
Implementing Variations of
the Traveling Salesperson Problem in

a Declarative Dynamic Programming Environment

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Marius Liviu Moldovan
Matrikelnummer 0725855

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Mitwirkung: Projektass.(FWF) Dipl.-Ing. Michael Abseher

Wien, 04.03.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Implementing Variations of
the Traveling Salesperson Problem in

a Declarative Dynamic Programming Environment

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Marius Liviu Moldovan
Registration Number 0725855

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Assistance: Projektass.(FWF) Dipl.-Ing. Michael Abseher

Vienna, 04.03.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Marius Liviu Moldovan
Spengergasse 27/1611, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

Hereby, I would first like to show my gratitude to my advisors, Prof. Stefan Woltran and Michael
Abseher for their close coordination and the extensive implication in this work. They have
always had valuable input for me and took time for me when I needed. I also thank Bernhard
Bliem and Günther Charwat, for providing help with D-FLAT and with the generation of the
instances, respectively.

Further, I sincerely thank my parents and grandparents for the precious advice they have been
giving me, and for their support in my decisions, whatever they have been. Without their care
and the foundations they laid in my education I could not have achieved this accomplishment.

Also, I am thankful to girlfriend, Alexandra, who has been there for me in both cheerful and
stressful times. Last but not least, I would like to thank my friends and colleagues Bianca, Florin,
Martin, Michael and Rareş, who have been good companions throughout my studenthood and
have helped me to unlock this achievement.

Marius

iii

Abstract

The D-FLAT System is a free framework that combines the advantages of dynamic programming
with those of answer set programming (ASP). Hereby, the input instance is first decomposed
into a so-called tree decomposition, then ASP is used to declaratively specify the materialization
of the tables for the dynamic programming, which is done along the tree decomposition in a
bottom-up manner. D-FLAT proved to perform well for simple graph problems when applied
on instances with small treewidth. A more complex and prominent combinatorial problem is the
traveling salesperson problem (TSP), which is an NP-hard optimization problem. Solving the
TSP on large instances still represents a big challenge. There exist both exact algorithms and
heuristics which deal with the TSP, but to the best of our knowledge neither of the two methods
is at the same time practically efficient and allows for rapid prototyping.

In this master’s thesis we use the D-FLAT System to propose a versatile solution for the
TSP, which is implemented in a declarative, flexible environment and offers a competitive al-
ternative to monolithic ASP implementations on instances with small treewidth. We present the
dynamic programming concept we developed for the TSP and introduce the implementations of
two variations of the TSP for D-FLAT. To prove the aforementioned claim, we conduct a series
of experiments on generated graphs, as well as on real world instances based on the Viennese
public transportation system. The significance of our work derives not only from the results of
these experiments but also from the fact that the concept we proposed can be adapted for other
NP-hard combinatorial optimization problems that are related to the TSP.

v

Kurzfassung

Das D-FLAT System ist ein Framework das die Vorteile von dynamischer Programmierung
(DP) und Answer Set Programming (ASP) vereint. Hierbei wird die Eingabeinstanz zuerst in
einen Baum zerlegt und anschließend wird ASP für das Befüllen der DP-Tabellen, basierend
auf der deklarativen Spezifikation, verwendet. Dies wird entlang der Baumzerlegung von unten
nach oben durchgeführt. Für einfache Graphenprobleme hat sich D-FLAT als durchaus effizi-
ent erwiesen, solange die Instanzen niedrige Baumweite aufweisen. Komplexere Probleme, wie
zum Beispiel das NP-schwierige Optimierungsproblem des Handlungsreisenden, stellen weiter-
hin eine Herausforderung dar. Obwohl zahlreiche exakte sowie auch heuristische Ansätze für
dieses Problem bekannt sind, gibt es bis dato noch keine Methode die sowohl durch praktische
Effizienz, als auch durch eine einfache Handhabe und Adaptierbarkeit besticht.

In dieser Diplomarbeit verwenden wir D-FLAT um eine vielseitige Lösung für das Hand-
lungsreisendenproblem vorzuschlagen, welche in einem deklarativen, flexiblen Umfeld imple-
mentiert ist und eine kompetitive Alternative zu monolythischen ASP-Implementierungen auf
Instanzen mit niedriger Baumweite darstellt. Wir stellen ein Konzept nach den Prinzipien der dy-
namischen Programmierung für das Handlungsreisendenproblem vor und implementieren zwei
konkrete Versionen dieses Problems in D-FLAT. Unsere Aussagen untermauern wir mit den Er-
gebnissen unserer Experimente, die wir sowohl auf generierten Graphen, als auch auf Instanzen
die auf dem öffentlichen Wiener Verkehrsnetz basieren, durchgeführt haben. Neben den vielver-
sprechenden Resultaten für Probleminstanzen mit niedriger Baumweite bekommt unsere Arbeit
zusätzliche Bedeutung durch die Tatsache, dass das neu entwickelte, deklarative Konzept auch
für zahlreiche weitere Probleme, die mit dem Handlungsreisendenproblem verwandt sind, ange-
wandt werden kann.

vii

Contents

1 Introduction 1
1.1 Aim of the Work . 2
1.2 Structure of the Master’s Thesis . 2

2 Background 5
2.1 The Traveling Salesperson Problem . 5
2.2 Answer Set Programming . 7
2.3 The D-FLAT System . 12

3 Monolithic ASP Implementations for the Traveling Salesperson Problem 27
3.1 Monolithic ASP Encodings for the TSP-NR 27
3.2 Monolithic ASP Encoding for the TSP-R . 33

4 D-FLAT Implementations for the Traveling Salesperson Problem 37
4.1 D-FLAT Encodings for the TSP-NR . 37
4.2 D-FLAT Encoding for the TSP-R . 48

5 Evaluations 53
5.1 Problem Instances . 53
5.2 Experimental Setting . 60
5.3 Results of the Empirical Tests . 62
5.4 Discussion of the Results . 77

6 Conclusion 79
6.1 Summary . 79
6.2 Future Work . 80

A Collection of All Proposed Encodings 81

Bibliography 91

ix

CHAPTER 1
Introduction

The traveling salesperson problem (TSP) is a combinatorial optimization problem, which was
tackled by many scientists throughout the past decades. According to [5] the TSP1 was spread
in the 1920’s by the mathematician and economist Karl Menger as Botenproblem among his col-
leagues in Vienna, although the problem itself was probably formulated much earlier. Reappear-
ing at Princeton in the 1930’s, it was studied in the 1940’s by statisticians and got popularized
at the RAND Corporation, to finally gain notoriety as being a hard problem in combinatorial
optimization in the 1950’s. The TSP is actually an NP-hard combinatorial optimization prob-
lem [4], which however becomes tractable when applied on instances with small treewidth, the
latter denoting a limited cyclicity of a graph.

The TSP finds application in several fields. The most obvious one is logistics, with imple-
mentations for vehicle routing, tourism, post delivery, etc. Another use is mapping the human
genome, where the TSP provides a tool for building genetic sequences. Further, it found use in
the production and scanning of circuit boards, guiding lasers for crystal art, aiming telescopes or
even data clustering. In psychology it is used to understand the native problem-solving abilities
of humans.

Throughout the time, several approaches have been used to solve the TSP: linear program-
ming using the Simplex algorithm [19], the branch-and-bound method (introduced whilst search-
ing an algorithm for the TSP [48]), the cutting-plane method [15], local search heuristics such
as the Lin-Kernighan algorithm [47] or ant colony optimization [23] and various combinations
thereof.

Dynamic programming (DP) is a method used in mathematics and computer science mainly
for solving discrete optimization problems by first breaking down the problem into subproblems,
solving the latter and storing their solutions, and then combining the latter into a complete so-
lution. The term was first introduced in 1950 by the mathematician Richard Bellman and stood
for multistage decision processes. When he was required to find a name for it, he came up with
’programming’ for the notion of planning and ’dynamic’ for something that was multi-stage and

1For the first time it was referenced under the name Traveling Salesman Problem in [54].

1

time-varying. In fact, the name had no connection to computer science. According to Bellman
„it also has a very interesting property as an adjective, and that is it’s impossible to use the word,
dynamic, in a pejorative sense“. This was important also because the Secretary of Defense from
that time, who was accountable also for the RAND Corporation, „actually had a pathological
fear and hatred of the word research“ or „the term mathematical“ [24]. Later in the 1950s
dynamic programming received its current meaning. Richard Bellman already proposed solving
the TSP by means of dynamic programming in 1962 [7]. However, while solving the TSP for 17
cities required a highly performant computer, for 21 it was already unfeasible, due to memory
issues.

1.1 Aim of the Work

Reasoning problems of high complexity represent an important challenge in the fields of Ar-
tificial Intelligence and Knowledge Representation when applied over large amounts of data.
While offering high maintainability, exhaustive approaches face problems when applied over
large data. The D-FLAT System is a free software framework for rapid development of answer-
set-programming-encoded DP algorithms that are based on tree-decompositions [8]. Answer
set programming (ASP) [13] is a declarative programming language that is suitable for writ-
ing programs that follow the Guess/Check/Optimize scheme. D-FLAT offers on one hand the
easy problem modeling and flexibility of answer set programming and on the other hand the
performance advantages that dynamic programming brings with itself. It was developed at the
Database and Artificial Intelligence Group at the Vienna University of Technology as part of the
project “Extending the Answer-Set Programming Paradigm to Decomposed Problem Solving”.

The goal of this master’s thesis is to

• offer versatile and easily maintainable implementations of two TSP variations,

• defined in a declarative programming environment,

• which are efficient and competitive against monolithic ASP encodings when applied on
instances with small treewidth.

We will accomplish this goal by developing a dynamic programming concept for the TSP,
and based on the latter, ASP-encodings which shall be suited for D-FLAT. We will show that,
while maintaining the flexibility of ASP, our TSP implementations for D-FLAT work more ef-
ficiently than state-of-the-art ASP encodings on instances with small treewidth. To this end,
we will evaluate the implementations both on generated and on real world instances, namely
the tramway, and the metro and urban train systems of Vienna, that have treewidths 6 and 5,
respectively.

1.2 Structure of the Master’s Thesis

In Chapter 2 we will introduce the TSP and give basic insight into dynamic programming, ASP
and finally D-FLAT. For the latter we will also show a simpler example of an encoding for the

2

shortest path problem. Next, in Chapter 3 we present several monolithic ASP encodings, for
both variations of the TSP, and show on some example graphs how the TSP works hands-on.
Chapter 4 contains our main contribution, namely various encodings of the TSP variations for
D-FLAT with different configurations. Further, in Chapter 5 we present the experiments and
their results and finally discuss the latter. To draw the line, Chapter 6 presents the main outcomes
of this master’s thesis and suggests possible directions for future work.

3

CHAPTER 2
Background

2.1 The Traveling Salesperson Problem

The traveling salesperson problem (TSP) can be defined as follows: Given the distances between
n cities, return the cheapest tour that visits each of them once, or: Given a complete graph, find a
Hamiltonian cycle with minimum cost. We will also refer to it as the traveling salesperson prob-
lem without repetitions (TSP-NR) as each city must be visited exactly once. Yet will we work
on graphs that are not complete. Next, we will introduce a formal definition for the TSP [38,41]:

Definition 2.1.1:
Given a simple undirected graph G = (V,E), with V = {1,2,...,n}, and a weight function w:
E → R+, we seek a cyclic permutation σ = (1, σ(1), σ2(1), ..., σn−1(1)) of V , σi(1) denoting
the ith successor of vertex 1 (with σ0(1) = σn(1) = 1), such that

w(σ) =
n−1∑
i=0

w({σi(1), σi+1(1)})

is minimal.
We call any cyclic permutation σ of {1,2,...,n} as well as the corresponding Hamiltonian

cycle 1 - σ(1) - ... - σn-1(1) - 1 in V a tour and w(σ) its cost. If w(σ) is minimal among all tours,
σ is called an optimal tour. ♦

Further, when we will speak about a TSP variation in which some cities can be omitted or
visited several times without using any edge more than once, according to an additional speci-
fication for each of these cities on a minimum and/or maximum number of visits, we will refer
to the traveling salesperson problem with repetitions (TSP-R), a generalization of the TSP-NR.
Formally it can be defined in the following way:

5

Definition 2.1.2:
Given a simple undirected graphG = (V,E), with V = {1,2,...,n}, an optional minimum amount
of visits min(i) and maximum amount max(i) for each node i ∈ V , both with default value
1, and a weight function w: E → R+, we seek a cyclic permutation with repetition σ =
(1, σ(1), σ2(1), ..., σm−1(1)) of V , σi(1) denoting the ith successor of vertex 1, such that

w(σ) =

m∑
i=1

w({σi(1), σi+1(1)}) is minimal and

∀j ∈ V min(j) ≤| visits(σ, j) |≤ max(j), where
n∑

i=1

min(i) ≤ m ≤
n∑

i=1

max(i) and

visits(σ, j) = {i | σi(1) = j, 0 ≤ i ≤ m− 1}. ♦

Next, we will present alternative yet equivalent definitions for the TSP-R and the TSP-NR,
respectively, which further stand as starting points for our work:

Definition 2.1.3:
Given a simple undirected graph G = (V,E), with V = {1,2,...,n}, and a weight function
w: E → R+, we seek a subset E′ of E, such that there exists a path that consists only of edges
in E′ between any two vertices in V , further

∀j ∈ V | adj(j) |= 2, where

adj(j) = {i ∈ V | (j, i) ∈ E′}, and∑
e∈E′

w(e) is minimal. ♦

Definition 2.1.4:
Given a simple undirected graphG = (V,E), with V = {1,2,...,n}, an optional minimum amount
of visits min(i) and maximum amount max(i) for each node i ∈ V , both with default value 1,
and a weight function w: E → R+, we seek a subset E′ of E, such that there exists a path that
consists only of edges in E′ between any two vertices j1 and j2 in V for which

adj(j1) > 0 and adj(j2) > 0, where

adj(j) = {i ∈ V | (j, i) ∈ E′}, further

∀j ∈ V 2 ∗min(j) ≤| adj(j) |≤ 2 ∗max(j),

∀j ∈ V adj(j) = 0 mod 2 and∑
e∈E′

w(e) is minimal. ♦

6

2.2 Answer Set Programming

„Answer set programming (ASP) is a form of declarative programming oriented towards diffi-
cult, primarily NP-hard, search problems. As an outgrowth of research on the use of nonmono-
tonic reasoning in knowledge representation, it is particularly useful in knowledge-intensive
applications.“ These are the words used by Vladimir Lifschitz to describe this programming
paradigm. Compared to Prolog [17], a declarative logic programming language that is goal-
driven, ASP is fact-driven. This means that instead of starting with a goal and using backward
chaining in the search of facts and rules to sustain the given goal, ASP starts from the given facts
and rules and by forward chaining it deduces all viable results.

Stable Models and Answer Sets

ASP is based on the semantics of stable models [46]. These were defined by Vladimir Lifschitz
and Michael Gelfond [33] and reexamined by Victor V. Marek and Mirosław Truszczyński [49].
As stable models derive from research on nonmonotonic reasoning, they also imply the concept
of negation as failure [16]. This means that the default negation not a of an atom a is true
under an interpretation M if a cannot be derived in the program. In [33] Gelfond and Lifschitz
consider programs that are sets of rules of the form:

h←− l1, ..., lm

where the atom h comprises the head and the literals l1, ..., lm, that can be atoms or default
negated atoms, with m ≥ 0, form the body of a rule. In order to obtain the stable models of a
program P one must first ground it to obtain a variable-free (propositional) equivalent of P . The
actual computing of the stable models happens in the second step. An interpretation M , which
is a set of atoms ai, such that ai is true under M if ai ∈ M and false otherwise, is a classical
model of the program if it is a classical model of all rules, meaning that whenever the body of a
rule is true under M , also the head must be true under M . A Gelfond-Lifschitz reduct PM with
regard to an interpretation M is constructed as follows:

• Every rule containing a literal not a in its body with a ∈M is eliminated.

• All default negated literals in the bodies of the remaining rules are eliminated.

If M is a minimal model, with regard to subset inclusion, of PM it is also a stable model of P .
In fact, the set of all stable models of P is comprised by all minimal models of PM .

Subsequently, we will present some examples meant to make some important remarks. Ex-
ample 2.2.1 will illustrate the fact that a program can have several stable models, while Exam-
ple 2.2.2 will illustrate the fact that a program can have no stable model at all. Examples 2.2.3
and 2.2.4 introduce constraints, and the necessity of strong negation, respectively.

7

i Mi PMi Model Stable Model
1 {} {a.b.}
2 {a} {a.} X X
3 {b} {b.} X X
4 {a, b} {} X

Table 2.1: Interpretations, reducts and models for Example 2.2.1.

i Mi PMi Model Stable Model
1 {} {a.}
2 {a} {} X

Table 2.2: Interpretations, reducts and models for Example 2.2.2.

Example 2.2.1:
Let the program P consist of the rules:

a←− not b

b←− not a

Table 2.1 shows all possible interpretations Mi for Example 2.2.1, with 1 ≤ i ≤ 4, , their
corresponding Gelfond-Lifschitz reducts PMi and whether they are models or stable models of
P . M2, M3 andM4 are all models of PM2 , PM3 and PM4 , respectively butM4 is not a minimal
model. Thus, the program P has two stable models: M2 = {a} and M3 = {b}. ♦

Example 2.2.2:
Let the program P consist of the rule:

a←− not a

Table 2.2 shows all possible interpretationsM1 andM2 for Example 2.2.2, their correspond-
ing Gelfond-Lifschitz reducts PM1 and PM2 , respectively, and whether they are models or stable
models of P . M2 is a model of PM2 , but not a minimal one. {} would be a smaller model of
PM2 but {} is actually M1 which is not a model to its Gelfond-Lifschitz reduct. Thus, the pro-
gram P has no stable models. ♦

Example 2.2.3:
By using a rule such as the following one, we can avoid certain models. The rule

aux←− a, not b, not aux

avoids models where a holds and b does not. ♦

The auxiliary variable from Example 2.2.3 can be omitted. Such a rule is called a constraint
and is usually written:

←− l1, ..., lm

8

Figure 2.1: Problem solving in the paradigm of ASP.

with m ≥ 0, and with the meaning that any answer set candidate in which the literals l1, ..., lm
hold is thrown away.

Example 2.2.4:
Sometimes default negation does not suffice. The situation modeled by the rule

cross←− not train

might be risky as it expresses that crossing is allowed if and only if there is no knowledge about
a train approaching. The strong negation ¬a of an atom a is true only if it can be specifically
derived by a rule of the program and is more appropriate in this situation

cross←− ¬train

as this rule expresses that crossing is allowed only when there is knowledge about the fact that
there is no train approaching. ♦

Thus, ASP allows also strong negation, answer sets being stable models of programs that
contain also strong negation. In ASP, the closed-world assumption (CWA) [46] holds, a term
first introduced by Raymond Reiter [52] meaning that if an atom cannot be derived, it is allowed
to derive its negation, as opposed to the open-world assumption (OWA) in which an atom that
cannot be derived has the truth value undefined and which holds in the well-founded semantics,
a three-valued version of the stable model semantics [32].

Answer Set Solving

Figure 2.1 shows the process of obtaining desired results from a given problem instance using the
paradigm of ASP. First, the programmer has to define the so-called encoding, which is basically a
set of rules like those defined before. Similarly to the process of finding stable models in logic, in
logic programming the grounder first takes the given program and returns an equivalent variable-
free program instance in which each variable is replaced by all its possible instantiations. In
a second step, the solver takes the grounded program instance and returns the sought answer

9

1 0 { selected(X,Y) } 1 :- edge(X,Y,W).

2 path(X,Y) :- selected(X,Y).
3 path(X,Z) :- path(X,Y), path(Y,Z).

4 :- start(X), end(Y), not path(X,Y).

5 cost(C) :- C = #sum { W,X,Y : edge(X,Y,W), selected(X,Y) }.

6 #minimize { C : cost(C) }.
7 #show selected/2.

Listing 2.1: Shortest path implementation in ASP.

sets. For more details about the process we refer the reader to [42] where it is explained more
thoroughly.

Programming Environment

There are several answer set solving collections. The first grounder and solver were lparse and
smodels [51], respectively. The DLV system [44] is a deductive database system developed at
the University of Calabria and the Vienna University of Technology and has a wide applicabil-
ity, from hard search and optimization problems to deductive database applications. For this
purpose, it offers several front ends, such as the K planning system, a front end for abductive
diagnosis and Reiter’s diagnosis and an SQL front end. The Potsdam Answer Set Solving Col-
lection [28] is a set of ASP tools developed at the University of Potsdam, including tools for ASP
and for constraint logic programming. In this thesis we use clingo [27], that uses lparse syntax
and comprises the grounder gringo [31] and the solver clasp [30] from the Potsdam Answer Set
Solving Collection and offers more control over the grounding and solving process than the lat-
ter two offer individually, for example by grounding and solving incrementally. The answer set
solver clasp combines ASP modeling capacities with techniques from Boolean constraint solv-
ing and satisfiability checking (SAT) and relies on conflict-driven nogood learning [29]. Further,
WASP is an ASP solver that uses SAT-based techniques, such as conflict-driven constraint learn-
ing, restarts and backjumping [3].

Methodology

The best practice methodology for ASP is the so-called Guess/Check/Optimize (GCO) scheme [44]
which is an extension and refinement of the Guess&Check methodology, introduced in [26] and
to which the Generate/Define/Test methodology [45] is closely related:

Guess: This part of the scheme comprises the rules and facts of the program, particularly those
which build up the search space by guessing certain predicate arguments.

Check: The second, optional, part consists of the constraints that cut off the search space by
eliminating answer set candidates which represent interpretations that would be inconsis-
tent with the given problem. As shown in the example above, these constraints’ heads are
empty while their bodies are conjunctions of facts that would lead to invalid results.

10

2

1

3

4 53

6 92

7
3

2

Figure 2.2: Shortest path input instance graph.

1 edge(1,2,2).
2 edge(1,3,7).
3 edge(2,3,3).
4 edge(2,4,6).
5 edge(2,5,9).
6 edge(3,4,3).
7 edge(4,5,2).
8 start(1).
9 end(5).

Listing 2.2: Shortest path input instance encoding.

Optimize: This last and optional part consists of rules that allow to grade the program’s answer
sets by using an objective function that implicitly maps answer sets to natural numbers,
and filtering the answer sets with the minimum or maximum value, respectively.

ASP in Practice

Now we will use the shortest path problem on directed graphs to show an example of ASP
encoding, its grounding when given a problem instance, and the resulting answer sets. The used
environment will be the Potsdam Answer Set Solving Collection [28]. The goal of the shortest
path problem is to find the path with minimum weight cost from a start node to an end vertex in
a graph that has only positive edge weights.

Listing 2.1 shows a possible encoding for the shortest path problem on directed graphs using
the paradigm of ASP. First, one can observe that according to the lparse syntax, used also by
the Potsdam Answer Set Collection, :- is used instead of←−. Lines 1 to 3 comprise the Guess
section of the program as for each edge supplied with the problem instance, the solver will guess
whether the edge is selected or not. Further, lines 2 and 3 build up the search space by deducing
the existence of a path between two vertices if it is the case. Line 4 comprises the Check section
as it is being checked whether there exists a path between the start and the end vertex, also
supplied in the program instance, and if there is none, the answer set candidate is abandoned.

11

1 path(1,2) :- selected(1,2).
2 path(1,3) :- selected(1,3).
3 path(2,3) :- selected(2,3).
4 path(2,4) :- selected(2,4).
5 path(2,5) :- selected(2,5).
6 path(3,4) :- selected(3,4).
7 path(4,5) :- selected(4,5).

Listing 2.3: Excerpt from grounded shortest path encoding.

1 Answer: 1
2 selected(1,2) selected(2,4) selected(4,5)
3 Optimization: 10

4 Answer: 2
5 selected(1,2) selected(2,3) selected(3,4) selected(4,5)
6 Optimization: 10

Listing 2.4: Resulting optimal answer sets.

Finally, the Optimize section is comprised by lines 5 and 6. The objective function is defined
in line 5 by using the predicate cost/1. Its argument represents the sum of the weights of all
selected edges. Line 6 is a directive for grading answer sets by the arguments of their cost/1
predicates, the lower the better. The last line is a directive for showing only the selected/2
predicate instances of the answer set(s) as only these are relevant for the given problem.

Figure 2.2 shows a possible problem instance in which we are looking for the path with
minimum cost from vertex 1 to vertex 5.

Listing 2.2 shows the encoding for the input instance shown in Figure 2.2, with vertex 1 as
start node and vertex 5 as end node, an enumeration of facts which are nothing else than rules
that lack a body, meaning that they must hold at any time.

In Listing 2.3 we can see an excerpt from clingo’s grounded encoding for the shortest path
problem encoding presented in Listing 2.1 corresponding to line 2 in the latter. We observe that
the rule is instantiated with all possible values according to the given facts and to the rule in line
1, Listing 2.1, such that a path/2 predicate will be deduced by the solver from a selected/2
predicate with the same arguments only if the latter has been guessed positively.

Finally, Listing 2.4 shows the answer sets supplied as output by clingo. They were chosen
as such, as among the three answer set candidates deduced by the solver, which are not aban-
doned because of a constraint, they are those with the lowest total cost, minimizing the objective
function.

2.3 The D-FLAT System

The D-FLAT System, developed at the Vienna University of Technology [8], promises the flexi-
bility offered by declarative programming and also handles large amounts of data by generating
a tree from the initial problem instance and by running a declarative programming algorithm

12

Store table ASP call

Parse
instance

Decompose Done?
no

yes

Visit next
node in

post-order

Materialize
solution

Figure 2.3: Control flow in D-FLAT, adapted from Figure 4 in [1].

on each of this tree’s nodes which represent subproblems of the original instance. The system
itself written in C++, lets the user specify the algorithm using ASP and delegates the burden of
computation and optimization to a library for finding a good tree decomposition and to an ASP
solver.

Figure 2.3 shows the basic control flow in the D-FLAT system during the execution of an
algorithm. First, the given problem instance is parsed and a tree decomposition is built out
of it, by decomposing the instance into several smaller subinstances. A loop follows, which
handles every node of the tree decomposition in post-order. D-FLAT solves each subproblem
corresponding to a node by calling the ASP encoding provided by the programmer, once for each
node. The partial results are stored into D-FLAT’s own data structures, either in so-called item
trees or in tables. Finally, after visiting all the nodes of the tree decomposition, it combines all
the partial solutions using the data stored in the provided data structures and prints all complete
solutions. Alternatively, it can return an optimal solution or the result for a decision or counting
problem.

According to [9], any problem that is expressible in monadic second-order logic, which
includes many problems from NP and some from PSPACE, can be solved using D-FLAT in
fixed-parameter time (FPT).

In this section we will further describe the D-FLAT System, offering an introduction into
tree decompositions and dynamic programming, and illustrating D-FLAT’s interface, by using
information from the D-FLAT Progress Report [1] and by presenting a similar example to the
one introduced in the previous section. However, note that we will show an implementation for
the shortest path problem on directed graphs only for illustration purposes as it can be easily
solved with greedy polynomial-time heuristics, such as Dijkstra’s algorithm [22].

Tree Decompositions

A tree decomposition is a mapping of a graph to a tree that fulfills certain conditions and is
used in general for solving NP-hard problems more easily by removing the cyclicity of the
initial graph. For disambiguation, from now on we will use the term „node“ for referring to
a node in the tree decomposition and „vertex“ for referring to a vertex in the initial graph. A
tree decomposition and a graph’s treewidth, which can be understood as its cyclicity degree, are
formally defined as follows [12, 53]:

13

{2,3,4}

{2,4,5}{1,2,3}

Figure 2.4: An optimal tree decomposition for the graph in Figure 2.2.

Definition 2.3.1:
Given a graph G = (V,E), a tree decomposition of G is a pair (T, χ) where T = (N,F) is a
tree and χ : N → 2V assigns to each node a set of vertices (called the node’s bag), such that the
following conditions hold:

1. For each vertex v ∈ V , there exists a node n ∈ N such that v ∈ χ(n).

2. For each edge (v1, v2) ∈ E, there exists an n ∈ N with v1 ∈ χ(n) and v2 ∈ χ(n).

3. For each ni, nj , nk ∈ N : If nj lies on the path between ni and nk then χ(ni) ∩ χ(nk) ⊆
χ(nj).

The width of a tree decomposition is defined as maxn∈N |χ(n)|− 1 and the treewidth of a graph
is the minimum width over all its tree decompositions. ♦

To sum up, each vertex and each edge must belong to a node and if a vertex belongs to two
different nodes, it must belong to all nodes on the path between the two as well. Note that a
graph always has a tree decomposition and that the tree decomposition of a graph is in general
not unique. A tree has treewidth 1 and a cycle has treewidth 2. Figure 2.4 shows an optimal
tree decomposition of the graph in Figure 2.2, which has treewidth 2. The notion of treewidth is
important, as many problems that are intractable in general become tractable when the treewidth
of the input instance is bounded by a constant [11, 35, 36]. Moreover, research shows that in
many practical situations instances have a small treewidth [2,37,40,43,50,56]. When building a
tree decomposition, the directedness of as graph is not taken into account. However, there exist
so-called arboreal decompositions, which also define a directed tree-width [25], but D-FLAT
does not work with these due to the lack of libraries to implement them.

Determining a graph’s treewidth and constructing an optimal tree decomposition are in-
tractable, yet fixed-parameter tractable. This means that, given a graph and a non-negative in-
teger k, deciding whether the graph’s treewidth is at most k is NP-complete [6], yet having k
fixed in advance as part of the problem statement, and not the instance, one can decide in linear
time whether the graph’s treewidth is at most k and, if it is the case, construct an optimal tree de-
composition [10]. Furthermore, there are efficient heuristics available for producing reasonably
good tree decompositions, for the situation that k is not known in advance [12, 21, 34].

As mentioned above, the D-FLAT system works on tree decompositions. In order to con-
struct them, it first creates a hypergraph representation of the input, according to the user’s
specification of edges and vertices in the program call command. D-FLAT constructs a hyper-
graph that has binary hyperedges corresponding to the graph’s edges and unary hyperedges that
correspond to the graph’s vertices. In order to build a tree decomposition of small width, it uses

14

SHARP, an external C++ library, which internally makes use of a software called htdecomp [21],
and relies on a bucket elimination algorithm [20]. One way to build a tree decomposition is to
successively extract a vertex from the hypergraph, according to a predefined elimination order,
make it simplicial (i.e. connect all its neighbors such that they form a clique) and create a new
decomposition node that contains the vertex and all its neighbors.

The order in which the tree decomposition is built by the external library is given by the
order in which the vertices are progressively eliminated from the hypergraph. The framework
supports the following heuristics for finding such elimination orders:

Min-degree: The vertex with the least number of not selected neighbors is selected.

Min-fill: The vertex whose elimination adds the least number of edges to the hypergraph.

Maximum Cardinality Search: After selecting the first vertex randomly, it is always the
vertex with the greatest number of already selected neighbors, that gets selected.

In order to easen the process of implementing in ASP, D-FLAT offers some optional normaliza-
tions of tree decompositions, even if it linearly increases their size:

Weak Normalization: Each node that has more than one child, called a join node, must have
the same vertices in its bag as its children. Nodes that have only one child are called
exchange nodes.

Semi-normalization: The condition for weakly normalized tree decompositions must hold
and a join node must have exactly two children.

Normalization: The conditions for semi-normalized tree decompositions must hold and each
exchange node can either consist of all but one vertex of its child’s bag, in which case it is
a remove node, or of all vertices of its child’s bag plus another vertex, in which situation
it is called an introduce node.

The root and the leaves of the tree decomposition are by default empty in D-FLAT. Additionally,
the user has the possibility to impose having above each join node an extra identical node which
can be beneficial for the simplicity of the encoding when using the --default-join option,
which we will also introduce later on.

Dynamic Programming

Dynamic programming (DP) is a mathematical and computer engineering method used mainly
for solving discrete optimization problems by first solving subproblems and storing their so-
lutions, and then combining the latter into a complete solution. A property that all problems
which can be efficiently solved by dynamic programming show is called overlapping subprob-
lems. A problem having this property can be divided into several subproblems whose solutions,
stored for example in tables using a technique called memoization or result caching, can be then
reused multiple times for constructing a solution to the initial problem. This property is also
the reason for the inefficiency of recursive solutions to these problems, as such a solution would

15

i (2,3) (2,4) (3,4) j cost
0 X {(0,0)} 12
1 {(2,1)} 11
2 X {(2,3)} 10
3 X X {(2,3)} 13
4 X p X {(3,0)} 10
5 X {(3,1)} 14
6 X X {(3,3)} 13
7 X X X {(3,3)} 16

i (1,2) (1,3) (2,3) cost
0 X 7
1 X X 10
2 X 2
3 X p X 5
4 X X 9
5 X X X 12

i (2,4) (2,5) (4,5) cost
0 X 2
1 X 9
2 X X 11
3 X p X 8
4 X X 15
5 X X X 17

Figure 2.5: Dynamic programming tables for the shortest path problem on the tree decomposi-
tion in Figure 2.4.

lead to many identical recursive calls [57]. Dynamic programming is related to the divide-and-
conquer technique which also solves problems by combining solutions to their subproblems.
Both techniques work on problems with optimal substructure. A problem displays this property
if an optimal solution to it, holds optimal solutions to its subproblems within itself. However,
opposed to dynamic programming, a divide-and-conquer algorithm does not take advantage of
overlapping subproblems [18].

Figure 2.5 shows the dynamic programming tables for the shortest path problem on the
tree decomposition shown in Figure 2.4. The goal is to find a path from vertex 1 to vertex
5 in the graph from Figure 2.2. Every node of the tree decomposition has a corresponding
table. The tables are computed in a bottom-up manner, starting from the leaf nodes. The tables
corresponding to the latter are generated by listing all possible partial solutions. Each row stands
for a possible partial solution and each column for the identifier of the partial solution, for the
edges between the node’s vertices and for the cost of the partial solution, respectively. A cell is
checkmarked if the corresponding edge has been selected in the specific partial solution, while
p stands for the fact that there exists a directed path between the two vertices. The latter is used
for example to determine whether a path exists from the start to the end vertex. For instance, the
table for the left leaf node in Figure 2.5 shows all possible combinations, for selecting the edges
between the so-called current vertices, that can possibly lead to a solution, current vertices
being those that are contained in the node’s bag, in this case the vertices 1, 2 and 3. Please
note that the partial solution candidates in which no outgoing edges of vertex 1 were selected
are left out, as they cannot lead to a solution. In non-leaf nodes, new partial solutions are

16

computed based on the current bag vertices and on partial solutions of their children. Their
tables are computed by extending their children’s partial solutions and posses an extra column
which contains the identifiers of the latter. In our example, the root node is at the same time a
join node, as it combines and extends partial solutions of its two child nodes, but also removes
those combinations that would not lead to a solution. Its bag contains vertices from both child
nodes, while some of the child nodes’ bag elements have been eliminated, which is why vertices
1 and 5 are called removed vertices. At the same time, a vertex contained by the current bag
but not by any of its children’s bags would be called an introduced vertex. Looking at the join
node’s table we can see possible combinations of the partial solutions in the child nodes (at the
same time extensions to the latter) which lead to a viable solution to the problem, i.e. which
contain the necessary edges to form a path from the start vertex 1 to the end vertex 5. For each
distinct row in the join node we keep and display the pair of extended rows that leads to the
lowest accumulated cost. For example, row 1 could be obtained by combining child rows 0 and
0, 0 and 1, 2 and 1, 2 and 2, 4 and 0, 4 and 1, or 4 and 2, whilst selecting also the edge (3,4).
However, combining rows 0 and 0 leads to a minimum cost of 12 so this is the one stored in
the table. Row 1 could be obtained also by combining child rows 0 and 1, which would lead
to a lower cost of 9, but it would not contain enough edges for a solution to the given problem.
Finally, among the partial solutions listed in the join node, the solutions with the lowest cost
are chosen as optimal solutions, corresponding to rows 2 and 4. Now, the total solutions can be
computed by tracing back the partial solutions down to the leaf nodes by following the identifiers
stored in the j column. We observe that by combining row 2 from the join node’s table with row 2
from the left leaf node and row 3 from the right one we obtain the edges (1,2), (2,4), (4,5), which
put in the right order, form an optimal path from vertex 1 to vertex 5. Similarly, combining rows
4, 3 and 0, respectively, we obtain the other optimal solution.

In D-FLAT, each of the tree decomposition nodes is connected either to an item tree or to
a table which works in a similar way to the one explained above. In this master’s thesis we
will use only the table as data structure for storing partial solutions, so please refer to [1] for
further information about item trees. In D-FLAT, each partial solution is stored as a so-called
item set, consisting of items which are arbitrary ground ASP terms. In our example, if there is
a checkmark for a certain edge, say (1,2) in a node’s table, the item set to the specific partial
solution would contain an item selected(1,2). Furthermore, the D-FLAT system uses
extension pointers for creating the link between the nodes’ partial solutions. From each row of
a non-leaf node’s table there are one or more extension pointers indicating the extended rows.

D-FLAT’s Interface for ASP

During a bottom-up traversal of the tree decomposition, D-FLAT invokes the ASP solver for ev-
ery node. The solver is fed with the user-specified encoding of the problem, the facts describing
the input instance and facts about both the current bag and items, and those of the current node’s
children. Table 2.3 explains the predicates we will further use in this work, for deriving these
facts about the tree decomposition and its contents. The first twelve predicates are used as input
for the ASP solver while the others are output predicates. Note that we make use of D-FLAT’s
simplified, less general interface for problems in NP, that usually suffices for problems in NP,
and which also makes use of tables instead of item trees in the process of dynamic programming.

17

Input Predicate Meaning
initial The current tree decomposition node is a leaf.
final The current tree decomposition node is the root.

currentNode(N) N is the identifier of the current decomposition node.
childNode(N) N is a child of the current decomposition node.

bag(N,V) V is contained in the bag of the decomposition node N .
current(V) V is an element of the current bag.

introduced(V) V is a current vertex but was in no child node’s bag.
removed(V) V was in a child node’s bag but is not in the current one.

childRow(R,N) R is a table row belonging to decomposition node N .
childItem(R,I) The item set of table row R contains I .

childAuxItem(R,I) The auxiliary item set (for the default join) of table row R con-
tains I .

childCost(R,C) C is the cost value corresponding to the table row R.
Output Predicate Meaning

item(I) The item set of the current table row shall contain the item I .
auxItem(I) The auxiliary item set (for the default join) of the current table

row shall contain the item I .
extend(R) The current table row shall extend the child table row R.
cost(C) The current table row shall have a cost value of C.

currentCost(C) The current table row shall have a current cost value of C.

Table 2.3: Predicates describing the tree decomposition and its contents as presented in [1].

In order to exemplify the way the D-FLAT framework functions and how the predicates
in Table 2.3 are used, we implemented the shortest path problem on directed graphs also in
D-FLAT, as shown in Listing 2.5. The encoding follows the GCO-scheme [44]. We first guess
a child node’s row to be extended and whether to select incoming or outgoing edges of an
introduced vertex for the pool of edges that will later represent a path. Next, we deduce which
vertices are connected by a path, particularly with the start and the end vertex, and also what
we can deduce from items of the extended child node’s row. The checking part consists of a
constraint that applies only for join nodes, one that throws away all solution candidates that do
not contain a path from the start to the end vertex, and two which are fired when the start or end
vertex is eliminated and it is not connected by a path to any current vertex, respectively. Finally
we define the cost function for nodes with one and two children, respectively.

The first line is a so-called modeline: if the first line of the encoding, specified in the com-
mand line with -p, starts with %dflat: (followed by a space), the rest of the line is considered
to be part of the command line. In our example encoding we specify the binary hyperedge pred-
icate edge/2 with -e (we do not need a unary hyperedge predicate vertex/1 as we work
solely with edges and a path could not contain an isolated vertex anyway), the fact that we work
with tables rather than item trees with the option --tables and the fact that our encoding is
constructed for working on semi-normalized tree decompositions with -n semi, such that we

18

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n semi

2 %Guess row t o be e x t e n d e d .
3 1 { extend(R) : childRow(R,N) } 1 :- childNode(N).

4 %Guess whe the r t o s e l e c t i n t r o d u c e d nodes ’ a d j a c e n t edges .
5 0 { item(selected(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y).
6 0 { item(selected(Y,X)) } 1 :- edge(Y,X), introduced(X), current(Y).

7 %D ef in e t h e path/2 p r e d i c a t e .
8 item(path(X,Y)) :- item(selected(X,Y)), current(X;Y).
9 item(path(X,Z)) :- item(path(X,Y)), item(path(Y,Z)), current(X;Y;Z).

10 % Fix c o n s t a n t a rgumen t s i f s t a r t , end or a l i n k v e r t e x i s i n t h e bag .
11 item(path(s,Y)) :- start(X), item(path(X,Y)), current(X;Y).
12 item(path(X,e)) :- end(Y), item(path(X,Y)), current(X;Y).
13 item(path(s,e)) :- item(path(s,X)), item(path(X,e)), current(X).

14 % D ef in e t r a n s i t i v i t y f o r path/2 wi th c o n s t a n t a rgument .
15 item(path(s,Z)) :- item(path(s,Y)), item(path(Y,Z)), current(Y;Z).
16 item(path(X,e)) :- item(path(X,Y)), item(path(Y,e)), current(X;Y).

17 % Pass on i t e m s from c h i l d nodes .
18 item(selected(X,Y)) :- extend(R), childItem(R,selected(X,Y)), current(X;Y).
19 item(path(X,Y)) :- extend(R), childItem(R,path(X,Y)), current(X;Y).
20 item(path(s,Y)) :- extend(R), childItem(R,path(s,Y)), current(Y).
21 item(path(X,e)) :- extend(R), childItem(R,path(X,e)), current(X).
22 item(path(s,e)) :- extend(R), childItem(R,path(s,e)).

23 % C o n s t r a i n t s f o r j o i n nodes , exchange nodes and f o r t h e r o o t node , r e s p e c t i v e l y .
24 :- extend(R;S), R != S,

childItem(R,selected(X,Y)), not childItem(S,selected(X,Y)).
25 :- removed(X), start(X), not item(path(s,_)).
26 :- removed(X), end(X), not item(path(_,e)).
27 :- final, not item(path(s,e)).

28 % Cost f u n c t i o n f o r j o i n and exchange nodes , r e s p e c t i v e l y .
29 cost(CC - LC) :- 2 #count{ X : childNode(X) } 2,

CC = #sum { CCI,R : extend(R), childCost(R,CCI) },
LC = #sum { W,X,Y : weight(X,Y,W), item(selected(X,Y)) }.

30 cost(CC + NC) :- 1 #count { X : childNode(X) } 1,
extend(R), childCost(R,CC), NC = #sum {
W,X,Y : weight(X,Y,W), item(selected(X,Y)), introduced(X),
W,X,Y : weight(X,Y,W), item(selected(X,Y)), introduced(Y) }.

Listing 2.5: Shortest path implementation for D-FLAT.

only need to specify the problem and the instance encodings when running D-FLAT.
Line 3 guesses a row to extend for each child of the current node and deduces a fact

extend(R), where R is the child node’s extended row. The extend/1 predicate and its
argument will then be used throughout the code to refer to the items of a specific row of a child
node’s table. Usually a rule like this one is part of every table-mode encoding. Lines 5 and 6
guess for all introduced vertices whether the edges ingoing from or outgoing to other current
vertices shall be selected. If affirmative, a fact selected/2 is deduced. Line 8 establishes
that, if an edge between two vertices is selected, then there exists also a (directed) path between
them. Note that such rules are fired only if the vertices in cause are in the current node’s bag.

19

Otherwise we would deviate from the dynamic programming paradigm. Please also note that
current(X;Y) is the condensed notation of current(X), current(Y). Line 9 repre-
sents the transitivity of the path/2 predicate. Lines 11, 12 and 13 are meant to fix a constant
argument s or e for the path/2 items if the start or the end vertex is contained in the current
bag, respectively. If the linking vertex between a path from the start vertex and to the end vertex
is in the current bag, a fact path(s,e) is deduced. Note that, even if we actually use the start
and the end vertex at other nodes than those which they are contained in, we do not deviate from
the principle of dynamic programming as we do this only for a constant number of vertices.
Lines 15 and 16 deal with the transitivity of the path/2 predicate specifically when one of the
arguments is not a current vertex but a constant. In lines 18 to 22 we deduce items from those of
child nodes, namely if in a child node an edge was selected, the corresponding selected/2
fact must also be deduced in the current node yet only if the two implied vertices are still current.
The same holds for the path/2 predicate.

When joining partial solutions from two children, they must match, meaning that if and
only if an edge is selected in one child node it must be selected also in the other one. This is
the reason for introducing the constraint in line 24, which throws away all solution candidates
where an edge is selected in one child node and in the other one not. As we are working on a
semi-normalized tree we do not have to mind about edges between vertices that are in one child
node’s bag and in the other one’s not. Also, one could worry about an edge between two vertices
that are not in the join node’s bag, being selected somewhere in one tree branch, while in the
other one not. However, this case is excluded due to the construction of the tree decomposition:
if one vertex appeared in both tree branches, it would be contained by all nodes on the path
inbetween, including the join node, which we had assumed otherwise. Next, we discard all
answer set candidates in which there does not exist any vertex connected to the start or end
vertex through a path of selected edges after the former have been removed, in lines 25 and 26,
respectively. Once the start and the end vertex have been removed and they are not connected to
any other vertex it is impossible to obtain a path from one to another. Finally, in line 27 we get
rid of all solution candidates that do not contain a path between the start and the end node. At
this point we are left only with solution candidates that contain the desired path but might also
contain additional edges.

The latter are handled by the cost function, which is responsible also for choosing the optimal
solution, as it will always rather take a solution candidate that contains in its edge pool only edges
to form the desired path rather than one that contains also additional edges, given that the edge
weights are positive. Lines 29 and 30 define the cost/1 predicate for exchange and join nodes,
respectively, and implicitly the cost function. In both rules we use the #count-aggregate for
counting the current node’s number of children and the #sum-aggregate for summing up the
current cost. They count and sum up, respectively, the values standing before the colons, which
apply to the facts listed after them. As leaf nodes are by default empty in D-FLAT, it is not
necessary to deduce a cost for those, in which case D-FLAT automatically assumes the cost is 0.
The rule for join nodes, in line 29, counts the number of child nodes and is applicable to those
having exactly two of them. Further, it sums up all child nodes’ costs. In fact, the aggregate sums
up only the first value listed before the colon while the second one is only for differentiation.
Without the second one, D-FLAT would add the child node’s cost only once if both children had

20

1 edge(1,2).
2 edge(1,3).
3 edge(2,3).
4 edge(2,4).
5 edge(3,4).
6 edge(4,5).
7 edge(2,5).
8 weight(1,2,2).
9 weight(1,3,7).

10 weight(2,3,3).
11 weight(2,4,6).
12 weight(3,4,3).
13 weight(4,5,2).
14 weight(2,5,9).
15 start(1).
16 end(5).

Listing 2.6: Shortest path input instance encoding.

equal costs. The last part of the rule sums up the weights of all selected edges in the current
bag. Finally, the cost of a join node is deduced as being the sum of the children’s costs which
we subtract the weights of the edges between current vertices from. Otherwise, the latter would
be counted twice as a join node’s current edges are contained by both children’s bags, and their
weights are included in both children’s costs. The last rule, for calculating the cost for exchange
nodes, applicable only for nodes with one child, adds the latter’s cost to the weights of newly
introduced nodes’ selected edges. In more detail, we add the weights for selected edges whose
start vertices are newly introduced, to the weights of the selected edges whose end vertices are
newly introduced. We do not have to mind selected edges whose both adjacent vertices are newly
introduced as the #sum-aggregate adds a value only once if the instantiated variables in front of
the colons are the same, no matter their order, and we do not have an additional differentiator
besides the value and the two vertices, such that these edges’ weights are always counted only
once.

Further, in Listing 2.6 we present the D-FLAT encoding for the input instance shown in Fig-
ure 2.2, with vertices 1 and 5 as start and end vertices, respectively, also supplied when running
D-FLAT. Note that for D-FLAT we need to specify the weights separately because by supplying
a ternary predicate edge that would include also an edge’s weight, D-FLAT would construct
its graph with ternary, instead of binary, hyperedges. Also note that in the input instance, the
vertices should be designated by numbers rather than letters in order not to interfere with the
constants s and e used in the encoding for designating the start and the end vertex. For better
understanding the way in which D-FLAT works, we show an excerpt of the input the ASP solver
receives at the decomposition node 6 in Listing 2.7. The first part contains the literals used for
referencing to table rows 1 and 2 in the table of the decomposition node 7 (see Figure 2.6).
Besides the items and the cost of the child node we can see a reference to each row of the child
node’s table, reference which then appears also in the references to the child items and the child
cost. In this way and by using the rule in line 3 of the encoding in Listing 2.5 and the predicate

21

1 % C h i l d i t em t r e e f a c t s .
2 ...
3 childRow(n7_1,7).
4 childItem(n7_1,path(2,4)).
5 childItem(n7_1,path(2,5)).
6 childItem(n7_1,path(2,e)).
7 childItem(n7_1,path(4,5)).
8 childItem(n7_1,path(4,e)).
9 childItem(n7_1,selected(2,4)).

10 childItem(n7_1,selected(2,5)).
11 childItem(n7_1,selected(4,5)).
12 childCost(n7_1,17).
13 childRow(n7_2,7).
14 childItem(n7_2,path(2,4)).
15 childItem(n7_2,path(2,5)).
16 childItem(n7_2,path(2,e)).
17 childItem(n7_2,path(4,5)).
18 childItem(n7_2,path(4,e)).
19 childItem(n7_2,selected(2,4)).
20 childItem(n7_2,selected(4,5)).
21 childCost(n7_2,8).
22 ...
23 % Decompos i t ion f a c t s .
24 currentNode(6).
25 bag(6,2). current(2).
26 bag(6,3). current(3).
27 bag(6,4). current(4).
28 #const numChildNodes=1.
29 childNode(7).
30 bag(7,2). -introduced(2).
31 bag(7,4). -introduced(4).
32 bag(7,5). -introduced(5).
33 postJoin.
34 introduced(X) :- current(X), not -introduced(X).
35 removed(X) :- childNode(N), bag(N,X), not current(X).

Listing 2.7: Excerpt from the input for the solver at decomposition at node 6.

1 Answer: 1
2 path(1,2) path(1,3) path(2,3) path(2,4) path(2,e) path(3,4) path(3,e)

path(4,5) path(4,e) path(s,2) path(s,3) path(s,4) path(s,e)
selected(1,2) selected(2,3) selected(3,4) selected(4,5)

3 (cost: 10)

4 Answer: 2
5 path(1,2) path(2,4) path(2,5) path(2,e) path(4,5) path(4,e) path(s,2)

path(s,4) path(s,e) selected(1,2) selected(2,4) selected(4,5)
6 (cost: 10)

Listing 2.8: D-FLAT result for the shortest path problem.

22

extend/1 in the rules in which we reference to child items (e.g. line 18), we can make sure
that we always extend only one table row of the child node at a time, such that each row of the
current node’s table relies on only one row of the child node’s table, and also extend all of the
child node’s table rows with a single call of the ASP solver for the current node. The second
part of the input the ASP solver receives at the decomposition node 6 in Listing 2.7 consists of
literals related to the belongingness of vertices to a node. Finally, Listing 2.8 shows D-FLAT’s
result when supplied with the rules and facts in Listings 2.5 and 2.6.

Next, we will explain how D-FLAT actually obtained these results. After traversing the
tree decomposition bottom-up, calling the ASP solver on the encoding and computing the dy-
namic programming tables at each node, the tree decomposition and its tables look as shown
in Figure 2.6, which displays a subset of each node’s rows for the problem defined above. The
two optimal solutions and the partial solutions they extend, are marked throughout the tree de-
composition. Finally, D-FLAT extends for every node, starting with the root, each of the rows
recursively by following extension pointers, in absence of a cost function. When dealing with
an optimization problem rather than an enumeration problem (a cost function exists), D-FLAT
extends only those solutions having a minimal cost and when extending some node’s partial so-
lution that can be obtained by extending two different child rows it always picks the one with
lower cost for materializing the solution. In our example, it starts at node 1 and extends the
solution at node 2 only with those rows having a minimal cost, of 10. Further, the item set of
the solution displayed in the second row of node 2 in Figure 2.6 is unified with the items in the
second row at node 3 and those in the second row at node 4, on the left branch. On the right
branch, the second row at node 2 is extended by the fifth row at node 6 which in turn is extended
by the second row at node 7, finally also extended by the empty row at the leaf, thereafter unify-
ing the items accumulated on the left branch with those from the right branch. The other optimal
solution is extended, except at the leaf nodes, by the other, remaining rows whose item sets get
unified separately from the first solution.

D-FLAT offers an additional option for joining several branches in a join node, which is
called default join and can be invoked with the option --default-join in order to improve
the performance. In this mode, D-FLAT automatically matches rows that have identical item
sets, from each child node, and does not call the ASP encoding. If costs are specified, it also
calculates the cost of each row by summing up all children’s costs and subtracting the cost that
is due to current bag elements n-1 times (where n is the number of child nodes), that must be
defined by the programmer using the predicate currentCost/1, by the inclusion-exclusion
principle. If it is desired to join the different branches based only on some common items, the
programmer can specify also auxiliary items which work like regular items but do not need to
be identical when matching different rows of child nodes, such that the latter are matched only
based on the item sets of the child nodes. The auxiliary item set in the join node will be the union
of all matched children’s auxiliary item sets. The default join is implemented directly in D-FLAT
using C++ and makes use of a certain order of rows in tables, similarly to the sort-merge join
algorithm in relational database management systems, thus improving the performance at join
nodes significantly. In case the programmer needs to do some post-processing on the resulted
joined rows, which cannot be done on the join node when using the default join as the ASP
encoding is not called, the option --post-join can be invoked and above every join node

23

an identical node is inserted, which can be used for this purpose and which we will call post-
processing node.

24

Figure 2.6: Screenshot excerpt from D-FLAT debugger on the shortest path problem.

25

CHAPTER 3
Monolithic ASP Implementations for

the Traveling Salesperson Problem

In this chapter we will present different monolithic ASP encodings for the TSP and prove ASP’s
high level of maintainability and flexibility. However, the price for these is a high running-
time when applied on large problem instances. First, we will present an ASP encoding for the
TSP-NR that relies on an implementation from [39], initially implemented for working only on
directed graphs, and then, some ASP implementations for the TSP-NR and the TSP-R that we
propose.

3.1 Monolithic ASP Encodings for the TSP-NR

The encodings presented in this section are all designed for input instances specifying an undi-
rected graph. They expect the instances to be encoded by using the vertex/1, the edge/2
and the weight/3 predicates to specify their vertices, edges and the weights of the latter, re-
spectively. The edge/2 predicate is expected to be used twice for each edge, by specifying
two facts that are symmetric with regard to their argument vertices. The same holds for the
weight/3 predicate, without loss of generality. Here we always consider the lower weight
among the two specified for each edge. The encoding presented in Listing 3.2 expects also a
start vertex 0 to be among the specified vertices. Without loss of generality, we will use in-
stances in which the vertices are denoted by numbers between 0 and the input graph’s number
of vertices. Figure 3.1 shows a possible input instance in graph representation, while Listing 3.1
shows an ASP encoding extract of such an input instance. As we always consider the lower
weight of an edge, the optimal tour (0-1-2-3-5-6-4-0) in the presented example will have a cost
of 18.

27

0 1

234

5 6

5

4 3

23

3

3

4
1

2

2

Figure 3.1: TSP input instance graph.

1 vertex(0).
2 vertex(1).
3 vertex(2).
4 ...
5 edge(0,1).
6 edge(1,0).
7 edge(1,2).
8 edge(2,1).
9 ...

10 weight(0,1,5).
11 weight(1,0,7).
12 weight(1,2,3).
13 weight(2,1,3).
14 ...

Listing 3.1: Excerpt from sample input instance for the TSP-NR.

ASP Encoding for the TSP-NR Relying on Reachability

The encoding presented in Listing 3.2 first finds Hamiltonian cycles in a graph in order to then
find the one with the lowest cost. The basic idea for finding Hamiltonian cycles is, following
the GCO-scheme [44], to guess for each vertex an incoming and an outgoing edge and then
remove all solution candidates in which not all vertices are reachable by selected edges from a
start vertex. Finally we keep only the solutions with the minimum cost.

First, please note that the identifiers s and r stand for selected and reachable, respectively.
Lines 1 and 2 specify that a vertex should have exactly one outgoing and one incoming edge in
the tour, using the cardinality restriction. These lines represent the actual guessing part as we
guess which of the outgoing and incoming edges of a vertex, respectively, should be the ones

28

1 1 { s(X,Y) : edge(X,Y) } 1 :- vertex(X).
2 1 { s(X,Y) : edge(X,Y) } 1 :- vertex(Y).

3 r(Y) :- s(0,Y).
4 r(Y) :- s(X,Y), r(X).

5 :- vertex(X), not r(X).

6 minWeight(X,Y,MW) :- s(X,Y),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

7 cost(C) :- C = #sum { W,X,Y : minWeight(X,Y,W) }.

8 #minimize { C : cost(C) }.
9 #show s/2.

Listing 3.2: TSP-NR encoding that relies on the reachability of all vertices [39].

1 Answer: 1
2 s(0,4) s(1,0) s(3,2) s(4,6) s(2,1) s(6,5) s(5,3)
3 Optimization: 18

4 Answer: 2
5 s(0,1) s(1,2) s(3,5) s(4,0) s(2,3) s(6,4) s(5,6)
6 Optimization: 18

Listing 3.3: Resulting optimal answer sets when applying the encoding from Listing 3.2 on the
given instance.

selected to be part of the tour. In fact, each of the these two rules instantiates for each vertex
exactly one s(X,Y) literal among the edges defined in the input instance. The first one does it
for outgoing edges, whereas the second one for incoming ones. However, by merely guessing
edges we obtain also solution candidates in which the selected ones do not constitute a tour so
we will have to throw away the latter. In lines 3 and 4 we deduce that a vertex is reachable from
the start vertex 0 if there exists a selected edge from 0 to the specific vertex, and that knowing
that a vertex is reachable, and having selected an edge from this reachable vertex to another one,
the latter is also reachable. Line 5 finally excludes all answer set candidates that contain at least
one vertex not reachable from the starting vertex 0. In line 6 we handle the situation in which an
edge has two different weights for its two reverse edges. As the encoding is meant for undirected
graphs, we just take the smaller weight into consideration for edges that have been selected. Line
7 defines the objective function, using the cost/1 predicate which uses an aggregate to sum up
the lower weights for all selected edges, and which is then specified to be minimized in line 8,
such that we obtain only the optimal tour(s) in the graph. Line 9 contains a directive for showing
only the s/2 predicate instances of the solution(s).

In Figure 3.2 we can see the optimal solution for the TSP-NR on the graph form Figure 3.1,
while Listing 3.3 shows clingo’s output when supplied with the encoding in Listing 3.2 and the
instance in Figure 3.1 and Listing 3.1. Please note that the two answer sets actually represent
the same tour.

29

0 1

234

5 6

5

4 3

23

3

3

4
1

2

2

Figure 3.2: Input instance graph with optimal solution for TSP-NR.

ASP Encodings for the TSP-NR Relying on Connectedness

In Listing 3.4 we present a simple encoding that we developed, which also first finds Hamiltonian
cycles in a graph in order to then find the one with the lowest cost, and uses the GCO-scheme [44]
as well. However, the guessing is done here for each edge whether it shall be selected to be part
of the tour, and not for each vertex, to then eliminate those candidates in which there exists
at least one vertex not having exactly two selected adjacent edges, and those in which not all
vertices are connected via the chosen tour.

In this encoding, and in the following two as well, the identifiers s and c stand for selected
and connected, respectively. The first line guesses for each edge in the graph whether it shall be
selected as part of the tour or not. This way, however, we receive answer set candidates in which
some vertices might have more or less than two selected adjacent edges and some in which we
obtain two or more tours rather than one connected tour. To rule out the first, in line 2 we count
for each vertex how many selected edges are adjacent to the specific vertex using an aggregate,
and if the result is different than 2, the solution is thrown away. Next, in lines 3, 4 and 5 we
define the c/2 predicate that states that there exists a path of selected edges between its two
argument vertices. First, we say that if an edge between two vertices has been selected, they are
also connected, and next we encode the predicate’s reflexivity and transitivity properties. While
it is trivial that the connectedness of two vertices in a graph is a transitive relation, we need the
reflexivity for the situation when the order of the vertices in the edge/2 predicate is arbitrary
and hinders the rule in line 5 to fire. Finally, in line 6 we exclude also those solution candidates
in which there exist at least two vertices which are not connected by a path of selected edges, in
order not to have the graph’s vertices distributed among several tours. The last four lines deduce
the lower weight of each selected edge, define the objective function and contain directives for
minimizing the latter and for showing the edges selected to comprise the optimal tour(s), as
explained also on the encoding in Listing 3.2.

30

1 0 { s(X,Y) } 1 :- edge(X,Y).

2 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), N != 2.

3 c(X,Y) :- s(X,Y).
4 c(Y,X) :- c(X,Y).
5 c(X,Z) :- c(X,Y), c(Y,Z).

6 :- not c(X,Y), vertex(X;Y).

7 minWeight(X,Y,MW) :- s(X,Y),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

8 cost(C) :- C = #sum { W,X,Y : minWeight(X,Y,W) }.

9 #minimize { C : cost(C) }.
10 #show s/2.

Listing 3.4: Simple TSP-NR encoding that relies on the connectedness of a guessed tour.

1 Answer: 1
2 s(0,4) s(1,0) s(3,2) s(4,6) s(2,1) s(6,5) s(5,3)
3 Optimization: 18

4 Answer: 2
5 s(0,1) s(1,2) s(3,5) s(4,0) s(2,3) s(6,4) s(5,6)
6 Optimization: 18

Listing 3.5: Resulting optimal answer sets when applying the encoding from Listing 3.4 on the
given instance.

Listing 3.5 shows clingo’s output when supplied with the encoding in Listing 3.4 and the
instance in Figure 3.1 and Listing 3.1, assuming that the edge (1,2) is the only one that has
the same weight specified for both its weight/3 facts. Normally, this encoding generates
only one answer set for each optimal tour, unless there are edges in the tour that have the same
weight specified by both its weight/3 facts, such as edge (1,2), with weight(1,2,3) and
weight(2,1,3).

Next, we present the ASP encoding for the TSP-NR, which we will later compare in Chap-
ter 5 to the D-FLAT encoding that will be shown in Chapter 4. Listing 3.6 shows a refined
version of the ASP encoding relying on connectedness presented in Listing 3.4, the latter being
faster than the one relying on reachability, presented in Listing 3.2. We will use this refined
encoding for comparison in Chapter 5 as it is constructed following the same principles as the
D-FLAT encodings we will show in Chapter 4. The main difference to the simple version is
that we now take care that the order of the argument vertices in instantiations of the predicates
s/2 and c/2 will always be ascending, supporting symmetry breaking (e.g. an edge selected
between vertices 0 and 4 will always be denoted by s(0,4), and not s(4,0)). This way, we
have to implement more rules, but the program works faster and on less memory, as it creates
less instantiations of the c/2 predicate and less answer set candidates are generated.

In line 1 we guess for each edge whether it shall be selected for the tour or not. As we work
on symmetric graphs we consider each edge exactly once by firing the rule for every instantiation

31

1 0 { s(X,Y) } 1 :- edge(X,Y), X < Y.

2 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), N != 2.

3 c(X,Y) :- s(X,Y).
4 c(X,Z) :- c(X,Y), c(Y,Z).
5 c(X,Z) :- c(X,Y), c(Z,Y), X < Z.
6 c(Z,X) :- c(X,Y), c(Z,Y), X > Z.
7 c(X,Z) :- c(Y,X), c(Y,Z), X < Z.
8 c(Z,X) :- c(Y,X), c(Y,Z), X > Z.

9 :- not c(X,Y), vertex(X), vertex(Y), X < Y.

10 minWeight(X,Y,MW) :- s(X,Y),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

11 cost(C) :- C = #sum { W,X,Y : minWeight(X,Y,W) }.

12 #minimize { C : cost(C) }.
13 #show s/2.

Listing 3.6: Refined TSP-NR encoding that relies on the connectedness of a guessed tour.

1 Answer: 1
2 s(0,1) s(0,4) s(1,2) s(2,3) s(3,5) s(4,6) s(5,6)
3 Optimization: 18

Listing 3.7: Resulting optimal answer set when applying the encoding from Listing 3.6 on the
instance in Figure 3.1 and Listing 3.1.

of the edge/2 predicate that has its first argument lower than the second one, and take care that
for each s/2 predicate instantiation, the arguments shall be ordered ascendantly. Line 2 again
throws away those solution candidates in which at least one vertex has a different number of
adjacent selected edges than 2. Next, in lines 3 to 8, we specify the c/2 predicate. First, we say
that if an edge between two vertices has been selected, they must also be connected. As we now
work only with argument vertices ordered ascendantly we do not have the reflexivity relation
defined anymore, but we need five rules to define the transitivity relation, one for each possible
combination for the order of the argument vertices of the predicate instantiations of c/2. Line
9 again excludes those solution candidates which contain vertices not connected by a path of
selected edges. The rules in lines 10 and 11 calculate the lower value for each selected edge and
the total cost. Lines 12 and 13 contain directives for minimizing the objective function and for
showing the selected edges, working as in the previous two encodings.

Finally, Listing 3.7 shows clingo’s output when supplied with the encoding in Listing 3.6
and the instance in Figure 3.1 and Listing 3.1. One can observe that for each s/2 predicate
instantiation, its arguments are ordered in an ascendant manner and that for each tour clingo
provides exactly one answer set.

32

1 vertex(0).
2 vertex(1).
3 vertex(2).
4 ...
5 edge(0,1).
6 edge(1,0).
7 edge(1,2).
8 edge(2,1).
9 ...

10 weight(0,1,5).
11 weight(1,0,7).
12 weight(1,2,3).
13 weight(2,1,3).
14 ...
15 minVisits(3,2).
16 maxVisits(3,2).

Listing 3.8: Excerpt from sample input instance for the TSP-R.

3.2 Monolithic ASP Encoding for the TSP-R

In this section we will present an ASP encoding for the TSP-R which is based on the encod-
ing shown in the previous section in Listing 3.6. The encoding is also designed for input in-
stances specifying an undirected graph by making use of the vertex/1, the edge/2 and the
weight/3 predicates in the same manner. Besides these, the predicates minVisits/2 and
maxVisits/2 specify the minimal and maximal number of visits for a vertex, respectively. If
such predicates are not specified for a vertex, a default value of 1 is taken. Listing 3.8 shows
an ASP encoding extract of such an input instance based on the graph in Figure 3.1, in which
vertex 3 must be visited exactly twice. This leads to having a slightly more expensive optimal
tour (0-1-2-3-4-6-5-3-0) with cost 22.

Additionally to the encoding in Listing 3.6, the one we present in Listing 3.9 takes care
also of the vertices which have a different number of allowed minimal and maximal visits than
the default value 1. One difference relies in the fact that, instead of discarding all answer set
candidates that are not visited exactly once, we now throw away all those which are visited more
times than the maximum or less than the minimum allowed. The other difference is that we
now ensure connectedness only between those vertices that are actually selected to be part of the
tour. The first is done by replacing the responsible constraint in Listing 3.6 with three constraints
and six rules needed by the latter. The rules in lines 2 and 3 deduce for each vertex whether a
minimum and maximum number of visits, respectively, was specified in the given instance. In
lines 4 and 6 we instantiate the auxiliary predicate minV/2 for each vertex. The arguments
of the deduced instantiations are the respective vertex and 1 in case a minimum number of
visits was not specified (line 4), or the vertex and the specified number of visits otherwise (line
6). The rules in lines 5 and 7 work in the same way for the maximum number of visits by
instantiating the maxV/2 predicate for each vertex. These auxiliary predicates are necessary
for the constraints in lines 8 to 10, that eliminate all answer set candidates in which the number
of visits does not correspond for at least one vertex. If we just instantiated minVisits/2,

33

1 0 { s(X,Y) } 1 :- edge(X,Y), X < Y.

2 minStated(X) :- vertex(X), minVisits(X,V).
3 maxStated(X) :- vertex(X), maxVisits(X,V).
4 minV(X,1) :- vertex(X), not minStated(X).
5 maxV(X,1) :- vertex(X), not maxStated(X).
6 minV(X,V) :- vertex(X), minVisits(X,V).
7 maxV(X,V) :- vertex(X), maxVisits(X,V).

8 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), minVisits(X,V), N < 2*V.
9 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), maxVisits(X,V), N > 2*V.

10 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), N/2*2 != N.

11 c(X,Y) :- s(X,Y).
12 c(X,Z) :- c(X,Y), c(Y,Z).
13 c(X,Z) :- c(X,Y), c(Z,Y), X < Z.
14 c(Z,X) :- c(X,Y), c(Z,Y), X > Z.
15 c(X,Z) :- c(Y,X), c(Y,Z), X < Z.
16 c(Z,X) :- c(Y,X), c(Y,Z), X > Z.

17 :- not c(X,Y), s(X,_), s(Y,_), X < Y.
18 :- not c(X,Y), s(X,_), s(_,Y), X < Y.
19 :- not c(X,Y), s(_,X), s(Y,_), X < Y.
20 :- not c(X,Y), s(_,X), s(_,Y), X < Y.

21 minWeight(X,Y,MW) :- s(X,Y),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

22 cost(C) :- C = #sum { W,X,Y : minWeight(X,Y,W) }.

23 #minimize { C : cost(C) }.
24 #show s/2.

Listing 3.9: TSP-R as a variation of the encoding in Listing 3.6.

1 Answer: 1
2 s(0,1) s(0,3) s(1,2) s(2,3) s(4,6) s(3,4) s(5,6) s(3,5)
3 Optimization: 22

Listing 3.10: Resulting optimal answer sets when applying the encoding from Listing 3.9 on the
instance in Figure 3.1 and Listing 3.8.

34

0 1

234

5 6

5

4 3

23

3

3

4
1

2

2

Figure 3.3: Input instance graph with optimal solution for TSP-R, where vertex 3 must be visited
twice and the others only once.

or maxVisits/2, with the relevant vertex and 1, respectively, in case there was no lower or
upper limit specified, we would obtain a cycle of dependency between minStated/1 and
minVisits/2, or maxStated/1 and maxVisits/2, and the solver would eliminate all
answer sets. Line 8 disposes all solution candidates in which there exists a vertex that has
less selected adjacent edges than twice the number of minimum allowed visits, each visit being
denoted by two selected adjacent edges. Line 9 again works in the same way for the maximum
number of visits. Finally, line 10 throws away all solutions in which there exist vertices that
have an odd number of selected adjacent edges, as this would not lead to a permutation but to
an invalid result. The parity of the number of selected adjacent edges of a vertex is verified by
checking whether dividing this number by 2 and again multiplying the result by 2 yields the same
number, as ASP uses integer division. The second modification compared to the encoding in
Listing 3.6 occurs at the elimination of unconnected answer set candidates. Instead of discarding
those which have two vertices not connected to each other we now remove only those solution
candidates where both of these vertices were also selected to be part of the tour (as it might not
be necessary for some of the vertices to be visited). Essentially, this is one condition blown up
to four constraints in lines 17 to 20 to cover all possible combinations for the positions of the
vertex arguments in the s/2 instantiations, for the sake of symmetry breaking. Please refer to
the previous section for a detailed explanation for the rest of the code.

Figure 3.3 now displays the optimal solution for the TSP-R on the graph form Figure 3.1,
where vertex 3 must be visited twice and the others only once, while in Listing 3.10 we can see
clingo’s resulting answer set when supplied with the encoding from Listing 3.9 and the instance
in Figure 3.1 and Listing 3.8. It can be observed that vertex 3 has exactly four selected adjacent
edges, meaning that it is visited twice.

35

CHAPTER 4
D-FLAT Implementations for the

Traveling Salesperson Problem

In this chapter we will introduce our D-FLAT encodings for the TSP-NR and the TSP-R. They
keep the structure of the encodings relying on connectedness in Listing 3.6 and Listing 3.9,
respectively. Their complexity grows, the flexibility and maintainability representative for ASP
are yet preserved. Furthermore, the running-time decreases considerably due to the dynamic
programming approach as we will show in Chapter 5.

4.1 D-FLAT Encodings for the TSP-NR

The D-FLAT encodings for the TSP-NR (traveling salesperson problem without repetitions)
work on the same instances as the monolithic encoding from Listing 3.6, expecting the input
graph’s vertices, edges and the weights of the latter to be specified by using the vertex/1,
the edge/2 and weight/3 predicates, respectively. The edge/2 predicate is expected to
be given twice for each edge, by specifying two facts that are symmetric with regard to their
argument vertices. The same holds for the weight/3 predicate, without loss of generality.
Listing 3.1 shows an extract of a possible input instance encoding using ASP.

The Dynamic Programming Concept

Although our D-FLAT encodings for the TSP-NR rely on the encoding from Listing 3.6, now
we will be able to work only on the vertices that belong to the node (of the tree decomposition)
that is currently processed, in order to comply with the principles of dynamic programming.
This brings more complexity to the development and the understanding of the encodings, yet it
is what drastically improves the performance, as we are now working on far smaller parts of the
instance. The latter is accomplished by guessing and memorizing only the selection of edges
between vertices of the current node, by using the item s/2, for selected. However, this will
hinder us from checking whether a vertex has exactly two selected adjacent edges in the way

37

we did it in the proposed monolithic encoding, as it may happen that these two vertices that
are adjacent to the vertex under focus are never in the same bag. The latter makes it useless to
count the number of selected adjacent edges only on a node-level. Thus, we will use another
item ct/2, to keep a counter for the selected adjacent edges of a vertex. This counter is kept
from the bag or the bags where it is introduced to the last one before it is removed, including
join nodes where we combine the vertices’ counters from different branches by summing them
up for each vertex and subtracting the value corresponding to common selected edges, by the
inclusion-exclusion principle. Also, in join nodes we must check whether the edge selection
between current vertices, which belonged also to the bags of the nodes right below the join
node, is identical in the latter nodes. In the contrary case, the answer set candidate must be
eliminated, as the distinct branches below the join node represent different solution candidates.
Finally, if a vertex does not have exactly two selected adjacent edges at the time of removal,
or exceeds this number already before it is removed, the group of solution candidates currently
investigated cannot lead to a valid permutation without repetition, and the row is discarded.

Furthermore, we only deduce and memorize connectedness between two vertices if they are
in the same bag, by using the item c/2, for connected. This again, makes it impossible to check
the global connectedness on a node-level. We rather rely on the fact that, when a vertex that is not
connected to all the vertices in its bag gets removed, the vertices which it was connected to last
and which are still present in the next node above, will act like representatives for the removed
vertex to eventually get connected also to the vertices it was not connected to at the time of
removal. When such a vertex is removed, it can again pass on this responsibility to vertices it
was last connected to. This process can continue until reaching the root’s child node, in which
all vertices must be connected to each other by selected edges. In case this condition is not
fulfilled, the dynamic programming table row is discarded. However, passing the responsibility
for fulfilling connectedness does not work if a removed vertex is not connected by selected
edges to any other vertex in its bag at the time of removal, as it would be impossible to fulfill its
connectedness to the rest of the vertices in the nodes above, for which reason we eliminate rows
containing such situations.

The cost of a solution is calculated gradually, starting with the leaf nodes in which the cost
is 0, adding the cost for each further selected edge in each node, and combining the costs from
distinct branches in join nodes by the inclusion-exclusion principle, in order to finally receive the
total cost of the resulting tour. Please note that the concept’s explanations were specifically for
the TSP-NR implementation for D-FLAT without default join on semi-normalized tree decom-
positions, from Listing A.3, the other implementations being slightly different but fundamentally
complying with the concept .

The TSP-NR Implementation for D-FLAT without Default Join on
Semi-Normalized Tree Decompositions

This implementation for the TSP-NR for the D-FLAT framework is called in each node of the
tree decomposition and can be found in full version in the Appendix, in Listing A.3. It also
follows the GCO-scheme [44], as it first guesses for each edge adjacent to an introduced vertex
whether it should be selected for the tour or not, and then eliminates those answer set candidates

38

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n semi

Listing 4.1: Modeline of TSP-NR encoding for D-FLAT without default join on
semi-normalized tree decompositions.

1 %Guess row t o be e x t e n d e d .
2 1 { extend(R): childRow(R,CH) } 1 :- childNode(CH).

3 %Guess i n t r o d u c e d v e r t i c e s ’ a d j a c e n t edges ’ s e l e c t i o n f o r t h e t o u r .
4 0 { item(s(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y), X < Y.
5 0 { item(s(Y,X)) } 1 :- edge(X,Y), introduced(X), current(Y), X > Y.
6 item(s(X,Y)) :- childItem(R,s(X,Y)), extend(R), current(X;Y).

7 %Remove j o i n nodes ’ t a b l e rows wi th d i f f e r e n t edge s e l e c t i o n i n d i s t i n c t c h i l d nodes .
8 :- extend(R), extend(S), R!=S, childItem(R,s(X,Y)), not childItem(S,s(X,Y)).

Listing 4.2: TSP-NR encoding for D-FLAT with default join on semi-normalized tree
decompositions: edge selection and propagation and partial solution matching at join nodes.

which cannot lead to a valid solution due to having a wrong number of selected adjacent edges
or to the candidates’ impossibility to fulfill the connectedness condition. The optimization is
done gradually as we update the current cost with every node and as D-FLAT prefers always the
cheaper solution candidate among the ones with the same item set and different costs.

Next, we will start explaining our encoding for the TSP-NR line by line. Listing 4.1 shows
the modeline of this encoding, which instructs D-FLAT to create semi-normalized tree decom-
positions and use tables instead of item trees as our encoding is designed using D-FLAT’s sim-
plified interface. Further, we specify the unary hyperedge predicate vertex/1 and binary
hyperedge predicate edge/2 for D-FLAT’s internal hypergraph used for creating the tree de-
composition.

Listing 4.2 discloses the actual guessing, the code passing up the information on the edge
selection and the removal of solution candidates with different edge selections in distinct child
nodes of a join node. In line 2, which is part of every table-mode encoding, we guess which row
to extend for each child of the current node and deduce a fact extend(R), where R is the child
node’s extended row. Will further use extend(R) to refer to a child node’s specific answer set
candidate. When a vertex is introduced into a node’s bag, we guess for its outgoing and ingoing
edges, which connect vertices that are in the same bag, whether to select them for the tour or
not. Whether the introduced vertices’ adjacent edges are ingoing or outgoing is determined by
comparing the numbers which represent the names of the two vertices each of them connects.
This is done in lines 4 and 5, where we introduce the predicate s/2, that states that the edge
between the argument vertices is selected for the tour and whose arguments are always ordered
in an ascending manner. The latter is necessary for symmetry breaking, by which means we do
not create table rows with symmetric arguments of the s/2 literal and shorten the running time
by not having to handle redundant rows. More specifically, line 4 matches each edge having
an introduced vertex as its first argument and another vertex of the current bag as its second
argument, while the first argument must be lower than the second one, and guesses if the edge

39

1 %Count number o f s e l e c t e d a d j a c e n t edges .
2 item(ct(X,N0)) :- 1 #count { CH : childNode(CH) } 1, introduced(X),

N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.
3 item(ct(X,N1+N0)) :- 1 #count { CH : childNode(CH) } 1,

childItem(R,ct(X,N1)), extend(R), current(X),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
4 item(ct(X,N1+N2-N12)) :- extend(R), extend(S), R!=S,

childItem(R,ct(X,N1)), childItem(S,ct(X,N2)), current(X),
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

5 %E l i m i n a t e answer s e t c a n d i d a t e s which do n o t l e a d t o a p e r m u t a t i o n w i t h o u t r e p e t i t i o n .
6 :- childItem(R,ct(X,N)), extend(R), removed(X), N != 2.
7 :- item(ct(X,N)), N > 2.

Listing 4.3: TSP-NR encoding for D-FLAT without default join on semi-normalized tree
decompositions: Determining and eliminating table rows which would not lead to valid
permutations.

between these two vertices should be selected or not. For the case it is, we specify the s/2
literals to be in the item set of the node in order to be able to access the information from parent
nodes. Line 5 works in a similar way. In line 6 we learn from child nodes between which current
vertices there has already been decided an edge to be selected. We placed extends(R) into the
rule body as we need the reference for retrieving the items from the extended rows of the child
node. Finally, the rule in line 7 eliminates join nodes’ answer set candidates which have distinct
child nodes with a different edge selection. More particularly, we throw away those table rows
where in one child node an edge between two current vertices, which belong also to the child
nodes in semi-normalized tree decompositions, has been selected and in another one not, as this
would mean propagating an answer set candidate that would actually incorporate two different
solution candidates. The condition whether we are in a join node is checked by matching two
different instantiations of the extend/1 predicate, as we always instantiate exactly one for
each child node.

In Listing 4.3 we instantiate and keep the counter, denoted by the predicate ct/2, whose
arguments are the current vertex whose counter we are keeping and the number of selected
adjacent edges. The rule in line 2 instantiates the counter for vertices newly introduced into bags
of exchange nodes. For determining if we are dealing with an exchange node, we check if it has
exactly one child node. The counter is set to the number of edges that go into and out of the
introduced vertex. Also the rule in line 3 fires only in exchange nodes. However, here we update
the counter of current vertices that are not newly introduced, which is implied by the reference
to the child node’s ct/2 item. Thus, we have to add the value of the vertex’ counter in the
child node, retrieved from the ct/2 reference, to the number of selected edges, which connect
the vertex under focus with newly introduced vertices. If we counted all vertices, not only the
newly introduced ones, we would do it multiple times, as they have already been counted in
the child node. Line 4 updates the counter for vertices in a join node, the latter condition being
checked again by matching two different instantiations of the extend/1 predicate. As our join
node’s bag is always identical to the bags of its child nodes, we do not have to mind about newly

40

1 %Deduce c o n n e c t e d n e s s .
2 item(c(X,Y)) :- item(s(X,Y)).
3 item(c(X,Z)) :- item(c(X,Y)), item(c(Y,Z)).
4 item(c(X,Z)) :- item(c(X,Y)), item(c(Z,Y)), X < Z.
5 item(c(Z,X)) :- item(c(X,Y)), item(c(Z,Y)), X > Z.
6 item(c(X,Z)) :- item(c(Y,X)), item(c(Y,Z)), X < Z.
7 item(c(Z,X)) :- item(c(Y,X)), item(c(Y,Z)), X > Z.
8 item(c(X,Y)) :- childItem(R,c(X,Y)), extend(R), current(X;Y).

9 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
10 :- 1 #count{ U : current(U) }, removed(X), extend(R),

not childItem(R,c(X,Y)) : current(Y);
not childItem(R,c(Y,X)) : current(Y).

11 :- final, not childItem(R,c(X,Y)), X < Y, extend(R), removed(X;Y).

12 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
13 :- 1 #count { X : bag(N,X), childNode(N) }, not final, not oldVertex.
14 oldVertex :- current(X), not introduced(X).

Listing 4.4: TSP-NR encoding for D-FLAT without default join on semi-normalized tree
decompositions: Ensuring connectedness.

introduced vertices, but only to sum up each vertex’ counters from the child nodes, and subtract
the number of selected edges through which the vertex under focus is adjacent to other current
vertices, by the inclusion-exclusion principle. The latter would be counted twice, once for each
child node, if they were not subtracted.

Finally, we remove all solution candidates which cannot lead to a permutation. In line 6
from Listing 4.3 we eliminate those rows in which a removed vertex had a counter with a value
different than 2 in the child node. The latter would mean that we would not be able to obtain
a permutation without repetition as the removed vertex would not have exactly one predecessor
and one successor. Finally, the constraint in line 7 is not necessary for obtaining the correct
result but it lowers the running time by eliminating rows in which a vertex has its counter set to
a value higher than 2, already before it is removed.

Listing 4.4 displays the part of our encoding which is responsible for ensuring the connect-
edness of the output tour. Line 2 states that in the case in which an edge between two vertices
of the current node’s bag is selected for the tour, the former vertices are also connected, and in-
troduces the c/2 predicate, whose instantiations are also items, as they must be retrieved from
child nodes sometimes. Similarly to the encoding in Listing 3.6, lines 3 to 7 describe the tran-
sitivity property of the connectedness, by matching any possible combination of having three
vertices among which one (Y) is connected to both others (X and Z) and deducing that the two
other vertices must also be connected. Please note that the c/2 predicate also has its arguments
stated in an ascending manner, supporting symmetry breaking and avoiding the creation of re-
dundant table rows. In line 8 we pass the item c/2 from a child node in case the two argument
vertices have not been removed. This is important for keeping the c/2 predicate sound, as a link
vertex between two other vertices could be removed while keeping the two connected vertices
in the bag when moving on to the next node above.

In order to guarantee the connectedness of the output we have to first ensure connectedness

41

on a node-level, i.e. at the removal of a vertex from a bag it must be connected to at least another
vertex in the same bag, and at two vertices’ removal from the bag of an empty node’s child, they
must be connected to each other. In this manner, a removed vertex is either already connected
to all other vertices in the bag or it will be connected after being removed by means of other
link vertices it is connected to at the time of removal. Assuming our input graph is connected,
when a vertex is connected to all the others in the bags it is part of, it is connected also to all
other vertices of the given input instance, as all vertices connected by an edge must appear in
the same bag at least once, according to the second condition of Definition 2.3.1, the definition
of tree decomposition. Connectedness on a node-level is ensured in lines 10 and 11. In line
10 we eliminate all solution candidates in which a vertex is removed from the bag and was not
connected to any other vertex in the same child bag. It is important to set the condition to have
a non-empty current bag as the solver would always consider the last two conditions true in an
empty bag. However, the situation when an isolated vertex is removed and the current bag is
empty, is covered by the constraint in line 11, where we remove all solution candidates that have
two unconnected vertices in the root’s child node. Secondly, for guaranteeing connectedness,
we must ensure this property also between the different nodes of the tree decomposition. In a
connected graph this would not be an issue, as connectedness on a node-level would also imply
connectedness between nodes, due to the second condition of Definition 2.3.1.

We can assume that the input graphs are connected, as this can be checked by a depth-
first search in linear time [55]. However, we specified some rules also for dealing with an
unconnected graph. In the latter case it can happen that a current node’s bag and its child node’s
bag are disjoint, which would lead to a solution consisting of two or more tours instead of one,
as there would be a rupture between those two nodes. To prevent this situation we discard all
solution candidates in which there exists a node, which is not a root or a parent of a leaf and that
has completely different vertices than its child node. We exclude the root and the parent nodes
of the leaves, as the root and the leaves are always empty and the rule would otherwise fire even
if there was no real rupture between these nodes and their child or parent nodes, respectively. In
line 14 we deduce if there exists a vertex that was already in the child node’s bag, while the rule
in line 13 is fired when there is no such vertex and neither is the child node a leaf node, nor is
the current node a root node. It is important to exclude the last two situations as in these cases
oldVertex is always deduced, as root and leaf nodes are empty, but we can still obtain a valid
solution.

In Listing 4.5 we present the final part of our code, the cost calculation. In line 2 we set the
cost of the leaf nodes to 0. Next, we handle all other nodes in which the ASP solver is called,
namely exchange and join nodes. The rule in line 3 deals with exchange nodes and adds the child
node’s cost to the cost of the edges between newly introduced vertices. The latter is calculated
by aggregating over the weights of all these edges with the help of the relevantWeight/3
predicate. Literals of the latter are deduced in line 5 and represent the minimum weight of a
selected edge, among its two specified weights. Please note that in line 2 an edge between two
newly introduced vertices is not counted twice as there is no differentiator among the variables
before the semicolon inside the aggregator function. Finally, in line 4, we calculate the cost for
join nodes by adding up both child nodes’ costs and subtracting the sum of all costs of selected
edges between current vertices, by the inclusion-exclusion principle.

42

1 %C a l c u l a t e c o s t s .
2 cost(0) :- initial.
3 cost(CC+NC) :- childCost(R,CC), extend(R),

1 #count { CH : childNode(CH) } 1,
NC = #sum { W,X,Y : relevantWeight(X,Y,W), introduced(X);

W,X,Y : relevantWeight(X,Y,W), introduced(Y) }.

4 cost(CC1+CC2-LC) :- extend(R), extend(S), R < S,
childCost(R,CC1), childCost(S,CC2),
LC = #sum { W,X,Y : relevantWeight(X,Y,W) }.

5 relevantWeight(X,Y,MW) :- item(s(X,Y)),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

Listing 4.5: TSP-NR encoding for D-FLAT without default join on semi-normalized tree
decompositions: Calculating the costs.

1 Answer: 1
2 c(0,1) c(0,2) c(0,3) c(0,4) c(1,2) c(2,3) c(3,4) c(3,5) c(3,6) c(4,5) c(4,6)

c(5,6) ct(0,1) ct(0,2) ct(1,2) ct(2,1) ct(2,2) ct(3,1) ct(3,2) ct(4,1)
ct(4,2) ct(5,2) ct(6,2) s(0,1) s(0,4) s(1,2) s(2,3) s(3,5) s(4,6) s(5,6)

3 (cost: 18)

Listing 4.6: Possible resulting optimal answer set when supplied with the encoding presented in
Listing A.3 and the instance in Figure 3.1 and Listing 3.1.

Finally, Listing 4.6 displays D-FLAT’s possible output when applying the encoding in List-
ing A.3 from the Appendix on the instance in Figure 3.1 and Listing 3.1. While the instantiations
of the s/2 predicate are always the same, those of c/2 and ct/2 may vary depending on the
tree decomposition created by D-FLAT. One can observe that all items deduced while traversing
the tree decomposition are displayed and that the s/2 facts coincide with those in the output of
the monolithic encoding for the TSP-NR, in Listing 3.7.

The TSP-NR Implementation for D-FLAT with Default Join on
Semi-Normalized Tree Decompositions

The D-FLAT framework offers the --default-join option on whose activation it does not
call the ASP solver in join nodes, but matches their child nodes’ table rows on their items. If
the item sets are identical, the solution candidate is kept. Furthermore, it calculates the cost
of the join node automatically by following the inclusion-exclusion principle. The use of the
default join shows great running time improvements as compared to calling D-FLAT without
this option and also an enhancement of the memory consumption. This can be put down to
the fact that the joining of two branches with the --default-join option is implemented
in C++ and makes use of a certain order of rows in tables, similarly to the sort-merge join
algorithm in relational database management systems [1], as compared to D-FLAT’s classical
joining in which the grounding is immense. The encoding we present next is an adaptation of
the previously disclosed encoding for D-FLAT to take over the join node handling by using the
--default-join option and can be entirely found in the Appendix, in Listing A.4. With

43

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n semi - - d e f a u l t - j o i n - - p o s t - j o i n

Listing 4.7: Modeline of TSP-NR encoding for D-FLAT with default join on semi-normalized
tree decompositions.

1 %Guess row t o be e x t e n d e d .
2 1 { extend(R): childRow(R,CH) } 1 :- childNode(CH).

3 %Guess i n t r o d u c e d v e r t i c e s ’ a d j a c e n t edges ’ s e l e c t i o n f o r t h e t o u r .
4 0 { item(s(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y), X < Y.
5 0 { item(s(Y,X)) } 1 :- edge(X,Y), introduced(X), current(Y), X > Y.
6 item(s(X,Y)) :- childItem(R,s(X,Y)), extend(R), current(X;Y).

Listing 4.8: TSP-NR encoding for D-FLAT with default join on semi-normalized tree
decompositions: edge selection and propagation.

the use of the default join, we will discriminate between items and auxItems, as D-FLAT
matches items at join nodes and we still need to refer to child node instantiations which should
not be matched upon, such as those of the c/2 predicate. Rules for join nodes are not necessary
any more because the ASP solver is not called for these. Yet, we will need to do some post-
processing, for setting the counter for the number of selected adjacent edges of a vertex right,
for which purpose we will use the --post-join option, making sure that there is a node with
identical bag contents above every join node which the post-processing is for. In Listing 4.7 we
can also see the specification of these two options we are using.

In Listing 4.8 we again present the edge selection in a large sense: from the actual edge
selection to passing up the information on the latter. The rule that handles matching on s/2
instantiations at join nodes from the code in Listing 4.2 is not necessary any more as this is
taken care of by D-FLAT’s default join. In this encoding, instantiations of the s/2 predicate
must again be part of the item set, not only for being able to access them from parent nodes, but
also because the matching of items at join nodes is done specifically on these.

The code in Listing 4.9 works similarly to the one in Listing 4.3. However, here we work
with a counter predicate ct/3 with three arguments. Besides the current vertex whose counter
we are keeping, and the number of selected adjacent edges, we now memorize also the node
it stems from, which is necessary when adding up the counters from two different branches in
the post-processing node above a join node. The third argument of ct/3 is always set to be
the current node, except for the case of join nodes, to which the items and auxiliary items are
passed upwards just as they are, such that we can determine in the post-processing node above
the join node which of the former’s children the literal stems from. Lines 2, 3 and 4 handle
newly introduced vertices into exchange nodes that are not post-processing nodes, vertices that
were already part of the child node, also in such exchange nodes, and post-processing nodes,
respectively. To determine if we are at an exchange node which is not a post-processing node,
we use the auxiliary item n/1 that states which is the current node (as deduced in line 5), by
counting the number of its different instantiations in the bag of the current node’s child, in lines
2 and 3. If there were more than one, it would mean the child node was a join node to which

44

1 %Count number o f s e l e c t e d a d j a c e n t edges .
2 auxItem(ct(X,N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,

extend(R), introduced(X), currentNode(CR),
N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

3 auxItem(ct(X,N1+N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,
extend(R), current(X), currentNode(CR),
childAuxItem(R,ct(X,N1,CH1)),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
4 auxItem(ct(X,N1+N2-N12,CR)) :-

childAuxItem(R,ct(X,N1,CH1)), childAuxItem(R,ct(X,N2,CH2)), CH1 != CH2,
extend(R), currentNode(CR),
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

5 auxItem(n(CR)) :- currentNode(CR).
6 %E l i m i n a t e answer s e t c a n d i d a t e s which do n o t l e a d t o a p e r m u t a t i o n w i t h o u t r e p e t i t i o n .
7 :- childAuxItem(R,ct(X,N,CH)), extend(R), removed(X), N != 2.
8 :- auxItem(ct(X,N,_)), N > 2.

Listing 4.9: TSP-NR encoding for D-FLAT with default join: Determining and eliminating table
rows which would not lead to valid permutations.

all items and auxiliary items, including the instantiations of n/1, were passed unchanged from
its child nodes. Thus, if there is only one instantiation, we know for sure that we are not in a
post-processing node. The counter is again set to the number of edges that go into and out of the
introduced vertex. The rule in line 3 updates the counter of current vertices that are not newly
introduced, which is implied by the presence of the auxiliary item ct/3 of the child node. Line
4 updates the counter for vertices in a post-processing node, and not for join nodes as it did in
the previous encoding. We verify if we are dealing with a post-processing node by matching
two instantiations of the ct/3 item in the child node, which must be a join node, with different
arguments for the current node. As our post-processing node is always identical to its child node,
we do not have to mind about newly introduced vertices but only to sum up each vertex’ counter
from the child join node, received in turn from the latter’s child nodes, and subtract the number
of selected edges through which the vertex under focus is adjacent to other current nodes, by
the inclusion-exclusion principle. Here, the condition current(X) would be superfluous, as
we know that X was already part of the bags of the join node’s children and that the current
post-processing node is identical to those.

The elimination of answer set candidates which would not lead to a permutation without
repetition is done in the same way as in Listing 4.3.

In Listing 4.10, we present the part of our encoding which is responsible for ensuring con-
nectedness and functions in the same manner as the one in Listing 4.4. However, now the c/2
literals are just auxiliary items as we do not join on them, but rather need to know in post-
processing nodes which additional connectedness relation we can deduce from the relations in
the join node’s children.

Next, in Listing 4.11, we disclose the final part of the encoding: the cost calculation. The
only modifications to the code in Listing 4.5 are the fact that we now have to distinguish only
between exchange and leaf nodes and the fact that we do not need to calculate the cost of join
nodes any more as this is taken over by D-FLAT due to the use of the --default-join

45

1 %Deduce c o n n e c t e d n e s s .
2 auxItem(c(X,Y)) :- item(s(X,Y)).
3 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Y,Z)).
4 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X < Z.
5 auxItem(c(Z,X)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X > Z.
6 auxItem(c(X,Z)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X < Z.
7 auxItem(c(Z,X)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X > Z.
8 auxItem(c(X,Y)) :- childAuxItem(R,c(X,Y)), extend(R), current(X;Y).

9 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
10 :- 1 #count{ U : current(U) }, removed(X), extend(R),

not childAuxItem(R,c(X,Y)) : current(Y);
not childAuxItem(R,c(Y,X)) : current(Y).

11 :- final, not childAuxItem(R,c(X,Y)), X < Y, extend(R), removed(X;Y).

12 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
13 :- 1 #count { X : bag(N,X), childNode(N) }, not final, not oldVertex.
14 oldVertex :- current(X), not introduced(X).

Listing 4.10: TSP-NR encoding for D-FLAT with default join: Ensuring connectedness.

1 %C a l c u l a t e c o s t s .
2 cost(0) :- initial.
3 cost(CC+NC) :- not initial, childCost(R,CC), extend(R),

NC = #sum { W,X,Y : relevantWeight(X,Y,W), introduced(X);
W,X,Y : relevantWeight(X,Y,W), introduced(Y) }.

4 currentCost(C) :- C = #sum { W,X,Y : relevantWeight(X,Y,W) }.
5 relevantWeight(X,Y,MW) :- item(s(X,Y)),

MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

Listing 4.11: TSP-NR encoding for D-FLAT with default join: Calculating the costs.

1 Answer: 1
2 c(0,1) c(0,2) c(0,3) c(0,4) c(1,2) c(2,3) c(3,4) c(3,5) c(3,6) c(4,5) c(4,6)

c(5,6) ct(0,1,4) ct(0,1,5) ct(0,2,3) ct(1,2,5) ct(2,1,5) ct(2,2,4)
ct(3,1,3) ct(3,1,4) ct(3,2,2) ct(4,1,3) ct(4,2,2) ct(5,2,2) ct(6,2,2)
n(1) n(2) n(3) n(4) n(5) n(6) s(0,1) s(0,4) s(1,2) s(2,3) s(3,5) s(4,6)
s(5,6)

3 (cost: 18)

Listing 4.12: Possible resulting optimal answer set when supplied with the encoding presented
in Listing A.4 and the instance in Figure 3.1 and Listing 3.1.

option. Instead we must specify the currentCost/1 predicate (line 4) which represents the
sum of all weights of selected edges between current vertices and is used by D-FLAT’s default
join to subtract the common weight from the sums of the join nodes’ children’s costs, by the
inclusion-exclusion principle.

Finally, in Listing 4.12 we show D-FLAT’s possible output when applying the encoding in
Listing A.4 on the instance in Figure 3.1 and Listing 3.1. We can notice that it contains the same

46

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n weak - - d e f a u l t - j o i n - - p o s t - j o i n

Listing 4.13: Modeline of TSP-NR encoding for D-FLAT with default join on weakly
normalized tree decompositions.

1 %Count number o f s e l e c t e d a d j a c e n t edges .
2 auxItem(ct(X,N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,

extend(R), introduced(X), currentNode(CR),
N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

3 auxItem(ct(X,N1+N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,
extend(R), current(X), currentNode(CR),
childAuxItem(R,ct(X,N1,CH1)),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
4 auxItem(ct(X,NC-((NCH-1)*N12),CR)) :- current(X), currentNode(CR),

NCH = #count { CH: childAuxItem(R,n(CH)) }, extend(R), NCH > 1,
NC = #sum { N,CH: childAuxItem(R,ct(X,N,CH))},
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

5 auxItem(n(CR)) :- currentNode(CR).

6 %E l i m i n a t e answer s e t c a n d i d a t e s which do n o t l e a d t o a p e r m u t a t i o n w i t h o u t r e p e t i t i o n .
7 :- childAuxItem(R,ct(X,N,CH)), extend(R), removed(X), N != 2.
8 :- auxItem(ct(X,N,_)), N > 2.

Listing 4.14: TSP-NR encoding for D-FLAT with default join on weakly normalized tree
decompositions: Determining and eliminating table rows which would not lead to valid
permutations.

s/2 items as the one from the previous encoding.

The TSP-NR Implementation for D-FLAT with Default Join on
Weakly Normalized Tree Decompositions

Next, we will present a D-FLAT encoding for the TSP-NR, which works not only on semi-
normalized tree decompositions but also on weakly normalized ones and also makes use of the
default join. The whole encoding can be found in the Appendix, in Listing A.5. It works in
exactly the same way as the encoding in Listing A.4, except when it updates the counter in post-
processing nodes. Ensuring the connectedness is not affected by having auxiliary items from
more children of the join nodes in the post-processing nodes as we do not operate directly on
join nodes due to the use of the --default-join option, and the cost calculation also stays
unchanged as the default join automatically calculates a join node’s cost. More specifically,
the modeline in Listing 4.7 and the rule in line 4 of Listing 4.9, the latter being meant for two
children for each join node, must be adapted.

In the modeline, solely the option stating the normalization type changes from semi to
weak, as shown in Listing 4.13.

Listing 4.14 displays the part of the encoding for weakly normalized trees which instantiates
and keeps each edge’s counter for selected adjacent edges. The rule in line 4 was adapted as

47

it applied the inclusion-exclusion principle only for two unified sets and now it works for an
unlimited number of the latter. Now we also have to match the current vertex as we do not
refer any more to the counter of the same vertex in the child node. We check whether we are in
a post-processing node by counting the number of instantiations of predicate n/1 in the child
node, which coincides with the number of children the child node has, the latter being a join
node. At the same time we remember this number. We also calculate the sum of all counters’
values of the desired vertex in the child node and the number of selected adjacent edges in the
current node. The new value of the counter is set to the sum of all counters’ values in the child
node, corresponding to the counter’s value in each of the join node’s children, minus the number
of common edges, that corresponds to the number of selected adjacent edges in the current node,
times the number of the join node’s children minus one, in order not to count any edge multiple
times, by the inclusion-exclusion principle.

Please note that this encoding also works on semi-normalized trees and that the output might
not be identical when working on different tree decompositions, but the s/2 items remain the
same.

4.2 D-FLAT Encoding for the TSP-R

In this section we will prove the high flexibility and maintainability when working with D-FLAT,
by proposing an encoding for the TSP that allows to specify for any city how often it may be
visited, i.e. an encoding for the TSP-R (traveling salesperson with repetitions). Our imple-
mentation keeps the structure and the largest part of the encoding for the TSP-NR presented in
Listing A.4, and can also be found entirely in the Appendix, in Listing A.6. The only adaptations
are done at eliminating those answer set candidates that would not lead to valid solutions, as we
are now looking for a permutation with repetition that complies with the specifications in the
input instance, and at eliminating unconnected solution candidates, where we want to remove
only those in which only an already selected vertex is not connected to all other vertices of the
tour .

Our D-FLAT encoding for the TSP-R also works on the same instances as the monolithic
encoding from Listing 3.9, expecting the undirected input graph’s vertices, edges and the weights
of the latter to be specified in the same manner by using the vertex/1, the edge/2 and
weight/3 predicates, respectively, and the minVisits/2 and maxVisits/2 predicates to
specify the minimal and maximal number of visits for a vertex, respectively, in case the default
value 1 is not wanted. Listing 3.1 shows an ASP encoding extract of such an input instance
based on the graph in Figure 3.1, in which vertex 3 must be visited exactly twice. Next, we will
present the two excerpts of the TSP-R encoding which contain modifications to the TSP-NR
encoding in Listing A.4.

In Listing 4.15 we present the excerpt of the TSP-R encoding that counts the number of
selected adjacent edges and then eliminates those answer set candidates which do not comply in
this regard. The first part (lines 2 to 5) is identical to the one in Listing 4.9. In fact, the code
which is relevant for the TSP-R consists of the constraints responsible for eliminating answer
set candidates that would not lead to a permutation with repetition and their auxiliary rules. The
former replace similar constraints to be seen in Listing 4.9. Instead of eliminating those solution

48

1 %Count number o f s e l e c t e d a d j a c e n t edges .
2 auxItem(ct(X,N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,

extend(R), introduced(X), currentNode(CR),
N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

3 auxItem(ct(X,N1+N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,
extend(R), current(X), currentNode(CR),
childAuxItem(R,ct(X,N1,CH1)),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
4 item(ct(X,N1+N2-N12)) :- extend(R), extend(S), R!=S,

childItem(R,ct(X,N1)), childItem(S,ct(X,N2)), current(X),
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

5 auxItem(n(CR)) :- currentNode(CR).

6 %E l i m i n a t e s o l u t i o n c a n d i d a t e s t h a t do n o t l e a d t o a v a l i d p e r m u t a t i o n wi th r e p e t i t i o n .
7 :- childAuxItem(R,ct(X,N,CH)), extend(R), minV(X,V), removed(X), N < 2 * V.
8 :- childAuxItem(R,ct(X,N,CH)), extend(R), maxV(X,V), removed(X), N > 2 * V.
9 :- childAuxItem(R,ct(X,N,CH)), extend(R), removed(X), N / 2 * 2 != N.

10 :- maxV(X,V), auxItem(ct(X,N,_)), N > 2 * V.

11 minV(X,1) :- currem(X), not minStated(X).
12 maxV(X,1) :- currem(X), not maxStated(X).
13 minStated(X) :- currem(X), minVisits(X,V).
14 maxStated(X) :- currem(X), maxVisits(X,V).
15 minV(X,V) :- currem(X), minVisits(X,V).
16 maxV(X,V) :- currem(X), maxVisits(X,V).
17 currem(X) :- current(X).
18 currem(X) :- removed(X).

Listing 4.15: TSP-R encoding for D-FLAT with default join on semi-normalized tree
decompositions: Eliminating table rows which would not lead to valid permutations.

candidates where the number of the selected adjacent edges of a vertex is different than 2 when
they are removed, or exceeds 2 before being removed, we now eliminate those where this number
is lower or higher than the value allowed. Further, we eliminate those solution candidates where
this number is odd at removal, or if it is higher already before removal. For not having to
differentiate between the vertices for which minVisits/2 or maxVisits/2 is specified,
and those for which it is not, and in order not to obtain cycles of dependency, we introduce the
predicates minV/2 and maxV/2, similarly to the way we do it in the monolithic encoding in
Listing 3.6. These are set for a vertex to 1, on the second position, if a minimum (line 11) or
maximum (line 12) number of visits was not specified for the relevant vertex, and to the number
of minimum (line 15) or maximum (line 16) specified visits otherwise. Whether the latter were
specified is checked by means of the minStated/1 and maxStated/1 predicates, derived
in lines 13 and 14 only for those vertices for which a minimum, or maximum, number of visits
was specified in the input, respectively. All rules in lines 11 to 16 are fired only when dealing
with a vertex that is in the current bag or one that has just been removed, as defined in lines
17 and 18, as these are the only vertices for which a constraint can be applied. Please note that
all these rules in lines 11 to 18 actually handle the default case for the minimum and maximum
number of allowed visits, and could be omitted if the input instances defined a minimum and

49

1 %Deduce c o n n e c t e d n e s s .
2 auxItem(c(X,Y)) :- item(s(X,Y)).
3 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Y,Z)).
4 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X < Z.
5 auxItem(c(Z,X)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X > Z.
6 auxItem(c(X,Z)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X < Z.
7 auxItem(c(Z,X)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X > Z.
8 auxItem(c(X,Y)) :- childAuxItem(R,c(X,Y)), extend(R), current(X;Y).

9 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
10 :- 1 #count{ U : current(U) }, removed(X),

not childAuxItem(R,ct(X,0,_)), extend(R),
not childAuxItem(R,c(X,Y)) : current(Y);
not childAuxItem(R,c(Y,X)) : current(Y).

11 :- final, removed(X;Y), X < Y, not childAuxItem(R,c(X,Y)), extend(R),
not childAuxItem(R,ct(X,0,_)), not childAuxItem(R,ct(Y,0,_)).

12 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
13 auxItem(noselection(CR)) :- 1 #count { X : bag(N,X), childNode(N) },

not final, not oldVertex, auxItem(selection), currentNode(CR).
14 oldVertex :- current(X), not introduced(X).
15 auxItem(selection) :- item(s(X,Y)).
16 auxItem(noselection(CR)) :- childAuxItem(R,noselection(CH)),

extend(R), currentNode(CR).
17 auxItem(selection) :- childAuxItem(R,selection),

not auxItem(noselection(CR)), extend(R).
18 :- auxItem(selection), auxItem(noselection(CR)).
19 :- auxItem(noselection(CH1)), auxItem(noselection(CH2)), CH1 < CH2.

Listing 4.16: TSP-R encoding for D-FLAT with default join: Ensuring connectedness.

a maximum number of allowed visits for each vertex. However, by providing these extra rules
we simplify the formulation of input instances. In lines 7 and 8 we eliminate those table rows
which contain at least one vertex that has less, or more, selected adjacent edges, than twice the
minimum, or maximum, number of allowed visits, respectively. As we check only the minimum
and maximum number of the vertices’ selected adjacent edges we have to eliminate also those
cases in which a vertex has an odd number of the latter at removal, in which situation we would
not even obtain a permutation at all. This is done in line 9 by checking whether dividing this
number by 2 and again multiplying the result by 2 yields the same number, as ASP uses integer
division. Finally, in line 10, we remove those solution candidates which contain a vertex that
already has more selected adjacent edges than twice the specified number of allowed visits before
removal.

Listing 4.16 shows the other excerpt that had to be complemented in order to comply with
the specifications of the TSP-R. Again, it is the constraints which needed to be adapted. The
constraints in lines 10 and 11 are now fired only if the removed vertices, which were not con-
nected to other vertices they were supposed to, were actually selected to be part of the tour, as in
the TSP-R it is possible, or even mandatory for certain vertices not to be visited, depending on
the input instance. We verify this condition by checking whether the removed vertices’ counters
were different from 0.

50

1 Answer: 1
2 c(0,1) c(0,2) c(0,3) c(0,4) c(1,2) c(2,3) c(3,4) c(3,5) c(3,6) c(4,5) c(4,6)

c(5,6) ct(0,1,5) ct(0,2,3) ct(0,2,4) ct(1,2,5) ct(2,1,5) ct(2,2,4)
ct(3,2,4) ct(3,3,3) ct(3,4,2) ct(4,1,3) ct(4,2,2) ct(5,2,2) ct(6,2,2)
n(1) n(2) n(3) n(4) n(5) n(6) s(0,1) s(0,3) s(1,2) s(2,3) s(3,4) s(3,5)
s(4,6) s(5,6) selection

3 (cost: 22)

Listing 4.17: Possible resulting optimal answer set when supplied with the encoding presented
in Listing A.6 and the instance in Figure 3.1 and Listing 3.8.

Lines 13 to 19 ensure connectedness between nodes and are only optional as there are ef-
ficient algorithms for determining a graph’s connectivity beforehand. While, in Listing 4.4 the
situation in which a parent node had a completely different bag than its child node, meant that
the graph was disconnected and the solution candidate should be discarded, now we keep it if
all nodes below the rupture, or all of those above it (including nodes below join nodes which
are situated above the rupture), contain only vertices that were not selected for the tour. This
corresponds to the situation in which the input graph is not connected and all vertices selected
for the tour belong to the same component. In such a case, connectedness between nodes is
not mandatory. To handle such situations we introduce the auxiliary items selection/0 and
noselection/1. The first one marks that at least one edge between vertices from the same
node has been selected for the tour (line 15), while the second marks that from the node, where
it was first deduced upwards, no more edges must be selected, or the solution candidate must
be discarded. Both are passed upwards from node to node once they were deduced, in lines
16 and 17, with the remark that selection/0 stops being propagated from the point where
noselection/1 was deduced. In case such a rupture, where the child node’s bag is disjoint
to the current node’s bag, is encountered, and selection/0 has already been deduced, im-
plying that an edge has already been selected, it follows that we are not allowed to select any
edges above the rupture, i.e. we deduce noselection/1, which is done in line 13. Deducing
again selection/0 after having deduced the former, implies a gap between two nodes whose
vertices selected for the tour are not connected to each other, such that the answer set candidate
is discarded (line 18). The other situation in which the solution candidate is discarded, occurs
when there exist ruptures on two different branches of the tree decomposition and below each
of them at least on edge was selected. Naturally, noselection/1 is deduced and propa-
gated upwards on each branch and when they meet at the post-processing node, the solution
is discarded (line 19). This is also the reason for storing the current node as an argument for
selection/1, as otherwise we could not differentiate in the post-processing node between
the two different instantiations coming from different children of the join node.

In Listing 4.17 we can see again that we obtain all items and auxiliary items deduced
throughout the traversal of the tree decomposition, but those determining the tour correspond
to the literals from in Listing 3.10.

Further, we propose an implementation for the TSP-R which works also on weakly normal-
ized tree decompositions and is identical to the previous encoding, except for the modeline and
the rule which updates the counter of a vertex in post-processing nodes, the latter being identical

51

to the one in Listing 4.15. It can be found in the Appendix, in Listing A.7. The reader can no-
tice that we concentrated on weakly and semi-normalized decompositions, because normalized
ones lead to higher memory consumption due to the inherent bigger size of the former, while
for unnormalized ones the encodings would have become much more complicated to write and
understand, defeating our purpose to keep them maintainable and flexible.

52

CHAPTER 5
Evaluations

In this chapter we present the results of the empirical tests performed to evaluate the efficiency
of the encodings we proposed for the TSP-NR and TSP-R. First we present the test data, con-
sisting from both generated and real world test instances. Next, we give the specifications of the
hardware and software environment used for our computations. Finally, we disclose the results
for each data set in terms of runtime, memory consumption and number of conflicts, comparing
D-FLAT’s results with clingo’s, and also the results obtained with D-FLAT with each other, on
different data sets, implementations and configurations.

5.1 Problem Instances

Now, we will present the data used for our experiments1, divided into six different data sets, by
the purpose they serve. The first five were generated by us, while the last one contains real world
instances. The generated grid instances in each data set are of a certain graph type: 8-connected
full grids, 8-connected grid-like graphs or 4-connected grid-like graphs. An 8-connected grid
is a graph with matrix structure in which each vertex is connected by an edge to other vertices
that are positioned next to it horizontally, vertically or diagonally, while in a 4-connected grid
the vertices are connected only to their horizontal and vertical neighbors. Figure 5.1 shows
such an 8-connected full grid with treewidth 7. In a full grid, each vertex is connected to all its
neighbors, while in a graph that we call grid-like, the connections to the neighboring vertices
are determined based on a specified probability. For full grids we can control the (theoretical)
treewidth by creating matrices with a certain width and height. The maximum bag size in an
optimal tree decomposition of a graph is one more than the value of its treewidth. Each two
vertices connected by an edge must be in the same bag at some point and once we removed
a vertex we cannot introduce it back. Thus, we need the width of a grid to be two less than
the number of bag elements, for the bag to be stretched out on two rows over all columns of

1http://dbai.tuwien.ac.at/research/project/dflat/system/theses/moldovan/
tsp.zip

53

http://dbai.tuwien.ac.at/research/project/dflat/system/theses/moldovan/tsp.zip
http://dbai.tuwien.ac.at/research/project/dflat/system/theses/moldovan/tsp.zip

Figure 5.1: 8-Connected grid (6 x m), treewidth 7. [14]: Figure 5.1.

the grid and to contain a clique of four vertices that sequentially passes over all vertices row
by row from left to right, without loss of generality. The height of the grid must be at least as
large as the width, otherwise the bag could be laid out vertically. In Figure 5.1, the colored area
represents the bag of the current node of an optimal tree decomposition at the moment right
before vertex x can be removed and the clique covered by the bag under focus can move to the
right by one column. The vertices below the colored area have already been removed and those
above are waiting to be introduced. Nonetheless, for the instances that are not full grids, we
cannot determine the (theoretical) treewidth exactly. These instances were created by giving a
maximum wanted treewidth and a probability for selecting the grid’s edges, and then checking
the width of 10 tree decompositions created by D-FLAT. This means in their case we speak
of a practical treewidth, or the width of D-FLAT’s actual decompositions which usually also is
roughly the same as the theoretical treewidth.

Each of the generated data sets contains various scenarios, where a scenario consists of 20
instances each, distinguished mainly by their treewidth and their number of vertices, and in the
case of 8-connected grid-like graphs, also their satisfiability. For the latter we could determine
the satisfiability by varying the probability to select an edge of the grid at their creation. Table 5.1
shows an overview of the generated grid instance scenarios, giving information on the type of
TSP they are meant for, on their graph type, their treewidth, their number of vertices, the range
of their weights, their satisfiability, and on the required minimum and maximum number of visits
for 10 percent of the vertices (relevant only for TSP-R). minVisits/2 and maxVisits/2
are not specified at all in Data Sets 1 to 4, while in Data Set 5 they are specified only for 10

54

Data Set TSP Graph Type TW Vertices Weights SAT min max

Data Set 1 NR 8-con. full grid

2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5

20..50..5
50..300..50

1000
greatest
20..50..5

50..300..50
1000

greatest
20..50..5

50..300..50
1000

greatest
20..50..5

50..300..50
1000

greatest

1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20
1..20

7

7

7

7

X
X
X
X
X
X
?
X
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Data Set 2 NR 8-con. full grid 3
4

100,300
100,300

1..5
1..5

X
X

-
-

-
-

Data Set 3 NR 8-con. grid-like

3
3
4
4

100,300
100,300
100,300
100,300

1..20
1..20
1..20
1..20

X
7

X
7

-
-
-
-

-
-
-
-

Data Set 4 NR 4-con. grid-like 4 100 1..20 17 - -

Data Set 5 R 8-con. full grid

3
3
3
4
4
4

100,300
100,300
100,300
100,300
100,300
100,300

1..20
1..20
1..20
1..20
1..20
1..20

20,20
11,7

20,20
20,20
16,13
20,20

0
2
0
0
2
0

0
2

10
0
2

10

Table 5.1: Generated grid instances.

percent of the vertices. Here we would like to mention that the instances for the TSP-NR can
be solved also by the proposed TSP-R encodings, as the latter are generalizations of the former.
Each row in Table 5.1 represents one scenario, if only one instance size is specified with regard
to the number of vertices, or more scenarios, otherwise. In the latter case we either enumerate
the instance sizes, delimited by a comma, or specify the smallest scenario, the largest one, and
the step width. For example 50..300..50 means that the specific row represents six scenarios for
instance sizes 50, 100, 150, 200, 250 and 300. Further, greatest stands for the greatest instance
with the specific treewidth given in column TW that could be solved in less than 10 minutes
for any of the 20 decompositions2. In the SAT column, a checkmark means that all instances

2The actual number of vertices will be disclosed in Section 5.3.

55

of that or those scenarios are satisfiable, an x that none is satisfiable, a question mark that we
do not have knowledge of the satisfiability, and a sequence of numbers gives the number of
satisfiable instances for each scenario the row represents. The real world instances are modeled
after Vienna’s public transportation system.

Main Data for TSP-NR: 8-Connected Full Grids

Data Set 1, which contains the most scenarios, is meant to compare D-FLAT’s efficiency on our
implementation for the TSP-NR with and without default join on semi-normalized tree decom-
positions to clingo’s performance, with its different configurations. For this purpose we created
full grids for which we can precisely control the treewidth. They range from treewidth 2 to 5
and for each treewidth from 20 to 50 vertices, with a pace of 5, and from 50 to 300 vertices,
with a pace of 50. Further, we created one instance with 1000 vertices for each treewidth and
instances with even more vertices to test which is the maximum number of vertices that can be
processed in 10 minutes for each treewidth. In our case all instances that have a treewidth of 2
are unsatisfiable as the generated graphs are very sparse. All other instances are satisfiable.

8-Connected Full Grids with Lower Edge Weights for TSP-NR

Data Set 2 is meant for comparing D-FLAT’s performance in dependence of the interval of the
weights of the edges. For this purpose we took the same 8-connected full grids, but replaced the
weights ranging from 1 to 20 with others ranging from 1 to 5. The selected scenarios deal with
100 and 300 vertices, with a treewidth of 3 and 4.

8-Connected Grid-Like Graphs for TSP-NR

With Data Set 3, we intend to provide insight into D-FLAT’s performance on our TSP-NR
implementation when operating on a different type of graph. Another reason is that we intend to
check D-FLAT’s performance on satisfiable instances as compared to unsatisfiable ones, which
is possible because we can control the satisfiability for this type of graphs by means of the
probability we set for the edge selection. For these purposes we created eight scenarios, one
for each combination of treewidth (3 or 4), number of vertices (100 and 300), and positive or
negative satisfiability.

4-Connected Grid-Like Graphs for Weakly Decomposed Trees for TSP-NR

In order to check how D-FLAT behaves on weakly normalized tree decompositions as opposed to
semi-normalized ones we created Data Set 4, consisting of 20 instances of 4-connected grid-like
graphs with 100 vertices and treewidth 4. We chose this type of graph as D-FLAT actually always
decomposes 8-connected graphs into semi-normalized decompositions even when specifying in
the modeline or the D-FLAT call that a weakly normalized decomposition is wanted. Here, all
but three instances are satisfiable.

56

Instance Satisfiable Vertices to Be Visited Once maxVisits Other Vertices
Metro1 X 85 10
Metro2 X 4 10
Metro3 X 4 1
Metro4 X 10 1

Table 5.2: Real world instances based on the Viennese metro and urban train system (138 ver-
tices, treewidth 5).

Data for TSP-R: 8-Connected Full Grids

Data Set 5 is meant for testing D-FLAT’s performance also on the TSP-R, when operating on
instances in which some of the vertices must be visited more or less often than the standard
case checked on the first data set, respectively, and when leaving full freedom to the algorithm
whether to visit some of the vertices or not. More specifically, we adapted the 8-connected full
grids with 100 and 300 vertices, treewidths 3 and 4, from the main data set, such that about 10
percent of the vertices must be visited exactly twice. Further, we adapted the instances from the
former scenarios such that about 10 percent of the vertices must not be visited at all, and once
more such that 10 percent of the vertices may be left out of the tour, but can also be visited up
to 10 times if this leads to a lower tour cost. All other vertices must be visited exactly once.
Thus, we obtained a total of 12 adapted scenarios. While the instances in which 10 percent of
the vertices must not be in the tour and for those for which 10 percent of the vertices can, but do
not have to be visited, remain satisfiable, about half of those with vertices that must be visited
twice became unsatisfiable.

Real World Data: The Viennese Rail Transportation System

In order to present also a real world case study we ran some tests for the TSP-R on Vienna’s
tramway system as well as on its metro and urban train system. The purpose was to introspect
D-FLAT’s behavior both on semi-normalized and on weakly normalized tree decompositions, as
opposed to clingo’s (with different configurations). Furthermore, we wanted to observe how the
performance changed depending on the number of stations and on the number of times the latter
had to be visited. The TSP-NR is unsatisfiable on both the tram and the metro-suburban train
systems due to the dead ends at the end of some of the lines and to the fact that the TSP-NR does
not allow an edge to be used twice. However, we simulated the TSP-NR on the metro system by
specifying to visit only (almost all) metro stations and the urban train stations when needed to
create a tour.

The instances based on Vienna’s metro and urban train system, depicted in Figure 5.23, have
a practical treewidth of 5, contain 138 vertices and are all satisfiable. Their weights correspond
to the time in minutes needed to get from one station to another. The first one is meant for
simulating the TSP-NR by putting also the urban train lines and stations at the disposal of the
TSP-R encoding. More specifically, the metro stations marked by a filled oval in Figure 5.2, i.e.

3http://www.wienerlinien.at

57

http://www.wienerlinien.at

Figure 5.2: Vienna’s metro and urban train system. c©Wiener Linien

all metro stations except for two at one end of the red line, U1, and six at the end of the brown
line, U6 (85 in total), must be visited once, while all other stations can be visited at most 10
times or not at all. The second instance specifies that only four stations, which are dispersed
throughout the network, must be visited exactly once, while all others can be visited at most 10
times or not at all. The third instance is almost identical, the difference being that those instances

58

Donau

Neue Donau

Donau
Alte

 D
onau

Neu
e D

onau

U2
U2

U
2

U
2

U2

U1U1

U1

U1

U1

U
6

U6

U6 U6

U6

U6

U
4

U
4

U4

U4
U4

U3

U3

U
3

U
3

U
4

U
6

U
3

U
2

U
6

U
6

U
4

U
4

U
2

U
1

U
1

U
2

U
3

U
3

U
4

S1
•S

2•
S3

•S
7•

R/R
EX

S5
0•

R/
RE

X
S4

5•
S5

0•
S6

0•
R/

RE
X

S6
0

S5
0•

S6
0•

R/R
EX

S4
0•

S4
5

S4
5

S4
5

S40•R/REX

S4
5

S45

S45

S8
0•

R/
RE

X

S8
0•

R/R
EX

S6
0•

R/R
EX

S6
0•

S8
0•

R/R
EX

S80•R/REX

S1
•S

2•
R/

RE
X

S3•R/REX

S2
•R

/REX

S1
•R

/R
EX

S1
•S

2•
S3

•S
60

•S
80

•R
/R

EX

S6
0

S1•S2•R/REX

S4
0•

R/R
EX

S8
0•

R/
RE

X

R/R
EX

S8
0•

R/R
EX

S7

S7

S3

S5
0

S4
5

S6
0

S4
5

S4
0

S7

S8
0

43

40
•4

1 42

40

41

43

44

44

49
49

49

46

46

2
2

52
•5

8

10
•5

8

10
•5

2

58

52

49

5•
(33

)•3
7•

38

37•38

30
•3

1

30
•3

1

D•1
•2

•7
1

D•1
•7

1

6•
18

62

62

O
•1

8

D
•2

•7
1

1•
62

•W
LB

18

6
6

6

71

71

6•
71

6

18

18
2•

5•
(3

3)

5•
(3

3)

5•
(3

3)
5•

33 2

2

1

1

W
LB

38
40

41
42

43
44

71

71

6

6
18

18

25

25

26

26

1

1

5
9

52
58

58

52
49

49
46

46

10
60

60

62

62

D

D

37

38

40

41

42

43

44
10

9

5

33

33

33

31

30
31

30

O

O

67

67

2

2

37
•3

8•
40

•4
1•

42

43
•4

4

40
•4

1•
42

37

38

43
9•

43

9•
49

2

31
•3

3

31

31 31

25
•2

6

25

25

26

26

33

60
•6

2

60

60

1•6
1

O

D

D
D

D

6•
67

O

O
5

5

9

9

37

10

10•46

10

D•(33)

W
LB

WLB

6•
71

67
E

67
E

67
E

67

67

<

<
<

>

<

>

<

<

<
>

<

<

>

>

<
>

>

<

>

>

<

<

<

<

<

<

<

>

>

< <

>

>

<
>

>
>>

 E
nk

pl
at

z
U

/G
ril

lg
as

se

Pr
an

da
ug

as
se

Ri
ch

tu
ng

 M
ar

ch
eg

g,
Br

at
is

la
va

 (S
K)

H
au

pt
ba

hn
ho

f O
st

Ec
kp

er
ga

ss
e

G
er

st
ho

f,
H

er
be

ck
st

ra
ße

Pö
tz

le
in

sd
or

f

Li
nz

er
 S

tr.
/

H
oc

hs
at

ze
ng

.

H
üt

te
ld

or
f,

Bu
ja

tt
ig

as
se Sa

tz
be

rg
g.Ba

hn
ho

fs
tr.

U
nt

er
 S

t.
 V

ei
t,

H
um

m
el

ga
ss

e

La
in

z,
 W

ol
ke

rs
-

be
rg

en
st

ra
ße

W
es

tb
ah

nh
of

Ri
ch

tu
ng

 U
nt

er

Pu
rk

er
sd

or
f,

Re
ka

w
in

ke
l

D

H
üt

te
ld

or
f

Ba
um

-
ga

rt
en

Hüt
tel

dor
fer

 St
r./

Hoc
hs

at
ze

ng
as

se

Waid
ha

us
en

str
. Se

cke
nd

orf
str

.

Sc
he

ib
en

be
rg

st
r.

A
ls

eg
ge

r
St

ra
ße

W
al

lr
iß

st
r.

Sc
hö

ffe
lg

.

G
er

st
ho

fe
r S

tr.
/

Sc
he

ib
en

be
rg

st
r.

Er
nd

tg
as

se

Tü
rk

en
-

sc
ha

nz
pl

.
G

er
st

ho
f

W
ol

f i
n

de
r A

u

H
ad

er
sd

or
f

Weid
lin

gau

Pu
rke

rsd
or

f

Sa
na

to
riu

m

G
ru

sc
ha

pl
at

z

Lin
ze

r S
tra

ße
/

Ze
he

tn
erg

as
se

Gus
en

lei
th

ne
rg

as
se

O
be

r S
t.

 V
ei

t
U

nt
er

St
. V

ei
t

Hütt
eld

orf
er

Str
./

Lü
tzo

wga
sse

Le
ys

ers
tr.

Gut
rat

erp
lat

z

Jo
ac

hi
m

st
ha

le
rp

la
tz

Ra
nk

ga
ss

e

Th
al

ia
st

r./
M

ar
ol

tin
ge

rg
.

O
tt

ak
ri

ng
er

 S
tr

./
Er

db
ru

st
ga

ss
e

W
ilh

el
m

in
en

st
r./

Sa
nd

le
ite

ng
as

se

Ve
rb

in
du

ng
s-

ba
hn

Fi
ch

tn
er

g.

W
en

zg
as

se

H
ie

tz
in

g
Br

au
ns

ch
w

ei
g-

ga
ss

e

Sc
hl

oß
Sc

hö
nb

ru
nn

Li
nz

er
 S

tr.
/

Re
in

lg
.

Li
nz

er
 S

tr.
/

Jo
hn

st
ra

ße

Re
in

lg
./

M
är

zs
tr.

Lin
ze

r S
tra

ße
/

Lü
tzo

wgas
se

Ameis
gas

se Dies
ter

weg
g.

D
om

m
ay

er
ga

ss
e

G
lo

rie
tt

eg
as

se

St
ad

le
rg

as
se

Ja
gd

sc
hl

oß
ga

ss
e

Pr
ey

er
ga

ss
e

Sp
ei

si
ng

M
ei

dl
in

g

Ve
rs

or
gu

ng
s-

he
im

pl
at

z

Kr
an

ke
nh

au
s

H
ie

tz
in

g

Hof
wies

en
g. Wat

tm
an

ng
.

Atzg
ers

dor
fer

 St
r.

Ros
en

hü
gels

tr.

Sc
hlo

ß H
etz

en
dor

f

H
et

ze
nd

or
f

So
nn

er
g.

W
ie

ne
rb

er
gb

r.

Br
ei

te
nf

ur
te

r S
tr.

/
A

ltm
an

ns
do

rf
er

 S
tr.

Sc
he

di
fk

ap
la

tz

H
er

m
es

st
ra

ße

Ri
ed

el
ga

ss
e

Si
lle

rp
la

tz

Fr
an

z-
A

se
nb

au
er

-G
as

se

M
au

re
r H

au
pt

pl
at

z

M
au

re
r L

an
ge

 G
as

se

A
nt

on
-K

rie
ge

r-
G

as
se

Br
ei

te
nf

ur
te

r S
tr.

/
Li

es
in

gb
rü

ck
e

Ka
is

er
-F

ra
nz

-J
os

ef
-S

tr
aß

e

Ro
da

un

A
tz

ge
rs

do
rf

Li
es

in
g

Ri
ch

tu
ng

 M
öd

lin
g,

W
ie

ne
r N

eu
st

ad
t H

bf
.

A
lt-

Er
la

a

Ts
ch

er
tt

eg
as

se

A
m

 S
ch

öp
fw

er
k

Er
la

ae
r S

tr
aß

e

Pe
rf

ek
ta

st
ra

ße

Si
eb

en
hi

rt
en

Sc
hö

nb
ru

nn
M

ei
dl

in
g

H
au

pt
st

ra
ße

Lä
ng

en
-

fe
ld

ga
ss

e

N
ie

de
r-

ho
fs

tr
aß

e

M
ar

ga
re

te
ng

ür
te

l

G
um

pe
nd

or
fe

r
St

ra
ße

M
ar

ia
hi

lfe
r G

ür
te

l

Sc
hw

eg
le

rs
tr

.
Jo

hn
st

ra
ße

H
ug

lg
as

se

Hütte
ldorfe

r S
tra

ße

Ken
dler

str
aß

e

La
ur

en
tiu

sp
lat

z

O
tt

ak
ri

ng
Sc

hu
hm

ei
er

pl
at

z

Pe
nz

in
ge

r S
tr

aß
e

Winc
ke

l-

man
ns

tra
ße

Ans
ch

üt
zg

as
se Rus

ten
gas

se
Kran

zg
as

se
Sta

glgas
se

Gers
tn

ers
tr. Sc

hö
pf

w
er

k G
ut

he
il-

Sc
ho

de
r-

G
.

In
ze

rs
do

rf
Lo

ka
lb

ah
n

N
eu

-E
rla

a

Sc
hö

nb
ru

nn
er

 A
lle

e

Vö
se

nd
or

f-
Si

eb
en

hi
rt

en

Ri
ch

tu
ng

 W
ie

ne
r N

eu
do

rf
,

Ba
de

n
Jo

se
fs

pl
at

z

W
ol

fg
an

gg
.

D
ör

fe
ls

tr.

Aßm
ay

erg
as

se
Flu

rsc
hü

tzs
tr./

Län
gen

fel
dg.

Marx
-M

eid
lin

ge
r-S

tr.

Sie
bert

g.

M
ar

ga
re

te
ng

ür
te

l/
A

rb
ei

te
rg

as
se

Ei
ch

en
st

r.

M
at

zl
ei

ns
do

rf
er

Pl

at
z

Kl
ie

be
rg

.
Bl

ec
ht

ur
m

g.

La
ur

en
zg

as
se

Jo
ha

nn
-S

tr
au

ß-
G

as
se

M
ay

er
ho

fg
as

se

Pa
ul

an
er

ga
ss

e

Re
ss

el
ga

ss
e

Be
in

g.

Bu
rg

ga
ss

e-
St

ad
th

al
le

G
un

th
er

st
r.

U
rb

an
-

Lo
rit

z-
Pl

.

Ka
is

er
st

ra
ße

St
ol

lg
as

se

Zi
eg

le
rg

as
se

Ca
m

ill
o-

Si
tt

e-
G

.

Th
al

ia
st

r./
Fe

ßt
ga

ss
e

Ko
pp

st
r./

Pa
ni

ke
ng

.

Q
ue

lle
ns

tr.
/

Kn
öl

lg
as

se

Be
rn

ha
rd

ts
ta

lg
.

Kn
öl

lg
as

se
/

D
av

id
ga

ss
e

Kn
öl

lg
as

se
/

D
av

id
ga

ss
e

Kn
öl

lg
as

se
/

Tr
os

ts
tr

aß
e

W
in

dt
en

st
ra

ße St
ef

an
-

Fa
di

ng
er

-P
la

tz

Co
lu

m
bu

sp
la

tz

Q
ue

lle
np

l.

La
xe

nb
g.

 S
tr.

/
G

ud
ru

ns
tr.

N
ei

lre
ic

hg
as

se

A
rt

ha
be

rp
la

tz

La
xe

nb
g.

 S
tr.

/
Tr

os
ts

tr
aß

e

Tr
os

ts
tr

aß
e/

N
ei

lre
ic

hg
as

se

Ra
xs

tr
aß

e/
Ru

do
lf

sh
üg

el
g.

Sa
hu

lk
as

tr
aß

e

W
ie

ne
rf

el
dg

as
se

O
tt

o-
Pr

ob
st

-P
la

tz

Te
sa

re
kp

la
tz

O
tt

o-
Pr

ob
st

-S
tr

aß
e

Fr
öd

en
pl

at
z

M
ig

er
ka

st
r.

Ro
th

ne
us

ie
dl

Re
um

an
np

la
tz

Ke
pl

er
pl

at
z

Fa
vo

rit
en

st
ra

ße
/

Tr
os

ts
tr

aß
e

Sc
hl

ei
er

ga
ss

e

A
lte

s
La

nd
gu

t

A
la

ud
ag

as
se

St
oc

kh
ol

m
er

 P
la

tz

Pe
r-

A
lb

in
-H

an
ss

on
-S

ie
dl

un
g

O
st

La
ae

r-
Be

rg
-S

tr
aß

e

O
be

rl
aa

,
Th

er
m

e
W

ie
n

H
au

pt
-

ba
hn

ho
f

Q
ua

rt
ie

r
Be

lv
ed

er
e

G
el

le
rt

pl
at

z

A
bs

be
rg

g.

Fa
sa

n-
ga

ss
e

Kö
lb

lg
as

se
Sc

hl
oß

Be
lv

ed
er

e

Pl
öß

lg
as

se

U
nt

er
es

Be
lv

ed
er

e

A
m

 H
eu

m
ar

kt

Ta
ub

st
um

m
en

-
ga

ss
eG

uß
ha

us
st

r.
Ke

tt
en

br
üc

ke
ng

as
se

Pi
lg

ra
m

ga
ss

e

N
eu

ba
ug

as
se

Ka
rl

sp
la

tz

Bu
rg

rin
g

M
us

eu
m

s-
qu

ar
tie

r

W
ei

hb
ur

gg
as

se

Kä
rn

tn
er

 R
in

g/
O

pe
r

Sc
hw

ar
ze

n-
be

rg
pl

at
z

St
ub

en
to

r

St
ad

tp
ar

k

W
ie

n
M

it
te

 -
La

nd
st

ra
ße

Se
ch

sk
rü

ge
l-

ga
ss

e

U
ng

ar
ga

ss
e/

N
eu

lin
gg

as
se

Re
nn

w
eg

Kl
ei

st
ga

ss
e

St
. M

ar
x

G
ei

er
ec

ks
tr

aß
e

H
ei

nr
ic

h-
D

rim
m

el
-P

l.

W
ild

ga
ns

pl
.

Po
lk

or
ab

pl
.

G
ot

ts
ch

al
kg

./
En

kp
la

tz
 U

G
ei

se
lb

er
gs

tr
aß

e

O
be

rz
el

le
rg

.
Ba

um
ga

ss
e

Vi
eh

m
ar

kt
ga

ss
e

Li
tf

aß
st

ra
ße

M
ol

ito
rg

.

G
as

om
et

er

Er
db

er
g

Zi
pp

er
er

st
ra

ße

H
au

ff
ga

ss
e

 E
nk

pl
at

z
Br

au
nh

ub
er

g.

Si
m

m
er

in
g

H
ai

de
st

ra
ße

Pr
at

er
ka

i

G
ril

lg
as

se

Ze
nt

ra
l-

fr
ie

dh
of

Ka
is

er
eb

er
sd

or
f

Fi
ck

ey
ss

tr
aß

e

W
ei

ße
nb

öc
ks

tr
aß

e

Ze
nt

ra
lfr

ie
dh

of
 1

. T
or

Ze
nt

ra
lfr

ie
dh

of
 2

. T
or

Ze
nt

ra
lf

ri
ed

ho
f 3

. T
or

Ze
nt

ra
lfr

ie
dh

of
 4

. T
or

Pa
nt

uc
ek

g.
/

W
id

ho
lz

g.

Le
be

rb
er

g

Sv
et

el
sk

ys
tr

aß
e

Va
lie

rg
as

se

Ka
is

er
eb

er
sd

or
f,

Zi
nn

er
ga

ss
e

Ro
ch

us
ga

ss
e Ka

rd
in

al
-

N
ag

l-P
la

tz

Sc
hl

ac
ht

ha
us

ga
ss

e

Er
db

er
gs

tr
aß

e

St
ep

ha
ns

pl
at

z

Sc
hw

ed
en

pl
at

z

Ju
liu

s-
Ra

ab
-P

la
tz

Q
ue

lle
ns

tr.
/

Fa
vo

rit
en

st
r.

M
ar

xe
rg

as
se

H
in

te
re

Zo

lla
m

ts
st

r.

Ra
de

tz
ky

pl
.

Fr
an

ze
ns

br
üc

ke

N
es

tr
oy

pl
at

z

M
ar

ie
nb

rü
ck

e
G

re
dl

er
st

ra
ße

Ka
rm

el
ite

rp
la

tz

Ta
bo

rs
tr

aß
e

Sa
lz

to
rb

rü
ck

e

Sc
ho

tt
en

ri
ngO

be
re

 D
on

au
st

ra
ße

Pr
at

er
st

er
n

H
et

zg
as

se

Lö
w

en
ga

ss
e

W
itt

el
sb

ac
hs

tr
aß

e

Pr
at

er
,

H
au

pt
al

le
e

M
es

se
-

Pr
at

er

Kr
ie

au

St
ad

io
n

D
r.-

Ka
rl

-R
en

ne
r-

Ri
ng

Vo
lk

st
he

at
er

H
er

re
ng

as
se

St
ad

io
ng

./
Pa

rla
m

en
tRa

th
au

sp
la

tz
/

Bu
rg

th
ea

te
r

Bö
rs

e

Sc
ho

tt
en

to
r

Sc
hm

er
-

lin
gp

l.

Ra
th

au
s

St
ad

la
u

Vo
rg

ar
te

ns
tr

aß
e

D
on

au
in

se
l

Ka
is

er
m

üh
le

n-
VI

C

A
lte

 D
on

au

Ka
gr

an
er

 P
la

tz

Ka
gr

an
D

on
au

ze
nt

ru
m

Ka
gr

an
er

 B
rü

ck
e

A
rm

in
en

st
ra

ße

D
on

au
st

ad
ts

tr
aß

e

Po
lg

ar
st

r. Er
zh

er
zo

g-
Ka

rl
-S

tr
aß

e

Ko
ns

ta
nz

ia
ga

ss
e

H
ar

de
gg

as
se

La
ng

ob
ar

de
ns

tr
aß

e

D
on

au
sp

it
al

La
ng

ob
ar

de
ns

tr.
/

Ka
pe

lle
nw

eg

Tr
on

dh
ei

m
ga

ss
e

H
irs

ch
st

et
te

n

A
sp

er
n,

O

be
rd

or
fs

tr
aß

e

H
au

sf
el

ds
tr

aß
e

Re
nn

ba
hn

w
eg

A
de

rk
la

ae
r S

tr
aß

e

G
ro

ßf
el

ds
ie

dl
un

g

Le
op

ol
da

u

Si
em

en
ss

tr
aß

e

G
er

as
do

rf
 B

f.

Sü
ße

nb
ru

nn

Sa
ik

og
.

Jo
se

f-
Ba

um
an

n-
G

.

Ca
rm

in
w

eg

Fu
lto

ns
tr

aß
e

H
oß

pl
at

z

Sh
ut

tle
-

w
or

th
st

r.

Ba
hn

st
eg

ga
ss

e

Br
ün

ne
r

St
ra

ße

Fl
or

id
sd

or
fe

r M
ar

kt

Fl
or

id
sd

or
f

A
m

 S
pi

tz

G
ro

ßj
ed

le
rs

do
rf

Ca
ra

be
lli

ga
ss

e

Br
ün

ne
r S

tr
aß

e/
H

an
re

ite
rg

as
se

Em
pe

rg
er

ga
ss

e

A
nt

on
-S

ch
al

l-G
as

se

Va
n-

Sw
ie

te
n-

Ka
se

rn
e

St
am

m
er

sd
or

f

N
or

db
rü

ck
e

Ko
lo

ni
es

tr
aß

e

H
op

fe
ng

.
Je

dl
er

sd
or

f

W
in

ke
l-

äc
ke

rs
tr.

A
ut

ok
ad

er
-

st
ra

ße

Ru
ßb

er
gs

tr.
St

re
be

rs
do

rf
St

re
be

rs
do

rf
,

E.
-H

aw
ra

ne
k-

Pl
at

z

N
eu

e
D

on
au

H
an

de
ls

ka
i

M
.-J

is
zd

a-
St

ra
ße

H
ub

er
tu

s-
da

m
m

Fl
or

id
sd

or
fe

r
Br

üc
ke

H
öc

hs
tä

dt
pl

at
z

Fr
ie

dr
ic

h-
En

ge
ls

-P
l.

D
re

sd
ne

r
St

ra
ße

Tr
ai

se
ng

as
se

Jä
ge

rs
tr

.
Sp

it
te

la
u

H
ei

lig
en

st
ad

t

N
uß

do
rf

O
be

re
 A

ug
ar

te
ns

tr
aß

e

Br
ig

itt
ap

la
tz

W
al

le
ns

te
in

pl
.

W
ex

st
r. Ra

us
ch

er
st

r.

N
or

dw
es

t-
ba

hn
st

r.
Re

bh
an

ng
.

In
ns

tr.

G
au

ßp
la

tz

Fr
ie

de
ns

-
br

üc
ke

G
er

ha
rd

us
g.

Ro
ßa

ue
r

Lä
nd

e

Kl
os

te
rn

eu
bg

. S
./

W
al

le
ns

te
in

st
r.

A
lth

an
st

ra
ße Se

eg
as

se

Ba
ue

rn
fe

ld
pl

at
z

Sc
hl

ic
kg

as
se

Sc
hw

ar
z-

sp
an

ie
rs

tr.

Se
ns

en
ga

ss
e

Fr
an

z-
Jo

se
fs

-
Ba

hn
ho

f

A
ug

as
se

Li
ec

ht
en

-
w

er
de

r P
l.

Sp
ita

lg
as

se
/

W
äh

rin
ge

r S
tr.

La
za

re
tt

ga
ss

e

La
nd

es
-

ge
ric

ht
ss

tr.
Le

de
re

rg
as

se

La
ng

e
G

as
se

Sk
od

ag
.

La
ud

on
ga

ss
e

Fl
or

ia
ni

ga
ss

e

Br
ün

nl
ba

dg
. St

ro
zz

ig
as

se

A
ue

rs
-

pe
rg

st
r.

Sc
ho

tt
en

fe
ld

g.

A
lb

er
tg

as
se

Bl
in

de
ng

.

A
ls

er
 S

tr
aß

e

Jo
se

fst
äd

ter
 St

r.H
er

na
ls

er
G

ür
te

l

Pa
lff

yg
as

se

El
te

rle
in

pl
at

z

Bl
um

en
ga

ss
e

Yp
pe

n-
ga

ss
e

Fra
ue

ng
as

se

Te
ich

gas
se

Le
rc

he
n-

fe
ld

er
 S

tr.

W
es

tb
ah

ns
tr.

/
Ka

is
er

st
ra

ße

W
es

tb
ah

ns
tr.

/
Zi

eg
le

rg
as

seW
es

tb
ah

ns
tr.

/
N

eu
ba

ug
as

se

Si
eb

en
st

er
ng

.

St
ift

ga
ss

e

Th
al

ia
st

r.

Neu
ler

ch
en

f. S
tr./

Hab
erl

gas
se Neu

ler
ch

en
f. S

tr./

Brun
ne

ng
as

se

Th
al

ia
st

r./
H

ab
er

lg
.

Th
al

ia
st

r./
Br

un
ne

ng
.

Jo
ha

nn
-N

.-
Be

rg
er

-P
la

tz

Jo
ha

nn
es

-K
raw

ar
ik-

G.
Wein

he
im

erg
as

se
Re

dte
nb

ac
he

rg.

O
tt

ak
rin

ge
r S

tr.
/

W
at

tg
as

se

M
ay

ss
en

g.

W
ilh

el
m

in
en

st
r./

W
at

tg
as

se

H
er

na
ls

Li
eb

kn
ec

ht
ga

ss
e

H
im

m
el

-
m

ut
te

rw
eg

Do
rn

ba
ch

er
 S

tr.
N

eu
w

al
de

gg

D
or

nb
ac

h,
G

üp
fe

rl
in

gs
tr

.

H
er

na
ls

er
 H

pt
st

r./
W

at
tg

as
se

Ro
se

ns
te

in
ga

ss
e

A
nt

on
ig

as
se

M
ic

he
l-

be
ue

rn
-A

KH
Si

m
on

yg
.

Vi
nz

en
zg

.
So

m
m

ar
ug

ag
.

H
ild

eb
ra

nd
-

ga
ss

e

W
äh

ri
ng

er
 S

tr
. -

Vo

lk
so

pe
r

Ca
ni

si
us

ga
ss

e

N
uß

do
rf

er
 S

tr
aß

e

N
uß

do
rf

er
 S

tr.
/

A
ls

er
ba

ch
st

r.

Kr
ot

te
nb

ac
hs

tr
aß

e

O
be

rd
öb

lin
g

Ku
ts

ch
ke

rg
as

se
A

um
an

np
la

tz M
ar

tin
st

ra
ße

W
ei

nh
au

se
r

G
as

se

G
un

es
ch

ga
ss

e

G
la

tz
ga

ss
e

H
ar

dt
ga

ss
e

G
at

te
rb

ur
gg

as
seSi

lb
er

ga
ss

e
Po

ko
rn

yg
as

se

D
öb

lin
ge

r H
pt

st
r./

G
at

te
rb

ur
gg

as
se

Ra
m

pe
ng

as
se

G
un

ol
ds

tr
aß

e
Ba

ra
w

itz
ka

g.

Pe
rn

te
rg

as
se

D
öb

lin
ge

r
Ba

d

H
oh

e
W

ar
te

G
ri

nz
in

g

N
uß

do
rf

,
Be

et
ho

ve
ng

an
g

Si
ck

en
be

rg
ga

ss
e

G
rin

zi
ng

er
 S

tr
aß

e

H
al

te
ra

ug
as

se

H
ei

lig
en

st
ad

t S
+

U
12

.-
Fe

br
ua

r-
Pl

at
z

Si
ev

er
in

ge
r S

tr
aß

e

Pa
ra

di
sg

as
se

A
n

de
n

la
ng

en
 L

üs
se

n

Pe
nz

in
gBr

ei
te

n- se
e

Ri
ch

tu
ng

 E
be

nf
ur

th
,

W
ie

ne
r N

eu
st

ad
t H

bf
.

Ri
ch

tu
ng

 B
ru

ck
/L

ei
th

a,
N

eu
si

ed
l a

m
 S

ee
Ri

ch
tu

ng
 F

lu
gh

af
en

 W
ie

n,

Fi
sc

ha
m

en
d,

 W
ol

fs
th

al

Ri
. K

lo
st

er
ne

ub
ur

g,
Kr

em
s,

 T
ul

ln
Ri

. S
to

ck
er

au
,

H
ol

la
br

un
n,

 R
et

z

Ri
ch

tu
ng

 W
ol

ke
rs

do
rf

,
M

is
te

lb
ac

h,
 L

aa
/T

ha
ya

Ri
ch

tu
ng

 G
än

se
rn

do
rf

,
Be

rn
ha

rd
st

ha
l

A
m

 T
ab

or
N

or
d-

ba
hn

st
r.

M
üh

lfe
ld

ga
ss

e

Ta
bo

rs
tr

aß
e/

H
ei

ne
st

ra
ße

Kl
ed

er
in

g

Sc
hw

ec
ha

t B
f.

1,
 6

2
&

 W
LB

 h
al

te
n

nu
r R

i.
O

pe
r

Bl
um

en
ta

l

D
on

au
m

ar
in

a

A
sp

er
ns

tr
aß

e

Rö
m

er
g.

D
on

au
st

ad
tb

rü
ck

e

Bu
rg

ga
ss

e/
Ka

is
er

st
ra

ße

N
eu

st
ift

g.
/

Ka
is

er
st

ra
ße

Kr
ay

g.
Fo

rs
tn

er
g.

G
ew

er
be

pa
rk

St

ad
la

u
Sü

ße
nb

ru
nn

er

St
r./

O
be

rf
el

dg
.

A
m

 H
ei

dj
öc

hl

Za
ng

ga
ss

e

Pr
in

zg
.

Sp
ar

ge
lfe

ld
st

r./
O

be
rf

el
dg

.
Zi

eg
el

ho
fs

tr.
/

O
be

rf
el

dg
.

Se
es

ta
dt

A
sp

er
n

N
or

d

Pe
r-

A
lb

in
-H

an
ss

on
-S

ie
dl

un
g

H
ub

er
t-

G
su

r-
G

as
se

A
do

lf-
U

ng
er

-G
as

se

Pe
ns

io
ni

st
en

w
oh

nh
au

s
La

ae
r B

er
g

N
et

zp
la

n
W

ie
n

©
 2

01
4

Be
n

Lo
de

, W
ie

n
W

eb
: w

w
w

.n
et

zp
la

nw
ie

n.
at

E-
M

ai
l:

ko
nt

ak
t@

ne
tz

pl
an

w
ie

n.
at

A
lle

 A
ng

ab
en

 o
hn

e
G

ew
äh

r.
Ku

rz
fr

is
tig

e
Ä

nd
er

un
ge

n
m

ög
lic

h.
St

an
d:

 1
4.

 D
ez

em
be

r 2
01

4

42
 S

ch
ot

te
nt

or
 U

 <
>

G
er

st
ho

f,
 A

nt
on

ig
as

se
43

 S
ch

ot
te

nt
or

 U
 <

>
N

eu
w

al
de

gg
44

 S
ch

ot
te

nt
or

 U
 <

>
D

or
nb

ac
h,

 G
üp

fe
rli

ng
st

ra
ße

46
 D

r.-
Ka

rl-
Re

nn
er

-R
in

g
<>

 J
oa

ch
im

st
ha

le
rp

la
tz

49
 D

r.-
Ka

rl-
Re

nn
er

-R
in

g
<>

 H
üt

te
ld

or
f,

 B
uj

at
tig

as
se

52
 W

es
tb

ah
nh

of
 S

+
U

 <
>

Ba
um

ga
rt

en

31
 S

ch
ot

te
nr

in
g

U
 <

>
St

am
m

er
sd

or
f

33
 F

r.-
En

ge
ls

-P
la

tz
 <

>
A

ug
as

se
 b

zw
. J

os
ef

st
äd

te
r S

tr.
 U

37
 S

ch
ot

te
nt

or
 U

 <
>

H
oh

e
W

ar
te

38
 S

ch
ot

te
nt

or
 U

 <
>

G
rin

zi
ng

40
 S

ch
ot

te
nt

or
 U

 <
>

G
er

st
ho

f,
 H

er
be

ck
st

ra
ße

41
 S

ch
ot

te
nt

or
 U

 <
>

Pö
tz

le
in

sd
or

f

 9
 W

es
tb

ah
nh

of
 S

+
U

 <
>

G
er

st
ho

f,
 W

al
lri

ßs
tr

aß
e

10
 H

ie
tz

in
g

U
/K

en
ne

dy
br

üc
ke

 <
>

D
or

nb
ac

h,
 G

üp
fe

rli
ng

st
ra

ße
18

 B
ur

gg
as

se
-S

ta
dt

ha
lle

 U
 <

>
Sc

hl
ac

ht
ha

us
ga

ss
e

U
 (v

ia
 H

bf
.)

25
 F

lo
rid

sd
or

f S
+

U
 <

>
A

sp
er

n,
 O

be
rd

or
fs

tr
aß

e
26

 S
tr

eb
er

sd
or

f,
 E

.-
H

aw
ra

ne
k-

Pl
at

z
<>

 H
au

sf
el

ds
tr

aß
e

U
30

 F
lo

rid
sd

or
f S

+
U

 <
>

St
am

m
er

sd
or

f (
nu

r w
er

kt
ag

s)

D
 N

uß
do

rf
, B

ee
th

ov
en

ga
ng

 <
>

H
au

pt
ba

hn
ho

f O
st

 S
O

 P
ra

te
rs

te
rn

 S
+

U
 <

>
Ra

xs
tr

aß
e/

Ru
do

lfs
hü

ge
lg

as
se

1
St

ef
an

-F
ad

in
ge

r-
Pl

at
z

<>
 P

ra
te

r,
H

au
pt

al
le

e
(v

ia
 S

ch
ot

te
nt

or
 U

)
2

O
tt

ak
rin

ge
r S

tr.
/E

rd
br

us
tg

as
se

 <
>

Fr
ie

dr
ic

h-
En

ge
ls

-P
la

tz
5

W
es

tb
ah

nh
of

 S
+

U
 <

>
Pr

at
er

st
er

n
S+

U
 (v

ia
 F

ra
nz

-J
os

ef
s-

Bh
f.

)
6

Bu
rg

ga
ss

e-
St

ad
th

al
le

 U
 <

>
Ka

is
er

eb
er

sd
or

f,
 Z

in
ne

rg
as

se

Le
ge

nd
e

S-
/U

-B
ah

n-
Li

ni
e

St
ra

ße
nb

ah
n-

Li
ni

e

S4
5

/ U
4

62

Be
di

en
un

g
nu

r i
n

Pf
ei

lri
ch

tu
ng

<
/ >

A
lle

 H
al

te
st

el
le

n
lie

ge
n

in
 d

er
 V

O
R-

Zo
ne

 1
00

.

58
 W

es
tb

ah
nh

of
 S

+
U

 <
>

U
nt

er
 S

t.
 V

ei
t,

 H
um

m
el

ga
ss

e
60

 H
ie

tz
in

g
U

/K
en

ne
dy

br
üc

ke
 <

>
Ro

da
un

62
 K

är
nt

ne
r R

in
g/

O
pe

r <
>

La
in

z,
 W

ol
ke

rs
be

rg
en

st
ra

ße
67

 O
tt

o-
Pr

ob
st

-P
la

tz
 <

>
O

be
rla

a,
 T

he
rm

e
W

ie
n

71
 B

ör
se

 <
>

Ze
nt

ra
lfr

ie
dh

of
, 3

. T
or

W
LB

 W
ie

n,
 K

är
nt

ne
r R

in
g/

O
pe

r <
>

Ba
de

n,
 J

os
ef

sp
la

tz

St
ra

ße
nb

ah
n

S+
U

-B
ah

n

Figure 5.3: Vienna’s tramway, metro and urban train system. c©Ben Lode, Vienna

which do not have to be visited, can be visited at most once. For the fourth and last instance it is
necessary to visit 10 stations exactly once while the others can be visited at most once. Table 5.2
provides an overview over the variables that change from instance to instance.

The tramway system can be seen in Figure 5.34, which contains all tram lines. The metro

4http://www.netzplanwien.at

59

http://www.netzplanwien.at

Instance Satisfiable Vertices to Be Visited Once maxVisits Other Vertices
Tram1 7 4 10
Tram2 X 4 10
Tram3 X 4 1
Tram4 X 15 1
Tram5 X 24 1
Tram6 X 24 10

Table 5.3: Real world instances based on the Viennese tramway system (402 vertices, treewidth
6).

and urban train lines also appear in this figure and are marked with fine blue lines and the
inscriptions U1 to U6 and S1 to S80, as opposed to the thicker tramway lines. However, the
metro and urban train lines are not part of our tramway instances. All instances contain Vienna’s
402 tram stations, have a treewidth of 6 and were generated based on Vienna’s Open Gov Data5.
The first two instances stipulate that four specific stations, dispersed throughout the network,
must be visited exactly once while all the others can be visited at most 10 times or not at all.
While the first one is unsatisfiable, the second one is satisfiable. The third one is similar to the
second one, the difference being that the stations which do not have to be visited can be visited
at most once. The fourth and fifth instance are specified similarly to the third one but now
they contain 15 and 24 vertices that must be visited, respectively. The sixth and last instance
also contains 24 vertices that must be visited while the others can be visited at most 10 times.
Table 5.3 again provides an overview over the variables that change from instance to instance.

5.2 Experimental Setting

Table 5.4 shows the hardware and software specifications of the system where the empirical
tests were performed. All of them were carried out on a single core of an AMD Opteron
6308@3.5GHz processor running Debian GNU/Linux 7 (kernel 3.2.0-4-amd64). For all tests
we allowed 32 GB of memory and 10 minutes to solve the problem, concerning generated grid
instances, and 60 minutes concerning real world instances. As D-FLAT’s performance can vary

5https://open.wien.at/site/datensatz/?id=add66f20-d033-4eee-b9a0-40019828e698
6Also contained in http://dbai.tuwien.ac.at/research/project/dflat/system/

theses/moldovan/tsp.zip

Processor: AMD Opteron 6308@3.5GHz
Main Memory: 192 GB
Operating System: Debian GNU/Linux 7 (kernel 3.2.0-4-amd64)
clingo version: 4.4.0
D-FLAT version: v1.0.1-2-ge59ccca 6

Table 5.4: Hardware and software system specifications.

60

https://open.wien.at/site/datensatz/?id=add66f20-d033-4eee-b9a0-40019828e698
http://dbai.tuwien.ac.at/research/project/dflat/system/theses/moldovan/tsp.zip
http://dbai.tuwien.ac.at/research/project/dflat/system/theses/moldovan/tsp.zip

clingo Configuration 1: clingo PROGRAMPATH INSTANCEPATH
--opt-mode=optN --stats=1 --quiet
--configuration=auto

clingo Configuration 2: clingo PROGRAMPATH INSTANCEPATH
--opt-mode=optN --stats=1 --quiet
--configuration=trendy

clingo Configuration 3: clingo PROGRAMPATH INSTANCEPATH
--opt-mode=optN --stats=1 --quiet
--configuration=handy

D-FLAT Configuration 1: dflat -e edge -e vertex -p PROGRAMPATH
--stats --depth 0 --output quiet --tables
-n semi --seed SEED < INSTANCEPATH

D-FLAT Configuration 2: dflat -e edge -e vertex -p PROGRAMPATH
--stats --depth 0 --output quiet --tables
-n semi --seed SEED --default-join
--post-join < INSTANCEPATH

D-FLAT Configuration 3: dflat -e edge -e vertex -p PROGRAMPATH
--stats --depth 0 --output quiet --tables
-n weak --seed SEED --default-join
--post-join < INSTANCEPATH

Table 5.5: Program calls used for benchmarking.

with different tree decompositions of the same instance, we performed each test 20 times. We
used different types of tree decompositions with D-FLAT, namely semi-normalized and weakly
normalized. For 8-connected instances, it turned out they are always decomposed by D-FLAT
into semi-normalized tree decompositions, while the benchmarking on 4-connected graphs and
on the real world instances was performed both on weakly and semi-normalized decomposi-
tions. At the same time, clingo also provides various possible configurations. trendy and handy
imply the use of heuristics meant for industrial and large problems, respectively, and proved to
be the most suited for our purposes. For all scenarios we used the auto configuration and one of
the other two which proved to be more effective for that specific type of scenario in preliminary
experiments.

Table 5.5 shows the exact calls used when performing the tests, where PROGRAMPATH
and INSTANCEPATH have to be replaced by the actual path to the encoding or the instance
file, respectively and SEED by the wanted seed. Instead of using the modelines displayed as
part of the code in Chapter 4 we used the full calls for D-FLAT as they are presented here. The
options --quiet and --depth 0 --output quiet were used for clingo and D-FLAT,
respectively, to get the actual computation times without the time needed to output the results,
which can be a significant part of the total runtime. The --stats option was activated for
both systems in order to record also the number of conflicts necessary to get to the solution. For
clingo, we specified the --opt-mode=optN option so it computed all optimal models. The
three configurations for clingo are different only with respect to their configuration type. Those

61

25 50 100
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size

D−FLAT without default join
D−FLAT with default join

25 50 100
1

2

5

10

20

50

100

200

500

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size

Figure 5.4: TSP-NR encoding for D-FLAT without default join, Listing A.3, versus TSP-NR
encoding for D-FLAT with default join, Listing A.4, on grids of treewidth 3 (from Data Set 1).

configurations which were used for testing the scenarios with D-FLAT differ with respect to the
use of default join and the post-processing node, and the creation of weakly and semi-normalized
tree decompositions, respectively. The used seeds were randomly generated numbers between 1
and 1000000. Further -p is used to supply the program, -e to state the edges and vertices, and
--tables to indicate that we are using D-FLAT’s simplified interface.

5.3 Results of the Empirical Tests

TSP-NR for Semi-Normalized Tree Decompositions on 8-Connected Full Grids

Preliminary tests have shown that the proposed TSP-NR encoding for D-FLAT with default join,
Listing A.4, is much more efficient than the TSP-NR encoding for D-FLAT without default join,
Listing A.3. To exemplify this we selected three scenarios with treewidth 3 from Data Set 1.
Figure 5.4 shows the minimum, average and maximum runtime and memory consumption for
the TSP-NR encoding for D-FLAT without default join, Listing A.3, compared to the TSP-NR
encoding for D-FLAT with default join, Listing A.4, for these three scenarios from Data Set 1.
D-FLAT Configurations 1 and 2 from Table 5.5 were used for the calls. In matters of runtime
and memory consumption the use of default join brings 10 to 25 times improvements due to
the fact that the grounding does not explode at join nodes when using the default join. For this
reason we will further concentrate on encodings designed for the former’s use. Nonetheless, our
TSP-NR encoding for D-FLAT without default join, Listing A.3, is already faster than clingo for
the scenarios with 50 and 100 vertices, treewidth 3. Still, for treewidth 4 we already obtained
timeouts even for the smallest instances.

Figure 5.5 shows the performance of the TSP-NR encoding for D-FLAT with default join
on semi-normalized tree decompositions, Listing A.4, compared to the ASP TSP-NR encoding,
Listing A.1, with clingo, on the scenarios with treewidth 2 from Data Set 1. The mapped values
are those of the minimum, average and maximum runtime, number of conflicts and memory

62

Index

va
lu

es

20 25 30 35 40 45 50
0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size

●

Solvers

clingo 'auto'
clingo 'handy'
D−FLAT

Index

50 100 150 200 250 300
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
20
50
100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Graph Size

(a) Minimum, average and maximum runtime.

Index

va
lu

es

20 25 30 35 40 45 50
1

2

5

10

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size

●

Solvers

clingo 'auto'
clingo 'handy'
D−FLAT

Index

50 100 150 200 250 300
1

2

5

10

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●

Graph Size

(b) Minimum, average and maximum number of conflicts.

Index

va
lu

es

20 25 30 35 40 45 50
1
2
5

10
20
50

100
200
500

1k
2k
5k

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size

●

Solvers

clingo 'auto'
clingo 'handy'
D−FLAT

Index

50 100 150 200 250 300
1
2
5
10
20
50
100
200
500
1k
2k
5k

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Graph Size

(c) Minimum, average and maximum memory consumption.

Figure 5.5: TSP-NR encoding for D-FLAT, Listing A.4, versus ASP TSP-NR encoding, List-
ing A.1, with clingo, on the instances with treewidth 2 from Data Set 1.

63

Index

va
lu

es

20 25 30 35 40 45 50
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size

●

Solvers

clingo 'auto'
clingo 'trendy'
D−FLAT

Index

50 100 150 200 250 300
0.1
0.2
0.5
1
2
5
10
20
50
100
200
500

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●

Graph Size

(a) Minimum, average and maximum runtime for each scenario in Data Set 1.

Index

va
lu

es

20 25 30 35 40 45 50
100
200

500
1k
2k

5k
10k
20k

50k

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size

●

Solvers

clingo 'auto'
clingo 'trendy'
D−FLAT

Index

50 100 150 200 250 300
100
200

500
1k
2k

5k
10k
20k

50k

Graph Size

(b) Minimum, average and maximum number of conflicts for each scenario in Data Set 1.

Index

va
lu

es

20 25 30 35 40 45 50
1

2

5

10

20

50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size

●

Solvers

clingo 'auto'
clingo 'trendy'
D−FLAT

Index

50 100 150 200 250 300
1

2

5

10

20

50

Graph Size

(c) Minimum, average and maximum memory consumption for each scenario in Data Set 1.

Figure 5.6: TSP-NR encoding for D-FLAT, Listing A.4, versus ASP TSP-NR encoding, List-
ing A.1, with clingo, on the instances with treewidth 3 from Data Set 1.

64

Index

va
lu

es

20 25 30 35 40 45 50
1
2

5
10
20

50
100
200

500

●

●

●

●

●

●

●

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size Index

50 100 150 200 250 300
1
2

5
10
20

50
100
200

500

Graph Size

●

Solvers

clingo 'auto'
clingo 'handy'
D−FLAT

(a) Minimum, average and maximum runtime for each scenario in Data Set 1.

Index

va
lu

es

20 25 30 35 40 45 50
100
200
500

1k
2k
5k

10k
20k
50k

100k
200k
500k

●

●

●

●

●

●

●

●

●

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size Index

50 100 150 200 250 300
100
200
500
1k
2k
5k
10k
20k
50k
100k
200k
500k

Graph Size

●

Solvers

clingo 'auto'
clingo 'handy'
D−FLAT

(b) Minimum, average and maximum number of conflicts for each scenario in Data Set 1.

Index

va
lu

es

20 25 30 35 40 45 50
1
2

5
10
20

50
100
200

500

●

●

●

●

●

●

●

●

●

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size Index

50 100 150 200 250 300
1
2

5
10
20

50
100
200

500

Graph Size

●

Solvers

clingo 'auto'
clingo 'handy'
D−FLAT

(c) Minimum, average and maximum memory consumption for each scenario in Data Set 1.

Figure 5.7: TSP-NR encoding for D-FLAT, Listing A.4, versus ASP TSP-NR encoding, List-
ing A.1, with clingo, on the instances with treewidth 4 from Data Set 1.

65

1000 6000
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size

Treewidth 2

1000 2100
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size

Treewidth 3

900
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size

Treewidth 4

(a) Minimum, average and maximum runtime.

1000 6000
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

100k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size

Treewidth 2

1000 2100
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

100k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size

Treewidth 3

900
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

100k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size

Treewidth 4

(b) Minimum, average and maximum number of conflicts.

1000 6000
1
2

5
10
20

50
100
200

500
1k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size

Treewidth 2

1000 2100
1
2

5
10
20

50
100
200

500
1k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size

Treewidth 3

900
1
2

5
10
20

50
100
200

500
1k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size

Treewidth 4

(c) Minimum, average and maximum memory consumption.

Figure 5.8: TSP-NR encoding for D-FLAT with default join on semi-normalized tree decompo-
sitions, Listing A.4, on 1000-vertex instances, and largest, in 10 minutes solvable 8-connected
grids (all in Data Set 1).

66

Index

va
lu

es

20 25 30 35 40 45 50
1
2

5
10
20

50
100
200

500

●

●

●

●
●

●
A

ve
ra

ge
 R

un
tim

e
(in

 s
)

Graph Size

●

Solvers

clingo 'auto'
clingo 'handy'
D−FLAT

Figure 5.9: Runtime for TSP-NR encoding, Listing A.1, with clingo on and the instances with
treewidth 5 from Data Set 1.

consumption. The same is shown in Figure 5.6 and Figure 5.7 on the scenarios with treewidth
3 and 4, respectively. For calling D-FLAT we used Configuration 2 from Table 5.5, while for
clingo we used Configuration 1 for all instances, Configuration 2 for those having treewidth 3
and Configuration 3 for those having treewidth 2, 4 and 5. Looking first at clingo’s performance,
we can see that for treewidth 2 the instances in all scenarios are solvable in less than 10 minutes,
for treewidth 3 and 4, it fails already at 45 and 30 vertices, respectively. At the same time
D-FLAT manages all scenarios up to 300 vertices (and more). In Subfigures 5.6a and 5.7a we
can see that for very small instances clingo actually performs better, up to the point where the
expense of creating tree decompositions and running the ASP solver several times pays off.
Further, in all three figures we can observe the resemblance between the graphics depicting the
running time with those for the number of conflicts, and the memory consumption, except for
Subfigure 5.5b where the instances are unsatisfiable and both clingo and D-FLAT get to the
result with only one conflict. Further, the memory consumption proves to be more robust than
the runtime for both clingo and D-FLAT.

Figure 5.8 discloses for treewidths 2, 3 and 4, which are the scenarios with the largest in-
stances in terms of number of vertices, for which every instance can be solved in less than 10
minutes, for any of the 20 tree decompositions. Further, it shows the performance of the TSP-NR
encoding for D-FLAT with default join on semi-normalized tree decompositions, in terms of
minimum, average and maximum runtime, number of conflicts and memory consumption, for
the latter scenarios and for those containing instances with 1000 vertices. While, for treewidth 2
it could solve 6000-vertex instances in less than 10 minutes, for treewidth 4 it reached the 900-
vertex mark. In fact, for treewidth 2 we did not witness a timeout up to 110000-vertex instances.
However, starting from 6100 vertices our code caused segmentation faults. When considering a
treewidth of 2, clingo can solve all instances of the scenarios with at most 450 vertices, in less
than 10 minutes.

When dealing with the grids of treewidth 5 from Data Set 1, our TSP-NR encoding for
D-FLAT with default join on semi-normalized tree decompositions, Listing A.4, could not even

67

2 3 4
1

2

5

10

20

50

100

200

500

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Treewidth

Figure 5.10: Memory consumption of TSP-NR encoding for D-FLAT, Listing A.4 on the in-
stances with 100 to 300 vertices from Data Set 1.

solve the smallest instance, of 20 vertices, in less than 10 minutes, while clingo also failed in
terms of runtime for both configurations from 30 vertices upwards, as shown in Figure 5.9.

Figure 5.10 shows the average memory consumption, with lower and upper bounds, for
the TSP-NR encoding for D-FLAT with default join on semi-normalized tree decompositions,
Listing A.4, over all instances with 100 to 300 vertices, and discriminates between the different
treewidths. We can see that the memory consumption rises drastically with the treewidth, and
with the former also the runtime, which however does not have such clear bounds over instances
of the same treewidth.

TSP-NR for Semi-Normalized Tree Decompositions on
8-Connected Full Grids with Lower Edge Weights

Figure 5.11 shows the efficiency of the TSP-NR encoding for D-FLAT with default join on semi-
normalized trees, Listing A.4, on instances with weights from 1 to 5 (Data Set 2), compared to
the one on instances with weights from 1 to 20 (Data Set 1), in terms of minimum, average and
maximum runtime and memory consumption. Here we used again Configuration 2 for calling
D-FLAT (Table 5.5). Working on instances with lower weights improved the runtime by 20
to 30 percent, but not the memory consumption. This could be attributed to the fact that the
aggregate functions used in our encodings are instantiated into as many grounded rules, as the
number of results the aggregate can possibly deliver. Thus, when working on a wider range
of weight values, the rule, in which the cost that contains an aggregate summing up weights is
calculated (line 40 in Listing A.4), is instantiated more times in the grounder than when working
on a more narrow range, as there are more possible results of the #sum function. The growth of
the grounding seems not to be extensive enough to influence overall memory consumption, yet
sufficient to visibly affect the runtime, which proved to be less robust than the former.

68

100
3

300
3

100
4

300
4

1

2

5

10

20

50

100

200

500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size/Treewidth

Weights 1..5
Weights 1..20

100
3

300
3

100
4

300
4

1

2

5

10

20

50

100

200

500

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size/Treewidth

Figure 5.11: Performance of TSP-NR encoding for D-FLAT, Listing A.4, on instances with
weights from 1 to 5 (Data Set 2) versus 1 to 20 (Data Set 1).

TSP-NR for Semi-Normalized Tree Decompositions on
8-Connected Grid-Like Graphs

Figure 5.12 shows the performance of the TSP-NR encoding for clingo, Listing A.1, on satisfi-
able and unsatisfiable 8-connected grid-like graphs (Data Set 3), and of the TSP-NR encoding
for D-FLAT with default join on semi-normalized tree decompositions, Listing A.4, on the sat-
isfiable and unsatisfiable 8-connected grid-like graphs (Data Set 3), and on (satisfiable) full
grids (Data Set 1), respectively. The minimum, average and maximum runtime, number of con-
flicts and memory consumption are depicted. For calling D-FLAT we used Configuration 2
from Table 5.5 and for clingo we used Configurations 1 and 2. Here, the treewidth indicated
in the graphics is a practical treewidth, namely the width of the tree decompositions created by
D-FLAT. First we would like to mention that we did not include the performance of the TSP-NR
encoding for clingo on satisfiable 8-connected grid-like graphs from Data Set 3, because for all
four scenarios we witnessed timeouts, as we also did for the (satisfiable) instances with the same
treewidths and sizes from Data Set 1. Further, we experienced isolated timeouts with clingo on
instances with 300 vertices but also with D-FLAT on instances with 300 vertices and treewidth
4. For these we counted with the timeout value of 10 minutes, and with the maximum number
of conflicts and the maximum memory consumption among the other instances from the same
scenario, respectively.

Looking only at the unsatisfiable instances from Data Set 3, we can see that in average our
TSP-NR encoding for D-FLAT performs better than the ASP encoding (except for the scenario
with 100 vertices at treewidth 4, where it does only slightly worse). Yet, specifically for instances
with 100 vertices and treewidth 4, the performance can be much worse, but also much better,
depending on the tree decomposition. Overall, we can see a very wide range for the runtime on
unsatisfiable instances, especially for D-FLAT, but also for the memory consumption and the
number of conflicts, the latter going down even to the value 1 for all scenarios. The wide range
can be traced back to the fact that in the case of a suitable tree decomposition all answer set
candidates are eliminated in the nodes which are closer to the bottom while in the case of an

69

100
3

300
3

100
4

300
4

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size/Treewidth

clingo 'auto' unsat. DS3
clingo 'trendy' unsat. DS3
D−FLAT unsat. DS3
D−FLAT sat. DS3
D−FLAT sat. DS1

100
3

300
3

100
4

300
4

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

100k
200k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size/Treewidth

clingo 'auto' unsat. DS3
clingo 'trendy' unsat. DS3
D−FLAT unsat. DS3
D−FLAT sat. DS3
D−FLAT sat. DS1

100
3

300
3

100
4

300
4

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size/Treewidth

clingo 'auto' unsat. DS3
clingo 'trendy' unsat. DS3
D−FLAT unsat. DS3
D−FLAT sat. DS3
D−FLAT sat. DS1

Figure 5.12: TSP-NR encoding for clingo, Listing A.1, with ’auto’ and ’trendy’ configurations,
on satisfiable versus unsatisfiable grid-like graphs (Data Set 3), and of TSP-NR encoding for
D-FLAT, Listing A.4, on unsatisfiable grid-like graphs (Data Set 3), compared to TSP-NR for
D-FLAT, Listing A.4, on satisfiable full grids (Data Set 1).

70

100
4

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size/Treewidth

Weakly norm.
Semi−norm.

100
4

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size/Treewidth

100
4

1
2

5
10
20

50
100
200

500
1k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size/Treewidth

(a) All instances from Data Set 4.

100
4

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size/Treewidth

Weakly norm.
Semi−norm.

100
4

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size/Treewidth

100
4

1
2

5
10
20

50
100
200

500
1k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size/Treewidth

(b) Only satisfiable instances from Data Set 4.

Figure 5.13: TSP-NR encoding for D-FLAT on weakly normalized tree decompositions, List-
ing A.5, versus encoding for D-FLAT on semi-normalized tree decompositions, Listing A.4, on
Data Set 4.

unsuitable one many answer set candidates are kept up to the root’s child node.

When considering only the satisfiable instances, D-FLAT performs much better than clingo
also on 8-connected grid-like graphs. However, D-FLAT is about 30 percent better in terms of
runtime, and 20 percent better in terms of memory consumption on the (satisfiable) full grids
from Data Set 1 than on the satisfiable grid-like graphs from Data Set 3.

Further, taking into account both satisfiable and unsatisfiable instances, we see that unsatisfi-
able instances require less memory and runtime to be solved. Moreover, the number of conflicts
is drastically lower when feeding clingo unsatisfiable instances, even when the runtime is con-
siderably higher.

71

100
3

300
3

100
4

300
4

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size/Treewidth

min=0,max=10
min=0,max=0
min=2,max=2
TSP−NR

(a) Runtime over all instances.

100
3

300
3

100
4

300
4

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

A
ve

ra
ge

 R
un

tim
e

(in
 s

)

Graph Size/Treewidth

min=0,max=10
min=0,max=0
min=2,max=2
TSP−NR

(b) Runtime over satisfiable instances.

100
3

300
3

100
4

300
4

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size/Treewidth

min=0,max=10
min=0,max=0
min=2,max=2
TSP−NR

(c) Number of conflicts over all instances.

100
3

300
3

100
4

300
4

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Graph Size/Treewidth

min=0,max=10
min=0,max=0
min=2,max=2
TSP−NR

(d) Number of conflicts over sat. instances.

100
3

300
3

100
4

300
4

1
2

5
10
20

50
100
200

500
1k
2k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size/Treewidth

min=0,max=10
min=0,max=0
min=2,max=2
TSP−NR

(e) Memory consumption over all instances.

100
3

300
3

100
4

300
4

1
2

5
10
20

50
100
200

500
1k
2k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Graph Size/Treewidth

min=0,max=10
min=0,max=0
min=2,max=2
TSP−NR

(f) Memory consumption over sat. instances.

Figure 5.14: Performance of TSP-R encoding for D-FLAT, Listing A.6, on instances from Data
Set 5, versus the TSP-NR encoding, Listing A.4, on instances from Data Set 1.

72

TSP-NR for Weakly Normalized Tree Decompositions on
4-Connected Grid-Like Graphs

Figure 5.13 shows the performance of the TSP-NR encoding for D-FLAT with default join on
weakly normalized tree decompositions, Listing A.5, using D-FLAT Configuration 3 from Ta-
ble 5.5, compared to the TSP-NR encoding for D-FLAT with default join on semi-normalized
tree decompositions, Listing A.4, using D-FLAT Configuration 2 from Table 5.5, on 4-connected
grid-like graphs (Data Set 4), presenting the minimum, average and maximum runtime, number
of conflicts and memory consumption once for all instances from Data Set 4 and once for only
the 17 satisfiable instances. First, we remark that the range between maximum and minimum
values is much higher in Subfigure 5.13a than in Subfigure 5.13b due to the presence of the
three unsatisfiable instances in the former. Further, we can observe that D-FLAT performed
worse on weakly normalized tree decompositions than on semi-normalized ones: By 38 percent
concerning the runtime and by 124 percent as for the memory consumption, when considering all
instances. The fact that D-FLAT performed better on the semi-normalized tree decompositions
holds for all satisfiable instances in the data set. We also checked whether the difference can be
caused by the encoding itself, and not by the different tree decompositions, by calling the en-
coding for weakly normalized ones with D-FLAT Configuration 2 from Table 5.5, although it is
only one line that makes the difference between the encodings for weakly normalized and semi-
normalized tree decompositions. We obtained almost the same performance as we did when
calling the TSP-NR encoding for semi-normalized tree decompositions with Configuration 2.

TSP-R for Semi-Normalized Tree Decompositions on 8-Connected Full Grids

In Figure 5.14 we see the minimum, average and maximum runtime, number of conflicts and
memory consumption of the TSP-R encoding for D-FLAT with default join on semi-normalized
tree decompositions, Listing A.6, fed with instances from Data Set 5, compared to the TSP-NR
encoding for D-FLAT with default join on semi-normalized tree decompositions, Listing A.4,
fed with instances of the same size and treewidth from Data Set 1 (D-FLAT Configuration 2 in
Table 5.5). On the left side we show the measurements for all instances, while on the right side
only for satisfiable ones. We remark again the higher range between maximum and minimum
values when considering all instances. When creating Data Set 5 by adding instantiations of
minVisits/2 and maxVisits/2 for 10 percent of the vertices from Data Set 1, some in-
stances became unsatisfiable, but only for those scenarios in which the latter vertices have to be
visited exactly twice, as can be seen in Table 5.1. Specifically for this group of scenarios, the
average runtime increased by 27 percent and the average memory consumption by 35 percent
when solved with the encoding for the TSP-R, compared to the instances from Data Set 1 solved
by the encoding for the TSP-NR, but only when ruling out the unsatisfiable instances. When
considering all of them, the fact that unsatisfiable instances are easier to solve outbalances the
increased runtime and memory consumption. As for the instances for which 10 percent of the
vertices must not be visited, and the ones for which the latter only may be visited, the runtime
increases only by 1 and 2 percent, respectively, and the memory consumption by 6 percent, as
compared to the TSP-NR encoding on instances from Data Set 1.

73

Metro1 Metro2 Metro3 Metro4
1
2

5
10
20

50
100
200

500
1k
2k

3.6k
A

ve
ra

ge
 R

un
tim

e
(in

 s
)

Instance

clingo 'auto'
clingo 'handy'
D−FLAT semi−norm.
D−FLAT weakly norm.

Metro1 Metro2 Metro3 Metro4
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Instance

Metro1 Metro2 Metro3 Metro4
1
2
5

10
20
50

100
200
500

1k
2k
5k

10k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Instance

Figure 5.15: Performance of TSP-R encodings for D-FLAT, Listings A.6 and A.7, versus ASP
TSP-R encoding, Listing A.2, on the instances based on the Viennese metro and urban train
system.

74

Case Study: TSP-R on Real World Instances

Figure 5.15 displays the performance of the TSP-R encodings for D-FLAT with default join
on semi-normalized and weakly normalized tree decompositions, from Listings A.6 and A.7,
respectively, compared to the ASP TSP-R encoding, from Listing A.2, on the instances based
on the Viennese tramway system which are presented in Table 5.2. We used Configurations 1
and 3 for clingo, as well as 2 and 3 for D-FLAT from Table 5.5, respectively. The first graphic
shows the runtime for each instance and configuration, while the two other graphics show the
number of conflicts and the memory consumption only for those instances and configurations for
which the instance was solved in less than 60 minutes. For each instance we present the average
values, whereas the minimum and maximum values are displayed only for the two D-FLAT
configurations, as they were called 20 times each for every instance, with different seeds.

For the instance Metro1, which specified that almost all metro stations (but not the urban
train stations, except for those in common) must be visited, both D-FLAT configurations per-
formed better than any of the clingo configurations. The runtime for both D-FLAT configurations
is 30 percent lower than the more efficient among the clingo configurations, while the memory
consumption is 30 times lower. The instance Metro2, which contains only 4 vertices that must be
visited, while the others can be visited as often as desired, cannot be solved with our D-FLAT en-
codings in less than 60 minutes, whereas clingo performs better. When restricting the maximum
allowed number of visits to 1 for the vertices that do not have to be visited, D-FLAT becomes
faster on semi-normalized tree decompositions than clingo with configuration ’auto’ by more
than 20 percent, while the memory consumption is still 1.5 times worse. Yet, when adding more
vertices that must be visited, namely 10 in total in instance Metro4, the improvement becomes
more visible. D-FLAT is already twice as fast as clingo and also the memory consumption is by
a modest 7 percent lower. This suggests the existence of a trend in which when working on the
same graph, the runtime and memory consumption decrease with the increase of the number of
vertices that must be visited but also of the maximum visits restriction for the other vertices, for
both the clingo and D-FLAT encodings, but more rapidly for D-FLAT. The results for instance
Metro1 are also in favor of this hypothesis. Further, the rather weak performance of our TSP-R
encoding for D-FLAT on weakly normalized tree decompositions of the instances Metro3 and
Metro4 needs further consideration. When looking at the memory consumption we can see that
clingo consumes almost exactly the same amount of memory for every instance, which means
that its memory consumption does not depend on the number of vertices to be visited but only on
the number of vertices in the graph, unlike D-FLAT’s which varies with the number of vertices
to be visited. In addition, we can say that there is no clear correlation between the number of
conflicts and the runtime or the memory consumption.

The efficiency of the TSP-R encodings for D-FLAT with default join on semi-normalized
and weakly normalized tree decompositions, from Listings A.6 and A.7, respectively, compared
to the ASP TSP-R encoding, from Listing A.2, on the instances based on the Viennese metro
and urban train system, presented in Table 5.3, is shown in Figure 5.16. The same configurations
as for the tramway system were used, and the graphics are structured in the same way as those
in Figure 5.15.

The instance Tram1, which is not satisfiable, can be solved almost 3.5 times faster by
D-FLAT on weakly normalized trees than by clingo and consumes with this configuration 21

75

Tram1 Tram2 Tram3 Tram4 Tram5 Tram6
1
2

5
10
20

50
100
200

500
1k
2k

3.6k
A

ve
ra

ge
 R

un
tim

e
(in

 s
)

Instance

clingo 'auto'
clingo 'handy'
D−FLAT semi−norm.
D−FLAT weakly norm.

Tram1 Tram2 Tram3 Tram4 Tram5 Tram6
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1k
2k
5k

10k
20k
50k

A
ve

ra
ge

 N
um

be
r

of
 C

on
fli

ct
s

Instance

Tram1 Tram2 Tram3 Tram4 Tram5 Tram6
1
2
5

10
20
50

100
200
500

1k
2k
5k

10k

A
vg

. M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Instance

Figure 5.16: Performance of TSP-R encodings for D-FLAT, Listings A.6 and A.7, versus ASP
TSP-R encoding, Listing A.2, on the instances based on the Viennese tramway system.

76

times less memory than clingo. While clingo cannot solve any of the other (satisfiable) instances
in less than 60 minutes, D-FLAT can solve two of them and performs better on semi-normalized
tree decompositions than on weakly normalized ones. Instance Tram2 is similar to Tram1 with
the difference that it is satisfiable, which in this case influences the runtime negatively. Instance
Tram3 is similar to Tram2, but now the vertices that do not have to be visited may be visited
at most once. This does not bring the runtime under the 60-minutes mark. When we increase
the number of vertices that must be visited to 15, in Tram4, the instance becomes solvable by
D-FLAT on semi-normalized tree decompositions. For only one seed did D-FLAT need more
than 60 minutes with Configuration 2. However, with Configuration 3, namely when working
on weakly normalized tree decompositions, only for four runs with different seeds it managed
to solve the instance in less than one hour. The other test runs were counted with 60 minutes,
and with the maximum number of conflicts and maximum memory consumption among the suc-
cessful test runs for the same instance, respectively. Now, when increasing again the number of
vertices that must be visited to 24 in instance Tram5, the runtime and the memory consump-
tion decrease once again. However, when increasing also the number of possible visits for the
remaining vertices to 10 in Tram6, the instance becomes unsatisfiable. This confirms our hy-
pothesis that the runtime and memory consumption decrease with the growth of the number of
vertices that must be visited and with the restriction for the maximum number of visits for the
remaining vertices. This can actually be easily explained by the fact that, the more restrictions
we set for the number of visits, the smaller becomes the number of answer set candidates that
are kept, improving both the runtime and the memory consumption. Further, we can once again
see no correlation between the number of conflicts and the runtime or the memory consumption.
We can also notice that the memory consumption for these instances with treewidth 6 and 402
vertices is higher by a multiple than those based on the metro and urban train system, that have
treewidth 5 and 138 vertices.

5.4 Discussion of the Results

As the tests on Data Set 1, but also on Data Sets 3 and 5, have proven, our TSP-NR and TSP-R
implementations for D-FLAT perform much better than those for clingo on full grids and grid-
like graphs, in terms of runtime and memory consumption when the default join is used. More
to the point, our TSP-NR for D-FLAT with default join on semi-normalized tree decompositions
performs faster than clingo on 8-connected full grids up to a treewidth of 4 (inclusive). As for the
real world instances, even if the ones we chose had (practical) treewidths 5 and 6, respectively,
they could be solved in reasonable time if we chose to visit as many vertices as possible without
making the TSP-NR unsatisfiable and restricted the visits to the remaining nodes to at most 1,
such as we did in the instance Metro1. The latter is in fact not even mandatory, yet more tests
would be necessary to determine more precisely based also on the treewidth and the size of an
instance, how many vertices must be visited and how much the remaining ones must be restricted
in their number of visits, such that it is solvable in reasonable time. For data generated by us the
contrary holds. Even if the tests on Data Set 5 showed an increase in runtime when part of the
vertices had to be visited twice, no substantial differences were noted when these vertices were
left out of the tour or when they could be but did not have to be visited. The reason could be the

77

structure of the real world instances which is different from that of a full grid.
Further, we could observe both on Data Set 1 and on the real world instances that the memory

consumption is more robust than the runtime, the latter fluctuating more. Moreover, while the
memory consumption for clingo depends only on the graph, for D-FLAT it varies also according
to the number of vertices to be visited.

Based on the outcomes of the tests on Data Sets 3, 4 and 5, we know that the range between
the highest and the lowest runtime or memory consumption for a scenario is much wider for
unsatisfiable instances, when working with D-FLAT, due to different configurations of the tree
decompositions. Further, we have seen that the range between minimum and maximum values
is wider also for grid-like graphs than for full grids, based on evidence from Data Set 3. At the
same time it was wider also for the real world instances we covered. We assume that this holds
in general for real world instances as also the grid-like graphs are closer to the latter than full
grids.

Another insight we achieved was that for both systems the used configuration can play an
important role. While for the full grids, the use of special clingo configurations brought rather
moderate improvements, when handling real world instances they sometimes made a major dif-
ference. We also observed that D-FLAT on weakly normalized is more suited for unsatisfiable
instances, while semi-normalized tree decompositions are more suitable for satisfiable instances.
This could be clearly seen on Data Set 4 and on the instances based on the Viennese metro and
urban train system.

Last but not least, a wider range of weights leads to a moderate increase in runtime due to
the higher number of instantiations of aggregate functions which appears to be high enough to
affect the runtime but not the memory consumption.

78

CHAPTER 6
Conclusion

6.1 Summary

The traveling salesperson problem is an NP-hard combinatorial optimization problem, that finds
application in domains spanning from logistics to even psychology. There are various methods
to solve this important problem, both exact algorithms and heuristic approaches. However, these
approaches either have a rather low flexibility and maintainability, or need long running times.

In our work we developed a concept for solving two variations of the TSP, namely the trav-
eling salesperson problem without repetitions and the traveling salesperson problem with rep-
etitions. For this, we used the D-FLAT framework, that takes advantage of the fact that both
problem variations are fixed-parameter tractable. D-FLAT combines the advantages of declar-
ative programming, namely high maintainability and flexibility, with the reduced running time
due to the use of dynamic programming. At the same time, our concept represents an exact
method, always delivering an optimal solution in case one exists. We proposed several encod-
ings for both variations of the TSP, for different configurations of D-FLAT and compared them
to classical ASP algorithms. Furthermore, by presenting encodings for solving the TSP-R, we
offered a solution to a problem which proved to be more suitable for real world instances, and
exemplified the high maintainability and flexibility of our approach.

Our encodings for D-FLAT considerably outperformed the classical ASP encodings on our
generated instances with treewidths 2, 3 and 4. For instances based on the tram, and the metro
and urban train systems of Vienna’s public transportation system, that have treewidths 6 and
5, respectively, the performance of the TSP-R depended very much on the number of vertices
that were supposed to be visited, the more the better, and on the restrictions for the remaining
vertices. Furthermore, we observed wide ranges between maximum and minimum running times
and memory consumption depending on the configuration of the tree decompositions.

Thus, by proposing these implementations we provided a viable concept, with respect to
running time and flexibility, which is applicable also on real world instances and delivers an
optimal solution. Moreover, it is a concept that can be adapted also to encode other problems

79

which are related to the TSP and can be solved by D-FLAT in fixed-parameter tractable time as
well.

6.2 Future Work

Even considering the aforementioned results, it still remains an issue at stake to determine which
are the features of a real world graph that our method is suitable for. More to the point, it remains
to find out more precisely starting from which percentage of vertices that must be visited, and
up to which treewidth, our method becomes viable. Further, it would be interesting to know for
which types of real world instances our method is suitable, for example if it is rather suitable for
rail networks, or also for street networks, and which kinds thereof.

Another challenge will be to extract features of tree decompositions in order to be able
to determine in advance for which of them we achieve better performances. The wide range
between the best and the worst performance of an instance in terms of running time and memory
consumption, especially for unsatisfiable instances, is still an issue, which on the other hand
gives us the opportunity to improve the efficiency towards the minimum bound.

Further, a continuation of our work could consist in solving a variation of the TSP in which
the tour must not be completed by one vehicle but two or more. The greatest challenge consists
in ensuring connectedness. While in our implementations we had to guarantee that the output
tour is connected, here it must be made sure that each of the multiple tours is connected and that
there is no connection between the tours.

80

APPENDIX A
Collection of All Proposed Encodings

1 0 { s(X,Y) } 1 :- edge(X,Y), X < Y.

2 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), N != 2.

3 c(X,Y) :- s(X,Y).
4 c(X,Z) :- c(X,Y), c(Y,Z).
5 c(X,Z) :- c(X,Y), c(Z,Y), X < Z.
6 c(Z,X) :- c(X,Y), c(Z,Y), X > Z.
7 c(X,Z) :- c(Y,X), c(Y,Z), X < Z.
8 c(Z,X) :- c(Y,X), c(Y,Z), X > Z.

9 :- not c(X,Y), vertex(X), vertex(Y), X < Y.

10 minWeight(X,Y,MW) :- s(X,Y),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

11 cost(C) :- C = #sum { W,X,Y : minWeight(X,Y,W) }.

12 #minimize { C : cost(C) }.
13 #show s/2.

Listing A.1: ASP TSP-NR encoding that relies on the connectedness of a guessed tour.

81

1 0 { s(X,Y) } 1 :- edge(X,Y), X < Y.

2 minStated(X) :- vertex(X), minVisits(X,V).
3 maxStated(X) :- vertex(X), maxVisits(X,V).
4 minV(X,1) :- vertex(X), not minStated(X).
5 maxV(X,1) :- vertex(X), not maxStated(X).
6 minV(X,V) :- vertex(X), minVisits(X,V).
7 maxV(X,V) :- vertex(X), maxVisits(X,V).

8 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), minVisits(X,V), N < 2*V.
9 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), maxVisits(X,V), N > 2*V.

10 :- N = #count { Y : s(X,Y); Y : s(Y,X) }, vertex(X), N/2*2 != N.

11 c(X,Y) :- s(X,Y).
12 c(X,Z) :- c(X,Y), c(Y,Z).
13 c(X,Z) :- c(X,Y), c(Z,Y), X < Z.
14 c(Z,X) :- c(X,Y), c(Z,Y), X > Z.
15 c(X,Z) :- c(Y,X), c(Y,Z), X < Z.
16 c(Z,X) :- c(Y,X), c(Y,Z), X > Z.

17 :- not c(X,Y), s(X,_), s(Y,_), X < Y.
18 :- not c(X,Y), s(X,_), s(_,Y), X < Y.
19 :- not c(X,Y), s(_,X), s(Y,_), X < Y.
20 :- not c(X,Y), s(_,X), s(_,Y), X < Y.

21 minWeight(X,Y,MW) :- s(X,Y),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

22 cost(C) :- C = #sum { W,X,Y : minWeight(X,Y,W) }.

23 #minimize { C : cost(C) }.
24 #show s/2.

Listing A.2: ASP TSP-R encoding that relies on the connectedness of a guessed tour.

82

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n semi

2 %Guess row t o be e x t e n d e d .
3 1 { extend(R): childRow(R,CH) } 1 :- childNode(CH).

4 %Guess i n t r o d u c e d v e r t i c e s ’ a d j a c e n t edges ’ s e l e c t i o n f o r t h e t o u r .
5 0 { item(s(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y), X < Y.
6 0 { item(s(Y,X)) } 1 :- edge(X,Y), introduced(X), current(Y), X > Y.
7 item(s(X,Y)) :- childItem(R,s(X,Y)), extend(R), current(X;Y).

8 %Remove j o i n nodes ’ t a b l e rows wi th d i f f e r e n t edge s e l e c t i o n i n d i s t i n c t c h i l d nodes .
9 :- extend(R), extend(S), R!=S, childItem(R,s(X,Y)), not childItem(S,s(X,Y)).

10 %Count number o f s e l e c t e d a d j a c e n t edges .
11 item(ct(X,N0)) :- 1 #count { CH : childNode(CH) } 1, introduced(X),

N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.
12 item(ct(X,N1+N0)) :- 1 #count { CH : childNode(CH) } 1,

childItem(R,ct(X,N1)), extend(R), current(X),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
13 item(ct(X,N1+N2-N12)) :- extend(R), extend(S), R!=S,

childItem(R,ct(X,N1)), childItem(S,ct(X,N2)), current(X),
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

14 %E l i m i n a t e answer s e t c a n d i d a t e s which do n o t l e a d t o a p e r m u t a t i o n w i t h o u t r e p e t i t i o n .
15 :- childItem(R,ct(X,N)), extend(R), removed(X), N != 2.
16 :- item(ct(X,N)), N > 2.

17 %Deduce c o n n e c t e d n e s s .
18 item(c(X,Y)) :- item(s(X,Y)).
19 item(c(X,Z)) :- item(c(X,Y)), item(c(Y,Z)).
20 item(c(X,Z)) :- item(c(X,Y)), item(c(Z,Y)), X < Z.
21 item(c(Z,X)) :- item(c(X,Y)), item(c(Z,Y)), X > Z.
22 item(c(X,Z)) :- item(c(Y,X)), item(c(Y,Z)), X < Z.
23 item(c(Z,X)) :- item(c(Y,X)), item(c(Y,Z)), X > Z.
24 item(c(X,Y)) :- childItem(R,c(X,Y)), extend(R), current(X;Y).

25 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
26 :- 1 #count{ U : current(U) }, removed(X), extend(R),

not childItem(R,c(X,Y)) : current(Y);
not childItem(R,c(Y,X)) : current(Y).

27 :- final, not childItem(R,c(X,Y)), X < Y, extend(R), removed(X;Y).

28 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
29 :- 1 #count { X : bag(N,X), childNode(N) }, not final, not oldVertex.
30 oldVertex :- current(X), not introduced(X).

31 %C a l c u l a t e c o s t s .
32 cost(0) :- initial.
33 cost(CC+NC) :- childCost(R,CC), extend(R),

1 #count { CH : childNode(CH) } 1,
NC = #sum { W,X,Y : relevantWeight(X,Y,W), introduced(X);

W,X,Y : relevantWeight(X,Y,W), introduced(Y) }.

34 cost(CC1+CC2-LC) :- extend(R), extend(S), R < S,
childCost(R,CC1), childCost(S,CC2),
LC = #sum { W,X,Y : relevantWeight(X,Y,W) }.

35 relevantWeight(X,Y,MW) :- item(s(X,Y)),
MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

Listing A.3: TSP-NR encoding for D-FLAT without default join on semi-normalized tree
decompositions.

83

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n semi - - d e f a u l t - j o i n - - p o s t - j o i n

2 %Guess row t o be e x t e n d e d .
3 1 { extend(R): childRow(R,CH) } 1 :- childNode(CH).

4 %Guess i n t r o d u c e d v e r t i c e s ’ a d j a c e n t edges ’ s e l e c t i o n f o r t h e t o u r .
5 0 { item(s(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y), X < Y.
6 0 { item(s(Y,X)) } 1 :- edge(X,Y), introduced(X), current(Y), X > Y.
7 item(s(X,Y)) :- childItem(R,s(X,Y)), extend(R), current(X;Y).

8 %Count number o f s e l e c t e d a d j a c e n t edges .
9 auxItem(ct(X,N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,

extend(R), introduced(X), currentNode(CR),
N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

10 auxItem(ct(X,N1+N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,
extend(R), current(X), currentNode(CR),
childAuxItem(R,ct(X,N1,CH1)),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
11 auxItem(ct(X,N1+N2-N12,CR)) :-

childAuxItem(R,ct(X,N1,CH1)), childAuxItem(R,ct(X,N2,CH2)), CH1 != CH2,
extend(R), currentNode(CR),
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

12 auxItem(n(CR)) :- currentNode(CR).

13 %E l i m i n a t e answer s e t c a n d i d a t e s which do n o t l e a d t o a p e r m u t a t i o n w i t h o u t r e p e t i t i o n .
14 :- childAuxItem(R,ct(X,N,CH)), extend(R), removed(X), N != 2.
15 :- auxItem(ct(X,N,_)), N > 2.

16 %Deduce c o n n e c t e d n e s s .
17 auxItem(c(X,Y)) :- item(s(X,Y)).
18 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Y,Z)).
19 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X < Z.
20 auxItem(c(Z,X)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X > Z.
21 auxItem(c(X,Z)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X < Z.
22 auxItem(c(Z,X)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X > Z.
23 auxItem(c(X,Y)) :- childAuxItem(R,c(X,Y)), extend(R), current(X;Y).

24 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
25 :- 1 #count{ U : current(U) }, removed(X), extend(R),

not childAuxItem(R,c(X,Y)) : current(Y);
not childAuxItem(R,c(Y,X)) : current(Y).

26 :- final, not childAuxItem(R,c(X,Y)), X < Y, extend(R), removed(X;Y).

27 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
28 :- 1 #count { X : bag(N,X), childNode(N) }, not final, not oldVertex.
29 oldVertex :- current(X), not introduced(X).

30 %C a l c u l a t e c o s t s .
31 cost(0) :- initial.
32 cost(CC+NC) :- not initial, childCost(R,CC), extend(R),

NC = #sum { W,X,Y : relevantWeight(X,Y,W), introduced(X);
W,X,Y : relevantWeight(X,Y,W), introduced(Y) }.

33 currentCost(C) :- C = #sum { W,X,Y : relevantWeight(X,Y,W) }.
34 relevantWeight(X,Y,MW) :- item(s(X,Y)),

MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

Listing A.4: TSP-NR encoding for D-FLAT with default join on semi-normalized tree
decompositions.

84

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n semi - - d e f a u l t - j o i n - - p o s t - j o i n

2 %Guess row t o be e x t e n d e d .
3 1 { extend(R): childRow(R,CH) } 1 :- childNode(CH).

4 %Guess i n t r o d u c e d v e r t i c e s ’ a d j a c e n t edges ’ s e l e c t i o n f o r t h e t o u r .
5 0 { item(s(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y), X < Y.
6 0 { item(s(Y,X)) } 1 :- edge(X,Y), introduced(X), current(Y), X > Y.
7 item(s(X,Y)) :- childItem(R,s(X,Y)), extend(R), current(X;Y).

8 %Count number o f s e l e c t e d a d j a c e n t edges .
9 auxItem(ct(X,N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,

extend(R), introduced(X), currentNode(CR),
N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

10 auxItem(ct(X,N1+N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,
extend(R), current(X), currentNode(CR),
childAuxItem(R,ct(X,N1,CH1)),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
11 auxItem(ct(X,NC-((NCH-1)*N12),CR)) :- current(X), currentNode(CR),

NCH = #count { CH: childAuxItem(R,n(CH)) }, extend(R), NCH > 1,
NC = #sum { N,CH: childAuxItem(R,ct(X,N,CH))},
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

12 auxItem(n(CR)) :- currentNode(CR).

13 %E l i m i n a t e answer s e t c a n d i d a t e s which do n o t l e a d t o a p e r m u t a t i o n w i t h o u t r e p e t i t i o n .
14 :- childAuxItem(R,ct(X,N,CH)), extend(R), removed(X), N != 2.
15 :- auxItem(ct(X,N,_)), N > 2.

16 %Deduce c o n n e c t e d n e s s .
17 auxItem(c(X,Y)) :- item(s(X,Y)).
18 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Y,Z)).
19 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X < Z.
20 auxItem(c(Z,X)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X > Z.
21 auxItem(c(X,Z)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X < Z.
22 auxItem(c(Z,X)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X > Z.
23 auxItem(c(X,Y)) :- childAuxItem(R,c(X,Y)), extend(R), current(X;Y).

24 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
25 :- 1 #count{ U : current(U) }, removed(X), extend(R),

not childAuxItem(R,c(X,Y)) : current(Y);
not childAuxItem(R,c(Y,X)) : current(Y).

26 :- final, not childAuxItem(R,c(X,Y)), X < Y, extend(R), removed(X;Y).

27 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
28 :- 1 #count { X : bag(N,X), childNode(N) }, not final, not oldVertex.
29 oldVertex :- current(X), not introduced(X).

30 %C a l c u l a t e c o s t s .
31 cost(0) :- initial.
32 cost(CC+NC) :- not initial, childCost(R,CC), extend(R),

NC = #sum { W,X,Y : relevantWeight(X,Y,W), introduced(X);
W,X,Y : relevantWeight(X,Y,W), introduced(Y) }.

33 currentCost(C) :- C = #sum { W,X,Y : relevantWeight(X,Y,W) }.
34 relevantWeight(X,Y,MW) :- item(s(X,Y)),

MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

Listing A.5: TSP-NR encoding for D-FLAT with default join on weakly normalized tree
decompositions.

85

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n semi - - d e f a u l t - j o i n - - p o s t - j o i n

2 %Guess row t o be e x t e n d e d .
3 1 { extend(R): childRow(R,CH) } 1 :- childNode(CH).

4 %Guess i n t r o d u c e d v e r t i c e s ’ a d j a c e n t edges ’ s e l e c t i o n f o r t h e t o u r .
5 0 { item(s(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y), X < Y.
6 0 { item(s(Y,X)) } 1 :- edge(X,Y), introduced(X), current(Y), X > Y.
7 item(s(X,Y)) :- childItem(R,s(X,Y)), extend(R), current(X;Y).

8 %Count number o f s e l e c t e d a d j a c e n t edges .
9 auxItem(ct(X,N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,

extend(R), introduced(X), currentNode(CR),
N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

10 auxItem(ct(X,N1+N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,
extend(R), current(X), currentNode(CR),
childAuxItem(R,ct(X,N1,CH1)),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
11 auxItem(ct(X,N1+N2-N12,CR)) :-

childAuxItem(R,ct(X,N1,CH1)), childAuxItem(R,ct(X,N2,CH2)), CH1 != CH2,
extend(R), currentNode(CR),
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

12 auxItem(n(CR)) :- currentNode(CR).

13 %E l i m i n a t e s o l u t i o n c a n d i d a t e s t h a t do n o t l e a d t o a v a l i d p e r m u t a t i o n wi th r e p e t i t i o n .
14 :- childAuxItem(R,ct(X,N,CH)), extend(R), minV(X,V), removed(X), N < 2 * V.
15 :- childAuxItem(R,ct(X,N,CH)), extend(R), maxV(X,V), removed(X), N > 2 * V.
16 :- childAuxItem(R,ct(X,N,CH)), extend(R), removed(X), N / 2 * 2 != N.
17 :- maxV(X,V), auxItem(ct(X,N,_)), N > 2 * V.

18 minV(X,1) :- currem(X), not minStated(X).
19 maxV(X,1) :- currem(X), not maxStated(X).
20 minStated(X) :- currem(X), minVisits(X,V).
21 maxStated(X) :- currem(X), maxVisits(X,V).
22 minV(X,V) :- currem(X), minVisits(X,V).
23 maxV(X,V) :- currem(X), maxVisits(X,V).
24 currem(X) :- current(X).
25 currem(X) :- removed(X).

86

26 %Deduce c o n n e c t e d n e s s .
27 auxItem(c(X,Y)) :- item(s(X,Y)).
28 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Y,Z)).
29 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X < Z.
30 auxItem(c(Z,X)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X > Z.
31 auxItem(c(X,Z)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X < Z.
32 auxItem(c(Z,X)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X > Z.
33 auxItem(c(X,Y)) :- childAuxItem(R,c(X,Y)), extend(R), current(X;Y).

34 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
35 :- 1 #count{ U : current(U) }, removed(X),

not childAuxItem(R,ct(X,0,_)), extend(R),
not childAuxItem(R,c(X,Y)) : current(Y);
not childAuxItem(R,c(Y,X)) : current(Y).

36 :- final, removed(X;Y), X < Y, not childAuxItem(R,c(X,Y)), extend(R),
not childAuxItem(R,ct(X,0,_)), not childAuxItem(R,ct(Y,0,_)).

37 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
38 auxItem(noselection(CR)) :- 1 #count { X : bag(N,X), childNode(N) },

not final, not oldVertex, auxItem(selection), currentNode(CR).
39 oldVertex :- current(X), not introduced(X).
40 auxItem(selection) :- item(s(X,Y)).
41 auxItem(noselection(CR)) :- childAuxItem(R,noselection(CH)),

extend(R), currentNode(CR).
42 auxItem(selection) :- childAuxItem(R,selection),

not auxItem(noselection(CR)), extend(R).
43 :- auxItem(selection), auxItem(noselection(CR)).
44 :- auxItem(noselection(CH1)), auxItem(noselection(CH2)), CH1 < CH2.

45 %C a l c u l a t e c o s t s .
46 cost(0) :- initial.
47 cost(CC+NC) :- not initial, childCost(R,CC), extend(R),

NC = #sum { W,X,Y : relevantWeight(X,Y,W), introduced(X);
W,X,Y : relevantWeight(X,Y,W), introduced(Y) }.

48 currentCost(C) :- C = #sum { W,X,Y : relevantWeight(X,Y,W) }.
49 relevantWeight(X,Y,MW) :- item(s(X,Y)),

MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

Listing A.6: TSP-R encoding for D-FLAT with default join on semi-normalized tree
decompositions.

87

1 %d f l a t : - e v e r t e x - e edge - - t a b l e s -n weak - - d e f a u l t - j o i n - - p o s t - j o i n

2 %Guess row t o be e x t e n d e d .
3 1 { extend(R): childRow(R,CH) } 1 :- childNode(CH).

4 %Guess i n t r o d u c e d v e r t i c e s ’ a d j a c e n t edges ’ s e l e c t i o n f o r t h e t o u r .
5 0 { item(s(X,Y)) } 1 :- edge(X,Y), introduced(X), current(Y), X < Y.
6 0 { item(s(Y,X)) } 1 :- edge(X,Y), introduced(X), current(Y), X > Y.
7 item(s(X,Y)) :- childItem(R,s(X,Y)), extend(R), current(X;Y).

8 %Count number o f s e l e c t e d a d j a c e n t edges .
9 auxItem(ct(X,N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,

extend(R), introduced(X), currentNode(CR),
N0 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

10 auxItem(ct(X,N1+N0,CR)) :- 1 #count { CH : childAuxItem(R,n(CH)) } 1,
extend(R), current(X), currentNode(CR),
childAuxItem(R,ct(X,N1,CH1)),
N0 = #count { Y : item(s(X,Y)), introduced(Y);

Y : item(s(Y,X)), introduced(Y) }.
11 auxItem(ct(X,NC-((NCH-1)*N12),CR)) :- current(X), currentNode(CR),

NCH = #count { CH: childAuxItem(R,n(CH)) }, extend(R), NCH > 1,
NC = #sum { N,CH: childAuxItem(R,ct(X,N,CH))},
N12 = #count { Y : item(s(X,Y)); Y : item(s(Y,X)) }.

12 auxItem(n(CR)) :- currentNode(CR).

13 %E l i m i n a t e s o l u t i o n c a n d i d a t e s t h a t do n o t l e a d t o a v a l i d p e r m u t a t i o n wi th r e p e t i t i o n .
14 :- childAuxItem(R,ct(X,N,CH)), extend(R), minV(X,V), removed(X), N < 2 * V.
15 :- childAuxItem(R,ct(X,N,CH)), extend(R), maxV(X,V), removed(X), N > 2 * V.
16 :- childAuxItem(R,ct(X,N,CH)), extend(R), removed(X), N / 2 * 2 != N.
17 :- maxV(X,V), auxItem(ct(X,N,_)), N > 2 * V.

18 minV(X,1) :- currem(X), not minStated(X).
19 maxV(X,1) :- currem(X), not maxStated(X).
20 minStated(X) :- currem(X), minVisits(X,V).
21 maxStated(X) :- currem(X), maxVisits(X,V).
22 minV(X,V) :- currem(X), minVisits(X,V).
23 maxV(X,V) :- currem(X), maxVisits(X,V).
24 currem(X) :- current(X).
25 currem(X) :- removed(X).

88

26 %Deduce c o n n e c t e d n e s s .
27 auxItem(c(X,Y)) :- item(s(X,Y)).
28 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Y,Z)).
29 auxItem(c(X,Z)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X < Z.
30 auxItem(c(Z,X)) :- auxItem(c(X,Y)), auxItem(c(Z,Y)), X > Z.
31 auxItem(c(X,Z)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X < Z.
32 auxItem(c(Z,X)) :- auxItem(c(Y,X)), auxItem(c(Y,Z)), X > Z.
33 auxItem(c(X,Y)) :- childAuxItem(R,c(X,Y)), extend(R), current(X;Y).

34 %E l i m i n a t e u n c o n n e c t e d answer s e t c a n d i d a t e s .
35 :- 1 #count{ U : current(U) }, removed(X),

not childAuxItem(R,ct(X,0,_)), extend(R),
not childAuxItem(R,c(X,Y)) : current(Y);
not childAuxItem(R,c(Y,X)) : current(Y).

36 :- final, removed(X;Y), X < Y, not childAuxItem(R,c(X,Y)), extend(R),
not childAuxItem(R,ct(X,0,_)), not childAuxItem(R,ct(Y,0,_)).

37 %O p t i o n a l code f o r t h e c a s e t h a t t h e i n p u t graph ’ s c o n n e c t e d n e s s was n o t v e r i f i e d .
38 auxItem(noselection(CR)) :- 1 #count { X : bag(N,X), childNode(N) },

not final, not oldVertex, auxItem(selection), currentNode(CR).
39 oldVertex :- current(X), not introduced(X).
40 auxItem(selection) :- item(s(X,Y)).
41 auxItem(noselection(CR)) :- childAuxItem(R,noselection(CH)),

extend(R), currentNode(CR).
42 auxItem(selection) :- childAuxItem(R,selection),

not auxItem(noselection(CR)), extend(R).
43 :- auxItem(selection), auxItem(noselection(CR)).
44 :- auxItem(noselection(CH1)), auxItem(noselection(CH2)), CH1 < CH2.

45 %C a l c u l a t e c o s t s .
46 cost(0) :- initial.
47 cost(CC+NC) :- not initial, childCost(R,CC), extend(R),

NC = #sum { W,X,Y : relevantWeight(X,Y,W), introduced(X);
W,X,Y : relevantWeight(X,Y,W), introduced(Y) }.

48 currentCost(C) :- C = #sum { W,X,Y : relevantWeight(X,Y,W) }.
49 relevantWeight(X,Y,MW) :- item(s(X,Y)),

MW = #min { W,X,Y : weight(X,Y,W); W,X,Y : weight(Y,X,W) }.

Listing A.7: TSP-R encoding for D-FLAT with default join on weakly normalized tree
decompositions.

89

Bibliography

[1] Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger, Markus
Hecher, and Stefan Woltran. D-FLAT: Progress report. Technical report, Technical Re-
port DBAI-TR-2014-86, Vienna University of Technology, 2014.

[2] Rachit Agarwal, Philip B. Godfrey, and Sariel Har-Peled. Approximate distance queries
and compact routing in sparse graphs. In INFOCOM 2011. 30th IEEE International Con-
ference on Computer Communications, Joint Conference of the IEEE Computer and Com-
munications Societies, 10-15 April 2011, Shanghai, China, pages 1754–1762. IEEE, 2011.

[3] Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca.
WASP: A native ASP solver based on constraint learning. In Logic Programming and
Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain,
September 15-19, 2013. Proceedings, volume 8148 of Lecture Notes in Computer Science,
pages 54–66. Springer, 2013.

[4] David L. Applegate. The Traveling Salesman Problem: A Computational Study. Princeton
University Press, 2006.

[5] David L. Applegate, Robert Bixby, William Cook, and Vašek Chvátal. On the Solution of
Traveling Salesman Problems. Rheinische Friedrich-Wilhelms-Universität Bonn, 1998.

[6] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, 1987.

[7] Richard Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM, 9(1):61–63, 1962.

[8] Bernhard Bliem, Michael Morak, and Stefan Woltran. D-FLAT: Declarative problem solv-
ing using tree decompositions and answer-set programming. TPLP, 12(4-5):445–464,
2012.

[9] Bernhard Bliem, Reinhard Pichler, and Stefan Woltran. Declarative dynamic programming
as an alternative realization of Courcelle’s theorem. In Parameterized and Exact Computa-
tion - 8th International Symposium, IPEC 2013, Sophia Antipolis, France, September 4-6,
2013, Revised Selected Papers, volume 8246 of Lecture Notes in Computer Science, pages
28–40. Springer, 2013.

91

[10] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[11] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008.

[12] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I. upper bounds.
Inf. Comput., 208(3):259–275, 2010.

[13] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming at
a glance. Commun. ACM, 54(12):92–103, 2011.

[14] Günther Charwat. Tree-decomposition based algorithms for abstract argumentation frame-
works. Master’s thesis, Vienna University of Technology, 2012.

[15] Vasek Chvátal, William J. Cook, George B. Dantzig, Delbert R. Fulkerson, and Selmer M.
Johnson. Solution of a large-scale traveling-salesman problem. J. of the Operations Re-
search Society of America, pages 7–28, 2010.

[16] Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322. Springer,
1977.

[17] William F. Clocksin and Christopher S. Mellish. Programming in Prolog (4. ed.). Springer,
1994.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms (3. ed.). MIT Press, 2009.

[19] Harlan Crowder and Manfred W. Padberg. Solving large-scale symmetric travelling sales-
man problems to optimality. Mgmt. Sci., 26(5):495–509, 1980.

[20] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artif. Intell.,
113(1-2):41–85, 1999.

[21] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Benjamin J. McMahan, Nysret Musliu,
and Marko Samer. Heuristic methods for hypertree decomposition. In MICAI 2008: Ad-
vances in Artificial Intelligence, 7th Mexican International Conference on Artificial Intel-
ligence, Atizapán de Zaragoza, Mexico, October 27-31, 2008, Proceedings, volume 5317
of Lecture Notes in Computer Science, pages 1–11. Springer, 2008.

[22] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1(1):269–271, 1959.

[23] Marco Dorigo and Luca M. Gambardella. Ant colonies for the travelling salesman problem.
BioSystems, 43(2):73–81, 1997.

[24] Stuart Dreyfus. Richard Bellman on the birth of dynamic programming. Operations Re-
search, 50(1):48–51, 2002.

92

[25] Wolfgang Dvorák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artif. Intell., 186:1–37, 2012.

[26] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declarative problem-
solving using the DLV system. In Logic-Based Artif. Intell., pages 79–103. Springer, 2000.

[27] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Sven Thiele. A user’s guide to gringo, clasp, clingo, and iclingo, 2008.

[28] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Schneider. Potassco: The potsdam answer set solving collection. AI Commu-
nications, 24(2):107–124, 2011.

[29] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set solving. In IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 386–
392, 2007.

[30] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp : A
conflict-driven answer set solver. In Logic Programming and Nonmonotonic Reasoning,
9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceed-
ings, volume 4483 of Lecture Notes in Computer Science, pages 260–265. Springer, 2007.

[31] Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo : A new grounder for answer
set programming. In Logic Programming and Nonmonotonic Reasoning, 9th International
Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, volume 4483
of Lecture Notes in Computer Science, pages 266–271. Springer, 2007.

[32] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38(3):620–650, 1991.

[33] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Logic Programming, Proceedings of the Fifth International Conference and Sym-
posium, Seattle, Washington, August 15-19, 1988 (2 Volumes), pages 1070–1080. MIT
Press, 1988.

[34] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

[35] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artif. Intell., 174(1):105–132, 2010.

[36] Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction and database problems. Comput. J., 51(3):303–325, 2008.

[37] Jens Gramm, Arfst Nickelsen, and Till Tantau. Fixed-parameter algorithms in phylogenet-
ics. Comput. J., 51(1):79–101, 2008.

93

[38] Gregory Gutin and Abraham P. Punnen. The Traveling Salesman Problem and Its Varia-
tions, volume 12. Springer, 2002.

[39] Steffen Hölldobler and Lukas Schweizer. Answer set programming and clasp a tutorial. In
Young Scientists’ International Workshop on Trends in Information Processing, page 77,
2014.

[40] Xiuzhen Huang and Jing Lai. Parameterized graph problems in computational biology. In
Proceeding of the Second International Multi-Symposium of Computer and Computational
Sciences (IMSCCS 2007), August 13-15, 2007, The University of Iowa, Iowa City, Iowa,
USA, pages 129–132. IEEE, 2007.

[41] Dieter Jungnickel and Tilla Schade. Graphs, Networks and Algorithms. Springer, 2008.

[42] Roland Kaminski and Benjamin Kaufmann. Answer Set Solving in Practice, volume 19.
Morgan & Claypool Publishers, 2012.

[43] Matthieu Latapy and Clémence Magnien. Measuring fundamental properties of real-world
complex networks. CoRR, abs/cs/0609115, 2006.

[44] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log., 7(3):499–562, 2006.

[45] Vladimir Lifschitz. Answer set programming and plan generation. Artif. Intell., 138(1-
2):39–54, 2002.

[46] Vladimir Lifschitz. What is answer set programming? In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, pages 1594–1597. AAAI Press, 2008.

[47] Shen Lin and Brian W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516, 1973.

[48] John D. C. Little, Katta G. Murty, Dura W. Sweeney, and Caroline Karel. An algorithm for
the traveling salesman problem. Operations Research, 11(6):972–989, 1963.

[49] Victor W. Marek and Mirosław Truszczyński. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm, volume cs.LO/9809032.
Springer, 1998.

[50] Guy Melançon. Just how dense are dense graphs in the real world?: a methodological note.
In Proceedings of the 2006 AVI Workshop on BEyond time and errors: novel evaluation
methods for information visualization, BELIV 2006, Venice, Italy, May 23, 2006, pages
1–7. ACM Press, 2006.

94

[51] Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable model and
well-founded semantics for normal LP. In Logic Programming and Nonmonotonic Rea-
soning, 4th International Conference, LPNMR’97, Dagstuhl Castle, Germany, July 28-31,
1997, Proceedings, volume 1265 of Lecture Notes in Computer Science, pages 421–430.
Springer, 1997.

[52] Raymond Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76,
1977.

[53] Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb.
Theory, Ser. B, 36(1):49–64, 1984.

[54] Julia Robinson. On the hamiltonian game (a traveling salesman problem). RAND Research
Memorandum RM-303, 1949.

[55] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[56] Mikkel Thorup. All structured programs have small tree-width and good register allocation.
Inf. Comput., 142(2):159–181, 1998.

[57] David B. Wagner. Dynamic programming. The Mathematica Journal, 5(4):42–51, 1995.

95

	Introduction
	Aim of the Work
	Structure of the Master's Thesis

	Background
	The Traveling Salesperson Problem
	Answer Set Programming
	The D-FLAT System

	Monolithic ASP Implementations for the Traveling Salesperson Problem
	Monolithic ASP Encodings for the TSP-NR
	Monolithic ASP Encoding for the TSP-R

	D-FLAT Implementations for the Traveling Salesperson Problem
	D-FLAT Encodings for the TSP-NR
	D-FLAT Encoding for the TSP-R

	Evaluations
	Problem Instances
	Experimental Setting
	Results of the Empirical Tests
	Discussion of the Results

	Conclusion
	Summary
	Future Work

	Collection of All Proposed Encodings
	Bibliography

