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Abstract

Safety-critical systems are dependable systems that could lead to loss of life, significant
property damages or damages to the environment in case of failure, such as avionic and
railway systems, offshore mills or nuclear power plants. Systems of this type must sat-
isfy strict temporal constraints in order to guarantee certain safety properties. Besides,
these systems must provide a certain degree of fault-tolerance, to guarantee that they
keep a safe behavior even in the presence of faults in the system.

Historically, the control of safety-critical systems used to be handled by mechanical
devices. However, due to the wide spectrum of possibilities that computer systems offer,
these systems are nowadays commanded by computers. The most significant progress
in this field may be the fly-by-wire system developed for the latest Airbus A380, which
is fully controlled by a computer system. Moreover, the increasing functionality de-
manded by industry has lead to a considerable complexity growth. For example, high-
end cars had about 70 electronic control units (ECUs) back in 2006 , and this number
raised up to 100 by the year 2011.

Therefore, tackling the complexity challenge and preserving time properties and
constraints throughout the development process are key challenges in the field. With
this goal, this research work presents the Platform Specific Time-Triggered Model (PS-
TTM), a novel model-based development framework based on SystemC for time-triggered
safety-critical embedded systems. The proposed modeling work-flow tackles the com-
plexity challenge following the MDA process and the Y-chart paradigm, by raising the
level of abstraction at the very first development stages and creating a purely functional
Platform Independent Model (PIM). Once this abstract model is validated, HW-related
concepts are integrated into the model and the Platform Specific Model is generated.

The work includes the PS-TTM Automatic Test Executor (PS-TTM ATE), a time-
triggered testing and simulated fault injection framework for the validation of both plat-
form independent and platform specific models of systems. The PS-TTM ATE pro-
vides a simulation environment that enables the test developers to check the behavior
of the system under the considered circumstances. Besides, PS-TTM ATE includes a
non-intrusive fault injection mechanism that allows testing teams to inject faults in the
models during simulation, in order to evaluate the effectiveness of the fault-tolerance
mechanisms implemented in them before assembling a system prototype.
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Kurzfassung

Sicherheitskritische Systeme sind Systeme, die im Fall einer Fehlfunktion zu tödli-
chen Unfällen, schwerwiegenden Eigentumsverlusten oder gravierenden Umweltschä-
den führen können. Beispiele für sicherheitskritische Systeme finden sich z.B. in der
Luftfahrt, im Zugverkehr, in Offshore Windanlagen und Kernkraftwerken. Sicherheits-
kritische Systeme müssen strenge zeitliche Anforderungen erfüllen, um in jedem Mo-
ment die Sicherheit des Systems zu garantieren. Zusätzlich müssen sicherheitskritische
Systeme einen gewissen Grad an Fehlertoleranz aufweisen, um auch im Falle eines Feh-
lers die Sicherheit des gesamten Systems gewährleisten zu können.

Früher basierten sicherheitskritische Systeme hauptsächlich auf mechanischen Ele-
menten, während heutzutage mehr und mehr rein computergestützte Systeme eingesetzt
werden. Einer der wichtigsten Fortschritte im Bereich rein computergestützter Systeme
war sicherlich das Fly-by-Wire System des neuen Airbus A380, dessen Steuerungs-
system vollständig computerbasiert ist. Zusätzlich zum Einsatz von computergestützten
Systemen führt die zunehmende Funktionalität, die von der Industrie gefordert wird,
zu einer beträchtlichen Steigerung der Komplexität aktueller sicherheitskritischer Sys-
teme. Ein Auto der Oberklasse hatte zum Beispiel im Jahr 2006 um die 70 elektronische
Steuergeräte, während diese Zahl im Jahr 2011 auf über 100 gestiegen ist.

Die Beherrschung der gestiegenen Komplexität bei gleichzeitiger Einhaltung aller
zeitlichen Anforderungen ist eine zentrale Herausforderung für aktuelle sicherheitskri-
tische Systeme. Mit dem Ziel, diese Herausforderung anzugehen präsentiert die vor-
liegende Forschungsarbeit das Platform Specific Time-Triggered Model (PS-TTM), ein
neuartiges modellbasiertes Entwicklungs-Framework in SystemC für zeitgesteuerte, si-
cherheitskritische Systeme. Zusätzlich zum Framework definiert die Forschungsarbeit
einen neuartigen Workflow, der auf dem MDA-Process und dem Y-Chart Entwicklungs-
paradigma basiert. Der vorgeschlagene Workflow erlaubt die Beherrschung der Kom-
plexität komplexer sicherheitskritischer Systeme dadurch, dass Systeme in den ersten
Entwicklungsphasen mit plattformnabhängigen Modellen (PIMs) auf einem hohen Ab-
straktionsniveau modelliert werden. Nach der Validierung dieser abstrakten, plattfor-
mnabhängigen Modelle werden die Modelle um Hardware-spezifische Eigenschaften
angereichert, um die plattformpezifischen Modele (PSMs) des Systems zu erhalten.

Neben dem Entwicklungs-Framework und dem Workflow beinhaltet die Forschungs-
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arbeit den PS-TTM Automatic Test Executer (PS-TTM ATE), ein zeitgesteuertes Test-
und Fehlerinjizierungsframework zur Validierung von plattformunabhängigen und platt-
formspezifischen Modellen. Das PS-TTM ATE Framework stellt eine Simulationsum-
gebung zur Verfügung, mit der der Testentwickler das Verhalten des Systems in ver-
schiedenen Situationen simulieren und validieren kann. Zusätzlich unterstützt PS-TTM
ATE die nicht intrusive Fehlerinjizierung, welche es erlaubt, während der Simulation
Fehler in die Modelle zu einzustreuen, um damit die Effektivität der im Modell imple-
mentierten Fehlertoleranzmechanismen zu untersuchen.



Laburpena

Segurtasun kritikoko sistemak, akatsak jasanez gero kalte ekonomiko, ekologiko edo
humanitario larriak eragin ditzaketen sistema txertatuak dira, sistema aeroespazialak,
trenbide sareak, sistema eolikoak edota nuklearrrak esate baterako. Sistema hauek ezau-
garri tenporal zehatzak bete behar izaten dituzte segurtasun maila jakin bat bermatu
ahal izateko. Gainera, sistema hauek hutsegiteak modu jakinean jasateko gaitasuna izan
behar dute, akats larrienak gertatuz gero ere jokaera segurua mantendu dezaten.

Duela urte gutxi arte, segurtasun kritikoko sistemen kontrola gailu mekanikoen ar-
dura izan ohi zen. Azken hamarkadetatik hona, ordea, geroz eta ohikoagoa da sistema
informatikoak erabiltzea sistema mota hauek kontrolatzeko. Adibide bezala, alor hone-
tan lortu den aurrerapen nagusienetariko bat Airbus A380 hegazkinarentzat eraikitako
Fly-by-wire sistema da. Sistema hauen berezko konplexutasuna handia izanik, gaur
egun zailtasun hau areagotzen ari da, industriak eskatzen dituen funtzio gehigarrien on-
dorioz. Esaterako, 2006.urtean, luxuzko auto batek 70 kontrol elektronikoko unitate
(ECU) inuguru zituen; 5 urte beranduago, 2011n, ECU kopurua 100etik gorakoa zen.
Arrazoi hauengatik, gaur egungo segurtasun kritikoko sistemen garapenaren konplexu-
tasun maila txikiagotzea, euren denbora-ezaugarriak murriztu gabe, erronka itzela da.

Helburu honekin, ikerketa lan honek Platform Specific Time-Triggered Model (PS-
TTM) izeneko plataforma aurkezten du, denboraz jaurtiriko segurtasun kritikoko siste-
mak SystemC lengoaian garatzeko eta aztertzeko erreminta. Sistemen garapena erraz-
teko asmoz, tesi honetan proposaturiko lan organigramak MDA eta Y-chart metodolo-
giak jarraitzen ditu, garapen prozesuaren lehen etapetan modeloen abstrakzio maila igoz
eta modelo funtzional soilak sortuz. Modelo funtzional abstraktu hauek hobetsita dau-
denean, hardware-arekin zerikusia duten kontzeptuak gehitzen zaizkie modelo horiei,
abstrakzio maila modu kontrolatuan murriztuz.

Honetaz gain, lan honek PS-TTM Automatic Test Executor (ATE) deituriko plata-
forma aurkezten du. Plataforma hau PS-TTM bidez diseinaturiko sistema txertatuen jo-
kabidea egiaztatzea ahalbidetzen duen test ingurune bat da. PS-TTM ATE-ak abstrakzio
maila desberdinetan definituriko modeloetan akatsak txertatzeko eta simulatzeko gaita-
suna du. Honi esker, diseinatzaileek euren sistemek akatsen aurrean erakusten duten
erreakzioa aztertu eta akatsen aurkako mekanismoen eraginkortasuna ebaluatu deza-
kete, sistemen prototipo fisikoak eskuragarri izan aurretik.
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CHAPTER 1
Introduction

1.1 Motivation
An embedded system is a system that uses processors and special hardware for dedicated
control functions, and interacts with a real-life environment [TLMP93, ZN08]. The
capability of the semiconductor industry to reduce the size of integrated components has
lead to a big increase in the number of components integrated in a specific silicon area,
and follows the well-known Moore’s law [Moo65]. This has enabled an augmentation
in the functionality of embedded systems but has also prompted a considerable growth
in their complexity.

Safety-critical embedded systems are dependable systems that could lead to loss
of life, significant property damages or damages to the environment in case of failure.
Therefore, safety-critical systems must satisfy a certain degree of fault-tolerance, as
required by the safety standards. These systems have also suffered a complexity increase
in the last years due to the new functionalities included in modern embedded systems.
For example, high-end cars had about 70 electronic control units (ECUs) back in 2006
[Bro06], and this number raised up to 100 in the year 2011 [BCR+11]. This implies
not only an increment on the cost and complexity of the systems, but also a growth
of the amount of potential defects [EJ09]. Moreover, as Di Natale et al. point out in
[DNSV10], it is expected that factors like the interdependency of functions and the
cost of each ECU will lead to a transition from traditional federated architectures to
integrated architectures where one ECU supports multiple functions, which may cause
a growth in the complexity of ECUs.

Therefore, tackling the complexity challenge [Kop08] while providing a consis-
tent notion of time and preserving properties through the development process [HS07,
JTM07] is a key challenge in the field [Per11]. In this context, the well known Y-
chart development process [BCG+97, KDVvdW97] specifies the platform model and
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the functional model of the system separately, and combines both by means of a map-
ping model to obtain a model of a complete system. Moreover, Model Driven Develop-
ment (MDD) approaches, such as the Model Driven Architecture (MDA) [MM03], are
also based on the idea of a strict separation of behavioral and platform models. More
specifically, MDA proposes the development of a Platform Specific Model (PSM) by
applying transformations to a Platform Independent Model (PIM).

Since failures in safety-critical systems may cause human, environmental and eco-
nomical damages, the dependability assessment plays a crucial role in their develop-
ment. The correctness of system functions is usually addressed by formal reasoning.
For example, relying on a formally specified Model of Computation (MoC), such as the
time-triggered architecture (TTA), the synchronous reactive MoC (SR), or the logical
execution time MoC (LET), enables reasoning about the temporal behavior of func-
tional systems. However, when an exhaustive proof of correctness cannot be achieved,
the modeling language should support simulation and testing [DNSV10].

Nowadays, it is estimated that verification and validation activities take approxi-
mately 50% of the total development effort of an embedded system [Enc03, Kop11].
For safety-critical systems, this percentage is even higher [Kop11]. Besides, the cost
of finding and fixing defects increases exponentially as the development process pro-
gresses. In the worst case, [DES01] calculates that calling back a car that suffers from a
safety-critical failure can imply a higher cost than the cost of its detailed testing activi-
ties. Therefore, advances on frameworks and methodologies for simulation and testing
of system models at the early stages of development may provide a positive impact on
the development of safety-critical embedded systems. In fact, a recent survey about
embedded system design projects [Ham14] confirms that 63% of the embedded system
developers consider simulation the most important verification technique for their future
developments.

The complexity of modern safety-critical systems, the high integration in silicon
components and the limitations of software and hardware technologies force safety-
critical systems to coexist with faults. This problem is addressed by the introduction of
fault-tolerance mechanisms (FTMs) into the systems, as safety-standards recommend
[IEC10, ISO09, CEN11]. In order to assess their effectiveness and so to evaluate the
dependability of the system, fault-tolerance mechanisms need to be exercised by means
of fault injection techniques.

Among the different fault injection approaches [BP03, HTI97], simulated fault-in-
jection (SFI) enables performing this fault-tolerance assessment from the early stages of
the design, therefore reducing the risk of a late and expensive detection of safety pitfalls.
However, time-triggered modeling approaches and frameworks such as the Executable
Time-Triggered Model (E-TTM) [PNOES10a, Per11] or Timing Definition Language
(TDL) [Chr14] do not natively offer a framework for dependability assessment by sim-
ulated fault injection. Therefore, fault injection is usually carried out by manually mod-

2



ifying the system to insert the desired fault injection mechanisms in it [PAaP10]. This
presents two important drawbacks. First, a new model needs to be created and compiled
for each fault to be tested, which increases validation and verification costs. Second,
since a new model is created and validated for each faulty case, in the end, the original
model is never validated against faults, but only derived models are. This leaves a degree
of uncertainty on the behavior of the original model against faults, since the designers
might involuntarily change some functional property when creating the modified model.

Given this situation, this dissertation presents the Platform Specific Time-Triggered
Model (PS-TTM), a novel modeling and simulation framework for the design and as-
sessment of safety-critical time-triggered systems according to the MDA and the Y-chart
development process. As suggested by these approaches, the design of systems in PS-
TTM begins with the description of a purely functional model of the system. To do
so, the herein presented framework includes the Platform Independent Time-Triggered
Model (PI-TTM), a design and simulation environment for functional models based
on the LET MoC. The PI-TTM has been built on top of the PS-TTM framework, in a
way that it provides a seamless connection between platform independent and platform
specific models.

Our simulation engine for PI-TTM and PS-TTM models enables the validation of
fault-tolerance mechanisms by non-intrusive simulated fault injection from the early
stages of the design, with a mechanism that prevents the designers from generating a
new model for each fault to be injected, thus reducing the time and effort of validation
activities and increasing the level of confidence on the results obtained in the tests. The
fault injection campaigns can be applied to models at different abstraction levels, and
are carried out by the time-triggered testing and fault injection framework included in
this work, called the PS-TTM Automatic Test Executor (ATE).

Although different models of computation, languages and frameworks can be found
in the state of the art for the development of safety-critical embedded systems (see chap-
ters 2 and 3), the systematic preservation of time properties throughout the model down
to the implementation is still a challenge. In this context, the Time-Triggered Archi-
tecture (TTA) provides a validated and certifiable core technology for the development
of safety-critical embedded systems [JSPP04], based on the time-triggered MoC. To
take advantage of this, the PS-TTM approach relies on the Executable Time-Triggered
Model (E-TTM) [PNOES10a].

Why E-TTM?

The time-triggered MoC guarantees that time properties and constraints are intrinsi-
cally preserved down to the final implementation when the system is based on the TTA
[Per11], what makes it an appropriate candidate for the design of safety-critical sys-
tems. Unlike other time-triggered modeling approaches, such as TDL [Chr14] or TMO
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[Kim97], which present some differences to the time-triggered MoC that limit their ap-
plicability [Per11], E-TTM provides a closer approximation to the time-triggered MoC.

Moreover, the E-TTM meta-model is developed in SystemC, which has become the
de-facto standard for HW/SW system modeling. In addition to this, E-TTM provides
different techniques such as abstraction, partitioning and segmentation to tackle the
complexity challenge of modern embedded systems.

However, the E-TTM may be found too specific for the modeling of purely func-
tional models of systems. For example, it requires the specification of a detailed time-
triggered schedule, which may not be interesting at the earliest development stages. In
that case, languages based on the synchronous reactive MoC (e.g., Lustre [HCRP91],
Esterel [Ber98]) or on logical execution time (TDL [Chr14], HTL [GSVK+06]) give a
higher abstraction to the designer, which makes them more suitable for the development
of PIMs.

Hence, this approach relies on the LET MoC for the development of platform inde-
pendent models, whilst platform specific models are developed relying on E-TTM.

Why LET?
Synchronous languages [BCE+03], such as Lustre [HCRP91, Hal05], Esterel [Ber98,
Ber00] or the commercial tool SCADE Suite [wwww], are based on the SR MoC. The
SR MoC relies on the synchronous hypothesis, which defines an abstraction where the
execution of jobs and communication of data are considered instantaneous and simulta-
neously triggered. This way the notion of time is abstracted from the models so that the
models can be understood as mathematical equations, which eases the formal verifica-
tion of their properties. For this reason, synchronous languages are used for the design
of functional models of dependable and safety-critical embedded systems.

However, the implementation of SR models requires matching the synchrony pa-
radigm with the system architectures and the environment, which may be invalidated
by the dynamics of the environment. Moreover, the deployment of SR models on dis-
tributed platforms that do not provide strict time determinism, or the implementation of
interfaces for analog components (sensors or actuators) becomes cumbersome, in spite
of the advances in research [DNSV10].

Therefore, in order to ease the design of platform independent models, PI-TTM
relies on the LET MoC [KS12]. In the LET MoC, described in detail in section 2.5, the
execution of functions takes a fixed logical duration regardless of their physical duration,
whereas communication between components is instantaneous and is only triggered at
the logical start and end points of jobs. This way, the LET MoC can be considered an
abstraction of the Time-Triggered MoC.

The LET MoC has been adopted by a number of different approaches and languages,
such as the Timing Definition Language (TDL) [RDPN10] and the Hierarchical Timing
Language (HTL) [GSVK+06]. However, in order to ease the transition from the PIM
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to the PSM, this thesis presents a new LET engine built as an abstraction of the E-TTM
engine, which enables modeling LET based functional systems in SystemC. This way,
the approach described in this dissertation provides a seamless connection between the
LET based and E-TTM based models.

1.2 Goals of the thesis
The main goal of this thesis is the “definition of an executable time-triggered safety-
critical systems-modeling approach based on the Y-chart development process and the
MDA, and the development of a testing framework which enables non-intrusive simu-
lated fault injection at the different stages of the development for the verification and
validation of such systems”.

In order to tackle the challenges identified in the previous section, the modeling and
simulation approach should meet the following characteristics:

G1. Time and value domain determinism: Safety-critical systems must enable cer-
tification in accordance to applicable safety standards. Determinism eases the
certification process by reducing the state space of systems.

G2. Support strategies to tackle the complexity challenge: As described in section
1.1, complexity is one of the biggest concerns in the embedded systems field.
Hence, the modeling approach must tackle this challenge by enabling different
techniques identified in the state of the art, such as abstraction, partitioning and
segmentation.

G3. Be compliant with the MDA approach: MDA suggests separating the specifi-
cation of the functionality of the system from the details of the target platform in
order to reduce complexity and increase portability and re-usability. The approach
developed within this thesis should comply with the MDA.

G4. Allow extendability and specialization of platform components: As technol-
ogy advances, new platforms and devices are developed. In order to support new
components, the platform component library must be extendable. Moreover, plat-
form component definitions must be generic and allow specialization to enable
modeling at different abstraction levels.

On the other hand, the testing and simulated-fault injection framework should:

G5. Be compliant with the modeling and simulation approach: The main purpose
of the testing and simulated fault injection framework is to enable the verification
and validation of systems developed following our approach. Hence, the test-
ing and simulated fault injection framework should avoid any incompatibilities
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with the modeling framework, and thus provide a suitable environment to test
the models developed following the modeling approach presented in this thesis
against different test-cases and fault-configurations.

G6. Enable non-intrusive fault injection: Non-intrusive fault injection techniques
are the ones that completely mask their presence, so that they have no effect on
the system behavior apart from the faults they inject. Since the model is not
modified at all to get the faults injected, the results provided by these techniques
are more reliable than the results provided by intrusive mechanisms. Therefore,
this framework must enable non-intrusive fault injection.

G7. Permit testing and simulated fault injection at all the stages of the devel-
opment process (PIM and PSM models): As mentioned in section 1.1, fixing
design pitfalls detected in the latest steps of the development requires a bigger
effort. Hence, in order to enable the early detection of design flaws, testing and
fault injection must be possible from the earliest stages of the design.

G8. Provide repeatability of test cases and fault injection activities: In order to
confirm that a bug in the system has been successfully fixed, it is important to re-
peat the tests or SFI activities that exhibited the faulty behavior of the system. To
that end, test cases and SFI must be repeatable. The value- and time-domain deter-
minism and timing synchronization between the model and the testing framework
are key properties for this purpose.

G9. Provide a high level of observability: The degree of observability of the internal
signals of a system is a key property for the correct comprehension of its behavior,
and certainly affects the time needed to locate and fix design bugs. Therefore, it
would be highly advantageous to provide a high level of observability in order to
reduce the verification and validation costs.

1.3 Contribution
More specifically, the contributions provided by this thesis to the state of the art are the
following:

• Definition of the PS-TTM, a modeling and simulation framework for time-tri-
ggered safety-critical embedded systems based on the Y-chart development pro-
cess and the MDA approach (goal G3), over SystemC. The PS-TTM is time and
value domain deterministic (goal G1), and supports different techniques to reduce
the cognitive complexity of systems (goal G2). Taking advantage of its abstrac-
tion capabilities, the PS-TTM includes a library of generic platform components,
which can be further specialized by the designers (goal G4).
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• Creation of the PI-TTM library, an extension to SystemC to support the defi-
nition and simulation of Logical Execution Time based functional systems. This
library enables developers to design the functionality of their systems in a separate
model, thus reducing the complexity, as suggested by the MDA (goal G3).

• Definition of the PS-TTM ATE, a testing and simulated fault injection frame-
work for PS-TTM and PI-TTM models (goals G5, G7), which enables non-intrusive
fault injection on all the stages of the system development process without the
need to make any modification to the system models (goal G6). The PS-TTM
ATE is synchronized with the simulation engines of the PS-TTM, thus guarantee-
ing repeatability of test cases (goal G8), and provides mechanisms to observe the
values of all the internal signals of the systems (goal G9).

• Provision of a seamless connection between the LET and E-TTM computa-
tion engines, which enables the simulation, testing and fault injection for sys-
tems containing components at different stages of development. This feature con-
tributes to increase the re-usability of models, as suggested by the MDA (goal
G3).

• Development of an extendable executable fault library, with faults collected
from the state of the art, in order to verify and validate the behavior of systems
under fault conditions. Providing this pre-defined fault library to test engineers
reduces the verification and validation costs and increases the repeatability of fault
injection activities (goals G7, G8).

1.4 Structure of the thesis
This thesis is structured as described below:

• Chapter 2: This chapter gives an overview of the background and the basic con-
cepts on which the work of this thesis is based. In particular, it focuses on ex-
plaining concepts regarding dependability and complexity, provides an overview
of fault injection techniques, makes a review of model-based design (MBD) and
gives an overview of different models of computation, mainly focusing on the
time-triggered architecture.

• Chapter 3: This chapter analyzes the state of the art in modeling languages for
safety-critical embedded systems and their simulation frameworks, and discusses
different approaches in simulated fault injection on different modeling languages.

• Chapter 4: We describe in detail the PS-TTM, analyzing its meta-model, timing-
behavior, syntax and semantics, and its PI-TTM abstraction level for functional
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models. We also explain how PS-TTM is mapped to the MDA, and we analyze
its capability to simulate mixed-abstraction level systems.

• Chapter 5: The testing and simulated fault injection framework is introduced in
this chapter, describing its sub-components, fault libraries for PI-TTM and PS-
TTM, syntax and time synchronization.

• Chapter 6: This chapter introduces the set of different tools developed during the
completion of this thesis and describes their integration in the overall work-flow
proposed in Chapter 4.

• Chapter 7: This chapter describes the case study made for the evaluation of the
approach and discusses the results obtained in the simulations.

• Chapter 8: The thesis is concluded by summing up the main conclusions and
suggesting possible future work.
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CHAPTER 2
Background and Basic Concepts

This chapter analyzes the background on which this thesis is based, and explains the
most fundamental concepts in the fields of dependable embedded systems and the Model
Based Design (MBD).

2.1 Dependability
The term dependability is widely used in the domain of embedded systems. However,
the definition of the term has evolved through the years, as the following list shows:

• “Quality of the delivered service such that reliance can justifiably be placed on
this service”. [Lap85]

• “The property of a computer system such that reliance can justifiably be placed
on the service it delivers” [LAK92]

• “The ability to deliver service that can justifiably be trusted” [ALR01, JTM07]

• “The ability of a system to avoid service failures that are more frequent and more
severe than is acceptable” [ALRL04]

The paper written by Avizienis et al. [ALRL04] is usually taken by the embedded
systems community as the reference for the definition of fundamental concepts regard-
ing dependable and secure systems. Therefore, according to [ALRL04], dependability
is considered an integrating concept that encompasses the following attributes:

• Availability: Readiness for correct service.

• Reliability: Continuity of correct service.
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· · · Fault Error Failure Fault · · ·activation propagation causation

Figure 2.1: Causality chain of dependability threats (from [ALRL04]).

• Safety: Absence of catastrophic consequences for the user(s) and the environ-
ment.

• Integrity: Absence of improper system alterations.

• Maintainability: Ability to undergo modifications and reparations.

Threats of Dependability
According to Avizienis [ALRL04], the dependability of a system has three potential
threats: failures, errors and faults. Benso et al. define these three components in [BP03]
as follows:

• Fault: Physical defect, imperfection or flaw that occurs within some hardware or
software component.

• Error: Deviation from accuracy or correctness.

• Failure: The non-performance or incorrect performance of some expected action.

Errors are considered manifestations of faults. Therefore, faults are classified as
active faults or dormant faults, depending on their effect. A fault is active when it
produces an error; otherwise, it is dormant. An active fault is either an internal fault
(fault originated inside the system boundaries) that was previously dormant and that has
been activated by the computation process or environmental conditions, or an external
fault. Most internal faults keep switching between active and dormant states.

Errors caused by active faults may propagate inside the component due to the com-
putation process, transforming themselves into other errors. This phenomenon is called
internal propagation. When an error propagates internally to the service interface of the
component, the error propagates to other systems connected to that interface. This is
known as external propagation.

Failures occur when an error internally propagates to the service interface and causes
a deviation of the provided service from the expected service. In that case, the failure in
a system behaves as a fault for the subsequent systems.

This relationship between faults, errors and failures is known as the causality chain
of dependability threats, which is depicted in Figure 2.1.
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Means of Dependability
Over the years the community has developed different means to achieve each of the at-
tributes of dependability. Those means are grouped into four major categories [ALRL04]:

• Fault prevention: Prevention of the occurrence or introduction of faults.

• Fault removal: Reduction of the number and severity of faults.

• Fault forecasting: Estimation of the present number, the future incidence, and
the likely consequences of faults.

• Fault-tolerance: Avoidance of service failures in the presence of faults.

Determinism
Determinism has been widely explored by philosophers over the years. From a philo-
sophical point of view, the world is deterministic if and only if, given a specified
way things are at time t, the way things go thereafter is fixed as a matter of natural
law [Hoe05].

In the field of computer science, a model is considered deterministic if and only
if given a set of initial conditions at a specific instant, and a sequence of future timed
inputs, the outputs at any future instant are entailed and are not influenced by random-
ness [Kop08].

Therefore, deterministic models enable to make reliable predictions about their fu-
ture state. In fact, determinism is a sufficient condition for logical reasoning. This eases
the analysis of the behavior of systems, and hence facilitates their validation. In con-
trast, non-deterministic models are more difficult to validate, since repeated test cases
do not necessarily produce identical results. Thus, whenever possible, dependable and
safety-critical systems should be built as devices that can be modeled deterministically.

Reliability and Safety Analysis
Different techniques have been developed to evaluate the dependability of systems.
Since one of the most important characteristics of dependable systems is their dynamic
behavior, nowadays the most interesting techniques for dependability analysis focus on
the assessment of reliability and safety [BKSZN10].

The objective of this analysis is to qualitatively identify the types of system failures
that can occur, or to quantitatively define the distribution of the times-to-failure of a
component or system [BKSZN10]. The following sections briefly describe the most
widely used reliability and safety analysis techniques.
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Failure Mode and Effect Analysis (FMEA)

The design of safety-critical systems starts with the safety analysis such as fault tree
analysis and/or failure mode and effect analysis (FMEA) of the envisioned applica-
tion [Kop11]. In fact, the IEC 61508 safety standard (Functional safety of electrical/-
electronic/programmable electronic safety-related systems) [IEC10] recommends the
FMEA as one way to assess the system reliability.

The FMEA (Failure Mode and Effect Analysis) is a systematic method of identifying
and preventing product and process problems before they occur. FMEAs are focused on
preventing defects, enhancing safety, and increasing customer satisfaction [MMB09].
The aim of the FMEA is to identify potential faults of the system and determine the
resulting error effects before the faults occur, in order to prevent safety accidents and
incidents.

The typical FMEA consists of the development of a document that follows a bottom-
up flow in the analysis of the system. The technique starts with the analysis of possible
failure modes of components within the system, and continues upwards until the fail-
ure modes of the whole system are evaluated. The evaluation of the safety hazards
is subjective, since it is based on the previous knowledge of the designers [RPV+13].
Therefore, the FMEA requires a team of experienced engineers to identify all possible
failure modes of each component.

The FMEA process finishes with the development of the FMEA document, which
is written in a specific FMEA worksheet. This document collects all the important
information found during the FMEA process. Figure 2.2 shows a standardized empty
FMEA worksheet.

Fault Tree Analysis (FTA)

Besides the FMEA, the first stages of the development of safety-critical systems also
requires the design of their Fault Tree Analysis (FTA). The FTA is a quantitative relia-
bility analysis developed from a static view of the system. Similarly to the FMEA, the
international IEC 61508 safety standard [IEC10] also recommends performing the FTA
of the systems at the first stages of the design.

A fault tree is a diagram that displays the interrelationships between a potential
critical event in a system and the causes for this event. The approach uses boolean logic
to develop comprehensible diagrams, where causes and effects are linked by boolean
logic (and and or gates). The FTA follows a top-down approach. The analysis begins
at the system level, where an unwanted failure event is defined as the top event of the
fault tree. Then, the subsystem failure events that can lead to that top event have to be
identified and defined as sons of the top event. The process continues down the tree until
a basic failure (usually a component failure) is found. Figure 2.3 shows an example of
a fault tree.
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Figure 2.3: A fault tree (from [BKSZN10])

The aim of the FTA is to reveal hidden failures caused by combinations of faults
or errors, and quantitatively calculate their occurrence probability. Fault trees can be
formally analyzed with mathematical techniques. This way, the probability of the top
failure events can be calculated by applying combinatorial techniques to the probabili-
ties of their basic component failures.

Testing

Testing is an analytic means for assessing the quality of systems [UL07], and is one
of the most important phases of the development of embedded systems. As Dijkstra
pointed out in [Dij70] “testing can be used to show the presence of bugs, but never to
show their absence”. Therefore, testing is an activity that aims to improve the quality
and increase our confidence in a system by identifying defects in them. Testing cannot
be undertaken in isolation. Instead, in order to be in any way successful and efficient,
it must be embedded in an adequate system development process and have interfaces to
the respective sub-processes.

However, although testing is not capable of proving the correctness of a system but
only bring out its bugs, it is a widely used technique. Actually, according to [JTM07],
“testing is indispensable, and no software system can be regarded as dependable if it
has not been extensively tested”. This happens, according to Hoare [Hoa96], due to
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the fact that the contribution of testing is not limited to expose bugs; In fact, its biggest
contribution is the feedback that it provides to the development process. In his words,
“the real value of tests is not that they detect bugs in the code but that they detect inad-
equacies in the methods, concentration, and skills of those who design and produce the
code.” In practice, this means that when a subsystem fails too many tests, the developers
do not simply attempt to patch the code. Instead, they look at the development process
to determine where the error that eventually resulted in the failure was introduced, and
they make the correction there. This might involve clarifying requirements, reworking
a design, recoding one or more modules, and in extreme cases, abandoning the entire
development and starting a new one from scratch.

A thorough test process is carried out in five different stages [BSI98, IST14, ZN08]:

1. Test planning: Includes the planning of resources and the laying down of a test
strategy: defining the test methods and the coverage criteria to be achieved, the
test completion criteria, structuring and prioritizing the tests, and selecting the
tool support as well as configuration of the test environment.

2. Test specification: Is defining the corresponding test cases using the test methods
defined by the test plan.

3. Execution of the test: Carrying out the test cases and test scenarios.

4. Recording the results: Test records serve to make the test execution understand-
able for people not directly involved (e.g., customer) and prove afterwards whether
and how the planned test strategy was in actual fact executed.

5. Checking for completion and test closure: Consists of collecting the test data to
consolidate experience, testware, facts, and numbers, and evaluate the test process
and generate the necessary documentation.

Validation and Verification

Besides testing, validation and verification (V&V) are especially important in the do-
main of safety-critical systems due to their high dependability requirements (e.g., safety,
reliability, security). Usually, these two terms are defined by two questions:

• Validation: Am I building the right system?

• Verification: Am I building the system right?

In other words, validation is concerned with checking whether the system meets
the customer’s actual needs, whereas verification is concerned with whether the system
is well-engineered, error-free, consistent, etc. That is, verification helps to determine
whether the software is of high quality, and validation ensures that the system is useful
for the customer.
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Fault Hypothesis
A Fault Containment Unit (FCR) is a collection of components that operates correctly
regardless of any arbitrary logical or electrical fault outside the region [LH94]. Further,
a fault in an FCR cannot propagate and cause a failure outside the FCR. Each FCR in a
system must have independent power and clocking resources in order to properly define
its boundaries, since shared hardware resources compromise the independence of FCRs.

Given that an embedded system may have more than one FCR, a fault in an FCR
that causes a failure in that FCR becomes a fault for the system, due to the causality
chain reviewed in section 2.1 (Fig. 2.1). Therefore, dependable systems must tolerate
such faults. This fault-tolerance is achieved with the implementation of fault-tolerance
mechanisms.

A typical fault-tolerance mechanism for dependable embedded systems is the N-
modular redundancy architecture. N-modular redundancy composes the system with N
replicated components that perform the same function and provide the same service. A
unique service result is obtained by a voting component, which takes a decision by read-
ing the service outcome provided by all the replicated components and executing a pre-
defined voting algorithm (e.g., majority voting). Triple Modular Redundancy (TMR) is
a widely used N-modular redundancy type.

Fail-Safe and Fail-Operational Systems
Dependable, and more specifically, safety-critical systems, are typically subdivided into
fail-safe and fail-operational systems. Most dependable systems enable to identify one
or more safe states, which the systems should be able to reach in case of failure of one of
its components. If such a state exists in a dependable system, the system is considered
fail-safe. For example, if a failure is detected in a railway signaling system, it should be
possible to notify all the drivers of the trains by lighting a red semaphore, which would
make them brake and stop their trains, thus leading the system to a safe-state.

Other systems, however, do not have a safe state to which they can safely transit in
case of failure. In these systems, at least an application of the computer that is control-
ling the system must remain operational and keep providing its service, even if it is in a
degraded-mode service level. These systems, e.g., flight controls of aircrafts, are called
fail-operational.

It must be noted that fail-safeness is not a property of the controlling computer
system, but of the controlled system itself.

2.2 Fault Injection
Fault Injection is a widely accepted technique for the validation of the dependability
of a system by observing its behavior in presence of faults. The technique consists of
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performing experiments where artificial faults are deliberately introduced in the system
and checking the resulting behavior. The occurrence of faults in the system life-cycle is
accelerated by their deliberate introduction; as a consequence, the occurrence of errors
and their propagation through the system are also accelerated and the response of the
system against such faults can be evaluated.

As Hsueh [HTI97] pointed out, the usage of fault injection techniques enables de-
velopers to:

• identify dependability bottlenecks,

• study system behavior in the presence of faults,

• determine the coverage of error detection and recovery mechanisms, and

• evaluate the effectiveness of fault-tolerance mechanisms and performance loss in
case of faults.

Faults are typically characterized in three different groups according to their duration
[ZAV04]:

• Permanent faults: These types of faults are caused by irreversible damages in the
hardware or software, so that they cannot be fixed unless the faulty component is
replaced.

• Transient faults: These faults are caused by specific environmental conditions,
and they rarely induce permanent damages to the affected components. There-
fore, transient faults usually disappear when the conditions change. According
to studies in the field, transient faults occur more often than permanent ones, and
they are hardest to detect.

• Intermittent faults: These faults are the ones caused by unstable hardware or vary-
ing hardware states, and they behave as a sequence of transient faults. They are
fixed by the replacement of the faulty component.

Although this characterization of faults in three groups according to their duration
is the most common one, other approaches extend this with additional types, such as
Kopetz in [Kop06]:

• Soft-permanent faults: The difference between permanent and soft-permanent
faults is that permanent faults remain active until the affected HW component
is replaced, whereas soft-permanent faults remain active until the state of the HW
component is updated.
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• Massive transient disturbances: These faults occur when an external event results
in the correlated failure of two or more communication channels and possibly
some node.

Fault injection techniques are divided into two main groups: execution-based and
simulation-based [BP03]. Execution-based techniques consist of executing the system
itself (or a prototype) and injecting faults in it during its execution. These techniques
are oriented to evaluate the final design, but fixing an eventual design error in them
is in general difficult, since the system is already in the latest stages of its develop-
ment. On the contrary, simulation-based techniques introduce faults in models of sys-
tems instead of in the system itself. Simulation-based techniques take more time than
execution-based ones, since the formers require to simulate the entire system. However,
simulation-based techniques may be applied far earlier in the development process than
execution-based methods, what facilitates fixing design errors detected during the fault
injection activities.

Fault injection experiments are also typically classified as intrusive and non-intrusive.
Intrusive techniques are those in which testing mechanisms leave some kind of footprint
in the systems behavior, e.g., an alteration of its time properties. Non-intrusive tech-
niques are the ones that completely mask their presence, so that they have no effect on
the system behavior besides the faults they inject. In general, non-intrusive techniques
provide more reliable results than intrusive ones, due to the fact that the formers do not
affect to the behavior of the system (other than the injected faults). However, intrusive
mechanisms are easier to implement than non-intrusive ones. In fact, in some cases
non-intrusive techniques may be impossible to implement.

Basic Fault Injection Environment
As Figure 2.4 shows, a representative fault injection environment is composed of 8 main
components [HTI97, ZAV04]:

• Controller: Controls the experiment.

• Fault injector: Is responsible for injecting the desired faults into the system under
test.

• Fault library: Provides a set of fault types to be injected in the system.

• Workload generator: Generates the workload in order to simulate the desired test
case.

• Workload library: Contains a set of workloads to be used by the workload gener-
ator.
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Figure 2.4: Representative Fault Injection Environment

• Monitor: Tracks the execution of simulation commands.

• Data collector: Collects the resulting data during the simulation.

• Data analyzer: Processes and analyzes the data: When the data analyzer works
online, the controller might take into account the results provided by the analyzer
in order to adapt the fault injection activities and the test cases according to the
previously obtained results.

Fault injection techniques are generally divided into three sub-categories, depend-
ing on the design phase in which they are implemented: hardware-based fault injec-
tion (HWFI), software-based fault injection (SWFI) and simulation-based fault injection
(SFI) [BP03].

Hardware Based Fault Injection
The hardware based fault injection (HWFI) involves executing a system with specially
designed test hardware that allows injecting faults into the system. HWFI is carried out
in the latest stages of the product development, since it needs a functional prototype of
the target hardware to be exposed to faults. The hardware prototype is tested by expos-
ing it to physical disturbances, e.g., electromagnetic interferences, heavy ion radiation,
pin forcing, which may lead to the destruction of the prototype.

The testing environment for HWFI requires additional hardware facilities to perform
the fault injection and to store the resulting data. Hsueh [HTI97] identifies two different
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types of hardware fault injection depending on the hardware facilities used: Hardware
based fault injection with contact and hardware based fault injection without contact.

Hardware based fault injection with contact

The fault injector has direct physical contact with the system under test and produces
current or voltage changes in it. Since faults are directly managed by the fault injec-
tor, their duration and location is straightforwardly controllable. There are two main
techniques to inject faults at pin level:

• Active probes: A flow of current is added to the selected pins via the probes at-
tached to them. This technique is specially suited for stuck-at faults and bridges
between two or more pins. This technique may cause damages in the target hard-
ware if two non-compliant pins are bridged or an inappropriate amount of current
is added to the pin.

• Socket insertion: This technique inserts a socket between the target hardware and
its circuit board. The socket forces the analog signals that represent the desired
logic values onto the pins of the target hardware, thus injecting the desired fault.
Signals can be inverted, ANDed or ORed with adjacent pins, resulting in stuck-at,
stuck-open or even more complex faults.

Hardware based fault injection without contact

In this type of hardware based fault injection, an external source exposes the target sys-
tem to heavy-ion radiation, electromagnetic interference, anomalous thermal conditions
or any other physical phenomenon that could cause internal spurious effects in the target
hardware. Therefore, the fault injector has no physical contact with the system under
test.

The main benefits of hardware based fault injection are listed in the following:

• Testing experiments provide precise and reliable results, since the methods are
non-intrusive and no hardware abstraction is used.

• Test execution is fast (in general, faster than simulated fault injection).

• The system does not need to be modeled.

However, HWFI has several drawbacks:

• It may cause damages to the target platform.

• Accessibility to internal components is very limited.
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• Additional hardware is required.

• Observability is very limited.

• Controlability of HWFI without contact is very low, since the precise location and
occurrence instant of faults is not controlled by the fault injection tool.

• HWFI without contact is not repeatable, since there is not a precise control in the
injection of faults.

• The fixing of bugs that are discovered in the latest stages of the development may
be very expensive, since it may require a major re-design of the system.

Software Based Fault Injection
Software based fault injection (SWFI) is a technique that modifies or extends the soft-
ware implemented in the system under test in order to provide the capability to modify
its state while the system is operational. Since faults are directly applied in software,
this type of fault injection does not require any additional hardware.

The SWFI technique only enables injecting faults in locations which are accessible
by software. It enables introducing both hardware-related and software-related faults to
the system, and a wide range of different faults can be applied to it, such as replication
or loss of network messages, erroneous flags and error conditions, faults in memories,
faults in registers and faults in the operating system. This type of fault injection is
typically used in complex systems where interactions are understood through the details
of implementation [BP03, PAaP10].

A prototype of the target hardware executes the software that has been modified /
extended for SWFI. Since there are some differences between the original code and the
modified one, the timing properties and the workload of the system can be affected, and
in some cases this may result in behavioral differences when compared to the original
software. For example, in case a faulty network channel is simulated by not sending
any message through this channel, it may be the case that ‘send’ commands execute
in shorter time than they used to take in the original software. This modification of
its timing properties may have some collateral influence on the overall behavior of the
system. Therefore, this technique is considered intrusive.

According to [HTI97], SWFI is classified in two groups, depending on the moment
when faults are injected.

Compile-time injection

This method injects errors by modifying the source code or assembly code before the
program is loaded and executed on the target platform. This way, an erroneous soft-
ware image is loaded into the platform and the effect of hardware or software faults is
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emulated when the image is executed. This technique is very well suited to emulate
permanent faults, but it does not allow to trigger faults during program runtime.

Runtime injection

Additional commands are included in the target software which allow triggering differ-
ent types of faults during runtime. The most common triggering mechanisms are:

• Time-out: A timer with a predefined time is placed in the code, which generates
an interrupt when it expires. This interruption is used as a trigger that invokes
a fault. The trigger can be both hardware or software based. The effect of the
fault is in principle unpredictable, since the trigger is based on time instead of on
the internal state of the program. This method is suitable to inject transient and
intermittent faults.

• Exception/trap: The fault is triggered by a hardware or software exception. This
method is well suited to trigger faults depending on the occurrence of a certain
event, such as the entrance of the program into a certain state (software exception)
or when a particular memory location is accessed (hardware exception).

• Code insertion: Instructions are added to the target software allowing fault injec-
tion to take place before particular instructions occur. This method is similar to
compile-time injection, but faults are injected during runtime.

The main advantages of SWFI are:

• A wide range of faults can be injected, both hardware-related and software-related.

• No additional hardware is required. Implementation cost is low.

• Experiments are fast, almost real-time.

• Experiments are repeatable (except for the case of time-out SWFI).

• The system does not need to be modeled.

However, this technique also has the following disadvantages:

• The software running on the target hardware is not the final software, and this
difference may influence the timing behavior of the system.

• Observability is limited, since many times there is no access to internal variables.

• Faults can only be injected in locations that are accessible by software.

• The time needed to implement each experiment may be long, since it may require
re-writing and re-compiling code.
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Simulated Fault Injection
The simulated fault injection (SFI) technique (also known as simulation-based fault
injection) consists of developing a model of the system under test at different abstraction
levels, and inserting faults into the model instead of inserting them to the system itself.
Since no hardware prototype is needed, this technique can be applied at early stages of
the system development, which becomes a major benefit for designers since it reduces
the risk of a late discovery of design flaws.

Three different methods are used by the community to inject faults in simulated
models [BP03, GBGG01, MVS07]:

• Simulator commands: Uses commands provided by the simulator to modify the
values of signals and variables at simulation time. The main advantage of this
technique is that it does not require modification of the code. However, the usage
of this technique depends on the functionalities offered by the simulator. The
simulator commands work temporally, i.e., succeeding actions in the model may
overwrite the variables. Therefore, fault injection by simulator commands is a
good technique for simulating transient faults, but permanent fault injections are
not covered [MVS07].

• Saboteurs: A saboteur is an additional component that is added to the system,
which is capable of modifying the value or timing characteristics of signals or
variables. The injection of the fault is managed by a control signal, which deter-
mines both the trigger instant and the duration of the fault. The main disadvan-
tage of this technique is that the number of control signals grows as the quantity
of saboteurs added to model grows, and this adds additional complexity to the
model.

• Mutants: A mutant is a component that replaces another component of the sys-
tem. When the mutant is active it behaves like the component in presence of
faults, and when it is not activated it behaves like the original component. An
additional control signal is used to trigger mutants. The main disadvantage of
mutants is that, like for saboteurs, the number of control signals may be high if
several different mutants need to be placed in the model. Moreover, the need to
save the internal state of the system before commuting a mutant from non-active
to active state may lead to high cost in space ant time.

Simulated fault injection can be applied to models at different levels of abstraction.
The accuracy of the simulation and the detail of the faults to inject directly depends on
the abstraction level of the model.

The following list summarizes the main advantages of simulated fault injection:
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• SFI can be applied to models at different levels of abstraction (more or less de-
tailed models).

• There is no risk to cause damage in the system, since no prototype is used.

• SFI enables an early dependability assessment and therefore reduces the risk of a
late and expensive discovery of safety related pitfalls.

• Controllability of fault injection experiments (e.g., location, timing properties) is
high.

• Observability is high (depends on the level of abstraction of the models).

• It may be designed as a non-intrusive technique.

On the other hand, SFI presents the following drawbacks:

• The models of the system must be realistic. This sometimes requires an assess-
ment of the models themselves, in order to guarantee a certain level of accuracy
between the models and the systems they represent.

• Models at low abstraction levels (e.g., switch-level models) may require long sim-
ulation times.

• Models at high abstraction levels (e.g., ESL models) are faster to simulate, but
they are not suited to simulate detailed faults.

• Finding a balance between an acceptable simulation time and an adequate ab-
straction level may not be straightforward.

2.3 Cognitive Complexity
IEEE defines the term complexity as “The degree to which a system or component has
a design or implementation that is difficult to understand and verify” [IEE91]. Due to
the increasing number of services that safety critical embedded systems provide, these
systems are exhibiting a considerable degree of complexity. For example, high-end cars
had about 70 electronic control units (ECUs) back in 2006 [Bro06], and this number
raised up to 100 for the year 2011 [BCR+11] (see Figure 2.5). In order to deal with
this complexity challenge and make the systems as comprehensible as possible, the
researching community has identified three main strategies of simplification that can be
applied to embedded systems [Joz01, Kop08, Per11]:

• Abstraction: Construction of a higher-level concept that captures the essence of
the problem-at-hand without taking into account irrelevant detail.
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Figure 2.5: Network infrastructure of the Volvo XC90 (from [HNSS09])

• Partitioning: Decomposition of the problem scenario into (nearly) independent
parts, which that can be studied individually. It is also know as separation of
concerns.

• Segmentation: Division of the complex behavior of the system into smaller parts
which are simpler to understand, and that can be processed sequentially. It is also
called temporal decomposition.

It is worth to note that in some cases it is impossible to apply some of the simplifi-
cation strategies mentioned above. For example, segmentation may be impossible if the
behavior of the process is formed by highly concurrent processes, or if it depends on
feedback loops that cause complex dependencies between variables.

Integrated architectures are a good example of the three strategies stated above. They
may include a chip, which is in fact a powerful abstraction of more than a billion tran-
sistors working in parallel and communicating with each other. Following a partitioning
strategy, integrated architectures are typically treated as a set of separate components.
Furthermore, the explicit notion of time of each integrated architecture enables the seg-
mentation into sequential tasks [AaB12].
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The term cognitive complexity describes the cognitive resources required to perform
a task [Rum06]. The research made by Cowan in [Cow01] identified that in the case of
human beings, our memory capacity limits our comprehension capabilities to the pro-
cessing of four simultaneous chunks of information. Therefore, although functionality
of a system may be simple from a complexity point of view, designers must ensure that
the techniques employed to achieve the means of dependability, such as the introduction
of fault-tolerance mechanisms, do not affect the simplicity of the system significantly.
Redundancy of components enables the separation between the normal functionality of
the system, and it is therefore straightforward to remove while the functional properties
of the system remain intact. Therefore, redundancy of components should be preferred
against other techniques that require mixing functional aspects of the systems with non-
functional ones (e.g., state-recovery strategies).

2.4 Model Based Design (MBD)

In order to handle the increasing complexity of safety-critical embedded systems, their
design is nowadays usually performed by applying the so-called Model Based Design
(MBD). According to the Oxford English Dictionary [Oxf07], a model is “a simplified
description, especially a mathematical one, of a system or process, to assist calculations
and predictions”. Therefore, the essence of modeling lies on focusing on a (or some)
specific property of a component in order to reason about it, whereas being agnostic
of the properties that are not interesting for the actual purpose. This simplification
increases the understandability of the system.

MBD [SK97,SK01,GKL+10] is a system design approach that advocates the notion
of using high level models throughout the development of a system. Model-based en-
gineering (MDE) reinforces this notion by promoting models not only as a mechanism
for abstraction, but also for verification, implementation, testing, and maintenance.

MBD raises the level of abstraction in system design from low-level languages to
high-level modeling formalisms. In many cases, high-level models treat concepts like
concurrency and time as first-class notions, which enables to design systems that would
be hard or impossible to design using low-level methods. In these cases in which timing
properties of models are defined non-ambiguously, automatic tools might be used to
generate corresponding software code directly from the models. Commercial examples
of such modeling and code-generation frameworks include Simulink Coder [wwwy]
from The MathWorks, which generates code from Simulink models, LabVIEW C Gen-
erator [wwwr] from National Instruments, and SCADE Suite [wwww] from ANSYS-
Esterel Technologies. Academic tools include Ptolemy II [wwwt] from the University
of Berkeley and the Distributed Operation Layer (DOL) [wwwg] from ETH Zürich.
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Meta-Model
Several different definitions have been proposed for the concept of a meta-model. In
our opinion, the most accurate ones have been provided by J. Estublier and I. Kurtev
[EBF05, Kur05]:

• “A meta-model is the model of a set of models” [EBF05]

• “A meta-model is a model of a modeling language” [Kur05]

All in all, a meta-model is the set of rules and constructs under which a model can
be built, so that a model is usually considered a specific instance of the meta-model.

The Model Driven Archicteture (MDA)
The Model Driven Architecture (MDA) [MM03] is the standard proposed by the Object
Management Group (OMG) for the model-based development of systems. The main
aim of the MDA is to increase the portability, interoperability and reusability of the
models. To achieve that goal, the MDA suggests separating the specification of the
operation of a system from the details of its deployment on a specific platform. There-
fore, the MDA decouples the system in two models: the Platform Independent Model
(PIM) and the Platform Specific Model (PSM). Different modeling languages, such as
the Unified Modeling Language (UML) [OMG11a] the Systems Modeling Language
(SysML) [OMG12], and the UML profile MARTE [OMG11b] are compliant with the
MDA. These modeling languages are further discussed in Section 3.1.

The Y-chart Paradigm
The Y-chart paradigm [BCG+97,KDVvdW97,KDvdWV02,LTS+09] is another model-
based design approach for embedded systems, which has been very extensively used
lately, although it has been implemented in many different ways [LTS+09].

The Y-chart approach is a methodology to provide quantitative data about the perfor-
mance of architectures for a given set of applications. This work must not be confused
with the Y-Chart methodology by Gajski and Kuhn [GK83, GAGS09], which is a dif-
ferent research work that provides a taxonomy for visualizing the design of the systems
from three different hierarchical points of view.

Similarly to the MDA, the Y-chart modeling approach relies on separating the func-
tional and platform-related aspects of the system in order to deal with the increasing
complexity of systems. As Figure 2.6 shows, the development of systems with the
Y-chart approach starts from a separate definition of the application and the platform.
Once both models are finished, the components of the application are mapped to the
platform and the system is analyzed by simulation. The analysis of the results is used to
improve or fix different aspects of the application, the platform, or even the mapping.
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Figure 2.6: Design work-flow of the Y-chart paradigm.

One of the biggest benefits of this approach is that a number of different mappings
can be defined and simulated for a given application and platform, which enables de-
signers to compare and evaluate diverse versions of their systems with regard to different
aspects (e.g., the suitability of a platform for a given functionality, the efficiency of each
system candidate) in order to choose the most appropriate system for their purpose.

Although the key concept underlying the Y-chart paradigm, constisting of explicitly
separating application descriptions from a platform specification, is relatively simple,
different methodologies have implemented it in different ways. The most significant ex-
amples are POLIS [BCG+97] and its derivative Metropolis [BWH+03], Intel’s CoFluent
Studio [wwwd], or the Distributed Operation Layer [wwwg] and its continuation, the
Distributed Application Layer (DAL), which are further discussed in section 3.3.

2.5 The Notion of Time
The notion of time is a key concept in embedded systems design [Per11]. This chapter
reviews the notion of time from different perspectives, identifying the most extended
time representations and models of computation (MoCs).

Time Flow
In the field of embedded systems, the concept of time is usually based on its Newtonian
notion, so that relativistic effects are omitted. In this case, the flow of time can be mod-
eled as a straight timeline that connects the past with the future, as figure 2.7 shows. An
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instant is a cut that divides the timeline in two parts, whereas the present is a special in-
stant that separates the past from the future. The duration is the time lapse between two
instants, and an event is a relevant happening that takes place at an instant [OESHK07].

time

p
re
se
n
t

in
st
a
n
t

in
st
a
n
tduration

past future

Figure 2.7: Time flow

Models of Time
Depending on the field of application, time may be abstracted in different models in
order to reduce its cognitive complexity [Per11]. This section reviews the most widely
used models of time.

• Continuous / Dense-Time model: The concept of time in everyday life is usually
based on the continuous/dense-time model (Figure 2.8a). The dense model of
time is based on a continuous flow, where time advances continuously and the
delay between two events can be arbitrarily small. Analog electronic systems are
based on this model.

• Discrete-Time model: The discrete-time model (Figure 2.8b) is an abstraction of
the dense time model, where time is considered to advance by discrete steps, in-
stead of continuously. Time instants are modeled as positive integers. Events
only occur at discrete-time values, and the duration between two events is a mul-
tiple to the time step. The discrete time ticks are usually generated by a clock
that generates periodic events called microticks. This model of time is used by
synchronous languages (e.g., Lustre, Esterel) and hardware description languages
(e.g., VHDL, Verilog).

• Global-Time model: The global-time model (Figure 2.8c) is widely used in dis-
tributed real-time embedded systems due to its capability to provide a consis-
tent temporal order of events based on their time-stamps, which eases to estab-
lish a consistent execution of control algorithms partitioned in distributed sys-
tems. The global-time is approximated by generating a macrotick using the local
microtick clock of the distributed computers and a clock synchronization algo-
rithm [Kop11]. This approach achieves a maximal divergence of one macrotick
among the local clocks, which is considered the reasonableness condition.
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• Sparse-Time model: The sparse model of time (Figure 2.8d) takes the concept of
global-time and establishes alternating intervals of activity (π) and silence (∆)
over time in order to provide a wide notion of simultaneity to distributed sys-
tems. The occurrence of events that are under the sphere of control of computer
systems is restricted to happen during the activity intervals. All the events that
occur within the same activity interval are considered simultaneous. This time
abstraction suits distributed real-time embedded systems that require to guarantee
a deterministic temporal order of events and a consistent notion of simultaneity
overall the system.
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Figure 2.8: Models of time (from [Per11])

Models of Computation
Although the concept of ‘Model of Computation (MoC)’ has been defined in many dif-
ferent ways by different authors [ELLSV97, LSVS98, LSV98, LN05, Jan09, Mar11], it
is generally accepted that a MoC is an abstraction of a real computing device that gives
a description of the mechanism assumed for performing computations, i.e., it gives se-
mantics to the structure models. A MoC abstracts slightly from the languages and allows
the designers to focus on the essential issues of concurrency, time, communication and
synchronization [JS05]. Therefore, MoCs always omit some properties and details that
are irrelevant for their purpose and focus on other properties that are essential.

However, as Lavagno et al. point out in [LSVS98], the distinction between a lan-
guage and its underlying model of computation is important. The MoC affects the
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expressiveness of a language, whereas the syntax affects compactness, modularity, and
reusability. Thus, the same MoC may be shared by different languages, and some lan-
guages may support more than one MoC.

According to Jantsch [Jan09] , models of computation for embedded systems should
not address principle questions of computability or feasibility but should rather aid the
design and validation of concrete systems. Similarly, Henzinger [Hen04] states that
the MoC has a crucial importance when simplifying the design and implementation of
embedded software. Lee [Lee00] points out that the composition of elements must have
consistent, non-ambiguous and non-conflicting temporal properties, especially in the
case of fault-tolerant systems.

All in all, it is clear that the choice of the most suitable model of computation is
a key decision in the design of embedded systems, since different MoCs may lead to
significant differences in terms of complexity and in the effort needed for verification
and validation. This choice of an adequate MoC takes an even greater importance in the
case of safety-critical systems, since the reduction of the cognitive complexity and the
capability of performing verification and validation activities play a crucial role in the
certification of systems.

The models of computation have been evolving during the history of computing.
Brooks et al. [BLL+08], Jantsch [Jan09] and Lee [Lee02] provide a good overview of
the different models of computation used nowadays. The following sections briefly
introduce the currently most relevant models of computation, ordered by the timing
abstraction they use.

The Continuous-Time MoC

The continuous-time MoC has been most widely used in the modeling of mechanical
and fluidical dynamics, analog circuits, chemical processes and many other physical
systems. This type of continuous dynamics are typically defined as ordinary differential
equations (ODEs), expressed in some mathematical notation. The idea of this MoC is
that, as physical entities, the signals in the continuous MoC have continuously evolving
values that can be observed at any instant of the dense time.

Obviously, since digital computers rely on discrete timestamps provided by logical
clocks, continuous-time models must be approximated by solvers, such as the Euler
integration method or the Runge-Kutta algorithms [But03,CK06]. By using these types
of solvers, continuous systems can be simulated similarly to discrete-event models, with
the only difference that, in addition to using an event queue to determine the advance of
time, an ODE solution has to be computed at each time step.

Design and simulation tools such as Spice [Nag75], SystemC-AMS [IEE13], Simulink
[wwwx] and Dymola [wwwh] are based on the continuous MoC.
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The Discrete-Event (DE) MoC

Models based on the Discrete-Event (DE) MoC [Fis01] rely on a global notion of time
along the system, and the occurrence of some time-stamped events during the execution.
Systems based in the DE MoC behave reactively, i.e., they perform some computation as
a reaction to some event. Thus, data in DE systems can only change with the occurrence
of events, and not continuously over time.

Hence, the discrete-event MoC is well suited to model systems where the informa-
tion or state changes by the eventual occurrence of certain discrete phenomena. Ex-
amples of this kind of systems are manufacturing plants, where actions have to be per-
formed when a component reaches the end of the conveyor belt; automated inventory
systems, where cranes and robotic arms move until a presence sensor detects their lo-
cation; or communication systems, where the reception of some information package is
considered the event to start performing some computation or answering the message.

Some discrete-event based models restrict the occurrence of events to time-stamp
events that take place every predefined time interval. This variant of the DE MoC is
usually known as the Discrete-Time (DT) MoC. Hardware description languages such
as Verilog [TM02, IEE06] and VHDL [IEE09] are based on the DT MoC.

The Synchronous Reactive (SR) MoC

The idea of synchrony in software was first introduced during the early eighties in some
theoretical works by Milner [Mil83]. However, the synchronous approach [BB91] was
born in the beginning of the nineties by the French school with the development of the
Lustre [HCRP91], Esterel [BG92] and Signal [LGGLBLM91] synchronous languages.

Synchronous languages adopt the synchronous hardware design paradigm in the
sense that they assume that computation occurs in two separate phases, computation
and communication, that do not overlap. This is ensured by the fact that the critical
path of the combinatorial hardware between latches takes less time than the clock cycle.
Therefore, the behavior of the hardware is independent of the delays of the combinato-
rial logic.

The synchronous reactive MoC relies on the synchrony hypothesis, which analo-
gously to synchronous hardware, enables abstracting the temporal concerns from the
functionality of the system. This is achieved by considering the systems to be ideally
reactive, that is, they react to input stimuli producing their outputs in no observable time.
Therefore, it is usually said that both computation and communication take zero time in
the SR MoC. However, a more accurate definition would be to say that the time taken
for communication and computation does not matter from a functional point of view as
they do not overlap, since if computation is fast enough, there is no interference with
timing concerns.
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Figure 2.9: Partially ordered schedule in SR models

Synchronous reactive models rely on a discrete-time basis, where both jobs and com-
munications are executed instantaneously (in zero simulation time). For their execution,
all the jobs read their inputs, execute their functionality and write their outputs instanta-
neously. Thus, all the inputs of a job must be available when the job is triggered. Since
all the jobs are triggered synchronously and communications are also instantaneous, the
compiler needs to derive a partially ordered schedule from the system before it is ex-
ecuted, in order to ensure the availability of such inputs during the definition. Hence,
defining program loops as the one shown in Figure 2.9a is strictly forbidden in syn-
chronous languages, since it makes it impossible to extract a coherent partially ordered
schedule.

In order to deal with this drawback, synchronous languages provide mechanisms to
delay the communications between two jobs, such as the pre operator of Lustre. By
delaying the communications by one cycle, the pre operator establishes the starting and
finishing points of the cycle of simulation, which enables the scheduler to provide a
partially ordered schedule for the model, as shown in Figures 2.9b and 2.9c.

Another drawback of SR models is the difficulty of generating distributable code
from them. Embedded applications are frequently distributed over a cluster composed
by several computers communicating by means of a communication infrastructure. Since
these architectures frequently do not comply with the synchronous execution model,
generating a distributable code with the guarantee that it will behave exactly as in the
synchronous model is a very challenging task. Different techniques have tried to over-
come this problem; however, until now, the most successful methodology is the “Glob-
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ally asynchronous, locally synchronous system” (GALS) approach [Cha85, BWH+03,
HM06, KGGV07], which relies on designing distributed asynchronous systems com-
posed by several synchronous subsystems, with the aim to take advantage of the benefits
of synchronous components, whereas trying not to increase the cognitive complexity of
the system by attempting to make it fully synchronous.

All in all, the SR MoC enables the designers to abstract their design from temporal
concerns. This provides solid mathematical definitions with strong properties, which
reduces the state space of expressible designs and eases the formal analysis and syn-
thesis of the systems. This facilitates certification because it reduces ambiguity and
makes it possible to construct formal proofs about the operation of the system. Due
to this fact, synchronous models are nowadays being extensively used in safety-critical
systems, with commercial tools such as SCADE Suite [wwww, wwwv].

Finally, as pointed out by Benveniste [BB91], it is important to note that syn-
chronous languages are not completely bound to non-determinism. Some of the syn-
chronous languages accept non-deterministic programs as modules, although they refuse
to produce deterministic code out of them. This might be very useful to model the envi-
ronment of the synchronous system, or any other physical phenomenon.

The Time-Triggered (TT) MoC

The Time-Triggered (TT) MoC [EBK03] heavily relies on the sparse notion of time,
which was first introduced by H. Kopetz in [Kop92]. As mentioned previously, the main
idea behind the sparse-time model consists on establishing an alternating sequence of
intervals of silence and activity along the progression of time, as shown by Figure 2.8d.

When systems are designed in a distributed fashion, establishing a precise synchro-
nization between local clocks is essential in order to maintain a temporal coherence
between the distributed components. The quality of this synchronization is measured
by two properties:

• Precision: The maximum offset between any two clocks in the system during a
given interval.

• Accuracy: The maximum offset between a given clock and the absolute reference
time.

Although a detailed analysis of the properties and technologies of a system allows
us to identify the precision of the synchrony between clocks, the continuity of the dense
time and the digitalization error make it physically impossible to guarantee that two
observations of the same event will always yield the same timestamp in a distributed
system; i.e., whatever the precision of the synchrony between two clocks is, it may al-
ways happen that a given event is observed by two different timestamps in each clock.
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Figure 2.10: Temporal firewall

The definition of such a time-triggered MoC came from the need to overcome this prob-
lem.

Models relying on the time-triggered MoC restrict the occurrence of significant
events to the activity interval of the sparse-time model. Events occurring at the same
timestamp are considered instantaneous, whereas events that are separated by at least
one segment of silence are assigned to different timestamps by all the clocks in the sys-
tem. As a result, the TT MoC makes it possible to establish a consistent temporal order
of events all over the system.

Obviously, the occurrence of external events might take place during the silence
interval, since they are not under the sphere of control of the system. Therefore, envi-
ronmental events must be assigned to an activity interval by an agreement protocol in
order to maintain the consistency of the system.

Communication between components in the TT MoC is performed by using a so-
called temporal-firewall [KN97]. A temporal firewall is an interface for the unidirec-
tional transmission of data from a sender to a receiver. As Figure 2.10 shows, each
component of a TT MoC-based system contains a dedicated memory object that acts as
its information container. The temporal firewall, which is composed by a time-triggered
communication system and the dedicated memory of each component, provides both
push and pull interfaces for communication. This way, components can submit infor-
mation by writing data into their memory via the push interface, whereas components
that want to receive some information can read their memory via the pull interface. The
exchange of data between memories is managed by the time-triggered communication
system, and only depends on the progression of time.

In order to guarantee the consistency between the models and the physical systems,
the latter must comply with the following conditions:

• The local clocks of the system must be synchronized according to an a-priori
known precision, which establishes the minimum duration of the silence interval
of the sparse time.

• The architecture must ensure that all the internal events are restricted to the ac-
tivity interval, and must provide agreement protocols for the ordering of external
events.
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Figure 2.11: LET: Logical Execution Time of a job

• The time-triggered communication schedule must be known by all the compo-
nents of the system and the communication channel. The communication channel
must guarantee that the information sent by a sender reaches the receiver within
the a-priori known delivery interval.

When the system is built as a Time-Triggered Architecture (TTA) based system (see
section 2.6) and the communication is performed by time-triggered protocols such as
TTP [KG93, Aer11c] or TTEthernet [KAGS05, Aer11b], the conditions above are met
by construction. In fact, the time-triggered MoC was designed in conjunction with the
time-triggered architecture. This makes the time-triggered paradigm a good candidate
for the design of dependable hard real-time systems.

The Logical Execution Time (LET) MoC

The concept of Logical Execution Time (LET) [KS12] was first introduced with the
Giotto time-triggered programming language [HHK03, HHK01b, HHK01a]. LET is a
time-triggered MoC, in the sense that it is governed by the passage of time. However,
the main particularity of the LET MoC is that it specifies a logical duration for each
computational job regardless of its physical duration. Therefore, the LET paradigm is
well suited for time-triggered systems that exhibit time-periodic behavior.

The logical execution time of a job specifies the duration between the instant when
the inputs are read and the instant when the outputs are written. Thus, the logical ex-
ecution time and the physical execution time of a job are different concepts, since the
physical execution time focuses on the amount of time needed for computation and the
logical execution time focuses on amount of time between the reading of inputs and
writing of outputs.

Communication between jobs is instantaneous in LET models. Hence, if the pro-
gram completes its execution before the deadline of the LET, the update of the outputs
is delayed until that deadline. In other words, from the physical point of view, the LET
of a job is the upper bound of its execution time. However, from the logical perspective,
the LET of a job is not only the upper bound, but also the lower bound. Figure 2.11
shows the LET of a job that is physically executed in two time slots.
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Due to the decoupling of physical and logical execution times, the use of faster
machines does not result in a logically faster program, but only in decreased machine
utilization. In other words, neither the value nor the time-behavior of the LET model
get influenced by the speed of the target platform. Thus, when the deployment of the
LET model into a hardware platform satisfies the LET specification, the behavior of the
system does not vary depending on the platform, and determinism holds in the system.
The LET specification is satisfied if the following conditions hold:

• The (physical) worst-case execution time (WCET) of a job is not longer than its
LET.

• It is guaranteed that the inputs signals of a job are read at the beginning of its LET
interval.

• It is guaranteed that the outputs signals of a job are written at the end of its LET
interval.

While the first condition depends to a great extent on the technology of the HW
components, the functionality of the job and the programming style, the second and
third conditions are inherent when the LET model is mapped onto TTA platforms.

Since its introduction with Giotto, the LET paradigm has evolved and several dif-
ferent modeling languages have been derived from it. The Timing Definition Language
(TDL) [Chr14, RDPN10], is a LET based programming language for dependable hard
real-time systems. The TDL extends the LET MoC with the capability to include asyn-
chronous activities and the possibility to create platform specific models by deploying
the functionality into platform models. The TDL environment is nowadays integrated
in the Chrona Creation Suite [wwwc], which is a commercial extension for the MAT-
LAB/Simulink tool for the modeling, simulation and distribution of TDL models.

The Hierarchical Timing Language (HTL) [GSVK+06, KLM08, HKMS09] extends
the LET paradigm by enabling the definition of hierarchical LET models. Its main
benefit is that schedulability in HTL models only needs to be checked for the highest
abstraction level, since each task refinement is constrained in such a way that if the task
is schedulable, the more detailed model of the task is also schedulable. Therefore, a
time-safe HTL program may be changed locally without the need for re-checking time
safety globally.

All in all, the LET paradigm has been widely analyzed and extended since its
introduction with the Giotto language. Several simulation environments have been
created or adapted to it, such as the native Embedded Machine [HK02], Ptolemy II
[BLL+07a,BLL+07b,BLL+08] and Simulink [HKSP03] for Giotto, and the the Virtual
Creation Suite / Simulink [wwwc, DNP+10] for TDL models.

37



The Kahn Process Networks (KPN) MoC

The Kahn Process Network (KPN) MoC was introduced by G. Kahn in 1974 [Kah74].
The KPN MoC is an abstraction that assumes systems are a network of concurrent
processes that communicate among themselves via unbounded FIFO channels. Writing
semantics are non-blocking, i.e., processes always succeed to write immediately. On
the other hand, the reading activity is blocking, i.e., in the case a process wants to read
from an empty channel, it would halt and would not be able to continue until the buffer
had sufficient tokens to satisfy the read. Each reading activity implies a consumption of
the token that has been read.

Each signal has its own queue of ordered events, which are stored in the FIFO chan-
nels. However, there is no order relation between events in different signals. Thus, KPN
models are not totally ordered, but only partially ordered. For this reason, the KPN
MoC is considered an untimed MoC.

One of the particularities of KPN models is that they are monotonic, which means
that they do not need all the input information (input stream) to be available to produce
an output, but they are capable of producing a partial output stream from a partial input
stream.

Monotonicity enables parallelism, since a process does not need all the inputs to
start its computation and provide outputs. For this reason, the KPN model has become
a very popular MoC to model parallel applications executing on SoCs [HHBT09], due
to its suitability to represent both parallel applications and hardware platforms.

Lee et al. [LP02] provide an extensive overview of the KPN MoC and one of their
derivatives, the data-flow process networks.

Heterogeneous Systems
Cyber-physical systems (CPSs) [Lee08, LS11] are embedded systems and networks of
systems that interact and control physical processes, typically with feedback loops.
Thus, the design of such systems requires a good understanding of the joint dynam-
ics of several areas, including computing, networks and different physical processes.
This study of the joint dynamics is the key point that distinguishes CPSs from other
disciplines.

As mentioned before, choosing the most appropriate MoC when modeling a certain
system can dramatically reduce the cognitive complexity of the model. However, in
the case of CPSs, where very different computing and physical phenomena interact, it
is not realistic to think about a single model of computation that will enable to model
the entire system with cognitively simple models, due to the different nature of each
sub-system.

In order to deal with this issue, these type of systems, known as heterogeneous sys-
tems, are usually divided in different subsystems, where each subsystem is modeled by
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a different design team formed by experts in the field. Therefore, each of the subsystems
typically relies on a different MoC, which complicates the simulation of the complete
system.

A number of papers have been published on this topic, e.g. [ELLSV97, LSV98,
EJL+03, SJ04, MPSJ06, MPSJ08b]. The following subsections describe the most suc-
cessful approaches for heterogeneous system modeling and simulation.

Ptolemy II

Ptolemy II [EJL+03,Pto14,wwwt] is an open source graphical modeling and simulation
framework for heterogeneous embedded systems. The project is developed by the Uni-
versity of California at Berkeley. Ptolemy II provides a seamless integration between
functional parts of the system relying on different MoCs. This integration is accom-
plished by the notion of domain polymorphism.

In Ptolemy II, the term domain is used to refer to an implementation of a MoC.
The notion of domain polymorphism is introduced by the fact that most of the compo-
nents (also called actors in Ptolemy II) can be executed under the direction of any of
the domains defined in the domain-library provided by Ptolemy II. Hence, models of
Ptolemy II are considered domain polymorphic, since they have a well-defined behavior
in more than one domain, and that the behavior is not necessarily the same in different
domains [Lee02].

Models are built in a graphical way in Ptolemy II, by composing actors, connect-
ing them and assigning a domain to each of the subsystems. The domain manages
the interaction between components and the flow of control, i.e., it provides the exe-
cution semantics to the assembly of components. The assignment of a domain is per-
formed by the definition of the so-called director components to the subsystems. The
key to hierarchically composing multiple models of computation is that an aggregation
of components under the control of a domain should itself define a domain polymorphic
component. This is why each subsystem must have its own director defined.

Among others, nowadays Ptolemy II is able to simulate and provide directors for the
following models of computation [HLL+03, Pto14]:

• Continuous MoC: CT Domain

• Discrete Event MoC: DE Domain

• Synchronous Reactive MoC: SR Domain

• LET MoC (Giotto): Giotto Domain

• Process Networks MoC: PN Domain

• Synchronous Dataflow MoC: SDF Domain
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• Finite State Machines MoC: FSM Domain

[BLL+08] provides an extensive description of each of the domains provided by
Ptolemy II.

SML-Sys

SML-Sys [MPS04, MPSJ08b] is a framework for the design of heterogeneous systems
that was developed by the researchers of the KTH Royal institute of Technology. SML-
Sys is based on the Formal System Design (ForSyDe) [SJ04], which defines a method-
ology for the design of system models at an abstract high level and their refinement into
more detailed implementation models for synthesis. Systems rely on the synchronous
reactive MoC in ForSyDe. With the aim of easing the development of heterogeneous
systems, SML-Sys extends the approach proposed by ForSyDe by enabling the devel-
opers to use different MoCs. Heterogeneity is addressed in SML-Sys by using domain
interfaces that add or remove events from event sequences. The SML-Sys is imple-
mented in the Standard ML [Mil97] language.

In contrast to ForSyDe, SML-Sys uses the KPN MoC for the definition of the system
at the highest level. When the system is refined into more low-level models, SML-Sys
supports more models of computation besides the KPN, such as the clocked, timed and
synchronous MoCs. An extension to SML-Sys called EWD [MPSJ08a] even supports
some code-generation facilities.

Extensions to SystemC

Several different approaches have enriched SystemC (section 2.7) with the capability to
model and simulate systems relying on different MoCs, such as:

• SystemC-AMS [IEE13]: Extension to SystemC for the modeling of systems with
analog and mixed (digital-analog) signals (see section 2.7).

• SystemC-H [PS06]: Extension to SystemC for the modeling of heterogeneous
models (see section 2.7).

• HetSC [HSV05]: Another extension to SystemC for the development of hetero-
geneous models (see section 2.7).

• HetMoC [ZSJ10]: Novel extension to SystemC for the design of heterogeneous
embedded computing systems (see section 2.7).

• E-TTM [PNOES10a] (see section 3.5): Extension to SystemC for the design of
systems based on the Time-Triggered Architecture.
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Figure 2.12: Structure of a TTA cluster with five nodes

• SystemC-MDVP (SystemC Multi Domain Virtual Prototypes) [FWI+14]: Exten-
sion to SystemC-AMS consisting on an open framework for the modeling of mul-
tiple physical domains, such as micro-fluidic systems.

2.6 The Time-Triggered Architecture (TTA)
The Time-Triggered Architecture (TTA) [Kop98a,KB03,Kop11] provides a computing
infrastructure for the design and implementation of dependable and safety-critical em-
bedded systems. The TTA decomposes systems into nearly autonomous clusters and
nodes that share a fault-tolerant global time base of known precision. The existence of
this global time in all the components of the system enables to abstract the communi-
cation interfaces, guarantees the timeliness of real-time applications, and eases prompt
error detection in communications. Therefore, the TTA is based on the time-triggered
MoC [Kop98b], which relies on the sparse-time model of time. The TTA infrastructure
guarantees the agreement between the time stamps at each node.

The interfaces and the predictable Time-Triggered Protocol (TTP) decouple the pro-
cessing functions from communications among the distributed subsystems, thus simpli-
fying the design of the internal application software of the nodes. In the TTA, systems
are composed of one or several clusters, which are composed of one or several nodes
interconnected by a replicated time-triggered network (Figure 2.12). Each node con-
sists of a time-triggered Communication Controller (CC), a Communication Network
Interface (CNI) and a host processor with memory that executes the operating system
and the application software.

The communication system (composed by the communication network and con-
trollers) executes periodically following an a-priori specified schedule, i.e., it reads a
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message from the CNI at the sending node at an a-priori known instant, and delivers it
to the rest of the nodes at an a-priori known instant.

The dynamics of the real-time application are modeled by a set of relevant state vari-
ables, called real-time entities. RT entities have some static attributes that do not change
during their lifetime, such as their name, type or unit, and a set of dynamic attributes,
such as their value at a given instant. The observation of an RT entity represents the
information about its state at a particular instant, and can be captured in the following
data structure:

Observation = 〈name, value, tobs〉
In order to manage complexity, three different types of interfaces were defined in the

very first specifications of the TTA [KS03, KB03]. Later versions specify four different
interfaces [KOESH07, Kop11] (Figure 2.13):

• Linking Interface (LIF): The LIF is the interface that provides the timely infor-
mation to the nodes during the operation of the system. This interface is used by
the nodes to communicate among themselves, and it is therefore a time-critical in-
terface that must meet the temporal specification of the application in all possible
scenarios. This interface is also called Real-time Service (RS) interface in [KB03].

• Configuration and Planning Interface (CP): The CP is the interface used to
configure the system, i.e., to connect a node to other nodes. It is used during the
integration phase to generate the “glue” between the quasi-autonomous nodes.
Hence, this interface is not time-critical. This interface is also called Technology
Independent Interface (TII) in [Kop11].

• Diagnostic and Maintenance Interface (DM): The DM is the interface that en-
ables maintenance engineers to observe the internal state of the nodes and set their
internal parameters. This interface does not influence the temporal behavior of the
nodes, and it is usually not time-critical. This interface is also called Technology
Dependent Interface (TDI) in [Kop11].

• Local Interface: The local interface connects the component to the external
world. This interface is used to link the system with the environment.

The aim of the TTA is to design large real-time systems. Despite the fact that a
large system will support many more functions than a small system, the complexity of
each individual function must not increase with the growth of the system [KB03]. To
that end, the only central element of the TTA is the global notion of time. As seen in
section 2.3 one of the ways to handle the cognitive complexity of systems is to enable
the designers to divide the system into different subsystems (partitioning). The TTA
supports the definition of subsystems by the inclusion of gateway nodes in the system.
Gateway nodes are special nodes that contain two CNIs, and they are used to connect
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Figure 2.14: Structure of a TTA system with a gateway

different subsystems. The example in Figure 2.14 shows how a node can be expanded
into a gateway node when its computational limits are reached. This way, the interface
to the original cluster remains unchanged in the value and time domains, whereas the
functionality of the node is now distributed in a second cluster. Gateway nodes are also
useful to integrate legacy systems.

2.7 SystemC
SystemC [IEE05], IEEE-1666 (current version 2.3.1), is an open-source design and
modeling standard developed by the Accellera Systems Initiative [wwwa] for the design
of hardware-software systems. Strictly speaking, SystemC is not a language, but a
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library of C++ with a set of coding rules and macros. However, it is usually described
as a System-Level Design Language (SLDL).

SystemC models are hierarchical and executable. The models are composed by
modules (called SC_MODULE) consisting of input/output ports, internal signals, con-
currently running imperative processes and instances of other blocks. The execution of
models is governed by the discrete-event (DE) driven simulation engine provided by
SystemC.

In order to perform simulations, SystemC relies on the discrete notion of time with a
configurable time granularity (from femtoseconds to seconds). This time might be used
to provide a global notion of time among the components of SystemC models. Events
are instantaneous in SystemC, and simulation time of processes is zero. Therefore, the
processes triggered by a given event are executed sequentially, based on the concept
of the ‘delta-cycle’. The delta-cycle is basically an infinitesimal physical duration that
does not advance simulation time, which is typically used to perform a sequential simu-
lation of simultaneous tasks in zero simulation time, giving the illusion of a concurrent
simulation of simultaneous processes.

One of the main strengths of SystemC is that hardware and software components
can be described using a common language. What is more, both HW and SW compo-
nents can be indistinguishable at the beginning of the design, since they are assigned to
abstract modules that are only later refined as HW or SW components. Due to its capa-
bility to describe both HW and SW components in a unique language, and its ability to
simulate concurrent processes, SystemC has nowadays become the de-facto standard in
HW/SW system development.

Each module of SystemC can express a set of processes, via the SC_METHOD(),
SC_THREAD() and SC_CTHREAD() commands. These processes are distinguished
as explained in the following:

• SC_METHOD: Every time the simulation calls one of these processes, they run
from the beginning to the end and they return. They are not allowed to suspend
or to be interrupted, so they are considered as atomic functions.

• SC_THREAD: Processes of this type are started only once by the simulator. Once
the thread starts to execute, it controls the simulation until a wait() statement is
found, which suspends the simulation and gives the control back to the simulator.
Hence, SC_THREAD processes usually contain an infinite loop containing one or
more wait() statements. It is also possible to terminate the thread by using a
return statement.

• SC_CTHREAD: This process type is a variant of the SC_THREAD process, with
the variation that imposes the process to be sensitive to clock edges. In addition to
wait() statements, SC_CTHREAD processes can use wait_until(), which
is equivalent to repeat wait() functions in a loop until a certain condition holds.
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In industry, it is infrequent that all modules within a system are modeled at the same
level of abstraction simultaneously. Instead, commonly, different models of abstraction
are required within a given system during its development, for example:

• A designer may use a very detailed model for a design under test but a very ab-
stract model for the generation of the stimuli for the system.

• With a very detailed model as a starting point, the designer might create a more
abstract model in order to increase simulation speed when testing another part of
the system.

In order to deal with this issue, SystemC allows modeling systems at diverse levels
of abstraction, and even enables designers to model subsystems of a given system at
different abstraction levels, such as the register transfer level (RTL) or the more abstract
transaction-level model (TLM) [Ghe06]. Hence, SystemC does not impose a top-down
or a bottom-up design flow. Besides abstraction, SystemC also provides the other two
simplification strategies presented in Section 2.3 in the development of the models:

• Abstraction: SystemC enables the designers to define hierarchical modules in
order to hide or show the internal details of each component as desired.

• Partitioning: Communication and computation concerns are strictly decoupled in
SystemC. Furthermore, partitioning may also be applied in the models by defining
independent sub-modules for different aspects of the functionality of systems.
The overall functionality is then achieved by the interaction of such sub-modules.

• Segmentation: SystemC enables simulating the resulting functionality of systems
containing simultaneous sub-modules, by running them sequentially and making
use of the concept of the delta-cycle.

Although the simulation engine of SystemC is natively event-triggered, different
extensions have been made to it in order to support different MoCs. Some of them are
briefly introduced in the following:

• SystemC-AMS [IEE13]: SystemC-AMS (SystemC - Analog Mixed Signal) is
an extension to SystemC that enables the developers to model and simulate ana-
log and mixed (analog and digital) signals, so that continuous-time models and
discrete-continuous heterogeneous models can be simulated and verified.

• SystemC-H [PS04,PS06]: This extension to the SystemC language focuses on the
design of heterogeneous models. It provides a simulation kernel that is capable of
modeling and simulating parts of the system based on the concurrent sequential
processes (CPS), finite state machine (FSM) and synchronous dataflow (SDF)
MoCs.
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• HetSC [HSV05, HV06, HV08, wwwl]: HetSC is another approach for the mod-
eling of heterogeneous systems in SystemC. It is essentially a library of MoC-
specific communication channels that can be introduced in SystemC models to
simulate the behavior of systems based on different MoCs. Among others, the li-
brary includes communication channels for Kahn proccess networks, synchronous-
reactive models or synchronous dataflow models.

• HetMoC [ZSJ10]: More recently, the KTH Royal institute of Technology de-
veloped a formal heterogeneous framework for the development of multi-MoC
systems in SystemC. This framework enables designers to design a network of
heterogeneous processes that communicate among themselves by the exchange
of signals via FIFO channels. Different domains are integrated by the use of
domain-specific interfaces. The HetMoC framework provides interfaces for SR,
DE, continuous and untimed models of computation.

• SystemC-MDVP [FWI+14]: The SystemC Multi Domain Virtual Prototypes (SystemC-
MDVP) is a language that is being defined in the CATENE CA701 H-INCEPTION
project [wwwb]. The language is currently under development. It is being de-
signed as an extension to SystemC-AMS. Therfore, analog-mixed signal simu-
lation will be handled by SystemC-AMS, and other physical domains such as
microfluidic systems will be supported by defining and integrating the necessary
MoCs in the language. [FWI+14] shows some promising preliminary results of
the capabilities of SystemC-MDVP.
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CHAPTER 3
State of the Art

This chapter analyzes the state of the art in safety-critical embedded systems modeling
languages and simulation frameworks, and discusses different approaches in simulated
fault injection over different modeling languages.

From our knowledge and experience, a industrially successful modeling language/
framework for safety-critical real-time systems should at least include the following
features:

• Provide a consistent notion of time: Time is a key concept in the design of em-
bedded real-time systems [Per11]. Thus, the modeling language should rely on
a timed MoC, thus making the temporal properties of systems explicit. This fact
would ease their verification and validation process, and it would facilitate the
deployment of such systems onto distributed platforms.

• Provide a time and value deterministic environment: A time and value deter-
ministic simulation and execution environment eases the certification process of
safety-critical systems by reducing their state space. Furthermore, such an envi-
ronment enables repeatability of test-cases, a crucial property when it comes to
prove that previous bugs in the system have been successfully fixed.

• Enable testing and simulated fault injection: Testing by simulation and injecting
faults in the systems during these simulations enable carrying out validation and
verification activities long before a prototype of the system is built. This way,
the cost of fixing design bugs can be reduced by avoiding their propagation to
the following stages of the development process. If possible, including formal
verification techniques is also desirable.

• Provide techniques to tackle the complexity of systems: The increasing complex-
ity of embedded and safety-critical systems makes their development a difficult
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task. Thus, it is crucial reduce the complexity of their design, to facilitate both
the design itself and the verification and validation activities. Mechanisms to sup-
port abstraction, partitioning, segmentation, and separation of concerns between
functionality and platform-architecture are good candidates to be included in the
modeling language.

According to these requirements, FTOS (see Section 3.4) and the E-TTM (see Sec-
tion 3.5) are the most promising approaches for the modeling of safety-critical real-time
systems. However, as explained in their corresponding sections, they still lack some of
the features.

3.1 Model Driven Architecture (MDA)

As we explained in the previous chapter, the design of HW/SW systems is a complex
and expensive task. Model Driven Engineering (MDE) approaches, such as the Model
Driven Development (MDD) [Sel03], tackle this complexity by applying diverse tech-
niques, such as raising the level of abstraction of their models in the first stages of the
design. The MDA standard [MM03] is a specification for the implementation of MDD
proposed by the Object Management Group, which tries to increase the portability, in-
teroperability and reusability of models. MDA goes one step further on the definition of
MDD by formalizing the development of systems in several steps and making use of the
so-called “separation of concerns”, which suggests to separate the design of the system
in two different models, the PIM and the PSM. First, the functionality of the system is
defined as a PIM. Once the PIM has been defined and verified, it is transformed into a
PSM by applying several platform specific refinements. The Y-chart development pro-
cess introduced in the previous chapter can therefore be seen as a concretization of the
MDA approach, where the refinement from PIM to PSM is done by defining a platform
model (PM) and deploying PIM components into the elements of the PM.

MDA is intended to support model-driven engineering of software systems. The
MDA is a specification that provides a set of guidelines for structuring designs expressed
as models. Using the MDA methodology [MM03], system functionality may first be
defined as a platform independent model (PIM) through an appropriate Domain Specific
Language. Given a Platform Definition Model (PDM) corresponding to CORBA, .Net,
the Web, etc., the PIM may then be translated to one or more platform specific models
(PSMs) for the actual implementation, using different Domain Specific Languages, or a
General Purpose Language like Java, C#, Python, etc. The translations between the PIM
and PSMs are normally performed using automated tools, such as model transformation
tools (e.g., tools compliant to the QVT standard). Although the MDA is a methodology
for the development of systems, its principles have been successfully applied to other
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Figure 3.1: Model Transformations according to the MDA (from [MM03])

areas such as business process modeling, where the architecture and technology neutral
PIM is mapped onto either system or manual processes.

Figure 3.1 summarizes the basic notion of the MDA. Regarding to this figure, the
MDA Guide [MM03] sets the following: “The drawing is intended to be suggestive. The
platform independent model and other information are combined by the transformation
to produce a platform specific model. The drawing is also intended to be generic. There
are many ways in which such a transformation may be done. However it is done, it
produces, from a platform independent model, a model specific to a particular platform.”
Besides, the MDA Guide adds the following statement: “a PSM may provide more or
less detail, depending on its purpose. A PSM will be an implementation, if it provides
all the information needed to construct a system and to put it into operation, or it may act
as a PIM that is used for further refinement to a PSM that can be directly implemented.”

Both statements clearly show that the MDA leaves the specification of the topics
to include in the PIMs and PSMs and the transformations between them undefined and
open to any interpretation. Thus, it is a matter of each developing team to decide where
to set the boundary between what should be part of the PIM and what should be intro-
duced in the PSM.

This freedom in the choice of the concrete definition of PIMs and PSMs greatly
increases the usability of the MDA. On the contrary, precisely this lack of precise defi-
nition hinders the generation of generic tools and automatic transformers/translators.

Besides these difficulties, the MDA is successfully established as a group of multiple
standards released by the OMG, such as the Unified Modeling Language (UML) and
the Systems Modeling Language (SysML). Note that the term “architecture” in Model-
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Driven Architecture does not refer to the architecture of the system being modeled, but
rather to the architecture of the various standards and model forms that serve as the
technology basis for the MDA. These standards are described in the following sections.

Unified Modeling Language (UML)
The Unified Modeling Language standard (UML) [OMG11a] is probably the most rep-
resentative of the standards for model-based software and systems development. It has
had a significant success in the software industry as well as in other domains such as
IT and financial systems. UML is a technique for software development that stresses a
successive refinement approach to software design, and it is now the most widespread
language used for modeling in both industry and academia.

UML was born when the emerging concept of graphical languages was fused with
the object-oriented (OO) languages. The language has a broad scope and a structure
based on graphical diagrams that allows the designers to customize and extend it to par-
ticular application domains. The original focus was on the graphical description of the
architecture of software, i.e., the causal, communication, and hierarchy relationships.

Although it presents some difficulty in expressing constructs that are common to
standard programming languages such as one-dimensional and sequential operations
(assignments, loops, branches), and despite the scarcity of efficient code generators, the
standard has been widely accepted by the industry. In fact, its graphical nature makes it
a favorite for software developers to describe the structure of their programs.

UML initially targeted software development. However, it was designed as a foun-
dation for generating different domain-specific languages, mainly through its profile
mechanism. This capability allows the general concepts of UML to be specialized for a
specific domain or application.

Regarding real-time systems design, two are the main weaknesses that UML presents.
First, since plain UML targets software development, it misses the concept of time in
its diagrams, and therefore concepts such as concurrency cannot be directly addressed.
In fact, the semantics of the language are left unspecified except for the state diagrams,
which have the semantics of state charts [JSEB04, SV07, BGP07]. As time is a central
part of real-time systems, this greatly complicates the design of such systems in UML.
Second, the diversity of diagrams makes it impossible to check that the overall descrip-
tion is consistent in the sense that the parts fit together appropriately. This difficulty
gets even higher when the models make use of different profiles, which might overlap
in some definitions or even present incompatibilities among them [SV07].

Systems Modeling Language (SysML)
Among the plethora of profiles of UML, SysML [OMG12] is of great potential interest
for embedded system design.
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SysML is an OMG standard language that adapts UML for systems engineering.
Namely, it can be used “for specifying, analyzing, designing, verifying and validating
complex systems that may include hardware, software, information, processes, person-
nel, and facilities” [OMG12].

The so-called “Block concept” of SysML, which abstracts the software details in
UML classes, is a significant extension in the direction of modeling complex embedded
real-time systems, where software is just one aspect besides electronics, mechanical
parts, information units, and almost any other type of structural entity in the system
of interest. Blocks can be used to decompose the system into individual parts, with
dedicated ports for accessing their internals.

Blocks articulate a set of modeling perspectives enabling a separation of concerns
during systems design. Similarly to UML, each of these perspectives is depicted in a
dedicated diagram.

Due to its focus on system modeling, SysML adds requirements modeling as a
key aspect of the system-development process. It provides requirements diagrams, tree
structures and tables, which not only support the process of documenting the require-
ments, but also provide traceability to requirements throughout the design flow, ensuring
that requirements are satisfied.

The four pillars of SysML are thus the capability of modeling of requirements, be-
havior, structure, and parameters [GKL+10, GETS10]:

• Requirement diagrams provide constructs for specifying text-based requirements
and their relationships, including requirements hierarchies, as well as derivation,
satisfaction, verification, and refinement relationships between requirements.

• Three types of diagrams model the behavior for the system: state-transition dia-
grams, activity diagrams and sequence diagrams. State-transition diagrams spec-
ify the behavior of the system as a finite series of discrete states. The system may
transit from one state to another in case a certain event occurs. On the other hand,
activity diagrams enable designers to specify the behavior as a linear sequence of
transformations that convert a set of inputs into outputs according to some mathe-
matical specification. Finally, sequence diagrams enable the SysML user to define
the inter-relationship of the system with its external environment.

• Structure is represented by block-description diagrams and internal-block dia-
grams. Those diagrams enable the specification of more generic interactions and
phenomena than those existing just in software systems. This includes physical
flows such as liquids, energy, or electrical flows. The dimension and measurement
units of the flowing physical quantities can be explicitly defined.

• Parametric diagrams allow the designers to describe, in a graphical manner, an-
alytical relationships and constraints, such as those described by mathematical
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equations.

Similarly to UML, SysML also supports extensions for guarding the information
flow and the entities of the system. SysML is an improvement over UML in that it allows
to articulate requirements concerns relevant at the system engineering level, including
function networks, and requirements allocation to subsystems. However, both UML
and SysML lack the binding to a concrete system model that enables formal analysis
of requirements and their associated models. Also, there is still too little support for
a seamless transition between the requirements development and other development
activities in SysML [KFFM10].

MARTE
As stated in previous descriptions, SysML and UML hardly formalize real-time aspects
of embedded systems or at least not with the required rigor, what makes them unsuit-
able to model real-time systems. The UML profile MARTE (Modeling and Analysis
of Real-time Embedded Systems) [OMG11b] is the UML standard extension to sup-
port the modeling of real-time embedded systems, and provides several mechanisms
specified by the MDA to tackle the complexity challenge. Moreover, the support for
real-time aspects opens the possibility for the generation of executable models by gen-
erating automatic code for SystemC models, as multiple research works have shown
( [AH08, MMP09, PMPV10, PHV12] ).

In MARTE, the time representation can be physical (dense or discretized) or logical
(related to user-defined clocks) [AMS07]. The time structure of a design is built using
time bases (TimeBase), a totally ordered set of dense or discretized instants, in which a
distributed or multi-threaded application uses multiple time bases (MultipleTimeBase)
which are a priori independent. The progress of physical time is measured using the
model element clock, which references a given time base. The Clocked Constraint
Specification Language (CCSL) enables semantic and graphical representation using
stereotypes of clock constraints such as periodicity, coincidence, strict precedence, in-
dependence and exclusion [Kyu08].

MARTE provides an interesting foundation for the modeling of safety critical em-
bedded systems [KAVS08], but this is still a challenge for different reasons such as
[Per11]:

• Consistency: Ensuring consistency of the designed model properties and con-
straints up to the implementation and execution framework is also a key challenge.

– Formalism: MARTE as UML is a semi-formal language, and this is why
it imposes some limitations on the way functionality and time properties
can be expressed and verified at model level and during the implementation
process up to the (distributed) execution platform.
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– Time determinism: While MARTE supports the notion of time and the gen-
eration of executable SystemC models, it does not provide clear restrictions
on handling simultaneity. Therefore, the execution of simultaneous com-
ponents could lead to race conditions, because it does not naturally support
temporal execution determinism.

• Execution framework: It does not restrict the execution framework, so designers
must choose their desired execution target and restrict their design to that frame-
work by themselves.

• Distributed execution: It does not restrict the execution topology, distributed or
single node.

• Codesign: It does not restrict the implementation technology, which could be
software, hardware or both.

3.2 Architecture, Analysis and Design Language
(AADL)

The Architecture Analysis & Design Language (AADL) [Aer09] is both a textual and
graphical language used to design and analyze software and hardware architectures of
real-time systems. Standardized by the Society of Automotive Engineers (SAE), it was
originally designed for the avionics industry. The main objective of AADL is to provide
support for an early analysis of the properties of a system, which are supposed to be
obtained before the coding or the deployment of the system.

The language enables the designers to describe their system in terms of software and
hardware components. In addition, it allows them to specify how software components
are mapped onto hardware components.

AADL includes all the standard concepts of an Architecture Description Language:
components, connectors (used to describe the interface of components), and connections
(used to link components). The language enumerates ten component categories divided
into three groups to design the system:

• Software components:

– data

– subprogram

– thread

– thread group

– process
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• Hardware components:

– memory

– processor

– bus

– device

• System components:

– system

SW models in AADL follow a hierarchical fashion, where the components are spec-
ified as follows: a process represents a virtual address space, or a partition; this address
space includes the program defined by its sub-components. A process must contain at
least one thread or thread group. A thread group is a logical organization of threads
in a process. A thread represents a sequential flow of execution; it is the only AADL
component that can be scheduled. A subprogram models a piece of code that can be
called by a thread or another program. Data represents static variables used in the code;
threads and processes can share data [BBC+09].

Besides the description of the functional properties of the system, AADL also covers
the specification of the non-functional properties. To this end, AADL defines the notion
of properties that can be attached to most elements, similarly to MARTE. Properties
are attributes that specify constraints or characteristics that apply to the elements of the
architecture, e.g., clock frequency of a processor, execution time of a thread, bandwidth
of a bus, etc. Typical properties of components are already defined by the standard.
However, the set of properties might be extended with user-defined ones.

In addition, the AADL standard contains a number of annex libraries that define
extensions to the core language concepts. The Error Model Annex [Aer11a] is maybe
the most significant annex of the standard. This report allows the definition of error
models associated to hardware, software or system components, consisting of error state
definitions, error propagations and their probability.

Similarly to MARTE, AADL itself defines no specific model of computation [BKSZN10].
Thus, it is the responsibility of the designer to define the system in such a way that
the desired temporal constraints are guaranteed, using the event-related mechanisms
provided by the language. Threads are the only components that have an execution
semantics. AADL supports the classical types of dispatch protocols: a thread can be
declared as periodic, aperiodic, sporadic or background. Threads have two predeclared
event ports: dispatch and complete. The dispatch port is used for aperiodic or sporadic
threads. If this port is connected all other ports of the thread do not trigger the dis-
patch. It is a very common behavior for an aperiodic or a sporadic thread to send an
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event on completion. The complete event port is used to send an event at the end of the
execution [BBC+09].

In order to enrich AADL with an implicit model of computation, and that way give
the standard the capability to support formal analysis, verification and synthesis of timed
properties, [BBD+14] suggests to equip the standard with a synchronous model of com-
putation. To do so, the research work defines an algebraic framework in which time is
formally defined from implicit AADL concepts.

3.3 Distributed Application Layer (DAL)
The Distributed Application Layer (DAL) [SBR+12, wwwf] is a scenario-based design
flow for mapping a set of applications onto heterogeneous on-chip many-core systems.
DAL has been developed in the European Reference Tiled Architecture Experiment
(EURETILE) project [wwwi], as a continuation of its predecessor, the Distributed Op-
eration Layer (DOL) [BBH+07, wwwg], and heavily relies on it.

The Distributed Operation Layer (DOL) [BBH+07, wwwg] is a design flow for the
model-driven development [Sel03] of multiprocessor streaming applications. DOL was
developed by the Computer Engineering Group of the Swiss Federal Institute of Tech-
nology Zurich (ETH) in the context of a European Framework Programme 6 research
project called “Scalable Software/Hardware Architecture Platform for Embedded Sys-
tems” (Shapes) [SBF+07].

The DOL design flow basically follows the Y-chart paradigm introduced in section
2.4, and takes advantage of the orthogonalization of concerns provided by the mentioned
paradigm to separate the definition of the SW and HW architectures and the mapping
between both of them. According to this, the design of a system in DOL is performed
in three independent tasks:

• Specification of the application: specifies the functionality of an application, i.e.,
the function of individual actors and the topology of the network.

• Specification of the architecture: captures the key characteristics of an architec-
ture and the run-time environment running on top of it as seen from a software
developer’s viewpoint, that is, the available processors, communication drivers,
and memories.

• Specification of the mapping: determines the spatial and temporal mapping (bind-
ing and scheduling) of the application onto the architecture, that is, the mapping of
actors onto processors, and the mapping of the FIFO channels to communication
drivers.

Once the specifications are defined, DOL suggests to automatically implement the
system using software-synthesis tools, and quantitatively evaluate its performance in
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order to modify/improve any of the specifications in case the behavior of the system is
unsatisfactory.

The performance evaluation is made by simulating the models. Executable DOL
models rely on the Kahn Process Networks MoC. A KPN basically specifies an appli-
cation as a set of autonomous processes that communicate through point-to-point FIFO
channels. To represent the interactions between the applications, a finite state machine is
used, where each state represents an execution scenario, i.e., a set of running or paused
applications.

DOL was designed as a textual language, defined as an XML-based specification
format. In order to increase its usability, a graphical front-end called “Moses” was
developed at ETH [wwwq].

DAL was developed as an improvement over DOL for the development of software
systems in multi- and many-core platforms. It supports the design, the optimization,
and the simultaneous execution of multiple dynamically interacting streaming applica-
tions on heterogeneous platforms. Compared to DOL, DAL is intended for the design
of dynamic applications, and therefore focuses on automatic remapping, system-level
analysis and fault recovery.

Similarly to DOL, applications in DAL are specified as executable Kahn Proccess
Networks. In addition, DAL enables to capture the dynamics of the system as a set of
scenarios in a finite state machine (FSM), where each scenario, identified as a state of
the FSM, represents a set of concurrently running or paused applications.

The specification of DAL models is also carried out in textual format, compliant
with the XML-based syntax determined by the DAL. Additionally, DALipse [wwwe], a
visual editor developed as an Eclipse plugin is available to specify DAL applications.
DALipse enables the programmer to visually specify finite state machines and process
networks, along with the ability to optimize their mappings, to functionally test the
system by simulation, and to generate code for one of the supported target platforms.

3.4 Fault-Tolerant Operating System (FTOS)
The Fault-Tolerant Operating System (FTOS) [BKSZN10, Buc08], is a model-based
development tool created at Technical University München (TUM) for the design of
dependable automotive systems. It supports modeling of dependable systems and code
generation for non-functional properties such as scheduling, communication within the
distributed system, and fault-tolerance mechanisms.

The FTOS shows a special interest in the non-functional requirements of depend-
able systems, and highlights the idea that the fault-tolerance mechanisms are generated
tailored for the application and the target hardware. In fact, unlike the other approaches
reviewed before, the FTOS suggests to divide the definition of the system into four dif-
ferent models: the HW architecture model, the SW architecture model, the fault model
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Figure 3.2: Models of systems in FTOS and their dependencies (from [Buc08])

and the fault-tolerance mechanisms. Figure 3.2 illustrates the dependencies between the
models specified in FTOS.

As Figure 3.2 shows, the definition of the system in FTOS starts with the specifica-
tion of the HW architecture model, which describes the relevant information about the
hardware components and the network topology.

When HW related aspects have been defined, the designer can specify the software
architecture model. This model, and more especially its model of computation play
a central role in FTOS. According to the designers, “standard approaches to design
real-time systems treat timing and parallelism only in an indirect way and try to solve
the problems with low-level constructs such as threads, priorities and semaphores, what
raises their complexity” [Buc08]. Therefore, in order to reduce the cognitive complexity
of the systems as much as possible, the SW model in FTOS raises the abstraction level
of the temporal specification and provides a time deterministic environment relying on
the Logical Execution Time MoC ( [KS12], section 2.5). Moreover, by reducing the
complexity of the system, this design decision enables to simplify the fault-tolerance
mechanisms.

Once the HW and SW of the system have been defined, the designer should think
about the fault-tolerance mechanisms the dependable system under design should in-
clude. However, the selection and implementation of such mechanisms depends on the
probability, type and location of the possible faults. Therefore, the development of the
system continues by the development of its fault model. During the fault model design,
the FTOS relies on a number of generic fault effects for each software/hardware com-
ponent type, and forces the developer to define all the fault assumptions, including the
Fault Containment Regions (FCRs), effects of assumed faults, fault configurations to be
considered and activation assumptions. As the fault effects specified in the fault model
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Figure 3.3: E-TTM elements and relationships (from [PNOES10a])

are generic, their respective fault detectors can also be generic.
Finally, the FTOS finishes the definition of systems by the description of the fault-

tolerance mechanisms. The fault-tolerance concept in FTOS consists of the definition of
a fault-tolerance mechanism for each possible error. Four different types of mechanisms
are defined to do so: proactive operations, error detection, online error treatment and
offline error recovery.

3.5 Executable Time-Triggered Model (E-TTM)
The E-TTM [PNOES10b, PNOES10a, PONA11] is a SystemC based extension for the
modeling of dependable real-time embedded systems based on the TTA. It extends Sys-
temC with the sparse notion of time (see Figure 2.8d), and decouples computation ac-
tivities from communication, while they both share a global notion of time.

The E-TTM focuses on the description of the functionality of embedded systems
deployed onto TTA platforms. Following the definition provided by the TTA paradigm
[KB03, Kop08], components in E-TTM models are self contained subsystems that can
be used as building blocks. Thus, the E-TTM enables the designers to define the system
in a hierarchical fashion, by composing it from components.

As shown in Figure 3.3 E-TTM is based on a strict separation of concerns (parti-
tioning) between computation and communication, while the global notion of time is
common for both. Components communicate with each other by the exchange of mes-
sages across ports connected to communication channels that provide interfaces.

In E-TTM models, components are classified in computational components and in-
terface components. Interface components act as gateways whereas computational com-
ponents accept input messages, provide a useful service (computation) and produce out-
put messages after some time. Depending on their activation mechanism, computational
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components can be defined as time-triggered or event-triggered. Time-triggered com-
ponents are triggered by clock events, which always take place during the sparse-time
activity intervals. Event-triggered components are activated by external events. External
events can occur at any instant of the continuous time, and are therefore not compliant
with the sparse model of time. Hence, the E-TTM interface delays the triggering of
events until the next activity interval. This way, the E-TTM guarantees that the execu-
tions of components always take place at the activity intervals of the sparse model of
time.

From an architectural point of view, computational components follow the specifi-
cation of the TTA. They are consequently divided into systems, Distributed Application
Subsystems (DASes), and jobs [PNOES10a]. The former two are hierarchical compo-
nents that might be composed by sub-components, whereas the latter are atomic (see
Section 4.5).

The execution of computational components is instantaneous and it never takes place
between macroticks, during the silence-interval. Although simultaneously triggered
components are executed sequentially, the output messages are not delivered during
the execution macrotick and as previously stated, the external events generated during
the computation do not trigger activation events until the next execution macrotick. This
guarantees that the execution order chosen by the E-TTM scheduler for simultaneously
triggered jobs does not have any impact on the outputs of the system.

The components communicate with each other by exchanging messages across ports.
As figure 3.3 illustrates, computational components contain the four interfaces specified
by the TTA ( [Kop11], Section 2.6), i.e., Linking Interface (LIF), Configuration and
Planning Interface (CP), Diagnostic and Maintenance Interface (DM), and local inter-
faces. Components send messages during the activity interval to the communication
channel, which handles the exchange of messages with other components. The com-
munication channel delivers all sent messages to destination component ports during
the silence-interval, a delta-delay after the activity-interval, in order to ensure deter-
minism in the system. The exchange of messages is performed by the communication
infrastructure quasi-instantaneously. However, E-TTM enables the designer to delay the
transmission of a message in order to represent the amount of time that computation or
message-exchange take in the real world.

Since the E-TTM is focused on modeling time-triggered dependable systems, it
strictly limits its models to rely on time-triggered models of computation, which might
limit its applicability for the design of heterogeneous cyber-physical systems. However,
the fact that E-TTM has been built as an extension to the SystemC language eases its
integration with other models relying on different models of computation. This way, the
time-triggered components of a heterogeneous cyber-physical system can be modeled
in SystemC using the E-TTM, which would guarantee that the time-triggered properties
of the component are not violated. At the same time, the rest of the (non-time-triggered)
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components could be modeled with pure SystemC or a suitable extension (see Section
2.7), depending on the MoC they rely on.

The E-TTM is restricted to the modeling of the functionality of dependable time-
triggered models. Therefore, the specification of the HW related aspects of the system
would require an extension of the E-TTM, in order to be able to model platform specific
aspects, such as the properties of the target HW platform.

3.6 Simulated Fault Injection in VHDL Models
Injecting faults into systems during simulation is a straightforward technique to verify
that such faults do not cause failures in the system, i.e., the system is tolerant to those
specific faults.

Thus, fault injection strategies and techniques have been very widely analyzed in the
past [BP03, ZAV04] and several tools have been developed by the research community,
most of them focusing on VHDL models. This section summarizes the most significant
approaches.

MEFISTO [JAR+94] (Multi-level Error/Fault Injection Simulation Tool), a simu-
lated fault injection tool developed jointly by LAAS-CNRS and Chalmers University of
Technology, was one of the earliest tools to conduct fault injection experiments using
VHDL simulation models. In fact, it was the first tool to implement simulator com-
mands, a technique that enables testing teams to use commands of the simulator to
modify the value of the signals and variables of the model during simulation.

The research on MEFISTO evolved into two specific prototype instances developed
and maintained by each institution, namely, MEFISTO-L (at LAAS-CNRS) [BPC98]
and MEFISTO-C (at Chalmers University of Technology) [FSK98]. MEFISTO-L fo-
cuses on evaluating the fault-tolerance mechanisms of the designs by adding dedicated
FI components to them, such as probes and saboteurs. On the contrary, MEFISTO-C
tried to improve the efficiency of the original MEFISTO, and focuses on injecting faults
via built-in simulator commands in variables and signals defined in the VHDL model.
In order to improve the usability of the tool, it also offers users a variety of predefined
fault models.

VERIFY [STB96,STB97] was a tool developed at University of Erlangen-Nurnberg.
VERIFY modifies and extends the VHDL language with mechanisms for describing the
possible faults that may occur at a specific component. This way, hardware manufactur-
ers are enabled to express their knowledge about the fault behavior of their components
directly in the VHDL model. For simulation, VERIFY implements a multi-threaded
fault injection technique with checkpoints, which compares the faulty threads with a
golden model in order to detect anomalies in the models.

SINJECT [ZME03], developed at Sharif University of Technology, provides a mixed-
mode fault injection for both Verilog and VHDL models. The tool tries to overcome
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some of the limitations of the VHDL language, such as its incapability to simulate
switch-level abstraction models and its limitations on fault modeling. To handle these
limitations, it provides a fault injection environment for systems including parts mod-
eled in Verilog and parts in VHDL, via the ModelSim simulator. SINJECT covers all
levels of abstraction, from system-level to switch-level, for both functional and struc-
tural models.

Unfortunately, most of the fault injection tools for VHDL models suffer from the
same drawback: the high temporal costs of their simulation. Obviously, this temporal
drawback gets even worse when the system is complex, or is modeled at a low ab-
straction level. The most typical technique to cope with this situation is to raise the
abstraction level of the models, or even switch to a system-level modeling language,
such as System-Verilog or SystemC.

However, a more recent approach called FuSE [JDR09], developed by the Vienna
University of Technology, suggests to cope with this problem by combining simulation
and emulation based fault injection. The main advantage of the FuSE tool is that it sup-
ports emulation- and simulation-based fault injection but keeps the switching between
these modes completely transparent to the user. This way, the speed-up provided by the
emulation mode allows to perform a huge number of fault injection experiments within
a reasonable amount of time, and the simulation mode offers the flexibility and visibility
required for specific cases.

3.7 Simulated Fault Injection in SystemC Models
Although simulated fault injection in VHDL models has been a more prominent re-
search field in the past, the fact that SystemC has nowadays become the de-facto stan-
dard in industrial HW/SW system design has contributed to an increasing interest on
SFI in SystemC models. This section summarizes the most promising research works
in the field of simulated fault injection based on SystemC models.

Misera et al. [MVS07] adapt fault injection techniques and strategies from VHDL
models to SystemC models in order to analyze the limitations and possibilities of the
SystemC kernel. They simulate systems including saboteurs and simulator commands,
and they extend logic types of SystemC in order to perform a more realistic behavior of
logic components. Since the approach is based on strategies used in VHDL models, they
focus on logic-level models. In [SRAH08] Shafik et al. propose an alternative technique
to the one presented in [MVS07], also focusing on logic-level models.

Bolchini et al. go one step further into multiple abstraction level fault injection
in [BMS08]. The paper presents a fault injection environment for the ReSP simulation
platform [BBF+08]. The approach enables injecting faults by using saboteurs and sim-
ulator commands in components defined in the ReSP platform, using a new technique
called reflective wrapper. The reflective wrapper technique inserts a Python [wwwu]
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layer between the SystemC kernel and SystemC IPs, which provides access to any Sys-
temC element. Faults can then be injected into these elements either by parsing an XML
file or directly typing commands in the console. Injection of faults in this approach is
limited to elements defined as public objects, which might require some re-design of
the SUT. The approach does not focus on a specific MoC, so simulation is paused and
resumed whenever a fault is injected.

In [LR11] Weiyun and Radetzki use the Concurrent and Comparative Simulation
(CCS) technique to inject faults in SystemC models. The CCS is implemented by
extending data types to enable a differential representation of signal/variable values,
which are implemented as lists. The first element of the sorted list corresponds to the
non-faulty signal/variable value, while all other values in the list correspond to faulty
values. When an operation involving a signal/variable with extended data type is made,
the operation is executed for all the values in the list. This way faults are propagated
all over the system. This approach makes it possible to perform more than one fault
injection experiment in each execution. The main limitations of this approach are that
the developer must use a specific data type in order to inject faults in variables, and fault
libraries are not defined, so the tester must implement the fault models.

Reiter et al. [RPV+13] perform error injection in simulated HW models. First vir-
tual prototypes of the platform components are created using the CHESS modeling lan-
guage, and then the models are extended in order to inject errors in them. The ap-
proach provides a library of different error models, including data-corruption, timing-
corruption, halt, and signal-loss. The framework does not rely on a concrete model
of computation, and the paper does not describe how timing constraints of the system
under test are guaranteed.

62



CHAPTER 4
PS-TTM

This chapter describes the proposed Platform Specific Time-Triggered Model (PS-TTM),
a modeling and simulation framework for the design of time-triggered safety-critical
embedded systems at different abstraction levels, based on the Y-chart development
process and the MDA approach in SystemC.

4.1 Introduction
The PS-TTM is a modeling and simulation framework for the development of Time-
Triggered Architecture (TTA) based safety-critical embedded systems. The approach
relies on a strict separation between the designs of the functionality of the systems and
their target platform. Furthermore, the notions of computation and communication are
decoupled, in order to ease the design of such systems.

The PS-TTM provides a value and time-domain deterministic simulation environ-
ment, which enables an early functional and temporal assessment of systems. Moreover,
as will be further explained in chapter 5, the framework natively includes a mechanism
to perform non-intrusive simulated fault injection (SFI) within the models. This SFI
technique enables developers to carry out an early dependability assessment, which re-
duces the risk of a late and expensive discovery of safety related pitfalls.

In order to tackle the increasing complexity of current embedded systems introduced
in Section 2.3, the PS-TTM enables designers to apply abstraction, partitioning and
segmentation to their models. In addition, the time determinism provided by the PS-
TTM simulation engine contributes to increase the simplicity of the models.

Following the approach presented in [Kop08], PS-TTM models are composed from
computational components (c-components) and interface components (i-components).
C-components get input data, perform some computation and produce output data,
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whereas i-components behave as gateways. With the aim to facilitate the modeling
of TTA-based systems, c-components are time-triggered in PS-TTM, i.e., they are trig-
gered by the occurrence of clock events that rely on a global sparse notion of time.

It is worth mentioning that the name of the framework might be misleading: as the
following sections show, the PS-TTM must not necessarily be used to develop plat-
form specific models of systems, but also more abstract platform independent models.
However, this name has been chosen due to the capability of the framework to describe
platform specific and mixed platform independent and specific models.

4.2 Overall Work-Flow
The PS-TTM modeling framework enables engineers to design their time-triggered sys-
tems following the Y-chart approach. Figure 4.1 shows a general overview of the devel-
opment process suggested by the PS-TTM.

The development process starts with the definition of the functional and non-functional
requirements of the system. This step is usually performed by the customers together
with the developers. Once the requirements have been fully defined, the engineers can
start with the design of the Platform Independent Model of the system. Simultaneously,
the testing team begins the definition of the test cases and simulated fault injection cam-
paigns.

When a functional model (PIM) of the system is ready, it is assessed by simulating
the model against the test cases and the simulated fault injection campaigns defined
by the testing team. The PS-TTM simulator provides specific mechanisms to simulate
faults within the system. The result of the simulations are analyzed by the testing team.
In case the simulations show any undesired behavior of the model, the engineers are
notified about the bug and the PIM is redesigned. This loop is repeated until the model
successfully passes all test cases.

During this process, another engineering team designs a platform model (PM) that
fulfills the non-functional requirements of the system. When the PIM is considered
satisfactory, the deployment step is started. This activity consists on deploying the plat-
form independent model onto the platform, thus building the platform specific model
(PSM).

The PSM is then simulated against the functional and non-functional test cases and
simulated fault injection campaigns defined by the testing teams. The results of the sim-
ulations are analyzed, and in case any unwanted behavior is detected, the corresponding
bugs are fixed in the PIM, the PM or the PSM. Once the PSM passes all test cases, the
model is considered satisfactory and it is ready to start the prototyping phase.

This decoupling between the design of functionality and the design of the platform
reduces design time and cost, and supports the early assessment of the system since
a preliminary simulation and analysis phase is included in the process. Furthermore,
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it eases the assessment of the emerging behavior of a given functionality in several
platform variants, which facilitates the comparison of diverse design approaches in order
to choose the most suitable platform.

4.3 The Meta-Model
The composition of the PS-TTM is illustrated by Figure 4.2. The PS-TTM modeling ap-
proach is defined as a meta-model, from which models can be derived, as the following
sections will describe.

The components in light gray of the figure are those that are out of the scope of
this work, but are used by the PS-TTM, namely, SystemC and the E-TTM. The E-
TTM meta-model is compliant with SystemC. In fact, it enables the design of time-
triggered safety-critical systems using SystemC. Similarly, the E-TTM execution frame-
work makes use of the simulation engine provided by the SystemC library.

Components in white represent the core work of this thesis. The PS-TTM meta-
model is compliant with the E-TTM. In fact, it has been defined as an extension to it.
Besides, the PS-TTM implements two different simulation engines. The so-called PS-
TTM execution framework (or PS-TTM simulation engine), enables the test engineers
to carry out the simulation of PS-TTM compliant platform specific models, and it is
based on the E-TTM execution framework. On the other hand, the PI-TTM execution
framework (or PI-TTM simulation engine) provides the mechanisms to execute plat-
form independent models, and makes use of the PS-TTM simulation engine. These two
engines have been designed separately because PIMs and PSMs rely on different MoCs
in PS-TTM, as Section 4.5 describes.

Finally, the components depicted in dark gray represent models of time-triggered
safety-critical embedded systems developed by means of the PS-TTM, namely the PIM
and the PSM, and must obviously be compliant with the PS-TTM meta-model. The
framework enables developers to execute their platform independent and platform spe-
cific models by means of the PI-TTM and PS-TTM simulation engines respectively in
order to evaluate their behavior under specified conditions.

4.4 Characteristics of the PS-TTM
The PS-TTM is built as an extension of the E-TTM library [PNOES10a, PONA11] that
enables the engineers to model both PIMs and PSMs, and provides mechanisms to per-
form non-intrusive simulated fault injection on the models.

In order to make the design of time-triggered architecture based systems straight-
forward, the components of the PS-TTM are defined following the description given by
Kopetz et al. [KS03, KOESH07], i.e., they contain four different interfaces:
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• Linking Interface (LIF): The LIF is the interface that provides the timely infor-
mation to the nodes during the operation of the system. This interface is used by
the nodes to communicate with each other, and it is therefore a time-critical in-
terface that must meet the temporal specification of the application in all possible
scenarios.

• Configuration and Planning Interface (CP): The CP is the interface used to
configure the system, i.e., to connect a node to other nodes.

• Diagnostic and Management Interface (DM): The DM is the interface that en-
ables the maintenance engineers to observe the internal state of the node.

• Local interfaces: Local interfaces connect the component to the external world,
i.e., the environment.

Computational components
Computational components are classified in two groups in the PS-TTM: hierarchical
components (h-components) and atomic components.

Hierarchical components are basically composed by four parts:

• Encapsulating boudary: Defines the boundary between the h-component and
the rest of the model. It provides the LIF, CP, DM and local interfaces for com-
munication.

• Set of c-components: The functionality of a h-component is defined by a set of
c-components that establish its behavior. Each c-component provides a chunk of
the overall functionality of the hierarchical component. Therefore, in order to get
a functional h-component, the minimum number of internal c-components is one.

• Communication channel: The communication channel connects all c-components
inside the h-component and enables them to communicate with each other by
pushing and pulling RT data. The communication channel shares the global no-
tion of time with the rest of the system.

• i-component: The additional interface component enables the h-component to
communicate with the rest of the components through the LIF, CP and DM inter-
faces, whereas it hides the internal details of the h-component to the others.

The encapsulating boundary, the communication channel and the i-component are au-
tomatically provided by the PS-TTM when a h-component is defined. Obviously, the
internal set of c-components is specific to each h-component and must therefore be de-
fined by the developer in order to get the desired model.
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Figure 4.3 shows the architecture of hierarchical components in PS-TTM. The ele-
ments shaded in gray are provided by the modeling framework. The big box that wraps
all the components represents the encapsulating boundary.

Atomic components are composed by:

• Encapsulating boudary: Defines the boundary between the h-component and
the rest of the model. It provides the LIF, CP, DM and local interfaces for com-
munication.

• Functional task: The functional task of an atomic component is the piece of
software that provides it the desired functionality. It is defined in C/C++ language,
and consists of a task that gets input data from the well known interfaces, performs
some computation and gives back some output data to the system.

Figure 4.4 shows the structure of atomic components in PS-TTM. The external
boundary represents the encapsulating boundary of the component.

Notice that internal c-components of the generic definition of hierarchical compo-
nents (Figure 4.3) are not specified as atomic neither as hierarchical. In fact, in a specific
instantiation, they could be any of them. If they were hierarchical, the architecture de-
picted in Figure 4.3 would be replicated inside the c-component. If they were atomic,
the internal structure of the c-components would be the one depicted in Figure 4.4.

Communication
The PS-TTM provides a strict separation between computation and communication con-
cerns. Following the time-triggered paradigm, communication is managed by a tempo-
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ral firewall [KN97], called communication channel. As figure 4.3 shows, each hierar-
chical component contains a communication channel, which is automatically created by
the PS-TTM when a new h-component is defined.

The communication channel works as an intermediate storage memory for the c-
components of the hierarchical system where they are located. It uses a combination of
push-pull communication models, and consequently provides two different interfaces
for communication:

• Push: Enables the c-components to overwrite a given real-time entity image in
the shared real-time entity of the communication channel.

• Pull: Enables the c-components to get a given real-time entity image from the
shared real-time entity of the communication channel.

In other words, whenever a c-component wants to submit some information, it can
send data to the communication channel by using the push() command, whereas a c-
component that needs to get any information can read data from the communication
channel by calling the pull command.

Real-time entities of the communication channel keep their value until they are over-
written. The action of updating real-time entities is only governed by the communica-
tion channel itself, and can be delayed by an amount of time. Therefore, race condi-
tions are avoided by design. This way, communication between components is allowed,
whereas the designers have the guarantee that it will never occur an interruption that
may disturb the temporal behavior of any component. The propagation real-time enti-
ties between different communication channels is carried out by the i-component. This
propagation is uni-directional for each real-time entity, i.e., the real-time component is
treated either as input or output at each hierarchical component. In order to avoid inde-
terminism, real-time components must work on a single-writer multiple-reader fashion,
that is, only one atomic component is allowed to overwrite the value of the real-time
entity of its hierarchical component.
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The detailed functionality of the communication channel at each design level (PIM
and PSM) is further described in the corresponding parts of section 4.5.

Tackling the complexity challenge
The complexity challenge introduced in section 2.3 is tackled by providing a global
notion of time throughout the system and enabling to apply abstraction, partitioning and
segmentation to the models.

In contrast to E-TTM, all computational components in the PS-TTM are triggered
by time, according to the global notion of time provided by the PS-TTM infrastructure
for all the components within a model. This fact, together with the time deterministic
simulation environment provided by the PS-TTM, increases the timing predictability of
the systems, which makes it well-suited for safety-critical embedded systems.

Abstraction is provided by the capability of the PS-TTM framework to define hier-
archical systems. Hierarchy is achieved by the usage of h-components as c-components,
which are further refined in a set of c-components, thus establishing a complete system
defined over several abstraction levels. This hierarchical design is shown in Figure 4.3.
Since each h-component must have at least one c-component inside, the lowest level of
each hierarchical branch is always an atomic job, which provides the most basic chunk
of functionality to the model.

Partitioning is enabled in two ways:

1. Since h-components enable to divide the overall functionality in different internal
c-components, the system may be partitioned into quasi-independent components,
each of them performing different parts of the overall functionality. An example
of this is shown in Figure 4.3, where two c-components are placed inside the
hierarchical component.

2. By design, the PS-TTM separates computation and communication concerns in
different parts of the system. Computation is performed by c-components, whereas
communication is handled by communication channels and i-components.

Finally, the time and value deterministic simulation engine included in the PS-TTM
provides segmentation capabilities by automatically setting the sequential order of exe-
cution of the simultaneous jobs that may appear in a model.

4.5 Modeling at Different Stages of the Development
The following sections describe in detail the characteristics of the platform independent
and platform specific models in PS-TTM.
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Platform Independent Models
As introduced in section 4.2, the development of safety-critical time-triggered embed-
ded systems in PS-TTM starts with the design of a Platform Independent Model (PIM)
of the system. The PIM is derived from the functional requirements provided by the
customer, so it is a purely functional model that captures the intended behavior of the
system without taking into account its non-functional requirements.

In contrast to other approaches, PIMs are executable in PS-TTM, and they therefore
allow the designers to check the logic of an application at an early stage of development
without being concerned about all the constraints of the target environment. This ap-
proach may potentially save design time and cost during the development process, since
the early validation capability it provides may facilitate the early detection of functional
design bugs that would otherwise require an expensive redesign of the system.

The following sections describe in detail the fundamentals of the platform indepen-
dent models in the PS-TTM.

Underlying Model of Computation

As explained in section 2.5, the underlying model of computation of a system can dra-
matically increase or reduce its cognitive complexity. Therefore, the choice of an ade-
quate MoC for the design of a given system is crucial.

As pointed out by Buckl [Buc08], especially in the context of fault-tolerant systems,
where different experts are involved in the development of the system and the internals
of the systems must be very well understood, a simple execution model is essential.

Hence, in order to make the deployment of PIM models into TTA platforms straight-
forward while preserving the simplicity of the functional models, the PS-TTM relies on
the LET MoC for the definition of platform independent models. The LET MoC defines
the functionality of systems by specifying a logical duration for each computational
job, regardless of its physical duration on a specific target platform. This permits the
software engineers to communicate more effectively with the control engineers, since
the properties of the system are closely aligned with the mathematical models used in
control design.

The straightforwardness of the deployment of a LET-based model into a TTA-based
platform comes from the fact that like the TTA, the LET MoC is based on a time-
triggered formalism. Besides facilitating its mapping into TTA platforms, this property
implies that there are a number of previously known points in time when fault-tolerance
mechanisms are executed. This knowledge enables systems to directly discover errors
such as message losses or duplications. The implementation of fault-tolerance mecha-
nisms is therefore simplified in TTA-based platforms.

Another advantage of the LET MoC is that, by definition, it avoids the need for syn-
chronization during the execution of jobs and triggers all the jobs synchronously. This
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reduces the number of failures that might occur in the system, since the absence of fail-
ures due to faulty synchronization points and different orders of execution is guaranteed
by the MoC.

Architecture

The PIMs in PS-TTM rely on the architectural hierarchy described in [PNOES10a],
where computational components can be defined as systems, distributed application
subsystems (DASes) and jobs.

• Hierarchical components:

– Systems are closed h-components, i.e., they provide no interface for com-
munication purposes with other components. Thus, platform independent
models in PS-TTM usually contain a unique System, which gives the top-
level view of the hierarchical system.

– DASes are open h-components, i.e., they do provide the LIF, CP and DM
interfaces in order to enable the communication with other components.
Hence, PIMs in PS-TTM tipically contain more than one DAS, each of them
providing a well-specified application service from the overall system func-
tionality.

• Atomic components:

– Jobs are atomic components that read the inputs, perform the desired com-
putation and provide the corresponding outputs to the communication chan-
nels, following the LET MoC.

An example of a PIM architecture can be seen in Figure 4.5, where the distinction
between different interfaces and the i-components of DASes are omitted for simplicity.

Execution and communication: The PI-TTM

In order to perform the simulation of PIMs that rely on the LET MoC in SystemC, the
PS-TTM includes a novel LET based simulation engine called Platform Independent
Time-Triggered Model (PI-TTM) [ANPP14]. The PI-TTM library handles the simula-
tion of the LET-based models in SystemC by means of the E-TTM execution engine.
The E-TTM execution engine applies the temporal restrictions imposed by the LET
MoC to the models. In other words, the PI-TTM engine behaves as a layer above the
E-TTM engine that abstracts the E-TTM details and provides a clear interface for the
design of LET models to the engineers.

LET models are cyclic over time, i.e., their behavior can be described as a periodi-
cally repeating sequence of actions. Therefore, System components in PI-TTM contain
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Figure 4.5: Example of a PIM in the PS-TTM

an attribute named period, which must be set by the designers and establishes the log-
ical execution time of the system. DASes and jobs, however, specify their frequency,
which states how many times the component is executed per period of its enclosing
(sub)system. Therefore, the frequency of a job, together with the period of the hierar-
chical component where it is located, determine its LET, as equation 4.1 shows (where
h_freq means hierarchically accumulated frequency).

LETjobi =
periodsystem
h_freqjobi

(4.1)

Figure 4.6 shows an example of this. In the model of Figure 4.6a, a System with a
period of 100ms contains a DAS of freq = 2 which in turn contains a job with freq = 5.
In that case, the job is executed 5 times in each DAS execution cycle, that is, 2 · 5 = 10
times per system period. Hence, the LET of the job is 10ms, as Figure 4.6b shows.

When the models are defined according to the LET paradigm, computational com-
ponents read their inputs instantaneously at the beginning of their execution, and they
provide their outputs at the end of their LET. Hence, each computational job in LET
systems introduces a delay to the final response time. This delay is equal to the logical
execution time of the job. The sum of the logical execution times of all the jobs that are
executed serially establishes the minimum period of the system.
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However, in order to support the design of hierarchical systems without leading
to unacceptable delay times for real-time systems and without introducing undesired
unambiguities for safety-critical systems to the models, hierarchical components in PI-
TTM are defined as virtual components, i.e., they are used to facilitate a visual com-
position of the system but they do not introduce a delay on the simulated time of the
execution. In other words, hierarchical components in PI-TTM are used for cognitive
complexity management purposes, but they do not affect the functionality of the system,
so this can be understood as a completely flat composition of different jobs.

The simulation of LET-based models in SystemC is therefore handled by the PI-
TTM, which automatically manages the schedule of the LET-based platform indepen-
dent model. To do so, the PI-TTM automatically creates and connects a new clock
for each job during the initialization phase of the simulation. The clock is configured
according to the logical execution time of the job, triggering a new clock event every
logical every time the job has to be executed.

Communication between components is performed by pushing/pulling shared vari-
ables stored in the communication channels of hierarchical components. The temporal
constraints imposed by the LET MoC are guaranteed by the automatic communication
channel management of the PI-TTM execution engine, which delays push actions until
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one delta-cycle before the next triggering instant of the job, whereas it performs pull
actions instantaneously one delta-cycle before the execution of the jobs. This way, the
PI-TTM works as an intermediate layer between the model and the E-TTM engine,
ensuring that the simulation adheres to the LET constraints of the application.

Synchronous jobs are executed sequentially making use of the delta-delay concept
of SystemC. The partition between communication and computation provided by the
PS-TTM framework and the automatic management of the communications provided
by the PI-TTM ensures that the outputs provided by a given job are not made available
for the rest of the jobs during that delta delay. This approach guarantees that all the
simultaneous jobs are sequentially executed before any of their input values is updated,
which implies that the scheduling order of the jobs does not affect the final result and
therefore guarantees the time and value determinism of the model. Moreover, the PI-
TTM greatly simplifies the design of LET models for the engineers, since the handling
of the communications is automatically performed by the execution engine and it is not
required to be done explicitly.

The PI-TTM also determines the maximum granularity of the simulation automat-
ically, by dividing the period of the system by the least common multiple of the hier-
archically accumulated frequencies of all the jobs within the system, as equations 4.2
and 4.3 show. This makes possible to perform the fastest possible simulations while
preserving time and value determinism.

LCMsystem = ∀ (jobi, jobi+1 ∈ system) , LCM
(
h_freqjobi , h_freqjobi+1

)
(4.2)

sim_granularity =
periodsystem
LCMsystem

(4.3)

Figure 4.7 shows how LET-based models are managed by the PI-TTM library. In the
example, two LET jobs with different frequencies communicate with each other. Job 1
has frequency 1 and job 2 has frequency 2. As mentioned, the PI-TTM automatically
sets the trigger instants for each job and delays the update of each variable according to
the LET of the jobs. In this case, it sets the granularity of the simulation to the half of
the period, triggers job 1 every two macroticks and job 2 every macrotick, and sets the
corresponding delays to their outgoing messages (1 and 0 respectively). Note that the
dotted sections on the time axis represent zero advance of time, so the communication
in LET models and the execution of jobs in E-TTM models are instantaneous.

Syntax

The PS-TTM meta-model has been built as a library that extends SystemC with a set of
macros and functions that helps the designers in the definition of the models. Besides
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Figure 4.7: PI-TTM: Management of LET-based PIMs

this, it also contains the PI-TTM execution engine for LET-based models. In the fol-
lowing, we briefly introduce the interface and the functions provided by the PS-TTM
environment to define and simulate LET-based platform independent models in Sys-
temC with PI-TTM.

• Systems:

– Defining a system:
Systems are defined with the following macro:

PITTM_SYSTEM(system_name)

This macro requires to fill the internally defined v_c vector, which must
contain the “child” components (DASes and jobs) of the hierarchical system.

– Instantiating a system:
A new constructor has to be defined for each system, which must be defined
as a child function (by inheritance) of the default constructor for PIMs:

pittm_system::pittm_system (
const sc_module_name& snm,
ttm_dt_time period);

This constructor requires to set a name for the system and its period.

– Initializing a system:
The definition of the system requires, as a final step, to be initialized by
calling the following initialization function:

void pittm_system::initialize (
const ttm_vector_rn& vector_rn_rte);
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The vector vector_rn_rte must define the shared variables of the system, in
order to enable the different sub-components of the system to communicate
among themselves. This command is responsible of creating and configur-
ing the clocks for each job and is also in charge of connecting the internal
sub-components of the system together during the initialization phase of the
simulation.

– Building a system:
The whole system is fully defined when the building command is called:

void pittm_build_system (ttm_component * system);

This function terminates the definition of the system. The initialization
phase of the simulation is finished when the system is built. At that moment,
the execution of the simulation can begin by calling the native SystemC
sc_start(); command.

• DASes:

– Defining a DAS:
The definition of DASes is carried out by using the following macro:

PITTM_DAS(das_name)

Similarly to the systems case, this macro requires to fill the v_c vector,
which has to contain a reference to the components inside the DAS (other
DASes or jobs).

– Instantiating a DAS:
Each DAS has to define at least one constructor, which must be declared as
a child function of the default constructor for DASes:

pittm_das::pittm_das (
const sc_module_name& snm,
unsigned int freq);

The required parameters for this constructor are a name and a frequency for
each DAS. It is not allowed to give the same name to more than one DAS
placed in the same hierarchical component.

– Initializing a DAS:
The final step of the definition of a DAS must be its initialization. To do so,
the initialization function is used:

void pittm_das::initialize (
const ttm_vector_rn& vector_rn_rte,
const ttm_dt_com_route& route);
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This initialization command is in charge of creating and configuring the
clocks for each job, and of connecting all the internal sub-components of
the system together during the initialization phase of the simulation. The
vector_rn_rte must define the shared variables of the DAS, in order to en-
able communication among different sub-components. In addition, the route
vector has to define the connections from/to the outside of the DAS to be
managed by the interface component.

• Jobs:

– Defining a Job:
The definition of LET-based jobs in PI-TTM is enabled by their macro:

PITTM_JOB(job_name)

The main requirement of this macro is the definition of a clocked thread in
the job, which is usually called void ctask_thread(void);. This
thread hast to be defined as an infinite loop containing the periodic behav-
ior of the job (read inputs, perform a computation, write outputs), and must
contain a wait() command. This way, during the execution, the PI-TTM
triggers the clocked thread of each job at the corresponding instant, which is
executed instantaneously until a wait() command is found. This command
determines the end of the cycle of the job and gives the control of the simula-
tion back to the PI-TTM execution engine, which automatically triggers the
next job according to the schedule. When all jobs that need to be triggered
at a given instant have been processed, the PI-TTM advances its clock to
the instant in which the next job has to be triggered, and forwards the push
operations performed by the jobs starting at that instant.

– Instantiating a Job:
The constructors created for each job must inherit from the default job con-
structor:

pittm_job::pittm_job (
const sc_module_name& snm,
unsigned int freq);

Similarly to the DAS constructor, the default constructor for jobs requires
to set a name and a frequency for each job instance. Jobs within the same
h-component must have unique names.

– Communicating: For communication purposes, the jobs can read/write data
from/to the communication channels of the hierarchical component they are
placed in.
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∗ Reading data:
The templated pull command is used for reading purposes. The com-
mand is formally defined as follows:
template<typename T>
T pull (

e_ttm_com_if if_id,
const ttm_dt_rn& rn_rte)

Thus, the jobs can read the data from the communication channel they
are connected to by specifying the interface to perform the reading (LIF,
CP or DM) and the name of the shared variable to read.
∗ Writing data:

The push command is the mechanism to write data in PI-TTM models.
The command is defined as:
template<typename T>
void push (

e_ttm_com_if if_id,
const ttm_dt_rn& rn_rte,
const T& value)

Therefore, in order to write data, jobs have to specify the interface to
which they want to write the data, the name of the shared real-time
entity to overwrite, and the value.

Listing 4.1 shows an example of the definition of a platform independent model in
PI-TTM. The example shows a system that will run at a period of per, and contains
two DASes, the first of frequency 2 and the second of frequency 5. The first DAS
is composed by two jobs with a frequency of 1 and 2 respectively. Job A reads two
variables from the LIF interface, DIST_A1 and DIST_A2, and calculates the average
distance from these values in the fcn(...) function. Once calculated, it pushes back
the value via its LIF interface and waits until the next time it is triggered.

Platform Specific Models
According to our modeling work-flow proposed in section 4.2, once the PIM of the sys-
tem has been fully verified by means of the PI-TTM simulation engine, and the behavior
against all the test cases and SFI campaigns is considered successful, the components
of the platform independent model are deployed onto a model of the platform, thus
creating the platform specific model of the system. For that reason, the PSM can be
considered a refined version of the PIM, more than a different model of the system.

However, the development of a platform specific model with PS-TTM provides sev-
eral benefits to the designers. First, the PSM enables them to describe the timing prop-
erties of the system at a more detailed level, which gives them the freedom to adjust
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Listing 4.1: Example code of a PIM in PI-TTM
/* example_system.h */
PITTM_SYSTEM(Example_System){

...
/* Constructor */
Example_System(const sc_module_name & nm, ttm_dt_time period) : pittm_system(nm, per) {

/* Declare Components */
DAS_1 *p_das_1 = new DAS_1 ("das_1", 2);
DAS_2 *p_das_2 = new DAS_2 ("das_2", 5);
/* Place components in hierarchical component */
v_c.push_back(p_das_1);
v_c.push_back(p_das_2);
...
//Initialize
initialize(Example_System_Variables_rte, route);

}
};

/* das_1.h */
PITTM_DAS(DAS_1){

...
/* Constructor */
DAS_1(const sc_module_name & nm, unsigned int freq) : pittm_das(nm, freq) {

/* Declare Components */
JOB_A *p_job_a = new JOB_A ("job_a_inst", 1);
JOB_B *p_job_b = new JOB_B ("job_b_inst", 2);
/* Place components in hierarchical component */
v_c.push_back(p_job_a);
v_c.push_back(p_job_b);
...
//Initialize
initialize(DAS_1_Variables_rte, route);

}
};
/*!< Real-time entities of the DAS*/
ttm_dt_rn * DIST_A1 = new ttm_dt_rn("DIST_A1");
ttm_dt_rn * DIST_A2 = new ttm_dt_rn("DIST_A2");
ttm_dt_rn * DIST_AV = new ttm_dt_rn("DIST_AV");

/* job_a.h */
PITTM_JOB(JOB_A){

/* Internal variables */
tDistanceInt32 dist_1, dist_2;
tDistanceInt32 av_dist;
/* Constructor */
JOB_A(const sc_module_name & snm, unsigned int freq) : pittm_job(snm, freq){}
/* Thread */

protected:
void ctask_thread(void);
void fcn(void);

};

/* job_a.cpp */
void JOB_A::fcn(){ av_dist = (dist_1 + dist_2) / 2; }
void JOB_A::ctask_thread() {

...
while(true) {

/* pull variables */
dist_1 = pull<tDistanceInt32>(e_TTM_COM_IF_LIF, DIST_A1);
dist_2 = pull<tDistanceInt32>(e_TTM_COM_IF_LIF, DIST_A2);
/* compute */
fcn();
/* push variables */
push<kcg_bool>(e_TTM_COM_IF_LIF, DIST_AV, av_dist);
/* wait LET */
wait();

}
}
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the response of the system to their needs more accurately. Second, mapping a given
PIM into different platform candidates and simulating each resulting PSM facilitates to
perform a comparison of the behavior of each model in order to take a decision about
the most adequate system for their specific needs. Third, the PSM specifies how the
functional model makes use of the chosen platform, which enables the testing teams
to apply different HW-related phenomena that affect the behavior of the system to the
simulation, such as jitter or faults in HW components.

The following sections describe the characteristics of platform specific models and
their simulation in PS-TTM in detail.

Underlying Model of Computation

In order to provide a more accurate control of the timing specifications of the different
components of the system to the designers, the platform specific models in PS-TTM are
designed according to the time-triggered MoC introduced in [EBK03], which relies on
the sparse model of time.

Consequently, the flow of time of PSMs is divided into alternating intervals of activ-
ity and silence. As mentioned in section 2.5, in order to guarantee that a model designed
according to the TT MoC reasonably represents the final system and the system behaves
deterministically, the HW platform must fulfill a number of prerequisites. Since TTA-
based platforms comply with such conditions, relying on the TT MoC guarantees the
straightforwardness of the deployment of the models into TTA-based platforms.

Besides, although the TT MoC-based models might be slightly more complex than
the LET-based models from a cognitive point of view, the complexity management tech-
niques proposed by the TT paradigm enable to keep the complexity of the platform
specific models at a reasonable level.

Moreover, the fact that the LET-based jobs designed in the PIM are treated by the
PI-TTM engine as time-triggered jobs to which the temporal restrictions imposed by
the LET MoC have been applied, simplifies their transformation to TT MoC based jobs.
Therefore, the TT MoC fits well as an intermediate MoC between the preliminary LET-
based PIMs and the final system.

Therefore, all these characteristics make the TT MoC an ideal candidate for the
design of Real-Time Safety-Critical systems at a platform specific level.

For these reasons, this approach, together with the work-flow presented in section
4.2, facilitate the modeling and validation of time-triggered systems. It starts with the
design of a purely functional LET-based model and enables a straightforward trans-
formation into a platform specific TT MoC-based model, what guarantees that time-
properties are intrinsically preserved in the final implementation when the platform is
based on the TTA.
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Architecture

Analogously to the case of the PIMs, platform specific models are defined hierarchically
in PS-TTM. The meta-model of the PS-TTM subdivides the computational components
of the PSMs into the following classes:

• Hierarchical components:

– Systems: Systems are closed h-components, i.e., they provide no interface
to communicate with other components. Hence, platform specific models
in PS-TTM are designed as a System, which gives the top-level view of the
hierarchical system. System components represent the complete real-time
time-triggered system.

– Clusters: Clusters are modeled as open h-components that provide the LIF,
CP and DM interfaces in order to enable the communication with other com-
ponents. TTA systems may be composed by one or several different clusters.

– Nodes: Nodes are the basic building blocks of TTA-based systems. Clusters
of TTA-based systems are typically decomposed in different nodes inter-
connected by a time-triggered communication channel (Figure 2.12), each
of them performing a well-defined task.

– Processors: Nodes of time-triggered systems are composed by a Commu-
nication Controller (CC), Communication Network Interface (CNI) and a
host processor that executes the application software. Therefore, processor
components of the PS-TTM represent the computational processing units
(CPUs) of the nodes, and they are designed as open hierarchical compo-
nents that provide the necessary interfaces for communication with other
components (LIF), configuration (CP) and maintenance (DM).

– Cores: Traditionally, CPUs contained a single core performing the computa-
tions specified by the software. However, the need of a higher computational
power and speed resulted in the commercialization of multi-core chips in the
mid noughties. Nowadays, even many-core chips are being launched to the
market in order to increase the speed of systems. Thus, core components
of PS-TTM, modeled as open-hierarchical components, enable designers to
design the processors of their systems modularly.

– Hypervisors: Hypervisors are software programs that virtualize the archi-
tecture they run on, and enable to define different partitions where soft-
ware can be mapped to. Due to the configurability they offer and the spa-
tial isolation they provide, hypervisors are a promising approach for the
design of safety-critical embedded systems, as different research projects
[CRM+09, MRCP10, Van10] and tools [wwwm] demonstrate. Hypervisors
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are defined as open h-components in PS-TTM too, and are composed of one
or more partitions.

– Partitions: Partitions are virtualized HW parts defined and managed by hy-
pervisors. Therefore, the PS-TTM models them as open hierarchical compo-
nents that provide LIF, CP and DM interfaces. The definition of a hypervisor
in a PS-TTM models also requires the designers to define at least one parti-
tion inside it.

• Atomic components:

– Jobs: Jobs are the unique atomic components of platform specific models in
PS-TTM, and must be deployed in cores or partitions of the model. Analo-
gously to platform independent jobs, jobs of PSMs read their inputs, perform
the computation defined by their software task and provide the correspond-
ing outputs to the communication channels. Following the time-triggered
MoC, the execution of jobs takes place during the activity interval of the
sparse time.

HW components of a TTA system are represented by h-components of a PSM. These
h-components are defined as SystemC wrappers, providing an high-level abstraction of
the HW components. However, the developers are enabled to extend their definition in
order to get a more representative description of their specific component model.

The target-platform models (PMs) are designed by assembling a hierarchical com-
position of these HW-related components. Once the PMs are built, the designers can
construct the PSMs by deploying the jobs designed in the PIM into the components of
the PM.

Figure 4.8 presents an example of the modeling of a hierarchical PSM in PS-TTM.
As the figure shows, the development of the platform starts with the definition of a sys-
tem. A number of clusters, nodes, processors, cores can be included in the system at
each hierarchical level. Optionally, cores may contain a hypervisor with some parti-
tions. The PSM is built when the jobs that define the functionality of the system are
mapped into the cores or the partitions of the system. The different interfaces (LIF,
CP and DM) and the i-components of the h-components are omitted from the figure for
clarity.

Execution and communication

In order to simulate TT MoC-based platform specific models, a novel simulation engine
has been designed, called Platform Specific Time-Triggered Model (PS-TTM) engine.
Compared to the PI-TTM execution engine used in PIMs, the PS-TTM simulator gives
a more accurate control of the timing properties to the designers, which are enabled to
define temporal phenomena such as phase delays or jitters in components.
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Figure 4.8: Example of a PSM in the PS-TTM

As mentioned previously, the PSMs rely on the time-triggered MoC in PS-TTM.
Consequently, the PS-TTM engine provides a strict separation between communication
and computation and establishes a global notion of time, based on the sparse-time con-
cept, which divides the flow of time in PSMs in alternating intervals of activity and
silence.

The meta-model of PS-TTM is developed as a C++ library that extends the E-TTM
environment with abstract and extendable models of platform components. The usage
of this library of HW components in platform specific models gets the biggest relevance
when assessing the reliability achieved by the system due to its fault-tolerance mecha-
nisms. The non-intrusive simulated fault injection technique provided by the PS-TTM
ATE (see Chapter 5) enables testing teams to validate the appropriateness of the fault-
tolerance mechanisms introduced in the system against different effects of faults in HW
components.

Simulation is carried out by means of the PS-TTM simulation engine, which strongly
relies on the E-TTM [PPO10]. The sparse-time-based global notion of time is based on
the global time provided by SystemC. Thus, the simulation may be faster, slower or
at the same pace as physical time (given by the operating system of the host computer
running the simulation).
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Figure 4.9: Sparse time model in E-TTM (π = 0,∆ = 4)

According to the E-TTM framework, the execution of computational components
is restricted to the activity intervals (π) of the sparse-time abstraction model, and it
is forbidden to execute them between macroticks, i.e., during the silence interval (∆).
Internal events are also restricted to the activity interval. In case an external event (such
as an event from an external model relying on a different MoC) occurs outside that
interval, its activation is delayed until next activity interval.

The activity interval π has a duration of zero simulation time (Figure 4.9). This
means that jobs, which are restricted to take place during the activity interval, are ex-
ecuted instantaneously. Although simultaneously triggered components are executed
sequentially, this sequential execution is performed in zero simulation time. Besides,
the output messages are not delivered during the execution macrotick and the events
generated during the computation do not trigger activation events until next execution
macrotick. Therefore, race conditions are avoided by definition, which guarantees that
the execution order chosen by the E-TTM scheduler for simultaneously triggered jobs
does not have any impact on the outputs of the system. Thus, it is guaranteed that
time determinism will not be violated, regardless of the scheduling order chosen by the
simulation engine.

The execution of jobs is configured by the designers, by specifying a period for
each of them. The period establishes the duration of each job. When, following the
work-flow specified in section 4.2, the developers design their PSM from the PIM, the
calculation of the period corresponding to a job is facilitated by its LET, which can be
obtained by equation 4.4.

periodjobi = LETjobi =
periodsystem
h_freqjobi

(4.4)

Besides, jobs at PSM level must specify a relative phase, which establishes the phase
difference between the start of the cycle and the effective instant when the job is exe-
cuted. The phase delay is specified as a percentage value (0.0 ≤ phase ≤ 100.0), where
a value of 0.0 establishes that the execution of the job will take place at the beginning
of the cycle and a value of 100.0 sets the execution at a delta delay before the end of the
cycle.

When deriving the PSM from the PIM, the phase of all jobs is usually set to 0.0,
in order to obtain the equivalent timing properties in the PSM. The PS-TTM gives the
designers the freedom to modify the value of the phase of each job as desired. This
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specification is made in the initialization function of the hierarchical component con-
taining the job. Thus, different instances of a given job can have different phase delays.
Setting a phase to a value different from 0.0 might be interesting in the following cases:

• In case a job of the PIM is manually split into more jobs in the PSM, the phase de-
lay of the PSM jobs may be modified in order to respect the causality chain of the
original PIM in the PSM model consisting of a set of jobs executing sequentially.

• To manually set the scheduling order of jobs.

• To simulate different phenomena such as imperfect synchronization between the
different clocks of the system.

However, the developers must bear in mind that modifying the phases may have a
big impact and entirely modify the behavior of the system. Therefore, the modifica-
tion of the phase values of the system is not recommended, and, if done, the emerging
behavior of the platform specific model must be carefully validated again.

Communication between components is again performed by push/pull operations
in shared variables stored in the communication channels, via the LIF, CP and DM
interfaces. Whenever a component pushes a new value (during activity interval), the
value is instantaneously given to the communication infrastructure.

The simulation engine requires the designers to specify a delay in the transmission
of information between components. This delay represents the amount of time between
the instant in which a given job starts its execution and the instant in which its output
values are available for the rest of the components in the communication channels. The
delay is specified in number of macroticks of the simulation. When, as suggested by
the work-flow specified in section 4.2, the developers design their PSM from the PIM,
the calculation of the appropriate delay for each push activity becomes straightforward,
and can be obtained by dividing the Least Common Multiple (LCM) among all the total
frequencies of the jobs within the system by the total frequency of the job executing the
push command, as equation 4.5 shows.

delayjobi =
LCMsystem

h_freqjobi
(4.5)

And if we consider equations 4.3 and 4.4, the delay time for the communications of
each job can also be calculated by their period and the granularity of the simulation, as
shown by equation 4.6.

delayjobi =
periodjobi

sim_granularity
(4.6)

However, in case a job is not directly derived from the platform independent model
and does not specify a phase equal to 0.0, the appropriate communication delay should
be calculated by the designers.
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Syntax

The PS-TTM meta-model provides a set of macros and functions on top of SystemC
for the development of the platform specific models. We briefly introduce the most im-
portant functions and commands for the definition of time-triggered MoC based PSMs
provided by the PS-TTM framework below:

• Systems:

– Defining a system:
Systems are defined by the following macro:

PSTTM_SYSTEM(system_name);

Similarly to the case of PIM systems, this macro requires to fill the internal
v_c vector specifying the clusters that are inside the system.

– Instantiating a system:
Systems must declare a new constructor, which has to be defined as a child
function of the default constructor for PSMs by inheritance. The default
constructor only requires to set a name for the system:

psttm_system::psttm_system (
const sc_module_name& snm );

In contrast to PIM systems, the instantiation of PSM systems does not re-
quire to define their period. This is because whereas the period (or LET) of
jobs in PIM systems is automatically calculated by their frequency respect
to the period of the hierarchical component they are place in, the period
(and phase) of PSM jobs is explicitly specified when they are called by a h-
component (see section “Initializing an open h-component” below). Thus,
no period is specified for PSM systems, since jobs themselves specify their
own period.

– Initializing a system:
Systems must include the initialization function at the end of their definition,
which is defined as follows:

void psttm_system::initialize (
const ttm_vector_rn& vector_rn_rte );

The initialization function requires to set the vector_rn_rte vector,
which specifies the shared real-time entities of the system, in order to en-
able the communication between the internal components of the system via
the communication channel.
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– Building a system:
The PS-TTM meta-model provides the following function to build the sys-
tem:

void psttm_build_system(ttm_component * system);

This function terminates the definition of the system. The initialization
phase of the simulation is finished when the system is built. Once the sys-
tem has been built, the simulation can start by calling the native SystemC
sc_start(); command.

• Open h-components (Clusters, Nodes, Processors, Cores, Hypervisors & Parti-
tions):

– Defining an open h-component:
The definition of open h-components is made by using corresponding macro
for each component, namely:

PSTTM_CLUSTER(cluster_name);
PSTTM_NODE(node_name);
PSTTM_PROCESSOR(proc_name);
PSTTM_CORE(core_name);
PSTTM_HYPERVISOR(hyp_name):
PSTTM_PARTITION(part_name);

Analogously to the Systems case, all these macros require the definition of
v_c vector, which must specify their child components.

– Instantiating an open h-component:
Each open h-component must define its own constructor, which has to be
declared as a derived function of its corresponding base constructor, among:

psttm_cluster::psttm_cluster (
const sc_module_name& snm);

psttm_node::psttm_node (
const sc_module_name& snm);

psttm_processor::psttm_processor (
const sc_module_name& snm);

psttm_core::psttm_core (
const sc_module_name& snm);

psttm_hypervisor::psttm_hypervisor (
const sc_module_name& snm);

psttm_partition::psttm_partition (
const sc_module_name& snm);
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These default constructors only require to pass them the name of the com-
ponent as a parameter. The designers are not allowed to repeat the names of
different components in the same hierarchical system.

– Initializing an open h-component:
Open h-components also have to include the initialization function as the
final step of their definition. The initialization function is similar for clusters,
nodes, processors and hypervisors, but differs for cores and partitions, as the
following list shows:

void psttm_cluster::initialize (
const ttm_vector_rn& vector_rn_rte,
const ttm_dt_com_route& route);

void psttm_node::initialize (
const ttm_vector_rn& vector_rn_rte,
const ttm_dt_com_route& route);

void psttm_processor::initialize (
const ttm_vector_rn& vector_rn_rte,
const ttm_dt_com_route& route);

void psttm_core::initialize (
const ttm_dt_time_cycle& stime_cycle_descr,
const ttm_vector_rn& vector_rn_rte,
const ttm_dt_com_route& route);

void psttm_hypervisor::initialize (
const ttm_vector_rn& vector_rn_rte,
const ttm_dt_com_route& route);

void psttm_partition::initialize (
const ttm_dt_time_cycle& stime_cycle_descr,
const ttm_vector_rn& vector_rn_rte,
const ttm_dt_com_route& route);

All the initialization functions have to specify their vector_rn_rte and
route vectors. vector_rn_rte sets the shared real-time entities of the
h-component, in order to enable the internal communication between the
components within the hierarchical component, via their shared communi-
cation channel. The route vector must declare the connections from/to the
outside of the open h-component, in order to establish a coherent communi-
cation between the open h-component and its outside.
Besides, clusters and partitions must define their stime_cycle_descr,
which is a vector that includes the temporal specifications of the jobs mapped
into them. The stime_cycle_descr vector must include a period and a
phase delay value for each of the jobs of the h-component.
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• Jobs:

– Defining a Job:
Jobs of platform specific models are defined by the following macro:

PSTTM_JOB(job_name)

Inside the definition of the job, a clocked thread has to be defined, which
is usually called void ctask_thread(void);. This thread hast to
be defined as an infinite loop containing the periodic behavior of the job
(typically: read inputs, perform a computation, write outputs), and must
contain a wait() command. This way, the PS-TTM simulation engine
triggers the clocked thread of each job at the corresponding instant, which
is executed instantaneously till the wait() command. The command gives
the control of the simulation back to the PS-TTM engine, which starts the
execution of the next job according to the schedule.

– Instantiating a Job:
Each job has to define at least one constructor, which must be a derivative of
the generic constructor for jobs at PSMs:

psttm_job::psttm_job(const sc_module_name& snm)

The default constructor for jobs requires to give a name to the job. Jobs
placed inside a given hierarchical component must have unique names.

– Communicating:
Jobs can read/write data from/to the communication channel of their h-
component at any point of their void ctask_thread(void); func-
tion. The communication channel is responsible of updating the values of
the real-time entities when needed.
∗ Reading data:

The pull command is used to get a real-time image from the commu-
nication channel. This command is defined as follows:
template<typename T>
T pull(

e_ttm_com_if if_id,
const ttm_dt_rn& rn_rte)

Jobs can read the data from the communication channel by specifying
the interface to perform the reading (LIF, CP or DM) and the name of
the shared real-time entity to read. The data is transferred to the job
instantaneously (in zero simulation time).
∗ Writing data:

The push command enables the jobs to write data into the communi-
cation channels they are connected to. The command is defined as:
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template<typename T>
void push(

e_ttm_com_if if_id,
const ttm_dt_rn& rn_rte,
const T& value,
double delay)

Thus, the mechanism to write data into the communication channel re-
quires to specify the interface (LIF, CP or DM), the name of the real-
time entity they want to overwrite, and the value the want to give to
the variable. Besides, they must specify the updating delay, that is, the
amount of time the communication channel should wait until updating
the value of the real-time entity. In case the PSM has been directly de-
rived from the PIM, i.e., no modification has been made to the timing
properties of jobs (period and phase), the delay time can be calculated
by equations 4.5 or 4.6. Otherwise, it would be responsibility of the
designers to ensure the coherence of their models.

4.6 Mixed Abstraction-Level Simulation
Safety-critical systems are often big systems that are developed by different teams of
HW and SW designers. Typically, each group of developers takes care of a part of the
system, which is considered a subsystem, and takes the responsibility of modeling it.
Once all the subsystems have been designed, they are assembled in a unique model that
represents the whole system.

Therefore, it is usual to have the case in which different parts of the system evolve
at a different pace, depending on their complexity and the amount of human and eco-
nomical resources dedicated to their modeling. This fact might hinder the verification
of the functional and non-functional properties of the subsystems, since the different
levels of abstraction that the subsystem models might be at a certain moment hinders or
even impedes their integration.

The PS-TTM provides a mechanism to get over this difficulty. In fact, as previously
stated, the PI-TTM simulation engine has been built as an abstraction of the PS-TTM
engine that transforms its model of computation into the Logical Execution Time. Thus,
although these engines provide a different MoC simulator each, the fact that one is an
abstraction of the other provides a seamless integration between them.

The PS-TTM makes use of this seamless integration between the two simulation
engines to enable the designers to straightforwardly connect platform independent and
platform specific models. This enables them to simulate the complete system even
combining descriptions of subsystems at PIM and PSM design stages, which rely on
different MoCs, and thus allowing to validate the functional and non-functional proper-
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Figure 4.10: Mixed abstraction-level simulation with PS-TTM

ties of a single part of the system in a straightforward way. This capability is known as
Mixed Abstraction-Level Simulation.

The mixed abstraction-level simulation is carried out by the PS-TTM simulation
engine. The PS-TTM drives an additional PI-TTM engine, which enables to execute
LET based PIM components. This way, PSM components based on the TT MoC run
directly over the PS-TTM engine, whereas PIM components are managed by the PI-
TTM engine running over the PS-TTM. In other words, the PS-TTM includes a PI-
TTM engine that behaves a layer that translates LET based components into equivalent
time-triggered components that the PS-TTM can run, as Figure 4.7 illustrated. The
transformation of LET based components to TT based components follows the rules
established by equations 4.4 and 4.6. The PI-TTM automatically sets the phase of all the
PIM jobs to 0. Figure 4.10 graphically shows the architecture of the mixed abstraction
simulation technique in the PS-TTM.

The figure shows how the PI-TTM library handles the simulation of the LET-based
models in SystemC by means of the PS-TTM execution engine, applying the temporal
restrictions imposed by the LET MoC to the models. As the figure shows, the PI-
TTM engine behaves as a layer above the PS-TTM engine that abstracts the PS-TTM
details to the designers, and performs the required transformations to the signals during
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simulation time in order to enable mixed abstraction-level simulation.
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CHAPTER 5
Testing and Simulated Fault Injection

Framework

The PS-TTM simulation platform includes a time-triggered testing and simulated fault
injection framework, with the aim to provide the testing teams an environment to assess
the fault-tolerance mechanisms implemented in their PS-TTM models. The testing and
simulated fault injection tool is called PS-TTM Automatic Test Executor (ATE). This
chapter describes the properties and specifications of the PS-TTM ATE.

5.1 The PS-TTM Automatic Test Executor (ATE)
The PS-TTM ATE has been built as an extension to the PS-TTM, with the goal of
enabling an accurate evaluation of the functional and non-functional properties of the
models in PS-TTM, with a special focus on their fault-tolerance properties.

The PS-TTM ATE gives the following three main properties to the testing teams:

• Non-intrusiveness: Non-intrusive fault injection techniques are the ones that
completely mask their presence, so that they have no effect on the system be-
havior apart from the faults they inject. Therefore, the model is not modified to
get the faults injected, which gives more reliable testing results.

• Availability for PIM and PSMs: Testing and simulated fault injection can be
applied to both platform independent and platform specific models, in order to
facilitate the detection of design flaws at the earliest stages of the design.

• Repeatability: The PS-TTM ATE provides repeatability to the testing and SFI
activities, which enables to prove that the bugs found in previous versions of the
models have been fixed in the newest versions.
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Figure 5.1: PS-TTM Automatic Test Executor

The PS-TTM ATE, which is shown in Figure 5.1, is composed by three different
modules: The Test Case Interpreter (TCI), the Test Point Manager (TPM) and the Fault
Injection Unit (FIU).

The interaction between the PS-TTM Automatic Test Executor and the test-engineers
is performed by the interactive Python shell provided by the ATE. Each of the modules
of the PS-TTM ATE provides different commands for the users to execute their func-
tionality.
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Test Case Interpreter (TCI)
The Test Case Interpreter is the module responsible for exercising the desired test cases.
As figure 5.2 shows, the TCI is composed by three main components:

• Test Case Parser

• Test Case Memory

• Test Case Data Generator

The TCI is capable of automatically running different test cases defined by the test-
ing engineers. During the initialization phase of the simulation, the test case parser of
the TCI reads the test case specified by the test-engineers and stores it in the test case
memory. Once the simulation starts, the data-generator feeds the SUT at each time tick
with the signals corresponding to the test case stored in the test case memory.

Test cases are defined in XML files. The syntax of the test cases is simple: any
time the test-engineers want to define a new value for an input, they have to first set the
instant at which the new value should be available as an input for the SUT. For each time
instant, any number of different inputs can be set. In case no value is set for an input
at a given instant, the TCI feeds the SUT with the previous value of the corresponding
input. Listing 5.1 shows an example of the syntax of these files.

User Interface

The Test Case Interpreter provides the following commands to interact with the ATE via
the Python shell:

• void LoadTestCaseDescriptionFile(string file): This instruc-
tion enables to specify which test case needs to be run by the TCI. The command
accepts both absolute and relative paths to the test case configuration file, or, in
case the desired test case configuration file is located in the same directory as the
compiled PS-TTM model (executable file), just the name of the file.
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Listing 5.1: Example of test case configuration file (XML file)
< !−− TEST CASE −−>
< T e s t C a s e >

< Se tup i n s t a n t =" 0 .000 ">
< S e t V a r i a b l e =" Encoder1 " Value=" 0 " / >
< S e t V a r i a b l e =" Encoder2 " Value=" 0 " / >
< S e t V a r i a b l e =" A c c e l e r a t i o n " Value=" 0 " / >
< S e t V a r i a b l e =" NewBalise " Value=" 0 " / >
< S e t V a r i a b l e =" B a l i s e P o s i t i o n " Value=" 0 " / >
< S e t V a r i a b l e =" G r o u n d I n c l i n a t i o n " Value=" 0 " / >
< S e t V a r i a b l e =" N e x t B a l i s e P o s i t i o n " Value=" 0 " / >

< / Se tup >
< !−− More i n p u t s migh t be d e f i n e d be tween t h e s e t i m e s tamps −−>
< Se tup i n s t a n t =" 95 .750 ">

< S e t V a r i a b l e =" Encoder1 " Value=" 361 " / >
< S e t V a r i a b l e =" Encoder2 " Value=" 361 " / >
< S e t V a r i a b l e =" A c c e l e r a t i o n " Value=" 1 .97327 " / >

< / Se tup >
< Se tup i n s t a n t =" 96 .000 ">

< S e t V a r i a b l e =" Encoder1 " Value=" 365 " / >
< S e t V a r i a b l e =" Encoder2 " Value=" 365 " / >
< S e t V a r i a b l e =" A c c e l e r a t i o n " Value=" 1 .95508 " / >
< S e t V a r i a b l e =" NewBalise " Value=" 1 " / >
< S e t V a r i a b l e =" B a l i s e P o s i t i o n " Value=" 2000 " / >
< S e t V a r i a b l e =" G r o u n d I n c l i n a t i o n " Value=" 0 " / >
< S e t V a r i a b l e =" N e x t B a l i s e P o s i t i o n " Value=" 3500 " / >

< / Se tup >
< Se tup i n s t a n t =" 96 .250 ">

< S e t V a r i a b l e =" Encoder1 " Value=" 369 " / >
< S e t V a r i a b l e =" Encoder2 " Value=" 369 " / >
< S e t V a r i a b l e =" A c c e l e r a t i o n " Value=" 1 .93706 " / >
< S e t V a r i a b l e =" NewBalise " Value=" 0 " / >
< S e t V a r i a b l e =" B a l i s e P o s i t i o n " Value=" 0 " / >
< S e t V a r i a b l e =" G r o u n d I n c l i n a t i o n " Value=" 0 " / >
< S e t V a r i a b l e =" N e x t B a l i s e P o s i t i o n " Value=" 0 " / >

< / Se tup >
< Se tup i n s t a n t =" 96 .500 ">

< S e t V a r i a b l e =" Encoder1 " Value=" 373 " / >
< S e t V a r i a b l e =" Encoder2 " Value=" 373 " / >
< S e t V a r i a b l e =" A c c e l e r a t i o n " Value=" 1 .91921 " / >

< / Se tup >
< Se tup i n s t a n t =" 96 .750 ">

< S e t V a r i a b l e =" Encoder1 " Value=" 377 " / >
< S e t V a r i a b l e =" Encoder2 " Value=" 377 " / >
< S e t V a r i a b l e =" A c c e l e r a t i o n " Value=" 1 .90151 " / >

< / Se tup >
< !−− T e s t Case c o n t i n u e s . . . −−>

< / T e s t C a s e >
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• void Confirm(void): This command is used to notify the TCI that the setup
of the test case configuration is finished. When this command is sent to the TCI,
it informs the ATE that it is ready to start. When the ATE receives the same notifi-
cation from the other modules, the initialization phase finishes and the simulation
begins. Therefore, it is mandatory to send this command in order to ensure the
simulation will start.

• void SetSignal(string signal, float value): Besides the au-
tomatic interpretation of the test cases defined by test engineers, the TCI enables
setting the input signals of the SUT interactively during simulation. This com-
mand is used for that purpose. In case a non-existing signal is specified by the
user, the command is ignored.

Fault Injection Unit (FIU)
The FIU provides simulated fault injection capabilities to the ATE. Specifically, the FIU
enables the test-engineers injecting different types of faults in the internal signals of the
SUT. As figure 5.3 shows, this module is composed by 4 components:

• Fault Injection Parser

• Fault Injection Set

• FI Set Interpreter & Fault Injector

• Fault Libraries

The fault injection parser reads the fault configuration files (XML files) during the
initialization phase of the simulation, and stores the fault injection campaign defined
by the test engineers in its memory. Once the simulation starts, the PS-TTM engine
automatically diverts the signals inside the SUT to the FI Set Interpreter & Fault Injector,
which compares the properties of the received signals and the current time-stamp of the
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simulation with the Fault Injection Set stored in the memory. In case a fault has to
be injected, the fault injector sabotages the signal as required according to the fault
effect specified in the fault injection campaign. To do so, the FIU includes a set of fault
libraries for both platform independent and platform specific models. Once the signal
has been corrupted, it is sent back to the SUT. This way, the fault injection process
follows a non-intrusive approach, since the model of the system does not suffer any
modification for the fault injection activities.

Besides, this process is performed in zero simulation time, which guarantees that
the temporal properties of the system are not affected by the fault injection process and
remain intact when faults are applied.

The FIU supports two different fault modes: transient and permanent. Permanent
faults are assumed to remain active until the simulation ends, and therefore they only
need to specify their trigger time. However, Transient faults are temporary misbehav-
iors, so their configuration requires to specify a duration in addition the triggering in-
stant. Once the injection of a transient fault is finished, the signal affected by the fault
returns back to a non-faulty state.

The selected XML schema for the definition of fault injection campaigns complies
with the international ASAM AE HIL standard for hardware-in-the-loop testing. Al-
though the aim of this work is not to perform fault injection at hardware-in-the-loop
level, sticking to the standard enables forward reuse of the fault injection campaigns
until the final prototyping phase. In order to ease the definition of the fault injection
specification, a graphical user interface and automatic XML code generation tool has
been developed in this work, which is further described in chapter 6. Anyway, since
the FI campaigns can be defined by hand, the following paragraphs describe the schema
followed by the fault-configuration files. Listing 5.2 shows an example of a fault con-
figuration file.

The fault injection campaigns are structured in three blocks: A fault configuration
with fault sets, faults and locations.

The fault configuration may include one or more fault sets. Each fault set, defined
by the FaultSet tag, specifies a name, a fault mode, a triggering instant, and references
to one or more faults. The fault mode must be specified either as TRANSIENT or
PERMANENT. Therefore, in case the fault mode is set to TRANSIENT the fault set must
also specify a duration for the fault in addition to the rest of configuration parameters.

A set of faults might be defined in the Faults block. Each fault must specify a unique
id, a name, a fault effect from the fault libraries (see section 5.2) and a set of attributes
that depend on the specific effect of the fault. In case the fault configuration is defined
by means of the GUI, the XML generator automatically sets the unique id of each fault
in order to avoid duplicates.

The last block specifies a set of locations where the faults might be injected. Each
location must define a unique id, which is also given by the GUI, and the hierarchical
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Listing 5.2: Example of fault configuration file (XML file)
< !−− FAULT CONFIGURATION −−>
< F a u l t C o n f i g u r a t i o n >

< F a u l t S e t >
<Name>FC4< / Name>
<Faul tMode>TRANSIENT< / Faul tMode>
< D u r a t i o n > 4 . 0 < / D u r a t i o n >
< T r i g g e r I n s t a n t > 8 6 . 0 < / T r i g g e r I n s t a n t >
< F a u l t r e f ="_p5LWtRbKEeOw28kCcXd1kQ" / >

< / F a u l t S e t >
< / F a u l t C o n f i g u r a t i o n >
< !−− FAULTS −−>
< F a u l t s >

< F a u l t i d ="_p5LWtRbKEeOw28kCcXd1kQ">
<Name> i 4 < / Name>
< L o c a t i o n r e f ="_LeWBYBbJEeOEgpzBm6gXmA" / >
< F a u l t E f f e c t > I n t e g e r _ C o n s t a n t < / F a u l t E f f e c t >
< C o n s t a n t V a l u e >600< / C o n s t a n t V a l u e >

< / F a u l t >
< / F a u l t s >
< !−− FAULT LOCATIONS −−>
< L o c a t i o n s >

< L o c a t i o n i d ="_LeWBYBbJEeOEgpzBm6gXmA">
<Component> s y s t e m _ r a i l w a y s s . d a s _ s u p e r v . das_odo . job_odo < / Component>
< Por tType > I n p u t < / Por tType >
< E n t i t y >DAS_ODO_ENCODER1< / E n t i t y >

< / L o c a t i o n >
< / L o c a t i o n s >

location of the component that must simulate a faulty behavior. In the case of faults from
the PIM library, which are related to signals, the name of the entity to be sabotaged and
its port type (input or output) also need to be specified.

It is worth to note that the definition of a fault campaign is optional. In case no
fault-campaign is specified at the beginning of the simulation, a fault-free simulation is
driven by the ATE.

User Interface

The Fault Injection Unit provides the following instructions to enable the users to inter-
act with the ATE via the Python shell:

• void LoadFIDescriptionFile(string file): This command enables
to specify which fault injection configuration is going to be loaded and executed
by the TCI. Similarly to the TCMI, this command accepts both absolute and rela-
tive paths for the specification of the fault injection configuration file. This com-
mand might be called more than once, enabling the testing teams to run more
than one fault injection campaign in a simulation. On the other hand, if the
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Confirm() command is called without specifying any FI campaign file, the
ATE will run a fault-free simulation.

• void Confirm(void): This instruction is used to inform the FIU that the
setup of the fault injection campaign is finished. When this command is sent to
the FIU, the FIU notifies the ATE that it is ready to start. When the ATE receives
the same notification from the other modules, the initialization phase finishes and
the simulation begins. Therefore, it is mandatory to send this command in order
to ensure the simulation will start.

Fault Configuration meta-model

Figure 5.4 shows the generic UML meta-model of the Fault Injection Configuration
files.

Test Point Manager (TPM)
The Test Point Manager (TPM) is the module that enables to observe the evolution of the
internal signals of the SUT as the time flows. The TPM is composed by the following
three submodules (see figure 5.5):

• Test Point Parser

• Test Point Set

• Test Point Set Interpreter & Data Recorder

Similarly to the TCI and FIU, the configuration of the test points is read by the
Test Point Parser and saved in the Test Point Set during the initialization phase. Dur-
ing simulation the TP Set Interpreter identifies each signal of the SUT and sends the
data of the signals specified in the TP Set to the Data Recorder, which stores the values
of each signal along with its time stamp. When the simulation finishes, the TPM cre-
ates a value-change-dump file (*.vcd) with all the data collected during simulation, in
order to enable the test engineers to assess the emerging behavior of the system. The
value-change-dump file format is an industrial standard format that captures information
about the value changes of signals and waveforms. Several SW programs are capable
of interpreting .vcd files, e.g., GTKWave [wwwk] (open source), EZWave (by Mentor
Graphics) [wwwj], or SimVision (by Cadence) [wwwz].

Analogously to the FIU, the TPM reads the values of the internal signals of the
SUT every time a job reads or writes a signal. Therefore, the specification of the test
point locations, which is also defined in XML files, follows the next scheme: First, the
file must specify the hierarchical location of the job that will read or write the signal.
For each job, a set of entities (signal names) might be specified, distributed in groups
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Figure 5.5: Test Point Manager Module

of inputs and outputs. The explicit specification of the job that will read or write the
signal avoids ambiguities in the case in which a given name is repeated between ports of
different jobs; moreover, specifying whether the signal is treated as an input or output
by the job enables distinguishing between the reading and writing activities of a job,
which might be useful in systems where a given job reads a variable at the beginning of
its execution and re-writes the same variable at the end. Listing 5.3 shows an example
of the syntax of these files.

User Interface

Users are allowed to interact with the Test Point Manager by the following commands:

• void LoadTPDescriptionFile(string file): This command enables
to establish the test-point specification file that will be loaded by the TPM, that
is, enables specifying the signals that will be observed. Similarly to the other
modules, the paths to the TP specification file can be specified as relative to the
executable of the model or as absolute paths. This command might be called more
than once; in that case, all signals specified in all the files would be recorded. On
the contrary, if this command was not called before Confirm(), the ATE would
run a simulation but no information about the internal signals would be stored.

• void SetTraceFileName(string filename): This command enables
specifying a name for the value-change-dump file provided by the TPM with
the evolution of the values of the signals over the simulation. This command
is mandatory unless no test-point specification file is stated for the simulation.

• void Confirm(void): This instruction is used to inform the TPM that the
setup of the test-point configuration is finished. When this command is sent to the
TPM, it notifies the ATE that it is ready to start. When the ATE receives the same
notification from the other two modules, the initialization phase finishes and the
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Listing 5.3: Example of test points specification file (XML file)
<!-- TEST POINT LOCATIONS -->
<Locations>

<!-- NODE_EVC_A -> PROC -> CORE1 -> JOB_ODOMETRY -->
<Job hierarchy="systemTSS.clusterEVC.nodeEVCA.procA.core1.jobODO">

<Inputs>
<Entity>DAS_EVC_IN_ENC1</Entity>
<Entity>DAS_EVC_IN_ENC2</Entity>
<Entity>DAS_EVC_IN_ACCEL</Entity>
<Entity>DAS_EVC_IN_BAL_NEWBAL</Entity>
<Entity>DAS_EVC_IN_BAL_POS</Entity>
<Entity>DAS_EVC_IN_BAL_INCL</Entity>
<Entity>DAS_EVC_IN_BAL_NEXTPOS</Entity>

</Inputs>
<Outputs>

<Entity>DAS_EVC_ST_S</Entity>
<Entity>DAS_EVC_ST_V</Entity>

</Outputs>
</Job>
<!-- NODE_VOT_A -> PROC -> CORE -> JOB_VOTER_A -->
<Job hierarchy="systemTSS.clusterEVC.nodeVotA.procVotA.coreVotA.jobVotA">

<Inputs>
<Entity>CORE_VOTERA_IN_EMERG_A</Entity>
<Entity>CORE_VOTERA_IN_EMERG_B</Entity>
<Entity>CORE_VOTERA_IN_EMERG_C</Entity>
<Entity>CORE_VOTERA_IN_SERV_A</Entity>
<Entity>CORE_VOTERA_IN_SERV_B</Entity>
<Entity>CORE_VOTERA_IN_SERV_C</Entity>
<Entity>CORE_VOTERA_IN_WARN_A</Entity>
<Entity>CORE_VOTERA_IN_WARN_B</Entity>
<Entity>CORE_VOTERA_IN_WARN_C</Entity>

</Inputs>
<Outputs>

<Entity>CORE_VOTERA_OUT_EMERG</Entity>
<Entity>CORE_VOTERA_OUT_SERV</Entity>
<Entity>CORE_VOTERA_OUT_WARN</Entity>
<Entity>CORE_VOTERA_OUT_FAILURE</Entity>
<Entity>CORE_VOTERA_OUT_SYSTEMFAILURE</Entity>

</Outputs>
</Job>
<!-- NODE_VOT_B -> PROC -> CORE -> JOB_VOTER_B -->
<Job hierarchy="systemTSS.clusterEVC.nodeVotB.procVotB.coreVotB.jobVotB">

<Inputs>
<Entity>CORE_VOTERB_IN_EMERG_A</Entity>
<Entity>CORE_VOTERB_IN_EMERG_B</Entity>
<Entity>CORE_VOTERB_IN_EMERG_C</Entity>
<Entity>CORE_VOTERB_IN_SERV_A</Entity>
<Entity>CORE_VOTERB_IN_SERV_B</Entity>
<Entity>CORE_VOTERB_IN_SERV_C</Entity>
<Entity>CORE_VOTERB_IN_WARN_A</Entity>
<Entity>CORE_VOTERB_IN_WARN_B</Entity>
<Entity>CORE_VOTERB_IN_WARN_C</Entity>

</Inputs>
<Outputs>

<Entity>CORE_VOTERB_OUT_EMERG</Entity>
<Entity>CORE_VOTERB_OUT_SERV</Entity>
<Entity>CORE_VOTERB_OUT_WARN</Entity>
<Entity>CORE_VOTERB_OUT_FAILURE</Entity>
<Entity>CORE_VOTERB_OUT_SYSTEMFAILURE</Entity>

</Outputs>
</Job>

</Locations>
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Figure 5.6: UML Meta-model of Test Point Configuration XML files

simulation begins. Therefore, it is mandatory to send this command in order to
guarantee that the simulation will start.

Fault Configuration meta-model

Figure 5.6 shows the generic meta-model of the Test Point Configuration files in UML
language.

5.2 Fault Injection Libraries
As mentioned in the previous section, the Fault Injection Unit of the ATE provides
libraries of faults for both platform independent and platform specific models. This
way, test engineers can invoke a fault by just specifying the name of the desired fault
effect in the fault-configuration XML file, and they do not need to model the effect of
the fault explicitly. This increases the usability of the PS-TTM ATE framework.

Fault Library for Platform Independent Models
Since platform independent models do not cover any aspect related to the target plat-
form in PS-TTM, the library of faults focuses on faults at signal levels. This fault
library draws on the failure mode functions (FMFs) defined in the MOGENTES project
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[MOG09]. These failure modes represent the “effects of faults/errors that would lead
to a failure in a system”. The fault library for PIMs specifies faults for signals carrying
boolean, integer and floating-point variables:

Fault Effects for Boolean Signals

• Inversion:

– Name of the effect: Boolean_Invert

– Configuration parameters: None

– Description: The boolean value of the signal is inverted (i.e., it is changed
from ‘false’ to ‘true’ or vice-versa).

– Usage: This fault effect can be used to simulate bit flips in memory cells,
such as Single Event Upsets (SEUs) induced by energetic particles.

• Stuck At:

– Name of the effect: Boolean_StuckAt

– Configuration parameters:

∗ StuckValue: Boolean

– Description: The signal gets stuck at the value given by the StuckValue
parameter, which must be set to either ‘false’ or ‘true’.

– Usage: The ‘Stuck At’ fault effect is used to reproduce a failure in a memory
cell or connector that provokes a given data to stuck at a constant value.

• Stuck:

– Name of the effect: Boolean_Stuck

– Configuration parameters: None

– Description: The signal gets stuck at the value the variable had at the time
step in which the fault was injected.

– Usage: ‘Stuck’ can be used to reproduce the effect of a communication loss
between two components, what would result in keeping the value of the
variable unaltered.

• Stuck If:

– Name of the effect: Boolean_StuckIf

– Configuration parameters:

∗ StuckValue: Boolean
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∗ IfValue: Boolean

– Description: In case the signal has the value defined by the IfValue pa-
rameter at the instant at which the fault is injected, it gets stuck at the value
defined by StuckValue. Else, the signal does not get stuck and thus no
fault is injected.

– Usage: This fault effect can be used to simulate different phenomena also
reproduced by ‘Stuck’ and ‘Stuck At’ effects. In addition, ‘Stuck If’ gives a
bigger freedom to the test developers to control the activation of the fault by
choosing a required pre-condition for it.

• Open Circuit:

– Name of the effect: Boolean_OpenCircuit

– Configuration parameters: None

– Description: The signal behaves as a non-connected wire, i.e., it might take
any value arbitrarily.

– Usage: This fault effect is used to simulate different situations in which a
signal can get a random value, such as a broken wire, a defective connection
or a communication through a very noisy environment.

• Delay:

– Name of the effect: Boolean_DelayHold

– Configuration parameters:

∗ Delay: Float

– Description: The sequence of values of the signal is delayed by the amount
of time defined by the Delay parameter. When the fault is injected, the
value of the signal gets stuck until the Delay time has passed, and the
fault injector starts storing the sequence of values of the signal in an internal
FIFO buffer. Once the Delay time finishes, the fault injector begins to
forward values of its FIFO buffer to the signal at each time step. The fault
injector remains buffering the sequence of values received from the signal
and returning the old values to the signal until the fault injection activity
finishes, i.e., until the simulation finishes in the case of permanent faults, or
until the Duration specified in the fault configuration is completed.

– Usage: This fault effect can be used to simulate delays introduced by a data-
traffic overhead in the communication system or by the excessive length of
wires.
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Fault Effects for Integer & Floating Point Signals

• Constant:

– Name of the effect: Integer_Constant / Float_Constant

– Configuration parameters:

∗ ConstantValue: Integer / Float

– Description: The value of the signal gets stuck at the value given by the
ConstantValue parameter.

– Usage: This fault effect can be used to simulate several different situations,
such as a broken encoder that keeps providing a constant value to the system,
a faulty sensor measuring a constant value, or a rotational component that is
blocked by an external object.

• Amplification:

– Name of the effect: Integer_Amplification /
Float_Amplification

– Configuration parameters:

∗ AmplificationValue: Integer / Float

– Description: The value of the signal gets multiplied by a the value provided
by the AmplificationValue parameter.

– Usage: The amplification fault effect can simulate a number of faults, e.g.
erroneous sensor positioning and/or orientation, wrong parametrization of
components, bugs due to misunderstanding of paramenter units, etc.

• Amplification Range:

– Name of the effect: Integer_AmplificationRange /
Float_AmplificationRange

– Configuration parameters:

∗ minValue: Integer / Float
∗ maxValue: Integer / Float

– Description: The value of the signal is amplified by a value randomly se-
lected from the interval given by the user, i.e., [minValue, maxValue].

– Usage: This fault effect is mainly used to introduce noise in signals.

• Drift:

– Name of the effect: Integer_Drift / Float_Drift
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– Configuration parameters:

∗ DriftValue: Integer / Float

– Description: The value of the signal drifts away from its real value, by in-
crementing the previous value of the signal with the value specified by the
DriftValue parameter at each time step.

– Usage: This effect is used to simulate incremental faults in components,
such as a failure in a counter that causes it to count more events than it
should at each iteration.

• Offset:

– Name of the effect: Integer_Offset / Float_Offset

– Configuration parameters:

∗ OffsetValue: Integer / Float

– Description: The fixed value provided as the OffsetValue is added (or
substracted if negative) to the actual value of the signal, thus introducing an
offset to the actual value of the signal.

– Usage: This fault effect can be used to reproduce situations in which a sensor
has not been correctly calibrated.

• Offset Range:

– Name of the effect: Integer_OffsetRange / Float_OffsetRange

– Configuration parameters:

∗ minValue: Integer / Float
∗ maxValue: Integer / Float

– Description: A value randomly selected between the [minValue, maxValue]
set is added to the actual value of the signal.

– Usage: This fault effect is mainly used to introduce noise in signals.

• Stuck:

– Name of the effect: Integer_Stuck / Float_Stuck

– Configuration parameters: None

– Description: The signal gets stuck at the value the variable had at the time
step in which the fault was injected.

110



– Usage: This fault effect can be used to simulate several different situations,
such as a broken encoder that keeps providing a constant value to the system,
a faulty sensor measuring a constant value, or a rotational component that is
blocked by an external object.

• Random:

– Name of the effect: Integer_Random / Float_Random
– Configuration parameters:
∗ minValue: Integer / Float
∗ maxValue: Integer / Float

– Description: The signal takes an arbitrary value from the set specified by
[minValue, maxValue].

– Usage: This fault effect is used to reproduce situations in which a signal can
get a random value, such as a broken wire or a defective electrical connec-
tion.

• Delay:

– Name of the effect: Integer_DelayHold / Float_DelayHold
– Configuration parameters:
∗ Delay: Float

– Description: The sequence of values of the signal is delayed by the amount
of time defined by the Delay parameter. When the fault is injected, the
value of the signal gets stuck until the Delay time takes over, and the fault
injector starts storing the sequence of values of the signal in an internal FIFO
buffer. Once the Delay time finishes, the fault injector begins to forward
values of its FIFO buffer to the signal at each time step. The fault injector
remains buffering the sequence of values received from the signal and re-
turning the old values to the signal until the fault injection activity finishes,
i.e., until the simulation finishes in the case of permanent faults, or until the
Duration specified in the fault configuration is completed.

– Usage: This fault effect can be used to simulate delays introduced by a data-
traffic overhead in the communication system or by the excessive length of
wires.

The fault library natively provided by the PS-TTM ATE for platform independent
models covers a wide range of failures that are likely to occur in systems, and pro-
vides a straightforward and easy way to simulate them at a platform independent level.
However, in case it is needed, this library might be extended to new fault models.

Table 5.1 summarizes the fault library for platform independent models.
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Table 5.1: Fault library for platform independent models

Fault Effect Config. parameters Description
Invert - Boolean value is inverted
Stuck At stuck_value Signal gets stuck at a given value
Stuck - Signal gets stuck at the actual value
Stuck If stuck_value, condition Signal gets stuck if a given condition holds
Open Circuit - Wire is disconnected, signal takes an arbitrary value (noise)

B
oo

le
an

Delay delay Signal is delayed by an amount of time
Constant constant_value Signal gets stuck at a given constant value
Amplification ampl_value Signal is amplified by fixed value
Amplification Range min_amp_value,

max_ampl_value
Signal is amplified by a randomly selected value (between
given max. and min. values)

Drift drift_value At each time stepc, the signal drifts away from its nominal
value by a given value

Offset offset_value A given fixed offset is added to the signal
Offset Range min_offset_value,

max_offset_value
A randomly selected offset value is added to the signal (be-
tween given max. and min. values)

Stuck - Signal gets stuck at the actual value
Random min_value, max_value Signal takes an arbitrary value (between given max. and min.

values)

In
te

ge
r

/F
lo

at

Delay delay Signal is delayed by an amount of time

Fault Library for Platform Specific Models

As explained in section 4.5, the platform specific models of the PS-TTM rely on HW
components specified at a high abstraction level. Hence, the fault library for PSMs
is composed by the high-level effects to which HW-related faults have been typically
reduced in the literature. This leads to a fault library composed by four main fault
effects. However, since it is possible to extend the platform specific component library
with more detailed models of HW components, the fault library may also be extended
in order to perform fault injection at a lower level of abstraction, which would give a
bigger level of control to the test engineers for the injection of faults at HW components.

Even though the faults provided by the PSM fault library refer to faults in HW com-
ponents, as mentioned before, the PS-TTM ATE performs fault injection during the
communication phases of the simulation. Therefore, the ATE emulates faulty HW com-
ponents by sabotaging all their outgoing signals according to the fault effect specified
in the fault configuration. In other words, from the perspective of the PS-TTM ATE, a
faulty HW component is a black box whose push activities are all sabotaged, thus giving
the illusion of being a faulty component. This approach provides an equivalent effect to
modifying the HW component models in order to simulate an erroneous behavior. Nev-
ertheless, it has the advantage that it is a non-intrusive approach, i.e., it does not require
to perform any modification to the model, such as substituting the correct component
by an erroneous one (mutant based fault injection).

The fault library for PSMs is composed by the following effects:
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• Corruption:

– Name of the effect: HW_Corruption

– Configuration parameters: None

– Description: The data provided by the interfaces of the HW component is
corrupted.

– Usage: This fault effect enables to reproduce a situation in which the func-
tionality of the hardware component performs incorrectly. Thus, it can be
used to simulate different situations that can provoke a faulty behavior in
the value domain, such as noisy environments or defective electrical con-
nections.

• No execution:

– Name of the effect: HW_NoExecution

– Configuration parameters: None

– Description: The functionality of the HW component is not executed. No
data is provided in the output interfaces.

– Usage: This fault effect can be used to simulate errors caused by faults in
power supplies, cuts in wires, or misbehaviors of HW components due to
corrupted or incorrect data.

• Out of time:

– Name of the effect: HW_OutOfTime

– Configuration parameters:

∗ Delay: Float

– Description: The time bounds of the functionality are not respected, i.e.,
data is provided later than expected. The Delay parameter establishes the
width of the time-lapse. The fault is injected as follows: when the fault is
triggered, the value of the signals provided by the HW component get stuck
until the Delay time takes over, and the fault injector begins to store the
sequence of values of each of the signals in a dedicated FIFO buffer. Once
the Delay time finishes, the fault injector begins to forward values of each
buffer to its corresponding signal at each time step.

– Usage: The ‘Out of Time’ fault effect can be used to introduce a delay in the
response of a HW component, which reproduces the effect of a number of
anomalies in the system, such as an overload of the CPU, an excess of traffic
in the communication system, or any other timing-related error caused by a
misbehavior of a component.
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Table 5.2: Fault library for PSM models

Fault Effect Conf. parameters Description
Corruption - The functionality is performed incorrectly. The data provided by the output in-

terface is corrupted.
No execution - The functionality is not executed. No information is provided as a result.
Out of time Delay Time bounds of the functionality are not respected. Data is provided later than

expected.
Babbling Delay Data in the interface is erroneous both in terms of content and time.

• Babbling:

– Name of the effect: HW_Babbling

– Configuration parameters:

∗ Delay: Float

– Description: The data provided by the output interfaces of the HW compo-
nent is incorrect both in terms of content and time. This fault effect can be
understood as a combination of the ‘Corruption’ and ‘Out of Time’ faults,
where the Delay parameter again establishes the width of the time-lapse.

– Usage: This fault effect can be used to simulate environments with very
unfavorable conditions, such as those including big levels of noise (which
would lead to corruption of data) and overhead of data-traffic in communi-
cations (which would cause the system to miss required deadlines).

As mentioned previously, the library of faults for platform specific models can be
extended with more detailed models in case the designers specified lower level HW
components in their designs. In addition to that, platform specific models can make use
of the library of faults for the platform independent models, which enables to validate
the PSMs against lower-level faults. As a consequence of this compatibility between
PSMs and the PIM-related fault library, the fault campaigns used during the verification
of a system at a platform independent level can be re-used for the verification of the
PSM of the same system, in order to guarantee that the functional properties of the
system were not compromised when transforming the PIM into the PSM.

Since the fault effects defined in the library of faults for platform specific models
refer to faults in HW components, the specification of a PortType and an Entity for this
type of faults gets meaningless. Therefore, the FIU ignores the two mentioned fields
during the construction of the fault injection set. In fact, if a fault location is only
referenced by PSM related fault effects in a fault campaign, these parameters can be left
undefined in the fault configuration file, as Listing 5.4 shows.

Table 5.2 provides a brief summary of the fault library for platform specific models.
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Listing 5.4: Example of fault configuration file with HW related fault
< !−− FAULT CONFIGURATION −−>
< F a u l t C o n f i g u r a t i o n >
< F a u l t S e t >

<Name>FC37< / Name>
<Faul tMode>PERMANENT< / Faul tMode>
< D u r a t i o n >< / D u r a t i o n >
< T r i g g e r I n s t a n t > 120 .0 < / T r i g g e r I n s t a n t >
< F a u l t r e f =" hV4tRVQKifNGh5L1vztK " / >

< / F a u l t S e t >
< / F a u l t C o n f i g u r a t i o n >
< !−− FAULTS −−>
< F a u l t s >

< F a u l t i d =" hV4tRVQKifNGh5L1vztK ">
<Name> o u t o f t i m e 6 < / Name>
< L o c a t i o n r e f ="ZjYD4BVP03DD4Tbw0Uon" / >
< F a u l t E f f e c t >HW_OutOfTime< / F a u l t E f f e c t >
<Delay > 0 . 5 0 < / Delay >

< / F a u l t >
< / F a u l t s >
< !−− FAULT LOCATIONS −−>
< L o c a t i o n s >

< L o c a t i o n i d ="ZjYD4BVP03DD4Tbw0Uon">
<Component> s y s t e m _ r a i l w a y s s . c l r a i l . nodeevcC . p r o c e v c . coreA< / Component>
< Por tType >< / Por tType >
< E n t i t y >< / E n t i t y >

< / L o c a t i o n >
< / L o c a t i o n s >

5.3 Symmetric and Asymmetric Fault Injection

When a signal provided by a job is forwarded to more than one component, it has to
be replicated in different channels. In case of a fault in such a signal, the consistency
between the values read by the receiving components might be compromised. When the
incorrect service is equally perceived by all the consumers, the failure is considered con-
sistent; on the contrary, if some of the receivers perceive differently incorrect service,
the failure is called inconsistent failure or more frequently ‘byzantine failure’ [LSP82].
Byzantine failures are the most difficult ones to handle, since they have the potential
to confuse the correct components. In fact, in extreme cases, a receiver might classify
the failing component as erroneous whereas another receiver might identify it as cor-
rect, thus leading to an inconsistent view of the failed component among the correct
components.

[Kop11] provides a good example of the danger of byzantine failures. Assume a
system in which a sender outputs a voltage value to several receivers through a bus. In
case the voltage of the high-level output of a sender is slightly below the level specified
for the high-level state, then some receivers might still accept the signal, assuming the
value of the signal is high, while others might not accept the signal, assuming the value
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(a) Symmetric Fault Injection

(b) Asymmetric Fault Injection (Inconsistent classi-
fication of erroneous component)

(c) Asymmetric Fault Injection (Inconsistent classi-
fication of failure)

Figure 5.7: Symmetric and Asymmetric Fault Injection

is not high. This leads to an inconsistent view of the system among the receivers, which
are correct.

As explained in the previous sections, the FIU of the PS-TTM ATE enables the
testing teams to inject faults in any signal of the system under test. This fact opens
the possibility to perform both symmetric and asymmetric fault injection in the models,
depending on if the fault is injected at the instant in which a signal is being sent or when
it is being received, as figure 5.7 ilustrates:

The ability to perform asymmetric fault injection opens the possibility to reproduce
byzantine failures in the system under test, and therefore straightforwardly assess the
fault-tolerance provided by the system against byzantine faults.
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CHAPTER 6
Tooling

The PS-TTM simulation engine has been built as a library that extends SystemC with a
set of macros and mechanisms that helps the designers in the definition of the models.
Besides this, a set of tools has been developed in order to assist the designers during
the development and testing processes of the systems. This chapter introduces the tools
developed during this research work.

6.1 Graphical SFI Campaign Designer Tool

Manual generation of complete Simulated Fault Injection campaigns in textual XML
specifications might be a cumbersome and error-prone task for users of a new testing
system. Therefore, in order to ease the generation of SFI campaigns, a graphical SFI
campaign-specification tool has been developed. Figure 6.1 shows a screenshot of the
tool.

The tool, which has been built as a plugin for eclipse has been developed using
EMF/Ecore, following the meta-model of the SFI campaigns shown in Figure 5.4. Thus,
the tool enables to define a set of locations and faults, and then build the desired SFI
configuration by defining a number of fault sets to be applied to the simulation.

The tool includes a code generator for the SFI campaigns, which automatically gen-
erates an XML-file corresponding to the SFI designed by the test developers. This way,
hand coding of XML files is avoided and the execution of the campaigns designed with
the tool can be performed in a transparent way for the user, avoiding errors and easing
the definition of such campaigns.
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Figure 6.1: Simulated Fault Injection Configuration Tool

6.2 Test Case Generator Script

Manual generation of test cases in a self-defined language might be an unmanageable
task, especially if the system under test is not restricted to digital signals. For example,
if a model under test requires a value of temperature as an input, manually specifying
the evolution of the temperature over time at each time stamp would be infeasible. Thus,
it would be reasonable to generate a model of a heater/cooler and simulate it in order to
get a progressive evolution of the temperature over time.

Since the PS-TTM runs on SystemC and it is fully compatible with it, it offers the
possibility to model the environment running in continuous time directly in SystemC-
AMS, and simulate the model under test and the plant simultaneously. However, ex-
perience shows that this might increase the simulation time dramatically, particularly if
the environmental model is not very simple.

Hence, it is a common practice in industry to design test campaigns by the imple-
mentation of test harnesses in dedicated tools that rely on the continuous MoC, such as
MATLAB/Simulink [wwwx], Spice [Nag75] or Dymola [wwwh], and run the environ-
mental model until it leads to the desired state.

Thus, in order to enable this practice for simulations with the PS-TTM-ATE, a
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test case generator script has been developed within the scope of this work. The test-
generator tool, which has been developed as a script in Python, basically takes the output
results recorded by a MATLAB/Simulink model simulation, and generates a PS-TTM
compliant XML file with the corresponding set of inputs. This way, the automatically
generated XML file can be directly read by the Test Case Interpreter of the PS-TTM
ATE, which will run the desired test case against the PS-TTM model.

6.3 Test Result Interpretation Scripts
In order to assess the behavior of the model under test, the Test Point Manager of the PS-
TTM ATE provides the results of the simulations as a value-change-dump file (*.vcd).
The value-change-dump file format is an industrial standard format that captures infor-
mation about the value changes of signals and waveforms. The ‘.vcd’ format can be
interpreted by a number of SW programs, such as GTKWave [wwwk] (open source),
EZWave (by Mentor Graphics) [wwwj], or SimVision (by Cadence) [wwwz].

However, in spite of being a standard, it is not very widely accepted by the SW com-
munity. In fact, proprietary tools with capabilities to run ‘.vcd’ files such as EZWave
(by Mentor Graphics) [wwwj], or SimVision (by Cadence) [wwwz], give preference to
their own proprietary formats, and offer limited functionality to ‘.vcd’ files.

Besides, the most extended open source tool for vcd files, GTKWave [wwwk], pro-
vides rather limited graph visualization options. The visualization options are specially
poor for non-digital signals.

Therefore, in order to extend the visualization capabilities and options of the simu-
lation results of the PS-TTM models, a vcd-to-csv file translator has been created during
this work. Comma-Separated-Values files (*.csv), are files that store tabular data (num-
bers and text) in plain-text form, and are more common than vcd files. CSV files can
be read by most of the spreadsheet application SW on the market, such as Microsoft
Office Excel [wwwp] and LibreOffice Calc [wwwn], or even by numerical computing
SW, such as MATLAB [wwwo]. These tools provide a huge number of diagram visual-
ization options and data transformation facilities. Thus, the vcd-to-csv translator greatly
improves the usability of the simulation results provided by the PS-TTM ATE.

6.4 Graphical Modeling Tool (alpha version)
Typing a whole time-triggered system design in plain text might become a tedious work,
particularly if the system is complex and has many interconnections. Thus, being able
to build the structure of the system by means of a graphical modeling tool would relax
the complexity of the design for the developers.
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With this goal in mind, the PS-TTM will contain a graphical front end. The graph-
ical user interface, which is currently under development, includes graphical modeling
capabilities for both PIM and PSM models. PIM models are built hierarchically, by
composition of Systems, DASes and jobs, which are depicted as blocks.

The generation of the PSM model is guided by the graphical tool in several manners.
First the user must define the target platform. Then, the GUI recalculates the temporal
properties of jobs, according to their previous specification in the PIM, and enables the
user to deploy them into the platform components. The temporal properties of jobs
might be modified by users if necessary.

Obviously, the graphical modeling tool includes automatic code generation capabil-
ities for both PIM and PSM models, in order to perform the required simulations and
fault injection experiments for their verification.

6.5 Integration of tools in the overall work-flow
Figure 6.2 shows how the previously described tools are integrated into the work-flow
specified by the PS-TTM approach.

As the figure shows, the design of the system should start with the specification
of the functional and non-functional requirements with a dedicated requirement man-
agement tool. Once the requirements have been identified, the testing teams can use
the graphical SFI campaign designer tool to define their SFI campaigns, and generate
the necessary environmental models with Simulink. When these tasks are finished, the
SFI XML code generator and test case generator script will automatically generate the
corresponding XML files for the evaluation of the system.

Simultaneously, the system designers can start the design of the PIM with the graphi-
cal modeling tool, and generate the textual PIM with the automatic code generator. The
PS-TTM ATE will take the SFI campaign, test cases and test-point configuration file
(developed manually), and perform the specified simulations by means of the PI-TTM
execution engine.

The results of the simulation can then be immediately translated into CSV files by
means of the vcd-to-csv translator. The test designers might then use any csv-compliant
software to analyze and validate the results, and suggest any modification to the system
in case the system does not fulfill any of the requirements.

If the PIM model is considered correct, it must be deployed into the platform model
by means of the graphical tool, and automatically generate the textual version of the
PSM. The PS-TTM ATE can then be used to execute the model against the test cam-
paigns defined from the functional and non-functional requirements, and the test devel-
opers can again use the vcd-to-csv translator in order to validate the results with their
favorite csv-compliant software.
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Figure 6.2: Integration of tools in the PS-TTM work-flow
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CHAPTER 7
Case Study

This chapter addresses the evaluation of the proposed PS-TTM modeling framework
and the PS-TTM Automatic Test Executor described in chapters 4 and 5 respectively, by
means of a case study consisting on a safety-critical railway signaling system [Per11],
and describes and analyzes the results obtained in the simulations.

7.1 European Train Control System (ETCS)
This section describes the European Train Control System (ETCS), which has been used
as a case study for the assessment of the proposed approaches.

The ETCS constitutes the on-board unit of the European Railway Traffic Man-
agement System (ERTMS), a European Union backed initiative for the definition of
a unique train signaling standard throughout Europe [WGR09]. The ETCS, prevents
over-speeding in high-speed trains by supervising the traveled distance and speed and
activating an emergency brake when the train exceeds the authorized values. The safety
requirements for the ETCS state that it shall be designed as a safety-critical embedded
system for safety integrity level 4 (SIL-4). In case a massive system failure occurs, the
system should reach the safe state in which the emergency brakes are applied and the
train is stopped. Thus, the system is classified as a fail-safe system.

Architecture of the ETCS
As Figure 7.1 illustrates, the ETCS is composed by several subsystems connected to the
central safety processing unit called European Vital Computer (EVC):

• European Vital Computer (EVC): is the locomotive central safety processing unit
that communicates with all subsystems and executes all safety functions associ-

123



EVC

BTM

DMI

JRU

TIU

interface
Train

GSM/RGSM/R

GSM/R
antennas

Eurobalise
Antenna

Radars

Figure 7.1: ETCS on-board reference architecture

ated to the traveling speed and distance supervision. The EVC executes the safety
kernel and includes the odometry subsystem, which estimates the distance trav-
eled by the train and its speed based on a set of diverse sensors.

• Driver Machine Interface (DMI): interface for the driver of the train, which is
periodically updated with state parameters such as traveling speed and position of
the train, and transmits sporadic event information (e.g., button pressed).

• Juridical Recorder Unit (JRU): subsystem responsible of recording all relevant
external events (e.g., new eurobalise message) and internal events (e.g., activate
emergency brake).

• Balise Transmission Module (BTM): this unit receives and interprets all the in-
formation provided by the eurobalises as the train passes them, and transmits it to
the EVC. The Loop Transmission Module (LTM) provides analogous functional-
ity with the data received from Euroloops.

• Global System for Mobile Communications - Railway (GSM/R): is an interface
for the management of bidirectional information exchange between the remote
control centers and the train.

• Train Interface Unit (TIU): reads / writes a set of input / output digital values,
such as the emergency brake digital output.

• Odometry Sensors: is a group of sensors consisting on encoders, Doppler radars
and longitudinal accelerometers that provide a set of measurements for angular
speed and acceleration, and send the measurement data to the EVC.
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Operating levels
The ETCS is specified to operate on three infrastructure deployment levels:

• ETCS Level 1: Eurobalises and optionally Euroloops are used by the infrastruc-
ture to communicate with the train via BTM and LTM, providing absolute position
and track condition information. The Eurobalises are standardized components
that are placed in specific locations of the railway. Every time the train passes
an eurobalise, the balise transmits a telegram with its data. The BTM captures
the telegram and transmits it to the EVC. The Euroloops work in a similar way
to the Eurobalises, but they are actually built as a cable that is installed along
the railway. This way, they extend the contact range of Eurobalises by providing
a semi-continuous signal transmission along up to 800 meters. Level 1 ETCS
systems do not include GSM/R communication.

• ETCS Level 2 and 3, extend previous level 1 by a GSM/R communication sys-
tem that provides all track and operation related data. Eurobalises are used for
odometric purposes, they provide absolute position information.

Functionality of the EVC
The functionality of the simplified version of the EVC used in this case study can be
summarized in 4 main tasks: estimation of the position and speed, control of the op-
erational mode, control of the emergency brake, and control of the service brake and
warnings.

• Speed and position estimation: This task is performed by the odometry subsys-
tem. In order to perform the estimation, the odometry subsystem gets the mea-
surements provided by the angular speed encoders located in the wheels of the
train and a longitudinal accelerometer placed in the chassis. Besides, in case a
BTM detects a balise in the railway, the odometry subsystem reads its informa-
tion and overwrites its estimated position with the one provided by the balise.
According to the current standard, the maximum error made in the estimation of
the position should not exceed five percent of the traveled distance plus 5 me-
ters, at a maximum speed of 500km/h. Equation 7.1 shows the accuracy required
by the standard, where sm(t) represents the position estimated by the odometry
system at instant t, and s(t) represents the actual position of the train at instant t:

∀t, |sm(t)− s(t)| ≤ 5m+ (5/100) · s(t) (7.1)

• Operational mode control: This task must activate the Standby or Supervision
operational modes depending on the command sent by the driver via the DMI.
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The active mode is sent both to the Emergency and Service brake control units.
The Standby mode is supposed to be active when the train is stopped, since it
activates the emergency brake and deactivates the warnings and service brakes.
In Supervision mode, the EVC supervises the current speed and position of the
train and activates the warning and brakes when the maximum permitted speed
values are exceeded.

• Emergency brake control: The emergency brake control unit implements the
safety-critical (SIL-4) functionality of the system. To do so, it receives the in-
formation about the position and speed estimated by the odometry system, the
Standby and Supervision activation signals from the mode control unit, and the
reset command from the DMI.

In case the operational mode control unit sets the system to Standby mode, this
task activates the emergency brake.

On the contrary, if the system is set to Supervision mode, the emergency brake
control compares the estimated distance and speed to a pre-defined braking-curve
that sets a maximum speed for each point in the track. If the estimated speed is
higher than the maximum authorized speed, the emergency brake is activated and
blocked. In order to release the emergency brake, the train must be stopped and
and the driver must send a reset command through the DMI.

• Service brake control: The service brake control unit implements the non-safety-
critical functionality of the EVC. Its functionality is similar to the emergency
brake control, but it manages a light alarm, which warns the driver of an over-
speed of the train, and the service brake, which lowers the speed of the train in
case the over-speed remains.

If the system is in Standby mode, the service brake and the warning are deacti-
vated.

However, in Supervision mode, the warning signal and service brake are activated
when the speed of the train reaches the warning activation speed and the service
brake activation speed respectively. The maximum speeds are pre-defined in two
braking-curves that define maximum speeds for warning and service brake ac-
tivation at each point in the track. Both the warning and the service brake are
deactivated when the speed of the train falls below the warning activation speed.

7.2 Modeling the system
This section describes the process followed for the modeling of a simplified version of
the ETCS by means of the PS-TTM modeling approach presented in this work. For the
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Figure 7.2: Case Study: Functionality of the PIM

sake of simplicity, we decide to omit the GSM/R and JRU subsystems from the design
of the case-study. The case-study focuses on the design of the EVC and the DMI, which
are treated as the system under test. Thus, we consider the TIU, odometry sensors and
BTM are the environment of the system.

Platform Independent Model
As explained in chapter 4, the work-flow proposed by the PS-TTM commits the engi-
neers to start the development of their intended system by first designing its PIM. The
PIM should specify the functional behavior of the system.

Figure 7.2 shows a graphical overview of the functional interconnections between
the tasks.

As described in the specification of the ETCS, the functionality of this system under
test can be described as a set of five tasks (4 for the supervision and 1 for the DMI).

• Supervision tasks:

– Odometry task: The odometry subsystem reads the data provided by the sen-
sors and the balise transmission module. With that information, it provides
an estimation of the position and speed of the train to the emergency brake
and service brake controls. In addition, it sends a warning to the DMI in
case an expected balise is not detected in the railway.
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– Mode control: Receives the operational mode selection command from the
driver interface, and selects the operational mode of the train, which is sent
to the emergency brake and service brake controls.

– Emergency brake control: Decides whether the emergency brake has to be
activated, depending on the operational mode control, position and speed of
the train and the reset command received from the DMI.

– Service brake control: Activates or deactivates the service brake and over-
speed warning depending on the mode control in which the train is operating
and its position and speed.

• DMI task: Enables the driver to activate the reset signal and choose between the
two operational modes. The reset command is directly sent to the Emergency
brake control task, whereas the selection of the mode is provided to the opera-
tional mode control. In addition, it displays information for the driver, including
the position and speed of the train, state of emergency brake, service brake, and
overspeed warning.

Thus, following the directives of the PS-TTM, we describe the functionality of the
system under test in a hierarchical model. In this case, and in agreement with the spatial
distribution of each of the tasks described above, we design the PIM of our system
in PS-TTM as a model consisting on two main Distributed Application Subsystems
(DASes), the DMI DAS and the SupervisionSubsystem DAS, as Figure 7.3 illustrates.
The SupervisionSubsystem DAS is composed by three sub-DASes that contain four jobs,
one for each of the supervision tasks described previously. The different interfaces and
i-components that are automatically included by the PS-TTM modeling framework have
been omitted from the figure for the sake of clarity. The components shaded in gray are
automatically given by the PS-TTM library.

As stated previously, the system activates an emergency brake when the values es-
timated by the odometry system exceed the authorized limits. Therefore, the odometry
algorithm must provide accurate and reliable measurements, which must not exceed
the maximum error tolerated by the standards even in the case of faults in the system
(Equation 7.1). Thus, the algorithm is usually based on a fault-tolerant sensor-fusion ap-
proach. In this case, we design the algorithm following one of the approaches described
by Malvezzi et al. in [MAR10]. The algorithm estimates the speed of the train and the
traveled distance with the information provided by an accelerometer that measures the
acceleration of the train and two encoders that measure the speed of a different wheel
each, as figure 7.2 showed.

Listing 7.1 shows the way in which the PIM represented by Figure 7.3 is defined
in the PS-TTM. This listing shows the general structure of the PIM of our case study
in PS-TTM. The fact that jobs are treated as atomic components by the PS-TTM and
the language is based on SystemC, opens the possibility to integrate C code provided
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Figure 7.3: Case Study: Platform Independent Model

by different tools and vendors in the PS-TTM model. In this case, we specified the
functionality of each job with the graphical Esterel/Ansys SCADE tool. The certifiable
C code files generated by the cited tool were then compiled and added to the PS-TTM
project as a library. This dramatically reduces the cost of developing new system mod-
els and reusing previous models, since the integration of legacy code becomes totally
straightforward.

In accordance to the requirements from the standard, we set the period of the system
to 250ms. The frequency of the all the jobs of the SUT is set to 1, so the LET of the
jobs is 250ms.

Reliability assessment of the PIM

This section describes the reliability assessment made to the platform independent model
of the simplified railway signaling system. The fault-tolerance provided by the odome-
try algorithm implemented in the design is evaluated by means of simulated fault injec-
tion. To do so, the PS-TTM ATE framework described in Chapter 5 is connected to the
SUT and the environment model as Figure 7.4 shows.

As stated before, the model of the environment includes the set of sensors, BTM
and TIU. In order to take advantage of the integrability that the PS-TTM provides, the
environment has been modeled in Simulink and the C code automatically generated by
the Simulink Coder [wwwy] tool has been integrated in the model.

As established by the V-model life cycle usually followed in the development of
safety-critical systems, software designers and test engineers work in parallel. The for-
mer develop the system by refining components to more detailed abstraction levels,
whereas the latter identify the potential failure modes of the systems and create the test
cases that will be later used to evaluate the designs. The PS-TTM suggests following
the same working scheme, so that, in parallel to the development of the PIM carried out
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Listing 7.1: Extract of the PIM code
/* das_superv.h */
PITTM_DAS(DAS_Superv){

...
/* Constructor */
DAS_Superv(const sc_module_name & nm, unsigned int freq)
: pittm_das(nm, freq)
{

/* Declare Components */
DAS_ODO *p_das_odo = new DAS_ODO ("das_odo", 1);
DAS_MODE *p_das_mode = new DAS_MODE ("das_mode", 1);
DAS_BRAKES *p_das_brakes = new DAS_BRAKES ("das_brakes", 1);
/* Place components in hierarchical component */
v_c.push_back(p_das_odo);
v_c.push_back(p_das_mode);
v_c.push_back(p_das_brakes);
...
//Initialize
initialize(DAS_Superv_Variables_rte, route);

}
};

/* das_brakes.h */
PITTM_DAS(DAS_BRAKES){

...
/* Constructor */
DAS_BRAKES const sc_module_name & nm, unsigned int freq)
: pittm_das(nm, freq)
{

/* Declare Components */
JOB_EMERG *p_job_emerg= new JOB_EMERG ("emerg_inst", 1);
JOB_SERV *p_job_serv = new JOB_SERV ("serv_inst", 1);
/* Place components in hierarchical component */
v_c.push_back(p_job_emerg_inst);
v_c.push_back(p_job_serv_inst);
...
//Initialize
initialize(DAS_BRAKES_Variables_rte, route);

}
};

/* job_emerg.h */
PITTM_JOB(JOB_EMERG){

/* Internal variables */
tDistanceInt32 s;
tSpeedInt32 v;
kcg_bool stdby, superv, reset;
outC_D21_Decisions_Emergency out;
/* Constructor */
JOB_EMERG(const sc_module_name & snm, unsigned int freq)
: pittm_job(snm, freq){}
/* Thread */

protected:
void ctask_thread(void);
void fcn(void);

};

/* job_emerg.cpp */
void JOB_EMERG::fcn(){...}
void JOB_EMERG::ctask_thread(){

...
while(true)
{

/* pull variables */
s=pull<tDistanceInt32>(e_TTM_COM_IF_LIF, DAS_BRAKES_S);
...
/* compute */
fcn();
/* push variables */
push<kcg_bool>(e_TTM_COM_IF_LIF, DAS_EVC_EMERG, out.Emerg);
/* wait LET */
wait();

}
}
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Figure 7.4: Composition of the testing and fault injection environment for the PIM

by the system designers, the test engineers should identify the potential failure modes
of the PIM and create its FMEA.

In the present example, the FMEA of the PIM enumerates 109 potential failure
modes, rooted in 276 different potential causes. According to the FMEA, the PIM
should be able to tolerate 36 potential failure modes, due to the fault-tolerance provided
by the selected odometry algorithm, and thus keep the maximum error in the estimation
of the distance traveled by the train within the boundaries defined by Equation 7.1.
Figure 7.5 shows an extract of the FMEA of the PIM.

The testing team first designs one (or more) significant test cases in a TCI-compliant
format and they identify the set of variables to observe, according to the functional prop-
erties they want to validate from the model. With this data, they are ready to perform a
fault-free simulation of the PIM against the test cases by means of the PI-TTM execu-
tion engine and the PS-TTM ATE. The simulation results provided by the TPM of the
PS-TTM ATE are stored and analyzed, and once validated, are considered the golden
behavior of the system.

Based on the FMEA of the PIM, the test engineers can also design the fault injection
campaigns that will assess the robustness of the odometry algorithm against such faults,
and simulate them by means of the PS-TTM ATE FIU. Since the golden behavior of the
PIM is known, a comparison between the results of the fault-free and faulty simulations
of the PIM enables to evaluate the robustness of the system against the faults injected.

In this example, the selected test case simulates a journey of 240 seconds between
two stations at a distance of over 7.5 kilometers. Figure 7.6 shows the results recorded
by the TPM of the PS-TTM ATE during the fault-free simulation.

Once the fault-free simulation is completed, the reaction of the system against its
potential failures identified in the FMEA must be evaluated. To do so, test engineers
must design one (or more) fault injection campaigns for each failure mode. The fault
campaign is processed by the FIU and applied to the simulation of the PIM. In this case,
a total amount of 47 different fault injection campaigns were defined by the testers for
the validation of the tolerance of the odometry algorithm against the 36 failure modes
identified in the FMEA. Table 7.1 shows an extract of the fault injection campaigns.

Figure 7.7 shows the errors caused by each fault campaign introduced in table 7.1 in
comparison with the golden (fault-free) model. The results of the different simulations
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(a) Estimation of traveled distance

(b) Estimation of speed

Figure 7.6: Results of the fault-free simulation of the PIM

Table 7.1: Fault injection campaigns for PIM model

Fault Location Fault Fault Set
#

Job Entity Type Effect Attributes Mode Trig.time(s) Duration(s)
Description

1 job_odo enc1 input I_C 0 p 130.0 − Wheel stuck / Encoder broken

2 job_odo enc1 input I_S − p 180.0 − Encoder broken (measuring a fix value)

3 job_odo enc1 input I_R 0, 600 p 80.0 − Encoder broken (measuring wrong values)

4 job_odo enc1 input I_C 600 t 91.0 7.0 Wheel slipping during acceleration

5 job_odo enc2 input I_C 0 t 150.0 8.0 Wheel skidding (blocked by brakes)

6 job_odo accel input F_A 1.1 p 0.0 − Accelerometer incorrectly installed

7 job_odo accel input F_S − p 200.0 − Accelerometer broken(measuring a fix value)

8 job_odo accel input F_R −2, 2 p 20.0 − Accelerometer broken(measuring wrong values)

9 job_odo accel input F_OR −0.1, 0.1 t 35.0 50.0 Noise in the signal
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(a) Traveled distance and estimation error due to faults

(b) Speed and estimation error due to faults

Figure 7.7: Estimation errors introduced by fault injection (PIM)

show that odometry algorithm designed for this system provides accurate results in the
estimation of the traveled distance even in the presence of faults in the sensors. Overall,
the maximum estimation errors occurred during the 8th fault injection campaign, where
the maximum error raised up to 3.07m when the train had traveled a total distance of
6044.46m, what leads to an error of 0.05%. This happened 160.5sec after the start of
the simulation. However, the maximum error in percentage took place during the 6th

campaign, and reached an error of 4.76%. Anyway, this happened at instant 8.250sec,
where the traveled distance was still very small (0.21m traveled, 0.22m measured due
to the fault).

Regarding the estimation of the speed, the experiments made by means of the PS-
TTM ATE framework help to strengthen our confidence in the robustness of the algo-
rithm. In fact, the maximum error showed that the fault injection campaigns could intro-
duce in the speed estimation raised up to 1.350m/s respect to the non-faulty simulation,
at instant 151.75s during the 8th campaign, while the train was traveling at 60.230m/s
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Figure 7.8: Case Study: Functional view emergency brake activation algorithm (PSM)

(61.580m/swhere measured due to the fault). This means an estimation error of 2.24%.
All in all, the estimation errors made by the algorithm due to the faults were always

smaller than the maximum error rate permitted by the standards (Equation 7.1). As a
conclusion, the design and implementation of the odometry algorithm are considered
acceptable.

Anyway, the PIM model and the PS-TTM ATE helped the test engineers to identify
the special sensitivity that the algorithm showed for faults in the accelerometer. Thus,
future work on the algorithm could focus on the improvement of this fact.

Platform Specific Model
Once the functional model (PIM) has been validated, the design is refined by introduc-
ing new specifications about the target platform. In this case, the system is built onto
a Triple Module Redundant (TMR) architecture, which enables to achieve the required
SIL-4 integrity level in accordance to the international EN-50128 safety standard for the
railway domain [CEN11]. Redundancy increases the robustness of the system against
the failure modes that are not masked by the PIM. Figure 7.8 shows the overall func-
tionality of the PSM of the system. For the sake of simplicity, the figure focuses on the
activation system of the emergency brake; however, the service brake and the overspeed
warning, which have been ommited from the figure, would work analogously.

The TMR system is composed of three nodes, each of them hosting a replica of the
simplified EVC functionality. Each of the nodes is connected to its dedicated sensors
and BTM, so that a fault in the sensors of a node does not have any impact on the
rest of the nodes. This increases the dependability level of the system, since it avoids
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error propagation between replicated nodes, and thus enables to consider each couple
of sensors-supervision subsystems a single fault containment region.

As seen in the platform independent model, each replicated node outputs three main
signals: emergency brake, service brake and overspeed warning. Since these signals are
replicated three times in the system, each of the signals is handled by two exact ‘2 out
of 3’ (2oo3) voters. Thus, the system contains 6 exact voters altogether.

Each of the voters receives three replicated values from the nodes, and implements
an agreement protocol that takes the decision about the activation of the signal. Besides,
the voters provide information about the state of the system to the driver via the DMI, by
the activation of two warning signals: single-failure warning and system-failure warn-
ing. The former informs the driver that one of the nodes is providing erroneous values,
and identifies the corresponding node. The latter warns the driver that the system is
suffering from a multiple failure and the train needs to be stopped.

The voters have two operating modes: normal voting mode and degraded voting
mode. The functionality of the voting system is described below:

• The starting operating mode of the voters is normal voting mode.

• If the three values received by a voter are equal, the voter remains in normal
voting mode and forwards the input values to the output value. No warning is sent
to the DMI.

• If one of the replicated values received by the voter is distinct to the other two, the
voter switches to degraded voting mode. In that case the voter behaves as a 1oo2
voter in which the distinct input value is ignored, i.e., the inputs coming from
the faulty node are no longer taken into account for the voting algorithm and the
result of the 1oo2 algorithm is forwarded to the output. The voter sends a single
failure warning to the DMI with the identifier of the faulty node.

• If there is a disagreement between the two active inputs when the voter is in
degraded voting mode, the results of the EVC system are completely ignored and
the voter automatically orders the TIU to apply the emergency brakes to the train.
In addition, it informs the driver about the multiple failure by sending a system
failure warning to the DMI.

Having two independent voters for each signal enables to implement different brak-
ing systems in parallel, what increases the dependability level of the system. In this
case, one of the voters would control the electric braking system of the train whereas
the other voter would control the pneumatic braking system. This way, the system keeps
the fault-tolerance against a single fault, as a failure in one of the voters would not jeop-
ardize the reliability of the braking system.

Figure 7.9 shows the platform specific model of the system in the PS-TTM. The
components in gray are given by the PS-TTM library. The SUT is defined as a cluster
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Figure 7.9: Case Study: Platform Specific Model

containing 6 nodes. The redundant simplified EVCs are hosted in three identical nodes
containing a dual-core processor. The first of the cores is the host for the safety-critical
jobs, i.e., the odometry job, the mode control job and the emergency brake control
job, whereas the second core hosts the service brake control job. Two more nodes are
designed for the voters, which are composed by a single core processor running the
voting algorithm described below. The last voter is dedicated to the DMI, and also
contains a single-core processor.

We design the functions with SCADE and we generate C code automatically using
the KCG tool. C code for the voters is also automatically generated from SCADE
models.

Listing 7.2 shows an extract of the textual representation of Figure 7.9 following the
syntax of the PS-TTM, where the general structure of the PSM can be observed. As in
the case of PIMs, jobs are considered atomic components in platform specific models.
Hence, at PSM level the designers are still open to integrate C code provided by different
tools in their model. In this case, we again define the functionality of jobs by integrating
the compiled C code files generated with the KCG code generator of the SCADE tool as
a library in the PS-TTM project. Due to the lighter complexity of the voting algorithm
in comparison to the odometry algorithm and simplified EVC functionality, we decided
to implement the functionality of the voters typing directly the C code by hand.

As Listing 7.2 shows, in this case the designer decided to create a new constructor
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Listing 7.2: Extract of the PSM code
/* cluster_superv.h */
PSTTM_CLUSTER(Superv)
{

...
/* Constructor */
Superv ( const sc_module_name & sname) : psttm_cluster(sname)
{

/* Declare Components */
NODE_DMI *p_dmi_inst = new NODE_DMI ("node_dmi" );
NODE_EVCA *p_evc_instA = new NODE_EVCA ("node_evc_A");
NODE_EVCB *p_evc_instB = new NODE_EVCB ("node_evc_B");
NODE_EVCC *p_evc_instC = new NODE_EVCC ("node_evc_C");
NODE_VOTERA *p_voter_instA = new NODE_VOTERA("node_vot_A");
NODE_VOTERB *p_voter_instB = new NODE_VOTERB("node_vot_B");
/* Place components in hierarchical component */
v_c.push_back(p_dmi_inst);
v_c.push_back(p_evc_instA);
...
//Initialize
initialize(Superv_Variables_rte, route);

}
};

/* processor_node_evc_A.h */
PSTTM_PROCESSOR(PROC_EVCA)
{

...
/* Constructor */
PROC_EVCA ( const sc_module_name & sname) : psttm_processor(sname)
{

sc_time period(250, SC_MS);
/* Declare Components */
CORE_1_EVCA *p_core_a_evc_inst = new CORE_1_EVCA("core_A", period);
CORE_2_EVCA *p_core_b_evc_inst = new CORE_2_EVCA("core_B", period);
/* Place components in hierarchical component */
v_c.push_back(p_core_a_evc_inst);
v_c.push_back(p_core_b_evc_inst);
//Initialize
initialize(ProcEVC_A_Variables_rte, route);

}
};

/* core1_evc_A.h */
PSTTM_CORE(CORE_1_EVCA)
{

...
/* Constructor */
CORE_1_EVCA ( const sc_module_name & sname, ttm_dt_time period) : psttm_core(sname)
{

/* Declare Components */
JOB_ODOA *p_job_odoA_inst = new JOB_ODOA ("job_odoA");
JOB_MODEA *p_job_modeA_inst = new JOB_MODEA ("job_modeA");
JOB_EMERGA *p_job_emergA_inst = new JOB_EMERGA("job_emergA");
/* Place components in hierarchical component */
v_c.push_back(p_job_odoA_inst);
v_c.push_back(p_job_modeA_inst);
v_c.push_back(p_job_emergA_inst);
/* Set temporal specifications of each job */
ttm_dt_time_cycle stime_descr(period);
stime_descr.add(p_job_odoA_inst, 0.0);
stime_descr.add(p_job_modeA_inst, 0.0);
stime_descr.add(p_job_emergA_inst, 0.0);
//Initialize
initialize(stime_descr, Core1_EVCA_Variables_rte, route);

}
};
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Figure 7.10: Composition of the testing and fault injection environment for the PSM

for the core components of the model. This constructor contains a period param-
eter besides the sname, and it is used by the core to define the temporal properties
of each job running in it. The temporal specifications of each job are defined in the
stime_descr vector, which contains a period plus a phase delay specification for
each job.

In this case study, the period of all the cores of in the system are set to 250ms, and
a phase delay of 0.0% is defined for all the jobs, so that the timing properties defined in
the PIM remain unchanged in the PSM.

Reliability Assessment of the PSM

Once the PSM of the simplified railway signaling system has been modeled by means of
the PS-TTM, its evaluation its performed by simulation and fault injection. In this case,
we assess the fault-tolerance mechanisms introduced in the platform specific model of
the system, primarily focusing on the evaluation of the behavior of the voters.

To do so, the PS-TTM ATE is again connected to the SUT and the environment
model as shown in Figure 7.10. In this case, the model of the environment includes the
components in white from Figure 7.8, i.e., the set of sensors and BTM of each replicated
node, and the Train Interface Unit. This environmental components have been modeled
with Simulink, and the C code automatically generated with Simulink Coder [wwwy]
has been integrated in the model, taking advantage of the integrability offered by the
PS-TTM.

The FMEA developed in the current example enumerates a total of 282 potential
failure modes, rooted in 608 potential causes. According to the specifications, the sys-
tem should mask 261 of those potential failure modes (92%) by the introduction of triple
modular redundancy in the supervision system and double redundancy in the voters. The
remaining 21 failure modes that are not tolerated by the PSM are the ones caused by
systematic errors in the software design. In order to gain tolerance against such faults,
the system would need to apply software diversity in each replicated node. Figure 7.11
shows an extract of the FMEA of the PSM.

The assessment of the platform specific model follows the same work-flow followed
during the evaluation of the PIM. The testing team first designs one (or more) significant
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Figure 7.12: Results of the fault-free simulation of the PSM

test cases in a TCI-compliant format and they identify the set of variables to observe,
according to the functional properties they want to validate from the model. With this
data, the PS-TTM ATE can carry out a fault-free simulation of the PSM for the specified
test cases.

In this case, the assessment of the PSM is performed with the same test cases used
for the validation of the PIM. As mentioned before, the validation of the PSM will
mainly focus on the evaluation of the behavior of the redundant supervision subsystems
and the voters. Therefore, the test-point configuration file specifies the outputs of these
subsystems, which will be tracked and recorded by the TPM for a later analysis.

The fault-free simulation campaign provided the results shown in Figure 7.12 for
the mentioned test case. During the fault-free simulation of this test case, the system
activated the overspeed warning 4 times, and the service brake once. As expected, the
failure and system-failure warnings were not activated.

Once the fault-free simulation is completed, we continue the assessment of the PSM
with the evaluation of its behavior against the potential failures identified in the FMEA.
With this purpose, the test engineers must design the corresponding fault injection cam-
paigns for each failure mode. The fault campaign is processed by the FIU during the
initialization phase of the simulation and applied to the model during the its execution.
In the case of the PSM, a total of 233 fault injection campaigns were defined by the
testers for the validation of the tolerance properties introduced by the redundancy and
voting algorithms of the PSM. Table 7.2 shows a brief extract of the fault injection
campaigns.
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Table 7.2: Fault injection campaigns for PSM model

Fault Fault Set
# Fault Location

Effect Attributes Mode Trig.time(s) Duration(s)
Description

1 Node_EVC_A NE − p 85.0 − Node A stopped working

2 Proc_EVC_B C − p 20.0 − Processor B provides incorrect results

3 EVC_C_Core1 OoT 0.50 p 120.0 − Core 1 of a processor C is out of time bounds

4 Node_EVC_A B − t 40.0 25.0 Node A babbling, incorrect results

5 Node_EVC_B, Proc_EVC_C NE, C − p, p 60.0, 150.0 − Double failure (Node B stops, then processor C incorrect)

6 job_serv_A serv output B_I − t 160.0 0.50 Bit-flip in Service. Brake signal sent by node A

7 job_emrg_C emrg output B_OC − t 105.0 15.0 Emerg. Brake not received from Node C (noise)

Table 7.3: Temporal properties of failure detection in fault injection campaigns (PSM)

Fault trigger Fault warning System fault
#

instant (s) activ. instant (s) activ. instant (s)

1 85.0 125.25 -

2 20.0 20.25 -

3 120.0 125.25 -

4 40.0 40.25 -

5 60.0, 150.0 79.00 150.25

6 160.0 160.25 -

7 105.0 105.25 -

The simulation results show that all the faults injected in the system during the
different campaigns were effectively detected by the voters. The functionality of the
voters also provided successful results, since the appropriate warning messages were
sent to the DMI and the voting algorithm forwarded the expected results to the TIU.
Table 7.3 summarizes the temporal characterization of the detection of failures in the
system by the voters.

As the table shows, all the faults injected in the system during the simulations were
detected by the voters. Since we configured all jobs in the system with a period of
one macrotick (250ms), corruption and babbling faults were detected 250ms after their
injection in the system, as expected. Bit-flips in signals and open circuits were also
detected in the next macrotick.

However, no-execution and out of time faults, injected in the 1st, 3rd and 5th fault
configurations, took longer to detect. This happened because, due to the state of the
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system at the moment of the injection, the faults were dormant. In fact, no-execution
and out of time faults do not become active until the value of the signal changes, since
they do not cause an alteration of the signal values by themselves.

As an example, Figure 7.13 shows the results recorded by the TPM of the PS-TTM
ATE for the simulations of the fault configurations no 4 and 5. The 4th fault configuration
establishes to inject a babbling fault to supervision node A during 25.0 seconds, starting
at instant 40.0. Figure 7.13a shows the evolution of the inputs and outputs of the voter A
during the simulation of the 4th FC. We can observe in the figure how, during 25 seconds
starting from the 40th, the voter receives random values from the signals coming from
the supervision node A, due to the signal sabotaging performed by the FIU of the PS-
TTM ATE. When the voter receives a different value from the signals of node A, it reacts
by activating its single failure warning as specified in the requirements. In addition, it
ignores the the signals coming from the mentioned node, so that it calculates its output
values by performing a 1oo2 algorithm between the signals from node B and C. Thus,
since there is no disagreement between the values provided by that nodes from that
instant, the voter simply forwards the values received from both active nodes to the
TIU.

Regarding to the fault campaign no 5, the specification states that two faults must
be injected in the system. The first of them is a permanent no-execution fault in the
supervision node B at instant 60.0s. The second one is a corruption fault in the processor
of the supervision node C at instant 150.0s, and will also have a permanent character.
According to the requirement specifications, this type of multiple failures should make
the system halt and automatically activate the emergency brakes to the system.

Figure 7.13b shows the response of the voter to such a fault campaign. We can
observe in the figure how, although the fault is injected 60.0 seconds after the start of
the simulation (in simulation time), the voters detect the failure at instant 79.0s. As
mentioned before, this occurs due to the dormant state of the injected fault. In other
words, since the FIU injects a no-execution fault permanent, the output signals of the
faulty node do not change the value anymore in the simulation. However, since due to
the test case specification, the correct nodes do neither change their output values, the
voters are unable to detect the failure. The detection however takes place at the instant
79.0s, 250ms after the moment in which the nodes A and C command the activation of
the overspeed warning signal. Node B does not command the activation due to the no-
execution fault injected previously. This enables the voter to detect the faulty behavior
of the node, what makes it to set the single failure warning and switch to the degraded
voting mode.

The second fault injected during FC 5 caused a disagreement between the two active
supervision nodes (A and C). Thus, as specified by the fail-safe characterization of the
system, the voter ignored all the signals coming from the nodes and commanded the
TIU to apply the emergency brakes in order to stop the train safely and avoid any risk.
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(b) Simulation results of test case with fault campaign 5

Figure 7.13: Results of simulations with different fault campaigns
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In addition, it sent a system failure warning to the DMI to inform the driver about the
multiple failure detected in the system.

In conclusion, the successful response of the PSM to all the fault configurations de-
fined by the test engineers according to the FMEA allows us to state that the design of
the application as a TMR system with double redundant voters, and the implementa-
tion of the supervision system and voting algorithm comply with the requirements and
are therefore considered acceptable. However, the experiments made by the PS-TTM
ATE identify a drawback of the design regarding the incapacity of the system to detect
dormant faults. To overcome this drawback we suggest to include timestamps in the
data sent by the redundant supervision subsystems. This way, the voters would detect a
disagreement between the timestamps provided by the redundant nodes with a delay of
just one macrotick, which would guarantee to identify the failure and thus would enable
to apply the required fault-tolerance mechanisms at the next macrotick.

7.3 Results and Discussion
The experience of the case study developed for the evaluation of the PS-TTM allows us
to extract some interesting conclusions, which are summarized in this section.

First, the PS-TTM framework enabled to straightforwardly model the intended sys-
tem at the PIM and PSM levels of abstraction. The automatic handling of the temporal
properties of communications and triggering instants of jobs relaxed the complexity of
designing the system in SystemC code, since it prevented us from having to calculate
and explicitly specify the mentioned parameters for each job and communication chan-
nel. This way, we could focus on the design of the functionality of the system. In fact,
thanks to the PS-TTM, the most time-consuming tasks during the case study were the
gathering of the requirements and the development of the FMEAs, which fall out of the
scope of this thesis.

The time determinism provided by the simulator was validated by manually check-
ing the temporal properties of communications, and has been confirmed as expected.
The time-deterministic simulation environment enabled to evaluate both the PIM and
PSMs of the system successfully. In this case, the designed test case simulated a jour-
ney of 240 seconds between two stations at a distance of over 7.5 kilometers. The
simulations were executed using a quad-core laptop running at 2.60 GHz, under a Win-
dows 7 SP1 operating system with SystemC 2.3.0. The simulations of the PIM took
between 1.01 and 1.18 seconds, depending on the faults injected and the load of the
non real-time operating system. Similarly, the different executions of the PSM needed
between 6.19 and 6.72 seconds to run completely.

Thus, in the case of the platform independent model, simulations showed a rela-
tionship of at least x200 between simulated time and simulation time. This relationship
reached a value of x35 in the case of the platform specific model. Obviously, these re-
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sults are strongly dependent on the complexity of the models designed with the PS-TTM
and might improve or worsen depending on the specific model. All in all, as a first case
study, we consider the simulation-speed results very promising.

The testing and SFI capabilities of the PS-TTM ATE have been validated by means
of the case study. Its ability to inject faults non-intrusively has demonstrated to be a
major advantage, since it has enabled to validate a single model against a considerable
number of faults straightforwardly. The effectiveness and usefulness of the SFI has been
demonstrated since it enabled to identify the main weaknesses of the railway system we
designed, which were unknown until the analysis of the simulation results was carried
out.

Namely, we were able to identify two main weaknesses in our railway-system de-
sign. First, the odometry algorithm showed an excessive sensitivity against faults in the
accelerometer sensor, which was not expected. Although the design of the algorithm
was considered successful, the future work should focus on improving its tolerance
against such faults. In this case, the repeatability of test campaigns and fault injection
activities offered by the PS-TTM and PS-TTM ATE will enable to effectively check the
theoretical improvement implemented in the next version of the odometry algorithm. It
must be noted that the strengths and weaknesses of the odometry algorithm could be
identified in the PIM of the system, long before an operational prototype was built. This
represents a big advance in the sense of early verification and validation, which con-
tributes to avoid the propagation of design bugs throughout the development process.

Second, the analysis of the simulation results provided by the PS-TTM ATE for the
PSM of the railway system enabled to identify another drawback of the design: No-
execution and out of time faults, injected in the 1st, 3rd and 5th fault configurations, could
not be detected by the voters in the next macrotick to their occurrence, but took longer
to detect. This happened because, due to the state of the system at the moment of the
injection, the faults were dormant. In fact, no-execution and out of time faults do not
become active until the value of the signal changes, since they do not cause an alteration
of the signal values by themselves. The design of the system was considered successful
anyway, since this fact does not affect the functionality of the system. However, we
consider adding timestamps to the messages in the following versions of the railway
system, in order to improve its fault-detection capability.

Compared to other modeling approaches, the PS-TTM has shown to provide some
promising capabilities. In the following, we briefly compare the PS-TTM to the ap-
proaches identified in the State of the Art (Section 3) for the case of our case study.

UML, the most widely used modeling approach for software development, misses
the notion of time in its diagrams, which hinders the development of time-triggered
software. Moreover, as a software oriented language, it does not directly support the
design of HW components, and it is therefore not suitable to model HW/SW systems.

SysML is the adaptation of UML for the development of systems including com-
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binations of HW, SW, data, people, facilities and objects. However, it suffers from the
same drawback as UML, i.e., it misses the notion of time in its diagrams, which com-
plicates the generation of executable models from SysML designs.

MARTE, as the UML profile for the modeling of real-time embedded systems, en-
ables to establish temporal properties of systems by allowing to reference time instants
from the components of the system. MARTE provides both basic and advanced time
modeling concepts, and it is not restricted to a specific MoC in order to enable the users
to define their own MoC. However, precisely this fact hinders the development of time-
triggered dependable systems without first developing a user-defined time-triggered pro-
file for MARTE which will guarantee the timing coherence of the systems.

For example, the design of the simplified ETCS version of our case study in MARTE
would have required the creation of a discretized clock, and the designer should have
ensured that all its functional components are related to that clock. Then, he should have
identified alternating slots of activity and silence in the timeline in order to build a sparse
model of time, and he should have ensured that all the components of the system execute
and communicate with each other in compliance with that sparse-time model. Any non-
time-triggered component, such as event-triggered tasks or logical clocks should be
avoided from the design by the designers themselves. Even in that case, certifying such
a system would be a difficult task, since the modeling architecture does not guarantee
that models adhere to the time-triggered paradigm. Thus, certification authorities could
require designers to formally prove the adherence of the model to the time-triggered
MoC, or at least to prove the temporal predictability of their models.

In contrast, modeling the simplified ETCS with PS-TTM has demonstrated to be
straightforward. In fact, the creation of the platform independent model only required
to define a frequency for each job of the system, thus leaving the management of com-
munications, triggering instants and delay times to the simulation engine. This way, the
adherence of the model to the LET MoC was given by the modeling architecture itself.
In a second stage, the PIM was transformed into a PSM. In this case, the users were
required to provide more detailed timing information explicitly; however, the timing
constraints of the PSM could be straightforwardly calculated from the previous PIM.
All in all, non time-triggered components, such as event-triggered jobs or logical clocks
are not considered by the PS-TTM, which forces engineers to fit all activities into a
time-triggered design thus improving the predictability of the systems and facilitating
their certification.

Moreover, the separation of concerns in different diagrams provided by UML and its
profiles like MARTE complicates to ensure the consistency of the properties throughout
the different diagrams that make up a model. The single-description approach of PS-
TTM avoids inconsistencies, thus increasing the maintainability of the models.

Similarly to MARTE, AADL enables the designers to define the temporal properties
of their systems, and supports the modeling of both SW and HW components. Execu-
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tion time of threads and frequencies of clocks can be established by the definition of
properties of components. However, like in the case of MARTE, AADL itself defines
no specific model of computation. Thus, in the case of time-triggered systems, it is the
responsibility of the designer to define the system in such a way that the desired tem-
poral constraints are guaranteed, and to demonstrate so to the certification authorities if
required.

In summary, the lack of native underlying MoCs in MARTE and AADL hinders the
development of time-deterministic models and appropriate simulators for them. Further-
more, the Automatic Test Executor included in PS-TTM enables developers to straight-
forwardly evaluate the reaction of their models and fault-tolerance mechanisms to faults.
Performing such an activity with MARTE or AADL would require the designers to de-
velop new models including faulty components, which would extend the time needed
for dependability assessment, thus increasing validation and verification costs.

On the other hand, similarly to PS-TTM, the Distributed Application Layer (DAL)
also enables to model the system in terms of SW and HW components, and enables
to map SW components to HW ones. The DAL modeling environment is focused on
the development of streaming systems, where transmission speed in communications is
preferred over dependability. Therefore, the underlying MoC for DAL models is the
KPN MoC, which is not a time-triggered MoC. In fact, the KPN MoC does not directly
address the timing properties of the communications, but only their partial chronological
order. Thus, the KPN MoC is considered an untimed MoC and it is not considered
appropriate for safety-critical real-time systems.

Out of all the modeling environments proposed in the state of the art, the FTOS
is the closest to the PS-TTM. FTOS provides a modeling framework for dependable
systems based on the LET MoC, and focuses on the development of appropriate fault-
tolerance mechanisms. However, the modeling work-flow proposed by FTOS (Figure
3.2) forces the designers to start the development of the system with the definition of
a hardware architecture model, and to continue with the SW architecture model after
the former has been finished. This fact complicates the early validation of some fault-
tolerance properties, since it requires to model both the HW and the SW before any test
can be run. For instance, in the case of our case study, the detection of the accelerometer
fault dependency drawback of the odometry algorithm would have only been possible
at the latest stage of the design, whereas the PS-TTM enabled to identify it at the initial
platform independent model.

Finally, the E-TTM is focused on modeling the functionality of TTA-based systems
in SystemC. Hence, it does not provide any technique to model HW-related components,
so it does not support the definition of platform specific models by itself. Besides,
it does not provide any native mechanism to perform fault injection non-intrusively,
which complicates the verification of the fault-tolerance properties of the models. The
PS-TTM takes the core concept developed in the E-TTM and extends it in order to
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support the definition of PSMs, and enables non-intrusive simulated fault injection for
validation and verification of the models.
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CHAPTER 8
Conclusion

The present chapter reviews the Platform Specific Time-Triggered Model (PS-TTM)
modeling approach and the PS-TTM ATE testing and simulation framework, analyzes
the contribution of the work and provides possible future paths to continue with the
research.

8.1 Review
This thesis describes PS-TTM, a novel modeling framework for time-triggered safety-
critical systems, and PS-TTM ATE, a testing and simulated fault injection framework
for the assessment of the fault-tolerance properties of such systems.

The PS-TTM provides a time and value deterministic modeling and simulation
framework that enables to design and exercise time-triggered safety-critical systems.
The approach proposed in this work is based on the well-known MDA and Y-chart
development processes. The approach suggests to separate the specification of the func-
tionality of the system from the description of the target platform in a first design phase.
This way, the design of the system begins with the definition of its Platform Independent
Model (PIM), which enables designers to focus on a single aspect of the design at the
beginning (functionality). Thus, the design of the systems at first glance is eased and
the complexity of the models is reduced. Once the functional model has been fully de-
fined, the notion about the platform is added with the generation of the Platform Specific
Model (PSM). This model, though more complex than the PIM, enables the designers
to focus on other properties of the system, such as their fault-tolerance level against
HW faults. Besides, the separation of concerns between functional and platform-related
aspects increases the portability and re-usability of the designs.
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The complexity challenge is faced in different ways by the PS-TTM. First, as just
mentioned, it relies on the separation of concerns as the main characteristic of the de-
velopment process. Second, instead of defining a new modeling language for the design
of the systems, the PS-TTM has been built as a library that extends the well-known
SystemC language with a set of functions, structures and macros that enable to define
time-triggered safety-critical systems in a straightforward manner. Third, the PS-TTM
infrastructure provides a global notion of time for all the components within a model,
which is based on the sparse concept of time, as defined by the Time-Triggered Archi-
tecture (TTA). And fourth, the PS-TTM enables users to apply abstraction, partitioning
and segmentation to the models, at both PIM and PSM level.

On the other hand, the PS-TTM ATE is a testing and simulated fault injection frame-
work for the verification and validation of PS-TTM based systems. The PS-TTM ATE
makes possible to simulate both PIM and PSM by means of the PI-TTM and PS-TTM
simulation engines respectively. This fact enables the designers to detect design pitfalls
at the very early stages of the development of the system, thus reducing the chance to
discover bugs late in the design, which could require an expensive system re-design and
possibly re-implementing.

The non-intrusive fault injection technique implemented in the PS-TTM ATE en-
ables testers to inject faults in the system during simulation without the need to modify
it. The non-intrusiveness makes it possible to inject several faults in a given model
without re-compiling it every time a new fault has to be injected. This provides two
major benefits: First, since the injection of the fault does not require any modification
in the models, there is no chance to modify its fault-tolerance properties due to the fault
injection itself, in contrast to intrusive techniques. Second, since the fault injection does
not require to modify the model, the latter does not need to be re-compiled every time a
fault has to be injected. This means that a given compiled model can be tested against
a number of faults, and thus, time consuming compilations only need to be carried out
when the designers decide to modify the model by themselves.

Both the PS-TTM and the PS-TTM ATE have been assessed by means of a case-
study based on a simplified version of the European Train Control System (ETCS). The
case study showed how the PS-TTM could be used to model a complex system with
diverse fault-tolerance mechanisms at different abstraction levels. The models were
validated by means of the PS-TTM ATE, which provided some promising results, since
it permitted us to assess the correctness of the odometry algorithm implemented in the
system and the functionality of the 2oo3 voters. More interestingly, the simulations
performed by the PS-TTM ATE enabled us to identify the main drawbacks of the design,
such as the sensitiveness of the odometry algorithm to faults in the acceleration sensor
and the inability of the voters to detect dormant faults. The simulation speeds of the
different experiments were also very promising, since they were able run simulations
about 200 times faster than the simulated time for PIMs, and 35 times faster than the
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simulated time for PSMs.

8.2 Analysis of the Contribution
This section summarizes the main contributions provided by this research work:

• Time-triggered safety-critical systems modeling framework: The PS-TTM is a
modeling framework for the development of time-triggered safety-critical sys-
tems, which relies on the ‘separation of concerns’ concept introduced by the MDA
and the Y-chart approach. This separation of concerns relaxes the intrinsic com-
plexity of the design of safety-critical systems. Besides, the designers might also
make use of abstraction, partitioning and segmentation techniques in their mod-
els in order to ease the design. The definition of models takes SystemC as its
underlying design language.

• Time and value deterministic simulation: The PS-TTM provides a time and value
deterministic framework for the simulation of the models, based on two simula-
tion engines: The PI-TTM is a novel simulation engine that extends SystemC with
the temporal constraints introduced by the Logical Execution Time (LET) MoC,
and enables to execute LET-based Platform Independent Models (PIMs). The
second simulation engine, called PS-TTM, is used for the simulation of Platform
Specific Models, and relies on the TT MoC introduced by E-TTM.

• Mixed abstraction level simulation: The seamless connection between the PI-
TTM and PS-TTM simulation engines makes it possible to simulate systems
whose components are modeled at different abstraction levels. This can be a
major advantage, since, although different parts of a given system are typically
modeled in parallel, the working pace is not always the same. Therefore, it is
not unusual to reach the situation in which one part of the system is at a PSM
level, whereas another part is still at a PIM level. In such a situation, the PS-TTM
would still allow the test engineers to validate one of the subsystem by simulating
the whole system making use of the mixed abstraction level simulation capability.

• Testing and Simulated Fault Injection Framework: The PS-TTM Automatic Test
Executor (ATE), is a testing and SFI framework for the verification and validation
of PS-TTM compliant models. The PS-TTM ATE enables to exercise both PIMs
and PSMs with the test cases specified by the test-engineers, and provides a high
level of observability within the models. The simulated fault injection technique
is non-intrusive, i.e., it does not require to modify the models to get the faults
injected. Besides, it provides a single specification language (based in XML)
for the definition of test cases, test points and fault injection campaigns, which
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enables to reuse the test activities through the different stages of the development
process, from PIM to PSM.

• Fault libraries for PIMs and PSMs: The PS-TTM ATE includes fault libraries
for both PIMs and PSMs. This way, the test engineers can invoke a fault by
just specifying the name of the desired fault effect in the fault-configuration file,
which facilitates the definition of the fault campaigns and increases the usability
of the PS-TTM ATE. The fault library for PIMs focuses in faults at signal levels,
whereas the fault library designed specifically for PSMs provides a set of more
abstract HW-related faults.

• Heterogeneous systems simulation: The fact that the PS-TTM modeling frame-
work has been built as an extension to the SystemC language enables to integrate
PS-TTM components at PIM or PSM level with other components that might
rely on different MoCs, such as continuous subsystems (simulated by means of
SystemC-AMS), physical subsystems (simulated with MVDP), or synchronous
subsystems (simulated directly with SystemC). This enables engineers to include
PS-TTM subsystems as components of cyber-physical systems, embedded sys-
tems that interact with sub-components of very different computing and physical
properties, which are getting an increasing interest nowadays.

8.3 Future Work
The research work presented in this dissertation could be further extended in diverse
ways, such as the following:

• Automatic code generation from MARTE diagrams: As mentioned in the state
of the art of this dissertation, the MARTE profile for UML enables to capture
the temporal properties of UML blocks directly in the diagrams, which eases the
specification of the design of HW/SW systems. Although the MARTE profile
does not limit its application to time-triggered systems, we could still provide
an automatic PS-TTM code generator tool for the subset of time-triggered com-
ponents from MARTE. Thus, we could benefit from the contributions provided
by the PS-TTM and PS-TTM ATE with the advantage of supporting the already
well-known UML / MARTE modeling standard.

• Integration with “virtual platform simulators”: Virtual platform simulators per-
mit to accurately simulate HW/SW systems, by exercising the intended software
against virtualized HW components. This enables to perform estimations on the
temporal and spatial requirements of the different tasks of the system. In the case
of the PS-TTM, the benefit of using virtual platform simulators would be double.
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On one hand, being able to estimate the amount of time required by a job to be ex-
ecuted on a specific HW component would enable to reduce the uncertainty of its
logical execution time. On the other hand, using an open-source platform simula-
tor like the Open Virtual Platforms (OVP) [wwws], which provides a wide library
of models for different processors and peripherals, would give the test engineers
the chance to perform fault injection at low abstraction levels.

• Graphical modeling: Typing a whole time-triggered system design in plain text
might become a tedious work. Being able to build the structure of the system by
means of a graphical modeling tool would relax the complexity of the design. The
graphical modeling tool presented in chapter 6, which addresses this issue, is still
under development.

• Reusability of test cases: The reusability of test cases and fault injection cam-
paigns over diverse abstraction levels until the hardware-in-the-loop testing phase
for the final prototype dramatically reduces the effort needed for verification and
validation. Although this work enables reusing test cases and FI campaigns in
simulation (PIMs and PSMs), the transition from simulation-level to HiL testing
often requires a refinement of the tests. Besides, other problems may arise, such
as clock synchronization between different devices. The PhD research work by
Carlos F. Nicolas (currently under development) aims to overcome these difficul-
ties.

• Parallel simulation: The simulation of modern embedded systems demands a
big amount of computational resources due to their complexity. The case-study
of this thesis has shown the capability of the PS-TTM engine to simulate time-
triggered systems with manageable simulation times. However, more detailed
models would have required longer simulation times, thus increasing validation
costs. Current SystemC simulators are based on the exploitation of a single-core
machine, which makes them unable to take advantage of the parallelization capa-
bilities of the nowadays widely extended multi/many-core platforms. Thus, the
development of a parallel-SystemC engine would allow designers to reduce de-
velopment time and costs by accelerating simulation. In that case, a multi-core
version of PS-TTM running over the parallel SystemC engine would also take
advantage of the capabilities of multi-core platforms, improving its simulation
performance and reducing validation costs.
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CHAPTER 9
List of Acronyms

AADL Architecture, Analysis and Design Language

AMS Analog Mixed Signal

ATE Automatic Test Executor

BTM Balise Transmission Module

CCS Concurrent and Comparative Simulation

CNI Communication Network Interface

CORBA Common Object Request Broker Architecture

CP Configuration and Planning

CPU Central Processing Unit

CPS Cyber-Physical System

CT Continuous Time

DAL Distributed Application Layer

DAS Distributed Application Subsystem

DE Discrete Event

DM Diagnostic and Maintenance

DMI Driver Machine Interface
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DT Discrete Time

DOL Distributed Operation Layer

ECU Electronic Control Unit

ERTMS European Railway Traffic Management System

ESL Electronic System Level

ETCS European Train Control System

E-TTM Executable Time-Triggered Model

EVC European Vital Computer

FC Fault Configuration

FCR Fault Containment Region

FI Fault Injection

FIU Fault Injection Unit

FMEA Failure Mode and Effect Analysis

ForSyDe Formal System Design

FSM Finite State Machine

FTA Fault Tree Analysis

FTM Fault-Tolerance Mechanism

FTOS Fault Tolerant Operating System

GSM/R Global System for Mobile Communications - Railway

HetMoC Heterogeneous Model of Computation

HetSC Heterogeneous Specifications in SystemC

HTL Hierarchical Timing Language

HW Hardware

HWFI Hardware Based Fault Injection

IC Integrated Circuit
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IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

JRU Juridical Recorder Unit

KPN Kahn Process Network

LET Logical Execution Time

LTM Loop Transmission Module

MARTE Modeling and Analysis of Real-time Embedded Systems

MBD Model Based Design

MBT Model Based Testing

MDA Model Driven Architecture

MDD Model Driven Development

MDE Model Driven Engineering

MDVP Multi Domain Virtual Prototypes

ML Meta-language

MoC Model of Computation

MOGENTES Model-Based Generation of Test-Cases for Embedded Systems

OMG Object Management Group

PDM Platform Definition Model

PIM Platform Independent Model

PI-TTM Platform Independent Time-Triggered Model

PM Platform Model

PN Process Network

PSM Platform Specific Model

PS-TTM Platform Specific Time-Triggered Model

RT Real-Time
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RTL Register Transfer Level

SCADE Safety-Critical Application Development Environment

SDF Synchronous Dataflow

SEU Single Event Upset

SFI Simulated Fault Injection

SIL Safety Integrity Level

SLDL System-Level Design Language

SML Standard ML

SML-Sys Standard ML-Systems

SR Synchronous Reactive

SUT System Under Test

SW Software

SWFI Software Based Fault Injection

SysML Systems Modeling Language

TCI Test Case Interpreter

TDL Timing Definition Language

TIU Train Interface Unit

TLM Transaction Level Model

TMO Time-triggered Message-triggered Object

TMR Triple Module Redundancy

TPM Test Point Manager

TT Time-Triggered

TTA Time-Triggered Architecture

TTE Time-Triggered Ethernet

TTP Time-Triggered Protocol
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UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst-Case Execution Time
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