fUML executor.
All test runs yielded the expected results (both positive and negative) consistently and without
any errors.

Stability of AMUSE

The extensive utilization of the AMUSE plugin has shown that it has fundamental problems
with consistently repeating the execution of a combination of complex behavioral diagrams and
producing the exact same result.

The AMUSE plugin reuses an existing execution environment for multiple executions of the
same model. However, multiple executions conducted in this way retain some of the information
from previous runs. This leads to exceptions for duplicate keys in some internal structures after
an unpredictable number of runs. It should be noted that this behavior is not caused by the
fUML prototype itself, as it also appears when using AMUSE’s activity diagram executor. A
second indicator that the execution environment is not completely reset after each execution
is the appearance of OutOfMemoryExceptions after a around 20 executions. However, both

96

of these issues can be resolved by deactivating the reuse of existing execution environments.
Therefore, they have not caused any problems during the evalutation.

A far more serious issue has shown up during the evaluation of the Package Center case
study. Out of the ten executions via the prototype, two did not completely execute the full
process depicted by the model, and have terminated prematurely without reporting any errors.
The classifier behavior of the package center is modelled as a state machine, which is executed
directly by AMUSE. Therefore, the cause for the premature termination of the execution most
likely lies within the implementation of this executor, although we have been unable to determine
the specific cause.

5.6 Discussion of the Evaluation Results

The results of the evaluation of the prototype discussed in this chapter provide us with enough
information to assess the applicability of our proposed approach of integrating fUML into ex-
isting UML modeling tools, and to provide answers to the research questions defined in Section
1.3.

The first research question investigated by this thesis was whether fUML can be integrated
into a proprietary UML model execution environment and which challenges arise from such
an integration. The prototype created for this thesis serves as proof that such an integration is
indeed possible. The main challenges that have been identified for the integration are converting
the model representation of the tool into a format that is interpretable by the fUML reference
implementation and synchronizing the respective object spaces of the integrated model execution
environment with the one of the fUML virtual machine.

The second research question was whether the standardized fUML model execution environ-
ment provide the same functionality as a proprietary UML model execution environment. The
functionality evaluation presented in Section 5.2 has shown that the prototype provides model
execution capabilities for activity diagrams equivalent to those of the AMUSE plugin. The pro-
totype is even able to provide some functionalities which are currently not supported by the
AMUSE plugin, such as the invocation of additional activity diagrams during the execution of
an activity diagram and the execution of expansion regions.

The last research question was to determine if the created prototype has similar performance
characteristics as a proprietary UML model execution environment. The performance analysis
presented in Section 5.3 has shown that the prototype has both a significantly higher overall exe-
cution time than the the AMUSE plugin, as well as a significantly higher memory consumption.
Both of these factors can be mainly attributed to the fact that the prototype uses both model
interpretation and code generation in combination, as the prototype needs to maintain both the
execution environment of AMUSE as well as the execution environment of the fUML virtual
machine in addition to constantly synchronizing them. AMUSE, on the other hand, only needs
to maintain its own proprietary execution environment.

97

CHAPTER 6
Conclusion and Future Work

6.1 Summary

Creating and using models is turning into a central part of the software development process.
MDD [14] — the approach of utilizing models during every phase of the process — has become
more and more wide-spread over the last years. The predominant standard in this field is UML
[12]. It offers a wide variety of different modeling concepts and diagram types for a wide variety
of different applications. However, to fulfill this goal, UML’s semantics are intentionally kept
vague, leaving many specifics up to interpretation. This vagueness, however, interferes with
the growing need to execute models for analysis purposes. The modeling tools available on the
market today try to solve this problem by applying a multitude of specific, often proprietary se-
mantics. In February 2011, UML has been extended by the standard called Foundational Subset
For Executable UML Models (or fUML for short) [22]. fUML defines precise and machine-
interpretable semantics for a specific subset of UML. The standard includes a fully-functional
execution environment, which is capable of interpreting fUML compliant models. However,
neither the standard nor its execution environment have been widely adopted in existing mod-
eling tools. Therefore, the goal of this thesis has been to integrate the fUML standard into an
existing modeling tool, with the goal of identifying the challenges arising in this integration.

As the fUML standard only deals with class diagrams and activity diagrams, it only supports
a limited number of modeling concepts. Therefore, integrating it into an existing tool usually
requires adapting the existing execution environment instead of replacing it entirely. The theo-
retical part of this thesis therefore dealt with clearly defining all possible interaction points that
exist between the modeling concepts covered by fUML, and the remaining modeling concepts
provided by UML. In particular, the focus was on the interactions between activity diagrams
and state machines. These interaction points served as basis for defining the interfaces between
fUML’s execution environment and existing model execution environments.

The main contribution of this thesis is a prototypical integration of fUML into Enterprise
Architect, a commercial UML tool. The prototype utilizes the EA plugin AMUSE, which is able
to execute combinations of activity diagrams, state machines and sequence diagrams. AMUSE

99

provides visualization, debugging and tracing support during the model execution. The AMUSE
plugin is adapted to utilize fUML for executing activity diagrams while still utilizing its own
execution environment for executing state machines and sequence diagrams. Furthermore, the
prototype integrates both of these execution environments so that they work together seamlessly.

6.1.1 Evaluation

An extensive evaluation of the prototype has been conducted with the aim of determining the
validity of the general approach of integrating fUML with an existing existing UML execution
environment, as well as the quality of the implemented prototype. The evaluation has investi-
gated the following aspects:

• Functionality

• Performance

• Usability

• Stability

The evaluation of the prototype has shown that the integration of the execution environments
has been completed successfully. The prototype is capable of executing and debugging state
machines, sequence diagrams, and fUML compliant activity diagrams in conjunction, while still
providing the same functionality as the proprietary execution environment. The performance
analysis has shown that the prototype is less performant than that of the proprietary execution
environment provided by AMUSE. This is mostly due to the necessity of running two different
execution environments in parallel. The usability evaluation has shown that the created prototype
can be used to used to effectively execute any combination of behavioral models the prototype
supports. Thereby, it provides debugging, tracing and visualization capabilities for all executed
diagrams. However, the modeling capabilities of EA are cumbersome to use for defining precise
and fUML compliant activity diagrams. In combination with the limited feedback of the fUML
execution environment concerning the validity of activity diagrams, finding errors in a model
can be quite tedious. The stability evaluation has shown that the integrated execution environ-
ment of the prototype is able to execute the supported combinations of models consistently and
without error. However, this part of the evaluation has shown that AMUSE suffers from memory
leaks, and sometimes misinterprets transitions in state machines running in parallel, leading to
inconsistent results within multiple executions of the same models.

6.1.2 Challenges

This master’s thesis has discussed a number of different challenges arising from the integra-
tion of fUML into an existing UML execution environment. The largest challenge encountered
when integrating fUML with AMUSE comprised inconsistencies between the UML standard
and the EA support thereof. It has been shown that full support for modeling all fUML ele-
ments according to the exact specifications contained in the fUML standard is a requirement for
a full integration. Currently, one must rely on unintuitive workarounds. This is a major point

100

of concern when deciding to implement the approach suggested in this master’s thesis, because
it possibly hampers both the functionality and the usability of the resulting integrated model
execution environment.

The approach to map the model representation used by a UML tool to the representation
format of the fUML reference implementation by hand has been shown to be cumbersome, but
effective in dealing with inconsistencies between the tool and the standard. This is because
it gives full control of the mappings to the developer. Therefore, we recommend taking this
approach when integrating fUML with a similarly inconsistent UML tool. Should the model
execution tool adhere to the standard more rigidly, however, it may be promising to utilize one
of the other approaches discussed in Section 4.2.2.

Lastly, a difference in programming languages between the model execution tool and the
fUML reference implementation possibly requires the application of additional tools. In the case
of this master’s thesis, the IKVM toolkit was used to make the Java implementation of fUML
usable in AMUSE, which is implemented in C#. Such toolkits, however, increases the com-
plexity of the resulting model execution tool. The implementation created during this master’s
thesis has shown minimal problems resulting from the involvement of different programming
languages.

Overall, the prototype created in the course of this master’s thesis has shown that the ap-
proach of integrating fUML into an existing tool is theoretically sound and technically feasible.
With the fUML reference implementation acting as a mostly stable and adequately performant
execution environment, the resulting prototype shows that employing the approach proposed in
this thesis can enhance an existing model execution tool with fUML standard compliant model
execution capabilities for class diagrams and activity diagrams.

6.2 Future Work

Both the created prototype, as well as the evaluation thereof can be expanded in several meaning-
ful ways. In the following, we discuss these points for future work in more detail. Furthermore,
we also give an overview of steps needed for taking the prototype to operational use.

6.2.1 Integration of Sequence Diagram and Activity Diagram

The AMUSE execution environment only provides a limited amount of functionality for se-
quence diagrams. In particular, it only utilizes them as an initialization means for the execution.
This initialization is conducted by creating objects for the defined lifelines and assigning prop-
erties via operations called by messages exchanged between the lifelines. At the moment, these
exchanged messages need to be in a specific format, which is then converted directly into code.
In a first step, this functionality could be expanded to also support calling fUML activities both
for creating objects and setting properties. As soon as this step is completed, research can be
conducted into fully utilizing sequence diagrams in conjuction with the fUML activity diagrams,
e.g., for calling sequence diagrams from activity diagrams.

101

6.2.2 Execution of Opaque Behaviors Defined in the Model

The prototype supports the usage of opaque behaviors, which are pre-implemented behaviors
that can be invoked with a call behavior action. In addition to the opaque behaviors provided
by fUML, the prototype provides additional behaviors, which are used in the conducted case
studies. All of these provided opaque behaviors consist of hard-coded behaviors which are
instantiated at runtime. With the prototype, a model must contain an opaque action annotated
with a specific stereotype that corresponds to the specific opaque behavior to invoke it. Ideally,
this mechanism would be replaced by providing a library of models of these opaque behaviors
with the fUML prototype, which could then be invoked via a normal call behavior action. This
would allow editing the opaque behaviors via the modeling UI, and remove the need for the
stereotype applications.

6.2.3 Integration of New Versions of Used Tools

Due to continuing problems introduced by frequently updating the used versions of all tools
and libraries required by the prototype, the versions were frozen during the development of the
prototype and have not been updated since. The visualization errors present in the current imple-
mentation of the prototype could be possibly solved by incorporating new versions of AMUSE.
An updated calculation of execution ids could be obtained by updating the used MOLIZ fUML
Debug API version, which would further improve the stability of the activity diagram execution
mechanism of the prototype. In the case of EA, the evaluation was conducted with version 10,
which has already been succeeded by Version 11. This update would be worth looking into for
UI improvements, as well as the inclusion of action types that were not supported by version 10,
such as the reduce action.

6.2.4 Continuation of the Evaluation

Continued Usability Study

As this thesis was mainly concerned with technical aspects of integrating fUML with UML
tools, the usability aspects of using fUML via the interface of EA have not been thoroughly
investigated. Doing so could provide further insights into the applicability of the prototype and
fUML in general.

Comparison of Integration with Other Tools

The evaluation compared the functionality, as well as performance measures of the developed
prototype with AMUSE. Comparing the prototype also with other UML tools supporting model
execution would provide further insights into the practicability of fUML.

6.2.5 Necessary Steps for Creating a Shippable Version of the Prototype

Both the functionality and the performance of the current version of the prototype are suitable for
the prototype to be shipped as a modified version of the AMUSE plugin. Nevertheless, creating

102

a shippable version of the prototype requires a few modifications to the current implementation.
Firstly and most importantly, the prototype must be upgraded to the current version of EA and
AMUSE, as these versions are the ones distributed to the customers. Secondly, it is necessary
to improve the error-handling and logging capabilities of the prototype significantly beforehand.
The prototype is currently not fit to communicate exceptions that occur during the execution in
a user-friendly manner, which can diminish its usability for the end user. As soon as these two
challenges are overcome, the prototype could be delivered to customers for operational use and
further evaluation.

103

Abbreviations

AMUSE Advanced Modeling Using Simulation and Execution

EA Enterprise Architect

fUML Foundational Subset For Executable UML Models

MDD Model-Driven Development

OMG Object Management Group

UML Unified Modeling Language

104

Bibliography

[1] BARESI, L., MORZENTI, A., MOTTA, A., AND ROSSI, M. A Logic-based Semantics for
the Verification of Multi-diagram UML Models. SIGSOFT Softw. Eng. Notes 37, 4 (2012),
1–8.

[2] BÖRGER, E. The Abstract State Machines Method for High-Level System Design and
Analysis. In Formal Methods: State of the Art and New Directions. Springer, 2010, pp. 79–
116.

[3] BÖRGER, E., CAVARRA, A., AND RICCOBENE, E. On Formalizing UML State Machines
using ASMs. Information and Software Technology 46, 5 (2004), 287–292.

[4] CAVARRA, A., RICCOBENE, E., AND SCANDURRA, P. A Framework to Simulate UML
Models: Moving from a Semi-formal to a Formal Environment. In Proceedings of the 2004
ACM Symposium on Applied Computing (2004), SAC ’04, ACM, pp. 1519–1523.

[5] CRANE, M. L., AND DINGEL, J. Towards a UML Virtual Machine: Implementing an
Interpreter for UML 2 Actions and Activities. In Proceedings of the 2008 Conference of
the Center for Advanced Studies on Collaborative Research: Meeting of Minds (2008),
CASCON ’08, ACM, pp. 8:96–8:110.

[6] FRANCE, R., EVANS, A., LANO, K., AND RUMPE, B. The UML as a Formal Modeling
Notation. Computer Standards & Interfaces 19, 7 (1998), 325–334.

[7] FUENTES, L., MANRIQUE, J., AND SÁNCHEZ, P. Execution and Simulation of (profiled)
UML Models using Pópulo. In Proceedings of the 2008 International Workshop on Models
in Software Engineering (2008), MiSE ’08, ACM, pp. 75–81.

[8] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, 1994.

[9] HAREL, D., AND KUGLER, H. The Rhapsody Semantics of Statecharts (or, On the Exe-
cutable Core of the UML). In Integration of Software Specification Techniques for Appli-
cations in Engineering, vol. 3147 of Lecture Notes in Computer Science. Springer, 2004,
pp. 325–354.

105

[10] HAUSMANN, J. H. Dynamic Meta Modeling: A Semantics Description Technique for
Visual Modeling Languages. PhD thesis, Faculty of Computer Science, Electrical Engi-
neering, and Mathematics, University of Paderborn, 2005.

[11] HITZ, M., AND BERNAUER, M. UML@ Work: Objektorientierte Modellierung mit UML
2. Dpunkt. verlag, 2005.

[12] HÖFIG, E., DEUSSEN, P. H., AND SCHIEFERDECKER, I. On the Performance of UML
State Machine Interpretation at Runtime. In Proceedings of the 6th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (2011), SEAMS
’11, ACM, pp. 118–127.

[13] JÜRJENS, J. Formal Semantics for Interacting UML Subsystems. In Proceedings of the
IFIP TC6/WG6.1 Fifth International Conference on Formal Methods for Open Object-
Based Distributed Systems V (2002), FMOODS ’02, Kluwer, B.V., pp. 29–43.

[14] KIRSHIN, A., DOTAN, D., AND HARTMAN, A. A UML Simulator Based on a Generic
Model Execution Engine. In Proceedings of the 2006 International Conference on Models
in Software Engineering (2006), MiSE ’06, Springer, pp. 324–326.

[15] KOHLMEYER, J., AND GUTTMANN, W. Unifying the Semantics of UML 2 State, Activity
and Interaction Diagrams. In Perspectives of Systems Informatics, vol. 5947 of Lecture
Notes in Computer Science. Springer, 2010, pp. 206–217.

[16] LAURENT, Y., BENDRAOU, R., AND GERVAIS, M.-P. Executing and Debugging UML
Models: An fUML Extension. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing (2013), SAC ’13, ACM, pp. 1095–1102.

[17] MA, Z., SHENG, Z., GU, L., WEN, L., AND ZHANG, G. DVM: Towards a Datacenter-
scale Virtual Machine. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments (2012), VEE ’12, ACM, pp. 39–50.

[18] MAYERHOFER, T. Breathing New Life into Models. Master’s thesis, Vienna University
of Technology, Vienna University of Technology, 2011.

[19] MAYERHOFER, T., AND LANGER, P. Moliz: A Model Execution Framework for UML
Models. In Proceedings of the Second International Master Class on Model-Driven Engi-
neering: Modeling Wizards (2012), MW ’12, ACM, pp. 3:1–3:2.

[20] NITTO, E. D., LAVAZZA, L., SCHIAVONI, M., TRACANELLA, E., AND TROMBETTA,
M. Deriving Executable Process Descriptions from UML. In Proceedings of the 24th
International Conference on Software Engineering (2002), ICSE ’02, ACM, pp. 155–165.

[21] OMG. Unified Modeling Language (UML), Version 2.4.1. http://www.omg.org/
spec/UML/2.4/, 2010.

[22] OMG. Semantics of a Foundational Subset for Executable UML Models (fUML), Version
1.1. http://www.omg.org/spec/FUML/1.1/, 2011.

106

http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/FUML/1.1/

[23] PASTOR, O., ESPAÑA, S., PANACH, J. I., AND AQUINO, N. Model-Driven Development:
Piecing Together the MDA Jigsaw Puzzle. Informatik-Spektrum 31, 5 (2008), 394–407.

[24] RIEHLE, D., FRALEIGH, S., BUCKA-LASSEN, D., AND OMOROGBE, N. The Architec-
ture of a UML Virtual Machine. In Proceedings of the 16th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (2001), OOPSLA
’01, ACM, pp. 327–341.

[25] RUMBAUGH, J., JACOBSON, I., AND BOOCH, G. The Unified Modeling Language Ref-
erence Manual. Pearson Higher Education, 2004.

[26] SARSTEDT, S. Semantic Foundation and Tool Support for Model-Driven Development
with UML 2 Activity Diagrams. PhD thesis, Fakultät für Informatik, Universität Ulm,
2006.

[27] SIEK, J., AND TAHA, W. A Semantic Analysis of C++ Templates. In Proceedings of the
20th European Conference on Object-Oriented Programming (2006), vol. 4067 of Lecture
Notes in Computer Science, Springer, pp. 304–327.

[28] STACHOWIAK, H. Allgemeine Modelltheorie. Springer, 1973.

[29] W3C. Scalable Vector Graphics (SVG). http://www.w3.org/TR/SVG12/, 2011.

107

http://www.w3.org/TR/SVG12/

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Background
	Modeling with UML
	Model Execution
	Tools

	State of the Art
	Execution of UML Activity Diagrams and State Machines
	Formal Specification of UML Diagram Types and Interactions
	Model Interpretation vs. Code Generation

	Prototype
	Overview
	fUML Executor Implementation
	Integration

	Evaluation
	Case Studies
	Functionality Analysis
	Performance Analysis
	Usability
	Stability
	Discussion of the Evaluation Results

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

