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University of Liège (ULg), Belgium





a mio padre





«Scusate la lunghezza di questa lettera» scriveva
un francese (o una francese) del gran settecento
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Abstract
Rewinding the clock of the Internet to a decade ago, network traffic was largely dominated
by peer to peer (P2P) file sharing and web services were provided by centralized or barely
distributed platforms. Today the situation has drastically changed: the most popular services
rely on web technologies, while highly dynamic and distributed Content Delivery Networks
(CDNs) rule the Internet’s landscape. The explosion of cloud-based services, the ever-growing
volume of video streaming traffic, and the large user-base of online social networks call for
sophisticated load balancing and caching techniques to optimize the usage of the underlying
transport network, as well as the end-user experience.

As a result, current Internet traffic patterns are characterized by a much higher dynamism,
posing serious challenges to network operators. Understanding today’s traffic has become a
daunting task, making traffic engineering, network optimization, and trend analysis arduous
processes. The picture is complicated by the growing occurrence of unexpected anoma-
lies which potentially impact the interests of the involved stakeholders, from the end-user’s
experience to the network planning enforced by providers.

In the light of this Internet scenario, we claim that traditional network analysis techniques
need to be revised to better capture and explain current and future traffic dynamics. This
thesis brings three major contributions to the field of network traffic monitoring and analysis.

The first contribution regards the analysis and characterization of Internet scale services
and large-scale provisioning systems. We have not only analyzed and dissected rarely explored
services and popular CDN infrastructures using both passive and active measurements, but
also proposed multiple novel techniques to unveil their traffic patterns in both normal oper-
ations and during anomalies, even when they run on encrypted protocols.

The second contribution targets the automatic detection of network and traffic anomalies
in modern services, where we have proposed novel anomaly detection techniques as well
as extended previous proposals to self-adapt to current Internet dynamics and flag relevant
anomalies. In particular, anomalies impacting both the experience of the end users as well
as the performance of the network have been discovered through the proposed techniques.
The detection performance of our system was compared against well-known solutions, such
as entropy-based detectors, showing outperforming results in several cases.

The last contribution focuses on the diagnosis of the detected issues. We have provided
a framework to unveil the root causes behind the flagged anomalies, relying on Machine
Learning techniques and on the combined analysis of symptomatic and diagnostic passive
measurements. We have also devised the design of a more advanced approach that relies on
the analysis of both passive and distributed active measurements to iteratively investigate
the anomalies.

To provide strong evidence on the relevance of our contributions, the presented studies
were validated using real large-scale traffic measurements from different operational networks,
including both cellular and fixed-line. Taking together the ensemble of the contributions, this
thesis offers a holistic approach for network operators to efficiently monitor Internet scale
services and interpret unexpected network traffic behaviors.
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Zusammenfassung
Wenn man die Uhren des Internets um ein Jahrzehnt zurückdreht, war der Netzwerk Daten-
verkehr hauptsächlich von “peer to peer” (P2P) file sharing geprägt und Internet Dienste
wurden von zentralisierten oder kaum verbreiteten Plattformen angeboten. Heute hat sich die
Situation drastisch geändert: Die beliebtesten Dienste basieren auf webbasierten Diensten,
während dynamische und weit verbreitete “Content Delivery Networks (CDNs)” die Internet-
landschaft prägen. Die explosionsartige Verbreitung von “cloud-based-services”, das stetig
steigende Volumen von Videostreaming Datenverkehr, und die riesige Anzahl an Nutzern von
sozialen Netzwerken, fordern gut durchdachte Lastverteilungsstrategien und fortgeschrittene
Caching-Techniken um die Anwendung für die zugrundeliegenden Transportnetzwerke sowie
die Anwendung für den Endverbraucher zu optimieren.

Als Folge dieser Entwicklung zeigt Datenverkehr heutzutage eine weitaus höhere Dynamik
auf, welche eine ernsthafte Herausforderung für die Netzwerkbetreiber darstellt. Diesen
Datenverkehr zu untersuchen und zu verstehen ist zu einer schwierigen Aufgabe geworden
und die Bereiche Traffic Engineering, Netzwerk Optimierung und Trendanalyse erfordern
aufwendige Prozesse. Diese Bereiche werden außerdem durch das erhöhte Auftreten von
unerwarteten Anomalien erschwert, welche die Interessen der beteiligten Akteure vom Net-
zwerkplaner bis zum Endverbraucher beeinflussen können.

Angesichts dieses Internetszenarios, ist eine Überarbeitung traditioneller Netzwerkanalyse
Techniken erforderlich, um aktuelle und zukünftige Dynamiken des Internetverkehrs besser
erfassen zu können. Diese Arbeit liefert drei Hauptbeiträge auf dem Gebiet der Verkehrs-
beobachtung und -analyse von Internetdaten.

Ein erster Beitrag betrifft die Analyse und Charakterisierung von Internetdiensten und
weit verteilten Systemen zu Bereitstellung von Diensten, dazu haben wir neue bisher wenig
erforschte Dienste und weit verbreitete CDN Infrastrukturen unter Anwendung von aktiven
und passiven Messungen analysiert und verschiedene neue Methoden vorgeschlagen, um deren
Muster im Internetdatenverkehr bei normalem Verhalten und bei Anomalien zu untersuchen,
auch wenn diese verschlüsselte Protokolle nutzen.

Der zweite Beitrag dieser Arbeit hat die automatische Detektion von Anomalien in moder-
nen Internet Diensten als Ziel. Dafür haben wir neue Techniken zur Erkennung von Anomalien
vorgeschlagen, sowie bestehende Techniken erweitert, um eine automatischen Anpassung an
aktuelle Internet Dynamiken zu realisieren und relevante Anomalien zu markieren. Durch
diese Techniken wurden insbesondere Anomalien entdeckt, welche sowohl die Servicequalität
beim Endnutzer (Quality of Experience) als auch die Performanz des Netzwerks beeinflussen.
Die Detektionsleistung unseres Systems wurde mit existierenden Arbeiten verglichen und
konnte diese in vielen Fällen übertreffen.

Der letzte Beitrag befasst sich mit der Diagnose der erkannten Probleme. Wir haben ein
Rahmenwerk vorgeschlagen, das sich auf maschinelle Lerntechniken und auf die kombinierte
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Analyse von symptomatischen und diagnostischen passiven Messungen stützt, um die Grun-
dursachen hinter den markierten Anomalien zu enthüllen. Wir haben außerdem ein Design
für einen weiter fortgeschrittenen Ansatz entwickelt, welcher auf der Analyse von passiven
und verteilten aktiven Messungen basiert, um Anomalien iterativ zu analysieren.

Um die Relevanz der Beiträge zu untermauern wurden die Studien unter Anwendung von
realen Internetverkehrsmessungen in verschiedenen Netzwerken, sowohl von Mobilfunk- als
auch von Festnetzanbietern, überprüft.

Damit liefert diese Arbeit einen ganzheitlichen Ansatz für Netzbetreiber, um Internetdien-
ste effizient zu steuern und unerwartetes Verhalten von Internetdatenverkehr zu analysieren
und zu interpretieren.
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Chapter 1. Introduction 1

1. Introduction
The Internet is the first thing
that humanity has built that
humanity doesn’t understand,
the largest experiment in anarchy
that we have ever had.

Eric Schmidt
executive chairman of Alphabet Inc

The Internet is a global infrastructure that connects billions of devices for the sake of
exchanging information. There are no organizations or administrative entities operating or
controlling it on a global scale, but it is rather an interconnection of locally managed and
independent networks. Its diversity provides it with great flexibility and good resiliency,
and has driven rapid innovation at the edge. Indeed, in the last two decades, after the
advent of the World Wide Web (WWW) and the interest of the general public, we have
witnessed an astonishing growth of the Internet in terms of infrastructure, traffic volume,
and number of users. According to the International Telecommunication Union (ITU), it is
estimated that more than 46% households world-wide have Internet access in 2015, with this
fraction peaking up to 82% in developed countries [1] (cfr. Figure 1.1(a)). It is expected
that these figures will rapidly increase, as large shares of population in developing countries
are getting access to the Internet, reducing the world digital divide. The fast adoption of
mobile broadband (cfr. Figure 1.1(b)) is maybe one the main driving factors of this growth,
easing the deployment of access infrastructures and reducing costs. To support the Internet
usage increase, there has been a collateral boost in the distribution and complexity of the
overall infrastructure: for example, the number of Autonomous Systems assigned by IANA
has reached almost 50.000 in 2015 [1], more than 20 times larger than eighteen years ago
(cfr. Figure 1.1(c)).

The independent and distributed nature of the Internet is for sure its main value. Even
though there have been —and there are– many attempts to control it, and in some cases to
censor it, it still offers an unprecedented communication mean, allows access to an unlim-
ited number of resources and information, opens up to opportunities for participation and,
ultimately, democracy and freedom.

1.1. A Tangled Internet
However, this large “experiment in anarchy” does not come without costs. The same inde-
pendent and distributed nature, that allows Internet’s very own existence as we know it, poses
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Figure 1.1.: Internet statistics: trends and forecasts.

serious challenges to network operators. The Internet has shown to be fragile to problems
arising from interactions among networks and to misbehaving terminal nodes. Understanding
the cause of performance degradation, service failures, or the presence of anomalous traffic
behaviors such as abusive traffic, flash crowds, or routing outages has become a daunting
task, made even more challenging by the fast and constant deployment of new services and
applications. As the number of users and network applications raises, content and service
providers have to deploy increasingly complex provisioning infrastructures to cope with the
big user demands for reliability and quality. The great success of specialized Content Deliv-
ery Networks (CDN) confirms this trend: according to recent reports [3], the CDN North
American market was estimated worth $1.95 billions in 2013, and it is expected to reach $12
billions by 2019 [4], with total traffic volume served by CDNs multiplied by four (cfr. Fig-
ure 1.1(d)). Today, the general approach for Internet scale services is to push contents as
close as possible to users, adopting sophisticated load balancing techniques to do so. Pop-
ular services rely on distributed data centers to ensure high availability, scalability and low
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latency. As a consequence, it has become extremely difficult for operators to track the usage
of popular applications, as their traffic patterns are highly dynamic and volatile. This reduces
the degree of freedom for operators to take the correct countermeasures when issues arise,
limiting the effectiveness of network management and operational activities. The Internet is
often a large, obscure black box, and network operators and application providers lack today
the necessary mechanisms to drill down to the cause of problems therein.

1.2. The Role of Network Measurements
In the years, a long list of measurement technologies and tools have been developed in order
to support network operators in their daily business. Some of the basic and ubiquitous active
probing tools, such as ping and traceroute, or passive packet analyzers like Wireshark [5], just
to name the most popular ones, are generally enough for providing basic insights on the root-
cause of simple network issues, but their effectiveness is very limited, or totally inexistent, in
more complex cases. Large scale provisioning systems make the traffic characterization and
troubleshooting more challenging every day; in this scenario, the diagnosis of anomalies in
large-scale services require better tools and algorithms than what operators have traditionally
applied. This has driven a great interest in the field of network data analytics in order to
mitigate these hurdles. In the last years, a lot of work has been dedicated to develop
more sophisticated measurement and analysis platforms to understand and characterize the
complexity of the Internet through a higher degree of network visibility. Passive probes
for large-scale monitoring [6, 7], distributed active measurement frameworks [8, 9, 10] and
elaborated systems for network traffic analysis based on active measurements [11, 12] have
been designed with this goal in mind.

Nonetheless, today we still face the lack of a flexible monitoring approach, and corre-
sponding algorithms, that can guide network operators in the process of understanding and
troubleshooting problems in complex networks as the Internet. Many of the problems that
we see in current monitoring systems and algorithms for detecting and diagnosing network
anomalies derive from the same problem: the lack of a structured approach that allows
flexibility and adaptability. Indeed, while the problem of network anomaly detection has re-
ceived a lot of attention, understanding the nature and causes of these anomalies is still in
most cases a manual task. Root cause analysis is usually left to network operators, who use
their knowledge and experience to analyze the traffic flows where the anomaly was flagged
in search of events that can explain it, or that give some hints on which additional mea-
surements should be performed to better understand the problem. This manual process is
time-consuming, error-prone, and can be prohibitive if the number of events and the size of
the data to analyze are too big, which is more and more the case. In light of this, after more
than a decade of research in the field of network monitoring and analysis, there is still fertile
ground and open research questions.

The research community is still very active in trying to fill these gaps. Projects like mPlane
[13] are currently aiming at rising the bar in our understanding of the Internet by moving
forward the state of the art in network monitoring and analysis. In particular, mPlane has
the goal to design and develop a distributed and ubiquitous approach to network measure-
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ments. Its key idea is to provide a framework for setting-up measurements in a flexible way,
through the hybridation of active and passive monitoring schemes, and ultimately allowing
the deployment of advanced iterative troubleshooting algorithms. The work presented in
this dissertation has been carried out in the context provided by the mPlane project and the
Traffic Monitoring and Analysis (TMA) research community in general.

1.3. The Uphill Race to Network Monitoring
There are a number of reasons why there are still unanswered questions in the field of network
measurements today, but probably the first and most prominent one is the limited accessi-
bility of datasets. Traffic monitoring and analysis relies mostly on passive probing Vantage
Points (VP) located in large scale networks. However, the access to such monitoring data is
difficult for the research community, as network operators are reluctant to disclose sensitive
information outside their boundaries. The reasons should be sought in both the privacy and
business spheres. On the one hand, there are legitimate concerns that prevent operators
from releasing sensible details that violate the privacy of their customers (which could be
somehow solved by adopting data anonymization and aggregation techniques). On the other
hand, ISPs are afraid of revealing information that could prejudice their competitiveness on
the market.

Due to these reasons, they tend to adopt a very narrow perspective, reducing the chances
of collaborations with neighbor ISPs, competitors, and research institutions. However, this
attitude can be counter-productive, mostly for access providers, as they become hostage of
obscure network policies deployed by third-party content providers and are down-graded to
mere dump pipes [14]. While we wait for a federated approach to measurements, in which
all the involved parties partially disclose information for the sake of network optimization,
troubleshooting, and network neutrality verification, we can simply resign to the current state
of things. Note that the monitoring framework proposed by the mPlane project provides the
instruments for achieving a distributed measurement scheme, laying the fundamental stone
for the solution of this problem, at least from the technical point of view.

In this thesis, I had the – far from being given for granted – chance to access a number
of passive measurement campaigns carried out in the 2012-2014 time span at the opera-
tional networks of Nation-wide operators (both cellular and fixed-line). This allowed me to
produce results that reflect real-world operational conditions. But, as a consequence of the
aforementioned problems, I am not allowed to provide the datasets used for supporting the
described analysis. Nevertheless, the structured description of the methodology I provide –
which is one of my main contributions – is general enough to be used in different contexts
and offers the guidelines for the reproducibility of results in other networks.

The second hurdle related to network monitoring is more technical. In addition to a deep
knowledge of advanced data mining techniques, the study of large datasets needs adequate
technologies and hardware, especially when the correlation of diverse data sources is required.
Luckily, the progress of big-data technologies is filling this gap, providing instruments that
let data scientists to focus on the actual data analytics, rather than the technical aspects. In
particular, in this thesis I have used a specialized data-warehouse system tailored for traffic
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monitoring that greatly facilitates the analysis of data streams. I believe that the new data-
processing technologies will contribute, in the short term, to advance the state of the art in
the field of network monitoring and analysis.

1.4. Research Questions and Contributions
While some of the obstacles presented above are beyond our reach, in this thesis I tackle
some of the network monitoring open issues. As a general approach, I have tried to identify
and combine state of the art solutions in a systematic approach to answer the three main
research questions listed below. I do not want to re-invent the wheel, but rather couple well-
known techniques with novel approaches to shed light on some obscure Internet dynamics,
with the final goal of designing new approaches to detect and diagnose large scale network
anomalies.

(QI) Classification of Services in an Encrypted World: How to Classify Encrypted
Applications? Traffic classification is a prosperous field with a large literature. In the past
years, the main effort was concentrated on distinguishing application layer protocols, mostly
driven by the ISPs’ concerns about specific services, such as P2P file exchange. However, as
most of the applications beyond traditional web surfing have already moved on top of HTTP
(video streaming, online social networks and gaming, web mail, text/audio/video chat, file
transfer, etc.), the interest is shifting rather to the differentiation of Web services. This is
not a straight-forward task, also due to the increasing use of end-to-end encryption and the
HTTPS-everywhere scheme. We deal with the problem of differentiating Web services in
Chapter 3.

(QII) Understanding Network Data: How to Track Large Scale Provisioning Sys-
tems and Detect Unexpected Events? After being able to distinguish flows belonging
to different services, it is of vital importance for ISPs to understand where their traffic is
flowing from, i.e., they need to have a clear knowledge of large-scale service provisioning
systems, in order to enforce an efficient network planning, optimization and trend analy-
sis. The static relation between a service and a (small) set of hostnames is an abandoned
paradigm by now: specialized CDNs allow an efficient decoupling of services and serving IP
addresses, deploying highly dynamic load balancing policies. In this scenario, understanding
data flows, in particular focusing on the most popular large scale provisioning systems is
still an open question. To be more specific, the main sub-problems are: (i) who are the
big players in today’s Internet?, in terms on generated traffic volume and number of users;
(ii) how (geographically and topologically) distributed are their hosting infrastructures?; (iii)
how and by using which traffic features can we track the dynamic load balancing policies and
study their evolution?; (iv) does the access technology (e.g., cellular vs fixed-line) induce any
difference in the traffic patterns?; (v) what are the flow characteristics and how they relate to
user perceived Quality of Experience?. I address these and other minor points in Chapter 4.
Unfortunately, the problem of understanding network data is not limited to this: the study
of network traffic patterns is made more difficult in presence of anomalies. It is, in fact,
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very hard to distinguish normal changes induced by CDNs policies from the ones provoked
by anomalous behaviors. I discuss a number of case studies in Chapter 5, where I try to
answer the following sub-questions: (vi) what are the traffic features that better describe
the characteristics of the anomaly?; (vii) what are the effects of the anomaly? (e.g., outage,
performance degradation); (viii) which of the involved stakeholders is negatively affected by
it?.

(QIII) Towards a More Structured Approach for Anomaly Detection and Diagnosis:
How to Automatize the Detection and Diagnosis of Anomalies in Current Inter-
net? Literature is rich on techniques for detecting anomalous events. Most of the existing
algorithms tackle security or performance degradation issues, which generally correspond to
transient effects. As said before, today’s Internet is characterized by highly dynamic traffic
patterns, with frequent changes that are not necessarily related to service or network anoma-
lous conditions, questioning the applicability of traditional anomaly detection approaches.
To this extent, I investigate which existing detection algorithm is able to unveil anomalies
occurring in modern large scale provisioning systems and how it could be improved. The
detection of anomalies is only the first step in the troubleshooting process. Our goal is to
go further and propose an approach for diagnosing them. By diagnosis, I mean the pro-
cedure of observing the symptoms of a potential anomalous and/or harmful behavior and
provide a report stating its causes and effects. Network anomalies are often characterized by
many different aspects: in order to understand them, a diagnosis system should monitor and
correlate a number of traffic features. Usually, this is done by manual inspection of expert
operators, resulting in a slow and error-prone procedure. Today we still miss a structured
approach to speed-up a complete root cause analysis process. I tackle the detection and
diagnosis of anomalies in Chapters 6 and 7, where I provide the design of a framework that
addresses this gap by correlating multiple anomaly detector instances and using supervised
machine learning techniques to automatically diagnose anomalies.

1.5. Thesis Outline
This thesis is organized in eight Chapters. Figure 1.2 depicts the distribution of the contents,
research questions, and the interaction among them. In detail, the organization of this thesis
goes as follows.

(Chapter 2) “Research Context, Tools and Methodologies” This Chapter describes
some concepts for supporting the reader of this thesis. In particular it provides the research
context (i.e., the mPlane project which is the framework for this work) and an overview of
the tools and methodologies adopted.

(Chapter 3) “Traffic Classification Techniques” We introduce three novel traffic clas-
sification techniques based on hostname pattern-matching. This Chapter also shows practical
examples of the long-term tracking capabilities of the classifiers. The techniques developed
here are a fundamental building block for the analysis described in the rest of the thesis.
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(Chapter 4) “Characterization of Traffic from Major Internet Services” This Chap-
ter is devoted to a deep characterization of the traffic generated by the top hosting companies
and Internet services. By using passive traces collected at the network of Major European
operators and applying both novel and well-known methodologies in the field of TMA, we
shed light on the complex traffic characteristics and dynamics that regulate the provisioning
systems of popular applications.

(Chapter 5) “Large-scale Network Anomalies” While the previous Chapter was focus-
ing on the normal operations of popular services and their provisioning systems, this Chapter
is dedicated to the study of their anomalous behaviors. Here we study a number of anomaly
case studies that impact remote services, access operators and end-users. These case studies
provide the foundation for the design of anomaly detection and diagnosis algorithms.

(Chapter 6) “Advanced Anomaly Detection Techniques” Here we introduce a novel
automatic detection and diagnosis framework for network anomalies. Using the lessons
learned in previous Chapter, we compare and evaluate two detection algorithms using both
real and semi-synthetic datasets. The main contributions of this Chapter are (i) a frame-
work for structured and systematic anomaly detection and diagnosis, (ii) an evolution of a
distribution-based detection algorithm, (iii) a comparison of the de-facto anomaly detection
system to the proposed techniques, questioning its supremacy for anomaly detection, and (iv)
a system for generating synthetic datasets that preserve real-traffic statistical characteristics.

(Chapter 7) “Towards Automatic Diagnosis of Anomalies” This Chapter describes
the final module of the diagnosis framework previously introduced. This component relies
on Machine Learning techniques to classify the detected anomaly, additionally correlating
pattern deviations to automatically provide anomaly reports. We also present some possible
future research directions aimed at improving the diagnosis in an iterative fashion.

(Chapter 8) “Conclusions” We draw here the final conclusions of the thesis.
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2. Research Context, Tools and
Methodologies

This Chapter gives some guide-lines to support the reader of this thesis. We start by intro-
ducing mPlane, the project that provided a framework for this work in Section 2.1. This work
is, in fact, positioned in the field of Traffic Monitoring and Analysis (TMA), which is the
common background of the project consortium members. Getting familiar with the project
organization and goals clarifies the research context and the questions that this work tries to
answer.

Section 2.2 provides an overview of the tools and the methodologies employed in this work.
Some of them are novel and part of the contributions of this thesis.

2.1. A Measurement Plane for the Internet
The three years work that led to this thesis has been carried in the context of the European
FP7 research project mPlane, from 2012 to 2015. mPlane has the goal of designing “an Intel-
ligent Measurement Plane for Future Network and Application Management” [13]. mPlane
proposes to advance the state of the art in the field of Internet measurements. The complex
nature of Internet, in fact, still poses serious challenges when it comes to understanding
traffic dynamics, mostly when something goes wrong.

The key idea is to embed measurements as a network capability, i.e., a measurement
plane. It operates at a large range of scales and employs active, passive and hybrid probes
in a distributed fashion. Given the amount of data produced by measurements, another core
element is the design of intelligent analytics adopting on-the-edge big-data technologies and
data mining techniques. The project defines the communication standards among the in-
volved components (e.g., probes, repositories, etc.) also offering a reference implementation
[15]. This architecture allows to deploy intelligent reasoning algorithms that iteratively drill
down into the cause of anomalies, determining the conditions leading to given issues, and
supporting the understanding of problem origins.

Illuminating the Internet dynamics with this approach brings benefits to all the involved
actors. Network operators could get higher and more fine-grained visibility on their networks,
adopting ad-hoc measurements and deploying Root Cause Analysis (RCA) algorithms. Con-
tent providers would have the instruments for detecting and assessing performance degra-
dations and Quality of Experience (QoE) impairments. Finally, customers could enforce the
application of Service Level Agreements (SLA). Most of these problems are currently ad-
dressed with ad-hoc manual analysis. In most cases they are time consuming, error prone
and lack of generality. mPlane, and the development of a reasoner in particular, sets the
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Figure 2.1.: The mPlane distributed measurements framework organized in three main layers.
The Measurement Layer gives an interface to network probes. The Repository
and Analysis Layer gives and interface to storages and basic analytics. Finally the
Management Layer orchestrates the framework. Based on the Figure originally
published in [13].

first mile stone for a structured, iterative and truly automatic approach to the problem of
measuring the Internet.

2.1.1. Related Measurement Platforms
A distributed measurement platform similar to mPlane was originally presented in [16], where
the authors envisioned an infrastructure, i.e., a “network oracle”, for the coordination of mea-
surement and database technologies, aimed at supporting queries on the network status on
a global scale and in real-time. In a similar direction, [17] proposes a pervasive measurement
system that, in addition, is able to automatically troubleshoot network problems.

For what concerns existing operational platforms for coordinated active measurements,
there is a number of projects worth mentioning. Archipelago [10], for instance, targets
topology measurements through traceroute. Similarly, Routeviews [18] tackles real-time
updates on global routing status. A more general measurement infrastructure is the one
represented by RIPE Atlas [8], which allows to deploy large-scale ping, traceroute, DNS,
and HTTP active measurements campaigns. RIPE Atlas has been used to produce some
of the results presented in this thesis and has been integrated in mPlane. Similar to RIPE
Atlas, PlanetLab [9] allows to set up active measurements with an higher degree of freedom,
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but with a smaller number of available probes. TopHat [19] is an extension to PlanetLab
that supports an efficient probe selection depending on the requested type of measurements.
Finally, M-Lab [20] is a closed platform that supports performance estimations and makes
some of the collected measurements publicly available.

These frameworks are valuable measurement instruments, that, in some cases, allow to
access distributed computing resources. However, they miss the intelligence needed to extract
valuable knowledge. In particular, while they provide the measurement infrastructure to
collect network data from different Vantage Points (VPs), they do not easily allow to deploy
analysis algorithms to make sense of it. They also do not foresee the integration with a
storage layer for supporting data aggregation and historical analysis and only focus on active
probing. In a nutshell, by themselves they are still far from the flexible monitoring plane
envisioned in [16] and [17].

2.1.2. System Architecture
The architecture proposed by the project is organized in three main layers, the Measure-
ment Layer, the Repository and Analysis Layer and the Management Layer, as depicted in
Figure 2.1.

Measurement Layer This layer offers a flexible interface to passive (e.g., Tstat [21]),
active (e.g., standard ping and traceroute tools) or hybrid probes. It consists both on new
programmable mPlane probes and existing measurement technologies. For the latter, the
project aims to write software proxies to make them mPlane-compatible, as it has been
done for Tstat, for instance. The proxies allow mPlane components to trigger on-demand
analysis or accessing results from existing measurement campaigns. An interesting example
is the one represented by RIPE Atlas [8]. Atlas is an existing distributed active measurement
platform which have been integrated in the mPlane greatly enriching the scale of available
measurements.

Repository and Analysis Layer The measurements produced by the first layer are then
collected in a standard way and pre-processed. Similarly to the measurement layer, this one
is composed by both novel and existing storage and processing technologies (e.g., Hadoop,
MongoDB, SQL databases). This layer is, indeed, not to be considered a mere storage
for measurement results, but it includes analysis capabilities. In particular it produce online
traffic aggregations to support the RCA process. DBStream, [22] a streaming data-warehouse
developed in the context of mPlane, is a clear example of this. It is capable of importing
measurements and run continuous query to produce on-line aggregations and materialized
views. Most of the results produced for this thesis are actually based on custom DBStream
jobs.

Management Layer This component is the key element of the mPlane framework. It
controls probes and repositories and iterate on the obtained results to drill down on specific
network issues. The distributed nature of the measurement and repository/analysis layers
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Figure 2.2.: Example of an intelligent reasoner for the automatic detection and diagnosis
of network anomalies. The reasoner controls both active/passive probes and
repositories through the mPlane management layer to iteratively drill down on
the causes of network problems. Based on the Figure originally published in [13].

allows the supervisor to gain a large-scale visibility and mine correlations among network
phenomenons. The iterative analysis is supported by an intelligent reasoner and specific
analysis modules (e.g., anomaly detection modules). The results of Chapter 7 represent an
example of a reasoner devoted to the diagnosis of network anomalies.

2.1.3. Anomaly Detection and Diagnosis in mPlane
The distributed mPlane architecture is designed to be capable of tackling many different use-
cases and monitoring scenarios. In the course of the project, the consortium has proposed
a list of sample case studies [23], designed so as to demonstrate the advantage of using
an mPlane-like approach to measurements. These use cases include: estimation of content
and service popularity for network optimization, web content promotion and curation, ac-
tive measurements for multimedia content delivery, quality of experience for web browsing,
verification of service-level agreements, anomaly detection and root cause analysis.

The results described in this thesis are part of the work done on the latter. The goal
is to continuously monitor the network traffic on a large-scale level in order to not only
detect, but also diagnose anomalous events that impact the involved stake-holders, from the
remote services to the end-users. The focus is on particularly popular Internet applications
such as social networks, video streaming services and instant messaging systems. The study
of this services, however, imposes serious challenges due to their sophisticated and dynamic
provisioning systems. Indeed, distributed Content Delivery Networks (CDNs) such as Amazon
Web Services, Akamai, SoftLayer, Limelight, Google CDN, etc., have become the standard
approach to cope with the huge and ever increasing demands of users in terms of reliability
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and expected quality.

The problem of achieving the automatic diagnosis of anomalies in this complex scenario
calls for the adoption of this distributed and structured measurement approach, such as
the one mPlane proposes. More specifically, a supervisor, which is able to orchestrate ad-
hoc measurements and trigger deeper analysis upon request, would offer all the instruments
for designing an intelligent component, i.e., a reasoner, that allows an efficient Root Cause
Analysis (RCA), such as the one sketched in Figure 2.2. An example of workflow for diagnosis
reasoner is described in the following:

(i) passive and active monitoring: deployment of passive probes at several Vantage Points
(VP). The gathered data allows to monitor large-scale services (if the probes are located
at PoPs aggregating large populations of customers) and/or end-customer connections (if
the probes are located at a specific server, for examples an FTP server used at target for
throughput measurements). The latter case results in an hybrid measurement scheme as
the passively collected information can be correlated with ad-hoc active measurements. In
addition, deployment of active probes in an ISP network to periodically run latency (using the
standard ping tool) and speed-test measurements (using a monitored FTP server as target,
as explained above). All the collected measurements are fed to a smart repository, such as
DBStream.

(ii) anomaly detection: run multiple instances of a specific analysis module for the detec-
tion of anomalies on different traffic features. An example of an anomaly detection module
developed in mPlane is ADTool, which is part of the contributions of this thesis. If an alarm
on a monitored traffic feature is raised, the Supervisor receives a notification.

(iii) correlation of multiple data-source and reactive monitoring: when the Supervisor
is triggered by the previous step, it runs a correlation analysis to investigate which features
are involved in the anomaly (i.e., present time-correlated changes). If needed, the Supervisor
can also instantiate ad-hoc active measurements or retrieve existing passive measurements
from different VPs to increase the visibility on the issue. When all the required informa-
tion has been collected and correlated, it produces a signature of the anomaly to support
the troubleshooting (e.g., it compares the signature against a catalog of known anomaly
patterns).

As we will show, this thesis addresses these three points, among other contributions. In
particular, (i) it firstly deals with the problem of understanding network data by deeply
characterizing popular services and the anomalies they are affected by, focusing on passive
measurements (cfr. Chapter 4 and 5). Thanks to this characterization, (ii) we also design
analysis modules for the detection of anomalies (cfr. Chapter 6). Finally (iii) we design a
linear diagnosis process, based on the analysis and correlation of passive measurements (cfr.
Chapter 7). The reactive monitoring approach, as originally envisioned in [24], is still an open
research topic. However, we believe that the preliminary results on the iterative diagnosis
scheme presented in Chapter 7 provide an interesting starting point for future research.
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2.2. Analysis Tools and Methodologies
In this Section we give an overview of the tools and methodologies that have been adopted
to support this work, both well-known and novel. Where specified, they are part of the
contributions of this thesis.

Large-scale Passive Measurements The results presented in this thesis are mostly based
on the analysis of passive network traces, which have been collected at Vantage Points (VPs)
located in operational networks. The great advantage of inference from passive measurements
is that results reflect the actual usage of the network by real users. Furthermore, it allows to
gain statistics at a large scale, potentially from millions of users, hence with a high degree
of statistical significance. On the other end, it is usually difficult to have access of such
datasets due to privacy and business related issues. In our studies, we had access to two
VPs at the core of a fixed-line and a cellular network belonging to two Major European ISPs,
respectively. For the capture of datasets, we relied on two distinct passive probes, both well-
known in the research community: Tstat [7, 21] and Metawin [6]. Tstat (TCP STatistic
and Analysis Tool) is a traffic sniffer developed by the Polytechnic University of Turin. The
datasets captured by Tstat and used in this thesis correspond to a residential ADSL access line
composed of thousands of customers in Europe collected in 2013. METAWIN (MEasurements
and Traffic Analysis in WIreless Networks) is a probe developed by the Telecommunications
Research Center of Vienna (FTW) specifically designed for cellular networks, capable of
handling the complete 3GPP stack. For our studies, we relied on the traffic captured by
METAWIN at the Gn interface of an operational Nation-wide HSPA network in Europe,
during several capturing campaigns carried out in the years 2012-2014.

Active Measurements Some hosting infrastructure and service characterizations pre-
sented in Chapter 4 and Chapter 5 additionally rely on active measurements. Differently
from passive techniques, the concept of active measurements consists in injecting traffic in
the network. Popular tools such as ping or traceroute rely on the Internet Control Message
Protocol (ICMP) protocol to check the reachability of remote hosts, calculate the Round
Trip Time (RTT) and the path. In this thesis we use ping to observe the RTT from our
location to the servers hosting the applications under study. This is particularly useful for
estimating the distance of servers, discovering the hosting infrastructure and its temporal
dynamics.

Geo-distributed Active Measurements One of the main problems of active measure-
ments is that they provide a local view on traffic. Indeed, it is impossible to generalize the
results obtained from a single measurement point. To overcome this limitations, we rely on
RIPE Atlas [8]. Atlas is a large measurement network composed of geographically distributed
probes used to measure Internet connectivity and reachability, maintained by RIPE NCC. The
framework allows to set up distributed active measurement campaigns through the definition
of User Defined Measurements (UDMs). In this thesis, it has been used to complement the
analysis presented in Section 4.6 to verify the validity of the conclusions obtained by a single
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VP on a world-wide scale. Furthermore, we present in Section 7.8 some preliminary results
on an iterative diagnosis process exploiting this measurement scheme. In this work, we relied
on an open source command-line interface to the framework, i.e., Atlas Toolbox, developed
by the author of this thesis [25].

Hybrid Measurements Some Internet services use encrypted connections, therefore the
first step to analyze their functioning in the wild is to better understand its inner working. To
this end, we rely on the manual inspection of hybrid measurements, i.e., we actively generate
traffic for the specific service at end terminals and, at the same time, we passively observe
the traffic at the gateway. An example of this approach is presented in Section4.6, where we
characterize WhatsApp. In that particular case, we focus on the capture of DNS requests to
uncover the server naming scheme used by WhatsApp. For the live capture we relied on the
popular tool Wireshark [5], an open source packet analyzer.

GeoIP Datasets To support the characterization of Internet services and content providers
(cfr. Chapter 4) we relied on a GeoIP dataset provided my MaxMind [26]. Such datasets
are periodically regenerated to offer and updated mapping between IPv4 addresses and their
topological and geographical location, i.e., Autonomous System Number (ASN) a city-level
estimation of their position. Given that the city-location accuracy of this kind of datasets is
questionable [27], we usually cross check the validity of the location using active measure-
ments, such as traceroute and ping. The localization of IP addresses is not only important
for the characterization of Internet services’ hosting infrastructures, but also for the study of
large scale changes in the provisioning of popular applications, such as the ones presented in
Section 5.3 and 5.6.

Stream Data-Warehouse All datasets used in this thesis have been analyzed using cus-
tom Perl scripts running on top of DBStream [22, 28]. DBStream is an open source
streaming data-warehouse system developed by the Telecommunications Research Center of
Vienna (FTW) in the context of the mPlane project. Its main goal is to process data from
multiple sources as they are produced, create aggregations, and store query results for further
processing by external analysis modules or visualization. The system is particularly useful in
dealing with online network monitoring.

Traffic Classifiers The analysis based on the fixed-line datasets relies on the classification
capabilities of Tstat, which we have used in particular for producing the results of Section 4.4.
For what concern the METAWIN-based datasets captured in cellular networks, we classified
web services using the pattern-matching based classifiers HTTPTag [P1] and HTTPTag2
[P14], which are part of the contributions of this work and will be fully described in Chapter 3.

Distribution Distance Metric During this work, we resort on the comparison of traffic
feature distributions, for example for building graphical tools (such as the TSP, presented
below) and in our distribution-based detection algorithm (cfr. Section 6.6). We adopted
the Kullback-Leibler divergence (KLd) as our metric of choice, as it has been proved to be
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very effective in the field of traffic monitoring and analysis [29]. As the KLd is not strictly
a distance metric per se, we use its entropy-normalized symmetric version, indicated later as
ENKLd. We refer the reader to Section 6.6 for a more detailed description.

Temporal Similarity Plots (TSP) It is a powerful graphical tool, originally proposed in
[29], that allows pointing out the presence of temporal patterns and (ir)regularities in distri-
bution time-series by graphical inspection. In a nutshell, a TSP is a symmetrical heatmap-like
plot, in which the value {i, j} reflects how similar are the two distributions at time ti and tj.
By construction, the TSP is symmetric around the 45◦ diagonal, and it can be interpreted
either by columns or by rows. For example, if we read the TSP by rows, for every value j in
the y-axis, the points to the left [right] of the diagonal represent the degree of similarity to
past [future] distributions. In this thesis, we used the KLd distance metric for building the
TPS. The TSP is particularly useful for graphically pointing out temporal patterns in the pro-
visioning systems of Internet services and their changes of settings, as done in Section 5.3.2
and 4.5.5. We refer the interested reader to [29] for a detailed description of the TSP tool.

Entropy-based Detectors It is a popular and extensively studied approach for detecting
anomalies in network traffic. It works by flagging abrupt changes in the time series of the
empirical entropy of certain traffic features, which is often an evidence of the presence of
an anomaly. The change detection is based on algorithms such as Exponential Weighted
Moving Average (EWMA). Despite the popularity, we found its inapplicability in a number
of scenarios. We refer the reader to Chapter 6 for the complete description and evaluation.

Distribution-based Detectors One of the goals of this thesis is to design and evaluate
novel anomaly detection algorithms. We will later present a statistical detector based on the
Kullback-Leibler divergence. In a nutshell, the non-parametric algorithm computes the degree
of similarity between the empirical distribution of traffic features to a set of (anomaly-free)
distributions in a dynamic “observation window”, which describe the “normal” behavior. The
algorithm is based on a previous work [29], but has been greatly improved and re-adapted
as a contribution of this thesis. We refer to Chapter 6 for a description and evaluation of
the algorithm. In Appendix A we provide an overview of ADTool, an implementation of the
algorithm developed by the author of this thesis. ADTool has been used as one of the main
components for the anomaly detection and diagnosis reasoner in the context of the mPlane
project.

Quality of Experience (QoE) models The aftermath of network anomalies is, in some
cases, the degradation of the end-user QoE. Assessing the effects of such degradations is a
difficult task as it requires to map network statistics to human expectations. Towards this
end, we rely on QoE models produced in controlled laboratory experiments. This experiments
consist in simulating different network conditions and observing user reactions in presence of
service impairments. By this, it is possible to build a model that estimate the QoE impacts of
the anomalies observed passively on large-scale networks. These models encode acceptance
thresholds in correspondence to different values of Key Performance Indicators (KPIs), such
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as the down-link throughput. Some QoE considerations based on this approach are presented
in Sections 4.4.4, 4.6.4, while in Sections 5.6, 6.9 we study a QoE anomaly by applying such
models at a large-scale.

Social Data Analysis For the study of an outage of a popular Internet service in Sec-
tion 5.5, we correlate the outage characteristics, such as the drop of traffic volume, with
the reaction of users on Online Social Networks (OSN) such as Twitter (see an example in
Section 5.5). Even if social network data are employed in a number of different analytics,
from the best of our knowledge we are the first ones to correlate such information with
network measurements to complement the study of anomalies. We believe that this is an
interesting starting point for a possible research direction in the field of QoE, as one could
resort to OSN as an alternative ground-truth for measuring the user satisfaction and/or user
reactions in presence of service impairments.

Machine Learning Techniques The diagnosis process that will be described in Chapter 6
and 7 terminates with the generation of anomaly fingerprint which are in turn classified.
We decided to build the classifier based on standard C4.5 decision tress, and compare its
performance to that obtained through five standard supervised-learning-based approaches
previously used in the literature: Multi-Layer Perceptron (MLP), Artificial Neural Networks
(ANN), Naive Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), and
Locally-Weighted-based Learning (LWL). As for the tools, we rely on Weka (Waikato Envi-
ronment for Knowledge Analysis), a popular open source suite of machine learning software
[30].

2.3. Characterization Methodology at a Glimpse
The general approach of this work, both for the characterization of Internet services’ provi-
sioning systems and for the design of diagnostic algorithms, lies on study of the correlations
of a number of traffic features. To this end, we rely on different kinds of measurements:
mainly passive, supported by additional active and hybrid probing. The adopted methodolo-
gies and algorithms are, in some cases, well-established in the traffic monitoring and analysis
community, having been built in over a decade of operational experience. In addition to
those, we have designed novel techniques aimed at unveiling original perspectives on some
traffic dynamics. Chapters 4 and 5 are rich of examples of advanced mining of traffic char-
acteristics. When tackling the characterization of an Internet service, we use the tools and
methodologies described above, resulting in a structured approach that can be sketched as
follows:
(i) Understanding server naming scheme. It consists in manually checking the set of
Fully Qualified Domain Names (FQDN) of a target service and consequently represent it in
a concise regular expression. This is usually done by using hybrid measurements, as done in
Section 4.6, for instance.
(ii) Classification. By using the regex previously built, we use our own classification tools
(HTTPTag) to extract all the relevant flows or HTTP tickets from a passively captured
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dataset. The classification is achieved by pattern matching of requested FQDN in DNS
queries or in the GET field of HTTP tickets (when available). The complete procedure is
described in Chapter 3.
(iii) Provisioning system discovery. We extract the list of remote server IP addresses
used by a Web service that are visible in the passive datasets. Note that using large-scale
network traces, we can have a quite general perspective of the IP list (limited, of course, to
the geographical location of the VP). Using active measurements to obtain the RTT towards
servers is a common way to disclose groups of close hosting locations and datacenters.
In addition, MaxMind-like datasets allow to estimate their geographical (Nation-level) and
topological (AS-level) location, which provides details on the hosting companies involved in
a service provisioning system. This information could be used by ISPs to understand traffic
sources and consequently enforce efficient network planning decisions and peering agreements
with their neighbors.
(iv) Flow characteristics. It consists in studying, for instance, the flow duration, size and
throughput. This gives an indication of the network footprint of a service. Furthermore,
a bleeding edge research topic is the correlation of these characteristics with QoE models
to assess the quality level perceived by end users. Indeed, the “human factor” is quickly
becoming a pillar in the field of network measurements. It is important to take QoE-models
into account in assessing the impacts anomalies involving performance degradations (cfr.
study of QoE impairments in Section 5.6). The QoE models are built in controlled lab
experiments and then applied in the wild to check specific Key Performance Indicator (KPI)
changes could result in degradation of quality.
(v) Unveiling temporal dynamics. For this, we employ novel approaches to study the
evolution of the hosting infrastructures of Internet services over a number of different time
scales (e.g., daily, weekly, monthly, longer-term). We use minRTT heatmaps and TSPs to
graphically inspect the server dynamics and to discover the presence of peculiar events. This
is a fundamental step, as the design of diagnostic algorithms has to take into account the
traffic dynamics and variability to be robust against them and, most importantly, being able
to distinguish “physiological” from anomalous changes.
(vi) Comparing different access technology patterns. This step consists in the com-
parison of the above mentioned characteristics as seen in Vantage Points located in different
networks. Unfortunately, such a comparison is in general hard to achieve as it requires the
access to parallel measurement campaigns. In this thesis, we had the chance to compare
YouTube traffic as seen in a Nation-wide cellular and in a large-scale fixed line DSL network.
This study is presented in Section 4.4 and highlights interesting peculiar characteristics of
the two caching approaches used by the popular video streaming service YouTube.

As for the second part of this work, i.e., the design of a system for automatic detection
and diagnosis of network anomalies, the correlation of different traffic features is the core
element. Literature is rich of systems for detecting the presence of anomalies in specific traffic
features. However, both in production and research environments, the common approach is
to manually mine the presence of correlations to study an anomaly. Our goal is to provide a
structured view of both existing and new mining techniques to get closer to the automation
of these procedures.
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3. Traffic Classification Techniques

Notice of adoption from previous publications
Parts of the contents of this Chapter have been published in the following papers:

[P1] P. Fiadino, A. Bär, P. Casas, “HTTPTag: A Flexible On-line HTTP Classification System for Oper-
ational 3G Networks”, in IEEE INFOCOM Poster/Demo Session, 2013.

[P2] P. Casas, P. Fiadino, “Mini-IPC: A Minimalist Approach for HTTP Traffic Classification using IP
Addresses”, in Wireless Communications and Mobile Computing Conference (IWCMC), 2013.

[P3] P. Casas, P. Fiadino, A. Bär, “IP Mining: Extracting Knowledge from the Dynamics of the Internet
Addressing Space”, in The 25th International Teletraffic Congress (ITC2013), 2013

[P13] P. Fiadino, M. Schiavone, P. Casas, “Vivisecting WhatsApp through Large-Scale Measurements in
Mobile Networks”, extended abstract in ACM SIGCOMM Poster/Demo Session, 2014.

[P14] P. Fiadino, M. Schiavone, P. Casas, “Vivisecting WhatsApp in Cellular Networks: Servers, Flows, and
Quality of Experience”, TMA, 2015.

The author of this thesis provided major contribution to the design of the classification techniques
(HTTPTag, HTTPTag2 and Mini-IPC) and the results obtained by using them. The implementation and
integration with DBStream, the data-warehouse system in use, has been supported by the co-authors,
in particular Arian Bär, the main developer of DBStream. The work has been supervised by Dr. Pedro Casas.

3.1. Introduction
HTTP is doubtlessly the dominating content delivery protocol in today’s Internet. The
popularity of services running on top of HTTP (e.g., video and audio streaming, social
networking, on-line gaming, etc.) makes that more than 75% of today’s residential customers
traffic is accountable to HTTP [31, 32]. In addition, a big share of Internet ecosystem is
shaped by the success and influence of the most popular web services: YouTube, Netflix,
Facebook, and even Dropbox are forcing the Internet to shift the content as close as possible
to the end-users, which in turn is modifying the way content is hosted, replicated, addressed,
and served. In this scenario, understanding HTTP traffic composition, usage patterns, and
content location and distribution is highly valuable for network operators, with application
in multiple areas such as network planning and optimization (e.g., content caching), traffic
engineering (e.g., traffic differentiation/priorization), marketing analysis (e.g., heavy-hitter
applications), just to name a few of them.

For instance, lets consider specific classes of services which are particularly critical for
operators, such as automatically updated services or similar scheduled activities. Their syn-
chronized behavior imposes serious challenges as the steep increase of traffic concentrated
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in short periods of time could lead to an high consumption of the available resources. Iden-
tifying such services, and consequently understanding their traffic patterns, could help the
operator to optimize and dimension network resources by forecasting traffic peaks. Another
interesting example is the one represented by Video Streaming services, due to the large
amount of traffic volume they generate. Understanding video traffic composition can help
in deploying content caching servers and optimize internal routing to minimize costs and
maximize the performance.

This Chapter addresses the classification of applications running on top of HTTP by
presenting three novel techniques relying, respectively, on hostname pattern matching, DNS
requests and IP addresses. Beyond its intrinsic importance for network operators, HTTP
classification is clearly the staging post for understanding large-scale traffic dynamics and
addressing their anomalies. As such, the tools resulting from the studies illustrated in this
Chapter constitute the first and fundamental step for this thesis.

3.2. Related Work and Contributions
The field of automatic Internet Traffic Classification (TC) and analysis has been extensively
studied during the last decade [33, 34]. Standard classification approaches rely on Deep
Packet Inspection (DPI) techniques, using pattern matching and statistical traffic analysis
[7, 35, 36, 37]

Probably the most popular approach for TC exploited in recent years by the research
community is the application of Machine Learning (ML) techniques [38]. A standard non-
exhaustive list of supervised ML-based approaches includes the use of Bayesian classifiers [39],
linear discriminant analysis and k-nearest-neighbors [40], decision trees and feature selection
techniques [41], and support vector machines [42]. Unsupervised and semi-supervised learning
techniques have also been applied for traffic analysis and classification [43].

Work on TC for specific network management requirements, such as fast TC [44] and TC
based on sampled traffic [45] has also been part of the long list of studies conducted in the
past.

The shift of applications towards Web-based traffic in today’s Internet has recently started
a new wave in the study and development of TC techniques. In the specific case of Web and
HTTP traffic, classification and analysis has been the focus of many studies [46, 31, 47, 48,
49, 50]. Authors in [46] study the composition and characteristics of modern Web traffic,
using a large dataset spanning close to 200 countries worldwide. In [50], authors use payload-
based analysis heuristics to classify 14 different HTTP classes. In [31, 48], authors use DPI
techniques to analyze the usage of HTTP-based applications on residential connections,
showing that HTTP traffic highly dominates the total downstream traffic volume. Authors
in [47] study the extension of HTTP content caching in current Internet, characterizing
HTTP traffic in 16 different classes using port numbers and heuristics on application headers.
Recently, the authors of [49] provide evidence on a number of important pitfalls of standard
HTTP traffic characterization techniques which rely exclusively on HTTP headers, showing
for example that around 35% of the total HTTP volume presents a mismatch in headers like
Content-Type, extensively used in previous studies.
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network type cellular (2G/3G)
monitoring system METAWIN at Gn interface
ticket type HTTP tickets
length ∼ 6 months
time Q4 2011 - Q2 2012

Table 3.1.: Dataset used for long-term tracking with HTTPTag

Finally, the large scale adoption of end-to-end encryption over HTTP has motivated the
development of novel technique to classify applications distributed on top of HTTPS traffic
[51, 52], relying on the analysis of DNS requests.

In this Chapter, we present three novel classification systems specifically designed, deployed
and tested in cellular networks. From the best of our knowledge, we are the first to provide a
description of a working traffic classification algorithm specifically designed and tested on an
operational cellular network. Moreover, we avoid relying on standard DPI techniques, both
for ethical and technical reasons.

3.3. System Architecture and Datasets
The long-term application tracking showed in this Chapter are based on the analysis of
network traces passively captured at the core of an operational cellular network in Europe over
6 months between 2011 and 2012. The dataset characteristics are summarized in Table 3.1.
For capturing and filtering the traffic, we rely on the METAWIN passive monitoring system
[6]. Packets are captured on the Gn interface links between the GGSN and SGSN nodes
at the core of a Nation-wide cellular network. The monitoring system produces flow-level
traces and application-level tickets, such as HTTP and DNS. A ticket is the summary of a
transaction: in the case of HTTP, it contains information related to the HTTP connection
(e.g., timestamp, requested hostname, transferred up-/down-link volume, error codes, user-
agent, etc.), while a DNS ticket contain the queries issued by users, the set of answers, the
resolver IP addresses and a status code (e.g., query successful, timeout, etc.). To preserve
user privacy, any user related data (e.g., IMSI, MSISDN) are removed on-the-fly, and payload
content beyond HTTP headers is ignored.

These network traces and tickets are continuously fed to a streaming data warehouse
system called DBStream [22, 53]. DBStream is a middle-ware layer on top of PostgreSQL
specifically tailored to import, store and process data streams. It allows at the same time
to run live analysis on imported data and execute long-term historical studies. The overall
system architecture is depicted in Figure 3.1.

3.4. Hostname-based Classification (HTTPTag)
In this Section we show HTTPTag, described in our publication [P1], a flexible on-line
traffic classification system for analyzing applications running on top of HTTP. Similar to
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SGSN GGSN internetRNC
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radio access network (RAN) core network (CN)
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HTTP tickets
DNS tickets
Flow-level tickets

network 
traces

Figure 3.1.: Vantage Point (VP) deployment in an operational Mobile Network. A passive
probe (METAWIN) collects network traces at the Gn interface and stores them
in a stream data-warehouse (DBStream).

URL: http://www.bbc.co.
uk/news/business-20663037

Request bytes: 172
Response bytes: 420
Timestamp: 1343484000

[...]

HTTP ticket

Google 
(search)

Facebook^www\.facebook\.com$

^www\.google(\.[a-z]{2,3}){1,2}$

^www\.fbcdn\.net$

^www\.bbc\.(co\.uk|com)$

Facebook

regular expressions services

BBCpattern 
matching ...

Figure 3.2.: Matching URLs and Hostnames with patterns and services. The regular expres-
sions are ordered by probability of occurrence to improve the pattern matching
speed.

[47, 48], HTTPTag focuses exclusively on HTTP traffic analysis. The approach adopted
for the HTTP classification is based on tagging, i.e. associating a set of labels or tags
to each observed HTTP request, based on the contents and service being requested. This
association is performed by simple regular expressions matching, applied to the host field of
the corresponding HTTP request’s header. HTTPTag currently recognizes and tracks the
evolution of more than 280 services and applications running on top of HTTP, including for
example tags like YouTube, Facebook, Twitter, Zynga, Gmail, etc. Due to the highly
concentrated traffic volume on a small number of heavy hitter applications, the current list
of services spans more than 70% of the total HTTP traffic in the 3G network of a leading
European provider.

3.4.1. HTTPTag Overview
HTTPTag works with HTTP tickets collected in DBStream, as previously explained. HTTP
tickets are detected and analyzed on the fly: every new HTTP transaction is parsed and
the contacted hostname (extracted from the URL) is compared against the defined regular
expressions or patterns, see Figure 3.2. If a matching pattern is found, the transaction is
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Figure 3.3.: HTTP traffic classification using HTTPTag. HTTPTag labels more than 70%
of the overall HTTP traffic volume caused by more than 88% of the web users.
The top-10 services w.r.t. volume account for almost 60% of the overall HTTP
traffic, and the top-10 services w.r.t. popularity are accessed by about 80% of
the users. In (c), HTTPTag is able to label between 69% and 74% of the total
HTTP volume on the studied traces, for the complete week.

assigned to the corresponding service. As such, for every observed HTTP flow, HTTPTag
provides a mapping or association between the hosting IP address and the corresponding
service.

To improve pattern matching speed, patterns are ordered by probability of occurrence,
which are computed from the history of successful matches. HTTPTag tagging approach
is based on manual definition of tags and regular expressions, which might a priori impose
scalability issues. Indeed, there are millions of websites on the Internet and it would be
impossible to define enough patterns to classify every possible requested URL. However, the
well known mice and elephants phenomenon also applies to HTTP-based services [54], and
limiting the study to the most popular services already captures the majority of the traffic
volume/users in the network. While the initial definition of tags is a time-consuming task,
regular expressions identifying applications tend to remain stable in time, basically because
they are associated to the name of the application itself and thus recognized and used by
the end-user. This is specially true for popular services, which carry the most of the traffic.
We have discovered that an initial effort in classifying the top 50 sites combined with weekly
updates ensures a high classification rate. HTTPTag provides a GUI-based exploring system
to identify the top hostnames responsible for the largest non-classified traffic volume and
number of visitors, easing the tagging of new services.

Figures 3.3(a) and 3.3(b) depict the distribution of HTTP traffic volume and number of
users covered by HTTPTag in a standard day. Using about 380 regular expressions and 280
tags (i.e. services) manually defined, HTTPTag can classify more than 70% of the overall
HTTP traffic volume caused by more than 88% of the web users in the studied network.
Note that a small number of heavy hitter services dominates the HTTP landscape: the
top-10 services w.r.t. volume account for almost 60% of the overall HTTP traffic, and the
top-10 services w.r.t. popularity are accessed by about 80% of the users, mostly overlapping.
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Figure 3.4.: HTTPTag classification coverage and some long-term tracking examples reveal-
ing different events of interest in an operational 3G network.

These results reinforce the hypotheses behind HTTPTag: focusing on a small portion of the
services already gives a large traffic visibility to the network operator.

To verify the stability of these results over time, Figure 3.3(c) shows the total daily HTTP
volume labeled by HTTPTag during a week of traces. The week corresponds to the first 7
days of April 2012, from Sunday the 1st till Saturday the 7th. HTTPTag is able to label
between 69% and 74% of the total daily HTTP volume on the studied traces, depending of
the different network usage patterns during weekends and working days. While the set of
heavy hitter applications is stable over time, in fact, the distribution are slightly less skewed
on Sunday inducing a small decrease in the classification rate.

3.4.2. Long-term results
We now show two examples of long-term tracking capabilities of the HTTPTag classifica-
tion system applied in an operational network. To this end, we chose two popular types of
applications, namely Antivirus Update and Video Streaming services. These classes are par-
ticularly relevant for ISPs due to, respectively, the potential issues caused by the synchronized
behavior of terminals and the large traffic volume that they generate. Figure 3.4 depicts the
long-term tracking capabilities of HTTPTag in these two case studies.

Antivirus Update Services In Figure 3.4(a) we track the traffic generated by three
popular antivirus services (Symantec, Kaspersky, and Avira) over a four months period (from
the 26/05/12 to 15/10/12). Analyzing the traffic patterns on a sufficiently long period gives
a good image on the different approaches the three companies use to manage software and
virus-definition updates. While Kaspersky shows a quite constant behavior, both Symantec
and Avira present important peak volumes on specific update periods, which might heavily
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Figure 3.5.: Temporary IP-hostname mapping through DNS monitoring. HTTPTag’s
hostname-based approach is then applied on the hostname column.

load the network. This information could be directly used by the network operator to define
routing, load balancing, or prioritization/shaping policies.

Video Streaming Services Figure 3.4(b) depicts a comparison of four video streaming
services on a 6-months period (from the 1/12/11 to the 25/05/12): Megavideo, Stream2k,
and two adult video services (AVS 1 and 2). After 46 days from the starting tracking day,
Megavideo traffic completely disappears, which correlates to the well-known shut-down of
the Megaupload services on the 19/01/12. Part of the video streaming volume provided by
Megavideo was taken by a direct competitor, Stream2k, which shows a slow yet constant
growth on the following months. Finally, we observe a drastic shift in the consumed volume
from the two AVS services after 3 months and a half of steady traffic. We do not have a
direct answer for this shift, but a change in the charging policy to access the content (e.g.,
free to subscription-based access) could explain such a variation. Having a complete picture
of these popularity/usage modifications gives the operator the chance to better react to them
(e.g., by defining specific content caching policies to reduce the load on the core links).

3.4.3. Leveraging DNS for HTTPS classification (HTTPTag2)
As seen, HTTPTag is capable of achieving a good classification rate, with more than 70%
of the overall HTTP traffic volume caused by more than 88% of the web users in the traces
previously studied. However it does not recognize HTTPS traffic: its prerequisite, in fact,
is the availability of the requested hostname, which is encrypted in HTTPS. Recent studies
show that the overall share of HTTPS is constantly increasing as popular web services are
relying on it by default: it is estimated that HTTPS accounts for 25% of downlink and 80%
of uplink traffic volume [55]. On the long term, this could lead to an overall decrease of the
classified traffic volumes. To overcome this limitation, HTTPTag has been extended in order
to leverage the analysis of DNS query for the classification of HTTPS traffic.

Our approach is depicted in Figure 3.5. Every time a user issues a DNS request for a Fully
Qualified Domain Name (FQDN) example.net, HTTPTag creates an entry mapping this
user to the server IPs provided in the DNS reply. Each entry is time stamped and contains
the TTL replied by the DNS server. Using these mappings, all the subsequent flows between
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this user and this remote IP are assumed to be flows related to abc.example.net. To avoid
miss-classifications due to out-of-date mappings, every entry expires after a TTL-based time-
out. To increase the robustness of the approach, the list of IPs is augmented by adding the
list of server IPs signing the TLS/SSL certificates with the string *.example.net. Finally,
HTTPTag is applied on the obtained local mapping to classify the associated services by
means of the usual pattern-matching.

Note that, in this way, the pattern-matching scheme can be used to assign flows to a spe-
cific service not limiting the scope to HTTPS, but also, by extension to every application layer
protocol that does not allow to easily extract the contacted hostname, because of encryption
or by design. In the course of this thesis, we will extensively use this classification scheme
to analyze different types of applications (cfr. XMPP-like chat service characterization in
Section 4.6.

HTTPTag2 approach is similar to [51], however we also leverage the pattern matching
feature to also map flows to services, not limiting the classification to FQDNs. Further-
more, HTTPTag has been designed as a module in DBStream, hence relying on the stream
processing capabilities of the system for on-line classification.

3.5. A light-weight IP-based approach (Mini-IPC)
We now explore the possibility to exploit the remote service IP addresses as the only traffic
feature for the HTTP classification. To this extent, we propose a light-weight classifier, Mini-
IPC [P2], which is suitable for such HTTP services whose hosting infrastructure is particularly
stable over time, or in case of CDN-based distribution, use well-known IP ranges with slow
dynamics. Mini-IPC uses as learning input data the results provided by HTTPTag, described
in the previous section.

3.5.1. Mini-IPC Overview
Mini-IPC classifies HTTP flows based solely on the IP address of the server being contacted.
In a nutshell, given a specific service Si to be identified, Mini-IPC builds a set of ki well-
known IP addresses IPi = {ipi(1), ipi(2), . . . , ipi(ki)} hosting Si, using the associations
Ai = {Si.IPi} between server IPs and services provided by HTTPTag on a certain learning
period. Given a list of m services Si, {i=1..m} to classify and a downstream HTTP flow fnew
coming from IP address ipnew, Mini-IPC applies the following classification rule: F(fnew) =
Si ↔ ipnew ∈ IPi.

Given the widespread usage of third-party hosting organizations serving the content of
multiple services (e.g., Akamai), the big number of companies hosting multiple services in
the same datacenters (e.g., Google), and the ISPs content caching policies, multiple different
services Si might be associated to the same IP address, which actually means that the m
sets IPi are not necessarily disjoint sets. We shall refer to this IP sets intersection issue
as IP hosting collisions. In this case, the previous classification rule would associate fnew
to all those services mapped to ipnew. To solve this multi-classification issue and decide
for one single output, Mini-IPC currently uses a random selection approach, in which the
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decided service is randomly chosen among the potential ones. Such a straightforward decision
approach could be improved by heuristics, for example by adding weights to the candidate
services based on different criteria (e.g., size of the IP sets). Please note that improving
the classification process is out of scope. Our primary goal is to explore the applicability of
this classification approach that, as we will see, is not suitable for nowadays CDN services.

3.5.2. Mini-IPC Evaluation
To test the classification performance achieved by Mini-IPC, we focus the attention of the
top-7 services (in terms of traffic volume) depicted in Figure 3.3. These top-7 services are
responsible for almost 60% of the total daily HTTP volume during the whole duration of the
dataset (i.e., one week), which represents about 85% of the labeled services in terms of traffic
volume. The ordered list of services in terms of volume includes YouTube (YT), Facebook
(FB), Google (i.e., Google Search - GO), Apple (i.e., App Store and iTunes - APP), two
well-known Adult Video Streaming services AVS 1 and AVS 2, Microsoft Windows Update
- WIN.This volume-based ordering corresponds to the traffic of Monday, but remains stable
enough during the evaluated week. we divide the complete week of labeled HTTP flows in
n = 8 services or classes: the first 7 correspond to the top-7 services, whereas the 8th class
corresponds to all the rest of the labeled flows and will be referred to as the other class.
The classification associated to the class other is simply done by a complementary decision
rule: if according to F(fnew), flow fnew is not assigned to any of the top-7 services, then it
is assigned to the other class.

To asses the classification performance of the aforementioned approach, we employ three
traditionally used performance metrics in the traffic classification literature: the Classification
Accuracy (CA), the Recall (Ri), and the Precision (Pi) per class:

CA =
∑m
i=1 TPi
n

, Ri = TPi
TPi + FNi

, Pi = TPi
TPi + FPi

(3.1)

where TPi corresponds to the number of correctly classified flows in class i (i.e., number
of true positives), and FNi and FPi correspond to the number of false negatives and false
positives in class i. The classification accuracy indicates the percentage of correctly classified
flows among the total number of flows n. Recall Ri is the number of flows from class i
correctly classified, divided by the total number of flows in class i. It measures the per-class
accuracy. Precision Pi is the percentage of flows correctly classified as belonging to class i
among all the flows classified as belonging to class i, including true and false positives. It
measures the fidelity (i.e., variance of the classification error) of the classifier regarding each
particular class.

Figure 3.6 depicts the classification performance achieved in the learning day (i.e., Mon-
day), on an hourly basis, using the output of HTTPTag as ground-truth. Given the random
decision process used in case of IP hosting collisions, the algorithm is run 20 consecutive
times, and the provided results correspond to the obtained average values. Figure 3.6(a)
depicts the classification accuracy for the 8 defined classes. The error variance bounds re-
sulting from the 20 consecutive runs are negligible and not visible in the Figure. The overall
classification accuracy seems remarkably high and stable during the day, rounding about 75%
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(c) Precision per Service.

Figure 3.6.: Classification performance achieved in the learning day. The overall classification
accuracy is remarkably high and stable during the day, rounding about 75% of
correctly classified HTTP flows. More than 60% of all the Facebook, Adult
Video, Google Search, and Windows Update HTTP flows are correctly classified.

of correctly classified HTTP flows. These a-priori excellent results achieved by only using
IP addresses can be in fact misleading, because we are considering the other class inside
the classification process, which contains a much larger number of unique IPs. Figure 3.7
shows the confusion matrix for the classification results. Many YouTube flows are classified
as Google Search, and vice versa. Windows Update flows are misclassified as Facebook and
Apple, given the previously mentioned IP hosting collisions within Akamai. In all cases, many
flows are misclassified as belonging to the other class.

Let’s focus now on the per service recall and precision, depicted in Figures 3.6(b) and
3.6(c) respectively. The recall or per-service classification accuracy is still remarkably high
and stable during the day, with more than 60% of all the Facebook, Adult Video Streaming,
Google Search, and Windows Update HTTP flows correctly classified. Specially in the case
of the AVS 2 service, recall is as high as 98%, and both Facebook and Windows Update
HTTP flows are identified with a per-class accuracy above 80%. However, YouTube flows
are poorly classified, and the recall achieved is around 50%. The main reason for this poor
results come directly from the IP hosting collisions associated to the Google CDN, as many
of the YouTube flows are classified as Google Search according to Figure 3.7. When it comes
to evaluate the per-service precision, the achieved results are much less encouraging, and
show in all the cases that many of the flows are assigned to classes sharing similar IP ranges.
The recall obtained for Google flows is still pretty high and above 80% from 9 am onwards,
but results for YouTube, AVS 1, and Windows Update show a big number of false positives
associated to these services. As expected, the precision for the other class is of 100% during
the complete learning day, which comes directly from the applied classification technique for
this specific class.

The final analysis consists in the classification performance evaluation on a complete week
of traffic traces, using the IPs of Monday as learning data. Figure 3.8 depicts the per-
day accuracy, recall and precision achieved in over 7 days. Figure 3.8(a) shows that the
classification accuracy is remarkably stable during the full week, clearly suggesting that the
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Figure 3.7.: Confusion matrix for traffic classification. Many YouTube flows are classified as
Google Search. Windows Update flows are misclassified as Facebook and Apple,
given the previously mentioned IP hosting collisions within Akamai. In all cases,
many flows are misclassified as belonging to the other class.

sets of IPs delivering the different services are stable in time, at least in a weekly-basis. The
Figure additionally shows the normalized number of analyzed flows per day, to have an idea
of the volume variations during the week. Figures 3.8(b) and 3.8(c) additionally present the
daily recall and precision for the full week, showing once again that classification performance
is very stable in time. In fact, achieved results remain almost unchanged from those obtained
during the training day.

As a final consideration, we have seen that, despite its simplicity, this minimalist approach
is able to classify the HTTP flows associated to the top-services with a rather decent accuracy
of 75%. However, we have also seen that the classification recall and precision are highly
impacted by IP hosting collisions, seriously impacting the performance of Mini-IPC as a robust
traffic classifier. Still, results obtained for some of the analyzed services were encouraging,
achieving a daily per-class accuracy above 70%. Mini-IPC could be a practical and very
flexible solution for traffic aware networking, tackling those services with a stable or slowly
changing hosting. As we will see in the next Chapter, some large-scale services with big user
base (e.g. in the order of millions of users) are still characterized by simple infrastructures,
as in the case of WhatsApp (cfr. Section 4.6).

3.6. Summary
In this Chapter we have addressed the problem of HTTP traffic classification from network
measurements, exploring a hostname-based approach (HTTPTag, in Section 3.4). From this,
we have proposed a variant that relies on the analysis of DNS traffic passively captured to
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(b) Daily Recall per Service.
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(c) Daily Precision per Service.

Figure 3.8.: Classification performance achieved in the analyzed week of HTTP traffic. The
classification accuracy is stable during the complete week, and around 75% of
the HTTP daily flows are correctly classified.

extend the classifier scope to HTTPS, as well (HTTPTag2, in Section 3.4.3). The use of
encryption, in fact, makes it impossible to rely on the hostname as the sole traffic feature
used for the classification, without leveraging additional information. To this extent, we
proposed another pattern-matching classification scheme that also leverages DNS queries to
achieve the classification of encrypted traffic). The latter approach is the basis of most of
the analysis illustrated in the remainder of this thesis.

This Chapter also investigated the possibility of relying on a simple and lightweight clas-
sification approach (Mini-IPC, in Section 3.5). The evaluation of Mini-IPC demonstrated
that it is sometime tricky to simply relying on IP addresses in the field of TC. Nevertheless,
studying its limitations helped to start shedding light on the complexity of large-scale services
hosting infrastructure and the dynamics of their addressing space, which is the main goal of
the following Chapter.
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4. Characterization of Traffic from
Major Internet Services
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4.1. Introduction
A decade ago, Internet traffic was largely dominated by P2P file sharing, while HTTP-based
content and web services were provided by centralized or barely distributed servers. Single
hosts providing exclusive services at fixed IP addresses was the standard approach. Current
situation has drastically changed: in the previous Chapter we have seen that HTTP and
HTTPS are the leading application layer protocols —with increasing traffic share— as pop-
ular services run on top of them. The hosting scheme of Web services, especially for what
concerns the big players (i.e., organizations and/or services responsible for a large share of the
overall Internet traffic volume and/or number of users), has also greatly evolved: the map-
ping of IPs to different content and services is nowadays extremely dynamic. The adoption
of large CDNs by major Internet players, the extended usage of transparent content caching,
the explosion of Cloud-based services, and the decoupling between content providers and the
hosting infrastructure have created a difficult to manage Internet landscape. Content and
services are no longer located in centralized delivery platforms, owned by single organiza-
tions, but are distributed and replicated across the Internet and handled by multiple players.
Understanding the dynamics behind such an approach is paramount for network operators,
both to control the traffic on their networks and to improve the quality experienced by their
customers, specially when something goes wrong.

The limitations of a simplistic IP-based traffic classification scheme (cfr. Section 3.5) have
already given a glimpse of this complex scenario. In this Chapter we attempt to further unravel
the complexity behind the addressing dynamics of the top Internet services running on HTTP.
By using traffic traces passively collected at both cellular and fixed-line operational networks
of major European ISPs, we study the associations between services, hosting organizations,
and IPs assigned to the servers providing the contents. By mining correlations among these,
we extract useful insights about the dynamics of the IP addressing space used by the top
web services, and the way content providers and hosting organizations deliver their services
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to the end-users. The deep traffic characterization presented in this Chapter is, however, not
limited to the study of passive network traces alone. As we will show, we augmented the
information collected at our passive VPs with geo-IP datasets, such as MaxMind [26], which
help to better understand the hosting infrastructure from both topological and geographical
perspectives.

The extracted knowledge is not only useful for understanding the common issues associated
to complex services, but is also vital to conceive a diagnosis solution for detecting and
providing insights on impairments and quality degradations, as we shall see in next Chapters.

The remainder of this Chapter tackles the characterization of Web traffic from two different
perspectives: Section 4.3 offers an overview of the major players dominating the Internet
traffic, both from the hosting and service point of view. Sections 4.4, 4.5, and 4.6 focuses
instead on specific services - namely YouTube, Facebook, and WhatsApp, chosen for their
popularity and hosting infrastructure peculiarities.

4.2. Related Work and Contributions
The study and characterization of the Internet traffic hosted and delivered by the top content
providers has gained important momentum in the last few years [56, 54, 57, 58, 59]. In [56],
authors show that most of today’s inter-domain traffic flows directly between large content
providers, CDNs, and the end-users, and that more than 30% of the inter-domain traffic
volume is delivered by a small number of content providers and hosting organizations, being
Google the largest and fastest growing contributor to inter-domain traffic. According to
[54], the top 10 organizations handle 65% of the total web traffic in a major European ISP,
including companies such as Google, Akamai, Limelight, and Level3.

Several studies have focused on CDN architectures and CDN performance, analyzing fea-
tures such as CDN size, servers’ location, and latencies to content among other [57, 58, 59].
In particular, [58] focuses on user-content latency analysis at the Google CDN, [59] provides
a comprehensive study of the Akamai CDN architecture, and [57] characterizes the perfor-
mance of both Akamai and Limelight in terms of server availability and delay (note that
this paper has been withdrawn by request of Microsoft due to some inaccuracies flagged by
Akami and Limelight, but we cite it due to some interesting ideas). Deeper performance
analysis of major CDNs are also provided in [60] (analysis of Yahoo’s content delivery) and
[61] (behavior of a very popular and open CDN – CoralCDN).

An interesting direction exploited some years ago in terms of CDN characterization and
analysis is the one proposed by authors in [62, 63], where they proposed a systematic approach
for CDN operators and ISPs to collaborate in the delivery of content to the end-customers,
using the best of both sides (i.e., content location for the CDN, network performance and
topology for the ISP).

There has also be a recent surge of papers analyzing the structure, performance and
functioning of Google’s and Microsoft’s CDNs [64, 65, 66], pointing to the still lack of
general understanding on such issues.

Despite the attention on the characterization of Web traffic received by the research
community, literature is still lacking studies based on large-scale analysis, in particular applied
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(a) Share of HTTP volume per service. (b) Number of non-unique users per service.

Figure 4.1.: Share of daily HTTP traffic volume and users of the top 10 services accessed
in this network during the studied week. YouTube is the killer application w.r.t.
volume in mobile networks, with a volume close to 30% of the overall HTTP
traffic. Facebook and Google Search are the top services w.r.t. number of users,
being accessed by about 50% of them.

in cellular networks. The results showed in this Chapter aim at filling this gap. Indeed, to the
best of our knowledge, we are the first to (i) provide such deep large-scale characterization
of Internet traffic in cellular networks, (ii) compare the analysis of a popular video streaming
service (i.e., YouTube) from both the perspective of fixed-line and cellular networks, (iii) study
the provisioning systems of other popular Internet services (i.e., Facebook and WhatsApp).
Based on our results, some recent papers have started presenting results in some of these
directions [67].

4.3. Understanding the Provisioning Systems of the
Internet’s Big Players

In this section we focus on the hosting and service delivery analysis. This includes a charac-
terization of the number and temporal provisioning of the IP addresses used for each service,
the placement of the hosting servers, and the identification of load balancing techniques.

The results illustrated in this Section are obtained by the analysis of a full week of HTTP(S)
traffic traces collected in 2013 at the mobile broadband network of a major European ISP.
The dataset characteristics are summarized in Table 4.1. The architecture for the collection,
storage and analysis of such traces is similar to the one showed in the previous Chapter (cfr.
Section 3.3) and it is based on the METAWIN passive monitoring system, the DBStream
stream data-warehouse and HTTPTag, described in Section 3.4. The obtained dataset
consists of more than half a billion of passively observed HTTP flows, aggregated in a per-
hour basis. For each flow, the following meta-data are available: the contacted URL, the
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(c) Number of flows per hour.

Figure 4.2.: Evolution of unique IPs and num. of flows for the top-7 services on a single day.
Google Search, Facebook and YouTube dominate the IP space and account for
the majority of the flows. Thanks to Akamai, Facebook is the most IP-distributed
service, using more than 2000 different IPs on a single day.

contacted IP address, the total bytes exchanged with the contacted IP, and a timestamp. In
addition to the Full Qualified Domain Name (FQDN), the corresponding service is deduced
by using HTTPTag, as showed in the previous Chapter. As mentioned, the dataset also
includes the name of the organization owning the contacted IP, extracted from the MaxMind
ASes databases.

To limit the number of services to study, the analysis is performed exclusively for the top-7
services identified in Figure 4.1, which account for the majority of the HTTP traffic volume.
The service ranking has been obtained by first classifying the HTTP flows by using the
HTTPTag tool and then computing the per-service traffic volume as the sum of uplink and
downlink traffic including the TCP header (Figure 4.1(a)) and by user count (Figure 4.1(b)).
The list of services under study ordered by volume consists of: YouTube (YT), Facebook
(FB), Google (GO), Apple (i.e., App Store and iTunes - APP), two well-known Adult
Video Streaming services (AVS 1 and AVS 2), and Microsoft Updates (WIN). The list
also includes Others, which corresponds to other three video streaming services grouped
together. YouTube is clearly the killer HTTP service in terms of volume, carrying almost
30% of the total HTTP volume. Facebook and Google Search account for a smaller share
of the daily volume, both around 5%, but are accessed by a much higher number of users,
about 50% of the total users in the network.

network type cellular 3G
monitoring system METAWIN at Gn interface
ticket type HTTP tickets
length 7 days (Mon - Sun)
time Q1 2013

Table 4.1.: Dataset used for characterization of HTTP Services Provisioning
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Figure 4.3.: Distribution of the server IPs used by the top 7 services among the top hosting
organizations.

Org. (AS num.) id Org. (AS num.) id Org. (AS num.) id
Hotmail (12076) a Swiftwill (30361) f Apple (714) k
Google (15169) b Facebook (32934) g Microsoft (8075) l
Omniture (15224) c Level 3 (3356) h TeliaNet (1299) m
Akamai EU(20940) d YouTube (36040) i Verizon (701) n
Limelight (22822) e YouTube (43515) j other o

Table 4.2.: Top hosting organizations and ASes in terms of number of unique IPs of the
top-10 services (non-ordered list).

4.3.1. Big Players’ addressing space

Let us begin by analyzing the number of unique IP addresses used to deliver each of these
top-7 services on a single day. Figures 4.2(a) and 4.2(b) depict the evolution of the number
of unique IPs per hour and the accumulated number of unique IPs on a single day, whereas
Figure 4.2(c) plots the number of HTTP flows per hour (values are normalized for protecting
privacy and business sensitive information). For 6 out of the 7 services (i.e., all except
AVS 1), there is a clear correlation between usage and number of unique IPs delivering the
corresponding content. The changes observed in the unique number of IPs being used by
Google Search, Facebook, and YouTube are impressive, going from about 250 IPs per service
at 5 am to up to 1200 in the case of Google Search. These three services are provided by
large CDNs (i.e., Google CDN for Google services and Akamai for Facebook), which justifies
the large number of unique IPs being used during the day. Thanks to Akamai, Facebook
is the most IP-distributed service, using more than 2000 different IPs on a single day. The
number of unique IPs serving the video streaming service AVS 1 remains almost constant in
time and is below 100 all over the day, suggesting a very stable delivery infrastructure.

Using the MaxMind ASes databases we explore now how distributed are these unique IPs
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Service #/16 #/24 # IPs top-subnet /24 Org. (AS num.)
YT 10 51 1373 74.125.232.0 Google (15169)
FB 62 140 2031 2.20.182.0 Akamai EU (20940)
GO 9 73 1875 74.125.232.0 Google (15169)
APP 35 71 522 80.239.149.0 TeliaNet (1299)
AVS 1 23 71 92 204.160.106.0 Level 3 (1299)
AVS 2 6 13 456 87.248.217.0 Limelight (22822)
WIN 41 200 743 2.20.182.0 Akamai EU (20940)

Table 4.3.: Number of IPs and blocks hosting the top-7 services. The top /24 subnetworks
are defined in terms of number of HTTP flows delivered.

in terms of the different organizations owning them. Figure 4.3(a) shows the fraction of
unique IPs per service hosted by the list of organizations and ASes described in table 4.2.
The organization labeled as “other” (i.e., id o) consists mainly of ISP ASes which cache the
content at the edge of their own networks.

As expected, Google Search and YouTube IPs are mainly hosted by Google Inc. ASes,
Facebook IPs are mainly hosted by Akamai and Facebook ASes, and Windows Update IPs
are mainly hosted by Microsoft ASes. For example, in the case of Facebook, it is well known
that the static content is hosted by Akamai, whereas Facebook ASes host the dynamic
content [54]. Almost all of the AVS 2 IPs are hosted by Limelight, and this organization is
additionally hosting only a small fraction of AVS 1 IPs, with no other service being hosted
there.

Table 4.3 provides a summary on the number of IPs and potential /16 and /24 sub-
networks or IP blocks hosting the studied services. The term potential comes from the
fact that we only consider an aggregation of IPs using /16 and /24 net-masks for counting
purposes, but we are actually not sure if the corresponding subnetworks are configured as
such. The table also reports the top /24 subnetworks in terms of number of delivered flows,
together with the corresponding AS and hosting organization. We can appreciate that the
three services hosted by Akamai (i.e., Facebook, Apple, and Windows Update) are highly
distributed in terms of disjoint IP blocks. This is coherent with the fact that the Akamai
CDN deploys a highly distributed architecture with many thousands of servers (e.g., more
than 27.000 in 2008 according to [57]) following the enter deep into ISPs approach [57], by
deploying content distribution servers inside ISP POPs. The idea behind such an approach
is to get close to the end users, improving user-perceived performance in terms of both
delay and throughput. Such a design results in a large number of server clusters scattered
around the globe. On the other hand, the AVS 2 service is the most concentrated in terms
of IP blocks, having around 450 different IPs scattered around 6 /16 IP blocks. As shown
in Figure 4.3(a), AVS 2 is mainly hosted by Limelight, which follows a completely different
architectural design to that of Akamai; Limelight follows the bring ISPs to home approach
[57], building large content distribution centers at only a few key locations and connecting
these centers using private high speed connections.

A very interesting observation from Figure 4.3(a) is that many IPs delivering different
services are usually hosted by the same organization. For example, Akamai hosts content
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Figure 4.4.: Distribution of the IP range associated to the tagged services on a single day.
AVS 1 is highly distributed in terms of different IP blocks, whereas AVS 2 is
mostly served from a small number of blocks.

from Facebook, Apple, and Windows Update, whereas both YouTube and Google Search
belong to Google and YouTube ASes. Specially in the case of Facebook and Windows
Update, the majority of their flows are served from the /24 Akamai block 2.20.182.0/24,
and the same happens to Google Search and YouTube, being served by IPs in the /24 Google
block 74.125.232.0/24.

To further explore the ranges of used IPs, Figure 4.4 depicts the distribution of the IP
address ranges associated to the different top-7 services on a single day. Figure 4.4(a) depicts
the distribution of IPs without considering the actual number of HTTP flows being served
by each IP, whereas Figure 4.4(b) weights each of the IPs by the number of flows delivered.
The separation between blocks of IPs is remarkable, being AVS 1 the most notorious case.
Indeed, according to table 4.3, AVS 1 has only 92 unique IPs delivering its content, which are
distributed along 23 different /16 IP blocks. Figure 4.4(b) shows the aforementioned blocks
used by Akamai for Facebook and Windows Update, and by Google CDN for Google Search
and YouTube. The highly concentrated group of IP blocks used by Limelight to deliver AVS
2 are also noticeable, with the block 87.248.217.0 serving the majority of the flows.

4.3.2. Temporal dynamics of IP addresses
We move-on the analysis to the temporal evolution of the IPs used by some selected services
and CDNs. Figure 4.5 depicts the temporal evolution of the number of hourly unique IPs per
service, for some selected /16 blocks. Let us first focus on YouTube and Facebook, depicted
in Figures 4.5(a) and 4.5(b) respectively. Two /16 blocks are plotted in each case, the former
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Figure 4.5.: Temporal evolution of number of hourly unique IPs per service, for selected /16
blocks of IPs. The number of unique IPs used by Akamai to deliver different
services from different IP blocks is highly dynamic during the day, and presents
big changes under high-load or other on-demand situations.

remains reasonably stable during time in terms of number of unique IPs, the latter presents
a big increase in the number of used IPs when traffic load increases. In the case of YouTube,
the number of IPs in the block 74.125.0.0/16 varies between around 200 and 300 IPs, whereas
the variation in the block 173.194.0.0/16 is between 50 and 300 different IPs approximately.
Such differences suggest different location of content or different sever roles at different
blocks, load balancing techniques, or both. In the case of Facebook, the Facebook block
69.171.0.0/16 has an almost constant number of active IPs being accessed during the day,
whereas the Akamai block 92.122.0.0/16 presents strong variations, reflecting once again
different provisioning policies; in particular, Facebook servers might be continuously active
due to specific service requirements (e.g., Facebook servers handle all the control metadata
of Facebook sessions). Figures 4.5(c) and 4.5(d) show similar behaviors for 3 different IP
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Figure 4.6.: Distribution of min RTT per service and per hosting organization. A big share
of Facebook, Apple, and Windows Update flows come from servers located in
the same city of the vantage point. More than 60% of the Akamai HTTP flows
come from servers “inside the ISP”, with min RTT values smaller than 5ms.

blocks used by Apple and Windows Update, with some additional and very interesting spiking
activity consisting of short periods of time with large increases in the number of IPs being
contacted. For example, in the case of Apple, the Akamai block 92.122.0.0/16 presents a
spiking behavior every a couple of hours in the afternoon, with a markedly change from 20 to
70 unique IPs in one single hour, at 23:00hs. Windows Update also presents spiking behavior
out of the high-load time period, with an important increase of active IPs between 10:00hs
and 12:00hs in the Microsoft block 94.245.0.0/16. Such changes reflect both the flexibility
of Akamai to handle crowds with an increasing number of IPs, and the probable scheduling
of certain activities in specific services (e.g., specific Microsoft software updates).

4.3.3. CDN servers location and load balancing policies
The last part of this Section is devoted to the identification of CDN servers location and
load balancing policies. Similar to [54], we consider the Round Trip Time (RTT) to the
hosting servers as a measure of the their distance from the Vantage Point. The RTT to
any specific IP address consists both on the propagation delay and the processing delay,
both at destination as well as at every intermediate node. Given a large number of RTT
samples to a specific IP address, the minimum RTT values are an approximated measure of
the propagation delay, which is directly related to the geographical location of the underlying
server. It follows immediately that IPs showing similar min RTT values are located at similar
locations, whereas IPs with very different min RTTs are located in different locations (e.g.,
datacenters in different countries). RTT values are obtained from active measurements,
performed during the complete week, using a standard ping tool. In order to identify the min
RTT values, all the IPs assigned by HTTPTag to a specific service during each measurement



Chapter 4. Characterization of Traffic from Major Internet Services 41

hour are periodically pinged. In particular, every unique IP is pinged with trains of 100 ICMP
echo request packets every 10 minutes, resulting in a total of 6 individual values of min
RTT per hour and per IP. We are very aware that obtaining such min RTT measurements
by active probing is not the best approach, as many servers would simply not answer to an
echo request, ICMP packets can be altered or differently treated by the ISP or the CDN, the
content provider might make use of IP Anycast in its network, just to name a few of the
possible shortcomings. In order to reduce the impacts of such shortcomings, we filter out all
the inconsistent results providing different min RTT values at different hours of the day.

Figures 4.6(a) and 4.6(b) depict the distribution of min RTT values per service and per
hosting organization/AS respectively. Frequencies are weighted by the number of flows
coming from each specific IP during one single day of measurements. Modes or steps in the
distributions suggest the existence of different geographically separated hosting locations.
Figure 4.6(a) shows that a large fraction of the Facebook, Apple, and Windows Update
flows come from servers probably located in the same city of the vantage point, as min RTT
values are below 5ms. These three services are largely provided by Akamai, thus results are
very in-line with the min RTT values depicted for Akamai IPs in Figure 4.6(b). Indeed, more
than 60% of the Akamai HTTP flows come from servers “inside the ISP”, justifying the
aforementioned low min RTT values. Apple flows seem to be served from three markedly
different locations, given the three modes clearly visible in the CDF. Two of them are probably
located in the same country of the vantage point, as min RTT values are below 10ms, whereas
the third location is located outside Europe (i..e, min RTT > 160ms), probably in the US due
to Apple and Verizon IPs. The AVS 2 service seems to be mainly served from two locations
in Europe (min RTT ≈ 30ms), perfectly matching the results depicted in Figure 4.6(b)
for the Limelight CDN. The two marked and very similar modes for Limelight min RTT in
4.6(b) reinforce the comments on the bring ISPs to home approach. A deeper analysis of the
underlying IPs with the MaxMIND GeoIP data reveals Limelight IPs in Italy and UK. AVS 1
is served from three different locations, including a Limelight CDN datacenter in Europe and
two locations outside Europe, with at least one of them being Level3 according to table 4.2.
According to Figure 4.6(b), most of the Facebook flows provided by the Facebook AS come
from the US, and a very marginal fraction comes from inside Europe, more precisely Ireland
according to manual inspection with MaxMIND. Interestingly, most of the YouTube flows
come from servers under Google ASes and not YouTube ASes, which has a major impact in
the classification confusion matrix between Google Search and YouTube flows seen in figure
3.7.

To conclude with this part of the study, we analyze now the temporal evolution of the
min RTT for some selected services, aiming to show evidence on load balancing techniques
employed by the Google CDN, Akamai, and Limelight. Figure 4.7 depicts the hourly evolu-
tion of the min RTT for different service flows during 4 consecutive days, from Monday to
Thursday, including YouTube (mainly Google CDN), Facebook (mainly Akamai), and AVS
2 (mainly Limelight). Each column of the Figures in 4.7 depicts the CDF of the min RTT
of all the corresponding service flows, using a heatmap-like plot (i.e., the darker the color,
the more concentrated the CDF in that value). Figure 4.7(a) plots the results for YouTube
flows. The majority of the flows are delivered from the two Google locations depicted in
Figure 4.6(b) at 61ms and 63ms, about 15% of the flows are served from a third location at
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(c) min RTT of AVS 2 flows.

Figure 4.7.: Daily min RTT for YouTube, Facebook, and AVS 2. Google CDN and Akamai
make use of internal load balancing policies to serve content from different
hosting locations.

30ms, and the remaining flows are served from different locations at around 44ms and 51ms.
The interesting observation is that markedly min RTT shifts occur every day at exactly the
same time slots, showing a min RTT periodic pattern. These temporal patterns are flagged
by dotted rectangles. Such traffic shifts suggest either some regular content access pattern
(i.e., users access the same contents every day at the same time-slots), periodical network
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congestion events, or much more likely, the presence of load balancing techniques which
permit the CDN to serve the content from different locations according to some internal
decision policies. Similar patterns can be observed for the Facebook static content hosted
by Akamai as depicted in Figure 4.7(b) - we mention the static content as the min RTT
values correspond to Akamai servers, i.e., RTT < 40ms). Both results suggest that Google
CDN and Akamai make use of internal load balancing policies to serve the content from their
different hosting locations. Finally, Figure 4.7(c) depicts the same analysis for the AVS 2
service. As expected, most of the flows are served from the two previously mentioned Lime-
light locations at 30ms and 32ms. However, in this case there are no observable temporal
patterns, suggesting that Limelight is not applying load balancing techniques in Europe, at
least not for provisioning the corresponding service.

4.4. A Popular Video Streaming Service: YouTube
We start the second part of this Chapter by targeting YouTube. YouTube is the most popular
video streaming service in the Internet, and is responsible for more than 30% of the overall
traffic [56, 54]. Every minute, 100 hours of video content are uploaded, and more than one
billion users visit YouTube each month1. This enormous popularity poses complex challenges
to network operators, who need to design their systems properly to cope with the high volume
of traffic and the large number of users. The challenges are bigger for mobile operators, who
have to deal with an ever-increasing traffic volume with the capacity constraints of mobile
networks, and in a much more competitive market. Indeed, mobile makes up to almost
40% of YouTube’s global watch time, and video traffic accounts for more than 30% of the
downstream peak traffic in large-scale cellular networks such as AT&T in the US [68]. Finally,
the provisioning of YouTube through the massive Google CDN [58] makes the overall picture
even more complicated for ISPs, as the video requests are served from different servers at
different times. The highly distributed architecture and dynamic behavior of large CDNs
allow achieving high availability and performance; however, content delivery policies can
cause significant traffic shifts in just minutes, resulting in large fluctuations on the traffic
volume carried through the ISP network paths.

These observations have motivated a large research effort on understanding how YouTube
works and performs [69, 70, 71, 72], covering aspects such as content delivery mechanisms,
video popularity, caching strategies, and CDN server selection policies among others. These
papers focus exclusively on YouTube as observed in fixed-line networks. We now take a step
further on the characterization of YouTube, additionally considering the impact of the type
of network on the specific flow characteristics and provisioning behavior of the underlying
servers. In particular, we perform a comparison of how YouTube is provisioned in fixed-
line and mobile networks, analyzing four days of YouTube traffic traces collected in both
networks. The insights of this analysis are particularly useful for shedding light on the complex
mechanisms that regulate the provisioning of such a popular service and ultimately provide a
valuable input for the anomaly detection and diagnosis systems that will be described later.

1http://www.youtube.com/yt/press/statistics.html

http://www.youtube.com/yt/press/statistics.html
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Fixed-line dataset (FL) Mobile dataset (M)
network type fixed line (ADSL) cellular (3G)
monitoring system Tstat Metawin (Gn)
ticket type video flows HTTP
length ∼ 4 days (Mon-Thu) ∼ 1 month
time Q2 2013 Q2 2013

Table 4.4.: Datasets used for characterization of YouTube

In the remainder of this Section we provide an analysis of YouTube from both fixed-line
and mobile vantage points. In particular, we find out that the wide-spread usage of caching in
mobile networks provides high benefits in terms of delay to the contents as well as downlink
throughput. In addition, we identified marked variations on the delay from the fixed-line
vantage point to the YouTube servers, suggesting either a widely spread and heterogeneous
server farm behind the YouTube front-ends, or the presence of a highly dynamic path-changes
policy in the interconnection to the preferred YouTube servers. Finally, we estimate how the
performance we have passively measured could impact end-users Quality of Experience. This
is particularly important for understanding QoE anomalies, which will be one of the topics
of the next Chapters.

The two datasets, summarized in Table 4.4, correspond to almost 90 hours (from Monday
till Thursday) of YouTube flows collected at two major European ISPs during the second
quarter of 2013. In the mobile network, flows are captured at the Gn interface by the
METAWIN monitoring system as already previously explained. In the fixed-line network, the
monitored link aggregates 20,000 residential customers accessing to the Internet through
ADSL connections and flows are captured using the Tstat passive monitoring system [7]. In
both cases, the anonymized network traces are stored and analyzed in a DBStream instance
and classified using HTTPTag. As done in the previous Section, the dataset is complemented
with the name of the ASes hosting the content extracted from the MaxMind database.

4.4.1. Delivery Infrastructure
Google replicates YouTube content across geographically distributed data-centers worldwide,
pushing content as close to end-users as possible to improve the overall performance of the
video content provisioning, minimizing the effects of peering point congestion and enhancing
the user experience. Google’s CDN uses a complex content location and server selection
strategy for optimizing client-server latency, increase QoE in general, and perform load bal-
ancing. User requests are normally redirected to the closest servers, based on Round Trip
Time (RTT) measurements. For doing so, YouTube keeps a periodically updated latency
map between its servers and BGP prefixes aggregating geo co-located users [73]. As depicted
in Figure 4.8(a), Google uses the DNS service for redirecting requests to the preferred servers,
additionally using dynamic cache selection strategies to balance the load among YouTube
servers. YouTube Front End (FE) servers are those handling the original user request for a
specific video, which can then redirect the user to additional YouTube servers mirroring the
content. In some cases, YouTube servers located at multiple ASes of distance are selected
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(a) Video retrieval workflow (extended figure, original source at [71]).
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Figure 4.8.: YouTube workflow for video retrieval and content location. Google’s CDN uses
a complex content location and server selection strategy for optimizing client-
server latency, increase QoE in general, and perform load balancing. DNS is
used for request re-directioning.

(see Figure 4.8(b)), resulting in higher delays and potentially impacting the performance of
the video delivery in terms of download throughput.

Table 4.5 reports the number of unique server IPs serving YouTube in both networks,
as well as the ASes holding the major shares of servers. To understand how these IPs are
grouped, the table additionally shows the number of IPs per different network prefix. Even
if the number of customers associated to the mobile network traces is much larger than in
the fixed-line network, the number of unique server IPs observed in the latter is almost the
double, with more than 3600 different IPs in the 90 hours, which could be probably explained
by a more intensive use of video streaming services from fixed-line networks. In both cases,
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Autonomous System # IPs #/24 #/16

All server IPs seen in FL 3646 97 22
15169 (Google) 2272 60 2
43515 (YouTube) 1222 12 1
36040 (YouTube) 43 2 2

All server IPs seen in M 2030 63 10
15169 (Google) 1121 38 2
43515 (YouTube) 844 15 2
LISP 35 4 3
36040 (Google) 26 5 3

Table 4.5.: Number of IPs and prefixes hosting YouTube, as observed in both Fixed-line (FL)
and Mobile networks (M).

(Network) Autonomous System % bytes % flows

(FL) 15169 (Google) 80.8 77.3
(FL) 43515 (YouTube) 19.1 22.5

(M) LISP 69.3 66.7
(M) 15169 (Google) 30 32.7

Table 4.6.: Number of uplink and downlink bytes and flows per AS hosting YouTube in
Fixed-line (FL) and Mobile (M) networks.

two Google ASes hold the majority of the IPs (i.e., AS 15169 and AS 43515), grouped in a
small number of /16 subnets. In the mobile network we also include the observed IPs of the
Local ISP (LISP), which plays a key role in the delivery of YouTube, due to the extensive
usage of content caching. Indeed, it is very common in mobile networks to have forwarding
caches at the edge of the network to reduce latency and speed up content delivery [68].
Even though the impact of video caching on the Radio Access Network is limited, ISPs might
prefer to reduce the load on the transport network to both reduce peering costs and improve
closeness to the content.

Table 4.6 shows that about 80% of the YouTube volume and number of flows are served by
the AS 15169 in the fixed network, and up to 70% of the traffic is served by IPs owned by the
LISP in the mobile network. This correlates pretty well with the fact that about 65% of the
HTTP video content observed in the mobile network of AT&T in the US can be cached at
the edge in standard forwarding proxies [68]. Still, we can not say from our analysis whether
these IPs correspond to content caching performed by the LISP or also to Google servers
deployed inside the ISP, which is a common approach followed by Google to improve end-user
experience, known as Google Global Cache (GGC)2. In fact, a large share of YouTube content

2https://peering.google.com/about/ggc.html

https://peering.google.com/about/ggc.html


Chapter 4. Characterization of Traffic from Major Internet Services 47

is normally transparent to middle boxes, as videos are marked as “no-cache”. A further study
of this aspect could be an interesting research direction for the future.

To appreciate which of the aforementioned IP blocks host the majority of the YouTube
flows, Figure 4.9 depicts the distribution of the IP ranges and the flows per server IP. Ac-
cording to Figures 4.9(c) and 4.9(d), the majority of the YouTube flows are served by two
or three well separated /16 blocks in the fixed-line and mobile networks respectively. Inter-
estingly enough, only a limited fraction of YouTube traffic is served from AS 43515 in the
mobile network. Figure 4.10 additionally depicts the number of flows served per IP in both
networks. Separated steps on the distributions evidences the presence of preferred IPs or
caches serving a big number of flows, which are most probably selected by their low latency
towards the end customers.

Finally, we study the dynamics of the traffic provisioning from the aforementioned ASes.
Figure 4.11 depicts (a,b) the number of active IPs and (c,d) the flow counts per hour
(normalized from 0 to 100) in both networks during three consecutive days. In both networks,
the active IPs from either AS 43515 or AS 15169 show an abrupt increase at specific times
of the day; for example, about 200 IPs from AS 43515 become active daily at about 10:00
in the fixed-line network, whereas IPs from AS 15169 almost triple at peak hours (between
17:00 and 23:00) in the mobile network. Note that the number of active IPs from the LISP
is constant during the whole period, showing their main role in the delivery of YouTube
flows. In terms of flow counts, Figure 4.11(c) evidences a very spiky behavior in the flows
served from AS 43515, and some of the load balancing policies followed by Google in the
region of the fixed-line ISP, e.g., a drastic switch from AS 15169 to AS 43515 of the flows
served at about 18:00. In the mobile network, the LISP servers handle the majority of the
flows daily, and as a consequence, the dynamics of the flow counts are much smoother. This
indirectly implies that the load forecasting from each of the servers is much straightforward
in the mobile network, resulting in a potentially much easier traffic management at the core
network.

4.4.2. How Far Away are YouTube Videos?
As done in the previous Section, we investigate now the latency and the location of the
previously identified servers, considering the distance to the vantage points in terms of Round
Trip Time (RTT). RTT measurements are passively performed on top of the YouTube flows
in the fixed-line network. Mobile networks usually employ Performance Enhancement Proxies
(PEPs) to speed-up HTTP traffic, and therefore, passive min RTT measurements on top of
HTTP traffic provide incorrect results [74]. We therefore consider an active measurement
approach in the mobile network, running standard pings from the vantage point to get an
estimation of the min RTT to the servers. As before, we then weight the obtained min RTT
values by the number of flows served by each IP to get a rough picture of where the flows
are coming from.

Figure 4.12 shows the distribution of the min RTT values for the flows observed in both
networks. Steps in the CDF suggest the presence of different data-centers or clusters of co-
located servers. Figure 4.12(a) shows that about 65% of the flows in the fixed-line network
come from servers most probably located in the same country of the ISP, as min RTT < 5
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(a) IPs hosting YouTube - fixed-line. (b) IPs hosting YouTube - mobile.
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(c) Flows per server IP - fixed-line. (d) Flows per server IP - mobile.

Figure 4.9.: IP ranges distribution and flows per server IP hosting YouTube. The majority of
the YouTube flows are server by very localized IP blocks.

ms. This is coherent with the fact that Google selects the servers with lower latency to the
clients. A further differentiation by AS reveals that the most used servers in AS 15169 are
located much closer than the most used servers in AS 43515. As depicted in Figure 4.12(b),
the lion share of the flows in the mobile network comes from the LISP servers, which are
located inside the ISP (min RTT < 2 ms). The rest of the flows served from AS 15169
are located at potentially two geographically different locations, one closer at around 40 ms
from the vantage point, and one farther at about 70 ms.

The richness of the passive RTT measurements performed in the fixed-line network permits
to further study the dynamic behavior of the servers’ selection and load balancing strategies
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(a) Flows per IP in fixed-line. (b) Flows per IP in mobile.

Figure 4.10.: Flows per IP and per AS. Clear sets of IPs serve a large share of the flows,
evidencing the presence of preferred caches.

used by Google to choose the servers. Figure 4.13(a) depicts the variation of the distribution
of min RTT measured on the YouTube flows for a complete day, considering contiguous
time bins of 3 hours length. Correlating these results with those in Figure 4.11(c) permits to
better understand the daily variations. Whereas the majority of the flows are served from very
close servers until mid-day, mainly corresponding to AS 15169, servers in farther locations
are additionally selected from 14:00 on, corresponding to the increase in the number of flows
served from AS 43515.

Finally, Figures 4.13(b) and 4.13(c) reveal a very interesting pattern which could be poten-
tially harmful for the performance of the video delivery, but that we were not able to diagnose.
The Figures depict the min RTT values observed during a complete day for flows hosted at
different IPs in two /24 subnets at AS 15169 and AS 43515, namely 74.125.13.0/24 and
208.117.250.0/24 respectively. The interesting observation is that the min RTT to the same
set of IPs varies with a very structured pattern, presenting different clusters of min RTT
values in both subnets. For example, min RTT values of 5, 9, and 14 ms are systematically
observed for the flows served from IPs at 208.117.250.0/24.

These marked variations could be the result of strong and very periodic congestion events,
which is in fact very unlikely. We tend to believe that either a very spread and heterogeneous
server farm behind the YouTube front-end servers in the corresponding IPs, or the presence of
a highly dynamic path-changes policy in the interconnection to the specific YouTube servers
is the origin of such a behavior.

4.4.3. YouTube Traffic and Performance
We study now the characteristics of the YouTube flows as observed from both vantage points,
as well as the performance achieved in terms of downlink throughput. Figure 4.14 depicts the
distribution of flow size for the different hosting ASes. Figure 4.14(a) shows that about 20%
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(a) IPs per hour hosting YouTube - fixed-line. (b) IPs per hour hosting YouTube - mobile.
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(c) Flow counts per hour - fixed-line. (d) Flow counts per hour - mobile.

Figure 4.11.: IPs and flows per hour during 90 hs. The glitch in the flow counts in the mobile
network is caused by maintenance of the monitoring probe.

of the flows served in the fixed-line network are smaller than 1 MB, and that flows served by
the AS 43515 are slightly smaller than those provided by the AS 15169 in this network.

The CDF reveals a set of marked steps at specific flow sizes, for example at 1.8 MB and
2.5 MB. Our measurements and studies performed in [75] reveal that YouTube currently
delivers 240p and 360p videos in chunks of exactly these sizes, explaining such steps. A
similar behavior is observed for chunks of bigger sizes. About 75% of the flows are smaller
than 4 MB, 90% of the flows are smaller than 10 MB, and a very small fraction of flows are
elephant flows, with sizes higher than 100 MB.

The flows considered in Figure 4.14(b) for the mobile network are only those with a size
bigger than 1 MB. This filtering is performed as a means to improve the estimation of the
downlink throughput in our traces. Surprisingly, the flows served by the AS 43515 in the
mobile network tend to be rather larger than those provided by the other ASes, and more
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(a) min RTT (passive) in fixed-line. (b) min RTT (active) in mobile.

Figure 4.12.: min RTT to servers in different ASes. Latency is passively measured on top of
the YouTube flows in the fixed-line network, whereas active RTT measurements
are performed in the mobile network.
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Figure 4.13.: min RTT dynamics in the fixed-line network. (a) The server selection strate-
gies performed by Google are not only based on closest servers. (b,c) Strong
variations on the min RTT to the same Google IPs suggest the presence of
path changes or very heterogeneous latencies inside Google’s datacenters.

than 20% of the flows served by this AS are bigger than 10 MB. The interesting observation
comes when analyzing the size of the flows served by the LISP. The CDF reveals a very
concentrated flow size between 2 MB and 4 MB, suggesting that the cached contents (or
those served by YouTube servers inside the ISP) could potentially cover, at least in terms of
flows size, 75% of the flows observed in the fixed-line network. We have not investigated
the characteristics of the YouTube videos hosted by the LISP IPs and those served in the
fixed-line network, which would provide further insights about the type of contents that are
potentially cacheable. We plan to do so in future studies, following the approach used in
[68].
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(a) YouTube flow size - fixed-line. (b) YouTube flow size - mobile.

Figure 4.14.: YouTube flows sizes. The steps in the CDF at sizes 1.8 MB, 2.5 MB, 3.7 MB,
etc. correspond to the fixed chunk-size used by YouTube to deliver videos of
different resolutions and bitrate.
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(a) YouTube flow duration - fixed-line. (b) YouTube flow duration - mobile.

Figure 4.15.: YouTube flows duration. About 85% of the flows observed in both networks
are shorter than 90 seconds. A large share of flows have an average duration
of about 30 seconds.

Figure 4.15 depicts the distribution of the flows duration, in minutes. The flow duration
in both networks is below 3 minutes for about 95% of the total flows. The abrupt step
in the CDF of the flows observed in the fixed-line network at about 30 seconds is most
probably linked to the aforementioned video chunk sizes, but we were not able to verify
this observation. About 85% of the flows observed in both networks are shorter than 90
seconds. Similar to the flow size, the flows served from AS 43515 are rather longer in the
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(a) YouTube throughput- fixed-line. (b) YouTube throughput - mobile.

Figure 4.16.: Average YouTube flow downlink throughput per AS. Flows served by the LISP
are the ones achieving the highest performance, evidencing the benefits of local
content caching and low-latency servers.

mobile network, with more than 20% of the flows lasting more than 3 minutes. Given the
small fraction of traffic served from AS 43515 in the mobile network, we can not say for
sure that the behavior of the servers in this AS is different when it comes to different types
of networks. Still, the important differences in the flow characteristics coming from AS
43515 in both networks might suggest some kind of network (or device) awareness on the
way YouTube video is provisioned, as observed in [72]. Finally, and also correlating with
previous observations, the distribution of the duration of the flows served by the LISP IPs is
concentrated around 30 seconds, matching pretty well the aforementioned abrupt step in the
CDF of the flow duration in fixed-line networks.

To conclude this part, Figure 4.16 reports the distribution of the average downlink through-
put per flow measured in both networks, discriminating by hosting AS. The downlink through-
put is the main network performance indicator that dictates the experience of a user watching
YouTube videos [76]. Both Figures 4.16(a) and 4.16(b) consider only flows bigger than 1
MB, to provide more reliable and stable results (i.e., avoid spurious variations due to the TCP
protocol start-up). The downlink throughputs achieved in both networks are rather similar,
with more than 15% of the flows achieving a throughput above 2 Mbps. This suggests that
the downlink throughput is partially governed by the specific video encoding bitrates and the
flow control mechanisms of YouTube and not exclusively by the specific access technology.
Still, when analyzing the performance results per AS, it is evident that the flows served by the
LISP are the ones achieving the highest performance, with an average flow downlink through-
put of 2.7 Mbps. This out-performance evidences the benefits of local content caching and
low-latency servers for provisioning the YouTube flows.
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(a) YouTube overall QoE vs. downlink rate. (b) YouTube acceptability vs. downlink rate.

Figure 4.17.: YouTube overall QoE and acceptability in terms of average downlink rate. The
curves correspond to a best-case scenario, in which only 360p videos were
considered. In a more general case with higher resolution videos (e.g., 1080p),
the downlink rate has an even stronger effect on the user experience. The Figs.
are taken with permission from the study performed at [78].

4.4.4. From Performance to Quality of Experience

Even if the download throughput has a direct impact on the performance of the video
provisioning [77], authors in [78, 76] show that the main impairment affecting the QoE of
the end-users watching HTTP video-streaming videos are playback stallings, i.e., the events
when the player stops the playback. One or two stalling events are enough to heavily impact
the experience of the end user. Given that the analyzed measurements report the average
per flow download throughput as one of the monitoring KPIs, we rely on our previous results
to better understand how download throughput relates to QoE and stallings in YouTube.

Figure 4.17 reports the overall QoE and the acceptance rate as declared by users watching
YouTube videos during a field trial test conducted and reported in [78], both as a function
of the average download rate. During this one-month long field trial test, about 40 users
regularly reported their experience on surfing their preferred YouTube videos under changing
network conditions, artificially modified through traffic shaping at the core of the network.
Figure 4.17(a) shows the overall QoE as a function of the average download rate, using a 5-
points MOS scale, where 1 corresponds to very bad QoE and 5 to optimal. The Figure clearly
shows that the overall QoE drops from a MOS score close to 4 at 800 kbps to a MOS score
below 3 at 470 kbps. A MOS score of 4 corresponds to good QoE, whereas a MOS score
below 3 already represents poor quality. The same happens with the service acceptance rate,
as reported in Figure 4.17(b). In the analysis, we shall consider the thresholds Th1 = 400
kbps and Th2 = 800 kbps as the throughput values splitting by bad, fair, and good QoE.
Both curves correspond to a best-case scenario, in which only 360p videos were watched by
the users. As we see next, both 360p videos and videos with higher resolutions are present
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(a) # stallings vs. β. (b) MOS and acceptance vs. β. (c) User engagement (λ) vs. β.

Figure 4.18.: β = ADT/VBR as a metric reflecting user experience and engagement. Users
have a much better experience and watch videos for longer time when β > 1.25.
This threshold corresponds to an ADT = 700 kbps in 360p videos, which is the
value recommended by video providers in case of 360p videos.

in the dataset, thus QoE degradations are potentially worse than those reported.

In addition, we introduce a simple yet effective QoE-based KPI to monitor the QoE of
YouTube videos from network measurements. In [76], authors have devised a Deep Packet
Inspection based approach to estimate stallings in YouTube from passive measurements at
the core network. However, the used techniques can not be applied when YouTube flows
are carried over HTTPS as it is currently happening, simply because it is no longer possible
to access the encrypted content of the traffic. Therefore, using the same measurements
of the field trial, we introduce a new approach. Intuitively, when the average download
throughput (ADT) is lower than the corresponding video bit rate (VBR), the player buffer
becomes gradually empty, ultimately leading to the stalling of the playback. We define β
= ADT/VBR as a metric reflecting QoE. Figure 4.18 reports (a) the measured number of
stallings events and (b) the QoE user feedbacks as a function of β. In particular, no stallings
are observed for β > 1.25, and user experience is rather optimal (MOS > 4). As a direct
application of these results, if we consider standard 360p YouTube videos, which have an
average VBR = 600 kbps [72], an ADT = 750 kbps would result in a rather high user QoE,
which is the value recommended by video providers in case of 360p videos. Figure 4.18(c)
additionally shows how the fraction λ = VPT/VD (video played time and duration) of the
video time actually viewed by the end users actually increases when β increases, specially
above the β = 1.25 threshold.

To conclude the study of YouTube, we have shown that the usage of caching in mobile net-
works provides high benefits in terms of delay to the contents as well as downlink throughput.
We have also identified a very interesting behavior on the latency to the YouTube servers in
the fixed-line network.
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4.5. An Online Social Network: Facebook

We continue the service-specific characterization by characterize the traffic and the delivery
infrastructure of the highly popular web service Facebook. Facebook is the most popular and
widely spread Online Social Network (OSN), with hundreds of millions of users worldwide
sharing and accessing content on a daily basis3. Facebook content is mainly hosted by the well
known Akamai CDN, which represents the most dynamic and widely deployed CDN today,
with more than 137,000 servers in more than 85 countries across nearly 1,200 networks4.
Facebook content is additionally hosted by the Facebook organization itself, with servers
present both in the US and Europe. Finally, the intensive usage of transparent caching at
the edge of ISP networks [47] and the deployment of large CDN caches inside the ISPs makes
that a large fraction of the Facebook content accessed by the users is hosted at the premises
of multiple network operators. Our study permits to better understand how the Facebook
content is hosted and served by the aforementioned organizations. We show that the way
these normally serve Facebook contents is very dynamic and complex to characterize, even
revealing in some cases unexpected and interesting load balancing events.

network type cellular 3G
monitoring system METAWIN at Gn interface
ticket type HTTP tickets
length 2 months (total)
time Q2 2012 and Q2 2013

Table 4.7.: Dataset used for characterization of Facebook

The analysis of OSNs has been a very fertile domain in the last few years [79, 80, 81, 82,
83, 84]. Authors in [79] study the power-law and scale-free properties of the interconnection
graphs of Flickr, YouTube, LiveJournal, and Orkut, using application-level crawled datasets.
The work in [80] present a study on the privacy characteristics of Facebook. Some papers
[81, 82] study the new Google+ OSN, particularly in terms of popularity of the OSN, as well
as the evolution of connectivity and activity among users. Authors in [83, 84] focus on the
temporal dynamics of OSNs in terms of user-interconnections and visited links, using again
publicly crawled data of popular OSNs such as Facebook, Twitter, as well as a large Chinese
OSN. All these papers rely on crawled web-data and do not take into account the traffic and
networking aspects of OSNs. From the best of our knowledge, the study provided in this
Section is the first tackling Facebook from the network perspective as seen in an operational
cellular network.

The dataset used for the analysis’ showed in this Section corresponds to one month of
HTTP flow traces collected at the usual Vantage Point at core of a European ISP in mid
2013 (cfr. Table 4.7).

3http://newsroom.fb.com/key-facts
4http://www.akamai.com/html/about/facts_figures.html

http://newsroom.fb.com/key-facts
http://www.akamai.com/html/about/facts_figures.html
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Country % hosted volume
Europe (generic) 46.8%
Local country 37.2%
Ireland 12.7%
Neighbor country 2.1%
United States 1.1%
Unclassified 0.1%

Table 4.8.: Top Facebook hosting coun-
tries by volume.

AS/Org. # IPs #/24 #/16
All 6551 891 498
Akamai 2264 132 48
Facebook AS 294 57 5
LO 26 8 6
NO1 368 26 14
NO2 374 33 9

Table 4.9.: Number of IPs and blocks
hosting Facebook.

4.5.1. Traffic and Content Delivery Infrastructure
As done in the case of YouTube, we start by characterizing the Facebook traffic as seen in our
traces, with a special focus on its underlying hosting/delivery infrastructure. Due to the high
number of daily users and the high volumes of served traffic, Facebook follows a sophisticated
content delivery strategy. Indeed, we observed more than 6500 server IPs hosting Facebook
contents in our traces, distributed across 20 countries and more than 260 different ASes.
This confirms the wide-spread presence of several organizations hosting Facebook contents,
turning the service provisioning into a very tangled scenario. Figure 4.19 shows the main
organizations/ASes hosting Facebook content, both in terms of number of unique server IPs
observed and share of delivered flows. Akamai is clearly the key player in terms of Facebook
content hosting, delivering almost 50% of the flows in our traces, using more than 2260
different server IPs. Interesting enough is the large number of server IPs observed from two
organizations which actually deliver a negligible share of the flows: the Tiscali International
Network (Tinet) and Cable & Wireless Worldwide (CWW). We believe these organizations
are only caching spurious Facebook contents. In the remainder of the study we focus on
the top 5 organizations/ASes in terms of served flows, depicted in Figure 4.19(b): Akamai,
Facebook AS, the Local Operator (LO) which hosts the vantage point, and two neighbor
operators, Neighbor Operator 1 (NO1) and Neighbor Operator 2 (NO2).

4.5.2. Geographical Diversity of Facebook Hosting Servers
Table 4.8 provides an overview of the geographical diversity of the Facebook hosting infras-
tructure, listing the top countries where servers are located in terms of volume. The servers’
location is extracted from the MaxMind GeoCity database, which is highly accurate at the
country level [27]. “Europe (generic)” refers to a generic location within Europe for which
MaxMind did not return a more accurate information. Almost 99% of the traffic comes from
servers and data centers located in Europe, close to our vantage point, while only 1% of the
traffic comes from other continents. This is due to three factors: (i) Akamai, the biggest
Facebook content provider, has a very geographically distributed presence, pushing contents
as close as possible to end-users [59]; (ii) operators heavily employ local content caching,
and large CDNs like Akamai tend to deploy caches inside the ISPs networks, explaining the
amount of traffic coming from the local country as well as neighboring countries to the van-
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(a) Server IPs per AS. (b) Share of flows hosted per AS.

Figure 4.19.: Unique server IPs used by the top hosting organizations/ASes and flow shares
per hosting AS, considering the complete dataset. Akamai is clearly the key
player in terms of Facebook content hosting.

tage point; (iii) the rest of the traffic is handled directly by Facebook, which has servers split
between Ireland (headquarter of Facebook International) and the US.

To complement this picture, we investigate the location of these servers from a network
topology perspective, considering the distance to the vantage point in terms of Round Trip
Time (RTT), as already previously done. We rely again to active RTT measurements col-
lected through the standard ping tool to overcome the presence of Performance Enhancement
Proxies (PEPs) (cfr. Section 4.4.2).

Figure 4.20 plots the cumulative distribution of the minimum RTT to (a) all the server IPs
hosting Facebook, and (b) the aforementioned top orgs./ASes. Values are weighted by the
number of flows hosted at each IP, to get a better picture of where the traffic is coming from.
As a further confirmation of the geographical diversity, the distribution of min RTT presents
some steps or “knees”, suggesting the existence of different data centers and/or hosting
locations. The largest majority of flows are served by close serves, located at less than 5 ms
from the vantage point. As we mentionned, Akamai deploys its servers following the “enter
deep into ISPs” approach [57], placing content distribution servers inside ISP POPs, which
explains the short latency to the vantage point. The LO is the one with shortest delays for all
the flows it serves and, along with the NO1, is the one with the least geographical diversity,
with only one visible location. Three main steps appear in the CDF of the Facebook servers,
which correspond to the headquarters in Ireland (min RTT about 30ms), the servers in the
US (min RTT > 100ms), and some servers located at only few milliseconds from the vantage
point. Traceroutes to those servers revealed a direct connection to the Internet eXchange
Point (IXP) of the local country, explaining the so low delays.

4.5.3. Facebook IP Address Space
Table 4.9 provides a summary on the number of unique server IPs observed in the traces, and
the /24 and /16 IP blocks covered by the top orgs. hosting Facebook. Akamai and Facebook
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Figure 4.20.: Distribution of overall min RTT and min RTT per top hosting ASes to server
IPs, weighted by the number of flows hosted.

together account for about 2560 servers scattered around almost 200 /24 IP blocks, revealing
again their massively distributed infrastructure. However, we shall see next that only a few
of them are actually hosting the majority of the flows.

Figure 4.21 depicts the distribution of the IP address ranges associated to the top or-
ganizations during the observation period, as well as the daily utilization of IPs per top
organizations. Figure 4.21(a) considers the distribution of IPs itself, whereas 4.21(b) weights
each of the server IPs by the number of flows delivered. Despite the high number of /24
IP blocks, only few of them are responsible for the largest majority of the flows per org..
In particular, 75% of Akamai flows are served by only one single address range, covering a
small number of /24 IP blocks. The same observation is valid for Facebook AS and the
two Neighbor Operators, with 89%, 91% and 82% of their flows hosted at one single range
respectively. Finally, the LO serves almost all the flows from a small range of IPs. Figure
4.21(c) shows the daily usage of these IPs on a single day, considering the number of unique
server IPs per hour, per org. The number of active IPs (i.e., IPs serving flows in the cor-
responding time slot) used by Akamai follows the daily utilization of the network, peaking
at the heavy-load time range. Interestingly, the IPs exposed by Facebook AS are constantly
active and seem loosely correlated with the network usage. This comes from the fact that
Facebook AS servers normally handle all the Facebook dynamic contents [54], which include
the user sessions keep-alive.

4.5.4. Facebook flow sizes
Figure 4.22 depicts the volume share of Facebook contents hosted by each org./AS, as well
as the flow size distributions. Akamai hosts more than 65% of the total volume observed in
our traces, followed by Facebook AS itself with about 19%. Comparing the volume shares
in Figure 4.22(a) with the flow shares in Figure 4.19(b) evidences a clear distinction on the
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Figure 4.21.: Distribution of the server IP range per AS. Akamai shows the most diverse IP
range, but most of the flows hosted by Akamai come from a single subnet.

(a) Shares of hosted volume per org./AS.
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Figure 4.22.: Hosted volume and distribution of flow sizes per organization. Akamai is clearly
the leading hosting company for Facebook with about 65% of the total served
volume. Akamai is also responsible for serving bigger flows (i.e., static contents
and video and pictures) while Facebook AS serves smaller flows (i.e., dynamic
contents).

content sizes handled by both Akamai and Facebook AS: while Akamai hosts the bigger
flows, Facebook AS serves only a small share of the service content. Indeed, as previously
flagged by other studies [54], Akamai serves the static contents of major web services (e.g.,
photos, songs, videos, etc.), whereas the Facebook AS covers almost exclusively the dynamic
contents (e.g., chats, tags, session information, etc.).

To further explore this distinction, Figure 4.22(b) reports the distribution of the flow sizes
served per org.. The CDF reveals that Akamai clearly serves bigger flows than Facebook AS.
The remaining ASes tend to host bigger flows than Facebook AS, which is coherent with the
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Figure 4.23.: Temporal variations of the min RTT to Facebook servers. The temporal pat-
terns in 2012 show a strongly periodic load balancing cycle, focused in a small
number of hosting regions. Results in 2013 suggest that Facebook content
delivery is becoming more spread and load balancing cycles are less evident.
In the heat maps of figures (b) and (c), the darker the color, the bigger the
fraction of flows served from the corresponding min RTT value.

fact that ISPs caching is generally done for bigger objects, aiming at reduce the load on the
core network.

4.5.5. Content Delivery Temporal Dynamics
The characterization performed in previous Section only considers the static characteristics
of Facebook during the complete duration of the dataset. In this Section we focus on
the temporal dynamics of the Facebook content delivery. To start with, we focus on the
temporal evolution of the min RTT reported in Figure 4.20. Figure 4.23(a) depicts the
temporal variation of the CDF for all the flows and for a complete day, considering a single
CDF every three hours period. The CDFs are rather stable during the day, but present
some slight variations during the night and early morning. To get a better picture of such
dynamics, Figure 4.23(b) depicts the hourly evolution of the min RTT for all the Facebook
flows during 3 consecutive days, being the first day the one analyzed in Figure 4.23(a). Each
column in the Figure depicts the PDF of the min RTT for all the served flows, using a heat
map-like plot (i.e., the darker the color, the more concentrated the PDF in that value). The
flagged variations are observed during the first day, with some slight shifts between 6am and
12am from servers at 14ms and 20ms. The heat map also reveals some periodic flow shifts
between 9pm and midnight from servers at 20ms, but impacting a small fraction of flows.
Figure 4.23(c) presents the same type of heat map for Facebook flows, but considering
a dataset of 2012 from the same vantage point. The temporal patterns in 2012 show a
much stronger periodic load balancing cycle, focused in a small number of hosting regions
at 7ms, 14ms, and 37ms. Comparing the results from 2012 with those in 2013 suggests
that Facebook content delivery is becoming more spread in terms of hosting locations, and
load balancing cycles are becoming a-priori less marked. However, when deeply analyzing the
complete dataset of 2013, conclusions are rather different.
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To drill down deeply into this issue, we analyze the dynamics of the content delivery for
the complete dataset, spanning 28 consecutive days. Instead of considering the variations of
the min RTT, we consider now the variations on the number of flows served by the observed
IPs. Changes in the distribution of the number of flows coming from the complete set of
6551 server IPs reflect variations in the way content is accessed and served from the hosting
infrastructure observed in our traces. For this analysis, we consider a time granularity of one
hour, and therefore compute the distribution of the number of flows provided per server IP
in consecutive time slots of one hour, for the complete 28 days. This results in a time-series
with a total of 24 × 28 = 672 consecutive distributions. To quantify how different are two
distributions in the resulting time-series, we use a symmetric and normalized version of the
Kullback-Leibler (KL) divergence described at [29].

To visualize the results of the comparison for the complete time span of 28 days, we use
the Temporal Similarity Plot (TSP), a graphical tool briefly introduced in Chapter 2. The
TSP in Figure 4.24 shows the distributions of all the Facebook flows across all the server IP
addresses providing Facebook content, over the 28 days. Each plot is a matrix of 672 × 672
pixels; the color of each pixel {i, j} shows how similar are the two distributions at times ti
and tj: blue represents low similarity, whereas red corresponds to high similarity.

The three TSPs in Figure 4.24 represent the distribution variations for (a) all the observed
IPs, (b) the Akamai IPs and (c) the Facebook AS IPs. Let us begin by the TSP for all the
observed server IPs in Figure 4.24(a). The regular “tile-wise” texture within periods of 24
hours evidences the presence of daily cycles, in which similar IPs are used to serve a similar
number of flows. The lighter zones in these 24 hour periods correspond to the time of the
day, whereas the dark blue zones correspond to the night-time periods when the traffic load
is low. The low similarity (blue areas) at night (2am-5am) is caused by the low number of
served flows, which induces larger statistical fluctuations in the computed distributions. This
pattern repeats almost identical for few days, forming multiple macro-blocks around the main
diagonal of size ranging from 2 up to 6 days. This suggests that during these periods, the
same sets of IPs are used to deliver the flows, with slight variations during the night periods,
similarly to what we observed in Figure 4.23(a). However, the analysis of the entire month
reveals the presence of a more complex temporal strategy in the (re)usage of the IP address
space. For example, there is a reuse of (almost) the same address range between days 10-12
and days 15-16. Interestingly, we observe a sharp discontinuity on days 18-19, as from there
on, all the pixels are blue (i.e., all the distributions are different from the past ones).

To get a better understanding of such behaviors, Figures 4.24(b) and 4.24(c) split the
analysis for Akamai and Facebook AS IPs only. The Figures reveal a different (re)usage
policy of the IPs hosting the contents. In particular, Akamai uses the same servers for 4
to 7 days (see multi-days blocks around the main diagonal). When it changes the used
addresses, the shift is not complete as we can observe the macro-blocks slowly fading out
over time. This suggests a rotation policy of the address space of Akamai, on a time-scale
of weeks. However, we cannot prove this conjecture because of the limited duration of the
analyzed dataset. On the other hand, Facebook AS does not reveal such a clear temporal
allocation policy. It alternates periods of high stability (e.g. between days 4 and 10) with
highly dynamic periods (e.g., from day 18 onward). It is interesting noticing that Facebook
AS is the responsible for the abrupt change in the distributions observed from the 18th day
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(a) All IPs). (b) Akamai. (c) Facebook AS.

Figure 4.24.: TSP of hourly flow count distributions over 28 days for all the observed IPs,
Akamai IPs, and Facebook AS IPs. A blue pixel at {i, j} means that the
distributions at times ti and tj are very different, whereas a red pixel corresponds
to high similarity.

on, in the TSP of the overall traffic.
Our deeper analysis reveals that Akamai and Facebook AS actually employ periodical

rotations of the servers they used to provide the contents, alternating periodic cycles of
relatively low dynamics with more abrupt changes, especially as observed for the case of
Facebook AS.

4.6. An Instant Messaging System: WhatsApp
The last section of this Chapter is dedicated to WhatsApp, the leading Instant Messaging
(IM) service. WhatsApp is a cross-platform mobile application which allows users worldwide
to instantly exchange text messages and multimedia contents such as photos, audio and
videos. It currently handles more than 64 billion messages per day, including 700 million
photos and 100 million videos [85]. With half a billion of active users, it has become the
fastest-growing company in history in terms of users [86]. Such an astonishing popularity
does not only have a major impact on the traditional SMS/MMS business, but might also
have a remarked impact on the traffic, especially due to the sharing of multimedia messages.

WhatsApp is a relatively new service, and its study has been so far quite limited. Some
recent papers have partially addressed the characterization of the WhatsApp traffic [87, 88],
but using very limited datasets (i.e., no more than 50 devices) and considering an energy-
consumption perspective, which means that there is no literature on the characterization
of WhatsApp from the network perspective. The study of this service provided for the
first time in this Section follows a similar approach of the analysis of the other services
showed before. It should be noted, however, that this case slightly differs from previous
ones, as WhatsApp is not a Web service. For this reason and for the use of encryption,
the characterization of such service requires more effort, starting from the classification and
extraction of relevant flows from the dataset. This is, in fact, the perfect showcase for
the need of a more sophisticated classification scheme which also considers DNS analysis to
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address encrypted protocols beyond HTTP (cfr., Section 3.4.3).
In this section we provide a large-scale characterization of the WhatsApp service. By

analyzing a week of cellular traffic flows collected in February 2014 at the same Vantage
Point mentioned in previous sections (cfr. Table 4.10), we shed light on the WhatsApp
hosting network architecture, the characteristics of the generated traffic, and the performance
of media transfers, specially as perceived by the end users. As WhatsApp runs on top
of encrypted connections, our measurements are complemented with a dissection of the
WhatsApp protocol through hybrid measurements, enabling a subsequent passive monitoring
at the large-scale. In addition, due to its large worldwide popularity, the WhatsApp dataset is
augmented with geo-distributed DNS active measurements using more than 600 RIPE Atlas
boxes distributed around the globe [8]. As we shall see next, this section it is not just about
finding which flows belong to the WhatsApp service and analyze them. Indeed, there are
many measurement challenges associated to the characterization of such a service: the data
gathering, the processing and the interpretation are already very complex per se, given the
number of different measurement sources and datasets.

Our main novel findings are the following: (i) Despite its worldwide popularity, WhatsApp is
a fully centralized service hosted by the cloud provider SoftLayer at servers located in the US.
(ii) While the application is mainly used as a text-messaging service in terms of transmitted
flows (more than 93%), video-sharing accounts for about 36% of the exchanged volume
in uplink and downlink, and photo-sharing/audio-messaging for about 38%. (iii) Despite
achieving flow download throughputs of 1.5 Mbps on average, about 35% of the total file
downloads are potentially badly perceived by users. (iv) Flow duration characteristics depend
on the device OS. In particular, different platforms employ different app-level timeouts.

Besides these results, we provide in this section an overview on the worldwide WhatsApp
outage reported on February the 22nd of 2014 [89], characterizing the event as observed
from the analyzed dataset. The measurements are complemented with external Online So-
cial Networks (OSNs) feeds (Twitter in this case) to verify that the outage was negatively
perceived by the users, immediately at the time were the event occurred, additionally demon-
strating the feasibility of using OSNs data to provide near real-time evidence of user quality
impairments in large scale service outages.

4.6.1. Application Overview
WhatsApp uses encrypted communications, therefore the first step to analyze its functioning
in the wild is to better understand its inner working. To this end, we rely on the manual

network type cellular 3G
monitoring system METAWIN at Gn interface
ticket type DNS tickets and flow-level traces
length 7 days (Mon - Sun)
time Q1 2014

Table 4.10.: Dataset used for characterization of WhatsApp
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domain protocol (port) type

cX,eX,dX XMPP (5222, 443) chat & control

mmiXYZ,mmsXYZ HTTPS (443) media (photo/audio)

mmvXYZ HTTPS (443) media (video)

Table 4.11.: Third level domain names used by whatsapp.net and communication types.
inspection of hybrid measurements. We actively generate WhatsApp text and media flows at
end devices (both Android and iOS), and passively observe them at two instrumented access
gateways. We especially paid attention to the DNS traffic generated by the devices.

WhatsApp uses a customized version of the open eXtensible Messaging and Presence
Protocol (XMPP) [90]. XMPP is a protocol for message oriented communications based on
XML. Not surprising, our measurements revealed that WhatsApp servers are associated to
the domain names whatsapp.net (for supporting the service) and whatsapp.com (for the
company website). As indicated in Table 4.11, different third level domain names are used to
handle different types of traffic (control, text messages, and multimedia messages). When
the client application starts, it contacts a messaging or chat server {e|c|d}X.whatsapp.net
listening on port 5222, where X is an integer changing for load balancing. This port is assigned
by IANA to clear-text XMPP sessions. Nevertheless, the connection is SSL-encrypted. This
connection is used for text messages as well as control channel, and is kept up while the
application is active or in background. If the connection is dropped, a new one with the
same or another messaging server is immediately re-established. In case the application
client is not running, the message notification is delivered through the OS push APIs.

The application also offers the capability of multimedia contents transfer, including photos,
audio and video. Transfers are managed by HTTPS multimedia (mm) servers listening on
port 443. Those servers are associated to different domain names depending on their specific
task: mmsXYZ.whatsapp.net and mmiXYZ.whatsapp.net are both used for audio and photo
transfers, while mmvXYZ.whatsapp.net are exclusively reserved for videos. For each object,
a dedicated TLS-encrypted connection towards a mm server is established. Uploads are
started immediately, while downloads of large objects need to be manually triggered by the
receiving user to avoid undesired traffic. These servers do not perform any transcoding. As
we shall see in next, the two server classes have very different network footprints. While
connections to chat servers are characterized by low data-rate and long duration (specially
due to the control messages), media transfers are carried by short and heavy flows.

4.6.2. Hosting Infrastructure
The first part of the study focuses on discovering where the servers are located. For doing
so, we rely on the analysis of a complete week of WhatsApp traffic traces, consisting of
more than 150 million anonymized flows collected at the usual Vantage Point in a mobile
network, from 18/02 till 25/02, by the METAWIN monitoring system and analyzed through
DBStream. In the following analysis, volume and flow counts are normalized to preserve
business privacy, and time-series are constructed with 10-min time slots resolution.

WhatsApp communications are encrypted, thus we need to rely on the DNS-based ap-
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Service/AS # IPs #/24 #/16 #/8

WhatsApp 386 51 30 24
SoftLayer (AS 36351) 1,364,480 5330 106 42

Table 4.12.: Number of server IPs and prefixes used by WhatsApp.
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(a) WhatsApp/SoftLayer IP ranges. (b) Weighted IP ranges.

Figure 4.25.: Ranges of IPs hosting WhatsApp. The range of server IPs is highly distributed,
covering 51 different /24 prefixes and 24 /8 ones, however, when weighting
this distribution by flow number, the majority of the traffic corresponds to IPs
falling in 3 /16 ranges. The range 50.22.225.0/24 captures a main share.

proach illustrated in Section 3.4.3 (HTTPTag2) for extracting the relevant flows from the
dataset.

The complete one-week server IP mappings resulted in a total of 386 IPs identified as
hosting the service, belonging to a single AS called SoftLayer (AS number 36351) 5. To avoid
biased conclusions about the set of identified IPs from a single vantage point, we performed
an active measurements campaign using the RIPE Atlas measurement network [8], where we
analyzed which IPs were obtained when resolving the same FQDNs from 600 different boxes
around the globe during multiple days. These active measurements confirmed that the same
set of IPs is always replied, regardless of the geographical location of the requester. SoftLayer
is a US-based cloud infrastructure provider consisting of 13 data centers and 17 Points of
Presence (PoPs) distributed worldwide. Using MaxMind geoloacalization capabilities, we
observed that despite its geographical distribution, WhatsApp traffic is handled mainly by
the data centers in Dallas and Houston. Given that the city-location accuracy of public
GeoIP databases such as MaxMind is questionable [27], we confirmed through traceroutes
and active RTT measurements that the servers are indeed located in the US.

Table 4.12 reports the different number of prefixes covered by the identified IPs in Soft-
Layer. Note that we consider different netmasks (e.g., /24, /16, /8) for simple counting

5SoftLayer: Cloud Servers, in http://www.softlayer.com

http://www.softlayer.com
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(a) min RTT per WhatsApp IP. (b) Weighted min RTTs.

Figure 4.26.: min RTT distribution of WhatsApp server IPs. The distribution presents some
clear steps indicating the existence of different data centers or hosting locations.

and aggregation purposes, i.e., we do not claim that the prefixes are fully covered/own by
the ASes. The range of server IPs is highly distributed, covering 51 different /24 prefixes
and 24 /8 ones. The table additionally shows the total number of SoftLayer IPv4 IPs. Fig-
ure 4.25(a) shows the intersection of both IP address ranges. As depicted in Figure 4.25(b),
when weighting the IP ranges by volume, the majority of the traffic corresponds to IPs falling
in 3 /16 ranges. However, in terms of flows and activity (measured as 10-min active slots),
the range 50.22.225.0/24 captures a main share.

To complement the picture of the servers location, we again investigate the distance to the
vantage point in terms of RTTs, analyzing the minimum RTT values, obtained from active
ping measurements, as the passive dataset in use do not include this information. Figure 4.26
plots the distribution of the minimum RTT to (a) all the server IPs hosting WhatsApp, and
(b) the same min RTT values, weighted by the previously considered 4 features (i.e., flows,
active slots, and traffic volumes) to get a better understanding of the traffic sources. The
distribution presents some clear steps indicating the existence of different data centers or
hosting locations. The min RTT is always bigger than 100ms, confirming that WhatsApp
servers are located outside Europe, where our vantage point is located. Figure 4.26(b) shows
that the service is evenly handled between two different yet potentially very close locations
at about 106 ms and 114 ms, which is compatible with our previous findings.

To further understand how the hosting infrastructure of WhatsApp is structured, Fig-
ure 4.27 depicts the distribution of server IPs over the same previous 4 features. The Figures
additionally depict chat and multimedia servers to discriminate their roles. Regarding (a)
number of flows and (b) active time slots, we clearly observe how chat servers handle the
biggest share of the flows, with a highly active set of server IPs. On the contrary, multimedia
servers are much less active and handle a limited share of flows. In terms of volume, the
picture is completely the opposite when considering traffic volumes in (c) downlink and (d)
uplink directions.

Figure 4.28 shows the dynamics of WhatsApp for 3 consecutive days, including the number
of active server IPs, the fraction of flows and traffic volume shares, discriminating by chat and
mm traffic. The mm category is further split into photos/audio (mmi and mms) and video
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Figure 4.27.: WhatsApp server IPs in terms of volume, flows, and activity shares. As ex-
pected, multimedia and chat flows have very different characteristics.

(mmv). The time-series present a clear night/day pattern with two daily peaks at noon
and 8pm. Figure 4.28(a) indicates that more than 350 IPs serve WhatsApp flows during
peak hours. Note that no less than 200 IPs are active even in the lowest load hours. When
analyzing the active IPs per traffic type, we see how chat servers are constantly active, as
they keep the state of active devices to achieve an efficient and fast push of the messages to
the device. Figure 4.28(b) shows the flow count shares, revealing how chat flows are clearly
dominating. Once again we stop in the mmi and mms servers, which seem to always handle
the same share of flows, suggesting that both space names are used as a mean to balance the
load in terms of photos and audio messages. Finally, Figures 4.28(c) and 4.28(d) reveal that
even if the mm volume is higher than the chat volume, the latter is comparable to the photos
and audio messaging volume, specially in the uplink. Tab. 4.13 summarizes these shares of
flows and traffic volume. The reader should note that our dataset does not include flows
transmitted over WiFi, thus some of these results might be biased due to users potentially
using WiFi for large file transfers. We are currently analyzing this potential bias as part of
our ongoing work, and our first results confirm that our observations are still valid.

As a conclusion, our measurements confirmed that WhatsApp is a centralized and fully
US-based service. This is likely to change in the near future after Facebook’s WhatsApp
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(b) Flows.
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(d) Bytes up.

Figure 4.28.: WhatsApp server IPs dynamics over 3 consecutive days. More than 350 IPs
serve WhatsApp during peak hours. Chat servers are constantly active to keep
the state of devices.

features chat mm mmv mmi mms

# bytesdown 16.6% 83.0% 38.8% 12.8% 29.8%

# bytesup 29.5% 70.2% 35.2% 15.0% 17.9%

# flows 93.4% 6.2% 0.3% 2.9% 2.9%

# bytesdown
# bytesdown+up

60.6% 76.3% 75.1% 70.0% 81.9%

Table 4.13.: Volume and flows per traffic category.

acquisition. As for now, all messages among users outside the US are routed through the
core network. Being Brazil, India, Mexico and Russia the fastest growing countries in terms
of users [85], such a centralized hosting infrastructure is likely to become a problematic
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(a) Flow duration vs. size.
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(b) Flow size.
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(c) Flow duration.
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Figure 4.29.: WhatsApp flow characteristics and performance.

bottleneck. Indeed, we will see that the high latencies to US servers are a potential cause of
bad QoE for users downloading multimedia files, due to an increased download time and a
reduced TCP throughput.

4.6.3. Flow Characteristics
We study now the characteristics of the WhatsApp traffic in terms of size and duration.
Additionally, we evaluate the performance of the service, computing the transfer throughputs
as the Key Performance Indicator (KPI). Flow durations are measured with a coarse-grained
resolution of one second (this is a limitation of the monitoring system, given the large amount
of processed traffic), considering the time-stamps of the first and the last packet of a standard
5-tuple measured flow (note that flows are unidirectional) and adaptive flow time-outs, see [6]
for additional details. Flow throughput is estimated as the ratio between the total transferred
bytes and the flow duration. Note that given the one second resolution, throughput values
are somehow an underestimate of the real throughput. Still, the obtained results about flow
duration allows us to claim that the absolute errors are marginal.

Figure 4.29(a) shows a scatter plot reporting the flow duration vs. the flow size, discrimi-



Chapter 4. Characterization of Traffic from Major Internet Services 71

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

flow duration −− chat flows (min)

%
 fl

ow
s

 

 

all chat flows
android
iOS
black berry
win phone

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

flow duration −− mm flows (min)

%
 fl

ow
s

 

 

all mm flows
android
iOS
black berry
win phone

(a) chat flows. (b) mm flows.

Figure 4.30.: Flow duration per different OS. The steps in the distributions are an evidence
of different time-outs imposed by the OSes.

nating by chat and mm flows. Whereas mm messages are sent over dedicated connections,
resulting in short-lived flows, text messages are sent over the same connection used for con-
trol data, resulting in much longer flows. For example, some chat flows are active for as
much as 62 hours. The protrusion at around 100KB is due to the fact that the client perform
compression of images and most of media flows are close to that size. Fig. 4.29(b) indicates
that more than 50% of the mm flows are bigger than 70 KB, with an average flow size of
225 KB. More than 90% of the chat flows are smaller than 10 KB, with an average size of
6.7 KB. In terms of duration, Figure 4.29(c) shows that more than 90% of the mm flows
last less than 1 min (mean duration of 1.8 min), whereas chat flows last on average as much
as 17 minutes. The flow duration CDF additionally reveals some clear steps at exactly 10,
15 and 24 minutes, suggesting the usage of an application time-out to terminate long idle
connections. This behavior is actually dictated by the operating system of the device. To
better understand it, we performed a device OS classification based on manual labeling of
each device based on its IMEI, covering more than 90% of the observed flows. Note that the
device IMEI is not contained in the WhatsApp messages, but comes from other monitoring
sources in METAWIN. Figure 4.30(a) splits the analysis of the chat flow duration per device
OS. The Figure clearly shows that the aforementioned time-out is mainly OS-dependent, as
different platforms show different values. Three different time-outs are visible for Android
devices at 10, 15 and 24 mins; iOS uses a very short time-out of 3 mins, BlackBerry devices
have 15 mins. long time-outs, whereas Windows Mobile phones favor 10 mins. time-outs.
On the contrary, in the case of mm flows in Figure 4.30(b), all the different OS show a
similar behavior, with the exception of BlackBerry and Windows Phone, using a 90 secs.
time-out. These observations might have a major impact on the performance of the Radio
Access Network, due to different OS synchronization times and uneven resources reservation
requests. Indeed, it has been recently shown that applications that provide continuous on-
line presence such as WhatsApp can generate a significant burden on the signaling plane in
cellular networks [88].

Considering flow throughput, Figure 4.29(d) depicts the uplink and downlink throughputs
for flows bigger than 1 MB. This filtering is performed as a means to improve the throughput
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Figure 4.31.: QoE in WhatsApp, considering flows bigger than 1MB. According to QoE models
obtained in lab experiments, 35% of WhatsApp multimedia transmission flows seen
at our VP are potentially badly received by end users.

estimations. A-priori, one might expect that the long RTTs involved in the communications
to the US servers might heavily impact the achieved performance. This is confirmed for about
30% of the transmitted flows, which achieve a throughput smaller than 250 kbps. However,
higher throughputs are obtained for the largest shares of flows, achieving an average per flow
downlink/uplink throughput of 1.5 Mbps/800 kbps. Still, as we show next, a big share of
the file downloads can actually result in a very poor quality of experience for the users.

4.6.4. Quality of Experience in WhatsApp
In the previous Section we considered the transfer throughput as the main KPI reflecting ser-
vice performance. However, in order to better understand the impacts of transfer throughputs
on the experience of the users, we performed a QoE-based study of WhatsApp, relying on
subjective QoE tests performed in the lab, following well defined standards for realizing the
tests and analyzing the results [91, 92]. In a nutshell, 50 participants (45%/55% male/fe-
male, 23 average age, 60%/40% students/employees) provided their feedback in terms of
Mean Opinion Scores (MOSs), reflecting their experienced quality while using WhatsApp for
transferring video and music files. The study consisted of users receiving a multimedia file of
5MB to download on their smartphones as a WhatsApp shared file. Different network condi-
tions were emulated by connecting the phones to a network emulator, introducing different
download throughput profiles via traffic shaping. At the end of each download, the user rates
the overall quality in a 1-to-5 MOS scale, where 5 means excellent experience and 1 means a
very bad one. Note that the file size of 5MB has a clear motivation behind: MP3 music files
and short videos have a similar size. While it is clear that the 5MB flow size reflects only a
fraction of the total flows (as depicted in Figure 4.29(b)), the performed study permits to
have some rough ideas of what the users perceive of the service in terms of quality in this
case. A deeper WhatsApp QoE-based study is part of our current work.

Figure 4.31(a) shows the QoE results for different download throughput values, translated
into waiting times. Download time is in fact the most relevant feature as perceived by the
user when analyzing file transfers [93], as this is directly linked to anxiety and satisfaction.
The Figure shows that users tolerate transfers of up to 20s long with a good overall experi-



Chapter 4. Characterization of Traffic from Major Internet Services 73

ence, whereas transfers lasting more than 80s are considered as very bad quality. A threshold
of about 40s permits to approximately discriminate between good and bad experience. Fig-
ure 4.31(b) plots the Flow Size vs. the Flow Download Time (FDT) for the large-scale
dataset, considering only flows bigger than 1MB. If we focus on the range of flows with
sizes around 5MB, we see that while the majority of the flows have a FDT below 40s, there
are many downloads which highly exceed this threshold. Indeed, Figure 4.31(c) shows the
distribution of the FDTs, both for all the flows with size between 4MB and 6MB, as well as
for all the flows bigger than 1MB. From these CDFs, one can say that almost 40% of the
WhatsApp downloads with size between 4MB and 6MB have a FDT lower than 20s, resulting
in good user experience. About 60% still result in an acceptable quality, and about 35% are
potentially badly or very badly perceived. Finally, if we now assume that users are generally
non experts and that file sizes are not taken into account into their quality expectations
when downloading a video or a song through WhatsApp, we could say that similar results
are observed for the complete dataset of downloaded flows bigger than 1MB. Of course this
last observation is rather controversial, but still presents some notions on the experience of
the end users. Concluding the analysis of WhatsApp, we see that the architectural design
of WhatsApp, with servers centralized in the US, might actually have an impact on the
experience of the users.

4.7. Summary
In this Chapter we have addressed the problem of extracting useful knowledge from the
dynamics of the Internet addressing space, specially targeting the characterization of the top
web services, their hosting organization and the way services are delivered to the end-users.

Our main source of information has been passive measurements captured at two different
Vantage Points collected during several campaigns conducted over 2013 and 2014, imported
in the DBStream data-warehouse system and classified using the techniques described in
Chapter 3. Additionally, we complemented our datasets with geo-IP information provided
by MaxMind and both local and geo-distributed active measurements (e.g., ping and RIPE
Atlas UDMs).

We have seen that Internet traffic is largely dominated by few big players with very different
approaches in deploying their provisioning systems. Among our finding, we have shown how
dynamic and distributed are current major CDN players, like Google for YouTube, providing
not only large numbers of servers or IPs at very distributed locations, but also making use of
load balancing techniques to shift HTTP flows among their preferred hosting locations. We
have also shown evidence on the more static approach followed by other CDNs and services,
like Limelight and WhatsApp, reflecting a different architecture philosophies.

All the results presented in this chapter refer to normal operations of the considered
services. With the acquired knowledge, we can now move on to the next Chapter, where we
will study their anomalous behaviors.
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5. Large-scale Network Anomalies
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5.1. Introduction
In Chapter 4 we have characterized the network footprint of major hosting providers and
popular Internet services. By exploiting tools and techniques described in Chapter 2 and 3,
we have focused on the complex dynamics behind large scale provisioning systems. Indeed,
Internet services rely more and more on highly distributed and sophisticated Content Delivery
Networks that have the main role of pushing the contents as close as possible to end users
to achieve efficient load balancing and improve overall performance. In some service classes,
such as video streaming or social networks with large user bases, this complex provision-
ing approach is more remarked, as seen, respectively, in the study cases of YouTube and
Facebook.

The deep characterization previously provided allows to unravel the complexity of the
traffic patterns seen in the passive traces. However, the non-disclosed CDN internal policies,
which are space and time variant, impose serious challenges in the modeling of detection
and diagnosis systems for unexpected anomalous events. The variability of traffic patterns,
in fact, makes it difficult to isolate changes that are the cause of potential negative effects.

In this Chapter we again resort on real traffic passively captured at large operational
networks to study real-world anomaly use cases. The anomalies that will be studied have
been observed during the characterization of the previously seen services. In particular, we
now focus on events affecting Facebook, WhatsApp, YouTube and their provisioning systems.
In addition, we will describe a category of device-related anomalies – i.e., anomalies affecting
specific sub-populations of devices – which are very popular in cellular networks, but also
very harmful.

The study of these events is not only useful for understanding the characteristics of different
anomaly types, but also assess which of the involved parties is negatively affected by those.
Some anomalies impact the access operator network and cost planning, while some others
impact the perceived quality by end users, as we shall see.

The characterization of these use cases has been done by manually checking a number
of traffic features and demonstrates the advantages of using different metrics to produce
a complete diagnosis of the event. This study completes the requirements and provide an
input for finally approaching the goal of this work: the design of algorithms for automatically
diagnose network anomalies, which will be the subject of the last two Chapters of this thesis.

5.2. Related Work and Contributions
As we have seen in the related work section of the previous Chapter (cfr. Section 4.2),
CDNs have received great attention due to the increased volume of traffic they deliver.
However, despite the large literature, only some of these studies have considered the problem
of detecting and analyzing anomalies in such CDN scenarios. Worth mentioning is the work
of Stoica [94], where authors present a taxonomy of quality problems in video distribution
through CDNs, using a large-scale dataset of client-side measurements. Among their findings
is the observation that between 30-60% of the quality problems they observed are related to
the content provider, the CDN, or the client ISP. Also the work of the Google operations’
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team is relevant to us [95], where authors present a framework to diagnose large latency
changes in Google’s CDNs’ delivered traffic. In addition, the work from Mellia’s research
group on monitoring CDNs builds on the direction we have followed.

In a broader basis for characterizing network anomalies, one of the former papers working
on the analysis of anomalies in large scale networks is the one of Lakhina et al. [96],
which targeted more general types of anomalies such as network outages, flash crowds, high-
rate flows, etc. Unfortunately, besides [94], there has not been much work on producing
a comprehensive taxonomy on the types of anomalies observed in current Internet scale
services.

A major step in the characterized of anomalies in CDN-based services has been taken by us
in our publications [P5, P6, P8, P10-P15], where we present multiple case studies occurred in
the popular services previously analyzed. Some very recent work builds on top of our results
in this direction; for example, authors in [97] present a system to unveil sudden changes in
the YouTube provisioning infrastructure.

Our work is the first to fully characterize a number of anomaly case studies occurring in
cellular networks, in addition to fixed-line networks, considering different types of network
traces. The reason why this topic remains largely unexplored by the research community must
be sough, again, in the lack of data, an issue already mentioned in Chapter 1, and in the
undisclosed nature of CDN policies, which makes it difficult to isolate anomalous patterns.
The traffic monitoring and analysis research community has a limited access to real-world
passive traces collected in large scale operational networks. The time-limited nature of the
datasets available prevents researchers from monitoring CDN traffic on the long term to
uncover and characterize anomalies.

5.3. Large-scale Changes in Service Provisioning: the
case of Akamai and Facebook

In the previous chapter (cfr. Chapter 4.5), we have analyzed the highly distributed provi-
sioning system of Facebook, the most popular social network to date. Recall that Facebook
content is delivered through a sophisticated and highly distributed content delivery infras-
tructure. The big majority of the Facebook content is hosted by the Akamai CDN. Parts of
the content are hosted under Facebook’s own Autonomous System (AS), split between its
headquarters in the USA and Ireland. Finally, an important share of the content is served by
the ISPs, which maintain large transparent caches, and may additionally host Akamai servers
inside their premises. By using the same dataset of Section 4.5, we unveil unexpected events
in how Facebook traffic is served by the involved ASes.

5.3.1. Multi-caches Selection Policies
Let us first show with a simple example the intrinsic multi-caches and daily load balancing
policies employed in the delivery of Facebook traffic flows. Fig. 5.1 shows the per-hour
distribution (CCDF) of the RTT of the flows carrying Facebook content for a complete
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Figure 5.1.: Daily RTT CCDFs for Facebook flows. There is a clear shift on the selected
servers between the first and the second half of the day.

day. For each Facebook flow, the RTT is passively computed as the delay between the
SYN and the SYNACK packets during the TCP 3-way handshake. Given that the probe
is at the Gn interface of a 3G mobile network, the user-side part of the RTT is excluded.
The Figure reveals the typical daily patterns of the RTT distributions. The occurrence of
“bumps” or knees in the distribution indicates the presence of different caches, located at
different propagation distances from the vantage point. In addition, there is a clear change
on the selected servers providing the content during the first and the second half of the day,
revealing the existence of a time-of-day based load balancing policy.

Let us move to the study of the anomalies. To show some of the unexpected traffic
changes caused by the selection of caches serving Facebook, Figure 5.2 depicts the 4-days
evolution of the number of flows (obfuscated to protect operator’s business sensitive details)
and the corresponding number of unique server IPs delivering Facebook content, aggregated
in 5-min time bins and split by hosting organization/AS. We include the top-4 organizations
in terms of delivered volume, which correspond to Akamai, Facebook AS, the Local Operator
(LO), and the most important Neighbor Operator (NO1). The plot also includes another
Neighboring Operator we refer to as NO2, which plays a key role in this analysis. The flow
share across the 5 organizations remains practically constant during the day. There is a clear
daily pattern in the number of active IPs, and it is worth noting how Akamai systematically
doubles the number of deployed servers during the peak hours (21:00-23:00), flagged by
the dotted rectangles. As expected, Akamai and Facebook AS serve the largest share of
Facebook flows. Akamai employs many more servers, and as shown in Fig. 5.3, it hosts
the largest flows corresponding to the static Facebook contents, showing the role breakdown
through the different organizations.

Figure 5.2 additionally shows the occurrence of four anomalies, identified as A, B, C and
D, which break the normal traffic pattern. We clarify to the reader that these events are
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Figure 5.2.: Flow counts (up) and server IPs (down) per AS, 5-min aggregation.

assessed as “unexpected” or anomalous with respect to the behavior observed in our traces,
i.e., from the perspective of the ISP hosting the vantage point. In this study we do not have
enough data (e.g., from multiple vantage points) to find the root causes of such behaviors,
which might be the result of more complex and planned activities by the involved ASes.
Anomalies A and B have similar characteristics: even if the number of IPs steeply increases,
the number of flows and traffic volume served by Akamai abruptly decreases. The number
of flows served from NO1 and NO2 abruptly increase, and so does the number of active IPs
in both ASes. This strongly indicates that flows served by Akamai under normal operation
(i.e., the majority of the time) are now served by neighboring ISPs. Akamai actually deploys
servers inside the ISPs (cfr. Section 4.3), which also explains the synchronized shift of flows.
Fig. 5.3 depicts a 12 hours zoom around the events C and D. During the event C, the
Akamai drop is again compensated by NO1 and NO2 in terms of volume. However, unlike
NO2, there is a limited increase in the number of flows served from NO1, suggesting that
the latter takes over the largest flows from Akamai. Event D differs from the previous ones
since it does not involve Akamai, and it is characterized by a swap in the number of flows
between NO1 and NO2.

We acknowledge that we do not know the ground truth or root causes causing the afore-
mentioned unexpected – from the ISP perspective – cache selection events. A possible cause
could be an outage in the Akamai AS or a scheduled maintenance. We did not observe any
abrupt variation in the total traffic, throughput, average RTT to the active IPs, nor in the
number of erroneous HTTP responses during the events A-D, suggesting that the cache
selection did not impact the end-user QoE. However, we argue that these fast and signifi-
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Figure 5.3.: Flow counts, volume and server IPs per AS, for 12 hours.

cant traffic shifts might be highly costly for the LO. Indeed, we verified via traceroutes that
Akamai, NO1, and NO2 are neighbors to LO. As reported in the Internet AS-level topology
archive1, the relation between LO and Akamai is peer-to-peer (P2P), whereas the relation
between LO and both NO1 and NO2 is customer-to-provider (C2P). In a nutshell, the P2P
relation results in no transit costs for the LO for the flows served by Akamai, whereas the
C2P relation might represent additional transit costs for the LO for flows coming from NO1
and NO2. For this reason, such events are worth to be automatically detected and analyzed.

5.3.2. Temporal Characteristics of Facebook and Akamai Traffic
To get further insights on the aforementioned anomalies, we investigate the temporal evo-
lution of the probability distributions of the flow counts across IPs serving the Facebook
content. The flow counts are computed for each observed server IP, considering different
time-scales to enable multi-scale analysis (e.g., from 1’ to 60’). The distribution of the
flow counts across the server IPs is computed after each time bin. Finally, by comparing
the distributions referring to different time intervals through the modified K-L divergence
(6.3), we get a direct insight on how the flow load balancing is performed among the IPs of
the different organizations. To visualize and quantify the degree of (dis)similarity of a large
number of distributions over days and even weeks, we use an ad-hoc graphical tool proposed
in [29], referred to as Temporal Similarity Plot (TSP). We recall from the previous Chapter
that the TSP allows pointing out the presence of temporal patterns and (ir)regularities in
distribution time series, by simple graphical inspection. The TSP is a symmetrical checker-
board heat-map like plot, where each point {i, j} represents the degree of similarity between
the distributions at time bins ti and tj.The blue palette represents low similarity values, while
reddish colors correspond to high similarity values

Figure 5.4 gives an example of a TSP for the distributions of all the Facebook flows
across all the server IPs providing Facebook content, over the complete span of the dataset,
on a time-scale of 1 hour.Note the regular “tile-wise” texture within a period of 24 hours,
due to the daily cycle. The lighter zones correspond to the day-time periods, whereas the
dark blue zones correspond to the night-time periods when the traffic load is low. The

1Internet AS-level Topology Archive, http://irl.cs.ucla.edu/topology/.

http://irl.cs.ucla.edu/topology/
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Figure 5.4.: TSP of flow count distributions at 1h time scale, over 28 days.

low similarity at night (02:00-05:00) is caused by the low number of flows, inducing larger
statistical fluctuations. This pattern repeats almost identical for a few days, forming multi-
days macro-blocks around the main diagonal, of size ranging from 2 up to 6 days. Besides
the basic tile-texture, the analysis of the entire observation period reveals the presence of a
more complex temporal strategy in the (re)usage of the IP address space. Indeed, it discloses
a re-usage of (almost) the same address range between days 4-10 and 14-15, and between
days 11-13 and 16-17. Finally, we observe a sharp discontinuity on days 19-20.

To better understand these behaviors, we separately plot the two main sources of Facebook
flows, namely Akamai and the Facebook AS. Comparing Figures 5.5(a) and 5.5(b) against
Figure 5.4 shows a very different allocation policy used by the two organizations. Akamai
uses the same IPs for 4 to 7 days (see multi-day blocks around the main diagonal). When
it changes the IPs the shift is not complete, as we can observe the macro-blocks slowly
fading out over time. This suggests a rotation policy of the address space of Akamai on a
time-scale longer than a month. However, we cannot prove this conjecture because of the
limited duration of the analyzed dataset. Facebook AS does not reveal such a clear temporal
allocation policy. It alternates periods of high stability (e.g. between days 4-10) with highly
dynamic periods (e.g., from day 19 onward). Note that Facebook AS is responsible for the IP
reuse between days 4-10 and 14-15, and between days 11-13 and 16-17, and for the abrupt
change on days 19-20, both already identified in Figure 5.4. Finally, NO1 always uses two
distinct address sets during the night and the day periods, as depicted in Figure 5.6(b).

We can use the TSPs to identify, by graphical inspection, the aforementioned anomalies
in the traffic distributions. Indeed, a transient anomalous event appears in the TSP as a
full blue cross centered on the main diagonal, at the time of the event. Figure 5.6 shows
the TSPs of the flow counts distributions between days 21 and 24 at a 5 minutes time-
scale (i.e., the same period and aggregation depicted in Figure 5.2), for Akamai, NO1, and
Facebook AS respectively. The events A, B, and C are clearly visible in the TSPs of Akamai
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(a) Akamai (b) Facebook AS

Figure 5.5.: TSP of flow counts distributions at 1h time-scale.

(a) Akamai (b) NO1 (c) Facebook AS

Figure 5.6.: TSP of flow counts distributions at 5’ time-scale.

and NO1, and are totally absent from the Facebook AS TSP. These events are also clearly
visible in the TSP of NO2 (not reported for space limitations), and are in total accordance
with the analysis for the flow counts time-series in Figs. 5.2 and 5.3. Regarding the event
D, it is observable in all the TSPs, even though it is completely invisible in the time-series
of flow counts and volume of Facebook AS in Figure 5.3. Furthermore, Figs. 5.6(b) and
5.6(a) pinpoint the presence of two more anomalous events in the Akamai and NO1 traffic,
namely the events E and F , that are completely invisible in the flow and volume plots. This
additionally justifies the usage of probability distribution based approaches for detecting such
abnormal events.

5.4. OSN Service Outages: two Close Facebook Events
We devote this section to the analysis of two outages in the Facebook service which occurred
at one month of distance one from the other, in September and October 2013 respectively.
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Figure 5.7.: Detection of Facebook outages in Septmeber 2013. (up) Facebook downlink
traffic volume per AS and (down) HTTP server error message (e.g. 5XX) counts.

Such outages are not directly linked to the cache selection policies employed by the CDNs
serving the content, as they do not involve any shift of traffic among ASes hosting the service.
Still, they are related to them, as they may occur at different ASes independently. However,
differently from the events previously described, in these two cases the change in the traffic
patterns resulted in a partial service unavailability for end-users, as we shall see next.

5.4.1. First Facebook Outage: September
Figure 5.7 depicts the first interesting anomalous event in the Facebook traffic served by
Akamai, which we claim corresponds to a large outage in Akamai servers during a time
frame of about 2 hours in September 2013. The total volume served by Akamai, Facebook
AS and LO abruptly drops during this outage, being Akamai the organization showing the
highest change. Different from the events previously analyzed in Figures 5.2 and 5.3, no
other organization takes over the dropped traffic, suggesting the occurrence of an outage.

To further understand the root causes of the abrupt drop, Figure 5.7 additionally plots
the time series of the count of HTTP server error messages (i.e., 5XX HTTP answers)
corresponding to the Facebook HTTP flows served by the aforementioned ASes. The high
increase in the counts for Akamai is impressive, meaning that during the volume drop, the
HTTP web traffic hosted by Akamai was not available for many users. The increase of the
5XX messages continues for about half an hour after the apparent recovery, flagging some



84 5.4. OSN Service Outages: two Close Facebook Events

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
0

0.2

0.4

0.6

0.8

1

V
ol

um
e 

(b
yt

es
/ti

m
e 

bi
n)

 −
 n

or
m

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
0

20

40

60

80

time [hh:mm]

H
T

T
P

 5
X

X
 e

rr
or

 m
es

sa
ge

s 

 

 

Akamai
Facebook
LO
NO1

Figure 5.8.: Detection of Facebook outages in October 2013. (up) Facebook downlink traffic
volume per AS and (down) HTTP server error message (e.g. 5XX) counts.

transient effects which might be linked to the re-start of some servers.
Interestingly, there are no noticeable variations in the counts for the other ASes, suggesting

that the outage is only part of the Akamai CDN and is not related to the Facebook service
itself. As we said before, we do not have any ground truth flagging this outage in the Akamai
CDN. However, we also detected an outage of very similar characteristics about one month
later, for which we have the ground truth of its occurrence, disclosed in the international
press2.

5.4.2. Second Facebook Outage: October
Figure 5.8 depicts this new outage occurring in October 2013. The drop in the served volume
is not as marked as before, and in this case, the increase in the HTTP error message counts
occurs for the servers under Facebook AS and not Akamai. However, the characteristics
are very similar: a drop in the overall served volume with no other organization taking over,
as well as a marked increase in the HTTP error messages counts. According to the press
release, this Facebook outage was caused by maintenance issues. As a final statement on
the importance of rapidly detecting and diagnosing these types of events we cite directly the
press release, which claims that the flagged outage impacted millions of Facebook users on

2http://www.theguardian.com/technology/2013/oct/21/facebook-problems-status-updates
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(a) Aggregated traffic and OSN feedback. (b) A zoom-in of the TCP flag counts.

Figure 5.9.: The WhatsApp worldwide outage. During the event, there is a clear drop in
traffic volume both downlink and uplink, while the flow counter increases. This
happens because end terminals repeatedly try to re-contact the service increasing
the number of TCP SYN packets.

more than 3.000 domains. Interestingly for ISPs, the experts behind the press release advise
to check the status of large services like Facebook before actually starting a troubleshooting
phase on their internal systems.

5.5. IM Service Black-out: the case of WhatsApp
In this section we focus on the analysis of the major WhatsApp worldwide outage reported
since its beginning as observed in our traces (cfr. Section 4.6).

The outage occurred in February the 22nd of 2014, and had a strong attention in the
media worldwide. The event is not only clearly visible in our passive traces, but can also
be correlated with the near real-time user reactions on social networks. Through the online
downdetector application 3 we accessed the counts of tweeter feeds containing the keyword
“whatsapp”, coupled with keywords reflecting service impairments such as “outage”, “is
down”, etc.. We refer to these tweets as error tweets.

5.5.1. Black-out at a glimpse
Figure 5.9(a) depicts the time series of the share of bytes exchanged with the WhatsApp
servers, the share of flows, as well as the number of error tweets during two consecutive
days encompassing the outage. The traffic drastically dropped on the 22nd at around 19:00

3Downdetector.com, http://downdetector.com/.

http://downdetector.com/


86 5.6. Quality of Experience Degradation: the case of Youtube

CEST (event B), and slowly started recovering after midnight, with some transient anomalous
behaviors in the following hours (events C and D). Traffic volumes in both directions did
not drop completely to zero but some non-negligible fraction of the traffic was still being
exchanged, suggesting an overloading problem of the hosting infrastructure. In terms of
number of flows, there is a clear ramp-up on the flow counts. This apparently counterintuitive
aspect will be clarified later. Very interestingly, there is an evident correlation between the
events B, C and D and the number of WhatsApp-related error tweets. The users reacted
on the social network immediately after the beginning of the outage, with the viral effect
reaching its highest point after one hour. There is an additional outage event marked as
A, which is clearly observable in the error tweet counts and has exactly the same signature
of events B, C and D, i.e., a slight drop in the traffic volume and an increase in the flows
count, this time characterized by a smaller intensity due to the low utilization of the service
during night. As a take away of this social data analysis, one can use such information as
an additional ground truth for near real-time detection of QoE-relevant anomalies in popular
services such as WhatsApp.

5.5.2. TCP Flags Counters
To better drill-down the anomaly, Figure 5.9(b) depicts a 12-hour zoom-in of the traffic
volume trends, split by chat and multimedia traffic (cfr. WhatsApp service characterization
in Section 4.6), along with the counters of TCP flags. The bytes down counters show that the
residual downlink traffic exchanged during the first part of the anomaly is due to previously
queued mm transfers. In fact, while chat servers stopped working, media servers are still up
and running at the beginning of the outage. We recall that connections to chat servers are
also used for application control, hence they provide links to media contents. If such links
have been delivered before the chat outage, the users might still be able to retrieve media
objects. The chat traffic in the uplink direction does not drop to zero but slowly fades out,
which actually corresponds to control flows trying to re-establish the lost connections. In
particular, the TCP flags counters reveal an steeped increase of SYN packets, indicating that
devices were repeatedly trying to reconnect after the servers abruptly flashed the connections
(RST flags). This suggests that the servers were still reachable, thus the failure occurred at
the application layer. The SYN and RST counters decrease gradually, revealing a back-off
mechanism of the client application. These connection attempts explain the high increase in
the flow counts during events A-D, as well as the persistence of uplink traffic to chat servers.
This behavior affected the whole WhatsApp addressing space.

5.6. Quality of Experience Degradation: the case of
Youtube

In Section 5.3 we have studied an example of large-scale changes in the provisioning system
of an Internet service, with consequent shifts of large amount of traffic from one source to
another. In that specific study case, we do not have any evidence that said change impacted
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the functionality of the service as perceived by final users. In this section, by describing a
similar event, we show how CDN cache selection policies may also have a strong impact on
the service quality as experienced by the end users. This is not only a main issue for the
end-users, but also for the ISP providing the Internet access to the contents, as customers
will in most cases directly blame the ISP for the bad QoE, even if the origin of the problems
is located outside its boundaries.

The anomalous event characterized in this section correspond to a real case in which
an unexpected cache selection and load balancing policy employed by Google results in an
important drop on the average download throughput for the end-users watching YouTube
videos. Indeed, conversations with the ISP confirmed that the effect was indeed negatively
perceived by the customers, which triggered a complete Root Cause Analysis (RCA) procedure
to identify the origins of the problem. As the issue was caused by an unexpected caches
selection done by Google, the ISP internal RCA did not identify any problems inside its
boundaries. This anomaly is a clear example of how standard diagnostic procedures followed
by operators should always be complemented with a verification of the status of the services
being accessed by the users, which in many cases are the root of the problems.

The dataset is the same used in Section 4.4 and corresponds to one month of HTTP video
streaming flows collected at the fixed-line network of a major European ISP, from April the
15th till May the 14th, 2013.

As reported by the ISP operations team, the anomaly occurs on Wednesday the 8th of
May. Fig. 5.10(a) shows the TSP of the video volume served by the different IPs in the
dataset, aggregated in /24 subnetworks, and using a time-scale of 1 hour. Similar to the
Akamai case, we can appreciate a marked daily periodicity behavior in the TSP. Specifically,
there are two subnet sets periodically re-used in the first and second half of the day. The
TSP clearly reveals that a different subnet set is used during the second half of the day from
the 8th of May on, revealing a different cache selection policy. This change is also visible in
the CDFs of the per subnet volume depicted in Fig. 5.10(b). Indeed, we can see that the
same set of subnets is used between 00:00 and 15:00 before and after the anomaly, whereas
the set used between 15:00 and 00:00 changes after the 8th, when the anomaly occurs.

5.6.1. Evidences of QoE Degradation
Despite this detected change in the cache selection policy employed by Google, such a
modification does not justify by itself the QoE degradation reported by the ISP. To further
investigate this issue, we plot in Figure 5.11 the time series of three different performance
indicators related to the YouTube download performance and to the end-user QoE. Figure
5.11(a) depicts the median across all YouTube flows of the download flow throughput during
the complete week. There is a normal reduction of the throughput on Monday and Tuesday
at peak-load time, between 20:00 and 23:00 UTC. However, from Wednesday on, this drop
is much larger, and drops way below the bad QoE threshold Th1 = 400 kbps, flagging a
potential QoE impact to the users. Figure 5.11(b) plots the entropy of the QoE classes
built from thresholds Th1 = 400 kbps and Th2 = 800 kbps, consisting of bad QoE for flows
with average download throughput below Th1 , fair QoE for flows with average download
throughput between Th1 and Th2 , and good QoE for flows with average download throughput
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Figure 5.10.: YouTube traffic volume distributions per CDN /24 subnets. There is a clear
change in the hosting settings, highlighted both by the TSP and the CDF.

above Th2 . Recall that these thresholds correspond to the QoE mappings presented in Figure
4.17, which only cover 360p videos. Still, as previously depicted in Figure 4.14(a), the largest
majority of the videos observed in the dataset corresponds to 360p videos and higher bitrate
videos, thus Th1 and Th2 are somehow conservative thresholds, and QoE impairments might
be even higher under the proposed QoE classes. The drop in the throughput combined
with the marked drop in the time series of the QoE classes entropy actually reveals that a
major share of the YouTube videos are falling into the bad QoE class. Finally, Figure 5.11(c)
actually confirms that these drops are heavily affecting the user experience, as the time series
of the KPI β falls well into the video stallings region, depicted in Figure 4.18 in Section 4.4).

The anomaly can also be statistically detected as a large deviation on the distribution of
relevant features, for example, in the distribution of the average download flow through-
put. Figure 5.12 depicts the distribution of the average video flows download rate at peak
hours, both before and during the anomaly. There is a clear reduction on the video flows
download throughput during the anomaly, which results in the aforementioned QoE-relevant
impairments. This is actually a powerful detection approach: the idea of using statistical dis-
tribution for the detection will be further studied in the next Chapter as a basis for automatic
detection of anomalies. In the remainder of this Section, we continue manually investigating
other traffic features relying on our domain knowledge.

5.6.2. Investigating the Anomaly
As we said before, in this case study we exclude potential problems at the end devices or home
networks, as we are targeting a large-scale anomaly, impacting a large share of the monitored
customers. In addition, we recall that the ISP internal RCA did not identify any problems
inside its boundaries, so we also exclude the ISP network from the analysis. Therefore, we
shall only focus on the YouTube servers and on the download paths performance.

Figure 5.13 depicts the time series of the per hour users and bytes downloaded normalized
counts during the analyzed week. While there is a drop in the number of bytes downloaded
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(a) Median of the flow download throughput per hour for all YouTube flows.
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(b) Entropy of QoE classes per hour for all YouTube flows.
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Figure 5.11.: Detecting the QoE-relevant anomaly. There is a clear drop in the download
flow throughput from Wednesday till Friday at peak-load hours, between 20:00
and 23:00 UTC. The combined drop in the entropy of the QoE classes and in
the KPI β reveal a significant QoE degradation.

from Wednesday afternoon on, there are no significant variations on the number of users
during the working week (i.e., Monday till Friday), so we can be sure that the throughput
and QoE strong variations observed in Figure 5.11 are not tied to statistical variations of the
sample size. Using the QoE-related results depicted in Figure 4.18(c), we can assume that
the drop in the bytes downloaded suggests that the bad QoE affected the users engagement
with the video playing, resulting in users dropping the watched videos when multiple stallings
occur (i.e., when β < 1.25).

Let us drill down on the YouTube server selection strategy and the servers providing the
videos. Figure 5.14(a) depicts the number of server IPs providing YouTube flows per hour.
The first interesting observation is that the server selection policy used in the first 4 days of
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hosting settings.
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(a) Users count (normalized).
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(b) Bytes down count (normalized).

Figure 5.13.: Users and bytes down during the week of the anomaly. There are no significant
changes during the specific times of the flagged anomaly.

the dataset (April the 15th till the 18th) and during the first 2 days of the week under study
(May the 6th and the 7th) is markedly different, specially in terms of servers selected from
AS 43515, confirming the large distribution change previously observed in Figure 5.10. As
depicted in Figure 5.14(b), where the entropy time-series of the AS distribution corresponding
to the monitored server IPs is presented, there is a sharp shift in the distribution of hosting
ASes around peak-load hours. This shift corresponds to server IPs selected from AS 43515
rather than from AS 15169. In addition, there is an important reduction on the number of
servers selected from AS 43515 on the days of the anomaly. This suggests that a different
server selection policy is set up exactly on the same days when the anomalies occur.

5.6.3. Geo-location Diagnosis Approach
We now take a step further in characterizing this CDN server selection policy, by taking a
server geo-localization approach. The DNS-based re-directioning used by YouTube imposes a
specific structure on the video identifiers requested to the content servers, which additionally
include the name of the city where the server hosting the requested content is located. This
city name is formated as an airport code, better known as IATA code (e.g., FRA for Frankfurt,
AMS for Amsterdam, etc.). YouTube obfuscates this information, but it can be retrieved by
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Figure 5.14.: IPs hosting YouTube during the week of the anomaly.
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(a) Normal daily flows count per
city.
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(b) Anomalous daily flows count
per city.

mil ams fra lhr par zrh
0

10

20

30

40

50

60

70

80

90

100

Source IP city airport code

N
u

m
b

e
r 

o
f 

fl
o

w
s
 p

e
r 

c
it
y
 (

n
o

rm
a

liz
e

d
)

 

 

before the anomaly

after the anomaly

(c) Shift on the daily flows per top-
6 cities.

Figure 5.15.: Geo-localization of the detected anomaly. There is a major shift in the daily
number of YouTube flows coming from servers in Amsterdam to Frankfurt,
suggesting that the problem is linked either to servers in Frankfurt, or to the
new server-to-customer network paths.

reverse engineering (a description on how to do it is out of scope). Using this information,
we can study the geographical location of the new servers selected from the 8th on.

Figure 5.15 reports the daily number of flows (normalized) served from the top cities
hosting the YouTube content in our traces on (a) a day before the 8th of May and (b) a day
after the 8th of May. The top cities hosting the YouTube videos in this case study are Milano
and Amsterdam, followed by Frankfurt and other EU cities. The comparison presented in
Figure 5.15(c) shows that the newly selected servers are mainly located in Frankfurt and
London, and that almost all the flows served from Amsterdam are shifted to these cities
in the new cache-selection policy. Figure 5.16 complements this geo-localization view on
the traffic by reporting the daily distribution of the YouTube flows per city and per /24
subnetwork and AS. The shift is done from a single /24 subnetwork in AS 43515 to more
than five /24 subnetworks in AS 15169. Very interestingly, the servers located in Amsterdam
are almost no longer used after the shit on the 8th.
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Figure 5.16.: Daily distribution of the YouTube flows per city and /24 subnetwork. Each
column adds to 100%, and the darker the color, the higher the fraction of flows
hosted. Starting on May the 8th, the lion share of the YouTube flows, normally
served from Amsterdam, are shifted to Frankfurt and London.

5.6.4. Assessing Path-related Issues
Given this change in the server selection policy, we try to find out if the problem arises from
the newly selected servers, or if the problem is located in the path connecting these servers
to the users. Figure 5.17 studies the latency from users to servers during the complete week.
Figure 5.17(a) depicts the median of the min RTT per hour as measured on top of all the
YouTube flows. The marked increase in the RTT evidences that the servers selected during
the anomaly are much farther than those used before the anomaly. This increase impacts
directly on the HTTP elaboration time (i.e., time between HTTP request and reply), as
depicted in Figure 5.17(b). To understand if these latency increases are additionally caused
by path congestion, Figure 5.17(c) plots the time series of the difference between the min
RTT and the average RTT values; in a nutshell, in case of strong path congestion, the
average RTT shall increase (queuing delay), whereas the min RTT normally keeps constant,
as it is directly mapped to the geo-propagation delay. The differences before and during
the anomalies do not present significant changes, suggesting that the paths between servers
and clients are not suffering from congestion. This is also confirmed by the analysis of
the packet retransmissions, which do not present significant variations. Indeed, by applying
the techniques presented in [98], we were not able to identify the presence of a capacity
bottleneck on the downstream paths.

5.6.5. Assessing Server-related Issues
The last part of the diagnosis focuses on the YouTube servers. Figure 5.18 depicts the daily
average download throughout of YouTube flows per city and per /24 subnetwork, using the
geo-localization information described before. The color of each geo-temporal slot reflects
the QoE of the users accessing the corresponding servers, based on the thresholds defined in
Section 4.4.4 (green = good QoE, yellow = average QoE, red = bad QoE). As expected, the
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(a) Median of min RTT per hour for all YouTube flows.
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(b) Median of HTTP elaboration time per hour for all YouTube flows.
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(c) Median of avg RTT - min RTT per hour for all YouTube flows.

Figure 5.17.: The servers selected during the anomaly are much farther than those used
before. While there is a marked increase in the server elaboration time, the
avg. queuing delay (difference between avg. and min. RTT) remains bounded
during the anomaly, so we discard the hypothesis of path congestion.

shift depicted in Figure 5.16 from Amsterdam to Frankfurt is accompanied by a very strong
degradation on the QoE of the users.

Figure 5.19 depicts the average (a) min RTT and (b) download flow throughput per
server IP in a heatmap like plot. Each row in the plots corresponds to a single server IP. The
previously flagged min RTT increase is clearly visible for the new set of IPs which become
active from 15:00 to 00:00 from Wednesday on. For those server IPs, Figure 5.19(b) shows
the important throughput drop during peak-load hours. Note however that large min RTT
values do not necessary result in lower throughputs, as many of the servers used before and
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Figure 5.18.: Daily average download throughout of YouTube flows per city and /24 subnet-
work. The flows shifted to Frankfurt on the 8th of May are provisioned with a
very low throughput. Colors reflect the QoE of the users (green = good, yellow
= average, red = bad), based on the thresholds defined in Section 4.4.4.
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(a) Average min RTT per server IP.
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(b) Average download flow throughput per server IP.

Figure 5.19.: There is a new set of server IPs providing YouTube videos from Wednesday on
from farther locations. As visible in (b), the average download flow throughput
for each of these new server IPs is much lower than the one obtained from
other servers.

during the anomaly are far located but provide high throughputs. Figure 5.20 further studies
this drop, comparing the relation between min RTT and average download flow throughput
before and during the anomaly. The increase of the min RTT is not the root cause of the
anomaly. However, there is a clear cluster of low throughput flows coming from far servers
during the peak-load hours.

The conclusion we draw from the diagnosis analysis is that the origin of the anomaly is
the cache selection policy applied by Google from Wednesday on, and more specifically, that
the additionally selected servers between 15:00 and 00:00 were not correctly dimensioned to
handle the traffic load during peak hours, between 20:00 and 23:00. This shows that the
dynamics of Google’s server selection policies might result in poor end-user experience, on the
one hand by choosing servers which might not be able to handle the load at specific times, or
even by selecting servers without considering the underlying end-to-end path performance.
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(b) minRTT and avg. download rate per flow – dur-
ing the anomaly.

Figure 5.20.: The increase of the min RTT is not the root cause of the anomaly, as there
are no major issues previous to the anomaly. However, there is a clear cluster
of servers offering low throughput during the peak-load hours on an anomalous
day.

5.7. Unveiling Device-specific Anomalies through DNS
Analysis

In this Section we focus on device-specific anomalies observed in cellular networks4. This
class of anomalous events has gained a lot of interest by ISPs because of it high frequency
and the detrimental impact it has on their network.

These anomalies refer to the unreachability of remote Internet services that support some
functionality of a specific class of devices, such as the push notifications for a mobile op-
erating system for smartphones. Given the importance of such functionalities, affected end
terminals continuously try to re-contact the remote service highly impacting the normal cellu-
lar traffic patterns. This could result in an extremely armful overloading due to synchronized
communication patterns, severely impacting overall network performance. This makes rapidly
detect and diagnosing device-specific anomalies crucial for cellular ISPs.

From our operational experience, application-specific anomalies are particularly visible in
the DNS traffic. Modern Internet applications, in fact, heavily rely on complex load balancing
mechanism based on the diversification of DNS answers to different clusters of users. The
Time to Live (TTL) of those answers is usually short, in the order of seconds. Hence, every
time a user tries to access the remote service, it is likely to generate a new DNS query,
inducing changes in the normal DNS usage patterns. Indeed, abrupt changes in the DNS
requests count can be considered as a symptom of such anomalies.

We passively monitor DNS queries and answers in a Nation-wide cellular network by using
the usual approach and vantage point previously described. Observing DNS traffic also
allows to gain a number of meta-information that can be exploited in the diagnosing of the
anomalies. These meta-data include the anonymized ID of the end host device, the requested
remote service, the manufacturer, OS, as well as the local network settings (i.e., APN, RAT,
DNS server IP).

The diagnosis process of these anomalies consists in observing the aforementioned traffic
4This study has been originally published in [P12]
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Figure 5.21.: DNS requests count over two days. Two spikes in the morning of the second
day suggest the presence of the anomaly. Original source at [P12].

features and checking which one of them undergo a substantial pattern change. By correlating
these diagnostic information, one could build up a sort of signature for the anomaly and
isolate the sub-population of affected devices and the responsible remote service, offering
a full characterization of the event. We are now introducing the concept of correlating
diagnostic signals. For the moment, we focus on the manual correlation of changes in such
signals and we postpone the formalization and the automation of this to the next Chapter.

5.7.1. Anomaly Characteristics
We present now the study we have conducted on an instance of this anomaly class which has
been observed at our cellular VP. Figure 5.21 shows the time series of the total DNS requests
count observed in the network for two consecutive days. Two significant and anomalous spikes
are observed on the second day, which are easily spotted by the abrupt-change detection
algorithm.

Figure 5.22 provides a closer look into the anomaly, comparing the time series of the total
DNS requests count and the entropy of 4 selected features: FQDN, manufacturer, APN, and
ID. Similarly to the previous Section, the entropy measures the uniformity of the distribution
of DNS counters across the variables of feature itself. When the time series of the entropy
presents some glitches (i.e., spikes or notches), this gives an indication of a change in the
normal traffic patters that could be attributed to the presence of an anomaly. We will describe
and evaluate entropy-based anomaly detectors in the next Chapter (cfr. Section 6.5). The 4
features are extracted for each DNS request-response transaction (to preserve user privacy,
any user related data are removed on-the-fly). The other available diagnostic signals are
omitted for brevity, as they show a behavior similar to the reported next. We notice that
some of the observed diagnostic signals are correlated in a minor way to the anomaly. This
is the case for ID, TAC, RAT, and DNS rcode, therefore we can exclude the cases in which
the anomaly is caused by few users, a specific RAT, etc.. On the contrary, dimensions
such as FQDN and manufacturer present a very high correlation with the spikes in the DNS
count, suggesting that the issue might be due to specific devices (manufacturer) querying
for certain services (FQDN). Features such as APN and server IP show partial correlation to
the anomaly, thus need to be further cross-checked.

The next step of the diagnosis is to drill down each of the dimensions that are highly
correlated with the anomaly. This can be achieved, e.g., by comparing the heavy hitters
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Figure 5.22.: Entropy of selected features. The timeseries of some entropies are altered
during the anomaly. Original source at [P12].

before and during the anomaly. Figure 5.23 reports the specific case for the FQDN. The plot
shows the time-series of the most requested FQDNs during the anomaly. We observe that,
while some of the top FQDNs associated to well-known services present a stable behavior
(well known 1/2), the FQDNs anomalous cdn 1/2 and anomalous direct 1 show a sig-
nificant increase. The first two refer to content of a specific popular OTT service delivered
via a major Content Delivery Network (CDN), whereas the third one points directly to the
specific OTT service, showing that the problem is actually related to this service.

The mapping of the TAC codes to the manufacturer of the devices requesting the FQDNs
related to the anomaly also reveal a specific smartphone type involved in the anomaly. In
particular, the specific anomalous service runs on all these devices, but not on the other
smartphone types. W.r.t. the dimensions presenting partial correlation, we found that all
the different APNs are affected by the anomaly but in a different manner, suggesting that
different APNs are configured for different customers. Indeed, different APNs are normally
linked to different default DNS servers.

As a main conclusion, the proposed approach is helpful in highly reducing the time spent
by the network operator in the diagnosis of unexpected traffic behaviors. In particular, this
service outage resulted in an abrupt increase in the number of connection attempts from a
large number of devices, and its fast diagnosis was paramount to understand the nature of
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Figure 5.23.: DNS requests per FQDN class. The FQDNs anomalous cdn 1/2 (in blue) and
anomalous direct 1 (in red) show a significant increase. Original source at
[P12].

such an anomaly.

5.8. Summary
From the previous Chapters, we learned that most of modern Internet scale services rely on
complex Content Delivery Networks (CDNs), which push contents as close as possible to the
end-users to improve their Quality of Experience (QoE) and to pursue their own optimization
goals. Adopting space and time variant traffic delivery policies, CDNs serve users’ requests
from multiple servers/caches at different physical locations and different times. CDNs traffic
distribution policies can have a relevant impact on the traffic routed through the Internet
Service Provider (ISP), as well as unexpected negative effects on the end-user QoE.

In this Chapter we have studied a number of anomaly use-cases affecting the actors involved
in Internet services, i.e., the content and service providers, ISPs and the end-users. Promptly
detecting and diagnosis such anomalies is still an open issue: the dynamics of traffic patterns
make it difficult to distinguish changes that are potentially linked to anomalous behavior
from the physiological ones. Nevertheless it is of vital importance for ISPs to do so in
order to increase its visibility on the overall operation of the network, as well as to promptly
answer possible customer complaints. The study was carried out by manually investigating
the anomalies correlating a number of traffic features. By using the insights collected so far,
in the following Chapter we will start describing a structured framework for the detection
and diagnosis of network anomalies.
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6. Advanced Anomaly Detection
Techniques

Notice of adoption from previous publications
Parts of the contents of this Chapter have been published in the following papers:

[P6] A. D’Alconzo, P. Casas, P. Fiadino, A. Bär, A. Finamore, “Who to Blame when YouTube is not
Working? Detecting Anomalies in CDN-Provisioned Services”, in The 5th International Workshop on
Traffic Analysis and Characterization (TRAC2014), 2014.

[P11] P. Fiadino, A. D’Alconzo, A. Bär, A. Finamore, and P. Casas, “On the Detection of Network Traffic
Anomalies in Content Delivery Network Services”, in Teletraffic Congress (ITC), 2014 26th Interna-
tional, 2014.

[P18] P. Fiadino, A. D’Alconzo, M. Schiavone, P. Casas, “Challenging Entropy-based Anomaly Detection
and Diagnosis in Cellular Networks”, in ACM SIGCOMM 2015 Poster/Demo session, 2015.

[P19] P. Fiadino, M. Schiavone, A. D’Alconzo, P. Casas, “Towards Automatic Detection and Diagnosis of
Internet Service Anomalies via DNS Traffic Analysis”, in International Wireless Communications &
Mobile Computing Conference - TRAC (IWCMC 2015), 2015.

[P20] P. Fiadino, A. D’Alconzo, M. Schiavone, P. Casas, “RCATool – A Framework for Detecting and
Diagnosing Anomalies in Cellular Networks”, in 27th International Teletraffic Conference (ITC27),
2015.

The statistical anomaly detection algorithm published in the above mentioned papers and described in this
Chapter is based on the work done in [29]. The algorithm has been improved and implemented by the
author of this thesis as part of a larger framework (cfr. next Chapter). The author has a major role in the
design and implementation of the extended version of the algorithm, in the generation of semi-synthetic
datasets, in the evaluation and in the comparison with the entropy-based detection technique. The
author has collaborated with Mirko Schiavone and Peter Romirer-Maierhofer to a preliminary study on
the entropy-based detection system applied on a device-specific anomaly study case. The work has been
supervised by Dr. Pedro Casas, Dr. Alessandro D’Alconzo and Prof. Tanja Zseby.

6.1. Introduction
Despite the long literature and assorted list of proposed systems for detecting anomalies in
large-scale operational networks, Internet Service Providers (ISPs) are still looking for an
ultimate solution which might effectively detect and diagnose the ever-growing number of
network traffic anomalies they face in their daily business. Indeed, we have seen that the
sophisticated provisioning systems used by Internet services induce continuous changes that
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impact all the involved actors (i.e., service providers, access operators and final customers)
making Anomaly Detection (AD) a moving target.

Given this complexity, the Anomaly Detection’s challenge is twofold: on the one hand it
is difficult to efficiently detected changes, on the other hand it is paramount to sort out
which of those are the effect of anomalous behavior. In the remainder of this thesis we try to
fill this gap by presenting and evaluating a framework for detecting and diagnosing network
anomalies by exploiting the know-how acquired during the deep study of traffic characteristics
previously presented, both in normal operation mode (cfr. Chapter 4) and during anomalies
(cfr. Chapter 5).

Detection is achieved by extracting and analyzing symptomatic traffic features, and by
flagging a warning as soon as one or more of them show a significant change. The inves-
tigation of the root causes for such deviations is done by looking at changes in separate
diagnostic traffic features, which convey information directly linked to the potential origins
of the detected anomalies. For the purpose of detecting significant changes in both the
symptomatic and the diagnostic features, we resort to the analysis of their full statistical
distribution.

Features are further processed to define what we shall refer to as analysis signals. A signal
describe the statistical characteristics over time of the corresponding feature, and allow for
abstraction and generalization of the framework’s input definition. For example, a relevant
feature used in our framework is the number of DNS requests per observed FQDN per time
bin; in this case, a signal associated to this feature could be defined as the mean number
of requests, the total number, the full empirical distribution, the entropy, etc. Two signals
derived from the same feature might yield completely different detection results: for example,
an anomaly could be easily spotted when analyzing the entropy of a certain feature, but not
through its mean value. The separation between feature and signal allows to decouple the
meaning of an input from the information it exposes for detecting anomalies.

This Chapter will focus on the study of advanced detection systems, based on the lesson
learned from the manual analysis of the anomaly case studies presented in Chapter 5. We
target, in particular, those anomalies that are intrinsically more difficult to characterize,
such as the device-specific class presented in Section 5.7 and the QoE degradations in video
streaming services presented in Section 5.6. The next Chapter will be dedicated to the final
part of the framework that relies on Machine Learning techniques to conclude the diagnosis
process.

The proposed solution is evaluated using real and synthetic data from operational, nation-
wide ISPs (both fixed-line and cellular), the latter generated from traffic statistics to resemble
the real mobile network traffic. Furthermore, we compare the achieved performance against
well-known entropy based analysis revealing the superiority of the proposed technique in a
number of prototypical cases.

6.2. Related Work and Contributions
There has been considerable amount of research about anomaly detection in network traffic.
Chandola et al. provide a comprehensive survey on standard anomaly detection techniques
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[99], many of which have been applied in networking. For example, a large set of works
applies concepts and techniques imported from fields like Neural Networks, Self-Organizing
Maps [100], Genetic Algorithms [101], Fuzzy Logic [102], Data Mining [103], Machine Learn-
ing [104]. Focusing on statistical-based methods, most work rely on the analysis of scalar
time-series, typically of total volume. They adopt various techniques like Discrete Wavelet
Transform [105], Holt-Winter [106], CUSUM [107] and others.

A millstone in the field of anomaly detection in large scale networks was set by the work
of Lakhina et al. [108, 109], where authors introduced the application of the well known
Principal Components Analysis technique to the detection of network anomalies in traffic
matrices. Since then, many papers followed on a similar direction [110, 111, 112, 113].

In general, it is commonly accepted that information-theoretic concepts, and in particular
entropy measures, are well-suited for identifying the statistical properties relevant for the
purpose of anomaly detection [114, 115]. However, such schemes fail in detecting events
that do not cause appreciable changes in the total traffic volume. This is particularly critical
when the underlying per-user volume is heavy-tailed, since the physiological fluctuations
caused by few heavy-hitters may mask the anomaly.

In this thesis we endorse a distribution-based approach presented in [29] that is intrinsically
more powerful, as it looks at the entire distribution, rather than only at the total sum or
summarizing metrics like the entropy. The cost is of course a larger amount of data to be
processed, and higher complexity of the monitoring platform. Only a few other authors have
started to investigate anomaly detection on distributions (e.g., [116, 117] ), in order to take
into account the intrinsic data variability while detecting anomalous deviations.

Notice that the focus of our work is not on conceiving (yet) another detection algorithm.
Our contribution is rather investigating the effectiveness of the distribution-based detection
algorithm proposed in [29], that we have opportunely modified so as to be able to cope
with dynamic traffic patterns and provide all the information needed for the diagnosis. The
improved version of the algorithm become the core building block of the novel detection and
diagnosis system that we propose in this thesis.

6.3. Detection and Diagnosis Framework Overview
We now introduce a generic framework to detect and diagnose large-scale network traf-
fic anomalies based on the analysis of passively captured network traces. The design of
such framework is derived by the lessons learned in the study of the anomalies described in
Chapter 5. We take a step forward by formalizing the detection and diagnosis methodolo-
gies previously introduced in order to overcome the limitations of the manual inspection of
anomalous events.

Figure 6.1 sketches an overview of the proposed framework. From traffic tickets we de-
rive two sets of signals denoted as symptomatic signals and diagnostic signals. All signals
are checked for significant changes from their reference of “normality”. However, the symp-
tomatic signals are designed such that their changes directly relate to the presence of ab-
normal and potentially harmful events. On the other hand, changes in the diagnostic signals
per-se do not have a negative connotation, but rather ease and guide the interpretation of the
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Figure 6.1.: Overview of the diagnosis framework.

anomalous event. In the diagnosis step, deviations of the symptomatic signals are correlated
with the subset of simultaneously changing diagnostic signals to provide a comprehensive
characterization of the event.

We assume that a passive network monitoring system tracks the traffic at a Vantage
Point (VP) in a production network, i.e., some aggregation link in a fixed-line network or
a core-network link of a mobile network, and returns information of interest in the form of
traffic tickets. Such tickets summarize not only info related to the specific transaction, but
also meta-data that provide further information about the end host device and the network
settings. For example, in the case of DNS traffic originated in a mobile network, tickets
shall report not only details about the DNS queries and the corresponding answers, but also
the meta data listed in Table 6.1, such as the anonymized ID of the end host device, the
manufacturer, OS, as well as the local network settings (i.e., APN, RAT, DNS server IP).
Flow-level tickets would include the 4-tuple consisting of source/destination address and port
and additional meta information related to the flow, such as the average throughput and the
round-trip-times (RTTs).

Although in this work we focus on the analysis of DNS and video-flows traffic, the proposed
framework is generic enough to operate with different network data sources, such as other
application layer information, which might contribute to further refine the anomaly diagnosis.

The output of the change detection feds the final Diagnosis block of the framework.This

Field Name Description

Device ID Anonymized device identifier
Manufacturer Device manufacturer

OS Device operating system
APN Access Point Name
RAT Radio Access Type

DNS Server IP address of the DNS resolver
FQDN Fully Qualified Domain Name of remote service

Error Flag Status of the DNS transaction

Table 6.1.: DNS ticket information (meta-data).
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Notation Description

f generic traffic feature
τ time bin length defining the aggregation scale

i ∈ {1, . . . , n(t)} i-th element of f of the n(t) observed in t
fτi (t) generic counter of f at the t-th time bin of length τ

Fτ (t) = {fτi (t)} set of counters aggregated at τ time scale
Xτ
f (t) empirical distribution of the feature f aggregated at τ time scale

Table 6.2.: Summary of the signal notation.

module is capable of automatically classifying anomalies by relying on supervised classification
techniques. In addition, it finds temporal correlations of signals’ changes and is ultimately
able to generate event fingerprints enriched with diagnostic information in correspondence
to one or more anomaly symptoms.

In the remainder of this Chapter we describe the first two fundamental stages of the
proposed framework, namely the definition and extraction of symptomatic and diagnostic
signals and the design of suitable detection schemes for abrupt changes. In particular, we
will focus on the comparison of two different detection techniques: an entropy-based (cfr.
Section 6.5) and a distribution-based approach (cfr. Section 6.6) .The description of the
final diagnosis module will be object of study of the next Chapter.

6.4. Signals Extraction

Let us now formalize the definition of features and signals as considered in the proposed
framework, as well as describe the applied change detection technique.

For the generic feature f derived from the DNS tickets, we indicate by f τi (t) the generic
counter observed at the t-th time bin of length τ . For instance, if f represents the number
of DNS requests for a FQDN every τ minutes, i ∈ {1, . . . , n(t)} is the i-th requested FQDN,
while f τi (t) counts the number of DNS requests for the i-th FQDN (out of the n(t)), over
the t-th time bin. The i-th counter can also be associated to other fields, such as the OS
version, the Error Flag value, the number of DNS queries generated by the i-th device, etc.
The length of τ defines the timescale of the data aggregation, which in turn defines the
timescale of the observable anomalous events. The set of counters F τ (t) = {f τi (t)} can be
used to derive the empirical distribution of the feature f , denoted by Xτ

f (t). This notation
is summarized in Table 6.2.

By properly grouping features, we can obtain aggregated statistics for different “views”
on the data. Considering the example above, the FQDN counters can be further grouped to
obtain, e.g., 2-nd Level Domain (2LD) or 3rd Level Domain (3LD) counters and statistics.
We can also use the counters for computing the overall number of DNS requests as N(t) =∑
i f

τ
i (t). As the following analysis can be done independently of the specific selected time

scale, we omit the superscript τ from now on.
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6.5. Entropy-based Anomaly Detection
A particularly popular approach for detecting anomalies in network traffic is the one rep-
resented by entropy-based analysis [109]. Although entropy-based approaches have been
successfully applied for anomaly detection in the past [114, 115, 109], in fixed-line networks
and using only network- and transport-layer features such as IPs and ports, their application
in the aforementioned context has severe limitations, given the characteristics of current
traffic anomalies. In the following, in fact, we will thoroughly test this methodology and
show that it fails in coping with anomalies characterized by lower intensities.

The entropy of a feature captures the dispersion of the corresponding probability distri-
bution in a single number, thus it is highly appealing for the analysis. However, such a
compression necessarily looses relevant information about the higher distribution moments
of the analyzed feature, limiting the detectability of some anomalies. Given the empirical
distribution Xτ

f (t) of a certain feature f , we can compute the normalized entropy as:

H(X) = − 1
log(|Ω|)

∑
ω∈Ω

x(ω) log x(ω), (6.1)

where Ω and |Ω| are a discrete probability space and its cardinality, respectively, and x(ω) is
the probability of element ω 1. The entropy of a feature f is a well-suited synthetic index for
describing an entire distribution, and in particular, useful for detecting important changes.

Entropy-based detectors work by flagging abrupt changes in the time series of the empirical
entropy of certain traffic features, related to the specific anomaly. We consider the well-
known, yet effective, Exponential Weighted Moving Average (EWMA) algorithm, where past
observations are weighted such that the older ones count less in the determination of the
expected current value. For the observed value y(t) at the time bin t, the value predicted by
EWMA is calculated as:

ỹ(t) = λy(t) + (1− λ)ỹ(t− 1), (6.2)

where λ controls the filter memory, that is the weight of the past samples in computing
the moving average: the higher λ the higher the weight of the newer samples. Then, the
Upper Control Limit (UCL) and the Lower Control Limit (LCL) are defined as UCL(t) =
(1 + σ)ỹ(t − 1) and LCL(t) = (1 − σ)ỹ(t − 1), respectively, where σ is a slack factor that
controls the width of the acceptance region for normality. Finally, the detection algorithm
flags an anomaly if y(t) /∈ [LCL(t), UCL(t)]. Note that by opportunely tuning λ and σ, the
EWMA algorithm becomes able to accommodate for typical daily and weekly patterns of real
network traffic.

6.6. Distribution-based Anomaly Detection
The second anomaly detection scheme relies on the temporal analysis of the entire probability
distributions.

1Note that, in case of empirical values such as traffic features, x(ω) is actually the fraction of ω at time t.
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By that it is particularly suited to cope with anomalies that involve multiple services and/or
affect multiple devices at the same time. The considered non-parametric anomaly detection
algorithm computes the degree of similarity between the current distribution Xτ

f (t) to a set
of (anomaly-free) distributions in a dynamic “observation window” W (t), which describe
the “normal” behavior. The heuristic used for the construction of the reference set follows
a progressive refinement approach that takes into account the structural characteristics of
traffic such as time of day variations, presence of pseudo-cyclic weekly patterns, and long
term variations. The comparison between the current distribution Xf (t) and the associated
distributions reference set involves the computation of two compound metrics based on
a distribution divergence metric L. The first metric, called internal dispersion (or upper
bound ), is a synthetic indicator defining the maximum distribution deviation that can be
accounted to normal statistical fluctuations, therefore it defines acceptance region for the
anomaly detection test. The second one, called external dispersion (or average distance), is
a synthetic indicator extracted from the set of divergences between the current distribution
Xf (t) and those in the reference. The detection test checks if the average distance exceeds
the upper bound. As for the distance metric between two distributions p and q, defined over
a common discrete probability space Ω, we rely on a symmetrized and normalized version of
the Kullback-Leibler divergence (ENKLd) defined as:

L(p, q) = 1
2

(
D(p||q)
Hp

+ D(q||p)
Hq

)
, (6.3)

where D(p||q) is the KL-divergence, defined as

D(p||q) =
∑
ω∈Ω

p(ω) log
(
p(ω)
q(ω)

)
. (6.4)

Analogously D(q||p) is the KL-divergence between q and p, and Hp and Hq are the entropy
of p and q, respectively.

Notice that using a distribution-based approach is intrinsically more powerful, as it consid-
ers the entire distribution of different traffic features, rather than only specific moments of
the distributions (e.g., mean-based, variance-based, or percentile-based change detection).
More specifically, a distribution divergence metric – such as ENKLd – measures the point-
to-point difference of p and q, before calculating its entropy. Thus, the obtained divergence
strictly depends on both the distributions under exam and relies on a much more fine-grained
information. On the contrary, the entropy is just capturing an intrinsic characteristic of the
single distributions.

To better clarify this, let us consider the case of two entirely different distributions with
the same entropy. The first detection approach would fail in flagging their difference. On
the other hand, the ENKLd relies on the single points of the distributions to calculate their
distance. Of course, this comes with an additional computational cost because, from a
procedural point of view, it needs to keep the full empirical distributions over time – depending
on the reference window width – to do the comparison.

That said, it is particularly suited for detecting macroscopic traffic anomalies, that is events
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Figure 6.2.: A simplistic example drift values computation in two distributions: p (current)
and r (reference). The algorithm will report fqdn1 as the element that con-
tributed most to the distribution change.

that involve multiple services and/or affect multiple devices at the same time.
We refer the interested reader to [29] for further details. In the following, we focus on

our improvements applied on the algorithm, namely the reporting of changing elements (cfr.
Section 6.6.1) and the self adapting reference window (cfr. Section 6.6.2).

6.6.1. Reporting changing elements

When a change is flagged by the detection algorithm, it also returns the list of the elements
ω ∈ Ω that have contributed most to the deviation of the current distribution Xf (t) from
the reference of normality. The procedure for identifying the top changing elements easily
follows from the eq. (6.4). Let p be the current distribution, and r the reference distribution
computed as by averaging the distributions in the reference set. We define δ(ω), the drift
value of ω, as follows:

δ(ω) = p(ω)logp(ω)
r(ω) , (6.5)

which intuitively represents the contribution of the element ω to the overall distribution
change. At every iteration the changing elements are sorted by value. Note that in general
p(ω) 6= r(ω) due to statistical fluctuations, hence δ(ω) 6= 0 a.e. in Ω. In order to get a
compact representation of the change, the algorithm reports only the top elements accounting
for s% of the overall change. From our experience, s = 50% provides best results, that is the
algorithm returns only the few elements really responsible for the distribution change, and
discharge those resulting from random statistical fluctuations. Notice that reporting the list
of the most significant variables is a key feature for the diagnosis process. Indeed, it allows
having fine-grained information on the root causes of the distribution change, in addition to
the mere change notification.

Consider, as a simplifying example, the distributions p (current) and r (reference) of DNS
query counters across FQDNs in the common space Ω, depicted in Figure 6.2. The Figure
shows the DNS query counters for each fqdni ∈ Ω in the two distributions, along with their
drift value δ(fqdni). The algorithm will raise an alarm as p is anomalous and will only report
fqdn1 as the element responsible for most (> 50%) of the distribution change.
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Figure 6.3.: Self-adapting Reference Window algorithm for long-lasting anomalies. Anoma-
lous timebins are marked in red, normal timebins are marked in green. When
the anomaly starts, the reference window increases its size till a maximum value
(e.g., two times initial size). Then it enters a soft mode (i.e., anomalous time-
bins in the reference window are allowed in the reference set). When in soft
mode, the window size is frozen and shift to the right. In this phase, all the
distributions in the reference window are considered for the reference set. When
the anomaly ends, the reference window gradually decreases down to the original
size.

6.6.2. Self-adaptation to long-lasting changes

The algorithm originally proposed in [29] has been designed with the purpose of detecting
large-scale security or performance anomalies. Such anomalies are expected to be transitory
and have a limited duration. Consequently, the mechanism for updating the observation
window is designed such that W (t) is frozen till the anomaly is over. However, we now
apply the same algorithm to the detection of changes in the diagnostic signals, which may
exhibit long-lasting anomalies corresponding to working point changes. For example, let us
consider a popular service that updates its naming scheme, heavily impacting the distribution
of counters per FQDNs. In this case W (t) remains locked (i.e., it is not shifted forward in
time till the anomaly is over). In this case the detection algorithm would keep flagging
warnings indefinitely, making it unusable.
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To overcome this limitation, we have modified the observation window updating mecha-
nism and the reference-set identification algorithm as detailed in the following. Let indicate
by m and L0(t) = mτ the number of valid distributions and the length of the observation
window W (t), respectively, when it contains no anomalous distributions. When an anomaly
is detected, the length of observation window is increased by one to L1(t) = (m + 1)τ ,
whereas the number of valid distributions remains m. As soon as a sequence of m anomalies
is detected, the observation window length becomes Lm(t) = 2mτ , and the algorithm enters
the soft test state where it let anomalous distributions enter the reference-set. If the anoma-
lous distributions are consistent enough (i.e., they are statistically similar), and the anomaly
lasts longer than m, then it is likely they are selected as new reference for normality, and
the test turns negative. From this moment onward, every time the test is negative W (t) is
reduced such that L(t+ 1) = L(t)− 2τ , till it gets back to the initial size L0. At that point
the algorithm exits the soft test state. Notice that in this way the algorithm accommodates
to the new working point after a transitory phase of mτ during which the algorithm keeps
flagging anomalies.

To clarify the improved reference mechanism, Figure 6.3 depicts an example of execution
of the self-adapting reference window algorithm. In the example, the anomaly starts at t0,
when the original reference window size is L(t0). After the beginning of the anomaly, the
window size gradually increases (inflating phase) till reaching the maximum allowed value,
e.g. L(tm) = 2 ∗L(t0). The detection algorithm then enters in soft mode till the anomaly is
over. In this phase the window size is not increased, but it is only shifted to right. After the
end of the anomaly at tn, the reference window gradually decreases till reaching the original
size. Note that only long-lasting anomalies (with duration greater than m − 1) force the
detection algorithm to enter in soft mode.

6.7. Anomaly Modeling and Data Generation
We evaluated the proposed framework for longer than six months in 2014 with DNS traf-
fic from the operational cellular network of a nationwide European operator, and for one
month with YouTube flows from a European fixed-line ISP. The extensive experimentation
allowed us to collect results in a number of paradigmatic case-studies exposing features and
limitations of the framework. Still, the number of traffic anomalies observed in the corre-
sponding period was relatively low, limiting as such our performance analysis exclusively to
those few real cases. In principle, one could resort to test traces obtained in a controlled
environment (laboratory) or by simulations, but these approaches would miss the complexity
and heterogeneity of the real traffic.

To bypass this hurdle, we adopted a methodology based on semi-synthetic data, derived
from real traffic traces as suggested in [118]. Such an approach does not only allow to
extensively analyze the performance of the framework with a large number of synthetic, yet
statistically relevant anomalies, but also permits to protect the operator’s business sensitive
information, as neither real data traces nor real anomalies are exposed.

To illustrate the procedure, next we explain both how to generate semi-synthetic back-
ground DNS traffic, as well as for modeling the DNS-related anomalies for replicating them.
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Figure 6.4.: Daily trend of the number of active users and total DNS query count in the
semi-synthetic dataset.

As a template for these anomalies, we rely on the use-cases introduced in Section 5.7, namely
the device-specific anomalies. This is justified both by the complexity of these anomalies
and by the relevance they have for ISPs.

The procedure for video flows is analogous and it is omitted for the sake of brevity.

6.7.1. Construction of semi-synthetic background traffic
The procedure for constructing the semi-synthetic dataset is conceived with the objective of
maintaining as much as possible the structural characteristics of the real, normal operation
(i.e., anomaly-free) traffic, while eliminating possible (unknown) anomalies present in real
traces. Exploring real traces, we observed that the traffic yields some fundamental temporal
characteristics. In particular, the traffic is non-stationary due to time-of-day variations. This
effect is not limited to the number of feature counters, but rather applies to their entire
distributions. Distribution variations depend on the change of the applications and terminals
mix, which in turn induce modifications in the traffic patterns. Furthermore, we found that,
besides a strong 24-hours seasonality, the traffic exhibits a weekly pseudo-cycle with marked
differences between working days and weekends/festivities [119]. Finally, traffic remains
pretty similar at the same time of day across days of the same type.

The first step of the construction procedure consists of manually labeling and removing
possible anomalous events. However, as the complete ground truth is unknown in real traffic,
we cannot completely rely on individual labeling of alarms. Therefore, we have to accept that
minor anomalies may go undetected if their effect is comparable with purely random fluctu-
ations. Then, the dataset is transformed to eliminate possible residual (unknown) anomalies
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Figure 6.5.: Hourly trend of the distribution of number of devices across query count over
one day of the semi-synthetic dataset.

present in the real traffic, while preserving the above mentioned structural characteristics.
The transformation procedure is described as follows.

Let us consider a real dataset spanning a measurement period of a few weeks, for a total
of m consecutive one-day intervals (e.g., m = 28 in our case). Each one-day period starts
and ends at 4:00 am local time: this is the time-of-day where the number of active devices
reaches its minimum (considering a single time-zone). Denote by mW and mF the number
of working and festivity (W- and F-) days, respectively, in the real dataset (e.g., mF = 8 and
mW = 20), and by K the total number of 1-min timebins (K = 28 · 24 · 60 = 40320). For
each device i consider the vector di ≡ {cτ0

i (k), k = 1, 2, . . . , K} at the minimum timescale
(τ0 = 1 minute) across the whole real trace duration, where each element cτ0

i (k) is the list of
the DNS tickets related to device i at time k. For those timebins where device i is inactive,
the corresponding element in di is empty. We now divide this vector into m blocks, each
one corresponding to a single one-day interval. Each block is classified as W- or F-block
based on the calendar day. At this point we apply a random scrambling within the W class:
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each W-block element of di is randomly relocated at the same time position selected among
all W-days. The same scrambling is applied independently to the F-blocks. In this way we
obtain a new vector d̃i where the position of the blocks has been scrambled, separately for
W- and F-blocks, but the time location and the F/W intervals have been maintained. Finally,
from the set of scrambled vectors d̃i we can derive a new set of distributions for each timebin
k and timescale τ , for all the considered traffic features.

The dataset obtained in this way retains certain characteristics of the real dataset, while
others, such as minor statistical fluctuations, are eliminated. The most important change is
that the random scrambling of the individual components di → d̃i results in the homoge-
nization of the individual daily profiles — separately for W- and F-days. This eliminates any
minor residual local anomaly that survived the manual labeling by spreading it out across
all one-day intervals of the same F/W type. In other words, all W-days in the new dataset
share the same (synthetic) aggregate daily profile. Same applies to F-days. Note however
that the synthetic dataset retains the most important characteristics of the real process. In
the first place, it keeps the time-of-day variations of the number of active devices (see Fig-
ure 6.4). However, the total number of queries at time k changes as permuted devices issue
(in general) different amount of DNS queries. Secondly, the semi-synthetic dataset main-
tains the differentiation between the two classes of W- and F- days, although it eliminates
any differentiation within each class (e.g., between Saturday and Sunday). Thirdly, it keeps
the differentiation between distributions for different time-of-day. This is clear from Fig-
ure 6.5(a), which shows the hourly Cumulative Distribution Functions (CDFs) of the number
of devices across query count during one day of the semi-synthetic dataset. The result of
the procedure is an anomaly-free DNS dataset structurally similar to the real trace.

6.7.2. Modeling and generation of synthetic anomalies
During six months of experimentation we encountered a few recurring large-scale DNS traffic
anomalies. Investigating these events we found some common traits and we conceived a
procedure for reproducing them along with their most relevant characteristics. In particular,
we identified two exemplary event types (E1 and E2 from now).

In both the cases, we model an outage of an Internet service for a specific sub-population
of devices, which react by repeatedly and constantly issuing DNS queries to resolve the
requested service throughout the anomaly. Involved devices are identified by fixing a specific
OS (with its different versions). Moreover, we aim at modeling the correlation between the
selected sub-population and the unreachable service. Therefore, we separately rank the 2LDs
of the FQDNs for anomalous and background traffic, and select the most popular 2LD of
the former that is not in the latter. As a simple example of such types of anomalies, we have
observed events in which Apple devices running a specific version of iOS lost their persistent
connectivity to certain servers providing the Apple push-notification service (which is the
core of the remote notifications used in virtually every iOS App), resulting in a surge of DNS
requests to locate new servers, and the resulting “scanning” of the complete IP address space
of Apple push-notification service. Such an event was perceived by the ISP as an internal sort
of DDoS attack, as a large population of their own customer devices starting “bombarding”
the network, starving resources at the access in some specific regions.
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Type E1 E2

Start time t1 9:00 13:00
Duration d 1h 2 days

Involved devices D 10% 5%
Back-off time 5 sec 180 sec
Manufacturer single popular multiple

OS single (with sub-ver) single (with sub-ver)
Error flag +5% timeout —

FQDN top-2LD for top-2LD for
involved devices involved devices

Table 6.3.: Characteristics of the anomalous DNS traffic for types E1/E2.

Event E1 This type models the case of a short lived (i.e., hours) high intensity anomaly
(e.g., 10% of devices repeating a request every few seconds), where all the involved devices
are produced by a single manufacturer and run the same OS. In this case, the number of
involved terminals and the overall number of additional queries is such to overload the local
DNS servers. The latter effect is modeled by increasing the number of time-out codes in
the Error Flag field.

Event E2 This type models a long lasting (i.e., days) low-intensity anomaly (e.g., 5% of
devices repeating requests every few minutes). Differently from the previous case, the in-
volved terminals are produced by multiple manufacturers, even if they share the same OS.
Given the low-intensity, we did not introduce a modification in the distribution of the Error
Flag. Figure 6.5(b) shows the changes in the distribution of number of devices across query
counts introduced by this event (cfr. Figure 6.5(a)). Note that although E2 type anoma-
lies are of relatively low intensity, their identification is important as, in our experience, they
may lead to problems on the signaling plane, such as resources starvation at the radio access.

Tab. 6.3 summarizes the characteristics of the two event types and the actual values
used for generating the anomalous ticket dataset in the experiments discussed below (cfr.
Sec. 6.8).

To illustrate the anomaly generation procedure, we consider an event of type E1 of duration
d = 1h, starting at t1 = 9 : 00. Starting from t1 at each time-bin, D = 10% of all the active
terminals are randomly extracted from the semi-synthetic background traffic, such that the
OS is the selected one and the manufacturer is always the same. For each involved terminal,
we generate one additional DNS ticket every 5 seconds, which are then added to the semi-
synthetic dataset. The FQDN in these tickets is randomly chosen among the domains in the
2LD identified as explained above. Finally, the Error Flag is changed to time-out in 5%
of the overall DNS tickets, so as to model the resolver overload. The last step consists of
mangling both the anomalous and the background traffic.

The procedure for generating type E2 is analogous, but differs in the selection of the
anomalous terminals (same OS, but not necessarily same manufacturer). The Error Flag is
unaffected in this case.



Chapter 6. Advanced Anomaly Detection Techniques 113

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

00:00 04:00 08:00 12:00 16:00

n
u
m

b
e
r 

o
f 
D

N
S

 q
u
e
ri
e
s

time [bin=5min]

query count
spikes

Figure 6.6.: EWMA change point detector applied to symptomatic signal (query count) in
event type E1. The event is highlighted in the gray area. The red dots marked
as spikes correspond to the alarms flagged by the detector.

6.8. Evaluation with Synthetic DNS Anomalies
In this Section we present the results on the performance evaluation of the framework in
terms of detection and diagnosis capabilities, for the case of the aforementioned synthetic
anomalies of type E1 and E2. For each type of anomaly, we report the results obtained by
each of the two proposed detection approaches. Reported results refer to optimal parameter
settings in terms of detection capabilities and number of false positives.

We consider as symptomatic signal the distribution of number of devices across query
counts, i.e., the amount of the devices issuing a given number of requests within each
time bin. In fact, perturbations in this distribution indicate that a device sub-population
deviates from the usual DNS traffic patterns, thus pointing to potential anomalies. The
diagnostic signals are instead the distributions of query count across the variables of the
features previously listed in Table 6.1, excluding the device ID.

6.8.1. Analysis of Event type E1

As described in Sec. 6.7.2, the first event is characterized by a short duration (1 hour) and
a high intensity, as it involves a large population of devices (10%) of the same (popular)
manufacturer and running one specific OS. The evaluation is performed at a τ = 5 minutes
time scale.

Approach 1 . Figure 6.6 shows the time-series of the DNS query count, used as symp-
tomatic signal. The gray area highlights the event time span, from 9am to 10am. The
increase on the number of DNS queries is clearly visible, resulting in about the double of
queries as observed in normal operation conditions at that time of the day. The red points
in the Figure indicate the deviations flagged by the EWMA algorithm. The entropy trend
of the diagnostic features is depicted in Figure 6.7. Given the high intensity of the event,
marked variations are visible in all the diagnostic signals. In fact, the fraction of DNS queries
generated by devices with a specific manufacturer and OS changes during the event, hence
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Figure 6.8.: Output of the distribution-based detector for the symptomatic signal (number
of devices across query count), in E1 type event.

the entropy of the respective dimensions exhibit a sharp decrease. Similarly, the FQDN en-
tropy signal decreases, since the affected devices repeatedly try to contact a specific service.
On the contrary, the Error Flag diagnostic signal shows a significant increase. In fact, the
increased share of time-outed queries perturbs the distribution else concentrated around
the successful value, with a consequent spike in the entropy value. The notches and spikes
in the entropy, as well as in the query count, are easily detected by the EWMA algorithm.

Approach 2 . Figure 6.8 shows the output of the distribution-based detector: the yellow
curve represents the average distance between the distribution of the number of users per
query count and the distributions in the reference set, while the blue dashed curve is the upper
bound for acceptability. As in the previous case the duration of the event E1 is highlighted
in gray. The timebins where the average distance is above the upper bound are marked with
red points. The Figure shows that the distribution deviations are correctly detected. The
same applies for the diagnostic signals as depicted in Figure 6.9, showing marked changes in
the FQDN, Error Flag, Manufacturer, and OS distributions during the event.
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Figure 6.9.: Output of the distribution-based detector for the diagnostic signals in E1 type
event. All the signals exhibit distribution changes during the event.
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Figure 6.10.: EWMA change point detector applied to symptomatic signal (query count) in
event type E2. The event is highlighted in the gray area. The red dots marked
as spikes correspond to the alarms flagged by the detector.

Summarizing the performance of both detectors for analyzing anomalies of type E1, both
approaches allow to accurately detect the changes on the symptomatic signal, as well as on
the diagnostic signals. The changes on all signals are simultaneously detected, providing a
reliable input to the diagnosis step.
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Figure 6.12.: Output of the distribution-bases detection on the symptomatic signal (number
of users across query count), in E2 type event.

6.8.2. Analysis of Event type E2

Differently from E1, the type E2 anomaly involves a smaller population of devices (5%)
running an OS pre-installed by a number of different manufacturers. Similarly to the previous
case, the affected terminals continuously try to re-contact the servers hosting an unreachable
service. Because of the low intensity and the longer duration of the event, the analysis is
performed at a τ = 30 minutes time scale.

Approach 1 . Figure 6.10 depicts the time-series of the query count during a period of
3 days, which includes the anomalous event, starting at 1pm of the first day and lasting till
11am of the third day. The counter shows a slight increase during the anomaly, but the
EWMA detection algorithm only flags changes at the beginning, and is not able to track the
anomaly during its complete time span. Missing the detection on the symptomatic signal
is especially serious as it compromises the whole diagnosis process. Figure 6.11 plots the
trend of the diagnostic signals. Only the FQDN entropy exhibits evident changes during the
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Figure 6.13.: Output of the distribution-based analysis for the diagnostic signals in E2 type
event. Distributions of FQDN and OS exhibit changes during the event, while
manufacturer and Error Flag are unaffected.

night-time, when the increased number of requests for the affected service stems out from
the background night traffic. For the rest of the diagnostic signals, it is hard to claim that the
small, low-speed observed changes could be detected, specially as they look very similar to
the patterns observed during normal operation. Indeed, the EWMA algorithm fails to track
the full dynamics of the event. Regarding the OS signal, the changes in the distribution
induced by E2 are not sufficient to alter the entropy signal. We recall that E2 does not
affect the Error Flag signal by design.

Approach 2 . Contrarily to the previous case, the distribution-based approach detects low-
intensity anomalies involving multiple devices. Figure 6.12 plots the output of distribution-
based algorithm for the symptomatic signal. The average distance (yellow curve) flags
changes in the distributions of the number of users across query count, which correspond to
deviations in the CDFs shown in Figure 6.5(b). Therefore, the approach is able to capture
and detect the entire dynamics of the event. The distance between the two curves is more
marked during the night hours, when the number of DNS queries related to the anomaly are
statistically more relevant, cfr. Figure 6.5(b). The output of the distribution-based detector
applied to the diagnostic signals is shown in Figure 6.13. The FQDN signal output, depicted
in Figure 6.13(a), is correlated with the symptomatic signal: the plot reports a sequence of
drifts from the reference set highlighting the whole span of the event. As in E2 there is no
anomalous behavior on the Error Flag distribution, a correct functioning of the detector would
result in no alarms for this signal, which is exactly depicted in Figure 6.13(b). Figure 6.13(c)
shows that also the manufacturer dimension is not involved, while in Figure 6.13(d) there
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are evidences of the OS-related nature of the anomaly.
In conclusion, the experiments show that lower intensity anomalies are not correctly cap-

tured by the Approach 1, as the entropy is a too coarse metric, failing to reveal the effects
of this type of anomalies.

6.8.3. Comparing Detection Strategies
For a better comparison of the two detection strategies, we have also investigated the behavior
of algorithms for different parameters settings.

Figure 6.14 depicts the ROC curves obtained in the detection of the two events. The
curves reflect the True Positive and False Positive Rates (TPR and FPR) obtained when
changing the detection thresholds of both approaches. Each anomalous sample corresponds
to a 5 minutes time bin, during the entire span of the anomaly (about 1hr for E1, and about
2 days for E2). The symptomatic signal is in both cases the DNS query count per device,
using either its entropy or the full distribution. Given the characteristics of E1, there are
four relevant diagnostic signals which show an abrupt change at the time of the anomaly:
the manufacturer and OS (same type of devices are impacted), the FQDN (points to the
requested, unavailable service) and the error code (the local DNS servers get overloaded
and time-outs increase). By contrasting Figures 6.14(a) and 6.15(a), it is evident that both
approaches are capable of detecting the abrupt changes induced by this anomaly, resulting
in almost perfect detection for the impacted signals, assuming an optimal tuning of the two
algorithms.

In the case of E2 type anomaly, by design, the only impacted diagnostic signals are OS
and the FQDN. However, Figure 6.14(b) shows that the entropy-based approach completely
fails to flag and characterize the anomaly, as the FPR becomes too high for being applied in
practice, both for the symptomatic and the diagnostic signals. On the contrary, Figure 6.15(b)
shows that the performance of the distribution-based approach is superior, reinforcing the
evidence of its supremacy against entropy-based analysis.

Figure 6.15(a) depicts the Receiver Operating Characteristic (ROC) curves for both the
symptomatic and diagnostic signals for the event of type E1. The Figure shows that for
almost all the signals the algorithm attains perfect detection performance tolerating at most
3% of false positives, whereas for detecting 90% of Manufacturer’s distribution changes 6%
of false positives should be expected. For the event E2, Figure 6.15(b) shows perfect results
for the symptomatic signal (i.e., query count), whereas for the diagnostic signal 90% TP is
reached with 10% FP. The slightly lower precision is due to the smaller population involved
in the anomaly, which in turn induces smaller distribution changes in the diagnostic signals.
Therefore, we have to allow few more false positives, caused by normal fluctuations in the
traffic, in order to correctly flag all the anomalous time bins.

6.8.4. Test on different intensities
To further compare the two detectors, we have generated variants of E1 and E2 changing
the fraction of the device population involved in the anomaly between 0.1% and 20%. As an
example we report in Figure 6.16 results of such an investigation for the diagnostic feature
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(a) Anomaly type E1. (b) Anomaly type E2.

Figure 6.14.: ROC curves for the detection of changes in the corresponding symptomatic and
diagnostic signals. Entropy-based detection performs properly with anomaly E1,
but completely fails with E2.
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(a) Anomaly type E1. (b) Anomaly type E2.

Figure 6.15.: ROC curves for the detection of abrupt changes in the corresponding symp-
tomatic and diagnostic signals. The distribution-based detector performs well
on both events.

OS, which showed to be the most difficult to be revealed, among the others. In particular,
Figure 6.16(a) shows that the performance of the entropy-based detector falls below accept-
ability already when the fraction of the user population involved in the anomaly goes below
5%. On the contrary, Figure 6.16(b) shows that the performance of the distribution-based
detector are quite good and are practically independent from the number of devices involved
in the anomaly. Similar results have been obtained on other signals, and are omitted for
brevity.



120 6.9. A Real-World Scenario

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

FPR

T
P

R

 

 

20%
10%
8%
5%
2%
1%
0.5%
0.2%
0.1%

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

FPR

T
P

R

 

 

20%
10%
8%
5%
2%
1%
0.5%
0.2%
0.1%

(a) Entropy-based detector. (b) Distribution-based detector.

Figure 6.16.: ROC curves for the detection of changes in the symptomatic signal OS, for
different percentage of the devices population involved in the anomalies.

Resuming, evaluations show that lower intensity anomalies tend to not be correctly flagged
by the entropy-based detector, as in this case the entropy results into a too coarse metric for
revealing the effects of this type of anomalies, irrespective of the algorithm used for flagging
abrupt changes. This limitation calls for the adoption of the distribution-based approach
that from our experiments appears to be better suited for working properly in a number of
different scenarios. This approach has the only drawback of a much higher computational
cost, both in terms of CPU and memory. From our operational experience, however, this
algorithm is still feasible in networks of millions of users by using reasonable hardware coupled
with the online processing capabilities of the stream data warehouse we use, DBStream.

Field Name Description

client IP Anonymized device identifier
server IP remote YouTube server IP address

avg download rate average flow down-link throughput
elaboration time delay between client request and server reply

external RTT RTT measured between VP and remote server
internal RTT RTT measured between VP and end device

beta ratio between video bit-rate and throughput

Table 6.4.: Tstat flow-level ticket information.
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Figure 6.17.: Output of the distribution-based analysis for the symptomatic signal distribution
of Average download rate, used as trigger for the diagnosis procedure during
the YouTube anomaly.

6.9. A Real-World Scenario
After the evaluation of the two detection strategies illustrated in the previous Sections using
synthetic traffic, we now apply the distribution-based approach on a number of traffic features
in a real-world anomaly. The use case we refer is one of those characterized in Chapter 5:
the degradation of the perceived QoE for a large user population accessing YouTube video
contents.

This anomaly has been already extensively discussed and characterized in Section 5.6,
based on expert knowledge and ad-hoc analysis. Here we show that the entire procedure can
be automatized, to a large extent, adopting the proposed distribution-based detection and
diagnosis procedure.

We recall that the origin of the analyzed anomaly is the cache selection policy applied
by Google from Wednesday on, and more specifically, the servers selected between 15:00
and 00:00 that were not correctly dimensioned to handle the traffic load during peak hours,
between 20:00 and 23:00, leading to users’ Quality of Experience (QoE) degradation. In
Section 5.6 we have shown that it is possible to detect such an anomaly analyzing the time
series of the distribution of the Average video download rate, along with the median of the
β parameter—a QoE based Key Performance Indicator (KPI) defined as the ratio between
the average download rate and the video bit rate—which allows to estimate the presence of
stallings in the video playback.

Figure 6.17 plots the output of the distribution-based detector for the average download
rate, and flags the presence of changes during the peak hours from Wednesday to Friday
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Figure 6.18.: Median of β per hour for all YouTube flows. The acceptance thresholds are
highlighted with different colors.

and on Sunday. Figure 6.18 plots the trend of the median β parameter in the period and
two thresholds for β = 1 and β = 1.25, which in turn identify three regions for the video
QoE, i.e., bad, poor and fair represented with red, orange and green, respectively. These
thresholds are derived from the QoE mappings previously presented, and correspond to 400
and 800 kbps, respectively, in case of 360p average bit rate videos. The Figure reports a
reduction of the throughput on Tuesday at peak-load time, between 20:00 and 23:00 UTC.
However, from Wednesday on, this drop gets below the bad QoE threshold. The drop in
the throughput coupled with the marked drop in the time series of β allows to reveal the
presence of a change that is heavily affecting the user experience. Therefore, we use them
as symptomatic signals.

The list of features we are using for the diagnosis process is summarized in Table 6.4.
Given that the diagnosis part focuses on the YouTube servers, as diagnostic signals we have
considered the distribution of flows per server IP, and the elaboration time (i.e., the time
elapsed from the video request and first returned video segment). Furthermore, we have
considered the minimum internal and external RTT, which are representative of the network
distance from the vantage point to the end device and from the vantage point to servers,
respectively. Results reported in Figure 6.19(a) show that a different set of Google servers
was selected to serve the YouTube traffic in the afternoon from Wednesday onward. Also,
Figure 6.19(c) and Figure 6.19(d) show that the new servers where further located from
our vantage point, and that there was no relevant ISP internal routing change in the same
period. However, the selection of the new servers negatively impacted the elaboration time
(see Figure 6.19(b)), to the point that the perceived service QoE fell below the acceptability
threshold for a considerable share of the user population (cfr. Figure 6.17).

Final diagnosis. To conclude, the final diagnosis of the event is that a new cache
selection policy applied by Google from Wednesday on provokes an anomaly, i.e., a decrease
of average downlink throughput with consequent QoE degradation. The presence of the
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Figure 6.19.: Output of the distribution-based analysis for the diagnostic signals in the
YouTube anomaly. The anomaly is caused by a shift in the distribution of
flows across server IPs. It changes in the distribution of elaboration times and
internal/external RTT complement the picture on the event and support the
diagnosis process.

new policy is confirmed by two diagnostic signals (distribution of flows per server IP and per
external RTT bins). The new servers deployed in the afternoon, from 15:00 to 00:00 were
not correctly dimensioned to handle the traffic load during peak hours, between 20:00 and
23:00, as indicated by the change in the elaboration time distribution.

Notice that by combining the detector output for the symptomatic and diagnostic signals,
we have automatically drawn the same conclusions as already obtained manually in Sec-
tion 5.6. Next Chapter is devoted to the procedure used to fully automatize this diagnosis
process.
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6.10. Summary
In this Chapter we proposed the design and evaluation of some building blocks for an auto-
matic detection and diagnosis framework. In particular, we focused on the module responsible
to detect changes in the monitored traffic features. Our results unveiled the limitations of
using simple change point detection algorithms in the case of low intensity anomalies that
involve relatively small sub-populations of users. From our experience, this type of anomalies
are frequent in operational mobile networks, and still far from being innocuous (cfr. prob-
lems on the signaling plane). To overcome this limitation, we have presented a more complex
change detection scheme that relies on the entire probability distribution of the monitored
signals rather than the entropy values. Using this detection approach, the system is able to
cope with anomalies that involve multiple services and/or affect multiple devices at the same
time.

Given the general lack of large-scale ground-truth datasets to test the performance of
systems like ours, we developed an approach to generate semi-synthetic data, derived from
real traffic traces. For our tests, we have generated synthetic datasets starting from real DNS
traces. However the approach could be easily exploited in different kind of measurements,
generating in this way different symptomatic and diagnostic signals. Even if the traffic
generator was done for the sake of evaluating our detection algorithms, we believe that is a
nice side-contribution of this thesis, as it would help the owners of real data to make such
datasets available for the research community without disclosing any privacy or business
sensitive information.

Finally we have tested our detection approach on one of the real-work use cases presented
in the previous Chapter. The results we obtained were very encouraging and demonstrate
the effectiveness of our techniques confirming the same diagnosis we previously obtained by
manual inspection.

In the next Chapter we complete the picture of the proposed framework by describing its
final component, i.e., the diagnosis module, responsible for correlating the changes, classifying
the anomalies and automatically reporting the findings.
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7. Towards Automatic Diagnosis of
Anomalies
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7.1. Introduction
In this Chapter we continue the description of the sequential diagnosis framework previously
introduced. We have already studied the components responsible for the signal extraction
and change detection. We recall that the detection is achieved by extracting and analyzing
symptomatic traffic features, and by flagging a warning as soon as one or more of them show
a significant change. We now move to the final part of the framework, responsible for the
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actual diagnosis of the detected anomalies. So far, we have considered the signals, and their
flagged changes, independently. Our goal is now gathering all the relevant information to
automatically provide a holistic view of the anomaly, including the correlation of the involved
traffic features and an indication of the anomaly type.

As we shall see, the automation of the diagnosis process is achieved by exploiting Machine
Learning (ML) based techniques, applying supervised approaches to automatically and rapidly
classify the detected anomalies. We will test and evaluate a number of different algorithms
and assess the benefits of applying feature selection. The framework ultimately collects all
information in order to issue plain-text reports containing the most significant and correlated
symptomatic and diagnostic details. Such a report could highly ease the interpretation of
the potential problem by the operator. All the detected changes are managed in a state-
full fashion, tracking the evolution of anomaly alarms across time. This allows a better
understanding of the problem, as gives a notion of when an anomaly has started and how it
evolves, till its resolution.

In the last part of the Chapter, we also provide initial guidelines for an evolution of our
diagnosis framework. In particular, we explore the advantages and challenges associated with
a reactive and distributed monitoring approach, which paves the way to a more advanced
iterative diagnosis process. We include preliminary results tackling the analysis of Internet-
paths performance through distributed active measurements, complementing the passive
analysis approaches presented throughout this work. These results represent a valuable input
for future research, as demonstrated by the work being developed by Sarah Wassermann in
the context of her master studies.

7.2. Related Work
The problem of automatically diagnosing network anomalies is pretty well known in the Traffic
Monitoring and Analysis (TMA) community, but still represents a fertile research domain, as
the goal is far from being achieved.

The diagnosis of network and traffic anomalies in operational, large-scale networks dates
back to the initial work of Lakhina et al. [108] in 2004 (some previous papers worked in
limited or simulated datasets, mainly for the purpose of network security, which is out of our
scope), where authors proposed the well-known PCA-based approach for detecting, locating
and quantifying the volume of network wide anomalies in a traffic matrix. This work does not
really classify the types of anomalies detected, but is probably one of the first in introducing
the term of network anomaly diagnosis in modern networks. A further step was taken years
later in [120], where authors study the dynamics of routing data to characterize network
anomalies impacting network performance. Silveira et al. introduced URCA in [121], an
approach to classify network anomalies based on manually built signatures and hierarchical
clustering. In [122], authors proposed a generic technique that uses frequent item set mining
to automatically extract and summarize the traffic flows causing network security anomalies.

More recently, Kanuparthy et al. proposed in [12, 123] a monitoring system based on
distributed active measurements which allows operators to input domain knowledge to en-
hance diagnosis functionality for the purpose of troubleshooting performance issues. In [124],
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Yan et al. introduced a system for end-to-end anomaly detection and localization in CDN
networks, presenting results on its functioning on an operational CDN. Our work builds close
to a work of the same authors [125], where authors present a generic Root Cause Analysis
systems to capture and explain the sources of network problems. We follow a similar ap-
proach in our proposal, also distinguishing between symptomatic and diagnostic events for
the sake of understanding anomalies, but recasting the distinction in terms of features and
corresponding signals.

Finally, regarding the Machine Learning (ML) based approach for automatically classifying
anomalies, the field of automatic traffic analysis and classification trough ML techniques has
been extensively studied during the last decade. We recall from the related work section
of Chapter 3 a detailed survey of ML techniques applied to automatic traffic classifica-
tion available at [38]. In particular, a standard non-exhaustive list of supervised ML-based
approaches includes the use of Bayesian classifiers [39], linear discriminant analysis and k-
nearest-neighbors [40], decision trees and feature selection techniques [41], and support vector
machines [42]. Unsupervised and semi-supervised learning techniques have also been used
before for traffic analysis and classification, including the use of k-means, DBSCAN, and
AutoClass clustering [126], and a combination of k-means and maximum-likelihood clusters
labeling [127].

7.3. Dataset Description
Following the same data generation approach we have used so far (cf. Section 6.7), we
construct a fully labeled dataset in which we add 16 network and service anomalies from
three different anomaly classes, all of them affecting mobile devices with multiple intensities
in terms of size of the affected population. In particular, the first two classes of anomalies
correspond to the same types of anomalies reflected by types E1 (type 1) and E2 (type 2) in
Section 6.7, but considering different durations: type 1 anomalies last for 2 hours, and type 2
anomalies last for 1 day. In both cases and as we did before, the size of the impacted number
of devices varies between 20% and 0.5%, resulting in a total of 2 × 7 = 14 anomalies. We
additionally introduce a third class of anomalies (type 3) which models a scenario in which all
the customers of certain virtual operators (reflected by specific APNs) are affected by service
outages, responding with a surge in the number of DNS queries. We take two different
intensities for this anomaly class, considering a population of 12% and 3% respectively and
a duration of 1 hour in both cases. Similarly to the other types, the characteristics of these
type 3 anomalies have been chosen to mimic real-world events that we have observed during
our measurements, including the fractions of involved population, which reflect the size of
real virtual-operator customer bases.

The generated dataset finally consists of one full month of synthetically generated cellular-
network DNS data, corresponding to real measurements performed in October 2013, and
reported with a time granularity of 5 minutes. The dataset contains normal operation traffic,
with the 16 aforementioned anomalies added on top of it.

Table 7.1 describes the set of 48 features and signals which are reported for every 5 minutes
time bin of the synthetically generated dataset (i.e., the columns of the dataset, describing
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each row). These are used as input for the ML-based classifier, which finally provides a
classification label for every 5 minutes time bin: 0 in case of normal operation, and 1, 2 or
3, depending on the specific anomaly type. The set of features corresponds to the meta-
data obtained from the DNS transactions, as explained in Section 6.7. For each feature
we compute multiple percentiles as signals, additionally including the average value and the
entropy. Finally, we also use as input to the ML-based classifier the output obtained from
both anomaly detectors previously introduced, as these provide paramount information to
understand the nature of the flagged changes.

Using such a broad set of features might be a priori against the intuition of the reader,
specially because we have clearly identified in Section 6.7 the best features describing the
statistical properties of the targeted anomalies. However, it is generally not possible to know
in advance which is the best set of features to use in the practice. Therefore, we consider
a more conservative analytical approach, taking as input a broad set of features, using later
on feature selection and specific ML-based approaches to pinpoint the best of them for the
corresponding targets. Note also that the descriptors used in Section 6.7 refer to the full
probability distributions of the corresponding features, thus we include as signals a sampling of
such distributions, represented by the five considered percentiles, the average values, and the
entropy. Finally, note that we also include as inputs the output of the EWMA detector on the
entropy of each of the main considered features, despite the low correlation to the anomaly
types these offer, as shown in the evaluations on Section 6.8. The purpose is still to verify
that the information provided by the EWMA detector is less relevant than the one provided by
the distribution-based detector. In fact, the feature selection process automatically accounts
for such main difference in the information provided by both detectors, as shown in Section
7.6.

7.4. Compared ML Approaches and Criteria
The literature offers multiple types of ML-based classifiers, covering a very wide range of
approaches and techniques [38]. Many of the approaches offer “black-box” solutions, for
which it becomes very challenging to understand the reasons of a particular classification
result, and in particular to understand the input features leading to such a result. Decision
trees are therefore a very appealing option when thinking on easing the tasks of a network
operator, as they are very easy to interpret, and directly provide filtering rules, which are
the basis of a network operator’s job. Decision trees are one of the most powerful and
simple data mining methods for decision-making, and they additionally permit to construct
comprehensive signatures for the detected anomalies, using a graph structure.

Following the results of [43], we decided to build a classifier based on standard C4.5 decision
tree, and compare its performance to that obtained through five standard supervised-learning-
based approaches previously used in the literature: Multi-Layer Perceptron (MLP), Artificial
Neural Networks, Naive Bayes (NB), Random Forest (RF), Support Vector Machines (SVM),
and Locally-Weighted-based Learning (LWL). The output of the classifier is a label reflecting
either normal operation (label 0) or flagging one of the specific anomaly types (labels 1, 2
or 3). We use the well-known Weka Machine-Learning software tool [30] to calibrate the six
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Feature Signal Description
serial time – start of the 5’ time-bin

DNS query
querycnt total num of DNS requests

querycnt ewma output of EWMA det. (-1,0,1)
querycnt adtool output of dist-based det. (≥ 0)

APN

apn h H(APN)
apn avg APN
apn p99 99th-percentile
apn p75 75th-percentile
apn p50 50th-percentile
apn p25 25th-percentile
apn p05 5th-percentile

apn ewma output of EWMA det. (-1,0,1)
apn adtool output of dist-based det. (≥ 0)

Error flag

error code h H(Error flag)
error code avg Error flag
error code p99 99th-percentile
error code p75 75th-percentile
error code p50 50th-percentile
error code p25 25th-percentile
error code p05 5th-percentile

error code ewma output of EWMA det. (-1,0,1)
error code adtool output of dist-based det. (≥ 0)

Manufacturer

manufacturer h H(Manufacturer)
manufacturer avg Manufacturer
manufacturer p99 99th-percentile
manufacturer p75 75th-percentile
manufacturer p50 50th-percentile
manufacturer p25 25th-percentile
manufacturer p05 5th-percentile

manufacturer ewma output of EWMA det. (-1,0,1)
manufacturer adtool output of dist-based det. (≥ 0)

OS

os h H(OS)
os avg OS
os p99 99th-percentile
os p75 75th-percentile
os p50 50th-percentile
os p25 25th-percentile
os p05 5th-percentile

os ewma output of EWMA det. (-1,0,1)
os adtool output of dist-based det. (≥ 0)

FQDN

req fqdn h H(FQDN)
req fqdn avg FQDN
req fqdn p99 99th-percentile
req fqdn p75 75th-percentile
req fqdn p50 50th-percentile
req fqdn p25 25th-percentile
req fqdn p05 5th-percentile

req fqdn ewma output of EWMA det. (-1,0,1)
req fqdn adtool output of dist-based det. (≥ 0)

label – ground truth label (0 - normal, type 1-2-3)

Table 7.1.: Features and signals used as input for the Machine Learning-based anomaly clas-
sifier (note that the serial time and the label are not considered as inputs). The
signals include the entropy of the corresponding feature, multiple percentile val-
ues and the output of the two detection algorithms (i.e., EWMA applied on the
entropy time-series and distribution-based detector).

learning-based algorithms and to perform the evaluations. Even though we do not explain
the particular details of each of these classifiers, we refer the reader to Appendix B for a brief
description on these algorithms, including their parametrization. For a more complete survey
of ML techniques applied to network traffic classification, we address the interested reader
to [38] and to the Weka documentation [30].
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Figure 7.1.: Machine Learning based approaches for anomaly classification. Classification
Accuracy, Precision, and Recall for normal operation instances and different
anomaly-types’ events. The performance of C4.5 trees is almost perfect for
normal traffic and anomalies of type 1 and 2, but quality significantly drops for
the anomaly type 3.

To evaluate and compare the performance and virtues of the classification models, we
consider three standard metrics: Global Accuracy GA, Recall and Precision. GA indicates the
percentage of correctly classified instances (time-bins) among the total number of instances.
Recall Ri is the number of instances from class i = 0, . . . , 3 correctly classified (TPi), divided
by the number of instances in class i (ni). Precision Pi is the percentage of instances correctly
classified as belonging to class i among all the instances classified as belonging to class i,
including true and false positives (FPi). Recall and precision are two widely used performance
metrics in classification. Precision permits to measure the fidelity of the classification model
regarding each particular class, whereas recall measures the per-class accuracy.

Ri = TPi
ni

, Pi = TPi
TPi + FPi

, GA =

M∑
i=1

TPi

n
(7.1)

7.5. Evaluation and Discussion
Figure 7.1 reports the performance of the six compared classifiers in the classification of all
the 5-minutes time-bins. All the evaluations presented use 10-fold cross-validation, which
means that we train and test the models for 10 different training/testing combination sets, to
avoid biased results. For the sake of a fair comparison, parameters are set manually for all the
models, performing an extensive trial-and-error testing phase to obtain the best results (the
adopted parameters are reported in Appendix B). Figure 7.1(a) depicts the global accuracy
obtained by the six approaches. All the models provide very high accuracy, above 90%. The
C4.5 decision tree model achieves the same performance as the RF, but the latter uses 20
parallel C4.5 decision trees instead of a single one. SVM, MLP and NB achieve slightly worse
performance in terms of accuracy, which is a-priori surprising, as at least SVMs and MLPs
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Figure 7.2.: Pruned C4.5 decision tree model for anomaly diagnosis. C4.5 achieves very high
global accuracy, as well as very high precision and recall for normal traffic and
type 1, type 2 anomalies. However, this tree is not capable of properly tracking
type 3 anomalies. This issue can be solved by performing pre-filtering on the
input features, by feature selection techniques.

have proved to be very good classifiers in previous work.
Regarding precision and recall depicted in Figures 7.1(b) and 7.1(c), we can observe that

all the approaches systematically fail to properly track the type 3 anomalies. C4.5 achieves
high precision and recall for normal and type 1, type 2 anomalies, but also fails to properly
isolate type 3 events, resulting in a very low recall. While the problem of unbalanced classes
is for sure an issue partially masking these results, the particularities of type 3 anomalies
require additional efforts to properly track them. Indeed, as also shown in Figure 7.3(a),
while the per-class ROC curves obtained for the first 3 classes (0, 1, and 2) by C4.5 are
almost perfect (TPR = 100% for a FPR below 1%), the ROC curve for the type 3 events
shows poor results. As we see next, we can greatly improved the performance of C4.5 for
classification of type 3 events by performing pre-features filtering.

Finally, Figure 7.2 depicts the obtained C4.5 model. A big advantage of C4.5 is the much
smaller effort required for the tuning, with respect to other more complex algorithms. After
the experimentation, in fact, we relied on the standard parametrization to obtain optimal
settings. Among the tested algorithms, it is the best one to support the automation of the
diagnosis process, easing the reproducibility of the results in different networks and types of
measurements.

As we claimed before, decision tree models also provide great insights about the process
leading to a specific classification result (leaf). Using the model, a network operator can
identify those features indicating a specific type of anomaly, and better infer on their nature.
Features at the higher levels of the tree tend to have more distinguishing power and account
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(a) Per-class ROC curves for the C4.5 tree. (b) Improving accuracy by feature selection.

Figure 7.3.: Performance of the C4.5 anomaly classifier, and classification enhancement
through feature selection.

for more population size than lower level features. In this model, the root node is the
output of the distribution-based anomaly detector on the symptomatic signal, showing the
paramount role and information provided by such feature and, again, its supremacy against
the entropy-based EWMA detector.

Note that paths from the root node to leaves representing different anomaly types can
be directly expressed as logical rules, which can be ultimately integrated into any kind of
rule-based monitoring system.

7.6. Improving C4.5 Performance by Feature Selection
Using an extensive list of traffic features is not always the best strategy, as it may negatively
impact classification results. Using more features increments the dimensionality of the feature
space, normally introducing undesirable effects such as sparsity. At the same time, using
irrelevant or redundant features may diminish performance in the practice. We show next
that by carefully addressing the pre-filtering of input features by standard feature selection
techniques, we can partially solve the classification problem of the aforementioned C4.5 tree,
related to type 3 anomalies.

There are different search strategies and evaluation criteria to construct a sub-set of
traffic features. Regarding search strategies, the idea is to test different sub-sets of features,
studying local changes in the particular evaluation criterion when adding or removing features.
The evaluation criterion permits to test the goodness of a particular sub-set.

In this section we apply a widely used evaluation criterion to construct a reduced sub-
set of features: correlation-based evaluation. This approach basically selects sub-sets of
features that are poorly correlated among each other, but highly correlated to the classes of
traffic. As search strategy, we use Best-First (BF) search; BF is similar to a standard greedy
exploration, but it has the ability to do backtracking, i.e., it basically keeps the previously
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Normal
fr = 0

Warning
0 < fr < th

Anomaly
fr ≥ th

Figure 7.4.: State machine of change detection output. fr is the fraction of change notifica-
tion in the shift register, th is the state transition threshold. Each symptomatic
and diagnostic signal has its dedicated state machine.

evaluated sub-sets so as to avoid local maximum/minimum results when there is no local
improvement.

We now evaluate the impact of feature selection on the performance of the C4.5 decision
tree model. By running the proposed technique, we end up with a greatly reduced set of
features, going from the initial 48 features to only 4. The resulting set is composed of
the following features: querycnt adtool, apn avg, req fqdn p25, and req fqdn adtool. Note
that those features related to the EWMA detector are suppressed by the feature selection
process, as expected. Interestingly, selected features have a high correlation to the type
3 anomaly characteristics, which are directly linked to APN and DNS query counts. To
conclude, Figure 7.3(b) shows the per-class accuracy obtained by the C4.5 model for both
input features’ sets (i.e., the full set of features, and the pruned, 4 features’ set). While
the performance obtained in the classification of type 1 anomalies is slightly worse when
performing feature selection, there is a great improvement in the detection performance
for the type 3 anomalies, partially compensating the initial problems of the C4.5 model as
depicted in Figure 7.2.

7.7. Signal Change Correlation and Reporting
In this Section, we provide guidelines for the design of the final stage of the framework
(cfr. Figure 6.1) ultimately responsible for producing the diagnosis report on anomalies.
Specifically, we cover two aspects: (i) the definition of a state machine to handle change
detection outputs in a state-full manner, (ii) the time-correlation of the signal changes, (iii)
the definition of the event report, containing the diagnostic information, the anomaly type
and a description of the temporal dynamics of the anomaly.

7.7.1. Change Detection: from State-less to State-full
The instances of the change detection module notify the occurrence of significant modifi-
cations detected on the corresponding (symptomatic or diagnostic) signal, along with the
elements which contribute the most to the change (cfr. Figure 6.1). The notification, along
with the label assigned by the ML classifier, is done independently at each iteration in a
state-less fashion. However, the detectors output may flip from anomalous to normal during
the same event, depending on the algorithm sensitivity and on the anomaly intensity.

The first task of the diagnosis module is to consolidate the changes referring to the same
event. This is done, independently for each signal, by means of a finite state machine.
The finite state machine, depicted in Figure 7.4, consists of three states, namely Normal,
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Warning and Anomaly. The state transitions depend on the number of change notifications
in a shift register containing the last ns outputs of the detector. We indicate by fr the
fraction of change notifications in the register. The initial state (Normal) corresponds to
fr = 0. As soon as the first change is detected (i.e., the event starts), the signal state
switches to Warning (fr > 0). The signal remains in the same state, till a sufficient number
of changes has been detected. State transitions depend on a threshold th: when fr > th,
the signal enters the Anomaly state. When the detector stops flagging changes, the fraction
fr starts decreasing, till it goes back to Warning and, eventually, Normal.

7.7.2. Correlation of Signals and Generation of Reports
The main purpose of the diagnosis module is to temporarily correlate symptomatic and
diagnostic signals: in a nutshell, by locating those diagnostic signals which show a change
at the same time of the detected anomaly, one gets a more targeted and specific indication
of which features might be altered by the anomaly. This objective is achieved by means of
reports, which describe single events.

We define as event a period of time corresponding to anomalous traffic patterns with a
stable signature. Its life-cycle is controlled by symptomatic signals. An event is considered
started as soon as one or more symptomatic signals switch from Normal to Warning state.
Conversely, it is considered as closed (i.e., the anomaly is over) if the symptomatic signals
are back to Normal state, or if there is a change in the signature (i.e., an event change); in
the latter case, a new event with the new signature is initialized. A change in the signature
could be caused by either a change in the involved signals (i.e., a new diagnostic signal
enters Warning state, or a signal that was in Warning/Anomaly goes back to Normal), or
in the list of changing elements of one of the diagnostic signals (e.g., a new FQDN appears,
disappears, or changes sign).

Recall from Section 6.3, that symptomatic signals are used as evidence of anomalous
behavior, while diagnostic signals provide additional information for the diagnosis and the
event. The report is enriched with the label assigned by the ML-based module and the
diagnostic information provided by the involved signals, including the lists of the most relevant
changing elements (cfr. Sec. 6.4). The changing elements δ(ω) have a sign, depending on
whether their share in the distribution is increasing or decreasing. An example of an event
report is reported below:

l a b e l anomaly t y p e #1

symptom q u e r y p e r u s e r [ 1 0 , + ] [ 1 , − ]
d i a g n o s t i c m a n u f a c t u r e r [ P i n e a p p l e ,+]
d i a g n o s t i c OS [ youOS v2 . 1 , + ]
d i a g n o s t i c FQDN [ y o u c l o u d . com ,+]

start warn 2015−02−14 1 2 : 0 0 : 0 0
s ta r t a la r m 2015−02−14 1 3 : 0 0 : 0 0
end alarm 2015−02−14 1 7 : 3 0 : 0 0
end warn 2015−02−14 1 8 : 0 0 : 0 0
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The report could be read as: an anomaly of type 1 has been detected: a change in the
symptomatic signal distribution of query per user has started at start warn due to an
increase in the number of terminals issuing 10 queries, and a decrease of terminals issuing
1 query, in every 30min time-bin. The event report indicates that the devices produced by
Pineapple, equipped with version 2.1 of the operative system youOS increased their shares
of queries in the respective distributions. Also, the event report indicates that the number
of queries for the FQDN youcloud.com has increased. This shall be the typical signature
generated for an anomaly of type E1 (cfr. Sec. 6.7) lasting six hours, where involved terminals
retry to access youcloud.com every 5 minutes (10 requests every 30 minutes). Notice that
the event report describes the event throughout its entire duration, starting with the first
time-bin in which the symptomatic signal firstly enters in Warning state and terminating
with the last time-bin before it switches back to Normal state.

7.8. Iterative Diagnosis – Drilling-down into Anomalies

One more thing...

Steven Paul Jobs

Summarizing the diagnosing process described so far, we adopt a scheme based on se-
quential actions: (i) we start by passively monitoring the network, (ii) we extract a statistical
representation of two sets of traffic features, which we called symptomatic and diagnostic
signals, (iii) we continuously monitor them to detect the presence of significant deviations
from their normal patterns, (iv) we use ML techniques to classify the detected anomaly, and
finally (v) we report a summary describing the anomalous event, composed of all the informa-
tion to support the troubleshooting. In short, we defined a Sequential Diagnosis Paradigm,
as depicted in Figure 7.5. As we have seen in the evaluations, this approach is successful in
a number of scenarios. Indeed, as in the case of the DNS anomalies, an ISP could employ
this detection and diagnosis scheme to automatically tackle these frequent and disrupting
anomalies. However, there is still room for improvements. In the remaining of this Section,
we propose a possible research direction, based on the lesson learned during these studies
and some interesting preliminary results.

Before investigating a possible evolution of our framework, we shall first analyze its limi-
tations. To this end, let us consider again the anomaly that impacted the perceived QoE of
YouTube users in a fixed-line operation network. In Section 5.6 we described the anomaly
by manually analyzing all the involved traffic features, while in Section 6.9 we tested our
distribution-based detection algorithm to automatize the process. The results obtained in
the two cases were compatible. We shortly recall that the anomaly was caused by a tempo-
rary change of the set of YouTube servers assigned to the users passively observed in our VP
located in a fixed-line network. For the whole duration of the anomaly, we observed a de-
crease of the average downlink throughput during peak-times (i.e., late afternoon/evening),
resulting in a degradation of other QoE-based KPIs. By observing the other traffic features,
we came to two conclusions: (i) the problem was not in the ISP boundaries (i.e., at the ac-
cess network) and (ii) the root cause was a possible under-dimensioning of the newly selected
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Figure 7.5.: Sequential Diagnosis Paradigm based on a single and passive Vantage Point
scheme.
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Figure 7.6.: Iterative Diagnosis Paradigm based on a control-loop feedback mechanism that
allows to set-up new active or passive measurements or access existing measure-
ments from other VPs.

servers. Note that, while the first conclusion could be certainly demonstrated by excluding
the presence of internal congestion, the latter is a speculation. Although the increase of
the average server elaboration time is an evidence of under-dimensioning of the servers, we
cannot exclude other external root causes by only relying on a single VP located at the edge.

Diagnosing problems at the access network is somehow easier for the ISP, as this network
is in its domain (even if in the general case it can still be a very challenging task for ISPs,
as we have seen). However, diagnosing the problems outside its boundaries is a much more
complex task. In our specific example, the possible external root causes can be multiple: the
Google CDN server selection strategies might be choosing wrong servers, the YouTube servers
might be overloaded, path changes with much higher RTT from servers to the customers
might have occurred, paths might be congested, etc. Therefore, we cannot state where the
problem is located and who has the responsibility to intervene, just by passively monitoring a
single VP located in the access network. The complexity of modern large-scale services and
the involvement of many stake-holders (the service it-self, the content provider, the transit
ASes, the access network provider, and the final users) complicate the picture.

A possible solution consists in embracing a reactive monitoring approach, originally envi-
sioned in [24]. Given that, in general, a network anomaly could potentially involve more than
one stakeholder, the idea is to include additional measurements to get further insights on
the possible root causes. This can be done by both accessing existing additional on-line or
historical measurements, and/or setting up new ad-hoc passive and active probes to collect
missing diagnostic details. In other words, the Sequential Diagnosis Paradigm, previously
seen in Figure 7.5, can be evolved into an Iterative Diagnosis Paradigm, summarized in Fig-
ure 7.6. The difference between the two lies in the addition of a control feedback loop that
allows to iteratively drill down into the diagnosis of the anomalies. Note that, the mPlane
architecture (cfr. Chapter 2.1) offers the instruments to tackle this diagnosis scheme.
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7.8.1. The Diagnosis Graph
We now try to define the steps of the iterative diagnosis scheme in practice by using the
YouTube anomaly as reference case study. Such an iterative analysis is done by applying
a set of diagnosis rules to verify the occurrence (or not) of specific signatures explaining
the detected symptoms. These rules are initially defined by an expert operator, based on
his domain knowledge and operational experience. Given our specific QoE-related issue to
diagnose, each of the rules checks for a predefined signature characterizing the root causes.

To define the set of knowledge based rules to diagnose a problem, the first step is to identify
which are the possible root causes of such problems, and where could the origins be located.
The large number of possible root causes coupled with the generally much lower number of
VPs providing information about the symptoms makes the enumeration of the root causes
and their location a complex task. The approach we propose as example is a coarse one, in
which we drill down a previously characterized YouTube anomaly to find out the main part
of the end-to-end service delivery responsible for it (e.g., device, access ISP, Internet, CDN,
content provider), rather than the specific network element (e.g., interconnection router,
link failure, routing table, etc.). In this specific example, the origins of the QoE-relevant
degradation could be potentially located at:
(i) end terminals: potential issues in the end-terminal are multiple, from software to hard-
ware issues, as well as connectivity and signal strength among others. However, as we said
before, this case study considers QoE impacts in a large number of users, and thus individual
buggy terminal events are out of the scope of the diagnosis analysis. Only problems simulta-
neously affecting a large number of terminals are potentially considered; for example, issues
related to software updates affecting a whole category of devices (i.e., iOS smartphones,
Windows 8 OS, etc.).
(ii) home network: similar to previous observations for end terminal issues, the home
network could be a potential issue only in case of problems affecting for example a whole
category of home gateway devices. However, in this specific case, firmware updates are much
less frequent than OS and software updates, and therefore we exclude the home network from
the analysis.
(iii) access network: diagnosing issues at the access network heavily depends on the type of
access network considered (cellular, WiFi, FTTH, ADSLx). Download throughput problems
at the access can be caused by multiple issues, from congestion events to equipment outages
and misconfiguration.
(iv) core network of the ISP: problems at the ISP providing the Internet access to the
users are generally the most common ones. These are various, including intra-AS routing,
router outages and equipment failures, misconfiguration, etc. The usage of virtualization and
software-defined technologies (both at the access and core networks) adds additional sources
of potential performance issues.
(v) Internet: depending on the location of the YouTube content and on the cache selection
policies used by Google to answer users’ requests, the YouTube flows might have to traverse
multiple ASes from the YouTube servers the access ISP. As we said before, YouTube would
normally assign user requests to the closest servers. Still, due to its load balancing policies,
YouTube might assign users to other servers farther located, resulting in multi-AS paths from
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servers to customers. As a consequence, problems related to inter-AS routing, congestion at
intermediate ASes, and multi-AS paths performance degradation are potential root causes
for YouTube QoE degradation.

(vi) CDN and the servers: the final part of the end-to-end service diagnosis corresponds
to the servers hosting and providing the YouTube videos. Software or hardware problems of
the hosting servers, overloading situations of wrongly dimensioned servers, internal problems
of the hosting data-center, etc. are possible root causes to additionally diagnose.

Once we have enumerated the list of elements to diagnose, we can define a set of rules
or check-list which shall be iteratively verified to detect the occurrence of events revealing
the aforementioned problems. Table 7.2 enumerates a non-exhaustive list of the domain-
knowledge based rules for diagnosing the QoE-drop event detected in YouTube.

These diagnosis rules can be structured as a diagnosis graph, which is used for guiding the
diagnosis and drill-down of the YouTube QoE-anomaly. Figure 7.7 depicts an exemplifying
decision graph, integrating some of the previous diagnosis rules. The branches of a decision
graph can be either conditionally or systematically followed. In our case, the analysis is
conditional, starting from the end terminals till reaching the CDN servers. Note that the
verification of remote server problems is left at the end, given that an access operator has
more limited visibility and knowledge on the CDN structure. This scheme should be reversed
in case the diagnosis process is employed by the content operator.

The decision graph is structured in five different blocks: the (1) QoE-relevant Anomaly
Detection block consists of the anomaly detection approaches (both entropy-based and
distribution-based), coupled with the QoE-based monitoring for understanding whether the
detected changes are causing QoE-relevant degradations or not. To avoid triggering the
complete diagnosis process on false alarms caused by statistical variations of the monitored
features, this block additionally adds a verification of the consistency of the detected anomaly.
For example, important deviations in the empirical distribution of the β KPI can be caused
by a sudden and important drop/increase in the number of YouTube flows, or by an abrupt
modification in the number of users watching YouTube. Therefore, the verification step
firstly checks for the presence of events related to major statistical variations in the number
of YouTube flows and the number of users watching YouTube. The consistency step addi-
tionally defines an hysteresis-based approach for triggering the diagnosis, in which a number
of consecutive anomaly alarms have to be flagged before launching the drilling down process.
The (2) End-device Diagnosis block focuses on the specific analysis of the type of end device
associated to the anomalous YouTube flows. The (3) ISP Diagnosis block consists of the di-
agnosis of the access ISP. The (4) Internet paths Diagnosis block focuses on the diagnosis of
the end-to-end inter-AS paths, including both routing and path congestion analysis. Finally,
the (5) CDN servers Diagnosis block allows to identify server-related performance issues from
end-to-end measurements, assuming that access to in-CDN measurements is not available.
Note that these five blocks do not fully cover the aforementioned set of domain-knowledge
based rules. Still, the description serves as an example on how to build a diagnosis graph.
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Where? Potential Root Cause
and/or Location Check-list Items – Diagnosis Rules

Terminals and
Home Networks

Device For all the involved user devices corresponding to the
affected flows, check the occurrence of end-device issues.

Device OS
For all the involved user devices corresponding to the affected

flows, check the heavy hitters of OS type, and the entropy
of the OS class.

Set Top Box
For all the involved boxes corresponding to the affected flows,

check the heavy hitters of box-type, and the entropy of the
box-type class.

Access Network

Access Overloading

Check the occurrence of access-overloading events during the
last days, for the corresponding access networks or logical

aggregation points (e.g., users in the same aggregation
network, or attached to the same DSLAM, etc.). Compare to

similar events for other users accessing the same servers
through a different access network.

Access Configuration Check the occurrence of reconfiguration events related
to the corresponding access networks.

Equipment Failure Check the occurrence of outage events reported by the KPIs
monitored by the ISP at the corresponding access networks.

Core Network

Intra-AS Routing For all the involved user devices corresponding to the
affected flows, check the occurrence of end-device issues.

Link Congestion Check co-occurrence of link congestion events.

Equipment Failure
Check the occurrence of outage events reported by the KPIs

monitored by the ISP on its internal equipment, including
routing/switching/forwarding equipments.

Internet

Inter-AS Routing Check end-to-end path change events in the
corresponding temporal span of the detected anomaly.

Path Congestion
Check flagged events related to abrupt increases in packet

retransmissions per server, or in the end-to-end queuing delay,
for all the flows provisioned by the corresponding servers.

Intermediate
AS Issues

Check performance degradation events in the intermediate
ASes, particularly including latency and congestion

in the different end-to-end ASes path segments.

CDN Servers

Server Reachability Check if geo-distributed reachability measurements to the
identified servers result in non-reachability problems.

Server Soft
or Hard Failure

Check occurrence of server hardware outages and/or
software-related events at each single identified server IP

during the time span of the detected anomaly.

Server Overloading
Check occurrence of overloading events at each single

identified server IP during the time span of the
detected anomaly.

Table 7.2.: Set of diagnosis rules/items to check for diagnosing performance issues in CDN
services such as YouTube.
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Figure 7.7.: Diagnosis graph associated to the detection and troubleshooting support of large-
scale QoE-relevant anomalies in YouTube.

7.8.2. Measuring Path Performance – An Open Challenge
In the YouTube use case, as said, the evidences gathered at the VP in the access network
point at an external root cause. We have seen that the increase in the server elaboration
time suggests a sub-dimensioning of the servers, which are not able to cope with the traffic
at peak hours. Nonetheless, we cannot exclude the presence of heavy network congestion in
the paths from the newly selected Google servers to the customers.

The iterative diagnosis process could discover the real root cause by instantiating targeted
active measurements, such as traceroute, to assess the presence of path congestion when a
degradation in some QoE KPIs occurs. However, traceroute allows to measure the uplink
path, i.e., from the VP to the remote Google servers, while our use-case calls for opposite
measurements on the downlink path. Given that Google servers lie outside the boundary and
control of the ISP, this is not straight forward. An optimal solution consists in a federated
measurement infrastructure, which assumes the collaboration of all parties involved in the
end-to-end path. As this is a too ambitious solution, the only way to perform such reverse
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Figure 7.8.: DisNETPerf overview.

traceroute is either by using specialized tools, such as the one presented in [128], or to
perform the measurements from controlled servers which are as close as possible to the
original ones. The problem of executing reverse traceroute measurements has been addressed
in the past [128]; however, the proposed approach heavily relies on IP spoofing and IP Record
Route Option, both being not necessarily allowed in every ISP and causing potential security
concerns. Therefore, we take into consideration exactly the latter option: we rely on servers
close to the original ones.

To this extent, we have collaborated in the design of a specialized tool called DisNETPerf,
developed in the context of the mPlane project. DisNETPerf, a Distributed Internet Paths
Performance Analyzer, serves the purpose of monitoring any Internet path using the RIPE
Atlas framework [8] and standard traceroute measurements. This work has been done by
Sarah Wassermann under Dr. Pedro Casas’ and my partial supervision, and makes use of
the Atlas Toolbox [25], my library for interacting with the Atlas framework.

The first step of DisNETPerf consists of selecting a monitoring point or probe located as
close as possible to a target server, i.e., a phantom server, to later on perform traceroute
measurements towards specific destinations. In a nutshell, given a certain source content
server (e.g., a YouTube server) with address IPs, and a destination customer with IP address
IPd, DisNETPerf locates the closest phantom server (a RIPE Atlas probe) to IPs, namely
IPc. The idea is that, if the phantom server IPc and the content server IPs are close enough,
running traceroute measurements from IPc –which is under control– to IPd allows to get a
good estimation on the status of the path from the actual server IPs to the customer IPd.
The performance indicators include RTT per hop, end-to-end RTT, losses, etc.

As for the distance metric employed to find the closest IPc, it takes into account both
topology and delay information, in this order. It first tries to find Atlas probes in the same
AS of IPd. If it does not find any probe in the same AS, it seeks for other candidates in the
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Figure 7.9.: DisNETPerf - probe selection evaluation, based on RSIM. Figure by Sarah
Wassermann, available at [P21].

neighboring ASes1. When a first list of candidates is ready, it instruments the found probes
to run ping measurements toward IPs in order to find the one with the minimum RTT, i.e.,
the one with smaller propagation delay.

We say that the probe selected by DisNETPerf (i.e., IPc) is a good probe w.r.t. IPs and
IPd if the network path from IPc to IPd is highly similar to the path from IPs to IPd.
Similar to [129], we define path similarity as the fraction of common links among both paths.
Formally, we use the Route Similarity Index (RSIM), defined as:

RSIM(IPc, IPs, IPd) = 2× Clinks(IPc, IPs, IPd)
Tlinks(IPc, IPs, IPd)

(7.2)

where Clinks refers to the number of links shared in common by both paths, and Tlinks to
the total number of links. A high RSIM indicates a high similarity between the considered
paths. Note that links can be defined at multiple granularities; in particular, we consider links
at the AS level. IP2AS mapping is done through the database provided by Maxmind [26].

Figure 7.9 presents evaluation results showing the applicability of DisNETPerf in terms
of AS path similarity. The goal is to assess whether the probe selection approaches select
probes with the highest similarity to the one we want to actually monitor. We use RIPE
Atlas probes as both source and destination (i.e., IPs and IPd) so as to compute the real
path (i.e., the ground-truth) between servers and customers. We randomly select 300 RIPE
Atlas source probes IPsi

, and consider a single fixed destination probe IPd. For each source
IPsi

we run DisNETPerf to locate the closest probe IPci
, obtain both the ground truth

path IPsi
→ IPd and the DisNETPerf path IPci

→ IPd, and compute the RSIM index
1Using CAIDA’s AS-relationships database, http://data.caida.org/datasets/as-relationships/

http://data.caida.org/datasets/as-relationships/
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RSIM(IPci
, IPsi

, IPd).
We compute RSIM at the AS level and plot the resulting CDF. Results are reported for

two different groups, the first one in which IPci
and IPsi

are located in the same AS (black
lines), and the second one in which IPci

is located in a neighbor AS (gray lines). There is
a significant difference between groups, and the case of same AS co-location results in near
optimal results. Nevertheless, we observe that about 40% of the tests yield a RSIM index
≥ 0.5. Note that the most relevant segment of the path to monitor for troubleshooting
purposes is the one closer to the customer (where problems generally occur), thus a RSIM
of 0.5 reflects a high performance of DisNETPerf for the envisioned purposes. Finally, the
probes selected by DisNETPerf generally correspond to paths with the highest similarity to
the ground-truth ones: in more than 80% of the performed tests, RSIM(IPci

, IPsi
, IPd)

results in the highest RSIM index among all the selected candidates.
This first evaluation demonstrates the applicability of DisNETPerf for end-to-end path

measurements, proving to be a good candidate for supporting the iterative diagnosis of
performance degradation, such as in the case of the Youtube anomaly. These preliminary
results are even more encouraging considering that the RIPE Atlas framework is rapidly
expanding, hence there will be higher chances to find a good phantom server to mimic
any given IP with more accuracy, as the number of available Atlas probes increases. Note
also that this approach is not strictly tied to RIPE Atlas, but can be used with any other
distributed measurement framework such as CAIDA’s Ark [10] or PlanetLab [9].

7.8.3. Outlook for a Flexible Monitoring Approach
To sum up the discussion on the iterative diagnosis, we now draw some guide-lines for a
smarter and more flexible monitoring approach in the direction of the reactive measurement
scheme. To this extent, we introduce three design principles that should be addressed in the
future for the design of better diagnosis and troubleshooting tools in complex networks.

(i) Data collection policies The quality of the diagnosis strictly depends on the amount
and representativity of the information available to explain the anomalies’ root causes and
effects. In our sequential diagnosis scheme we monitor a number of traffic features and we
correlate changes in order to build anomaly reports. Ideally, the more traffic features covering
all the potential sources of problems, the more aspects of anomalies can be unveiled. Due
to feasibility issues, however, we should consider a more flexible approach that allows to
regulate different levels of granularities depending on the current needs. In our framework,
for example, we would allow a fine-grained and continuous collection of the symptomatic
signals and a more flexible monitoring of the diagnostic signals. Note that the data collection
policies do not only refer to the passive monitoring of additional traffic features, but also to
the set-up of on-demand and time-limited active measurements, like, for instance, the end-
to-end performance assessment through tools similar to DisNETPerf. This approach solves
the scalability problems, also reducing the monitoring overhead on the network. In addition,
it allows setting up specific measurements tailored for the detected anomaly, dynamically
regulating the degree of details needed for the troubleshooting process.
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(ii) Self-adapting Time Granularity The self-adapting approach in the data collection
policies should also be valid for the selected time-granularity. During normal operations, in
fact, coarse-grained feature collection (e.g., longer time scales) is enough for producing an
overview of the network’s status, but, for the diagnosis of anomalies, a more fine-grained
view is in general required. To achieve this, we can design a sliding window mechanism to
accommodate detailed measurements (e.g., 1 minute time scale) for short-term analysis and
keeping coarse-grained statistics (e.g., 1 hour time scale) for long-term historical comparisons.
This mechanism would ensure a timely change detection on the key symptomatic signals.
Note that this sliding window mechanism could be efficiently provided by a stream data-
warehouse such as the one used in this work.

(iii) Distributed Vantage Points In order to troubleshoot anomalies, it would be desirable
to include multiple vantage points in the analysis. As we have seen, the single VP approach
could pose limitations to the diagnosis of certain anomalies. This is especially critic for
modern CDNs that dynamically balance delivery resources to different user clusters: having
more points of view on large scale service provisioning systems would allow to assess the
effects of the detected anomalies on a geographical and topological basis, highly increasing
the overall network visibility. This could be achieved by introducing a federated measuring
framework like the one suggested by the mPlane project (cfr. Chapter 2).

7.9. Summary
In this Chapter we have completed the description of a sequential framework for automatic
detection and diagnosis of network anomalies. In particular, we focused on the last com-
ponent, responsible of the classification, correlation and reporting. By relying on Machine
Learning techniques, we have showed how to classify the detected anomalies in an automatic
fashion. In particular, we investigated a number of supervised classification techniques and
the effects of feature selection on classification performance. The evaluation has been done
running several experiments on a synthetic dataset. We have also presented a module respon-
sible for the time-correlation of the detected changes in symptomatic and diagnostic signals
and reporting of event. The operational value of such an automatic reports is paramount,
as it could potentially result in a dramatic reduction of the time spent by network operators
in diagnosing unexpected events.

Lastly, we have collected the lessons learned in this thesis in order to propose an evolution of
our sequential framework. Despite the promising evaluation, in fact, some types of anomalies
could remain not fully diagnosed if we do not envisage a reactive and iterative diagnosis
scheme. In particular, ad-hoc active measurements could help in completing the diagnosis
of anomalies caused by external factors. As seen, this is not an easy task, as it assumes
the access to distributed measurements outside the ISP boundaries. To this extent, we
have presented some preliminary results on a distributed measurement framework designed
to overcome these limitations. We believe that these results, together with the tools and
methodologies provided by this thesis, provide a solid ground for future research aimed at
further automatizing the troubleshooting of network anomalies.
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8. Conclusions
We can only see a short distance
ahead, but we can see plenty there
that needs to be done.

Alan Turing

In this thesis I have described a process aimed at better understanding some complex, and
still not fully explored, Internet dynamics. The methodology and the obtained results can
support operators in understanding the footprint of Internet scale services on their networks
and can dramatically reduce the time spent in diagnosing unexpected events. The structured
procedure starts from the differentiation of Web services, followed by a deep characterization
phase, which includes both normal operation scenarios as well as anomalous events, and
finally terminates with a description of a systematic approach for the detection and diagnosis
of anomalies. It is not by chance that the logical sequence of chapters, and corresponding
contents, reflects the chronological order in which I have worked on the different topics.

I started with the first essential problem: the Web traffic classification. In fact, before
understanding which are the most popular services and what are their network footprints,
it was firstly needed to distinguish them in the passive traces. In this part, I designed a
classification approach based on hostname pattern-matching, which can be enriched with
DNS information in case the hostname is not available, as it happens in encrypted protocols
(e.g., HTTPS).

In the second step I established the foundations of this work: a deep characterization of
network traces. I focused on the key players in today’s Internet, offering two orthogonal
perspectives. The first consisted in unveiling the main hosting organizations and highlighting
their different provisioning approaches, while the second focused on three popular Internet
applications, namely Facebook, YouTube, and WhatsApp. In this part, among our main
findings, I have shown how dynamic and distributed are current major CDN players like
Google and Akamai, providing not only a large number of servers or IP addresses at highly
distributed datacenters, but also making use of load balancing techniques to shift HTTP
flows among their preferred hosting locations. I have also shown evidences on a more static
approach followed by other CDNs, like Limelight, reflecting a different philosophy for CDN
architectures. The same distinction is present for the three examined services: while Facebook
and YouTube are characterized by very sophisticated traffic dynamics involving a number of
geographically spread data centers, WhatsApp employs a more static and simple approach,
mainly relying on two Softlayer data centers for all users world-wide. Despite the existence of
previous studies focusing on different aspects (such as the application’s energy consumption,
usage patterns and single node monitoring), from the best of our knowledge, we have been
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the first in characterizing Facebook and Whatsapp from the network perspective through
large-scale monitoring and the first to compare the caching strategies of YouTube in two
different access technologies. Besides the interesting results and the novel findings, I believe
that the main contribution of this part is the structured approach in characterizing Internet
services. To do this, I relied on standard network measurement techniques, as well as new
ways of observing complex provisioning systems from original perspective. Among those,
I mention the comparison of traces from different network types, the inference of Quality
of Experience from flow characteristics, the study of users’ perception of the anomaly by
analyzing social media feeds, the graphical representation of the evolution of load balancing
policies using heat maps and temporal similarity plots.

After collecting a sufficient knowledge base on the inner functioning of large scale pro-
visioning systems, I shifted the attention to unexpected behaviors. In the course of the
characterization phase, I have collected a number of study cases of important changes that
occurred in the hosting infrastructures of popular applications, resulting in outages, malfunc-
tioning, or undesired circumstances for network operators. In particular, I have shown that
the caching selection policies employed by major CDNs might have a significant impact on
both the ISP carrying the traffic and the end-customers. By considering traffic from different
network types and services, I showed that these events are not bound to a particular location
or type of network. The characterization of such anomalies was done by manually inspecting
different traffic features in order to fully describe their causes and impacts. As I showed,
some anomalies are far from being easy to diagnose, as their impact is often not clearly
evident, mostly when it implies a degradation of the users’ Quality of Experience.

The last section of this thesis was dedicated to the detection and diagnosis of network
anomalies. I relied on the lessons learned in the characterization phase and I proposed a
systematization of the detection of such anomalies. I presented a framework for automatic
diagnosis of large scale Internet anomalies based on the analysis of passively captured net-
work data. Its key idea is to apply a change detection algorithm to a set of meaningful
signals extracted from network measurements, and then correlate those signals which show
similar abnormal behavior on a similar time-span. To this extent, I have thoroughly tested
two different detection schemes both on real network traces and semi-synthetic datasets.
The presented results unveiled the limitations of using state-of-the-art simple change point
detection algorithms in the case of low intensity anomalies that involve relatively small sub-
populations of users. From our experience, this type of anomalies are frequent in operational
mobile networks, and still potentially very harmful (cfr. problems on the signaling plane).
To overcome this limitation, I have presented a more complex change detection scheme that
relies on the entire probability distribution of the monitored signals rather than the entropy
values. Using this detection approach, the system is able to cope with anomalies that involve
multiple services and/or affect multiple devices at the same time.

Given the general lack of large-scale ground-truth datasets to test the performance of
systems like ours, I designed an approach to generate semi-synthetic data, derived from real
traffic traces. On the one hand, this approach allowed me to properly evaluate the detection
capabilities of the algorithms, on the other hand, it could provide useful guidelines in the
synthetic traffic generation for network operators, that would be able in this way to disclose
datasets to the research community without risking to reveal privacy or business sensitive



Chapter 8. Conclusions 147

details.
The detection of network anomalies, however, is only the first step in their understanding

and troubleshooting. In fact, the main challenge lies in the automatic diagnosis, which
could be achieved by offering detailed anomaly reports to operators. Such reports would
help to speed up the study of anomalies, currently done relying on manual, time-consuming
and error-prone procedures. Despite the large literature on anomaly detection in large-
scale networks, I still miss a proper automatic approach for diagnosis. To fill this gap, I
concluded this thesis showing how to classify the detected anomalies in an automatic fashion
exploiting Machine Learning techniques. In particular, I investigated a number of supervised
classification algorithms and the effects of feature selection on classification performance.
The diagnosis procedure is finally concluded with the automatic correlation of the involved
traffic features and the reporting of all the collected diagnostic information, including the
label produced by the classification.

Outlook on Future Research
To conclude, we have seen that the study of highly decentralized provisioning systems is
not an easy task. It requires an analytical approach and deep domain knowledge. Given
the complexity of modern Internet scale services, unveiling performance issues, outages, and
malfunctioning in general is paramount, but still a major challenge for operators. In this work,
I have addressed some research questions (cfr. “Research Questions and Contributions” in
Section 1.4). Still, there are some open issues and potential improvements that are worth
considering for future research. In the following, I provide a short summary of four potentially
open topics.

Improving Classification of Encrypted Contents The first contribution of this thesis
is the traffic classification approach used for distinguishing Web services in network traces.
This was functional for the characterization of top services. At the beginning of the study, I
relied on hostname pattern matching using the GET field of HTTP tickets. However, in the
course of the long characterization phase, I needed to update the classification technique in
order to be able to tackle encrypted protocols, such as HTTPS and other SSL/TLS based
applications, that were heavily increasing their share every day. I then introduced an upgrade
that relies on DNS to compensate the lack of the requested hostname. While this approach
has proved to be very effective for our goals and currently permits to classify a good share
of the overall flows, it has at least two limitations. The first is the use of DNS caching;
this prevents browsers to issue new DNS queries and consequently make the association
between user’s flow and remote service impossible. Luckily, this is a quite rare case as CDNs
rely on short DNS TTLs to quickly redirect users to different front-end servers, limiting
the use of browser caching. The second limitation comes from the increasingly cryptic
naming schemes employed by CDNs. At the moment, I try to reverse engineer this naming
scheme in order to build suitable regular expressions, but the validity of such regex could
cease at any time. For example, Akamai uses specific sets of FQDNs for Facebook of the
type fbstatic-*.akamaihd.net, where the 3LD sub-string fbstatic suggests that the
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corresponding service is Facebook. This reverse engineering is clearly time consuming. For
the moment, I still do not have a way-around.

Continuing the Characterization Efforts The characterization of traffic is the funda-
mental pillar for unveiling obscure Internet’s dynamics. The knowledge base created is then
used for traffic engineering, network planning, anomaly detection and other key tasks. Most
of the time spent in this work has been actually dedicated to this, focusing in particular to
some “big players” case studies. As I have mentioned, our main contribution is the structured
methodology used to uncover the main characteristics of large scale provisioning systems.
The results themselves are definitely interesting and give important insights to network op-
erators to understand what it is currently happening in their network. However, they come
with an expiration date: tomorrow new applications and hosting schemes will arise changing
the Internet’s landscape. Therefore, it is important to continue characterizing the traffic and
update the way we understand Internet patterns. As Internet evolves, our domain knowledge
should evolve with it.

Anomaly Detection and Concurrent Events As I have remarked in the course of this
thesis, my aim was not conceiving “yet another anomaly detection algorithm”, as a lot of
effort has been already put in this topic by the research community. For our detection and
diagnosis framework I endorsed a powerful existing algorithm, that I improved in order to
cope with dynamic traffic patterns and the frequent change of CDN settings. A crucial point,
however, has not been considered: the presence of concurrent anomalies. The large literature
on anomaly detection also lacks studies on the presence of multiple anomalies at the same
time. However, given the complexity of network patterns, which increases the chances of
failures and unexpected events, I strongly believe that this is an important open issue that
should be addressed next.

Reactive Monitoring and Iterative Diagnosis The diagnosis framework I have presented
provides a good contribution in advancing the state of the art in the field of anomaly detec-
tion. However, our sequential diagnosis system could be still improved. In the last part of this
thesis (cfr. Section 7.8), I have drawn the guidelines for possible future research for continu-
ing this work. In particular, I envision a distributed approach for network measurements that
allows a more sophisticated and flexible iterative diagnosis scheme. Such a flexible system
would be able to automatically re-adapt it-self by regulating the type and granularity of data
collection and possibly access further existing datasets or set up new ad-hoc measurements.
I believe that, among the others, this is the main next step in order to achieve true network
visibility on a large scale.
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[45] Valent́ın Carela-Español, Pere Barlet-Ros, Albert Cabellos-Aparicio, and Josep Solé-
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A. Implementation Details of ADTool
ADTool is a Perl implementation of the statistical distribution-based AD algorithm presented
in Section 6.6, developed in the context of the European FP7 project mPlane. It runs on top
of the streaming data-warehose system DBStream and hence it requires suitable DBStream
jobs to compute traffic feature distributions with the required time-granularity. It is designed
to run online, i.e. it processes the distributions of features as soon as they are available in
the DBStream views.

ADTool is available on the mPlane website at this URL:

https://www.ict-mplane.eu/public/adtool

Architecture
ADTool runs iteratively on the output of DBStream jobs. At every iteration, the program
tries to retrieve the distribution corresponding to the last timebin available and compares it
with the distributions in the reference set (i.e. all the distributions corresponding to timebins
in a reference window of predefined length).

ADTool is composed of the following modules:

Configs.pm This module provides an interface between the XML configuration file and the
rest of the software. The parsing of the XML file is done by the XML::Simple Perl standard
module.

DataSrc.pm This module provides an interface between the PostgreSQL database used
by DBStream and the rest of the software. It allows to connect to the database, query for
the last available data to compute and write back the output. Both the read and the write
interactions with the database are done by the standard Perl DBI module via SQL queries
and inserts.

ENKLd.pm This module provides the computation of the normalized Kullback-Leibler
divergence between two distribution of values. The two distributions are passed to this
module as array references and do not need to be normalized in advance.

https://www.ict-mplane.eu/public/adtool
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RefSet.pm This module defines the package RefSet for managing Reference Sets (collec-
tion of past distributions). After being instantiated, a ”raw” RefSet object contains all the
distributions in the specified reference window. The module provides functions to discard
not statistically-relevant distributions (eg. not enough samples). The output code can be
either 2 (if distribution to be tested is too small) or 3 (if the reference set does not contain
enough samples).

ADTest.pm This module implements the test logic of the AD algorithm. It requires the
distribution to be tested, the reference set and other algorithm parameters (i.e. alpha,
gamma). The output code can be either 0 (if normal) or 1 (if anomalous).

DBStream Jobs
In order to run ADTool, it is firstly necessary to set-up a suitable DBStream job to compute
counters of the feature for each variable and time bin. The output view of the job should
have the following columns:

• serial time

• variable name

• feature name

Note that, a single view can be used to collect multiple feature if the variable name and
the time resolution is compatible.

Configuration file
The configuration of the software is done via an XML file. The available options are:

• [database] host

• [database] port

• [database] username

• [database] password

• [database] features table name (output of DBStream job)

• [database] drift table name (output of ADTool)

• [analysis] start timestamp

• [analysis] end timestamp (0 means run forever)

• [analysis] name of variable upon whom the job has computed the distribution
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• [analysis] feature name

• [refset] width (in days)

• [refset] guard period (in hours)

• [refset] min refset size (minimum number of distributions in refset)

• [refset] min distr size (minimum number of samples in distribution)

• [refset] m (number of top ranked distributions in refset)

• [ADtest] alpha (algorithm’s sensitivity)

A sample configuration file is showed in the following listing:
<ADTool_config >

<! -- description of this instance of ADTool -->
<Description >

Distribution of traffic volume
across YouTube servers

</ Description >

<! -- setting up database credentials and table names -->
<Database host=" 1.1.1.1 " port="5440" dbname =" dbstream " user=" dbstream ">

<features_table >adtool_youtube_server_volume_distrib </ features_table >
<flags_table >adtool_youtube_server_volume_flags </ flags_table >
<drift_table >adtool_youtube_server_volume_drift </ drift_table >

</ Database >

<! -- setting up analysis info ( variable names , timestamps , etc .) -->
<Analysis >

<start >1396648800 </ start > <! -- analysis start timestamp -->
<end >0</end > <! -- 0 means run online -->
<granularity >300 </ granularity > <! -- time granularity (in sec ) -->

<variable >server_ip </ variable > <! -- distrib . element names -->
<feature >volume_down </ feature > <! -- traffic feature name -->

</ Analysis >

<! -- setting reference set -->
<RefSet >

<width >7</ width > <! -- ref. set time window (in days ) -->
<guard >2</ guard > <! -- guard period in hours -->
<min_distr_size >100 </ min_distr_size > <! -- min distr size -->
<min_refset_size >80 </ min_refset_size > <! -- min refset size -->
<slack_var >0.1 </ slack_var > <! -- for comparing size of timebins -->
<m>20 </m> <! -- usually 1/4 min refset size -->

</ RefSet >

<! -- setting up distribution - based algorithm -->
<ADTest >

<alpha >0.05 </ alpha > <! -- algorith sensitivity -->
</ ADTest >

</ ADTool_config >
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Workflow
The logic is defined in the main executable adtool.pl. The arguments for running the
program are:
• --config <CONFIG FILE>

• --log <LOG FILE>

The execution workflow is described in Figure A.1.

Figure A.1.: Flowchart of the execution of ADTool.

Output
At every completed iteration, the output is reported on STDOUT as well as on the database’s
flag table specified in the configuration. For each iteration running on a time-bin, the row
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inserted in the flag table is composed by the following column:

• beginning timestamp of the timebin

• feature name (e.g., volume-down)

• output code (0,1,2,3)

• score

• γ (current distance)

• φα (upper bound)

The available output codes are:

• 0: distribution is “normal”

• 1: distribution is anomalous

• 2: distribution does not contain enough samples

• 3: refset does not contain enough distributions.
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B. Algorithms for Anomaly
Classification and Parameters

In this appendix we provide a brief description of the algorithms used for the supervised
classification of anomalies described in Chapter 7. We additionally list, for each classifier,
the parameters used for the experiments with Weka.

Decision Tree (DT) is a classification technique based on a tree graph, where inner nodes
correspond to a condition on an attribute and leaves are the outcome (i.e., the class). It
is a very popular classification algorithm due to its simplicity (it can easily be converted in
a rule-based classification system) and readability (it can be graphically represented). The
training follows a top-down greedy algorithm that works iteratively splitting the nodes, using
either the Gini Index or the Information Gain. For the results presented in this thesis we
employed the popular C4.5 implementation, which uses the latter.

binary split true
pruning factor 0.25
minimum number of instances per leaf 1
reduced error pruning false
subtree raising false
reduced error pruning false

Table B.1.: C4.5 Decision Tree settings

Random Forest (RF) is an ensemble technique based on multiple instances of decision trees,
each one based on a different part of the training set. This instances are called bootstrapped
samples. The final outcome is decided with major voting.

maximum tree depth 0 (i.e., unlimited)
number of attributes for random selection 0
number of trees 100
seed for random number generation 0

Table B.2.: Random Forest settings

Support Vector Machines (SVM) are non-probabilistic binary linear classifiers. It is con-
sidered one of the most powerful supervised classification algorithm. It works by representing
each item (vector) in a multidimensional space and trying to find a linear separation (i.e., an
hyperplane) for the classes. In some cases, however, a linear separation of the space is not
possible, hence it uses the so-called kernel tricks, which increase the dimensionality of the
space in order to allow a better fit.
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cost parameter 1.0
tolerance term. criterion (eps) 0.001
gamma 0
kernel type radial basis function
normalize false
probability estimate false

Table B.3.: Support Vector Machines (SVM) settings
Näıve Bayes (NB) is a very simple classifier based on Bayesian statistics. Despite its
simplicity, it is widely used as it is very efficient in a number of scenarios, especially in high-
dimensional datasets. It works by assuming that each feature is independent, which is not
true in most cases, hence the adjective naive. This assumption allows for an easy calculation
of class-conditional probabilities using maximum likelihood.

use a kernel estimator false
use supervised discretization false

Table B.4.: Naive Bayes (NB) settings

Locally-Weighted-based Learning (LWL) is another Bayes classifier. It overcomes the
limitations of NB, i.e., the assumption of feature independence, by learning local models.
Being a lazy algorithm, it constructs a new Bayes model using a weighted set of training
instances at classification time.

num. of neighbors for weighting function (KNN) -1 (i.e., all)
use supervised discretization false
nearest neighbor search algorithm LinearNN
weighting kernel 0

Table B.5.: Locally-Weighted-based Learning (LWL) settings

Multi-Layer Perceptron (MLP) is an artificial neural network composed of multiple layers
of neurons (i.e., processing units). The layers are fully connected in a feed-forward scheme.
Each neuron employs an activation function that maps the weighted inputs to the output that
is passed to the following layer. The weights, originally set to random values, are iteratively
adjusted during the training phase.

decay (learning rate decrease) false
hidden layers a
learning rate 0.3
momentum 0.2
nominal to binary filters irrelevant
normalize attributes true
normalize numeric class false
allow reset with lower learning rate true
seed for random number generator 0
number epochs for training 600
percentage size of validation set 0
validation threshold for termination 20

Table B.6.: Multi-Layer Perceptron (MLP) settings


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	A Tangled Internet
	The Role of Network Measurements
	The Uphill Race to Network Monitoring
	Research Questions and Contributions
	Thesis Outline

	Research Context, Tools and Methodologies
	A Measurement Plane for the Internet
	Related Measurement Platforms
	System Architecture
	Anomaly Detection and Diagnosis in mPlane

	Analysis Tools and Methodologies
	Characterization Methodology at a Glimpse

	Traffic Classification Techniques
	Introduction
	Related Work and Contributions
	System Architecture and Datasets
	Hostname-based Classification (HTTPTag)
	HTTPTag Overview
	Long-term results
	Leveraging DNS for HTTPS classification (HTTPTag2)

	A light-weight IP-based approach (Mini-IPC)
	Mini-IPC Overview
	Mini-IPC Evaluation

	Summary

	Characterization of Traffic from Major Internet Services
	Introduction
	Related Work and Contributions
	Understanding the Provisioning Systems of the Internet's Big Players
	Big Players' addressing space
	Temporal dynamics of IP addresses
	CDN servers location and load balancing policies

	A Popular Video Streaming Service: YouTube
	Delivery Infrastructure
	How Far Away are YouTube Videos?
	YouTube Traffic and Performance
	From Performance to Quality of Experience

	An Online Social Network: Facebook
	Traffic and Content Delivery Infrastructure
	Geographical Diversity of Facebook Hosting Servers
	Facebook IP Address Space
	Facebook flow sizes
	Content Delivery Temporal Dynamics

	An Instant Messaging System: WhatsApp
	Application Overview
	Hosting Infrastructure
	Flow Characteristics
	Quality of Experience in WhatsApp

	Summary

	Large-scale Network Anomalies
	Introduction
	Related Work and Contributions
	Large-scale Changes in Service Provisioning: the case of Akamai and Facebook
	Multi-caches Selection Policies
	Temporal Characteristics of Facebook and Akamai Traffic

	OSN Service Outages: two Close Facebook Events
	First Facebook Outage: September
	Second Facebook Outage: October

	IM Service Black-out: the case of WhatsApp
	Black-out at a glimpse
	TCP Flags Counters

	Quality of Experience Degradation: the case of Youtube
	Evidences of QoE Degradation
	Investigating the Anomaly
	Geo-location Diagnosis Approach
	Assessing Path-related Issues
	Assessing Server-related Issues

	Unveiling Device-specific Anomalies through DNS Analysis
	Anomaly Characteristics

	Summary

	Advanced Anomaly Detection Techniques
	Introduction
	Related Work and Contributions
	Detection and Diagnosis Framework Overview
	Signals Extraction
	Entropy-based Anomaly Detection
	Distribution-based Anomaly Detection
	Reporting changing elements
	Self-adaptation to long-lasting changes

	Anomaly Modeling and Data Generation
	Construction of semi-synthetic background traffic
	Modeling and generation of synthetic anomalies

	Evaluation with Synthetic DNS Anomalies
	Analysis of Event type E1
	Analysis of Event type E2
	Comparing Detection Strategies
	Test on different intensities

	A Real-World Scenario
	Summary

	Towards Automatic Diagnosis of Anomalies
	Introduction
	Related Work
	Dataset Description
	Compared ML Approaches and Criteria
	Evaluation and Discussion
	Improving C4.5 Performance by Feature Selection
	Signal Change Correlation and Reporting
	Change Detection: from State-less to State-full
	Correlation of Signals and Generation of Reports

	Iterative Diagnosis – Drilling-down into Anomalies
	The Diagnosis Graph
	Measuring Path Performance – An Open Challenge
	Outlook for a Flexible Monitoring Approach

	Summary

	Conclusions
	List of Publications
	Bibliography
	Implementation Details of ADTool
	Algorithms for Anomaly Classification and Parameters

