
Edge-to-Business Value Chain
Delivery via Elastic Telemetry of

Cyber-Physical Systems

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Soheil Qanbari
Matrikelnummer 1129801

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar

Diese Dissertation haben begutachtet:

Prof. Dr. Schahram Dustdar Prof. Dr. Frank Leymann

Wien, 2. Dezember 2015
Soheil Qanbari

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Edge-to-Business Value Chain
Delivery via Elastic Telemetry of

Cyber-Physical Systems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Soheil Qanbari
Registration Number 1129801

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

Prof. Dr. Schahram Dustdar Prof. Dr. Frank Leymann

Vienna, 2nd December, 2015
Soheil Qanbari

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Soheil Qanbari
Schwemmgasse 2/3/55A, 1020 Wien, Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Dezember 2015
Soheil Qanbari

v

Danksagung

“Betrachte den Menschen als ein Bergwerk, reich an Edelsteinen von unschätzbarem Wert.
Nur die Erziehung kann bewirken, daß es seine Schätze enthüllt und die Menschheit
daraus Nutzen zu ziehen vermag.” Bahá"u"lláh

Die vorliegende Dissertation stellt eine Zusammenfassung all meiner akademischen Un-
ternehmungen meiner Forschungslaufbahn in der Distributed Systems Group (DSG) der
TU Wien dar. Sowohl die Höhen als auch die Tiefen meiner Forschungsarbeit haben mich
wie ein pulsierender Herzschlag am Leben gehalten, um dieses Endergebnis zu erzielen.
Diese Momente werde ich für den Rest meines Lebens in Ehren halten.

Meine aufrichtige Wertschätzung und Dankbarkeit möchte ich Prof. Schahram Dustdar
ausdrücken, dessen wohlwollende Führung, großzügige Unterstützung und kontinuierliche
Ermutigung diese Dissertation ermöglicht haben. Ich darf mich ganz und gar glücklich
schätzen, ihn als Mentor zu haben. Ebenfalls möchte ich Prof. Hannes Werthner und Prof.
Gerti Kappel danken, dass sie mich als Teilnehmer des Doctoral College of Adaptive
Distributed Systems willkommen geheißen haben.

Weiters möchte ich all meinen Kollegen von der DSG für die fruchtbringenden Gespräche,
die Unterstützung und Zusammenarbeit danken. Insbesondere, möchte ich Herrn Alex-
ander Knoll für die aufrichtige Zusammenarbeit danken, der mir dabei half den Edge
Cluster zu bauen.

Wahre Freunde erheben einen zu der wahren Stufe, die einem bestimmt ist! Ich bin
dankbar für meine wundervolle Familie und wahren Freunde. Insbesondere danke ich
Serwa Sabetghadam, Negar & Saied Khosravani, Alexandra & Puria Mahalli, Puneh
& Michel Zarifzadeh, Matthew Stevens, Mirela Riveni, Rostyslav Zabolotnyi, Katrin &
Victor Ciulian für ihre fürsorgliche Unterstützung und wahre Inspiration. Mein besonderer
Dank gilt auch dem kleinen Sonnenschein, Lara Marie Ciulian, die ein Herz voller Liebe
besitzt.

Meine äußerste, tiefempfundene Dankbarkeit gilt meiner Ehefrau, Samira, für ihre Liebe,
Unterstützung und ihr Verständis. In der Tat war sie stets eine Quelle der Hoffnung.
Ich erinnere mich an alle schlaflosen Nächte, in denen wir gemeinsam über die Heraus-
forderungen in meiner Forschungsarbeit berieten. Unser Leitspruch lautet: Wir sollen
glänzen!

vii

Abschließend, möchte ich auch meinen Dank für die finanzielle Unterstützung des Vienna
Doctoral College of Adaptive Distributed Systems (ADSys) ausdrücken.

Acknowledgements

“Regard man as a mine rich in gems of inestimable value. Education can, alone, cause it
to reveal its treasures, and enable mankind to benefit therefrom.” Bahá"u"lláh

This PhD is the distillation of all my academic endeavors of my research career in the
Distributed Systems Group at TU Wien. Both ups and downs of my research heartbeat
kept me alive to achieve this ultimate work. I will cherish those moments for the rest of
my life.

I would like to convey my sincere gratitude and thanks to Prof. Schahram Dustdar whose
friendly guidance, generous support, and constant encouragement have made this thesis
possible, and I am truly privileged to have him as my mentor. Likewise, I would like to
thank Prof. Hannes Werthner and Prof. Gerti Kappel for welcoming me as a participant
of the Vienna Doctoral College of Adaptive Distributed Systems.

Furthermore, I want to thank all my colleagues from the Distributed Systems Group
for the fruitful discussions, support and collaboration. Notably, I appreciate Alexander
Knoll for a genuine cooperation in helping me to build the edge cluster.

True friends elevate you to the true station destined for you! I appreciate my wonderful
family and true friends, specially Serwa Sabetghadam, Negar & Saied Khosravani,
Alexandra & Puria Mahalli, Puneh & Michel Zarifzadeh, Matthew Stevens, Mirela Riveni,
Rostyslav Zabolotnyi, Katrin & Victor Ciulian for their caring support and sharing true
inspiration. My very special thanks go to the little Miss sunshine, Lara Marie Ciulian
who has a heart full of love.

My most heartfelt gratitude goes to my dear wife, Samira, for her love, support, and
understanding. It is very true that she was always the source of hope. I still remember
all the sleepless nights in which we consulted on research challenges together. Our motto
of life is: we shall shine!

Finally, I am grateful for the financial support from the Vienna Doctoral College of
Adaptive Distributed Systems (ADSys). The research leading to these results is sponsored
by the Doctoral College of Adaptive Distributed Systems at the Vienna University of
Technology.

ix

Kurzfassung

Cyber-physischen Systeme (CPS) bewirken großartige Weiterentwicklungen im Bereich
der IT und verteilten Computer Systeme. CPS verwandeln IT Randbereiche in lebendige
Ökosysteme und schaffen damit neue Business Möglichkeiten. Diese Weiterentwicklungen
bilden Chancen für neue Kooperationsnetzwerke zwischen verschiedenen Unternehmungen,
Dienstleistungen und Dingen(IoT), die wir Edge-to-Business (E2B) Wertschöpfungskette
nennen. Mit dem Aufstieg von E2B Entwicklungen ergeben sich neue Möglichkeiten für
Ihre Geschäftsmodelle. Wie sie Ihre Businessprozesse in Zukunft steuern hängt maßgeblich
von Ihren Geschäftsmodellen, Design Prinzipien, wie sie Ihre Anwendungen erstellen und
welche Protokolle Sie zu deren Datenübertragung dafür nutzen, ab.

Zu diesem Zweck gibt es einen 3-Schritte-Plan: (i) Herauskristallisieren solcher neuen
Möglichkeiten, (ii) Schaffen neuer robuster Design Modelle, (iii) Entwickeln von fairen
flexiblem Messmechanismen zum erreichen und skalieren dieser sparsamen virtuellen
Wertschöpfungsketten.

Im ersten Abschnitt haben wir speziell zuerst über die Entwicklungsmöglichkeiten und
Modelle von CPS Anwendungen in den Bereichen für Cloud-Computing, Open Gover-
nment Data und Health Care gesprochen. Um mehr ins Detail gehen zu können ist es
nötig uns in Produkt Topologie Beispiele von Marktreifen Cloud Computing Services
einzuarbeiten. Als nächstes verfassen wir eine originelle Abstraktion namens Gov. Data
Compute Unit (DCU), sodass Organisationen in der Lage sind Entwicklern formale,
strukturierte und programmierbare Daten Quellen Einheiten vielmehr Daten Kataloge
in die Hand geben können. Zum Schluss entwickeln wir eine Lösung für die Semantik
von Sensoren die Daten abfragen vom sogenannten Edge-Device-Layer. Das sollte die
Qualität von unbearbeiteten Senior Daten steigern und sie besser interpretierbar machen.

Der zweite Part der These beschäftigt sich mit der Entwicklung von acht IoT Design
Vorschlägen im Bereich der computerisierten Konstruktion von technischen Rand An-
wendungen. Solche Abstrakten Lösungen befassen sich mit dem Grunddesign und den
Grundprinzipien von solchen CPS Lebenszyklen. Unser Schema deckt folgende Anwen-
dungsmöglichkeiten ab: Wiederholungen von zum Beispiel Bereitstellungszeiten, Begrenzte
Anwendungsbereitstellung zugeschnitten auf die Datenleitung, Dynamische Anwendungs-
konfigurationen, Eingeschränkte Anwendungsbenachrichtigungen, Datenübermittlung im
Gerät selbst und Wearable façade Entwicklungen, ab.

xi

Um die Sache abzurunden gibt es ein eigenes Fernmessprotokoll das entwickelt wurde um
als dritter Part die generierten Werte und Daten der CPS Anwendungen zu erfassen. Wir
bieten ein Diameter of Thinks (DoT) Protokoll welches einem Werkzeug für Echtzeit-
Messungen von Prepaid und Zahlen-nach-Bedarf Wirtschaftsmodell entspricht. Das DoT
Protokoll behandelt zeitliche und aktionsabhängige Fernzugriffe.

Es ist nun an der Zeit sicherzustellen und zu überprüfen ob unsere Entwicklung Ihre Richtig
umgesetzt wurde und einen nutzen für unsere Arbeit bringt. Die technischen Methoden in
dieser Abschlussarbeit geben ein besseres Verständnis von die E2B Wertschöpfungskette
und können beliebig erweitert werden auf mehr unterschiedliche Geschäftsmodelle, mehr
Rand-Design-Modelle und mehr komplexe Messmodelle.

Abstract

The Cyber-Physical Systems (CPS) brought great computational advancements to trans-
form the computing paradigm into a living ecosystem from edge infrastructures to business
value propositions. Such advancements form a collaboration network among various
entities, services and things which we call Edge-to-Business (E2B) value chain. However,
along with the rise of E2B evolution, there is a need for blueprints on how to define your
business models, design principles on how to build your applications, and a protocol on
how to generate revenues from your ecosystem.

The three-part work plan of the this thesis is to: (i) discover such blueprints, (ii) provide
robust design patterns; and (iii) develop fairly flexible metering mechanisms to achieve
economies of scale within this virtual value chain.

In part one, we first identify the value creation models in the CPS application domains
of cloud manufacturing, open government data and health-care. To be more specific, we
incorporate product topology templates as a marketable entity for cloud manufacturing
service. Next, we propose a novel abstraction unit called Gov. Data Compute Unit
(DCU), so that governments are able to feed developers with formalized, structured and
programmable data resource units rather than just data catalogs. For the last domain,
we develop a solution for the semantic sensor data retrieval from the edge device layer.
This enriches the quality of raw sensed data and makes it more interpretable.

The second part of the study deals with developing eight IoT design patterns as compu-
tational constructs for engineering edge applications. Such abstract solutions comprise
core design principles through CPS life cycle. Our patterns cover applications’ iteration
cycles like provisioning, edge deployment pipeline, dynamic configurations, constrained
application messaging, in-device data processing and wearable façade creation.

To complete the story, a telemetry protocol is developed at part three to capture the
generated value of CPS applications. We offer the Diameter of Things (DoT) protocol
that implements a real-time metering in the case of prepaid and pay-per-use economic
models. The protocol handles time-based and event-based telemetry patterns.

Developed approaches and solutions were reasonably validated to prove the validity and
utility of our work. The techniques developed in this thesis give a better understanding
of the E2B value chain and can be extended to deliver more diverse business models,
more edge design patterns as well as more complex metering models.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xviii

List of Tables xx

Prior Publications xxiii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 4
1.3 Research Questions . 6
1.4 Scientific Contributions . 8
1.5 Structure of the Work . 11

2 Background 13
2.1 Cloud Computing . 13
2.2 Cyber-physical Systems . 14
2.3 Business Modeling . 14
2.4 Cloud Manufacturing . 15
2.5 Open Government Data . 16
2.6 TOSCA . 16

I IoT Business Models 19

3 Open Government Data 21
3.1 Introduction . 21
3.2 Related work . 23
3.3 Government Data Compute Units (DCU) . 23

xv

3.4 Stakeholders in GoDaaS . 26
3.5 API Requirements for GoDaaS . 27
3.6 GoDaaS Architecture . 28
3.7 GoDaaS Business Models . 29
3.8 Conclusion and Outlook . 32

4 Cloud Manufacturing 35
4.1 Introduction . 35
4.2 Portable Cloud Manufacturing Services . 36
4.3 TOSCA-based Bill of Manufacturing Services 38
4.4 Stakeholders in CloudMan . 40
4.5 API Requirements for CloudMan . 42
4.6 CloudMan Platform Architecture . 44
4.7 CloudMan Platform Data Architecture . 49
4.8 Related work . 49
4.9 Conclusion . 50

5 Linked Sensor Data 51
5.1 Introduction . 51
5.2 The Utility of Sensed Data . 52
5.3 IoT Gateways: Terms & Preliminaries . 55
5.4 Gatica Middleware Architecture . 56
5.5 Related Work . 60
5.6 Conclusion . 62

II IoT Design Patterns 63

6 IoT Computational Constructs 65
6.1 Introduction . 65
6.2 Pattern Language Conventions . 66
6.3 IoT Design Patterns . 67
6.4 Edge Provisioning Pattern . 67
6.5 Edge Code Deployment Pattern . 69
6.6 Edge Orchestration Pattern . 70
6.7 Edge Footprint Messaging Pattern . 73
6.8 Edge In-Memory Data Retrieval Pattern . 76
6.9 In-Device Data Preprocessing Pattern . 79
6.10 Edge Diameter of Things (DoT) Pattern . 82
6.11 Edge Wearable Façade Pattern . 84
6.12 Related Work . 85
6.13 Conclusion . 86

IIIMicro Telemetry 87

7 Telemetry of Elastic Data 89
7.1 Introduction . 89
7.2 Resource Consumption Metering Requirements 93
7.3 TED Framework Architecture . 96
7.4 Model Evaluation . 102
7.5 Related Work . 103
7.6 Conclusion . 105

8 Diameter of Things 107
8.1 Introduction . 107
8.2 The Utility of Diameter . 109
8.3 DoT Preliminaries & Terms . 110
8.4 DoT Architecture Models . 111
8.5 DoT-based IoT Application Overview . 112
8.6 DoT Interrogations . 116
8.7 DoT Transaction Model . 121
8.8 DoT Command Messages . 122
8.9 Diameter Extended Commands . 124
8.10 DoT Attribute-Value Pairs (AVPs) . 127
8.11 DoT Mandatory AVPs . 132
8.12 DoT State Machines . 137
8.13 Related Work . 143
8.14 Conclusion . 144

9 Conclusions 145
9.1 Review of Contributions . 145
9.2 Future Research Directions . 149

Bibliography 151

Curriculum Vitae 161

List of Figures

1.1 The method of describing business models . 2

2.1 The core elements of TOSCA Service Template is the Service Topology. . . . 17

3.1 GoDaaS Stakeholders together with their relationships. 24
3.2 GoDaaS system architecture in layers. 27
3.3 GoDaaS Database as a Service (DBaaS) business model class diagram. 30
3.4 GoDaaS Platform as a Service (PaaS) business model class diagram. 31
3.5 GoDaaS Data Analytics as a Service (PaaS) business model class diagram. . . 32
3.6 GoDaaS Data Analytics as a Service (DAaaS) sequence diagram. 33

4.1 The core elements of TOSCA-based Bill of Manufacturing Services (BOMS)
Template and the Topology. 40

4.2 Main stakeholders in CloudMan Manufacturing System. 41
4.3 CloudMan Framework Layered Architecture . 46
4.4 CloudMan Manufacturing Platform Big Data Architecture 48

5.1 Gatica Middleware layered architecture . 56
5.2 Sensor ontology classes, objects and data properties 57
5.3 Sensor ontology model representing the classes, relations and instances 58
5.4 Gatica middleware analytic query endpoint . 61
5.5 Sample response from the query interface . 62

6.1 IoT provisioning pattern sketch. 68
6.2 Edge code deployment pipeline pattern sketch. 70
6.3 Edge cluster orchestrator pattern sketch. 72
6.4 Edge footprint messaging pattern sketch. 74
6.5 Edge cache aside model. 77
6.6 Edge cache read/write through model. 78
6.7 Edge cache read/write asynchronous model. 78
6.8 IoT In-Device data preprocessing pattern sketch. 79
6.9 IoT Diameter of Things (DoT) metering pattern sketch. 81
6.10 IoT Wearable Facade Pattern sketch. 84

xviii

7.1 TED middleware data and process flow with their sequence of events in YARN 90
7.2 MapReduce Job Metering & Rating Middleware Architecture. 97
7.3 TED tunnels billable artifacts using FIX protocol. 100
7.4 TED Hierarchical Queueing Model & Job Migration. 101
7.5 YARN Pi example with 60 mappers and 30 samples (OpenTSDB sum diagram).103
7.6 YARN Pi example with 300 mappers and 100 samples (OpenTSDB minmax

diagram). 104

8.1 Diameter base protocol architecture . 109
8.2 Typical Diameter of Things (DoT) application architecture 111
8.3 Typical DoT metering token structure . 112
8.4 The sequence of DoT interrogations in pre-paid model to enable hybrid metering117
8.5 The sequence of DoT interrogations in pay-per-use model to enable hybrid

metering . 118
8.6 DoT Hybrid Metering - 2PC transaction model 120

List of Tables

3.1 Stakeholders/Requirements relation in GoDaaS. 28

4.1 Relationships between Requirements and Stakeholders in CloudMan. 42

8.1 The scheduled chronological execution sequence of DoT transactions 122
8.2 The abbreviations used in state machines . 137
8.3 DoT Client state machine . 139
8.4 Provisioning server state machine . 140
8.5 Resource control server state machine . 142
8.6 Metering server state machine . 143
8.7 Payment server state machine . 143

xx

List of Listings

3.1 Excerpt of DataComputeUnit Class Implementation 25
3.2 Excerpt of Gov. Service Bus Class Implementation 26
4.1 Excerpt of a TOSCA-based Cloud Manufacturing Plan 37
8.1 An excerpt of an IoT application policy in a JSON object 113
8.2 A sample subscription plan in JSON-LD format 115
8.3 DoT-Request message format in ABNF . 123
8.4 DoT-Answer message format in ABNF . 123
8.5 AA-Request message format in ABNF . 124
8.6 AA-Answer message format in ABNF . 125
8.7 Session-Termination-Request message format in ABNF 125
8.8 Session-Termination-Answer message format in ABNF 126
8.9 Accounting-Request message format in ABNF 126
8.10 Accounting-Answer message format in ABNF 126
8.11 Resource-Usage grouped AVP format in ABNF 131

xxi

Prior Publications

The core of this dissertation is composed of a set of selected prior publications in scientific
conferences, workshops, books and journals. The thesis consists of three subsequent parts
keeping publication papers together in proper order. Please refer to Appendix 9.2 for a
list of all publications of the author of this dissertation.

• Soheil Qanbari, Negar Behinaein, Rabee Rahim zadeh and Schahram Dustdar,
Diameter of Things (DoT): A Protocol for Real-time Telemetry of IoT Applications,
Internet Engineering Task Force (IETF).

• Soheil Qanbari, Rabee Rahim zadeh, Negar Behinaein, and Schahram Dustdar,
Diameter of Things (DoT): A Protocol for Real-time Telemetry of IoT Applications,
12th International Conference on Economics of Grids, Clouds, Systems, and Service
(GECON 2015), GECON-Conf, Cluj-Napoca, Romania, 15-17 September.

• Soheil Qanbari, Samim Pezeshki, Rozita Raisi, Samira Mahdizadeh, Rabee Rahim
zadeh, Negar Behinaein, Fada Mahmoudi, Shiva Ayoubzadeh, Parham Fazlali,
Keyvan Roshani, Azalia Yaghini, Mozhdeh Amiri, Ashkan Farivarmoheb, Arash
Zamani, and Schahram Dustdar, IoT Design Patterns: Computational Constructs
to Design, Build and Engineer Edge Applications. IEEE International Conference
on Internet-of-Things Design and Implementation (IoTDI 2016), April 4-8, Berlin,
Germany. In review.

• Soheil Qanbari, Ashkan Farivarmoheb, Parham Fazlali, Samira Mahdizadeh and
Schahram Dustdar, Telemetry for Elastic Data (TED): Middleware for MapReduce
Job Metering and Rating, The 9th IEEE International Conference on Big Data
Science and Engineering (BigDataSE) (IEEE BigDataSE 2015), Helsinki, Finland,
20-22 August, 2015.

• Soheil Qanbari, Negar Behinaein, Rabee Rahimzadeh and Schahram Dustdar, Gat-
ica: Linked Sensed Data Enrichment and Analytics Middleware for IoT Gateways,
IEEE International Conference on Future Internet of Things and Cloud (IEEE
FiCloud 2015), August 24-26, 2015, Rome, Italy.

• Soheil Qanbari, Navid Rekabsaz and Schahram Dustdar, Open Government Data
as a Service (GoDaaS): Big Data Platform for Mobile App Developers, IEEE

xxiii

International Conference on Open and Big Data (IEEE OBD 2015), August 24-26,
2015, Rome, Italy.

• Soheil Qanbari, Samira Mahdi Zadeh, Soroush Vedaei and Schahram Dustdar.
CloudMan: A Platform for Portable Cloud Manufacturing Services, IEEE Interna-
tional Conference on BigData (IEEE BigData 2014), 27-30 Oct, 2014, Washington
DC, United States.

• Soheil Qanbari, Fei Li, and Schahram Dustdar. Toward Portable Cloud Manufac-
turing Services, IEEE Internet Computing, vol. 18, no. 6, pp.NN-NN, 2014.

CHAPTER 1
Introduction

Gartner, Inc. forecasts[1] that 25 billion connected “Things”, will be operational in 2020.
From an industry ranking perspective, they emphasize that utilities will position in the
No. 1 spot because of investment in smart meters, manufacturing will be second, and
government will be third by 2020.

Such systems, as we have already conducted some research on these top three upcoming
IoT application trends, provide huge opportunities but considerable challenges for the
stakeholders. The opportunities are increasing as devices are evolving to embed more
computational resources and communications capabilities, enabling them to process
information flows. This contributes to a built-in situational awareness as well as exposing
smarter behavior. Challenges are posed by the limitations of edge devices as resource-
constrained IoT compute units.

Edge computing devices are becoming more diverse and versatile with wide range of
functionalities, more mobile and wearable, and potentially more elastic in terms of
dynamic computational resource leveling. This has led to the rise of fully fledged edge
infrastructure. Businesses will benefit from such edge evolution to seamlessly adjust their
offerings to constantly changing requirements of their clients. This also contributes to
businesses agility by enabling the IoT service providers to respond faster to the demanding
needs of the markets. Firms can benefit from this as an enabler in developing adaptive
business models built upon IoT delivery models like utilities, cloud manufacturing and
e-Government.

The emergence of cyber-physical systems (CPS)[2] (also known as the Internet of Things)
incorporates cloud computing[3] and embedded virtualization[4] mechanisms to expose
environment data to analytic endpoints to drive context awareness. Such endpoints
offer the ability to discover hidden patterns of mutually correlated variables and uncover
actionable information within raw data for more utility. To achieve this, the CPS services
should reside at the edge infrastructure and network as opposed to services hosted in

1

1. Introduction

cloud. This led to the rise of Fog computing[5] benefiting from the edge resource pooling,
data stream processing, resulting in superior quality of service.

Ultimately such edge infrastructure will change the way to extract values from services
and to monetize IoT applications. Hence, cloud computing is tightly coupled with IoT
and acts as a front end and enabler to expose edge devices as IoT services. Cloud
computing monetizes computing resources using the pay-per-use economic model with
elasticity. The granularity of computing unit for monitoring, metering, and rating is a
virtual machine (VM) in IaaS cloud. It represents a coarse-grained resource unit and is
usually metered like an hourly rate for every VM instance per hour usage. This poses
challenges of surcharge of jobs lasting less/more than an hour. Jobs lasting for 61 minutes
will unfairly be charged for two hours. The VMs are utilizing shared resource pool for
the hosted applications, making it hard to achieve optimal utilization of such resources.
Consequently, the subscribers have to be charged for the unused resources[6]. Such
considerations are very much dependent on how the associated business model is defined.

1.1 Motivation

Here, we leverage an established Business Model Framework[7] to describe the business
models of IoT. The framework is illustrated in Figure 1.1.

Figure 1.1: The method of describing business models

A business model is described in nine elements, which can be categorized in four areas—
Finance, Infrastructure, Customer and Value Proposition. These four sections have strong
and mutual interrelationships with one another that have to be taken into account in
forming business models. Financial aspects aim at providing profitable and sustainable
revenue streams. The cost structure in financial area is directly related to the stakeholders
who are providing resources and conducting service activities, whereas the revenue

2

1.1. Motivation

structure is related to customers who are interested in the specific services. The monetary
flow of this cost and revenue streams are effectively in use under the two models of
“Metered services ” and “Subscription basis”. In the infrastructure area, the edge devices
are provided with optimization capabilities. The infrastructure aspect offers embedded
virtualization layer over edge underlying resources by providing utilization interfaces.
The customer area’s focus is on providing interfaces that define the consumer segments
with their communication, distribution, and sales channels as touching point for service
delivery. Overall, the three area converge on the value proposition of a business model.
It seeks to solve customer problems and satisfy their needs with value propositions.

After defining the business model elements, we will be able to build “Virtual Verticals
” as an instance of the business model. They are provided to domain-specific business
services such as smart buildings or in our case, “Cloud Manufacturing (CMfg) ”. It deals
with configuring and deploying appropriate IoT services for distributed production and
operational environment management in order to make the CMfg vertical application
more efficient in its business and technological context. The “Vertical” means that such
applications are delivered as an end-to-end service coverage including physical devices,
middleware and applications for a certain physical environment. The “Virtual” part
exposes the physical environment to an abstract unit like Virtual Factory for distributed
manufacturing purposes.

Such deployed vertical applications posses diversity of edge sensors and actuators that
will be creating streams of data. As the amount of data generated from edge services is
immense and still growing, the data services business model takes a momentum here to
address the data governance with a focus on data storage and processing aspects. Such
data is big in terms of value, velocity, variety, veracity and potentially volume. Having
the confidentiality of data properly managed, providing data to external experts or the
public will further increase the utility of data. For instance, in case of smart cities, the
government may expose the city data, which is rich in context, as services to civic-minded
mobile developers for more utilization.

The IoT data service business model also should deal with data concerns like privacy
enforcement, up-to-dateness, data availability and consistency in order to assure and
improve data quality. In principle, the service provider does not have to own the data
sources, nor does it provide applications. It only concerns management and provisioning
of data. Both real-time data and persistent data can be in the scope of service.

Next is how to monetize such IoT vertical applications as well as their data assets.
Although the pay-per-use economic model is pretty established in pricing cloud services,
providers have to address a set of challenges when it comes to pricing edge services. IoT
edge layer should be seen as constrained-node networks. The node is an edge device
that host the IoT service. The hosting mechanism is basically fulfilled via container-
based resource allocation. For instance, IoT services can be deployed on a Docker1 as a

1https://www.docker.com

3

1. Introduction

lightweight containerization technique. This elevates the need for finer-grained pricing
models for IoT deployment units.

The challenges will increase when our edge infrastructure is composed of resource-
constrained nodes or devices. The stringent constrained environment may limit our
capabilities and enforce some restrictions, with unreliable communications, unpredictable
bandwidth, and a highly dynamic topology[8]. To be more specific, the edge engineer
should consider optimal resource control mechanisms to achieve an optimal utilization
with regard to the following challenges stemming from the node constraints:

• Edge devices posses limited storage, footprint memory, and computing power to
handle compute intensive processes;

• Due to cost constraints, the devices should function under low energy, limited
battery and weak connectivity capabilities.

• Edge network topology is composed of constrained nodes which result in constrained
network with low throughput/high packet loss.

1.2 Problem Statement
The aforementioned challenges above, establishes dependable and connected research
areas: one focusing on driving novel business models from such constrained environment
and its emitted data, and the next area on providing some design patterns as reusable
computational constructs for designing, building edge applications for such constrained
nodes. Last but not least, on how elastic telemetry of IoT applications can enable
providers to achieve optimal utilization of their limited resources.

To formulate set of challenges that we take on and ultimately address, we outline the
core problem statements. IoT service providers has to make architectural decisions on
the three phases:

At the first step, they need to ensure that the essence of their business model innovation
captures and generates values from the network of edge devices (e.g., sensors, actuators).
In the definition of the business model, it is vital to clarify the granularity of the resource
units that will be considered as a marketable entity. IoT application developers can
compose and program such resource units with their utilization APIs, and expose them as
services or mobile apps. Subsequently, the AppStore publishes these apps as marketable
entities; then citizens, for instance, are able to subscribe, keep them in use and pay as
they go. This leads to more economies of scale for all parties involved.

Once the first step is taken, we have the business model well defined and ready to
implement. In fact, we go on to second step of developing the business models. There is
a lack of unified standard for designing edge devices and gateways and this makes it hard
to utilize IoT applications on so many diverse devices. Designing for an IoT is different
since connected devices may use divergent types of networks and various connectivity

4

1.2. Problem Statement

patterns. To create a valuable, appealing, usable, and coherent edge application, we
have to consider design on many different layers. This phase deals with providing design
patterns that may leverage the performance and scalability of edge applications by giving
adequate foresight to edge engineers.

Moving forward, we definitely want to take one step further to monetize our edge services.
Such revenue generation of the utilized underlying resource is measured via metering
and rating mechanisms. Telemetry is an evolving facet of utility computing that aims
to leverage and expose computing resources as metered services and utilized assets.
In particular, metering includes the processes of monitoring, aggregation, measuring
and rating of an entire application, individual parts of an application, or tasks and
underlying resources. Along with this idea, respecting resource capacity constraints on
edge devices establishes a firm requirement for a mechanism in support of a telemetry
of IoT applications. Such metering capability is needed when lack of resources among
competing applications dictates our schedule and credit allocation.

Here, we need to implement a real-time metering mechanism of IoT services in the case
of prepaid as well as pay-per-use economic models. It employs a mechanism to handle
time-based and event-based telemetry patterns. The former is used for scenarios where
the charged units are continuously consumed while the latter is typically used when units
are implicit invocation events. The mechanism performs a metering transaction on edge
services, collects the emitted usage data, then generates billable artifacts. Finally it
permits micropayments to take place in parallel.

The main objective of this dissertation is to enable fine-grained resource planning of IoT
applications via elastic telemetry of edge services in support of adaptive business models
for resource-constrained environments.

With this objective in mind, our developed contributes to the following capabilities in:

1. defining adaptive business models for utilizing the IoT resource constrained compute
units. Such business models can form a foundation for third party stakeholders
to implement their own products on top and realize their own desired business
transactions.

2. advising architects as well as developers with a set of established and unified design
patterns to build robust and modular vertical applications.

3. revenue generation of IoT applications via telemetry services. Providers will be
able to define their own complex metering schema of their applications and the
subscribers will be transparently charged upon their granular resource and service
usage respectively.

Our solutions, including developed models, middle-wares, design artifacts, and a protocol
reveal promising resilience solutions for interested stakeholders. They will achieve a
holistic view with an end-to-end coverage on designing, building and monetizing the IoT
applications.

5

1. Introduction

1.3 Research Questions
In this section, the contributions of this thesis are formulated in the following research
questions. They are categorized in three main phases of the research and elaborated in a
brief discussion.

Part 1) IoT Business Modeling

RQ 1: How does government become an open platform that allows civic-minded de-
velopers inside and outside government to develop practical applications? How to
transform and expose government big data into tradable services?

This study addresses these challenges by driving new classes of GoDaaS business models,
in which stakeholders participate and share things. These business models evolve through
interactions between government and its citizens, like a service provider enabling its user
community. The increasing amounts of government data made available, coupled with
unpredictable and ever-changing business requirements, triggered us to incorporate cloud
service delivery models to define flexible and adaptive business models. To this end, our
contribution is threefold: (i) Deriving seven business models for Government Open Data
as a Service (GoDaaS) platform. (ii) Novel government data abstraction unit, called Gov:
Data Compute Unit(DCU) as a programming construct for developers. (iii) GoDaaS
consultation service that generates a tailored and application specific business model.

RQ 2: How can we seamlessly achieve dynamic product topology configuration, auto-
matic deployment and policy enforcement in a manufacturing as a service business
model?

Cloud manufacturing is the convergence of utility-driven opportunities of novel distributed
technologies, such as cloud computing and Internet of Things (IoT), coupled with
collaborative engineering and applications that are transforming the manufacturing
processes like supplement, consumption, and production models over the web. Thus,
a cloud Manufacturing system is capable of serving multiple companies to planning,
control and collaboration over the web. It has the capacity to make production planning
and manufacturing work in progress (WIP) distributable, controllable, composable,
configurable and portable. In this research question, we explore the solution in which
such functionalities become feasible.

RQ 3: How pragmatic use of semantic web technologies can increase the quality of raw
sensor data to make it more interpretable?

A data stream is a massive sequence of sensed data. Raw sensed data lacks semantics.
This poses a challenge to apply analytics directly to raw IoT sensor data. Such operational

6

1.3. Research Questions

data requires an intensive enrichment processes to drive value. It is a matter of real-time
semantic sensor data retrieval. As such, the role of a semantic gateway which delivers
automated and on-demand semantic annotations, labels and taxonomies for sensor data
acquisition is vital. In this research study, we will illustrate how our solution transforms
the sensor data to a linked data RDFs and then stream it to the analytics endpoints for
querying and reasoning purposes.

Part 2) IoT Design Patterns

RQ 4: What kind of universal and abstract design principles and patterns are required
to design, build and manage robust IoT applications?

Engineering edge applications requires abstracted design principles that prescribe how
collaborating things should work. From the engineering perspective, a set of inter-related
design patterns is required to realize all stages of the edge applications life cycle from
their dynamic composition to their deployment and fulfillment. Such patterns can also
become a unified language for system architects when designing their systems. In this
research direction, we identify various computational constructs regardless of underlying
technologies and details.

Part 3) Micro Telemetry

RQ 5: How can granular metering contribute to more utilization value for data-intensive
applications? How does granular metering improve performance?

The quest for telemetry of the client’s job resource usage becomes more challenging when
the data-intensive job is deployed and processed in a distributed MapReduce model.
Enriching MapReduce with telemetry services will contribute to more optimized resource
utilization and performance in the cluster. The reason is granular elasticity control.
Metering Map or Reduce tasks enables granular elasticity control on multiple levels
by varying elasticity requirements like cost and quality. In this research work, we will
examine how granular elasticity control is achieved via an optimal and tailored resource
scheduling.

RQ 6: How can fine-grained telemetry of IoT deployment units respects resource
capacity constraints on edge devices?

Respecting resource elasticity requirements on edge devices establishes a firm requirement
of a lightweight protocol with support of fine-grained telemetry for IoT deployment units.
Such metering capability is needed when lack of resources among competing applications

7

1. Introduction

dictates our schedule and credit allocation. In this research we identify two metering
models of time-based and event-based patterns. The former is used for scenarios where
the charged units are continuously consumed while the latter is typically used when units
are implicit invocation events.

1.4 Scientific Contributions
This section reviews our scientific contributions in response to the identified and inves-
tigated research questions in Section 1.3. These contributions set a foundation for our
research.

Part I) IoT Business Modeling

Contribution 1: Open Government Data as a Service (GoDaaS): Big Data
Platform for Mobile App Developers.

The next web of open and linked data leverages governmental data openness to improve
the quality of social services. This data is a national asset. In this study, we elaborate on
this emerging open government movement, together with the underlying data transparency
to drive novel business models which utilize these assets under a functioning platform
called Open Government Data as a Service (GoDaaS). These business models actively
engage civic-minded programmers in developing sustainable applications, contextualizing
and utilizing the government open data resources. This leads to an expansive government
marketplace, with many civic-minded developers might be new to doing business with
the federal or state government. By means of a consultation service prototype, we
provide development advices for programmers on how to work out the specific details
of their applications business model. Having the business models in focus, this study
also proposes a novel abstraction unit called Gov. Data Compute Unit (DCU), so that
governments are able to feed developers with formalized, structured and programmable
data resource units rather than just data catalogs. Such DCUs enable developers to cope
with an increasing heterogeneity of state government data sets, by providing a unified
interface on top of diverse data schemata from various states.

Contribution 2: Toward Portable Cloud Manufacturing Services.

In manufacturing, a product bill of materials (BOM) uses distributed manufacturing
services for production purposes. Modeling BOMs poses challenges as regards distributed
manufacturing plans, production policies, and the BOM’s portability among multiple
manufacturers. The authors’ mechanism lets producers model and build BOMs by
composing diverse manufacturing services and resources using the OASIS Topology and
Orchestration Specification for Cloud Applications standard.

Contribution 3: CloudMan: A Platform for Portable Cloud Manufacturing
Services.

Cloud manufacturing refers to “as a Service” production model that exploits an on-
demand access to a distributed pool of diversified manufacturing services and resources.

8

1.4. Scientific Contributions

It forms elastic and reconfigurable production lines, which enhance efficiency, by allowing
optimal resource allocation in response to demand changes and market dynamics. This
paper studies these challenges and proposes a portable cloud manufacturing platform,
entitled “CloudMan” , aiming at achieving a portable deployment of cloud manufacturing
services to any compliant distributed production line in the cloud. The stakeholders of
CloudMan are detailed together with their API requirements, where each stakeholder has
an interest. Having this rigorous analysis in mind, we present a holistic architecture for
CloudMan, as it considers the manufacturing data, material and event flow from sensors
and shop floors, through services to end products. In architecting such platform, there is
a lack of agreed standard for the portability and orchestration of manufacturing services,
as well as their definition. The proposed platform incorporates OASIS Topology and
Orchestration Specification for cloud Applications (TOSCA) policies, plans and templates
as a mechanism for dynamic configuration, portability and deployment of manufacturing
services across multiple collaborating manufacturers. Thereby, the architecture provides
a set of abstraction levels for various types of manufacturing services which encapsulates
and addresses specific requirements to satisfy the needs of stakeholders.

Contribution 4: Gatica: Linked Sensed Data Enrichment and Analytics Mid-
dleware for IoT Gateways.

Raw sensed data lacks semantics. This poses a challenge to apply analytics directly to
raw IoT sensor data. Such operational data requires an intensive enrichment processes to
drive value. Pragmatic use of naming conventions and taxonomies can increase the quality
of data and make it more interpretable. In this paper, we incorporate semantic and linked
data technologies and offer a middleware called Gatica, to dynamically inject semantics
to make the raw streaming data of an IoT gateway ”Rich” on the device layer. Gatica
collects the real-time sensor data, enriches them using annotations, then transforms and
exposes them in RDF triples, and finally streams RDF objects to the analytic endpoint for
querying the linked sensor streaming data. Various analytic applications can utilize our
middleware by sending SPARQL requests over the sensor network to our query interface
and retrieving the results. Our middleware offers the ability to discover hidden patterns
of mutually correlated variables and uncover actionable information within raw data for
more utility. This paper details Gatica’s architecture together with its implementation.

Part II) IoT Design Patterns

Contribution 5: IoT Design Patterns: Computational Constructs to Design,
Build and Engineer Edge Applications.

The objective of design patterns is to make design robust and to abstract reusable solutions
behind expressive interfaces, independent of a concrete platform. They are abstracted
away from the complexity of underlying and enabling technologies. The connected things
in IoT tend to be diverse in terms of supported protocols, communication methods
and capabilities, computational power and storage. This motivates us to look for more
cost-effective and less resource-intensive IoT microservice models. We have identified a
wide range of design disciplines involved in creating IoT systems, which act as a seamless

9

1. Introduction

interface for collaborating heterogeneous things, and are suitable to be implemented
on resource-constrained devices. The IoT patterns covered in this paper vary in their
granularity and level of abstraction. They are inter-related, well-structured design
artifacts, providing efficient and reliable solutions to recurring problems discovered by
IoT system architects. The authors offer sound advice for designing, building, and scaling
with cross device interactions inherent in complex IoT ecosystems.

Part III) Micro Telemetry

Contribution 6: Telemetry for Elastic Data (TED): Middleware for MapRe-
duce Job Metering and Rating.

The consumption-based rating of MapReduce jobs is tightly coupled with metering the
infrastructure resource usage it runs on. In this context, metering and controlling the
job execution depends on the number and type of containers used to setup and run the
Hadoop cluster as well as the duration of the job execution. Duration-basis metering like
an hourly rate for every instance per hour usage, poses challenges of surcharge of jobs
lasting less/more than an hour. Jobs lasting for 61 minutes will unfairly be charged for
two hours. In response to these findings, the authors offer Job-basis telemetry mechanism
rather than Duration-basis where the metering granularity is carried on MapReduce
DAG bundles, jobs and tasks levels. This model is developed as an elastic data telemetry
(TED) middleware to provide real-time resource utilization awareness over data intensive
applications. Clients will benefit from this model by enforcing their applications elasticity
policies and achieve pricing transparency over their actual usage. This granular elasticity
control is achieved by moving jobs among priority queues which fit cost and quality
requirements. TED collects the emitted usage data stream, generates billable artifacts
to form a tailored policy (scale up/down) to satisfy several desirable properties. This
contributes to a supervised, finer-grained resource allocation due to the application
behavior.

Contribution 7: Diameter of Things (DoT): A Protocol for Real-time Teleme-
try of IoT Applications.

The Diameter of Things (DoT) protocol is intended to provide a real-time metering
framework for IoT applications in resource constrained gateways. Respecting resource
capacity constraints on edge devices establishes a firm requirement for a lightweight
protocol in support of fine-grained telemetry of IoT deployment units. Such metering
capability is needed when lack of resources among competing applications dictates our
schedule and credit allocation. In response to these findings, the authors offer the DoT
protocol that can be incorporated to implement real-time metering of IoT services for
prepaid subscribers. The DoT employs mechanisms to handle the composite application
resource usage units consumed/charged against a single user balance. Such charging
methods come in two models of duration-based and event-based patterns. The former is
used for scenarios where the charged units are continuously consumed while the latter
is typically used when units are implicit invocation events. The DoT-enabled platform
performs a chained metering transaction on a graph of dependent IoT microservices,

10

1.5. Structure of the Work

collects the emitted usage data, then generates billable artifacts from the chain of metering
tokens. Finally, it permits micropayments to take place in parallel.

1.5 Structure of the Work
With this brief introduction in mind, the rest of thesis is organized as follows:

• Chapter 2 defines preliminary terms, concepts and fundamental information regard-
ing the technologies used in the remainder of this thesis.

• Part I is focused on the scientific work related to the IoT business models. Three
business models are explored in details and considered as the foundation for further
research.
◦ Chapter 3 presents our scientific work on making business with the data. We

address challenges like how governments can expose their data assets as services for
more utilization. Here, a novel abstraction unit called Gov. Data Compute Unit
(DCU) is proposed so that governments are able to feed developers with formalized,
structured and programmable data resource units rather than just data catalogs.
◦ Chapter 4 extends the work on business modeling to the manufacturing world.

We demonstrate how OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA)[9] influence the cloud manufacturing services.
◦ Chapter 5 incorporates the semantic web technologies to enable semantic

sensor data retrieval on the IoT device layer. This fulfills sensor data enrichment
via pragmatic use of naming conventions and taxonomies.

• Part II consists of one chapter that defines eight IoT design patterns to build edge
applications. The proposed patterns will guide the edge engineers and developers
in building their edge applications. This middle part functions as a bridge between
part one and part three.
◦ Chapter 6 covers the overall process to engineer IoT applications. The

proposed patterns realize all stages of the edge applications life cycle from their
dynamic composition, provisioning, deployment to their data processing, messaging
and fulfillment.

• Part III consists of two chapters on enabling fine-grained telemetry of IoT ap-
plications. We will demonstrate how micro telemetry can contribute to more
granular and transparent metering as well as better resource elasticity control in
the constrained environment.
◦ Chapter 7 enriches MapReduce-based applications with telemetry services to

achieve more optimized resource utilization and performance in the cluster.
◦ Chapter 8 defines a new protocol, called Diameter of Things (DoT) to meter

IoT composite applications. The DoT contributes to fully implementing a real-time
policy-based telemetry and resource control for a variety of edge services.

11

1. Introduction

• Chapter 9 concludes and summarizes the content and purpose of the thesis. Looking
forward, it provides a thoughtful outlook to our piece of work over future research
directions.

12

CHAPTER 2
Background

In this chapter we present preliminary concepts, terms, standards, and technologies
considered in the study. They form the basis for the work carried out in this thesis.

2.1 Cloud Computing

Even though the concept of cloud computing has more a business sense, it incorporates
the virtualization technologies to elastically provision computing capabilities distributed
over Internet [10] via utilization mechanisms [11].

The US National Institute of Standards and Technology (NIST) defines cloud computing
as “...a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.” [12].

Taking the NIST definition further, there are five characteristics that stand out. First is
the on-demand self-service which enables service consumers to automatically provision
computing resources in an on-demand fashion.

Second is Broad network access, which make the exposed capabilities available via a
network for more utilization. Third deals with Resource pooling. The computing resources
are pooled and shared among multiple consumers. The next important attribute is the
Rapid elasticity, which is the core capability to cope with fluctuating load by dynamically
provisioning and releasing cloud resources. We utilize this concept to enable elastic
telemetry of applications. Last characteristic is the one which we focus on most. That is
Measured service. We leverage this concept to the meter and measure various domains
like metering data-intensive and CPS applications.

13

2. Background

2.2 Cyber-physical Systems

Cyber-physical Systems (CPS)[13] are gaining a lot of attention of researchers and
engineers as smart systems which utilizes the network of collaborating edge devices,
computational components and human services. This contributes to enabling potential
hybrid innovative applications. The NIST organization has recently released a draft
framework[14] on the CPS. In addition to CPS, there exist many other terms like
Industrial Internet, Internet of Things (IoT), Machine to Machine (M2M), smart cities
that present similar systems and concepts. As such, approaches described in this this
should be considered to be equally applicable to IoT and CPS.

In NIST CPS draft framework, some of the main characteristics of such systems are
emphasized. First is the ability to consider CPS systems as a pervasive computing [15]
environment. This confirms that such systems are embedding more computing resources
within devices, enriching them with more connectivity and processing capabilities.

In architecting such Cyber-physical systems, the first layer is an edge device layer.
Here, there is a network of devices, sensors, actuators which behave smartly due to the
environment context. Such edge devices are the things in the Internet of Things (IoT).
On top of this Cyber-physical device layer comes the software systems to virtualize and
expose devices as services. Such services make the devices discoverable, addressable,
configurable and controllable. These systems can be also considered as virtual verticals
which can be diverse to various business domains like manufacturing, smart buildings and
healthcare systems. The next layer will integrate all the system together and represent
them as a System of Systems (SoS).

Last but not least, NIST defines the Cyber-physical systems as to integrate computation,
communication, sensing, and actuation with physical systems to fulfill time-sensitive
functions with varying degrees of interaction with the environment, including human
interaction.

2.3 Business Modeling

A business model[16] thus describes the rationale of how an organization creates, delivers,
and captures value, in economic, social, cultural or other contexts. For firms, business
modeling is driven by the value chain as a sequence of exchanges of economic resources
among agents - the process of delivering some resources to obtain more value. The
business model concentrates on the economic sustainability of an entire resource exchange
system (duality: give & take) among parties. We see three main elements to conceptualize
business models: Resources, Events and Agents.

The cloud abstraction model delivers a shared pool of configurable computing resources
(processors, storage, applications, etc.) that can be dynamically and automatically
provisioned and released [3]. This elastic resource delivery of cloud computing enables
business agility by enabling the providers to respond faster to the demanding needs of

14

2.4. Cloud Manufacturing

the markets. Firms can benefit from this as an enabler in developing adaptive business
models built upon cloud delivery models. The cloud computing business model focuses
on the value of business objects (cloud resources) exchanged among parties and abstracts
away the technical and implementation details. Now we delve into the core concepts,
their meanings and interdependencies:

♢ Computing Resource is a thing that has utility for the agents. In fact users need
to plan, monitor, and utilize the resources. For instance, computing resources can be
CPU, Storage, Memory, and VMs.
♢ Agent is an individual or a provider capable of having control over resources, and
transferring or receiving the control to or from other individuals or organizations. Exam-
ples of agents are consumers, cloud providers, brokers.
♢ Event represents either an increment or a decrement in the value of economic resources.
Events might demand or supply resources. Events can be classified into two poles of a
duality pattern of Give and Take. At least one take event and one give event exist for
each resource. When the event occurs, the provider loses rights to the resource, and the
consumer receives the rights.
♢ Commitment is a promise or obligation of agents to perform an event affecting the
resource.
♢ Contract is a collection of commitments and terms. Thus, the contract can specify
what should happen if the commitments are not fulfilled.

2.4 Cloud Manufacturing

Cloud manufacturing (CMfg) [17] is a new manufacturing paradigm developed under the
utilization of cloud computing, Internet of Things (IoT), virtualization technologies and
collaboration engineering. he cloud computing paradigm provides a virtualization layer
on top of shop-floor devices and resources envisaged in the IoT. These manufacturing
resources can elastically scale with on-demand access among distributed regions, leading
to an automated IoT application deployment. Collaborative engineering addresses the
orchestration and collaboration side of manufacturing workflows, in which resources
(such as devices, sensors, materials, and drivers) are virtualized and encapsulated into a
product bill of materials. In cloud manufacturing, distributed resources are encapsulated
into cloud services and managed in a centralized way [18].

In our study, a portable cloud manufacturing system serves multiple factories as an
integrated manufacturing ecosystem, helping to govern the manufacturing process and
support product design. It also enables overall dynamic configuration, production lifecycle
management, and team collaboration. It makes production planning and manufacturing
work in progress (WIP) distributable, controllable, composable, and portable over the
Web, leading to an even broader definition for the concepts of “design anywhere and
make anywhere (DAMA),” manufacture on demand, and manufacturing as a service.

15

2. Background

2.5 Open Government Data

Governments are rich in valuable civil information, as they must re-imagine their roles
as an information provider. The Gov 2.0 movement welcomes civic intelligence with its
data transparency, i.e., enabling governments to adapt to the ever-changing needs of
their citizens. The Data.gov initiative, for instance, does not just catalog raw data; it
takes this idea to a new level by providing a collection of open APIs1 to government
data. The rationale for data.gov is laid out in a reliable information infrastructure that
"exposes" the underlying data to the public (i.e., online) at large. The Gov 2.0 platform
model takes the further step of highlighting third-party mobile applications created by
independent developers in a real “AppStore” like Washington, D.C.2. These repositories
of data-driven apps can be open-sourced as a means for sharing best practices with other
governmental bodies and cities. Code for America3 is an instance of such open source
collaborative business model.

Opening up and publishing raw data such as maps, employment statistics, weather surveys,
agricultural statistics, and educational records, together with their associated APIs, while
enforcing and respecting privacy policies of course, makes two things possible: (i) Enabling
government as a platform and data infrastructure provider, who leverages government
platform to a new level of transparency to queryable sources of large amounts of underlying
operational data. This leads to more control by citizens over their governments, as well
as closer cooperation with them. (ii) Civic-minded programmers and the private sectors
can build and deploy applications on government’s data infrastructure to achieve optimal
utilization of the data. This utilization is realized by creating new interfaces to government
using the Open3114 standard, developing MobileApps and offering new services in the
AppStore as aided by government-provided data APIs. For instance, developers can
register for a key at api.data.gov to access data offerings, via REST-full requests and
returned responses in JSON or XML.

2.6 TOSCA

The Topology Orchestration Specification for Cloud Applications (TOSCA)[19] is an
OASIS standard that introduces a grammar for describing service templates by means of
Topology Templates and Plans. The focus is on design time aspects, i.e. the description of
services to ensure their exchange. Runtime aspects are addressed by providing a container
for specifying models of plans which support the management of instances of services.
In fact the designers will be more focused on the service topology which is a logical
relationship between services. The service topology defines the resource specification
without any explicit implementation details. With this approach the implementation of
a service can change without any effect to the cloud application design.

1http://data.gov/developers/apis
2http://Apps.DC.gov
3http://codeforamerica.org/
4http://open311.org

16

2.6. TOSCA

Plan

s
- Production Pre-condition

- Plan models (Production)

 e.g. Maintanance

Relation Type

- Properties

- Instances

- states

BOM Item Type

- Properties - UoM- Spec.

Materials- sensors-devices

Deployment artifacts

 Interfaces

- Policies

Node

template

Product templates (Node):

- Property constraints

- Interfaces

- Implementation Artifacts

- Deployment Artifacts

- Policies

- constraints

-Specification

Type For

Type For

Product BOM Topology template

Relationship Templates:

- Parent (Source)

- Child (Target)

- Property constraints

- Relationship constraints

Groups:

- References to node &

relationship Templates

- Policies

Figure 2.1: The core elements of TOSCA Service Template is the Service Topology.

Figure 2.1, shows the meta model of the TOSCA. The root of a TOSCA service is the
Service Template. The service template contains a directed graph that represents the
structure of the service called a Service Topology. Every service template has at least
one Service Topology. The topology graph is composed of nodes and edges. Edges in
a directed graph are links with a direction from node to node. The edges in a Service
Topology graph are binary relationships between nodes. The nodes represent the logical
components of the service. These nodes and relationships are templates that are patterns
for the real nodes and relationships instantiated in a deployed service. Plans orchestrate
various aspects of a service life cycle. The TOSCA specification defines build Plans and
termination Plans. Build Plans orchestrate the deployment and installation of a service.
Termination Plans orchestrate decommissioning a service. Designers of TOSCA services
can add plan types as needed. The designers can also benefit by workflow notations such
as BPMN or BPEL.

17

Part I

IoT Business Models

19

CHAPTER 3
Open Government Data

3.1 Introduction
Information theory begins with the representation, interpretation and transmission of
patterns of data, i.e., patterns made up of different kinds of “things”. We attach meanings
to these patterns and call the result, “information”. Patterns of data are mainly of
interest when they are transmitted from a source to a receiver [20]. Along with this idea,
governments are rich in such valuable information, as they must re-imagine their roles
as an information provider. The Gov 2.0 movement welcomes civic intelligence with its
data transparency, i.e., enabling governments to adapt to the ever-changing needs of
their citizens. The Data.gov initiative, for instance, does not just catalog raw data; it
takes this idea to a new level by providing a collection of open APIs1 to government
data. The rationale for data.gov is laid out in a reliable information infrastructure that
"exposes" the underlying data to the public (i.e., online) at large. The Gov 2.0 platform
model takes the further step of highlighting third-party mobile applications created by
independent developers in a real “AppStore” like Washington, D.C.2. These repositories
of data-driven apps can be open-sourced as a means for sharing best practices with other
governmental bodies and cities. Code for America3 is an instance of such open source
collaborative business model.

Opening up and publishing raw data such as maps, employment statistics, weather
surveys, agricultural statistics, and educational records, together with their associated
APIs, while enforcing and respecting privacy policies of course, makes two things possible:
(i) Enabling government as a platform and data infrastructure provider, who leverages
GoDaaS to a new level of transparency to queryable sources of large amounts of underlying
operational data. This leads to more control by citizens over their governments, as well

1http://data.gov/developers/apis
2http://Apps.DC.gov
3http://codeforamerica.org/

21

3. Open Government Data

as closer cooperation with them. (ii) Civic-minded programmers and the private sectors
can build and deploy applications on government’s data infrastructure to achieve optimal
utilization of the data. This utilization is realized by creating new interfaces to government
using the Open3114 standard, developing MobileApps and offering new services in the
AppStore as aided by government-provided GoDaaS data APIs. For instance, developers
can register for a key at api.data.gov to access data offerings, via REST-full requests and
returned responses in JSON or XML.

Moving forward, we frame the research question of GoDaaS: How does government become
an open platform that allows civic-minded developers inside and outside government to
develop practical applications? How to transform and expose government big data into
tradable services? This study addresses these challenges by driving new classes of GoDaaS
business models, in which stakeholders participate and share things. These business
models evolve through interactions between government and its citizens, like a service
provider enabling its user community. The increasing amounts of government data made
available, coupled with unpredictable and ever-changing business requirements, triggered
us to incorporate cloud service delivery models to define flexible and adaptive business
models. To this end, our contribution is threefold: (i) Deriving seven business models for
Government Open Data as a Service (GoDaaS) platform. (ii) Novel government data
abstraction unit, called Gov. DataComputeUnit (DCU) as a programming construct for
developers. (iii) GoDaaS consultation service that generates a tailored and application-
specific business model.

The chapter continues with a survey on some contemporary related work on defining
open government business models at section 3.2. With some definitive clues on how
the government data is currently traded, we define a new abstraction unit, called Gov.
Data Compute Unit (DCU), for government data at section 3.3. This unifies our data
resource trading unit within all proposed business models. To elicit and illustrate the
need for GoDaaS from the requirements engineering perspective, section 3.4 is devoted
to the core stakeholders and their relationships in GoDaaS ecosystem. Having the
stakeholders’ interest in the provision of government as GoDaaS platform, the focus is put
on implementing this new model with the API requirements at section 3.5. Subsequently,
the API requirements associated with the corresponding stakeholders for GoDaaS are
derived. Then, section 3.6 presents a detailed view on GoDaaS platform architecture
in support of our requirements. Having the architecture in place enables the proposed
business models. As a proof of concept, three business models are described from
developers view at section 3.7. In support of our model, we develop a primary GoDaaS
consultation service for developers. The running prototype5 is detailed at section 3.7.2.
Finally, section 3.8 concludes the chapter and presents an outlook on future research
directions.

4http://open311.org
5http://soheil4tuwien.github.io/GoDaaS/tool.html

22

3.2. Related work

3.2 Related work

In relation to our work, there are some prominent studies on capturing business models
for open government data. The European commission prepared a study on business
models for Linked Open Government Data (LOGD) for the ISA6 programme by PwC
EU Services in late 2013 [21]. In this report, the authors provide a theoretical framework
to analyze the LOGD. Fourteen entities who offered publishing, linking and accessing
open government data as a service were selected as case studies for further analysis. The
framework is structured according to the nine areas in the Business Model Canvas (BMC)
[16]. There are considerable studies on how to provide government’s data as Linked
Data7[22]. In [23], [24], [25], [26] and [27], the authors propose a semantic approach on
attaching meaning to government data by applying ontologies to formally and semantically
represent data.

This chapter outlines a set of abstractions for serving governmental data. Governments
produce data that members of the public are entitled to access but format, size, and
technology hurdles often prevent such access. GoDaaS is a proposal to mandate that all
government data be made available in a form that can be accessed through a unifying
set of programming abstractions.

3.3 Government Data Compute Units (DCU)

In the current Gov. 2.0 movement, governments are unable to feed developers with
formalized and structured data. Government data is available in data catalogs or APIs,
which are not published as a unit, but rather accessible on the data portal. For instance,
the data.gov and its CKAN8 API only contain meta-data about datasets. This meta-data
includes URLs and descriptions of datasets, which is not handy for programmers. As a
reaction to this complexity, we designed a new abstraction layer called Data Compute
Unit (DCU), that allows governments to express their data packages more structured
and consistent, so that developers can utilize these packages by treating them as objects.
DCU copes with an increasing heterogeneity of state government data sets, by providing
a unified interface on top of diverse data schemata from various states. In this context,
every state government provides its data in a unified interface of DCU. Then external
systems, like SOAP services or even programmers are able to invoke an API from DCU
library like transformData().

We define a DCU abstraction as a GoDaaS platform programming construct, containing
raw data and associated meta-data together with its utilization APIs. DCUs can
be considered as a programming construct, like Classes, for developing data-intensive
applications. Civic developers can compose, program and configure those DCUs to a
package like Linked Compute Units[28] and expose them to services delivered in mobile

6Interoperability Solutions for European Public Administrations (ISA)
7Tim Berners-Lee view: http://www.w3.org/DesignIssues/LinkedData.html
8http://ckan.org/

23

3. Open Government Data

Figure 3.1: GoDaaS Stakeholders together with their relationships.

apps to citizens. As shown in Figure 3.1, DCUs are composed of two parts: The DCU
meta data and set of APIs. The meta data provides: (i) a unique ID for future object
referencing, (ii) an URI that identifies the data source, which is actually a URL that
supports the data schema protocol for the retrieval purposes, (iii) a schema for an
structured data extraction and loading, (iv) a contract where terms and usage licenses
are detailed, and (v) two fromUnit plus toUnit elements to wire DCUs together for
composition purposes. DCU provides programmatic access to the contents and meta-
data of the government data repository and fosters re-use for programmers. We believe
governments must provide underlying data resources as DCUs.

In this study, our resource unit granularity is a Gov. Data Compute Unit. Developers
pull and program these units from government data infrastructure and expose DCUs as
web services or mobile apps. For instance, NASA has developed an open source REST

24

3.3. Government Data Compute Units (DCU)

API, called MAAS9, to provide information on the weather data being transmitted by
the Curiosity Rover on Mars. We consider the MAAS API together with its meta data
as MAAS_WeatherDCU. Developers can program and override this unit by building
mobile weather apps or analytic applications to utilize the weather data for their research
purposes. The MAAS API is available as an open source project under the Apache
license10.

Listing 3.1: Excerpt of DataComputeUnit Class Implementation
// Sample MAAS DCU c l a s s ex t end ing the a b s t r a c t
// DataComputeUnit c l a s s

public class MAAS_WeatherDCU extends DataComputeUnit{
private XML data ;
public MAAS_WeatherDCU(){
dcuID = new GUID() ;
dataURI =
" http :// marsweather . ingeno logy . com/v1 / . . / " ;
dataSchema = de f i n e XSD schema ; }
public XML re t r i eveData (){
data = cu r l −X GET ur i ;
return data ; }
public bool va l idateData (){
return dataSchema . v a l i d a t e (data) ; }
public JSON transformData (){
return JSON. convert (data) ; }
public f loat convertToFahrenheit (){
int cels_temp = data . getTemprature () ;
return (cels_temp ∗ 9 / 5) + 32 ;} }

Listing 3.1 provides a closer touch of programming a DCU by the pseudo-code of some
implemented procedures. The MAAS_WeatherDCU class implements abstract methods
of DataComputeUnit class. In the class constructor, all dcuID, dataURI, and dataSchema
attributes are initialized. The dcuID is of the GUID type, which makes it unique in
the whole ecosystem. This unique value is useful for tracing and logging DCU objects.
The dataURI points to the data source location for data retrieval, which can be an
internal service. The dataSchema is defined as an XSD file in order to validate the
quality of data variable structure. Invoking retrieveData(), fetches the data provided
in URI address using curl command and stores it as XML format in the data variable.
The validateData() procedure handles schema validation using XSD validation. Next,
transformData() is a simple function for converting the data into JSON format. In the
context of MAASWeatherDCU, the convertToFahrenheit() method fetches the stored
temperature data and converts it to Fahrenheit. It implements a light-weight logic
regarding to MAAS_WeatherDCU.

9http://marsweather.ingenology.com
10https://github.com/ingenology/mars_weather_api

25

3. Open Government Data

The GoDaaS architecture employs an enterprise service bus for its messaging, service
integration and orchestration of processes. In Listing 3.2, we show the pseudo-code of
core methods of Government Service Bus (GSB). Each service subscribes for a specific
domain topic. The GovServiceBus discovers the queried topic in its governance repository
and creates a new one if it is not already defined. Then, the service is added to the
instantiated topic. The publish() function stores the DCU in the service bus topic queue.
Using the mediate() function, the dcu objects stored in the queue are processed one by
one. Based on the topic of the dcu object, subscribed services are discovered. Having
these services identified, GSB checks whether the service has access to the dcu object.
Finally, GSB delivers the dcu object by calling the receive() function of the service.

Listing 3.2: Excerpt of Gov. Service Bus Class Implementation
// Sample Government Serv i c e Bus (GSB) c l a s s
// d e a l i n g wi th DCU o b j e c t s .

public class GovServiceBus {
public void sub s c r i b e (Se rv i c e s e r v i c e , Topic t op i c){
t op i c = f i nd top i c in the r epo s i t o ry ,
c r e a t e i f not e x i s t
t op i c . addSubscr iber (s e r v i c e) ; }
public void pub l i sh (DataComputeUnit dcu){
queue . push (dcu) ; }
private void mediate (){
DataComputeUnit dcu = queue . pu l l () ;
for a l l dcu . t op i c . g e tSub s c r i b e r s (){
authent i ca t e (s ub s c r i b e r) ;
s ub s c r i b e r . r e c e i v e (dcu) ; } } }

3.4 Stakeholders in GoDaaS

To investigate and elicit the requirements, we classify core stakeholders into three main
groups of Government Data Provider, Civic-minded Developers and Citizens. Their
dependencies are illustrated in Figure 3.1.

♢ Government Data Provider : This entity owns and provides the data. They provision
an operating open DCU infrastructure together with the development platform.

♢ Civic-minded Developers: The civic developers implement the logic aspects of their
DCU-based applications. They can program DCUs using the associated APIs for an
intended behavior.

♢ Citizens: A citizen is the government service consumer. The government body opens
up its data to its citizens for more transparency over their services. Citizens eventually
may consume the data via mobile applications on the government AppStore.

26

3.5. API Requirements for GoDaaS

Figure 3.2: GoDaaS system architecture in layers.

3.5 API Requirements for GoDaaS

The Eight Open Government Data Principles11 document outlines the key requirements
for open government data. Embracing these eight principles, we delve into our perception
of the APIs and derive technical requirements for the Cloud-based government platform
(GoDaaS). In our approach, the government is to offer the GoDaaS platform and a set of
APIs, so that developers consume those APIs for their application programming.

3.5.1 RQ1. End-to-End Governance Coverage throughout Data
Compute Unit Life Cycle:

Governance enforces government policies, governing all aspects (e.g., manipulate, compose,
expose, evaluate and control) of the DCUs throughout its life cycle. The stages of DCUs
life cycle, through which published-data passes, can be sequenced as collection, processing,
use, storage, application, provision and disposition.

3.5.2 RQ2. PaaS-enabled DevOps Integration for Government
DCU-based App Programming:

This requirement deals with enabling the development environment, composition, adoption
and use of DCU-based apps. As such, it incorporates full development life cycle tooling in
support of application programming, debugging, testing, building and deploying processes.
Government must provide the open DCU programming interfaces to its data.

11https://public.resource.org/8_principles.html

27

3. Open Government Data

3.5.3 RQ3. Discover, Subscribe and Provision Assets/Apps through
a Government AppStore Interface:

Developers compose and program DCUs and expose them as services or mobile apps.
Subsequently, the AppStore publishes these apps as marketable entities; then citizens are
able to subscribe, keep them in use and pay as they go. This leads to more economies of
scale for all parties involved. GoDaaS asset store not just enables the on-demand and
automated provision of these apps, but also couples with clients’ satisfaction and app
recommendation service that meets citizens’ requirements.

Stakeholders ↓ Requirements → RQ1 | RQ2 | RQ3
Civic-minded Developer • •
Government (Federal, State) • •
Citizens (Crowd, Individual) •

Table 3.1: Stakeholders/Requirements relation in GoDaaS.

As the stakeholders and requirements relationship is listed in Table 4.1, the need for
asset/app store by each stakeholder stands out. In support of these requirements, we
propose the GoDaaS platform. Next, we detail the GoDaaS layered architecture design,
indicating the logical separation or division of components.

3.6 GoDaaS Architecture
The impetus behind GoDaaS platform is how to adopt a data-driven cloud-enabled
platform, which provides interfaces for developers and private sectors to develop their
publicly available applications that expose the underlying data.

Figure 3.2 illustrates the GoDaaS architecture, which encompasses in four major layers:
(i) Gov. Data Infrastructure, (ii) Gov. Development Platform, (iii) Gov. Service Bus
and (iv) Gov. AppStore. Using Gov. data infrastructure, the government incorporates
cloud computing technologies to virtualize its data resources into DCUs. This enables
elastic DCU provisioning, meaning that government is able to dynamically allocate
DCUs to developers in an on-demand fashion. Conversely, the apps can pull DCUs
by invoking storage or database services to complete a transaction. Along with this
layer, the Gov. development platform layer is in place, where authorized developers
can implement and deliver their applications on top of government data. This platform
enables programming, composing and deployment of DCU-based applications. It is
basically a government-class cloud platform, which employs data-intensive programming
models supported by integrated development libraries and services like data analytics
and search facilities, which will empower the development process. On top of these layers,
the government AppStore stands out. The AppStore supports multi-tenancy, where
identities like state governments, third parties and civic developers are authorized to

28

3.7. GoDaaS Business Models

deploy their applications for trading. Through governance services, the AppStore ensures
that deployed apps comply with the government policies and regulations respectively.
Moving forward, the monitoring, metering and billing services track the asset/app usage
and debit citizens.

GoDaaS multi-layer architecture needs an integration enabler for its implementation
and a uniform service delivery model. Government service bus (GSB) layer glues all the
entities, agencies and services together through its messaging and queuing mechanisms.
Together with the integration, GSB also provides data adapters to the DCUs registry,
which is a point of access to all provided and customized DCUs by governments or
developers. It acts as an intermediary component to accept and provision the requests
to DCUs. Then it invokes the associated adapter to retrieve the DCU, validates and
transforms it through data schema and forwards it to the developer, for instance.

In order to catalyze the adoption of cloud delivery models, we have come up with seven
business models for the government open data. GoDaaS can include the following types
of data-driven business models: Data Infrastructure as a Service (IaaS), Storage as a
Service (STaaS), Data as a Service (DaaS), Database as a Service (DBaaS), Platform as
a Service (PaaS), Search as a Service (SEaaS) and Data Analytics as a Service (DAaaS).
All seven business models and their associated elements are consistently specified and
modeled in details, mostly from the developer’s view.

In this context, business modeling is driven by the value of API calls chain, as a sequence
of service invocations to exchange DCUs among governments and developers. This value
can be realized through developed mobile applications, that are consumed by citizens.
For modeling purposes, we consider two main languages: the Business Model Ontol-
ogy (BMO)12 and the OMG Business Motivation Model (BMM)13.

3.7 GoDaaS Business Models
Due to space limitations, we only present Database as a Service and Platform as a Service
business models in the chapter. Since DCU is an abstraction layer between data corpus
and developers, we integrate the DCU with several business models to help civic-minded
programmers make better use of GoDaaS framework. All the interactions among business
models in GoDaaS are based on the unified interface exposed by the DCU. We briefly
recap the three models here, and refer the reader to the GoDaaS site14 for further details
of all seven implemented business models.

3.7.1 Gov. Database as a Service (DBaaS)

Government’s parallel computation and distributed storage requirements to perform
data-intensive analytic processes on their big data, motivate the use of elastic and scalable

12http://www.businessmodelgeneration.com/canvas
13http://www.omg.org/spec/BMM
14http://soheil4tuwien.github.io/GoDaaS/index.html

29

3. Open Government Data

NoSQL databases such as Apache Hbase15 or Casandra16.

Figure 3.3: GoDaaS Database as a Service (DBaaS) business model class diagram.

DBaaS as illustrated in Figure 3.3 allows federal governments to provide a single log-
ical database to span geographically dispersed state governments’ data centers, while
maintaining intelligent load balancing. Storage load is provisioned on IaaS clouds in the
form of virtual disks that can be attached and detached from running VM instances[29].
Dealing with such state-aware loads means enabling storage nodes to scale elastically,
tightly interfaced with the STaaS and IaaS layers. Eventually the GoDaaS platform will
expose database services as APIs to developers and will govern patterns of API usage.

3.7.2 Gov. Platform as a Service

Government PaaS implements an application factory platform, enabling developers to
Code-on-Demand[30]. The platform then incorporates the state or federal SLAs to
ensure the government applications which are built through this process, follow a set of
enforced guidelines. Data intensive government application development often involves
large volumes and distributed data sets. Hence, the platform provides data-intensive
parallel programming models to provide distributed control of code execution during
job enactment. For instance, in the MapReduce programming model, data processing
is broken up into distributed fine-grained Map and Reduce tasks to devise a parallel
solution, performed by a Master-Slave design pattern.

As shown in Figure 3.4 the government PaaS objective outlines the need for a “Collabo-
rative & Composable Platform”, where the federal government would need to leverage
“sharing” of DCU resources and fork open source applications among state governments
for civic developers. This contributes to sharing best development practices and lessons

15HBase Homepage. http://hbase.apache.org
16Casandra Homepage. http://cassandra.apache.org

30

3.7. GoDaaS Business Models

Figure 3.4: GoDaaS Platform as a Service (PaaS) business model class diagram.

learned from current celebrated “government-ready” mobile applications. Sharing such
code artifacts leads to agility in the development cycle. The platform provides a col-
laborative development environment (using SVN, Git, etc.), accompanied with a set of
programming APIs like compileCode(), debugCode(), etc., and some development libraries
for seamless coding. The developers can import the available DCUs from the registry
into their IDE, then program and compose configuration and code artifacts into a single
development project and deployment archive called composite application.

3.7.3 Data Analytics as a Service

An in-depth analysis of government data will boost its services delivery to the respected
citizens. Government data agents and services amass underlying data and publish analytic
APIs for developers to make more sense of data. By analyzing the exposed data and
wrapping the analytic processes into application understand and analyze their operational
and transactional data. Civic developers program DCUs using such rich analytic APIs
to derive values from the data to glean insight into the behavior. Federal and state
governments benefit from such applications to make decisions based on discovered patterns
and anomalies.

From the Fig. 3.5, the data analytic services utilizes DaaS partnership to retrieve and
aggregate data through exposed DCUs. The aggregated data then stored to a distributed
file system like Hadoop17 cluster using DBaaS and STaaS service providers. To deliver
analytics on this distributed data, DAaaS applies correlative and data mining algorithms
like K-Means through a machine learning library like Mahout18 to discover new knowledge

17Hadoop Homepage: http://hadoop.apache.org
18Mahout Homepage: https://mahout.apache.org

31

3. Open Government Data

Figure 3.5: GoDaaS Data Analytics as a Service (PaaS) business model class diagram.

on-demand. Furthermore, this enables an analysis tasks in the applications to be executed
at a computational resource close to where the required data set is.

One interface for the citizens to consume and take action based on the analysis results
and KPI alerts is visualization. DAaaS visualization APIs supported by charting libraries
will visualize the exposed objects on the dashboard. Hence, the objective of visualization
services is to publish the summary of the analytics on to dashboards.

As a prototype, we have developed a consultation service where developers can clarify their
application specification and receive advice on their application’s technical requirements
for it’s commercial possibilities. The aim of the tool is to design a tailored business
model conforming to the needs of a new application. As a proof of concept, the service
forms a business model for the DAaaS. The service is fed with a sequence diagram 3.6,
also available in the referenced project repository, demonstrating the internal relations
between the methods and attributes of the DAaaS business model. The service parses
the sequence diagram and traces model element dependencies for new model generation.
The tool is hosted and running on the GoDaaS site.19

3.8 Conclusion and Outlook
This chapter presents a abstraction that combines government data URL and its associated
interface called DCU to enable open government data as a service. The DCU also
incorporates the government policy. Based on DCU, the authors expand the discussion
to the opportunity of civil use of the government data and its potential advantages.

19http://soheil4tuwien.github.io/GoDaaS/index.html

32

3.8. Conclusion and Outlook

Fi
gu

re
3.
6:

G
oD

aa
S
D
at
a
A
na

ly
tic

s
as

a
Se

rv
ic
e
(D

A
aa

S)
se
qu

en
ce

di
ag

ra
m
.

33

3. Open Government Data

In support of such abstraction layer, we present a reference architecture to enable
the development of GoDaaS, that is, Government Data as a Service. The goal of the
architecture is to provide a formal way for a given government to expose open-data, in a
way developers with civic-minded ideas can easily reuse it instead of spreadsheets or PDF
files as classically used. The key idea is to expose mechanisms that will allow developers
to public application in an app store, on top of governmental datasets.

So far, we modeled seven possible business opportunities on government open data. In
order to take such opportunities, governments should seek to ease any friction that limits
developers’ ability to build their tailor-made applications on top of these business models.
We have proposed that governments provide their underlying data resources as Data
Compute Units (DCUs) for the sake of seamless development. Civic developers compose
and program those DCUs and expose them to services delivered in mobile Apps to citizens.
We envision Gov. Data Compute Unit to gain acceptance as a de facto standard of an
open government data resource unit norm, through broad adoption. In this context, we
extended our contribution to an open government data service model entitled GoDaaS
as a government data processing platform, where civic programmers are motivated to
develop applications for citizens. As an outlook, we plan to elaborate and extend the
GoDaaS to build a development blueprints tailored for a specific application that logically
combine, orchestrate, and consume government data services.

34

CHAPTER 4
Cloud Manufacturing

4.1 Introduction

Industrial sectors now seek for distributed manufacturing control systems that provide
satisfactory, adaptable and robust systems, rather than optimal solutions that require
several hard assumptions to be met [31]. They are inspired by the convergence of
utility-driven opportunities of novel distributed technologies, such as cloud computing
and Internet of Things (IoT), coupled with collaborative engineering and applications
that are transforming the manufacturing processes like supplement, consumption, and
production models over the web. This contributes to the ability of dynamic provisioning
of elastically scalable manufacturing resources. Cloud technologies efficiently enable
integrating geographically diverse production lines to share knowledge and collaborate
through virtualization layers and well-defined interfaces. Thereby, this model facilitates
the inter- and intra-factory communication and collaboration in cloud manufacturing
environment. In this context, the distributed execution of shop floor jobs is applicable.
Underneath all the technologies involved, the essence of cloud computing is the cornerstone
of distributed and sustainable manufacturing. According to the definition of National
Institute of Standards and Technology (NIST) [3], cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g. networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction. As thus, a cloud Manufacturing system is capable of serving
multiple companies to planning, control and collaboration over the web. It makes
production planning and manufacturing work in progress (WIP) distributable, controllable,
composable and portable. In comparison to traditional production services, cloud
manufacturing is more complex and encompasses a broader diversity of services to adapt
to ever-changing customer-specific requirements. In particular, CloudMan services are
subject to realize concepts of “Manufacture on-Demand“ and “Manufacturing as a

35

4. Cloud Manufacturing

Service“ to meet unforeseeable events such as change of orders in an on-demand fashion.

Moving forward, the aim of this chapter is firstly to conduct a detailed analysis on the
CloudMan platform stakeholders; then to identify and present a set of architectural
API requirements to meet the stakeholders needs in such environments. Secondly to
propose an adequate CloudMan architecture by presenting the layers, including its service
abstractions, with their associated core services. Lastly, we describe the major components
and how they interact with one another to fulfill each requirement. CloudMan handles
dynamic configuration, portability and deployment of manufacturing services across
multiple collaborating manufacturers, by incorporating TOSCA standard. Henceforth,
the product Bill of Material (BOM) is virtualized on the cloud and is referred to as
Bill of Manufacturing Services (BOMS). The product designers model their products
TOSCA-based BOMS by composing both physical manufacturing resource, e.g. devices,
machines, sensors, materials, and the unphysical services, computing resources and
capabilities e.g. product documents, data and required software services, device drivers
using TOSCA standard. CloudMan deploys the distributed manufacturing processes and
plans of such TOSCA-based BOMS. The chapter ends with certain conclusions, focused
on explaining the applicability of the proposed architecture for cloud manufacturing
systems. However, at the moment, to the best of our knowledge, its not trivial for cloud
and business developers to fully utilize manufacturing resources from multiple factories
to realize the cloud manufacturing platform.

To this end, our contribution is twofold: (i) Incorporating OASIS TOSCA standard for
modeling cloud manufacturing Bill of Materials (BOM). (ii) A portable cloud manufac-
turing platform architecture together with its big data processing model.

The chapter continues with the specification of portable cloud manufacturing services at
section 4.2. Next, we model the TOSCA-based Bill of Manufacturing Services (BOMS)
at section 4.3, to demonstrate the feasibility and applicability of TOSCA in our proposed
framework. Section 4.4 is devoted to the core stakeholders and their relationships in
cloud manufacturing ecosystem. At section 4.5, the API requirements associated with the
corresponding stakeholders for CloudMan are derived. Subsequently, section 4.6 presents
a detailed view on CloudMan platform architecture, and a focus is put on implementing
this new model with the API requirements and the supporting system architecture. Then,
section 4.7 presents the platform big data processing architecture. Section 4.8 surveys
some scientific related work. Finally, section 4.9 concludes the chapter and presents an
outlook on future research directions.

4.2 Portable Cloud Manufacturing Services
We define cloud manufacturing as a ‘distributed manufacturing execution model, where
underlying resources envisaged in the Internet of Things (IoT), are elastically exposed and
utilized as cloud services, then composed and orchestrated for a manufacturing task in an
on-demand fashion’. The cloud virtualization technology abstracts away the complexity
of underlying manufacturing physical resources and their associated operations from

36

4.2. Portable Cloud Manufacturing Services

the product designer and developer. The IoT, takes the responsibility of controlling
the sensor network and its data and event flow with the closer touch on shop floor
operations. Collaborative engineering, addresses the orchestration and collaboration side
of the manufacturing flows. Then the manufacturing services and encapsulated resources
(devices, sensors, materials, drivers, etc.) are composed into the product BOMS that can
be accessed, configured, invoked, deployed and coordinated on distributed production
lines in a near real-time manner.

Listing 4.1: Excerpt of a TOSCA-based Cloud Manufacturing Plan
<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<Plans>
<Plan id=" DeployManufactur ingService "
name=" Car_Manufacturing_Build_Plan (CMBP) "
planType=" h t t p : // docs . o a s i s −open . org / t o s c a / ns /2011/12/ PlanTypes / BuildPlan "
planLanguage=" h t t p : //www. omg . org / spec /BPMN/20100524/MODEL">

<P r e c o n d i t i o n express ionLanguage="www. example . com/ t e x t "> ?
Invoke i f Order i s Paid .
</ P r e c o n d i t i o n>

<PlanModel>
<p r o c e s s name="Produce_10_BMW_X6" id=" p1 ">
<documentation>
Deploy new i n s t a n c e o f the CMBP to produce 10 BMW c a r s .
</ documentation>

<task id=" Task1 " name=" Check_the_Inventory_for_BOMS_Resource_availability " />

<task id=" Task2 " name=" Ship_materials_to_shop_floor_from_warehouse "
i s S e q u e n t i a l=" tr ue "
loopDataInput=" Task2Input . CarCounter " />
<documentation>
Assumption: Task2 g e t s 10 as an Input , s e t s the CarCounter that
i n d i c a t e s e x e c u t i o n number o f task .

</ documentation>

<task id=" Task3 " name=" Assemble_Car_Items "
i s S e q u e n t i a l=" tr ue "
loopDataInput=" Task3Input . CarCounter " />

<task id=" Task4 " name=" Colour_the_Car "
i s S e q u e n t i a l=" f a l s e "
loopDataInput=" Task4Input . CarCounter " />

<sequenceFlow id=" s1 " t a r g e t R e f=" Task2 " sourceRef=" Task1 " />
<sequenceFlow id=" s2 " t a r g e t R e f=" Task3 " sourceRef=" Task2 " />
<sequenceFlow id=" s3 " t a r g e t R e f=" Task4 " sourceRef=" Task3 " />
</ p r o c e s s>
</PlanModel>
</ Plan>

<Plan id=" Halt_Car_Production "
planType=" h t t p : // docs . o a s i s −open . org / t o s c a / ns /2011/12/ PlanTypes / TerminationPlan "
planLanguage=" h t t p : // docs . o a s i s −open . org / wsbpel /2 .0/ p r o c e s s / e x e c u t a b l e ">
<PlanModelReference r e f e r e n c e=" Mfg:HaltMfgSrv " />
</ Plan>
</ Plans>

The monitoring service instances are responsible for sensing and interpreting the opera-
tional data received from the deployed manufacturing services across various units. If
malfunctioning detected, the monitoring instance resumes the corresponding services,
changes the context status and invokes recovery plan. One potential fault-recovery process
can be incorporating portable cloud manufacturing services. Being able to port the whole

37

4. Cloud Manufacturing

package of dependent manufacturing services, serves better proactive maintenance of
defects detected in one production line. The fault-recovery process will port the BOMS
to other corresponding and authorized production lines and resume the job completion.

4.3 TOSCA-based Bill of Manufacturing Services

The TOSCA-based BOMS of a configurable product contains all the components that
are required to manufacture the product. It is composed of comprehensive list of raw
materials, components and assemblies required to build or manufacture a product. BOMS
is usually in a hierarchical format, with the topmost level showing the end product,
and the bottom level displaying individual components, resources and materials. Each
item in BOMS describes the relationship between a parent (assembly) item and a child
(component) item. In order to establish a cross-factory manufacturing governance and
ultimately integrate distributed production lines, a standard shall be used to define
product structure covering the relationship between objects, components and their
configuration recipes.

There are couple of standards, which each does utilize the data exchange but lacks
supporting the cloud and portability features. PDX1 is the Product Data eXchange
standard for the e-supply chain. Its standardization effort is focused on the problem of
communicating product content information between Original Equipment Manufacturers
(OEMs), Manufacturing Services providers and component suppliers. The standard is
based on XML as a flexible way to encode structured data into a format that is both
human and machine-readable. It provides a way to describe product content (BOM,
Approved Manufacturer Lists (AML), Drawings, etc.), Engineering Change Requests
(ECR), Engineering Change Orders (ECO) and Deviations in an XML format. This
enables a total product definition to be described at a level appropriate to facilitate supply
chain interactions. The standard is designed to transfer technical information including
BOMS, AML, as-built product configuration, and change (Engineering, Manufacturing,
Product) information, as well as manufacturing features, tolerance specifications, material
properties and finish specifications. Another more in-use standard, called the Business-to-
Manufacturing Mark-up Language (B2MML)2 is an XML-based standard maintained by
the World Batch Forum (WBF), which specifies data formats for information exchange
between different enterprise control systems [B2MML03]. It provides an implementation
of the ISA-95 standard in terms of XSD schema definitions.

Looking forward, having the essence of cloud computing in manufacturing domain,
leads to an evolution in its manufacturing service delivery models. Cloud-enabled
manufacturing services can be identified, specified, designed, composed, configured and
realized or manufactured on-demand. Noted this, the BOMS can now be considered as
cloud manufacturing virtual product, applicable to be deployed in multi-production lines,

1http://webstds.ipc.org/standards.htm#x2570
2B2MML (2003): Business to manufacturing markup language. The World Batch Forum,

http://www.wbf.org

38

4.3. TOSCA-based Bill of Manufacturing Services

resulting in actual “as-built” assets. In this respect, the need for a cloud standard or
specification to represent BOMS seems to be vital. The following offerings are observed
and the appropriate one is ensured.

Cloud standards like TOSCA and OVF are for packaging the cloud services and resources
as marketable entities. OASIS TOSCA approaches composing the cloud resources from
the design perspective, rather than the actual resources that support the application, as
OVF does. The OVF structure, on the contrary, emphasizes on what must be installed
and how. TOSCA refers to OVF packages as deployment artifacts. A component of a
TOSCA service can be implemented by deploying an OVF package. TOSCA’s approach
is higher level than OVF. In fact TOSCA represents a business-oriented development
methodology, which can be a significant achievement in IT-business alignment. Thus,
TOSCA is a better choice in our mappings.

The TOSCA language introduces a grammar for describing service templates, by means
of Topology Templates and Plans in which can be utilized to define the BOMS as well.
The focus is on design time aspects, i.e., the description of manufacturing services,
resources, materials or in broader view, “things” to ensure their exchange. The runtime
aspects of TOSCA are addressed by providing a container for specifying models of plans.
In cloud manufacturing case, these plans can address supply chain plans, production
plans, maintenance plans, etc. which can support the management of instances of
manufacturing services. In fact, the designers will be more focused on the TOSCA-based
BOMS topology design, which is a logical relationship between product components,
equipments and assembly items. The TOSCA-based BOMS topology defines its item’s
specification regardless of any explicit development and manufacturing operation details.
With this approach, the manufacturing operations of a product can change without
any effect to its BOMS design. Hence, both the manufacturer and the user are able
to compare various actual manufacturing solutions and in terms of cost, quality and
timely production to make a reasonable choice. Figure 4.1, shows the meta model of
the TOSCA-based BOMS. The root of a TOSCA-based BOMS is the Product Template.
The product template contains a directed graph that represents the structure of the
product called a Product BOMS Topology. Every product template has at least one
product TOSCA-based BOMS topology. The topology graph is composed of nodes
and edges. Edges in a directed graph are links with a direction from node to node.
The edges in a product BOMS topology graph are binary relationships between nodes.
The nodes represent the logical components, items or objects of the product. These
nodes and relationships are templates that are patterns for the actual resources, objects
or materials and their relationships instantiated in a deployed manufacturing service.
Relations capture, represent and quantify associations between objects. Plans orchestrate
various aspects of a manufacturing service life cycle. The TOSCA specification defines
Build Plans and Termination Plans. Build plans orchestrate the deployment, installation
and production operations of a BOMS. Listing 4.1 implements an excerpt of a TOSCA-
based BOMS build plan in cloud manufacturing. The complete implementation of a
TOSCA-based Bill of Manufacturing Services (BOMS) is available on the CloudMan

39

4. Cloud Manufacturing

Figure 4.1: The core elements of TOSCA-based Bill of Manufacturing Services (BOMS)
Template and the Topology.

site3.Termination plans orchestrate decommissioning a production line. Designers of
TOSCA-based BOMS can add plan types as needed. Therefore TOSCA-based BOMS
encapsulates the required information for product life-cycle management. The utility of
TOSCA-based product BOMS maximizes the portability of manufacturing document,
and guarantees a smooth data flow.

In this chapter, we propose CloudMan platform which deals with the realization and
provisioning of all types of manufacturing resources as services, for all phases of the pro-
duction life-cycle, from product TOSCA-based BOMS topology design to its distributed
deployment. These manufacturing resources such as physical resources, software services
and data units are classified in [32] and can be dynamically configured and composed
into the TOSCA-based BOMS to be utilized through manufacturing services.

4.4 Stakeholders in CloudMan

To investigate and elicit the requirements, we first detail a comprehensive study about
the cloud manufacturing ecosystem stakeholders, who have business interest in this
environment. Specifically, their participation roles, the services they provide and the
APIs they consume. Their dependencies are drawn in Figure 4.2. However, we need to
have a systematic classification of stakeholders in order to understand interfaces that they
could be directly consuming. In our work, we classify stakeholders into six main groups of

3https://github.com/soheil4TUWien/CloudMan

40

4.4. Stakeholders in CloudMan

Original Equipment Manufacturers, Platform provider, Product Developer, Manufacturers,
Coordinators and Auditors as illustrated in Figure 4.2:

OEMs,

Suppliers

Cloud

Provider

Manufacturers

Product

Developer

Auditors

Coordinator

Sustainable and Distributed

Cloud Manufacturing

Manufacture on-demand

TOSCA-based BOM

ShopFloor Control

Supply Chain

CloudMan

KPI Monitoring

Manufacturing

Collaboration

Figure 4.2: Main stakeholders in CloudMan Manufacturing System.

♢ OEMs: Original Equipment Manufacturers produce devices or components that can be
consumed and utilized within other companies’ manufacturing process. Their sustainable
equipments can leverage and optimize the distributed manufacturing process. They can
also provide logistics services and take charge of all the shop floor issues involved.

♢ Cloud Platform providers: They offer computing resources for enabling cloud manu-
facturing solution. They can be categorized as service providers (i.e., WSO2 ESB) or
infrastructure providers (i.e., AWS EC2).

♢ Product Developers: In order to initiate a manufacturing process, BOMS should be
modeled and designed. The product developers or designers process the user requests
and then look for the most appropriate and applicable manufacturing resources that
fit the request criteria. Then they model their product BOMS by composing both
physical manufacturing resource, e.g. devices, machines, sensors, materials, and the
unphysical services, computing resources and skills like product documents, product
specification and required software services. In our platform, the product BOMS should
be modeled using Oasis TOSCA standard and then the TOSCA-based product BOMS will
be deployed to the distributed production lines for the actual manufacturing operations.
The TOSCA-based BOMS components, will be mapped and deployed to actual services
and manufacturing resources, devices and equipments at the production layer which then
can be mapped, allocated and deployed on multiple production platforms.

♢ Manufacturers: They provide production lines with the associated and required human
interactions in manufacturing at the shop floor. This workforce collaboration (required

41

4. Cloud Manufacturing

manpower) includes functions such as assembly, testing, quality control. Manufacturers
may collaborate as well as compete.

♢ Coordinators: They take care of orchestration of cloud manufacturers in terms of
serial and simultaneous production lines. In particular, they manage the portability and
interoperability of manufacturing resources among multiple manufacturers. They also
manage the resource and product delivery by dealing with SLA negotiation between man-
ufacturers and a consumer. Specifically, they are hiding the diversity and heterogeneity
of cloud manufacturers to consumers and coordinate a federated manufacturing.

♢ Auditors: In principle, they might be a third party partners, who watch and audit
the manufacturing performance and the usage of resources on production lines through
standard Key Performance Indicators (KPIs). Auditors make sure of SLA and the quality
assurance of product delivery.

4.5 API Requirements for CloudMan

Actors↓ Requirements → RQ1 | RQ2 | RQ3 | RQ4 | RQ5 | RQ6
Cloud provider (e.g. IaaS, PaaS) • •
OEMs (e.g. Devices, Equipments) • •
Manufacturers (e.g. Workforce) • • • •
Coordinators (e.g. Control flow) • • • •
Auditors (Observe Mfg flow) • •
Product Designer (Compose BOMS) • • • • •

Table 4.1: Relationships between Requirements and Stakeholders in CloudMan.

Our approach is to offer a cloud manufacturing platform and a set of APIs so that the
product developers/designers can design their products seamlessly and circumvent the
abstraction layers over the production lines and gain access to the original APIs for
resource utilization. From the API engineering perspective, we delve into our perception
of the APIs for the cloud manufacturing paradigm. To clarify the expectations of the
stakeholders as consumers of these APIs, we classify them into three main categories:
(a) TOSCA-based BOMS Formation APIs; (b) Resource Match-making APIs; (c) Man-
ufacturing Provisioning APIs. Thus back to the developer of a cloud manufacturing
product, they compose and connect diverse services, resources and raw materials from
various manufacturers. They also make sure of clients’ requirements to be satisfied by
the chosen ingredients. we observe the following main API requirements for architecting
the CloudMan:

42

4.5. API Requirements for CloudMan

4.5.1 RQ1. APIs Runnable on Multiple Cloud-enabled
Manufacturing Systems

The goal is to provide a layer of abstraction between the cloud-enabled product BOMS
designers and the multiple production lines, which basically abstracts the differences
among diverse manufacturers. Designers compose abstract TOSCA-based BOMS at this
layer, which then can be distributed and deployed on multiple production platforms.
This will grant the designers to an “on-Demand” and “at-Scale” manufacturing service
provisioning on multiple and distributed production lines with a single platform.

4.5.2 RQ2. Discovering Product Resources and Materials through
Query Interface

This requirement deals with manufacturing resource discovery procedure. First, it man-
ages the resource discovery process among all the available manufacturers. Considering
the Publish-Subscribe design pattern, the manufacturers publish their profiles in a knowl-
edge base or manufacturing registry. Then the discovery agent broadcasts demand for the
actual resource availability among multiple manufacturers. This is required for designing
TOSCA-based BOMS.

4.5.3 RQ3. Match-making APIs to Map/Utilize TOSCA-based
BOMS to Services to Production Resources

This requirement deals with production resource rating and reservation procedure. After
having the manufacturing resources discovered, first the agent rates them based on the
matching policy and deployment strategy, then chooses the more appropriate vendor/-
manufacturer and the resources, wherein the specification fits in upon requirements in
terms of quality and cost constraints. Finally, the confirmed BOMS will be deployed for
the actual production and will reserve the resource for future manufacturing provisioning
on the shop floor. In summary, production resource matchmaking APIs provide users with
a list of recommended resources indicating the best match between BOMS requirements
and manufacturers’ offer.

4.5.4 RQ4. Ensuring end-to-end BOMS-centric Manufacturing
Resource Coverage

The impetus behind the sustainable and distributed cloud manufacturing is driven by
the dynamics of the market and ever-changing requirements and the need of product
developers to optimize costs with the improved quality. Therefore, it is vital to ensure
that the recommended and chosen resources and materials follow the constrains based on
agreements and supports all the requested BOMS specification with the cost and quality
demanded, while avoiding the dependency or lock-in to one vendor/manufacturer.

43

4. Cloud Manufacturing

4.5.5 RQ5. Manufacturing Monitoring through multi-Production
Lines Watch Interface

The platform should provide monitoring services for manufacturing flows running on
multiple production lines. Developers can benefit of these APIs in order to collect
data and track metrics, gain insight, and react immediately to keep their product
development running smoothly. The match-Maker agent can also monitor and process
custom Key Performance Indicators (KPIs) to gain cloud-wide manufacturing visibility
into resource utilization, application performance, and operational health for future
production planning.

4.5.6 RQ6. Managed Interoperability of Production Flow among
Multiple Factories

The variety of the service interfaces design makes the product development and the hosted
production lines dependent together, which poses the interoperability challenges between
multiple manufacturing services. We need models for interoperability and orchestration
of the services designed for cloud manufacturing environments.

As listed in Table 4.1, CloudMan requirements are directly associated with a stakeholder,
who consumes an API and performs a specific operation to the fulfillment of manufacturing
requirement.

4.6 CloudMan Platform Architecture

This section presents the CloudMan architecture that realizes the aforementioned core
concepts. Before documenting the architecture, we study the term Manufacturing
Execution System (MES) defined by the Manufacturing Execution System Association
(MESA)4 as follows: "Manufacturing Execution Systems (MES) deliver information that
enables the optimization of production activities from order launch to finished goods.
Using current and accurate data, MES guides, initiates, responds to, and reports on plant
activities as they occur. The resulting rapid response to changing conditions, coupled
with a focus on reducing non value-added activities, drives effective plant operations and
processes. MES improves the return on operational assets as well as on-time delivery,
inventory turns, gross margin, and cash flow performance. MES provides mission-critical
information about production activities across the enterprise and supply chain via
bidirectional communications."

As a blueprint for designing the architecture, we briefly review the information flow
between the MES and various heterogeneous connected systems as defined by ISA-955
standard. The Product Lifecycle Management (PLM) sends product information like

4www.mesa.org
5ISA-95 is an international standard for developing an automated interface between enterprise and

control systems, specifically for global manufacturers.

44

4.6. CloudMan Platform Architecture

its bill of materials, work instructions, equipment configurations, operations list and
their execution order to the MES for the operational purposes. This information has
been defined using B2MML(Business-to-Manufacturing Markup Language)6. In our
architecture, we model this PLM information using TOSCA standard. The MES sends
the manufacturing test results to PLM, then sends the performance results together with
produced and consumed resources to the legacy applications like ERP system. On a shop
floor side, the work instructions and recipes are send from MES to Programmable Logic
Controllers (PLC) or Gateways for actual operations. As a result, production data are
sent back to MES. The MES layer, which is responsible for managing the factory, sits
below the ERP, manages the business. The industry standard for plant floor connectivity
and process control is called Open Platform Communications (OPC). The standard
specifies the communication of real-time plant data between control devices from different
manufacturers.

The architectural model proposed for the CloudMan platform as illustrated in Figure 4.3,
is organized on five interconnected layers: (i) Manufacturing Vertical Applications Layer,
(ii) Manufacturing Core Services Layer, (iii) Manufacturing Execution System Layer,
(iv) Manufacturing Service Bus Layer and (v) Manufacturing Infrastructure Resource
Layer. Next is focused on each layer’s specification and capabilities. In the architecture
big picture, we also provide a sample WSO27 service which can implement the layer’s
capabilities.

4.6.1 Layer 1. Manufacturing Virtual Applications (MVA) Layer:

At this layer, clients are involved. CloudMan provides interfaces for users to invoke the
services for their business needs, like on-demand manufacturing requests. Following the
request, required services will be composed and orchestrated to fulfill the order. Business
users can also create web components like dashboards or gadgets to have a close look
at their ongoing manufacturing orders. This layer simply represents the “face” of the
CloudMan.

On the other side, the manufacturers can benefit of their enterprise store to advertise their
manufacturing services, APIs and applications, so that the users can rapidly discover,
subscribe and make use of them upon their demands. CloudMan is capable of outsourcing
the manufacturing processes in an on-demand fashion using the cloud gateway service.
This opens a secure channel to other manufacturing services in the cloud for more elasticity
and collaboration. Last but not least, 3rd party applications like ERP/CRM can also
be integrated to the CloudMan and render their manufacturing orders on cloud. They
can model their requirements by product definitions, bill of materials, work instructions
and the equipment settings. In return, CloudMan will respond with the manufacturing
results, including the finished products, material consumptions and metering data for
charging, billing and future planning purposes.

6The B2MML standard defines a format for exchange of ISA-95 information and the specific method
(XML documents) for exchanges.

7http://wso2.com/products

45

4. Cloud Manufacturing

Figure 4.3: CloudMan Framework Layered Architecture

46

4.6. CloudMan Platform Architecture

4.6.2 Layer 2. Manufacturing Core Services (MCS) Layer:

This layer is the foundation and “body” of the architecture, which serves all parts of the
ecosystem. It relies on scalability of distributed service bus. At this layer, the Enterprise
Service Bus (ESB) is in place to act as connecting layers and implement interactions
among various components within layers. ESB delivers monitoring, routing and queuing
of messages plus choreography and queuing of events. Another responsibility of this layer
is the Identity Server, which provides the authorization service over resource usage, grants
the authorized users to access the manufacturing service catalog and invoke registered
services in Governance Registry.

This layer also deals with monitoring manufacturing system performance upon predefined
KPIs. The monitoring mechanism consolidates the collected data around KPIs for
the manufacturing system and provides insights to the stakeholders for their future
planning. Monitoring is applicable on various granularity of the manufacturing units. On
a higher level of granularity, the web services that are exposed for internal usage, should
meet the performance criteria, like availability and response time for the prospective
manufacturing load. Looking at the production level, for instance, manufacturing
resources like equipments and devices (e.g., 3d Printer) running on the shop floor, need
to be checked periodically to ensure their healthy operation, such as the resource status,
its energy consumption and the resource utilization. These monitoring tasks might lead
to a change in manufacturing flow and request the production line to elastically scale
and adapt by allocating more or releasing manufacturing resources to newly detected
situation.

4.6.3 Layer 3. Manufacturing Execution System (MES) Layer:

MES layer represents the “brain” of the CloudMan. MES receives the product definition,
TOSCA-based BOMS, the manufacturing instructions, the equipments configurations and
finished product quality constraints from the MVA layer or from 3rd party ERP/CRM
applications. Then this layer checks the availability of manufacturing resources and does
the inventory and supply chain control through the MSB layer. Having that in mind, the
MES schedules the production planning and reserves the resources through Match-making
APIs furnished in requirement section accordingly. The resource scheduling process deals
with the distributed allocation of planned manufacturing operations associated to all
orders on the available resources. This layer is also capable of defining rules and constraints
for performance measurement and quality assurance.

As scheduled, the production plan will be deployed on the production lines, allocating
resources and invoking manufacturing services leading to actual shop floor operations.
Through Complex Event Processing (CEP), CloudMan processes events, including ma-
terial consumption; resource usage and product assembly will be tracked and analyzed,
then the production results will be sent to upper layers for aggregation and computation.
The data services in this layer will store, retrieve and manipulate the manufacturing data
to straightforward integration with manufacturing flows.

47

4. Cloud Manufacturing

4.6.4 Layer 4. Manufacturing Service Bus (MSB) Layer:

After the production scheduling is confirmed, the execution commands and allocation
messages are sent from MES layer to MSB. The MSB receives the messages/events, then
after analyzing them decides which end points (e.g., machine, equipment, human) is the
recipient, so that it will route the message like instructions to the desired receiver. It is
in fact the “heart” of the CloudMan as it pumps pure manufacturing messages, data
and events into various end points. MSB handles the transactions and can load balance
among multiple PLCs to perform under high loads. It is also responsible for handling
the production failures in case of occurrence.

4.6.5 Layer 5. Manufacturing Infrastructure (MI) Layer:

This layer encapsulates manufacturing resources like materials, machines, equipments,
devices, sensors and human workforce. In CloudMan, the resources are connected, sensed
and can be controlled through IoT technologies. Then these resources and their operations
are virtualized and encapsulated into registered cloud manufacturing services, which will
be scheduled upon the demand in MES. It is strongly the “skeleton” of the CloudMan
as all other layers are functioning on top of this layer. Optimized resource scheduling is
a key factor in this layer for increasing manufacturing productivity. Therefore there is a
great need to develop a systematic real-time equipment health evaluation and dynamic
preventive maintenance.

Figure 4.4: CloudMan Manufacturing Platform Big Data Architecture

48

4.7. CloudMan Platform Data Architecture

4.7 CloudMan Platform Data Architecture

From the time a request is submitted to the CloudMan till its fulfillment, a huge amount
of data is produced by manufacturing resources such as equipments and sensors. In order
to make use of this massive volume of data that is moving from bottom most layer to
the top, we need to effectively collect them, analyze them, appropriately visualize them
and accordingly take actions. Here, two aspects are considerable: (i) space: as we are
dealing with Peta-bytes of data from different data sources, an effective way of storing
them and correlate them plays an important role, and (ii) time: in some cases we are
interested in analytics results over a time period (e.g. for monitoring purposes), and in
some other cases a real time analytics is needed (e.g. for generating alerts). CloudMan
data architecture as shown in Figure 4.4 covers both aspects.

First stage is to collect data streams and store them in distributed large storages on
HDFS (WSO2 Business Activity Monitor (BAM) is capable of doing this). Then the
analysis engine such as BAM analyzer, processes the stored data and generates the results
streams, which can be then stored in RDBMS databases, as the volume of analyzed
data is much smaller than the original data, or we can store them again in our big data
storage, if the volume is high. Our analysis engine is empowered by Hadoop framework,
supporting powerful programming models such as MapReduce.

For real time analytics, we use a complex event processing engine such as WSO2 Complex
Event Processing (CEP)8 to analyze the data as they are coming and without storing
them. The output stream from real time analytics generated by CEP, as well as batch
analytics generated by BAM, will be sent to MVA layer to be visualized. At this layer we
take benefit of tools, such as WSO2 User Engagement Server (UES)9, to build dashboards
and visualize and monitor KPIs. For the outputs from CEP, we can also generate alerts
for matching event detections.

4.8 Related work

In relation to our work, there are some prominent approaches contributing architec-
tures, platforms and models of complete frameworks for the cloud manufacturing system.
Brecher et al. [33] proposed a module-based and configurable manufacturing platform
based on Service-Oriented Architecture (SOA), called open Computer-Based Manufactur-
ing (openCBM). STEP standards10 are utilized to preserve the results of manufacturing
processes that are fed back to the process planning stage. Li et al. [34] introduced a
four-layer application service integration platform that is able to bridge multiple clouds
and information systems. Interactions across organization boundaries are supported by
collaboration point, which plays as an interface providing data exchange, command trans-
ferring, monitoring and so forth. The system integrated manufacturing business processes

8http://wso2.com/products/complex-event-processor
9http://wso2.com/landing/user-engagement-server

10http://en.wikipedia.org/wiki/ISO_10303

49

4. Cloud Manufacturing

with the help of collaboration agents. This research work examined the possibility of
integrating existing manufacturing applications in the cloud Computing environment.
Schulte at el.[35],[36] analyzes requirements regarding process enactment for Cloud man-
ufacturing and provides a concept for an according software framework. They also
elaborate the use of service-oriented virtual factories to establish, manage, monitor, and
adapt virtual factories in a plug-and-play-like fashion.

Wang and Xu [37] proposed a Distributed Inter-operable Manufacturing Platform (DIMP)
as an integrative environment among existing and future CAD/CAM/CNC applications.
It is also based on SOA concept. In the platform, the requests and tasks from the users
are modeled, collected and defined as "Virtual Service Combination", which echoes the
manufacturing requirement at the Global Service Layer. Moreover, STEP data models
are utilized as the central data schema. In a recent paper[38], they have proposed a
service-oriented system called Interoperable cloud-based Manufacturing System (ICMS)
which provides a cloud-based environment, integrating the existing and future manufac-
turing resources by packaging them using the "Virtual Function Block" mechanism and
standardized description.

In contrast to existing approaches, our CloudMan platform is incorporating a cloud
standard to elicit the manufacturing requirements using the TOSCA-based Bill of Manu-
facturing Services (BOMS).

4.9 Conclusion
The cloud-based design and manufacturing refers to a product realization model under
the support of three core technologies of Cloud computing, Internet of Things (IoT)
and Collaborative engineering. In this chapter, we proposed a reconfigurable cloud
manufacturing platform, called CloudMan platform, which considers these three tech-
nologies and deals with the portability and provisioning of all types of manufacturing
resources as services. We incorporate TOSCA specification to model product Bill of
Materials(BOM) as Bill of Manufacturing Services (BOMS) which leads to portability
of such services. This elevates the manufacturing process to be more resistance against
failure and defects detected in one production line since the manufacturing service can be
ported to other certified production eventually. As an outlook, our future work will more
focus on utilizing TOSCA-based BOMS specification in realization of virtual factories
which are formed and constructed on-demand by a dynamic composition of distributed
manufacturing services and resources with the CloudMan platform.

50

CHAPTER 5
Linked Sensor Data

5.1 Introduction
A data stream is a massive sequence of sensed data. Sensing is a process of expressing
true values in context. Context refers to an environment of interest in which a sensor
is embedded. Such sensors might be a device or a service. They represent the context
behavior by streaming the values of its computational objects attributes. To interpret
the situation of a thing in a context, semantics of such raw data seems to be vital. An
Internet of Things (IoT) incorporates cloud computing[3] and virtualization mechanisms
to expose such data to analytic endpoints to drive context awareness. The W3C Semantic
Sensor Network Incubator Group (SSN-XG)1 has developed an ontology to elevate the
quality of sensed data with semantic web technologies. Project Haystack2 has developed
naming conventions and tags for environmental equipment like buildings and lighting
devices together with their operational data. Having these conventions in place, clients
are able to consume Haystack REST APIs to discover, query, and tag objects and the data
collected and stored by IoT frameworks like NiagaraAX3. IoT infrastructure is composed
of resource-constrained gateways and a network of devices. The above-mentioned solutions
are not lightweight and universal in terms of their provisioning and deployment model.
They also lack analytic endpoints for reasoning purposes.

To this end, our contribution is threefold: (i) A built-in solution for the semantic sensor
data retrieval on the IoT device layer. We develop a semantic gateway middleware
called Gatica, which delivers automated and on-demand semantic annotations, labels
and taxonomies for sensor data acquisition at scale. (ii) In support of such linked sensor
data which was collected and annotated by the wrappers, we provide a "manifest" as
the meta-data dictionary of the sensor current readings. This contributes to real-time

1http://www.w3.org/2005/Incubator/ssn/
2http://project-haystack.org
3http://www.niagaraax.com

51

5. Linked Sensor Data

semantic sensor data retrieval. (iii) At streaming-time, the sensor annotated data object
from the wrapper is injected into the mediator and the mediator virtually applies in
lightweight transformations on raw data resulting RDF triples. Our Gatica middleware
implements a layered approach to the interpretation of the sensor time-series data. The
linked data RDFs are then streamed to the analytics endpoints for querying and reasoning
purposes.

This chapter continues with an initial analysis over the utility of the data source being
studied in this research in section 5.2. After the data utility mathematical model is
detailed, section5.3 presents the basic concepts and preliminaries of IoT gateways. With
some definitive clues on data source structure and its associated annotations, we propose a
novel IoT gateway middleware to fulfill sensor data enrichment. Section 5.4 is devoted to
the core elements of Gatica layered architecture together with its interacting components.
In support of our model, we deploy our middleware to production by processing the
real-world medical data set. Subsequently, section 5.5 surveys related work. Finally,
section 5.6 concludes the chapter and presents an outlook on future research directions.

5.2 The Utility of Sensed Data

There is a commendable survey[39] in which the authors explore the state of the art of
how the health-care sensed data are utilized by applying analytics and mining algorithms.
Along with such data use-cases, patients requiring intensive care need continuous obser-
vation and treatment. This is achieved via wearable or contextual sensors, which are
connected to medical devices measuring physical attributes and producing a considerable
amount of vital data on a per-patient basis. Medical institutions that are collecting big
amounts of such data enable us to achieve a better understanding of the patient’s current
status and their recovery progress.

Having such data in place, the health-care service providers are able to construct a
wellness-function for the normal range of the vitals and produce alerts upon on deviating
from the normal values. Through this vital range interpretation, various disease patterns
can be discovered together with its severity.

In this chapter we have used the Massachusetts General Hospital/Marquette Founda-
tion (MGH/MF) Waveform Database[40] that represents a comprehensive collection
of electronic recordings of hemodynamic and electrocardiographic waveforms of stable
and unstable patients in critical care units, operating rooms, and cardiac categorization
laboratories.

This data set is used as a real world motivation scenario in putting Gatica in production
mode. At any given time t, Gatica provides enriched pieces of information about the
medical sensor observations. Such observations can be represented as a column-vector
ot ≡ [t,1 t,2 ... t,n]T ∈ Rn of sensor data stream values at time t. The stream data
can be regarded as a frequently expanding t × n matrix Ot := [o1 o2 ... ot]T ∈ Rt×n
where the new incoming streams are added as matrix rows at each time interval t in

52

5.2. The Utility of Sensed Data

real-time. In our health-care example, Ot is the measurements column-vector at t
over all the sensors, where n is the length of the vector and indicates the number of
health-care sensors and t is the measurement time-stamp. These vectors represent the
set of measurements obtained by the n sensor at a specific observation. In particular
the rows of the matrix represent the different observations in a given period, while the
columns the sample values detected from each sensor during the observations.

In our scenario, as shown in Equation 5.1, let O be a matrix representing the patient
vital data measured by sensors in the hospital ICU room. For instance, vector ECG

represents the electro activity of heart beats, vector ARTj observes the blood pressures
and vector CO2k indicates the levels of blood carbon dioxide in a period of time.

Ot,n =

ECG1,1 ART1,2 · · · CO21,n
ECG2,1 ART2,2 · · · CO22,n

...
...

ECGt,1 ARTt,2 · · · CO2t,n

(5.1)

Then we perform Principal Component Analysis (PCA)[41], PCA(O) → O′, which
divides the matrix O into components to extract the patients health behavior pattern.
The PCA orthogonalizes the columns (take set of orthogonal vectors) of Ot,n with the
Gram-schmidt4 process as shown in Equations 5.2 and 5.3.

v1 = w1 =

�

�

�

�

�

�

�

�

�

ECG1,1

ECG2,1
...

ECGt,1

�

�

�

�

�

�

�

�

�

· · ·w2 =

�

�

�

�

�

�

�

�

�

ART1,2
ART2,2

...
ARTt,2

�

�

�

�

�

�

�

�

�

(5.2)

v2 = w2 −
〈1,2〉

〈1, 1〉
1 (5.3)

where 〈,〉 denotes the inner product of the vectors and . This recursive process
generates the set of orthogonal principal vectors as generalized in Equation 5.4.

vn = wn −
n−1
∑

=1

〈,n〉

〈, 〉
 (5.4)

The result is matrix O′ with orthogonal components with minimized dimension of ƒ .

4http://en.wikipedia.org/wiki/Gram–Schmidt_process

53

5. Linked Sensor Data

O′ =

�

�

�

�

�

�

�

�

�

ECG′1,1
ECG′2,1

...
ECG′t,1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ART ′1,2
ART ′2,2

...
ART ′t,2

�

�

�

�

�

�

�

�

�

· · ·

�

�

�

�

�

�

�

�

�

CO2′1,ƒ
CO2′2,ƒ

...
CO2′t,ƒ

�

�

�

�

�

�

�

�

�

with ƒ � n (5.5)

After performing the PCA, we will have a set of components/vectors where each one
represents observations of one header in the data set.

These extracted vectors together with the patients profile PP vector are then modelled
as a matrix D in the Equation 5.6. This matrix will be used to detect and discover the
diagnoses via some correlation pattern discovery.

D =

�

�

�

�

�

�

�

�

�

PP1,1
PP2,1

...
PPt,1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ECG′1,1
ECG′2,1

...
ECG′t,1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ART ′1,2
ART ′2,2

...
ART ′t,2

�

�

�

�

�

�

�

�

�

· · ·

�

�

�

�

�

�

�

�

�

CO2′1,ƒ
CO2′2,ƒ

...
CO2′t,ƒ

�

�

�

�

�

�

�

�

�

(5.6)

Using the above equation, we compute a correlation matrix C,y where and y represent
matrix indices to find the relationships among variables. The C,y is given by the
correlation coefficient5 c,y between the D and Dy.

C,y = Corr(D,Dy) =
σy

σσy
(5.7)

The Equation 5.7 contains terms of correlation where σy indicates the covariance between
D and Dy. The two variables of σ and σy represent the standard deviation of D

and Dy. This constructs various sub-matrices acquiring and utilizing cross-correlation
patterns of actual health status observations over patient’s hospitalization profile within a
specific intensive care period. Such discovered patterns can be clustered using K-means6
or Bond Energy Algorithm (BEA)[42] methods, for instance, into a similar behavior
patterns to diagnose the disease based on their similarities to the centroids of the cluster.
These centroids of our k-means can be defined as the attributes of a specific disease.

The major issue with this raw sensed data is the lack of semantics to detect early
diagnosis. The interpretation of the sensor data into meaningful prescription requires a
deep understanding of the medical information and should be driven by domain experts.
Since the data is raw, the medical sensor records should be linked with the labels to ease
the disease detection by doctors. This leads to improved delivery of care by providing
the health caring services to patients in an proactive fashion. With this motivation in
mind, we proceed with some IoT gateway preliminary concepts.

5Pearson’s correlation coefficient between two variables is defined as the covariance of the two variables
divided by the product of their standard deviations.

6http://en.wikipedia.org/wiki/K-means_clustering

54

5.3. IoT Gateways: Terms & Preliminaries

5.3 IoT Gateways: Terms & Preliminaries

IoT gateways are resource-constraint devices (i.e, with limited compute, memory, and
storage amounts) which expose connected sensors as cloud services to become addressable,
discoverable and controllable. In order to operate our gateway, we use the size-optimized
and tailored BusyBox7 OS which is a combination of UNIX utilities into a single small
executable. On top of the OS, a provisioning framework is required to deploy and
manage the life-cycle of the lightweight execution units or IoT tiny applications. In our
architecture, we used the Sedona8 framework for such large-scale application deployments
in very constrained embedded environments.

In our architecture, we have utilized the Sedona framework in the medical gateway to
build a solution for aggregating device signals and performing some operations through
lightweight execution units (Sedona apps) which have been deployed on each Gateway.
Now, we elaborate a bit more into Sedona core concepts:

♢ Classes: they extend the Component class to perform the defined tasks. The component
class includes Slots that specify how the component is exposed.

♢ Kits: Sedona language sources are compiled into fine-grained modularity archive
files with the ".kit" extension. Kits include application’s Manifest and Intermediate
Representation (IR) file that is a non-executable compiled Component class in Assembly.
All kits are compiled into a compact SCode binary image which will be executable on
Sedona VM.

♢ Manifest: Each Sedona application has a manifest file which contains meta-data of
the Kit like name, version, build host and dependencies.

♢ Sedona Virtual Machine: The SVM is a small interpreter written in C designed for
portability. It allows Kits to be executed on any Sedona-enabled device.

Sedona is a component oriented language, so composing the application by assembling
pre-defined components is a principle in this framework. By assembling the required
components and compiling it, there will be a file with “.sab” extension. This file is
deployable on the Sedona device what we call it lightweight execution unit in our gateway.
In real world, there are different Sedona Gateway devices with different specifications, for
instance, Raspberry Pi9 device including Busybox linux 2.6.32 kernel. To simulate this
device as our gateway, we used BusyBox hosting the Sedona VM. This image is running
on a docker10 container to mimic the physical gateway. Once the SVM is up and running,
the device will be discoverable from our client. Next, we detail the Gatica’s architecture
in the following section.

7http://www.busybox.net
8http://www.sedonadev.org
9http://en.wikipedia.org/wiki/Raspberry_Pi

10https://www.docker.com

55

5. Linked Sensor Data

temp Hospital AMB Patient

Device Signal Simulator

(WFDB)

S
e

m
a

n
ti
c

-I
o

T

G
a

te
w

a
y

Busybox (OS)

D
e

v
ic

e

D
a

ta

S
e

n
s
o

r
D

a
ta

Sedona Framework

Device Data Collector

Device Data Aggregator

D
a

ta

D
a

ta

Out 3Out 1 Out 2 Out n

K
it
 M

a
n

if
e

s
t

S
c
h

e
m

a

Medical Device Network

A
n

a
ly

ti
c

 Q
u

e
ry

E
n

d
p

o
in

t

clients

SPARQL Query Interface

Li
n

k
e

d
 D

e
v

ic
e

M
id

d
le

w
a

re

Manifest
Schema Loader

Device
Data Retrieval

W3C SSN

Ontology

d
a

ta

d
a

ta

data

R
D

F

TDB
Jena Fuseki

Server

 CRUDS

S
O

X

T
C

P

R
D

F
 o

v
e

r

H
T

T
P

Linked Data Builder

Jena RDF & TDB APIs

D
A

S
P

Figure 5.1: Gatica Middleware layered architecture

5.4 Gatica Middleware Architecture

Looking forward, Figure 5.1. illustrates a schematic view on architecting Gatica’s
collaborating components. As a blueprint for designing the architecture, the Gatica is
organized into four interconnected layers: (i) Medical Device Network, (ii) Semantic
IoT Gateway, (iii) Linked Device Middleware and (iv) Analytic Query Endpoint. Here
the whole architecture is implemented11. Next each layer’s specification and capabilities
together with its implementation details are described.

11https://github.com/soheil4TUWien/Gatica

56

5.4. Gatica Middleware Architecture

Figure 5.2: Sensor ontology classes, objects and data properties

5.4.1 Sensor Data Retrieval

Now, we briefly review the data flow from the sensor/device network to the upper layers.
Gatica is designed to cope with large amounts of real-time sensor data by transforming
it into linked data. This includes operations involved in collecting data from external
sensor data sources. Then, preprocessing operations like cleansing noisy data are applied
to the data to prepare it for further analysis. The sensor data acquisition is performed
by the deployed kits in the device layer that interfaces with sensors and feeds into the
stream processing system. This data is a time series consisting of ordered sequences of
[key,value] pairs of timestamps and data elements.

In the MGH/MF Waveform Database, three files describe each record. These files are
“.ari” extension (beat and event annotation), “.dat” extension (digitalized signal (s)) and
“.hea” extension (header file). In Device Signal Simulator, we have used the mgh001 12

waveform database. The headers for this waveform record include the following nine
elements: 1. Timestamp 2. ECG lead I, 3. ECG lead II, 4. ECG lead V, 5. ART, 6. PAP,
7. CVP, 8. Resp. Imp, and 9. CO2 which are described in the header file of the data

12http://physionet.org/physiobank/database/mghdb/mgh001.hea

57

5. Linked Sensor Data

set. We have implemented a C program which simulates the sensor behavior by reading
signal data from mgh001. In effect, this utility iterates over total records of database and
will send each record including nine fields over a TCP socket connection to DDC. DDC
will receive each record and tokenize the value into eight five-bits signal digits.

Each running SVM which is located in an ICU room has a unique deployment ID. This
enables us to extract information for each SVM such as its IP address, location and the
hospitalized patient ID. In our implementation we have defined a SVM_ID variable in
DDA kit. At this moment we have assigned a default value to this variable to run the
prototype. DDA aggregates sensor data and sub-joins the SVM_ID to the aggregated
data message, then sends it to the LDM. But in a real world application, each SVM will
ask the deployment server a unique ID at startup. Then the server sends a unique ID
(SVM unique ID + patient ID) to the SVM device. This ID will be used in DDA kit.

In the Sedona framework, we implemented Device Data Collector (DDC) and Device
Data Aggregator (DDA) applications which receives sensor data through its listeners via
TCP Socket and aggregates the data for further processing. More specifically, DDA kit
receives data from proper input slots which are linked to the outputs of DDC kit. The
output-input link tags are defined in DDA sax file. This kit merges all inputs separated
by semicolon and sends the aggregated byte stream via a TCP Socket object on an IP
and port number which our next component, Device Data Retrieval (DDR) is hosted.

Figure 5.3: Sensor ontology model representing the classes, relations and instances

5.4.2 Artefact Manifest Schema

In our aggregator application, we define properties of WFDB fields as the meta-data
for this SVM environment. These properties will be stored in the manifest XML file
in compile-time. Then we use Sox protocol to retrieve each property of the manifest

58

5.4. Gatica Middleware Architecture

using the Manifest Schema Loader (MSL) in the next layer. To communicate with
our Sedona device remotely and retrieve information about running Sedona VM, we
used Datagram Authentication Session Protocol (DASP)13. In effect, we used DASP
Socket in our middleware to send a multi-cast group request (DISCOVER request).
Therefore each machine running Sedona VM (as server) will respond to the client.
Notice that the discovery request will query a specific port address on destination
machine which in our case is Sedona default port number 1876. As soon as each
machine receive the discover request, it will response with the Platform ID and its IP
address. In our case the DASP message received from server contain following SVM
information: Discovered SVM IP/Port: 192.168.1.3:1876 and Platform
ID: tridium-generic-unix-1.2.28. Such information has two usecases of (i)
sending commands to control the device from the analytic endpoint side and, (ii) as a
heartbeat to check if the running SVMs are still alive and healthy.

5.4.3 Sensor Linked Data Model

The detected events, which in our particular case are user health vital information, can
be modelled in an ontology. The ontology model as depicted in 5.3, consists of two parts
of sensor and patient parts. The patient part represents her personal and medical profile
like hospitalization ID and the detected diagnosis, for instance. Every profile is linked
via hospitalization ID to deployment ID in sensor ontology.

Sensor ontology constitute a network of sensors which are connected to a Sedona device
and deployed in a Sedona Virtual Machine (SVM). Such sensors read vital data from
the patient. For modeling sensor properties, capabilities and their observations we
incorporated the W3C SSN ontology14. We utilize this ontology by representing our
located Sedona device instance. The Sedona VM is mapped to the system class which
is deployed on a platform with a specific deployment ID. The sensors are considered as
subsystems and declared as slots. Slots have properties like ID, label, measurement unit
together with their ranges like min or max values. They expose their located context
observation results.

As shown in Figure 5.2. in addition to using object and data properties of SSN ontology,
we defined hasID, hasObservationResultValue and observationResultTime properties. The
hasId is defined for assigning the related IDs to SVM, slot and deployment. As such, the
hasObservationResultValue is defined for assigning sensor readings value to observation of
each slot. And finally, the observationResultTime for assigning an integer as a timestamp
of reading observation of each slot. The ontology is built and loaded into the TDB RDF
database15 using the Jena TDB APIs to store and retrieve semantic sensor data in RDF
graphs. We developed our sensor ontology in Protege16. Next, the manifest schema
and observed values are written to TDB. We have used its APIs to store and expose

13http://www.sedonadev.org/doc/dasp.html
14http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
15https://jena.apache.org/documentation/tdb
16http://protege.stanford.edu

59

5. Linked Sensor Data

our enriched sensor data as Triple RDF statements. Meanwhile some sample patient
hospitilization data is stored in the database for future retrieval.

5.4.4 Manifest Schema Loader

We need to fetch the meta data of the deployed sensors (slots) on the Sedona device.
The manifest file contains annotation data related to each slot such as min, max or a
measurement unit. We use Sedona APIs to read such data that exists in the manifest
file. A simple sox client is implemented which communicates, authenticates and listens
on a sox port. This thin client requests slot information like names, values, flags, and
annotations from the manifest schema. The response holds the manifest data which will
be written to the TDB afterwards.

5.4.5 Device Data Retrieval

Next is to store the actual sensor observation values in the DB. As described before, from
each sensor the stream of data (observations) are loaded in the Sedona device. Our Sedona
main application merges the SVM ID, slot ID, observed value and its time-stamp, then
sends them via TCP to a specific port. At last, the DDR receives the data periodically
and stores them in the TDB.

5.4.6 Analytic Query Endpoint

As shown in Figure 5.4. we implement SPARQL querying interface on the TDB by using
Fuseki17 to serve RDF data over HTTP. After the Fuseki server is running, a SPARQL
endpoint is provided to respond to various SPARQL requests. A sample response is
presented in Figure 5.5. Various analytic applications can send SPARQL request to our
Fuseki server and retrieve the results.

5.5 Related Work

There is some valuable research regarding the IoT semantic sensor streaming which
elevates the semantic technologies to Internet of Things domain. Banerjee et al.[43]
proposed an architecture for a semantic search engine on sensor data where the sensed
data is represented in form of triples (RDF), concepts and relations in form of ontologies
(OWL) and the corresponding query language is SPARQL. In relation to our approach,
Le-Phuoc et al.[44], [45] survey the state of the art Linked Stream Data processing
systems, and highlights a comparison among them regarding the design choices. Authors
in [46], propose a model and take a linked data approach to annotate the streams. These
papers do not provide any implementation or evaluation of the proposed architecture.
They also proposed a Linked Sensor Middleware (LSM) [47] that provides real-time data
collection mechanisms using a cloud-based infrastructure. It also features a web interface

17http://jena.apache.org/documentation/serving_data

60

5.5. Related Work

Figure 5.4: Gatica middleware analytic query endpoint

for annotating and visualizing linked sensor data accompanied with a SPARQL endpoint
for querying streaming data. Their focus is on annotating and provisioning of the data
using unified interfaces.

None of these solutions enable a lightweight IoT deployment model and is not applicable
to resource-constraint IoT devices like an IoT gateway environment. In contrast to
all the noted related work, our solution addresses universal and large-scale application
deployments in very constrained embedded environments. The Sedona framework is
deployable on very resource limited devices with small memory, even less than 100 KB.
Our solution is also based on a micro-service architecture as each Sedona application is
highly coherent and decoupled from others. Last but not least, each container in the
gateway is accompanied with the manifest schema which enables dynamic configurations
of the annotations.

61

5. Linked Sensor Data

Figure 5.5: Sample response from the query interface

5.6 Conclusion
In this chapter, the authors offered and implemented a resource-constrained middleware
to enable the semantic IoT linked data analytics. It dynamically injects semantics to make
the IoT raw sensor data enriched and meaningful. For modeling a sensor’s properties,
capabilities and their observations, we extended the SSN ontology which represents our
gateway containers. Gatica collects the real-time sensor data via gateways, enrich them
using annotations then transforms and exposes them in RDF triples. Using principle
component analysis we are able to cluster the data and run queries over the streaming
sensor data to discover hidden patterns via analytic interfaces. We have evaluated our
model with a real-world healthcare dataset to demonstrate the utility of our framework.

As an outlook, our future work includes further extension to the Gatica middleware
to support large scale distribution of data processing capabilities over the increasing
streaming linked sensor data.

62

Part II

IoT Design Patterns

63

CHAPTER 6
IoT Computational Constructs

6.1 Introduction

Design is the use of scientific principles, technical information and imagination in the
definition of a structure, machine or system to perform pre-specified functions with the
maximum economy and efficiency[48]. The Internet of Things (IoT) means that hardware
and software design practices blend into each other. A well-designed IoT application
may be composed of utilized edge devices, fine-grained microservices, cloud gateways
to connect edge network to the Internet and mobile or web applications for the user to
interact with the underlying things.

There are huge opportunities but considerable challenges [49, 50, 51, 52, 53] in designing
IoT applications. These challenges range from the provisioning of ultra-low power
operation and system design using modular, composable components to smart automation.
Furthermore, the advancement in sensor instrumentation requires an efficient stream data
processing. There are also hidden opportunities and challenges in monetizing the edge
applications. In response to such challenges, we propose a set of reusable and abstract
prescriptive design principles or patterns, which aid system architects in modeling and
building context-tailored IoT applications. The patterns behold an integrated thinking
across many facets of design in an IoT application ecosystem by incorporating the wiring
approach of Hanmer [54]. This articulates the benefits of applying patterns by showing
how each piece can fit into one integrated solution.

With this motivation in mind, the chapter continues in section 6.2, with a brief review
of how IoT design patterns are documented. Next, we introduce the diversity of our
proposed patterns and how they are related to the edge applications life-cycle in section
6.3. With some definitive clues on the pattern language convention, we propose an edge
provisioning pattern in section 6.4, showing how the baseline environment provisioning
can be automated. Once the baseline container is provisioned, we demonstrate how

65

6. IoT Computational Constructs

code can be automatically pushed to the container via a deployment pipeline. The
code deployment pattern interacting entities are detailed in section 6.5. Here, we also
define how dynamic configuration effects the quality and performance of the service
delivery. Next, in section 6.6, the orchestration of IoT services, their dependencies and
configurations are focused on and presented as an edge orchestration pattern. Now, the
composite IoT application is running and its components are willing to communicate
with each other via messaging. At section 6.7, we enable edge applications to share data
and functionality via a footprint messaging pattern. The running edge services retrieves
the sensor data and in in-memory data retrieval pattern, we define how such data can
be stored and retrieved in section 6.8. Faced with such data, we express lightweight
data cleansing and validation tasks as an in-device data preprocessing pattern in section
6.9. This leads to rendering the edge application by metering its usage along with
its underlying resource usage. Such a metering model is proposed as a Diameter of
Things pattern and is detailed in section 6.10. Last but not least, we show how such
edge applications function on wearable technologies using the wearable façade pattern
in section 6.11. Subsequently, section 6.12 surveys related work. Finally, section 6.13
concludes the chapter and presents an outlook on future research directions.

6.2 Pattern Language Conventions

Pattern language is intended to describe the solution in a way that is easy to digest. We are
incorporating the cloud computing pattern document format defined by Wellhausen[55]
and Meszaros[56] as well as the semantics of its graphical elements to define the structure
of our IoT design patterns and their interrelations. All IoT patterns comprise the same
document sections with the following semantics.

1 Pattern Name: This name is a handle used to abstract and identify a design challenge.

1 Problem: This is a short summary of the pattern, i.e., the driving question in one or
two sentences.

1 Context: This section of the pattern documentation describes the setting in which the
problem arises. Assessing the pattern’s context influences the solution.

1 Motivation Forces: This basically provides a use-case scenario, in which the problem
is likely to happen and therefore the pattern can be used effectively.

1 Solution Details: This section briefly states how the pattern solves the problem.

1 Sketch: It depicts the functionality of the solution or the resulting architecture after
application of the pattern.

We have also ensured that the pattern names are abstract-enough to reflect the pattern’s
intended design. This conforms to the principle of pattern’s name cohesion defined by
Hanmer[57].

66

6.3. IoT Design Patterns

6.3 IoT Design Patterns

Designing for an IoT is different. Connected devices may use different types of networks
and various connectivity patterns. IoT design patterns vary in their granularity and level
of abstraction. To create a valuable, appealing, usable, and coherent edge applications,
we have to consider design on many different layers. This is a fine-grained design, as it
exposes low-level data from the device itself. While documenting the patterns, we also
give an overview of existing implemented frameworks to give a clue and a closer touch
on the efficiency of our proposed patterns in production.

Methods for automated provisioning, deployment and configuration management of the
behavior of edge applications disclosed herein pertain to governance patterns. Setting up
the system and getting the devices connected are hard to simplify. IoT governance patterns
deal with governing the edge applications life-cycle from definition through deployment.
Such patterns govern all aspects of edge applications including their provisioning and
deployment mechanisms by applying runtime reconfiguration and allocation and by
scheduling policies to deployed edge services.

Having a reliable and efficient provisioning pattern in place, we proceed with commu-
nication patterns. Such patterns establish a trusted edge service bus among devices so
that they share data, messages and trigger functionality. This utilizes the whole IoT
ecosystem as an integrated scalable solution by bridging heterogeneous edge service units
and nodes. Next, we will delve into an in-device data storage and processing. To achieve
this, we introduce a pipelined framework for realtime validation and cleaning of sensed
data streams.

Last but not least, we will demonstrate how edge applications are considered value-added
and metered services. The proposed metering pattern implements a real-time metering
of IoT services for prepaid as well as Pay-per-use economic models.

6.4 Edge Provisioning Pattern

♣ Problem: How can operation managers and developers ensure all of their edge devices
are started with a reliable baseline environment, as needed? How can they provision all
the devices automatically all at once?

♣ Context: IoT devices are usually scattered geographically, sometimes hard to reach
and large in number. Operation managers and developers must be able to reconfigure
devices or provision new ones in an efficient way and have pre-configured nodes.

♣ Motivation Forces: Suppose you have designed a system to display advertisements on
some billboards spread in a region, each controlled by an IoT city hub[58]. At some point,
you need to replace your technology stack entirely and provision a new environment
remotely. You may also want to add new devices and provision their runtime environment
and applications quickly.

67

6. IoT Computational Constructs

It should be able to provision new devices in a way that can be repeated and produce
the same results, so that it can be automated. This also contributes to keeping devices
fault tolerant via a rollback to the known-good working state of the environment or
applications quickly, if provisioning fails.

♣ Solution Details: Container-based virtualization is a good choice for provisioning
resources, as they contain not only the code but also all other software dependencies,
configurations and the whole runtime environment. By transferring the containerized
image to a new machine and running it, we have a pre-configured environment with
required applications installed along with any software dependencies.

Figure 6.1: IoT provisioning pattern sketch.

For instance, provisioning and automated configuration can be done using tools like
Puppet1, Chef2, or using Docker files, with which the Docker image is built and then
transferred to the devices. Docker images utilize a layered and versioned file system,
which has two benefits. First, the devices can only pull the layers they need and not
the whole image; second, they can rollback to the latest or any working version of the
image in case of failure or need. As images are static and read only, this leads to an
incorruptible environment for the devices as a backup.

Docker images are built against a Docker file or other aforementioned automated config-
uration manager, which describes steps needed to build an image as commands to be
run inside the container per line of the Docker file. Each step creates a new layer. The
image is built; therefore, any resource-intensive step, such as compiling or downloading
large files, is done once. Once the image is built, it is pushed to the central Docker
registry/hub so that devices then pull the whole image or only the missing layers. These
configuration files, like Chef recipes, Puppet manifests or Docker files can be kept as

1https://puppetlabs.com
2https://www.chef.io

68

6.5. Edge Code Deployment Pattern

documentation of the steps of provisioning under a version control system such as Git,
so that a new commit can trigger the container builder system to build a new Docker
image. The edge application together with its environment configuration can be kept in
the same Git repository. Therefore, any update to the code or its environment will build
a new Docker image and is transferred to the geographically distributed devices, using
the same mechanism that is used for deployment. When the image is delivered to the
end device, a new container is created using the image. A sketch of an IoT provisioning
pattern is shown in Figure 6.1.

6.5 Edge Code Deployment Pattern
♠ Problem: How can developers deploy their code to many IoT devices automatically,
quickly and safely, and configure them without being concerned about the long process
of build, deployment, test and release?

♠ Context: Maintainability is a main factor while deploying a piece of code to some
remote IoT devices. As developers enhance and improve the code or fix some critical
bugs, they expect to deploy the updated code to their several remote IoT devices quickly.
This grants distributing functionality between devices. Also, at some point developers
need to re-configure the application’s environment.

♠ Motivation Forces: Suppose you have designed a system to display advertisements
on some billboards widespread in a region. You need to update the text or graphical
features frequently or change the duration of ad display. Maintainability and adaptability
are the most important challenges in such designs. You must be able to update the code
and deploy it to all your devices at once.

Regarding the poor and flaky Internet connection (e.g., 3G) of a majority of IoT devices,
it is best to only deliver the changes and not the application as a whole across the
constrained network.

Also, developers should only be concerned with coding, as well as the tools they are
familiar with. The tools for deploying the code to devices should be transparent to the
developers. This leads to a fully automated deployment. Once automated, the safety of
operations increases. The pipeline includes building the application, its deployment and
testing and finally releasing and distributing it to edge devices. As for testing, the created
image is a production-like environment and is used for testing. Once tests pass, edge
devices can pull the image or the corresponding layer. The image is created against all
the source code, the container specification and configuration files. Another point is that
the developer should be able to rollback its deployment to an earlier version on-the-fly to
avoid outage, which is crucial in case of IoT devices.

Moreover, the deployment process should consider and contain any software dependencies
or configurations the new code needs. As such, the developer should be able to re-
configure the application’s environment or the overall technology stack remotely and
safely to ensure consistency.

69

6. IoT Computational Constructs

♠ Solution Details: As developers are familiar with version control systems, it is best
to utilize it for deployments too. Nowadays, Git has become the de facto standard for
developers to share their code and maintain versioning. It can be used as the starting
point to trigger the build system and then the deployment process.

Provisioning Server

Containerizer
APIs

Isolator APIs

(Container Builder)

container
image

Container
Registry

C
1

D
3

..

..
.

C
2

D
1

D
2

cpu
mem

file

cpu
mem

file

cpu
mem

file

Developer

> git push

deploy
(push/pull) image

Edge
Layer

source code

env config

app config

Version Control
Artifact Repository

binaries

test reports

metadata

build
code to binary

container
file (spec, binarie, config)

unit analysis
test results

Acceptance Tests

commit tests

smoke test

code analysis

Figure 6.2: Edge code deployment pipeline pattern sketch.

Git can be utilized by developers to push a specific branch of code to a remote Git
repository on the server and is notified of the new version of the software. Then using
hooks, it can trigger the build system and start the next step of deploying the code to
the devices. The build server builds a new Docker image and pushes the new layers of
image to the central Docker registry/hub for the devices to pull. This way the developer
only needs to use Git or any other version control system as the only familiar tool for
deploying the code into geographically distributed devices.

Devices can periodically ask the central registry/hub for new versions or the server can
notify devices about a release of a new image version. Then the devices will pull the new
layers of image, create a container from it, and utilize the new code.

In summary, as illustrated in Figure 6.2, when the code is modified, it is committed and
pushed using Git. Then a new Docker image is built and transferred to devices. Devices
use the image to create a container and use the deployed code. The deployment pipeline
is started with each commit, and changes in the source code are published to all edge
devices.

6.6 Edge Orchestration Pattern
♦ Problem: How can we orchestrate IoT devices in accordance with their tightly scripted
configurations as nodes of a cluster remotely? How can edge cluster nodes discover
services?

♦ Context: Enabling a large number of devices connected via edge layer means empow-
ering the cluster to manage its nodes to check their health state, their services state
to reconfigure them. Moreover, in case of IoT devices to adapt and to calibrate nodes
remotely and quickly. Furthermore, we want to be able to manage and run services in the
cluster or schedule tasks on certain nodes and enable them to discover the services they
need and re-configure themselves accordingly. Edge nodes in an IoT cluster should be able

70

6.6. Edge Orchestration Pattern

to find themselves and advertise services they provide to each other. Such configuration
can be updated over-the-air via WiFi.

♦ Motivation Forces: Suppose you have designed a system to display advertisements
on some billboards widespread in a region. You have devices to control each billboard.
You want to be able to check their state and health status, manage them, check their
services, change their runtime configuration, and execute services in the cluster or on
certain devices.

The architecture should avoid having a single point of failure. Each node must be able to
know the state of the whole cluster, as well as the state of each service provided by other
nodes. In addition, it should manage and adapt itself so that horizontal scaling, replacing
nodes and/or adding new nodes or services as ad portlets, in this case ad providers,
remains simple.

Such changes in the cluster take effect once nodes are able to advertise their roles and
services, as well as to discover each other. Furthermore, we need solutions to allow nodes
to reconfigure themselves dynamically according to such changes.

Composite edge applications consist of several inter-related constituents microservices,
each in need of its own environment, configuration and even a device. For instance, a home
automation system is a composite application. We need a declarative way to describe
the whole topology and deploy it considering the orchestration of the components, the
services it provides and depends on, without configuring and installing each component
separately on every device.

♦ Solution Details: Edge infrastructure toolkits treat and provision edge devices with
limited compute resources (CPU, memory, and power) as constrained nodes of a cluster.
Service discovery mechanisms can be leveraged by nodes to find each other, and the
services they provide. Such discovery can also be achieved via device pairing. Once
paired, devices trust each other and start sharing data or trigger functionality over a
constrained network.

Containers’ compose-oriented3 technology enables us to deploy composite applications,
since they can orchestrate multi-container IoT microservices. This mechanism expresses
the composite application topology along with its specification in a declarative manner.
The cluster manager can deploy and orchestrate the composite application for us, ac-
cording to a service topology specification. This specification describes the composite
application, its micro-services and the inter-relationships between them. The cluster
manager, which hosts nodes in the cluster, receives the applications’ specification and
runs services on each node accordingly.

For configuration purposes, distributed [key,value] stores can be used. The dis-
tributed store, which does not rely on a single node for storing its data prevents a single
point of failure. Besides, it enables the cluster to manage itself not only upon node

3https://docs.docker.com/compose

71

6. IoT Computational Constructs

failures, but also upon cluster manager failure. Nodes advertise their services and their
state by putting values into the store, others can retrieve the values/updates and establish
pairing in one go. This may mean that the values change propagation time could be
shortened in TTLs4 if the nodes get notified of the changes and receive events, instead of
polling for updates.

For tooling set, since nodes are resource-constrained, cluster managers like Apache Mesos5
seem heavy, as they need a Java runtime environment to run. On the other hand, Fleet6
seems a proper choice, as it can be run from a single binary. Fleet manages the entire
cluster by controlling the init systems of the nodes. By communicating with the init
system of the nodes, we can check if nodes or their services are up and running and run
new services across the cluster or on specific nodes. Also we can define events based on
devices or network changes and schedule tasks this way.

In a Fleet cluster, each node can be the manager, hence on its failure a new manager
will be elected in the cluster. Nodes find each other and their services using service
discovery mechanisms, the [key,value] store, or device pairing mentioned earlier. In
this way, replacing nodes becomes seamless and scaling would be cheap. If Fleet is used,
the composite application can be specified and described as service unit files. In the unit
files one can describe the service, its physical place or the node one wishes to deploy the
service on, its Docker image and the relationship between them. Then, Fleet will receive
these service unit files and deploy the composite application on the devices in the cluster
accordingly.

Ed
ge

 c
lu

st
er

Node II

c
o

n
ta

in
e

r 1

Key/Value Storage

Cluster Manager/
Scheduler

c
o

n
ta

in
e

r 2

c
o

n
ta

in
e

r N

...
...

..

Node I

c
o

n
ta

in
e

r 1

Key/Value Storage

Clouster Manager/
Scheduler

c
o

n
ta

in
e

r 2

c
o

n
ta

in
e

r N

...
...

..

Node N

c
o

n
ta

in
e

r 1

Key/Value Storage

Cluster Manager/
Scheduler

c
o

n
ta

in
e

r 2

c
o

n
ta

in
e

r N

...
...

..

Figure 6.3: Edge cluster orchestrator pattern sketch.

4https://en.wikipedia.org/wiki/Time_to_live
5http://mesos.apache.org
6https://github.com/coreos/fleet

72

6.7. Edge Footprint Messaging Pattern

There are a number of choices for distributed [key,value] stores to be used as a
service discovery mechanism; etxd7 and consul8 are preferred. Since they are quite
light and written in Go, and compiled and linked statically, they can be run from a single
binary without any dependencies. Contrary to other alternatives such as Zookeeper9,
which needs a Java runtime environment to run. Also they can be used along with cluster
managers such as Fleet. Moreover, such systems expose a REST API and DNS service
so that it is relatively easy to get or put values.

Next, confd10, can be used if a conventional application uses environment variables
or files for storing/maintaining its configuration. Confd watches for changes in a
[key,value] store and updates configuration files and environment variables or even
restarts services accordingly. So, nodes can reconfigure themselves on changes in the
cluster.

From getting the tooling up, we can monitor all of our devices, check the health status of
each device, monitor the running services, run new services on all or certain nodes and
schedule tasks. When a new value is put into the distributed [key,value] store by
any node in the cluster, it will be propagated and replicated to all nodes. Then nodes
are notified of the new value and discover the services and their state. They then will
re-configure themselves. So nodes can advertise the services they provide, find each other
or change configurations upon discovery. Note the pattern sketch in Figure 6.3 depicting
the built-in orchestration model in each node. A downside of this pattern is that the
cluster should remain synchronized, meaning nodes should talk to each other periodically.
Therefore, network chattering occurs a lot, which is of significance if networking is not
economical.

6.7 Edge Footprint Messaging Pattern

♢ Problem: How can edge devices in an IoT system send and receive data through an
efficient and real time data bus?

♢ Context: Many IoT devices need to send and receive data, while they are usually
connected to low quality or expensive networks. Therefore, protocols and patterns to
ensure reliability, quality, security and efficiency are essential.

♢ Motivation Forces: Suppose you have a system of advertisement billboard widespread
in a region each on controlled by an IoT device. You want to be able to send a message
from the devices each time the next ad starts to have a heartbeat of the system and know
its status on a central dashboard. In some other cases, these devices stop displaying ads
when they receive the shutdown message. You want to be able to send the shutdown
message to all or a group of devices.

7https://github.com/coreos/etcd
8https://www.consul.io
9https://zookeeper.apache.org

10https://github.com/kelseyhightower/confd

73

6. IoT Computational Constructs

Service Bus

M
e

d
ia

to
r

Data
Objects

Push data
port no #xx

Client 1

Client 2

Publish

Topic
subscribe

temp
pipeGateway

Publisher

Data
Writer

History
Cache TopicData

Objects

Filter pipe

Subscriber

Data
Reader

History
Cache

An
al

yt
ic

 E
nd

 P
oi

nt

Figure 6.4: Edge footprint messaging pattern sketch.

We need a common protocol or format for exchanging data between devices so that we can
use a middle-ware as our edge service bus to dispatch and distribute messages between
the edge devices according to their need, functionality and purpose. As IoT devices have
constrained resources, exchanged message format must be efficient to process, transfer,
digest and produce. So the message format, its size and the time complexity to process it
must be considered. Security of these formats must be considered too. The data emitted
by some edge devices, such as sensors, must be kept private, and only some of the devices
can have the authority to control sensitive messages.

Quality of the messages and their integrity must be ensured to prevent retrieving and
analyzing false data or sending wrong instructions to devices, which may result in
irrecoverable consequences. Messages should be delivered in real time with minimum
delay from and to devices. This pattern advocates a sustainable and scalable IoT
application life-cycle.

♢ Solution Details: An edge service bus can be utilized and implemented to be connected
to all edge devices with an appropriate protocol for each device according to its place,
objective and network connection quality.

Publish-Subscribe is an appropriate choice when there are many edge devices waiting
to react when a certain event occurs or message received. Each subscriber will listen to
certain desired topics. In case of our billboards, each geographical region is a topic and
devices in each region are subscribed to their corresponding region topic. So we can send
a shutdown message to a topic to shut down billboards in one region.

In a real time Publish-Subscribe pattern, components like publishers, subscribers, topics,
service bus, endpoints, data writers and data readers are required. First each publisher
can send data through data writer. Each publisher has at least one or many data writers
to send or write to a component, called topic. Data writer is an interface which is used
to write data objects into topics. There are two types of endpoints: (i) one endpoint
acts as a sender or publisher and (ii) the other one acts as a receiver or subscriber. The
first type of endpoint is the combination of a publisher and a data writer. Each data
writer accesses only a single topic. The edge service bus can use mediators to facilitate
exchanging data between devices with different protocols or to modify the exchanged
data. Mediators are also capable of filtering, decryption and transformation.

Filtering messages on the writer side (in the service bus) has some advantages. For

74

6.7. Edge Footprint Messaging Pattern

instance, a data object that would not pass any reader will not be sent to save bandwidth.
Also a writer can include information on what filters it passed. After filtering and
transforming data objects, they will be moved to a data cache. The Data cache is used
to prevent data loss. Filtering can be done on the reader side too, specifically when
writers do not apply any filtering. The receiver endpoints subscribe to their desired topic.
As soon as encrypted data objects are stored in the data cache they will be sent to the
subscribers.

There are various protocols which can be used for IoT devices to exchange data, such
as MQTT11 and CoAP12. These protocols consider constrained resources devices and
limited network connection. Therefore they are preferred over other protocols such as
HTTP. MQTT is more a messaging protocol for pub-sub pattern with topics, while CoAP
is more an HTTP-like protocol with content type and RESTful methods.

Each of the two popular protocols has its own capabilities and advantages. CoAP provides
an interoperable solution for communication between tiny resource-constrained devices
(sensors, actuators, controllers, etc.) which communicate over resource-constrained
networks. Reducing the message header size and response codes, minimizing the set of
methods for exchanging data, providing both confirmable and unconfirmable messages,
and the possibility of dividing large messages by using the block transfer algorithm,
make CoAP a lightweight and practical protocol for communicating resource-constrained
devices.

In addition to request/response capability, CoAP has an extra extension for providing
subscribe/notify pattern (event subscription pattern). In subscribe/notify pattern,
subscribers, subscribe to an event from a special endpoint (resource), on the other
hand, the endpoint notify subscribers in the case of occurring the interested event.

In our case we can apply CoAP to each device which communicates through UDP. When
the next ad starts, a notification is published for all subscriber devices. Subscribers start
or stop their jobs by receiving the corresponding notification.

MQTT is based on publish/subscribe pattern and is done over TCP. In this model there
are three roles: publisher, subscriber and message broker. Publisher connects to the
broker and publishes its message (topic), on the other hand, subscriber connects to the
broker and subscribes for the interested topic. The role of broker is to relay published
topic between subscriber clients. As communication in MQTT is done over TCP and
messages are acknowledged, the messages are delivered once and in the order, so it can
be more reliable for more sensitive cases.

There are a number of formats for serializing and exchanging data such as XML or
JSON, but CoAP and MQTT are preferred since they are cheaper due to the expensive
networking in IoT devices. CBOR13 is a data format for data serialization similar to

11http://mqtt.org
12http://coap.technology
13http://cbor.io

75

6. IoT Computational Constructs

JSON and is more efficient in terms of size. It also supports binary data type which is
usually used by sensor data on IoT edge devices.

Clients read and write data which the transformer components adapt and translate it in
mediator layer. This solution solves the problem of programming language and hardware
dependency of IoT edges. This capability hides connectivity and topology details from
clients and loosens coupling. The edge footprint messaging pattern sketch is summarized
in Figure 6.4.

6.8 Edge In-Memory Data Retrieval Pattern
♥ Problem: How can we store and retrieve large amounts of data emitted by edge devices?

♥ Context: IoT devices are not able to store total data since their resources are limited.
Therefore data should be stored in storages with more capacity. Nevertheless IoT devices
are generating data in every moment so the data retrieval method should be able to work
in two speeds: First the speed of generating IoT devices and second in the writing speed
of its storage.

On one side, our resources are limited. On the other side, we face big data. IoT devices
generate an enormous corpus of data in an ordered interval while their memory is limited.
As a consequence, they should free their memory from old data immediately to be able
to receive new data. Hence we face limited memory and huge amount of data.

♥ Motivation Forces: IoT devices get data via their sensors from the environment and
put them into their memories. These memories have a limited storage space while being
fast. So data should be sent to another storage.

This storage should be a cache system, which gets data from IoT devices, and puts them
into a database. Cache systems consist of fast memories. They are able to receive data as
fast as possible. But these memories are limited, so we should scale them up, to be able
to gather huge amounts of data. Replication or other cloud clustering solutions can be
incorporated to eliminate single point of failure and enhance safety, security and speed.

♥ Solution Details: Distributed cache is a pattern of storing data on multiple servers in
order to provide quick data retrieval. Distributed cache systems are usually used on web
servers and application servers to support non-local storage (remote storage) as a fast
and extendable data storage.

We will use a distributed cache system for storing IoT generated data, though it might
be costly, data consistency and high speed is assured. Our pattern will improve response
time and solve the problem of storage capacity of IoT devices by reducing data access
latency. IoT devices put data not in a single cache but in distributed caches. Putting
data in a distributed cache system decreases the possibility of losing data. So every node
of the distributed cache system has its own data and some backups of other nodes. Via
this method if one of the caches gets lost, another one would be able to load its data to
be placed in the writing queue or to be read by clients.

76

6.8. Edge In-Memory Data Retrieval Pattern

Indexing decreases query execution time and enhances performance of the overall system.
In this context, to increase performance, this pattern would contain some additional
data in NoSQL database for indexing. There would be no indexing in caches since
they are only fast memories that retrieve data from a persistent database and make it
available to users. Via indexing, query time decreases while data retrieval performance
enhances. Distributed caches can be configured in different ways. We could configure
them to support replication to increase the availability of replicas, or we could set different
algorithms for persistence of data on NoSQL. There are some different strategies for
management of replications. The structure that we will suggest here is a decentralized
model, where all nodes store a replica of another (primary and secondary) model and
they will update each other. The other method that could be used is a strategy that
all nodes store the replica of all nodes except itself or we could use a strategy where a
centralized node stores the replica of all nodes.

Also a strategy for creation and placement of replicas must be considered. We suggest
the dynamic replication method for this purpose. It is a hierarchical model, in which the
data management system keeps track of all available storage on all server nodes in the
cluster and also stores the users that request a data node. When the number of hits for
a specific data in a node increases, the management system will replicate the data on
the server that directly services the user. As detailed below, we present three effective
distributed cache systems algorithms. Meanwhile, it is an indication that the way in
which an algorithm is implemented can also have a significant effect.

6.8.1 Cache Aside

In this model, as illustrated in Figure 6.5, the client is responsible for both read/write to
cache and database. Database and cache do not interact with each other.

Distributed
Cache

NoSql DB

Edge service

read

writere
ad

wr
ite

Figure 6.5: Edge cache aside model.

77

6. IoT Computational Constructs

6.8.2 Read Through/Write Through

Here, client would read/write data to cache and the cache is responsible for synchronizing
data with database. This model is shown in Figure 6.6.

Distributed
Cache

NoSql DB

Edge service

read
write

rea
d

wr
ite

Figure 6.6: Edge cache read/write through model.

6.8.3 Read/write asynchronously

In this method, as depicted in Figure 6.7, read and write processes will be done with a
predefined delay and in an asynchronous manner.

Distributed
Cache

NoSql DB

Edge service

read
write

re
ad

wr
ite

Figure 6.7: Edge cache read/write asynchronous model.

The last method is the best for this pattern, since edge devices can read/write the cache
and the cache will persist data on a NoSQL database. For speeding up this asynchronous
transmission of data, we use a queue to let the cache system write the data at its own

78

6.9. In-Device Data Preprocessing Pattern

speed and let the NoSQL database fetch it at its own speed. Also, we should mention
that loading data from a NoSQL database is not possible. In order to load data from the
database, we may load it to the cache making it available for clients to read data from
cache. Here are the steps and details of a query execution:

• Query cluster: The client must run a query service in order to be able to get the
query from the cluster.

• Matching objects: The query service gets matching object count from all parti-
tions. Count here is finding the number of matching objects in the query via the
in-memory indexes

• Load data: The query service must decide to load data from the DB if it is needed.
The data does not exist in partitions and is persistent. As was mentioned, the DB
could be optional.

• Merge result: The query service will get the result from all partitions and it will
merge the results received from each partition separately.

Via this pattern, we can store edge data in an appropriate data storage (NoSQL database).
The Cache system makes reading faster than other patterns, but writing is not as fast
as reading. After the data is written to a cache, it will be persisted on a database. So,
there is an enhancement in writing performance. In the end, this pattern is fast-enough
in writing and reading, but data should be stored in an outer storage, which is not a
cache memory.

temp +
humid

Queue
write data

Master

QoD evaluator
workers II

QoD evaluator
workers I

Validation Filter

worker
node

watch
dog

data
filtering

task

Quality
of

Result

Cleansing Filter

worker
node

watch
dog

data
auditing

task

data
binningpipe pipe

Agregation Filter

worker
node

watch
dog

data
totality

task

data
 sum

An
al

yt
ic

 E
nd

 P
oi

nt

Figure 6.8: IoT In-Device data preprocessing pattern sketch.

6.9 In-Device Data Preprocessing Pattern
♡ Problem: How can data scientists ensure that the raw emitted data from edge devices
meet the baseline quality of data (QoD)14 for further processing?

♡ Context: The edge data stream has a long data-processing workflow in terms of
collection, storage, and processing. In effect, the decisions made at the earlier stages of

14According to TechTarget, data quality is a perception or an assessment of data’s fitness to serve its
purpose in a given context.

79

6. IoT Computational Constructs

the flow can significantly impact the processing at later stages. This raises interest in
processing at the edges to extract actionable insights from data. Data captured from the
edge devices such as temperature/humidity sensors tend to lack semantics and be very
noisy. In effect, it is optimal to perform in-device lightweight data preprocessing. This
saves time to create meaningful outcomes from data.

♡ Motivation Forces: Suppose we have a system of advertisement billboard spread in a
region. The advertisement is designed to change dynamically with respect to the city
weather forecast. For instance, the hub is equipped with an embedded humidity/temper-
ature sensor that captures weather dynamics data and transmits it to the advertisement
microservice. The running advertisement service retrieves sensor data, correlated with
geographical location, demographics, and weather information. It gives the city hub
collective intelligence to act eventually by adapting its message accordingly. In effect, if
some raining weeks are predicted and confirmed from sensor data, then the billboard will
advertise the appropriate products like umbrellas.

To achieve this, the city hub will employ a lightweight data processing on the sensor
data via the hub’s on-board computing resources. This contributes to proper dynamic
decision making proactively.

♡ Solution Details: The IoT edge devices are considered resource constrained environ-
ments that affect the processing of tasks and might affect the performance of running
tasks if resource elasticity constraints are not met. In this pattern, we are offering an
elastic task flow system for an IoT sensor data-stream analytics process, which allows for
building simple pipelines of data processing tasks. The task flow system will proceed
with real-time processing of a sensor’s data-stream feeding the dependent services. Raw
sensed data may lack accuracy and completeness due to device malfunctioning. This
poses a challenge in processing data and affects the correctness of analytic results.

An IoT big data analytic process is a pipeline, which is composed of a number of tasks.
The tasks used for ensuring quality of data are the early stages of this pipeline ranging
from simple cleansing to binning and restoring of corrupted data points. The later stages
include data intensive analytic processes which need more computing resources such as
CPU, memory and storage and should be done in a data center. But the early stages
consist of lightweight tasks that could be done on devices.

The core idea of this pattern, as illustrated in Figure 6.8, is based on Pipe and Filter
architecture. There are three filters in lightweight data processing: data points validation,
cleansing, and aggregation. These simple operations are wired together as a Directed
Acyclic Graph (DAG) of tasks. The city hub’s IoT platform handles tasks dependencies,
task flow management, state management, scalability and policy-based resource allocation
to the running steps. Each task might be a Hadoop job in Java, a Spark job in Python,
or a simple text-processing Python snippet. To achieve this, we need to employ the Edge
Provisioning pattern to be able to deploy the pipelined tasks on the sensor-equipped IoT
edge devices.

In Pipe and Filter architecture, the output of one filter is fed, as input, into the next

80

6.9. In-Device Data Preprocessing Pattern

filter. In this pipeline the first filter does data validation. The task is done by submitting
a validation job to a spark master. The validation job is done by spark workers. The
next filter is cleansing. Based on the different cleaning policies, missing and invalid
values may be deleted or replaced with a reasonable value. Data aggregation is the
next. The output of these phases must satisfy the quality of data constraints. The
built-in monitoring daemon will observe the elasticity weight of the running tasks in
terms of underlying resource usage. This contributes to an automated resource leveling
of each task of the deployed data-centric pipeline. Moreover, you are able to cope
with prospective aspects of elasticity like resource allocation over future demands and
supplies. At any given time t, Edge platform provides enriched pieces of information

Realm A

sensor service

RaspberryPi #1

temp

temp

CoAP client

Metering Agent

RaspberryPi #2

CoAP client

Metering Agent

sensor service

Token
Aggregator

Metering Proxy

RRDTool/
SQLite

CoAP Server

UDP push

UDP push

Resource
Control Srv

Payment Srv

Metering Server

Realm
Aggregator

Metering
Arbiter

Metering
Coordinator

TCP
TCP

Realm B
sensor service

RaspberryPi #1

temp

temp

CoAP client

Metering Agent

RaspberryPi #2

CoAP client

Metering Agent

sensor service

Token Aggregator

Metering Proxy

RRDTool/
SQLite

CoAP Server

UDP push

UDP push

TCP

Figure 6.9: IoT Diameter of Things (DoT) metering pattern sketch.

about the IoT applications temperature/humidity observations. Such observations can
be represented as a column-vector ot ≡ [t,1 t,2 ... t,n]T ∈ Rn of metrics data
stream values at time t. The stream of sensed data can be regarded as a frequently
expanding t × n matrix Ot := [o1 o2 ... ot]T ∈ Rt×n where the new incoming streams
are added as matrix rows at each time interval t in real-time. In our IoT case, Ot is the
measurements column-vector at t over all the metrics, where n is the length of the vector
and indicates the number of metrics and t is the measurement time-stamp. These vectors
represent the set of measurements obtained for the n metrics at a specific observation.
In particular the rows of the matrix represent various monitoring observations
in a given period, while the columns are the sample values detected for each metric
during the observations.

Ot,n =

edgeD1,1 ppD1,2 · · · temp1,n
edgeD2,1 ppD2,2 · · · temp2,n

...
...

edgeDt,1 ppDt,2 · · · tempt,n

(6.1)

These vectors represent the set of measurements obtained by the n sensor at a specific
observation. In particular the rows of the matrix represent the different observations in a

81

6. IoT Computational Constructs

given period, while the columns are the sample values detected from each sensor during
the observations. This equation 7.1, formulates a simple formal representation of sensor
data.

6.10 Edge Diameter of Things (DoT) Pattern

♧ Problem: How can IoT service provider monitor and meter the actual usage of IoT
deployment units in real-time or near-real-time, in order to monetize them? How the
IoT composite application resource usage, as well as the service usage can be charged
against a specific user balance?

♧ Context: From the provider’s perspective metering mechanisms can vary based on
applied business models. These mechanisms range from different usage patterns such as
invocation basis (event-based) and usage over time (time-based), to subscription models
such as prepaid and pay-per-use models. This yields to the need for defining some metrics
for service and resource usage, which in turn, can be used to measure the consumption
of the service and to price it.

♧ Motivation Forces: Suppose you have provided an IoT platform, which presumably
consists of the hardware (device) and composite IoT services, to your customer, and you
would like to monetize it based on the real usage of the client, while guaranteeing a fare
transaction for both ends. To achieve this goal you need to measure the rate of actual
resource and service utilization, as near real-time as possible.

You may provide your service in a prepaid model, where you and the client agree on
certain amount of credit to be reserved prior to service delivery. In this subscription
model, you should ensure that the actual usage does not exceed the reserved credit on
one hand, and on the other hand, the service delivery does not terminate while there are
still some credits remaining.

You may provide the edge service in a pay-per-use model, where you charge the client
based on actual usage of the IoT platform. The actual payment and therefore the
subtraction from user credit should be done at a certain rate. This model can be bounded
to a definitive time limit or it can be unbounded.

Your provided service is normally a composition of several microservices of different
kinds, and therefore various charging schemes are applicable to them. For instance,
some services are event-based, where the charging scheme is based on the number of
service invocations. Other services are time-based, where the duration of time the service
has been in use should be considered. Furthermore, for time-based services, you might
want to monitor underlying resource usage of the service as well. The resource usage
monitoring can again be time-based or it can be divided to more granular scheme of
monitoring memory, CPU, filesystem and bandwidth usage of the service.

Furthermore, the IoT platform normally resides on the client side and your access to the
edge device is limited to an Internet connection with a certain bandwidth. In this regard,

82

6.10. Edge Diameter of Things (DoT) Pattern

you should prevent overwhelming the network by transferring too many monitoring
messages back and forth, while still supporting the near-real time monitoring of the
usage.

♧ Solution Details: A light-weight metering protocol can be utilized to support the
telemetry of composite IoT applications deployed on resource constrained devices.

The prerequisite to such a solution is to define a specific agreement called “metering
plan”, offered by the provider and accepted by the client. The subscribed metering
plan is an indication of all assumptions that need to be considered for a proper service
delivery, continuous and near-real-time usage metering, and the subsequent charging.
The plan includes: i) subscription type (i.e. pay-per-use model or prepaid model), ii) list
of constituent microservices provided to the client, iii) usage pattern and measurement
unit of each service. A time unit is used for duration-based services and number of
invocations is used for the services with an event-based usage pattern. iv) the price for
each allocated service unit, v) the price for underlying resource usage, vi) the resource
Used Unit Update (U3) rate for each service. vii) if prepaid subscription type is selected,
then the maximum allocated units to each service is also included in the plan. viii)
subscription-fee for prepaid model, and subscription time for a bounded pay-per-use
model.

The U3 rate defined in the plan, is the rate of producing usage tokens for each microservice.
The actual U3 rate for a prepaid economic model will be calculated based on the maximum
allocated units to each constituent service. e.g. The U3 rate of 20% for a duration-based
service with maximum granted units of 100 hours will cause to send usage updates
every 20 hours. The same U3 rate for an event-based service with granted units of 100
invocations will result in generating a usage update after every 20 invocations. The
U3 rate for a pay-per-use model, on the other hand, is calculated merely in time units,
regardless of service type. This means, for a defined U3 rate of 5% for a service bounded
to 1 month of usage (as defined via subscription time in plan), the actual usage report
will be sent every 1.5 days. For unbound pay-per-use model, U3 is simply the rate of
sending updates of each service per time unit, e.g. every hour.

The U3 rate is one of the main factors defining the real-time characteristics of monitoring
underlying services. Nevertheless, it exerts an impact on network congestion rate.
Consequently, it is crucial for the service provider to assign an appropriate value to it to
balance the trade-off between generated network traffic and real time update.

To realize the metering infrastructure, two main components are introduced: (i) the
metering server, which is a central component, is responsible for telemetry coordination.
(ii) the metering agent, which is a distributed component residing on the edge device and
assigned to a microservice, is responsible for collecting usage information and sending
it to the metering server. As soon as an IoT application is instantiated for a specific
user, the metering server receives a copy of the metering plan. It then parses the plan
and calculates the U3 rate for each constituent service in the plan. Together with the
calculated U3 value, it then sends the request to start metering each service to its newly

83

6. IoT Computational Constructs

assigned metering agent. At each U3 interval, each agent will send the actual service
usage, as well as the resource usage to the metering server.

In order to lower the load imposed on the network by sending usage token messages from
the metering agent to the metering server, two supporting solutions are leveraged. First
is the use of an intermediary component on the edge side, called the metering proxy, to
aggregate several usage tokens within a window frame of predefined time or message
count. Second is the use of a low overhead messaging format to transfer the data from
agents to the metering aggregator. To this end, CoAP is utilized, which is specifically
designed to work in constrained networks of IoT environments.

As the usage update summary is received by the metering server, it is used to calculate
the charge accordingly. Figure 6.9 provides a schematic view on architecting DoT’s
metering collaborating components. Our DoT protocol[59]15 is currently in development
and the ongoing draft is available in IETF as an Internet-Draft submission.

Edge Sensor A

Driver + API

Edge Sensor B

Driver + API

Queue

Event

API Call

Event

wellness microservice A

Handler A Action
A

wellness microservice B

Handler B Action
B W

ra
pp

er
 F

ac
ad

e
In

te
rfa

ce

Figure 6.10: IoT Wearable Facade Pattern sketch.

6.11 Edge Wearable Façade Pattern

♤ Problem: How can a wearable device, sensor, or a micro robot interact with humans
while the device level knowledge is not required? How can the low-level APIs be
encapsulated from the human sensible perspective while (s)he needs to communicate
easily with the wearable device? How can the meaning of a micro intelligent widget be
embedded in micro wearable sensors?

♤ Context: Edge devices and sensors usually expose APIs in the form of libraries. These
libraries provide the sensor or device functionalities which can be integrated into more
coarse-grained modules. Working with such sensors and making them integrated into a
sensible device requires the knowledge of detailed data-sheets and API documentation.
This contributes to higher level functionality.

♤ Motivation Forces: In patient health-care systems, there is a need for some wearable
devices to gather vital patient information to find out the patient’s health condition for
proper caring support. These wearable devices such as smart T-shirts, smart belts, smart

15https://datatracker.ietf.org/doc/draft-tuwien-dsg-diameterofthings

84

6.12. Related Work

watches and smart glasses produce vital signals and communicate with electronic health
record systems. Each wearable device is equipped with a network of sensors, which each
providing a single decoupled function. In such cases, devices implement a human-based
sensible interface so that individuals can utilize the high level functionalities efficiently.

♤ Solution Details: Edge Wearable Façade pattern exposes unified interface to complex
sensor libraries and APIs. This interface can interact with the sensor layer APIs and
make them easier to understand and abstracts the complexity and dependencies away
from the user view. Therefore the complexity of sensor APIs, sensor communications,
events, etc. is transparent to the user view.

This pattern uses an event driven architecture. In the lowest level, each device exposes
some functionality via the built-in APIs. Each device has implemented its logic via a
microservice so that the device functionalities can be invoked. There are two streams
of data, one is the commands from microservices to device/sensor and the other one is
the device/sensor signal, which we see as an event in this pattern. The microservice
sends commands and the device/sensor sends events. In the microservice layer, there is a
predefined handler for each event. When an event gets triggered by a handler, an action
will be invoked. We offer the use of lightweight queue-based messaging for in-device
communications.

In summary, as shown in Figure 6.10, the Façade Interface Wrapper which is on the top
of the architecture hides the complexity of the device layer and their communications
and APIs in to a meaningful high level interface. A simple use case of this interface is an
EHR (Electronic Health Record) system as a wellness function. The wellness function
may use different micro-services and the corresponding sensors to evaluate the patient
vital signs and do indispensable action.

6.12 Related Work

In relation to our approach, there are some similar, commendable work. For instance,
the Pattern Languages of Programs (PLoP)16 community has developed various design
patterns, like pattern-oriented software architecture: a system of patterns[60] defining
a pool of proven solutions on how to describe large-scale applications. The design
patterns: elements of reusable object-oriented software[61] offers timeless and elegant
solutions to recurring classes of challenges in software design. They also proposed proven
techniques to achieve patterns for fault tolerant software[62]. Looking forward, the
Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions
is a profound book on how to think and design distributed systems asynchronously.
Eloranta and Leppaenen[63] present three patterns that supports varying the control
system tailored to fit the customer’s needs. The contemporary shift to cloud, the authors
shared their foresight in the Cloud Computing Patterns: Fundamentals to Design, Build,

16https://en.wikipedia.org/wiki/Pattern_Languages_of_Programs

85

6. IoT Computational Constructs

and Manage Cloud Applications[64], in an abstract format that is independent of concrete
vendor products.

Most of the current proposed patterns are focused from a cloud perspective. Few are
designed with an edge-based focus in mind. Hashizume, Yoshioka, and Fernandez[65][66]
build a catalog of misuse patterns like Resource Usage Monitoring and Malicious VM
Creation. The Amazon Web Services (AWS) cloud patterns[67] documents design
principles for applications hosted in the Amazon cloud. Microsoft proposed a set of Azure
cloud design patterns[68] claiming to be usable for native cloud applications. The cloud
architecture patterns[69] introduces 11 architectural patterns utilizing cloud-platform
services. Erl et al.[70][71] present cloud design patterns very briefly. The only article
written by Michael Koster[72], entitled “Design Patterns for an Internet of Things” ,
just defines some basic IoT concepts in a couple of sentences. No pattern format is
supported. In contrast to all the noted related work, we took further steps towards
identifying reusable edge applications design constructs.

6.13 Conclusion
In this chapter, the authors offered eight design patterns applicable for designing, building
and managing IoT applications. IoT exposes underlying devices as software-defined things
or edge applications. Engineering edge applications requires abstracted design principles
that prescribe how collaborating things should work. From the engineering perspective,
the proposed patterns cover, realizing all stages of the edge applications life cycle from
their dynamic composition to their deployment and fulfillment.

So far, we have defined eight design patterns enabling IoT architects to construct edge
applications. As an outlook, our future work includes further extension to the design
patterns to support more diverse applications, as well as refining and updating existing
ones. We will focus more on patterns to be used for elasticity, resiliency and Software
Defined Networking (SDN) patterns for edge computing. This will study the behavior of
impacting players, such as competing applications, in making decisions on the allocation
of limited resources amongst infrastructure forces of supply and demand.

Just as evolving IoT offerings target a large diversity of systems, we envision that such
design patterns may leverage the performance and scalability of edge applications as well
as to gaining acceptance as a de facto design standard to give adequate foresight to edge
engineers in IoT.

86

Part III

Micro Telemetry

87

CHAPTER 7
Telemetry of Elastic Data

7.1 Introduction
Utility computing[73, 74] is an evolving facet of cloud computing that aims to leverage
and treat computing resources as a metered service, like natural gas. It enables a Pay-
per-use or utility-based pricing model through metered data to achieve more financial
transparency. Metering measures rates of resource utilization via metrics, such as data
storage or memory usage, consumed by the cloud service subscribers. Metrics are
statistical units that indicate how consumption is measured and priced. Furthermore,
metering is the process of measuring and recording the usage of an entire application,
individual parts of an application, or specific services, tasks and resources. From the
provider view, the metering mechanisms for service usage differ widely, due to their
offerings that are influenced by their cloud business models. Such mechanisms range from
usage over time, volume-basis to subscription models. Thus, providers are encouraged to
offer reasonable pricing models[75] to monetize the corresponding metering model.

In the cloud market, providers are expected to have a layered metering model together
with its associated pricing schema to exploit various resource usage granularity. In effect,
the more fine-grained the metering service is, the more transparent is the utilization. Data
aggregation is needed to provide a broader view of resource usage and conversely, small-
footprint or micro metering is required to achieve a more granular view of the resource
utilization. Thus, increasing the resolution and precision of metering the underlying
resource unit to improve the validity of the quantified cost appears to be vital. However,
this comes with an elevated cost for monitoring, which we assume is reasonable. In this
context, the underlying resource usage events are time-series data that are streamed at
tiny time intervals (e.g., 3 seconds) to enable current and consistent data retrieval of a
metered unit.

The quest for telemetry of the client’s job resource usage becomes more challenging when
the job is deployed and processed in a distributed model. For instance, the MapReduce

89

7. Telemetry of Elastic Data

framework[76] offers an abstraction that simplifies the execution of data processing. Such
computation intensive applications run in a distributed setting while hiding the details of
parallelization, data distribution, load balancing and fault tolerance. It aims to parallelize
the data-intensive application processing and less focus is put on efficient underlying
resource utilization. Enriching MapReduce with telemetry services will contribute to
more optimized resource utilization and performance in the cluster. This leads to a
question, how can granular metering contribute to more utilization value? The reason
is granular elasticity control. Metering Map or Reduce tasks enables granular elasticity
control on multiple levels by varying elasticity requirements like cost and quality[77].
The next question is how does granular metering improve performance? The solution is
process-weight classification of the application jobs. With the classification framework,
the job types are classified in terms of resource usage (map or reduce-intensive), and
this seeds algorithms for an optimal tailored scheduling. This leads to a more optimized
resource allocation than other current plugged policies. From the consumer view, clients

client JVMClient node

MR

Application

/DAG + CLC

job 1

job n

....

HDFS

Resource Manager node

DAG1, DAG2..DAGn

Resource Allocator
2: Get new App ID

4: Submit Apps

Other node manager nodes

Node

Manager
MapReduce

Task

YARN

Child

Task JVM

4: Retrieve job
resources

1: RUN

1..n

Node

Manager

Node manager

MR- App

Master 5b: Launch9a: Start
container

10: Run

9b:
Launch

5a: Start
container

8: Allocate
resources7: Retrieve input

splits

6a: Initialize job

Plugable Elasticity Policy

TED

11: Monitor
container

12b: Plug
Policy

12a: Job
Telemetry

3: Copy job
resources

6b: Request
containers

CapacityFair FIFO Tailor

Figure 7.1: TED middleware data and process flow with their sequence of events in
YARN

seek to economize their usage patterns by optimizing their map or reduce-intensive
jobs. Along with these motivations, MapReduce-based utility computing contributes to
planning a cluster’s future resource requirements for more elasticity and performance. The
flip side of the coin is that providers will gain an understanding of how their underlying
resources are being consumed to bill users respectively. Thus, it makes eminent sense to
meter emitted data of MapReduce resource usage.

Cloud Market-Leader Amazon offers an Elastic MapReduce (EMR) web service, for
instance, a hosted platform on the Amazon cloud where users can instantly provision
Hadoop clusters to perform their data-intensive tasks. Amazon EMR uses Hadoop, an

90

7.1. Introduction

open source framework, to distribute your data and processing across a resizable cluster
of Amazon EC2 instances. Based on the Amazon EMR pricing1 model, you pay an
hourly rate for every instance-hour you use. The hourly rate depends on the instance
type used (e.g. standard, high cpu, high memory, high storage, etc). Hourly prices range
from $0.011/hour to $0.27/hour ($94/year to $2367/year). The Amazon EMR price is
in addition to the Amazon EC2 price (the price for the underlying servers). There are
a variety of Amazon EC2 pricing options, including On-demand, Reserved, and Spot
instances. Besides, Amazon EMR uses other services such as Amazon S3, SQS, SimpleDB
for its operations which are billed separately.

Due to the Amazon EMR pricing model, a 10-node cluster running for 10 hours costs
the same as a 100-node cluster running for 1 hour. Kambatla et al [13] drilled this down
for more transparency and showed us that resource elasticity for MapReduce jobs is not
entirely symmetric, i.e., 1 hour on 100 nodes may not accomplish the same resource
usage throughput as 100 hours on 1 node. This poses a challenging decision of choosing
the right cost-efficient cluster size. Following the previous scenario, there is a potential
situation where the duration of job’s execution time comes into play. If the job doesn’t
go into overtime, but runs for 61 minutes then you would get charged for the next hour,
doubling the cost of the job! The most remarkable feature of EMR billing is that Amazon
bills by an hourly increment. Cluster initialization seems to take 5 minutes or so with
the Amazon distribution, so if one of your job’s input paths is missing, it will take about
5 minutes to fail, but you’ll be charged for the whole hour. You can definitely buy more
machines and get a job done in less than an hour, but the cost-efficiency goes down. For
instance, if your job completes in 30 minutes you will roughly double the cost.

However, in this context, the visible challenge for MapReduce jobs that must scale
to extremely high capacity, is to ensure actual application resource consumption in
terms of quality and cost elasticity. To address the above challenges, we implement
an elastic data telemetry middleware called TED for YARN framework. TED collects
“actual telemetry” events of running map/reduce tasks and then “meters” such data in
meaningful way by returning the outcomes of its granular metering for two purposes. First,
to generate billing statements to charge clients respectively and, second to generate and
enforce tailored policies to control current applications’ resource consumption behavior.

A mapreduce application can be represented by a directed acyclic graph (DAG). The
DAG is used to represent a set of tasks where the input, output, or execution of one or
more tasks is dependent on one or more other jobs. The tasks are nodes in the graph, and
the edges identify the dependencies. The elasticity strategies can be applied on the whole
DAG or parts of it. Similarly a set of DAGs can be bundled into a data analytic workflow
driven by the Apache Oozie engine2. Some strategies might constitute constraints over
the number of pending or running DAG jobs, maps or reduces.

As illustrated in figure 7.1, we have positioned and deployed our TED middleware in the

1http://aws.amazon.com/elasticmapreduce/pricing/
2http://oozie.apache.org

91

7. Telemetry of Elastic Data

resource manager node on the YARN architecture. The figure also depicts the event flow
sequence corresponding to the mapreduce job life-cycle together with its metering process.
YARN dynamically allocates resources for MR Jobs as they run. Let us demonstrate how
TED utilizes resource provisioning. In this scenario, at stages 1,2,3,4 as shown in Figure
7.1, a client submits a job or a DAG of jobs with the required container launch context
(CLC) information to the resource manager and copy data source to the HDFS. As soon
as the job is submitted, the ResourceAllocator negotiates a container and instantiates the
ApplicationMaster for the job at stages 5a and 5b. At this moment, stages 6a and 6b, the
ApplicationMaster initializes the job and requests containers from the ResourceManager.
Then, at 9a, 9b, 10 and 11, it launches the granted container, runs the job and monitors
its execution. The containers are configured based on the CLC specification. Our focus
lies on stages 12a and 12b, where TED retrieves and meters the resource usage data,
interprets the job’s behavior and then plugs the suitable and tailored elasticity policy
(scale-up/down) into the resource allocator for enforcement.

ApplicationMaster monitors the job execution flow through NodeManager, and observes
their status and resource usage metrics (cpu, memory, disk, network). Then it ne-
gotiates resources for a single application (a single job or a directed acyclic graph of
jobs). The ApplicationMaster initial request is structured in the [resource-name,
priority, resource-requirement, number-of-containers] format. Then,
via heartbeats negotiates ResourceManager its changing resource needs. After negotiation,
it applies the dynamic adjustments to ensure resource consumption restraints are met.
ResourceManager controls the container allocation by enforcing our plugged elasticity
policy for a specific job. Before launching the container it has to construct the CLC
object according to its needs which can include the allocated resource capability, security
tokens, resource dependencies, environment variables, local directories. Next is to execute
the task on the launched container.

To this end, our contribution is twofold: (i) An elastic and granular metering and resource
scheduling mechanism for a class of MapReduce-based applications. (ii) In support of
such a mechanism, we develop an elastic data telemetry (TED) framework as a basis
for a multi-level resource metering model. This contributes to fine-grained resource
consumption transparency and elasticity control. Our TED framework implements a
layered approach to the interpretation of the time series resource usage events. TED
achieves resource granular metering model in a hierarchical modeling topology. Having
the metered data collected, TED highlights operational events, aggregates, and enriches
them with the corresponding pricing model, then correlates the data with the associated
client account and generates the billable artifact respectively. This leads to useful insights
into the MapReduce job behavior for generating new allocation policies to achieve the
intended performance defined in the service level agreements (SLAs).

With this motivation in mind, this chapter continues with an initial analysis to identify
and elicit the requirements for the TED framework in section 7.2. With some definitive
clues on how the MapReduce jobs are currently being metered and monetized, we propose
a new elastic data telemetry framework (TED) to fulfill each requirement. The TED

92

7.2. Resource Consumption Metering Requirements

framework layered architecture together with its interacting components are detailed in
section 7.3. This section is devoted to the core elements of the TED model i.e., resource
usage retrieval, MapReduce metering metrics, pricing kernel, a classification model for
granular usage pattern interpretation, and a billing gateway to expose telemetry billable
artifacts via FIX protocol. In support of our model, we have developed a primary TED
framework able to handle MapReduce job metering in a Hadoop YARN cluster. The
available prototype3 is put to production by metering real MapReduce jobs. We evaluate
our TED framework and numerical results will be given in section 7.4 to prove the
efficiency of our model. Subsequently, section 7.5 surveys related work. Finally, section
7.6 concludes the chapter and presents an outlook on future research directions.

7.2 Resource Consumption Metering Requirements

In architecting our metering middleware we initially defined the requirements in which it
will operate. The appropriate metrics for the metering methods and the jobs that are
metered could vary quite significantly based on factors such as telemetry requirements
and application domain context. Next, we elicit our requirements.

7.2.1 YARN Cluster Capacity Planning via Metering

YARN clusters are elastic in nature. They host MapReduce applications and adapt
themselves to varying loads by elastically allocating and releasing underlying resources to
map and reduce tasks. Obviously, it is an obligation for YARN providers to assure the
availability of required supply. Otherwise, lack of resources results in unmet demands
and poor performance, triggering the SLA violations and leads to financial consequences
and penalties. YARN supply planning depends on a few factors: types of machines
(Nodes), types of workload (Memory/Storage/CPU-intensive), Number of tasks (map
or reduce) per node and etc. Usually count 1 core per task. If the job is not too
heavy on the CPU, then the number of tasks can be greater than the number of cores.
For instance: 12 cores, jobs use 75% of CPU, free task slots = 14, maxMapTasks =
8, maxReduceTasks = 6. By default, the tasktracker and datanode take each 1GB
of RAM. For each task calculate mapred.child.java.opts (200MB per default)
of RAM. In addition, count 2GB for the OS. So say, using 24GB of memory, 24-
2=22GB available for our tasks – thus we can assign 1.5GB for each of our 14 tasks
(14 * 1.5 = 21GB). YARN uses yarn.nodemanager.resource.memory-mb and
yarn.nodemanager.resource.cpu-vcores to control the amount of memory and
cpu on each node, which both are available to maps and reduces. Resource allocation
plans and elasticity requirements can be enforced using these configurations.

Metering can provide valuable information about these factors to show the way that an
application is used. This requires classifying the job types (CPU bound, Memory or
Disk I/O bound, or Network I/O bound) into: balanced workload, compute intensive,

3https://github.com/soheil4TUWien/TED

93

7. Telemetry of Elastic Data

I/O intensive or evolving workload patterns. Such classification can identify trends that
indicate future needs such as storage and compute resource requirements. Moreover, this
may indicate which resources are more utilized in map or reduce intensive job phases
affecting response times. Such utilization knowledge might also influence the effort
towards development of optimized storage methods, cost reduction or additional storage,
like using AWS spot instances4. The fundamental unit of resource allocation in YARN is
the priority queue which we will discuss later in details.

7.2.2 Metering for Granular Consumption Transparency

The level of a resource metering unit becomes an essential facet of facilitating a way of
hierarchical metering and processing of usage patterns indexed by information granules.
By granule metering, we mean a collection of metrics aggregated together by their
functional relationship or closeness. Such granules are then formulated by adopting
and leveraging a certain level of abstraction to achieve further utility. Each abstraction
level is formed by grouping metrics together into semantically meaningful constructs to
reflect the structure of the original data into its granular counterpart. Granular metering
enables diving deeper into measuring the resource usage on the per-DAG-flow, per-DAG,
per-Job, per-Map or per-Reduce levels. Such metering granules can be regarded as more
abstract and interpretable entities in charging clients and in elasticity policy enforcement.
We treat them as a scale unit. This provides users real-time visibility over their resource
consumption and the ongoing money stream being paid as they go. Furthermore, it
enables clients realtime application control to ensure that quality and cost constraints
are met.

Meanwhile, we see the resource usage events as time-series data whereas the consumption
information granulation occurs in time intervals. In this context, the duration of the map
or reduce phases’ run could form a scale of time granulation. As elaborated above, we
identify three factors: granule unit, time interval and metric type to building granular
representatives of usage data. The granulation mechanism involves criterion of closeness
of elements, and if required, could also embrace some aspects of functional resemblance.
In other words: we collect underlying usage events and elevate them into granule units
in reasonable time intervals. Such granular classification of application metering enable
Pay-per-granules enables for mapreduce-based applications where customers are billed
based on their actual application resource usage and can track their ongoing costs.

7.2.3 Fine-grained Metering for Elasticity Control

Elastic metering allows fine-grained adequate resource allocation and prevents exceeding
the preset resource usage and limits. By elastic metering we mean to enforce resource
quotas on the cost and quality constraints. This requires a scheduled utility that observes
key threshold constraints and fires the appropriate notification event to enforce the
suitable elasticity control policy like Scale-in or Scale-out. To apply such control, we

4aws.amazon.com/ec2/purchasing-options/spot-instances/

94

7.2. Resource Consumption Metering Requirements

provide a granular classification on the usage data. The schemes of granular classification
are comprised of several functional steps. A crux of the scheme is shown in the following:

Usage Events (1) [key,value]−−−−−−−→
Retrieval

Metrics Feature Space (2) Granulation−−−−−−−→
Aggregation

Granular

Feature Space (3) Correlation−−−−−−−→
Association

Interpretation (4) Tailored Policy
−−−−−−−−−−→

Enforcement
Queue Classifier

Let us briefly elaborate on the essence of the successive phases of the overall metering
scheme. The first step is dedicated to meaningful representation of the resource usage
data to form a metric feature space. As a result of this representation, one returns a
vector of numeric descriptors characterizing the time series and used in consecutive phases.
This vector of jobTaskAttemptCounters contains a list of [key,value] of our job
metrics. In our case we retrieve the CPU_MILLISECONDS, PHYSICAL_MEMORY_BYTES
and VIRTUAL_MEMORY_BYTES metric values of tasks for further processing.

At any given time t in the second phase, TED provides enriched pieces of information about
the MapReduce job resource usage observations. Such observations can be represented as
a column-vector ot ≡ [t,1 t,2 ... t,n]T ∈ Rn of YARN metrics data stream values at
time t. The stream of usage data can be regarded as a frequently expanding t× n matrix
Ot := [o1 o2 ... ot]T ∈ Rt×n where the new incoming streams are added as matrix
rows at each time interval t in real-time. In our YARN case, Ot is the measurements
column-vector at t over all the metrics, where n is the length of the vector and indicates
the number of hadoop metrics and t is the measurement time-stamp. These vectors
represent the set of measurements obtained for the n metrics at a specific observation.
In particular the rows of the matrix represent various monitoring observations
in a given period, while the columns are the sample values detected for each metric
during the observations.

Ot,n =

jobD1,1 tskD1,2 CPU1,3 · · · Mem1,n

jobD2,1 tskD2,2 CPU2,3 · · · Mem2,n
...

...
...

jobDt,1 tskDt,2 CPUt,3 · · · Memt,n

(7.1)

In our scenario, as shown in Equation 7.1, let O be a matrix representing the job’s
tracking data measured by metrics counters in the allocated container. For instance,
key element of CPUt,3 represents the CPU usage value of the specific tskDt,2 of
the specific jobDt,1 at time t. This leads to granular representation of time series data.

In the third phase, a collection of information granules is constructed and positioned
as belonging to granularity classes. This forms a layered approach to constructing a
classification framework of granular interpretation of time-varying resource consumption

95

7. Telemetry of Elastic Data

events. Such interpretation abilities could help to understand the type and behavior
of the job in terms of resource insensitivity. The queue classifiers positioned as the
last functional module of a metering framework scheme are used to realize mapping of
discovered running job types on the current job scheduling policy and its associated
elasticity control strategy class labels. This mapping helps in choosing the suitable
economic decisions and accordingly actions taken on the job elasticity control like moving
the job to a proper queue.

Having such classifications in effect, TED manages the level of resource provisioning on
various granules to a specific YARN deployment to keep the job up and running and
ensure elasticity requirements are met. Next, we describe the design and implementation
of our metering solution for mapreduce-based applications deployed in YARN cluster.
Last, but not least, about the architecture robustness, if TED faces its own deployment
issues then this may have a major impact on vendor profitability. Our approach is to
schedule some background log analysis utilities like logstash5 to detect and even restart
the suspended TED instance.

7.3 TED Framework Architecture

Looking forward, figure 7.2 provides a schematic view on architecting TED’s collaborating
components. The next section lays out the basis for the underlying resource metering
metrics together with its retrieval mechanism.

7.3.1 Usage Data Retrieval

Collecting and streaming usage data from mapreduce jobs in Hadoop needs a lightweight
solution to avoid additional network I/O for the sake of performance. Each usage event
contains information about the job like subscriber, timing, the result (success, failure),
resource usage metrics and their values. One solution is to receive notification events
via callback feature of the Hadoop. At job completion, an HTTP request will be sent
to job.end.notification.url value6. Both the JOB_ID and JOB_STATUS can be
retrieved from the notification URL that we supplied in Job configuration. The URL
connection is fire-and-forget (FAF)7. We take a skeptical view of this approach since we
will not receive any notification in case of task completion. Typically, when you run a
map/reduce job you get the object of type org.apache.hadoop.mapreduce.Job.
Using this object you can poll the JobTracker in a predefined interval to check its status.

The collection of monitored metrics data that are exposed by Hadoop Metrics2 system
daemons are written into the time-series database to make it ready for querying and
processing. We register our sinks to retrieve our desired metrics. The metering event

5http://logstash.net
6http://localhost:8080/jobstatus.php?jobId=$jobId&jobStatus=$jobStatus
7http://www.w3.org/TR/xmlp-scenarios/#S1

96

7.3. TED Framework Architecture

Tailored Elasticity

Policy Enforcement

M
e

te
rin

g
 M

id
d

le
w

a
reBilling Gateway

Service Bus

Ti
m

e
 S

e
ri
e

s
D

B

Data Service Bus

Billable Artifact Builder

Pricing

Schema
Correlation

YARN Cluster

N1 N2 N3

N7 N8 ...

Nodes

Map/Reduce Job Queues

Usage

Event

s

 Usage
 Events

Pull data

N4 N5 N6

N10 N... Nn
R

e
so

u
rc

e

M
a

n
a

g
e

r

N
o

d
e

M
a

n
a

g
e

r

Usage

Event

s

Write to TSD

ti
m

e
S
ta

m
p

K
e

y
/V

a
lu

e
s

H
B

a
se

 R
P

C

M
e

tr
ic

s

FIX Message

Transport Adapter

Meteor Object Factory

Elasticity
Requirements

Granulation
Metering

Schema

Telemetry

Handlers

Billing System

 B
ill

a
b

le

A
rt

if
a

c
t

s

Billing

Analytics

Payment

Interfaces

M
e

te
o

r

OSS

BSS

Job Queueing

M
e

te
o

r
b

illa
b

le

a
r
tifa

c
t

b
illa

b
le

a
r
tifa

c
t

YARN Scheduler

 T
a

ilo
re

d

P
o

lic
y

Resource

allocation

Capacity

negotiation

Figure 7.2: MapReduce Job Metering & Rating Middleware Architecture.

data along with its job metadata is streamed to a tree-like8 schema in a time series
database to reflect our metering granularity in hierarchical layering. The metering tree

8We use OpenTSDB 2.0 tree structure, a hierarchical method of organizing time-series into an easily
navigable structure.

97

7. Telemetry of Elastic Data

schema is a JSON object that defines the hierarchical granularity topology in a tree
model. TED traverses the tree via its HTTP API endpoint for further metering processes.
The root(depth: 0) of the metering tree is the YARN cluster. One depth level below root
is the DAGs-flow where the workflow of mapreduce jobs are hosted at the depth of 1.
Moving forward, the MapReduce DAG branch is exposed at depth 2. Next, the depth
increases to 3 where the MapReduce Job branch resides. This leads to a deeper branch
of depth 4 where leaves exist with the map and reduce task’s granularity. Navigating to
the leaves of the tree represents the actual data points for metering events. With this
approach implemented, TED will receive metering events and data for the completed
tasks in the form of REST calls and JSON formatted data.

7.3.2 Meteor Object Factory (MOF)

So far, we have retrieved the usage data and loaded in the time series database in a
dynamically built tree-like schema to keep the granularity. Once the metering data has
been accumulated, the MOF component navigates the tree branches and their leaves as
an input for constructing the Meteor objects. The MOF parses the metering events to
extract resource usage keys and values. The meteor objects are basically aggregated
metering events grouped by specific granularity and a user ID. For instance, a meteor on
the MR-app granularity contains all the jobs’ aggregated MR-tasks resource usage into a
summarized JSON object. We call this object, a Meteor which will be processed and used
to charge the user. Since the user already knows the size of their coming meteor, they
then can be prepared in advance for that financially, etc. A meteor object structure is
driven by [key,value] parity. The actual meteor that we generate carries 8 elements
of which 6 represent the metrics.

To take a closer look of a meteor, think of metering the usage of a service. If service
metering schema indicates that the metering pattern should be based on the number of
service invocations. Then, having 10 calls from a service subscriber enables the telemetry
instrumentation system to collect 10 metering events and the MOF generates 1 Meteor
object indicating the service was invoked 10 times with the summary of resource usage.
The process of meteor construction can be carried out on a predefined frequency of
data collection. Meteors are built at various level of granularity that makes it easier to
interpret, discover trends, gain insights into usage and performance for future elasticity
strategy/policy selection and enforcement. When construction and transmission of some
meteors might have priority in terms of their influence in elasticity decision making, then
the priority queue pattern is considered in its life-cycle.

7.3.3 Telemetry Handler

The Telemetry Handler (TH) frequently invokes the Granulation REST API to generate
the Meteors by aggregating the usage events into granules defined in the metering schema.
Each meteor represents one completed job’s aggregated resource usage. Then TH observes
and audits the meteors JSON objects with the elasticity requirements to detect if any

98

7.3. TED Framework Architecture

threshold is hit. The proper allocation policy (Scale Up/Down) will be plugged in if any
check constraint is violated.

7.3.4 Billable Artifact Builder (BAB)

The constructed meteors in the MOF component will be transmitted to the BAB
component. The BAB rates and monetizes the meteors by enriching them with the
associated pricing schema and the user profile into a billable artifacts. Billable artifacts are
granular resource usage-centric constructs capturing financial valuation of the abstract
entities like job, map, reduce, etc. They indicate the econometric of the aggregate
consumption data. The enriched meteors will be correlated with the elasticity controls for
future policy enforcements, allocating or releasing resources, for instance. Job subscribers
will be charged based on their usage pattern indicated in their billable artifacts. BAB
enables an end-to-end mapping of the operational meteors and pricing schema to expose
metered and billable artifacts to the billing system. This achieves a fine-grained unit
of work for metering and pricing on the fly at economies of scale. BAB measures a
number of metrics (CPU, storage, memory, etc) in [key, value] elements embraced
by the granule and exposes them as billable artifacts to billing systems. Moreover, this
exposure reveals the cost incurred on currently running mapreduce-based applications.
The spending meter is updated at intervals to keep users aware of their payment stream
in real time.

7.3.5 FIX Billing Gateway

Financial Information eXchange (FIX)9 protocol is an open messaging specification to
streamline electronic communications among financial entities for trade allocation, order
submissions, etc. FIX billing gateway offers an architecture for exposing the billable
artifacts to external billing systems (BS) and keep the pricing and metering schemata
updated from partner endpoints.

In our solution the metering service bus acts as the core message gateway, sending various
billable artifacts and services to FIX endpoints using the built-in FIX transport adapter.
The FIX message gateway connects endpoints by transforming messages to standard
FIX messages using its base data dictionary and specifications. TED FIX protocol
implementation is illustrated in figure 7.3. Proxy services are configured to transport
billable artifacts in FIX messages to BS via message broker (i.e., Apache Synapse10).
The service bus converts FIX messages into XML which will be wrapped inside the
Synapse message and sent to the BS. The FIX transport layer maintains session message
correlation using message-id and correlation-id that allows the ESB to send relevant
executions and acknowledgments back to the original FIX endpoint.

9http://www.fixtradingcommunity.org/
10http://synapse.apache.org/

99

7. Telemetry of Elastic Data

Metering
Bus

Billable
Artifact

Synaps
Message Broker

FIX-IN
Proxy

Policy
Update

FIX

FIX-OUT
Proxy

Billing
System

Pricing
Model

Elasticity
Req.

Client Bill
1: Send BA

2: Generate
 Bill

4: Bill portfolio

3: Charge User

5a: Archive BA
5b: Update schema

mr.portfolio.out.queue

mr.bill.in.queue

Figure 7.3: TED tunnels billable artifacts using FIX protocol.

7.3.6 TED Job Queueing

Queueing theory is modelled on how to serve many arriving jobs while having scarce
resources. In YARN, a queue is a logical collection of applications with a guaranteed
resource capacity. They reflect the economies of resource allocation policies. Given the
job’s resource requirements, the goal is to improve performance by deploying a more
optimized scheduling policy to achieve economies of scale. Our tailored policy in this
study is to move the application to a queue which satisfies the application launch context.
It is an indication that the following metrics underlying our model have been considered
in rating the target queue for the proper positioning of the application.

♢ Queue Utilization: (ρ) is the fraction of time a container is in use (non-idle). It is
calculated by total observation of busy time (Tb) over length of observation period (τ),
that can be formulated in ρ = Tb

τ equation.

♢ Queue Throughput: (X) is the rate of task completion (e.g., jobs/sec) at container
. Formally, the total number of completed jobs, J at container within period of (τ)
results in X = Jm

τ throughput.

♢ MapReduce Job Size: (Smr) indicates the amount of required time to run a job on
the specific CPU alone. (E[Smr]) represents the average required time to run the job
excluding the queueing time (e.g., 1

4sec).

♢ Job Average Arrival Rate: (λ) is the average rate of the job’s arrival to the queue
(e.g., λ = 2 jobs/s).

♢ Job Average Serving Rate: (μ) is the job’s average serving rate in the queue (e.g., μ =

100

7.3. TED Framework Architecture

4 jobs/s = 1
E[Smr]

).

♢ Price of Entry & Cost of Waiting : (P) is the job’s entry price in the queue and
the c indicates the cost per unit time of waiting in the queue (e.g., P = 2 and c =
10 cents/s).

♢ Job Migration Cost: (Mc) contains the active job migration cost (e.g., Mc = 50 cents
per/job-size). This might come with a high cost because of state (memory). Such costs
will be amortized over the new queue on its remaining processing time.

♢ User Budget: (B) contains the initial user budget limit to run the job.

highPrio

(70)

Root

(100)

µ4

µ3JobA

Scale

(70)
µ1=5

Fair

(30)

Capacity

(70)

µ6

µ5

Default

(30)

µ2=

2

Economy

(30)

c: cost of waiting

n: num of waiting jobs

P: price of entry (2€/VM)

s: job size
b: user budget

Fair

λ=3

JobB

λ=1

P: price.. (1€/VM)

Mc: cost of migration

Figure 7.4: TED Hierarchical Queueing Model & Job Migration.

In our model, after the migration, we enforce the shortest remaining processing time
(SRPT) priority algorithm as a serving mechanism for the migrated jobs. TED’s queueing
model is illustrated in Fig 7.4. In this mode, the used capacity of any parent queue is
defined as the aggregate sum of used capacity of all the descendant queues recursively.
the used capacity of a leaf queue is the amount of resources that are used by allocated
containers of all applications running in that queue. Such a container is a unit of resource
allocation across multiple resource types incorporating resource elements such as memory,
CPU, disk, network etc, to execute a specific task of the application.

Algorithm 7.1 shows how applications are moved across queues in TED. The scheduling
algorithm clarifies when to move which application to another queue. It is implemented
and evaluated in the following section. The algorithm applies only for running jobs which
are submitted on a specific queue.

101

7. Telemetry of Elastic Data

Algorithm 7.1: TED scheduling algorithm for running jobs
1: procedure MoveToQueue(AppD, trgetQee)
2: if (AppStatus == "Running"
3: && AppQueue == "Cloudera"){
4: mapTasks[] ← list of maps of current Job
5: reduceTasks[] ← list of reduces of current Job
6: //check for the first completed map task
7: for (each task in mapTasks)
8: if (state of task equals "Succeeded")
9: completedMapTaskId←currentMapTaskId;
10: Compute ρ and X to classify highPriority queues
11: if (completedMapTaskId 6= null){
12: // read the completed map task information from tsdb
13: CPU ← store CPU usage of map task (ms);
14: // Store HEAP & VMEM & PMEM values used by mapper
15: costPerMap = CPU × targetQueue_cpuCost
16: // plus the sum of HEAP, VMEM and PMEM;
17: //estimate cost of job on the target higherPriority queue
18: totalEstimatedCost=costPerMap×num.map-Tasks +

costPerMap×num.reduceTasks+P;
19: if (totalEstimatedCost < user_budget)
20: app.setQueue(targetQueue); }
21: }

7.4 Model Evaluation
Now, we present results from our real-world observations that show the efficiency of our
model. We have implemented two threads; one for streaming the usage metrics data to
tsdb and the other one for creating the meteors, cost estimations and migrating the job
to the target queue. As a real job, we executed the YARN Pi example which computes
the Pi value with the given precision with two configurations. In the first case, we have
run the Pi job on 60 mappers with 30 samples per map. As for the environment set up,
the Fair scheduler of YARN is in place and we have two queues of lowPriority (weight =1)
and highPririty (weight = 2). The observations on CPU consumption growth is trending
over queue change in time. The aggregate results imply utility and are summarized in
Fig 7.5.

Taking these results together, four points stand out in this evaluation. First, the job was
running in the first queue for about 25 seconds. Second, TED decides to migrate the job
to a higherPriority queue after 25 seconds of jobs execution in which only 4 maps have
been executed. Third, the migration takes 5 seconds and the job continues to run in the
new queue at the starting time of 22:58:30. Finally, the first 4 maps were executed in 15
seconds while after migration the remaining 56 maps together with reduces executed in

102

7.5. Related Work

Figure 7.5: YARN Pi example with 60 mappers and 30 samples (OpenTSDB sum
diagram).

40 seconds in the new queue.

Running the Pi with the second configuration results in Fig 7.6. It also took almost 4
maps to enforce the migration to the new queue at 02:33:00 which took 3 minutes to
move to the new queue due to the larger size of the job. Having the migration in place,
we can observe that the job is utilizing more resources to be finished. Since we had the
SRPT policy in place, at the end of job, we see that it has the highest priority to be
finished sooner. Results presented above are convincing enough to lead us to ascertain
that in the highPriority queue the allocated memory and CPU were considerably higher
to execute the job faster than the time it was submitted to lowPriority queue.

The empirical evidence observed in this study suggests that our consumption-based
pricing model for MapReduce jobs provides statistically and economically important
insights into financial behavior of an underlying resource usage model. TED enables
applications to implement “elasticity-aware policies” to satisfy their resource requirements.
If an associated job migration policy among queues is triggered, the allocation is leveled to
the pre-configured queue capacity dynamically. This capacity leveling keeps the amount
of resource allocation within the range (minSize and maxSize) of an intended resource
allocation.

7.5 Related Work
To the best of our knowledge, this is the first study that leverages the metering to the
data processing domain. Meanwhile, there is some commendable research regarding the
cloud service usage metering. Elmsroth et al.[78] proposed a loosely coupled architecture

103

7. Telemetry of Elastic Data

Figure 7.6: YARN Pi example with 300 mappers and 100 samples (OpenTSDB minmax
diagram).

solution for an accounting and billing system for use in the RESERVOIR[79] project.
In a separate work, Prasad et el.[80] described the usage of open source tools such as
OpenTSDB, Hbase and Hadoop to store time series data and perform analytics on the
time series data to get useful insights related to power consumption and get the result in
pictorial format, essentially a graph. These papers do not provide any implementation or
evaluation of the proposed architecture. There are some alternatives that propose billing
and metering solutions, Narayan et al.[81]. Petersson[82] describes cloud metering and
billing solution. Naik et al.[83] proposed a solution for metering of services delivered
from multiple cloud providers. They incorporate the cloud service broker together
with a metering control system to report metered data at configurable intervals. Their
solution is developed and deployed as a plugin for IBM SmartCloud Enterprise. None of
these solutions address mapreduce-based application metering and is not applicable to a
cloud-based data processing framework like the Hadoop environment.

In relation to our approach, the SequenceIQ 11 project brings SLA policy based auto-
scaling to Hadoop YARN. Their project is quite established and now is part of Hor-
tonworks. It is built on top of YARN schedulers, allows to associate SLA policies to
individual applications. It monitors application progress and apply scaling policies based
on their CPU and memory usage. In contrast to all the noted related work, our TED
middleware addresses granular metering of mapreduce jobs while considering the clients
cost constraint regarding their jobs resource usage.

11http://sequenceiq.com

104

7.6. Conclusion

7.6 Conclusion
We have presented an elastic data telemetry system that enables granular metering and
automatic control of MapReduce applications due to their current behavior and preset
configurations. TED is designed to enhance the resource utilization using YARN cluster
queueing system. It observes the running job’s progress, interprets its cost and quality
behavior, audits the predefined job requirements. Then it generates a tailored resource
allocation policy with regard to capacity constraints and moves the job to the potential
queues to scale in or up.

So far, the authors offered and implemented a solution for the YARN environment which
provides a data processing telemetry solution for mapreduce-based applications. As an
outlook, our future work includes further extension to the TED model to formulate
intuitions for best priority queue selection in multi-queue systems. We then move on to
analyzing trees of queues with trendy metrics like slowdown, starvation and fairness for
a workflow of jobs.

105

CHAPTER 8
Diameter of Things

8.1 Introduction

Utility computing[74] is an evolving facet of ubiquitous computing that aims to converge
with emerging Internet of Things (IoT) infrastructure and applications for sensor-equipped
edge devices. The agility and flexibility to quickly provision IoT services on such gateways
requires an awareness of how underlying resources as well as the IoT applications are
being utilized as metered services. Such awareness mechanisms enable IoT platforms to
adjust the resource leveling to not exceed the elasticity constraints such that stringent
QoS is achievable.

The quest for telemetry of the client’s IoT application resource usage becomes more
challenging when the job is deployed and processed in a constrained environment. Such
applications collect data via sensors and control actuators for more utilization in home
automation, industrial control systems, smart cities and other IoT deployments. In
this context, telemetry enables a pre-paid and pay-per-use economic models via utility-
based pricing model through metered data to achieve more financial transparency for
resource-constrained applications.

Metering measures rates of resource utilization via metrics, such as number of application
invocations, data storage or memory usage consumed by the IoT service subscribers.
Metrics are statistical units that indicate how consumption is measured and priced.
Furthermore, metering is the process of measuring and recording the usage of an entire
IoT application topology, individual parts of the topology, or specific services, tasks and
resources. From the provider view, the metering mechanisms for service usage differ
widely, due to their offerings which are influenced by their IoT business models. Such
mechanisms range from usage over time, invocation-basis to subscription models. Thus,
IoT application providers are encouraged to offer reasonable pricing models to monetize
the corresponding metering model.

107

8. Diameter of Things

To fulfill such requirements, we have incorporated and extended the Diameter base
protocol defined in RFC67331 to an IoT domain. There are several established Diameter
base protocol applications like Mobile IPv4 [84], Credit-Control [85] and Session Initiation
Protocol (SIP) [86] applications. However, none of them completely conforms to the IoT
application metering models.

The current accounting models specified in the Diameter base are not sufficient for
real-time resource usage control, where credit allocation is to be determined prior to and
after the service invocation. In this sense, the existing Diameter base applications do
not provide dynamic metering policy enforcement in resource and credit allocations for
pre-paid IoT users. Diameter extensibility allows us to define any protocol above the
Diameter base protocol. Along with this idea, in order to support real-time metering,
credit control and resource allocation, we have extended the Diameter to Diameter of
Things (DoT) protocol by adding four new types of servers in the AAA infrastructure:
DoT Provisioning server, DoT Resource control server, DoT Metering server and DoT
Payment server. Further details regarding the aforementioned entities will be discussed
in a later section of DoT architecture models. In summary, our main contribution is the
specification of an extended Diameter base protocol to an IoT application domain. This
contributes to fully implementing a real-time policy-based telemetry and resource control
for a variety of IoT applications. Our protocol supports both the pre-paid and cloud
pay-per-use economic models.

With this motivation in mind, this chapter continues in section 8.2, with a brief review
on how the Diameter base protocol functions. Next, we introduce the terms and prelimi-
naries defined in this study at section 8.3. With some definitive clues on the Diameter
architecture, we propose Diameter of Things (DoT), an extension to the Diameter on
how IoT applications are to be metered and monetized. The DoT framework layered
architecture together with its interacting entities are detailed in section 8.4. In support
of our model, we have defined a DoT-based IoT application topology and its associated
hybrid metering policies in section 8.5. This lets the application telemetry policies vary
independently from clients as well as applications that use it. To enable this, DoT
performs several interrogations which are detailed in section 8.6. Next, in section 8.7,
we express formally the DoT application transaction models to achieve better telemetry
control over computing resources. Moving forward, DoT commands are then described
in section 8.8. Section 8.9 describes set of commands that are extended or reused from
Diameter based protocol. In section 8.10 we introduce the DoT protocol Attribute-Value
pairs (AVPs). Section 8.11 then explores AVPs used in each command in-depth and
defines the mandatory AVPs for each DoT command. DoT state machines are provided
in 8.12. Subsequently, section 8.13 surveys related work. Finally, section 8.14 concludes
the chapter and presents an outlook on future research directions.

1https://tools.ietf.org/html/rfc6733

108

8.2. The Utility of Diameter

8.2 The Utility of Diameter

The Remote Authentication Dial In User Service (RADIUS) [87] as per RFC2865 is a sim-
ple but most deployed protocol which provides network access control using client/server
Authentication, Authorization and Accounting (AAA) model. The IETF2 has standard-
ized the Diameter base protocol [88] as an enhanced version of RADIUS providing a
flexible peer-to-peer operation model. It is featuring intermediary agents (Relay, Proxy,
Redirect and Translation) and capabilities negotiation among servers. It enables reliable
transport layer using TCP or SCTP connection. The Diameter peer connections are

Diameter Client

Realm X

Diameter Proxy Agent

Session Mgmt

Routing Mgmt

Peer Conn

 Mgmt

1. request
6. response

Diameter Redirect Agent

2. request
3. redirect
notification

Realm Z

RADIUS Client

Diameter Translation

Agent

Diameter Server

RADIUS request

RADIUS response

Diameter request

Diameter response

Realm Y

4. request
5. response

Figure 8.1: Diameter base protocol architecture

ensured using a Keep-alive mechanism. It also supports the dynamic peer discovery and
configurations in a valid session. Such specifications are achieved using set of commands
and Attribute-Value-Pairs (AVPs) by collaborating and negotiating peers. Diameter
has the concept of “applications”, which is entirely missing in RADIUS. The protocol
is enriched with a globally unique application ID. These applications benefit from the
general capabilities of the Diameter base protocol while defining their own extensions on
top of the base.

Some of the main features offered by Diameter are dynamic routing based on Realm,
session management, accounting, agent support. It is based on Peer-To-Peer architecture
as illustrated in Figure 8.1, in a way that each Diameter node can behave as either a

2Internet Engineering Task Force (https://www.ietf.org)

109

8. Diameter of Things

client or server based on the current deployment model. Diameter nodes can be of the
type of Diameter client, Diameter server and Diameter agent. Diameter client is the node
that receives the user connection request. Diameter server is the one serving the request
e.g. performing user authentication based on provided information. Diameter agents
themselves divide into four types of Relay, Proxy, Redirect and Translate agents. A relay
agent is used to forward messages to other Diameter nodes based on the information
provided in the message. Proxy agent can also act like a relay agent with the extra
functionality of policy enforcement implementation via message content modification.
Redirect agents act as a centralized configuration repository by returning information
necessary for Diameter agents to communicate directly with another node. Translation
agents provide translation between two distinct AAA protocols.

8.3 DoT Preliminaries & Terms
In this section we present basic conventions, terms together with their definitions consid-
ered in the DoT protocol.

♢ Diameter of Things (DoT): DoT implements a mechanism to provision IoT deployment
units, control resource elasticity, meter usage, and charge the user credit for the rendered
IoT applications.

♢ IoT Microservice: A fine-grained atomic task performed by an IoT service on a device.

♢ IoT Application Topology: It contains the composition of hybrid collaborating IoT
microservices to meet the user’s request. The topology is packages with the elasticity
requirements and constraints (hardware or software) which will dictate our schedule and
credit allocation within the runtime environment.

♢ Metering Server : A DoT Metering server performs real-time metering and rating of
IoT applications deployment.

♢ Metering Agent: The agent transfers the metered values to the Metering server via
tiny tokens.

♢ Provisioning Server : Provisioning server refers to initial configuration, deployment
and management of IoT applications for subscribers. It also deals with ensuring the
underlying IoT device layer is available to serve.

♢ Payment Server : The micropayment transaction charges subscribers upon relatively
small amounts for a unit of usage. It basically transfers a certain amount of trade in the
payWord or microMint micropayment schemes[89]. In the payWord scheme a payment
order consists of two parts, a digitally signed payment authority and a separate payment
token which determines the amount. A chained hash function, is used to authenticate
the token. The server then calculates a chain of payment tokens or paychain. Payments
are made by revealing successive paychain tokens.

♢ Rating: The process of giving price to an IoT application usage events. This applies
to service usage as well as underlying resource usage.

110

8.4. DoT Architecture Models

♢ Resource-control Server : Resource control server implements a mechanism that
interacts in real-time with a resource and credit allocation to an account as well as
the IoT application. It controls the charges related to the specific IoT application usage.

♢ One-cycle event: It indicates a single-request-response message exchange pattern,
which one specific service is invoked by one consumer at a time, while no session state
is maintained. One message is exchanged in each direction between requesting and
responding DoT nodes.

8.4 DoT Architecture Models

DoT

Client

AAA

Server

End

User
AAA

DoT Protocol

Provisioning

Server

Resource

Control

Server

DoT

Protocol

D
o

T

P
ro

to
c
o

l

Payment

Server
DoT

Protocol

Metering

Server

D
o

T

P
ro

to
c
o

l

DoT

Protocol

D
o

T

P
ro

to
c
o

l

Figure 8.2: Typical Diameter of Things (DoT) application architecture

Figure 8.2 illustrates a schematic view on collaborating components of our proposed DoT
architecture. It contains of a DoT client, Provisioning server, Resource control server,
Metering server, and a Payment server.

As the end user defines and composes an IoT application, the request is forwarded
to the DoT client. The DoT client submits the composed application to the DoT
infrastructure which determines possible charges, verifies user accounts, controls the
resource allocation to the application, meters the usage, and finally generates a bill and
deducts the corresponding credit from the end user’s account balance.

DoT client contacts the AA server with the AA protocol to authenticate and authorize
the end user. When the end user submits the IoT application topology graph, the DoT
client contacts the Provisioning server to submit an application topology. Afterwards,
the Provisioning server contacts the Resource control server with information of required
resource units. The Resource control server reserves the resources that need to be
allocated to the service. As the user’s credit is locked in pre-paid model for the application

111

8. Diameter of Things

provisioning, the DoT client will receive the grant resource message. Then it informs the
end user that the request has been granted. As soon as the IoT application is deployed
and instantiated, the submitted topology is registered to the Metering server for telemetry
and credit control purposes.

IoT Microservice
(Deployed on Gateway)

DoT
(Realm-based + App ID)

Metering Token

CoAP

Payload Data Model

(CBOR)

UDP

E
n

c
o

d
e

/D
e

c
o

d
e

M
e

te
rin

g
 T

o
k
e

n

Metering Token Message Format.
Header:
 Token ID (OctedString)
 Realm ID (Unsigned32)
 App Identifier (Unsigned32)
 Origin Session ID (OctedString)
 Token Timestamp (Time)
 Policy ID (Unsigned8)
 Metric ID Array (Collection)
 Body:
 Service Usage [key,values]
 Resource Usage [key,values]

D
e

fa
u

lt s
iz

e
:

1
 K

B

Figure 8.3: Typical DoT metering token structure

The Metering server is responsible to perform the metering transaction according to the
submitted topology and meter the services by calling the Metering agent of each service
in the chain. Metering transactions will remain running until the termination request is
sent from DoT client to the Provisioning server. After receiving a termination request,
the Resource control server releases the resource and sends the billable artifacts related
to the user usage to the Payment server. The Payment server, then, invokes the payment
transaction and deducts credit from the end user’s account and refunds unused reserved
credit to the user’s account.

In DoT application architecture, metered values are transfered via tokens. The metering
token message attributes as shown in Figure 8.3 must be supported by all DoT imple-
mentations that conform to this specification. The CBOR3 message format is considered
for the metering tokens transmission as it can decrease payload size compared to other
data formats.

8.5 DoT-based IoT Application Overview

The DoT application defined in this specification implements flexible metering policy as
well as the definition and constraints of the application topology.

3The Concise Binary Object Representation: http://cbor.io

112

8.5. DoT-based IoT Application Overview

8.5.1 DoT-based Application Topology

The main responsibility of the Provisioning server is the actual provision of the requested
IoT application package. It contains the topology of collaborating IoT microservices to
meet the user’s request. Each IoT microservice is predefined with a detailed specification
such as its ID, constraints and various usage patterns and policies. For instance, as defined
in Listing 8.1 they can be advertised with diverse pricing models due to the event-based or
time-based patterns for specific subscribers. The IoT microservices elasticity requirements
and constraints (hardware or software resources) are also defined in the topology which
will dictate our schedule and credit allocation within the runtime environment. The end
user’s request can be received in the form of a JSON (or more precisely JSON-LD 4)
object. It contains user information as well as the user requirements in terms of IoT
composite application topology and its specification, to realize the intended behavior.

In order to flexibly describe the application topology, its composite architecture and de-
ployment specification, we employ the DIANE[90] approach in utilizing the MADCAT[91]
Technical and Deployment Units. After receiving the request, the Provisioning server
generates a dependency graph of the application topology complying with its specification.

The Dependency graph displays dependencies between different microservices which are
requested to be in topology. In the DoT protocol, this dependency graph is used in forming
the transaction model for metering the IoT deployment unit. The dependency graph is a
directional graph where each node of the graph represents an available microservice in the
service package registry. Similarly, each edge of the graph shows dependencies between
two microservices (two nodes). The edge has a direction that shows the execution order
of microservices involved in this edge. Additionally, each edge has a label which shows
the policy to be in effect for this connection. The Resource control server realizes such
metering policies using a predefined incident matrix. This incident matrix represents the
metering policies for our directed acyclic graph (DAG) of IoT services. The metering
policy incident matrix Pt is a n∗m matrix of Pj policies, where n is the number of
nodes (vertices) and m is number of lines (Edges). In the cell of N and Vj, the Pj
indicates the rate of call per granted unit (time & events). It enables each service to
invoke its neighbor with the attached policy. Therefore, when a client sends a request
containing a tailored IoT application topology, the Resource control server is able to rate
the request based on the enforced metering policies of time (duration) and event-based
usage patterns.

Listing 8.1: An excerpt of an IoT application policy in a JSON object
{

" mic rose rv i ce ID " : " 01 " ,
" microserviceName " : " getTemperature " ,
" u r i " : " getTemperature . py " ,
" execute " : " python getTemperature . py " ,
" c on s t r a i n t s " : {

" runtime " : " python 2 .7 " ,

4JSON for Linking Data: http://json-ld.org

113

8. Diameter of Things

"memory" : " . . . "
} ,
" p o l i c i e s " : [

{
" po l i cyID " : "PL_01_01" ,
" co s t " : " $2/week " ,
" desc " : " time mode − $2 per week "

} ,
{

" po l i cyID " : "PL_01_02" ,
" co s t " : " 0 .01 cent / invoke " ,
" desc " : " event mode − 0 .01 cent per invoke "

} ,
{

" po l i cyID " : "PL_01_03" ,
" co s t " : " $1 " ,
" desc " : " s ub s c r i p t i on f e e "

}
]

}

8.5.2 DoT-based Metering Plans

The metering plans define the allocation mechanism for granting the required resource
units to an IoT application/constituent microservices. It is an indication that the
following assumptions underlying our IoT telemetry solution has been considered for
the proper positioning of DoT protocol. The IoT applications are advertised with an
associated charging plans. In case of cloud-based model, there may be a subscription fee
for pay-per-use plans. The cost of obtaining such plans is known as the plan’s "premium"
which is the price that is calculated and offered in the subscription phase by the provider.
The estimation of the plan’s premium is out of the scope of the DoT protocol. The plan
indicates the composed services pricing schema and comes in two models of predefined as
well as customized. The plan will be built to be consistent with the composed application
topology in the rate setting.

The subscribed metering plan, as shown in Listing 8.2, indicates:

(i) the price of granted units for every IoT application constituent microservice.

(ii) maximum allowed usage unit for each constituent microservice in case of pre-paid
model. For instance, 50 hours for Humidity sensor and 100 invocations for Chiller On/Off
actuator.

(iii) the resource Used Unit Update (U3) frequency for all associated units which are
defined in the provider’s plan.

(iv) the manual/automatic payment configuration. So that the provider can handle the
payment transactions automatically while informing the user.

114

8.5. DoT-based IoT Application Overview

(v) container instance fee, which is the fee that user pays for underlying resource usage.
Instance usage can be time based or underlying resource-usage based which is defined by
the provider’s policy.

(vi) finally, subscription time for pay-per-use model and subscription fee for pre-paid
model.

Listing 8.2: A sample subscription plan in JSON-LD format
{

" @context " : " http :// dchc . dot . p ro to co l / " ,
"@type " : " MeteringPlan " ,
"name" : "DCHC/MeteringPlan " ,
" a r t i f a c t −u r i " : " https : // github . com/soheil4TUWien/DoT/DCHC/Plan " ,
" v e r s i on " : " 1 . 0 . 0 " ,
" language " : "JSON" ,
" subc r i p t i on " : {

" prepaid " : {
" f e e " : {

" va lue " : " 200 " ,
" un i t " : " Do l l a r "

}
}

} ,
" m i c r o s e r v i c e s " : [

{
"name" : "DCHC/Humidity " ,
" type " : {

" va lue " : " time−based " ,
" un i t " : " second "

} ,
" maxunit " : " 1000 " ,
"U3" : " 10 " ,
" p r i c e " : {

" s e r v i c e " : {
" va lue " : " 0 . 1 " ,
" un i t " : " Do l l a r "

} ,
" r e s ou r c e " : [

{
" cpu−usage " : {

" va lue " : " 0 .01 " ,
" un i t " : " second "

} ,
"memory−usage " : {

" va lue " : " 0 .005 " ,
" un i t " : " byte "

} ,
" network−r e c e i v ed " : {

" va lue " : " 0 .005 " ,
" un i t " : " byte "

} ,
" network−sent " : {

" va lue " : " 0 .005 " ,

115

8. Diameter of Things

" un i t " : " byte "
} ,
" f i l e s y s t em−usage " : {

" va lue " : " 0 .007 " ,
" un i t " : " byte "

} ,
" uptime " : {

" va lue " : " 0 . 2 " ,
" un i t " : "ms"

} }] }
} ,

{
"name" : "DCHC/Temperature " ,
. . .

}] }

8.6 DoT Interrogations
For a Hybrid DoT, four main interrogations are performed for a well-functioning protocol.
The first interrogation is called Initial Identification (II) which basically deals with clients’
identification, for instance the user authentication and authorization processes. The
second interrogation is Request Realization (RR) that aims to provision the clients’
IoT applications as well as scheduling their resource allocation upon agreed terms and
subscribed plan. The third interrogation is called Telemetry Transmission (TT) that deals
with metering the running services as well as the granted units usage data transmission
for charging purposes. The final interrogation, entitled Value Verification (VV), ensures
value generation and delivery to the interested stakeholders. The hybrid metering is
carried out in main DoT sessions which hold globally unique and constant Session-IDs.
The whole DoT-based metering life-cycle including the II, RR, TT, and VV interrogations
are presented in Figure 8.4 and Figure 8.5 for pre-paid, as well as pay-per-use models.

8.6.1 Initial Identification (II)

The end user subscribes the application as well as the chosen plan to the DoT client.
The DoT client submits the IoT deployment units to the Provisioning server to ask for
the required resource units it needs to run. In this case, the Provisioning server queries
for resources (including underlying resources and credit allocation) from Resource control
server. The Resource control server is responsible for the device resource reservation. It
also keeps track of user credit fluctuations.

In this phase, the end user requirements are modeled into an application topology using
a directed acyclic graph. This graph can connect various IoT microservices available
in diverse usage units. The deployment of such hybrid applications will result in one
global constant Session-ID followed by related sub-session-IDs as well as transaction-IDs.
Note that the IoT application might send a (re)authorization request to the AA server
to establish or maintain a valid DoT session. However, this process does not influence

116

8.6. DoT Interrogations

Payment SrvAAA ServerEnd User DoT Client Provisioning Srv Resource Ctrl Srv Metering Srv

3.1.1.1.1.2:
summarize

usage

4.2.1: end user
session

4.2: user logoff

4.1.1.1.2.1.1: terminate metering

4.1.1.1.2.1:
metering ack.

4.1.1.1.2.2.2: update client credit

4.1.1.1.2.2.1: payment
transaction

4.1.1.1.2.2: send for payment

4.1.1.1.2: aggregated
usage value

4.1.1.1.1:
commit and
aggregate

4.1.1.1: measure
usage quata

4.1.1: release
resource and bill

4.1: render service4: service
termination

3.1.1.1.1.1:
metering

transaction

3.1.1: meter IoT App
3.1: deploy service3: start service

2.1.1.3.1.1:
request

authorized

2.1.1.3.1: request granted
2.1.1.3: granted

resource

2.1.1.2: reserve
resource and

lock credit

2.1.1.1: resource
scheduling

2.1.1: negotiate to
allocate resources

2.1: provision IoT App &
subscription plan

2: IoT App & Plan
submission

1.1.1.1: credential
authorized

1.1.1: AA answer

1.1: AA request
1: authentication

5:

3.1.1.1.1.3.2: check
credit threshold

3.1.1.1.1.3.4:
update & lock

credit

3.1.1.1.1.3.1:
charge credit

3.1.1.1.1.3: send
usage update

3.1.1.1.1: granted
units + plan

3.1.1.1.1.3.3.1.1:
notify user

3.1.1.1.1.3.3.1: credit
update required

3.1.1.1.1.3.3: credit
update notification

3.1.1.1: ask for
granted units + plan

Powered ByVisual Paradigm Community Edition

Figure 8.4: The sequence of DoT interrogations in pre-paid model to enable hybrid
metering

the credit allocation that is streaming between the DoT client and Provisioning server,
as it has already been authorized for the whole transaction before.

117

8. Diameter of Things

Payment SrvMetering SrvResource Ctrl SrvProvisioning SrvAAA ServerDoT ClientEnd User

3.1.1.1.1.3.3: check
payment interval

3.1.1.1.1.3.4.2: payment confirmation

3.1.1.1.1.3.4.1:
payment transaction

3.1.1.1.1.3.4: send for payment

3.1.1.1.1.2:
summarize

usage

4.1.1.1.2.2.2: payment confirmation

4.1.1.1.2.2.1: payment
transaction

4.1.1.1.2.2: send for payment

4.1.1.1.2: aggregated
usage value

3.1.1.1.1.3: send
usage update

3.1.1.1: ask for
granted units + plan

4.1.1.1.2.1.1: terminate metering

4.1.1.1.1:
commit and
aggregate

4.1.1.1: measure
usage quata

3.1.1.1.1.1:
metering

transaction

3.1.1: meter IoT App

3.1.1.1.1: granted
units + plan

4.1.1.1.2.1:
metering ack.

2.1.1.3: granted
resource

3.1.1.1.1.3.2: renew
subscription request

4.1.1: release
resource and bill

2.1.1.2:
reserve
resource

2.1.1.1: resource
scheduling

2.1.1: negotiate to
allocate resources

3.1.1.1.1.3.1:
validate

subscription

2.1.1.3.1: request granted

3.1.1.1.1.3.2.1: renew
subscription required

4.1: render service

3.1: deploy service

2.1: provision IoT App &
subscription plan

4.2.1: end user
session

1.1.1: AA answer

4.2: user logoff

1.1: AA request

5:

2.1.1.3.1.1:
request

authorized

1.1.1.1: credential
authorized

3.1.1.1.1.3.2.1.1:
notify user

4: service
termination

3: start service

2: IoT App & Plan
submission

1: authentication

Powered ByVisual Paradigm Community Edition

Figure 8.5: The sequence of DoT interrogations in pay-per-use model to enable hybrid
metering

118

8.6. DoT Interrogations

8.6.2 Request Realization (RR)

The Resource control server analyzes the IoT service and allocates resources to the
requested service. It also considers the subscription time/fee in order to notify user when
this value elapses.

When the new usage update arrives at the Resource control server, it charges the
credit based on the usage summary received from the Metering server. It also validates
subscription by checking the status of credit (as in pre-paid model) or elapsed time
(in pay-per-use model) against a certain threshold. Upon reaching the threshold, the
Resource control server sends an update notification request to the user. DoT protocol
makes it possible to define a default action for this purpose. This default action can be
to perform update automatically or to ask user to take the desired action.

8.6.3 Telemetry Transmission(TT)

As soon as the end user sends the Start service request to the DoT client, the DoT Client
asks the Provisioning server to initiate the service and start monitoring and metering
processes. In this regard, the Provisioning server submits the IoT application to the
Metering server and asks to establish a metering mechanism for the newly opened session.

Having an IoT application deployed, the Metering server monitors the real usage of each
service element including service usage and resource usage at a certain frequency rate
called Unit Usage Update (U3). The U3 frequency determines the rate of sending updates
regarding unit usage of each service. It is independent of the type of service. For example
in case of pre-paid model, the U3 set to 25%, implies that for a time-based microservice
with granted units of 100 minutes, the usage update should be provided every 25 minutes;
and for an event-based microservice with granted units of 100 invocations, the usage
update will be sent after every 25 invocations. However, the U3 rate for pay-per-use
model is independent of individual services. It merely defines the intervals, within which
the usage update from all microservices should be provided, e.g. every one hour.

To make it more clear, after identification of an IoT application to the Metering server,
the Metering server sends a request to the Resource control server asking for the amount
of granted units as well as the plan, which includes the U3 value for each microservice as
defined by the provider. The U3 values are then provided to the Metering agents, as the
Metering server starts the metering transaction.

During deployment of an IoT application, each Metering agent meters the actual resource
and service usage of its associated/assigned microservice. If the actual service usage
value reaches an integer multiples of U3 for a pre-paid plan, or if the U3 interval elapses
for a pay-per-use model , the Metering agent will send a usage notification message to
the Metering server. The Metering server then uses these feedbacks to gain a realistic
perception of the usage of each microservice and to charge the user credit accordingly.

Next, if the application usage of a microservice reaches the threshold value for the pre-paid
model, or if the subscription time of the service is close to expiry in case of pay-per-use

119

8. Diameter of Things

model, the Metering Server informs the Resource control server issuing a resource-update
request for the service. For instance, when the actual usage of a certain microservice
reaches a certain threshold, e.g. more than 70% , Metering server informs the Resource
control server. This contributes to a continuous and consistent service delivery. The
detailed flow of TT phase is presented in Figure 8.6.

Provision Srv Payment SrvResource Ctrl Srv Metering Srv (Coord) Metering Agent (Cohort - RPi2)

9.1.2: update client credit

9.1.1: start
payment

transaction

9.1: send for
payment

9: aggregated usage
value

8: summarize &
aggregate tokens

7: commit metering
transaction

2: release
resource & bill

6: token from agent B

5: token from agent A
4.1: commit/retry

2.1.1.1: publish vote (yes/no)

1.1.4: write token

1.1.3: meter IoT App
& resource usage

1.1.2: create token

1.1.1: wake up
metering agent

1.1: request to meter + send
U3 freq.

1: meter IoT
App

4: vote from agent B

3: vote from agent A

2.1.1: request to commit (meter &
commit token)

2.1: measure usage quota

1.1.5: send token at U3 intervals

Powered ByVisual Paradigm Community Edition

Figure 8.6: DoT Hybrid Metering - 2PC transaction model

In the DoT credit allocation model, the Provisioning server asks the Resource control
server to reserve resources and to lock a suitable amount of the user’s credit (in case of
pre-paid model). Then it returns the corresponding amount of credit resources in the
form of service specific usage units (e.g., number of invocations, duration) to be metered.
The granted and allocated unit type(s) should not be changed during an ongoing DoT

120

8.7. DoT Transaction Model

session.

8.6.4 Value Verification (VV)

When the end user terminates the service session, the DoT client must send a final
service rendering request to the Provisioning server. The Provisioning server should ask
the Resource Control server to release all the allocated resources to an IoT application
and perform payment transaction. As such, the Resource control server deallocates the
granted resources and asks the Metering server to commit the measured metering tokens
and report the quota value to it. Then the Resource Control server sends the billable
artifacts to the Payment Server to charge the client account respectively. Finally, the
Payment server sends the updated client credit to the Resource control server. Meanwhile,
the DoT Client drops the user session via AA server.

For the pay-per-use model, extra Value Verification interrogations are executed at prede-
fined intervals. This provides a more transparent usage state by frequently reflecting the
actual overall usage of services on user account.

In case of pre-paid model, upon each deduction from user credit, the DoT protocol verifies
the credit value. As soon as the credit value drops below a certain threshold, it informs
the user to perform credit update automatically or to take the desired action manually.

8.7 DoT Transaction Model
The runtime of a DoT application is carried out in four “nested chained” transactions.
In this respect, the DoT transaction model preserves consistency by defining conflict
serializability. In order to prevent the conflict between operations in the DoT transaction
model, a schedule pattern is defined to force the logical temporal order in transactions
execution. In this case, recoverability is an argument in favor of transaction processing
with a rollback mechanism. In the DoT model there exists four transactions prone to
inconsistency: (T1) Identification, (T2) Provisioning, (T3) Metering and (T4) Payment
transaction. The Identification transaction embeds two sub-transactions of Authorization
and Authentication. As such, the Payment transaction has also two sub-transactions of
Credit and Debit. Here is the schedule of conflict serializability for read(), write(), and
commit() operations on the credit resource object of the client.

We use the following notation: Let T be a transaction and credit be a relation or a data
resource of a relation. Assuming Oj ∈ R(credt),W(credt) be an atomic read/write
operation of T on data item credit. Then the two operations Oj and Ok on the same
credit data resource are in conflict if at least one of them is a write operation. To avoid
such conflicts, we have come up with the DoT transaction schedule in Table 8.1. One
more remark is that we are using the “partial order” function (≺) to specify the execution
order between the conflicting operations and between all operations and the termination
operation. For instance, the formalization of the DoT metering transaction would be as
follows:

121

8. Diameter of Things

T1: Identification T2: Provisioning T3: Metering T4: Payment
: : : :

Lock-S (credit) Lock-X (credit) Lock-X (credit) Lock-X (credit)
Read (credit) Read (credit) Read (credit) Read (credit)
Authenticate &
Authorize

Reserve (premium) Calculate (credit) Paychain (Cred-
it/Debit)

Unlock (credit) Deploy (IoT appID) Write (credit) Write (credit)
: Write (credit) Commit Commit

Commit Unlock (credit) Unlock (credit)
Unlock (credit) : :
:

Table 8.1: The scheduled chronological execution sequence of DoT transactions

∑

= Red(credt),Wrte(credt), Commt

≺= (Red(credt),Wrte(credt)), (Wrte(credt), Abort),
(Red(credt), Abort)

∑

= Red(credt),Wrte(credt), Abort

≺= (Red(credt),Wrte(credt)), (Wrte(credt), Abort),
(Red(credt), Abort)

8.8 DoT Command Messages

The DoT messages contain commands and Attribute Value Pairs (AVP) to enable
metering and payment transactions for DoT-based applications. The messaging structure
should be supported by all the collaborating peers in the domain architecture. Four main
commands are explained here in more details.

8.8.1 DoT-Request (DoTR) Command

The DoT-Request (DoTR) command is the main command used to send a request among
DoT entities. The Request-Type and Requested-Action AVPs are used to determine the
purpose of the message and the requested action from the destination DoT entity.

Augmented Backus-Naur Form as defined in RFC5234 (https://tools.ietf.org/html/rfc5234)
is used as the metalanguage to define DoT commands, as well as the AVPs which may or
must be included. Listing 8.3 specifies the DoT-Request message format.

122

8.8. DoT Command Messages

Listing 8.3: DoT-Request message format in ABNF
<DoT−Request> ::== < Diameter Header : DoT Command Code , REQ, PXY >

< Sess ion−Id >
{ Origin−Host }
{ Origin−Realm }
[Dest inat ion−Host]
{ Dest inat ion−Realm }
{ Request−Type }
{ Request−Id }
[Requested−Action]

1∗ [App−Topology]
[Subscr ipt ion−Plan]
[Accounting−Sub−Sess ion−Id]
[Acct−Inter im− I n t e r v a l]
[App−Usage]
[Confirmation−Mode]
[A l l ocat ion−Unit]
[User−Name]

∗ [Proxy−In f o]
∗ [Route−Record]
∗ [AVP]

8.8.2 DoT-Answer (DoTA) Command

The DoT-Answer (DoTA) command is used between DoT entities to acknowledge the
DoTR command. By evaluating the AVPs transferred via this message type, the requestor
entity is able to determine whether the requested action was successfully handled or not.
Listing 8.4 shows the DoT-Answer message format.

Listing 8.4: DoT-Answer message format in ABNF
<DoT−Answer> : := < Diameter Header : DoT Command Code , PXY >

< Sess ion−Id >
{ Result−Code }
{ Origin−Host }
{ Origin−Realm }
{ Request−Type }
{ Request−Id }
[User−Name]
[Error−Message]
[Error−Reporting−Host]
[Subscr ipt ion−Plan]
[Accounting−Sub−Sess ion−Id]
[Agent−Vote]
[App−Usage]
[User−Action]

∗ [Fai led−AVP]
∗ [Proxy−In f o]
∗ [AVP]

123

8. Diameter of Things

8.9 Diameter Extended Commands
In addition to the aforementioned DoT commands, we have extended and reused some
of the existing commands defined in Diameter base protocol. These commands include
AA-Request and Answer, Session-Termination Request and Answer, and Accounting
Request and Answer. The following sections briefly describe them.

8.9.1 AA-Request

The AA-Request (AAR) is used by DoT client to request authentication for a given
user. The type of request is set to AUTHENTICATE_ONLY (value = 1) using the
Auth-Request-Type AVP, since the AA server in DoT protocol is used only for user
authentication.

Auth-Session-State MAY be set to NO_STATE_MAINTAINED (value =1). This implies
that DoT client SHOULD issue an authentication request each time user submits a new
request. Listing 8.5 describes the AA-Request message format.

Listing 8.5: AA-Request message format in ABNF
<AA−Request> : := < Diameter Header : 265 , REQ,PXY>

< Sess ion−Id >
{ Auth−Appl icat ion−Id }
{ Origin−Host }
{ Origin−Realm }
[Dest inat ion−Host]
{ Dest inat ion−Realm }
{ Auth−Request−Type }
{ User−Name }
{ Password }
[Author izat ion−Li f e t ime]
[Auth−Grace−Period]
[Auth−Sess ion−State]

∗ [Proxy−In f o]
∗ [Route−Record]
∗ [AVP]

8.9.2 AA-Answer

The AA-Answer (AAA) message is sent in response to the AA-Request (AAR) message.
The message format is specified in Listing 8.6

124

8.9. Diameter Extended Commands

Listing 8.6: AA-Answer message format in ABNF
<AA−Answer> : := < Diameter Header : 265 , PXY >

< Sess ion−Id >
{ Result−Code }
{ Auth−Appl icat ion−Id }
{ Auth−Request−Type }
{ Origin−Host }
{ Origin−Realm }
[User−Name]
[Error−Message]
[Error−Reporting−Host]

∗ [Fai led−AVP]
[Author izat ion−Li f e t ime]
[Auth−Grace−Period]
[Auth−Sess ion−State]

∗ [Proxy−In f o]
∗ [AVP]

8.9.3 Session-Termination-Request (STR) Command

The Session-Termination-Request (STR) message is sent by the DoT client to inform the
AA Server that an authenticated and/or authorized session is being terminated. This
command, as shown in Listing 8.7, is used when the AA server maintains the state.

Listing 8.7: Session-Termination-Request message format in ABNF
<ST−Request> : := < Diameter Header : 275 , REQ, PXY >

< Sess ion−Id >
{ Origin−Host }
{ Origin−Realm }
[Dest inat ion−Host]
{ Dest inat ion−Realm }
{ Auth−Appl icat ion−Id }
{Termination−Cause }
[User−Name]

∗ [AVP]

8.9.4 Session-Termination-Answer (STA) Command

The Session-Termination-Answer (STA) message as defined in Listing 8.8, is sent by
the AA server to acknowledge that session has been terminated. The Result-Code AVP
MUST be present and MAY contain an indication that an error occurred while the STR
was being processed. Upon sending or receiving the STA, the Diameter server MUST
release all resources for the session indicated by the Session-Id AVP.

125

8. Diameter of Things

Listing 8.8: Session-Termination-Answer message format in ABNF
<ST−Answer> : := < Diameter Header : 275 , PXY >

< Sess ion−Id >
{ Result−Code }
{ Auth−Appl icat ion−Id }
{ Origin−Host }
{ Origin−Realm }
[User−Name]
[Error−Message]
[Error−Reporting−Host]

∗ [Fai led−AVP]
∗ [AVP]

8.9.5 The Accounting-Request (ACR) Command

The Accounting-Request (ACR) command, as defined in Diameter base protocol, is sent
by a Metering agent in order to exchange accounting information with Metering server.
The message format is defined as shown in Listing 8.9.

Listing 8.9: Accounting-Request message format in ABNF
<AC−Request> : := < Diameter Header : 271 , REQ, PXY >

< Sess ion−Id >
{ Origin−Host }
{ Origin−Realm }
{ Dest inat ion−Realm }
{ Accounting−Record−Type }
{ Accounting−Record−Number }
[Acct−Appl icat ion−Id]
[Vendor−Spe c i f i c −Appl icat ion−Id]
[User−Name]
[Dest inat ion−Host]
[Accounting−Sub−Sess ion−Id]
[Acct−Sess ion−Id]
[Acct−Multi−Sess ion−Id]
[Acct−Inter im− I n t e r v a l]
[Accounting−Realtime−Required]
[Origin−State−Id]
[Event−Timestamp]

∗ [Proxy−In f o]
∗ [Route−Record]

{ Serv i ce−Usage }
{ Resource−Usage}

∗ [AVP]

8.9.6 The Accounting-Answer (ACA) Command

The Accounting-Answer (ACA) command, as defined in Diameter base, is used to
acknowledge an Accounting-Request command. Listing 8.10 specifies the message format.

126

8.10. DoT Attribute-Value Pairs (AVPs)

Listing 8.10: Accounting-Answer message format in ABNF
<AC−Answer> : := < Diameter Header : 271 , PXY >

< Sess ion−Id >
{ Result−Code }
{ Origin−Host }
{ Origin−Realm }
{ Accounting−Record−Type }
{ Accounting−Record−Number }
[Acct−Appl icat ion−Id]
[Vendor−Spe c i f i c −Appl icat ion−Id]
[User−Name]
[Accounting−Sub−Sess ion−Id]
[Acct−Sess ion−Id]
[Acct−Multi−Sess ion−Id]
[Error−Message]
[Error−Reporting−Host]
[Fai led−AVP]
[Acct−Inter im− I n t e r v a l]
[Accounting−Realtime−Required]
[Origin−State−Id]
[Event−Timestamp]

∗ [Proxy−In f o]
∗ [AVP]

8.10 DoT Attribute-Value Pairs (AVPs)
The following sections describe DoT protocol AVPs, their data formats as defined in
Diameter base protocol, and possible values. The AVPs described below are newly defined
in DoT, in order to support new functionalities of the protocol. The rest are reused from
the Diameter base protocol.

8.10.1 Request-Type AVP

The Request-Type AVP is of type Enumerated and indicates the purpose of sending the
DoT request message. It must be present in all DoT-Request messages. The following
values are defined for this AVP:

• PROVISION_REQUEST (value: 1)
A provision request is used to trigger the following actions: to request application
topology as well as the subscription plan, to reserve resources upon application
submission, and to start IoT application. When the Request-type is set to PROVI-
SION_REQUEST, the Requested_Action AVP must be included in DoTR.

• METER_REQUEST (value: 2)
A meter request is used to trigger the following actions: to start IoT application
metering, to start metering agents, to commit the measured metering tokens and
report the quota value, to retrieve information of granted units as well as the plan

127

8. Diameter of Things

used for initiating the metering process, to terminate IoT application metering,
and to commit votes. When the Request-type is set to METER_REQUEST, the
Requested_Action AVP MUST be included in DoTR.

• UPDATE_REQUEST (value: 3)
An update request is used to trigger the following actions: to confirm or notify the
upcoming update request.

• PAY_REQUEST (value: 4)
A pay request is used to trigger the following action: to charge the client based on
the billable artifacts.

• TERMINATE_REQUEST (value: 5)
A terminate request is used to trigger the following actions: to stop IoT application
and to release the allocated resources.

8.10.2 Request-Id AVP

The Request-Id AVP is of type Unsigned32 and is used to identify this request within
one session. The same as Session-Id AVP, which is globally unique, the combination of
Session-Id and Request-Id AVPs must be globally unique. It can be used to match DoT
protocol messages with their corresponding acknowledgment (i.e. answers).

8.10.3 Requested-Action AVP

The Requested-Action AVP is of type Enumerated and indicates the requested action
being sent by DoT-Request command when the Request-Type is METER_REQUEST
and PROVISION_REQUEST. The following values are defined for this AVP:

• PROVISION_APPLICATION_TOPOLOGY (value: 1)
This represents a request to provision application topology as well as subscribed plan.
It MUST only be used in a DoT message between DoT client and the Provisioning
server when the Request-Type AVP is set to PROVISION_REQUEST.

• APP_RESOURCE_ALLOCATION (value: 2)
This represents a request to reserve resources including underlying resources as well
as credit. This is for the prepaid model. It MUST only be used in a DoT message
between Provisioning server and the Resource control server with a Request-Type
AVP set to PROVISION_REQUEST.

• START_IOT_APP (value: 3)
This presents a request to start IoT application. It MUST only be used in a DoT
message between DoT client and the Provisioning server with a Request-Type AVP
set to PROVISION_REQUEST.

128

8.10. DoT Attribute-Value Pairs (AVPs)

• START_APP_METERING (value: 4)
This presents a request to start IoT application metering. It MUST only be used
in a DoT message between the Provisioning server and the Metering server with a
Request-Type AVP set to METER_REQUEST.

• GET_APP_SPECIFICATION (value: 5)
This presents a request to retrieve the information of subscribed plan including
granted units as well as U3 rate. It MUST only be used in a DoT message between
Metering server and the Resource control server with a Request-Type AVP set to
METER_REQUEST.

• START_METERING_AGENT (value: 6)
This presents a request to start the Metering agent as well as metering process.
It MUST only be used in a DoT message between Metering server and Metering
Agents with a Request-Type AVP set to METER_REQUEST.

• PUBLISH_USAGE_UPDATE (value: 7)
This presents a request to publish the latest usage update. It MUST only be used
in a DoT message between Metering server and the Resource control server with a
Request-Type AVP set to METER_REQUEST.

• SEND_COMMIT_VOTES (value: 8)
This presents a request to implement the first phase of 2PC. It MUST only be
used in a DoT message between Metering server and the Metering agents with a
Request-Type AVP set to METER_REQUEST.

• COMMIT_METERING_TOKEN (value: 9)
This presents a request to implement the second phase of 2PC. It MUST only be
used in a DoT message between Metering server and the Metering agents with a
Request-Type AVP set to METER_REQUEST.

• COMMIT_APP_METERING (value: 10)
This presents a request to commit the measured metering tokens and report the
quota value. It MUST only be used between a Resource control server and the
Metering server with a Request-Type AVP set to METER_REQUEST.

• TERMINATE_APP_METERING (value: 11)
This presents a request to terminate IoT application metering. It MUST only be
used between Provisioning server and the Metering server with a Request-Type
AVP set to METER_REQUEST.

8.10.4 App-Topology AVP

The App-Topology AVP is of type OctetString and contains the IoT Application Topology
submitted to the DoT client. It is in the form of a URI pointing to the repository that
contains the topology files. The topology is originally defined using JSON-LD format.

129

8. Diameter of Things

8.10.5 Subscription-Plan AVP

The Subscription-Plan AVP is of type OctetString and contains the subscription plan
submitted to the DoT client. It is in the form of a URI pointing to the repository that
contains the subscription plan file. The plan is originally defined using JSON-LD format.

8.10.6 App-Usage AVP

The App-Usage AVP is of type Float64 and contains the application usage in the form of
credit usage.

8.10.7 Agent-Vote AVP

The Agent-Vote AVP is of type Enumerated.

• NO (value: 0)
The agent is not ready to submit the token (e.g. agent experiences a failure that
will make it impossible to commit)

• YES (value: 1)
The agent is ready to submit the token (commit)

8.10.8 Confirmation-Mode AVP

The Confirmation-Mode AVP is of type Enumerated. It MUST be provided in an update
request messages so that DoT servers can decide if they should wait for the user-action
or if this is just a notification. The following values are supported:

• NOTIFY_ONLY (value: 0)
The update request will proceed automatically and the user needs to be only
notified. No user action is expected.

• USER_ACTION_REQUIRED (value: 1)
The update procedure needs user confirmation to proceed.

8.10.9 Allocation-Unit AVP

The Allocation-Unit AVP is of type Enumerated. It may be provided in an update
request messages to notify the receiver about the type of a resource unit that needs to
be updated. The ultimate receiver of the update message, here the DoT client, can use
this value to send messages to end user by explicitly specifying the type of unit which
needs to be updated.

• CREDIT (value: 0)
The allocation unit is for prepaid models.

130

8.10. DoT Attribute-Value Pairs (AVPs)

• SUBSCRIPTION_TIME (value: 1)
The allocation unit is for pay-per-use models.

8.10.10 User-Action AVP

The User-Action AVP is of type Enumerated. It MUST be provided in responses to the
request messages that the Confirmation-Mode is set to USER_ACTION_REQUIRED.

• REJECT (value: 0)
The end user rejects the request.

• CONFIRM (value: 1)
The end user confirms the request.

8.10.11 Password AVP

The Password AVP is of type OctetString and contains the password of the user to be
authenticated.

As required in Diameter base protocol, Diameter messages are encrypted using IPsec
or TLS. Message encryption is important for Password AVP, as it contains sensitive
information.

8.10.12 Service-Usage AVP

The Service-Usage AVP is of type Unsigned64 and contains the service usage value in
the duration or the number of invocation, for instance.

8.10.13 Resource-Usage AVP

The Resource-Usage AVP is of type Grouped AVP and has the following structure as
shown in Listing 8.11:

Listing 8.11: Resource-Usage grouped AVP format in ABNF
Resource−Usage : := < AVP Header : DoT AVP Code >

[CPU−Usage]
[Memory−Usage]
[Network−Received]
[Network−Sent]
[Fi lesystem−Usage]
[Uptime]

∗ [AVP]

8.10.14 CPU-Usage AVP

The CPU-Usage AVP is of type Unsigned64 and contains the cumulative CPU usage of
all cores in nanoseconds.

131

8. Diameter of Things

8.10.15 Memory-Usage AVP

The Memory-Usage AVP is of type Unsigned64 and contains the total memory usage in
bytes.

8.10.16 Network-Received AVP

The Network-Received AVP is of type Unsigned64 and contains the total number of
bytes received over the network.

8.10.17 Network-Sent AVP

The Network-Sent AVP is of type Unsigned64 and contains the total number of bytes
sent over the network.

8.10.18 Filesystem-Usage AVP

The Filesystem-Usage AVP is of type Unsigned64 and contains the total number of bytes
used on file-system.

8.10.19 Uptime AVP

The Uptime AVP is of type Unsigned64 and contains the number of milliseconds since
the agent’s container has been started.

8.11 DoT Mandatory AVPs
DoT commands define variety of AVPs which are mandatory for some requests and not
required for others. This section describes the mandatory AVPs and their appropriate
values based on the request type for DoT Request and DoT Answer messages.

8.11.1 Provisioning Requests

A provisioning request includes the following variations:

A. Provisioning Application Topology
The Provisioning application topology request is sent by the DoT client to the Provisioning
server in order to provision application topology as well as subscribed plan.

The DoT client MUST set the Request-Type AVP to PROVISION_REQUEST, and
Requested-Action to PROVISION_APPLICATION_TOPOLOGY. In addition, it MUST
include App-Topology and Subscription-Plan AVPs in DoT-Request message.

The Provisioning server receiving this request sends a DoT-Answer message back to
acknowledge the successful provision of the IoT Application. No extra AVPs need to be

132

8.11. DoT Mandatory AVPs

included.

B. Allocating Resources to the Application
The Allocating resources to the application request is sent by the Provisioning server to
the Resource control server to reserve resources including underlying resources as well as
credit in case of prepaid model.

The Provisioning server MUST set the Request-Type AVP equal to PROVISION_REQUEST,
and Requested-Action to APP_RESOURCE_ALLOCATION. In addition, it MUST
include App-Topology and Subscription-Plan AVPs in DoT-Request message.

The Resource control server receiving this request sends a DoT-Answer back to acknowl-
edge the successful allocation of required resources. No extra AVPs need to be included.

C. Starting IoT Application
The Starting IoT Application request is sent by the DoT client to the Provisioning server
to start IoT application. The DoT client MUST set the Request-Type AVP equal to
PROVISION_REQUEST, and Requested-Action to START_IOT_APP. No extra AVPs
need to be included.

The Provisioning server receives this request and sends a DoT-Answer back to confirm
the running status of running services. No extra AVPs need to be included.

8.11.2 Metering Requests

The Metering requests can be of the following types:

A. Start Application Metering
The Start application metering request is sent by the Provisioning server to the Metering
server to start IoT application metering. The Provisioning server MUST set the Request-
Type AVP equal to METER_REQUEST, and Requested-Action to START_APP_MET-
ERING. No extra AVPs need to be included.

The Metering server receives this request and sends a DoT-Answer back as an acknowl-
edge to confirm the application is being metered. No extra AVPs need to be included.

B. Get Application Specification
The Get application specification request is sent by the Metering server to the Resource
control server to retrieve the information of subscribed plan including granted units as
well as U3 rate of each microservice.

The Metering server MUST set the Request-Type AVP equal to METER_REQUEST,
and Requested-Action to GET_APP_SPECIFICATION. No extra AVPs need to be
included.

133

8. Diameter of Things

The Resource control server receives this request and sends a DoT-Answer back and
includes the Plan.Therefore the Subscription-Plan AVP MUST be included in the answer
message.

C. Start Metering Agent
The Start metering agent request is sent by the Metering server to the Metering agents
in order to request to start the Metering agent as well as metering process.

The Metering server MUST set the Request-Type AVP equal to METER_REQUEST,
and Requested-Action to START_METERING_AGENT. In addition, it MUST include
Accounting-Sub-Session-Id and Acct-Interim-Interval AVPs in DoT-Request message.
Acct-Interim-Interval AVP which is defined in Diameter base protocol SHALL be used
to send U3 rate to the agent.

The Metering agents receives this request and sends a DoT-Answer back as an acknowledge
to confirm the service is being metered .In addition, it MUST include Accounting-Sub-
Session-Id.

D. Publish Usage Update
The Publish usage update request is sent by the Metering server to the Resource control
server to publish the latest usage update.

The Metering server MUST set the Request-Type AVP equal to METER_REQUEST,
and Requested-Action to PUBLISH_USAGE_UPDATE. In addition, it MUST include
App-Usage AVP in DoT-Request message.

The Resource control server receives this request and sends a DoT-Answer back to
acknowledge the receipt of usage data. No extra AVPs need to be included.

E. Send Commit Votes
The Send commit votes request is sent by the Metering server to the Metering agents
in order to implement the first phase of 2PC, in which the coordinator (i.e., Metering
server) sends a “query to commit” message to all cohorts (i.e., Metering agents) and
waits until it receives a reply from all cohorts.

The Metering server MUST set the Request-Type AVP equal to METER_REQUEST,
and Requested-Action to SEND_COMMIT_VOTES. In addition, it MUST include
Accounting-Sub-Session-Id AVP

The Metering agents receives this request and sends a DoT-Answer back as an answer
containing the agent vote. Therefore, it MUST include Agent-Vote AVP, as well as the
Accounting-Sub-Session-Id AVP.

F. Commit Metering Token
The Commit metering token request is sent by the Metering server to the Metering agents

134

8.11. DoT Mandatory AVPs

in order to implement the second phase of 2PC, in which the coordinator (i.e. Metering
server) sends a “commit” message to all cohorts (i.e. Metering agents).

The Metering server MUST set the Request-Type AVP equal to METER_REQUEST,
and Requested-Action to COMMIT_METERING_TOKEN. In addition, it MUST
include Accounting-Sub-Session-Id AVP.

The Metering agents receives this request and sends a DoT-Answer back as an answer to
acknowledge the receipt of COMMIT_METERING_TOKEN request. It MUST include
Accounting-Sub-Session-Id AVP.

G. Commit App Metering
The Commit app metering request is sent by the Resource control server to the Metering
server to commit the measured metering tokens and report the quota value.

The Resource control server MUST set the Request-Type AVP equal to METER_REQUEST,
and Requested-Action to COMMIT_APP_METERING. No extra AVPs need to be
included.

The Metering server receives this request and sends a DoT-Answer back as an answer
including the quota value. It MUST therefore include App-Usage AVP.

H. Terminate App Metering
The Terminate app metering request is sent by the Provisioning server to the Metering
server to terminate IoT application metering.

The Provisioning server MUST set the Request-Type AVP equal to METER_REQUEST,
and Requested-Action to TERMINATE_APP_METERING. No extra AVPs need to be
included.

The Metering server receives this request and sends a DoT-Answer back as an acknowl-
edge confirming termination of metering. No extra AVPs need to be included.

135

8. Diameter of Things

8.11.3 Update Request

The Update request is sent from the Resource control server to the Provisioning server, and
from the Provisioning server to the DoT client in order to request an upcoming update
in credit amount or subscription time via Allocation-Unit AVP. The Resource control
server constantly checks the current running state against certain thresholds. To be more
specific, in pre-paid model, the available credit amount is checked with a certain threshold.
However, for the pay-per-use model, the subscription time is checked. The threshold
value is predefined in provider’s policy configuration file and can be overwritten by the
subscription plan. When the aforementioned threshold is reached, DoT protocol sends
a DoT request to notify user if an automatic update is enabled by user in subscription
plan. Otherwise, the DoT protocol asks the user to take the considerable action.

When Confirmation-Mode is set to USER_ACTION_REQUIRED, the requestor servers
wait for the response message which contains the User-Action. During this time if the
unit, which the update request has been sent for, is fully consumed and no response
indicating user action is received, DoT protocol MUST terminate the service. These will
stop any further updates.

The Resource control server and the Provisioning server, when acting as a requestor,
MUST set the Request-Type AVP equal to UPDATE_REQUEST. They MUST also
include the Confirmation-Mode AVP. They MAY include Allocation-Unit.

The DoT client and the Provisioning server, when acting as the receiver of the update
request, send a DoT-Answer back as an acknowledge. The DoT-Answer is sent immedi-
ately when the Confirmation-Mode AVP in request is set to NOTIFY_ONLY, otherwise
it waits for the user action. In the latter case the User-Action AVP MUST be included
in the answer message.

8.11.4 Payment Request

Payment request is sent by the Resource control server to the Payment server to charge
the client based on the generated billable artifacts. The Resource control server MUST set
the Request-Type AVP equal to PAY_REQUEST. It MUST also include the App-Usage
AVP.

The Payment server receives this request and sends a DoT-Answer back as an acknowl-
edge confirming the state of the payment transaction. No extra AVPs need to be included.

8.11.5 Terminate Request

Terminate Request is sent from the DoT client to the Provisioning server, and from
Provisioning server to the Resource control server to release allocated resources and stop
IoT application.

136

8.12. DoT State Machines

The DoT client and the Provisioning server, when acting as a requestor, MUST set the
Request-Type AVP equal to TERMINATE_REQUEST. No extra AVPs need to be
included.

The Resource control server and the Provisioning server, when acting as the receiver of
the terminate request, send a DoT-Answer back to acknowledge the receipt of terminate
request. No extra AVPs need to be included.

8.12 DoT State Machines
This section defines the DoT application protocol state machines. There are five different
state machines for each entity in DoT protocol. The first state machine as shown in
Table 8.3 describes the states of DoT client. The second one describes the Provisioning
server state machine. The third one is the state machine of Resource control server. The
fourth and fifth state machines describe the Metering and Payment servers accordingly.

The events of Tw expired, Failure to send and temporary error in the state machines
indicate the situation where there is a problem in network, preventing one entity to
communicate with the desired one. It also might be the cases where the destination
entity is too busy and cannot handle the request at that time.

Furthermore, for the sake of brevity the following abbreviations are used instead of full
name of the request types. Table 8.2 summarizes the abbreviations.

Abbr. Full Name
PAT PROVISION_APPLICATION_TOPOLOGY
ARA APP_RESOURCE_ALLOCATION
SIA START_IOT_APP
CAM COMMIT_APP_METERING
SAM START_APP_METERING
GAS GET_APP_SPECIFICATION
PUU PUBLISH_USAGE_UPDATE
TAM TERMINATE_APP_METERING
SMA START_METERING_AGENT
SCV SEND_COMMIT_VOTES
CMT COMMIT_METERING_TOKEN
UR UPDATE_REQUEST
TR TERMINATE_REQUEST
PR PAY_REQUEST

Table 8.2: The abbreviations used in state machines

137

8. Diameter of Things

The DoT client state machine is shown in Table 8.3. The states PendingI, PendingP,
PendingD, PendingT correspond to the pending states to wait for an answer to an already
sent request related to Identification, Provisioning, Deployment, Termination requests.

State Event Action New State
Idle AA request received from end user Send AA request to AA server, start

Tw
PendingI

pendingI Successful AA answer received Submit application topology as well
as the plan to Provisioning sever
in DoT-Request (Requested-Action:
PAT), restart Tw

PendingP

pendingI Tw expired, Failure to send, tempo-
rary error

Retry sending AA request to AA
server, restart Tw

PendingI

PendingP DoT-Answer received from Provi-
sioning server (Requested-Action:
PAT)

Submit DoT-Request to start
the IoT application to Provi-
sioning server (Requested-Action:
SIA),restart Tw

PendingD

PendingP DoT-Answer received from Provi-
sioning server (Requested-Action:
PAT) with Result-Code != SUC-
CESS

Fix the problem and send the DoT-
Request again, restart Tw

PendingD

PendingD DoT-Answer received from Provi-
sioning server (Requested-Action:
SIA)

Stop Tw, inform end user that ser-
vice, monitoring has started

Open

PendingD DoT-Answer received from Provi-
sioning server (Requested-Action:
SIA) with Result-Code != SUC-
CESS

Fix the problem and send the DoT-
Request again, restart Tw

PendingD

PendingD Tw expired, Failure to send, tempo-
rary error

Retry sending DoT-Request to Pro-
visioning server (Requested-Action:
SIA), restart Tw

pendingD

Open DoT-Request received from Provi-
sioning server (Request-Type: UR)
with Confirmation-Mode = NO-
TIFY_ONLY

Inform user about the update, send
DoT-Answer back to Provisioning
server (Request-Type: UR)

Open

Open DoT-Request received from Pro-
visioning server (Request-Type:
UR) with Confirmation-Mode =
USER_ACTION_REQUIRED

Send update confirmation request
to user

Open

Open DoT-Request received from Provi-
sioning server (Request-Type: UR)
but not successfully processed

Send DoT-Answer back to Provi-
sioning server (Request-Type: UR)
with Result-Code != SUCCESS

Open

Open User confirmed the update Send update confirmation answer
(Request-Type: UR) with User-
Action = CONFIRM to Provision-
ing server

Open

Open User rejected the update Send update confirmation answer
(Request-Type: UR) with User-
Action = REJECT to Provisioning
server

Open

Open User sends termination request Send termination request to Provi-
sioning server (Request-Type: TR),
start Tw

PendingT

continues on next page ...

138

8.12. DoT State Machines

continued from previous page ...
State Event Action New State
PendingT DoT-Answer received from Provi-

sioning server (Request-Type: TR)
Inform user about termination, stop
Tw

Idle

PendingT Answer received from Provisioning
server (Request-Type: TR) with
Result-Code != SUCCESS

Fix the problem and send the re-
quest again, restart Tw

PendingT

PendingT Tw expired, Failure to send, tempo-
rary error

Retry sending termination request
to Provisioning server (Request-
Type: TR), restart Tw

PendingT

Table 8.3: DoT Client state machine

Next, the Provisioning server state machine is described in Table 8.4. The states of
PendingR and PendingM correspond to the states of waiting for an answer from the
Resource control server and the Metering server respectively.

State Event Action New State
Idle DoT-Request to provision appli-

cation topology from DoT client
(Requested-Action: PAT) is re-
ceived and successfully processed

Send the resource allocation DoT-
Request to Resource control server
(Requested-Action: ARA), Start
Tw

PendingR

Idle DoT-Request to provision appli-
cation topology from DoT client
(Requested-Action: PAT) is re-
ceived but not successfully pro-
cessed

Send the DoT-Answer to DoT
client (Requested-Action: PAT)
with Result-Code != SUCCESS

Idle

PendingR DoT-Answer of resource alloca-
tion from Resource control server
(Requested-Action: ARA) is re-
ceived

Send the DoT-Answer to DoT client
(Requested-Action: PAT), Stop Tw

Idle

PendingR DoT-Answer of resource alloca-
tion from Resource control server
(Requested-Action: ARA) is re-
ceived with Result-Code != SUC-
CESS

Fix the problem and send the re-
source allocation DoT-Request to
Resource control server (Requested-
Action: ARA) again, Restart Tw

PendingR

PendingR Tw expired, Failure to send, tempo-
rary error

Restart Tw, Retry sending the re-
source allocation DoT-Request to
Resource control server (Requested-
Action: ARA)

PendingR

Idle DoT-Request to start the IoT appli-
cation from DoT client (Requested-
Action: SIA) is received and suc-
cessfully processed

Send the start metering DoT-
Request to Metering server
(Requested-Action: SAM) , Start
Tw

PendingM

Idle DoT-Request to start the IoT appli-
cation from DoT client (Requested-
Action: SIA) is received but not suc-
cessfully processed

Send theDoT-Answer to DoT client
(Requested-Action: SIA) with
Result-Code != SUCCESS

Idle

PendingM DoT-Answer of starting IoT ap-
plication from Metering server
(Requested-Action: SAM) is re-
ceived

Send the DoT-Answer to DoT client
(Requested-Action: SIA), Stop Tw

Open

PendingM DoT-Answer of starting IoT ap-
plication from Metering server
(Requested-Action: SAM) is re-
ceived with Result-Code != SUC-
CESS

Fix the problem and send the start
metering DoT-Request to Metering
server (Requested-Action: SAM)
again, Restart Tw

PendingM

continues on next page ...

139

8. Diameter of Things

continued from previous page ...
State Event Action New State
PendingM Tw expired, Failure to send, tempo-

rary error
Restart Tw, Retry sending the start
metering DoT-Request to Metering
server (Requested-Action: SAM)
again

PendingM

Open DoT-Request to notify user about
updating resource allocation from
Resource control server (Request-
Type: UR) is received and success-
fully processed

Send the DoT-Request as allocation
notification to DoT client (Request-
Type: UR)

Open

Open DoT-Request to terminate IoT ap-
plication from DoT client (Request-
Type: TR) is received and success-
fully processed

Send the resource release DoT-
Request to Resource control server
(Request-Type: TR), Start Tw

PendingR

Open DoT-Request to terminate IoT ap-
plication from DoT client (Request-
Type: TR) is received but not suc-
cessfully processed

Send the terminate app DoT-
Answer to DoT client (Request-
Type: TR) with Result-Code !=
SUCCESS

Open

PendingR DoT-Answer of confirming the re-
lease of allocated resources from
Resource control server (Request-
Type: TR) is received

Send the terminate metering
DoT-Request to Metering server
(Requested-Action: TAM), Start
Tw

PendingM

PendingR DoT-Answer of confirming the re-
lease of allocated resources from
Resource control server (Request-
Type: TR) is received with Result-
Code != SUCCESS

Fix the problem and send the
resource release DoT-Request to
Resource control server (Request-
Type: TR) again, Restart Tw

PendingR

PendingR Tw expired, Failure to send, tempo-
rary error

Restart Tw, Retry sending DoT-
Request to release the allocated re-
sources to Resource control server
(Request-Type: TR)

PendingR

PendingM DoT-Answer of confirming me-
tering termination from Metering
server (Requested-Action: TAM) is
received

Send the terminate app DoT-
Answer to DoT client (Request-
Type: TR), Stop Tw

Idle

PendingM DoT-Answer of confirming me-
tering termination from Metering
server (Requested-Action: TAM) is
received with Result-Code != SUC-
CESS

Fix the problem and send the ter-
minate metering DoT-Request to
Metering server (Requested-Action:
TAM) again, Restart Tw

PendingM

PendingM Tw expired, Failure to send, tempo-
rary error

Terminate the service, Send the ter-
minate app DoT-Answer to DoT
client (Request-Type: TR)

Idle

Table 8.4: Provisioning server state machine

140

8.12. DoT State Machines

The Resource control server state machine is shown in table 8.5. The states of PendingPY
and PendingPM correspond to the state of waiting for the payment and metering answer.

State Event Action New State
Idle DoT-Request to reserve re-

sources from Provisioning server
(Requested-Action: ARA) is
received and successfully processed

Perform resource scheduling, re-
serve resources, lock the credit,
send the resources allocation as
DoT-Answer to Provisioning server
(Requested-Action: ARA)

Open

Idle DoT-Request to reserve re-
sources from Provisioning server
(Requested-Action: ARA) is
received but not successfully
processed

send the resources allocation
DoT-Answer to Provisioning server
(Requested-Action: ARA) with
Result-Code != SUCCESS

Idle

Open DoT-Request to retrieve the Speci-
fication information from Metering
server (Requested-Action: GAS) is
received and successfully processed

Send the DoT-Answer containing
granted units and plan to Metering
server (Requested-Action: GAS)

Open

Open DoT-Request to retrieve the Speci-
fication information from Metering
server (Requested-Action: GAS) is
received but not successfully pro-
cessed

Send the getting specification
DoT-Answer to Metering server
(Requested-Action: GAS) with
Result-Code != SUCCESS

Open

Open DoTRequest to publish usage
update from Metering server
(Requested-Action: PUU) is
received and successfully processed

Charge credit according the last
sent usage, Send the acknowledge
DoT-Answer to Metering server
(Requested-Action: PUU)

Open

Open DoT-Request to publish usage
update from Metering server
(Requested-Action: PUU) is
received but not successfully
processed

Send the usage update DoT-Answer
to Metering server (Requested-
Action: PUU) with Result-Code !=
SUCCESS

Open

Open Credit threshold is met (in pre-paid
model)

Update and lock credit, Send up-
date notification in a DoT-Request
to Provisioning server (Request-
Type: UR)

Open

Open Subscription time threshold is met
(in pay-per-use model)

Send update notification in a
DoT-Request to Provisioning server
(Request-Type: UR)

Open

Open DoT-Request to release the allo-
cated resources from Provisioning
server (Request-Type: TR) is re-
ceived and successfully processed

Release the allocated resources,
Send the commit request in a
DoT-Request to Metering server
(Requested-Action: CAM), Start
Tw

PendingM

Open DoT-Request to release the allo-
cated resources from Provisioning
server (Request-Type: TR) is re-
ceived but not successfully pro-
cessed

Send a DoT-Answer to Provisioning
server (Request-Type: TR) with
Result-Code != SUCCESS

Open

PendingM DoT-Answer of commiting meter-
ing containing the quota values
from Metering server (Requested-
Action: CAM) is received

Send a DoT-Answer Provisioning
server (Requested-Action: TR),
Send a DoT-Request to Payment
server to charge the client based
on billable artifact (Request-Type:
PR), Restart Tw

PendingPY

continues on next page ...

141

8. Diameter of Things

continued from previous page ...
State Event Action New State
PendingM DoT-Answer of commiting me-

tering from Metering server
(Requested-Action: CAM) is
received with Result-Code !=SUC-
CESS

Fix the problem and send aDoT-
Request to Metering server
(Requested-Action: CAM) again,
Restart Tw

PendingM

PendingM Tw expired, Failure to send, tempo-
rary error

Retry sending the DoT-Request to
Metering server (Requested-Action:
CAM) , Restart Tw

PendingM

PendingPY DoT-Answer of billing payment
from Payment server (Request-
Type: PR) is received

StopTw Idle

PendingPY DoT-Answer of billing payment
from Payment server (Request-
Type: PR) is received with Result-
Code != SUCCESS

Fix the problem and send a
DoT-Request to Payment server
(Request-Type: PR) again, Restart
Tw

PendingPY

PendingPY Tw expired, Failure to send, tempo-
rary error

Retry sending aDoT-Request to
Payment server (Request-Type:
PR), Restart Tw

PendingPY

Table 8.5: Resource control server state machine

The Metering server state machine is presented in Table 8.6. The states PendingG and
PendingUU stand for pending states for Granted unit and Usage Update information

State Event Action New State
Idle DoT-Request to start metering re-

ceived from Provisioning server
(Requested-Action: SAM)

Send DoT-Answer to the Provi-
sioning server (Requested-Action:
SAM), send DoT-Request to Re-
source control server asking for
granted Units and plan (Requested-
Action: GAS), start Tw

PendingG

Idle DoT-Request to start metering re-
ceived (Requested-Action: SAM)
but not successfully processed

Send DoT-Answer to the Provi-
sioning server (Requested-Action:
SAM) with Result-Code != SUC-
CESS

Idle

PendingG DoT-Answer received from Re-
source control server including
granted units and plan (Requested-
Action: GAS)

Send service specific U3 to each me-
tering agent, start metering trans-
action, stop Tw

Open

PendingG DoT-Answer received from Re-
source control server (Requested-
Action: GAS) with Result-Code
!=SUCCESS

Fix the problem and send the re-
quest again, restart Tw

PendingG

PendingG Tw expired, Failure to send, tempo-
rary error

Retry sending DoT-Request
(Requested-Action: GAS) again,
restart Tw

PendingG

Open Unit usage update message received
from a Metering agent

Summarize the usage and send it in
a DoT-Request to Resource control
server (Requested-Action: PUU),
start Tw

PendingUU

PendingUU DoT-Answer received from Re-
source control server (Requested-
Action: PUU)

Stop Tw Open

continues on next page ...

142

8.13. Related Work

continued from previous page ...
State Event Action New State
PendingUU Tw expired, Failure to send, tempo-

rary error
Retry sending DoT-Request
(Requested-Action: PUU) again,
restart Tw

PendingUU

PendingUU DoT-Answer received from Re-
source control server (Requested-
Action: PUU) with Result-Code
!=SUCCESS

Fix the problem and send the DoT-
Request again (Requested-Action:
PUU), restart Tw

PendingUU

Open DoT-Request to commit the mea-
sured metering tokens and report
the quota value received from Re-
source control server (Requested-
Action: CAM)

Aggregate tokens and send the DoT-
Answer back to Resource control
server (Requested-Action: CAM)

Open

Open DoT-Request received (Requested-
Action: CAM) but not successfully
processed

Send the DoT-Answer back to Re-
source control server (Requested-
Action: CAM) with Result-Code !=
SUCCESS

Open

Open DoT-Request to terminate me-
tering received from Provisioning
server (Request-Type:TR)

Terminate metering, send DoT-
Answer back to Provisioning server
(Request-Type: TR)

Idle

Table 8.6: Metering server state machine
State Event Action New State
Idle DoT-Request to charge the client

based on billable artifact from
Resource control server (Request-
Type: PR) is received and success-
fully processed

Generate a bill by Invoking the
payment transaction, Deduct credit
from the end user’s account and re-
fund unused reserved credit to the
user’s account, Send DoT-Answer
to Resource control server (Request-
Type: PR)

Idle

Idle DoT-Request to charge the client
based on billable artifact from
Resource control server (Request-
Type: PR) is received but not suc-
cessfully processed

Send DoT-Answer to Resource con-
trol server (Request-Type: PR)
with Result-Code != SUCCESS

Idle

Table 8.7: Payment server state machine

8.13 Related Work
In relation to our work, there is some commendable research regarding the cloud service
usage metering. Elmsroth et al.[78] proposed a loosely coupled architecture solution for
an accounting and billing system for use in the RESERVOIR[79] project. There are some
alternatives that propose billing and metering solutions, Narayan et al.[81]. Petersson[82]
describes cloud metering and billing solution. Naik et al.[83] proposed a solution for
metering of services delivered from multiple cloud providers. They incorporate the
cloud service broker together with a metering control system to report metered data at
configurable intervals. Meanwhile, there are some prominent studies on capturing pricing
models for IoT domains. Aazam et el.[92] provided a resource prediction, resource price
estimation and reservation for the Fog which resides between underlying IoTs and the
cloud. Their proposed model does not support the real-time session and event-based
metering models.

143

8. Diameter of Things

Mazhelis et al.[93] studies the applicability of the Constrained Application Protocol
(CoAP), a lightweight transfer protocol under development by IETF, for efficiently
retrieving monitoring and accounting data from constrained devices. Their results
indicate that CoAP is suited for efficiently transferring monitoring and accounting data,
both due to a small energy footprint and a memory-wise compact implementation. This
work relies on using the accounting and monitoring infrastructure produced by the
Accounting and Monitoring of Authentication and Authorization Infrastructure Services
(AMAAIS) project[94]. Our work elevates the metering to an IoT domain by proposing
an extended Diameter protocol that enables IoT infrastructures to incorporate the DoT
protocol in their deployment models. This contributes to a real-time resource utilization
awareness by constructing and allocating flexible metering models to IoT deployment
units.

8.14 Conclusion
In this study, we have presented a metering protocol, called the Diameter of Things
(DoT), that enables real-time telemetry and automatic resource allocation control of IoT
applications. The DoT is designed to enhance the resource utilization by extending the
Diameter base protocol. The authors offered the DoT architecture, its interrogations
as well as its transaction model for accounting for the resource usage of constrained
devices. The DoT offers considerable benefits, such as granular metering of lightweight
applications, real-time transparency over resource usage in edge devices and transporting
and exchanging application-specific metering policies in an IoT domain. As an outlook,
our future work includes the DoT implementation together with an evaluation of the
proposed DoT architecture in terms of scalability, performance and session management.
A concise evaluation of the requirements5 for the Diameter-based protocols is proposed
that will be considered for the DoT implementation as well as evaluation purposes. We
envision the DoT protocol to gaining acceptance as a de facto metering standard in IoT.

5https://tools.ietf.org/html/draft-zander-ipfix-diameter-eval-00

144

CHAPTER 9
Conclusions

Here, we conclude this thesis, noting the principles, mechanisms and models applied in
our contributions. We then present our decisions and findings to demonstrate how the
state of the art in research has been advanced as part of this thesis work. The work
presented in this thesis constitutes three steps in bridging the gap between Cyber-physical
Systems (CSP) and business value propositions with the goal of continuous Edge to
Business (E2B) value chain delivery.

9.1 Review of Contributions

The overall aim of this thesis is to investigate the feasibility of exposing CPS applications
as metered services to the clients via cloud-enabled business plans.

9.1.1 Part I: IoT Busines Models

In chapter 3, we consider data as a core business model design material and explore
opportunities on how to make them tradable entities. We elaborate the government data
and expose them as services, using a platform called GoDaaS. We define seven types of
data-driven business models of GoDaaS, namely, Data Infrastructure as a Service (IaaS),
Storage as a Service (STaaS), Data as a Service (DaaS), Database as a Service (DBaaS),
Platform as a Service (PaaS), Search as a Service (SEaaS) and Data Analytics as a
Service (DAaaS). All seven business models and their associated elements are consistently
specified and modeled in details, mostly from the developer’s view. Government data
is usually unstructured and available in diversity of formats. As a reaction to this
complexity, we designed a new abstraction layer called Data Compute Unit (DCU), that
allows governments to express their data packages more structured and consistent, so
that developers can utilize these packages by treating them as objects. This ultimately
eases the data resource sharing and trading. GoDaaS multi-layer architecture needs

145

9. Conclusions

an integration enabler for its implementation and a uniform service delivery model.
Government service bus (GSB) layer glues all the entities, agencies and services together
through its messaging and queuing mechanisms.

In chapter 4, we focus on defining a proper marketable entity which covers all aspects of
a product. Cloud manufacturing provides a cooperative work environment for enterprises
and individuals, enabling collaboration among the entire manufacturing ecosystem. With
the cloud, resource pools can use virtualization to abstract away the heterogeneousness
and regional distribution of manufacturing resources. Cloud manufacturing aims to
orchestrate and allocate such distributed resources and render production services for
clients to seamlessly enable manufacturing on demand.

Manufacturing resources (such as devices, sensors, materials, and drivers) are virtualized
and encapsulated into a product bill of materials (BOM). Manufacturers can access,
configure, invoke, deploy, and orchestrate this BOM on distributed production lines in a
near real-time manner. BOM data must go to the right manufacturer at the right time
for the right cost.

Our proposed mechanism deals with the provisioning, portability, and management
of all types of manufacturing resources as services, for all phases of the production
lifecycle. This mechanism incorporates the Oasis Topology and Orchestration Specification
for Cloud Applications (TOSCA) policies, plans, and templates as a mechanism for
dynamic configuration, portability, and management of product BOMs across multiple
collaborating manufacturers. Once virtualized on the cloud, we refer to a product BOM
as a bill of manufacturing services (BOMS).

In chapter 5, we enrich the sensor raw data to become more interpretable. We have
developed a middleware, called Gatica that collects the real-time sensor data via gateways,
enriches them using annotations then transforms and exposes them in RDF triples. The
linked data RDFs are then streamed to the analytics endpoints for querying and reasoning
purposes. We have applied this model in the healthcare system. Having such data in
place, the health-care service providers are able to construct a wellness-function for
the normal range of the vitals and produce alerts upon on deviating from the normal
values. Through this vital range interpretation, various disease patterns can be discovered
together with its severity.

146

9.1. Review of Contributions

9.1.2 Part II: IoT Design Patterns

In chapter 6, we propose eight design patterns with an edge-based focus in mind. Such
patterns advices CPS application engineers to with some design best practices on how to
build their IoT ecosystem. This basically brings a unified design principles for common
class of IoT systems’ architectural challenges. The patterns are defined in a unified
pattern language conventions.

The IoT patterns address various aspects of design. For instance, we propose the
container-based virtualization method as an optimal method for edge services provisioning.
They basically contain the baseline environment to run the service together with all
dependencies and configurations. We then define an edge footprint messaging pattern for
a resource-constrained environment. Such messaging mechanisms benefit from reducing
the message header size and response codes, minimizing the set of methods for exchanging
data.

Next, we focus on an in-device data storage and processing patterns. The CPS has a
long data-processing pipeline in terms of collection, storage, and processing, and the
decisions made at the earlier stages of the pipeline can significantly impact the processing
at later stages. For the lightweight data processing, we are proposing a Pipe and Filter
architecture. There are three filters in lightweight data processing: data points validation,
cleansing, and aggregation. In Pipe and Filter architecture, the output of one filter is
fed, as input, into the next filter. In this pipeline the first filter does data validation.
The task is done by submitting a validation job to a spark master. The validation job
is done by spark workers. The next filter is cleansing. Based on the different cleaning
policies, missing and invalid values may be deleted or replaced with a reasonable value.
Data aggregation is the next. The output of these phases must satisfy the quality of data
constraints.

147

9. Conclusions

9.1.3 Part III: Micro Telemetry

In chapter 7, we leverage the micro telemetry mechanism to data-intensive applications.
The level of a resource metering unit becomes an essential facet of facilitating a way of
hierarchical metering and processing of usage patterns indexed by information granules.
By granule metering, we mean a collection of metrics aggregated together by their
functional relationship or closeness. Such granules are then formulated by adopting
and leveraging a certain level of abstraction to achieve further utility. Each abstraction
level is formed by grouping metrics together into semantically meaningful constructs to
reflect the structure of the original data into its granular counterpart. Granular metering
enables diving deeper into measuring the resource usage on the per-DAG-flow, per-DAG,
per-Job, per-Map or per-Reduce levels. Such metering granules can be regarded as more
abstract and interpretable entities in charging clients and in elasticity policy enforcement.
We treat them as a scale unit. This provides users real-time visibility over their resource
consumption and the ongoing money stream being paid as they go. Furthermore, it
enables clients realtime application control to ensure that quality and cost constraints
are met.

We then develop an elastic data telemetry system that enables granular metering and
automatic control of MapReduce applications due to their current behavior and preset
configurations. TED is designed to enhance the resource utilization using YARN cluster
queueing system. It observes the running job’s progress, interprets its cost and quality
behavior, audits the predefined job requirements. Then it generates a tailored resource
allocation policy with regard to capacity constraints and moves the job to the potential
queues to scale in or up.

In chapter 8, we address forward IoT resource planning which is an evolving facet
of utility computing that aims to leverage and treat computing resources as metered
services. Furthermore, metering is the process of measuring and recording the utilization
rate of an entire application, individual parts of an application, or tasks and underlying
resources. Along with this idea, respecting resource capacity constraints on edge devices
establishes a firm requirement for a protocol in support of a telemetry of IoT applications.
Such metering capability is needed when lack of resources among competing applications
dictates our schedule and credit allocation.

In this chapter, the authors offer the Diameter of Things (DoT) protocol that can be
incorporated to implement a real-time metering of IoT services in the case of prepaid
as well as pay-per-use economic models. The protocol employs a mechanism to handle
time-based and event-based telemetry patterns. The former is used for scenarios where
the charged units are continuously consumed while the latter is typically used when
units are implicit invocation events. The DoT-enabled platform performs a chained
metering transaction on a graph of dependent IoT microservices, collects the emitted
usage data, then generates billable artifacts. Finally it permits micropayments to take
place in parallel.

148

9.2. Future Research Directions

9.2 Future Research Directions
In this thesis work, various solutions for enabling the Edge to Business (E2B) value
chain have been proposed, namely; IoT business models, diversity of design artifacts as
architectural patterns for building CPS applications, and micro telemetry solutions to
capture the values generated fro edge infrastructures. Yet, a number of open issue remain
which were out of scope of this thesis. As an outlook, in the following we conclude the
thesis by summarizing such challenges for future research focus.

Extending the work presented in this thesis, one may extend our business models to
support more domain applications as well as creating novel business opportunities from
the CPS context data. Another extension may include the role of human-based service
in this E2B value chain.

Moving forward, there are many opportunities on defining novel design patterns for the
resource-constrained environments. Such design artifacts may be classified as elasticity,
scalability, availability, resiliency, software defined networking and security patterns for
edge applications.

On the micro edge telemetry research, there are huge opportunities to extend the work.
For instance, one can focus on how to meter the edge device usage. For instance,
measuring the battery usage since many embedded devices and connected sensors run on
batteries and need to conserve electricity. Such metering model has a direct influence on
resource-constrained applications elasticity.

149

Bibliography

[1] J. Rivera and R. van der Meulen, “In 2020, 25 Billion Connected ’Things’ Will Be
in Use.” http://www.gartner.com/newsroom/id/2905717, 2014, [Online; accessed
2-November-2015].

[2] C. P. S. P. W. Group, “DRAFT Framework for Cyber-Physical Systems.” http://
www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.
cfm, 2015, [Online; accessed 2-November-2015].

[3] T. G. P. M. Mell;, vol. The NIST Definition of Cloud Computing. NIST SP - 800-145,
September 28, 2011.

[4] T. Jones, “Virtualization for embedded system,” http://www.ibm.com/
developerworks/library/l-embedded-virtualization/, 2011, [Online; accessed 2-
November-2015].

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, ser. MCC ’12. New York, NY, USA: ACM, 2012, pp.
13–16. [Online]. Available: http://doi.acm.org/10.1145/2342509.2342513

[6] Y. C. Lee, Y. Kim, H. Han, and S. Kang, “Fine-grained, adaptive resource sharing
for real pay-per-use pricing in clouds,” in Cloud and Autonomic Computing (ICCAC),
2015 International Conference on, Sept 2015, pp. 236–243.

[7] E. Bucherer and D. Uckelmann, “10 Business Models for the Internet of Things,”
Business, pp. 1–25, 2011.

[8] C. Bormann and M. Ersue, “Terminology for Constrained-Node Networks,” https:
//tools.ietf.org/html/rfc7228, May 2014, [Online; accessed 2-November-2015].

[9] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services using
tosca,” Internet Computing, IEEE, vol. 16, no. 3, pp. 80–85, May 2012.

[10] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud computing:
Distributed internet computing for it and scientific research,” Internet Computing,
IEEE, vol. 13, no. 5, pp. 10–13, 2009.

151

http://www.gartner.com/newsroom/id/2905717
http://www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.cfm
http://www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.cfm
http://www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.cfm
http://www.ibm.com/developerworks/library/l-embedded-virtualization/
http://www.ibm.com/developerworks/library/l-embedded-virtualization/
http://doi.acm.org/10.1145/2342509.2342513
https://tools.ietf.org/html/rfc7228
https://tools.ietf.org/html/rfc7228

[11] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Communications
of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[12] P. Mell and T. Grance, “The nist definition of cloud computing (draft),” NIST
Special Publication, vol. 800, p. 145, 2011.

[13] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-physical
systems,” Proceedings of the IEEE (special issue on CPS), vol. 100, no. 1, pp. 13 –
28, January 2012.

[14] C. P. S. P. W. Group, “DRAFT Framework for Cyber-Physical Systems,” http://
www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.
cfm, 2015, [Online; accessed 19-October-2015].

[15] M. Satyanarayanan, “Pervasive computing: vision and challenges,” Personal Com-
munications, IEEE, vol. 8, no. 4, pp. 10–17, Aug 2001.

[16] “Osterwalder, alexander; pigneur, yves; and tucci, christopher l. "business model
generation," alexander osterwalder, yves pigneur, alan smith, and 470 practitioners
from 45 countries, self published, 2010.”

[17] D. Wu, D. W. Rosen, L. Wang, and D. Schaefer, “Cloud-based design and
manufacturing,” Comput. Aided Des., vol. 59, no. C, pp. 1–14, Feb. 2015. [Online].
Available: http://dx.doi.org/10.1016/j.cad.2014.07.006

[18] X. Xu, “From cloud computing to cloud manufacturing,” Robotics and Computer-
Integrated Manufacturing, vol. 28, no. 1, pp. 75 – 86, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0736584511000949

[19] P. Lipton and S. Moser, “OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA) TC,” https://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=tosca, Last accessed: 2015.08.04.

[20] M. Burgess, In Search of Certainty - The Science of Our Information Infrastructure,
1st ed. XtAxis Press, 2013.

[21] E. Commission, “Study on business models for linked open government data -
BM4LOGD,” https://joinup.ec.europa.eu/node/72473, 12 November 2013, [Online;
accessed 24 June 2014].

[22] N. Shadbolt and K. O’Hara, “Linked data in government,” Internet Computing,
IEEE, vol. 17, no. 4, pp. 72–77, July 2013.

[23] M. Vafopoulos and M. Meimaris, “Weaving the economic linked open data,” in
Semantic and Social Media Adaptation and Personalization (SMAP), 2012 Seventh
International Workshop on, Dec 2012, pp. 92–97.

152

http://www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.cfm
http://www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.cfm
http://www.nist.gov/el/nist-releases-draft-framework-cyber-physical-systems-developers.cfm
http://dx.doi.org/10.1016/j.cad.2014.07.006
http://www.sciencedirect.com/science/article/pii/S0736584511000949
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://joinup.ec.europa.eu/node/72473

[24] J. Hoxha and A. Brahaj, “Open government data on the web: A semantic approach,”
in Emerging Intelligent Data and Web Technologies (EIDWT), 2011 International
Conference on, Sept 2011, pp. 107–113.

[25] E. Kalampokis, E. Tambouris, and K. Tarabanis, “On publishing linked open
government data,” in Proceedings of the 17th Panhellenic Conference on Informatics,
ser. PCI ’13. New York, NY, USA: ACM, 2013, pp. 25–32. [Online]. Available:
http://doi.acm.org/10.1145/2491845.2491869

[26] M. Vafopoulos, “A framework for linked data business models,” in Informatics (PCI),
2011 15th Panhellenic Conference on, Sept 2011, pp. 95–99.

[27] D. DiFranzo, A. Graves, J. Erickson, L. Ding, J. Michaelis, T. Lebo, E. Patton,
G. Williams, X. Li, J. Zheng, J. Flores, D. McGuinness, and J. Hendler, “The web
is my back-end: Creating mashups with linked open government data,” in Linking
Government Data, D. Wood, Ed. Springer New York, 2011, pp. 205–219. [Online].
Available: http://dx.doi.org/10.1007/978-1-4614-1767-5_10

[28] F. Leymann, “Linked compute units and linked experiments: Using topology and
orchestration technology for flexible support of scientific applications,” in Software
Service and Application Engineering, ser. Lecture Notes in Computer Science,
M. Heisel, Ed. Springer Berlin Heidelberg, 2012, vol. 7365, pp. 71–80. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-30835-2_6

[29] B. Nicolae, P. Riteau, and K. Keahey, “Bursting the cloud data bubble: Towards
transparent storage elasticity in iaas clouds,” in 28th IEEE International Parallel &
Distributed Processing Symposium, Phoenix, AZ, 2014.

[30] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,” IEEE
Transactions on Software Engineering, vol. 24, no. 5, pp. 342–361, 1998.

[31] A. Thomas, D. Trentesaux, and P. Valckenaers, “Intelligent distributed production
control,” Journal of Intelligent Manufacturing, vol. 23, no. 6, pp. 2507–2512, 2012.
[Online]. Available: http://dx.doi.org/10.1007/s10845-011-0601-x

[32] L. Zhang, Y. Luo, F. Tao, B. H. Li, L. Ren, X. Zhang, H. Guo, Y. Cheng, A. Hu,
and Y. Liu, “Cloud manufacturing: a new manufacturing paradigm,” Enterprise
Information Systems, vol. 8, no. 2, pp. 167–187, 2014.

[33] C. Brecher, W. Lohse, and M. Vitr, “Module-based platform for seamless
interoperable cad-cam-cnc planning,” in Advanced Design and Manufacturing
Based on STEP, ser. Springer Series in Advanced Manufacturing, X. Xu and
A. Y. C. Nee, Eds. Springer London, 2009, pp. 439–462. [Online]. Available:
http://dx.doi.org/10.1007/978-1-84882-739-4_20

153

http://doi.acm.org/10.1145/2491845.2491869
http://dx.doi.org/10.1007/978-1-4614-1767-5_10
http://dx.doi.org/10.1007/978-3-642-30835-2_6
http://dx.doi.org/10.1007/s10845-011-0601-x
http://dx.doi.org/10.1007/978-1-84882-739-4_20

[34] Q. Li, C. Wang, J. Wu, J. Li, and Z.-Y. Wang, “Towards the business-information
technology alignment in cloud computing environment: Anapproach based on col-
laboration points and agents,” Int. J. Comput. Integr. Manuf., vol. 24, no. 11, pp.
1038–1057, Nov. 2011.

[35] S. Schulte, D. Schuller, R. Steinmetz, and S. Abels, “Plug-and-Play Virtual
Factories,” IEEE Internet Computing Magazine, vol. 16, no. 5, pp. 78–82, 2012.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/MIC.2012.114

[36] S. Schulte, P. Hoenisch, C. Hochreiner, S. Dustdar, and M. Klusch, “Towards
Process Support for Cloud Manufacturing,” in 18th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2014) Ulm, Germany. IEEE
Computer Society, Washington, DC, USA, 2014, pp. NN–NN.

[37] X. Wang and X. Xu, “Dimp: An interoperable solution for software integration and
product data exchange,” Enterp. Inf. Syst., vol. 6, no. 3, pp. 291–314, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.1080/17517575.2011.587544

[38] ——, “Icms: A cloud-based manufacturing system,” in Cloud Manufacturing,
ser. Springer Series in Advanced Manufacturing, W. Li and J. Mehnen, Eds.
Springer London, 2013, pp. 1–22. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4471-4935-4_1

[39] D. Sow, D. Turaga, and M. Schmidt, “Mining of sensor data in healthcare: A survey,”
in Managing and Mining Sensor Data, C. C. Aggarwal, Ed. Springer US, 2013, pp.
459–504. [Online]. Available: http://dx.doi.org/10.1007/978-1-4614-6309-2_14

[40] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank,
physiotoolkit, and physionet: Components of a new research resource for complex
physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. [Online].
Available: http://circ.ahajournals.org/content/101/23/e215.abstract

[41] B. D. Abdi, Herve, Principal Component and Correspondence Analyses
Using R, ser. SpringerBriefs in Statistics, 2015. [Online]. Available: http:
//www.springer.com/gp/book/9783319092553

[42] R. Watanabe, E. Morett, and E. Vallejo, “Inferring modules of functionally
interacting proteins using the bond energy algorithm,” BMC Bioinformatics, vol. 9,
no. 1, 2008. [Online]. Available: http://dx.doi.org/10.1186/1471-2105-9-285

[43] S. Banerjee, A. Mishra, and R. Dasgupta, “Semantic exploration of sensor data,” in
Proceedings of the 5th International Workshop on Web-scale Knowledge Representation
Retrieval & Reasoning, ser. Web-KR ’14. New York, NY, USA: ACM, 2014,
pp. 55–58. [Online]. Available: http://doi.acm.org/10.1145/2663792.2663800

154

http://doi.ieeecomputersociety.org/10.1109/MIC.2012.114
http://dx.doi.org/10.1080/17517575.2011.587544
http://dx.doi.org/10.1007/978-1-4471-4935-4_1
http://dx.doi.org/10.1007/978-1-4471-4935-4_1
http://dx.doi.org/10.1007/978-1-4614-6309-2_14
http://circ.ahajournals.org/content/101/23/e215.abstract
http://www.springer.com/gp/book/9783319092553
http://www.springer.com/gp/book/9783319092553
http://dx.doi.org/10.1186/1471-2105-9-285
http://doi.acm.org/10.1145/2663792.2663800

[44] D. Le-Phuoc, J. Xavier Parreira, and M. Hauswirth, “Linked stream data
processing,” in Reasoning Web. Semantic Technologies for Advanced Query
Answering, ser. Lecture Notes in Computer Science, T. Eiter and T. Krennwallner,
Eds. Springer Berlin Heidelberg, 2012, vol. 7487, pp. 245–289. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33158-9_7

[45] D. Le-Phuoc, M. Dao-Tran, M. . Pham, P. Boncz, T. Eiter, and M. Fink, Linked
stream data processing engines: Facts and figures, ser. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2012, vol. 7650 LNCS, no. PART 2. [Online]. Available:
www.scopus.com

[46] P. Barnaghi, W. Wang, L. Dong, and C. Wang, “A linked-data model for semantic
sensor streams,” in Green Computing and Communications (GreenCom), 2013 IEEE
and Internet of Things (iThings/CPSCom), IEEE International Conference on and
IEEE Cyber, Physical and Social Computing, Aug 2013, pp. 468–475.

[47] D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth, “A middleware
framework for scalable management of linked streams,” Web Semant., vol. 16, pp. 42–
51, Nov. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.websem.2012.06.003

[48] Fielden, G.D.R, Engineering Design, ser. London: HMSO, 1975.

[49] D. Bandyopadhyay and J. Sen, “Internet of things: Applications and challenges in
technology and standardization,” Wireless Personal Communications, vol. 58, no. 1,
pp. 49–69, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11277-011-0288-5

[50] T. Xu, J. B. Wendt, and M. Potkonjak, “Security of iot systems: Design
challenges and opportunities,” in Proceedings of the 2014 IEEE/ACM
International Conference on Computer-Aided Design, ser. ICCAD ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 417–423. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2691365.2691450

[51] D. Fuller, “System design challenges for next generation wireless and embedded
systems,” in Proceedings of the Conference on Design, Automation & Test
in Europe, ser. DATE ’14. 3001 Leuven, Belgium, Belgium: European
Design and Automation Association, 2014, pp. 1:1–1:1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616606.2616608

[52] S. C. Mukhopadhyay, Internet of Things: Challenges and Opportunities. Springer
Publishing Company, Incorporated, 2014.

[53] H. Lamaazi, N. Benamar, A. Jara, L. Ladid, and D. El Ouadghiri, “Challenges
of the internet of things: Ipv6 and network management,” in Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), 2014 Eighth International
Conference on, July 2014, pp. 328–333.

155

http://dx.doi.org/10.1007/978-3-642-33158-9_7
www.scopus.com
http://dx.doi.org/10.1016/j.websem.2012.06.003
http://dx.doi.org/10.1007/s11277-011-0288-5
http://dl.acm.org/citation.cfm?id=2691365.2691450
http://dl.acm.org/citation.cfm?id=2691365.2691450
http://dl.acm.org/citation.cfm?id=2616606.2616608

[54] R. S. Hanmer, “Pattern mining patterns,” in Proceedings of the 19th Conference on
Pattern Languages of Programs, ser. PLoP ’12. USA: The Hillside Group, 2012, pp.
23:1–23:10. [Online]. Available: http://dl.acm.org/citation.cfm?id=2821679.2831293

[55] T. Wellhausen and A. Fiesser, “How to write a pattern?: A rough guide for
first-time pattern authors,” in Proceedings of the 16th European Conference on
Pattern Languages of Programs, ser. EuroPLoP ’11. New York, NY, USA: ACM,
2012, pp. 5:1–5:9. [Online]. Available: http://doi.acm.org/10.1145/2396716.2396721

[56] G. Meszaros and J. Doble, “Pattern languages of program design 3,” R. C. Martin,
D. Riehle, and F. Buschmann, Eds. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1997, ch. A Pattern Language for Pattern Writing, pp. 529–574.
[Online]. Available: http://dl.acm.org/citation.cfm?id=273448.273487

[57] B. Di Martino, “Applications portability and services interoperability among multiple
clouds,” Cloud Computing, IEEE, vol. 1, no. 1, pp. 74–77, May 2014.

[58] R. Lea and M. Blackstock, “City hub: A cloud-based iot platform for smart cities,” in
Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on, Dec 2014, pp. 799–804.

[59] S. Qanbari, S. Mahdizadeh, R. Rahimzadeh, N. Behinaein, and S. Dustdar, “Diameter
of Things (DoT): A Protocol for Real-time Telemetry of IoT Applications,” http://
www.gecon-conference.org/gecon2015/images/papers/qanbari_paper_25.pdf, 2015,
[Online; accessed 19-October-2015].

[60] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
oriented Software Architecture: A System of Patterns. New York, NY, USA: John
Wiley & Sons, Inc., 1996.

[61] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[62] R. Hanmer, Patterns for Fault Tolerant Software. Wiley Publishing, 2007.

[63] V.-P. Eloranta and M. Leppänen, “Patterns for distributed machine control systems,”
in Proceedings of the 18th European Conference on Pattern Languages of Program,
ser. EuroPLoP ’13. New York, NY, USA: ACM, 2015, pp. 6:1–6:15. [Online].
Available: http://doi.acm.org/10.1145/2739011.2739017

[64] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer
Publishing Company, Incorporated, 2014.

[65] K. Hashizume, N. Yoshioka, and E. B. Fernandez, “Misuse patterns for cloud
computing,” in Proceedings of the 2Nd Asian Conference on Pattern Languages of

156

http://dl.acm.org/citation.cfm?id=2821679.2831293
http://doi.acm.org/10.1145/2396716.2396721
http://dl.acm.org/citation.cfm?id=273448.273487
http://www.gecon-conference.org/gecon2015/images/papers/qanbari_paper_25.pdf
http://www.gecon-conference.org/gecon2015/images/papers/qanbari_paper_25.pdf
http://doi.acm.org/10.1145/2739011.2739017

Programs, ser. AsianPLoP ’11. New York, NY, USA: ACM, 2011, pp. 12:1–12:6.
[Online]. Available: http://doi.acm.org/10.1145/2524629.2524644

[66] K. Hashizume, E. B. Fernandez, M. M. Larrondo-Petrie, and E. B. Fernandez,
“Cloud service model patterns,” in Proceedings of the 19th Conference on Pattern
Languages of Programs, ser. PLoP ’12. USA: The Hillside Group, 2012, pp.
10:1–10:14. [Online]. Available: http://dl.acm.org/citation.cfm?id=2821679.2831280

[67] K. Tamagawa, “AWS cloud design patterns,” http://en.clouddesignpattern.org, 2008,
[Online; accessed 19-October-2015].

[68] L. B. M. N. T. S. Alex Homer, John Sharp, “Cloud Design Patterns: Prescriptive
Architecture Guidance for Cloud Applications,” https://msdn.microsoft.com/en-us/
library/dn568099.aspx, 2014, [Online; accessed 19-October-2015].

[69] B. Wilder, “Cloud Architecture Patterns,” http://oreil.ly/cloud_architecture_
patterns, 2012, [Online; accessed 19-October-2015].

[70] “Cloud computing concepts, technology and architecture by thomas erl,
zaigham mahmood and ricardo puttini,” SIGSOFT Softw. Eng. Notes, vol. 39,
no. 4, pp. 37–38, Aug. 2014, reviewer-Gvero, Igor. [Online]. Available:
http://doi.acm.org/10.1145/2632434.2632462

[71] A. N. R. P. Thomas Erl, Zaigham Mahmood, “Cloud Computing Concepts, Technol-
ogy and Architecture,” http://cloudpatterns.org, 2013, [Online; accessed 19-October-
2015].

[72] M. Koster, “Design Patterns for an Internet of Things,” http:
//community.arm.com/groups/internet-of-things/blog/2014/05/27/
design-patterns-for-an-internet-of-things, 2014, [Online; accessed 19-October-2015].

[73] M. Rappa, “The utility business model and the future of computing services,” IBM
Systems Journal, vol. 43, no. 1, pp. 32–42, 2004.

[74] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as the
5th utility,” Future Gener. Comput. Syst., vol. 25, no. 6, pp. 599–616, Jun. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.future.2008.12.001

[75] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “A survey of smart data
pricing: Past proposals, current plans, and future trends,” ACM Comput.
Surv., vol. 46, no. 2, pp. 15:1–15:37, Nov. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2543581.2543582

[76] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327492

157

http://doi.acm.org/10.1145/2524629.2524644
http://dl.acm.org/citation.cfm?id=2821679.2831280
http://en.clouddesignpattern.org
https://msdn.microsoft.com/en-us/library/dn568099.aspx
https://msdn.microsoft.com/en-us/library/dn568099.aspx
http://oreil.ly/cloud_architecture_patterns
http://oreil.ly/cloud_architecture_patterns
http://doi.acm.org/10.1145/2632434.2632462
http://cloudpatterns.org
http://community.arm.com/groups/internet-of-things/blog/2014/05/27/design-patterns-for-an-internet-of-things
http://community.arm.com/groups/internet-of-things/blog/2014/05/27/design-patterns-for-an-internet-of-things
http://community.arm.com/groups/internet-of-things/blog/2014/05/27/design-patterns-for-an-internet-of-things
http://dx.doi.org/10.1016/j.future.2008.12.001
http://doi.acm.org/10.1145/2543581.2543582
http://doi.acm.org/10.1145/1327452.1327492

[77] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of elastic processes,”
IEEE Internet Computing, vol. 15, no. 5, pp. 66–71, 2011.

[78] E. Elmroth, F. G. Marquez, D. Henriksson, and D. P. Ferrera, “Accounting and
billing for federated cloud infrastructures,” in Proceedings of the 2009 Eighth
International Conference on Grid and Cooperative Computing, ser. GCC ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 268–275. [Online].
Available: http://dx.doi.org/10.1109/GCC.2009.37

[79] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-Yehuda, W. Emmerich,
and F. Galán, “The reservoir model and architecture for open federated cloud
computing,” IBM J. Res. Dev., vol. 53, no. 4, pp. 535–545, Jul. 2009. [Online].
Available: http://dl.acm.org/citation.cfm?id=1850659.1850663

[80] S. Prasad and S. Avinash, “Smart meter data analytics using opentsdb and hadoop,”
in Innovative Smart Grid Technologies - Asia (ISGT Asia), 2013 IEEE, Nov 2013,
pp. 1–6.

[81] A. Narayan, S. Rao, G. Ranjan, and K. Dheenadayalan, “Smart metering of cloud
services,” in Systems Conference (SysCon), 2012 IEEE International, March 2012,
pp. 1–7.

[82] J. Petersson, “Cloud metering and billing,” http://www.ibm.com/developerworks/
cloud/library/cl-cloudmetering [Online; accessed 08-August-2011].

[83] V. Naik, K. Beaty, and A. Kundu, “Service usage metering in hybrid cloud envi-
ronments,” in Cloud Engineering (IC2E), 2014 IEEE International Conference on,
March 2014, pp. 253–260.

[84] “Calhoun, p., johansson, t., perkins, c., hiller, t.,and p. mccann, "diameter mobile
ipv4 application", rfc 4004, august 2005.” IETF.

[85] “Hakala, h., mattila, l., koskinen, j-p., stura, m., and j. loughney, "diameter credit-
control application", rfc 4006, august 2005.” IETF.

[86] “Garcia-martin, m., "diameter session initiation protocol (sip) application", rfc 4740,
april 2006.” IETF.

[87] “C. rigney, a. rubens, w. simpson, s. willens, "remote authentication dial in user
service (radius)", rfc2138, june 2000.” IETF.

[88] “Calhoun, p., loughney, j., guttman, e., zorn, g., and j. arkko, "diameter base
protocol", rfc 3588, september 2003.” IETF.

[89] R. L. Rivest and A. Shamir, “Payword and micromint: Two simple micropayment
schemes,” in Proceedings of the International Workshop on Security Protocols.
London, UK, UK: Springer-Verlag, 1997, pp. 69–87. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647214.720369

158

http://dx.doi.org/10.1109/GCC.2009.37
http://dl.acm.org/citation.cfm?id=1850659.1850663
http://www.ibm.com/developerworks/cloud/library/cl-cloudmetering
http://www.ibm.com/developerworks/cloud/library/cl-cloudmetering
http://dl.acm.org/citation.cfm?id=647214.720369

[90] M. Voegler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “DIANE - dynamic
iot application deployment,” in 2015 IEEE International Conference on Mobile
Services, MS 2015, New York City, NY, USA, June 27 - July 2, 2015, 2015, pp.
298–305. [Online]. Available: http://dx.doi.org/10.1109/MobServ.2015.49

[91] C. Inzinger, S. Nastic, S. Sehic, M. Voegler, F. Li, and S. Dustdar, “Madcat:
A methodology for architecture and deployment of cloud application topologies,”
in Service Oriented System Engineering (SOSE), 2014 IEEE 8th International
Symposium on, April 2014, pp. 13–22.

[92] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic resource
estimation and pricing model for iot,” in Advanced Information Networking and
Applications (AINA), 2015 IEEE 29th International Conference on, March 2015, pp.
687–694.

[93] O. Mazhelis, M. Waldburger, G. S. Machado, B. Stiller, and P. Tyrväinen,
“Retrieving monitoring and accounting information from constrained devices in
internet-of-things applications,” in Proceedings of the 7th IFIP WG 6.6 International
Conference on Autonomous Infrastructure, Management, and Security: Emerging
Management Mechanisms for the Future Internet - Volume 7943, ser. AIMS’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 136–147. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38998-6_17

[94] “Stiller, b.: Accounting and monitoring of aai services. switch journal 2010(2)
(october 2010) 12-13,” IETF.

159

http://dx.doi.org/10.1109/MobServ.2015.49
http://dx.doi.org/10.1007/978-3-642-38998-6_17

Curriculum Vitae

161

Mr. Soheil Qanbari
Research Assistant/ PhD Candidate. at Distributed Systems Group

Technical University of Vienna (TU Wien)

soheil@dsg.tuwien.ac.at

[Schwemmgasse 2/3/55A - 1020 Wien]

[Mobile: +43 (650) 480 3584]

Senior Research/Management Associate Jobs

• Cyber-Physical Systems (CPS)
Edge Engineering, IoT Design Patterns, Embedded Systems, Smart City, Cloud Manufacturing.

• Cloud Computing
Cloud Service Models, Elastic computing, Transaction Processing, Cloud Patterns, Service Metering.

• Big Data Analytics
Hadoop, YARN, Spark, Stream Processing, MapReduce, NoSQL, In-Device Data Processing.

Academic Education

• Technical University of Vienna (TU Wien) Vienna, Austria. ID: 1329639
PhD. in Cloud & Edge Computing ; GPA:1.54 Winter. 2012 – Planned Defense, January 2016

– Key Research Focus: Distributed Systems Technologies, IoT PaaS for Smart Cities, Cloud Resource
Elasticity, Embedded Virtualization, Portable Cloud Manufacturing Services, Government Data as a Service,
Cloud Business Models, Cloud Asset Pricing Models.

– PhD Dissertation: Title: Edge-to-Business Value Chain Delivery via Elastic Telemetry of Cyber-Physical
Systems. Thesis will be furnished upon request.

– Key Courses: Advanced Internet Computing, Business Intelligence, Recommender Systems, Advanced
Services Engineering, Interdisciplinary Research Seminar.

• Baha’i Institute for Higher Education (BIHE) Tehran, Iran. ID: 7722221789
MSc. in Software Engineering.; GPA:3.58 on 4.0 scale. Autumn. 2007 – Spring. 2010

– Master Thesis: Verification & Validation on Meta Models using Model-driven Ontology Development. Thesis
will be furnished upon request.

– Key Courses: Decision Support System, Software Project Management, Robotics, Data Mining, Advanced
Requirement Engineering, Semantic Web, Information System Security, Research Methodology, Master’s Thesis

• Baha’i Institute for Higher Education (BIHE) Tehran, Iran. ID: 7721031789
BSc. in Computer Engineering.; GPA:2.1 on 3.0 scale. Autumn. 1998 – Autumn. 2004

– Key Courses: Artificial Intelligence, Internet Engineering, Database Design & Management, Real time
Systems, Software Engineering, System Analysis & Design, Compiler Design, Object Oriented Programming,
Design of Algorithms, Data Structures & Algorithms, Calculus, Advanced Engineering Mathematics.

Course Teaching & Lecturing Experience

• Big Data Computing BIHE University
Course Instructor Winter Semester 2014

– Data-intensive Computing with Hadoop & YARN Ecosystem..

– NoSQL, NewSQL, Cassandra, Hbase, Hadoop HDFS

– MapReduce Programming Model, R & Pig Latin.

– Oozie Workflow Scheduler & Zookeeper Distributed Coordination Service

– Big Data Search with Lucene, SolrCloud and ElasticSearch

– Big Data Integration with Pentaho Kettle, Sqoop, Flume.

– Predictive Analysis with Apache Mahout.

– Stream Computing with Spark.

Course Teaching & Lecturing Experience (cont’d)

• Advanced Software Architecture BIHE University
Course Instructor Summer Semester 2015

– Software Architecture Styles.

– Message Oriented Middle-ware Architecture.

– Transaction Processing Models.

– Quality of Service (QoS): Scalability, Availability & Consistency.

– Software Architecture Patterns.

– Cloud Computing Design Patterns.

– Internet of Things (IoT) Application Architecture.

– Service Oriented Architecture (SOA).

– Microservice Architecture.

• Enterprise Architecture BIHE University
Course Instructor Summer Semester 2010

– Zachman & TOGAF Enterprise-Architecture Methodologies.

– Enterprise Resource Planning (ERP) Solution Modeling.

– Process Hierarchy Diagram (PhD).

• Object Oriented Programming BIHE University
Course Instructor Winter Semester 2008

– GoF Design Patterns.

– Enterprise Integration Patterns.

Professional Experience

• TU Wien Distributed Systems Group/Smart City Project Vienna, Austria
Research Assistant at Pacific Controls Cloud Computing Lab July. 2012 – till Dec. 2015

– Smart City PaaS Development using WSO2.

– Hybrid IoT Compute Unit (Cloud Services, Edge Services, Human Services).

– Smart City Business Messaging using WSO2 FIX Gateway and ESB.

– Software-defined Internet of Things (SD-IoT).

– IoT Design Patterns to Design, Build and Engineer Edge Applications.

– Telemetry of IoT Services using Diameter of Things (DoT) Protocol.

– Linked Sensor Data Streaming/Processing.

• BIHE University Tehran, Iran
IT Office Manager Aug. 2008 – May. 2011

– University wide eLearning Infrastructure Management.

– Learning Management Systems (LMS) Management.

• Haseb System Engineering Consultancy Incorporation Tehran, Iran
Enterprise Solution Architect Oct. 2006 – Jun. 2008

– Enterprise architecture modeling using Zachman framework

– Enterprise Architecture Blueprint and ERP Solution Gap Analysis/Mapping

– Integrator of Pentaho business intelligent suite and ERP solutions

– Intalio BPMS Designer

• Data Processing Douran Company Tehran, Iran
Project Manager/ ERP Implementor Oct. 2002 – Aug. 2006

– ERP Technical Solution Architect

– Enterprise Business Process Designer

– Compiere/Adempiere ERP Suite Localization

– Color Manufacturing ERP Implementation

– Car Manufacturing ERP Implementation

Frameworks, Skills

Languages: C/C++, J2EE, Python, OWL, NodeJS.

Methodologies: IBM DAD, RUP, Agile, Scrum.

Modeling Tools: Enterprise Architect, Visual Paradigm, MySQL Workbench, MagicDraw (UML).

Databases: RedisDB, BerkleyDB, MySQL, Oracle Fusion Middleware, PostgreSQL, MongoDB, OpenTSDB, HBase,

Casandra, Hive.

Team working: Git, Bitbucket, Jira, IssueTracker, SVN, Microsoft Project.

Standards/Technology: BPEL, BPMN, RDF, TOSCA, UML, XML, JSON, CBOR, CoAP, Web services (SOAP,

RESTful), CEP, Semantic web, SOA.

Integration: Message Oriented Middleware (MOM), Queue-based Messaging, JMS, Topic, CoAP, Machine 2 Machine

(M2M), ActiveMQ, MQTT, OpenDDS, Pentaho Kettle. Apache Sqoop.

Development Environment: Eclipse, PyCharm, WebStorm, ProtegeOWL.

Frameworks: OpenStack, WSO2, OpenHAB, Spring MVC, Twisted, SedonaDev, Cloudera Hadoop, YARN, Apache

Tez, WEKA, Apache ActiveMQ.

Research Publications

• Contribution to Standards/Protocols:

– Soheil Qanbari, Samira Mahdizadeh, Negar Behinaein, Rabee Rahimzadeh and Schahram
Dustdar, Diameter of Things (DoT): A Protocol for Real-time Telemetry of IoT
Applications, Internet Engineering Task Force (IETF). Draft submission!

• Conference Proceedings:
2015

– Soheil Qanbari, Samim Pezeshki, Rozita Raisi, Samira Mahdizadeh, Rabee Rahim zadeh,
Negar Behinaein, Fada Mahmoudi, Shiva Ayoubzadeh, Parham Fazlali, Keyvan Roshani,
Azalia Yaghini, Mozhdeh Amiri, Ashkan Farivarmoheb, Arash Zamani, and Schahram
Dustdar, IoT Design Patterns: Computational Constructs to Design, Build and
Engineer Edge Applications, IEEE International Conference on Internet-of-Things Design
and Implementation (IoTDI 2016), April 4-8, Berlin, Germany. In review.

– Soheil Qanbari, Samira Mahdizadeh, Rabee Rahimzadeh, Negar Behinaein, and Schahram
Dustdar, Diameter of Things (DoT): A Protocol for Real-time Telemetry of IoT
Applications, 12th International Conference on Economics of Grids, Clouds, Systems, and
Service (GECON 2015), (GECON-Conf, Cluj-Napoca, Romania, 15-17 September.

– Soheil Qanbari, Ashkan Farivarmoheb, Parham Fazlali, Samira Mahdizadeh and Schahram
Dustdar, Telemetry for Elastic Data (TED): Middleware for MapReduce Job
Metering and Rating, The 9th IEEE International Conference on Big Data Science and
Engineering (BigDataSE) (IEEE BigDataSE 2015), Helsinki, Finland, 20-22 August, 2015.

Research Publications (cont’d)

– Soheil Qanbari, Negar Behinaein, Rabee Rahimzadeh and Schahram Dustdar, Gatica:
Linked Sensed Data Enrichment and Analytics Middleware for IoT Gateways,
IEEE International Conference on Future Internet of Things and Cloud (IEEE FiCloud 2015),
August 24-26, 2015, Rome, Italy.

– Soheil Qanbari, Navid Rekabsaz and Schahram Dustdar, Open Government Data as a
Service (GoDaaS): Big Data Platform for Mobile App Developers, IEEE
International Conference on Open and Big Data (IEEE OBD 2015), August 24-26, 2015,
Rome, Italy.

2014

– Soheil Qanbari, Samira Mahdi Zadeh, Soroush Vedaei and Schahram Dustdar. CloudMan:
A Platform for Portable Cloud Manufacturing Services, 2014 IEEE International
Conference on BigData (IEEE BigData 2014), 27-30 Oct, 2014, Washington DC, United
States.

– Soheil Qanbari, Vahid Sebtoo, Schahram Dustdar. Cloud Resources-Events-Agents
Model: Towards TOSCA-based Applications, Third European Conference on
Service-Oriented and Cloud Computing (ESOCC 2014), 2-4 Sept, 2014, Manchester, United
Kingdom.

– Soheil Qanbari, Fei Li, Schahram Dustdar, Tian-Shyr Dai. Cloud Asset Pricing Tree
(CAPT): Elastic Economic Model for Cloud Service Providers, 4th International
Conference on Cloud Computing and Services Science (CLOSER 2014), 3-5 April, 2014,
Barcelona, Spain. Best student paper award!

– Dustdar S., Voegler M., Sehic S., Qanbari S., Nastic S., Truong H.-L. (2014). The Internet
of Things Meets Cloud Computing in Smart Cities. Bridges, Vol. 41, (invited).

2013

– Li F., Vgler M., Sehic S., Qanbari S., Truong H.-L., Nastic S., Dustdar S. (2013). IoT PaaS:
Intelligent IT infrastructure for smart cities. in: Smart City - Viennese Expertise based
on Science and Research, Schmid (publisher), Vienna, (invited), ISBN: 978-3-900607-51-7.

– Dustdar S., Li F., Truong H.-L., Sehic S., Nastic S., Qanbari S., Voegler M., Claessens M.
(2013). Green Software Services: From Requirements to Business Models (keynote
with invited paper). 2nd International Workshop on Green and Sustainable Software
(GREENS 2013) in conjunction with ICSE 2013, May 18-26, 2013 San Francisco, CA, USA.

• Journal Articles:

– Soheil Qanbari, Fei Li, and Schahram Dustdar. Toward Portable Cloud Manufacturing
Services, Internet Computing, IEEE, vol. 18, no. 6, pp.77-80, 2014.

– Fei Li, Michael Voegler, Sanjin Sehic, Soheil Qanbari, Stefan Nastic, Hong-Linh Truong, and
Schahram Dustdar, Web-Scale Service Delivery for Smart Cities, Internet Computing,
IEEE, vol. 17, no. 4, pp.78-83, 2013.

• Book Chapters:

– Fei Li, Soheil Qanbari, Michael Voegler and Schahram Dustdar, ”Constructing green
software services: From service models to cloud-based architecture,” in Green in
Software Engineering, (invited) : Springer International Publishing Switzerland, 2014.

Research Publications (cont’d)

– Fei Li, Michael Voegler, Sanjin Sehic, Soheil Qanbari, Hong-Linh Truong, Stefan Nastic,
Schahram Dustdar, ”IoT PaaS: Intelligente IT-Infrastruktur fuer Smart Cities”, in:
”smart city - Wiener Know-How aus Wissenschaft und Forschung”, Schmid Verlag, Wien,
2012, (invited), ISBN: 978-3-900607-50-0, 191-198.

Language Proficiency

Persian: Mother tongue; English: Level C2; German: Level B1; Arabic: Level A2

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Prior Publications
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Scientific Contributions
	Structure of the Work

	Background
	Cloud Computing
	Cyber-physical Systems
	Business Modeling
	Cloud Manufacturing
	Open Government Data
	TOSCA

	IoT Business Models
	Open Government Data
	Introduction
	Related work
	Government Data Compute Units (DCU)
	Stakeholders in GoDaaS
	API Requirements for GoDaaS
	GoDaaS Architecture
	GoDaaS Business Models
	Conclusion and Outlook

	Cloud Manufacturing
	Introduction
	Portable Cloud Manufacturing Services
	TOSCA-based Bill of Manufacturing Services
	Stakeholders in CloudMan
	API Requirements for CloudMan
	CloudMan Platform Architecture
	CloudMan Platform Data Architecture
	Related work
	Conclusion

	Linked Sensor Data
	Introduction
	The Utility of Sensed Data
	IoT Gateways: Terms & Preliminaries
	Gatica Middleware Architecture
	Related Work
	Conclusion

	IoT Design Patterns
	IoT Computational Constructs
	Introduction
	Pattern Language Conventions
	IoT Design Patterns
	Edge Provisioning Pattern
	Edge Code Deployment Pattern
	Edge Orchestration Pattern
	Edge Footprint Messaging Pattern
	Edge In-Memory Data Retrieval Pattern
	In-Device Data Preprocessing Pattern
	Edge Diameter of Things (DoT) Pattern
	Edge Wearable Façade Pattern
	Related Work
	Conclusion

	Micro Telemetry
	Telemetry of Elastic Data
	Introduction
	Resource Consumption Metering Requirements
	TED Framework Architecture
	Model Evaluation
	Related Work
	Conclusion

	Diameter of Things
	Introduction
	The Utility of Diameter
	DoT Preliminaries & Terms
	DoT Architecture Models
	DoT-based IoT Application Overview
	DoT Interrogations
	DoT Transaction Model
	DoT Command Messages
	Diameter Extended Commands
	DoT Attribute-Value Pairs (AVPs)
	DoT Mandatory AVPs
	DoT State Machines
	Related Work
	Conclusion

	Conclusions
	Review of Contributions
	Future Research Directions

	Bibliography
	Curriculum Vitae

