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Abstract

Computer Aided Diagnosis (CAD) systems are an important tool to guide radiologists during
detection and diagnosis of clinical findings in medical images to improve their quality and pro-
ductivity. Typical components of such systems involve the localisation of the structure of interest
(Segmentation), digital encoding of visual information (Feature extraction) and the identification
of healthy and pathological observations (Classification). The task of segmentation and classi-
fication in this context is often addressed by supervised machine learning approaches where
annotated training data is required, which is usually time consuming and expensive to acquire.

The aim of the work in this thesis is to address the problems of segmentation and classifi-
cation in medical images by learning methods that do not require manually annotated data, but
instead learn from data that is generated during clinical routine in hospitals.

The first approach takes a set of medical images as input and aims at the unsupervised iden-
tification and segmentation of anatomical structures. The unsupervised segmentation approach
consists of four main processing steps: the registration of all images to a central reference space
(atlas), learning image region feature prototypes, learning a segmentation in the atlas space using
Markov Random Fields (MRF) and combining the atlas segmentation with local image features
to segment novel target images, again using MRFs.

The second approach aims at the classification of healthy and pathological image regions
within an organ by learning from a set of medical images, where each image is assigned with a
set of weak textual labels that describe clinical findings and pathologies occurring in an image.
The approach is based on clustering image region features, learning the distribution of weak
labels in the partitioned feature space, computing a probability table to predict single labels for
clusters and using this knowledge to classify image regions in unseen images.

Evaluation shows that the unsupervised segmentation approach is able to locate three organs
(lung, heart, liver) across all images, but as expected, shows clear limitations in comparison to
supervised learning approaches. The approach for weakly supervised classification is evaluated
on 300 chest CT scans and yields sensitivity/specificity values of 0.9/0.98 for healthy, 0.77/0.96
for ground glass, 0.91/0.98 for reticular, 0.37/0.99 for honeycombing and 0.9/0.96 for emphy-
sema image regions.
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Kurzfassung

Computerunterstützte Diangosesysteme (CAD) spielen eine wichtige Rolle während der Be-
fundung von medizinischen Bilddaten. Ihr Ziel ist es, Ärzte während der Befundung zu unter-
stützen, in dem die für eine Diagnose relevante Informationen rasch und zuverlässig detektiert
und visualisiert werden. Typische Aufgaben eines CAD Systems umfassen die Lokalisierung
von anatomischen Regionen (Segmentierung), das Kodieren von visueller Information (Merk-
malsextraktion) und die Identifikation von pathologischem Gewebe (Klassifizierung). Segmen-
tierungs -und Klassifizierungsprobleme werden oft von Algorithmen gelöst, die dem Konzept
des überwachten maschinellen Lernens zugrunde liegen. Dieses Konzept setzt jedoch annotierte
Trainingsdaten voraus, welche meist nur mit hohem Zeitaufwand und hohen Kosten generiert
werden können. Ziel dieser Arbeit ist daher die Entwicklung von Methoden zur Segmentierung
und Klassifizierung in medizinischen Bilddaten, die aus Daten lernen, die im klinischen Alltag
erzeugt werden.

Der erste Teil dieser Arbeit stellt eine Methode zur Segmentierung von anatomischen Struk-
turen in medizinischen Bilddaten vor, die lediglich aus einer Menge von Bilddaten lernt (unüber-
wachtes Lernen). Diese besteht aus vier Verarbeitungsschritten: die Registrierung aller Bilder
zu einem zentralen Atlas, das Erlernen von Prototypen von Bildmerkmalen, das Erlernen einer
Segmentierung in dem Atlas, wofür Markov Random Fields (MRF) benützt werden, und das Ge-
nerieren von Segmentierungen in neuen Bildern durch die Kombination der Atlassegmentierung
und lokalen Bildmerkmalen, wiederum mit Hilfe von MRFs.

Im zweiten Teil wird eine Methode zu Klassifikation von pathologischen Regionen in einem
Organ beschrieben. Diese Methode lernt aus einer Menge Bildern, wobei zu jedem Bild textuelle
Labels zur Verfügung stehen, welche die im Bild auftretenden Pathologien beschreiben und
besteht aus vier Hauptteilen: das Partitionieren von Bildmerkmalen, das Erlernen der Verteilung
von textuellen Labels in diesen Partitionen, das Generieren einer Wahrscheinlichkeitstabelle um
einzelne textuelle Labels zu Partitionen zuzuordnen, um diese Information schließlich für die
Klassifikation von Pathologien in neuen Bildern verwenden zu können.

Die Evaluierung der Methode zum unüberwachten Segmentieren zeigt, dass der Ansatz drei
Organe identifizieren kann (Lunge, Herz, Leber), aber wie erwartet limitiert ist im Vergleich zu
überwachten Lernverfahren. Die zweite Methode wurde auf einem Datensatz von 300 Computer
Tomographie (CT) Bildern mit Annotierungen von fünf pathologischen und gesunden Struk-
turen in der Lunge evaluiert. Hierbei wurden Sensitivitäts- und Spezifitätswerte von 0.9/0.98
für gesunde, 0.77/0.96 für Milchglas, 0.91/0.98 für Reticular, 0.37/0.99 für Honeycombing und
0.9/0.96 für Emphysem Regionen erreicht.
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CHAPTER 1
Introduction

Daily routines in hospitals produce large amounts of medical imaging data during diagnosis
and therapy. The university Hospital of Geneva for instance produced 25 000 images per day
in 2012 [44]. Finding relevant information in medical images for diagnosis (image reading) is
often tedious, time consuming, needs expertise, is expensive [16] and additionally suffers from
intra- and inter-reader variability [3], [6].

In this context, Content Based Image Image Retrieval (CBIR) and Computer Aided Diag-
nosis (CAD) Systems are tools to support radiologists during detection and diagnosis of clinical
findings in medical images to improve quality and productivity [18], [49]. Such systems are de-
signed to find similar cases in large medical databases (CBIR), to analyse large amounts of data
in reasonable time, locate and visualize relevant information (such as pathologies) for diagnosis
and provide objective and repeatable results (CAD) [19], [67], [44].

Recently, CAD systems for various clinical tasks such as early breast cancer detection [5],
[39], lung nodule detection [41], polyp detection in colonography Computed Tomography (CT)
[87] or tissue classification in chest CT scans [84], [49] have been developed. According to
Sluimer et al. a typical CAD system is set up of four components. Preprocessing, segmentation,
feature extraction and classification [66]. Classification in this context is often performed in
supervised manner [39], [41], [87], [84], which requires from clinical experts annotated training
data, where the acquisition of training data has the same drawbacks as the task of image reading
for finding a diagnosis [16]. In particular for learning tasks that need large numbers of training
examples, to represent the variability in patient data, expert annotation is not feasible.

In this thesis methods are proposed that can support learning from imaging- and textual data
that is generated in clinical routine. The approaches explore what can be learned when rely-
ing on this existing data, instead of additional detailed manual annotations. To overcome the
problem of acquisition of annotated training data, we emphasize the idea of CAD systems that
learn from data that is available from clinical routine. Specifically, these are (1) large sets of
medical images and (2) corresponding radiology reports that describe occurrences of patholog-
ical observations and clinical findings in these images. Once findings and observations in these
reports are extracted and mapped to ontologies such as RadLex [46], the task of learning from
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this data can be interpreted as weakly supervised learning task. Learning the correspondence
between weak text labels and images has been studied in several fields outside the medical do-
main [24], [79] [69]. It has also been shown that learning these correspondences enables CBIR
systems to improve accuracy [50].

1.1 Problem Statement

The aim of this thesis is to implement and evaluate learning algorithms for two typical com-
ponents (segmentation of anatomical structures and classification of clinical findings in these
structures [66]) of a CAD system. The proposed approaches do not require manually annotated
training data since their acquisition is normally time consuming and expensive [16]. Instead we
only use data that is available from clinical routine. The problems of segmentation and classi-
fication in medical images are addressed separately in this thesis, which leads to a two-folded
problem statement:

1. The development of an unsupervised learning algorithm that is able to identify visually
coherent regions and thus to compute group wise segmentations of anatomical structures
in a set of medical images.

2. The development of a weakly supervised learning algorithm that is able to classify healthy
and pathological regions within a previously segmented anatomical structure.

Whereas the first approach requires only a set of medical images as input, the latter learns to
predict tissue classes from information that is available in radiological reports. For this purpose
we assume that the content of a report contains descriptions of clinical findings and pathological
observations that occur in an image. Furthermore, we assume that this relevant information can
be extracted and mapped to ontologies such as RadLex [46] so that the extracted terms form
weak textual labels for each image.

It has to be investigated which anatomical structures can be identified and segmented to
which accuracy by the approach proposed for unsupervised medical image segmentation as well
as if the method proposed for weakly supervised classification is able to identify pathological
and healthy image regions. For this purpose two publicly available datasets are used that a carry
voxel-wise labeling of (1) anatomical structures [32] and (2) multiple (healthy and pathological)
tissue classes within the lungs [37].

1.2 Methodical Approach

Both methods analyse and classify small patches of neighboring voxels with similar texture
properties, so called supervoxels [38], separately. The main idea is that unsupervised clustering
of supervoxel features sampled from image regions covering the whole body results in partitions
of the feature space that represent prototypes of anatomical structures. The assignment of super-
voxels to these prototypes is then used to generate an initial segmentation of all images in the
training data. After registration of all images to a central reference space or atlas, we learn a
segmentation of the atlas using Markov Random Fields (MRF) to combine initial segmentations
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and model the assumption that spatially neighboring supervoxels are likely to belong to the same
segmentation class. The final segmentation of an image is then obtained by the combination of
the previously learned atlas segmentation together with the initial segmentation of an image and
modelling relations between spatially neighboring supervoxels, again using MRFs.

The main idea of the approach proposed for weakly supervised classification approach is
again based on unsupervised clustering of supervoxel featuers. Here we sample supervoxel fea-
tures of a specific organ and expect that the clustering results in partitions that represent proto-
types of healthy and pathological tissue classes. Weak labels that describe occurring pathologies
of a whole image are then assigned to each supervoxel of an image. By assigning supervoxels
and their weak labels to clusters, we establish a mapping of clusters to single labels and use this
knowledge to classify supervoxels of novel images.

1.3 Contribution of the Thesis

The main contribution of this thesis is the development and detailed evaluation of approaches
for the unsupervised segmentation of anatomical structures and the classification of pathological
and healthy tissue in medical images. Both methods learn from data sets that are available from
clinical routine instead of relying on manually annotated training data and are based on the
assumption that unsupervised clustering of features results in partitions representing prototypes
of anatomical structures within the first, and prototypes of healthy and pathological tissue classes
within the second approach.

The main contributions of this thesis are thus outlined as follows:

• Unsupervised segmentation of anatomical structures in medical images based on unsuper-
vised supervoxel feature clustering, atlas labeling and regularization based on MRFs,

• Classification of healthy and pathological tissues within an organ using weak text labels
available from radiological reports,

• Comparative evaluation of two unsupervised clustering methods to find prototypes of
anatomical structures and different tissue types,

• Comparative evaluation of two supervoxel texture descriptors and their ability to describe
pathological and healthy tissue types in medical images.

1.4 Thesis Outline

The thesis is divided into five chapters and outlined as follows:

1. Introduction: Provides a general introduction, formulates the problem statement and
summarizes the main contributions of this thesis.

2. State of the Art: Introduces, describes and discusses techniques that are used within this
thesis.
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3. Methodical Approach: This chapter describes the methods proposed for unsupervised
image segmentation and weakly supervised classification in detail. To facilitate reading,
both methods are described in separated sections of this chapter.

4. Experiments and Results: Describes experiments performed to evaluate both methods
proposed and shows their results. This chapter is again divided into two separated sections
to facilitate reading.

5. Discussion, Conclusion and Future Work: The final chapter provides a discussion of
evaluation, draws a conclusion and closes with thoughts on future work and possible im-
provements of both methods.
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CHAPTER 2
State of the Art

The present chapter describes methods and techniques that are used and applied as compo-
nents of the processing pipelines we propose for unsupervised medical image segmentation and
weakly supervised classification of pathologies. Section 2.1 describes texture descriptors used
to encode visual information of images. In Section 2.2 two methods for unsupervised clustering
and a method for dimensionality reductions are presented. Medical image registration methods
and a framework for registration of images covering different parts of the human to a central
reference space are described in Section 2.3. Markov Random Fields (MRF) in the context of
medical image segmentation are presented in Section 2.4 of this chapter. Finally, Section 2.5
gives a summary of the methods described within this chapter of this work.

2.1 Texture Descriptors in Medical Images

In order to analyse and classify objects such as different pathologies or organs in medical images,
methods that numerically encode structural and statistical properties of an object are required.
The process of extracting such information from objects in digital images is referred to as feature

extraction. The extracted information about an object is then called feature or descriptor of an
object. In the scope of this thesis we will refer to this information also as texture descriptor since
we aim to classify different texture types in medical images.

Features are categorized depending on the area they are describing. Voxel features describe
the local neighborhood of each voxel in an image, where Region features describe a patch of
voxels and their structure. Furthermore we differentiate as well between statistical and structural

feature extractors as suggested from Xie and Majid in [82].

Statistical features are derived from the statistical distribution of intensity values of an
image region. First order statistics, such as intensity histograms, consider only one pixel per
observation whereas higher order statistics encode relationships of more than one pixel [82].
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Structural features describe texture using texture primitives and their spatial appearance
in an image region. This is achieved in a two step approach. In the first step texture primi-
tives are identified where in the second step the original image content is replaced following a
replacement rule with the derived primitives. [82].

The following sections describe two statistical feature extractors and an approaches to derive
structural features that describe image regions that are used within the scope of this thesis.

2.1.1 Local Binary Patterns

The Local Binary Pattern (LBP) operator introduced by Ojala et al. [57] is a higher order statis-
tics feature. It describes the local structure of a pixels c neighborhood by using the intensity value
Ic as a threshold, multiplying the thresholded neighborhood values with a weighting scheme and
summing up the results as illustrated in Figure 2.1.

1 2 4

8 0

0 0 128

Threshold Multiplication

Intensity Image Thresholded image LBP weights Resulting LBP code

Figure 2.1: Computation of a LBP code, adapted from [52].

Suppose we have a center pixel c with P neighboring pixel and the intensity values ic and ip
where p = 0 . . . P − 1. The LBPc value is formally defined as follows [58]

LBPc =

P−1
∑

p=0

s(ip − ic)2
p (2.1)

where s(x)

s(x) =

{

1, x ≥ 1

0, x < 0
(2.2)

By assigning the binomial factor 2p to each sign s(ip − ic) a unique LBPc value describing
the local image structure is computed. The name Local Binary Pattern is derived from the
principle approach of the operator, which generates an eight bit binary code for an eight pixel
neighborhood. The LBP operator is per definition invariant to gray scale and intensity range
and can be extended by a contrast measure LBPC and a intensity measure LBPI . LBPC is
computed by the difference of the average intensities of neighboring pixels brighter than the
center pixel and pixels darker as the center pixel [52], [82]. The local intensity extension LBPI

proposed by Burner et al. [10] simply depicts the average intensity off all neighboring pixel.
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2.1.2 Bag of Visual Words

The concept of Bag of Visual Words (BVW) is an approach to build image region descriptors
based on voxel features. The name is derived from its application in textual information retrieval
where a document is described by a normalized histogram of word counts [85]. The represen-
tation of an image region following BVW is analogous. A visual vocabulary is constructed by
vector quantization or clustering of local voxel features, sampled from a set of training images.
This vocabulary contains prototypes, also referred to as visual words or textons [28]. An image
region is then described by extracting local features and replacing them with their nearest visual
word. Classification techniques according to the vector quantization or clustering method such
as k Nearest Neighbor (kNN) search are required. The resulting feature vector is a normalized
histogram of occurring visual words in an image region. BVW approaches are, as the name
indicates, invariant to the spatial distribution of words since only the appearance of words is
depicted in the histogram.

Computing a BVW representation of an image region requires three steps [85], which are
illustrated in Figure 2.2.

1. Build Vocabulary Features are extracted from all training images. To receive a discrete
vocabulary this feature space is vector quantized or clustered, where each cluster depicts
one visual word and the set of visual words is called visual vocabulary.

2. Assign Terms Extract features from a novel image and use feature classification tech-
niques, such as kNN to assign the nearest visual word to each feature vector.

3. Generate Term Vector Generates the representation of an image region, which is a nor-
malized occurrence histogram of visual words.

Set of 

feature vectors

Visual

vocabulary

Feature

vectors

(query image)

Visual

words

Term

vector

Training images

Query image

Extract 

features
Clustering

Extract 

features

Nearest

neighbors

1. Build vocabulary

2. Assign terms and 3. Generate term vector

Figure 2.2: Overview of the BVW approach. First a visual vocabulary is learned by clustering
features sampled from a set of training images. In the second phase features from a query image
are extracted and assigned to the most similar visual word. Finally the term vector is computed
in step three by building a normalized histogram of the image regions visual words.
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2.1.3 Texture Bags - A Multiscale BVW Approach to describe 3D Medical

Images

In the context of this thesis we follow an approach proposed by Burner et al. [10] to describe
different texture types in medical images. They implement a CBIR system for pathologies and
anomalies in 3D medical image data, in which they describe texture by building BVW features
of so called supervoxels using LBP features. Supervoxels are patches of neighboring voxels,
in their work computed by an oversegmentation algorithm proposed from [26] which aims to
merge voxels into homogeneous regions such that the boundaries of objects in an image are
preserved [38].
Burner et al. use a 3D adaption of the LBP operator, a local contrast measure and a local intensity
measure as base feature extractor. As Figure 2.3 illustrates, the extension of the LBP operator
from 2D to 3D increases the dimensionality of the resulting descriptor. While the 2D operator is
based on a 3x3 grid that results in an 8 bit vector, using the 3D adaption based on a 3x3x3 grid
results in a descriptor of 26 bits [10]. The final voxel descriptor D as denoted in Equation 2.3 has
28 dimensions. 26 LBP bits DLBP3d, one contrast dimension DC , and one intensity dimension
DI . Contrast and intensity descriptor are scaled to the range [0, 1] and weighted according to
the image modality by factors cc and ci [10].

D = [DLBP3d, ccDC , ciDI ] (2.3)

20 21 22

23 24

25 26 27

20 21 22

23 24 25

26 27 28

29 210 211

213

216

217 218 219

222

223

(a) (b)

Figure 2.3: Weights of the two dimensional LBP descriptor, introduced in [57] a. Three dimen-
sional adaption as used in the scope of this thesis b, suggested and adapted from [10].

Burner et al. compute supervoxel descriptors following the BVW approach as described in
Section 2.1.2. In a first step they randomly sample a set of features from a training set of volumes
and cluster this feature space using k-means clustering (see also Section 2.2) to build a visual
vocabulary. This process is illustrated in Figure 2.4. The resulting k cluster centers specify the
visual words Wk. This process is performed on multiple resolutions of the training volumes
to which the authors refer to as scales, so that the final set of visual words is denoted by Ws

k,
where s depicts the scale factor and k the index of the visual word. [10].

Figure 2.5 illustrates how texture of a novel volume i is described. All voxels are represented
with the closest visual word of the voxels feature on each scale, i.e. with the index of the closest
cluster center. After computing a supervoxel oversegmentation Rij following an approach in-
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Training

volumes Feature spaces Ds of each scale

1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0.4894 0.4957

0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0.8756 0.1023

1 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0.2396 0.2974

1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0.0983 0.0011
... ... ...

1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0.2238 0.7940

1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0.2569 0.1029

0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0.3376 0.3067

1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0.1854 0.1947
... ... ...

1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0.1284 0.0045

0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0.3945 0.2946

0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0.1396 0.5735

0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0.8574 0.1238
... ... ...

1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0.7654 0.5534

0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0.1534 0.8987

1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0.5460 0.1123

1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0.4891 0.3395
... ... ...

DLBP3d DC DI

Learning visual words Ws
k:

cluster Ds for each scale

scale 1 scale 2

scale 3 scale 4

Figure 2.4: Learning of visual words as proposed in [10]. Voxel features are sampled from the
training volumes on different volume scales, building the feature spaces Ds. A vocabulary for
each scale is built by clustering each feature space using k-means. The cluster centres represent
the resulting visual words Ws

k. Figure adapted from [10].

troduced in [81], a supervoxels texture j is described by concatenating normalized visual word
occurrence histograms of each scale.

The resulting feature vector of a supervoxel to which we will refer as fLBP encodes tissue
prototype patterns occurring in a supervoxel that are learned in unsupervised manner from the
training data. The dimensionality of fLBP depends on the number of scales s chosen and the
size k of the visual vocabulary on each scale. In context of this thesis, implementations in C
are used for the LBP operator, k-means clustering and nearest neighbor assignment of features
to visual words. The implementation for sampling visual word histograms of supervoxels is
implemented in Matlab.

2.1.4 Haralick Features of Grey Level Co-occurrence Matrices

The second texture descriptor that is used in the scope of this thesis has been proposed from
Haralick et. al. in [33]. They suggest to use statistical properties of Grey Level Co-occurrence
Matrices (GLCM) in order to create second order statistic image features. GLCMs depict the
number of all pair wise combinations of grey levels that occur in the neighborhood of a center
pixel [73], [11]. The G×G GLCM Md,G of an n dimensional image I is defined by a displace-
ment vector d = {d1 . . . dn} and grey levels G, where a linear grey level quantization function
maps each grey value of the image to the range of grey levels G and d describes the offset of
pixel pairs in each dimension n. An entry Md,G(i, j) then contains the number of occurring
pairs of grey levels (i, j) with offset d. Consider for instance an two dimensional image I of
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... ...

... ...

... ...

... ...

Visual word histograms 

of superpixels h(Rij)

scale 1 scale 4

...

Novel image i

Superpixel computation

Feature extraction

& 

Nearest neighbor assignment

Superpixels Rij

Figure 2.5: Building supervoxel descriptors. All voxels in a novel volume are represented with
their closest visual word. A supervoxel is then described by the concatenated occurrence visual
word histograms of all scales [10].

size 5× 5 as follows

I =













2 2 0 0 0
2 1 1 1 0
0 1 3 1 2
0 1 1 1 2
0 0 2 2 2













(2.4)

with d = (1, 1) and G = 1 . . . 4, Md,G results in

Md,G =









2 0 0 0
2 2 3 1
0 5 0 0
0 1 0 0









(2.5)

Haralick et. al. furthermore propose a set of features that is calculated from GLCMs in [33].
After introducing statistical parameters we give formal definitions of the features used in the
scope of this thesis in Table 2.1.
Let px and py define the marginal distributions of Md,G as
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px(i) =
∑

j

M(i, j) py(j) =
∑

i

M(i, j) (2.6)

while µx, µy depict the means and σx, σy the standard deviation of px and py respectively.
Furthermore let HXandHY be the entropies of px and py, and

HXY = −
∑

i

∑

j

p(i, j)log(p(i, j)) (2.7)

HXY 1 = −
∑

i

∑

j

p(i, j)log(px(i)py(j)) (2.8)

HXY 2 = −
∑

i

∑

j

px(i)py(j)log(px(i)py(j)) (2.9)

Finally we define px+y and px−y as

px+y(k) =
∑

i

∑

j

M(i, j) , k = i+ j (2.10)

px−y(k) =
∑

i

∑

j

M(i, j) , k = |i− j| (2.11)

In order to compute Haralick features that describe texture of supervoxels, we calculate
GLCMs for each supervoxel of a volume by extracting cubic patches with a fixed side length l
centred around the supervoxels center. We furthermore define 13 independent displacement vec-
tors to sample pixel-pairs not only in 2D but as well in 3D as suggested in [74]. The direction of
a displacement vector is described using two angles θ and φ, where θ denotes the angle between
X axis and Y plane and φ between X axis and the Z plane. Table 2.2 shows the displacement
vectors and their directions used in this thesis, similar to [74].

While using Haralick features in order to describe texture the following parameters have
to be chosen according to the task requirements. G, the number of grey levels, which affects
the dimensionality of resulting GLCMs. l, patch side length of voxel patches extracted from a
supervoxels center and D the pixel offset used to sample pixel pairs while building the GLCMs.
GLCMs and Haralick features are then calculated for each value of D separately so that the final
super voxel feature vector fH as denoted in Equation 2.12 has 13 · |D| dimensions.

fH = {fH1,1, fH2,1, . . . , fH13,1, fH1,2, fH2,2, . . . fH13,2, fH1,D, fH2,D, . . . , fH13,D} (2.12)

2.1.5 Discussion and Relation to Present Work

We have introduced two feature extractors and approaches that allow texture description of su-
pervoxels. Both feature extractors have been used in literature to describe texture in medical
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Name Formula

Energy fH1 =
∑

i

∑

j M(i, j)2

Contrast
fH2 =

∑

i

∑

j(i− j)2M(i, j)

Correlation fH3 =
∑

i

∑
j(i−µx)(j−µy)Md,G(i,j)

σxσy

Sum of squares
fH4 =

∑

i(i− µx)
2px(i)

Inverse difference moment fH5 =
∑

i

∑

j
p(i,j)

1+(i−j)2

Sum average fH6 =
∑2N

n=2 npx+y(n)

Sum Variance fH7 =
∑2N

n=2(n− fH6)
2px+y(n)

Sum entropy fH8 =
∑2N

n=2(px+ylog(px+y(n))

Entropy
fH9 = −

∑

i

∑

j M(i, j)log(M(i, j))

Difference Variance
fH10 =

∑

j(j −
∑

i ipx−y(i))
2px−y(j)

Difference Entropy fH11 =
∑N

n=0−1px−y(n)log(px−y(i)

Information of correlation 1 fH12 =
HXY −HXY 1

max(HX ,HY )

Information of correlation 2
fH13 =

1
1−exp(−2(HXY 2−HXY )

Table 2.1: Haralick features proposed in [33].

image data [75], [10], [25], [70], [45], [83]. Both methods require task specific parameter set-
tings. Using BOV-LBP features one has to define the number of visual words and the number
of scales, which influence the resulting dimensionality of the feature vector as well as weighting
factors for intensity and contrast measures. Using Haralick features one has to define the patch
size of the area to be considered around a super voxels center, number of grey levels and the
offset between pixel pairs.

BVW-LBP features are sensitive to texture orientation even tough the BVW approach itself
is reported to be independent to texture orientation [28], since the bagged LBP features are
sensitive to texture orientation [57]. Haralick features [33] describe statistical properties of
GLCMs which are sampled in multiple directions so that these features are not sensitive to
texture orientation.

Both supervoxel feature extraction methods discussed are used within this work. BVW-
LBP features are used to describe and learn prototypes of supervoxels within the unsupervised
segmentation approach, whereas we use and evaluate both methods (BVW-LBP and Haralick
features) within the weakly supervised classification part of this work.
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angles (θ, φ) displacement vector d

(0◦, 45◦) (D,0,D)
(0◦, 90◦) (D,0,0)
(0◦, 135◦) (D,0,-D)
(45◦, 45◦) (D,D,D)
(45◦, 90◦) (D,D,0)
(45◦, 135◦) (D,D-D)
(90◦, 45◦) (0,D,D)
(90◦, 90◦) (0,D,0)
(90◦, 135◦) (0,D,-D)
(135◦, 45◦) (-D,D,D)
(135◦, 90◦) (-D,D,0)
(135◦, 135◦) (-D,D,-D)
(0◦, 0◦) (0,0,D)

Table 2.2: Displacement vectors used to sample pixel pairs in a cubic neighborhood, as sug-
gested in [74]. D depicts the offset between pixel pairs.

2.2 Data Analysis - Unsupervised Learning

Clustering methods make it possible to discover homogeneous classes in a quantity of objects
based on the object’s similarities [31]. Given a set of objects, clustering methods aim to find a
reduced representation of the data describing the underlying classes, ensuring that objects of the
same class show similar properties and objects from different classes have dissimilar properties.

In the scope of this work so called Partitional clustering methods are applied on from train-
ing data sampled sets of supervoxel features to detect clusters that represent feature prototypes
of anatomical structures and subclasses of healthy and pathological image regions.

Partitional clustering methods find partitions in a set of objects such that objects in one
partition are more similar to each other than to objects in other clusters and one object is as-
signed to exactly one cluster. Clusters are for instance modelled by mean vectors, which are not
necessarily members of the dataset, where each object belongs to the cluster with the smallest
distance [31].

The following sections describe and discuss two approaches of partitional clustering that are
used in this work. Furthermore, a method for dimensionality reduction is introduced that tackles
the problem of the curse of dimensionality, which states that clustering in high dimensional
feature spaces is difficult, because all pairs of points tend to have the same distance to each
other [34].

2.2.1 k-Means Clustering

Suppose we have a dataset of N points {x1, . . .xN} from a random D-dimensional variable
XN and we want to partition the dataset into a given number of K clusters. K-Means clustering
represents one cluster as mean vector of the points that belong to the cluster. The idea is to find
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an assignment of points to clusters that minimizes the sum of all distances between points and
cluster centers [9].

This is formalized by introducing the D-dimensional vectors ck, k = 1 . . .K describing the
cluster centers and the binary assignment matrix An,k ∈ {0, 1} depicting the assignments of
points to clusters, i.e. An,k = 1 if point n is assigned to cluster k and An,k = 0 otherwise.
Equation 2.13 defines the so called distortion function J , depicting the sum of square distances
from all points to its cluster centers ck, which is going to be minimized in order to find an
optimal cluster assignment.

J =
N
∑

n=1

K
∑

k=1

An,k ‖ xn − ck ‖2 (2.13)

Cluster centers ck are calculated as described in Equation 2.14 [9].

ck =

∑

nAn,kxn
∑

nAn,k

(2.14)

K-means clustering algorithms proceed as follows to find an assignment of An,k that mini-
mizes the distortion function J [31].

1. Initialize ck by randomly selecting k points from Xn

2. Repeat until there is convergence

a) Assign each point n to its nearest cluster center, i.e. update An,k

b) Recalculate ck as described in Equation 2.14.

Since the steps a and b reduce the distortion function J in each iteration, convergence is
assured [9]. Note that k-means algorithms are sensitive to the the initialization of the cluster
centers and can thus converge to a local minimum. This effect is in practise avoided by run-
ning k-means several times with different initializations and keeping the assignment with the
smallest distortion function [9]. To illustrate the characteristics of the following approaches we
generate a two-dimensional synthetic dataset XS = X1,X2,X3 originated from three Gaussian
distributions denoted as Xi ∼ N (µi,Σi) as follows:

X1 ∼ N

((

2
11

)

,

(

2.5 0.2
0.2 2.5

))

(2.15)

X2 ∼ N

((

6
4

)

,

(

0.4 0
0 0.4

))

(2.16)

X3 ∼ N

((

11
7.5

)

,

(

1.5 0.5
0.5 1.5

))

(2.17)

(2.18)
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Figure 2.6 illustrates the process of k-means clustering when partitioning XS into k = 3
clusters. Plot a shows the dataset in blue and the initial cluster centers. Plots b - d illustrate the
partitioning and the updated cluster centers after each iteration. Please note that the algorithm
terminates after four iterations, plots e - f illustrate the cluster assignment convergence.
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Figure 2.6: Illustration of the k-means algorithm while clustering the synthetic data XS into
three clusters. The figure shows the current cluster centers (bold dots) and the assignment of
data points in red, green and blue.

2.2.2 Gaussian Mixture Model Clustering

An alternative to k-means clustering where one represents one cluster as mean vector of the
assigned points, is to fit a Gaussian Mixture Model (GMM) to the given data. Suppose again
we have a dataset of N points {x1, . . .xN} from a random D-dimensional variable XN and we
want to partition the dataset into a given number of K clusters, we formalize a GMM as linear
superposition of k Gaussian distributions as [9]:

p(x) =

K
∑

k=1

πKN (x | µk,Σk) (2.19)
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Each Gaussian density N (x | µk,Σk), also called a component of the mixture, describes
one cluster and has its own mean µk and covariance Σk. The parameters πk are referred to as
mixing coefficients satisfying

∑K
k=1 πk = 1 and 0 ≤ πk ≤ 1 and are interpreted as the prior

probability that an observation is drawn from component k [9].
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Figure 2.7: Gaussian Mixture Model of three components, adapted from [9].

Figure 2.7 illustrates a mixture of three Gaussian components in two dimensional space.
(a) shows the contours of the constant probability, (b) contour plot of the marginal probability
density of the mixture model and (c) 3D surface plot of the 2D density function. Figure adapted
from [9].

The model is fitted to the dataset XN by maximizing the log likelihood function as stated in
Equation 2.20.

ln p(X | π, µ,Σ) =

N
∑

n=1

ln

K
∑

k=1

πKN (xn | µk,Σk) (2.20)

One method to find the maximum likelihood estimate of parameters describing an under-
lying distribution from a given dataset where the parameters are missing, is to use Expectation
Maximization (EM) algorithms [8]. We introduce a K-dimensional binary random variable z,
where zK ∈ {0, 1} and

∑

k zk = 1 which is interpreted as latent indicator variable that de-
picts which mixture component a data point comes from. The marginal distribution over z is
expressed by the mixing coefficients πk as follows:

p(zk = 1) = πk (2.21)

Since z uses a 1-of-K representation in which one particular element zk is equal to 1 and all
other elements are 0, we can formulate the distribution as

p(z) =
K
∏

k=1

πzk
k (2.22)

and the conditional distribution of x given a specific value for z as

p(x | zk = 1) = N (x | µk,Σk) (2.23)
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or similar to 2.22 in form of

p(x | z) =
K
∏

k=1

N (x | µk,Σk)
zk (2.24)

The joint distribution is given by p(z)p(x | z) and the marginal distribution of x is then
obtained by summing the joint distribution over all possible states of z. Using equations 2.22
and 2.24 we can reformulate the Gaussian mixture model from 2.19 showing that for every data
point xn exists a corresponding latent variable zk.

p(x) =
∑

z

p(x | z) =
∑

z

p(z)p(x | z) =
K
∑

k=1

πkN (x | µk,Σk) (2.25)

We are now able to calculate the conditional probability of z given x using Bayes’ theorem
[9]:

γ(zk) ≡ p(zk = 1 | x) =
p(zk = 1)p(x | zk = 1)

∑K
j=1 p(zj = 1)p(x | zj = 1)

=
πkN (x | µk,Σk)

∑K
j=1 πjN (x | µj ,Σj)

(2.26)

While we see πk as the prior probability of zk = 1 meaning that a data point x comes from
Gaussian component k, we interpret γ(zk) as posterior probability once x has been observed.
γ(zk) is also referred to as responsibility that component k takes for explaining the observation
x [56], [9].
In order to fit the GMM to a given dataset we have to maximize the log likelihood function of
the mixture model with respect to the observed data. This is done by setting the derivative of
the log likelihood function from 2.20 to zero with respect to each parameter separately. Using
Equation 2.26, we can calculate the parameters π, µ and Σ as follows:

µk =
1

Nk

N
∑

n=1

γ(zn,k)xn (2.27)

with

Nk =

N
∑

n=1

γ(zk), (2.28)

Σk =
1

Nk

N
∑

n=1

(xn − µk)(xn − µk)
T (2.29)

and

πk =
Nk

N
(2.30)

EM algorithms as described in [15] and [8] use these parameters to iteratively evaluate the
posterior probabilities γ(zn,k) of the model in a first, so called Expectation or E step. Where
they update the model parameters (µk, Σk and πk) according to the posterior probabilities in the
Maximization or M step until the method converges. The EM algorithm for GMM clustering is
thus outlined as follows in four steps [9]:
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1. Initialize means µk, covariances Σk and mixing coefficients πk, which can for instance be
achieved by running k-means clustering and compute the initial value of the log likelihood
function [31].

2. E-step Calculate responsibilities γ(zn,k) using current values µk, Σk, πk and Equation
2.26.

3. M-step Re-estimate parameters using the calculated responsibilities γ(zn,k) of step 2.

4. Evaluate Log-Likelihood using Equation 2.20. If either the parameters or the log likeli-
hood converged, terminate the algorithm. Return to step 2 otherwise.
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Figure 2.8: Illustration of GMM clustering on the synthetic dataset XS . Plot a shows the gen-
erated data and the randomly initialized Gaussian mixtures. Plots b-f depict the current cluster
assignment in blue, green and red as well as the clusters current distribution parameters.

Figure 2.8 illustrates the EM clustering algorithm. Plot a shows the data the contours of
the initial mixture model in red, green and blue. Plots b-f show results after 1, 5, 10, 20 and
30 complete iterations of the EM algorithm. The color of each point depicts the probability of
having been generated from the reed, green and blue mixture component.

18



2.2.3 Dimensionality Reduction using Principal Component Analysis

Clustering data in a high dimensional feature space is a particular challenge because of the
so called curse of dimensionality, which states that all pairs of points in a high-dimensional
space tend to have the same distance to each other so that distance based clustering approaches
may not be able to find meaningful clusters in the original feature space [56]. Additionally
some dimensions might be irrelevant for clustering because of correlation or redundancy to
other dimensions [56].

One approach to overcome this problem is to find an embedding of the original data in a
lower dimensional subspace and to seek for clusters in this subspace. Principal Component
Analysis (PCA) in this context is a technique to reduce the dimensionality of data by projecting
the data into a lower dimensional linear subspace that is orthogonal to the original space so that
the variance of the projected data is maximized [34].

Assume we have a N × D dimensional data matrix X holding a set of N observations
drawn from a random D-dimensional variable xi and we want to project the data into a space
having M < D dimensions. Let µ be the D-dimensional mean vector and Σ denote the D ×D
dimensional covariance matrix of X. In order to derive the directions and shares of maximal
variances, an Eigenvalue decomposition of Σ using the formula

Σ = UΛU−1 (2.31)

is performed [9]. By solving this equation we receive the matrix U holding the D Eigen-
vectors u1, . . . ,uD and the diagonal matrix Λ, which holds the corresponding Eigenvalues
λ1, . . . λD. The Eigenvectors ui are orthogonal to each other and point in direction of maxi-
mum variances. The corresponding Eigenvalues λi indicate the share of variance in percent of
each Eigenvector, i.e.

∑D
i=1 λi = 1. In other words, the Eigenvalues depict the proportional

amount of variance that is expressed by an Eigenvector [9].
The dimensionality of the original data is then reduced by projection X into the M di-

mensional embedding space Φ, which is build by using the first M Eigenvectors according to
Equation 2.32.

Φ = U⊤(X− µ) (2.32)

Similar, one can define to reduce the dimensionality of the data so that a specific amount of
variance of the data is preserved by selecting the Eigenvectors until the sum of their Eigenvalues
exceeds the target amount of variance. Figure 2.9 illustrates the PCA on the data from the
synthetic dataset X3. Next to the original data we see the Eigenvectors on the right side which
build the coordinate system for the embedding space Φ.

2.2.4 Discussion and Relation to Present Work

We have introduced two approaches for unsupervised partitional clustering of data. Both meth-
ods discussed (k-means and GMM) require to define the number of clusters a priori. K-means
models its clusters as mean vector of each classes assigned observations, where a GMM models
one class as Gaussian distribution, having means and variances for each cluster. GMM provides
a so called soft cluster assignment which means that a posterior probability for each cluster given
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Figure 2.9: Left: Data obtained from X3. Right: Illustration of PCA on X3. Eigenvectors in
black and their standard deviation curves.

an observation is calculated, where k-means only provides a hard cluster assignment (i.e. one
observation belongs to one and only one class). We have furthermore shown a method to tackle
the curse of dimensionality, which states that all points in high dimensional spaces tend to have
similar distances. PCA is a method to overcome this problem by projecting the observations in
a lower dimensional feature space while preserving maximal variance of the original data.

Unsupervised clustering methods are used in this work to find prototypes of supervoxel
image features, which are expected to represent anatomical structures in the image segmen-
tation approach and subclasses of healthy and pathological supervoxel features in the weakly
supervised classification approach of presented in this work. PCA is applied within the weakly
supervised classification approach to reduce the dimensionality of BVW-LBP features.

2.3 Medical Image Registration

The goal of image registration is to transform a set medical images into one common coordinate
system so that a spatial relationship in all images is ensured. The relationship in the context of
this thesis covers anatomical correspondences (i.e. lining up the same anatomical structures in all
images). In other contexts the spatial relation covers functional correspondences (i.e. functional
equivalent regions of medical images are aligned) or functional-spatial correspondences (i.e.
lining up functional information on structural images) [12].

Approaches that use a common coordinate system to overcome anatomical variability in
image collections are also referred to as atlas based methods where the term atlas depicts the
shared coordinate system [23]. Such approaches are among others used to propagate annotations
from an atlas to the underlying image population, also referred to as atlas based segmentation

[64], [76] or to differentiate healthy and pathological subjects of an image collection [40].

The following sections describe the transformations applied to the images to achieve anatom-
ical correspondences, as well as image similarity measurements which give an opportunity to
estimate the performance of an image alignment and finally an approach that registers medical
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images covering different body parts to one shared reference space [23].

2.3.1 Image Transformations

An image registration system consists of three components. A static target or reference image, a
source image that should be aligned to the target image and finally the transformation model that
describes the alignment between source and target image. Transformation models are catego-
rized depending on wheter the transformation deforms the source image locally or globally and
wheter the transformation is rigid or non-rigid [12], [54], [63]. We discuss the transformation
models used in the scope of this thesis in the following sections.

Rigid and Affine Transformation

Rigid and affine transformations, both also called global deformation models since the trans-
formation is applied to the entire source image, cover rotation and translation (rigid transfor-
mation) as well as scaling and shearing (affine transformation) of the source image to achieve
alignment [12]. Rigid and affine transformations are described using a transformation matrix T
to transform a coordinate vector from the source image coordinate system x to the target image
coordinate system xT as follows:

xT = Tx, (2.33)

where T is a composition of affine and rigid transformations. For the two dimensional case
T is defined as

T =





t11 t12 0
t21 t22 0
t31 t32 1



 (2.34)

The parameters t11 - t32 are derived by matrix multiplications of the transformation matrices
applied, which are illustrated in Table 2.3. Please note that matrix multiplications are associative
(AB)C = A(BC) but not commutative, i.e. AB 6= BA, meaning that the order of the applied
transformation influences the resulting transformation matrix.

Since affine and rigid transformation are global transformation methods it is not possible to
model local deformations. To improve image alignment rigid transformations can be used as
initial registration step to reduce the global alignment error while in a second step a non-rigid
registration is used to model local deformations [4], [23], [63] .

Non Rigid Transformation

Rueckert et al. [63] propose a Free-Form Deformation (FFD) model that is based on B-splines
[47], [48]. The idea of their approach is to deform an image or object by moving a mesh grid of
control points while maximizing an image similarity function. This approach results in a smooth
C2 continuous transformation [63].

B-spline based FFD has, in contrast to thin-plate splines or elastic-body splines [47], [48].
the advantage that B-splines are locally controlled which makes the computation even for a
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Transformation name Matrix Illustration

Identity





1 0 0
0 1 0
0 0 1





Translation





1 0 tx
0 1 ty
0 0 1





Rotation





cosα sinα 0
− sinα cosα 0

0 0 1





Scaling





sx 0 0
0 sy 0
0 0 1





Shearing (vertical)





1 0 0
sv 1 0
0 0 1





Shearing (horizontal)





1 sh 0
0 1 0
0 0 1





Table 2.3: Affine and rigid transformation matrizes
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large number of control points efficient, since moving one control point affects only neighboring
control points [63]. Figure 2.10 illustrates the non-rigid deformation of a CT image covering
thorax and the abdomen using a B-spline FFD model. Subplot (a) shows the source image with
its underlying mesh grid of control points, where (b) illustrates the target image, while (c) shows
the deformed image and its control points.

(a) (b) (c)

Figure 2.10: Source image with underlying mesh grid of control points (a), target image (b) and
registered source image with deformed control points (c).

2.3.2 Similarity Functions

Similarity functions are measurements to quantify the similarity between two images. In the
scope of image registration similarity functions serve as tool to evaluate the quality of image
alignment and are used as a component of cost functions during an optimization process [63].
The following sections describe two voxel based similarity measurements, meaning that no ad-
ditional information like landmarks or personal judging than intensity information is necessary
to quantify image similarity [53].

Starting with Normalized Cross Correlation (NCC), which is a metric to measure inner-

modality similarity between images, meaning that both images require to be recorded with the
same recording technique (e.g. MR-MR or CT-CT). Followed by Normalized Mutual Informa-
tion (NMI) which is used to quantify multi-modal similarity (e.g. MR-CT).

Normalized Cross Correlation

NCC is the sum of products of pairwise intensity values subtracted from their mean intensity,
normalized by the product of standard deviations of both images. Considering a source image
IS and a target image IT , where the intensity of a voxel v is given by I(v), NCC is then defined
by Equation 2.35 [88].

NCC =

∑N
v=1 (IT (v)− µT )(IS(v)− µS)

√

∑N
v=1 (IT (v)− µT )2

√

∑N
v=1 (IS(v)− µS)2

(2.35)
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NCC lies in the range of [0, 1] where 0 depicts minimal and 1 depicts maximal similarity
between the compared images.

Normalized Mutual Information

Mutual information (MI) proposed by Maes et al. [53] is used to measure similarity between
images originated from different moralities [63]. It is defined based on the the interpretation of
the images IS and IT as random variables, having marginal entropy H(IS), H(IT ) and joint
entropy H(IS , IT ), as follows [53]:

MI(IS , IT ) = H(IS) +H(IT )−H(IS , IT ) (2.36)

where H(IS) is defined over the marginal probability distribution pIS (is) as

H(IS) = −
∑

i

pIS (is) log pIS (is) (2.37)

and H(IS , IT ) is defined over the joint probability distribution pISIT (is, it) as

H(IS , IT ) = −
∑

is,it

pISIT (is, it) log pISIT (is, it) (2.38)

The normalized version of MI (NMI) was proposed by Studholme et al. and is given in
Equation 2.39 [72].

NMI =
H(IS) +H(IT )

H(IS , IT )
(2.39)

2.3.3 Registration of Volumes to a Reference Space

The previous sections described approaches to register images to each other where both images
cover the same anatomical regions of the human body. In the scope of this thesis we follow an
approach proposed by Dorfer et al. [23] to register medical images covering different parts of the
human body (i.e. thorax, abdomen, thorax and abdomen) to a whole body CT image, to which
we will refer to as atlas A from now on. The aim of this approach is to find a transformation
Ti,A(x) which maps each position x of an image Ii to a position x′ in A. Figure 2.11 illustrates
the goal of the proposed approach.

Dorfer et al. propose a three step process to register an image Ii to a whole body CT image
serving as atlas A. In a first step the center position ci with respect to A is estimated follow-
ing an miniature similarity based approach proposed in [20]. Secondly the atlas region Ri,A

which is expected to cover the anatomical region of Ii, is estimated using the images estimated
center position ci and affine image transformations. The final transformation is computed by
performing a non-rigid registration of affine transformed image Ii to Ri,A [23].

First, the center position ci of a novel volume Ii has to be estimated. This is achieved by
following a image miniature similarity approach suggested in [20]. This method requires a set
of training volumes Icj with annotated center positions ccj in the atlas. Miniatures of 32x32x32
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Atlas ATransformation TI,A(x)Image I

Image J

Transformation Tj,A(x)

Figure 2.11: Illustration of the aim of the registration framework. Finding non rigid transforma-
tions from volumes that cover different regions of the human body to a common reference space
or atlas. Figure adapted from [23].

voxels are computed for all Icj and Ii. A k-nearest neighbor (k-nn) search is performed to select
the center positions cc1, . . . , c

c
k of the k most similar miniatures. Miniature similarity is mea-

sured using NCC. To be robust against outliers only the 50 percent closest to the median of the
selected positions are used to calculate the final position estimate. This set is denoted as Region
of Trimmed Estimates (RTE) [23]. The position estimate ci is then calculated as denoted in
Equation 2.40. Figure 2.12 shows the principle of the robust center estimation.

ci =

∑

ccj∈RTE ccj

k/2
(2.40)

Similarity based k-nn search

on annotated miniature set MJ

Atlas A

Image I

Miniature MI

Robust center estimation

Figure 2.12: Robust center estimation algorithm. The miniature of a novel volume is compared
to a set of miniatures where the center coordinates in the atlas are annotated. The center position
is then computed by considering the annotations of the top k-nearest neighbors. Figure adapted
from [23].

The region Ri,A of the atlas that covers the anatomical region of image Ii is estimated using
an iterative strategy. Ri,A is defined by two of points that form a bounding box xcor1,i and
xcor2,i, where xcor1,i denotes the offset between the origin of A and Ri,A. After initialization
of xcor1,i and xcor2,i with the dimension of Ii the algorithm alternates between

1. Perform an affine registration to obtain the transformation T a
i,A of Ii to Ri,A
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2. Updating Ri,A by applying the inverse affine transformation T a,−1
i,A to the corner coordi-

nates, i.e. xcor1,i = T a,−1
i,A (xcor1,i).

These two steps are iterated until the region estimation converges or a number of predefined
maximum iterations is exceeded. [23].

A non-rigid registration from image Ii to the final atlas region Ri,A using B-spline based
FFD is performed to obtain the transformation Tnr

i,A in the last step. The final result is a nonrigid
transformation T ′

i,A of image Ii to the atlas region RI,A by computing

T ′
i,A = Tnr

i,A ◦ T a,−1
i,A . (2.41)

T ′
i,A then allows a mapping of a coordinate y in Ii to the coordinate system of Ri,A. This

transformation is finally used to map coordinates from Ii to the coordinate system A as

Ti,A(y) = T ′
i,A(y) + xcor1,i. (2.42)

Which results in a transformation Ti,A that maps Ii to A so that

Ii(y) ≈ A(Ti,A(y)) (2.43)

Please note that the transformation Ti,A is not bijective, i.e. there is a corresponding position
in the atlas for each coordinate of the source volume, but there might not be a corresponding
coordinate in the source image for all coordinates of the atlas. We are thus able to transform co-
ordinates only from the source volume to the atlas and hence as well to transform label volumes
from the atlas to the source volume.

2.3.4 Discussion and Relation to Present Work

This section describes different components of a medical image registration system. Starting
with image transformation that are used to deform a medical images, we introduce similarity
measures such as NCC and NMI that are used to evaluate the quality of image alignment after
a registration step. Finally we describe an approach that makes use of all described components
that yields in finding a non-rigid transformation between medical images, that cover different
parts of the human body (i.e. chest scans, abdominal scans), to a common reference space
also called atlas. This approach allows the propagation of coordinates or landmarks from all
registered source volumes to an atlas, as well as the propagation of a voxel wise labeling in
the atlas to all volumes of the population. We will use the introduced concept to propagate
segmentation estimations across the population through the atlas. These segmentation methods
are also referred to as atlas based segmentation methods [61].

2.4 Markov Random Fields in Medical Image Segmentation

Within the scope of this thesis we propose an unsupervised atlas based segmentation method
on super voxel basis that uses Markov Random Fields (MRFs) to encode spatial relationships
between neighboring supervoxels. MRFs in this context provide a statistical framework that we
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use to assign one label from a discrete set of segmentation labels L = {l1, . . . , lM} to each
supervoxel of a volume.

2.4.1 Theoretical overview

Similar to [21] and [80] we view a MRF as a weighted undirected graph G = (V, E), having
N vertices V = {v1, . . . vN} where each vertex has M states or labels and each state carries a
weight that indicates the likelihood that a vertex is assigned with a specific label. Those weights
are also referred to as qualities [21], [80]. All states of two adjacent vertices are fully connected
by M2 edges, again carrying label assignment qualities. An example with N = 6 vertices and
M = 3 states for each vertex, resulting in M2 = 9 edges for adjacent vertices and one possible
label assignment is illustrated in Figure 2.13.
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Figure 2.13: A MRF graph as used in this thesis. Each of the N = 6 vertices has M = 3
possible label assignments. Adjacent vertices are fully connected by M2 = 9 edges reflecting
energies of a specific label assignment between neighboring vertices. Blue vertices and edges
indicate a possible label assignment. Figure adapted from [80] and [21].

Two vertices vi, vj ∈ V are said to be adjacent if (vi, vj) ∈ E , we can thus denote the
neighborhood of a vertex vi as N (vi) = {vj : (vi, vj) ∈ E , where i 6= j [36]. In other words
the neighborhood of a vertex contains all vertices that are connected by at least one edge, i.e.
N (v2) = {v1, v3, v5} of the illustrated graph in Figure 2.13. If we view interpret such a graphs
vertices and their states as random variables X = {X1, X2, . . . , XN}, with one specific state
configuration x = {x1, x2, . . . , xn} from the set of discrete labels L, then X is said to be a
random field having Markov property if

P (xi) > 0, ∀xi (2.44)

P (xi | xV\{i}) = P (xi | xN (i)), (2.45)

where P (xi) denotes the probability that Xi takes label xi and P (x) denotes the joint prob-
ability that a set of random variables X is assigned with state configuration x [36]. That means
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a set of random variables is called a MRF if and only if that the probability of all states to be
assigned to a random variable must be greater than zero and that a random variable conditionally
depends only on its neighboring random variables [36].

Solving such a MRF, i.e. selecting one state for each vertex so that the sum of selected state
and their connected edge qualities becomes maximal, means finding a Maximum A Posterior
(MAP) distribution of P (x), which is equivalent to finding a configuration of a Gibbs distribu-
tion that is maximal [21]. This problem is in general NP-hard, therefore different methods, such
as second order cone programming [43], convergent tree-reweighted message passing [42] or be-
lief propagation [86], that find an approximated solution are described in literature [21]. In this
thesis the OpenGM toolbox 1, that provides a C++ implementation of loopy belief propagation,
proposed in [2], is used.

Suppose we have a N ×M matrix U depicting the state qualities for each vertex. Further-
more we consider a graph with A connected vertices resulting in an A ×M2 matrix B holding
the edge qualities between neighboring vertices. The sum of qualities E of a state configuration
x is then defined as

E(x) =
N
∑

n=1

U(n,x(n)) +
A
∑

a=1

B(a, β(B,x, a)) (2.46)

where β(B,x, a) identifies the column in B that represents the quality of the connected
states of edge a [21].

Loopy belief propagation is capable of finding a state configuration x∗ so that the sum of
qualities becomes minimal

x∗ = argmin
x

E(x). (2.47)

Hence, U and B must be transformed so that they express label assignment costs rather than
qualities in order to find an optimal labeling of the graph. The computational complexity of the
loopy belief propagation algorithm depends linear on the number of edges A and quadratic on
the number of possible states M of the graph [9].

Similar to [60] we will refer to state costs U for each vertex as unary terms since they
affect only single vertices and to the edge costs B as binary terms since they hold costs of two
(neighboring) vertices in the following sections of this thesis.

2.4.2 Discussion and Relation to Present Work

Several approaches that use MRFs to segment anatomical structures in medical image data have
been recently proposed. Most of them in the context of brain matter segmentation in MR images
[35], [76], [30], [62], [60]. But as well to segment cardiac structures [51] and bones in MR
images [60] or organs of the abdominal part of the human body in CT data [60].

Unary terms are amongst others used to incorporate atlases by medical image registration
[76], [30] and to model the intensity and feature distributions of tissue classes [62], [35], [51].
Binary terms are used to model the assumption that neighboring voxels should belong to the

1http://hci.iwr.uni-heidelberg.de/opengm2/

28

http://hci.iwr.uni-heidelberg.de/opengm2/


same tissue class leading to smooth segmentation contours noise reduction [35], [76], [30], [62],
[60], as well as to model relationships among neighboring time frames of temporal recorded
medical image data [51].

MRFs are used in this work to find an optimal segmentation labeling of supervoxels. Unary
terms are used to propagate segmentation estimates across spatially corresponding supervoxels
of all volumes in the training data, where binary terms are used to model the assumption that
spatially neighboring supervoxels within an image are likely to belong to the same segmentation
class.

2.5 Summary

In this section techniques for texture description, unsupervised data analysis, medical image
registration and MRFs in context of medical image segmentation that are used within the scope
of this thesis have been described. Please note that the present chapter does not aim at providing
an extensive survey of the addressed research fields but to give an overview of the components
used in this work.

Two approaches to describe the texture of supervoxels have been described in Section 2.1.
BVW-LBP [10] features build histograms of visual words trained in unsupervised manner from
a set of LBP features sampled from multiple scales. Haralick features [33] encode different
statistical properties of GLCMs which are sampled in different directions and offsets so that the
resulting feature vector is independent to texture orientation. Both methods are used within the
scope of this work to describe the texture of supervoxels.

Within Section 2.2, two unsupervised clustering approaches (k-means [31] and GMM clus-
tering [9]) have been described to detect homogeneous classes in a set of objects. These methods
are used in this work to find groups of similar supervoxel features that represent tissue proto-
types occurring in medical images. Furthermore a method to decrease the dimensionality of a
feature space has been introduced (PCA) to tackle the curse of dimensionality [56].

In Section 2.3 components required for a medical image registration framework have been
shown. Transformation methods (affine, rigid and non-rigid) to register images that cover the
same anatomical region of the human body and similarity functions (NCC and NMI) have been
introduced, followed by a framework to register medical images covering different parts of the
human body to a central reference space [23]. This framework is used to establish voxel-wise
spatial correspondences between all images of the training data to a central reference space and
furthermore to propagate supervoxels and segmentation labels across the image population.

Finally, Section 2.4 has given a theoretical overview of MRFs and shown how they are used
in the context of medical image segmentation to combine atlas based segmentations with local
image information and to model constraints on spatially neighboring voxels or supervoxels.
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CHAPTER 3
Methodical Approach

This chapter describes the main contributions of this thesis in detail. In Section 3.1 we propose
a method for the unsupervised segmentation of anatomical structures on a supervoxel level.
Section 3.2 describes an approach that learns to predict healthy and pathological tissues from
data that is available from clinical routine. Finally, the key components of both methods are
summarized in Section 3.3.

3.1 Unsupervised Medical Image Segmentation on Supervoxel

Level

In this section we propose an atlas based medical image segmentation method, that identifies
anatomical structures in a set of images in an unsupervised manner, i.e. without having prior seg-
mentation knowledge such as manual expert annotations of anatomical structures. The method
takes a set of medical images as input and learns prototypes of image regions by texture feature
clustering. These prototypes are used to compute an initial segmentation estimate for all images.
After registration of all images to an atlas, a labeling in the atlas is learned based on a majority
vote of all training images. The final segmentation of an image is then obtained by combining
the computed labeling of the atlas as a prior together with the individual segmentation of an
image. Figure 3.1 provides an overview of the workflow.

In the following sections we describe the whole image processing pipeline in detail. We start
by giving a formal problem definition in Section 3.1.1. After describing the image normaliza-
tion pipeline, in which all volumes are registered to a central template space or atlas to obtain
supervoxels in all images of the population in Section 3.1.2, we describe feature extraction and
identification of prototypes of supervoxels in the data set in Section 3.1.3. Section 3.1.4 covers
the usage of MRFs to find a latent atlas labeling, where Section 3.1.5 describes the labeling of
anatomical structures in novel images, where all previous described components are used.
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Figure 3.1: Workflow overview of the method proposed for unsupervised atlas based anatomical
structure segmentation in medical images.

3.1.1 Objects, Notation and Problem Definition

Notation We use the following notation in the remaining part of this section: We have a set
of N volumes Ii ∈ R

Xi×Yi×Zi , where i = 1, . . . , N and an atlas volume A ∈ R
XA×YA×ZA .

The constants (X,Y, Z) ∈ N
+ denote the dimensions of an image in each direction. A voxel

coordinate is specified by a vector x = (x, y, z) ∈ N
+, where x ≤ X, y ≤ Y, z ≤ Z.

After registration of all images to the atlas, we assume correspondence of voxels across all
images. We view A as a graph with K nodes, where each node is a supervoxel, and supervoxels
are linked by a connectivity structure that expresses the spatial neighborhood of a supervoxel.
Let k be the index of each node in A. From the registration, each node k of the atlas has
spatially corresponding supervoxels in a sub-set of Jk images with indices ikj ⊆ {1, . . . , N},

where j = 1 . . . Jk.
Correspondingly we view each image Ii as a graph with KI

i nodes that correspond to from
the atlas propagated supervoxels, where each node kIi spatially corresponds to a node k in the
atlas. For simplicity we will use only the index k from now on, and will refer to the node in
image i corresponding to the atlas node k as 〈k, i〉.

Problem statement We want to solve a labeling problem that assigns each node in each vol-
ume a label corresponding to an anatomical region. That is we want to find the labeling

L : 〈k, i〉 7→ l (3.1)

where l ∈ {1, . . . , L} is an anatomical region label. Therefore we have a labeling for each
node 〈k, i〉 in each image. We also learn a labeling in the template space that serves as a latent
prior shared across all individual volumes. We will call the entirety of the labels assigned to the
nodes in the template space L∗ the latent atlas:

L∗ : k 7→ l ∈ {1, . . . , L} (3.2)
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3.1.2 Image Normalization Pipeline

The normalization pipeline includes data acquisition and image reorientation and aims at find-
ing a non-rigid mapping of all images to the central reference space so that we can propagate
supervoxels to all images through the atlas. Figure 3.2 gives an overview of all components of
the image normalization pipeline. A detailed description of data acquisition and volume reori-
entation is given in Section 4.1.3 of this thesis.

Oriented NIfTI

volumes

PACS

General Hospital  

Vienna

Data conversion (NIfTI)

&

Reorientation

Dataset

DICOM slices

Normalized 

dataset

Atlas A

& 

Computed super voxel in ROI SA

Registration framework

- Center estimation

- Region estimation

- Nonrigid registration Supervoxel 

propagation

Figure 3.2: Overview of the image normalization pipeline used in this work. All images are
extracted from a PACS system. After conversion from DICOM to NIfTI file format and re-
orientation to ALS convention, all volumes are registered to an atlas. The atlas in quantized
into supervoxels, which are propagated to all volumes. This results in sets of supervoxels that
correspond across parts of the population, and allow for group-wise learning of organ maps.

Registration to a shared reference space In order to achieve spatial correspondence between
anatomical regions across the image population we register all volumes of the dataset to one
central reference space, to which we refer as atlas A. Since the dataset contains volumes that
cover different parts of the human body, such as the chest, the abdomen or both of them, a
method that locates the area of an image in an atlas is required. We use an approach proposed
by Dorfer et. al. in [23], to overcome this problem.

This method yields a transformation Ti,A that maps all coordinates x from a source volume
Ii to the coordinate system of A. Finding this transformation is based on a three step process,
which is described in detail in Section 2.3.3 of this thesis and summarized as follows:

1. Estimate the center coordinates ci of the novel volume in A.

2. Find the region Ri,A in A that is covered by Ii and compute a affine transformation T a
i,A.
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3. Compute a non-rigid transformation Tnr
i,A from the affine transformed image Ii to Ri,A

and generate Ti,A(y) that transforms a coordinate y of Ii as

Ti,A(y) = (Tnr
i,A(y) ◦ T

a,−1
i,A (y)) + xcor1,i, (3.3)

where xcor1,i is the offset between the origin of Ii and Ri,A

The resulting transformation Ti,A maps each coordinate of Ii to the coordinate system of A
so that

Ii(y) ≈ A(Ti,A(y)) (3.4)

For this purpose, center positions in A in a set of 200 volumes, covering all occurring body
regions in the dataset, are annotated. Figure 3.3 shows the atlas volume and the spatial distribu-
tion of annotated center positions. Using this set of annotations and the method described allows
the registration of all volumes in the dataset to A.

The NiftyReg-toolbox 1 is used to perform the registrations which implements an approach
from Ourselin et. al. [59] for affine registration and provides an implementation of B-spline
based registration from Rueckert et. al. [63].

Coronal MIP of Atlas Sagittal MIP of Atlas

Figure 3.3: Annotated center position annotations in blue, shown in Maximum Intensity Projec-
tions (MIP) of the cropped atlas volume in coronal (left) and sagittal view (right).

Deriving supervoxels in the reference space In order to to reduce the number of objects to
analyse in an image we quantize A into so called supervoxels. A supervoxel algorithm computes
an oversegmentation of a volume that merges neighboring voxels into homogeneous groups of
voxels (supervoxels) so that voxels in one group have similar texture properties while the edges
of supervoxel preserve the boundaries of objects in a volume [38]. We use an algorithm proposed
by Holzer et al. in [38] to compute an oversegmentation SA of A into a set of K disjunct
supervoxels, so that

1http://www.nitrc.org/projects/niftyreg/
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SA
u ⊂ A (3.5)

SA
u ∩ SA

v = ∅, ∀u 6= j : A, (3.6)

where u, v depict indices of supervoxels. The method of Holzer et al. uses the phase of
the monogenic signal, which contains local structural information of a volume to detect edges
and then applies k-means clustering based on the edge cues and the spatial location of voxels
to derive supervoxels. The number of clusters represents the number of desired supervoxels,
which enables us to control the average size of resulting supervoxels. Using the monogenic
signal rather than voxel intensities leads to being independent to brightness and contrast as well
as being robust against noise in the volume [38].

Deriving supervoxels in the image population In order to derive supervoxels with spatial
correspondences to A in a volume Ii we use the computed transformations Ti,A to propagate
the oversegmentation volume of the atlas SA. The supervoxel volume Si of an image Ii is thus
computed by

Si(y) = SA(Ti,A(y)), (3.7)

where Si contains a set of KI
i disjunct supervoxels. KI

i ≤ K since the volumes are only
partially overlapping with the region of interest in the atlas. Analysing supervoxels rather than
voxels of medical images reduces the computational complexity substantially, since KI

i <<
Xi × Yi × Zi.

The propagation of supervoxels from A to Ii assures that for each supervoxel kIi exists
exactly one spatially corresponding supervoxel k in A. And furthermore that for each node k in
the atlas exists a sub set of images that have a spatially to k corresponding supervoxel.

We will thus refer to supervoxels in all images and the atlas with index k and refer to a node
in Ii that spatially corresponds to k in the atlas as 〈k, i〉. Furthermore, we denote the indexes of
Jk images that have a spatially to k corresponding supervoxel as ikj , where j = 1 . . . Jk.

3.1.3 Learning Supervoxel Texture Prototypes

After the the registration step and the propagation of supervoxels to all images, we aim to find
classes of supervoxels with similar texture properties that reflect anatomical structures in the
image data. To achieve this goal we extract BVW-LBP features as described in detail in Section
2.1.3 of this thesis, since this approach allows to control the impact of local intensity and contrast
on the resulting feature vector.

Feature extraction We compute LBP3d/CI descriptors, denoted as

d(x) = [d(x)LBP3d, ccd(x)C , cid(x)I ] (3.8)
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for a voxel x in a volume. We denote the entirety of feature space as D, and the respective
entirety of intensity and contrast features as DI and DC . Since dC and dI are independent
variables having different ranges, both measures are standardized to the range of [0, 1] by

dC(x) =
dC(x)−min(DC)

max(DC)−min(DC)
DI(x) =

dI(x)−min(DI)

max(DI)−min(DI)
. (3.9)

A randomly sampled subset of 150000 features is clustered using k-means to obtain the
visual vocabularies WK in the size of J = 300 visual words. Using LBP3d/CI leads to feature
vectors and visual words having dlbp3D = 28 dimensions. All voxels are replaced with the index
of to their LBP3d/CI feature vectors nearest cluster. The distance between a feature vector d(x)
and a visual word Wj is measured using the Euclidean distance dE , given in [78] as

dE =

√

√

√

√

dlbp3D
∑

1

(d(x)−Wj)2. (3.10)

The resulting feature vector fLBP
〈k,i〉 of a supervoxel is then depicted as the histogram of visual

words WJ that occur in the supervoxel. Let |〈k, i〉| depict the number of voxels that belong to
〈k, i〉, we normalize the visual word histogram fLBP

〈k,i〉 by

fLBP
〈k,i〉 =

fLBP
〈k,i〉

|〈k, i〉|
(3.11)

in order to be invariant to the supervoxels size.
Inspired by the work of Burner et al. we compute visual words on s = (1, 2, 3, 4) different

scales to be able to perceive the granularity of the texture [10]. This is achieved by down sam-
pling the volumes by the factor of the respective scale, extracting LBP3d/CI descriptors, cluster-
ing features to build visual words and building normalized occurrence histograms on each scale.
The final feature vector is then built by concatenation of occurrence histograms of each scale.
We will refer to the entire feature space that holds all supervoxel features as FLBP .

Unsupervised clustering In the next step we aim to identify groups of supervoxels with sim-
ilar texture properties in an unsupervised manner. Those groups are expected to reflect tissue
prototypes of anatomical structures in the underlying image population. To achieve that we par-
tition a randomly sampled subset of M = 100000 supervoxel features F ′LBP ⊆ FLBP into L
anatomical structure classes Cl, where l ∈ {1, . . . , L} using GMM clustering.

Here, one cluster Cl of is described as Gaussian distribution N (µl,Σl) having mean µl and
covariance matrix Σl as well as πl, which depicts the prior probability that an observation is
drawn from cluster l.

Finding the parameters µl, Σl and πl of all classes, so that the sampled feature space F ′
LBP

is explained as good as possible requires maximizing the following log likelihood function

ln p(F ′LBP
| π, µ,Σ) =

M
∑

m=1

ln

J
∑

l=1

πlN (F ′LBP
m | µl,Σl). (3.12)
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An approach to optimize this function is given in Section 2.2.2 of this work. After fitting
the model to the sampled feature space and estimating the underlying Gaussian mixtures CL, the
posterior probability that a supervoxel 〈k, i〉 with feature vector fLBP

〈k,i〉 is drawn from class Cl is
given by

p(〈k, i〉 7→ l) =
πlN (fLBP

〈k,i〉 | µl,Σl)
∑L

i=1 πiN (fLBP
〈k,i〉 | µi,Σi)

. (3.13)

Hence we calculate KI
i × L dimensional assignment probability matrices Mi for each vol-

ume, which stores the probability that a supervoxel 〈k, i〉 belongs to the anatomical structure l
as follows

Mi
〈k,i〉,l = p(〈k, i〉 7→ l). (3.14)

Figure 3.4 gives an overview of the processing steps required to learn supervoxel feature
prototypes and to obtain anatomical region label assignment probability matrices. Assigning
each supervoxel of a volume with the index of the cluster with highest posterior assignment
probability can also be interpreted as an initial segmentation estimate of a volume. While we
use the collection of all cluster assignment probabilities to find a labeling in the atlas space in
Section 3.1.4, initial segmentation estimates build one component while finding a labeling of
individual volumes in Section 3.1.5.

Feature 

prototypes

Supervoxel 

features

Supervoxel 

featurespace

LBP - BVW 

Feature extraction

Cluster assignment

Input:

Normalized data

Output: Initial 

segmentations

GMM

clustering

Figure 3.4: Overview of the processing steps to learn supervoxel feature prototypes that are ex-
pected to reflect anatomical structures. In the first step supervoxel texture features are extracted
from the training data. GMM clustering is applied to the sampled feature space in the second
step. Assigning each supervoxel with the cluster index of highest probability leads to an ini-
tial segmentation of each volume. These cluster assignment probabilities are also used during
labeling of the atlas.

3.1.4 Finding a Latent Atlas Labeling

In the next step we compute a segmentation labeling for each node in the template space, which
serves as prior segmentation estimation when labeling an individual image in the final step of
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the image segmentation process.
We construct a MRF with K nodes, representing supervoxels in the atlas, connected by E

undirected, weighted edges. Each node has L possible states which reflect the label assignment
of a node. An edge between two nodes models spatial neighborhood of supervoxels. The label
assignment probability matrices M are used to derive qualities for unary terms U ∈ R

K×L,
while we binary terms B ∈ R

K×K×E are used to encode qualities of label configurations of
two spatially neighboring nodes. The following paragraphs describe how the components of the
MRF are derived.

Topology The topology of the MRF models the neighborhood of the supervoxels in the atlas
and is thus based on the spatial distance of the center of gravity of a supervoxel. Given a node k.
We build the neighborhood Nk by forming edges between u and its T nearest neighbors, where
distance between two nodes is derived by calculating the Euclidean distance of their centers of
gravity. Iterating over all nodes and removing duplicates results in a set of Ee undirected edges,
where e ∈ {1, . . . , E ≤ K · T} and an edge is defined by the pair of nodes it connects. I.e.
Ee = {u, v}, where u, v ∈ K.

Unary Terms Unary terms are used to encode the prior probability that a node k is assigned
with label l. Since each node k of the atlas has a spatially corresponding node 〈k, i〉 in a subset
of Jk images with indexes ikj , we build unary terms by sampling the probabilities of these cor-
responding nodes. An entry in the K × L dimensional unary term U matrix is thus computed
as

U(k, l) =

∑Jk

j=1M
i
k
j (〈k, ikj 〉, l)

Jk
(3.15)

so that
L
∑

l=1

U(k, l) = 1, ∀k. (3.16)

In other words, the label assignment qualities of a node k in the atlas are derived by a
majority vote of all nodes in the image population that spatially correspond to k.

Binary Terms Binary terms B are used to fully connect all possible label configurations of
two neigboring nodes. This allows to model relationships between spatially neighboring su-
pervoxels. We use the binary terms to model the assumption that two spatially neighboring
supervoxels are likely to belong to the same anatomical structure, i.e. we encourage similar
label assignments of neighboring nodes. This is achieved by creating the L× L× E matrix B,
where an L× L entry that holds qualities all possible label configurations of two nodes that are
connected by an edge e and is computed as

Be = α · IL, (3.17)

where IL depicts the identity matrix of size L and α is a scalar weighting factor that is used
to control the impact of binary terms.
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Solving the MRF An implementation of loopy believe propagation [86] proposed by Andres
et al. in [2] is used in this work for finding an approximately optimal solution of the MRF. This
implementation allows to find a configuration of a MRF with a minimum sum of qualities, which
requires that unary and binary terms reflect costs rather than probabilities of label assignments.
U and B are thus converted to costs by

U = ⌊1000 ∗ (1−U)⌋ B = ⌊1000 ∗ (1−B)⌋. (3.18)

The cost function Q(A) of a configuration A that assigns one label to each node of the MRF
is then given by

Q(A) =

K
∑

k=1

U(k,A(k) +

E
∑

e=1

B(A(e1),A(e2), e) (3.19)

where e1, e2 depict the nodes that are connected from e.

The latent atlas labeling

L∗ : k 7→ l ∈ {1, . . . , L} (3.20)

that holds the assignment of one of L anatomical region labels for all nodes k in the atlas A is
then obtained by finding a configuration with minimal costs, denoted as

L∗ = argmin
A

Q(A). (3.21)

3.1.5 Finding Individual Labelings using the Latent Atlas as Prior

In the final step of the image segmentation process we use the information computed in the
previous steps to obtain a labeling of all nodes in an individual image Ii.

Again, we construct a MRF having KI
i nodes representing the supervoxel that occur in Ii.

Similar to the MRF for labeling the atlas, edges are formed to encode spatially neighboring
supervoxels. Unary terms are used to combine the a priori estimated atlas labeling L∗ of a node
and the label assignment probability Mi

〈k,i〉. Binary terms are used to model the assumption that
neighboring supervoxels are likely to belong to the same anatomical structure. In comparison to
the former MRF here we add knowledge about the average supervoxel intensity into the model.
The following paragraphs describe in detail how each component of the MRF is computed.

Topology The topology of the MRF for labeling an individual volume is derived similar to
forming the topology when constructing the MRF for labeling the atlas. We construct edges to
the T spatially nearest neigbhors of each node 〈k, i〉, where spatial distance is measured between
the centers of gravity of two nodes. After removing duplicates we derive a set of undirected
edges Ee, where e ∈ {1, . . . , E ≤ KI

i · T} and an edge is defined by the pair of nodes it
connects. I.e. Ee = {u, v}, where u, v ∈ 〈k, i〉.
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Unary Terms The KI
i ×L unary terms U for labeling an individual volume are based on two

components. With the first component we incorporate the a priori computed latent atlas labeling
L∗ to the model as

UL∗

〈k,i〉,l =

{

1, L∗
k == l

0, otherwise.
(3.22)

The second component is derived from the anatomical structure class assignment probabili-
ties, denoted as

UC
〈k,i〉,l = Mi(〈k, i〉, l). (3.23)

Finally both components are combined using a the mixing coefficient β as

U〈k,i〉,l = β ·UL∗

〈k,i〉,l + (1− β) ·UC
〈k,i〉,l. (3.24)

Binary Terms The L×L×E binary terms B are used to encourage similar label assignments
between two neighboring nodes u, v connected by edge e. In comparison to labeling two nodes
in the atlas, we take intensity information of the connected supervoxels into account. I.e. we
encourage similar label assignments of two neighboring nodes with similar average intensity,
but penalize similar label assignments on edges that connect nodes with high average intensity
differences.

Let f I
〈k,i〉 depict the average intensity of a supervoxel and ∆f I

e = |f I
u − f I

v | the absolute
difference of the average intensities of two supervoxels u, v that are connected by edge e. Let
∆FI denote the entirety of average intensity differences sampled over all edges e ∈ E . The
intensity difference indicator de of an edge is then computed by

de =
∆f I

e − min(∆FI)

max(∆FI)− min(∆FI)
, (3.25)

so that de describes the intensity difference with respect to all other differences of connected
nodes and is in the range of [0, 1]. To obtain a weighting of de so that similar label assignments
are only encouraged if the intensity difference is low compared to all sampled intensity differ-
ences the final edge weighting factor we is calculated as given in Equation 3.26. The weighting
function is illustrated in Figure 3.5.

we = e−
de
0.2 (3.26)

Binary terms of an edge e are then computed as

Be = γ · we · IL, (3.27)

where IL again depicts the identity matrix of size L and γ denotes a scalar weighting factor
to control the impact of binary terms of the MRF.
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Figure 3.5: Weighting function that is applied to de, so that similar label assignments between
nodes are only encouraged if the difference of average intensities is low with respect to all
sampled intensity differences.

Solving the MRF Solving the MRF of individual volumes is performed similar to solving the
MRF of the reference space, described in Section 3.1.4. Binary and Unary terms are transformed
from carrying probabilities to costs in a first step. The labeling L : 〈k, i〉 7→ l ∈ {1, . . . , L}
which assigns one of L anatomical structure labels to each node 〈k, i〉 of the MRF and thus
to each supervoxel of a volume is then derived by finding a configuration A of the MRF with
minimal costs Q(A), given as

Q(A) =

KI
i

∑

k=1

U(k,A(k) +
E
∑

e=1

B(A(e1),A(e2), e), (3.28)

where e1, e2 depict the nodes that are connected from e. Again, we apply loopy believe
propagation [86] to find an optimal solution for L.

L = argmin
A

Q(A). (3.29)

Figure 3.6 illustrates the resulting workflow of the approach proposed in this section for the
unsupervised segmentation of anatomical structures in medical images.
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Figure 3.6: Overview of the image segmentation framework. In the training phase supervoxel
features are extracted after all images are registered to the atlas (1). The resulting feature space
is clustered using GMM clustering to find prototypes of occurring supervoxel features (2). In (3)
all supervoxels are assigned with the index of the cluster with maximal assignment probability
to compute initial segmentations of all volumes of the training data. In the final step of the
training phase a MRF is created to find a labeling of the atlas (4). Segmenting a novel volume
requires the registration to the atlas (5), feature extraction (6), cluster assignment to compute the
initial segmentation (7) and finally a MRF that incorporates the atlas segmentation, the initial
segmentation and models spatial neighborhood assumptions of supervoxels (8).
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3.2 Weakly Supervised Classification of Pathologies

In this section we propose a weakly supervised learning method that is capable of classifying
tissues in medical images based on the data that is generated during clinical routine:

1. A set of medical images, where each image typically shows different pathologies

2. A corresponding set of pathology terms or clinical findings that describe the underlying
diseases and pathological observations. They are extracted from the radiological reports
corresponding to the images.

From this data we know which pathologies occur in an image, but we do not know which
regions are affected by each of the pathologies. The aim of the algorithm proposed is to establish
this link based on the imaging data and corresponding pathology terms. Figure 3.7 illustrates
the aim of the approach proposed (a), as well as the problem setting and given data in (b).
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Figure 3.7: Illustration of the problem setting. We aim in finding the true (unknown) labeling of
tissues in a medical volume. The dataset contains volumes with multiple tissue types as well as
healthy controls (a). Figure (b) illustrates the data given during training. A set of medical images
with corresponding reports, where pathological terms are extracted that describe the occurrence
of pathologies in the images.

The problem of finding correspondences between image regions and textual image labels
has been addressed by Duygulu et al. in [24]. Here we briefly review their approach since our
method is based on their methodology. They have a set of 2-dimensional images and to each
image a corresponding set of keywords that describes objects that occur in an image. Their ap-
proach aims at establishing correspondences between keywords and objects so that both entities
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can be linked to each other and furthermore that objects in novel images can be identified and
annotated with the established correspondences. They segment each image into regions using
Normalized Cuts [65] and describe each region following the principle of BVW. After that all
sampled region features are clustered to obtain a discrete set of image region feature prototypes.
Finally, they use co-occurring prototypes and aligned keywords in images of the training data to
establish a probability table that predicts a keyword given an image region prototype [24]. We
follow their approach and adapt it to fit our problem setting.

To map pathologies occurring in an images report to specific regions of an image (classifica-
tion), the images are quantized into supervoxels, which build the basis for further analysis. Our
approach has two phases.

In the training phase each supervoxel of an image is labeled with all terms that occur in
the report of an image. We extract texture features of all supervoxels in the training data and
partition this sampled feature space using clustering techniques as introduced in Section 2.2 of
this work. By mapping supervoxels and their aligned (pathological term) labels to the computed
clusters based on their feature vectors, we derive a distribution of pathological labels in each
partition of the feature space. We us this information to create a probability table that holds
conditional probabilities of pathological labels given an observation of a specific cluster.

In the application phase, supervoxels in a novel (unseen) volume are then classified by
mapping their extracted texture feature vectors to the computed clusters and assigning the labels
with highest probabilities.

3.2.1 Problem Definition

We are given a set of N images (volumes) I = {I1, . . . , IN}, where each image Ii carries a
set of tissue class labels (e.g. healthy tissue, ground glass, emphysema,...) Ti, indicating which
classes of tissue occur in the image. The set of T unique tissue labels is denoted as T , so that
Ti ⊆ T holds. Furthermore, each image is quantized into Si supervoxels, where supervoxel j
in image i is denoted as si,j . The true tissue class label li,j of a supervoxel is unknown during
training. Instead each supervoxel is assigned with a set of weak labels Ti,j , derived from the
labels that are assigned to its volume Ti,j = Ti.

We aim at estimating the true labeling l′u,j of each supervoxel j for a novel (unseen) target
volume Iu with index u, i.e. we want to find a mapping that assigns one of T tissue classes:

l′u,j : su,j 7→ T = {1, . . . , T} (3.30)

3.2.2 Feature Extraction and Clustering

Since we assume that a volume contains multiple rather than only one type of tissue classes
(healthy, ground glass,...) in different expansions, we quantize each image in supervoxels and
classify supervoxels individually. For this purpose the MonoSLIC algorithm [38] is applied to
each image, that computes an oversegmentation of Ii into a set of Si disjunct supervoxels (see
Section 3.1.2 for a detailed explanation). A supervoxel j in image i is identified by si,j .
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To describe the visual content of supervoxels we extract texture features as introduced in
Section 2.1 for each supervoxel. Both descriptors introduced (BVW-LBP, Haralick) are eval-
uated in this work. To facilitate reading, we describe the remaining part of the our method
independent from the type of extracted feature and denote the D dimensional feature vector of a
supervoxel j in image i as fi,j and the entirety of all features as

F = {f1,1 . . . f1,S1
, . . . , fN,1 . . . , fN,SN

}. (3.31)

In the next step we partition a randomly selected subset F ′ ⊂ F of this feature space us-
ing clustering algorithms as described in Section 2.2. Two clustering approaches are used and
evaluated in this work (k-means, GMM). Since partitional clustering algorithms aim at finding
groups of similar objects, we expect the computed clusters to represent prototypes of of different
tissue classes (healthy and pathological) that occur in the training data. Independent from the
clustering approach in use, we denote the set of K computed clusters as C = {C1, . . . CK}, with
index k = 1 . . .K.

Furthermore we define the function that assigns an observed supervoxel feature vector fi,j
to a specific cluster as m(fi,j) = {1..K}. Depending on the clustering approach, m assigns
a feature vector to a cluster based on minimal Euclidean distance to the mean vectors clusters
(k-means) or on the maximal posterior probability of a cluster given a feature vector (GMM). A
detailed description of both methods is given in Section 2.2 of this work.

3.2.3 Mapping Terms to Clusters

For each image, we have an aligned set of terms Ti that describes occurring tissue types in the
whole image. This means that there is at least one existing supervoxel in the image for each of
the assigned labels. We thus generate labels Ti,j for each supervoxel in the training set as

Ti,j = Ti ∀j ∈ Si. (3.32)

We refer to these labels as weak labels, since each supervoxel is assumed to belong to one and
only one tissue class, but can be assigned (depending on the volume labels) with multiple labels.
Correspondingly, from the set of all supervoxels labeled with term t, only a subset carries the
true label t.

We use the weakly labeled supervoxels Ti,j and the cluster assignment of all supervoxel
feature vectors m(fi,j) to build a histogram H that reflects occurrences of labels in each cluster.
An entry in the K × T dimensional occurrence histogram H for a cluster k and term t is thus
computed as

Hk,t = #{fi,j | m(fi,j) = k}, ∀(i, j) | t ∈ Ti,j . (3.33)

Since we do not expect the labels to be uniformly distributed across the training data, we
normalize each entry of H by its term frequency, to reduce an overrating of the most dominant
labels in the data and define the normalized occurrence histogram H ′ as

H ′
k,t =

Hk,t
∑K

k=1(Hk,t)
(3.34)
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From H ′ we compute a K × T dimensional probability table L that holds the conditional
probability of a term t when observing a specific cluster Ck as

Lk,t = p(t | Ck) =
H ′

k,t
∑T

t=1(H
′
k,t)

, (3.35)

where k identifies a cluster and t a specific term.
Figure 3.8 illustrates the processing pipeline of the approach proposed to learn the probabil-

ity table L that predicts tissue classes for observations of clusters.
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Figure 3.8: Overview of learning a probability table for predicting tissue classes. Supervoxel
features are extracted (1), followed by clustering a randomly sampled subset of this feature space
(2). Supervoxels and assigned weak labels are mapped to the computed clusters (3). Based
on this information, occurrence histograms are calculated (4). After normalizing occurrence
histograms by term frequencies of tissue class labels (5), a probability table that predicts tissue
classes given a specific cluster is computed.

3.2.4 Classifying Novel Image Regions

The probability table L computed in the previous step is finally used to classify supervoxels su,j
of an unseen target volume Iu, which is achieved as illustrated in Figure 3.9 with the following
computation steps:

1. Compute supervoxels su,j of Iu
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2. Extract supervoxel texture features fu,j

3. Assign supervoxels to cluster C using mapping function m(fu,j) to establish clusters with
highest probabilities given a feature vector.

4. Generate the true tissue class label estimate l′u,j for each supervoxel j of image with index
u by assigning the label with highest conditional probability given the supervoxels cluster
assignment m(fu,j).
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Figure 3.9: Overview of the classification of supervoxels in a novel volume. This process in-
volves the computation of supervoxels (1), feature extraction (2), assignment of supervoxel to
clusters (3) and finally labeling each supervoxel with the term of highest prediction probability
given its cluster assignment (4).

3.3 Summary

Within this chapter approaches for two components (segmentation and classification) of a CAD
system have been described. Both methods do not rely on manually annotated training data.
Instead they are designed to learn from data that is available from clinical routine.

Unsupervised Medical Image Segmentation on Supervoxel Level The approach proposed
to segment anatomical structures in medical image data on supervoxel level consists of two
phases:

1. The training phase, which contains the learning of supervoxel feature prototypes to com-
pute an initial segmentation of all images and furthermore the labeling of the atlas space.
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Here each supervoxel in the reference space is labeled using a MRF that incorporates
the majority vote of initially estimated segmentations of the image population as well as
penalizes label changes of spatially neighboring supervoxels.

2. A novel volume is then segmented in the application phase. After registration of the
volume to the atlas and propagation of supervoxels to the volume, texture features are
extracted and used to find an initial segmentation. Finally a MRF that incorporates the
initial segmentation, the learned atlas segmentation and spatial constraints is created to
find a segmentation labeling of the novel volume.

Weakly Supervised Classification of Pathologies To classify healthy and pathological tissues
in medical images, a weakly supervised learning method has been proposed. The approach takes
a set of medical images as input, where each image is aligned with a set of weak labels, that
describe occurring pathologies of an image. From this labels, we know which pathologies occur
in an image, but we do not know which regions of an image are affected by which pathology
and which regions contain healthy tissue.

The approach learns prototypes of occurring tissue types by clustering super voxel features
of the training images. By assigning volume labels to all supervoxels of a volume and mapping
these weak labels to the computed clusters we learn the distribution of tissue labels in each clus-
ter. We assume that each cluster represents on specific tissue class and use the label distribution
in the clusters to compute a probability table that predicts a tissue class of each cluster.

Supervoxels of a novel volume are then classified by identifying the cluster of each super-
voxel and assigning the tissue label with highest probability.
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CHAPTER 4
Experiments and Results

In the previous chapter we have introduced two approaches that learn from data that is typically
available during clinical routine. (1) A latent atlas based unsupervised segmentation approach
that aims in finding anatomical structures in medical images and (2) a weakly supervised learn-
ing approach that classifies different tissue types within an organ based on textual labels that are
obtained from radiological reports corresponding to an image.

The present chapter provides an evaluation of both approaches on publicly available data sets
that carry voxel wise ground truth annotations for evaluation purposes. This is the VISCERAL
data set [32], that provides medical images with manual annotations of anatomical structures and
the LTRC data set [37] which contains chest CT scans of patients affected by Interstitial Lung
Diseases (ILD) [55] with voxel wise annotations for healthy and pathological tissues within the
lungs.

Section 4.1 provides the evaluation of the method proposed for unsupervised anatomical
structure segmentation, where Section 4.2 contains the evaluation of the approach proposed
for weakly supervised image region classification. Section 4.3 summarizes the experiments
performed and their results.

4.1 Unsupervised Medical Image Segmentation on Supervoxel

Level

This section provides an evaluation of the approach proposed for unsupervised anatomical struc-
ture segmentation in medical images. We start with describing data set that the framework (1)
requires for learning and (2) is used for evaluation in Section 4.1.1. Section 4.1.2 describes and
discusses the evaluation metric used to measure segmentation performance, where Section 4.1.3
describes the data acquisition, parameter settings and features in use during learning. In 4.1.4
we provide a detailed evaluation of all components of the framework that influence the resulting
latent atlas labeling, where Section 4.1.5 covers the evaluation of all components that influence
the resulting labeling in novel images that are not part of the training.
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4.1.1 Data in Use

Three datasets are required to perform experiments with the segmentation framework proposed
and evaluate their results:

1. Training data: A set of medical images from which the algorithm learns occurring
supvervoxel prototypes and a segmentation in the atlas space.

2. Reference space: One medical image that serves as reference space or atlas. The atlas is
used to provide a common coordinate system across the image population.

3. Test data: A set of, from the training data disjunct, medical images that have voxel wise
expert annotations of anatomical structures. These volumes are used as ground truth data.

The following paragraphs describe each of the datasets in detail. Finally, Table 4.1 gives a
summary and provides representative illustrations of all datasets in use.

Training data A set of 450 CT volumes originated at the radiology department of the General
Hospital of Vienna (AKH) is used as training data for the unsupervised image segmentation part
of this work. There are three types of body regions that are covered by a volume: chest scans,
abdominal scans an chest + abdominal scans. The in-slice resolution lies between 0.5 mm ×
0.5 mm and 1.2 mm × 1.2 mm, where the resolution between slices varies from 0.7 mm to 2
mm. Within the image normalization pipeline all volumes are oriented to the same direction and
transformed to isotropic volumes so that a pixel resolution of 0.7 mm × 0.7 mm × 0.7 mm in
x-,y- and z- direction is assured. The dataset contains both, contrast enhanced CT (CTce) scans
and CT scans without contrast enhancement.

Reference space As reference space, a whole body CT volume with pixel resolutions of 1.3
mm × 1.3 mm × 1.3 mm is used. 9 anatomical structures, including the brain, parts of the spine,
left and right lung, trachea, heart, liver as well as left and right kidneys have been annotated by
a medical expert. These annotations are used to evaluate the segmentation performance in the
atlas. For the center estimation within the registration process, volume center positions in the
atlas volume in a set of 200, from the training dataset distinct CT volumes have been annotated.

Test data For the evaluation of anatomical region segmentation we use a subset of the VIS-

CERALanatomy1 benchmark training data [32]. VISCERAL provides medical image data in four
modalities (CT, CTce, MRT1 and MRT1 contrast enhanced fat saturated) with voxel wise manual
expert annotations of 20 anatomical structures including the trachea, lung, pancreas, gallbladder,
urinary bladder, sternum, kidneys, aorta, thyroid gland, liver, adrenal glands and the first lumbar
vertebra. The dataset in use to evaluate the segmentation performance of the method proposed
contains 7 CT and 7 CTce volumes, all of them covering chest and abdomen.

1http://www.visceral.eu/
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Region &

modality
# Volumes # Annotations Origin Illustration

Training data

Chest CT 192 - AKH

Abdominal CT 150 - AKH

Chest & ab-
domen CT

108 - AKH

Reference space

Whole body
CT

1 9 structures

Test data

Chest & ab-
domen CTce

7
20 structures
per volume

VISCERAL

Chest & ab-
domen CT

7
20 structures
per volume

VISCERAL

Table 4.1: Overview of data used for the unsupervised image segmentation part of this work.

4.1.2 Evaluation Metric

The performance of the segmentation framework is measured using the Dice coefficient [17],
calculated between computed segmentations and manual annotations of anatomical structures in
the atlas space and in volumes of the test dataset. The Dice coefficient is a metric that expresses
the spatial overlap of two binary label images.

Given a binary labeled ground truth segmentation SGT and a computed binary segmentation
IC , the Dice coefficient is defined as

DICE =
2 ∗ |SGT ∩ SC |

|SGT |+ |SC |
(4.1)
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The resulting coefficient lies in the range of (0, 1) where 0 indicates no overlap and 1 depicts
full overlap of the two involved binary label images [89]. The Dice coefficient incorporates both,
the proportion of correctly positive segmented (Sensitivity) and correctly negative segmented
(Specificity) voxels. Sensitivity and Specificity are calculated by

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP
, (4.2)

where TP indicates true positive voxel segmentations, TN true negatives, FP false positives
and FN false negatives respectivley.

Figure 4.1 illustrates the relation of these three segmentation similarity measures, on a syn-
thetic dataset. The Dice coefficient (in red) is sensitive to false negative segmented pixels (syn-
thetic image indices 1 - 4) as well as to false positive segmented pixels (synthetic images indices
1 - 4), where sensitivity and specificity are only influenced by one of those. The Dice coeffi-
cient is thus used in the remaining part of this work to measure segmentation performance of
computed segmentations.

a) Ground truth 
S1 S2 S3

S4 S5 S6

S7 S8 S9

1 2 3 4 5 6 7 8 90

0.2

0.4

0.6

0.8

1

Synthetic segmentation index

Dice
Sensitivity
Specificity

b) Synthetic segmentations c) Similarity metrics

Figure 4.1: Relation of Dice coefficient, Sensitivity and Specificity. Ground truth segmentation
is shown in a. Plot b illustrates synthetic segmentations S1 . . .S9. Plot c shows sensitivity,
specificity and Dice coefficient values, computed between ground truth image and synthetic
segmentations.

4.1.3 Experimental Setup

All training images have been recorded during clinical routine at the Radiology Department
of the General Hospital of Vienna, where the images are stored in a Picture Archiving and
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Communication System (PACS). The DICOM [7] format is used to export images from the
PACS. Here each slice of a volume is stored separately. Since we aim at processing 3-d volumes
rather than a stack 2-d slides of a patient we convert those files to the Neuroimaging Informatics
Technology Initiative (NIfTI)2 file format, which stores only one file per volume. Since it is not
ensured that each volume exported from the PACS is stored in the same orientation we reorient
each volume using the FSL3 toolbox [68] to ALS orientation. This means that every volume is
oriented and stored in a matrix so that the x-coordinate increases from Anterior to posterior, y-
coordinate from Left to right and the z-coordinate from Superior to inferior. Figure 4.2 visualizes
the orientation convention used in this work, utilizing the matVTK4 toolbox.

X
Y

Z

superior

posterior

left

right

inferior

anterior

(0,0,0)

Figure 4.2: ALS volume orientation as used in this work. X-axis increases from Anterior to
posterior, y-axis from Left to right and Z-axis form superior to inferior point of view.

The segmentation framework requires the registration of all images to the atlas. For this
purpose the registration framework described in Section 2.3.3, developed by Dorfer in [22] has
been used. Inspired by his work, the atlas and all volumes are down sampled to an isotropic pixel
resolution of 2 mm in x-,y-, and z-direction before performing the registration of a volume to
the atlas, which reduces the amount of voxels in the involved volumes, causing less computation
time and memory costs [63]. Again inspired by Dorfers work in [22] a B-spline grid with 10
mm spacing and NMI as similarity measure are used for non rigid registration.

The atlas is quantized into supervoxels using the MonoSLIC algorithm proposed by Holzer
et al. in [38]. Results in this work show that the average size of a supervoxel influences the
recall rate of anatomical structure boundaries in medical images. According to their results, we
choose an average superpixel size of 1 cm3.

After the transformation of the oversegmentation in the atlas to each volume of the training
set, supervoxel texture descriptors are extracted. Inspired by Burner et. al. [10] we use the BVW-
LBP operator. They suggest a weighting factor for the average intensity and contrast measure

2http://nifti.nimh.nih.gov/
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
4http://www.cir.meduniwien.ac.at/team/birngruber/matvtk/
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of wc = wi = 10 to retrieve pathological supervoxels of lungs CT scans. Since we want to
distinguish anatomical regions rather than pathologies in a certain anatomy we assume that the
impact of average intensity and contrast in a supervoxel is of more relevance and set wc =
wi = 20. Again inspired by their work we compute k = 300 visual words on s = (1, 2, 3, 4)
different scales, by random sampling of 150000 features and performing k-means clustering on
each scale.

4.1.4 Accuracy of Latent Atlas Space Labeling

The present section describes experiments that have been applied to obtain segmentations of
anatomical structures in the atlas. The segmentation labeling for each node k in the atlas that
represents a supervoxel is obtained by solving a MRF that is constructed as described in Section
3.1.4. Here, we review the components and parameters of the segmentation framework that
influence the cost function of the MRF and thus the resulting labeling of the atlas:

• L, the number of clusters used to partition the feature space. Each cluster is expected to
represent an anatomical structure.

• Unary terms U, which hold the probabilities that node k belongs to one of the L computed
clusters. Unary terms for a specific node k are calculated based on a majority vote of
cluter assignment probabilities of all supervoxels in the training volumes that spatially
correspond to k.

• Binary terms B with impact weighting parameter α, that penalize label changes in neigh-
boring supervoxels.

• T , the number of neighbors to which an edge of each node k is created.

Results show that the approach is able to detect three anatomical structures in the reference
space that correspond to organs in the human body. The best performing parameter setting
results in segmentations of the lungs with a Dice score of 0.94, the heart with 0.8 and the liver
with 0.45. In the following sections we provide a detailed stepwise evaluation of all components
of the framework for labeling the reference space.

Impact of unary terms on segmentation accuracy The aim of the first experiment is to reveal
how many clusters are formed during the feature space partition that correspond to organs of the
human body. Hence we set the impact of binary terms to α = 0, which causes the resulting cost
function of the MRF being only dependent on unary terms U. This means that the labeling of
one node k in the atlas depends only on the cluster assignment probabilities of all spatially to k
corresponding supervoxels in the training data.

Figure 4.3 illustrates four slices of the atlas volume and two corresponding segmentations
computed with α = 0 and L = 12 and L = 18 cluster centers. The colors in the plots illustrate
the assignment of a supervoxel to one of the L clusters. Results show that the clustering of both
configurations causes segmentations of three organs (lungs, liver heart) as well as anatomical
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a b c
Figure 4.3: Four coronal slices of the cropped atlas volume (a). Supervoxel labeling of atlas,
obtained with α = 0 while clustering the feature space into L = 12 (b) and L = 18 (c) clusters.

structures with similar texture properties (regions that contain bones such as the spine, and the
ribs on the borders of the lungs).

In Figure 4.4, unary terms U are illustrated in form of heat maps for a subset of clusters in
coronal slices of the atlas, with L = 18 computed clusters. The first column shows the color
coded labeling of the atlas in two slices. The remaining plots show slices of the atlas with
an overlaying color coding of U for a specific cluster or labeling class l. The frame color of
visualizations in the first row corresponds to the clusters color coding in the atlas segmentation.
In other words, the plots show probabilities of segmentation classes to occur in specific regions
of the atlas.

Figure 4.5 shows a bar plot of the performances of computed segmentations that correspond
to the lungs, liver and heart. The y-axis depicts the Dice coefficient from the segmentations
where the x-axis depicts the number of clusters L = (4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30) used
to partition the feature space. The Dice coefficients of liver segmentations are denoted in blue,
the lungs in green and the heart in red.

Best results for the three detected organs (lungs, heart, liver) have been obtained using L =
18 clusters, leading to Dice coefficients of of 0.92, 0.72, and 0.54 respectively. This setting is
thus used for all further experiments.

Impact of binary terms on segmentation accuracy Within this experiment the incorporation
of binary terms to the cost function of the MRF is evaluated. Binary terms are used to model the
assumption that two neighboring nodes in the atlas are likely to belong to the same anatomical
structure. Hence we encourage similar label assignments in neighboring nodes of the MRF using
weighting factor α, i.e. the higher α the more we encourage similar label assignments.

Figure 4.6 illustrates four slices of the atlas volume in a, together with computed segmenta-
tions for α = (0, 0.05, 0.4). Here, all segmentations have been computed using L = 18 clusters,
since the three addressed organs have shown most promising results with this configuration.
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Figure 4.4: Computed atlas segmentation (left) and probability heat maps of unary terms for
different clusters in the remaining plots. The frame color of the first rows images depicts the
color coding of the clusters resulting segmentation in the atlas.
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Figure 4.5: Dice coefficients of segmentation labels in the atlas that correspond to the liver, heart
and the lungs for different numbers of clusters L = (4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30).
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a b dc

Figure 4.6: Four coronal slices of the cropped atlas volume (a). Supervoxel labeling of atlas,
obtained with increasing number of α = 0 (b), α = 0.05 (c), and α = 0.4 (d), while partitioning
the feature space into L = 18 clusters.

Figure 4.7 shows a bar plot holding the Dice coefficients of computed lung (green), liver
(blue) and heart (red) segmentations on the y-axis, while different weighting factors α are de-
noted on the x-axis. Experiments are performed while connecting each node to its T = 6
spatially nearest neighbors.
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Figure 4.7: Dice coefficients of segmentation labels in the atlas that correspond to the liver, heart
and the lungs for different weighting factors α of binary terms while segmenting the atlas using
a MRF.

Table 4.2 lists segmentation performances of the addressed organs while varying the neigh-
borhood size T = (6, 9, 12) of a node and setting α = 0.05 during MRF construction.

Results show that segmentation performances do not improve with increasing size of neigh-
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L α T liver lung heart average

18 0.05 6 0.45 0.94 0.80 0.59
18 0.05 9 0.48 0.95 0.75 0.57
18 0.05 12 0.37 0.95 0.78 0.58

Table 4.2: Lung, liver and heart segmentation Dice coefficients obtained with α = 0.05, L = 18
and different sizes of neighborhood T .

boring supervoxels. Hence we set T = 6 for all further experiments.

Results furthermore show that incorporating binary terms into the cost function of the MRF
increases the segmentation performance of lungs and the heart, whereas the segmentation per-
formance of the liver decreases with an impact factor of α = 0.05. The dice coefficient of the
lung segmentation increases from 0.92 to 0.94, the heart from 0.72 to 0.80, where the liver seg-
mentation performance is reduced from 0.54 to 0.45. All other tested values (α > 0.05) do not
improve segmentation performances compared to results when setting α = 0.05.

4.1.5 Accuracy of Labeling Individual Volumes

This section describes experiments that have been performed to evaluate the accuracy of the pro-
posed framework when segmenting anatomical structures in novel medical images. As described
in Section 3.1.5, a novel image is segmented by solving a MRF that assigns a segmentation label
to each supervoxel of an image.

Similar to the previous section, we review the components of the MRF that influence its cost
function and thus the resulting segmentation.

• UL∗

, the first component of unary terms, which holds the labeling vote of the atlas in each
supervoxel.

• UC , the second component of unary terms, which hold the assignment probabilities of a
supervoxels feature vector to belong to each of the L clusters Cl.

• β, the mixing coefficient of unary terms. The lower β, the higher is the impact of the atlas
and the lower the impact of the cluster center assignments on the resulting segmentation.

• γ, the weighting factor of binary terms that model the assumption that spatially neighbor-
ing supervoxels are likely to belong to the same class. γ has similar functionality as α
for labeling the atlas space. As described in Section 3.1.5 the encouragement of similar
label assignments is dependent on the intensity difference. I.e. two connected supervoxels
with low intensity differences are encouraged to have a similar label assignment, whereas
neighboring supervoxels with high intensity differences are not encouraged to have similar
label assignments.
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Similar to the previous section we provide a detailed evaluation of all components within the
following paragraphs. We investigate the impact of unary terms on the resulting segmentations
in a first step, whereas the impact of binary terms is evaluated in a second step.

Impact of unary terms on segmentation accuracy Within this experiment, the impact of
unary terms to the resulting segmentations is investigated. The MRF parameters to obtain the
latent atlas labeling, which serves as prior segmentation estimate, are chosen according to the
most promising results of the previous section, i.e. we set L = 18 clusters and α = 0.05. To
show the impact of unary terms only we set γ = 0, causing the cost function of the MRF being
only dependent on unary terms.

As described in the previous section, the framework is capable to detect the lungs, liver and
the heart in medical images. Since the VISCERAL dataset does not provide manual annotations
for the heart, we focus on the lungs and the liver in the remaining parts of the evaluation section.

The impact of unary term components UL∗

and UC is controlled by the mixing coefficient
β. Segmentations obtained with β = 1 are referred to as initial segmentations, since the cost
function of the MRF in this setting is derived only by cluster assignment probabilities.

Figure 4.10 shows ground truth annotations (a), initial segmentations (b) and segmentations
computed by setting β = 0.6 (c) of one CT (first row) and CTce volume (second row) as well
as the a priori computed atlas segmentation (d). The visualizations in b show that the initial
segmentation labeling partially corresponds to the addressed organs. The lung is mainly labeled
in blue in the CT volume and in yellow and green in the CTce volume. The label that is dominant
in the liver in both modalities occurs next to the liver also in the heart and in other abdominal
regions. Plot c illustrates the effect of incorporating the atlas labeling to the unary terms. Here,
the addressed organs have to the atlas corresponding, consistent labels in the volumes of both
modalities.

a) Ground truth

CT

CTce

b) Initial segmentation c) b = 0.6

d) Atlas

Figure 4.8: Ground truth annotations of the two addressed organs, initial segmentations and
segmentations computed with β = 0.6.

Figure 4.9 illustrates average Dice coefficients of the two addressed organs in both modalities
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that are part of the test set (CT & CTce). The x-axis depicts the increasing impact of the atlas
segmentation. Starting with β = 1, where the computed segmentation is based on the cluster
assignment probabilities only, β is decreased until the segmentation is influenced only by the
atlas segmentation, β = 0.
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Figure 4.9: Dice coefficients of region labels that correspond to the liver and the lungs in both
modalities that occur in the test set (CT, CTce). X-axis depicts decreasing β values, which
increases the impact of the atlas.

Results show that the proposed framework is able to find consistent labels of the addressed
organs in all tested volumes. Combination of the atlas segmentation with the initial segmenta-
tions leads to average Dice coefficients of 0.75 and 0.51 of lungs and 0.41 and 0.32 of the liver
in CTce and CT volumes respectively using the mixing coefficient β = 0.6.

Impact of binary terms on segmentation accuracy Within the final experiment, the impact
of binary terms when labeling individual volumes is evaluated. In comparison to binary terms of
MRF for labeling the atlas, an additional weighting is applied by considering the average inten-
sity difference of neighboring supervoxels. Here, similar label assignments are only encouraged
if the intensity difference of the involved supervoxels is low with respect to all occurring inten-
sity differences of neighboring supervoxels in a volume.

According to the best performing parameter settings in the previous sections we set L =
18, α = 0.05, β = 0.6 and vary the binary impact factor γ in the following experiments. The
number of neighbors to which a node is connected is set to T = 6 since results while labeling the
atlas have shown that a higher number of considered neighbors does not increase segmentation
performance.

Figure 4.10 illustrates ground truth annotations (a) and computed segmentations in a CT and
a CTce volume while increasing the impact of binary terms (b,c,d,e). The corresponding average
Dice coefficients are shown in Figure 4.11. Here the y-axis depicts average Dice coefficients,
the x-axis depicts the increasing impact of binary terms. Grouped bars indicate the modality and
organ that is evaluated.
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CT
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a) Ground truth b) g = 0 e) g = 3c) g = 0.3 d) g = 1.5

Figure 4.10: Ground truth annotations of lungs and liver in one CT and one CTce volume (a),
Computed segmentations of the corresponding volumes while increasing γ, the impact of binary
terms (b-e).
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Figure 4.11: Dice coefficients of region labels that correspond to the liver and the lungs while
increasing the impact of the atlas segmentation.
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By incorporation of binary terms, segmentation performances increase within the lungs from
0.75 and 0.59 to 0.86 and 0.66 (CT and CTce) but decreases within the liver from 0.41 and 0.32
to 0.21 and 0.08 respectively when setting γ = 3.
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4.2 Weakly Supervised Classification of Pathologies

This section describes experiments that have been performed to evaluate the method proposed
for classifying medical image regions by learning from weak image labels. We apply our method
with four combinations of texture descriptors and clustering methods, show their strengths and
weaknesses and discuss main characteristics and limitations of the method proposed.

Section 4.2.1 describes the LTRC [37] data set and how it is prepared to fit our problem
statement. Section 4.2.2 describes parameter settings, features and clustering methods in use,
while Section 4.2.3 introduces the metric used to measure classification performance. Finally,
Section 4.2.4 shows results of the experiments performed.

4.2.1 Data in Use

All experiments are performed using the LTRC [37] dataset, which consists 300 lung CT scans,
all affected by ILD. Each volume carries a binary lung mask and a voxel-wise labeling of five
tissue classes within the lungs: healthy, emphysema, ground glass, honeycombing and reticular.
Figure 4.12 shows axial slices of five volumes and corresponding annotations of the dataset.

healthy ground glass honeycomb emphysemareticular

a) Images

b) Voxel wise annotations

Figure 4.12: Illustration of the LTRC [37] dataset used in this work. (a) Axial slices of five chest
CT scans affected by ILD. (b) Corresponding voxel-wise annotation of healthy and pathological
tissues.

The volumes are recorded with pixel resolutions between 0.6 - 0.7 mm × 0.6 - 0.7 mm × 0.6
- 0.7 mm and resampled so that an isotropic resolution of 0.7 mm in each direction is assured.
We compute supervoxels with an average size of 1 cm3 using the MonoSLIC algorithm proposed
in [38].

To obtain ground truth labeling on supervoxel level, a supervoxel is assigned with the most
dominant label of its voxels. To avoid partial volume effects, supervoxels with less than 75% of
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one label are excluded from learning and testing. To simulate a data set that is originated during
clinical routines, each supervoxel is assigned with one or two pathological labels that occur in its
volume during training, so that each possible combination of pathological terms occurs equally
often. The class of healthy supervoxels is a special case. First, we include 25 volumes with
no pathological findings (only healthy labels) during training, which is feasible since healthy
volumes can be obtained from scans without pathological observations in the report. Second, we
take all healthy supervoxels of a volume with a pathological label into account during training,
but do not assign the label healthy to those supervoxels since this information is not given in
practise. Instead those supervoxels are labeled with to the volume assigned pathological terms.
We also add 15 volumes assigned with ground glass, reticular and honeycombing and 8 assigned
with emphysema only based on the assumption that cases with the finding of a single pathology
can be obtained from radiology reports. Table 4.3 lists resulting co-occurrences of volume labels
and Table 4.4 the corresponding distribution of supervoxel labels in the training data set.

Healthy Ground glass Reticular Honeycomb Emphysema

Healthy 25 0 0 0 0
Ground glass 0 15 38 38 38
Reticular 0 38 15 38 32
Honey combing 0 38 38 15 38
Emphysema 0 38 32 38 8

Table 4.3: Co-occurring volume labels in the training data.

True labels

Healthy Ground
glass

Reticular Honey-
combing

Emphy-
sema

∑

TP

W
ea

k
la

b
el

s Healthy 174610 0 0 0 0 174610 100
Ground glass 514600 12665 1668 1281 20134 550348 2.09
Reticular 358340 4055 5104 1464 4492 373455 1.37
Honeycombing 468200 2189 2141 4601 25731 502862 0.91
Emphysema 359730 1751 790 1615 58841 422727 13.92

Table 4.4: Tissue label distribution of supervoxels in the training data. A line depicts the distri-
bution of true labels for all supervoxels of a tissue class. Total amount of supervoxels labeled
with a specific tissue class (

∑

) and True Positives (TP) in % are given in the last two columns.

4.2.2 Experimental Setup

We extract both texture descriptors described in Section 2.1 for all supervoxels. (1) Texture bags
of Local Binary Patterns as proposed in [10] on (1,2,3,4) four scales with 300 visual words on
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each scale resulting in a 1200-dimensional feature vector. To overcome the curse of dimension-
ality we apply PCA and keep 95% of the feature spaces variance, which results in a mapping
to a 46-dimensional feature space. Texture bags of Local Binary Patterns are abbreviated with
BVW-LBP in the remaining part of this section. And (2), Haralick features [33] of GLCM on
21 × 21 × 21 voxel patches around the center of a supervoxel, binned to 32 grey levels with 1
and 3 pixels offset, resulting in a 26-dimensional feature vector.

We furthermore apply both methods for unsupervised partitional clustering described in Sec-
tion 2.2 (GMM,k-means) to the sampled feature spaces. Depending on the applied texture de-
scriptor and clustering method in use, classification performances are identified by the combi-
nation of their abbreviation (BVW-LBP - k-means, BVW-LBP - GMM, Haralick - k-means,
Haralick - GMM).

Experiments are performed by 10-fold cross validation, meaning that we split the data set
ten times in 30 test and 270 training volumes so that each volume is exactly once part of the test
and nine times part of the training set.

4.2.3 Evaluation Metric

Classification performance is measured by sensitivity and specificity values of classified super-
voxels of a tissue class as given in Equation 4.3.

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP
(4.3)

Here, TP depict the amount of true positive, TN true negative, FP false positive and FN false
negative classified supervoxels of a specific tissue class.

4.2.4 Evaluation of Classification Performance

The evaluation of the method proposed shows the four out of five tissue classes are classified
with reasonable accuracy (healthy, ground glass, reticular, emphysema). Best results in all tissue
classes are obtained by the combination of Haralick features with k-means clustering. In the
following paragraphs we provide a detailed description of performed experiments and obtained
results.

Overall sensitivity and specificity Figure 4.13 compares sensitivity and specificity values of
tested texture descriptors and clustering approaches, averaged over all tissue classes. Experi-
ments are performed for ten different numbers clusters (15, 20, 25, 50, 75, 100 150, 200, 300,
400), depicted on the x-axis. Classification baseline is illustrated in dashed grey, obtained by
random guessing of tissue labels for each tested supervoxel.

Classification performances on tissue class level Figure 4.14 shows corresponding sensitiv-
ity and specificity values separately for all tested tissue classes (healthy, ground glass, reticular,
honeycombing, emphysema). Best classification performances are reached using Haralick fea-
tures and k-means clustering to 400 clusters. Table 4.5 shows the confusion matrix, sensitivity
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Figure 4.13: Sensitivity (left) and Specificity (right) values averaged over all tissue classes of
tested combinations of texture descriptors and cluster approaches for increasing numbers of
clusters (15 - 400). Performance baseline (dashed grey) is depicts random guessing.

and specificity values of classified supervoxels for this setting. As the matrix shows, supervox-
els affected by honeycombing are more often classified as reticular than as honeycombing. Also
ground glass supervoxels are often incorrectly labelled with reticular. Corresponding confusion
matrices, sensitivity and specificity values of all other tested combinations of texture features
and clustering methods are given in Tables A.1, A.2, A.3 in the appendix of this work.

Predicted classes

Healthy Ground glass Reticular Honeycombing Emphysema

T
ru

e
cl

a
ss

es

Healthy 1020128 40096 19840 11926 4223
Ground glass 410 27647 6989 687 10
Reticular 24 264 5071 204 0
Honeycomb 389 1071 4259 3395 135
Emphysema 2984 8007 277 5222 138180

Sensitivity 0.90 0.77 0.91 0.37 0.9
Specificity 0.98 0.96 0.98 0.99 0.96

Table 4.5: Confusion matrix, Sensitivity and Specificity values of supervoxel classification using
Haralick features and k-means clustering with k = 400 clusters.

Qualitative results Figure 4.15 illustrates the classification of supervoxels on axial slices of
six tested volumes. The image slice is shown in the first row, where the second row illustrates
the ground truth (GT) annotations. The third row illustrates the corresponding supervoxel classi-
fication, computed using Haralick features and k-means clustering on 400 clusters. We observe
that most regions affected by emphysema (blue), reticular (green) and ground glass (yellow),
as well as healthy supervoxels (red) are correctly labelled. Classification errors are observed
in honeycombing regions (turquoise label) of volumes in columns 3,5 and 6, where supervoxels
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Figure 4.14: Sensitivity (left column) and Specificity (right column) values for each tissue class
(rows) obtained while increasing the number of computed clusters (x-axis) from 15 to 400.
Classification performances are given for each tested combination of texture descriptors and
cluster approaches (color coded). Performance baseline (dashed grey) is obtained by random
guessing.

are incorrectly identified as reticular patterns. Furthermore, ground class supervoxels incorrectly
classified as reticular as indicated in the confusion matrix are observed in the volume of column
2.

Characteristics of clustering image region features Since the main idea of the approach
proposed is based on the assumption that the partitioning of features results in clusters that
represent prototypes of tissue classes, we expect that the true tissue classes of supervoxels close
to a cluster center match with the clusters predicted tissue class.

Figure 4.16 thus shows the cluster centers nearest supervoxels for two clusters of each pre-
dicted tissue class. The predicted tissue class and its color coding is shown in the left column,
where the middle column holds patches of nearest supervoxels obtained using Haralick features
and the right column supervoxels obtained by BVW-LBP features. Clustering is performed using
k-means. Distances are measured between the center (mean vector) of a cluster and the super-
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Figure 4.15: Axial slices of five volumes (top), ground truth (GT) annotations (not available
during training, middle) and classification results (bottom), using Haralick features and k-means
clustering with k = 400 clusters.

voxels feature vector. The frame color of an image patch indicates the ground truth labeling of
the supervoxel. Please note that only a representative subset of all computed clusters (400) is
shown to highlight characteristics of the texture descriptors and their classification performance.

Computation time The runtime of both texture descriptors has been tested on a Intel Xeon
2.67GHz CPU providing 24 cores. For Haralick features, a C implementation has been available,
where the BVW-LBP feature extractor has been partially implemented in C and Matlab. On an
average volume size of 512× 512× 490 voxels, where the lungs are over segmented in average
into 7105 supervoxels, the average computation time of BVW-LBP (15 minutes) is significantly
higher than using Haralick features (45 seconds).

4.3 Summary

In this section experiments performed to evaluate both methods proposed in this thesis and their
results have been described.

The approach proposed for unsupervised segmentation of anatomical structures in medical
images has been evaluated in Section 4.1. Within the experiments in Section 4.1.4 the methods
ability to identify structures in the reference space has been investigated in two steps. First the
impact of unary terms to the resulting segmentation has been shown. Second the impact of
binary terms which are used to model the assumption that spatially neighboring supervoxels are
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Figure 4.16: Ten nearest neighbors (supervoxels) of a subset of computed clusters (k-means,
k = 400). Tissue class and the respective color coding with highest probability for a cluster
is given in the right colomn. Two sets of nearest neighbors are shown for Haralick (middle)
and BVW-LBP (right) features for each tissue class. The frame color coding of an image patch
indicates the true labeling of supervoxels.

likely to belong to the same segmentation class has been investigated. For the evaluation purpose
nine manual annotations of anatomical structures in the atlas volume have been available.

Experiments in Section 4.1.5 have been performed to evaluate the segmentation performance
of the method proposed when labeling individual volumes. First we have investigated the impact
of the a priori computed atlas segmentation and the initially computed segmentation of a volume
on the resulting segmentation. Followed by the evaluation of the influence of binary terms,
which again modell the assumption that spatially neighboring supervoxels are likely to belong
to the same segmentation class. For this purpose 14 volumes of the VISCERAL [32] data set
have been used which carry manual annotations of 20 anatomical structures.

The method proposed for weakly supervised classification of healthy and pathological tis-
sues in medical images has been evaluated in Section 4.2. The LTRC data set that provides
300 volumes with voxel-wise ground truth annotations of five tissue classes within the lungs has
been used for this purpose. Evaluation has been performed in a 10 fold cross validation scenario.
Four combinations of supervoxel texture features (BVW-LBP, Haralick features) and clustering
methods (k-means, GMM) have been tested with ten different numbers of computed clusters
while partitioning the sampled feature space to learn feature prototypes.

A detailed discussion of the experiments performed and their results is given in Section 5.1
of this thesis.
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CHAPTER 5
Discussion, Conclusion and Future

Work

The final chapter discusses results of the performed experiments in Section 5.1, draws a conclu-
sion of the work in this thesis including a summary of the methods proposed, the data in use for
learning and evaluation as well as the main results in Section 5.2 and closes with thoughts on
future work and possible improvements for both methods proposed in Section 5.3.

5.1 Discussion

The present section provides a discussion of the results shown in the previous sections of this
work. Section 5.1.1 addresses results of the evaluation of the unsupervised segmentation of
anatomical structures, where Section 5.1.2 discusses results of the weakly supervised classifica-
tion of healthy and pathological tissue classes.

5.1.1 Unsupervised Medical Image Segmentation on Supervoxel Level

Results have shown that the approach proposed is able to identify the lungs, heart and liver
(yellow, turquoise and light-green labels in Figure 4.3 c) and additionally several regions with
similar texture properties that do not correspond to a specific organ or anatomical structure (see
for instance the pink labeled region in Figure 4.3 c that contains tissue with bone structures).

Best overall Dice coefficients of the three detected organs in the reference space have been
obtained using L = 18 clusters and a binary impact factor of α = 0.05, leading to Dice coeffi-
cients of 0.94 (lungs), 0.8 (heart) and 0.45 (liver).

The illustration in Figure 4.4 indicates that multiple clusters correspond to one anatomical
structure and that segmentation classes being dominant in one organ can also occur in other parts
of the human body. This is explained by the diversity of the training data. First, there are two
different modalities present in the training data (CT & CTce volumes) resulting in different in-
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tensity values of the same anatomical structures. Second, the training data consists pathological
and healthy volumes resulting in different visual appearing tissue types within an organ.

The incorporation of the latent atlas segmentation while labeling novel volumes ensures a
consistent labeling of organs across all volumes. This effect can be observed in Figure 4.8.
Here, the initial segmentation shows different labelings of the same organ in two volumes, where
segmentations obtained by a combination of the latent atlas and the initial segmentation results
in the same segmentation labeling of organs in both volumes.

Taking binary terms into account increases segmentation performances of the reference
space and individual volumes in structures with high contrast to its surrounding tissue (lungs
and the heart) but decreases segmentation accuracy of structures with low contrast to its sur-
rounding tissue (liver). This effect is illustrated in Figures 4.6 and 4.10, corresponding Dice
values are shown in Figures 4.7 and 4.11.

Best segmentation results while segmenting the lungs in individual volumes are obtained by
setting β = 0.6 and γ = 3, resulting in average Dice values of 0.86 (CTce) and 0.66 (CT).
Wheras liver segmentations reach average Dice values of 0.21 and 0.08 respectively within the
same setting. The best results for liver segmentations are obtained with a binary term impact
factor of γ = 0.3 resulting in average Dice values of 0.41 (CTce) and 0.34 (CT), wheras the
lungs are segmented with average Dice values of 0.79 and 0.61 respectively.

Within the VISCERALanatomy 2 benchmark [13] several approaches addressing the problem
of segmenting multiple anatomical structures in medical imaging data have been proposed. Seg-
mentation approaches of participating algorithms significantly outperform our approach when
comparing obtained average Dice scores with reported results in [29], [14], [71], [77]. Here, all
approaches segment the lungs with a minimum average Dice of 0.95 in both modalities and the
liver with values 0.9 in CTce and > 0.82 in CT volumes.

The main difference between their approaches and the method proposed is that they require
voxel-wise annotated training data. Goksel et al. [29] and Del Toro et al. [14] use annotations
for atlas based label fusion, Spanier et al. [71] generate prior location and appearance knowl-
edge from annotated training images and Wang et al. [77] propose a combination of atlas based
segmentation and shape modelling, learned on annotated training data.

Comparing our method to the participants of VISCERALanatomy 2 highlights the limitations
of our approach. Due to the nature of unsupervised learning, the amount of detected structures
and their segmentation quality highly depends on the chosen image features and their capability
to form clusters that correspond to anatomical structures in the feature space.

5.1.2 Weakly Supervised Classification of Pathologies

Results show that the method proposed is capable of classifying healthy and pathological tissues
with reasonable success in four (healthy, emphysema, ground glass, reticular) out of five tis-
sue classes. Where the best performing method (Haralick features & k-means clustering) yields
sensitivity values > 0.96 for all tissue classes, performance differences become visible on sen-
sitivity values. Here, the best method setting reaches a sensitivity of 0.91 for reticular, 0.9 for
healthy, 0.9 for emphysema and 0.77 for ground glass supervoxels, whereas the sensitivity when
classifying honeycombing supervoxels is significantly lower (0.37).

72



Results in Figure 4.14 show that the ranking of the tested methods is consistent across all
tissue classes. I.e. Haralick in combination with k-means performs better than the remaining
methods in all tissue classes. Results furthermore indicate that k-means clustering outperforms
GMM clustering independent from the feature descriptor as well as that Haralick features out-
perform BVW-LBP features in our context and are additionally cheaper to compute in terms of
computation time.

The distribution of true positive labeled supervoxels of a tissue class during training as given
in Table 4.4 and their corresponding classification performances in Figure 4.14. Results have
shown that classes with the highest TP share rates and absolute amount of TP labeled supervoxels
in the training set have sensitivity values significantly higher than the baseline (random guessing)
(healthy, ground glass, reticular, emphysema), whereas the performance of honeycombing (TP
share 0.91%) classification is comparable low for the best method (sensitivity 0.37) and even
lower than baseline for all other tested methods.

Experiments have furthermore shown that classification performance in all classes increases
with an increasing amount of computed clusters (see Figures 4.13 and 4.14). This indicates
that some subtypes of tissue classes cover only a small region and can be located close to more
dominant subtypes of other tissue classes in the feature space. When increasing the number
of clusters, each partition is expected to cover smaller areas of the feature space and can thus
distinguish such classes and overcome this problem. One could argue that best classification
performance can thus be obtained by choosing a very high number of clusters to obtain small
partitions in the feature space. This would result in over fitting the model. In the most extreme
case partitions would cover only single observations, so that learning the label distribution in
those partitions is not feasible since we assume to have multiple, weak labels for each observa-
tion. A partition with a single observation would then always predict the label of the observation
with lowest term frequency.

Results in Figure 4.16 show that the majority of to cluster centers nearest true supervoxel
labels correspond to the predicted class of a cluster. Several observations from the confusion
matrix in Table 4.5 can be observed as well. (1) Clusters predicting reticular classes contain
several honeycombing supervoxels, which means that honeycombing supervoxels are likely to
be incorrectly classified as reticular. (2) Reticular supervoxel occur almost only in reticular
predicting clusters, which means that they are rarely predicted incorrectly. (3) If a supervoxel
is incorrectly predicted as emphysema, it is most likely a healthy supervoxel. (4) Incorrectly
classified healthy supervoxels are most likely ground glass supervoxels.

Comparing supervoxels of healthy and emphysema classes also highlight the fact that BVW-
LBP features are sensitive to texture orientation, where Haralick features are rotation invariant.
Here, BVW-LBP feature clusters contain supervoxels close to the border region of the lungs all
oriented in similar directions, where Haralick feature clusters contain also supervoxels on the
lung borders, but with independent orientation.

5.2 Conclusion

In this thesis two approaches that address two components (Segmentation and Classification) of
typical CAD systems have been proposed. Inspired by the fact that CAD systems aid radiolo-
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gists during clinical tasks to improve accuracy and productivity [18], [49] but suffer from the
limitation that training data often requires manual annotations [39], [41], [87], [84], which is
usually time consuming and expensive to acquire [16], the methods proposed are designed so
that only data that is created during clinical routine is required.

5.2.1 Unsupervised Medical Image Segmentation on Supervoxel Level

The first method addresses the unsupervised segmentation of anatomical structures in medical
images. It takes a set of medical images as input and computes an across all images consistent la-
beling of anatomical structures on supervoxel level. The method learns prototypes of occurring
supervoxels in the training data by unsupervised clustering of supervoxel texture descriptors.
Since these prototypes are expected to represent anatomical structures, the assignment of super-
voxel to clusters is used to generate initial segmentations in all images. The registration of all
images to an atlas allows us to learn a labeling in the atlas space, the latent atlas.

The final segmentation of an image is obtained by combining the initial computed segmen-
tation based on supervoxel cluster assignments with the latent atlas, which is shared across all
images. Both labeling procedures (in the atlas and in individual images) use MRFs to include
relations between spatially neighboring supervoxels in an image.

The approach has been trained on a set of 450 CT and CTce volumes recorded at the ra-
diology department of the AKH. For evaluation purposes manual annotations of 9 anatomical
structures in the atlas have been available. To evaluate segmentation accuracy in novel images 14
volumes of the VISCERAL [32] have been used, that carry manual annotations of 20 structures.

Results have shown that the approach is able to identify three anatomical structures that cor-
respond to organs in the human body. The lungs, the heart and the liver have been segmented
with Dice coefficients of 0.94, 0.8 and 0.54 respectively in the atlas space. Since the VISCERAL
data set does not provide ground truth annotations for the heart, the evaluation of segmentation
accuracy of individual volumes has focused on the lungs and the liver. The incorporation of the
assumption that spatially neighboring supervoxels are likely to belong to the same anatomical
region increased segmentation performances in structures with high contrast to neighboring tis-
sues (lungs and heart) but resulted in decreased performance values of liver segmentations where
the contrast to neighboring tissue is comparable low.

We have shown that clustering supervoxel features results in partitions that represent feature
prototypes of anatomical structures, which can be used to learn segmentations consistent across
all volumes. We have furthermore shown that using MRFs to find a segmentation labeling on
supervoxel level that combine atlas segmentations with local image information and incorporate
constraints between spatially neighboring supervoxels has the potential to outperform segmen-
tations obtained by only one of both components combined.

It is furthermore important to note that the unsupervised learning approach aims to discover
anatomical structures with coherent appearance. It cannot compete with supervised approaches
[29], [14], [71], [77] that rely on training with voxel-level expert annotations of anatomy. How-
ever, it hints at the potential of successful training with minimal supervision and future work
will explore how additional clinical information can be incorporated.
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5.2.2 Weakly Supervised Classification of Pathologies

The second method addresses the weakly supervised classification of healthy and pathological
image regions of single organs. The method proposed is based on the idea that clustering su-
pervoxel features results in partitions that represent prototypes of tissue classes. Weak labels,
such as pathology terms that are extracted from a radiological report, that describe occurring
pathologies in an image are assigned to all supervoxels of an image. By assigning supervoxels
and their weak labels to clusters, we learn a probability table that predicts a single label given
an observed cluster. This knowledge is then used to classify supervoxels of a novel image.

The method has been trained and evaluated in a 10 fold cross validation scenario on 300
chest CT scans of the LTRC [37] data set. Here, each volume carries voxel-wise ground truth
annotations of five different lung tissue classes (healthy, emphysema, ground glass, reticular,
honeycombing) and a binary segmentation mask of the lungs. During training the data set has
been prepared to fit the addressed scenario, with at most two pathological findings per volume.
Four combinations of texture descriptors (Haralick and BVW-LBP) and clustering techniques
(k-means and GMM) has been evaluated.

Four out of five tissue classes have been classified with reasonable accuracy (healthy, ground
glass, reticular, emphysema). Results have shown that the classification performance of the
method proposed is related to the true positive rate of labeled supervoxles in the training data,
since the worst classification performance is obtained for the tissue class with lowest rate of true
positive labeled supervoxels (honeycombing).

It has been shown that Haralick features in combination with k-means clustering yield best
overall classification results. Haralick features furthermore outperform BVW-LBP features in-
dependent from the clustering method within our setting and are additionally cheaper to compute
in terms of time resources. It has also been shown that k-means clustering outperforms GMM
clustering independent from the texture descriptor in use in the context of this work.

We have shown that the unsupervised clustering of supervoxel features leads to partitions
of the feature space that are representative for subclasses of healthy and pathological tissue
types. We have also shown that weak labels can be used to learn the underlying tissue classes
of clusters and that this knowledge can then be used to classify regions of novel images. We
have furthermore shown that supervoxels located in centers of clusters are likely to have the
true labeling of the clusters predicted tissue class. This makes the clustering approach a suitable
preprocessing step of CBIR systems, to reduce the search space a CBIR system has to evaluate
when finding similar cases to a given query.

5.3 Future Work

Several aspects and components of both methods proposed within this thesis have possibilities
for further improvement, which are addressed in the following two sections of this chapter.

5.3.1 Unsupervised Medical Image Segmentation on Supervoxel Level

In the present work only one supervoxel texture descriptor (BVW-LBP) has been used within the
unsupervised image segmentation part. The framework is designed so that the feature extraction
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technique is an interchangeable component. Future work would thus include the evaluation of
different texture descriptors or the combination of different texture descriptors on the resulting
segmentation performance.

Results have shown that the unsupervised nature of the method proposed clearly limits its
segmentation performance compared to recently supervised image segmentation methods. How-
ever results have also shown that the usage of MRFs to combine the latent atlas with local image
information and the incorporation of local spatial constraints on supervoxel levels is able to
perform better than segmentations observed from only one of both components. Since large
data sets carrying multiple annotations of anatomical structures recently became publicly avail-
able [32], future work includes the redesign of the system so that the latent atlas labeling is
received from multiple annotated atlases, also the distribution of features can be learned from
the annotated training set in supervised manner, which is expected to significantly improve seg-
mentation results.

5.3.2 Weakly Supervised Classification of Pathologies

The method proposed shows promising results for tissue classes with high ratios of true positive
labeled supervoxels in the training data. Future work include the adaption of the method so that
the probability table that predicts tissue labels for clusters is estimated within an iterative EM
strategy as suggested in [24], to improve classification performance especially for tissue classes
with low TP labeling rates.

The addressed problem of unsupervised learning from text and images can also be inter-
preted as Multiple Instance Learning (MIL) [27], [1]. Future work would include the implemen-
tation and evaluation of MIL approaches in context of our problem setting.

The method proposed has been evaluated on a data set of 300 volumes carrying five different
tissue classes, that has been prepared to fit our problem setting. Future work would include ex-
periments on larger data sets carrying more tissue classes or data sets and weak labels obtained
from clinical routine. The question of ground truth data and how to evaluate such a system if
manual voxel-wise annotation is to expensive to acquire in this context addresses another im-
portant point of future work in this field. Furthermore the performance of the method proposed
using training data where no single as well as more than two pathological findings are given
has to be evaluated. Another possibility to test the method would include the usage of during
clinical routine acquired training data and the evaluation on independent test cases such as the
LTRC data set [37].
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APPENDIX A
Appendix

Tables A.1, A.2, A.3 provide confusion matrices, sensitivity and specificity values of supervoxel
classification performed on the LTRC [37] data set for the following combinations of texture
features and clustering approaches: Haralick - GMM, BVW-LBP k-means, BVW-LBP - GMM.

Predicted classes

Healthy Ground glass Reticular Honeycombing Emphysema

T
ru

e
cl

a
ss

es

Healthy 1039047 57701 21182 8279 11650
Ground glass 2856 26288 61219 136 0
Reticular 60 180 5259 101 0
Honeycomb 9276 264 5269 3150 55
Emphysema 10449 10333 375 11614 121120

Sensitivity 0.91 0.74 0.94 0.34 0.79
Specificity 0.94 0.95 0.98 0.98 0.99

Table A.1: Confusion matrix, sensitivity and specificity values of supervoxel classification using
Haralick features and GMM clustering with k = 400 clusters.
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Predicted classes

Healthy Ground glass Reticular Honeycombing Emphysema

T
ru

e
cl

a
ss

es

Healthy 651601 58517 23596 23906 80595
Ground glass 3838 19299 11678 499 0
Reticular 56 310 4888 61 0
Honeycomb 1880 886 4542 1811 206
Emphysema 20189 879 125 4484 126865

Sensitivity 0.84 0.55 0.92 0.19 0.83
Specificity 0.87 0.93 0.97 0.98 0.93

Table A.2: Confusion matrix, sensitivity and specificity values of supervoxel classification using
BVW-LBP features and k-means clustering with k = 400 clusters.

Predicted classes

Healthy Ground glass Reticular Honeycombing Emphysema

T
ru

e
cl

a
ss

es

Healthy 864155 47230 62460 33820 132807
Ground glass 5822 14762 14940 447 65
Reticular 121 367 4731 114 4
Honeycomb 1879 436 4382 2429 318
Emphysema 32771 428 963 4343 166214

Sensitivity 0.76 0.41 0.89 0.19 0.75
Specificity 0.8 0.96 0.94 0.97 0.88

Table A.3: Confusion matrix, sensitivity and specificity values of supervoxel classification using
BVW-LBP features and GMM clustering clustering with k = 400 clusters.

78



Bibliography

[1] J. Amores. Multiple instance classification: Review, taxonomy and comparative study.
Artificial Intelligence, 201:81–105, 2013.

[2] B. Andres, T. Beier, and J. H. Kappes. Opengm: A C++ library for discrete graphical
models. CoRR, abs/1206.0111, 2012.

[3] S. G. Armato, M. F. McNitt-Gray, A. P. Reeves, C. R. Meyer, G. McLennan, D. R. Aberle,
E. A. Kazerooni, H. MacMahon, H. J. R. MacMahon, and D. Yankelevitz. The lung image
database consortium (LIDC): an evaluation of radiologist variability in the identification of
lung nodules on CT scans. Academic radiology, 14(11):1409–1421, 2007.

[4] B. B. Avants, Nicholas J. T., G. Song, P. A. Cook, A. Klein, and J. C. Gee. A reproducible
evaluation of ANTs similarity metric performance in brain image registration. NeuroImage,
54(3):2033 – 2044, 2011.

[5] T. Ayer, M. US Ayvaci, Z. X. Liu, O. Alagoz, and E. S. Burnside. Computer-aided diag-
nostic models in breast cancer screening. Imaging in medicine, 2(3):313–323, 2010.

[6] Z. A. Aziz, A. U. Wells, D. M. Hansell, G. A. Bain, S. J. Copley, S. R. Desai, S. M. Ellis,
F. V. Gleeson, S. Grubnic, A. G. Nicholson, S. P. G. Padley, K. S. Pointon, Reynolds J.
H., R. J. H. Robertson, and M. B. Rubens. HRCT diagnosis of diffuse parenchymal lung
disease: inter-observer variation. Thorax, 59(6):506–511, 2004.

[7] W. D. Bidgood, S. C. Horii, F. W. Prior, and D. E. Van Syckle. Understanding and using
DICOM, the data interchange standard for biomedical imaging. Journal of the American

Medical Informatics Association, 4(3):199–212, 1997.

[8] J. A. Bilmes. A gentle tutorial of the EM algorithm and its application to parameter esti-
mation for gaussian mixture and hidden markov models. International Computer Science

Institute, 4(510):126, 1998.

[9] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 1.
Springer New York, 2006.

[10] A. Burner, R. Donner, M. Mayerhoefer, M. Holzer, F. Kainberger, and G. Langs. Texture
bags: anomaly retrieval in medical images based on local 3d-texture similarity. In Medical

Content-Based Retrieval for Clinical Decision Support, pages 116–127. Springer, 2012.

79



[11] D. A. Clausi. An analysis of co-occurrence texture statistics as a function of grey level
quantization. Canadian Journal of remote sensing, 28(1):45–62, 2002.

[12] W. R. Crum, T. Hartkens, and D. L. G. Hill. Non-rigid image registration: theory and
practice. British Journal of Radiology, 77:140–153, 2004.

[13] O. A. J. del Toro, O. Goksel, B. Menze, H. Müller, G. Langs, M.-A. Weber, I. Eggel,
K. Gruenberg, M. Holzer, A. Jakab, G. Kotsios-Kontokotsios, M. Krenn, T. Salas Fernan-
dez, R. Schaer, T. Abdel Aziz, M. Winterstein, and A. Hanbury. Visceral-visual concept
extraction challenge in radiology: ISBI 2014 challenge organization. In Proceedings of the

VISCERAL Challenge at ISBI, CEUR Workshop Proceedings, pages 6–15, 2014.

[14] O. A. J. del Toro and H. Müller. Hierarchical multi-structure segmentation guided by
anatomical correlations. In Proceedings of the VISCERAL Challenge at ISBI, CEUR Work-

shop Proceedings, pages 32–36, 2014.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[16] A. Depeursinge, A. Vargas, A. Platon, A. Geissbuhler, P.-A. Poletti, and H. Müller. Build-
ing a reference multimedia database for interstitial lung diseases. Computerized medical

imaging and graphics, 36(3):227–238, 2012.

[17] L. R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

[18] K. Doi. Current status and future potential of computer-aided diagnosis in medical imag-
ing. The British Journal of Radiology, 78:3–19, 2005.

[19] K. Doi. Computer-aided diagnosis in medical imaging: historical review, current status
and future potential. Computerized medical imaging and graphics, 31(4):198–211, 2007.

[20] R. Donner, S. Haas, A. Burner, M. Holzer, H. Bischof, and G. Langs. Evaluation of fast
2d and 3d medical image retrieval approaches based on image miniatures. In Medical

Content-Based Retrieval for Clinical Decision Support, pages 128–138. Springer, 2012.
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