
Diplomarbeit

Mapped Tent Pitching Method for

Hyperbolic Conservation Laws

Ausgeführt am Institut für

Analysis und Scientific Computing

der Technischen Universität Wien

unter der Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Joachim Sch

¨

oberl

durch

Christoph Wintersteiger BSc

Aumühlweg 1, 4812 Pinsdorf

October 21, 2015

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

This thesis introduces a novel discretization technique for solving hyperbolic conser-
vation laws, called Mapped Tent Pitching (MTP) scheme. A tent pitching algorithm
creates space-time domains, called tents, by vertically erecting canopies over spatial ver-
tex patches. The structure of such a tent pitched space-time mesh is exploited by the
MTP scheme to map these tents to a reference domain with a space-time tensor prod-
uct structure. These domains are spatially discretized with a high order discontinuous
Galerkin method, combined with a time stepping method. To obtain a robust method
an entropy viscosity regularization is applied. This MTP scheme is implemented as
part of this thesis based on the finite element library Netgen/NGSolve and tested with
challenging problems like the Euler equations.

Acknowledgments

First of all, I want to thank Prof. Joachim Schöberl for supervising and inspiring this
thesis as well as for supporting and improving this work throughout the last year with
his helpful remarks.

Many thanks go to my colleagues Matthias Hochsteger, Philip Lederer, Christoph Lehren-
feld and Gerhard Kitzler for lots of time-intensive discussions and for proofreading this
thesis.

Finally I want to thank my girlfriend Stefanie and my parents for supporting me during
my studies.

Contents

1 Hyperbolic conservation laws 1
1.1 Description of hyperbolic conservation laws 1
1.2 Classical, weak and entropy solutions . 2

2 Mapped Tent Pitching method 5
2.1 Tent pitching algorithm . 5
2.2 Mapping to a space-time cylinder . 10

2.2.1 Transformation of the conservation law 10
2.2.2 Transformation of the entropy admissibility condition 15

2.3 Artificial viscosity on a tent . 16

3 Discontinuous Galerkin Method 18
3.1 Discretization of the Conservation Law . 18
3.2 Discretization of the artificial viscosity . 20

3.2.1 Entropy viscosity regularization . 22

4 Euler equations 23
4.1 Description of the Euler equations . 23
4.2 Mapping to a space-time cylinder . 24
4.3 Entropy and entropy flux . 26
4.4 Numerical results . 26
4.5 Implementational aspects . 27

5 Burgers equation 30
5.1 Description of the Burgers equation . 30
5.2 Mapping to a space-time cylinder . 30
5.3 Entropy and entropy flux . 31
5.4 Numerical results . 31

6 Wave equation 34
6.1 Description of the wave equation . 34
6.2 Mapping to a space-time cylinder . 34
6.3 Numerical results . 35

Introduction

The aim of this thesis is to present a new class of methods for numerically solving hy-
perbolic conservation laws, called Mapped Tent Pitching (MTP) schemes. Conservation
laws are systems of partial di↵erential equations, which describe the conservation of
extensive quantities, such as mass, momentum or energy. There exist various physical
problems in mechanics, thermodynamics, electrodynamics and so on, which fit into this
framework. Considering one of these problems, the MTP schemes can be seen as fully
explicit or locally implicit schemes on unstructured space-time meshes, which are con-
structed by a meshing process known in the literature as tent pitching [EGSÜ05, ÜS02].
The main focus of this thesis lies on nonlinear problems (e.g. Euler equations, Burgers
equation), which are solved with fully explicit MTP schemes. Locally implicit MTP
schemes have their strength at linear problems, but they will not be discussed in this
thesis. Based on a spatial triangulation, the meshing process creates an advancing front
by vertically erecting canopies over spatial vertex patches, respecting the causality con-
straints of the hyperbolic problem. The resulting space-time domains are called tents.
This thesis does not focus on the meshing itself, rather on a novel discretization tech-
nique that exploits tent pitched meshes.
Common discretization techniques for tent pitched meshes are space-time discontinuous
Galerkin (SDG) methods. They are used in engineering applications [MH08, PHJ04,
YAS+00] as well as in numerical analysis [FR99, MR05]. SDG schemes use a discontin-
uous Galerkin (DG) method to discretize the space-time variational formulation. The
solution can be obtained by numerically solving the hyperbolic problem tent by tent,
in an order that respects the causality. Thus the complexity is O(N

tents

), where N
tents

denotes the number of tents. For higher order SDG approximations, the space-time
problem on each tent gets very big.
In MTP schemes tents are mapped to a space-time reference domain with a space-time
tensor product structure. This allows for a separation of the spatial and temporal dis-
cretization, in contrast to SDG schemes. On the space-time reference domain a high
order DG method in space is combined with a time stepping method.

This leads to the advantages of MTP schemes:

• More e�cient than SDG schemes as the tensor product structure is exploited

• High order in space and time

• Larger time step size, compared to time stepping methods on globally discretized
spatial domains

• Reduced size of local problems in contrast to SDG schemes

Outline of the thesis:

In chapter 1 we introduce hyperbolic conservation laws, briefly specifying the notion of
hyperbolicity and defining various notions of solutions. The concept of MTP schemes is
presented in chapter 2. There we explain the construction of the space-time tent pitched
mesh. A crucial part is how the MTP scheme exploits the structure of such meshes
to map a tent to a space-time cylinder, which leads to a transformed conservation law
on this cylinder. We discuss this transformation and formulate it for general conser-
vation laws. This includes important aspects such as entropy viscosity regularization
and its translation to MTP schemes. The transformed conservation law on the cylinder
is spatially discretized with a high order DG method, which is discussed in chapter 3.
The second part of chapter 3 presents details on the entropy viscosity regularization.
In chapter 4 we apply the MTP scheme to the Euler equations an give details on the
transformation. Further we show numerical results of the Burgers equation in chapter 5
and the wave equation in chapter 6, where we investigate the convergence rates of the
MTP scheme.

Implementation:

The implementation of an fully explicit MTP scheme was done as part of this thesis
based on the finite element library Netgen/NGSolve. It was used for the presented
numerical results in chapters 4 - 6.

1 Hyperbolic conservation laws

To get a better idea of the problems discussed in this thesis, we define what hyperbolicity
means for systems of partial di↵erential equations. Further we describe various notions
of solutions for such systems and the relations between them.

1.1 Description of hyperbolic conservation laws

Let ⌦ ⇢ RN be a bounded Lipschitz domain, which we denote as spatial domain. We
consider the conservation law :
Find u : ⌦⇥ (0, T] ! Rn such that

@

@t
u(x, t) + div

x

f(x, t, u(x, t)) = 0 8(x, t) 2 ⌦⇥ (0, T] , (1.1a)

u(x, 0) = u
0

(x) 8x 2 ⌦ , (1.1b)

with the given flux function

f : ⌦⇥ (0, T]⇥ Rn �! Rn⇥N ,

(x, t, u(x, t)) 7�! f(x, t, u(x, t)) ,

some initial data u
0

and appropriate boundary conditions on the inflow boundary. The
div(·)-operator acts row-wise in case of a matrix-valued function f . We call the system
(1.1) hyperbolic in the t-direction [Daf10], if the matrix

N

X

i=1

⌫
i

D
u

f
i

(1.2)

has real eigenvalues �
1

, . . . �
n

and corresponding linearly independent eigenvectors for
all fixed x, t and all directions ⌫ 2 SN�1 = {x 2 RN : |x| = 1}. D

u

f
i

denotes the n⇥ n
derivative matrix

D
u

f
i

=

0

B

@

@f1i
@u1

. . . @f1i
@u

n

...
...

@f

ni

@u1
. . . @f

ni

@u

n

1

C

A

(1.3)

of the i-th column of the flux function. The eigenvalues �
i

are also called characteristic
speeds. Let c(x, t, u) be the maximum of these characteristic speeds in all directions.

1

1 Hyperbolic conservation laws

1.2 Classical, weak and entropy solutions [Daf10, Ser99]

A classical solution of (1.1) is a C1-function u, which satisfies (1.1) pointwise. An entropy
pair (E,F) consists of an entropy E and an entropy flux F , related by

D
u

F
i

= D
u

E D
u

f
i

8 i 2 {1, . . . , N} , (1.4)

such that for any classical solution holds the conservation law

@

@t
E(u(x, t)) + div

x

F (u(x, t)) = 0 8(x, t) 2 ⌦⇥ (0, T] .

Classical solutions can be constructed using the method of characteristics. Let us con-
sider the one-dimensional Burgers equation

@

@t
u(x, t) +

@

@x

✓

1

2
u(x, t)2

◆

= 0 8(x, t) 2 ⌦⇥ (0, T] , (1.5a)

u(x, 0) = u
0

(x) 8x 2 ⌦ . (1.5b)

For a classical solution u 2 C1 of (1.5), we obtain the characteristic curves as the integral
curves t 7! (X(t), t) of the di↵erential equation

dX

dt
= D

u

f(u(X, t)) = u(X, t) .

For this characteristic curve, we can calculate

d

dt
u(X(t), t) =

dX

dt

@

@x
u(X, t) +

@

@t
u(X, t) =

✓

@u

@t
+D

u

f
@u

@x

◆

(X, t) ,

which is equivalent to the conservation law (1.5) for a classical solution. Thus the solution
u is constant on the characteristic curvesX(t). Due to that fact, the characteristic curves
are straight lines and their slope is dependent to the initial value u

0

. For our example
(1.5) the characteristics are defined by

X(t) = x
0

+ u
0

(x
0

)t .

Now we consider two particular examples for the initial data u
0

, where the method of
characteristics breaks down. For the initial data (1.6a), the characteristic lines intersect
and this would lead to a multivalued solution in the gray area (cf. Figure 1.1a). Another
problem occurs for the initial data (1.6b), where no classical solution exists in the gray
area (cf. Figure 1.1b).

u
0

(x) =

(

1 , x < 1

2

0 , x � 1

2

(1.6a)

u
0

(x) =

(

0 , x < 1

2

1 , x � 1

2

(1.6b)

2

1 Hyperbolic conservation laws

0.5 1
x

t

1

0.5 1
x

u

0

(a) Intersecting characteristic lines for u0 as in

(1.6a)

0.5 1
x

t

1

0.5 1
x

u

0

(b) Characteristic lines emanating from one

point for u0 as in (1.6b)

Figure 1.1: Characteristic lines of the Burgers equation with initial data u
0

This leads us to a more general class of solutions. A function u is called weak solution
of (1.1), if it satisfies

Z

T

0

Z

⌦

✓

u
@v

@t
+ f rv

◆

dx dt+

Z

⌦

u
0

(x)v(x, 0) dx = 0 (1.7)

for every smooth test function v with compact support on ⌦ ⇥ [0, T). Every classical
solution is a weak solution, which can be observed by partial integration of (1.7).
Now we can define a unique weak solution (cf. Figure 1.2a)

u(x, t) =

(

1 , x < 1

2

+ 1

2

t

0 , x � 1

2

+ 1

2

t
(1.8)

of the example (1.5) with the initial data (1.6a), by replacing the intersecting charac-
teristics with a discontinuity. The velocity of this discontinuity is defined by the mean
value of the two initial velocities.

3

1 Hyperbolic conservation laws

0.5 1
x

t

(a) u0 as in (1.6a)

0.5 1
x

t

(b) u0 as in (1.6b)

0.5 1
x

t

(c) u0 as in (1.6b)

Figure 1.2: Weak solutions of the Burgers equation with initial data u
0

With the initial data (1.6b), we can easily find a discontinuous weak solution

u(x, t) =

(

0 , x < 1

2

+ 1

2

t

1 , x � 1

2

+ 1

2

t
(1.9a)

and a continuous one

u(x, t) =

8

>

<

>

:

0 , x < 1

2

2x�1

2t

, 1

2

 x < 1

2

+ t

1 , x � 1

2

+ t

, (1.9b)

which are shown in Figure 1.2b and 1.2c. To obtain a weak solution, which makes
sense from the physical point of view, we have to find a criterion to select the continuous
solution (1.9b) over discontinuous (1.9a). In other words, characteristics are just allowed
to run into a discontinuity (cf. Figure 1.2a) and can not emanate from one (cf. Figure
1.2b).
Therefore we look for a weak solution u, which fulfills the entropy admissibility condition

@

@t
E(u(x, t)) + div

x

F (u(x, t)) 0 (1.10)

in the sense of distributions on ⌦⇥ [0, T). Such a solution is called entropy solution.
To determine the entropy solution, we consider the problem:
Find u : ⌦⇥ (0, T] ! Rn such that

@

@t
u(x, t) + div

x

f(x, t, u(x, t)) = ⌫�u 8(x, t) 2 ⌦⇥ (0, T] , (1.11a)

u(x, 0) = u
0

(x) 8x 2 ⌦ , (1.11b)

where ⌫ 2 R is a small parameter. If the viscosity solution u
⌫

of (1.11) converges almost
everywhere to a function u for ⌫ ! 0+, then it can be shown that u is a weak solution
which satisfies the entropy admissibility condition (1.10) [Daf10, 4.6.1 Theorem]. Thus
the entropy solution can be calculated by solving (1.11) with a vanishing viscosity ⌫.

4

2 Mapped Tent Pitching method

This chapter discusses a novel discretization technique, called the Mapped Tent Pitching
(MTP) method. The two main features are the use of a tent pitched (space-time) mesh
and the mapping to a space-time reference domain. After motivating the MTP scheme,
we explain the construction of the space-time mesh in section 2.1. Section 2.2 presents
the mapping of the conservation law and the entropy admissibility condition (entropy
inequality) to a space-time cylinder. Finally the viscosity operator for the artificial
viscosity is introduced.

Motivation

Spatial discretization of the hyperbolic conservation law (1.1) leads to a system of or-
dinary di↵erential equations. This system can then be solved with a time stepping
method. Thereby global time step restrictions arise, which can be described by a
Courant-Friedrichs-Levy (CFL) condition of the form

�t 4 h

cp2
.

The main restricting factors are the minimal mesh size h, the polynomial order p of
the finite element space and the characteristic speeds c (as defined in section 1.1). To
overcome these global restrictions for the time step, we introduce a MTP scheme. The
crucial idea of MTP is that the structure of the tent pitched mesh is utilized to map the
conservation law on each tent to a space-time cylinder. This leads to a transformed con-
servation law in a new variable on this cylinder, which can be spatially discretized with
a suitable high order method (e.g. a discontinuous Galerkin method). The so obtained
local system of ordinary di↵erential equations can then be solved with any time stepping
method. Due to the MTP scheme, we have to solve several small problems instead of
one global problem. This allows for adapting the local time step size according to local
quantities, such as the local mesh size h, the local polynomial order p of the spatial
discretization and the locally highest characteristic speed c.

2.1 Tent pitching algorithm

This section describes how a tent pitching scheme advances the numerical solution in
time. We assume that the spatial polygonal domain ⌦ ⇢ RN is meshed by a simplicial
conforming finite element mesh T and define P

1

(T) as set of continuous functions on
⌧ : ⌦! R, which are linear on each element T 2 T .
We denote the graph of the function ⌧

i

2 P
1

(T) as advancing front S
i

at the i-th step of

5

2 Mapped Tent Pitching method

the tent pitching scheme. The numerical solution is then available for all x 2 ⌦ and all
t 2 (0, ⌧

i

(x)). The function ⌧
i

is fully defined by its values at the vertices v of the spatial
mesh T . Therefore just these values have to be updated to advance in time, which is
done according to the following algorithm.

Initialize: Set ⌧
0

⌘ 0, S
0

= ⌦ and the solution on S
0

to the initial data u
0

on ⌦.
for i = 1, 2, . . . do:

• Find a vertex v(i) where “good relative” progress in time can be made and calculate
the tent height k

i

, which denotes the time step at the vertex v(i). There are many
ways to define the term “good relative” progress. One reasonable choice will be
discussed in (2.7).

• Pitch a “space-time tent” K
i

at the point
�

v(i), ⌧
i�1

�

v(i)
��

on the advancing front
S
i�1

, where the solution is given. Set

⌧
i

:= ⌧
i�1

+ k
i

⌘
i

, (2.1)

with the function ⌘
i

2 P
1

(T), which is one at the vertex v(i) and zero at all other
vertices of T . We define the vertex patch ⌦

v

(i) as the interior of the union of all
simplices in T connected to v(i). Then we obtain the tent

K
i

:= {(x, t) : x 2 ⌦
v

(i) , ⌧
i�1

(x) < t < ⌧
i

(x)} .

K

i

v

(i)

•
S

i�1

S

i

x

⌦

v

(i)

• Solve the conservation law (1.1) on K
i

with the solution on S
i�1

as initial data.
Use global boundary conditions on @⌦⇥ (0, t

max

) as boundary condition on K
i

for
the case v(i) 2 @⌦.

• If ⌧
i

(v) � t
max

for all vertices v, then exit.

Algorithm 2.1: Advancing in time with a tent pitching algorithm

6

2 Mapped Tent Pitching method

Using this algorithm, we have to find u(x, t) such that

@

@t
u(x, t) + div

x

f(x, t, u(x, t)) = 0 8(x, t) 2 K
i

, (2.2a)

u(x, ⌧
i�1

(x)) = u
i�1

(x, ⌧
i�1

(x)) 8x 2 ⌦
v

(i) , (2.2b)

where u
i�1

denotes the solution on the advancing front S
i�1

. To ensure that (2.2) is nu-
merically solvable, the tent height k

i

in each step should be determined in consideration
of a local CFL condition. For the choice of the vertex v(i) we should also take the height
of the neighboring vertices into account, to avoid that some vertices advance much faster
in time than others. There exist various advancing front meshing strategies, which have
been studied by other authors [EGSÜ05, ÜS02]. We want to use the following simple
strategy [GSW].
First of all, we need an approximation of the maximal characteristic speed at a point
(x, ⌧

i�1

(x)) on the advancing front S
i�1

. We denote this approximation as
c̄(x, ⌧

i�1

(x), u(x, ⌧
i�1

(x))), which could be dependent on the numerical solution u itself.
For simplicity, we assume that c̄ = c̄(x) is just dependent on the spatial variable x. Now
we want to ensure that the CFL condition

|r⌧
i

(x)| 1

c̄(x)
(2.3)

holds for all x 2 ⌦ and every step i of the scheme, where | · | denotes the Euclidean norm
in RN . Since c̄ is independent of time, we can replace (2.3) with a more stringent CFL
condition

|r⌧
i

|��
T

 1

c
T

8T 2 T , (2.4)

with c
T

= max
x2T c̄(x). For the implementation, we use the following su�cient condition

|⌧
i

(e
1

)� ⌧
i

(e
2

)|
|e| CT

c
e

for all mesh edges e in T , (2.5)

where CT is a constant that depends on the shape regularity of the spatial mesh T .
Further we denote the endpoints of the edge e with e

1

and e
2

, its length as |e| and c
e

as the maximal c
T

over all elements which have e as edge. The left hand side of (2.5)
is the gradient of ⌧

i

restricted to the edge e. For a shape regular mesh, it is possible to
find a suitable constant CT , such that (2.5) implies (2.4).

Now we can maintain a list of the possible time advance k̃
(i)

l

for each vertex v
l

at the
i-th step of the tent pitching scheme, which would not violate (2.5). The set of all mesh
edges, which are connected to the vertex v

l

, is denoted as E
l

and we assume that the
endpoint e

1

= v
l

for all e 2 E
l

. If our CFL condition (2.5) holds for ⌧
i

, then it stays
valid for ⌧

i+1

, if we ensure that

|⌧
i

(e
1

) + k̃
(i)

l

� ⌧
i

(e
2

)|
|e| CT

c
e

(2.6)

7

2 Mapped Tent Pitching method

is satisfied for all e 2 E
l

, while pitching a tent at (v
l

, ⌧
i

(v
l

)). Since we are just interested

in a positive upper bound of k̃(i)
l

, we can omit the absolute value in (2.6). This leads to

k̃
(i)

l

 min
e2E

l

✓

⌧
i

(e
2

)� ⌧
i

(v
l

) + |e|CT
c
e

◆

.

For our algorithm, we define the reference height

r
l

:= min
e2E

l

|e|CT
c
e

for each vertex v
l

of the mesh T , which corresponds to the maximal tent height on a flat
advancing front ⌧

i

⌘ const. Now we can define a set of vertex indices

J
i

:=
n

l : k̃(i)
l

� �r
l

o

, (2.7)

where good relative progress can be made at the i-th step of our scheme. The constant
� 2 (0, 1) can be chosen small to obtain moderate progress in time at many vertices.
This means that a vertex v

l

is already marked to be ready, when the potential tent
height is a relatively low percentage of the optimal height r

l

. A high � leads to a more
aggressive progress in time at fewer vertices. Usually � is set to 1

2

. Algorithm 2.2 de-
scribes this maintaining process and can be used to precompute the tents for the time
interval (0, t

max

). Since the spacial discretization does not change during this process,
we can reuse these tents to propagate the solution from t

max

to 2t
max

. Meaning that
we can discretize the time domain with equidistant time slabs and just have to compute
the tents for such a slab once. Figures 2.1 and 2.2 show such time slabs.

Initialize: Set ⌧
0

⌘ 0, k̃(0)
l

= r
l

and J
0

= {1, 2, . . . , NT }, where NT is the number of
vertices in the mesh T .
for i = 1, 2, . . . do:

• Pick any vertex index l⇤ 2 J
i�1

.

• Set v(i) = v
l⇤ and k

i

= k̃
(i�1)

l⇤
.

• Update ⌧
i

by (2.1).

• Set k̃(i)
l

= k̃
(i�1)

l

for all vertices v
l

and update the values for the vertices v
l

adjacent
to v(i) by

k̃
(i)

l

= min

✓

t
max

� ⌧
i

(v
l

),min
e2E

l

✓

⌧
i

(e
2

)� ⌧
i

(v
l

) + |e|CT
c
e

◆◆

.

• Set J
i

according to (2.7).

Algorithm 2.2: Updating potential tent heights

At the beginning of the tent pitching algorithm, all vertices are marked as ready vertices
(see Algorithm 2.2), since we could pitch a tent of optimal height at every vertex. An

8

2 Mapped Tent Pitching method

important part is now, how to pick a vertex from the list J
i

of ready vertices. The
simplest choice would be to take always the first vertex index in the list. This would
lead to the tents shown in Figure 2.1, where the solution on tent T

i�1

is needed for
solving the problem on tent T

i

. Therefore the calculation is poorly parallelizable.

v

1

v

2

v

3

v

4

v

5

v

6

x

T0
T1 T2 T3 T4

T5

Figure 2.1: Poorly parallelizable tents in 1D

To solve this issue, we define the level of a tent pitched at vertex v(i) as

L
i

:= 1 + max
j2N(v

(i)
)

L
j

, (2.8)

where N(v(i)) is the set of vertex indices, which are connected to v(i) with an edge e.
With this definition, the levels of the tents in Figure 2.1 are L

i

= i. Now we can state
more precisely how to choose the next vertex for pitching a tent. At the i-th step, we
choose the index l⇤ 2 J

i

such that the level of the resulting tent at v(i) = v
l⇤ is minimal.

This would lead to the tents shown in Figure 2.2, with the level zero tents {T
0

, T
1

, T
2

}
and level one tents {T

3

, T
4

, T
5

}, where all tents of one level can be solved independently.

v

1

v

2

v

3

v

4

v

5

v

6

x

T0
T1 T2

T3 T4
T5

Figure 2.2: Parallelizable tents 1D

Figure 2.3 shows the levels of the tents in the two-dimensional case, where the tents in
light gray have the level stated in the caption.

9

2 Mapped Tent Pitching method

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Figure 2.3: Level of tents over a two-dimensional mesh

2.2 Mapping to a space-time cylinder

Due to the tent pitching algorithm, we reduced the global problem (1.1) to several small
problems of the following type. Find u : K

i

! Rn such that

@

@t
u(x, t) + div

x

f(x, t, u(x, t)) = 0 8(x, t) 2 K
i

, (2.9a)

u(x, ⌧
i�1

(x)) = u
i�1

(x, ⌧
i�1

(x)) 8x 2 ⌦
v

(i) . (2.9b)

2.2.1 Transformation of the conservation law

For the actual calculation we want to map each tent K
i

to a space-time cylinder K̂
i

:=
⌦
v

(i) ⇥ (0, 1) over the vertex patch ⌦
v

(i) . Therefore we use a Du↵y-like transformation

� : K̂
i

�! K
i

,

(x, t̂) 7�! (x,'(x, t̂)) ,

with

'(x, t̂) := (1� t̂) ⌧
i�1

(x) + t̂ ⌧
i

(x) . (2.10)

In the one-dimensional case, the constant t̂
⇤
is mapped to a piecewise linear continuous

function '(x, t̂
⇤
) (cf. Figure 2.4). For higher space dimensions, the constant quasi-time

t̂
⇤
is mapped to a non-smooth space-time manifold.

10

2 Mapped Tent Pitching method

Ki

x

t

⌧
i

(x)

⌧
i�1

(x)

'(x, t̂
⇤
)

ˆ

Ki

x

ˆ

t

t̂
⇤

�

Figure 2.4: Mapping to space-time cylinder in 1D

First of all, we rewrite (2.9a) as

div
(x,t)

F (x, t, u(x, t)) = 0 8 (x, t) 2 K
i

, (2.11)

where F is defined as

F (x, t, u(x, t)) := (f(x, t, u(x, t)), u(x, t)) 2 Rn⇥(N+1) .

To preserve the structure of our conservation equation, we will use a transformation,
which maps the divergence with respect to (x, t) to a divergence with respect to our
reference variables (x, t̂).

Lemma 2.2.1. Let � : K̂ ! K be a continuous and piecewise continuously di↵er-
entiable, invertible and surjective mapping. For a given vector function ŵ the Piola
transformation is defined as

w � � :=
1

det(D̂�)
D̂� ŵ (2.12)

and there holds

(div
x

w) � � =
1

det(D̂�)
div

x̂

ŵ . (2.13)

Proof. The following proof is taken from [Mon03, Lemma 3.59].
Let v 2 C1

0

(K) and v̂ = v � �, then there holds

rv � � = [D̂�]�>r̂v̂ . (2.14)

To show (2.13), we transform the following integral, using the Piola transformation (2.12)
and the transformed gradient (2.14).

Z

K

div
x

w v dx = �
Z

K

w ·rv dx

= �
Z

ˆ

K

1

det(D̂�)

⇣

D̂� ŵ
⌘

·
⇣

[D̂�]�>r̂v̂
⌘

| det(D̂�)| dx̂

= �
Z

ˆ

K

| det(D̂�)|
det(D̂�)

ŵ · r̂v̂ dx̂

=

Z

ˆ

K

| det(D̂�)|
det(D̂�)

div
x̂

ŵ v̂ dx̂

11

2 Mapped Tent Pitching method

By treating div
x̂

ŵ as scalar function, we can transform the integral back to K and we
obtain

Z

K

div
x

w v dx =

Z

ˆ

K

1

det(D̂�)
(div

x̂

ŵ) � ��1 v dx (2.15)

Since (2.15) holds for all v 2 C1
0

(K), the statement (2.13) is proven.

Now we want to transform (2.11) by using Lemma 2.2.1. According to (2.12), we define
the function F̂

l

on K̂
i

as

F̂
l

:= det(D̂�)[D̂�]�1F
l

� � ,

where F
l

= (f
l

, u
l

)> is the transposed l-th row of the function F . Thus we obtain the
equality

1

det(D̂�)
div

(x,

ˆ

t)

F̂
l

(x, t̂, u(�(x, t̂))) =
⇥

div
(x,t)

F
l

(x, t, u(x, t))
⇤ � � = 0 ,

which leads to the conservation equation

div
(x,

ˆ

t)

F̂
l

(x, t̂, u(�(x, t̂))) = 0 8 (x, t̂) 2 K̂
i

. (2.16)

Now we take a closer look at the explicit form of F̂
l

. Therefore we need the Jacobian
matrix D̂�(x, t̂) and its inverse

D̂�(x, t̂) =

✓

I 0
[r'(x, t̂)]> �(x)

◆

, [D̂�(x, t̂)]�1 =
1

�(x)

✓

�(x)I 0
�[r'(x, t̂)]> 1

◆

,

with the identity matrix I 2 RN⇥N and

�(x) :=
@

@ t̂
'(x, t̂)

(2.10)

= ⌧
i

(x)� ⌧
i�1

(x) . (2.17)

The function � describes the “height” of the tent and is zero on the boundary of the
vertex patch @⌦

v

(i) (cf. Figure 2.5).

Ki

x

t

⌧
i

(x)

⌧
i�1

(x)

k
i �(x)

⌦
v

(i)

Figure 2.5: Tent in 1D

12

2 Mapped Tent Pitching method

Together with det(D̂�) = �, we obtain

F̂
l

= det(D̂�)[D̂�]�1 (F
l

� �)

= �
1

�

✓

�I 0
�r̂'> 1

◆✓

f
l

� �
u
l

� �
◆

=

✓

�f
l

u
l

�r'>f
l

◆

� � .

For simplicity we write f
l

(x, t̂) and u
l

(x, t̂) instead of f
l

(x, t) � � and u
l

(x, t) � �. The
above equation and (2.16) leads to

@

@ t̂

h

u
l

�r'>f
l

i

+ div
x

[�f
l

] = 0 8 l 2 {1, . . . , n} 8 (x, t) 2 K̂
i

, (2.18)

which is equivalent to

@

@ t̂

⇥

u(x, t̂)� f(x, t̂, u(x, t̂))r'(x, t̂)⇤+ div
x

⇥

�(x)f(x, t̂, u(x, t̂))
⇤

= 0 8 (x, t̂) 2 K̂
i

.

With the definition

û(x, t̂) := u(x, t̂)� f(x, t̂, u(x, t̂))r'(x, t̂) , (2.19)

we obtain

@

@ t̂
û(x, t̂) + div

x

⇥

�(x)f(x, t̂, u(x, t))
⇤

= 0 ,

which is a conservation equation in the new variable û. The flux f(x, t̂, u) is still depen-
dent on the old variable u and therefore we have to find a function u(û). This means
we have to solve (2.19) for u. Depending on the flux function f(x, t̂, u), it may not be
possible to find an analytical solution, but Theorem 2.2.2 shows the existence of a unique
solution.
Finally we end up with the equation

@

@ t̂
û(x, t̂) + div

x

⇥

�(x)f(x, t̂, u(û(x, t̂)))
⇤

= 0 8 (x, t̂) 2 K̂
i

. (2.20)

To get a better idea of the function u(û), we have a look at some examples.

Linear convection equation

As first example we consider a scalar convection equation for u(x, t) with the flux function

f(x, t, u(x, t)) := b(x, t)u(x, t) ,

where b(x, t) 2 RN is a given velocity field.
To find the transformation of û to u, we have to solve

û(x, t̂) = u(x, t̂)� f(x, t̂, u(x, t̂)) ·r'(x, t̂)
= u(x, t̂)� b(x, t̂)u(x, t̂) ·r'(x, t̂)
=
�

1� b(x, t̂) ·r'(x, t̂)�u(x, t̂) .
(2.21)

13

2 Mapped Tent Pitching method

At this point we can see that the choice of the tent height is crucial. To guarantee
solvability of (2.21), we have to choose the slope of the tent small enough, such that

|r'(x, t̂)| < 1

|b(x, t̂)| 8(x, t̂) 2 K̂
i

. (2.22)

Here we have to note that (2.22) is again the known CFL condition (2.3). With this
choice holds b(x, t̂) ·r'(x, t̂) < 1 and the function u(û) is now defined by

u(x, t̂, û(x, t̂)) =
û(x, t̂)

1� b(x, t̂) ·r'(x, t̂) . (2.23)

For r'! 0, the functions û and u should be identical, according to the definition (2.19).
Therefore the function u(x, t̂, û(x, t̂)) has to converge to û(x, t̂) for r' ! 0, which is
fulfilled by our solution (2.23).

Burgers equation

An example with a nonlinear flux function f , where the function u(û) can be found quite
easily is the Burgers equation. It is also a scalar conservation law with f defined as

f(x, t, u(x, t)) :=
1

2
[u(x, t)]2 1 , 1 :=

✓

1
1

◆

.

Solving (2.19) with the flux function defined above, leads to

u(x, t, û(x, t)) =
2û(x, t)

1 +
p

1� 2(1 ·r'(x, t))û(x, t) .

The derivation of the equation above is done in detail in section 5.2.

Arbitrary flux function

For some flux functions f it may not be possible to solve (2.19) explicitly. Therefore we
will show in the following theorem that (2.19) has a unique solution u, if the slope of
the tent is not too steep. This solution can be found using a fixed point iteration or the
Newton’s method.

Theorem 2.2.2. Let be

c := sup
⌫2RN

|⌫|=1

⇢

N

X

i=1

⌫
i

D
u

f
i

!

,

which corresponds to the maximal characteristic wave speed in all directions ⌫ (see section
1.1). If there holds

|r'| < 1

c
(2.24)

then (2.19) has a unique solution.

14

2 Mapped Tent Pitching method

Proof. First of all, we rewrite (2.19) as

u = û� f(u)r' =: (u)

and define the function (u). Solving (2.19) for u is now equivalent to finding a fixed
point u = (u) of . To be able to apply the Banach fixed point theorem, we have to
show that is Lipschitz continuous with a constant 0 L < 1. Obviously there holds

L < sup
u2Rn

kD
u

 k ,

for a smooth flux function f . Now we have to bound D
u

 in a suitable norm. There
holds

D
u

 =
N

X

i=1

(r')
i

D
u

f
i

2 RN⇥N , (2.25)

which is the scaled matrix in (1.2) with ⌫
i

= (r')
i

. Since we are considering hyperbolic
systems, the matrix in (2.25) is diagonalizable and thus there exists a norm such that
kD

u

 k = ⇢(D
u

), where ⇢(·) denotes the spectral radius. Using this norm, we obtain

kD
u

 k = |r'| ⇢

N

X

i=1

(r')
i

|r'| D
u

f
i

!

 |r'| c .

The bound (2.24) for |r'| implies kD
u

 k < 1 and a Lipschitz constant L < 1. Thus
the function is a contraction and has, according to the Banach fixed point theorem, a
unique fixed point u.

2.2.2 Transformation of the entropy admissibility condition

As explained in section 1.1, the entropy solution of a conservation law has to fulfill the
entropy admissibility condition

@

@t
E(u(x, t)) + div

x

F (u(x, t)) 0 8(x, t) 2 K
i

. (2.26)

To be able to do all the calculations on the reference space-time cylinder K̂
i

, we apply
Lemma 2.2.1 to (2.26) and obtain

@

@ t̂

⇥

E(x, t̂)� F (x, t̂, u(x, t̂))r'(x, t̂)⇤+ div
x

⇥

�(x)F (x, t̂, u(x, t̂))
⇤ 0 8 (x, t̂) 2 K̂

i

,

where we use that det(D̂�) = �(x) is positive. This means we found an entropy admis-
sibility condition on the reference domain K̂

i

for the entropy pair

(Ê, F̂) := (E � F r', �F) . (2.27)

The entropy pair (E,F) of the original conservation law in u is related by

D
u

F
i

= D
u

E D
u

f
i

8 i 2 {1, . . . , N} , (1.4)

15

2 Mapped Tent Pitching method

where f is the flux function and D
u

f
i

denotes the n⇥ n derivative matrix as defined in
(1.3). Since we are interested in solving the conservation law (2.20) for û on K̂

i

, we have
to verify that (Ê, F̂) is an entropy pair for û. Therefore we have to show

D
û

F̂
i

= D
û

Ê D
û

f̂
i

8 i 2 {1, . . . , N} , (2.28)

with the flux function f̂ = �f of the transformed equation (2.20) on K̂
i

. By using the
definition (2.19) of û, we obtain

I = D
û

û = D
û

u�
N

X

i=1

(r')
i

D
û

f
i

=

"

I �
N

X

i=1

(r')
i

D
u

f
i

#

D
û

u , (2.29)

with the identity matrix I 2 Rn⇥n. Further we calculate the occurring derivatives in
(2.28), using (2.27) and f̂ = �f :

D
û

Ê =

"

D
u

E �
N

X

i=1

(r')
i

D
u

F
i

#

D
û

u

D
û

f̂
i

= �D
u

f
i

D
û

u

D
û

F̂
i

= �D
u

F
i

D
û

u

These derivatives lead to

D
û

Ê D
û

f̂
i

=

"

D
u

E �
N

X

i=1

(r')
i

D
u

F
i

#

D
û

u �D
u

f
i

D
û

u

(1.4)

= D
u

E

"

I �
N

X

i=1

(r')
i

D
u

f
i

#

D
û

u �D
u

f
i

D
û

u

(2.29)

= D
u

E �D
u

f
i

D
û

u

(1.4)

= �D
u

F
i

D
û

u = D
û

F̂
i

.

Thus the entropy Ê and the entropy flux F̂ , occurring in the transformed entropy ad-
missibility condition (2.26), are indeed an entropy pair for the transformed variable û.

2.3 Artificial viscosity on a tent

For some conservation laws, we have to add artificial viscosity to obtain the unique
entropy solution. As described in section 1.1, we have to consider (1.11) instead of (1.1).
In our case that means we have to find û : K̂

i

! Rn such that

@

@ t̂
û(x, t̂) + div

x

⇥

�(x)f(x, t̂, u(û(x, t̂)))
⇤

=

⌫

k
i

div
x

⇥

�(x)ru(û(x, t̂))
⇤ 8(x, t̂) 2 K̂

i

, (2.30a)

û(x, 0) = û
i�1

(x, 1) 8x 2 ⌦
v

(i) . (2.30b)

16

2 Mapped Tent Pitching method

We add a Laplace operator on the horizontal quasi-time t̂
⇤
, which is then mapped to the

non-smooth space-time manifold '(x, t̂
⇤
). The viscosity coe�cient ⌫ 2 R is a positive

constant on one tent and divided by the tent height k
i

= �(v(i)).

Ki

x

t

ˆ

Ki

x

ˆ

t

�

horizontal
quasi-time t̂

⇤

non-smooth space-
time manifold
'(x, t̂

⇤
)

Since we consider a conservation law in û, a natural choice would be to apply the Laplace
operator to the conserved quantity û. The gradient of the non-smooth function '(x, t̂

⇤
)

is discontinuous. When we now recall the definition

û := u� f(u)r' , (2.19)

it is easy to see that û can be discontinuous, even for a smooth solution u. Thus we have
to add a Laplace operator acting on u(û) instead of û to obtain the desired properties.

17

3 Discontinuous Galerkin Method

This chapter gives a brief overview of the spatial discretization that we apply on each
space-time cylinder, a discontinuous Galerkin (DG) method. Due to the conservation
property and the ability to handle discontinuities, these methods are commonly used for
numerically solving hyperbolic problems [HW07, MR05, ZGMP13]. The locally defined
polynomial basis leads to a block diagonal mass matrix, which makes the method highly
parallelizable. When using higher polynomial degrees, these methods often produce
spurious oscillations at discontinuities. This issue can be solved by adding artificial
viscosity. To avoid getting a overly dissipative method, we add a nonlinear viscosity,
which is based on the entropy production [GNPY14, GN14, ZGMP13, GPP11]. This
leads to a large amount of viscosity at discontinuities and almost no viscosity in smooth
regions. The robustness of this approach is indicated by numerical results.

3.1 Discretization of the Conservation Law

Let T be the triangulation of the spatial domain ⌦ and E the edges in T . The DG
function space is defined as

V :=
�

v 2 L
2

(⌦) : v|
T

2 H1(T) 8T 2 T ,

which means that a function v 2 V can be discontinuous across an edge E 2 E . For an
element T 2 T , we define the jump across an edge E = @T \ @T 0

[[v]] := v|
T

� v|
T

0 ,

where T 0 2 T is the neighbouring element.
Now, let us recall the conservation law on the reference domain K̂

i

@

@ t̂
û(x, t̂) + div

x

⇥

�(x)f(x, t̂, u(û(x, t̂)))
⇤

= 0 8 (x, t̂) 2 K̂
i

. (2.20)

Since (2.20) is only defined on the vertex patch ⌦
v

(i) , we define the triangulation of the
vertex patch as

T
i

:= {T 2 T : T \ ⌦
v

(i) 6= ;}
and the corresponding local DG space

V
i

:=
�

v 2 L
2

(⌦
v

(i)) : v|
T

2 H1(T) 8T 2 T
i

.

To obtain the weak formulation, we multiply (2.20) with a test function v 2 V
i

and
integrate over the spatial domain

X

T2T
i

✓

Z

T

@

@ t̂
û(x, t̂)v(x) +

Z

T

div
x

⇥

�(x)f(x, t̂, u(û(x, t̂)))
⇤

v(x)

◆

dx = 0 .

18

3 Discontinuous Galerkin Method

From now on, let t̂ denote an arbitrary, but fixed time t̂ 2 [0, 1] in our reference domain
K̂

i

. For simplicity, we write û instead of û(·, t̂). Integration by parts in each component
leads to

X

T2T
i

Z

T

@

@ t̂
û v +

X

T2T
i

✓

�
Z

T

�f(u(û))rv +

Z

@T

�f
⌘

(u(û)) v

◆

= 0 ,

where f
⌘

(u(û))) := f(u(û))) ⌘, with the outer normal vector ⌘. We denote f
⌘

as numer-
ical flux and define B : [V

i

]n ⇥ V
i

! Rn as

B(û, v) :=
X

T2T
i

✓

�
Z

T

�f(u(û))rv +

Z

@T

�f
⌘

(u(û)) v

◆

. (3.1)

Thus the weak formulation is: Find û(·, t̂) 2 [V
i

]n, such that

X

T2T
i

Z

T

@

@ t̂
û v +B(û, v) = 0 8v 2 V

i

. (3.2)

Now we want to discretize (3.2). Therefore we define the finite element space

V
ih

:= {v 2 L
2

(⌦
v

(i)) : v|
T

2 P p(T) 8T 2 T
i

} ⇢ V
i

of order p 2 N. Let {'
1

, . . . ,'
m

} be a basis of V
ih

. Note that for each k 2 {1, . . . ,m}
exists just one element T , where the function '

k

is non-zero. Using this basis, we can
find a coe�cient matrix ĉ(t̂) 2 Rm⇥n, such that

û
j

(x, t̂) ⇡ û
h,j

(x, t̂) =
m

X

l=1

ĉ
lj

(t̂)'
l

(x) 8 j 2 {1, . . . , n} . (3.3)

Each column of ĉ corresponds to a component of our solution vector û
h

. With this
approximation, we can evaluate the integral in (3.2)

X

T2T
i

Z

T

@

@ t̂
û
h,j

(x, t̂)'
k

(x) =
X

T2T
i

Z

T

@

@ t̂

✓

m

X

l=1

ĉ
lj

(t̂)'
l

(x)

◆

'
k

(x)

=
m

X

l=1

@

@ t̂
c
lj

(t̂)
X

T2T
i

Z

T

'
l

(x)'
k

(x)

| {z }

=:M

kl

(3.4)

for all k 2 {1, . . . ,m}. This leads to the definition of the mass matrix M 2 Rm⇥m

M
kl

:=
X

T2T
i

Z

T

'
k

(x)'
l

(x) 8 k, l 2 {1, . . . ,m} . (3.5)

Each '
k

is defined as a polynomial up to order p on one element T = T (k) and zero on all
other elements in T

i

. Thus just one integral in (3.5) is non-zero. If the basis functions are
ordered element-wise, we obtain a block diagonal mass matrix, which simplifies solving
the resulting linear system.

19

3 Discontinuous Galerkin Method

Since the flux function f in (3.1) can be nonlinear, we cannot separate in spatial variables
and time. Therefore we have to evaluate the function B(û

h

(·, t̂),'
k

) for each time t̂ and
we obtain the matrix

B(ĉ(t̂)) :=

0

B

@

B(û
h

(·, t̂),'
1

)>

...
B(û

h

(·, t̂),'
m

)>

1

C

A

2 Rm⇥n . (3.6)

Using the linear structure of (3.4) and (3.6) leads to the system of ordinary di↵erential
equations

M
dĉ

dt̂
+B(ĉ) = 0 (3.7)

for the coe�cient matrix ĉ(t̂).

3.2 Discretization of the artificial viscosity

As explained in section 1.2, we have to consider the viscous conservation law

@

@ t̂
û(x, t̂) + div

x

⇥

�(x)f(x, t̂, u(û(x, t̂)))
⇤

=
⌫

k
i

div
x

⇥

�(x)ru(û(x, t̂))
⇤ 8(x, t̂) 2 K̂

i

,

(2.30)

instead of the conservation law (2.20) to obtain the entropy solution. The viscosity
coe�cient ⌫ 2 R is a yet to be defined positive constant on K̂

i

and k
i

2 R denotes the
height of the tent. Since we already derived the weak formulation of the left hand side
of (2.30) (see (3.2) in section 3.1), we now just consider the right hand side. Again, we
multiply with a test function v 2 V

i

and integrate over the vertex patch ⌦
v

(i) . Integration
by parts leads to

⌫

k
i

X

T2T
i

Z

T

div
x

[�ru
j

(û)] v =

⌫

k
i

X

T2T
i

✓

�
Z

T

�ru
j

(û) ·rv +

Z

@T

�
@u

j

(û)

@n
v

◆

8 j 2 {1, . . . , n} ,
(3.8)

where û again denotes û(·, t̂), for a fixed time t̂ 2 [0, 1]. For the further derivation, we
assume that u is a smooth solution of the conservation law. Thus the normal derivative
is continuous and

⌫

k
i

X

T2T
i

✓

�
Z

T

�ru
j

(û) ·rv +
1

2

Z

@T

�
@u

j

(û)

@n
[[v]]

◆

8 j 2 {1, . . . , n} (3.9)

is equivalent to the right hand side of (3.8). To show solvability of the resulting discrete
problem, we need that (3.9) defines a symmetric and coercive bilinear form in u

j

(û) and

20

3 Discontinuous Galerkin Method

v for each j. Therefore we add two consistent terms ([[u
j

(û)]] = 0 for a smooth solution)
to (3.9) and define the bilinear form

a(u
j

(û), v) :=
⌫

k
i

X

T2T
i

✓

Z

T

�ru
j

(û) ·rv � 1

2

Z

@T

�
@u

j

(û)

@n
[[v]]

� 1

2

Z

@T

�
@v

@n
[[u

j

(û)]] +
↵

2h

Z

@T

� [[u
j

(û)]] [[v]]

◆

,

where ↵ 2 R has to be chosen su�ciently large, to obtain coercivity on V
i

for each j.
Using these bilinear forms, we define A : [V

i

]n ⇥ V
i

! Rn as

A(û, v) :=

0

B

@

a(u
1

(û(·, t̂)), v)
...

a(u
n

(û(·, t̂)), v))

1

C

A

2 Rn . (3.10)

Together with (3.2), we obtain the weak formulation: Find û(·, t̂) 2 [V
i

]n, such that

X

T2T
i

Z

T

@

@ t̂
û v +B(û, v) +A(û, v) = 0 8v 2 V

i

. (3.11)

For the spatial discretization of (3.11), we again choose a basis {'
i

, . . . ,'
m

} of V
ih

.
Similar to the approximation of û in (3.3), we define the coe�cient matrix c(t̂) 2 Rm⇥n

such that

u
j

(x, t̂) ⇡ u
h,j

(x, t̂) =
m

X

l=1

c
lj

(t̂)'
l

(x) 8 j 2 {1, . . . , n} .

These coe�cients can be calculated by solving (2.19) (which gives a relation between û
and u) in the sense of an L2-projection. Using the approximation u

h

, we can evaluate
A(û

h

,'
k

). Due to the linearity of a(·, ·), there holds

(A(û
h

,'
k

))
j

= a(u
h,j

(û
h

),'
k

) =
m

X

l=1

c
lj

(t̂) a('
l

(x),'
k

(x)) 8 j 2 {1, . . . , n} .

This leads to the definition of the sti↵ness matrix A 2 Rm⇥m

A
kl

:= a('
l

(x),'
k

(x)) 8 k, l 2 {1, . . . ,m} .
Testing with all basis functions {'

1

, . . . ,'
m

} gives
0

B

@

a(u
h,1

(û
h

),'
1

) · · · a(u
h,n

(û
h

),'
1

)
...

...
a(u

h,1

(û
h

),'
m

) · · · a(u
h,n

(û
h

),'
m

)

1

C

A

= Ac(t̂) .

Together with (3.7), we obtain the system of ordinary di↵erential equation

M
dĉ

dt̂
+B(ĉ) +Ac(ĉ) = 0 (3.12)

for the coe�cient matrix ĉ(t̂).

21

3 Discontinuous Galerkin Method

3.2.1 Entropy viscosity regularization

In this section, we focus on the calculation of the viscosity coe�cient ⌫ 2 R. The method
presented hereafter was proposed by Guermond, Pasquetti and Popov [GPP11].
We assume that (Ê, F̂) is an entropy pair for the conservation law

@

@ t̂
û(x, t̂) + div

x

⇥

�(x)f(x, t̂, u(û(x, t̂)))
⇤

= 0 8 (x, t̂) 2 K̂
i

, (2.20)

which satisfies the entropy inequality

@

@ t̂
Ê(u(û)) + div

x

F̂ (u(û)) 0 . (3.13)

The entropy Ê is a conserved quantity in regions where the solution u(û) is smooth. This
means that (3.13) holds with an equality in smooth regions of u(û) and as inequality in
non-smooth regions (e.g. in shocks). We denote the amount of violation of the entropy
conservation as entropy production. Choosing the viscosity coe�cient ⌫ proportional to
the entropy production, leads to a large artificial viscosity at discontinuities and almost
no viscosity in smooth regions.
Let û

h

(x, t̂) be the numerical approximation of the exact solution û(x, t̂) at time t̂. Then
the entropy residual is defined as

r
E

(x, t̂) :=
@

@ t̂
Ê(u

h

(û
h

(x, t̂))) + div
x

F̂ (u
h

(û
h

(x, t̂))) 8 (x, t̂) 2 K̂
i

. (2.20)

Using this residual, we obtain a viscosity coe�cient on one element T 2 T
i

⌫
E

(t̂)|
T

:= max
x2T

c
E

h2
T

R(r
E

(x, t̂))
�

�Ē(û
h

)
�

�

,

where h
T

:= diam(T)/p is the e↵ective local mesh size of the element T , Ē is the
average entropy over the element T and c

E

is constant on T
i

. To avoid negative viscosity
coe�cients ⌫

E

, we have to choose a positive functional R. The simplest choice is R(·) =
| · |. Further we construct an upper bound of the viscosity coe�cient

⌫
max

(t̂)|
T

:= c
max

h
T

max
y2T

|D
u

f(u
h

(û
h

(y, t̂)))| ,

where |D
u

f(u
h

(û
h

))| corresponds to the local characteristic speed (see section 1.1) and
c
max

is constant on T
i

. For one element T , we obtain

⌫|
T

:= min(⌫
max

|
T

, ⌫
E

|
T

) .

The viscosity coe�cient on the whole tent K̂
i

is then defined as

⌫ := max
T2T

i

(⌫|
T

) .

22

4 Euler equations

4.1 Description of the Euler equations

For this example we write (2.2) using a more general notation

@

@t
g(w) + div f(w) = 0 ,

where g(w) is the state vector, f(w) the flux function and w a set of variables. The
transformation from a tent to the space-time cylinder over the vertex patch leads to the
equivalent equation

@

@ t̂
[g(w)� f(w)r'] + div [�f(w)] = 0 ,

which can be written as
@

@ t̂
ŵ + div [�f(w(ŵ))] = 0 , (4.1)

with the transformed state vector

ŵ := g(w)� f(w)r' . (4.2)

Thus we have to find a transformation w(ŵ) to be able to solve (4.1) with a MTP
scheme. See section 2.2 for further explanation of this transformation. To obtain the
Euler equations, we define

g(⇢, u, E) :=

0

@

⇢
⇢u
E

1

A 2 RN+2

as function of the density ⇢, the velocity u and the total energy E. The flux function is
defined by

f(⇢, u, E) :=

0

@

⇢u
⇢u⌦ u+ pI
u (E + p)

1

A 2 R(N+2)⇥N

with the pressure p(⇢, u, E). Additionally we define the internal energy e, the tempera-
ture T and the pressure p as

e :=
E

⇢
� 1

2
|u|2 ,

T :=
4

d
e ,

p :=
1

2
⇢T ,

(4.3)

where d stands for the degrees of freedom of the gas particles, which is set to d = 5 for
an ideal gas.

23

4 Euler equations

4.2 Mapping to a space-time cylinder

To find the above mentioned transformation w(ŵ) for the Euler equations, we have to
solve (4.2) for w, which denotes the set of variables (⇢, u, E). Thus we have to solve

ŵ =

0

@

⇢̂
c⇢u

Ê

1

A =

0

@

⇢
⇢u
E

1

A�
0

@

⇢u
⇢u⌦ u+ pI
u (E + p)

1

Ar' (4.4)

=

0

@

⇢ (1�r' · u)
⇢u (1�r' · u)� 2

d

⇢er'
E (1�r' · u)� 2

d

⇢er' · u

1

A ,

which is equivalent to

⇢̂ = ⇢ (1�r' · u) , (4.5)

c⇢u = ⇢u (1�r' · u)� 2

d
⇢er' , (4.6)

Ê = ⇢

✓

e+
1

2
|u|2

◆

(1�r' · u)� 2

d
⇢er' · u . (4.7)

By using equation (4.5) and its equivalent form ⇢r' · u = ⇢� ⇢̂ we obtain

c⇢u = u⇢̂� 2

d
⇢er' , (4.8)

Ê =

✓

e+
1

2
|u|2

◆

⇢̂� 2

d
e (⇢� ⇢̂) . (4.9)

The inner product of (4.8) with r' and (4.5) leads to

c⇢u ·r' = ⇢̂

✓

1� ⇢̂

⇢

◆

� 2

d
⇢e|r'|2 . (4.10)

Multiplying (4.9) with ⇢̂ gives

Ê⇢̂ =
1

2
|u|2⇢̂2 � 2

d
⇢̂e⇢+

✓

1 +
2

d

◆

⇢̂2e . (4.11)

To eliminate |u| in (4.11), we use (4.8) in the following form

|u⇢̂|2 = |c⇢u+
2

d
⇢er'|2 = |c⇢u|2 + 4

d
⇢ec⇢u ·r'+

4

d2
⇢2e2|r'|2 .

This leads to

Ê⇢̂ =
1

2

✓

|c⇢u|2 + 4

d
⇢ec⇢u ·r'+

4

d2
⇢2e2|r'|2

◆

� 2

d
⇢̂e⇢+

✓

1 +
2

d

◆

⇢̂2e

(4.10)

=
1

2
|c⇢u|2 � 2

d2
⇢2e2|r'|2 + ⇢̂2e (4.12)

24

4 Euler equations

When we multiply (4.10) by ⇢e and take (4.12), we obtain

0 = c⇢u ·r'⇢e� ⇢̂⇢e+
2

d
⇢2e2|r'|2 + ⇢̂2e ,

0 = Ê⇢̂� 1

2
|c⇢u|2 + 2

d2
⇢2e2|r'|2 � ⇢̂2e .

By summing up these two equation, we end up with the quadratic equation in ⇢e

0 =

✓

2

d2
+

2

d

◆

|r'|2(⇢e)2 + (c⇢u ·r'� ⇢̂) ⇢e+ Ê⇢̂� 1

2
|c⇢u|2 . (4.13)

With the definitions

a :=
2

d2
(d+ 1) |r'|2 , b := c⇢u ·r'� ⇢̂ and c := Ê⇢̂� 1

2
|c⇢u|2 ,

we get the following two possible solutions of (4.13).

⇢e =
�b±p

b2 � 4ac

2a

=

⇣

�b±p
b2 � 4ac

⌘

2a

⇣

�b⌥p
b2 � 4ac

⌘

⇣

�b⌥p
b2 � 4ac

⌘

=
b2 � �

b2 � 4ac
�

2a
⇣

�b⌥p
b2 � 4ac

⌘

=
2c

�b⌥p
b2 � 4ac

Due to (4.4) holds

0

@

⇢̂
c⇢u

Ê

1

A

r'!0����!
0

@

⇢
⇢u
E

1

A .

and r'! 0 also implies

a ! 0 , b ! �⇢ and c ! E⇢� 1

2
|⇢u|2 .

Thus we obtain that

⇢e =
2c

�b⌥p
b2 � 4ac

r'!0����! 2
�

E⇢� 1

2

|⇢u|2�

�⇢⌥
p

⇢2
.

The product ⇢e has to stay bounded for all r', which means we have to choose the
solution

⇢e =
2c

�b�p
b2 � 4ac

r'!0����! E⇢� 1

2

|⇢u|2
⇢

.

25

4 Euler equations

For the limit r'! 0, this solution is also consistent with the definitions in (4.3).
By using ⇢e and (4.8), we obtain the velocity

u =
1

⇢̂

✓

c⇢u+
2

d
⇢er'

◆

r'!0����! ⇢u

⇢
.

Together with (4.5), we can calculate the density

⇢ =
⇢̂

1�r' · u
r'!0����! ⇢

and according to (4.3), the energy E can be obtained by

E = ⇢e+
1

2
⇢|u|2 .

4.3 Entropy and entropy flux

The Euler equations can be derived from the Boltzmann equation by using a Maxwell
distribution as ansatz. In the same fashion, we can derive conservation of Entropy

@

@t
S + div (uS) = 0

for smooth solutions. The arising entropy and entropy flux functions are

S := ⇢

✓

ln ⇢� d

2
lnT

◆

, (4.14a)

F := uS . (4.14b)

4.4 Numerical results

We consider the wind tunnel with a forward facing step shown in Figure 4.1. The initial
conditions are set to

⇢ = 1.4 , u =

✓

3
0

◆

, p = 1 , (4.15)

such that the Mach number is equal to 3. The boundary at x
1

= 0 is an inflow boundary
and the values are set to the initial conditions (4.15) for all t > 0. The outflow boundary
at x

1

= 3 is handled as free boundary, which has no e↵ect on the flow. All other
boundaries are solid walls.
The obtained solution at t = 4 (cf. Figure 4.3) corresponds to reference solutions that
can be found in the literature (e.g. [ZGMP13]). As expected, the entropy residual is
large at discontinuities, which then leads to locally higher viscosity coe�cients in these
regions. Further a Kelvin-Helmholtz instability develops at the contact discontinuity
emerging from the three-shock interaction point (cf. Figure 4.2).

26

4 Euler equations

0.6 3

x
1

0.2

1

x
2

inflow

outflow

reflecting

reflecting

Figure 4.1: Geometry and mesh of wind tunnel, 3951 Triangles

Figure 4.2: Wind tunnel at t = 3

4.5 Implementational aspects

Due to the physical meaning of the Euler equations, the implementation of the entropy
viscosity regularization slightly di↵ers from the description in section 3.2.1 and is done
as follows:

• Evaluate the entropy residual on K̂
i

:

r
E

:=
@

@ t̂
Ŝ + div

x

F̂ (4.16)

• Compute the local viscosity coe�cient on one element T 2 T
i

:

⌫
E

|
T

:= c
E

h2
T

kr
E

k
L

1
(T)

,

with a constant c
E

2 R and the e↵ective local mesh size h
T

.

27

4 Euler equations

• Calculate an upper bound of the local viscosity coe�cient:

⌫
max

|
T

:= c
max

h
T

k⇢(|u|+
p

�T)k
L

1
(T)

,

where c
max

2 R is constant and � = d+2

d

= 1.4 for an ideal gas.

• Bound the local viscosity coe�cient:

⌫|
T

:= min(⌫
max

|
T

, ⌫
E

|
T

) .

• Define the viscosity coe�cient on the whole domain K̂
i

as

⌫ := max
T2T

i

(⌫|
T

) .

The calculation of the entropy residual in (4.16) involves the derivative of Ŝ with re-
spect to t̂. When we recall the definition (4.14) of the entropy pair (S, F), we get the
transformed entropy

Ŝ(w, t̂) = S(w)�r'(t̂) · F (w) , (4.17)

where w denotes the set of variables (⇢, u, E). By using the chain rule, we obtain

@Ŝ(w(t̂), t̂)

@ t̂
=
@Ŝ

@w

@w

@ t̂
+
@Ŝ

@ t̂
.

Since we are solving the mapped conservation law, we do not have any derivative of w.
Therefore we have to use the transformation w(ŵ) (see section 4.2) and the chain rule
to calculate

@w

@ t̂
= D

ŵ

w
@ŵ

@ t̂
,

where D
ŵ

w denotes the derivative of w with respect to ŵ. For solving the mapped
conservation law

@ŵ

@ t̂
+ div f̂ = 0 , (4.1)

the L2-projection of div f̂ has to be computed in each time step. Thus the derivative of
ŵ with respect to t̂ is known and we can calculate the derivative of Ŝ with respect to t̂
by

@Ŝ(w(t̂), t̂)

@ t̂
=
@Ŝ

@w
(D

ŵ

w)
@ŵ

@ t̂
+
@Ŝ

@ t̂
,

which is a composition of known quantities.

28

4 Euler equations

Figure 4.3: Solution of Mach 3 wind tunnel at t = 4, P 4 discontinuous finite elements
on the mesh shown in Figure 4.1

29

5 Burgers equation

5.1 Description of the Burgers equation

A well known example for a scalar conservation law is the Burgers equation. We consider
the two-dimensional domain ⌦ = [0, 1]2, where the flux function f is defined as

f(x, t, u(x, t)) :=
1

2
[u(x, t)]2 1 , 1 :=

✓

1
1

◆

, (5.1)

which leads to

@

@t
u(x, t) + div

x

1

2
[u(x, t)]2 1

�

= 0 8 (x, t) 2 ⌦⇥ (0, T] , (5.2a)

u(x, 0) = u
0

(x) 8x 2 ⌦ . (5.2b)

5.2 Mapping to a space-time cylinder

To regain u out of û, we have to solve (2.19), which means solving

û = u� 1

2
(1 ·r')u2 . (5.3)

We can write (5.3) as quadratic equation

1

2
(1 ·r')u2 � u+ û = 0 ,

which has the solutions

u =
1±p

1� 2(1 ·r') û
(1 ·r')

=
1±p

1� 2(1 ·r') û
(1 ·r')

(1⌥p

1� 2(1 ·r') û)
(1⌥p

1� 2(1 ·r') û)
=

1� (1� 2(1 ·r') û)
(1 ·r')(1⌥p

1� 2(1 ·r') û)
=

2û

1⌥p

1� 2(1 ·r') û .

According to (5.3), the solution has to fulfill

u(û)
r'!0����! û .

30

5 Burgers equation

This results in the unique solution

u(x, t̂, û(x, t̂)) =
2û(x, t̂)

1 +
q

1� 2(1 ·r'(x, t̂))û(x, t̂)
.

5.3 Entropy and entropy flux

A well known convex entropy function for the Burgers equation (5.2) is

E(u) :=
1

2
u2 .

The associated entropy flux F has to fulfill

D
u

f
i

D
u

E = D
u

F
i

8 i 2 {1, 2} . (1.4)

For the above stated entropy and the flux function (5.1) holds

D
u

f
i

D
u

E = u2 8 i 2 {1, 2} ,

which leads to the entropy flux

F (u) :=
1

3
u31 .

5.4 Numerical results

As numerical example, we consider (5.2) with the initial data

u
0

(x
1

, x
2

) =

8

>

>

>

>

<

>

>

>

>

:

�0.2 if x
1

< 0.5 and x
2

> 0.5 ,

�1 if x
1

> 0.5 and x
2

> 0.5 ,

0.5 if x
1

< 0.5 and x
2

< 0.5 ,

0.8 if x
1

> 0.5 and x
2

< 0.5 .

This problem has the exact solution

u
ex

(x
1

, x
2

, t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�0.2

0.5
if x

1

< 1

2

� 3t

5

and

(

x
2

> 1

2

+ 3t

20

,

otherwise ,

�1

0.5
if 1

2

� 3t

5

< x
1

< 1

2

� t

4

and

(

x
2

> �8x1
7

+ 15

14

� 15t

28

,

otherwise ,

�1

0.5
if 1

2

� t

4

< x
1

< 1

2

+ t

2

and

(

x
2

> x1
6

+ 5

12

� 5t

24

,

otherwise ,

�1
2x1�1

2t

if 1

2

+ t

2

< x
1

< 1

2

+ 4t

5

and

(

x
2

> x
1

� 5

18t

�

x
1

+ t� 1

2

�

2

,

otherwise ,

�1

0.8
if x

1

> 0.5 and

(

x
2

> 1

2

� t

10

,

otherwise ,

31

5 Burgers equation

Triangles ndofs L1-error rate L2-error rate
852 12780 2.64e-01 - 5.22e-01 -
3408 51120 7.64e-03 5.1 6.70e-02 2.96
13632 202920 3.93e-03 0.96 4.86e-02 0.46
54528 817920 1.96e-03 1.01 3.46e-02 0.49

Table 5.1: Convergence rates for the two-dimensional Burgers equation using P 4 discon-
tinuous finite elements

as presented in [GPP11]. The numerical solution shown in Figure 5.1 was calculated
using fourth order polynomials for the spatial approximation and an improved Euler
method for the time stepping. As expected, the viscosity coe�cient is localized at the
discontinuities (cf. Figure 5.1b). Further we observed convergence rates 1 and 1

2

for the
error measured in the L1- and L2-norm (cf. Table 5.1)

32

5 Burgers equation

(a) Exact solution u
ex

(b) Entropy viscosity coe�cient ⌫

(c) Numerical solution u (d) Error u� u
ex

Figure 5.1: Solution of Burgers equation at t = 0.5, P 4 discontinuous finite elements and
54528 triangles

33

6 Wave equation

6.1 Description of the wave equation

The wave equation on a two-dimensional domain ⌦ ⇢ R2 is given by

@2

@t2
= c2� in ⌦⇥ (0, T] ,

supplemented with appropriate boundary and initial conditions. For simplicity we set
c = 1. By introducing the variable v 2 R2, which fulfills the partial di↵erential equation

@

@t
= div v in ⌦⇥ (0, T] ,

we obtain the system of conservation laws

@

@t

✓

v

◆

+ div

✓

 I
v>

◆

= 0 in ⌦⇥ (0, T] . (6.1)

The conserved variables are

u :=

✓

v

◆

(6.2)

and the flux function is defined by

f(u) :=

✓

 I
v>

◆

, (6.3)

where I 2 R2⇥2 is the identity matrix.

6.2 Mapping to a space-time cylinder

To obtain the required mapping, we have to solve (2.19) with the definitions (6.2) and
(6.3). This means solving

✓

v̂

 ̂

◆

=

✓

v

◆

�
✓

 I
v>

◆

r'

for v and , which can be split into a vector valued equation

v̂ = v � r' (6.4)

34

6 Wave equation

and a scalar one

 ̂ = � v ·r' . (6.5)

The inner product of (6.4) with r' gives

v̂ ·r' = v ·r'� |r'|2 . (6.6)

We can eliminate the unknown v in (6.6) by using (6.5), which leads to

v̂ ·r' = (1� |r'|2)� ̂ . (6.7)

By rearranging (6.7), we obtain the solution

 =
 ̂ + v̂ ·r'
1� |r'|2

and (6.4) gives

v = v̂ + r' .

6.3 Numerical results

To investigate the convergence rates of the MTP method, we consider (6.1) on ⌦ = [0,⇡]2

with the initial condition

u
0

(x
1

, x
2

) =

✓

0

v
0

◆

=

0

@

sin(x
1

) sin(x
2

)
0
0

1

A

for which we have the exact solution

u
ex

(x
1

, x
2

, t) =
1p
2

0

@

p
2 sin(x

1

) sin(x
2

) cos(
p
2t)

� cos(x
1

) sin(x
2

) sin(
p
2t)

� sin(x
1

) cos(x
2

) sin(
p
2t)

1

A .

The calculations were done using a Runge-Kutta method of fourth order for the time
stepping. Table 6.1 shows the L2-errors at t =

p
2⇡ and the convergence rates for P 2,

P 3 and P 5 finite elements, which are close to the optimal rates.

p = 2 p = 3 p = 4
triangles ndofs L2-error rate ndofs L2-error rate ndofs L2-error rate

96 576 9.033e-03 - 960 7.270e-04 - 1440 2.834e-05 -
384 2304 1.358e-03 2.73 3840 6.392e-05 3.51 5760 1.283e-06 4.47
1536 9216 2.649e-04 2.36 15360 6.250e-06 3.35 23040 6.043e-08 4.41
6144 36864 4.516e-05 2.55 61440 5.585e-07 3.48 92160 3.207e-09 4.24

Table 6.1: Convergence rates for the two-dimensional wave equation, P 2, P 3 and P 4

discontinuous finite elements

35

List of Figures

1.1 Characteristic lines of the Burgers equation with initial data u
0

. 3
1.2 Weak solutions of the Burgers equation with initial data u

0

. 4

2.1 Poorly parallelizable tents in 1D . 9
2.2 Parallelizable tents 1D . 9
2.3 Level of tents over a two-dimensional mesh 10
2.4 Mapping to space-time cylinder in 1D . 11
2.5 Tent in 1D . 12

4.1 Geometry and mesh of wind tunnel, 3951 Triangles 27
4.2 Wind tunnel at t = 3 . 27
4.3 Solution of Mach 3 wind tunnel at t = 4, P 4 discontinuous finite elements

on the mesh shown in Figure 4.1 . 29

5.1 Solution of Burgers equation at t = 0.5, P 4 discontinuous finite elements
and 54528 triangles . 33

36

List of Tables

5.1 Convergence rates for the two-dimensional Burgers equation using P 4

discontinuous finite elements . 32

6.1 Convergence rates for the two-dimensional wave equation, P 2, P 3 and P 4

discontinuous finite elements . 35

37

Bibliography

[Daf10] Constantine M. Dafermos. Hyperbolic Conservation Laws in Continuum
Physics, volume 325 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, Berlin, 2010.

[EGSÜ05] Je↵ Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör. Building
spacetime meshes over arbitrary spatial domains. Engineering with Comput-
ers, 20(4):342–353, 2005.

[FR99] Richard S. Falk and Gerard R. Richter. Explicit Finite Element Methods
for Symmetric Hyperbolic Equations. SIAM Journal on Numerical Analysis,
36(3):935–952, 1999.

[GN14] Jean-Luc Guermond and Murtazo Nazarov. A maximum-principle preserving
finite element method for scalar conservation equations. Computer Methods
in Applied Mechanics and Engineering, 272:198 – 213, 2014.

[GNPY14] Jean-Luc Guermond, Murtazo Nazarov, Bojan Popov, and Yong Yang. A
Second-Order Maximum Principle Preserving Lagrange Finite Element Tech-
nique for Nonlinear Scalar Conservation Equations. SIAM Journal on Nu-
merical Analysis, 52(4):2163–2182, 2014.

[GPP11] Jean-Luc Guermond, Richard Pasquetti, and Bojan Popov. Entropy viscosity
method for nonlinear conservation laws. Journal of Computational Physics,
230(11):4248 – 4267, 2011. Special issue High Order Methods for {CFD}
Problems.

[GSW] Jay Gopalakrishnan, Joachim Schöberl, and Christoph Wintersteiger.
Mapped Tent Pitching schemes for hyperbolic systems. in preparation.

[HW07] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Meth-
ods: Algorithms, Analysis, and Applications. Springer Science & Business
Media, 2007.

[MH08] Scott T. Miller and Robert B. Haber. A spacetime discontinuous Galerkin
method for hyperbolic heat conduction. Computer Methods in Applied Me-
chanics and Engineering, 198(2):194 – 209, 2008.

[Mon03] Peter Monk. Finite Element Methods for Maxwell’s Equations. Oxford Uni-
versity Press, 2003.

[MR05] Peter Monk and Gerard R. Richter. A Discontinuous Galerkin Method for
Linear Symmetric Hyperbolic Systems in Inhomogeneous Media. Journal of
Scientific Computing, 22-23(1-3):443–477, 2005.

38

Bibliography

[PHJ04] Jayandran Palaniappan, Robert B. Haber, and Robert L. Jerrard. A space-
time discontinuous Galerkin method for scalar conservation laws. Com-
puter Methods in Applied Mechanics and Engineering, 193(33–35):3607–
3631, 2004.

[Ser99] Denis Serre. Systems of Conservation Laws 1: Hyperbolicity, Entropies,
Shock Waves. Cambridge University Press, 1999.

[ÜS02] Alper Üngör and Alla She↵er. Pitching Tents in Space-Time: Mesh Gener-
ation for Discontinuous Galerkin Method. International Journal of Founda-
tions of Computer Science, 13(02):201–221, 2002.

[YAS+00] Lin Yin, Amit Acharya, Nahil Sobh, Robert B. Haber, and Daniel A. Tor-
torelli. A Space-Time Discontinuous Galerkin Method for Elastodynamic
Analysis. In Bernardo Cockburn, George E. Karniadakis, and Chi-Wang
Shu, editors, Discontinuous Galerkin Methods, volume 11 of Lecture Notes
in Computational Science and Engineering, pages 459–464. Springer Berlin
Heidelberg, 2000.

[ZGMP13] Valentin Zingan, Jean-Luc Guermond, Jim Morel, and Bojan Popov. Imple-
mentation of the entropy viscosity method with the discontinuous Galerkin
method. Computer Methods in Applied Mechanics and Engineering, 253:479–
490, 2013.

39

	Hyperbolic conservation laws
	Description of hyperbolic conservation laws
	Classical, weak and entropy solutions

	Mapped Tent Pitching method
	Tent pitching algorithm
	Mapping to a space-time cylinder
	Transformation of the conservation law
	Transformation of the entropy admissibility condition

	Artificial viscosity on a tent

	Discontinuous Galerkin Method
	Discretization of the Conservation Law
	Discretization of the artificial viscosity
	Entropy viscosity regularization

	Euler equations
	Description of the Euler equations
	Mapping to a space-time cylinder
	Entropy and entropy flux
	Numerical results
	Implementational aspects

	Burgers equation
	Description of the Burgers equation
	Mapping to a space-time cylinder
	Entropy and entropy flux
	Numerical results

	Wave equation
	Description of the wave equation
	Mapping to a space-time cylinder
	Numerical results

