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Abstract

Object detection is an important problem in the field of computer vision. The main task of object
detection is to locate certain objects in image sequences or videos in terms of image coordinator
and an estimated scale. This work describes a discriminatively formulated object detection scheme
which extracts features from a training set and learns a discriminative classifier to recognize
instances of an object category. The feature types, which are also known as object representations,
are a key factor to affect the performance and accuracy of an object detection system, thus the
choice of features or feature design remain an important research field. Most state-of-the-art object
detection systems use features from intensity images. However, developments in sensing
technology in the last five years enable inexpensive ways of acquiring depth data, which provide
additional cues for object detection, such as scale, depth ordering and foreground-background
segmentation. In this work we propose the detection of humans from the combined modalities of
intensity and depth, the latter obtained from a passive stereo setup. In order to derive informative
features from depth, we use a filtering and interpolation mechanism which substantially addresses
the missing data and noise problems which are commonly present in stereo depth data.
Furthermore, we propose a scale estimation and validation scheme which successfully suppresses
inconsistent detection responses not matching the local depth data. We adopt the ACF strategy of
combining multiple features in a single detector. We use a set of features (gradient magnitude and
gradient histogram) extracted from the depth data in addition to features from the intensity images
to train our RGBD detectors. The system developed is capable to accommodate multiple object
classes. The system is tested on two scenarios containing crowded and cluttered situations. We
show that using additional features from the depth data improves the detection accuracy,
especially in presence of clutter and occlusions.



Kurzfassung

Objekterkennung ist ein wichtiges Problem auf dem Gebiet der Computer Vision. Die
Hauptaufgabe der Objekterkennung ist es, bestimmte Objekte in Bildsequenzen oder Videos in
Bezug auf Bildkoordinator und geschitzten Umfang (Scale) zu lokalisieren. Diese Arbeit
beschreibt ein diskriminativ formuliertes Objekterkennungssystem, das Merkmale aus einem
Trainingsset extrahiert und lernt, einen diskriminativen Klassifikator zu Instanzen -einer
Objektkategorie zu erkennen. Merkmale, die auch als Objektdarstellungen bekannt sind, sind ein
Schliisselfaktor, um die Performance und Genauigkeit eines Objekterkennungssystems zu
beeinflussen. Die Auswahl der Merkmale und deren Design sind ein wichtiges Forschungsfeld.
Die meisten State-of-the-Art- Objekterkennungssysteme verwenden Merkmale von
Intensitdtsbildern. Neue Entwicklungen der Sensortechnologie in den letzten fiinf Jahren
ermdglichen jedoch einen kostengiinstigen Erwerb von Tiefendaten, die zusitzliche visuelle
Hinweise zur Objekterkennung bieten, wie zum Beispiel Scale, Depth-Ordering und
Foreground-Background-Segmentierung. In dieser Arbeit schlagen wir die Erkennung von
Personen aus kombinierten Intensitéts- und Tiefendaten vor, wobei letztere aus einem passiven
Stereo-Setup erhalten werden. Um aussagekriftige Features aus Tiefendaten abzuleiten,
verwenden wir einen Filterungs- und Interpolationsmechanismus, der sich mit fehlenden Daten
und mit Noise-Problemen befasst, die gewdhnlich in Stereo-Tiefendaten vorkommen. Aulerdem
schlagen wir eine Schétzung von Scale-Daten und ein Validierungsschema vor, die erfolgreich
inkonsistente Erkennungsreaktionen unterdriicken, die nicht zu den lokalen Tiefendaten passen.
Wir tibernehmen hier die ACF-Strategie der Kombination mehrerer Merkmale in einem einzigen
Detektor. Wir verwenden eine Reihe von Merkmalen (Gradientenmagnitude und
Gradientenhistogramm), die aus den Tiefendaten extrahiert wurden, zusétzlich zu den Merkmale
aus den Intensitdtsbildern, um unsere RGBD Detektoren zu trainieren. Das entwickelte System ist
in der Lage, mehreren Objektklassen Rechnung zu tragen. Das System wurde fiir zwei Szenarien
getestet, ndmlich in Situationen mit Okklusion und Unordnung. Wir zeigen, dass die Verwendung
von zusitzlichen Merkmalen aus den Tiefendaten die Erkennungsgenauigkeit insbesonders in

uniibersichtlichen Situationen verbessert.
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Chapter 1
Introduction

Object detection in computer vision is the task of finding instances of objects in image sequences
or videos [66]. To differentiate the two very similar and close related terms object detection and
object recognition, object detection means to find the objects of a certain class, while object
recognition means to identify unknown objects and to label their classes [66], [55]. For example
one could imagine the picture of a kitchen scene. The object recognition problem can be
formulated as, which kind of furniture is in this scene and where is it? The answer can be, for
instance, a table in the middle and four chairs around the table. The object detection problem can
be formulated as, where are all the chairs? Object detection is related with the task of object
tracking by trying to recover the movement of individual objects across consecutive frames [54],
[34]. With the information of the object locations, the system may pursue them over time as they
move [54], [34].

Object detection has various application fields, varying from image retrieval, video
surveillance, robotics to automotive safety, and industrial machine vision [55].

There are many challenges for object detection due to the following ambiguities: illumination
effects (shadow, reflection), data noise, low resolution, and partial or full occlusions [36]. Another
challenging problem is that each object in the 3D world space can present countless forms in 2D
images as its position, pose, lighting conditions change [66], [55]. Figure 1.1 depicts some of the
difficulties in object detection. Irrelevant image parts may have similar appearance to the target

objects. Occlusion, reflection and shadow are contained in the scene.

1.1 Problem Definition

Learning based object detection considers the object detection problem in a statistical point of
view, and transforms it to the classification problem [86], [66].

The principle idea of the learning based approach is to form a classifier using a set of training
data, which is then used to classify new input data [66], [18]. For object detection problems,
objects are represented by their local features from small patches of the images describing small
patches of the images describing local pixel neighborhood [66]. Image patches are those small
windows of subimages taken from an image. The patches may overlap, which means that some
parts of the images are captured more than once. Each patch is marked as either belonging to the
foreground or to the background. Local patches are robust to appearance/shape variations and
occlusion because the object is represented by a set of subparts, therefore an occluded object can
still be recognized as long as some of its parts are recognized. The limited information of small

patches requires that the patches must be sufficiently variable and the amount of patches must be
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human-like objects, reflection, shadow occlusion accidental constellation of human-like shapes

Figure 1.1: A street scene illustrating some of the many difficulties encountered in visual

processing. Figure is from [6].

sufficiently large so that the ensemble of features preserves the specificity of the object class.
Probability theory provides a powerful framework for combining the partially ambiguous
information from individual patches together in a principled manner [85]. From these small
patches features are extracted and fed to the learning process, and finally a classifier is trained.

Depending on how the distribution of the image features are modelled, the learning based
approach can further be separated into two categories, generative or discriminative approaches
[85]. A generative model learns the joint probability distribution p(x,y), where x denotes the input,
i.e. the observed visual features, and y denotes the label, i.e. the presence of an object. A
discriminative model learns the conditional probability distribution p(y|x) - "the probability of y
(presence of an object) given x (observed visual features)". For the discriminative models, when
the conditional probability distribution p(y|x), the dependence of the unobserved variable y from
the observed variable x, is modelled, then y can be predicted based on the knowledge of x. For
generative models, the joint probability can be transformed to the conditional probability by Bayes
rule, modeling the probability of objects in presence of certain observed image features.

Generative and discriminative methods have complementary strengths and weaknesses. In
[85] it is concluded that although the discriminative learning has lower asymptotic error, a
generative classifier approaches its higher asymptotic error much faster. Recent research makes
effort to combine the two in the best way [47], [50], [61]. Nevertheless, in classification tasks
discriminative models can yield superior performance, and generally outperform the generative
models [50].

Most discriminative models require supervised learning [66], [18]. Ground truth is needed to
tell the system which image part is the foreground and which is the background, this is done by
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hand-labelling of annotations on images. The basic workflow of a discriminative object detection
system is typically as follows: features are extracted from local patches from both the positive and
negative training sets, methods from machine learning are applied for forming an implicitly
learned decision function, i.e. a classifier, for example Support Vector Machine (SVM) [66],
Random Forest [83], Neural Networks [89]. The trained classifier can thereafter be used to
discriminate the target object class from the background in a 2D image [66], [18], [41].

Features, also known as object representations, are a key factor to the accuracy and
performance of a discriminative system [15]. Considerable progress has been made focusing on
features, schemes are developed for feature design [12], statistical feature selection [86], and
sophisticated feature calculation [15].

Multiple types of features can be fused together because observation is made that even poorly
performing classifiers may be improved by complementing feature characteristics [21], [66].
Overcomplete object representations and enriched features (e.g. multiple types of features, fine
sampling scales, selection from feature sets many times larger than the image space) have proven
to improve the detection accuracy dramatically in comparison with features with complete basis
and of single types [66], [86], [20].

Not only different types but also different modalities of features, such as intensity, motion,
stereo, can be combined together to achieve an improved accuracy [70]. Due to the increased
popularity of inexpensive RGBD sensors, there is increased interest among researchers to extract
meaningful features from the depth data, to exploit complementary information to the RGB data
and provide additional cues for object detection [70], [41], [96], [79], [46], [11], [36]. In this work
an object detection scheme is proposed which uses the combination of intensity and depth

information for object detection.

1.2 Related Literature

In the last two decades discriminative object detection has been an active research field and has
undergone a breathtaking progress [66], [86], [20], [12]. In the year 2000 Papageorgiou et al.
presented a trainable system for object detection, using an overcomplete dictionary of
Haar-wavelets as object features, which effectively defines a descriptive model for an object class
and gains a high detection rate [66]. Partly motivated by Papageorgiou et al. Paul Viola and
Michael Jones [86] proposed the first real time object detection framework. Since then, false
positive rates have decreased by two orders of magnitude for common object recognition
benchmarks such as the PASCAL Visual Object Recognition Challenge [20].

Gradient-based features are widely studied and used in modern detectors for intensity images
due to their invariance to illumination. In addition, gradients are descriptive for many object
classes, for example humans have a distinctive silhouette shape which majorly comprises vertical
gradients. Papageorgiou et al. use the Haar-wavelet transform to compute local, oriented,
multiscale differences between adjacent regions. The wavelet features not only preserve all the
information from the original image, but also encode the intensity differences at different scales.
The uniform areas are encoded as zero, and the strong differences of intensities, or boundaries, are
encoded as non-zero. A denser (redundant) transform, the quadruple density wavelet transform, is
used to produce an overcomplete dictionary of features [66]. SIFT follows a similar line of
thought by being a sparse representation of local gradient orientation histograms, a highly



distinctive local feature which is invariant to image scale and rotation and is an effective

descriptor for objects under partial occlusion [56]. SIFT has proved to be successful in object

recognition and object detection [56], [63], [28]. Variations and extensions of SIFT are developed,
such as PCA-SIFT [40], Gradient Location and Orientation Histogram (GLOH) [62], and

Histogram of Oriented Gradients (HOG) [12]. In contrast to SIFT, HOG is a dense representation

of local gradient orientation histograms on uniformly spaced cells with local contrast

normalization [12]. Variations of HOG are for example HOG-LBP [88], GF-HOG [38], gradient
histogram [15]. Zhu et al. propose a fast way of computing HOG features using integral images

[101]. HOG is extensively applied in object detection, especially in human detection [12], [15],

[20], [87], [101].

Regarding the learning algorithms for discriminative models, SVM is a popular classifier
widely used in various object detection systems [66], [41], [70]. AdaBoost is able to select a small
set of critical features from a large feature pool [100], [81], which is essential for rapid
computation. Viola and Jones design a finer feature selection scheme based on AdaBoost, i.e. a
cascade structure in the boosting process to reject the negative instances at an early stage [86]. Wu
et al. propose a forward feature selection scheme which further improves the cascade learning
algorithm of Viola and Jones [94]. Other widely used learning algorithms for object detection
systems are discriminant analysis [45], [23], [99], Random Forest [30], and Neural Networks [71],
[8].

Different sets of features can be used to train different classifiers separately, or be aggregated
to train a single classifier. Researchers have proposed various ways of combining features and
classifiers, from low-level fusion of joint feature space to high-level fusion at the classifier-level
[21], [70], [41]:

e  Parallel combination of classifiers: Classifiers (often of the same type) trained with different
feature sets are combined together. The features sets can be subsets of an original feature set,
with reduced dimensionality.

e  Stacked combination of classifiers: Classifiers of different types (e.g. Neural Networks,
nearest neighbour, or parametric decision rule) trained with a same feature set are combined
together.

e  Combination of weak classifiers: Simple classifiers are trained and combined together.
Approaches for this purpose are for example bootstrapping (bagging), boosting and random
subspaces. The ACF framework uses bootstapping and boosting, as introduced in Chapter 2.

e  Joint feature space: Different kinds of features are combined together to form a descriptive
object representation, for example the human detector proposed by Dalal et al. combines
HOG based static appearance descriptor with motion based descriptor [13].

Features from other modalities, e.g. depth, motion, can be incorporated into detectors at
different levels [18], [70]. On module-level, the additional cues can help to reconstruct the scene
geometry or generate regions of interest for the subsequent classification step [41]. On
feature-level the image features from depth or motion are fused with features from intensity, the
classifier is learned within this joint feature space [20], [16]. On classifier-level features from each
modality train a corresponding classifier respectively, in the detection step the outputs of the
classifiers are combined together to make a final decision [70], [41]. In terms of detectors with the
depth cue, HOG and its variations (in combination with other types of features) are the most
popular features for such systems [41], [70], [96], [46], [11].



1.3 Aim and Contributions

The objective of this work is the reliable detection of humans from RGB and depth images in near

real-time. Our work includes:

e  We design a discriminatively formulated object detection scheme which enables large sets of
image n-tuples (RGB+disparity, but even for the more general case, such as
RGBD-thermal-motion modalities) to be imported into the system and represented in
variables compatible with the existing data representations.

e  The processing of the depth data includes data enhancement, annotation, feature extraction,
and scale prior estimation. The RGB and depth data are used to support each other, for
example the RGB data is used to guide the inpainting of the depth data to preserve the edges
of objects, while the depth features are fed to the system in addition to the RGB features in
order to enrich the feature pool and provide complementary information.

o The scene information contained in the depth maps can be further exploited in means of
estimating a scale prior for the objects. Detected objects whose sizes do not fall into a certain
range according to the scale prior will be rejected. Thus we use the depth data to improve the
detection result in two ways, the complementary information from the depth maps shall
increase true positives, and the scale prior shall reduce false negatives.

e We design two types of detectors which perform the feature fusion at different levels, one
applies a low-level fusion of the RGB features and the depth features to form a joint feature
space, the other trains a RGB classifier and a depth classifier respectively and combine the
detection results together. We evaluate the two RGBD detectors on two scenarios with
different variable settings, both detectors achieve improved accuracy in presence of clutter,
occlusions and across a wide range of appearance/pose variations in comparison with the
RGB detector.

e Common public datasets such as the Daimler Dataset [33] was of very poor quality (in
comparison with the INRIA Dataset [12]) focusing on remote, blurred pedestrians as well as
in automotive conditions, therefore, an own training and testing dataset had to be created.

e Evaluation was a substantial work, given the large space of possible explorations
(representation, fusion type, etc.).

We consider our contribution to be a successful experiment of incorporating the depth cues
into conventional detectors which are based on intensity images, and show the potential of new
detectors using multiple sensory inputs.

In order to demonstrate the enhanced representational power of combined RGB-D features,
we use the fast ACF-features and classification methods from P.Dollar [20], [17] as a basis. This
framework does not provide means to add additional modalities, therefore we extended the image
I/O and feature computation functions to make them capable of fast RGB-D based classification.

1.4 Structure

The chapters of this diploma thesis are arranged as follows. Chapter 2 introduces the theoretical
background and important concepts for a discriminative object detection system. Chapter 3
describes the data sets used in our work. Chapter 4 explains the implementation of the RGBD
detector. Chapter 5 describes the test cases and the experimental results, including a detailed



description of the evaluation methodology. Chapter 6 gives a conclusion of the main results of this
thesis and discusses ideas for future work.

1.5 Summary

In this chapter we give an introduction to the challenges of object detection. We propose a novel
multi-modality detector to address some of these difficulties, by integrating additional visual cues
into the traditional intensity based detectors. We conduct a literature review of popular features
and learning algorithms for state-of-the-art discriminative object detection systems, and methods
for combining features from different modalities. We further explain our aim and contributions,
followed by a description of the structure of this work.



Chapter 2
Theoretical Background

This chapter gives an introduction of the theoretical background and important concepts for
designing a discriminative object detection system. As stated by Piotr Dollar, the learning
algorithm and the feature representation are the two key factors to influence the performance of
object detection systems [15]. In the following sections more details on these two aspects will be
introduced.

This chapter is arranged as follows: Section 2.1 describes the feature types used in our system.
Section 2.2 introduces the fast feature pyramid computation method. Section 2.3 gives a
description of the learning algorithms AdaBoost and Random Forest. Section 2.4 gives a summary

of this chapter.

2.1 Representations and Feature Types

This section introduces the features used in our system. Features, or object representations, are the
fundamental concept in designing a discriminative object detection system [66], [15]. Descriptors
from different representational concepts have varying degrees of specificity and invariance [10].
As shown in Figure 2.1, specificity and invariance are related in an inverse manner. On the right
end of the graph are features based on appearance models, such as image bitmaps. These features
are highly specific but sensitive to noise, view, and shape variations. The left end of the graph
exhibits features based on aggregated statistics, such as histograms. These features are highly
invariant but typically lack the desired extent of specificity. Simultaneous increase of specificity

and invariance, as well as the computational efficiency have been a focus of substantial research

[22], [2].
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Figure 2.1: Descriptors varying in the degrees of specificity and invariance. Figure is from [5].



2.1.1 The Pixel and Color Representation

A pixel representation in terms of spatial scale is the most local feature which does not capture the
mid- and high-level features of the object. For example, image structures like boundaries and
edges can not be observed by single pixels. However, the pixel representation is nevertheless used
in various object detection systems where local features are needed, for example the face detection
[66].

A pixel can either be represented as a grayscale intensity value, or as color channels. The
color channels contain much richer information than the grayscale values. RGB, LUV, LAB, XYZ,
YUYV are the most common color spaces for color coding, and there are also many other color
spaces for specific purposes, for example YIQ, HSV and HIS, GLHS (generalized LHS), and so
on [98]. The RGB color space is the default color space for most image formats, and is widely
used in color image processing, because other color spaces can be obtained from transformation
from RGB. Using the RGB color space has the advantage of requiring no color space conversion.
However, different color models are carefully chosen by researchers for different applications
[98].

In our work the CIELUV color channels are part of our feature set, because the CIELUV
color model decouples luminosity from color, and thus achieves improved invariance with regard
to brightness variations [32], [82]. The CIELUV color space was specifically designed for the
purpose of perceptual uniformity, which means the perceptual difference between any two colors,
in other words the appearance of two colors observed by humans, is represented by the Euclidean
distance [32]. The luminance (L) and the chroma (uv) are obtained through a non-linear mapping
of the XYZ coordinates [82].

The CIELUYV color space is widely used for applications in computer graphics [48]. In object
detection, it is often used for skin detection and face detection [9], [S1], [66]. It is found that the
RGB color space is not suitable for constructing accurate skin color models due to the high
correlation between the three components, instead the CIELUV model is often used for the skin
color modelling [95]. For example, Lestideau et al. [51] design a face detection algorithm with
CIELUYV as their predetermined colour space. Cai et al. [9] point out that despite the difference in
appearance of people's skin colors, the major difference lies in the intensity rather than in color
itself. They use UV values of the CIELUV color space to model the skin colors from more than
five hundred images of human skins of different races, while the luminance value is abandoned.
They find that the distribution of skin color can be modeled by a Gaussian distribution.

2.1.2 Image Gradients
Dollar et al. [18] state in their survey, that substantial progress of pedestrian detection has been
made by the adoption of gradient-based features. Therefore we use two gradient-based features,
normalized gradient magnitude and histogram of oriented gradients in our system.

The image gradient is a fundamental concept in computer vision, it is an important image
feature for object detection algorithms [56], [12]. The image gradient is computed as a 2D vector
of image derivatives in the x and the y directions:

vi=| LA @)
ox Oy



The image gradients measure how the pixel values of the image are changing. The direction
of a gradient indicates the direction in which the image is changing, and the magnitude of a
gradient indicates how rapidly the image is changing in this direction.

One of the most common uses of image gradients is edge detection [57]. The gradient
magnitude is computed at each pixel of an image, after setting threshold the pixels which have the
largest gradient magnitudes are detected as possible edge points. The gradient direction and
gradient magnitude can further help to do thinning of the edges or trace the edges in the direction
perpendicular to the gradient directions. The image gradient is also used in various algorithms for
computer vision, for example feature matching [56], corner detection methods [43], [26]
background subtraction [39], the watershed method for image segmentation [78], etc.

Image gradients are used in our system because, firstly, they help to extract the high
frequency information from an image, i.e., the contours, boundaries and shapes, as explained in
the above paragraph. Secondly, image gradients are more illumination invariant than color values,
because the pixels may have completely different values due to different lighting conditions, while
the image gradients, encoded by the pixel differences rather than the pixel values themselves, are
more robust to lighting and camera changes. Figure 2.2 shows that the gradient-based operators
have the property of illumination invariance and the ability to help capture the high frequency

information.

Figure 2.2: The same cup under different illumination has different local pixel intensities,
however, the edge detector yields similar contour shapes. The edge images are computed by
Matlab Sobel edge detector.

The image gradient is also a basic element for designing other robust feature descriptors. For
example, the Scale Invariant Feature Transform (SIFT) proposed by Lowe [56] is designed to
detect and describe local features in images, and achieves scale invariance, rotation invariance and
affine invariance. The Histograms of Oriented Gradient (HOG) is a basic underlying concept of
SIFT, which has proven to be one of the most powerful features in object detection [12], [15], [20],
[87], [101]. We introduce more details on HOG in the next section.



2.1.3 HOG and the Integral Histogram

Histogram of Oriented Gradients (HOG) is proposed by Navneet Dalal and Bill Triggs in the year
2005. HOG is a feature descriptor similar to SIFT, with the basic idea that the distribution of local
gradients can well describe the object appearance. To obtain the HOG features of an image, the
image is tiled into small grids of the same size, called cells. The gradient of each pixel within a
cell is computed, and a histogram of the gradient orientations of the pixels is formed. The gradient
orientation of each pixel makes a vote to the corresponding bin of the histogram, and each vote is
weighted by the gradient magnitude of that pixel. The bins of the histograms are spaced over
either 0-180 or 0-360 degrees. Dalal and Triggs find that it works best for the human detection
task when the gradient orientations are quantized into N bins evenly spaced over 0-180 degrees.
The feature vector is obtained by concatenating all these histograms. To achieve a better accuracy
against the local illumination variations or image contrasts, cells are grouped into larger regions,
called blocks, and local contrast normalization is performed over all the cells belonging to the
same block, by a measure of intensity values of that block. The blocks are overlapping, so that a
cell is normalized differently when it belongs to different blocks, and this improves the
performance [12]. Figure 2.3 illustrates the principle of the HOG feature extraction.

Input image Overlapping Blocks HOG
- g

Cells

Figure 2.3: HOG feature extraction. The image is divided into overlapping blocks, while each
block consists of a set of cells of the same size. The image gradients within each cell form a
histogram of gradient orientations. The bins of each histogram are concatenated into a 1 D feature
vector. Contrast normalization is performed over the blocks. The feature image is from [77], the

illustration of the feature extraction is adapted from [29].

HOG outperforms the wavelet feature, and other existing edge and gradient based descriptors
[12]. It differs from the sparse features like SIFT in a way that it is computed over dense grids and
uses contrast normalization to achieve the local invariance to geometric and photometric
transformations. The first advantage of HOG is that it uses fine-scale gradients, which are
especially descriptive for the image information. Dalal and Triggs state that smoothing of the
image before the gradient calculation will affect the effectiveness of the resulting HOG feature,
because the fine-scale edges represent the most of the image information. The second advantage of
HOG is the local invariance to geometric and photometric transformations, which makes it a
robust descriptor for shape-based objects, and particularly suited for human detection, because it
can ignore the body movements of the pedestrians as long as they maintain roughly upright poses.
In the past decade, HOG has been a popular descriptor for the researchers to train the human
models in their human detection algorithms [68], [101], [65].
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2.1.4 Overcomplete Representations and Feature Combination

In the last decade enriched features, for example overcomplete representations and multiple
feature types, are favored by researchers in object detection, because an enriched feature set
improves the detection accuracy in comparison with representations of complete basis and single
feature types [86], [66], [20].

In signal processing, the signal representation often uses overcomplete bases [53]. The
complete representation uses a unique combination of complete bases which have no linear
dependence between each other, while the overcomplete representation uses a combination of a
subset of the available bases with the number of bases exceeding the dimensionality of the input
signal [53]. There are several advantages offered by overcomplete bases: Firstly, it has more
flexibility in capturing the structure of the data, because each basis function can capture certain
structure in the data. Secondly, it has more robustness against noise, because a complete basis can
only describe the data when no noise is introduced. With the presence of noise more bases are
needed to express the property of the data. Overcomplete bases can be obtained by combining a
set of complete bases, or by adding basis functions to an existing complete basis [53].

In image processing, the amount of complete bases equals the image dimension [86], [66].
When the number of extracted features is greater than the image dimension, they are called
overcomplete features, or overcomplete dictionaries [86], [66]. Overcomplete features can be
obtained by oversampling the scale, orientation and other kernel properties of multi-resolution or
multi-orientation decomposition operations like Fourier, wavelet, and Gabor [20]. For example, in
the HOG computation, using overlapping blocks is a method to obtain overcomplete features.
Overcomplete features have been used in various research areas of visual computing. For example,
the object detection system by Viola and Jones [86] computes 180000 thousand features from each
26 x 26 image. Lienhart et al. [54] use a set of rotated Haar-like features, which produces up to
117941 features from each 24 x 24 window. Because using the overcomplete bases can provide
more stable and more robust signal representations, in image processing such enriched
representations using an overcomplete set of image features can achieve robustness in encoding
the image information [20]. Moreover, various types of features can be combined to form an
enriched object representation [20], for example research has been done to combine HOG with
two to five other features which contain complementary information (e.g. Haar-like features,
motion features) [18]. Studies have shown that in a combination of features or classifiers, even
poorly performing features or classifiers may contain valuable information to improve the system
performance [21], [66].

An overcomplete feature set contains redundancy. How to select the best set of features from
the great amount of feature candidates is a big challenge [20]. AdaBoost has proven to be an
efficient solution for feature selection [86], [75]. We will study the AdaBoost algorithm in Section
2.3.

2.2 Fast Feature Pyramid Computation

An image pyramid is a collection of images of gradually reduced resolutions [20]. An image
pyramid is necessary because the same objects contained in a set of images may appear in
different sizes, and objects of different sizes contain different amount of features. For example, if a
pedestrian is captured at a far distance, he/she appears as a small object in the image, and the most
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significant feature is his/her contour. On the contrary, if he/she is captured at a near distance, the
object in the image reveals more details like neck, waist, clothes textures, etc.

The image pyramid is constructed by successively downsampling the images at different
scales from a single original image. There are two types of image pyramids commonly used in
image processing, the Gaussian pyramid, which applies the Gaussian blur to smooth and
downsample the images, and the Laplacian pyramid, which applies the Laplacian transform to
smooth the images [1]. A feature pyramid is composed of a set of multi-scale image features
extracted from the images of an image pyramid. Multi-scale image features are used for detecting
objects of various sizes in the images. During the detection process, a sliding window at each scale
slides over the images as a template of features to detect objects of various sizes.

Conventionally, a feature pyramid is obtained by first constructing an image pyramid, and
then computing the feature images at the corresponding scales. Dollar et al. propose a method for
a fast generation of feature pyramids by approximating feature images via extrapolation from
existing feature images at nearby scales [20]. The method is based on the phenomenon that natural
images (images captured in natural environment, containing trees, rocks, etc.) have fractal
statistical characteristics and are scale invariant, meaning that the prominent image structures and
the underlying patterns of the natural images are preserved during resampling process [20].
According to the research on the statistical characterization of natural images [72], [73], Dollar et
al. discover that the relationship between feature images of different scales follows a power law,
and they propose the following formula for the approximation of the feature images across
different scales:

C, ~R(C,s) s (2.2)

Where C denotes a feature image at the original scale, C_ denotes a feature image at scale s,
R(C,s)denotes C resampled at scale s, Q denotes a feature type, and each type has its own A.

The above-mentioned formula is experimented and verified with different feature types (The
computation of A and other details see [20]). However, there are some exceptions where the above
formula is not suited for the approximation of the feature images, for example upsampled images,
image regions or images of nearly the same intensity, or sparse feature images where a large

number of features have the value of zero [20].

Approximated
— Levels

«fpmm Real Levels

Figure 2.4: Structure of the feature pyramid.
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A fast feature pyramid can be constructed using the approximation method above. For example,
one can first compute several real feature images at one scale per octave, and approximate the
intermediate scales between the octaves by the nearest real feature image. An octave is a term to
denote the interval between the scales, increasing the scale by one octave means the image
resolution is reduced to 1/2. Hence the feature images at scale 1, 1/2, 1/4, 1/8... are computed from
the images downsampled from the original image, and the rest of the feature images in the
pyramid are computed by the fast approximation. Figure 2.4 shows the basic structure of an
approximated feature pyramid. Using the fast feature pyramid for detection systems makes only
sacrifice on the detection accuracy (see Figure 2.1 in Section 2.1), but saves the computational
load by the construction of the feature pyramid, and hence increases the speed of the whole
detection system.

2.3 AdaBoost and Random Forest

Random Forest is developed by Leo Breiman and Adele Cutler. The definition given by Breiman
et al. [30] is as follows:

" Definition: A random forest is a classifier consisting of a collection of tree-structured classifiers
{h(x,®,), k=1, ...} where the {©, } are independent identically distributed random vectors and each

tree casts a unit vote for the most popular class at input x."

A forest comprises of a set of decision trees. A decision tree is a non-parametric classification
model, which uses a directed acyclic graph, i.e. tree, for making decisions [74]. The classification
of an example starts from the root node and goes down to the subsequent nodes. There is a test on
a particular attribute at each node to determine to which child the decision goes. The children of
each node are mutually distinct and exhaustive, and there is exactly one path from the root to each
node. Each leaf of the tree bears a class label, when the decision path reaches a leaf, the class label
of that leaf is assigned to the example.

If each node of a tree has exactly two children, such a tree is called a binary tree. In object
detection, the input for a binary decision tree is a feature vector v e R" of an example, each node

represents a split function £, (v): R” — R with a threshold ¢, € R to make a binary split. P (c),

the decision at node #, is a histogram of example labels, which is used to calculate the purity of
the node and to evaluate the split [42]. Algorithm 2.1 shows the algorithm for training binary trees.

A forest is an ensemble of a large number (a few hundred to several thousand) of decision
trees. Such complex models have large variance. A random forest improves generalization through
bagging (random selection of samples ) and randomised tree learning (random selection of
features) [42], [30], [35].

Bootstrap aggregating, also called bagging, randomly selects subsets of examples with
replacement from the training set. Trees are trained using these subsets of examples. To further
reduce the correlation of the trees, random selection of subsets of features is performed at each
node to build the randomised trees [42], [30], [35]. Algorithm 2.2 shows the algorithm for training
a Random Forest [83].
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In the classification stage, an input feature vector v is running down all T trees in the forest.

Each individual tree t makes a decision P(c|v) . The final decision P(c|v) is made by averaging

the decisions of all the trees

1 T
P(c|v) =;ZE(c V) 23)
t=1

or by majority voting.

Boosting is a machine learning method of combining many rough rules of thumb (weak
classifiers) to create a single highly accurate prediction rule (the strong classifier), based on the
observation that weak classifiers that perform just slightly better than random guessing are much
easier to find than a single strong classifier. Multiple rounds of learning are conducted to learn the
weak classifiers iteratively, a final strong learner is the combination of all the weak classifiers
from each round [75].

AdaBoost is a popular boosting algorithm [83]. The fundamental idea of AdaBoost is to
assign weights to the training examples, the weights are initially equal, but after each round of
learning, the misclassified examples are assigned larger weights than those examples which are
correctly classified, so that in later rounds the classifiers can focus on the hard examples [75].
Algorithm 2.3 shows the algorithm of AdaBoost. AdaBoost is widely used in object detection, for
example in the groundbreaking work of Viola and Jones [83], [86], [20]. AdaBoost is able to select
critical features from a large feature pool [100], [81], for example in the object detection system
by Viola and Jones, each round of boosting selects one feature from the 180000 potential features,
the vast majority of features are discarded so that the computation time is decreased [86].

AdaBoost can be used to train the Random Forest with the decision trees as weak learners
[83].

Algorithm 2.1: Binary tree training

Input:
S: trainig samples, S=x; (i=1,2,...,n), X, € R* with labels vy, €{£l}

Variables:
k: feature index, ¢: threshold value
For each node:
1. fork=1K
fort=1:T
¢t = a random value in range ( min(S(k)), max(S(k)) )
Calculate the impurity of the node based on ¢.
end for
end for
2. Select the best feature with the lowest impurity. Store the corresponding k and # for
the current node.

4. Split the samples based on ¢, let.S, feed the left child, S feed the right child.

5. If the node impurity is small enough or the leaf node is reached
Store the posterior probability distribution for the current node.
Return.
Else
Continue.
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Algorithm 2.2: Random Forest algorithm [83]

Input: S: trainig samples
f: number of input instances to be used at each of the tree
B: number of generated trees in random forest

1. E is empty

2. forb=1to B

3. S, = bootstrapSample(S)

4. C, = BuildRandomTreeClassifiers(.S, /)
5. E=EVU|C,|

6. Next b

7. Return E

Algorithm 2.3: AdaBoost

Input:
Sample images S: (x,,),) ... (x,,»,), where y, €{tl}
Weights of the samples: w;, w,, ..., w,
s . 1 1
1. Initialize the weights: w1, _, =—, w1, _, =—
oon i n,

where 1, _ . is the indicator function. 7, is the number of positive samples and
1

n, is the number of negative samples.

2. fort=1to T
2
3. Normalize the weights Wl.t =— L
W
j=1 J
4, For each feature £, train a classifier 4, , apply the classifier to all training samples

and calculate the classification error &, = Zi wl{y, #h (x,)}

5. Store the classifier ht with the lowest classification error &,, set the classifier

l-¢,

weight «, = %log

¢

o

Update the sample weights w'™ = w! exp{~a,y,h,(x,)}/ Z,, where Z, is
chosen so that the weights sum to one.

7. Output: H(x) = ZT: a,h,(x)

t=1

2.4 Summary

In this chapter we focus on two fundamental aspects of discriminative object detection systems,
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the feature representations and the learning algorithms. We introduce the feature types to be used
in our system. We explain the concept of using overcomplete representations and feature
combinations to improve detection accuracy. To compensate the performance loss due to the
increased number of features, we use a fast feature pyramid computation method in our system.
We also give a description of the learning method in our system, AdaBoost, binary tree and

Random Forest.
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Chapter 3
Datasets

We use four datasets in our work: AIT-Datasetl, AIT-Dataset2, the NYU-Depth V2 Dataset [80],
and the INRIA Dataset [12].

AlT-Dataset] and AIT-Dataset2 are obtained from an in-house developed sensor from the
Austrian Institute of Technology (Figure 3.1). The equipment sets up three monochrome cameras
in a rig, with a baseline of 0.4m between the two cameras at the two ends. The sensor has a
resolution of 1280%1024 pixels, resampled to 1150x%920. Calibration of the cameras are carried
out offline. The census-based stereo matching algorithm computes the stereo maps which are
congruent to the rectified intensity images [4].

Figure 3.1: The in-house developed sensor from the Austrian Institute of Technology.

The stereo maps from the sensor are converted to depth maps by the following fomula

7z - % 3.1)

Where f denotes the focal length of the camera, B denotes the baseline, D denotes the disparity
value at a pixel, Z denotes the corresponding depth value at the same pixel.

The stereo maps contain unknown values in some areas (shown as holes in the images),

because the stereo matching algorithm fails to find the corresponding pixels of a pair of images in
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these areas while performing the similarity comparison. Such areas which are challenging for the
stereo matching algorithm are, for example the textureless regions, or occlusions where pixels can
only be seen by one camera [4]. The depth maps converted from the stereo maps retain those holes.
In Chapter 4 we introduce two image inpainting methods, the Joint Bilateral Filter and the Partial
Differential Equation Systems, for the enhancement of the depth maps.

3.1 Dataset Description

This section gives a description of all the datasets used in our work. Important information of the
datasets includes: types of scenes, occlusion of the foreground objects, stationary or moving

camera, image amount, image resolution, etc.

(a) AIT-Datasetl

This dataset consists of 237 pairs of grayscale and depth images of an indoor scene. The objects in
the scene are ~20 people. The objects show various scales and poses. A majority of the objects are
densely cluttered and occluded. This dataset is split into two subsets, 121 pairs of the grayscale
and depth images are used as the training set, while the remaining 116 pairs of images are used as
the testing set. The images have a resolution of 900 x 720. Figure 3.2 shows a pair of example
images from the dataset.

Figure 3.2: Example images of AlT-Datasetl, the depth map in this example is inpainted by the
Joint Bilateral Filter (Chapter 4).

(b) AIT-Dataset2

This dataset consists of 177 pairs of grayscale and depth images of an outdoor scene, among
which 87 pairs are positive images containing the objects, and 90 pairs are negative images
containing only the backgrounds. The scenes are captured by a camera mounted on a vehicle. The
scene contains 0-3 people with no occlusion. Due to the few objects contained in this dataset, it is
used for testing. The images have a resolution of 1280 x 1024. Figure 3.3 shows a pair of example
images from the dataset.
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Figure 3.3: Example images of AIT-Dataset2, the depth map in this example is inpainted by the
Joint Bilateral Filter (Chapter 4).

(¢) NYU-Depth V2 Dataset [80]

The NYU-Depth V2 Dataset contains 1449 pairs of RGB and depth images captured by the
Microsoft Kinect camera. The scenes include bathrooms, bedrooms, bookstore, cafe, classrooms,
dining rooms, furniture stores, home offices, kitchens, libraries, living rooms, offices, playrooms,
reception rooms, and studies. A few of the images contain persons in the scene. We take a subset
of 1360 pairs of images from the dataset which contains no persons. The depth maps are filled by
the colorization scheme of Levin et al. [52]. We convert the RGB images to grayscale in
accordance with the other two depth datasets introduced above. The images have a resolution of
640x480. Figure 3.4 shows a pair of example images from the dataset.

Py D= i -

Figure 3.4: Example images of the NYU-Depth V2 Dataset [80]. The depth maps are inpainted by
the colorization scheme of Levin et al. [52].
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(d) INRIA Person Dataset [12]

The INRIA Person Dataset is collected by the authors of Histogram of Oriented Gradients (HOG)
for the purpose of training and testing their human detector using the HOG features. The images in
the dataset are taken from different sources, such as GRAZ01 Dataset [64], personal digital image
collections, and google images. The positive training set contains 1208 images of persons in more
or less upright positions, with a large variation of poses and backgrounds. Persons with
height >100 pixels are annotated. We take a subset of 614 images from the positive dataset in our
work. The negative training set contains 1218 images from the same data sources as the positive
training set, including indoor, outdoor, city, mountain, and beach scenes, with some of the images
focused on "hard examples". Figure 3.5 shows examples of the positive and negative images from
the dataset.

Positive

images

Negative
images

Figure 3.5: Example images of the INRIA Dataset [12].

3.2 The Ground Truth Annotation

The ground truth annotation is done with the help of the AIT annotation tool (Figure 3.6), which
enables a video to be loaded and allows any amount of objects in each frame to be annotated,
finally it exports all the bounding boxes with the corresponding frame number to a single file. A
bounding box is parameterized by its top left coordinates, width and height, and is represented as a
tuple (x, y, w, h). A flag can be added to the tuple as a fifth element to indicate whether this
bounding box shall be ignored in the evaluation (more detail see Chapter 5).

The AIT-Datasetl is annotated with head-and-shoulder bounding boxes. In the training set,
~10 persons in the scene are annotated, who are not occluded or partially (less than 50%) occluded.
Persons who are heavily (more than 50%) occluded or standing in the back are not annotated. The
bounding box is over the head of a person on the top, and the width extends till the shoulder
blades are contained if the person is facing the camera, otherwise the width of the bounding box is
wider than the body if the person is standing sideways, the height of the bounding box reaches the
chest of the person. A total number of 121 images in the training set contains altogether 1183
samples, which are flipped in the training process to enlarge the number of samples.

Figure 3.7 shows an example of one annotated image from the training set, and the positive
windows sampled from it. 9 persons are annotated in this image, among which 4 are without
occlusion and against the scene background, 2 are without occlusion but with other persons in
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l— AVILength: 177

Figure 3.6: The AIT annotation tool.

the background, 3 are partially occluded and with other persons in the background. The sampled
windows are padded to a bigger size. The standard model size is defined as 56x41, with 32 pixel
margins on each side. The sampling process recalculates the padded size according to the
relationship of the proportions as defined above.

In the testing set of AIT-Datasetl, every single person in the scene is annotated because the
detector may detect any of them. As Figure 3.8 shows, this produces a clutter of overlapping
bounding boxes, which are difficult to evaluate. Because a detected window may match multiple
overlapping ground truth bounding boxes, it is hard to distinguish which ground truth is the actual
match of the detected object. In Chapter 5 we introduce a filtering method to select a subset of the
bounding boxes. Figure 3.8 shows an example of an annotated image from the testing set of
AlT-Datasetl.

The ground truth samples
» ]
1
4
|

Figure 3.7: An example of an annotated image from the training set of AIT-Datasetl, and the
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positive windows sampled from it.
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Figure 3.8: An example of the annotation of the testing set of AIT-Dataset].

The INRIA Dataset and the AIT-Dataset2 are annotated with full-body bounding boxes. The
annotation of the INRIA Dataset centers on the torso and body of a person, and leaves arms and
legs outside the bounding box if they are extended sideways. The annotation of AIT-Dataset2 is
wider than the annotation of the INRIA Dataset, it contains the whole person unless the arms or
legs are outstretched. Figure 3.9 shows the examples of annotations for images from the training
set of INRIA Dataset and the testing set of AIT-Dataset2.

(b)

Figure 3.9: An example of the annotation of (a) the training set of INRIA Dataset and (b) the
testing set of AIT-Dataset2.
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3.3 Summary

In this chapter we provide a description of the preliminary datasets used for our work. The
datasets are gathered from different sources. Stereo maps are converted to depth maps. Positive
datasets are annotated by the ground truth bounding boxes.
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Chapter 4
The RGBD Detector: Incorporation of
the Depth Cues

In this chapter we introduce the proposed RGBD Detector. Figure 4.1 shows the workflow of the
implementation of the RGBD object detection system. Before we incorporate the depth
information into the existing system, the depth maps have to be enhanced in order to fill the
missing values and remove the noise. After the refinement of the depth maps, we choose two
gradient-based features, gradient magnitude and gradient histogram, for the representation of the
depth information. The amount of features can be reduced by a single step of gray level reduction.
We incorporate the depth cues into a RGB detector trained with AdaBoost and Random Forest.
The depth features and the RGB features can be fused at different levels, in our work we make two
experiments, one uses the low-level fusion of features by establishing a joint feature space, the
other uses the classifier-level fusion by combining multiple classifiers. We further exploit the
scene information embedded in the depth maps and estimate the scales of the objects using the

depth values.

Depth Maps Refinement

§

Gray Levels Reduction

b

Feature Extraction = Low-level Feature Fusion

.

Classifier Training

v

Scale Estimation ;

I . Detection ol High-level Feature Fusion

Figure 4.1: The workflow of the incorporation of the depth cues in a RGB detector.
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The rest of the chapter is organized as follows: We introduce two image inpainting methods
for the refinement of the depth maps in Section 4.1. Section 4.2 describes the two feature types we
use for the depth channels. Section 4.3 explains how the amount of features is reduced and the
prominent features are enhanced by means of gray level reduction. Section 4.4 describes the
feature fusion schemes. Section 4.5 explains the scale estimation method. Section 4.6 gives a
summary of this chapter.

4.1 The Depth Map Enhancement

As introduced in Chapter 3, the stereo maps of AIT-Dataset] and AIT-Dataset2 acquired from the
sensor contain invalid data and noise. Therefore the depth maps converted from the stereo maps
contain holes which display unwanted patterns and features in the gradient image (see Figure 4.2).
Post-processing and noise suppression are compulsory for the depth maps before they can be used
for training and detection. The methods for image inpainting can be used for the enhancement of
the depth maps. Image inpainting techniques make undetectable modifications to the corrupted
parts of images, so that the images are reconstructed seamlessly [7]. In image processing, the
inpainting methods use the available data outside and surround the missing parts to fill the values
inside the missing parts [7]. In the following part of this chapter we discuss two approaches for
inpainting the depth maps using the techniques based on Partial Differential Equations (PDE) and
the Joint Bilateral Filter.

Figure 4.2: (a) Intensity image. (b) The depth image contains holes and noise, which produce
unwanted features in the gradient image (c).

4.1.1 The PDE Based Methods

Bertalmio et al. [7] propose a pioneer work of the PDE based solution for image inpainting. Let D
denote an image region to be inpainted, their approach propagates the information (the local color
smoothness variations obtained by the 2D Laplacian operator) from the outside of D to the inside,
through the formulation of the PDE. The propagation is done along the level line (isophote)

directions, which are calculated as the perpendicular gradients (—0,,0,) of the pixels at the

contour of D [7].

Different kinds of PDEs can be used to formulate the process of the inpainting of the image

regions [76]. One of them is the diffusion function:
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u, =Au 4.1)

t

Where u denotes the temperature value, and A is the Laplace operator [10]. This PDE
describes how the temperature diffuses across a surface over a time interval. Richard et al. [69]
state that because the human visual system can tolerate a certain degree of blurring in non-edge
areas, in very small regions of the image let the intensity values represent the temperature values,
the information propagation process of the inpainting can be approximated by the diffusion
process. [10], [69].

In our work we use the techniques presented by D'Errico [14] to do the PDE based inpainting
of the depth maps:

"... a boundary value solver. The basic idea is to formulate a partial differential equation (PDE) that is
assumed to apply in the domain of the artifact to be inpainted. The perimeter of the hole supplies
boundary values for the PDE. Then the PDE is approximated using finite difference methods (the array
elements are assumed to be equally spaced in each dimension) and then a large (and very sparse) linear
system of equations is solved for the NaN elements in the array."

D'Errico has presented several different inpainting methods. One method discretizes the

Laplacian equation u, +u, = 0 of the domain to be inpainted into a linear system of equations.

A variation of this method is to use a different PDE model as u  + Zumy +u,,, = 0 . Another

method uses the spring model. Each pixel is supposed to be connected to its 8 neighbours with
springs. The energy of each spring is proportional to its extension. This model can be formulated
by linear systems of equations (details see [14]). Figure 4.4 shows the results of the above stated
methods.

The main feature of D'Errico's methods is that they are linear solutions, which means that the
filling of the missing values is done smoothly. The disadvantage is that it is unable to preserve the
edges [76].

4.1.2 The Joint Bilateral Filter
Another technique we employ for the depth map inpainting is the Joint Bilateral Filter proposed
by Kopf et. al. [44] for the depth map refinement.

The Bilateral Filter [84], [49] is a non-linear edge preserving smoothing filter. A Bilateral
Filter is a combination of a spatial kernel (such as a Gaussian filter) and a similar range kernel.
For an image position p, the filtering result is defined as:

iltere 1
" “=W—2L,f(|| p—qlelll,-1,1) (4.2)

p qEQ

w,=2 fllp-alellil, =1,

qeQ

Where [ ;jh@red is the resulting filtered image, I is the original image, fis the spatial kernel, g is the

range kernel, Q is the kernel window centered at p, and Wp is the normalizing factor to preserve

the image energy.
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The filtering result of the pixel value at p is a weighted average of the values of the nearby
pixels. The spatial kernel defines the priority or the weight of a pixel ¢ according to the image
plane distance of p and ¢, then it performs a basic filtering operation. The range kernel determines
the weight according to the values of p and ¢ (e.g. intensity, color or depth). Thus pixels which
look similar to p are given high weights and pixels which look different are given low weights, it
ensures that the sharp edges are preserved in the images.

The Joint or Cross Bilateral Filter[44] is defined as:

1 idance idance
Wzqu(ll p—qlDgl ;" =17 (4.3)
qeQ)

p

Sfiltered __
I =

The only difference to Eq. 4.2 is that the range kernel is applied on a guidance image /' instead of
the original image. The filtering process on the original image is assisted with the additional
information from the guidance image. For example, when smoothing an image, the depth or
normal map can be used as the guidance image to provide the information of the depth boundary
or the object geometry. In this way the smoothing is performed with respect to the object geometry.
Another example is the joint bilateral upsampling method proposed by Kopf et al. [44]. This
method uses the available high resolution image as a prior to upsample the low resolution image.
The authors demonstrate the usefulness of this method in applications such as adaptive tone
mapping, stereo depth, image colorization, and graph-cut based image composition [44].

For the inpainting of the depth maps we use the intensity image / as the guidance image for
the depth map d. The filling of the missing depth values is guided by the similarity of intensity
values of the surrounding pixels, under the assumption that pixels which have similar intensity
values also have similar depth values.

; 1
iltered

d)" =Wquf(llp—q|\)g(lllp—1q||) 4.4)
qeQ

We use Gaussian filters for both the spatial kernel and range kernel to do the filtering at 3

scales, with the following pairs of standard deviations: ( 5, =12, §,=0.2), (5,=5, 5, =0.08),
(6,=8,5,=0.02).

4.1.3 Comparison of Different Filling Methods

Figure 4.3 displays the results from the above stated methods. A subjective evaluation is
performed on the result images:

The result image based on the PDE  u . +2u,,, +u,,, =0 in panel (e) contains

hallucination and artefacts, therefore it is not suitable for our work. The image based on the Joint
Bilateral Filter in panel (c) shows a satisfying result since it displays clear shapes of the door at the

back and the person on the very right side of the image who is entering the scene. By comparing
the result image based on the PDE u, +u, = 0 in panel (d) and the result image based on the
spring model in panel (f), we see that the image in panel (f) is smoother at the wall at the back. We
choose the methods from (c) and (f) for our work.

A detailed comparison of the result images from the Joint Bilateral Filter and the spring
model PDE is shown in Figure 4.4. As expected, the Joint Bilateral Filter preserves sharp edges
while the spring model PDE generates blurred edges.
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(d)

(f)

Figure 4.3: (a) The original intensity image. (b) The raw depth map corresponding to (a). The
results of different inpainting methods: (c¢) Joint Bilateral Filter. (d) PDE based method using the

equation u,, +u, =0 (e) PDE based method using the equation . +2u  +u, =0 (f

the spring model.
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(a) Raw depth image (b) Depth image (c) Depth image
inpainted with inpaintde with

Joint Bilateral Filter PDE
Figure 4.4: Comparison of depth maps inpainted with the Joint Bilateral Filter and the Spring
Model PDE.

4.2 Depth Channel Computation
In this section we compute the features from the depth maps. Previous research has exploited the
depth information in the following aspects:

. The depth maps contain the additional visual cue, which is useful for reconstructing the
3D scene structure or the 3D object model.

. When the depth map is treated purely as a 2D image, it exhibits the boundary
information of the objects. The gradient-based features are well suited for representing the
boundary information.

Lai et al. [46] use the HOG features from the RGB and depth images to train a standard
sliding window detector. Christoph et al.[41] use the dense stereo in two modules in their
pedestrian detection system. Firstly, the stereo information is used to estimate the road profile and
the camera parameters for finding the possible pedestrian locations (regions of interest). Secondly,
in the training and classification stages, they use the HOG features from the depth maps and the

intensity images. They observe that after averaging the SVM weights over the HOG blocks, the
intensity images exhibit the strongest features on the head/shoulder and legs of a pedestrian, while
in the depth maps the strongest features are the upper body and torso areas. Xia et al. [96] propose
a human detection method by locating the head of a human using the depth information. They first
find the possible head locations in an image by matching a binary head contour template with the
boundary information (edges) from the depth map. Then a 3D head surface model is computed,
using the parameters extracted from the depth array, to perform a refined selection in the detected
regions. After the head is located, the whole figure is detected by a segmentation method.

In our work we extract the boundary information of the objects by computing the gradient
magnitude and HOG features from the depth map. In section 4.5 we make use of the scene
information embedded in the depth maps by estimating the scale priors for the detected windows
according to the relationship between the size of an object and the depth of its location in the

scene.

4.2.1 Depth Gradient Magnitude

The motivation to use the gradient magnitude feature is based on the observation as shown in
Figure 4.5. The gradient magnitudes of the intensity image exhibit the details of the scene while
the gradient magnitudes of the depth image focus on the contour of the foreground object. The

29



gradient magnitudes of the intensity image show the strongest features around the object contour
(the person in the foreground, the person in the background, the line on the wall), together with the
other visible features such as the textures of the hair and clothes of the persons, the shadows on
the wall, and the shadows and the texture on the floor. In contrast, the gradient magnitudes of the
corresponding depth image exhibit the most significant features on the contour of the person in the
foreground, with a weaker feature on the contour of the next person in background, while all the
other details of the scene are not shown. Note that in the depth image there are areas showing
discontinuity of change of the depth values, the shades and flecks, which are caused by the
inpainting algorithm performed in the last step and result in weak features like circles and stripes
in the gradient magnitude image.

According to the above observation, we use the gradient magnitudes of the depth images to
guide the training process to focus on the foreground objects. Each 24 x 24 window yields 576

gradient magnitude features from the depth image.

a) The sampled window b) The smoothed LABLUV ¢) The gradient magnitude
image image

d) The sampled depth e) The smoothed depth f) The gradient magnitude
image image of e)

Figure 4.5: One pair of intensity and depth images sampled from the positive training set, each of

which is smoothed before the gradient magnitudes are computed.

4.2.2 Gradient Histogram

Dollar et al. propose a feature type similar to HOG, called the oriented gradient histogram. The
computation of the oriented gradient histogram is illustrated in Figure 4.6. Given an input image /
of the size & X w, the gradients for the R, G, B channels, R', B, G', are computed respectively. At
pixel (x,y), the maximum gradient magnitude of R'(x,y), B'(x,y), G'(x,y) is selected and put into the
corresponding bin channel image at the same pixel. Similar to HOG, the bin channel image index
of a gradient magnitude is determined by its orientation. The gradient magnitude is either put into
the nearest bin, or put into two neighbouring bins by linear interpolation. The bin channel images
are tiled into N x N non-overlapping cells, each cell sum up the gradient magnitudes fallen inside it.
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The value of the cells at a same position along the whole range of N bins represents a histogram of
oriented gradients within that cell. The resulting feature image set is of the size
floor(h/N) x floor(h/N) x N. The oriented gradient histogram is a generalized case of HOG, with
normalization by gradient magnitudes it can approximate HOG [15]. Figure 4.7 shows an example
of the oriented gradient histogram of a depth map with 6 orientation bins.

Gradient Magnitude

max(R'(xy), G'txy), B'txy)) Gradient Orientation Bin

Nearest Neighbor
or
Linear Interpolation

sum(NxN)
=
L.

A
J}/ij_-

binN

bin2

binl

Figure 4.6: Oriented gradient histogram computation based on a gradient magnitude and a

gradient orientation image.

(b) (c)

Figure 4.7: Example of the oriented gradient histogram of a depth map. (a) The original intensity
image. (b) The corresponding depth map of the intensity image. (c) The oriented gradient
histogram with 6 orientations computed from the depth map.

4.2.3 The Integral Image
Because the speed of the feature computation is crucial for a real time detector, we use the integral
image to accelerate the computation of features [86], [15], [101]. The gradient histograms and
HOG can be computed efficiently by the concept of the integral image for use in a real-time
system [101], [15], [67].

The integral image, or summed area table [37], is a representation for storing the sums of
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pixel values within the rectangular areas of an image. The rectangular areas start from the upper
left location and end at any pixel of the original image. With the help of the integral image,
rectangular features, like the Haar-wavelet type features, can be calculated very fast, because the
sum of any rectangular area in the original image can be calculated by four array lookups in the
integral image [86]. The panel (a) of Figure 4.8 illustrates how an integral image is generated.

Let / denote the original image, and S denote the integral image. Any point (x, y) in S can be
computed as: S(x, y) = I(x, y) + S(x-1, y) + S(x, y-1) - S(x-1, y-1). The recursive manner allows the
integral image to be computed in one pass over the original image. Similarly, panel (b) of Figure
4.8 illustrates that the sum of the yellow area in the middle can be computed as D-B-C+A.

In Figure 4.6, the gradient magnitudes are stored in separate bin channel images so that an
integral image can be computed for each bin. The sum of N x N each block can then be obtained

by merely 4 array lookups.

S(2.2) S(4.2)

S(x-1,y-1) S(x, y-1)

Sy 1&y) S@2.4) S(4.4)

(a) (b)

Figure 4.8: (a) The integral image S can be computed from the original image in a recursive way
S, y) = I(x, y) + S(x-1, y) + S(x, y-1) - S(x-1, y-1). (b) After the integral image is generated, the
sum of pixels in any rectangular area can be computed by four array lookups, for example the
yellow area in the middle of I can be computed as D-B-C+4 = S(4, 4) - S(2, 4) - S(4, 2) + 8(2, 2).

4.3 Reduction of the Feature Dimensionality via Gray Level

Quantization

The depth images are 16 bits grayscale images. Each pixel has 16 bits storage which encodes
65536 levels of intensities, which means for gradient based feature images that each pixel allows
65535 levels of gradients. As described above, the purpose of using the depth images for training
is to extract the boundary information, however Figure 4.9 (a) shows that the gradient magnitude
feature image of the 16 bits depth image reveals redundant details for this purpose. In order to
eliminate the redundant details and preserve the most prominent edges, we reduce the bit depth of
the depth images to 8 bits. Reducing the bit depth decreases the gray levels and groups
neighbouring pixels with similar intensity values into homogeneous regions. Figure 4.9 shows a

pair of images of a same scene with 16 bits and 8 bits depth respectively.
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(b)

Figure 4.9: Comparison of the gradient magnitude feature images from the original image of the
bit depth (a)16 bits (b) 8 bits. Although the original images look similar, the feature image of a
higher bit depth reveals more redundant details than the one of a lower bit depth. The the red lines
in each image on the left are shown as a function of pixel values against the x coordinates on the

right side.
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Although the original images do not show apparent differences, the gradient magnitude
feature images display significant differences in the amount of details. We take a horizontal line in
each image (red) at a same y position and show it as a function of pixel values against the x
coordinates on the right side. The upper curve in (a) shows the intensity values of the 16 bits depth
image, the valley of the curve corresponds to the person who is nearer to the camera than the
background. The noisy fluctuations of the curve indicate the unevenness of the object surfaces,
which produces edges in the gradient magnitude feature image, and are shown as troughs and
crests in the curve below. The fluctuations in the curve of intensity values in (a) are flattened in (b).
In the curve of gradient magnitudes, the edge information at the boundary of the person is much
stronger than the rest parts of the image. Although the details in the environment and inside the
object are not completely diminished, which is also not our purpose, the boundaries of the objects
remain the most prominent features in the scene.

The main benefit of reducing the gray levels is to save the computational cost. Instead of
applying a smoothing filter such as the Gaussian filter to the image, only one division is needed
for each pixel, i.e., the 16 bits pixel values are divided by 255 and stored in the type uint8. The
features are not reduced in dimensionality, but in their density. Hence the discrimination of

important and unimportant features is enhanced.

4.4 Fusion Schemes for the Depth Features and the RGB Features

After feature extraction and feature reduction, the feature set derived from the depth maps is to be
provided to the classification process. A discriminative object detection system using intensity
based features provides a fast and accurate framework, then the depth features are incorporated
into the system and fused with the RGB features. We use two approaches of feature fusion in our
work, the aggregated channels approach which is based on joint feature space, and the multiple
classifier approach which is based on parallel combination of classifiers.

4.4.1 The RGB Detector

We adopt the RGB detector proposed by Dollar et al. [20] as a framework for our work. The RGB
detector uses altogether 10 channels of features: normalized gradient magnitude, Histogram of
Oriented Gradients (HOG) (6 channels), and LUV color channels. Small windows of a predefined
size (default 128 X 64) are sampled from the training set. The positive windows are sampled from
the positive images according to the ground truth annotation, with the annotated objects in the
center of the window. The negative windows are sampled from a dense grid of the negative images.
An image pyramid of typically 8 scales per octave is created from each sampled window from the
negative images. Real feature images are only computed at the power of two scales. The feature
images at the 7 intermediate scales within an octave are approximated from a real feature image at
the nearest scale.

Feature images are vectorized and fed to the training process. AdaBoost and Random Forest
are used for training. N features of each sub-window are trained to form a total number of 7
depth-two trees for each m X n window.

Such a framework is capable of achieving real-time speed (> 20 fps) and high accuracy (with
an average miss rate < 20% ) [20]. Viola and Jones design a cascade structure in their boosting
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process to reject the negative instances at an early stage to gain performance [86], in contrast, the
framework does not apply such a finer feature selection strategy in the learning process, yet it
achieves real-time speed. One reason for the superior performance is that the Random Forest as
weak classifiers perform simple pixel based comparison. The fast feature pyramid is another key
contribution to the system performance. The impact of the approximated feature images on the
system accuracy is given in Figure 4.10: The detection accuracy of the framework using exact
and fast feature pyramids, with the an average miss rate between 10~ and 10° false positives per
image, on four pedestrian datasets, INRIA [12], Caltech [18], TUD-Brussels [91], and ETH [24].
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Figure 4.10: The comparison of the accuracy of the framework using exact pyramid (ACF-Exact)
and approximated pyramid (ACF) [20]

4.4.2 The Aggregated Channels Approach

In order to construct a joint feature space, we combine different types of features via channels, as
illustrated in Figure 4.11. Since the scene images captured by the AIT camera are grayscale
images, when they are converted to the LUV space, only the L channel contains the scene
information and the UV channels are empty. Feature images of gradient magnitude and gradient
histogram are computed from the depth images, as described in Section 2, which add 7 more
channels to the existing ones. Each pixel lookup in the aggregated channels forms a 17
dimensional feature vector. The feature vectors are sent to the AdaBoost training process to learn
random trees, as explained in Chapter 2.

Feature pyramid

Image pair Image pyramid [ : : = > : = ; 2
compute = - 2 - = . -
= channels -
Grayscale Grayscale
= W" ¥ |Grad | HOG HOG | HOG |HOG | HOG | H
Nag binl|bin2 | bin3 bin4 | binS | bin6
.
IE p'lh
Depth Depth .
' Vectorize
L
AdaBoost Training
Learn Random Forest Trees

‘ Lardre Eordnr ’

Detector

Figure 4.11: The workflow of the aggregated channels approach.
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4.4.3 The Multiple Classifiers Approach

Classifier-level combination is a high-level fusion of features, where individual classifiers are
trained with different or same feature sets, and the output of each classifier mutually contributes to
the decision making process [70], [41]. Duin et al. draw a conclusion from their experiments, that
a parallel combination of classifiers is far more effective than a stacked combination, i.e. the
combination of information extracted from different feature sets using a same classifier is more
effective for classification than the combination of information extracted from a same feature sets
using different types of classifiers [21]. Rohrbach et al. and Keller et al. both propose human
detectors following a parallel combination of intensity and depth cues [70], [41]. Figure 4.12
illustrates the structure of high-level combination of classifiers.

Intensity Classifier

L U ¥ |Grad | HOG | HOG | HOG |HOG |HOG | HOG
Mag | binl|bin2 | bin3|bind | bin5| biné

Depth Classifier
_..-

Figure 4.12: The overview of a multiple classifiers people detection system. The intensity images

Fused
Decision

and the depth images are trained separately and fused at the classifier-level. Not only different
modalities but also different classes (e.g. full-body, head-and-shoulder) can be combined

according to a combination rule.

Following is the decision rule of multiple classifiers presented by Rohrbach [70]: Let a
feature vector be denoted as x, , k = 1, ..., i, a classifier be indexed by i, i = 1, ..., m, the object
class be denoted by j, j = 0, 1 (positive, negative). The posterior probabilities for sample k& with
respect to object class j and estimated by classifier i is given as pl.j(xk) . For each sample, a

confidence score with respect to object class j, ¢, (x;) , is derived by combining the posterior

probabilities  p; (x,) from all classifiers. The combination rule can be maximum, multiplication,
average, or SVM decision value (distance to the hyperplane).
The object class with the highest confidence score is selected as the final decision:

o(x,) = argmax (q,(x;)) (4.5)

We train an intensity classifier and a depth classifier separately, using the same feature sets as
the aggregated channels approach for intensity images and depth images. However, our decision
rule differs from that of [70]. Instead of making decision for each data sample, we let the
classifiers perform detection independently and make decision for each detected object. The
decision rule can be described as:

VVobj =argmax, , (fz ")) (4.6)

Where W denotes the sliding window which slides over the image I, and f; denotes the evaluation
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function of classifier i which calculates the confidence score for .

We set the intensity classifier as a primary classifier, and make the depth classifier as a
complementary secondary classifier. The reason of setting explicit priority to one classifier against
the other is because the depth dataset is annotated with head-and-shoulder BBs due to the
constraints of the scenes, while the intensity dataset is annotated with full-body BBs, which can
better cope with the pose variations of objects and outputs more accurate detection windows. This
is done by collecting the detection results from both detectors, and setting the scores of the
detected BBs from the RGB detector to a sufficient large number (1000 in our case). Then the
non-maximum suppression is performed on the whole set of BBs, so that the BBs from the RGB
detector will suppress the BBs from the depth detector when they both detect a same object (see
Algorithm 4.1).

Algorithm 4.1: Decision rule for combining the RGB detector and the depth detector

detector = {detectorRGB, detectorDepth}
for each frame do
fori=1to2do
bbs{i} = conductDetection( detector{i} , current frame)
non-maximal suppression on bbs{i}
end for
bbs{1}.scores = 1000;
Enlarge bbs{2}: width *= 1.2; height = width * 3;
non-maximal suppression on all bbs

end for

4.5 Scale Estimation Using the Depth Information

Because the depth values contain the information of the scene structure, in object detection these
values can help the detector to conduct detection in consideration of the scene context [36].
Among a variety of scene information which can be reconstructed or obtained by the depth values,
the scales of the objects are useful clues for the detector to refine the detection results. Researchers
have proposed various methods for obtaining the scales of the objects using the depth values. Scott
et al. [36] suggest a method for capturing the scale priors of the scene objects. By rejecting the
false positives using the scale priors the average precision of their detector is improved by 0.2 on
each dataset they use. Lai et al. [46] construct a scale histogram based on the normalized depth
values. Ye et al. [97] update the size of a tracking window in relation to the preceding one by
comparing the depth values of these two tracking windows. The essential thought behind these
approaches is based on the observation that the scales of the scene objects relate in an inverse
manner with their distances to the camera. As we see in Figure 4.13, the persons standing nearer to
the camera have larger bounding boxes than the ones standing further away, given a depth value,
the sizes of the corresponding bounding boxes fall into a certain range (an estimation with
deviation). Motivated by these works, we use scale estimation in our detector to improve the

detection accuracy.
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Figure 4.13: An example image from the AIT-Datasetl. The scene in the image exhibits an
inversely proportional relationship between the distance of an object to the camera and its size.
The bounding boxes have approximately the same sizes at a certain distance.

4.5.1 The Scene Geometry for the Scale Prior
In order to understand the relationship between the scales of objects and their distances to the
camera mathematically, we have to study the projective geometry. The projective geometry
describes how the objects in the 3D space are projected onto a 2D plane in the pin-hole camera
model, where the projection is made by emitting straight lines from the objects and let them pass
through a single point [27], [3]. The projective geometry has the following rules [3]:

1. The vanishing points are lying on a straight line called the horizon.

2. Straight lines in the 3D space stay as straight lines in the 2D plane.

3. Any set of parallel lines in the 3D space meet at a vanishing point on the horizon in the 2D
plane.

4. A set of parallel lines in the 3D space which are parallel to the 2D plane remain parallel
and have no vanishing point in the 2D plane.

Let (x', y') denote the projection of the 3D point (X, , ,, Z, ) on the 2D image plane, x' can be

obtained by X,

x'= on y': iyo 4.7)
Zo Zo

Where f'is the focal length of the camera [3].
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When we consider an object in the scene, as shown in Figure 4.14, the distance of the object

center to the camera origin z , can be obtained by the following formula [36] :
z =" (4.8)

Where s, is the scale of the object in the scene, and s, is the scale of the bounding box (height or

width) in the image plane.
As all points within a bounding box have different depth values, a single depth value has to
be chosen to represent the whole bounding box. Scott et al. [36] suggest to use the depth value at

the center of the bounding box, or the average of the depth values within a bounding box:

1 s
e
Nx€:9 Sg

(4.9)

Where N denotes the number of pixels within a bounding box, z and s are the random variables for
the depth values and object scale in the scene. In our work we use the minimal depth value of a

bounding box, min_ _,(z,) , which is the point closest to the camera origin in the scene.

Figure 4.14: Scene geometry of an object. Image adapted from [36].

Noise and uncertainty exist in the above model, for example: the uncertainty in depth
measurements, noise due to discretization and the stereo algorithm, the uncertainty in the
hand-marked annotations, variations in the scales of the objects (for example heights of persons).

The scale prior of an object class can take any form of statistical distributions [36]. In our
work we assume that the scale prior of our object class has a Gaussian distribution.

4.5.2 Object Scale from the Reciprocal of the Depth Value

Now we consider the scene geometry in training data AIT-Datasetl. Figure 4.15 gives a
description of the scene geometry in a pin-hole camera model. In our case the aspect ratio of the
bounding box is fixed, therefore the scale of the bounding box can be represented by its height.

From Eq. 4.10 it can be deduced that the height of a bounding box in the 2D plane can be obtained
by:

w=L (4.10)
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Where 7 is the height of a virtual bounding box of the head-and-shoulder of a person in the 3D
space, h' is the height of the bounding box annotated in the 2D image. The height of the
head-and-shoulder bounding box is about one third of the height of a person. Suppose all the
persons have the same height, i.e. set fi as constant, then the height of a bounding box %' in the 2D
image shall follow an inversely proportional relationship with the depth value of its position z,, . In
other words, the height of a bounding box in the 2D image follows an approximately linear
relationship with the multiplicative inverse of the depth value of its position 1/z, . We take the
minimal of the depth values inside a bounding box, which is the nearest point in the
head-and-shoulder part of a person facing the camera as the depth value for the bounding box. We
model the linear relationship between the height of a bounding box and the minimal depth value
within this bounding box by a 1% degree polynomial:
H=ax+b 4.11)

Where x is the inverse of the minimal depth value within the bounding box, a and b are the two
coefficients for the polynomial. The approximately linear relationship between the height of a
bounding box and the minimal depth value within this bounding box can been seen in Figure 4.16
when we visualize it from the training data. A polynomial fitting is performed based on these data.
As Eq. 4.11 shows, the ideal case shall be a linear polynomial running through the origin of
coordinates. However, noise and uncertainty exist in the data, as explained in the above section.
The polynomial fitting is calculated in a least squares sense, with a tolerance region of predictions.
Given x=1/z, the corresponding value /4 = ax + b with an error estimate A defines a tolerance

region [h+A h-A] which contains at least 50% of the predictions of future observations at x [59].
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Figure 4.15: Scene geometry in training data AIT-Datasetl.

The polynomial fitting is done in the training stage where the two coefficients are computed.
In the detection phase, the bounding box scale estimation is done before performing the
non-maximal suppression of detected windows. For each detected window, the minimal depth

40



value within the window is used for evaluating the linear polynomial, and the result is given as A
and 4. If the actual height of the detected window falls inside the tolerance region, the window is
preserved for the next stage of non-maximal suppression, otherwise the window is rejected. In
Chapter 5 we will discuss in more details how the scale estimation of the bounding boxes
improves the detection accuracy by rejecting the false positives.
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Figure 4.16: Visualization of the relationship between the heights of the bounding boxes and the
reciprocal of the minimal depth values within the bounding boxes. The values are computed from
the sampled windows of the annotations from the training data. The result exhibits an
approximately linear relationship, which can be well fitted by a 1% degree polynomial computed in
a least squares sense, with a tolerance region of error estimate. The tolerance region describes the
variances in the data, for example the heights of persons, the poses of the persons and the hand
annotations, at least 50% of the predictions of future observations are contained in the region [59].
In the detection phase, this polynomial is used for evaluating the predicted scale of each detected
window. If the actual size of the detected window falls outside the tolerance region, the window is
recognized as a false positive and is rejected.

4.6 Summary

In this chapter we describe how we implement the RGBD detector. A pre-processing step is
required for the depth images, in order to enhance the useful information, fill the missing data, and
suppress noises. Gradient magnitude and gradient histogram are extracted from the depth data, and
the integral image technique is used to accelerate the feature computation. We explain that gray
level quantization is a meaningful and cheap way of reducing redundant features. We propose two
fusion schemes for the RGB features and the depth features, one scheme fuses the features at a
low level, while in the other scheme features are combined at the classifier-level. Finally, we
compute the scale prior of objects from the depth data, to help the detector to conduct detection in
consideration of the scene context.
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Chapter 5
Experiments and Results

In this chapter we evaluate two RGBD detectors developed with different feature fusion schemes.
We use the testing sets introduced in Chapter 3 and test the two detectors on two scenarios
respectively. We give a description of the evaluation protocol in Section 5.1. In Section 5.2 we
evaluate the RGBD Detector using the low-level feature fusion scheme. Emphasis is placed on the
comparison of the modalities of features (RGB vs. RGBD), feature types for the depth channels,
effectiveness of the scale estimation. The impact of inpainting algorithms to the system accuracy
is also discussed. In Section 5.3 we introduce a multiple-class detector which detects different
parts of an object and makes decisions at the classifier-level. We show that for both detectors the
additional features from the depth data improve the detection accuracy. Section 5.4 gives a

summary of this chapter.

5.1 Evaluation Protocol

As the "Piotr’s Image and Video Matlab Toolbox" (PMT) [19] provides an evaluation method
based on the modified pascal criteria [18], we adopt it for the evaluation of our detection results.

The pascal criteria [25] is given as:

4 = area(dtBB M gtBB)
° area(dtBB L gtBB)

> threshold (5.1)

Where gtBb denotes the ground truth bounding box, and dtBb denotes the detected window. A

certain threshold is given for the determination whether a ground truth bounding box and a

detected window match. If @, is above the threshold, gtBb and dtBb are determined as matched,

otherwise they are determined as unmatched. If a detected window matches a ground truth
bounding box, both of them are marked as true positives. If a ground truth bounding box is not
matched by any of the detected windows, it is a false negative. If a detected window makes no
match to any of the ground truth bounding boxes, it is a false positive.

However, the modified pascal criteria [18] allows a ground truth bounding box to be marked

by a flag as "ignore". The modified pascal criteria is given as:

4 = area(dtBB NigBB)

. > threshold (5.2)
area(dtBB)
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Any detected window that makes no match to the standard (non-ignore) ground truth
bounding boxes, but has an intersection with a ground truth bounding box marked as "ignore",
then this detected window will also be marked as "ignore". The "ignored" ground truth bounding
boxes and detected windows will not be taken into consideration in the evaluation of the system
accuracy. Figure 5.1 illustrates the modified pascal criteria. The "ignore" flag provides advantage
to reduce false positives in special areas of a scene, such as the occluded areas. We will explain the
benefit of using "ignore" flags in more detail in Section 2.

For displaying the system performance we use the Receiver Operating Characteristic (ROC)
curve. Instead of the two commonly used operating characteristics for ROC curves, the true
positive rate and the false positive rate [31], we plot the miss rate against False Positives Per
Image (FPPI) at various thresholds, using log-log plots (see Figure 5.7). The Log-Average Miss
Rate (LAMR) is computed for an assessment across the range of 107 to 10° in log-space, by

averaging the miss rate of evenly spaced samples in log-space of the FPPI [92].
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Figure 5.1: The modified pascal criteria for the determination of whether a detected window
matches a ground truth bounding box. For a standard (non-ignore) ground truth bounding box, (a)
if the overlap area between a ground truth bounding box and a detected window is big enough
(oa > threshold), then these two windows are marked as matched, (b) otherwise they are marked as
unmatched. (c¢) For a detected window which have no match to any standardRGBD Detectorh
bounding box, but has an intersection with a ground truth bounding box marked as "ignore", then
this detected window is also marked as "ignore", and will not affect the evaluation of the system

accuracy.
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5.2 Test Case 1: The RGBD Detector with The Low-level Feature

Fusion Scheme

In this section we compare a set of detectors developed with the low-level feature fusion scheme.
The AIT-Datasetl is split into two subsets, 121 frames for the positive training set and 116

frames for the testing set. We use the NYU-Depth V2 Dataset [80] as the negative training set. All

the detectors in this section are trained on the same training set and tested on the same testing set.

The detectors use 10 channels of 3 feature types (LUV, gradient magnitude, gradient
histogram) for the RGB data. The features (gradient magnitude, gradient histogram) extracted
from the additional visual cue, i.e. the depth maps, are added to the RGB channels.

We use two types of depth maps which are filled by two different inpainting algorithms, the
Joint Bilateral Filter and the Partial Differential Equation systems, in order to investigate the
impact of inpainting algorithms to the performance of the detector. We use Bilateral and PDE to
denote the two types of depth maps respectively. Because the gradient histogram is a variation of
the HOG feature, we refer to it as HOG for the easiness of understanding.

Below is a list of the detectors to be evaluated:

1.RGB

2. RGBD-Bilateral GradMag

3. RGBD-Bilateral HOG

4. RGBD-Bilateral GradMag+HOG

5. RGBD-PDE GradMag

6. RGBD-PDE HOG

7. RGBD-PDE GradMag+HOG
Training Set Testing Set
Positive: Negative:
AlT-Datasetl NYU-Depth V2 [80] AlT-Datasetl
Number: 121 Number: 1360 Number: 116

Table 5.1: The training sets and testing set used for Test Case 1: The RGBD Detector with the
low-level feature fusion scheme.

5.2.1 Ground Truth Filtering

Since the evaluation of the detection results depends on the intersection between the detected
windows and the ground truth bounding boxes, the ground truth annotation is a significant factor
to affect the evaluation result. When we apply the testing set with the full set of hand annotations
for the evaluation of the detection results, false positives and false negatives are reported by the
computational evaluation process where actual matches take place if judged by human eyes. In
order to reduce the "false false positives" and the "false false negatives" resulting from the ground
truth annotation and to make the computational evaluation result to be best in accordance with the
evaluation by human eyes, we have to address the following problems:
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1) The Sizes of the Ground Truth Bounding Boxes

The sizes of the ground truth bounding boxes are arbitrary due to the hand annotation, while the
detected windows are set to a fixed aspect ratio. A match between a detected window and an
object may be judged as a mismatch when the ground truth bounding box is too big. To this end
the ground truth bounding boxes have to be adjusted to the same aspect ratio as the detected
windows. The heights of the ground truth bounding boxes remain as the hand annotation and the
widths are recalculated according to the aspect ratio of the detected windows.

2) Missing Values in the Depth Maps

The very left regions of the depth maps have undefined depth values. In the inpainted depth maps,
the objects standing in this region either have a sharp undefined boundary (depth map inpainted by
the Joint Bilateral Filter) or a boundary merging into the background (depth map inpainted by the
PDE systems). Detection of objects in this region behave in an unstable manner, because the
detection may fail due to the incomplete or distorted information of the depth channel, or the
detection may be successful based on the information provided by the RGB channels together with
the partial information from the depth channel. Therefore the ground truth annotations from this
region (x<100 pixel) shall be marked as "ignore", i.e. the detected windows that have intersection
with the ground truth bounding boxes from this region, or the ground truth bounding boxes
themselves, whether they have any detected window matched to them or not, will be ignored in
the evaluation of the system accuracy.

(a) (b)

(c) (d)
Figure 5.2: (a) The intensity image. (b) The unfilled depth map. (c) The depth map inpainted by
the bilateral filter. (d) The depth map inpainted by the linear equation system of the spring model.
The very left region of the depth map has undefined values. This region is shown as a sharp
undefined boundary in the depth maps inpainted by the Joint Bilateral Filter, or a boundary
merging into the background in the depth maps inpainted by the PDE systems.
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3) Occlusions and Cluttered Regions

Since the training set provides samples with occlusions (see Chapter 3), the detector is able to
detect occluded objects. However, in the image regions where occlusion and clutter take place,
the annotation of a ground truth bounding box as well as the evaluation of a detected window
become difficult. Small and occluded objects are hard to distinguish even with human eyes.
Evaluation using the full set of annotations where each single person is annotated results in a high
amount of false positives and false negatives in the cluttered region, as shown in Figure 5.3 panel
(a). In such regions the following questions arise: Which objects shall be annotated? Which
detected window is a true positive and which is a false positive?

In order to reduce the amount of false negatives in the cluttered region, the non-maximal
suppression is applied to all the ground truth bounding boxes. Figure 5.3 panel (c) and (d) show
the ground truth bounding boxes before and after the non-maximal suppression. One can observe
that the non-maximal suppression eliminates the bounding boxes in the middle of the cluttered
region, but preserves those at the border of the region. The objects contained in those
unsuppressed bounding boxes exhibit more distinguishable forms than the suppressed ones. We
select those bounding boxes as challenging examples for the detector.

The amount of false negatives from the detected windows in the middle of the cluttered
region can further be reduced by setting the "ignore" flag to the suppressed ground truth bounding
boxes. Because the suppressed ground truth bounding boxes locate in the cluttered region,
detected windows in such regions can be ignored. Figure 5.4 panel (a) shows the evaluation result
using the reduced set of annotations, with the suppressed ground truth bounding boxes marked as
"ignore", one false negative from the cluttered region turns to be ignored. Panel (b) shows the
details of the mismatched cases. The undetected windows containing one person with partial
occlusion are the challenging examples, therefore they are marked as false negatives. A detected
window containing a group of 9 persons is determined as a false positive. A detected window
containing a group of 3.5 persons located in the ignored region and is hence marked as "ignore".

Setting the flags of "ignore" to some of the ground truth annotations at certain regions aims to
reduce the "false false positives", i.e. regions where the objects are successfully detected by the
detector but reported as false positives by the evaluation. If some detected windows match the
hard examples in the occluded and cluttered regions, nevertheless they are not counted for the
evaluation. Therefore, the actual system accuracy shall be slightly higher than the computationally
evaluated accuracy, taken into consideration that some potentially correct detections may be
filtered out.

Algorithm 5.1 shows how the ground truth bounding boxes are filtered.

Algorithm 5.1: Ground truth filtering

For each frame
Load all ground truth bounding boxes GT BBs
Resize GT_BBs: height = height, width = height/aspect ratio
non-maximal Suppression on GT
Set the suppressed GT_BBs to ignore
Set the very left GT_BBs(x<100) to ignore

End for
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Figure 5.3: Non-maximum suppression of the ground truth annotations and setting "ignore" flags
on the cluttered region. (a) The full set of ground truth annotations annotate each single person in
the scene. This set is split into two categories: standard (red), and "ignore" (blue). After
performing non maximum suppression on the full set of bounding boxes, the unsuppressed
bounding boxes are the standard bounding boxes, the suppressed bounding boxes together with the
bounding boxes on the very left side of the image (x<100 pixel) are marked as "ignore". (b)
Details of the cluttered region with the full set of annotations, these bounding boxes are the
challenging examples for the detector. (c) The standard BBs on the cluttered region. The non
maximum suppression preserves the bounding boxes at the border of the clutter, and suppresses
the bounding boxes inside. (d) Details of the cluttered region with filtered annotations. Only the
red BBs in this region have to be matched, any detection that matches to the blue ones will be

ignored.
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(b)

Figure 5.4: An example of the evaluation result based on a filtered set of ground truth annotations.

(a) After performing the non maximum suppression on the full set of ground truth annotations, the
unsuppressed bounding boxes are marked as "non-ignore", while the suppressed bounding boxes
and the very left bounding box (x<100 pixel) are marked as "ignore". Detected windows which
intersect those ground truth bounding boxes are also marked as "ignore" (black dotted), and will
not affect the evaluation of the system accuracy. This further reduces the false positives in the
occluded or cluttered regions. (b) shows the details of the mismatches in the left frame. The false
negatives are those persons standing at the border of the clutter, which the detector fails to detect.
These objects are the challenging examples for the detector. The false positives are two windows
containing chairs and a window containing 9 persons. The ignored detection is a window

containing 3.5 persons.

5.2.2 Setting the Treshold for Comparing Two BBs

By comparing the detectors, the very first question we are interested in is the overview of the
performance of the detectors. Questions can be answered, for example does the additional cue of
depth maps bring a higher detection rate? However, as Figure 5.5 shows, the detection accuracy

represented as LAMR varies strongly as the threshold for comparing two BBs changes.
Dollar et al. [18] perform an extensive evaluation of the state-of-the-art detectors based on

RGB channels, and state the following observation regarding the BBs overlap threshold and the
LAMR:

"The evaluation is insensitive to the exact overlap threshold used for matching so long as it is below
~0.6. This implies that nearly all detections that overlap the ground truth overlap it by at least half.
However, as the threshold is further increased and higher localization accuracy is required, performance
of all detectors degrades rapidly."

In Figure 5.5 the LAMR of the RGB detector displays a curve which stays almost unchanged
below the threshold 0.6, as described above. However, all the RGBD detectors show a tendency
that the LAMR increases as the threshold gets higher. This indicates that the RGBD detectors are
very sensitive to the tolerance of the localization requirement. In order to address the problem of
how to "reasonably" evaluate the performance of the detectors [18], a proper BBs overlap
threshold shall be chosen to enable the LAMR to best describe the detection results.
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In Figure 5.5 a prominent change of the curves of the detectors occurs between the threshold
0.3 and 0.5. When the BBs overlap threshold is below ~0.37, the RGB detector has the highest
LAMR in comparison with the other RGBD detectors, however, when BBs overlap threshold is
above 0.5, the RGB detector shows the lowest LAMR among all the detectors. We examine the
evaluation results from the RGB detector and the RGBD-Bilateral HOG detector at the BBs
overlap threshold 0.3 and 0.5 to analyse the reason for the increase of the LAMR of the RGBD
detectors.
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Figure 5.5: The LAMR as a function of threshold for comparing two BBs.

As Figure 5.6 shows, the RGBD-Bilateral HOG detector detects more objects than the RGB
detector from the same scene. The objects detected by the RGB detector are almost all detected by
the RGBD Detector (except one in the cluttered region of the scene), the RGBD Detector has an
extended set of detection on objects in smaller scales and objects in the cluttered region of the
scene. When the BBs overlap threshold is raised, detection windows for objects without occlusion
are not affected, as observed by Dollér et al., nearly all detections that overlap the ground truth
overlap it by at least half. The most affected detection windows are in the cluttered region of the
scene. Less tolerated BBs overlap threshold causes the detection in the cluttered region to be
evaluated as false positives, and at the same time, the unmatched ground truth BBs are evaluated
as false negatives, hence the LAMR is increased in two ways. Since the RGB detector detects
maximum one object in the cluttered region, the performance evaluation of the RGB detector
under the threshold 0.6 stays almost unchanged, and starts to increase when the threshold is over
0.6 due to the higher requirements of localization accuracy. The RGBD detectors, on the other
hand, are sensitive to the tolerance of the match criteria, because they are able to detect more
objects in the cluttered region than the RGB detector.

In Figure 5.6 we observe that the evaluation results at the BBs overlap threshold 0.3 most
satisfyingly describe the detection result. Taking into consideration that lower threshold may cause
more false positives to be judged as true positives, in the following experiments we choose the
BBs overlap threshold at 0.3.
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RGB detector RGBD detector

(c) Evaluation result with BBs overlap threshold 0.5

Figure 5.6: Evaluation of the RGB detector and the RGBD-Bilateral HOG detector at different
BBs overlap thresholds. (a) The direct visual evaluation shows that the RGBD detector
outperforms the RGB detector by being able to detect a higher amount of objects, especially the
objects in the cluttered region of the scene. (b) Setting the BBs overlap threshold at 0.3 produces a
satisfying computational evaluation result. (c) Setting the BBs overlap threshold at 0.5 causes the
detection in the cluttered region to be evaluated as false positives and at the same time the
unmatched ground truth BBs are evaluated as false negatives, hence the overall LAMR is raised in

two ways.
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5.2.3 Comparison of the Detectors

We rescale the entire pre-trained detectors, so that small objects in the scene can be detected. We
make experiments with detectors at three rescale ratios: 1.0 (unchanged), 0.75, 0.5. The
experiments at a each single scale is done twice, once with the scale estimation for all the
detectors, and once without. Figure 5.7 displays the ROC curves of the performance of the
detectors. Table 5.2 shows a list of the best performance in LAMR of each detector at the
corresponding scales. Figure 5.8 displays the detection results of each detector at their best

performance.
Detector With Scale Estimation Without Scale Estimation
Best Performance | Detector | Best Performance | Detector
in Scale in Scale
LAMR (fps) LAMR (fps)
RGB 55.97% (1.74fps) | 1.0 52.62% (2.80fps) | 1.0
RGBD-Bilateral GradMag | 41.79% (0.50fps) | 1.0 47.53% (2.11fps) | 1.0,0.75
RGBD-Bilateral HOG 28.65% (0.30fps) | 0.75 38.14% (1.77fps) | 1.0
RGBD-Bilateral 33.79% (0.28fps) | 0.75 35.12% (1.65fps) | 1.0
GradMag+HOG
RGBD-PDE GradMag 43.32% (0.38fps) | 1.0 54.17% (1.85fps) | 1.0
RGBD-PDE HOG 27.49% (0.26fps) | 0.75 47.96% (1.75fps) | 1.0
RGBD-PDE 29.34% (0.26fps) | 0.75 39.58% (1.68fps) | 1.0
GradMag+HOG

Table 5.2: The best performance of each detector in Log-Average Miss Rate (LAMR), with the
corresponding scales and speed (frame per second), with and without the scale estimation. The
numbers marked in bold are the lowest LAMR achieved by each detector. The best two detectors
with the lowest LAMR among all the detectors are the RGBD-Bilateral HOG detector (28.65%)
and the RGBD-PDE HOG detector (27.49%), both of them are RGBD detectors using the HOG
feature and the scale estimation, rescaled to 0.75. The table shows that using the scale estimation

reduces the detection speed significantly, but on the same time increases the detection accuracy.

We analyze the results in the following aspects:
RGB vs. RGBD:
Figure 5.7 shows that under the same settings (detector scale and scale estimation) with a total
number of 6 tests, 75% (27 out of 36) of the RGBD detectors outperform the RGB detector by the
LAMR. Table 5.2 shows that the best performance of all the 6 RGBD detectors outperform the
best performance of the RGB detector, with a maximum decrease of the LAMR by 28.48%, and
an average decrease of the LAMR by 18.55%. However, the false positive rate of the RGB
detector is much lower than the RGBD detectors, this can be observed in Figure 5.7, the ROC
curves of the RGB detector stop earlier at a low FPPI than the RGBD detectors.

Figure 5.8 provides an example of the detection results in the scene. One observes that the
RGB detector shows limited ability to detect objects with occlusions (maximum 1 object with
occlusion in each frame). The RGB detector performs best at the scale 1.0 (see Table 5.2), where

the biggest objects are detected, and objects in smaller scales are not detected. In our experiments,
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rescaling the RGB detector to smaller scales increases the detection of small objects, but at the
same time loses the detection of big objects, this gives rise to an increased LAMR (see Figure 5.7).
The RGBD detectors produce more satisfying detection results by extending the BBs detected by
the RGB detector in two ways: (1) With a tuning of the detector scale, the RGBD detectors can
detect small objects in the back of the queue. (2) The RGBD detectors can detect the occluded
objects in the cluttered region of the scene.

Scale estimation:

The overview of the performance of the detectors (Figure 5.7) indicates that the scale estimation
on the detection brings a significant increase on the overall performance of the detectors. At scale
1.0, the RGB detector has a decrease of performance by 3.35%, the RGBD-Bilateral HOG
detector has a decrease of performance by 0.88%, and the RGBD-Bilateral GradMag+HOG
detector has a decrease of performance by 5.47%, while all the other detectors have an average
increase of performance by 7.93%. At scale 0.75, the RGB detector maintains the same
performance after performing the scale estimation, while all the other detectors have gained an
average increase of performance by 24.61%. At scale 0.5, all the detectors have gained an average
increase of performance by 24.36%. The best performance of each detector (Table 5.2, the
numbers marked in bold) shows that, except that the RGB detector has a decrease of the best
performance by 3.35% after performing the scale estimation, all the other 6 detectors have gained
an average increase of their best performance by 9.68% after performing the scale estimation.

Depth maps filling algorithm Joint Bilateral Filter vs. PED:

In Figure 5.7 we observe that at the detector scale 1.0 and 0.75, the ROC curves of a pair of
RGBD-Bilateral detector and the RGBD-PDE detector which have the same depth feature are
close to each other or exhibit similar behaviors, with or without the scale estimation. Moreover,
Table 5.2 shows that the best performance of a pair of RGBD-Bilateral detector and the
RGBD-PDE detector corresponding to a same depth feature are similar to each other, with a
difference of 1.53% for the feature type GradMag, 1.16% for the feature type HOG, and 4.45% for
the combination of GradMag and HOG.

The above reported difference of LAMR can be observed in Figure 5.8. The RGBD-Bilateral
detectors detect more amount of BBs than the RGBD-PDE detectors, the number of false positives
detected by RGBD-Bilateral detectors are higher than the RGBD-PDE detectors. This difference
can be seen also in Figure 5.7 at the detector scale 1.0 and 0.75. Before performing the scale
estimation the ROC curves of the RGBD-Bilateral detectors and the RGBD-PED detectors all stop
at a FPPI of ~9, however, after performing the scale estimation the ROC curves of the
RGBD-Bilateral detectors stop earlier at lower FPPIs than the RGBD-PED detectors, indicating
that the scale estimation eliminates more false positives for RGBD-Bilateral detectors than for the
RGBD-PED detectors.

Feature types for the depth channels:

We use two types of features for the depth channels, the gradient magnitude (referred to as
GradMag), the histogram of gradients (referred to as HOG), and a combination of these two
features (referred to as GradMag+HOG). Table 5.2 shows that without the scale estimation, the
best performance of all detectors is obtained by the GradMag+HOG feature, followed by the HOG
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feature, and last by the GradMag feature. With the scale eatimation the best performance of all the
detectors is obtained by the HOG feature, followed by the GradMag+HOG feature, and last by the
GradMag feature. The rankings stay the same for both the RGBD-Bilateral detectors and the
RGBD-PED detectors. Dollar et al. state that no single feature outperforms HOG, and a
combination of HOG and other types of features can gain a performance improvement over pure
HOG [18]. This statement holds true in our experiments for detectors without the scale estimation.
However, HOG performs better than GradMag+HOG by LAMR with the scale estimation.

Speed:

Table 5.2 shows the following aspects regarding the detection speed. The RGB detector is faster
than the RGBD detectors. Using the scale estimation reduces the detection speed significantly.
Using the HOG feature for the depth maps is slightly faster than using the GradMag+HOG feature,
but slower than using the GradMag feature. When the GradMag feature is used for the depth maps,
the RGBD-Bilateral detectors are faster than the RGBD-PDE detectors, otherwise the RGBD
detectors using these two inpainting algorithms have almost the same detection speed.

5.2.4 Discussion of the Comparison and the Figures
Based on the comparison and figures of the previous section, we can draw the following
conclusions:

. The additional information from the depth channels improves the detection results from
the detectors using purely RGB features. The RGBD detectors have extended ability in detecting
objects with occlusions and objects in finer scales in comparison with the RGB detector.

. The scale estimation makes use of the spatial relationship and scene structure from the
depth maps. In our experiments the training data and testing data are captured from the same scene,
hence the camera setting is unchanged, which enables us to use directly the inversely proportional
relationship between the size of the object and its distance to the camera for the scale estimation
without modelling the other parameters of the camera and the scene.The amount of false positives
is significantly reduced, because the sizes of the detection windows are limited to a range
corresponding to the distances of the objects to the camera.

. The inpainting algorithm for the depth maps is also an influential factor for the
performance of the detection, because the local features from the inpainted depth maps may show
variations in details due to the different inpainting algorithms. A multitude of inpainting algorithms
are developed for depth images because of the popularity of the low cost Microsoft Kinect sensor.
Those algorithms are especially designed for the depth maps, aiming to refine the depth maps by
reducing noise, preserving boundaries and filling holes [49], [60]. A detailed discussion is beyond
the scope of our work. However, we believe that improving the inpainting algorithm for the depth
maps can bring a better performance for the RGBD detectors in our future work.

. HOG proves to be an effective feature for the depth maps in our experiments. A
combination of HOG and other types of features is favored by the researchers [20], [90], [58], [93],
[88], [102]. We use gradient magnitude as an additional feature in combination with HOG. Without
performing the scale estimation, the combination of GradMag+HOG outperforms HOG. However,
HOG performs better than GradMag+HOG after the scale estimation. This motivates us to make
experiments with other supporting features in addition to HOG in our future work.
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Figure 5.8: Demonstration of the best performance of each detector in the same scene. The RGB
detector detects objects in big scales and without occlusion. The RGBD detectors outperform the
RGB detector by being able to detect the objects in a wider range of scales and objects with

occlusions.
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5.3 Test Case 2: Multi-class Detection with the High-level Feature

Fusion Scheme

In the last section, the RGBD detectors trained by the AIT-Dataset]l show satisfactory performance
when tested on the testing data of the same scene. The RGBD detectors tested in the last section
integrate the depth information as additional channels, i.e. the features from the RGB channels and
the depth channels are fused together during the training stage.

In this section, we use AlT-Dataset2 as a second testing set. We construct a multi-class
detector which combines two detectors trained independently on two different training sets, one is
a RGB detector trained on a RGB training set, the other is a depth detector trained purely on the
depth maps. The purpose of the multi-class detector is to exploit the limited source of data
available for our work. As Table 5.3 shows, the testing set AIT-Dataset2 requires a detector which
is able to detect full-body objects in the outdoor scene with depth information. None of the other
three data sets can fully fulfill this requirement. Therefore we combine the information from
different datasets by means of combining independently trained detectors. Table 5.4 gives an
overview of the datasets used for each component detector of the multi-class detector:

Dataset Image Modality Number of | Ground Truth Type | Scene Type
Frames
pos neg
AlT-Datasetl Grayscale&Depth | 237 - Head-and-shoulder | Indoor
AlT-Dataset2 Grayscale&Depth | 87 90 Full-body Outdoor
NYU-Depth V2 | Grayscale&Depth - 1360 - Indoor
[80]
INRIA[12] RGB 614 1218 | Full-body Indoor&Out
door

Table 5.3: An overview of the details of the four datasets available for our work.

Multi-class Detector | Training Set Testing Set
1) Depth Detector Positive: Negative: AlIT-Dataset2
AlIT-Dataset1 AlIT-Dataset2 Number: 177
Number: 121 Number: 90
2) RGB Detector Positive: Negative:
INRIA [12] INRIA [12]
Number: 614 Number: 1218

Table 5.4: The training sets and testing set used for the multi-class detector.
The RGB detector is trained on the INRIA Dataset, which provides rich samples of persons
with different poses in various kinds of scenes. The detected objects are full-body persons. The

advantage of this detector is that it is capable of detecting persons in different poses, and has a
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false positive rate close to 0 (see Figure 5.9). The weak point is that it has a higher LAMR than the
depth detector, meaning that it detects only a limited number of the objects.

The training set for the depth detector takes the positive depth images from the AIT-Datasetl
and the negative depth images from the AIT-Dataset2. The negative images provide a rough
description of the background of the scene. We use them directly in the training to provide the
background information, in order to reduce the false positive in the background region. The
detected objects are head-and-shoulders, which fit closely to the upper part of the body and appear
narrower than the full-body BBs from the ground truth. In order to approximate the full-body BBs,
we enlarge the width of the detected windows by a ratio of 1.2, and set the height of the detected
windows as three times the length of the width. This general approximation can only fit part of the
objects closely, because the objects have different aspect ratios of their bounding boxes, and they
may appear in different poses which changes the aspect ratios of their BBs (see Figure 5.10). The
advantage of the depth detector is that it has a higher detection rate than the RGB detector. The
weak point is that the approximation of the full-body bounding boxes are unable to fit the objects
correctly due to the various poses of the objects.

To combine the advantages of the RGB detector and the depth detector, the multi-class
detector is constructed in a way that the detection result from the RGB detector is accepted in first
priority. On objects in which the RGB detector fails, the detection result of the depth detector is
accepted (see Section 4.4).

The multi-class detector achieves the lowest LAMR in comparison with its component

detector. However, it is worth noting that the detection speed is sacrificed (see Table 5.5).

Detector Performance LAMR (fps)
Depth Detector 11.53% (2.15fps)
RGB Detector 50.87% (1.90fps)
Multi-class Detector | 8.70%  (1.00fps)

Table 5.5: Speed of the multi-class detector and its component detectors.
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m—11.53% Depth Detector :
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Figure 5.9: The ROC curves of the RGB detector, the depth detector, and the multi-class detector.
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(c)

Figure 5.10: The combination of the RGB detector and the depth detector as a multi-class detector.
(a) The multi-class detector detects head-and-shoulders (red) by the depth detector, and the
full-body persons (green) by the RGB detector. (b) The BBs of the head-and-shoulders are
enlarged to approximate the full-body BBs. However, due to the variety of poses and different
aspect ratios of the objects, the approximation is not able to fit each individual object perfectly.
The BBs from the RGB detector show a better result in fitting the objects. In simple terms, the
RGB detector is more accurat than the depth detector, and the depth detector detects a larger
amount of objects than the RGB detector. (¢) Non-maximum suppression is performed on the
detection set of (b). The BBs detected by the RGB detector are assigned a large score (1000) to
suppress the BBs detected by the depth detector, so that the detection results of the RGB detector
are accepted in first priority, while the depth detector supplements the detection results with
further objects.
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5.3 Summary

In this chapter we evaluate the RGBD detectors proposed in the previous chapters. We test the
RGBD detectors on two scenarios. The RGBD detector with a low-level feature fusion scheme is
tested on a scenario containing a crowded and cluttered situation. We show that using additional
features from the depth data improves the detection accuracy in presence of occlusion. In the
second scenario we construct a multi-class detector which combines a RGB detector and a depth
detector in the classifier-level. The final detector outperforms each of its component detectors in
detection accuracy. Both test cases show that the additional cues from the depth data improve the
detection accuracy of the traditional intensity-based detectors.
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Chapter 6
Conclusion

In this work we present a set of RGBD detectors extended from the Aggregated Channel Features
(ACF) framework by Dollar et al. [20]. We exploit the information contained in the depth maps in
the following two ways: We provide the training process with additional features from the depth
maps and use the depth values to estimate the scales of detected objects. The depth features are
incorporated into the intensity based object detection system at two levels, in the first test case the
detectors combine all the features at a low level by constructing a joint feature space, in the second
test case the detector trains two classifiers of different classes using the intensity features and the
depth features separately and combines the decision at the classifier-level. We validate the
assumption that the depth cue improves the detection accuracy, especially in presence of clutter
and occlusions.

Scale estimation has proven to be effective for reducing the false positives by rejecting
detected windows whose sizes are not within the estimated range. However, in our work we use
the simplified model of an inversely proportional relationship between the distance of an object to
the camera and its size, and we use the minimal depth value within a bounding box to represent
the depth of that bounding box. The simplified model does not take into consideration the
distribution of the scales of the object class and the uncertainty in depth measurements. Therefore,
as represented in our first test case, the estimation function is best applicable to a testing set which
has the same scene as the training set, with the same group of objects, and a camera fixed to a
static position. To develop a more generalized scale estimation function, we will establish a more
sophisticated statistical model proposed by [36] in our future work.

The inpainting algorithms of the depth maps have slight influence on the detection accuracy
as discussed in Chapter 6. We have shown that detectors with the same settings but using depth
maps inpainted with different algorithms make a difference in the detection accuracy. We believe
that improved inpainting algorithms will improve the performance of the detection system.

Using HOG as the main feature for the depth maps has achieved satisfying performance in
our experiments. We also have tried to combine HOG with gradient magnitudes. In our future
work, we will make experiments with other supporting feature types in addition to HOG.
Moreover, we will integrate additional cues to the detection system, for example cues from the
thermal camera.

To further improve the performance of the system, a cascade-of-rejectors design can be added

to the learning algorithm, as proposed by [86], [94] and [101].
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