
DISSERTATION

Energy Profiling of Networked Embedded Systems

Submitted at the Faculty of Electrical Engineering, Vienna University of Technology in
partial fulfillment of the requirements for the degree of Doctor of Technical Sciences

under supervision of

Univ. Prof. Dr. habil. Christoph Grimm
Institut number: 384

Institute of Computer Technology

and

Univ. Prof. Dr. habil. Ian O’Connor
Electronic Electrical and Control Engineering Department

Ecole Centrale de Lyon

by

Javier Moreno Molina
Matr.Nr. 0627190

Peter-Bardens-Str. 9, 67661, Kaiserslautern, Germany

Date

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Kurzfassung

In dieser Arbeit werden Methoden diskutiert und entwickelt, die es ermöglichen, den Energie-
verbrauch in vernetzten, eingebetteten Systeme über mehrere Ebenen eines Systems hinweg zu
simulieren und so erstmals eine ebenenübergreifende Optimierung der Stromaufnahme zu er-
möglichen.
Das Problem ist, dass alle Ebenen einen Beitrag zum Gesamt-Energieverbrauch leisten. Ob-
wohl die Optimierung des Energieverbrauchs damit ein ebenenübergreifendes Problem ist, findet
eine Energie-Optimierung bislang primär auf den Hardware- und Hardwarenahen Ebenen statt.
Dies vor allem, weil man Energieverbrauch sehr einfach einer Hardwarekomponente zuordnen
kann. Um âĂđPower-AwarenessâĂĲ auch auf höheren Abstraktionsebenen - wie die der Software-
Entwicklung oder Netzwerkprotokolle - zu schaffen, ist daher zunächst eine Cross-Layer und Cross-
Domain Modellierung des gesamten Systems erforderlich.
Die Offenheit heutiger, drahtlos vernetzter und verteilter Cyber-Physikalischer Systeme erfordert
domänenübergreifende Modellierung auch von Umwelt-Interaktionen und Netzwerkereignissen,
deren Auswirkungen auf den Energieverbrauch es zu berücksichtigen gilt.
Daher schlägt die vorliegende Arbeit zunächst eine Simulationsumgebung vor, die in der Lage ist,
Modelle unterschiedlicher Aspekte zu nitrieren und eine Gesamt-Systemsimulation zu ermöglichen.
Das vorgeschlagene Framework basiert auf SystemC TLM und C++, die sich als de-facto Standard
für den Co-Design von Hardware und Software etabliert haben. Ausserdem stellt das Framework
ein TLM basiertes Framework bereit, mit dem sich Inter- und Intra-Knoten-Kommunikation ein-
schlieÃ§lich der Funkwellen-Ausbreitung modellieren lassen. Um die physikalische Umgebung zu
simulieren, werden die Systeme AMS Erweiterungen verwendet.
Kern der Arbeit ist dann ein Konzept zum Profiling des Energieverbrauchs. Das Konzept ist
insbesondere in der Lage, die semantische Lücke zwischen der Hardware-Ebene und der Welt der
Software- und Netzwerkentwicklung zu schlieÃ§en. Der Energieverbrauch der Hardware wird zu
Energie-Profilen aggregiert, die aussagekräftige Informationen in Bezug auf die Energieeffizienz
von Software und Netzwerkprotokollen und Topologie darstellen.
Das so entstandene Framework wird mit anderen Ansätzen zur Simulation verglichen. Hierzu
wird ein Cyber-Physikalisches System modelliert. Dann wird die Energieeffizienz unterschiedlicher
Designalternativen in Software und Netzwerk verglichen und mögliche Energie-Ineffizienzen iden-
tifiziert.

I

Abstract

In this work, strategies to simulate and account energy and power consumption in networked
embedded systems are studied, proposed and discussed, in order to enable energy consumption
optimization of the system across all levels.
All design levels have their contribution and responsibility in overall system energy consumption.
However, although energy consumption optimization is a cross-level problem, energy awareness
is almost exclusive of hardware design. This is mainly because energy consumption estimation
requires accurate power models of hardware subsystems. To bring up energy awareness in other
design levels, such as software or network, a holistic cross-level and cross-domain modelling ap-
proach is required.
Furthermore, openness of wireless, distributed and cyber-physical systems relapses into the cross-
domain problem, as it requires considering the significant effect of environment interactions and
network events in overall energy consumption. These features are nowadays present in the vast
majority of embedded systems networks.
Hence, this thesis proposes a simulation framework which is capable of integrating models of
all aspects of cyber-physical and distributed embedded systems. The framework is based on Sys-
temC/TLM and C++, which is already an industry standard for hardware and software co-design.
In addition, the framework provides a TLM based, inter- and intra-node communication model,
including a wireless radio propagation model which enables the integration of the networking
aspects. Furthermore, the framework integrates simulation of some physical processes through
SystemC-AMS.
This thesis also proposes an energy profiling approach to close the semantic gap between the
energy consumption estimation, performed at hardware level, and software and network designers.
Hardware level data is processed and aggregated in high-level energy profiles that can provide
meaningful information that enables energy aware design at software and network levels.
The framework is evaluated and contrasted with a state-of-the-art simulator. Framework capa-
bilities are assessed by modelling a real Cyber-Physical System application. The energy profiling
approach is implemented using the proposed framework and demonstrated by exploring and com-
paring different software and network design alternatives, identifying possible energy leakages.

II

In memory of my dear sister María.

III

Acknowledgements

First I would like to thank Prof. Christoph Grimm, who gave me the opportunity to complete this
research work. First in Vienna University of Technology and later in University of Kaiserslautern.
His confidence and support have been determining. I must also thank Dr. Jan Haase and Dr.
Stefan Mahlknecht, who led the projects I have worked in, as well as my colleagues during my
time in Vienna: Markus Damm, Josef Wenninger, Yaseen Zaidi and, specially, Sumit Adhikari,
who shared his knowledge and passion, not only in science and engineering, but also in life. I
would like to express my gratitude also to Prof. Dietmar Dietrich, whose inspiring vision has been
probably the major influence to get involved in science and research.

In Kaiserslautern, I want to thank Manuela Burkart, who helped me establishing myself in the
new city and working place and the rest of my colleagues who have been like a new family for
me along the last two years: Ralf Grünwald, Xiao Pan, Carna Radojicic, Thiyagarajan Puru-
sothaman, Frank Wawrzik and George Adrian Ciolacu.

My stay in Vienna would not have been the same without all the good friends I have left there.
So thank you, Josep Colom, for so many dinners, parties, squash death matches, etc. Thank you,
Elena Recas and Miriam del Río, my two female friends, that were there from the very beginning
and have endured and grown up with me. Thanks also to my festival and sports-watching buddy
David Fernández. Thank you Thomas Herbst, for those Australian Hot Dogs. Thank you, Manuel
Pascual, Emilio Muñoz, Miriam Kim, Nacho García, Raúl Ramos, Germán Meyer...

Eight years after leaving Madrid, I still have some good friends that deserve their own space
in these words. Thank you, Manuel Achúcarro and Javier Sauras, for so many visits and so many
good times in so many different countries. Thank you, Ivan Blanco, for never giving up talking.
Thank you Miguel Muñoz, for never talking but being always ready in those nights in Madrid.

I owe some words also to my family, to my parents Natividad and Jose Miguel, for your un-
valuable love and support, and to my sister María, who always gave me much more than I could
ever give back. I miss you.

And last but not least, to Lorena Mardones, who has accompanied me in this long journey and
who has given me the courage and emotional support to accomplish all my goals. And he is still
not conscious of all this, but thank you too, Daniel.

IV

Table of Contents

1 Introduction 1
1.1 Simulation in Embedded Systems Design . 2
1.2 Challenges . 3
1.3 Contribution . 3
1.4 Scope . 4

2 Energy-Aware Networked Embedded Systems Design 5
2.1 Architecture Analysis . 5
2.2 The Impact of Network and Cyber-Physical Interaction 8
2.3 Ultra-Low Power and Energy Aware Embedded Systems Design 10
2.4 Power Consumption Components . 11
2.5 High Level Energy Optimization . 15

3 Related Work 17
3.1 Design and Modelling Challenges . 17
3.2 Modelling and Simulation of Networked Embedded Systems 20
3.3 Energy Simulation and Profiling . 36
3.4 Discussion . 42

4 Energy Simulation and Profiling 45
4.1 Energy Aware Methodology . 45
4.2 Formalization of Power State Machines . 46
4.3 Simulation Requirements . 51
4.4 High Level Energy Awareness: Profiles . 53

5 An Energy Profiling Framework 65
5.1 Simulator Architecture . 66
5.2 Wireless TLM . 67
5.3 Energy Aware Framework . 81

6 Energy Profiling Performance and Evaluation 89
6.1 Energy Profiling Test Scenarios . 89
6.2 Simulation Performance Evaluation . 97
6.3 Multi-Domain Simulation . 100

V

7 Discussion and Outlook 105
7.1 Power and Energy Consumption Models . 106
7.2 Conclusions on Energy Profiling . 108
7.3 Simulation Framework for Energy Optimization . 110

Literature 113

Internet References 122

VI

Abbreviations

AMS Analogue Mixed Signal
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
BER Bit Error Rate
CPS Cyber-Physical System
DE Discrete-Event
EMU Energy Management Unit
ESL Electronic System-Level
FMI Functional Mock-Up Interface
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GUI Graphical User Interface
HDL Hardware Description Language
IoT Internet of Things
ISS Instruction Set Simulator
MAC Medium Access Control
MANET Mobile ad hoc network
MBD Model-Based Design
MEMS Microelectromechanical Systems
MoC Model of Computation
M2M Machine to Machine
PCB Printed Circuit Board
RF Radio Frequency
SDF Synchronous Data-Flow
SNR Signal-to-Noise Ratio
SoC System on Chip
TDF Timed Data-Flow
TLM Transaction-Level Modeling
TTL Time-To-Live
WSN Wireless Sensor Network
XML Extensible Markup Language

VII

1 Introduction

The underlying motivation for this research work is, in essence, to achieve a better exploitation of
the available energy resources, which is indeed a universal problem humanity has to continuously
confront in all kind of activities and domains. In spite of the universality of the problem addressed,
this research is focused on the specific field of networked embedded systems, with special focus
on those that are connected through wireless interfaces.

Today’s embedded systems are autonomous devices that can typically interact with their environ-
ment and communicate with other devices and which are produced at very low cost. In the case
of wireless devices, not only production, but also deployment and installation costs can be very
inexpensive. As a result, these embedded systems can be easily networked in order to support
more sophisticated distributed applications, which are capable of obtaining information from very
different sources in order to take some actions.

Such high flexibility and inexpensiveness has opened a huge potential market for this kind of
devices and distributed applications. This is how new ideas and concepts have emerged and are
gradually acquiring relevance.

A first example of these ideas is the concept of Wireless Sensor Networks (WSN). Sensors
are capable of detecting physical nature. Current technology permits the integration of microcon-
trollers, Radio Frequency (RF) transceivers and Microelectromechanical Systems (MEMS) and
sensors in a single System-on-Chip (SoC). A wireless sensor network is a distributed collection of
autonomous sensor nodes that communicates through radiofrequency with a central unit. This
way, WSNs are a bridge between the physical world and information networks [RSZ04].

Over the years, develpment of wireless sensor nodes has enable not only the detection of physical
nature, but real interaction with it. These distributed networks of embedded systems have there-
fore become Cyber-Physical Systems (CPS), with a closed loop between both the physical
and the computational worlds [LS11].

In parallel, wireless technology has also been improved. The size, cost and energy consumption
of RF transceivers has been reduced and they are now being included in all kind of devices,
contributing significantly to the development of Machine to Machine (M2M). This trend
is also enlightening the way to the ambitious concept of the Internet of Things (IoT), that
advocates for the interconnection of potentially all kind of things or objects through an embedded
system that turns them into so called smart objects [Kop11].

Although wireless typically refers to the nature of the communication among these devices, in
many cases a wired power supply will not be available either. Power must therefore be supplied

1

Introduction

by batteries or energy harvesters and, in consequence, energy becomes a very limited resource
which constrains the operation and feasibility of this kind of systems.

Furthermore, energy considerations become also of major importance with the ubiquitous com-
puting concept. Even though embedded systems energy consumption is typically low, if this kind
of systems are to be included in most objects around as, like in the Internet of Things concept,
the resultant total energy consumption might have a significant impact in household electricity
bills and national energy sustainability plans.

In the context of this thesis,Networked Embedded Systems, refers to networks of autonomous
and heterogeneous computational systems, which are able to communicate among them and inter-
act with the physical environment, that serve as a platform for all kind of distributed applications,
especially those for monitor and control of physical processes.

1.1 Simulation in Embedded Systems Design

The first step to create to create optimum embedded systems designs is to be able to acquire
information about how the system will perform. With this information, not only the feasibility
of the system can be evaluated, but some important design decisions can be explored before
implementation and deployment, leading to early stage optimization.

Building prototypes to gather this information is not always feasible. In particular, in the case of
embedded systems, prototyping introduces a big overhead in cost and time-to-market and the use
of virtual prototypes is already a common practice.

In wireless distributed embedded systems, deployment conditions are often unpredictable, and
therefore, validation and verification of the system might require the evaluation of multiple sce-
narios and environmental conditions. Besides, those scenarios and conditions might be very ex-
pensive to reproduce, such as a sensor network on an airplane for in-flight monitoring. A common
approach to this problems are Model-Based Design methodologies. Simulated models can be used
to feasibly recreate test scenarios to validate and verify the system. With the appropriate inter-
faces, it is even possible to perform hardware-in-the-loop simulations, where the real hardware
can be evaluated in simulated environments.

Furthermore, the first aspect encountered when facing optimization of such complex systems, is
that it is a very interdisciplinary problem. Although every design area (e.g. software, hardware,
network) can optimize their designs independently, major improvements are achieved when explor-
ing the synergies among them. Models provided through the Model-Based Design methodologies
foster the find of these synergies.

1.1.1 The Energy Optimization Problem

The use of Model-Based Design, and, in particular, of simulated models for energy optimization
of wireless distributed embedded systems requires several considerations:

• Unlike in other simpler systems or scenarios, energy consumption estimations cannot be
extracted solely from hardware models. Hardware operation is determined by the software,
the environment and other devices in the same network. Therefore, although power is
physically consumed in hardware, the hardware usage is driven by the application, which in
this case is distributed over a network and includes the physical environment.

2

Introduction

• Obtaining the energy consumption of a specific node is not sufficient to evaluate the im-
pact on the whole system. Distributed systems are usually redundant fault-tolerant systems
which are able to operate normally even when several nodes run out of energy. Energy con-
sumption estimations must therefore be obtained for the whole distributed system. Likewise,
optimization must be performed with the whole system in mind, as extending the lifetime
of a node might diverge from improving the lifetime of the whole system.

• Optimizing software and network for energy consumption requires a deep and precise knowl-
edge of how the hardware is used in order to estimate which design decisions actually improve
energy consumption. Unfortunately, the required high-level of abstraction used in software
and network design, also involves hardware usage transparency, creating a semantic gap
between the high-level designer and the use of resources, in this case, the energy.

1.2 Challenges

Examining the requirements for a simulation approach of the energy optimization problem in
systems with cyber-physical interaction and distributed over a wireless network, several difficulties
become apparent.

• Multi-Domain Simulation: Energy consumption simulation requires the combination
of very different simulation models, coming from different domains. Only through this
combination, a consistent model of the distributed system can be achieved. However, this
is a big challenge from the simulation point of view.

• Multi-Level Simulation: Accuracy-efficiency trade-off is a constant in Model-Based De-
sign and simulation. In this particular case, energy consumption estimation requires very
accurate models of some of the system hardware components. On contrast, high level op-
timization requires a comprehensive model of the distributed system, which includes mod-
elling numerous complex and heterogeneous devices as well as the interactions among them
(network) and with their surrounding environment. Furthermore, in order to estimate the
lifetime of the system, simulation of even several years of operation might be required. With
such a demanding scenario, an optimal handling of different abstraction levels becomes im-
perative.

• Energy Consumption Semantic Gap: Abstraction required for simulation performance
has to be done with energy consumption in mind. Otherwise, it might result in the aforemen-
tioned semantic gap that typically stands between the energy consumption data and the high
level designers. Abstraction has to improve performance and provide transparency where
needed, but must expose energy consumption data. Furthermore, energy consumption data
is meaningless if it is not provided together with its relevant context, which permits not only
estimating how much energy was consumed but also associating energy consumption with
its corresponding high level task, which is crucial for energy awareness and, consequently,
for optimization.

1.3 Contribution

During the state-of-the-art analysis included in Chapter 3, a lack of energy optimization at high
levels of abstraction has been observed. Most research works study the energy optimization

3

Introduction

at the hardware level or, in best cases, at the operating system level. However, the problem
analysis performed in Chapter 2, reveals that higher levels have huge responsibility in energy
consumption and therefore offer very good chances for optimization. Nevertheless, high level
optimization examples in literature are insufficient for software, there are some methods and
simulators to account energy consumption of executed software [GNMO12], but very little about
how to account this data to archetypical software tasks, i.e. create energy consumption profiles. In
the case of energy consumption profiling for communication, examples in literature are practically
non-existent.

The main reason for the almost entire absence of high level energy optimization research is most
likely the increasing lack of energy consumption awareness on every higher abstraction level.
Together with other implementation details, the information about power consumption is lost
during the abstraction process. Once this information is lost, reconstructing it becomes an arduous
task. As a consequence, the designer has no tangible information available to support the benefits,
in terms of energy, of his design decisions.

Hence, the contribution of this work is twofold:

1. The proposal and implementation of a comprehensive simulation framework which per-
mits modelling hardware, software, network and physical aspects of the system in order
to enable the simulation of cross-level features, like energy consumption. This framework,
named SICYPHOS, is open-source and available in http://sourceforge.net/projects/
sicyphos/.

2. The proposal of an energy profiling approach to provide meaning and context to energy con-
sumption simulated data, in order to improve energy awareness at high levels of abstraction
and enable high level energy optimization of the overall system. The novelty of the approach
lies, in particular, in the network profiles, which enable the optimization of the distributed
system resource partition and intelligence distribution as well as optimizing the network
topology and the communication protocols to achieve the longest lifetime of the distributed
system. The energy profiling approach is implemented and integrated in SICYPHOS.

1.4 Scope

This thesis aims to facilitate energy optimization by proposing new modelling techniques and
approaches that provide the designers with the best possible infrastructure to optimize their
designs. However, optimization itself depends on the designer, the models and the specific appli-
cation. The specific models of the different subsystems are application dependent and different
decisions concerning accuracy-performance trade-off might be possible depending on the specific
system requirements.

Although the modelling approach has been implemented for evaluation using a specific modelling
language, the energy profiling approach itself is language- agnostic and independent and could be
implemented using other modelling platforms.

In addition, although ultra-low power design may benefit from some of the results of this research,
the main focus is on energy-aware design. The goal is to obtain distributed systems with best
possible energy performance, but not to create optimal ultra-low power designs.

4

http://sourceforge.net/projects/sicyphos/
http://sourceforge.net/projects/sicyphos/

2 Energy-Aware Networked Embedded
Systems Design

Power and energy constraints are recurring issues in embedded systems design and therefore they
are a problem that has already been addressed and is already well-known and characterized.
However, optimizing distributed embedded systems is more complex than just optimizing the
embedded systems that compose them. Unfortunately, research to study the specifics of the
distributed system energy optimization is almost non-existent.

This chapter presents fundamental ideas and concepts for power and energy aware design and
analyses and extends them for the case of distributed systems. Moreover, it studies the effect that
the cyber-physical interaction, through sensors and actuators, has on the energy optimization
problem. This analysis is the basis for the optimization approach presented in next chapters.

First of all, the archetypical architecture of a sensor node will be presented. It is necessary to
know the different subsystems and their contribution to energy consumption. Besides, energy
consumption simulation will require modelling those subsystems, and therefore the difficulties
have to be considered.

After the sensor nodes are introduced, the system model is completed with the network and
cyber-physical interactions, which are part of the overall system concept. The implications of
both network and cyber-physical components in energy consumption are presented and analysed.

Finally, power and energy consumption characteristics are dissected. The energy aware problem
and the ultra-low power problem are distinguished and clarified. Power consumption is explained
from the purely hardware perspective and high-level power and energy consumption problems are
then presented.

2.1 Architecture Analysis

The ecosystem of embedded systems used in distributed cyber-physical applications offers a huge
variety. Depending on the application and the distribution approach, the hardware requirements
for these systems can be very different.

However, when we talk about wireless sensing devices, there are some common elements which
are always present, even though their characteristics might vary significantly. A generic scheme
containing these common parts is provided in Figure 2.1.

5

Energy-Aware Networked Embedded Systems Design

Figure 2.1: Block diagram of a generic embedded system architecture for a wireless sensor node.

All these common elements have similar characteristics from system to system and have similar
requirements for their modelling approach.

2.1.1 Sensors

They are the interfaces that enable communication from the physical world, the environment,
to the cyber-world, the embedded system. Sensing devices are as diverse as the nature of the
quantities they sense.

A temperature sensor such as Texas Instruments LM73 can consume 1 µW while an automotive
camera sensor chip like Omnivision OV7949 consumes 168 µW , which is a difference of two orders
of magnitude. Therefore, while in some cases their contribution to overall energy consumption
might be negligible, in other cases it might even become the limiting factor.

Furthermore, some physical processes variate smoothly along time and just require some periodic
monitoring, while other physical processes require continuous measurements, with the consequent
implications in energy consumption.

2.1.2 Transceiver

Wireless connectivity is provided by the transceiver. The contribution of the transceiver to power
and energy consumption is typically a dominant factor.

Most transceivers have different operation modes established. Hence, the microcontroller through
application or protocol stacks, can control whether the transceiver listens, sends a message or just
stays idle or in an ultra-low power sleep mode.

Correct selection and tuning of a transceiver must take into account the network topology and
the environment. Transmission power is directly related to the electrical power consumed when
sending a message. Therefore, choosing an appropriate transceiver with appropriate configuration

6

Energy-Aware Networked Embedded Systems Design

and antenna has a great impact on power consumption. An excessive transmission power implies
a waste of energy, but also a very scarce transmission power has negative consequences for energy
consumption, as it might lead to retransmissions or additional hops for the message to reach the
destination.

2.1.3 Microcontroller

Microcontrollers are the other dominant factor in energy consumption. The election of a suitable
microcontroller must consider power consumption but also capability and performance, which
depending on the application might greatly differ.

In recent years, some multi-processor architectures have been proposed for energy awareness.
The most powerful processor is only used for most demanding tasks. If tasks are very simple,
the powerful and resource demanding processor can remain in sleep mode and the tasks can be
executed in an ASIC, FPGA or even another small processor with lower power consumption.

2.1.4 Energy Sources

The first step on the way to energy optimization is to analyse the energy restriction problems.
Energy restrictions manifest in different ways depending on the nature of the energy sources.
Therefore, although our energy optimization is focused strictly on the consumption side, it is nec-
essary to introduce the different energy sources used in embedded systems in order to appropriately
optimize the energy behaviour of the consumer parts.

There are mainly three forms of energy sources that typically supply power to the embedded
devices: power grid, batteries and energy harvesters.

2.1.4.1 Power Grid

In some cases, the embedded systems have a power supply directly connected to the power grid.
In these cases there is energy availability all the time, except from exceptional blackouts. Energy
constraints are not so critical for the correct operation of the devices. However, the energy
consumed from the power grid involves a cost all along the lifetime of the system. This energy
cost cannot be neglected.

On one hand, the energy cost is a competitive advantage that may determine the success of the
product.

On the other hand, embedded systems tend to be included in every object around as, as the
Internet-of-Things concept suggests. In this context, in which every single object is a potential
energy consumer, the energy consumption of embedded systems, even in stand-by state, becomes
a real sustainability problem.

7

Energy-Aware Networked Embedded Systems Design

2.1.4.2 Batteries

Battery-powered nodes have a limited energy budget. If batteries can be replaced, battery lifetime
affects the maintenance costs. However, in many cases, a battery replacement is not even possible
and the lifetime of the whole system depends on the time until batteries are depleted.

Batteries are continuously improving. However, in many cases their efficiency is not sufficient and
the cost is too high. Many wireless devices require small size and light weight. In those devices,
the battery is the subsystem that most severely contributes to both size and weight. And in spite
of that fact, the energy supplied is often not enough.

Moreover, batteries have a limited lifetime, and a non-linear response. They provide a voltage
level, which becomes lower along both time and usage, until depletion, which occurs when the
provided level is not enough to supply the system.

Furthermore, environmental conditions, such as temperature, severely affect the performance of
the batteries.

2.1.4.3 Energy Harvesters

The use of energy scavengers is conditioned by the application and environment. On one hand,
there is the energy that can potentially be gathered by the scavenger. Nodes in direct sun exposure,
subjected to movement, vibrations, etc. or to temperature gradient are able to gather energy from
their environment. On the other hand, power requirements shall be low, without peaks which may
be very difficult to fulfil. For energy scavengers, it is relatively easy to fulfil a continuous demand
of energy, rather than a sudden power peak.

Unlike batteries, there is no lifetime limit for energy scavenging, which is possible as long as the
system remains undamaged. However, the energy available is not usually enough tu fulfil system
demands.

2.2 The Impact of Network and Cyber-Physical Interaction

This dissertation is framed within networked embedded systems. Nowadays, significant applica-
tions of those are, for instance, Wireless Sensor Networks (WSN) and Cyber-Physical Systems
(CPS).

Wireless Sensor Networks (WSN), are spatially distributed sensors which capture some physical
information from the environment and transmit it to a main location which further processes this
data.

Cyber-Physical Systems are integration of computational and physical processes [Lee08a]. The in-
terfaces between the physical environment and computational devices are both sensors and actua-
tors. While the main goal in WSNs is to gather information about the environment, cyber-physical
systems involve more intelligence in the network so that the system itself reacts to environment
changes and is able to perform some actuation based on those changes, closing the feedback loop
between the physical environment and the computational system.

Both application paradigms add new levels of complexity to the already complex energy estimation
problem. In both cases, the network and the environment become an actual part of the system.

8

Energy-Aware Networked Embedded Systems Design

Figure 2.2 illustrates this interaction between nodes, environment and network. The behaviour of
the system without taking into account the physical behaviour of the network and the environment,
becomes unpredictable.

Network	

Node	

Environment	

Figure 2.2: The network and the environment are part of the system and influence the energy consump-
tion.

For instance, a wireless sensor node might have to report more frequently the sensed values if the
physical quantity they sense is more variable and volatile. Sometimes the amount of information
that has to be gathered by the sensor generates a lot of data that has to be transmitted, which
is a very costly task. With energy simulation, the specific scenario can be considered, taking into
account the physical process variability, the energy required for communication and the energy
required for hardware and software operation. With all these elements, different solutions can
be explored, and the best system architecture can be selected. Sometimes, some intelligence in
the nodes can reduce the data to be transmitted. A more powerful intermediate node could
also improve the efficiency. However, the early evaluation of the real advantages of this design
alternatives is really necessary in order to avoid wasting too much resources in some designs that
ultimately will bring no real advantage.

The network also has a tremendous impact in energy consumption. The distance between the
sensor node and the sink node or the destination node that collects the measurements, determines
the necessary transmitting power of the transceiver, which is directly related with the required
power consumption. The communication protocol has influence on energy consumption as well. A
contention based protocol reduces latency and does not require synchronization, however they are
prompt to collisions. A scheduled based MAC protocol could avoid collisions but requires some
overhead to synchronize the nodes. The best option can only be selected after a careful scenario
analysis which includes a realistic network scenario and an accurate energy consumption model
of all the nodes. Besides, the best option for a particular node is not necessarily the best option
for all the nodes in the network.

Furthermore, sometimes the nodes are not close enough to the sink node and multi-hop routing
is required. The complexity of energy optimization for a multi-hop routing scenario is extremely
complex. Listening for incoming communication is a very costly operation in terms of energy
consumption. Therefore, sophisticated solutions have to be evaluated in order to wisely select
when to listen and when to go to sleep mode.

Therefore, for an accurate estimation of the energy consumption, not only the hardware/software
platform has to be considered, but the network and the environmental conditions as well.

In Model-Based Design methodology accurate physical environment models are required for de-
sign and optimization and also for validation and verification through Hardware-in-the-Loop tech-
niques.

9

Energy-Aware Networked Embedded Systems Design

As this work focuses on energy estimation, there is no need for very accurate physical models.
Physical models are required as long as they condition the system behaviour and, consequently,
its energy consumption. However, validating the cyber-physical aspect of the system is out of
scope.

2.3 Ultra-Low Power and Energy Aware Embedded Systems De-
sign

Power and energy are terms that are very often interchangeable. Energy is the power consumed
along time. Therefore, when power consumption remains stable, with no significant fluctuation,
energy reduction can be inferred from power reduction. However, in many cases, and specially
when using power management techniques, power consumption may change drastically along
time. In these cases, interchanging power and energy terms would be a serious mistake. Using
the appropriate term is therefore very important to avoid confusion.

In Figure 2.3, the power consumption of two different devices is shown. The device represented
in red reaches higher power consumption values than the device depicted in blue. Nonetheless, it
is also visually observable that the device represented by the red power function has lower energy
consumption.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

Time(s)

P
ow

er
(m

W
)

Figure 2.3: Power consumption of two different systems

In embedded systems, power restrictions have to be distinguished from energy restrictions. Al-
though low power and low energy consumption are always desirable, they do not always have
the same relevance. For instance, energy efficiency may be a dominant hard requirement while
achieving the required power efficiency may not need a significant effort.

Thus, although energy optimization and power optimization are usually connected, they are sep-
arated problems that require different solutions. In general, this distinction leads to two different
concepts: energy awareness and ultra-low power design. Both concepts must be clarified before
going into further details [PR02].

2.3.1 Ultra-low Power Design

In every electronic system, there is always a maximum power that can be drawn by its power
supply. The power supplies of the embedded systems that typically integrates Wireless Sensor
Networks are very restricted, and therefore the maximum power drawn is very low.

10

Energy-Aware Networked Embedded Systems Design

For the system to work properly, overall power consumption must be kept under the maximum.
This may include using a power management system which controls that not all subdevices are
active at the same time. The strategies to keep power consumption below a threshold are part
of so called ultra-low power design. Failing at ultra-low power design may lead to system lack of
reliability and malfunction, e.g. brown-out resets.

In distributed systems, there is an additional complexity level that must be handled by design-
ers. When partitioning the distributed system into different machines, it is crucial to distribute
processing workload and system intelligence so that the power supply units of the corresponding
embedded systems are sufficient to carry out the assigned tasks.

2.3.2 Energy Aware Design

Energy aware design consists on trying to achieve the best possible management of a limited
energy budget. Limitations on energy budget are typically given by the lifetime of a battery.

Energy aware design becomes critical in battery powered devices which have to run for long
periods of time. This is typical in mobile or ubiquitous systems, where connection to the grid is
not available.

In addition, although energy harvesting permits gathering energy from the environment, which
can be theoretically done for indefinite time, the flow of energy consumption must not be greater
than the flow of energy scavenging, and therefore, energy awareness is required too, in order to
meet the performance requirements.

Furthermore, energy awareness concept has to be extended for distributed systems. Distributed
systems are typically fault-tolerant and redundant. Therefore, a node with depleted batteries
might have no impact in the overall distributed system operation and performance. On the other
hand, the behaviour that extends the lifetime of a single node, might reduce the lifetime of the
distributed system. As a result, a node must not only be aware of the energy it consumes during
its own activity, but also of the impact its own activity has in other nodes of the distributed
system. For instance, in a multi-hop network, the frequency with which a node reports a sensed
value not only conditions its lifetime as a sender node, but also the lifetime of the transit nodes
that forwards the message to the sink node.

Consequently, the problem of energy awareness acquires a new dimension when applied to dis-
tributed systems. Local system optimization is insufficient and might even be detrimental when
trying to optimize a distributed system. New techniques have to be developed to address this new
difficulties.

2.4 Power Consumption Components

Power consumed by electronic devices can be divided into a dynamic power component dissipated
during switching due to load capacitance, and a static power consumption component, which is
consumed by leakage currents:

P = Pdyn + Psta (2.1)

11

Energy-Aware Networked Embedded Systems Design

Equation 2.1 shows these two components: static or Psta and dynamic Pdyn. The fundamental
differences between both components and the different implications they have in energy efficiency
deserves some further explanation and analysis.

2.4.1 Dynamic Power Consumption

Dynamic power consumption is defined by Equation 2.2, where A is the activity factor, C is the
capacitance loaded when switching, V is the supply voltage and f is the clock frequency. The
activity factor (A) represents the fraction of gates that actually switch.

Pdyn = ACV 2f (2.2)

Dynamic power consumption is absolutely related to circuit activity. Examining the equation,
dynamic power is reduced by:

• Technology improvements, with lower capacitances and lower supply voltages.

• Voltage and frequency scaling, with the consequent impact in system performance.

• Optimization to reduce unnecessary switching, which works for specific logic but becomes
infeasible with complexity and unpredictability.

Although there are means to improve efficiency of dynamic power consumption which, eventually,
will improve energy efficiency, dynamic power is directly related with system performance, i.e. the
energy spent in dynamic power is energy spent for some functionality. Whether that functionality
is really needed or not has to be decided by the high level designer.

2.4.2 Static Power Consumption

Static power consumption is calculated according to Equation 2.3, where V is the supply voltage
and Ileak is the sum of all leakage currents in the circuit.

Psta = V Ileak (2.3)

Unlike dynamic power consumption, static power is not related to system performance. Static
power is consumed even when the circuit performs no activity at all. In these cases, energy
consumption can be theoretically reduced to zero by switching off the voltage supply to these
circuits. However, while switching off the supply voltage, the state of this circuits is also lost,
which might be undesired. State can however be retained by using additional flip-flops.

Static power consumption used to be negligible in comparison with dynamic power consump-
tion. However, technology advancements have reverted this tendency [KAB+03] and static power
consumption component is becoming a major contribution, as it can be seen in Figure 2.4.

12

Energy-Aware Networked Embedded Systems Design

0

50

100

150

200

250

300

G
at
e
le
ng

th

1990 1995 2000 2005 2010 2015 2020
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Year

N
or
m
al
iz
ed

po
w
er

di
ss
ip
at
io
n

Gate length
Dynamic Power
Static Power

Figure 2.4: Static and dynamic power dissipation along years and gate length [KAB+03]

2.4.3 Static vs Dynamic Considerations

If we consider that a system has to perform, sooner or later, some specific tasks, reducing power
consumption at the expense of performance will not reduce energy consumption.

According to ultra-low power and energy aware design concepts, discussed in Section 2.3, reducing
power consumption at the expense of system performance, is a valid approach for ultra-low power
systems design, as it will keep power consumption levels below the maximum. However, this would
not be acceptable from an energy aware point of view. Reducing performance would increase the
time the circuit is supplied with voltage, and because of static power consumption, the energy
consumption would increase as well.

Hence, in these circumstances, optimization in an energy aware scenario, requires reducing the
time in which independently voltage supplied circuit parts are switched on. This can be improved
by using the so called "Run Fast then Stop" power management policy, and by increasing the
control over the voltage supply of different parts of the system. Within the same System-on- Chip,
this is currently done by power gating different defined power domains.

2.4.4 Power Consumption Proportionality

The first strategy that arises when looking for energy awareness is to use the most power efficient
components. However, in most cases energy inefficiency does not lie on the energy spent while
performing some task.

Most devices reach their maximum energy efficiency while they are fully utilized. On contrast,
most energy inefficiencies can be found when the device is partially utilized or idle. Therefore,
rather than optimizing an already ultra-low power system, energy awareness is mostly better

13

Energy-Aware Networked Embedded Systems Design

0 20 40 60 80 100
0

20

40

60

80

100

Utilization(%)

P
ow

er
(%

)
Power

Efficiency

Figure 2.5: Power efficiency and relation between power consumption and system utilization.

achieved by improving the power-proportionality of the system and by combining this with in-
telligent power management policies, so that the system consumes energy while performing some
tasks, but sleeps in very low power modes when there is no task to be performed.

Figure 2.5 shows the power/utilization ratio of a system (in red) and its power efficiency (in blue).
High efficiency is only achieved when the system is almost at full capacity. However, when the
system utilization is very low, power consumption is still over 60% of its maximum power.

Figure 2.6: System energy efficiency can be represented as an inverted pyramid.

To achieve power proportionality, the system must integrate a power management system with
enough granularity to switch off all the subsystems that are not being used. System architecture
is directly involved here. Having different subsystems for different tasks increases the granularity,
and therefore, even when the sum of all these subsystems might be more power consuming, being
able to switch them off becomes more energy efficient.

It can be observed, that this behavior is analogous to static power consumption of electronic
circuits, discussed in Section 2.4.2, but at a different level of abstraction. This evaluation of
unused resources has therefore to be done at all possible levels.

14

Energy-Aware Networked Embedded Systems Design

2.5 High Level Energy Optimization

Energy efficiency is a cross layer system requirement. Every system design layer has its piece
of responsibility in the global energy consumption of the system. The lower layers provide the
resources to the higher layers that can then be as efficient as the layers below permit them to be.
The whole schema can be seen as an inverted pyramid, shown in Figure 2.6.

Figure 2.7: Resulting inverted pyramid after ideal hardware energy optimization.

In the state-of-the-art, as the analysis performed in Chapter 3, will reveal that most efforts in
improving energy efficiency correspond to power optimization at the hardware level. However, the
hardware layer is only partially responsible of the overall energy consumption, as it is represented
in Figure 2.7. Even with the optimum hardware, if the design layers above it are not efficient,
the overall efficiency of the system would be very poor. For instance, a optimum hardware design
is useless if the software on top of it makes use of resources with no judgement. And the same
happens with the network and distribution layer. A node might be very efficiently designed, but
if a poor arrangement and decisions in routing algorithms lead to routing loops, batteries will
deplete very fast and the system lifetime will end sooner than expected.

Figure 2.8: Ideal cross-layer energy optimization.

In recent years, specially with new multi-processor technologies and the arrival of smart-phones
and other technologies that require energy awareness but also very high system performance,

15

Energy-Aware Networked Embedded Systems Design

many improvements have been made at the architectural level. However, in a distributed sys-
tem integrated by spatially distributed embedded systems, the room for improvements in design
layers above the hardware layers, either at the component level or the architectural level, is still
considerable. Figure 2.8 depicts the ideal energy optimization of these systems.

The state-of-the-art analysis also revealed that there is a lack of metrics and semantics to provide
energy consumption information at higher levels of abstraction. This could be the reason why
high level energy optimization is still mostly unexplored and unexploited.

In next chapters, the approach and implementation of semantic infrastructure to provide high
level energy awareness will be presented and thoroughly described.

16

3 Related Work

Relevance of embedded systems has substantially grown in recent years. The development of
wireless technologies, the wide range of potential applications and the challenges to overcome
have attracted the attention of researchers in the last decade. Research has been performed
within different application paradigms, such as Wireless Sensor Networks, Internet of Things,
Ambient Intelligence or Cyber-Physical Systems.

Together with all these application paradigms, plenty of design methodologies and modelling
approaches have been proposed, in an attempt to overcome all the new constraints encountered
by this kind of systems.

This chapter aims to present the situation and currently acknowledged challenges of design and
modelling of cyber-physical and wireless embedded systems. As already discussed in Chapter 1,
energy simulation in cyber-physical distributed systems requires considering all system levels, from
hardware to network, and therefore the very different approaches to holistic system modelling are
introduced. From them, most significant simulators are highlighted and discussed, pointing out
their strengths and weaknesses, which typically vary depending on their use cases.

Hence, the first question to be answered is what kind of modelling approach might be more suitable
to undertake the simulation of energy in distributed cyber-physical embedded systems fulfilling
the required multi-domain and multi-level modelling.

After finding out which modelling approach and implementation option best fits the purpose of
this research, it is necessary to present and evaluate the state-of-the-art in power and energy
simulation, taking into account not only the different mechanisms to account power consumption,
but also considering how that information can be processed or appropriately encapsulated in order
to provide energy awareness at all possible optimization levels. This analysis will enable a better
understanding of the current status and specific challenges of the high level energy consumption
optimization problem.

3.1 Design and Modelling Challenges

The development of wireless communications transformed the connectivity of embedded systems.
Embedded systems started communicating forming networks. Moreover, the advent of highly
interactive embedded systems leads to a completely new approach to the design problem.

17

Related Work

First wireless sensor networks had no real interaction with the environment. They were not
real cyber-physical systems. Although sensors provided a communication channel between the
physical world and the computational system, the system did not have the capability of affecting
the environment. However, these systems already supposed a challenge from the modelling point
of view, because the environmental conditions already had an impact in the system performance.

In Cyber-Physical Systems the interaction fully determines the system behaviour, and therefore,
the environmental conditions have to be considered as part of the system itself. As a result, the
most basic assumptions have to be revisited for these highly interactive cases, starting from the
definition of system itself. The convergence of hardware, software, network and physical processes
into a single system settles a completely new field of study.

Figure 3.1 represents a generic cyber-physical system consisting of different embedded systems
devices. The figure shows the heterogeneity of the hardware/software platforms, which might
differ in hardware, but also in software, as they have to be highly optimized in order to achieve
optimum energy consumption. Furthermore, high interactivity can also be observed, as every
node has wireless connectivity with other nodes in the network and every node has inputs and
outputs to its physical environment.

Figure 3.1: Distributed cyber-physical embedded systems run over different optimized hardware/software
platforms and are highly interactive with both their physical environment and neighbour
nodes.

Design and modelling challenges have been enumerated and discussed in several articles. However,
there are still no widely accepted solutions.

3.1.1 Design Challenges

Design challenges start with the new requirements for cyber-physical embedded systems, which
are significantly different from those of traditional embedded systems. Edward A. Lee already
discusses the need of improving reliability and predictability when dealing with the physical world,
as well as the problem of having timing deadlines [Lee08b].

18

Related Work

Another crucial challenge, which has been addressed has already been described for Mobile Ad
hoc Networks (MANETs), is the need to perform cross-layer optimization, in order to fulfil some
requirements, such as those related to security or energy management [CMTG04].

Hence, main design challenges can be summarized in the following key points:

• Predictability: Embedded systems have been traditionally computer systems included in
larger systems for a dedicated and specific task. The specificity and the restricted interaction
possibilities of this kind of systems have made them traditionally very predictable and
reliable. On contrast, in Cyber- Physical Systems, a lot of external actors are interacting
with the system and, as a consequence, the aforementioned predictability is lost.

• Real Time Constraints: The different actors that converge in Cyber- Physical Systems
interact among them in a concurrent way, which in practice provides the system with real-
time computing constraints and characteristics. The system must react to external stimuli
within a certain deadline, otherwise the response might become useless.

• Dependability and Resilience: Complexity of this kind of systems, with many spatially
distributed components, some of them even inaccessible, that might need to operate along
several years, makes of dependability and resilience a major challenge.

• Cross-Layer Requirements: Some specific requirements cannot be addressed within one
single abstraction layer. However, considering all abstraction layers at once in such complex
systems becomes a challenging task. Major examples are:

– Security: Security in such open systems, affected by external stimuli, is a significant
challenge itself. Security must be planned considering all layers of abstraction. It
would be useless, for instance, to have very secure wireless communication, with the
consequent resources requirements, if the hardware is exposed and easy to access.

– Energy Consumption: An energy efficient system would require efficient hardware,
software and communication. If any of this fails, the whole energy efficiency of the
system will be compromised. This is the central topic of this thesis and therefore this
work will focus on the energy consumption cross-layer problem characterization and
solution. However, the energy problem is strongly related to other challenges, such as
dependability or real-time constraints.

3.1.2 The Modelling Challenge

Cyber-Physical Systems do not only present new challenges from a design perspective. New design
challenges are also translated into a challenging Cyber- Physical Systems modelling approach,
which has also been already extensively discussed.

For instance, the importance of model-based design and model driven development has been
pointed out, as well as how cyber-physical embedded systems modelling demands much more
than current modelling languages and frameworks can offer [DLV12].

According to the tools used for developing the simulations, distributed cyber-physical embedded
systems are the convergence of several modelling areas: digital and analogue hardware, software,
network and communication, and physical processes.

19

Related Work

There are plenty of tools available for all areas. For the first cyber-physical applications, in which
the function of additional domains are very rudimentary, their effect could even be modelled using
the available tools. However, complex systems with great interaction among the different domains
require the combination of different modelling paradigms.

A combined model could be achieved by using different tools independently. Nevertheless, to
evaluate combined effects synchronization and simulation coupling is required. Moreover, for a
real optimization of the whole system, the interdependencies between all areas have to be explored,
and an integrated solution would be desirable.

The need of simulating models of very different natures concurrently is a major challenge from
the modelling point of view, not only in the practical implementation of simulators but also from
a modelling theory perspective.

In spite of the complexity of modelling these kind of systems, models are still crucial for cross-layer
optimization, like energy optimization, which is the focus of this thesis.

3.2 Modelling and Simulation of Networked Embedded Systems

In the last decade, plenty of simulators for networked embedded systems have been developed.
The use of simulation in this field has been a constant due to the uncertainty faced by design-
ers regarding system’s feasibility or recreation of the environmental conditions the system will
encounter once after deployment.

Networked embedded systems are the convergence of different technologies. As a consequence,
simulation has been approached from different perspectives. Most of them can be encompassed
in the following three main groups:

1. Network simulators: The first steps of networked embedded systems were driven by the
development of the network protocols that would make possible the communication among
the devices. For this reason, some of the first networked embedded systems simulators were
extensions of network simulators.

2. Virtual Prototyping: Virtual prototyping is common practice in today’s embedded sys-
tems development. Using modelling and simulation, a virtual platform is created that can
be used to enable hardware and software co-design, so that embedded software development
process can start before the hardware is manufactured. For networked embedded systems,
the virtual prototyping approach has to be enhanced to consider network communication
and physical processes that play a crucial role in system behaviour.

3. Multi-Domain Simulation: Finally, the third group of simulators are those motivated by
the necessity of coupling different modelling paradigms in order to simulate heterogeneous
and cyber-physical systems.

All three approaches will be analysed, through some examples, in the following subsections. Figure
3.2 summarizes the capabilities of the different simulators and frameworks mentioned next.

20

Related Work

Virtual	 	
Prototype	

Cycle	 	
Accuracy	

Opera2ng	
System	

Func2onal	

Network	

Physical	 Processes	

SystemC	
TLM	

Modelica	 Ptolemy	 II	 MATLAB	
Simulink	

AMS	

C++	

ns-‐2	
SensorSim	
SENSE	
PAWiS	 TOSSIM	

EmSim	

	
	
	
	
	
COOJA	

ATEMU	
AVRORA	

	
	
	
	
	
	
MSPsim	

IDEA1	

Prowler	 VisualSense	

FMI	

Viptos	

VisualSense	

Figure 3.2: Summary of simulators and frameworks for networked embedded systems

3.2.1 Network Simulators

In networked embedded systems, the network domain is one of the most relevant parts of the
simulation. Network domain is also one of the domains that have been traditionally modelled and
simulated separately from hardware/software because of the wide repertoire of already existing
network simulators. However, in the last decade, plenty of simulators for networked embedded
systems have been developed.

The need for an integrated simulation solution, for instance in Wireless Sensor Networks (WSN),
contributed to the proliferation of simulators which combined network and hardware/software
models. However, the approaches where varied, depending on what kind of simulation served
as the starting point. Haase et al. [HMD11] provide a full overview of different wireless sensor
networks simulators, as well as some extensions focused on power estimation.

Some of the first distributed embedded systems simulators were motivated by the need of a network
model to explore new applications and algorithms. For that purpose, network simulators where
used, following a top-down approach, starting from the network high-level model, which gradually
incorporated more and more detailed models which provided the required information.

The first approach to embedded systems networks simulation were extensions to model ad-hoc mo-
bile networks, being among the most representatives those developed in Monarch project [Joh99]
or GloMoSim [ZBG98] and its commercial version QualNet [Teca]. These extensions evolved into
more specific tools, designed, for instance, for WSN applications.

These simulators started mainly as an evolution of general purpose network simulators, such as
ns-2, although specific wireless sensor network simulators were developed later.

21

Related Work

3.2.1.1 General Network Simulators

ns-2 [Ins] was a very popular free discrete event network simulator based on REAL simulator
[Kes88]. However, ns-2 was not optimized for wireless ad-hoc networks. It suffered from severe
scalability problems, as WSNs are usually large networks, reaching even more than thousand
nodes. For instance, whenever a node sent a message, all the other simulated nodes received
the signal, even when the signal strength was so low that the influence in communication was
negligible: neither can these signals be received by those nodes nor contribute to the received
noise.

In order to overcome some of the ns-2 constraints, some improvements started to appear. For
instance, a truncation algorithm was proposed by Naoumov et al. [NG03], which consisted in
preventing the simulator from modelling signal reception in those nodes that were too far away,
making the ns-2 simulation much more scalable.

The first documented sensor networks simulator, SensorSim [PSS00], was based on the ns-2
simulation core. Due to the high level abstraction of ns-2, SensorSim added specific models
required for sensor networks:

• Power models: SensorSim was already concerned about power consumption as a restrict-
ing factor for WSNs deployment. Therefore, it added power consumption models for the
hardware components.

• Software- and Hardware-in-the-Loop: ns-2 applications are mostly generic traffic gen-
erators. SensorSim permitted simulating real applications as well as interacting with real
nodes (hardware-in-the-loop).

• Graphical User Interface (GUI)

Unfortunately SensorSim was soon discontinued and is not available any more.

While independent from ns-2 and not compatible, there is a new simulator intended to be a new
improved version and eventual replacement of ns-2, named ns-3 [HRFR06]. In addition, the most
important commercial general network simulator isOPNET [Tecb], which also includes a wireless
library.

The best advantage of ns-2, ns-3 and OPNET tools is the amount of protocol implementations
which already exist. Whole protocol stacks can be reused in new projects.

However, in distributed embedded systems, network simulation is only a small part of the whole
simulation efforts. Infrastructure for easy, fast and accurate modelling of hardware components
is crucial too. The lack of such an infrastructure restricts these simulators to those applications
that require only high functional or behavioural level models of the hardware platform.

Difficulty to simulate detailed hardware models also thwarts accurate power and energy simulation.

22

Related Work

3.2.1.2 Specific Mobile Ad hoc Networks Simulators

General purpose network simulators presented scalability problems for large wireless and mobile
ad-hoc networks. Moreover, they lacked system models for simulating sensor nodes. To overcome
these deficiencies, specific ad-hoc network simulators were developed, which typically included
some specific models for radio propagation, sensors and hardware systems, as well as interfaces
for hardware-in-the-loop simulation.

Most of them followed a similar approach. They were built on top of component- based frameworks
and made use of event-driven simulation. Component-based design is more suitable for network
simulations, as all interaction is captured by interfaces, so that interdependence is restricted. As
a result, components are more reusable and extensible than ordinary objects.

The first example of this kind of simulators is J-Sim, previously known as JavaSim, which is
still a general purpose network simulator and closely related to ns-2, but it is already component-
based and has specific extensions to model radio propagation, hardware systems and interfaces
for network emulation [SHK+06]. It is developed in Java and based on the SensorSim simulation
framework described before (see Section 3.2.1.1).

The sensor simulator part of J-Sim differentiates between three types of nodes:

1. Sensor nodes: Gather the information from the environment.

2. Target nodes: Pre-process and encapsulate the information into a message.

3. Sink Nodes: Process and consume the information.

Power models are provided for both energy sources (e.g. batteries) and energy-consuming com-
ponents (e.g. transceiver). Energy consuming components are modelled as finite state machines
based on some standard operation modes, which are the same for all subsystems. Another key
feature of J-Sim is that it allows simulating mobile nodes. It includes several propagation models
to estimate signal power loss. Nevertheless, it does not model noise.

J-Sim supports network emulation, where protocols can be tested in a real environment, while
other components are executed in a virtual environment, i.e. using a testbed with real nodes in
laboratory to execute some tasks while the rest is executed in the simulation. This hardware-in-
the-loop is done in both top-down and bottom-up directions. In the former case, a socket layer
is provided which replicates the interfaces of the actual operating system, so that the application
communicates with the virtual environment in the same way it communicates with the operating
system. In the latter case, real packets are intercepted and translated into J-Sim simulated packets.

J-Sim, is still too generic and difficult to use. As an attempt to compensate this difficulty, a
module library has been developed. However, in spite of having components for power and sensor
modelling, the only wireless MAC protocol distributed with J-Sim is IEEE 802.11, while this is not
even the main option in WSNs, where protocols with less power requirements, like IEEE 802.15.4,
are of great importance.

SENSE (SEnsor Network Simulator and Emulator) [CBP+05], is built on top of COST
(Component Oriented Simulation Toolkit) [CS02]. COST is a component-based general purpose
discrete event simulator.

23

Related Work

In order to improve performance, SENSE exchanges the pointer to a message instead of the actual
message. This way, all nodes receive the same message instead of one copy, and much less message
allocation is required. The message is not supposed to be modified during a transmission (except
from noise, delay and distortion, which are modelled separately), so that sharing the same message
is safe. The only problem is deallocation, which is achieved through a reference counter which
tracks the number of components referencing the message. If the counter reaches 0, the message
is deleted.

SENSE includes a rudimentary propagation model that considers two options:

1. A message is fully transmitted (without errors) to all the nodes within the stipulated range.

2. A range is defined in which the 100% of the messages are always fully received. Outside this
range, the probability of receiving the message decreases linearly with distance.

There are also predefined components for battery models, applications, routing algorithms and
MAC protocols [PCN]. However, as in J-Sim, the MAC protocol included is IEEE 802.11, which
is not the most suitable standard for power aware sensor networks.

While more focused in WSN than other general purpose simulators, and in spite of being easier
to use, SENSE still has some of the most significant deficiencies found in J-Sim.

• Radio propagation models are very rudimentary and do not include models for noise and
interference.

• Module library does not include implementations of common protocol and standards in
WSN, such as IEEE 802.15.4.

These specific problems are addressed in PAWiS (Power Aware Wireless Sensors) [MGH05].
OMNeT++ is a component-based discrete event simulation library for building network simula-
tors. PAWiS is one of those simulators, focused in power aware WSNs.

The PAWiS project consists of several elements: a framework, a module library and a visualiza-
tion tool. The PAWiS Framework models the physical layer and includes a propagation model.
This propagation model simulates attenuation due to distance as well as interferences and noise.
Dynamics of the network can be simulated at runtime through Lua scripting language [IFF96].

The module library consists of implementations of specific devices and protocols using the frame-
work. It includes not only simple examples but specific power aware algorithms, such as S-MAC
[YHE02], CSMA-MPS [MB04], and hardware models, like Chipcon low power transceiver CC2420
[Chi07].

Simulation’s graphical user interface (GUI) is the one provided by OMNeT++, which permits the
inspection of the different elements at runtime, but also makes the simulation very slow. Anyhow,
GUI can be simplified or even deactivated for higher speed simulations.

PAWiS includes a visualization tool that renders power consumption of the different hardware
subsystems. Power consumption models are based on finite state machines. CPU execution time
estimation is left in hands of the system designer, which provides some parameters about his
algorithms, which then are computed to get the estimation of the number of CPU cycles required

24

Related Work

to execute them. However, there is also an extension which provides time annotation, increasing
the accuracy of the application simulation [MHSM10].

PAWiS Framework is not an extension of OMNeT++, as a general purpose simulator, but takes
advantage of OMNeT++ core classes, such as modules, message passing infrastructure and discrete
event simulation kernel, to build a specific WSN simulator. The module library includes simple
implementations with basic functionality. This makes PAWiS easy to use, as the user can always
start with a basic working simulation and progressively extend it.

However, PAWiS had some inefficiencies that restricted its usage for accurate networked embedded
systems simulation:

• Unlike SENSE, message transmission is not modeled as a pointer. Messages need to be
replicated for each peer to peer transmission, which in dense networks leads to huge memory
allocation.

• OMNeT++ core is designed for network modelling and runs into granularity problems when
using it for hardware modelling.

In general, network simulators could be used efficiently to design and evaluate the network as-
pects of networked embedded systems. However, accurate simulation of hardware components is
extremely difficult without specific semantics and support of hardware modelling languages. This
infrastructure is provided by virtual prototyping tools, which are evaluated next.

3.2.2 Virtual Prototyping

Embedded systems are conceived, by definition, with a specific application in mind. Considering
the application already at design time enables a level of optimization which is not possible oth-
erwise. Therefore, embedded systems are typically used for those applications that demand more
optimization.

Software has to be developed for its correspondent hardware platform. However, as the hardware
platform is designed and optimized for a specific purpose, it is not available until the whole
hardware design and manufacturing process is finished.

However, the time-to-market requirements do not permit developing software and hardware se-
quentially. Both hardware and software must be developed in parallel. In order to improve
time-to-market and productivity and reduce the risks, the use of virtual prototypes is a com-
mon practice in embedded systems design. As software and hardware are typically developed by
different teams, simulated prototypes are intended to provide the awareness required to increase
optimization and to uncover any failure that would otherwise arise at the end of the design process,
during hardware and software integration phase.

As depicted in Figure 3.3, hardware and software design processes can remain closer by using
virtual prototypes, which facilitates the integration phase. Although creating the virtual models
requires a big effort, these virtual models limit the uncertainties in the integration process, which
might cost even more time and effort.

Therefore, virtual prototypes and model-based design methodologies are common practice in em-
bedded systems design, and, subsequently, they are widely covered in literature [Ern98] [VNPJ96]
[SRMB98].

25

Related Work

Figure 3.3: Using virtual prototypes, permits closing the gap between hardware and software design
processes.

In Networked Embedded Systems, the specific embedded systems to be used are chosen or even
designed at the same time as the whole distributed system. This fact restricts the usability
of network simulators, as discussed in previous section. However, virtual prototypes of isolated
nodes are not sufficient to design and optimize Networked Embedded Systems. In order to test the
software appropriately and to validate the hardware requirements, the network and the influence
of the physical environment have to be modelled as well.

Thus, there are different options for virtual prototyping of sensor networks, with some additional
extensions, i.e. simulation models, specially network. There are mainly two approaches: some are
conceived as operating systems simulation platforms, while others are hardware emulators.

3.2.2.1 Operating Systems Emulation

With the development of different hardware platforms and operating systems, it became necessary
to test applications. However, migrating the code from simulations to the real node requires
reprogramming and adapting the code to the final target hardware platform.

When specific embedded operating systems started to appear, new simulators associated to them
were developed. The main focus of these simulators was to emulate those operating systems in an
ordinary PC, so that final real-code applications could be tested with no need of the real hardware
platform.

In order to test distributed applications, some of these emulators were extended so that other
aspects, such as network, but also power consumption, could also be estimated using them.

TinyOS

One of the most renowned operating systems for wireless sensor nodes is TinyOS [HSW+00].
TOSSIM [LLWC03] is a simulator for it, and it is included in the TinyOS distribution package.

The main purpose of TOSSIM is to develop and test TinyOS applications in a simulation envi-
ronment without installing them in the actual node hardware. Those applications are written in
nesC, an extension of C programming language specially designed for sensor networks [GLB+03].
TOSSIM permits simulating a network of thousand of nodes running the same application.

26

Related Work

In order to be able to simulate many nodes efficiently, they are all simulated in the same process.
During compilation, variables are stored in arrays, where each element belongs to a specific node.
Simulations of many nodes are therefore feasible without having to execute many virtual machines.
However, there is the drawback of not being able to simulate heterogeneous networks, with different
node architectures, operating systems or applications.

Radio propagation environment is modelled as a statistical process. TOSSIM includes an ideal
environment model and a directed graph of bit error probabilities. The simplicity of the radio
model increases scalability, but details about network behaviour are lost.

TOSSIM does not capture energy consumption itself. However, there are extensions for that pur-
pose, such as PowerTOSSIM for TinyOS v1.x [SHC+04] and PowerTOSSIM 2 or PowerTOSSIMz
for TinyOS v2.x [PVS+08] [PCC+08].

It is very common in distributed cyber-physical systems, to have different applications in different
nodes. It is part of the system optimization to reduce the application as much as possible, and
therefore, specificity is usually preferred over flexibility. As a result, not being able to simulate
different applications running concurrently on different nodes is a significant restriction for using
TOSSIM for modelling the whole networked system. TinyOS Scalable Simulation Frame-
work (TOSSF) [PN02], is a TinyOS simulator, that broadens TOSSIM scope beyond application
verification, increasing its scalability and improving the environmental models.

TOSSF is based on two previous mobile ad-hoc networks simulation tools: Dartmouth Scalable
Simulation Framework (DaSSF) [LN01] and Simulation of Wireless Ad-hoc Networks (SWAN)
[LPN+01].

Unlike TOSSIM, it permits simulating heterogeneous networks, with different nodes, which may
differ in architecture, operating systems and applications.

It includes also more sophisticated radio propagation and environmental models. Environmental
models recreate the physics and metrics that stimulate the sensors. Therefore, a more realistic
network and application behaviour is achieved, in comparison with TOSSIM.

Unlike TOSSIM, it does not have specific extensions to estimate power consumption.

Linux

Many embedded applications run over Linux operating system. EmSim is a pure simulation
environment which is provided as part of Emstar software environment [GEC+04]. Emstar is a
framework to develop WSNs applications that runs over Linux. It provides a set of useful interfaces
at very different levels to make the development of applications easier. It can understand even
some TinyOS applications through EmTOS [GSR+04], which translates the TinyOS system API
into the Emstar API.

As TOSSIM, EmSim enables real-code simulation [GRE+07]. When used in pure simulation mode,
EmSim provides a radio channel simulator and a sensor simulator.

An advantage of EmSim is that it supports an emulation mode, which allows hardware-in-the-loop
simulations, i.e. using real hardware, such as radio transceivers or sensors, while running the other
elements in a simulation machine.

The EmCee variant provides interfaces for using real RF channels rather than simulated radio
propagation models, which are very useful when the environment of the application scenario is

27

Related Work

easy to recreate and propagation and sensed physical magnitudes can be tested with realistic
values.

However, in general, in cyber-physical systems, environmental conditions will be unknown and
therefore hard to reproduce in laboratory. As a result, real hardware values may not be closer
to deployment values than simulated ones. In fact, hardware-in-the-loop is typically used in the
opposite direction, due to the impossibility of testing the system in the final deployment conditions:
the hardware/software platform is tested with interfaces to simulated environmental conditions,
including radio propagation models.

Another difference regarding TOSSIM is that EmSim offers interfaces for heterogeneous simula-
tion, which means that it has the ability to simulate nodes with different hardware architectures
or operating systems, in the latter case by wrapping the Mote code in the already mentioned
EmTOS tool.

Contiki

Another operating system for sensor nodes is Contiki [Ad]. There is a simulator for it, called
COOJA [ODE+06]. It is implemented in Java. Although COOJA is really flexible and permits
cross-level and heterogeneous simulation, it is primarily a Contiki emulator.

Unlike TOSSIM, the best advantage of COOJA is its flexibility, which permits executing simul-
taneous simulations of nodes at all the network, operating system or hardware levels.

Apart from operating system emulation, where real Contiki code can be tested, COOJA permits
high level Java node models, with network functionality and coarse granularity.

A general problem of operating system emulators is that they are not able to capture low level
events that are very necessary for energy consumption estimation. To overcome this, COOJA
includes MSPsim, an instruction set simulator, to simulate cycle-accurate models [EOF+09].
Through this hardware emulation, simulation of nodes using operating systems other than Contiki,
such as TinyOS, becomes also possible.

Communication between COOJA and the compiled event-driven Contiki kernel is done through
Java Native Interface (JNI) calls.

Concerning the propagation models, custom models can be easily plugged in in COOJA. In the
distribution, a unit disk graph model is included. There are also extensions for ray-tracing based
radio medium model [Ö06], in order to model obstacles, and a radio interference simulation model
[BROV11].

All this flexibility makes of COOJA a very powerful simulation environment, with the possibility of
modelling heterogeneous networks and creating cross-level simulations, in order to evaluate WSNs
in all network, operating system and hardware levels. The main drawback of such flexibility is
the effect of maintaining so many interfaces in scalability, in terms of the number of nodes that
can be simulated, and in the overall simulation efficiency.

Although theoretically flexible, COOJA and Contiki lack versions for some embedded platforms
and architectures. This restricts the options for the designer, who has to go for Contiki operating
system and the architectures supported by both the operating system and the COOJA simulator.
ARM Cortex microcontrollers, for example, are not supported.

28

Related Work

This problem can actually be extended to all operating system emulators, as all of them are
restricted to the list of platforms they support, which in most cases is far from covering the wide
spectrum of embedded microcontrollers.

Operating systems emulators have several constraints when used for networked embedded systems
design and optimization:

• Different operating systems may have different performance and should therefore be evalu-
ated as part of the optimization process.

• Optimized ultra-low power embedded systems might not even use a real operating system,
but a small library or framework with a simple scheduler.

• A theoretical advantage of operating system emulators is that it can run on any platform
running the operating system. However, in practice it becomes a constraint, as the number
of supported platforms is very restricted, and specially it does not typically include the most
recent hardware architectures.

• Operating system emulators are not capable of capturing low level events that are required
for accurate energy and power consumption estimation, specially on the microcontroller. A
microcontroller emulator has to be used in combination with the operating system emulator,
as it is done in COOJA, in order to get this data.

3.2.2.2 Hardware Emulation

Hardware emulators are used to improve hardware and software co-design, so that the software
design task can be started before the hardware platform is manufactured, reducing time-to-market.
They are capable of executing machine code in a simulated environment, so that the simulated
software can be directly used in the target hardware platform.

Hardware simulators offer a wide variety of approaches with different accuracies, ranging from
complete cycle-accurate emulation to transaction level models. Selecting the appropriate approach
would depend on the application requirements.

Unlike network simulators, which follow a top-down approach, in this case, the process is reversed
toward bottom-up system modelling, starting from a detailed hardware model, and extending it
with communication and propagation models in order to simulate the network. These opposite
approaches are shown in Figure 3.4.

Hardware emulators can address some of the deficiencies of operating system emulators:

• A microcontroller emulator permits executing whatever operating system which is compat-
ible or even bare-metal software applications.

• It provides better granularity in order to obtain the energy consumption of the microcon-
troller, which is a major contributor in overall energy consumption.

An early example of this kind of simulators is Embra [WR96], based on SimOS [RHWG95], which
was capable of emulating processors and caches. Similarly to what happened with some network

29

Related Work

Figure 3.4: Bottom-up simulation approach based on hardware simulators versus top-down simulation
approach based on network simulators.

simulators, some of these simulators were extended and became capable of simulating networked
embedded systems, adding wireless communication and network models.

The first simulator to provide a low level cycle-accurate CPU model in the context of sensor net-
works was ATEMU [PBM+04]. While there were already emulators for processors, ATEMU was
the first emulator tool actually focused on WSNs, and able of emulating several nodes composing
a network.

Unlike operating system emulators, ATEMU depends only on the hardware it emulates, and
therefore is not restricted to a specific operating system. It could even help to develop an operating
system itself.

ATEMU includes an AVR emulation core, and is suited therefore to emulate nodes based on AVR
micro-controllers, such as the MICA2.

ATEMU also includes a radio propagation model based on distance attenuation which takes into
account interferences from other nodes, making the algorithm that keeps track of received power
a n-squared algorithm.

Cycle-accuracy, together with the interference radio model, makes of ATEMU a very accurate
model. However, this accuracy comes at the expense of performance, which has been estimated
as 30 times slower than TOSSIM [TLP05]. Simulating such a detailed model is very costly and
presents very serious scalability problems. Scalability can be crucial in Networked Embedded
Systems, where networks might be conformed by hundreds or even thousands of nodes.

Motivated by the performance and scalability issues of ATEMU, another simulator based on an
AVR emulator, named AVRORA was developed [UCL11]. AVRORA aimed to overtake ATEMU
in simulation performance while keeping the cycle-accurate granularity [TLP05]. Therefore, it
provides a cycle- accurate model of MICA and MICA2 motes. The last official release is from
2005 and supports ATMega128, ATMega32 and ATMega16 micro-controller models.

AVRORA radio model does not include noise simulation, but calculates interference by doing an
arithmetic OR with bytes received (correctly synchronized). However, this approach is very inac-
curate, and should take into account the modulation of the received signals. However, AVRORA,
as most simulators, is extensible, and some successful extensions have been developed, like AVRO-
RAz [PAP08], which allows emulation of the Crossbow MICAz mote and includes an indoor radio
model.

30

Related Work

In addition AVRORAz extends AVRORA to create IEEE 802.15.4 Standard [IEE06] compliant
simulations [Cen11]. These extensions include the address recognition algorithm, frame acknowl-
edgement, Link Quality Indicator (LQI) and Clear Channel Assessment (CCA), as well as the
already mentioned indoor radio model.

Although the objective to create a cycle-accurate and scalable WSN simulator was accomplished
in AVRORA, it is still 50% slower than TOSSIM [TLP05].

Apart from the effect on performance of cycle-accurate modelling, the main drawback of these
emulators is their lack of flexibility. Such a degree of accuracy prevents them from being generic,
and they have to be created for a specific hardware architecture. Hence, although these models
are the only to provide fine granularity about hardware models, they are not practical enough for
hardware architecture design, due to their lack of flexibility which prevents from easily replacing
models in the simulation. Before using a cycle- accurate model, at least the micro-controller
family must have been already decided.The Networked Embedded Systems simulation features
are then built as an extension to these specific emulators and will therefore not support replacing
the microcontroller emulation part.

However, Networked Embedded Systems are frequently heterogeneous networks where different
nodes may have different architectures. A simulation platform that is not flexible enough to
support simulation of heterogenous nodes is too restrictive.

Furthermore, microcontrollers are not the only energy consuming hardware subsystems within a
network node. There are more hardware elements that contribute to power and energy consump-
tion and have to be modelled in the same simulation framework.

In this context, hardware and software co-design languages, such as SystemC [Acca] or SpecC
[GZD+00] can provide the required features to create networked embedded systems simulators:

• SystemC is a hardware modelling language and an industry standard.

• It is based on C/C++, that not only permits hardware and software co- desing, but also
the development of extensions in a high-level powerful language.

• It provides an implementation which includes a discrete-event simulation kernel.

Therefore, hardware elements, apart from the microncontroller, can be easily modelled in a lan-
guage that is known and standard. Network models can be developed in C/C++. SCNSL
(SystemC Network Simulation Library) [DQ] is a good example of this, which uses Sys-
temC to simulate networks, so that both system and network design can be modelled in a single
tool [FQS08].

The propagation model is not very detailed. However, it is capable of calculating attenua-
tion as a distance function and to detect collisions. SCNSL Framework has been extended in
IDEA1, adding some protocol and hardware implementations and a graphical user interface
(GUI) [DMN10a].

Estimating energy consumption required cycle-accurate models to be simulated in the SystemC-
based environment. IDEA1 has been extended with an instruction set simulator that supports
different microcontrollers, at least AVR andMSP430 [GNMO12]. This is a significant improvement
regarding simulation of heterogeneous network with hardware level accuracy.

31

Related Work

However, accurate models require disclosure of details that are not always provided by micro-
controller designers. Instead, they provide their own models which are closed and might have
problems to integrate into a broader simulation platform. Thus, it is complicated to obtain or
develop accurate models of state-of-the-art microcontrollers.

3.2.3 Multi-Domain and Multi-Level Modelling

The difficulty of modelling complex heterogeneous systems has been a persistent problem in en-
gineering. There is profuse literature on the field based on very different applications, control
systems, electromechanics, fluid systems, etc.

The main problem is the synchronization between different models. Depending on the system
to be modelled, there are several ways to model time. Most of them are based on two main
methodologies:

• Discrete-event: Some systems only change their behaviour as a response to a certain event.
If there is no event, the state of the system will remain static.

• Continuous: Other systems change continuously, and therefore, the simulation must con-
tinuously track them over time, in order to update their state.

Combination of digital systems and network models required extending the simulation tools and
semantics, but the basic underlying simulation paradigm was in both cases a discrete-event sim-
ulation. However, some parts of a Cyber-Physical System will require in most cases continuous
simulation.

Hence, modelling heterogeneous systems usually requires the combination of different modelling
approaches. Different modelling paradigms can be combined by using different simulators. How-
ever, to have a concurrent model, interfaces have to be created and simulation coupling leads to
bottlenecks and, consequently, to severe simulation inefficiency.

3.2.3.1 Models of Computation and Computational Models

In electronic systems design, the necessity of using different modelling paradigms has also been
already addressed. Apart from the two main methodologies already described, there are more
specific modelling paradigms which are optimized for different kind of models.

For instance, computational systems can be described using different models for different levels of
abstraction. These models are called Models of Computation (MoCs) [Sav98]. Hence, a compu-
tational system could be described, for instance, through a logic circuit model or a state machine
model, among others.

Therefore, it would be preferable to achieve the combination of different models of computation
within the same simulation environment. An example of system which demands combination of
different MoCs, is, for instance, an analogue mixed-signal system, which might require continuous
time models to evaluate the analogue part, while the digital part can be simulated much more
efficiently using event-driven simulation.

32

Related Work

Furthermore, apart from modelling different parts of the system using different models of com-
putation, it might be required to model the same part of the system using different MoCs. The
appropriate MoC to be used can then be decided by the user, depending on the information he
wants to extract from the model.

During the last years, several tools have explored this combination of different Models of Computa-
tion, with different MoCs definitions as well as the interfaces among them, such as SystemC-AMS
[VGE03] or Ptolemy II [BLT10]. The first uses a dataflow approach, while the latter follows an
actor-oriented approach. Dataflow is more intuitive when modelling electronic and communica-
tion systems, as their subsystems are typically described in terms of inputs and outputs, while
actor-oriented paradigm handles concurrency much more easily.

When modelling Cyber-Physical Systems, the Models of Computation (MoC) concept, has to be
therefore generalised to Computational Models. CPS models do not refer just to computation
anymore. Network propagation or even other kind of models for physical processes have to be
included as well. There is, however, some ambiguity in the use of the term MoC, since the
fundamental problem is very similar, and specially since some MoCs, can be directly reused as
computational models for further purposes beyond computation.

Hence, there are already some projects using SystemC-AMS [MPGD13] and Ptolemy II [DLV12]
for Cyber-Physical Systems, exploiting the concept of MoCs, even when the models do not refer
to computation anymore. For instance, MoCs to describe analogue circuits behaviour, can be
directly applied to other physical properties that have nothing to do with computation, such as
room temperature variation [KR07].

In the following sections, several simulation approaches, based on different multi-domain simula-
tion platforms will be introduced.

3.2.3.2 Multi-Domain Simulation Platforms

Unlike simulators discussed in previous sections, whose primary application was modelling either
networks, hardware or software, multi-domain simulation platforms aim to provide a framework
to model several domains altogether. For the sake of this analysis, the discussion will be focused
in the capabilities to model network, hardware, software and physical processes.

There are different approaches to multi-domain modelling, the first approach would be to couple
simulators for different domains. However, simulation coupling is a very complex task that requires
a very deep analysis in order to create efficient interfaces. Additional approaches are modelling
languages, with no associated tools, such as Modelica, or complete toolsuites, such as Simulink.

Modelica

Modelica is an open standard modelling language used and designed to create physical models
[MEO98]. Those models are usually part of larger heterogeneous and complex systems. As a
result, Modelica makes special emphasis in model exchange.

Being an open standard, there are many tools available that implement Modelica models trans-
lation and simulation. In most cases, Modelica models are translated into C-code. The different
solvers for the different models of computation are then implemented as C libraries.

33

Related Work

The Modelica Association also maintains a Modelica Standard Library, which includes generic
component models and functions for different domains.

Moreover, there are already library extensions to model embedded systems [EOH+09]. However,
at the time of writing this thesis, embedded systems models in Modelica are used to include
them in overall system models, rather than to actually design and optimize the embedded hard-
ware/software platform.

Simulink

A completely different commercial approach for multi-domain dynamic systems modelling is
Simulink. Simulink has proprietary license and is linked to the simulation environment devel-
oped by MathWorks. Therefore, Simulink offers integration with the MATLAB environment.

There are wireless sensor networks simulators written in MATLAB, such as Prowler [SVML03],
a probabilistic WSN simulator, which, apart from its own features, permits making use of all
MATLAB functions and visualization possibilities.

Prowler has also been migrated to Java. The name of this Java version is JProwler [SIS]. JProwler
is more flexible, as it can be easily extended using java objects. However, the only implementation
supplied is a MICA2 mote implementation with almost no modularity, and therefore not suitable
for reuse. In addition, JProwler is rather a network simulator as those discussed in section 3.2.1,
as multi-domain aspects are those obtained through Simulink and its integration with MATLAB.

Prowler includes a radio-propagation model capable of evaluating reception parameters and colli-
sions. The advantage, in comparison with radio models included in other simulators, is that it not
only models the deterministic attenuation along distance, but also includes a time variant factor.
As a result of a collision, a message can be marked as corrupted or not corrupted. Bit-level data
corruption is not provided.

Prowler provides a very complete channel estimation model. MATLAB responds flawless to this
task, as it involves mostly matrix calculations. However, Prowler does not support hardware
modelling. In order to model hardware devices, Prowler must be combined with Simulink. More-
over, Simulink offers a much wider scope of possibilities, such as physical models, to even create
multi-domain cyber-physical systems models. There are many toolboxes and add- ons available for
modelling all kind of dynamic systems, including physical models, HDL code generation, system
verification, etc.

Nygren et al. [NC11], have presented a WSN simulation that uses Prowler for modelling commu-
nication, a Simulink model of a wastewater treatment plant and even includes a MATLAB energy
consumption model of MICA nodes.

Simulators Coupling

The most simple approach to simulating different domains would be to simply combine two existing
domain-specific simulators. However, the underlying complexity of simulator coupling is huge:

• Interfacing between different simulation paradigms is a complex mathematical problem that
needs to be deeply studied in order to obtain efficient results.

34

Related Work

• Different simulators may be implemented in a very different way, combining different pro-
gramming languages and with their own user interfaces for parameterization, visualization,
etc.

Ptolemy II [Lee09] is an open-source framework for actor- oriented design which enables the
construction of domain-specific tools. Hence, it focuses on the interfacing problem and avoids
dealing with the implementation problem. It supports several models of computation: process
networks (PN), discrete-events (DE), data-flow (SDF), synchronous/reactive(SR), rendezvous-
based models, 3-D visualization, and continuous-time models [Ber]. It offers interfaces to combine
several Models of Computation (MoCs) in order to create a multi-domain simulation.

The Ptolemy II framework has been exploited to model sensor networks through VisualSense,
which is a modelling framework, built on top of Ptolemy II, for the simulation of component-
based WSNs models [BKL+04].

VisualSense exploits and extends the discrete-event domain of Ptolemy II. It provides a wireless
sound detection model as an application scenario. VisualSense includes models for packets, packet
losses, battery power, power loss, collisions and transmitting antenna gain (directional antennas).

The propagation model included in VisualSense is accurate, based on a general model which can
be applied to other physical phenomena, so that it is also valid for sensor physics, e.g. the physical
phenomena captured by sensors, such as temperature, pressure, etc.

There is also the possibility of executing TinyOS programs in Ptolemy, through Viptos [CLZ06],
an integrated graphical development and simulation environment. Viptos is able to transform a
diagram into a nesC program [GLB+03] (see Section 3.2.2.1) which can be executed in a TinyOS
platform. It can create Ptolemy II models from nesC files as well.

VisualSense provides a graphical user interface (GUI) for both building the simulation and showing
the results. Modules can be dragged and dropped and connected to build the desired scenario.
If modules included in VisualSense are not sufficient, new modules can be created by connecting
some of them, or by directly programming them in Java.

The graphical orientation and the flexibility concerning models of computation, make of Visu-
alSense a very useful and easy to use simulator for small and generic high level simulations. How-
ever, networked embedded systems typically involve more complex simulation scenarios which
require high simulation performance and automatic scenario generation.

Although Ptolemy II has made an outstanding work in developing interfaces between models of
computation, in practice, many times there is the necessity to use simulation tools that have not
been developed under Ptolemy II, but are standard or widely accepted tools in their respective
domains. In this case, the designer will have to deal with both the interfacing and the imple-
mentation problems. The Functional Mock-up Interface (FMI) Standard is a great step
towards the combination of models and simulators. Although independent, it is closely related to
Modelica. It provides a twofold interface for model exchange and for co-simulation [Mod13]:

1. FMI for Model Exchange: Models can be executed from an external simulation tool
which supports FMI imports. This main simulation can then parameterize the input vari-
ables and gather the results from the corresponding output variables. Thus, it is not actual
co-simulation and therefore it does not require coupling nor synchronization [BOA+11].

35

Related Work

2. FMI for Co-Simulation: The co-simulation interface does provide the synchronization
methods in order to execute both simulations in parallel.

In both cases, models are exported into so called Functional Mock-up Units (FMUs), which include
a XML description file and the dynamic libraries required to execute the model.

Using the FMI Standard, it is possible to import and export models from and to other simulators,
respectively. HybridSim, for instance, a SysML-based framework, is capable of using FMI to
co-simulate Modelica and TinyOS models [WB13].

SystemC-AMS

Although SystemC is focused on electronic system-level design and is not oriented to multi-domain
simulation, the event-driven simulation approach had to be extended in order to simulate analog
subsystems. These extensions are included in an additional library called SystemC-AMS (analog
mixed- signal) [Accb].

Modelling analog systems requires continuous or equation based simulation. For this purpose,
SystemC-AMS adds three models of computation [Ini13]:

1. Timed Data Flow (TDF): It is a discrete-time model of computation based on sampling
continuous signals with a pre-defined time step. In 1.0 specification, exceptions to this
time step, with additional time stamps, could be given. Since version 2.0, time-step can
also be dynamically modified in what is called Dynamic-Timed Data Flow (DTDF).
Dynamic time-step modification is crucial to obtain satisfactory accuracy and performance,
as it enables the user to manage when to prioritize accuracy or performance depending on
the specific needs.

2. Linera Signal Flow (LSF): It is a non-conservative continous- time model of computation
that models systems using differential and algebraic equations and represents quantities as
functions of time.

3. Electric Linear Networks (ELN): It is a conservative continuous-time model of compu-
tation to define linear networks. They are modelled as differential and albegraic equations
based on electrical primitives.

Although the AMS extensions are intended for modelling the analog parts of the embedded systems
electronics, they can also be used to model other continuous physical properties, which respond
to similar kind of equations. Although current extensions are very limited to model non-linear
behaviour, they are sufficient to model a wide variety of physical processes that can then be
included in an electronic-system level model based on an industry standard language already
accepted for hardware and software co-design.

3.3 Energy Simulation and Profiling

Energy simulation in microprocessor based systems is not a novel issue. Apart from hardware
energy consumption models, there were also analysis of energy consumption reduction by software

36

Related Work

optimization [TMW94] and even energy simulation of a Real Time Operating System (RTOS)
[DLRJ00].

To appropriately dimension batteries and energy budgets, system designers must consider the
power consumption of the devices at a very early stage. However, most efforts in power and
energy efficient systems are made during hardware design.

Hardware designers do know in deep the specification of power consumption of the components
they select. They have also to dimension the power supply, the batteries, etc. and therefore
they are very aware of the power consumption of the system. However, this awareness is lost for
designers or users who do not know the hardware in deep.

The lack of awareness becomes a major optimization issue, because energy optimization does not
end with hardware design. The impact of the hardware design in the overall energy consumption is
limited. The hardware platform offers just the resources for the system to achieve its functionality,
but is the usage of this resources the one that determines the final energy consumption of the
system.

There are several approaches to implement power saving features:

• Technological: Until recent years, the most advancements in power consumption were
technology driven. Miniaturization and nanotechnology has not only reduced the size and
improve the integration, but also has significantly reduced the power consumption. However,
the technology is getting close to the theoretical limits, and therefore, the improvements are
getting smaller and slower.

• Architectural: Due to the high demand pressure in battery powered devices, and the
technology limitations, architectural optimization is being thoroughly exploited in the later
years. As a result, we can see now multi-core architectures, with dedicated efficient proces-
sors, clock gating [WPW00], power gating architectures with separated power domains, and
aggressive power management policies to disconnect the power domains not in use.

• Runtime: Most operating systems include nowadays some power management infrastruc-
ture, in order to be able to react to the specific runtime circumstances. For that purpose,
there are APIs that can be used, under some circumstances, so that some parts of the system
can be disconnected or switched into a sleep mode. The applications or the user can also
make use of this API.

Nevertheless, having all this infrastructure does not assure an efficient energy behaviour. Energy
efficiency still involves a high degree of involvement and commitment from the programmer and
the user side. However, making the best decisions is not always an easy task.

In practice, there are many decisions that have very much impact in the energy consumed by
the system, ranging from the selection of hardware components to communication protocols or
the application duty cycle. Estimations enable making the decisions having the lowest energy
consumption. This is mainly done by means of simulation, which has to be performed anyway to
assure the correct function of the device.

However, adding energy and power estimation to simulation might drastically affect simulation
performance. This could lead to simulations that require longer execution time, by orders of
magnitude, than the real system, [ELVAMS+06]. However, to assess energy lifetime, simulations
should take much shorter time than real system operation.

37

Related Work

3.3.1 Power Estimation

Power estimation in electronic systems has also been a matter of study for the last decades. With
integration and System-on-Chip designs, it becomes more and more difficult to track how much
power is dissipated with the granularity required to perform a thorough analysis.

Measures only provide coarse grain values which do not permit finding out responsibilities for
power leaks. Furthermore, in ultra-low power systems, power metering might add unacceptable
power consumption overhead.

The difficulty to estimate power even on the real platform, has led to simulated power estimation
models. However, for this same reason, validity of these models is frequently in question. Even
performing the model assessments is far from trivial.

The most extended approach of power models consists on the use of Finite State Machines (FSM)
[FGSS98] [BHS98]. Digital systems typically have two well differentiated power consumption
components: static and dynamic.

Thus, they can be described as a set of states, with different static power consumption, while
dynamic power consumption occurs during state transitions.

The power consumption of a system with several subsystems would then be the summation of
the power corresponding to the different states (Pstate,i) plus the power consumed due to the
transitions (Ptrans,j), as seen in Equation 3.1

P =
N∑
i=0

Pstate,i +
M∑
j=0

Ptrans,j (3.1)

Power consumption values can be obtained from specification or mathematical models. However,
current system complexity makes evaluation of transistors states and switching probabilities in-
feasible. High level models are required, as the one proposed by Benini et al. [BHS98], which is
also based in a Finite State Machine but considering power management states, instead of digital
states.

The problem of the system-level power state machine is that it assumes an average power con-
sumption value on each state. This is appropriate for most systems, but some systems, such as
analog, would have undefined number of states.

Although ns-3 is a very generic network simulator, there is a specific energy frameworks based on
it [WNP11]. In this framework, energy consumer devices are modelled as finite state machines,
with each state associated with its corresponding current draw value. However, the framework
is also able to simulate devices with an undefined number of states (e.g. analog), as long as the
current draw value can be estimated as a function of any other magnitude, e.g. an electric motor
whose power consumption is a function of the rotation speed.

These framework also provides models for energy sources. It includes not only a basic linear
battery model, but also a Rakhmatov-Vrudhula (R-V) model, which also considers the non-linear
behaviour.

Another problem of energy estimation using the system-level power state machine is that time
spent on each state is not always possible to account in simulation. For instance, in PAWiS,
although power simulation is not supported directly in the framework, the framework includes an

38

Related Work

interface to model CPUs and a power meter class where power related information can be reported
to be logged. In the PAWiS module library, there are implementations of transceivers and CPUs.
However, granularity of CPU models is not fine enough to obtain accurate timing. PAWiS does
not have a cycle-accurate CPU model that can account for CPU active time intervals, which have
to be estimated by the user.

This is the case also of PowerTOSSIM. PowerTOSSIM is an extension to TOSSIM to model
energy consumption. It estimates power consumption per-node and per- component based on state
transitions logged at runtime. This means that, as long as the state machine scheme remains the
same, several power models, with different power consumption values for each state, can be applied
after execution. However, accuracy of PowerTOSSIM is restricted by TOSSIM limitations, which
are mainly the network and propagation behaviour and, as in PAWiS, the inaccuracy capturing
CPU timing. However, unlike PAWiS, PowerTOSSIM uses a high-level estimation of execution
time, instead of delegating on user estimations.

PowerTOSSIM separates tasks in blocks and uses a code-transformation technique to estimate
the number of CPU cycles they require. Nevertheless, deviation still exists in comparison with
cycle-accurate models when many asynchronous events (like interrupts) take place.

There are however, several versions of PowerTOSSIM. It was developed on top of TOSSIM for
TinyOS 1.x. When TinyOS 2.x. was released, a newer version, PowerTOSSIM2, was created.
Both were created for MICA2 motes. PowerTOSSIMz extends the latter one for MICAz nodes
[PCC+08]. Apart from the different target architecture, PowerTOSSIMz includes a battery post-
processor model which simulates the non-linear discharging of the battery. In spite of being
a post-processor, it can also work at runtime. It implements a stochastic approach to battery
model.

IDEA1 simulator, also includes power estimation infrastructure based on finite state machines
[DMN10b]. In a first approach, IDEA1 included some estimation of the timing of the micro-
controller unit based on software assembly code. Nonetheless, IDEA1 is not a real-code emulator,
which means that these estimations only come from code analysis, but there is no instruction
level simulation nor cycle-accurate simulation. In more recent work, instruction set simulators
have been developed for AVR and MSP430 architectures [GNMO12]. Instruction-Set Simulators
provide almost cycle-accuracy, with some slight deviations due to architecture performance opti-
mizations such as, caches, branch prediction and out-of-order execution, which are so far not being
used in low-power embedded microcontrollers as they do not improve the performance-per-watt.
Therefore they can be considered as sufficiently accurate to estimate MCUs execution times.

AVRORA and COOJA with MSPsim are already cycle-accurate models for AVR and MSP430
respectively. They both have power estimation extensions which are therefore very accurate. The
power extension for AVRORA is called AEON and is included from version 1.4 [LW04]. AEON
also includes a free space radio propagation model for AVRORA, with distance attenuation but
without modelling noise. On the other hand, the power profiling tool used in COOJA consists
of an integration of the power profiler used in the Contiki operating system [DOTH07] into the
COOJA/MSPsim simulation.

Energy estimation in Contiki consists on recording time stamps whenever a component is activated
and making the corresponding calculations based on the time difference when the component is
deactivated. There is also a visualization tool for COOJA with special focus on power consumption
[OED10].

39

Related Work

There are therefore many power estimation extensions to state-of-the-art embedded system sim-
ulators. However, even the system-level power state machine is too detailed for software and
network optimization. Transparency of the different abstraction layers prevents the software de-
veloper from knowing which states are activated during a software task. Moreover, if this task is
distributed in the network and impacts a group of nodes, the energy awareness is totally lost.

As a result, in Networked Embedded Systems, energy awareness is not solved with power estima-
tions through sytems-level power state machines. It becomes necessary to track state changes and
build higher level data structures that can answer how much energy impact a high-level task has
in the overall distributed system. These data structures are called energy profiles.

3.3.2 Energy Profiling

The essential starting point on the way to energy optimization is gathering knowledge about
energy consumption of the system. In traditional embedded systems, this can be done by tracking
energy consumption values of different subsystems. Power consumption information are typically
based on the hardware subsystems, as power models are defined based on hardware models and
specifications.

Power consumption information has to be gathered at a very low level in order to be accurate.
However, at higher levels, the tasks performed by the system are complex and typically involve
several hardware subsystems. At the same time, abstraction implies transparency and therefore,
the high level designer and the user are not always aware of the role of each hardware subsystem in
any system function and even if they are, they do not know the implications in energy consumption.

In Networked Embedded Systems, there are three kind of energy profiles that are necessary for
system optimization:

1. Hardware: Complex SoC architectures may require the aggregation of several simple sub-
systems into systems-of-systems that are more manageable and understandable at higher
levels. Also many of their states might be correlated and aggregation can lead to simplifi-
cation and performance improvement.

2. Software: Software tasks may make use of several hardware subsystems. The software
developer will very likely want to evaluate the energy consumed in performing some software
tasks and compare the energy consumption difference between alternative algorithms or
implementations. Software profiles must therefore aggregate the energy consumed in the
different hardware systems in order to perform the specified software task.

3. Communication: Networked Embedded Systems are distributed systems. Therefore, some
tasks will involve energy consumption in several nodes. Networks are typically ad hoc, and
sometimes require multi-hop communication. The energy consumed all over the network
due to a single communication transaction is also a very useful metric for the designers
in order to optimize overall energy consumption and prevent some critical failures due to
battery depletion at very transitted paths. Thus, communication profiles must account the
energy consumed all over the network in order to perform some distributed task that requires
communication.

40

Related Work

Hardware profiles are present in most power estimation extensions and simulation tools. Most of
them are at least capable of estimating energy consumption in a local node by aggregating energy
consumption of the different subsystems.

However, only some power estimation extensions include software profiling tools. Power profiles
enable identifying the contribution of software parts to power consumption. Hence, the designer
can focus on optimization of those tasks whose impact in power consumption is more significant.

Figure 3.5 shows how different energy consuming processes are observed at different levels of ab-
straction. Abstraction permits that the application programmer could send a message without
knowing the involved phases described at system level software, and both the system and applica-
tion programmer can accomplish their jobs without knowledge about the current consumed at the
hardware level. Although this abstraction is needed to increase productivity and achieve complex
tasks, the gap in the consumed energy knowledge has to be filled in order to enable design of
energy optimized systems.

Figure 3.5: Energy consuming semantics at different levels of abstraction

Software profiles are already an old concept, that emerged due to program complexity. Complex
programs involve many routines, processes and threads and therefore, information about resources
utilization becomes difficult to obtain [GKM82]. Rialto software profiler [JMF+96] classified
different threads into so called “activities”. By grouping threads into coherent semantic categories,
they could be fairly and efficiently scheduled in the CPU.

In networked embedded systems, the same profile concept is needed. However, there are mainly
two significant attempts to evaluate software energy consumption in networked embedded systems:
in AEON [LWTP05] and in Quanto [FDLS08]. AEON, as already explained in Section 3.3.1, is
a power consumption estimator based on AVRORA. AEON has been used to partition TinyOS
applications in so called routines and account their energy consumption. Quanto goes further
and permits the user to define his own activities.

However, local optimizations are not sufficient to optimize energy consumption in Networked
embedded systems. It is also crucial to be able to optimize the network as a whole [Agr11].

41

Related Work

However, there are no examples of network- wide energy profiles in simulation. Quanto tracks
network-wide power consumption, but it is an extension to TinyOS to be executed during runtime.
It could probably also be simulated using TOSSIM, but TOSSIM accuracy is very restricted as it
cannot capture microcontroller low-level events.

3.4 Discussion

As described in previous sections, there are several difficulties in energy aware networked embedded
systems design. Simulation helps in overcoming those difficulties.

There are many simulation options to model this kind of systems. As these systems are the
convergence of several technologies, there are many already existing simulation tools and environ-
ments. However, most of these solutions are not complete. Network simulators provide protocols
and propagation models but lack low level details which are crucial to accurately estimate power
consumption. Virtual Prototyping tools provide real code emulation but not all of them include
a low level microcontroller model that could accurately capture the timing, required for energy
consumption calculation. Those that include hardware accurate emulation, have also severe per-
formance restrictions and are not capable of modelling propagation or networks with many nodes.

Furthermore, energy consumption is a cross-layer system aspect, as it is conditioned by hardware,
software, network and even the environment interaction. However, the combination of different
tools to model each of these aspects is very inefficient and requires a lot of effort. Therefore, the
complexity of the system is also a challenge from the modelling point of view.

As co-simulation is not always affordable, the trend has been to extend previous solutions to
include some of the new required aspects. The results are very different depending on the starting
point, and therefore, this chapter provided an overview and analysis of the current state-of-the-
art simulators, classified by their initial simulation approach. There are therefore both bottom-
up and top-down evolutions from cycle-accurate and high level simulation models, respectively.
However, from the simulators analysis, it can be concluded that there is no fully satisfactory
holistic simulation approach. The different domains comprehended require the combination of
different simulation approaches, and even though there are some environments that allow the
combination of different Models of Computation (MoCs), such as Ptolemy II or Modelica with
the Functional Mock-up Interface, they are far away from any Electronic System Level industry
standard.

On the other hand, SystemC is a system level industry standard for hardware and software co-
simulation. TLM extensions provides an abstraction in communication that have had very good
acceptance in industry. There are many TLM hardware models available, including Instruction-
Set Simulators (ISS), which are very helpful in order to obtain accurate estimations of the energy
consumed by microcontrollers.

When exploring TLM capabilities, the communication abstraction approach turned to be also very
appropriate to model the wireless channel. Furthermore, the Analogue-Mixed Signal extensions
to SystemC permit not only to simulate analogue electronic subsystems, but also opens the door
to including some continuous physical processes models, which can be described with the same
Models of Computation as the analogue models.

This way, a consistent and comprehensive framework could be created within the SystemC ecosys-
tem, with emphasis on the hardware and software co-simulation, but considering also the network

42

Related Work

and the physical processes that affect the final performance of the system and therefore have great
influence in energy consumption.

Having the appropriate simulation infrastructure solves the problem of including all the factors
that intervene in the energy consumption problem, however, this is not sufficient to enable high
level energy optimization. The low level power consumption values have to be aggregated into
energy profiles that have some meaning for the high level designer. These energy profiles can then
expose in a high semantic level which tasks, conditions or operations reduce the energy efficiency
of the system and can then enable making energy efficient decisions when selecting and tuning
high level aspects such as the communication stack and its parameters, the resources distribution
alternatives, the network topology, the threshold values for reporting sensor measurements, etc.

The state-of-the-art analysis revealed that this energy profiling for high level optimization is
a barely explored feature. There are some exceptions, in which software profiles from a local
perspective can be found, but there are no energy estimations to simulate the overall energy
efficiency of a distributed system and to explore which design alternatives can extend the whole
distributed application lifetime, and not only the local hardware/software node lifetime.

According to all this state-of-the-art research, this thesis will provide an integrated solution to
perform the cross-domain and multi-level simulation required for efficient and complete energy
simulation, considering not only hardware and software, but also network and physical processes
that are involved in system operation.

Furthermore, this thesis will contribute the infrastructure to create high level energy profiles
that provide the semantic framework that will enable high level energy optimization of a wireless
distributed and interactive system.

43

Related Work

44

4 Energy Simulation and Profiling

Chapter 2 analysed and characterized the energy awareness problem, describing all the elements
involved and clarifying all necessary concepts and technologies that lead to the approach presented
in this Chapter. In Chapter 3 the State-of-the-Art of distributed embedded systems simulation
has been presented and discussed, making special emphasis in energy aware capabilities.

This Chapter describes a new approach to improve power and energy consumption awareness
in networked embedded systems at higher levels of abstraction, where awareness is almost van-
ished due to abstraction transparency. To fill this gap, energy gathered from state-of-the-art
power models will be aggregated into energy profiles that have a direct meaning for high level
optimization.

The path selected to fulfill this goal is framed within Model Based Design (MBD) methodologies,
i.e. simulated data will be gathered, processed and refined in order to deliver it, in the best possible
form to the different designers at different abstraction levels, such as the firmware designer, the
network designer or even the application designer.

4.1 Energy Aware Methodology

As discussed in Section 2.5, energy optimization of networked embedded systems requires a cross-
level analysis and synergies among all design levels. Starting from the selection of hardware
components and finishing with the network architecture, all levels must be considered in order to
make the best decisions possible.

However, there are some difficulties to consider all these levels at design time:

• Manufacture of the embedded platform is costly and time-to-market is very short. Software,
network and physical environment must be considered already during hardware exploration
phase and all hardware optimizations must be made before manufacture. Software and
network optimization must start before a real prototype is available. F

• Deployment of networked embedded systems is typically under unknown conditions and the
systems must be autonomous, as post-deployment maintenance might not be feasible. Sim-
ulations permit testing the distributed systems deployed under a whole set of environmental
conditions and with a whole set of possible network topologies, in order to identify potential
energy leaks.

45

Energy Simulation and Profiling

• Obtaining real energy consumption data from an operative platform is unfeasible. The
embedded systems are ultra-low power devices that cannot afford monitoring and profiling
their energy consumption. Furthermore, system integration restricts the possibilities for
accounting energy consumption to different subsystems.

For all these reasons, the methodology to achieve energy awareness proposed in this thesis is
integrated within Model-Based Design methodologies and virtual prototyping. The addition of
energy awareness to the existing methodologies can be separated in three phases:

• High level power models: They must provide accurate enough energy consumption data
while keeping an acceptable simulation performance. The power model proposed here is
based on Finite-State Machines (FSMs). This approach exists already in the state-of-the-
art [FGSS98] [BHS98] (see Section 3.3.1). However, there is no standard or formalized
approach. Thus, a formalization of the used power models is required.

• Simulation requirements: In order to estimate energy consumption from power states,
the time spent at each state must be estimated. This estimation is done through simulation.
To accurately estimate system activity, a virtual prototype is not sufficient. It must be
extended with models for network communication and cyber-physical interaction. It is
therefore required to specify and develop a comprehensive simulation framework that enables
modeling all the required aspects.

• Energy Profiling: Energy optimization is not complete without classifying, characteriz-
ing and aggregating the power consumption data provided by the power models in energy
consumption profiles that contain workable or practicable information for the high level
designer.

All parts are fundamental and co-dependent. Using the best power models is meaningless if the
information they supply is unusable. On the other hand, information provided by profiles can
be completely misleading if the data supplied by the power models is far away from reality. In
networked systems with cyber-physical interaction, both wireless communication and physical
processes determine the behavior of the system and therefore, the demand for power consumption
of the system along time.

In all cases, simulation performance plays a crucial role. Accurate data and good profiling is only
useful if simulations can be performed very fast. In the distributed embedded systems world, this
means being capable of simulating even several years of system operation at design time. Including
models for wireless communication and physical processes as part of the simulated system is an
additional challenge for simulation performance.

4.2 Formalization of Power State Machines

The basis underneath the whole energy simulation problem is the use of the most appropriate
power models. Those models are responsible for the accuracy of the simulation. Furthermore, in
many cases, they will also have very significant impact in overall simulation performance.

Although the best models to be chosen depend on the specific application scenario, in this section,
a flexible and abstract power model concept, based on Finite State Machines (FSMs), with some

46

Energy Simulation and Profiling

variations and extensions, is proposed and discussed. The concept has already been used in
different power modelling approaches. The application of FSMs to model power and energy
consumption is very intuitive. However, there is a lack of formal documentation in literature. As
there is no standardized formal definition to use as a reference, a custom formal definition for the
sake of this work will be made in this section. Power State Machines, as defined here, could be
reused for other use cases as well.

The idea of Power Finite State Machines (Power-FSMs) is very simple, and is based on these main
assumptions:

• Functional behaviour of electronic subsystems can be reduced to a restricted number of
operation modes or states.

• Power consumption within these states remains stable, within boundaries and therefore can
be averaged into a constant value.

• Big variations in power consumption only occur when switching from one state into another.

The combination of the different operation modes for all the subsystems, will conform the char-
acterization of so called Power States, which together with the transitions constitute the Power
Finite State Machine (Power-FSM).

Although these assumptions may give the impression of an oversimplifying view, they suit a wide
spectrum of practical cases, specially in energy efficient electronic systems. The reason for this is
that specific operation modes are already defined in most complex electronic systems for different
purposes, such as power management or just ease of use.

For instance, nowadays, a typical approach for energy saving and ultra-low power design consists
in distributing different subsystems in different power domains. Power gating is used in these
domains in order to switch them on or off independently. Once the architecture is set in this way,
a good power management strategy enables switching on these domains only for the minimum
time required to carry out their tasks, avoiding energy consumption on static power dissipation or
on keeping different signals, like clocks, while they are not actually required. An example of this
power management policies is "Run Fast Then Stop" and is very commonly applied because it
is the most effective way to reduce static power consumption, while dynamic power consumption
remains equivalent.

A consequence of power management policies, such as "Run Fast Then Stop", is that they trans-
form the behaviour of these subdomains into an almost dichotomic operation: either activated and
operating at full load or completely disconnected. This reduces the number of possible configura-
tions, simplifying the list of possible power states. Thus, average power consumption estimation
has to be performed in just this collection of very specific operation modes.

4.2.1 Simple Power State Machines

The most simple power state machine just considers a number of power states and ideal transitions
among them. This simple power state machine can be formally defined as simplified Mealy
machines:

Definition 1. A Power State Machine is a tuple (S, S0,Σ, T, P) consisting of:

47

Energy Simulation and Profiling

• a finite set of states (S)

• an initial state (S0 ∈ S)

• a finite input alphabet Σ

• a transition function (T : S × Σ −→ S) that regulates next states

• a power consumption function P : S −→ R≥0 which assigns an average power consumption
value to every state.

Figure 4.1 shows a diagram representing the Power-FSM of a transceiver subsystem. Table 4.1
contains the power consumption values for all the states in the power state machine.

Rx	 Tx	

Idle	

Sleep	

Off	

d

b c

a

e

e

c

b d

c
b

c

b

a

Figure 4.1: Example of Power State Machine for a transceiver

Table 4.1: Power consumption function

State s Power Consumption P (s)

Off P (Off) = 0W

Sleep P (Sleep) = 0.02µW

Idle P (Idle) = 16.8mW

Rx P (Rx) = 36.9mW

Tx P (Tx) = 42mW

In order to estimate the energy consumption of a subsystem represented by a simple power state
machine, the different states, as well as the time spent on each state have to be computed. The
Equation 4.1 shows how to calculate the energy of a subsystem defined by a power state machine
of N states. P (x) is the power consumption function. ti is the time spent in this state.

48

Energy Simulation and Profiling

E =
N∑
i=0

P (Si) · ti (4.1)

4.2.2 Power State-Transition Machine

State transitions are sometimes negligible in terms of energy, either because power consumption
does not vary in relation to power consumption during the adjacent states or because their duration
is very short. However, in some cases they require some time, such as oscillators or PLLs, which
always need some time until they stabilize their output. Waking-up from a sleep mode also
typically requires some time, which might be counter-productive, if the system went to sleep for a
too short time period. This is specially important when applying aggressive power management
policies, which send the different subsystems to sleep as soon as possible. An accurate estimation
of the cost of going to sleep and waking up the device is crucial in order to make the best decisions
possible.

Therefore, to increase the accuracy the simple power state machine can be enhanced to consider
also energy consumption of state transitions, increasing the estimation accuracy. Furthermore,
adding transition delays also provides better accuracy from the functional point of view, as all
delays produced when switching states will be computed in the simulation.

The first and most simple approach is to consider transitions as new states, very similar to power
states. However, there are several differences in relation to power states:

• Time spent during transitions is known and can be considered to be always the same.

• Power consumption typically responds to a transient profile, and therefore not constant.

• Although power consumption is not constant, energy consumed during a state transition
can be estimated to be the same every time this transition occurs.

This extended power state-transition machine is formally defined as an extension to the power
state machine, which includes the energy of the transitions:

Definition 2. A Power State-Transition Machine P is a tuple (S, S0,Σ, T, P,E,D) consisting
of:

• a finite set of states (S)

• an initial state (S0 ∈ S)

• a finite input alphabet Σ

• a transition function (T : S × Σ −→ S) that regulates next states

• a power consumption function P : S −→ R≥0 which assigns an average power consumption
value to every state.

• an energy consumption function (ET : S × Σ −→ R≥0)

• a delay function (D : S × Σ −→ R≥0)

49

Energy Simulation and Profiling

Table 4.2 shows the energy and delay functions for the Power State Machine diagram of a trasceiver
represented in Figure 4.1. Transitions with negligible time duration and energy consumption are
omitted in the table. In this example, significant transitions are those that need voltage regulator
start-up, crystal oscillator start-up and PLL lock, as this three operations require some time to
complete.

Table 4.2: Energy consumption and delay functions of the transitions

State s Input σ Next State T (s, σ) Energy E(s, σ) Delay D(s, σ)

Off c Idle 24.2µJ 1.44ms

Sleep c Idle 13.6µJ 0.84ms

Idle e Rx 7.68µJ 192µs

Tx e Rx 7.68µJ 192µs

Idle d Tx 7.68µJ 192µs

Rx d Tx 7.68µJ 192µs

In this case, energy estimation of a power state-transition machine with N power states and M
inputs is given by Equation 4.2. In the power state-transition machine, in addition to the energy
estimation component from Equation 4.1, the contribution of transitions to energy consumption is
added, being E(x, y) the energy consumed during transition σj from state Sj , and kj the number
of times this transition occurs.

E =
N∑
i=0

P (Si) · ti +
M∑
j=0

kj · ET (Sj , σj) (4.2)

4.2.3 Limitations

The requirements for estimating energy consumption using Power Finite State Machines can be
elicited after inspecting equations 4.1 and 4.2. Energy calculation requires the following data:

• Average power consumed in each power state.

• Energy consumed in every transition.

• Time spent on each state.

• Number of transitions triggered.

While power and energy consumption can be obtained from hardware data sheets and/or mea-
surements, the number of transitions and the time spent on each state are both application driven
characteristics, which depend on the firmware, the software, and, as explained in Section 2, even
on the network and the environment. Therefore, these two unknown variables must be obtained
from simulation.

Nevertheless, obtaining the accurate timing for the different state transitions is a distinct problem
depending on the device to simulate. In some cases, timing can be obtained from a functional
level simulation, while in other cases a very detailed simulation might be required.

50

Energy Simulation and Profiling

Focusing on the main subsystems present in distributed embedded systems, there is the case, for
instance, of the transceiver, which is typically governed by the application and the communication
protocol used. Hence, the time required by a transceiver to send or receive a message, is determined
by the bit rate of the protocol and the message length. The time the transceiver spends listening
for incoming transmissions is typically defined at the application level. Thus, time simulation for
a transceiver can be estimated at a very high level, without modelling the transceiver in depth.

On the other hand, modelling time for a microcontroller unit usually requires a deep knowledge of
the microcontroller architecture. Software is typically written in high level generic programming
languages. Estimating the time required to execute one algorithm is far from trivial. Depending
on the microcontroller architecture, the same code must be translated into a different number of
instructions. Furthermore, nowadays microcontroller architectures have sophisticated optimiza-
tion mechanisms, such as pipelines, cache memories, branch predictors, etcetera. By using these
mechanisms, the real timing might diverge significantly from time estimated at the instruction
level. However, implementation details to model such mechanisms are not always disclosed.

Accordingly, there are some severe trade-offs when modelling a microcontroller. Cycle-accuracy,
apart from being a huge bottleneck for simulation performance, is not always feasible, for the
aforementioned reasons. Availability of Instruction Set Simulators is better, but they are specific
of the processor architecture used, and therefore, they can be used for optimization once the
system architecture is decided, but they are not very useful for architecture exploration. Besides,
they also restrict simulation performance significantly.

Furthermore, embedded systems are part of a distributed and cyber-physical application, where
the physical processes and the network events play a crucial role in system activity. Modelling
both aspects is therefore crucial to trigger realistic state transitions.

In conclusion, simulation is required to enable the use of power finite state machines to estimate
energy consumption, by providing the timing of every state transition. This timing, however,
depending on the subsystem, might require a functional high level simulation, or a very detailed
simulation. The trade-off between performance and accuracy must be optimized for each applica-
tion case and different simulation approaches have to be followed in order to tip the scales in the
most appropriate direction according to the specific requirements.

4.3 Simulation Requirements

Virtual prototyping and Model-Based Design methodology are very widely used and accepted
for embedded systems design and play a crucial role in distributed embedded systems as well.
However, while complexity increases, the demand for more and more models of more and more
types or nature increases as well. As a result, the requirements for simulation environments that
enable the creation and interconnection of those models become more critical and difficult to
fulfil. It is therefore crucial to correctly identify the simulation framework requirements, which
will determine the whole simulation framework design process.

The requirements for the energy awareness approach were already analysed in previous chapters.
However, the requirements for the simulation platform that could enable this energy awareness
still have to be discussed.

51

Energy Simulation and Profiling

4.3.1 Simulation Performance

One of the essential characteristics of resulting simulations is their performance. The first step is
to define what performance is to be achieved. Depending on what is to be modelled, performance
requirements can be very different.

If we consider the energy consumption problem, within the distributed embedded systems context,
it is usually required to be able to simulate even several years of operation in very short time, so
that the feasibility, i.e. energy lifetime, of the system can be evaluated during design stage. For
some devices, energy lifetime required can easily surpass ten years.

A simulation framework can achieve better performance by providing abstraction. However, as
already mention, abstraction typically opposes awareness. Therefore, the abstraction performed
must still expose the parameters the designer needs to monitor and analyse.

4.3.2 Multi-level Simulation

This requirement is partially a consequence of the simulation performance requirement. As already
mentioned, performance is increased through abstraction. However, abstraction also overlays some
simulation details that might be of interest.

As the design process covers very different aspects, the details that are crucial for some simulations
might be irrelevant for others, and therefore, performance could be improved by using different
abstraction levels depending on the simulation scenario.

Another crucial reason for multi-level simulation is the need to have concurrent models at all
possible design stages. Some parts of the system might already be known in detail while other
parts can still be in a very early design phase. The simulation environment should allow and
integrate both cases. Furthermore, it is very useful to simulate the same system at the functional
level and at implementation levels to validate and verify them.

As a result, capability of using different levels of abstraction depending on the circumstances is
also a hard requirement for the simulation framework and the most efficient way to deal with
the performance-accuracy trade-off. In addition, providing higher abstraction levels where needed
also accelerates the prototyping process.

4.3.3 Multi-domain Simulation

This is already a well-known requirement in today’s embedded systems simulation, and actually
one of the most important advantages of the Model-Based Design methodology. Embedded sys-
tems require hardware and software to be designed almost at the same time. However, software
depends on the hardware platform that will execute it. Moreover, knowledge about the software to
be executed permits better optimization of the hardware designs. Co-simulation of both hardware
and software enables simultaneous development and immediately provides hardware awareness to
software developers and vice versa.

In distributed embedded systems design, the network becomes a new additional aspect that joins
this co-design problem. The network topology affects the hardware and software requirements,
and both hardware and software determine network topology possibilities.

52

Energy Simulation and Profiling

Furthermore, although the environment is not part of the design, it affects significantly the system
operation and therefore, awareness of the relevant environmental conditions has to be provided
to the designers so that they can produce successful designs. Model-Based Design methodologies
include Hardware-in-the-Loop (HiL) testing so that the hardware can be tested under simulated
conditions that resemble those at the deployment location.

However, simulating different domains usually requires following different simulation approaches
that typically lead to using different simulators. The disadvantage of mixing different simulators
is that the simulation cores have to be synchronized in order to provide a consistent output. This
synchronization is a source of inefficiencies a performance loss.

Again with simulation performance in mind, it would be preferable to develop a simulation frame-
work that uses the same simulation environment to model all the required domains: software,
hardware, network and physical environment.

4.3.4 Flexibility

Setting up an embedded system simulation typically requires instantiating and connecting some
hierarchically structured components. On contrast, setting up a distributed embedded system
simulation might require instantiating a huge amount of nodes. Furthermore, these nodes might
have different roles and, on consequence, different hardware/software configuration.

Hence, it is necessary to provide the means to the user to be able to instantiate a whole network
of embedded systems with different configurations. Otherwise, the simulation framework would
only be useful for setting up very simple examples.

Some embedded systems simulators provide component-based graphical user interfaces where the
designer can manually drag and drop and interconnect the different elements of the system. How-
ever, this mechanism also results infeasible for networks with hundreds or even thousands of nodes,
which might be the case in some Wireless Sensor Networks.

Additionally, variability and heterogeneity of the distributed embedded systems architectures and
applications, makes covering all possible situations an infeasible task. Therefore, the simulation
framework requires extensibility and some sophistication which most likely requires using some
high-level programming language rather than a more restrictive and specific modelling language.

4.4 High Level Energy Awareness: Profiles

High-level is a relative concept. Compared to gate level power estimation, a hardware component
power estimation can be described as high level estimation. In consequence, before approaching
the high level energy awareness problem, it is necessary to define what high-level means in the
context of this thesis.

When a hardware designer makes decisions with energy awareness in mind, he can look up different
hardware components specifications, and select those with most suitable electrical characteristics.
When he has to determine the best possible hardware architecture, he still can compare the
electrical characteristics of the components included and make an estimation of their utilization,
however, the analysis already becomes more complex. When the software designer tries to optimize
his code for energy efficiency, he might follow some guidelines, but to really be aware of the

53

Energy Simulation and Profiling

effectiveness of those optimizations he must also have knowledge about the specific hardware
architecture and components. If the software is being developed when the hardware architecture
is still not fixed, the problem becomes unapproachable.

If the designer of the distributed system wants to optimize the system to extend its lifetime he will
need knowledge about the energy required for executing some tasks in different hardware/software
platforms, the energy demand pressure of each of those systems versus the available energy supply,
and the energy required for communication between those platforms, which not only means the
energy consumed in effective communication, but also the energy wasted in fruitless communi-
cation and communication overhead. Only with that information he can wisely distribute the
computational load in order to extend the energy lifetime of the system.

So, high level energy awareness in the context of this thesis means that energy optimal decisions
can be made for the design of hardware architectures, firmware, application software, networks
and distributed systems. A diagram showing all the levels that are consider in this approach is
shown in Figure 4.2.

Distributed	 So-ware	

Network	 Network	 Network	

Node	 Node	 Node	

Hardware	

Power	 Domain	 Power	 Domain	

So-ware	

Power	 Domain	

Func8onal	 Block	 Func8onal	 Block	

Basic	 Block	

Func8onal	 Block	

Sensor	 Sensor	 Basic	 Block	

Func8onal	 Block	

Sensor	 Sensor	 Basic	 Block	
Tasks	

Applica8ons	

Hardware	
Abstrac8on	

Layer	

Drivers	

Opera8ng	
Systems	

Protocol	
Stacks	

Libraries	

Func8ons	

Methods	

Applica8on	
Messages	

Network	
Messages	

Rou8ng	

Security	

Reliability	

Topology	

Data	

Commands	

Configura8on	

Figure 4.2: Power models are associated to either hardware basic or functional blocks. However, there
are many other higher level structures that require estimating the accountable energy con-
sumption for optimization.

Energy consumption is basically the power consumed along time. Power consumption ultimately
occurs in hardware and can be calculated from its electrical characteristics. To obtain the energy,
power consumption must be accounted along time. However, to optimize the designs it is not
sufficient to just calculate the energy consumed.

Energy optimization requires to complement the energy consumption numbers with information
about the logical elements that were involved in that energy consumption. Those logical elements

54

Energy Simulation and Profiling

vary depending on the design level. In this thesis, four main groups of logical elements are
established:

1. Hardware: Hardware elements are typically hierarchically structured. As explained in
Section 2.1, the typical hardware device consists of several hardware subsystems that, in
turn, consist of simpler hardware components. Power models will typically be available only
for very simple components. In order to obtain the power model for a whole subsystem or
a whole device, the power models available for the components integrating it, have to be
aggregated into the overall model.

2. Software: Software can be partitioned into meaningful units which perform some basic tasks
or activities. These tasks typically involve several hardware subsystems. Power information
from the power models of those hardware subsystems have to be aggregated in order to
create a software activity power model.

3. Communication: The communication process between a sender node and a destination
node involves a number of software tasks executed in both nodes. If the network requires
multi-hop routing, there will be even more tasks executed in other nodes that are actively
or passively involved in the communication. In order to estimate the energy consumption
of the communication process, the data obtained from software and hardware power models
of the affected nodes has to be aggregated into a communication energy model.

4. Distributed Software: Networked embedded systems can be seen as distributed systems
where high level tasks involve the collaboration of several nodes in different locations. With
their increasing complexity, the number of distributed tasks is starting to grow. It becomes
therefore necessary to obtain energy consumption and efficiency information of each of these
tasks separately. This way the designer can easily decide which tasks are compromising the
energy lifetime of the overall network.

Therefore, energy profiles can be defined as follows:

Definition 3. An energy profile is the aggregation of power models to build new compound
models associated to high-level and even abstract elements.

The resulting profile is therefore a model that can be used to estimate both power and energy,
restricted by the limitations of the integrating power models. For instance, in the proposed
energy aware integral approach, power modeling is limited to average power provided by power
state machines.

The goal of these energy profiles is to answer the energy optimization related questions of the
designers at different abstraction levels. These profiles must have the appropriate semantics so
that the energy consumption data can be appropriately and effortlessly interpreted. They must
also enable easy comparisons and evaluation of different design alternatives in order to make the
optimal decisions.

Figure 4.3 depicts the different directions in which low level power consumption data has to be
abstracted.

The following sections provide detailed descriptions of the different types of energy profiles pro-
posed.

55

Energy Simulation and Profiling

Simula'on	 Environment	

Hardware	
Component	

Local	 Profiles	

Power	 State	
Machine	 States	

Time	 Stamps	

Distributed	 Profiles	

Distributed	
So?ware	

Communica'on	 Hardware	
Compound	
Module	

So?ware	

States	

Time	 Stamps	

Figure 4.3: Power states and time stamps of state transitions are recorded and interpreted in 4 different
directions: hardware, software and communication and distributed software.

4.4.1 Hardware Profiles

The basic element for power simulation is the one for which there exist a power model, which in
this work are power state machines as described in Section 4.2. Although a whole System-on-
Chip (SoC) or Printed Circuit Board (PCB) belong to the hardware level, they are complex and
heterogeneous hardware designs that include smaller pieces of hardware.

Although complex power state machines would be, in principle, possible to be created for a complex
system as well, in practice it is better to follow a modular approach. An overall combined power
state machine could improve performance as it enables the analysis of the set of joint states and
all incompatible states can be ruled out. However, it has two main drawbacks:

1. It hinders the flexibility required, for instance, in hardware exploration, where the state
machine would need to be rebuilt whenever a subsystem is modified. Exploration is one of
the benefits of early energy simulation.

2. It reduces the granularity of the power states definition, i.e. the power modes of the different
subsystems would be masked in overall power states, which can be detrimental to the purpose
of this work.

Furthermore, triggering state changes is not a significant limiting factor of simulation performance.
Therefore, using power state machines for single components is preferable, as they can be easily
reused in different implementations, and enables aggregating power states in the way that best
fulfills the requirements of the designer.

However, more complex hardware power models might be necessary. As hardware components
are typically organized in a hierarchical way, the proposal to obtain those more complex models
is to index the state machines of all the components of a physical or logical hardware cluster.

A hardware profile is a power model of a complex hardware subsystem, which consists on
the summation of the power consumption values of the current states of the indexed power state
machines, as in Equation 4.3, where PHW is the power of the hardware subsystem, Sk is the power
corresponding to the current state of power state machine with index i and N is the number of
indexed power state machines.

56

Energy Simulation and Profiling

PHW =
N∑
i=0

Pi(Sk) (4.3)

The energy of a hardware profile is the summation of the energy given by the power state
machines of its subsystems.

EHW =
N∑
i=0

Ei =
N∑
i=0

(

Mi∑
j=0

Pi(Si,j) · ti,j +

Li∑
k=0

ki,k · ETi(Si,k, σi,k)) (4.4)

Therefore, every simulated hardware model must contain a set of all the power state machines
that are part of it. The model can then provide the power consumption by adding the values of
all the power state machines in the set. Figure 4.4 shows the algorithm to obtain the profile of a
hardware module with several power state machines.

State	
change?	 Report	

Register	 PSMs	 in	
Hardware	 Profile	

Yes

No

Figure 4.4: Hardware profiling algorithm

Hardware energy profiles permit the automated power consumption data aggregation for complex
hardware components and also makes easier to aggregate power consumption data for higher levels
of abstraction.

4.4.2 Software Profiles

The lack of energy awareness at higher levels has led to a scenario in which energy consumption is
reduced by reducing system performance, e.g. by reducing the duty cycle in which the application
is active. However, with the appropriate information, energy consumption optimization should
not reduce energy consumption at the expense of system performance, but it should increase the
effectiveness of the energy consumed.

Software profiles have been used in computation since concurrency and pre-emption enabled the
competition between different tasks. A pre-emptive scheduler must balance the load with fairness.
At the beginning this could be done by sharing the access to resources among the different system
processes. However, as computation became more and more complex, some high level tasks started
to be split into several operating system processes. In order to prevent fairness deterioration,
software profiles were proposed in order to account all the processes that belonged to the same high
level task. This profiles were called activities. They have been applied to networked embedded

57

Energy Simulation and Profiling

systems in [FDLS08], but only as runtime extension to operating system. Software profiles in
simulation of networked embedded systems have not been found.

There are mainly three software development planes in a wireless embedded system:

• The basic software layer, which serves as an operating system and typically includes a
scheduler and the drivers and APIs that conform the hardware abstraction layer. For the
sake of efficiency, this layer is very slim in wireless embedded systems, removing all unused
functionality, which requires memory and consumes power.

• The communication protocol stack, which includes all the network functionality. Commu-
nication layers are usually independent and just use and offer interfaces to the layers above
and below, respectively. However, power consumption concerns to all the layers of the stack
and therefore a cross-layer optimization becomes necessary to achieve energy awareness.

• The application software, which uses all the abstraction provided by the the operating system
and the communication stack. Abstraction is necessary to enable productivity in application
development. However, it hides the use of resources to the application developer, who lacks
the basic knowledge to estimate it properly.

Depending on the development plane, the user might want to define his own high level profiles.
To increase the energy effectiveness, it is very helpful to quantify the energy consumption of these
high-level defined tasks. For the moment, these high-level activities are still very easy to define,
as the energy restrictions on the devices contribute to a very straightforward list of tasks a node
must perform.

Although every application can have its own requirements, in most cases a sensor node with a
restricted energy budget will not perform tasks other than sensing, processing and transmitting.
However, this simplistic approach will not scale well in more complex scenarios and applications.
Complexity growth will increase the demand of more and more software profiles to enable isolating
the most energy inefficient software elements and evaluating any possible improvement.

In order to offer maximum flexibility and enable energy accounting for both simple and sophisti-
cated software tasks at all possible software development stages, this work proposes user-defined
activities.

A software profile is therefore a power model for abstract software concepts called activities.
The power consumption of an activity is the summation of the power consumption values given
by the power-state machines associated to the hardware subsystems involved, while the activity
is active. When a sensor node is marked as performing an activity, all the energy consumption
data it generates will be labelled with that activity.

Figure 4.5 shows the algorithm to log power consumption and activities in order to build a software
energy consumption profile.

An example of power consumption during a "routing" activity is given in Figure 4.6. A message
is received that has to be forwarded to another node. Before the reception occurs, the simulator
detects that the message has to be forwarded and then the activity is changed to "routing". All
the subsequent operations, such as receiving the message, header decoding, routing table lookups,
transmitting the message again, etc. will consume power. The power consumption data will be
labeled as power consumed in the "routing" activity. This way, a complex task, that involves

58

Energy Simulation and Profiling

State	
change?	

Report	

Ac0vity	
on/off?	

Register	 PSMs	 in	
Node	 Level	

Hardware	 Profile	
Define	 Ac0vi0es	

Yes

Yes

No

No

Figure 4.5: Software profiling algorithm

Table 4.3: Software profile example

Routing
State-transition actions Microcontroller Transceiver Time
Start receiving the message Sleep Listen → RX Starting time

Finalize reception Sleep RX → Idle Size/Bitrate
Start processing Sleep → Active Idle Delay
End processing Active → Idle Idle Processing Time
Carrier Sensing Idle Idle → RX CCA time

Start sending message Idle RX → TX Delay
End sending message Idle → Sleep TX → Sleep Size/ Bitrate

several hardware subsystems will have an associated profile. The different states and transitions
of the involved subsystems are shown in Table 4.3.

The energy of a software profile ESW is a function that rules the relationship between any abstract
sofware-related concept, or activity, and its accountable power consumption. It can be defined as:

ESW : A −→ R≥0

where A is a finite set of abstract user-defined software concepts.

Using the simple power state machine, the energy of the "routing" activity example can be cal-
culated as:

ESW (routing) = ESW,TRX(routing) + ESW,MCU (routing)

Both transceiver (TRX) and microcontroller (MCU) have associated a power state machine. For
the transceiver, the energy profile would be:

59

Energy Simulation and Profiling

0 2 4 6 8 10 12
0

10

20

30

40

50

Time(ms)

P
ow

er
(m

W
)

Microcontroller
Transceiver
Overall

Figure 4.6: Power consumption for the "routing" software profiling example.

ESW,TRX(routing) = P (RX) · tRX + P (Idle) · tIdle + P (TX) · tTX

And for the microcontroller:

ESW,MCU (routing) = P (Sleep) · tSleep + P (Active) · tActive + P (Idle) · tIdle

The time estimation is obtained, as in the general case of power state machines, through simula-
tion. Activities must be defined and triggered by the user, while coding the software application.

Unlike power states within the same state machine, activities are not exclusive, i.e. several activ-
ities can occur simultaneously. For instance, both periodic tasks and measurement report could
be defined as independent activities. However, measurement reports may occur due to periodic
or non-periodic events. Likewise, periodic tasks may involve more tasks.

4.4.3 Communication Profiles

Previous sections discussed energy profiles for hardware and software. Some approaches for both
kinds of profiling can be found in literature (see Section 3). However, both cases are only effective
for local energy optimization. Nonetheless, in a distributed system, local nodes optimization
do not always correspond to system optimization. Therefore there is a missing step in order
to enable networked embbeded systems energy optimization. This element is communication.
Communication energy profiling is a novel approach proposed here and one of the key contributions
of this thesis.

If a complex hardware subsystem takes any action, hardware profiling will aggregate the energy
consumption of all its elements in order to obtain the overall energy consumption value. In the
case of software, the software profiles will account all energy consumed by the software tasks across
different hardware subsystems. However, when a node communicates, his action has an effect in
the energy consumed in other nodes in the network.

60

Energy Simulation and Profiling

However, there are no means to account this energy consumption to evaluate the impact that such
communications have in other nodes and in the overall distributed system. Furthermore, similarly
to hardware architecture exploration, there are many decisions that can be made in the distributed
system architecture about how to distribute the computational resources. This decisions will be
crucial in the overall system performance and energy lifetime. It is therefore of great importance
to create the means to compare and evaluate those architectures for the sake of the system.

Figure 4.7: Nodes affected by two example communications (A to H and G to F).

In order to account communication, the energy consumed from a single local node perspective is
not informative enough. In a wireless ad-hoc network, when a node sends a message, it is broadcast
to all nodes in its neighbourhood. Every node listening will at least receive the preamble and
decode the destination address to check whether they have to process the message or not. Figure
4.7 shows this effect, with a message symbol for all nodes affected by communication between A
and H (in green) and G and F (in red).

If there is a routing algorithm, and before sending a data message, a route discovery is sent,
many nodes in the network will be involved in that process and will consume power for it. On
contrast, a protocol stack with a more simple routing protocol, might not send route discoveries,
but might require more power consumption per communication in order to find the path to the
destination node. All these effects must be observable through a communication profile in order
to evaluate communication energy consumption and make the best design decisions depending on
the application and the scenario. A single change in topology might create a whole new scenario
with different traffic balance requirements and different optimum solutions.

A communication profile is a power model for communication. It accounts all power consump-
tion, across different hardware subsystems and across different network nodes, that is involved in
transmitting a message from the information source to the information destination.

Communication profiling is very costly to implement it at run-time. In wireless communication,
messages can be re-transmitted along different paths simultaneously, where some paths just lead

61

Energy Simulation and Profiling

to unsuccessful communication. Collecting the information from all affected nodes is unfeasible
in networks with big amount of ultra-low power nodes. However, accounting information from all
nodes is absolutely possible in a simulated network.

The communication profile proposed here, uses the data payload as the key element. Communi-
cation could be defined as the act in which a sender sends a message to a receiver. The whole
process is therefore linked by the message itself. Hence, the idea is that any actor that par-
ticipates in the communication process, annotates the power consumed for their contribution in
the simulated message. These actors are the sender, the transit nodes, the receiver, and any
other consuming power element that contributes in transferring the information from its source
to its destination. Figure 4.8 represents the algorithm to log power consumption, activities and
transaction annotations in order to build a communication energy consumption profile.

State	
change?	

Ac,vity	
on/off?	

Register	 PSMs	 in	
Node	 Level	

Hardware	 Profile	
Define	 Ac,vi,es	

Ac,ve	 	
transac,on?	

Annotate	
Transac,on	

Yes

Yes

Yes

No

No

No

Report	 Transac,on	 	
finished?	

No

Yes

Figure 4.8: Communication profiling algorithm

Table 4.4 shows an example of communication profile for a route discovery message, which also
includes the route response. In the example all nodes where listening, but if nodes are duty cycled
not all of them would be listening while messages are sent. For the route response, some nodes
might just receive the beginning of the message, until they can decide whether the message is for
them or not, but this will depend on the implementation. The table shows all the events that will
be annotated in the communication profile with their corresponding energy consumption values.
Adding all the values will provide the energy consumption of that communication element.

The energy of a communication profile, ENW can therefore be calculated as:

ENW =
N∑
i=0

Ei,HW (4.5)

62

Energy Simulation and Profiling

Table 4.4: Communication profile example

G → F route discovery
Nodes

Power consuming activities B C D E F G H
Generate route request

√

Transmit request
√ √ √ √

Receive route request
√ √ √ √

Process request
√ √ √ √

Listen to responses
√ √ √ √

Generate route response
√

Receive route response
√ √ √ √

Process response
√ √ √ √

where Ei,HW is the energy consumption of the i node hardware profile and N the total amount
of nodes in the network.

Therefore, the communication profile provides the overall energy impact a communication op-
eration has in the whole network. This way, energy expensive communication can be detected.
Furthermore, local node energy estimations can be compared with overall communication profiles
in order to find out unbalanced network load distribution. Traffic load distribution is crucial in
networked embedded systems, because it might lead to the isolation and unreachability of some
parts of the network topology. This is a risk in particular in networks that are established with
an unplanned topology. A weakness in this aspect can be identified and corrected, installing
additional transition nodes where it corresponds.

4.4.4 Distributed Profiles

Once there are structures defined to profile hardware and software from a local node perspective,
and to profile the energy consumed in network communication, new meaningful profiles at the
distributed semantic level can be established.

Networked embedded systems are becoming the basis for complex distributed applications. The
impact of the different tasks to be performed must be carefully evaluated by the users and admin-
istrators in order to obtain the best results possible and prevent failures. An embedded systems
network may implement different functionality, such as over-the-air software/firmware upgrade
and system configuration, sensing and monitoring, scenario recognition, networking operations,
etc. Creating energy profiles to evaluate the impact on the system energy lifetime of these activities
is very valuable information.

The problem is similar to the one described in local software profiles. The computational resources
are spatially distributed and carrying out tasks involves energy consumption in some of those
embedded systems. Distributed profiles must then account the energy consumption across the
network for a specific high level task. Hence, those tasks could be named as distributed activities.
As in the local software case, these tasks can be defined by the user. However, in the distributed
case, multiple activities may take place concurrently. Therefore, it is not possible to just account
all network activity in the same energy profile. In order to create the distributed profile it is
necessary to account the energy consumed in processing information in specific nodes plus the
energy consumed in all communications that are part of the high level task.

63

Energy Simulation and Profiling

State	
change?	

Ac,vity	
on/off?	

Register	 PSMs	 in	
Node	 Level	

Hardware	 Profile	
Define	 Ac,vi,es	

Ac,ve	 	
transac,on?	

Annotate	
Transac,on	

Yes

Yes

Yes

No

No

No

Report	
Transac,on	 	
finished?	

No

Yes

Distributed	
Ac,vity?	

Annotate	
distributed	
ac,vity	

Yes

No

Figure 4.9: Distributed profiling algorithm

Figure 4.9 depicts how to integrate the distributed activities labels into the existing profiling
algorithms. All processing that is related to a distributed activity is included in the profile by
labeling state and activity changes with the corresponding distributed activity. If there is also
communication involved, the transaction is also labeled with the distributed activity, which is then
propagated through the network. This way, although some nodes may ignore they are contributing
to the high level activity, the simulator can still keep track of this through the communication
profile.

The energy of a distributed profile would just be the summation of all the energy consumed during
the states and time intervals that are labeled as taking part in it.

64

5 An Energy Profiling Framework

In this section, a simulation framework called SICYPHOS (Simulation of Cyber-Physical Systems),
is presented and described in detail. This framework aims to assist in energy optimization of
distributed embedded systems by applying the concepts and techniques proposed along previous
chapters, specifically Chapter 2 and Chapter 4.

In Chapter 2, hardware architecture of distributed embedded systems was discussed, as well as all
the elements that intervene in the energy optimization problem. Chapter 4 proposed an approach
to include energy awareness in design methodology. The proposed approach aims to account
energy consumption and associate it to high-level concepts. Simulation plays a central role in the
realization of the approach:

• It is required in order to execute the power models and estimate the time that enables
obtaining the energy consumption from the average power in the models.

• Comprehensive simulation is required in order to consider virtual prototypes, wireless com-
munication and cyber-physical interaction. All these aspects are crucial in networked embed-
ded systems, which are very open and interactive and their operation is heavily determined
by their environment.

• Finally, simulation is the most powerful way to profile energy consumption information.
Profiling in the real system is not realistic, as it would modify the energy consumption of the
system itself. Implementing external infrastructure is not feasible for networked embedded
systems, where all nodes and communication would need to be monitored.

State-of-the-art simulation frameworks, discussed in Chapter 3, do not offer complete solutions to
implement the required multi-level and multi-domain comprehensive framework required in order
to obtain realistic estimations of energy consumption. Therefore, the purpose of the proposed
framework is twofold:

1. Fill the requirements for simulation of networked embedded systems. This includes models
and infrastructure to simulate hardware, software, wireless communication and physical
processes. Furthermore, the simulator must enable the generation and parametrisation of
the whole system, which may contain a big amount of nodes with their spatial location and
their own system architecture.

2. Implement the proposed energy aware framework, which must include the power models,
the energy profiles and the mechanism to log all the information.

65

An Energy Profiling Framework

5.1 Simulator Architecture

Before describing the different parts of the framework, the global software architecture must be de-
scribed. SystemC has been selected as the basis for the whole simulation. As discussed in Chapter
3, SystemC is already an industry standard for hardware and software co-design, widely adopted
in the development of embedded systems. Being a C++ library, it is easily extensible. Therefore
the framework implemented is a C++ library and an extension to SystemC/TLM library. As
a consequence, an additional simulator is not required and the SystemC simulation kernel can
be used to simulate the models. In this work all simulations are executed using the SystemC
proof-of-concept simulation kernel, which is open-source and freely available for download.

The SystemC simulator is event-based and as a consequence, the SICYPHOS Framework provides
discrete-event simulations. Discrete-event simulation is suitable for modelling digital systems, soft-
ware and network. However, as already mentioned, the SICYPHOS Framework must also provide
models for analogue systems and physical environment. Those models typically involve continu-
ous variation according to differential equations, and therefore, discrete event simulation seems
not to be the most appropriate approach. The SystemC Analogue Mixed-Signal (AMS) exten-
sions library provides the modelling formalisms or Models of Computation (MoCs) to support
analogue modelling. Timed Data Flow (TDF) is the Model of Computation which provides a
higher abstraction level and is the one used in SICYPHOS Framework to model physical pro-
cesses. SystemC-AMS 2.0 Standard added the possibility of establishing a time-step dynamically
during execution, enabling, for instance, improving performance when switching between differ-
ent operation modes with different time precision requirements. This is of special interest in our
application scenario, as some systems will operate in both active and sleep states, with extremely
different time granularity requirements.

Figure 5.1: Architecture of a simulation using SICYPHOS Framework

Therefore, the TLM modelling paradigm provides the missing infrastructure to fulfil the missing
requirements from Section 4.3.

SystemC/TLM and SystemC-AMS extensions, are not intended for simulating networked em-
bedded systems. The proposed framework applies, leverages, adapts and extends the modeling
formalism provided by this set of tools, even out of their intended context, in order to serve
as a networked embedded systems simulation framework. Figure 5.1 shows how these languages,
libraries and frameworks are structured in a simulation. The basis for the whole simulation frame-
work is C/C++. SystemC serves as the simulation kernel that will drive the whole simulation.
TLM provides the communication abstraction used in prototyping and in also in the wireless com-
munication model that will be explained next. SystemC-AMS is used to model analog subsystems
and also physical processes that are part of the cyber-physical interaction.

The implemented framework can be divided in two main parts:

66

An Energy Profiling Framework

1. Wireless TLM: It contains the models and tools for both intra- and inter-node communi-
cation. It includes a top-level API for all systems with wireless connectivity and an XML
parser to specify the network topology.

2. Energy Aware Framework: This part implements the models described in Chapter 4:
power state machines, energy profiles and a logger to efficiently record the simulated infor-
mation.

Actually a module library that simply collects all the implemented hardware, generic software and
protocols for further reuse can be considered as a third part. All three parts are represented in
Figure 5.2.

SICYPHOS	

Module	 Library	

Library	 that	 collects	 	
implementa<ons	 for	 further	
reuse:	
•  Hardware	 modules	
•  Network	 protocols	

Wireless	 TLM	

TLM-‐based	 wireless	 network	 communica<on	
model:	 	
•  Radio-‐propaga<on	 model	
•  Intra-‐node	 protocol	 stack	 communica<on	

model	
•  Top	 level	 API	 for	 networked	 embedded	

systems	
•  XML	 network	 specifica<on	

Energy	 Aware	 Framework	

Tools	 and	 methods	 for	 energy	
profiling:	
•  Power	 State	 Machines	
•  Energy	 aware	 modules	
•  Communica<on	 energy	

profile	
•  Energy	 consump<on	 logger	
	

Figure 5.2: Components of the SICYPHOS Framework

5.2 Wireless TLM

The first aspect lacking in SystemC and its extensions, in order to model distributed embedded
systems, is a propagation model to simulate wireless communication among embedded systems.

Simulation of wireless communication is crucial for the evaluation of distributed embedded sys-
tems. However, the overhead of an accurate propagation model must not hinder the performance
of the whole system simulation.

For the sake of performance, SICYPHOS implements the wireless communication model within
the SystemC simulation environment. Furthermore, SICYPHOS makes use of the Transaction-
Level Modelling approach and extrapolates it to the wireless communication case. This approach
was proposed in [DMHG10].

Transaction-Level Modelling was intended to dwell above Register-Transfer Level in digital elec-
tronic systems. Bus communication low level details, with pin and cycle accuracy are abstracted
into the so called transaction. If we consider an interconnect memory mapped bus, this bus
would distribute the transaction from the initiator subsystem to the corresponding target. The
transaction abstracts all the bit, signalling and pin level information.

SICYPHOS follows a similar approach for wireless communication. In the wireless case, the
medium, usually the air, plays the role of the memory mapped interconnect bus. Initiators put
their messages in the air, and the air distributes them to all subsystems in range. The target

67

An Energy Profiling Framework

Node	

Wireless	
Module	

Air	 Module	

Node	

Wireless	
Module	

Node	

Wireless	
Module	

Node	

Wireless	
Module	

... ...

TLM Initiator Socket

TLM Target Socket

Figure 5.3: Wireless TLM Network Architecture

corresponding to the destination address receives and processes the message. The whole picture
of the TLM wireless model is represented in Figure 5.3.

Hence, the TLM wireless model abstracts signals and bits and enables modelling communication
at a higher abstraction level. Transmissions are evaluated in terms of bit error rates, obtained
from the Signal-to-Noise Ratio (SNR), and delay. The message and the specific protocol headers
are also abstracted. The only crucial information that has to be tracked, is the bit length and
the protocol bit rate, as they determine the time required to transmit and receive a message, and
therefore the power consumed by the transceiver during the power states in which the transmitter
and the receiver are active.

5.2.1 Wireless TLM Modules

TLM requires every connected module to be a SystemC module. TLM sockets can then be
attached to these SystemC modules. Communication is granted by connecting the sockets and
implementing the required communication interfaces.

The wireless communication model in SICYPHOS provides two basic SystemC modules, which
are both represented in Figure 5.3. A Wireless Module, which is embedded in every node in the
network with a wireless interface, and an Air Module, which interconnects all Wireless Modules.

Wireless modules have both initiator and target sockets, as they can both transmit and receive
information. The Air Module has multi-target and multi-initiator sockets, as an undefined number
of nodes can be connected to it.

5.2.1.1 Wireless Modules

The so called Wireless Module represents the wireless communication physical layer. Every node
with wireless connectivity must embed this module in order to communicate with other network

68

An Energy Profiling Framework

entities.

The SICYPHOS Framework provides the wtlm_module class, which is an abstract class that
contains the terminal side of the communication physical layer. As SICYPHOS Framework aims
to be generic and some implementation details are application dependant, such as the bit rate
or the modulation, there are some virtual callback functions that have to be implemented by the
user. Those virtual callback functions are:

• accept_air_data_start: This callback function returns whether an incoming transmission
can be actually received or not. It depends on implementation details such as whether the
receiver is listening or not.

• calc_bit_errors: This callback function calculates the number of bit errors based on the
Signal-to-Noise Ratio (SNR). The function to obtain the Bit Error Rate (BER) using the
SNR depends on the modulation used for the transmission. Modulation may vary depending
on the protocol used, and therefore, has to be provided by the user.

Every wireless module also provides two pairs of sockets a simple initiator socket and a simple
target socket to provide bidirectional communication with the air.

Additionally, the wireless module provides another pair of simple sockets to provide communication
to the upper communication layers. This sockets can be connected either to additional protocol
modules or to the top-level API module, as it will be explained in Section 5.2.3.

5.2.1.2 Air Module

The air module is a SystemC module and is also implemented as a singleton design pattern. This
means that during simulation there is one and only one instance of the air class. The singleton
pattern contribution is twofold: it prevents from instantiating different air medium classes and it
allows every node to acquire the correct instance to be connected with.

The air module must be connected to every wireless module in the simulation. This is done by
means of TLM convenience multi-sockets. However, the air must know the multi-socket index
assigned to each node, as well as its position, in order to distribute the messages and calculate
the attenuations appropriately.

For this purpose, the air contains a registration function that all wireless modules must call
in order to obtain connectivity. During this registration, the wireless modules are stored in a
map data structure, maintained by the air module, which associates each wireless module to its
corresponding socket index.

The Air Module is also responsible for computing all the propagation effects. For this purpose,
apart from the socket indices map, every node is also registered together with its spatial location,
which is then used by the Air Module to calculate the propagation delay and the attenuation.

Attenuation is considered in two ways:

• Attenuation matrix: The air populates and maintains an attenuation matrix based on
adjacency and distance. The equation to calculate the attenuation can be parametrized to
adapt it to different propagation conditions. For instance, the attenuation exponent in free
space condition is 2, while in indoor communications an exponent of 3 or 4 provides more
accurate results.

69

An Energy Profiling Framework

• Specific attenuation: In a network there might be many particular cases, which are not
well represented by the general distance based equation. For these cases, for instance, when
there is an obstacle, SICYPHOS permits establishing specific attenuation values for the
corresponding node pairs.

• Time variant attenuation: There are time variant effects, e.g. fading, that might af-
fect the transmission, but only in some cases. SICYPHOS permits setting the statistical
parameters that better reflect this effects and computes them before every transmission.

With all these effects, the message is processed and distributed to all the nodes where the trans-
mission will have an effect. There is however, a truncation parameter, which is a transmission
power threshold value, in order to avoid distributing the messages to nodes where the effect of the
transmission would be negligible. This truncation is critical in order to keep acceptable simulation
performance in nodes with thousands of nodes.

5.2.2 Wireless TLM Interfaces

Apart from the initiator and target sockets, TLM provides two main transport interfaces: blocking
and non-blocking. The difference between both is the level of detail regarding timing.

• Blocking Interface: It just models the start and end of a transaction, which is therefore an
atomic operation triggered by a single function call. Delay is computed by calling SystemC
wait().

• Non-blocking Interface: Apart from modelling the start and end of the transaction, it
supports modelling other timing points within it, which can be split into several phases with
different interactions between initiator and target.

SICYPHOS TLM wireless model makes use of both kind of interfaces in its own two different
types of communication, from the nodes to the air, and from the air to the nodes.

5.2.2.1 Wireless Module to Air

Transmitting a message to the air is an operation assumed to occur without interruptions. When
the transceiver starts the transmission of the message, it must send all the bits without any
possibility of interaction. There should also not be any variation in the signal properties at the
transmitter.

Therefore, node-to-air interface can be implemented as a blocking interface, where only some delay
can be added. The transaction is then received on the Air Module target socket, and delivered to
the Air Module, which will process it to compute the attenuation and forward it to all the nodes
within range.

70

An Energy Profiling Framework

Message	
Received	

Can	 be	
Received?	

Recep1on	
in	 course?	

Calculate	 Bit	
Errors	

Schedule	 End	
Recep1on	

Tag	 as	 receiving	
message	

yes

no

yes

no

Figure 5.4: Flow chart for Begin Reception phase algorithm

5.2.2.2 Air to Wireless Module

Once attenuation and delay is computed in the air module, it forwards the transaction to the
target wireless modules. From the point of view of the air module, the operation is finished just
after this forwarding.

However, at reception, the process must be split in order to compute noise and interferences. As
a result, and although there is no communication through the backwards path, this transaction is
better implemented using the non-blocking interface.

There are two phases: one to indicate the beginning of the reception and another to mark the
end.

• Begin Reception: When a message reaches the node, the total received power value is
increased with the transmission power of the message. Then, there are two alternatives:
either it can be actually received by the node and the message is treated as data, or it
cannot, and the message is treated as noise. In the former case, the messaged is tagged as
being received. In the latter case, if there is a reception in course, the callback to calculate
bit errors 5.2.1.1 is called in order to calculate the bit errors until the reception conditions
(SNR) change. In any case, an event is schedule at the time in which reception ends,
according to bit rate and message length. The whole process is represented in Figure 5.4.

• End Reception: When the event queue delivers the end reception event, the total received
power is decreased by the value of the corresponding message transmitting power, and there
are again two possibilities. If the message is actually being received, the bit errors are
calculated according to the Signal to Noise Ratio (SNR) and the modulation, and the data
is delivered to the upper layers. If the message is not being received, and therefore, treated as
noise, if it is not affecting any message reception, it can be discarded. If there is a reception
in course, then the callback for bit error calculation must be called in order to compute bit
errors until the change in SNR. Figure 5.5 illustrates the process.

71

An Energy Profiling Framework

End	 Recep)on	
Event	

Event	 for	
receiving	
message?	

Recep)on	
in	 course?	

Calculate	 Bit	
Errors	

Deliver	 Message	

yes

no

yes

no

Calculate	 Bit	
Errors	

Discard	 Message	

Figure 5.5: Flow chart for End Reception phase algorithm

A blocking interface for the Air-to-Wireless-Module communication has also been implemented.
This interface is more simple and efficient but it does not simulate collisions during reception: the
same propagation conditions are assumed from the beginning to the end of the message reception.

5.2.3 TLM Intra-Node Communication

The wireless TLM model just covers the communication physical layer. However, wireless com-
munication typically involves some protocols, at least at the MAC and network layers. Therefore,
the whole communication stack must be implemented.

A full implementation in the target platform native code, would be necessary to estimate the
processing time for the different tasks and calculate the power consumed in the microcontroller.
However, during distributed system architecture exploration such an implementation would not
be feasible.

For this reason, SICYPHOS offers infrastructure to rapidly implement communication protocol
stacks at least at a functional level, in order to estimate the communication overhead and evaluate
the behaviour, at the network level, of different communication protocols and network topologies.

Actually, one of the most powerful and unexplored optimizations a distributed embedded system
designer can perform resides, in fact, in the communication stack. SICYPHOS aims therefore to
provide flexibility to configure different protocol stacks in order to easily evaluate and compare
different protocols.

Hence, the impact in energy consumption of adding, for instance, collision avoidance at the MAC
layer could be assessed. Network protocols can also be explored to estimate which one provides a
longer distributed system lifetime.

SICYPHOS leverages TLM interoperability features to provide the required flexibility. It provides
a protocol class with two pairs of sockets, one for bidirectional upwards communication and the
other for bidirectional downwards communication. The delivery of a message from one layer to

72

An Energy Profiling Framework

Figure 5.6: TLM Intra-node Network Protocol Stack Architecture

the adjacent one, is assumed atomic, and, consequently, is implemented using the TLM blocking
interface.

Every protocol must extend the basic protocol class and implement the corresponding TLM trans-
port interfaces. This way, the user can set up his own protocol stack just by connecting the sockets
in the appropriate order. The protocol at the bottom has to be connected to the wireless module
(see Section 5.2.1.1, while the protocol at the top has to be connected to the top level API module
(see Section 5.2.5.

If no protocol is implemented, the sockets of the wireless module can be directly connected to the
top level API. Figure 5.6 shows the TLM architecture of a SICYPHOS protocol stack.

However, to achieve real interoperability, not only the communication sockets have to be present.
Messages are changed by the protocols, by adding some protocol specific bits as message headers.
To model these headers, TLM generic payload extensions are used (see Section 5.2.4.3).

5.2.4 The SICYPHOS Transaction

One of the key elements of the SICYPHOS approach is the concept of transaction. A transaction
in SICYPHOS is the central communication data structure: it is used for both the wireless and the
intra-node communication models. As communication is implemented using TLM, the SICYPHOS
transaction has to be based on the TLM generic payload class, which is the main parameter of
TLM interfaces.

The SICYPHOS transaction fulfils two main functions:

• Efficiently simulates communication.

• Serves as the basis for the communication energy profiling.

However, the TLM generic payload is conceived for memory mapped bus communication. There-
fore, for the sake of SICYPHOS communication model, some attributes have been reused for
different purposes and others had to be added either by C++ inheritance or by the TLM generic
payload extensions mechanisms.

73

An Energy Profiling Framework

5.2.4.1 Adapting TLM Generic Payload

In this section, the different attributes of the TLM generic payload are enumerated, as well as
how these attributes will be reused in SICYPHOS Framework.

The TLM generic payload, as the name already suggests, is design to be versatile, in order to be
usable in most common communication scenarios. Therefore, some of the original TLM generic
payload attributes can be reused. The following are also used in SICYPHOS, with a slightly
different meaning due to the context change:

• Address: Contains the address of the final destination node for the corresponding message.

• Data length: Contains the value of the length, in bits, of the payload data contained in
the message.

• Data pointer: Contains the pointer to the data carried in the payload.

The rest of the generic payload attributes are ignored.

However, these attributes are not sufficient for SICYPHOS purposes. Thus, SICYPHOS includes
its own transaction class, derived from the TLM generic payload, which, apart from the previously
mentioned attributes, includes the following:

• Transaction ID: Identifies the transaction with an unique ID. This attribute is just for de-
bugging and simulation purposes. It facilitates logging the information for each transaction.

• Headers Length: Contains the length in bits of the headers added to the data message.
This way, the full message length can be obtained, by adding data and headers length
attributes. The headers themselves will be part of the transaction by using TLM generic
payload extensions mechanism.

5.2.4.2 Memory Manager

A common practice when using TLM generic payload, suggested in the SystemC Language Ref-
erence Manual [IEE12], is to use a so called memory manager.

SICYPHOS includes its own memory manager implementation, conceived as a singleton design
pattern. The memory manager prevents the simulation from instantiating and destroying generic
payload objects for every transaction. Instead, a common pool of transactions is kept.

Whenever an initiator needs a new transaction it asks the memory manager for it, which provides
one of the unused ready instantiated transactions from the pool. When the transaction is not
longer in use, the memory manager resets it and returns it to the pool. This way, a new transaction
is only allocated if there is none available in the memory manager pool. In order to control when
to reset a transaction and put it in the transactions pool, a reference counter is used.

Apart from the improvement in performance obtained from avoiding memory allocation, there
is more control over the memory usage. The potential memory leakage risk is restricted, as it
reduces the number of instantiated transactions.

74

An Energy Profiling Framework

5.2.4.3 TLM Payload Extensions

TLM provides a generic payload extension mechanism which permits customizing the transaction
data structure for different purposes other than the memory mapped buses.

Hence, when the attributes provided by the generic payload class are not sufficient, further at-
tributes can be added to an extension.

Moreover, generic payload extensions are ignorable, i.e. they do not need to be required in order
to fulfil communication. The user can decide whether to make them ignorable or mandatory,
depending on his needs.

Unlike message encapsulation, extensions do not have to be decoded in a specific order to correctly
interpret the data contained in the payload, improving interoperability.

As a result, different communication set ups can be evaluated very fast, using interoperability
features. However, interoperability must, at some point, lead to specific implementation. But the
user is always capable of adding the appropriate rules, in later stages, to evaluate the communi-
cation details required for verification.

Figure 5.7: TLM Payload Extensions for Network Headers and Simulation Information

Figure 5.7 depicts a generic payload with its extensions. The main aspect of extensions is that
they do not encapsulate the messages like bit headers. On contrast, extensions are attached, like
labels, which can be read and written in any order.

5.2.4.4 Wireless TLM Transaction

Once the TLM transaction and generic payload concepts have been introduced, the SICYPHOS
wireless TLM transaction can be explained in detail.

Apart from the adaptation required for the different communication purpose, which has already
been explained in Section 5.2.4.1, there are several new concepts and optimizations that have to
be performed for the wireless communication case.

When designing the Wireless TLM transaction, two main requirements were driving the imple-
mentation:

75

An Energy Profiling Framework

• Message exchange has to be as light as possible, in order to improve simulation performance.
Most network simulators are not usable for distributed embedded systems due to their poor
performance. However, although the network behaviour has to be simulated, for SICYPHOS
purposes, network details can be abstracted in order to improve simulation efficiency.

• The final purpose of the SICYPHOS Framework is to perform energy optimization. From
a functional point of view, a simple message exchange has no meaning in terms of energy
efficiency. In such redundant and non-reliable networks, many messages are useless for the
overall functioning of the system. Therefore, what matters in an energy efficiency analysis
is the actual task performed by the distributed system.

Those two requirements lead to the wireless TLM approach followed in SICYPHOS.

A	

B	

E	

C	

S	

D	

F	

Figure 5.8: Network with all transmissions involved in sending a message from node A to the destination
sink node S.

The SICYPHOS transaction does not represent a single network data message. In fact, a single
SICYPHOS wireless transaction is used to simulate all messages created in the network in order
to perform an end-to-end transmission. Figure 5.8 illustrates this transaction concept.

The figure shows a wireless network. Node A sends a message with the sink node S as the final
destination. Depending on the protocols and routing algorithms, the behaviour of the nodes
receiving the message may vary: some will not have the receiver switched on (in grey), and will
not be affected. Other nodes might be responsible for forwarding the message (coloured nodes) to
their neighbourhood. On its way to the destination node S, the message from A will have reached
nodes B, C, D and E, will have been ignored by E and D and forwarded by B and C.

All transmissions that take place in the network due to node A sending a message to the sink
node S, have the same payload. Therefore, in SICYPHOS, they will share a single generic payload
data structure. On the other hand, there is also variable data, such as headers or simulation
parameters, which are kept in their corresponding generic payload extensions. This approach has
the following advantages:

• As the same data structure is used for the whole end-to-end communication, no copies of the
first messages are instantiated. As a result, less memory is used, and there is no overhead
due to new message copies instantiation and allocation, enhancing simulation speed.

76

An Energy Profiling Framework

• Transaction data structure has a more consistent functional meaning than network messages.
It contains information about the whole history of a message transmission: where it was
originated, what is the final destination, through what nodes it was forwarded, etc. This
information enables a thorough analysis of communication behaviour, where efficiency can
be much better evaluated.

However, on the other hand, the implementation of this approach has also its drawbacks. The
major drawback is that, although the payload of the message should never change during re-
transmissions, some bits on the headers and some other information has to change in every hop.
However, several changes may happen in parallel which might affect data consistency.

Therefore, the changing part of the transaction, has to be stored and addressed in a proper way
so that the appropriate values are always used. As every node can just receive one message at a
time, the changing information, which is stored in generic payload extensions, is stored in maps,
whose keys are the identifiers of the nodes in which the message is being processed. Furthermore,
as messages may even pass through the same node twice, and transaction history is also of crucial
importance for energy optimization purposes, the information corresponding to a node is stacked
so that former transmissions can also be analysed.

Payload	

Cross-‐Layer	
Extension	
Node	 A	

Rou7ng	
Extension	
Node	 A	

MAC	
Extension	
Node	 A	

Cross-‐Layer	
Extension	
Node	 B	

Rou7ng	
Extension	
Node	 B	

MAC	
Extension	
Node	 B	

Air	 Extension	
Node	 A	

Cross-‐Layer	
Extension	
Node	 C	

Rou7ng	
Extension	
Node	 C	

Air	 Extension	
Node	 B	

MAC	
Extension	
Node	 C	

Air	 Extension	
Node	 C	

Cross-‐Layer	
Extension	
Node	 D	

Rou7ng	
Extension	
Node	 D	

MAC	
Extension	
Node	 D	

Air	 Extension	
Node	 D	

Previous
Entries

Nodes

Extensions

Figure 5.9: SICYPHOS Transaction. There is an immutable data payload plus a multi-dimensional
structure for storing variable data, organized according to the nodes involved, the data
abstraction layer and the sequence in the lifetime of the transaction.

Figure 5.9 shows how all the transaction variable data is organized using the transaction exten-
sions. Every extension has a different colour and consists of a map, that indexes the information
using the node identifier as the key. As due to meshed structure, a message might reach a node
several times, the mapped value not only contains the most recent data but a vector containing
all previous entries.

If we apply the transaction concept to the network scenario in Figure 5.8, the SICYPHOS trans-
action would look like the one shown in Figure 5.10.

77

An Energy Profiling Framework

Payload	

Rou*ng	
Node	 A	

MAC	
Node	 A	

Rou*ng	
Node	 B	

MAC	
Node	 B	

Cross-‐Layer	
Node	 A	

Cross-‐Layer	
Node	 B	

Rou*ng	
Node	 C	

MAC	
Node	 C	

Rou*ng	
Node	 S	

MAC	
Node	 S	

Air	
Node	 E	 Air	

Node	 A	
Air	

Node	 B	

Air	
Node	 E	 Air	
Node	 E	

Cross-‐Layer	
Node	 C	

Air	
Node	 C	

Cross-‐Layer	
Node	 S	

Air	
Node	 S	

Air	
Node	 D	

Figure 5.10: SICYPHOS Transaction for the scenario in Figure 5.8

In order to simplify this approach for the user, SICYPHOS Framework provides a protocol exten-
sion template class. This template class implements all the method overrides that TLM requires
for any generic payload extension, in order to handle it appropriately, such as those to copy or
reset. It also simplifies the addition of parameters to the extension, so that the user must only
make use of two methods:

• push: This method takes the module name and a template class as parameters and stores
them in the internal map. The module name would be the key and the template class the
mapped value.

• get_extension_entry: This method takes the module name as a parameter and returns
the most recent mapped value associated to it.

The user must therefore define a protocol extension entry with the parameters that would be
part of the corresponding header. After this, he can just store or obtain them by using the
aforementioned methods.

5.2.5 Top-Level API

The top-level API is the interface for the application code. Every node has two sockets (initiator
and target) for bidirectional communication and its own event queue. The API is therefore related
to both features.

The constructor just requires the SystemC module name parameter, as every SystemC module.
It defines then a SystemC thread, activated by events in the event queue, which is the main loop
and entry point for the application.

The main_loop() method calls the initialization method of the node and enters a control loop
which iterates whenever there is an available event in the event queue. For each event it calls the
method to handle it.

Apart from the main loop method, the top-level API provides a method send_message(), which
is used to send transactions through the downwards communication path to the communication
layer immediately below.

78

An Energy Profiling Framework

Finally, the deliver_upwards() method implements the blocking interface for receiving trans-
actions from the lower layers. Every communication message will be received here and will be
encapsulated in a new event, which is added to the event queue.

The top-level base class also maintains a pointer to the corresponding physical layer module, which
has to be assigned when building and registering the node in the environment.

To complete the API there are two virtual functions that have to be implemented by the user:

• initialize(): It contains the initialization code for the node application. The most im-
portant task is to add the initial event to the event queue, so that the application can
start.

• handle_event(): This is the callback function for handling events from the event queue.
Whenever an event is taken from the queue, this function is called. The user must therefore
implement the interpretation of the event type as well as the corresponding actions to be
performed.

TLM	 Sockets	

Top-‐Level	 API	

send_message	

deliver_upwards	

handle_event	

ini>alize	

Interface	 for	 outgoing	
communica>on	

Interface	 for	 incoming	
communica>on	

Event	 handler	 interface	

Ini>aliza>on	 interface	 Event Queue

Figure 5.11: Node base structure. Contains an event queue, incoming and outgoing TLM sockets and
the interfaces to use them.

The whole picture of the top-level API module and how it works is shown in Figure 5.11.

5.2.6 Nodes Parametrisation

One of the main difficulties when simulating distributed embedded systems is to be able to instan-
tiate a big amount of nodes, which can be of very different types. Sensor networks are typically
heterogeneous, with different nodes having different hardware and software.

79

An Energy Profiling Framework

It is therefore necessary to provide a mechanism to instantiate and parametrize all the nodes in the
network in a simple and efficient way. Besides, in order to explore different possibilities, it is also
a requirement to provide a mechanism to change the network without recompiling the simulation.

For this purpose, SICYPHOS provides an XML parser, based on RapidXML header library
[Kal09], which is open source and requires no linking, avoiding any compatibility issues.

Using SICYPHOS parser, the user can specify the network topology by specifying each node with
the following parameters:

• Node name: Every node is a SystemC module, and therefore, must have a name to identify
it. This will also be helpful for debugging.

• Node type: As in a single network there can be very different types of nodes, this parameter
permits identifying them, so that the simulator is able to know, which kind of node to
instantiate.

• Node position: The transmission properties of the network is based on the 3-D position
of each node, and the distances among them. Thus, a 3-D position must be specified, by
providing the coordinates x, y and z.

The XML parser is part of the simulator. However, node architectures are defined by the user.
To be able to instantiate user-defined nodes using the embedded parser, SICYPHOS provides an
implementation of the Factory Method design pattern [GHJV95], named node_factory.

Figure 5.12 shows how the factory method is used to automatically instantiate user defined node
classes using the frameworks’ XML parser.

User Code

Sicyphos
Framework

XML	 Parser	

User	 Node	 XML	 Network	
Descrip5on	 File	

Node	 Creator	
<T>	

Node	 Factory	

Node	 Base	

Node	 Creator	
<User	 Node>	

Node	 Creators	 Map	

Registers

Figure 5.12: User defined nodes cannot be instantiated from the XML parser. To solve that, the user
must register a Node Creator element in the Node Factory. The XML parser can then use
the Node Factory to create the registered node implementation.

The node_factory has a template class node_creator that instantiates a node of the template
type, with parameters for the SystemC module name and the spatial position. It also registers
the node in the air module so that the wireless interface is fully operative.

The node_factory is then a singleton class that maintains a map with the node type as the key
and the corresponding creator method as the mapped value.

80

An Energy Profiling Framework

The node_factory class provides then the register_creator() function that registers a node
type, which will be specified in the XML configuration file, with the corresponding node_creator
template specialization. The user must register all the node types in the main program before
calling sc_start().

The parser can then call the create() function in the node_factory to instantiate the user-defined
node automatically, with its corresponding name and spatial location.

5.3 Energy Aware Framework

The final purpose of the system simulation in the context of this thesis is energy consumption
simulation and profiling. Therefore, apart from the network and embedded system models, that
are the basis for the overall simulation, the central part of the implemented approach is to create
a framework to generate power consumption information and to track this power along simulated
time in order to create the energy profiles discussed in Chapter 4.

This energy aware framework consists of three main parts:

1. Power Models: Based on power state machines, and in particular on those defined in
Section 4.2. This power state machines do not intend to be novel or particularly accurate.
They just serve as the energy consumption information source to later create the energy
profiles.

2. Energy Profiles: This is the central part of the framework, specially those concerning
the distributed nature of networked embedded systems, which are insufficiently covered by
State-of-the-Art simulations.

3. Simulation Logger: Models and profiles are not complete without a simulation logger that
efficiently records all simulation outputs to enable further improvements and optimization
of the simulated system.

These three parts will be explained in detail next.

5.3.1 Power State Machines

The energy aware framework supports the power modelling approach using finite state machines
proposed in Section 4.2. For that purpose, it includes three main classes: power state, power
transition and power state machine.

The main implementation concept for the power state machine is using a similar approach to
linked lists data structures. The power state machine is therefore a reference to the current power
state, which contains the links to all possible next states.

Next sections describe all the elements of the power state machine implementation.

81

An Energy Profiling Framework

5.3.1.1 Power States

The class power_state models every system configuration in which power consumption is stable
and converges into a constant average value. It consists on the following main attributes:

• name: An identifier for the power state, e.g. tx_on, sleep, deep_sleep, etc.

• power: Average power consumption at the corresponding state. This value can be measured
or obtained from the data sheet. Integrated over the time spent on the power state, it will
provide the energy consumption.

• transitions: It is a vector that contains a list of all possible state transitions that can be
triggered from the state. This list is used to prevent the user from triggering impossible
state transitions. Therefore, the power state machine also serves to control the simulation
and as a high level model of the digital subsystems.

As every power transition has its own characteristics in terms of delay and power consumption,
the power_state class includes an internal class to model state transitions.

Power Transitions

The class power_transition is an internal class of power_state, which models the transition
between two states. It has the following attributes:

• Next State: The destination state the system will enter when the transition finishes.

• Delay: The time spent in the transition, which is the time the system needs to change from
one stable power consumption state to another.

• Energy: The energy consumed in the state transition.

During transitions, power consumption usually varies significantly and a constant power con-
sumption cannot be assumed. As the model is focused on estimating energy consumption, state
transitions provide a fixed energy consumption value instead of a power consumption value.

5.3.1.2 Power State Machine

Finally, the framework includes a class to model the Power State Machine. As already mentioned,
the power state machine is implemented like a linked list. It provides the API for the user, which
has the following functions:

• init_state_machine: Initializes the state machine with a state given as parameter.

• get_current_state: Returns the current state of the state machine.

• change_state: Changes the state to a new state given as parameter. The power state
machine checks if the new state is listed in the transitions vector of the current state. If it
is, it changes the state and reports the state change to the simulation logger. Otherwise, it
throws a forbidden state transition exception.

82

An Energy Profiling Framework

For logging purposes the state machine also includes a memory of 1 state, i.e. it also contains the
previous state, a name or identifier, and a pointer to the SystemC module that it is associated
with.

SICYPHOS energy aware modules maintain a collection of the power state machines that model
their energy behaviour. When a power state machine is created, it is also registered in the
collection. Hence, in order to obtain the power consumption of a SICYPHOS energy aware
module, a getter function will just return the summation of the power values of all current states
of all registered power state machines.

5.3.2 Energy Profiling

The power state machines explained before provide the means to model power consumption of
hardware subsystems. However, it is still necessary to bring the information from this models
to higher semantic levels, which will make this information usable for energy optimization of
hardware architecture, software and network. Energy optimization not only concerns hardware
design, but also higher levels, such as operating system, communication protocols, application
software, network design, etc. As explained in Section 2.5, high level optimization is barely
unexploited and can provide significant improvements in overall system energy efficiency.

The Energy Aware Framework supports energy profiling and provides several methods of energy
consumption accounting, that will be described in the following sections. In Chapter 2, energy
profiles were divided into four different groups, which are all considered in the Energy Aware
Framework:

• Hardware: Power consumption data originates in hardware power models. However, there
are complex hardware architectures and it becomes necessary to provide the energy con-
sumption of complex hardware structures, which might involve several power models.

• Software: SICYPHOS offers software activities definition by the user, which automatically
account for energy consumption occurring on the device. These activities cover all kinds
of software in a a wireless sensor node: operating system and hardware abstraction layer,
communication protocol stack and application.

• Communication: The SICYPHOS Framework assists the designer by providing the means
to track communication to estimate its efficiency. This is done through a energy extension
to the wireless TLM transaction, as it will be explained next.

• Distributed Software: The central energy logger provides the means to create distributed
activity profiles that account all the energy consumed all over the network in high level
distributed tasks.

All these profiles are explained next. The way to account energy can be classified in two categories,
depending on the main entity energy consumption is associated with.

1. Physical Device: This is the local perspective where hardware and software energy con-
sumption is indexed by the physical node or embedded system where the power is consumed.
The framework element responsible for tracking this information is the energy aware mod-
ule.

83

An Energy Profiling Framework

2. Distributed Logical Unit: This is the distributed perspective, when some software or
network tasks involve power consumption across different nodes in the overall system. The
framework element responsible for accounting all distributed energy consumption is the
energy aware transaction.

All the information is logged through a central energy logger, which records the complete data
with all the labels provided by the profiling methods, so that the simulation output can later be
rendered and analyzed.

5.3.2.1 Hardware Energy Profiling

Power models in the modelling framework are based in system-level Power State Machines. How-
ever, architectures in networked embedded systems are increasingly complex. They are many times
systems-of-systems, where it becomes necessary to obtain the aggregated energy consumption of
different subsets of subsystems.

In the framework, the aggregation of Power State Machines is enabled by the Energy Aware
Module, which is an extension of the SystemC module base class sc_module. Every hardware
module that will have associated an energy profile must extend the energy_aware_module base
class. The interfaces provided by this class in order to create energy consumption hardware profiles
are:

• register_state_machine: All state machines that belong to the module can be stored in a
vector using this function. The vector can be populated manually or automatically making
use of the parent-child relationship of SystemC modules.

• get_current_power: This function returns the power consumption of the module at the
current time. Power is calculated by summing the power consumption values of all the
current states of the power state machines contained in the state machines vector.

With this functions, the user can easily obtain the power consumption of a compound module,
although the power state machines are only associated with its children modules.

5.3.2.2 Software Energy Profiling: Activities

Developing software for embedded systems is typically done using an Application Programming
Interface or an Operating System that abstracts the hardware in order to increase productivity
and enable tackling more complex tasks.

The downside of this abstraction is that the software developer loses the awareness of what under-
lying hardware is being used for the different software tasks. Initially, embedded systems had very
simple architecture, with single and simple microcontroller, a transceiver and some small group of
peripherals. The programmer could handle easily the different power modes of the transceiver and
the program flow was easy to follow as there was only one main process that handled everything.
However, complexity is continuously increasing in order to achieve optimizations. Additional sub-
systems are being integrated in order to perform more operations. Furthermore, some subsystems

84

An Energy Profiling Framework

are replicated, with more specific and power efficient units, that can deal with some specific situ-
ations and save a lot of energy in combination with some aggressive power management policies.

For instance, a very low power wake-up receiver could be used to relieve the main transceiver
from listening intervals that consume too much energy. This receiver cannot deal with the whole
communication process but is capable of identifying incoming messages that should be handled
by the device. Likewise, ASICs, reconfigurable logic or even low power specific microcontrollers
are frequently used to deal with some tasks that could have been executed by the microcontroller,
but with less energy efficiency.

Therefore, the software developer can nowadays very easily lose track of what is happening be-
hind the scenes. SICYPHOS provides software profiles to prevent this. These profiles are called
activities. There are some activities proposed by default, but the programmer can extend this
enumeration with his own self-defined profiles.

As in hardware profiles, the object that the framework provides to create software profiles is
the Energy Aware Module. Every Energy Aware Module has an activity attribute that can be
switched by the user. All the operations performed while an activity is active, can therefore be
accounted under the same activity label.

The Energy Aware Module provides therefore a C++ set of operative activities. It provides then
the following functions:

• activity_on: Activates the activity provided as parameter by inserting it in the activities
set. It automatically creates a report to the energy logger.

• activity_off: Deactivates the activity provided as parameter by erasing it from the ac-
tivities set. It automatically generates a report to the energy logger.

• get_activities: Returns the set of current activities. This function is typically used by
the logger to write all active activities in the energy profiles.

The energy logger will track all changes and will record all active activities in every logged entry,
so that the user can later calculate the energy consumed in realizing every activity.

5.3.2.3 Communication Energy Profiling: Energy Transaction Extension

The most important energy profile in Networked Embedded Systems are the communication pro-
files. The distributed nature of Networked Embedded Systems plays a major role in the energy
optimization problem. The distribution of resources affects even the hardware exploration which
is the basement for all energy optimization.

There is a trade-off between the computational capability of a device and its needs of communica-
tion. A very simple unit consumes less power but is not capable of processing the information to
make more efficient use of the wireless channel. A very smart unit might be capable of processing
the data and even be able of executing the algorithms to make the required decisions with no need
of communication with a central unit.

Therefore it is specially important in Model-Based Design to be able to estimate which distri-
bution of computational resources will be more energy efficient. In order to achieve this, it is

85

An Energy Profiling Framework

necessary to compare the energy consumed in processing some data with the energy consumed in
communicating with the competent unit. Furthermore, if there is multi-hop communication this
cannot be just evaluated locally, but in terms of the overall system, as communication will involve
energy consumption in several nodes of the network that might compromise the energy lifetime.

SICYPHOS uses the transaction approach presented in previous Section 5.2.4.4 to create network-
wide energy profiles that can account the energy consumed all over the network in relation to an
end-to-end communication.

These profiles are implemented as optional extensions to the WirelessTLM transaction. This
extension contains a map of all the nodes that have taken part in the communication and their
associated energy consumption value. There is an additional accumulated energy value which
is the summary of all energy consumed. A diagram of the energy extension can be observed in
Figure 5.13. Next chapter will explore examples on how to optimize the system using this energy
profile.

Energy	 Extension	

Payload	 Total	
Energy	

Node	 A	 Node	 B	 Node	 C	 Node	 D	 Node	 E	

Energy	 Energy	 Energy	 Energy	 Energy	

Figure 5.13: Energy extension, containing the total accumulated energy and the map of nodes and their
consumed energy.

The so called energy_extension uses the same extension template described in Section 5.2.4.4,
and therefore can be read and written using the same API.

5.3.2.4 Distributed Software Profiling: Distributed Activities

Finally, the energy aware framework provides methods to create profiles for high level distributed
tasks, as described in Section 4.4.4.

In the same way as in software local profiles, the user can define distributed activities. The main
difference is that in this case, a distributed activity will involve multiple nodes. Therefore, the
implementation actuation is twofold:

1. Nodes must be flagged with the corresponding activity. For this purpose, a distributed
activity attribute is added to energy aware modules, just as it is done for local activities.

2. Communication must also be flagged with the corresponding activity. This permits automat-
ically propagating the distributed activity to any node taking any action on the transaction.
This is done by including a distributed activity attribute in the energy extension described
in Section 5.3.2.3.

With distributed activity labels added to both nodes and communications, the logger can build
the energy profiles that account for the energy consumed in performing those distributed tasks.

86

An Energy Profiling Framework

5.3.3 The Energy Logger

Apart from providing the classes to create the power state machines and the means to create energy
profiles, the energy aware framework must also provide a mechanism to log all this information.
For this purpose, the framework includes a unified logger.

All power consumption related information is reported to a singleton class named power_logger.
Being a singleton, there exist only one instance per simulation, which is in charge of processing
and formatting all the reports and records them in an output file.

The advantage of this implementation is that every change in power consumption or its context
that is modelled using the framework energy aware tools, can be automatically reported to the
central power logger without any user action. The user can then extend the power logger function
in order to provide the required outputs.

The energy logger is responsible for three main tasks: record every change in power states or
activities, record transactions history on every transaction release and keep track of distributed
profiles.

5.3.3.1 Logging State and Activity Changes

Every state and activity change is automatically reported to the central logger, which records the
time stamp and registers all the required context variables to create the different kind of profiles.

For this purpose, the logger provides a method named report(), to register any energy relevant
activity. The method takes to parameters: the simulation time stamp and the simulation module.
The logger creates a power logging entry, which is a struct with the following attributes:

• time: Time stamp of the power logging entry.

• module: SystemC module that sent the report.

• power: The average power consumption value of the new power consumption state.

• activity: The current (local) activity or software profile, if any, of the module.

• transaction ID: The transaction associated to the change in power consumption, if any.

• dist_activity: The current distributed activity, if any.

Printing information in a file or in standard output (console) is very costly and can dominate
the overall simulation performance if done for every state or activity change. To avoid this, the
power log entries are buffered and printed whenever the buffer is full. This way the amount of
input/output accesses are reduced.

87

An Energy Profiling Framework

5.3.3.2 Record Transactions History

Additionally, the energy logger offers the possibility to record transaction history. Whenever a
transaction is finished, before deletion, the logger can print all the information contained in its
extensions, which includes the air extension (see Section 5.2.4.4) and the energy extension (see
Section 5.3.2.3).

This means that for every message generated in the network, the logger can log a full record
containing which nodes contributed, successfully or unsuccessfully, in its delivery to the final
destination, and how much energy was spent on it all over the network.

This functionality must not be triggered by the user, it is automatically done before a transaction
is cleaned and returned back to the transactions pool.

5.3.3.3 Distributed Software Profiles

Finally the energy logger can also create and register distributed energy profiles. The user can
add a distributed activity to reports and transactions. As all nodes and communications must go
through the same single energy logger, it can build distributed activity profiles that contain:

• All power state changes all over the network related to this high-level distributed task.

• Full transaction history for all communications related to the high-level distributed task.

This profile enables estimating not only how much energy is spent all over the network in per-
forming the distributed task, but also to separate the energy spent in processing and the energy
spent in communication, to explore whether a more centralized or decentralized approach gives
better results in terms of energy consumption and overall application lifetime.

88

6 Energy Profiling Performance and
Evaluation

The techniques and their implementations proposed and described in previous sections open the
door to new energy analysis for networked and distributed embedded systems. On the other hand,
filling the semantic gap with energy profiles entails a cost in simulation performance. The cost
and benefit of applying the proposed techniques must therefore be evaluated in order to wisely
integrate them in the model-based design methodology.

This chapter aims to provide some insight about what the energy profiling techniques may offer
the designer. Moreover, it aims to provide some notion about how this techniques may affect the
simulation performance and how to deal with the different trade-offs that will necessarily challenge
the designer.

The first point of this chapter is to show how the energy profiling mechanisms implemented in
the framework can provide helpful information and enable energy optimization at high levels of
abstraction. In other words, an introduction to how to use the framework and a demonstration
that the energy profiling techniques and their implementation fulfil their purpose.

The second concern, not only for energy profiling, but for wireless sensor networks simulation
in general, is simulation performance. Energy estimation is specially demanding, as discussed
in Section 4.3. High-level abstraction has to be used carefully in order to avoid losing power
consumption information. Furthermore, in open systems like sensor and networked nodes, the
environment must be considered as a part of the model. For this purpose the performance of the
simulation using the framework will be compared with a state-of-the-art simulation.

Last, but not least, the extent of the models and implementations is discussed, so that their
validity and limitations can be comprehended. Although the validity of the overall modelling
approach highly depends on the specific models adopted by the user, which are out of the scope of
this work, it is necessary to evaluate the potential results that can be achieved using the proposed
techniques.

6.1 Energy Profiling Test Scenarios

The first part of this analysis is to show the capabilities of energy profiling in high level energy
optimization. This will be shown through two examples:

89

Energy Profiling Performance and Evaluation

1. The first test scenario is a minimum example that shows how to rapidly setup an energy
aware simulation of a wireless network using the proposed framework.

2. The second scenario consists of a multi-hop network where the energy of communication
will be profiled to compare two different routing alternatives.

6.1.1 Setting Up a Simulation

This section explains how to set up a basic simulation scenario. The first part will focus on
creating the wireless model, while the second part will describe how to add energy awareness to
our model.

6.1.1.1 Wireless Simulation

The minimum wireless network simulation requires the following elements:

• The implementation of the two main abstract classes of the framework: the top-level module
(node_base) and the wireless modules (wtlm_module).

• The XML file with the specification of the network topology and wireless communication
parameters.

• A main file, which is the entry point of the program and must start the simulation.

Top Module

The basic module of the framework is the node_base implementation. This module contains the
top-level API described in Section 5.2.5. Every node model must inherit from this node_base
class and extend it with the application code and the internal communication structure.

The application code can be included by implementing the abstract methods already described in
previous chapter, in order to interact with the node event queue: initialize(), where the first
event can be added to the event queue, and handle_event(), which contains the actions to take
on a specific event.

The internal communication structure must be configured in the constructor, where the TLM
based protocol stack must be configured. The minimum protocol stack would require connecting
the sockets for internal downwards and upwards communication from the physical layer directly to
the node_base TLM sockets. Any additional protocol, such as MAC or routing protocols should
be connected here, by binding the TLM sockets in the appropriate order.

Physical Layer

The minimum requirement to create a wireless network is to implement the physical layer. The
framework provides an abstract class named wtlm_module that the user must implement with
the specifics of the physical layer that will be used. The virtual methods to be implemented
have already been explained in Section 5.2.1.1. Basically the user must provide the necessary
application dependent information for the following questions:

90

Energy Profiling Performance and Evaluation

• The calculation of the bit error rate, which depends on the modulation used.

• The acceptance of incoming transmissions, which depends on the operation mode of the
transceiver, i.e. reception can only occur if the transceiver is in receive mode.

XML Network Specification

The network to be simulated must be specified in an XML file. This way, the number of nodes,
their location, their type and the wireless communication parameters can be modified with no
need to recompile the program.

The XML has two parts: the topology and the configuration. In the topology all nodes are
enumerated with their name, type and spatial location. In the configuration part, some global
parameters can be specified, such as the background noise, the minimum receiving power which
governs the truncation algorithm for wireless broadcasting or the overall duration of the simulation.

Main File

The main file is the entry point of the program. To start a simulation the main file must perform
the following steps:

1. Register in the node factory (see Section 5.2.6) the node creators for all the node types
defined by the user.

2. Parse the XML network specification file which will instantiate and connect all nodes and
configure the wireless communication parameters.

3. Start the SystemC based simulation, using sc_start().

With these four elements a fully functional simulation of a wireless network can be created.
Wireless propagation will automatically be calculated based on the transmitted power provided
when sending a message and the spatial position of the different nodes.

6.1.1.2 Energy Aware Simulation

The energy aware framework is totally independent from the wireless framework. The minimum
requirements to start using the capabilities of the energy aware framework are:

1. Any module required to be energy aware must inherit from paf_interface, which is an
abstract class that contains all the infrastructure required for local (module-based) energy
profiling, described in Section 5.3.2.

2. Register, using the method provided by the paf_interface any power state machine that
describes the power consumption behavior of the subsystem in focus. These state machines
can be created using the power_state_machine class provided by the framework.

91

Energy Profiling Performance and Evaluation

With these two steps, any state transition will be automatically tracked and logged by the sim-
ulation. To enable high-level profiles, there are different ways, depending on the nature of this
profiles:

• Software profiles (local or distributed) are tracked as long as an activity (local or distributed,
respectively) is defined and active. Therefore the user must define the activities and just
use the methods provided by the paf_interface to activate or deactivate them.

• Communication profiles are created as long as an energy extension is attached to the trans-
action in use. Therefore, the user must add this extension to any energy aware transaction
before starting to use it.

All the output is logged by the central energy logger in comma-separated values format, which
can be later analyzed in any external tool.

6.1.2 Routing Energy Efficiency

This example uses a network of overall 25 nodes:

• 24 ordinary nodes, that can generate and route messages

• one sink node that is the destination of all messages in the network and just receives the
messages from the other nodes.

The topology of the network is shown in Figure 6.1. The dashed lines show which nodes are neigh-
bour nodes and therefore might directly communicate with each other. The maximum number
of neighbour nodes for that topology is 8 neighbours. The maximum distance to the sink node is
two hops.

The network topology proposed in this example is regular and simple, so that the results can
be followed and understood by a human observer, who can easily solve the different steps in the
transaction lifetime and therefore understand transaction consumption results. However, the same
approach applies to any randomized or more complex scenario.

6.1.3 Example of Transaction

In a first example, every node is entitled to forward the message, but as the maximum distance
to destination is 2 hops, there is a time-to-live (TTL) parameter, initialize to ’1’, and decreased
on every hop, that prevents the message from being forwarded twice.

Every ordinary node has a period of 2 seconds and a listening duty cycle of 25%, i.e. the receiver
is switched on for 0, 5 seconds in every period.

At some point, node B sends a message. Figure 6.2 shows the listening duty cycles of the nodes
in the neighbourhood, indicating, in red, which nodes actually receive the message.

As shown in Figure 6.2, nodes F and H receive the message from B. As all nodes also act as routers
and it is the first hop, i.e. TTL = 1, both F and H forward the message further.

92

Energy Profiling Performance and Evaluation

S	

A	 C	 D	 E	

F	 G	 H	 I	 J	

K	 L	 M	 N	

O	 P	 Q	 R	 T	

U	 V	 W	 X	 Y	

B	

Ordinary Node

Sink Node

Wireless link

Figure 6.1: Network topology used in test scenario.

Node B Transmitting
Node A Listen
Node C Listen

Node F Listen
Node G Listen

Node H Listen

Figure 6.2: Listening duty cycles of nodes within node B communication range.

For node F, Figure 6.3 shows the listening duty cycles of nodes in its neighbourhood. Again, the
nodes that actually receive the message are marked in red.

In this case, node K would be the second hop. Therefore, TTL = 0 and the message will not be
forwarded further. In this case, node K discards the message.

For node H, Fiugre 6.4 depicts the listening duty cycles of nodes in its vicinity. Nodes able to
receive the message are marked in red.

Node I is the same case as node K, it is the second hop and the message cannot be routed further,
so it is discarded. On contrast, node S is the sink node and therefore the final destination of the
message. Node S process the message and the communication process is finished.

The transaction that results from the described case is shown in Figure 6.5. The message is
initially sent by node B, forwarded by nodes F and H, received and discarded by nodes I and K,

93

Energy Profiling Performance and Evaluation

Node F Transmitting
Node A Listen
Node G Listen

Node K Listen
Node L Listen

Figure 6.3: Listening duty cycles of nodes within node F communication range.

Node H Transmitting
Node C Listen
Node D Listen
Node G Listen
Node I Listen
Node L Listen
Node M Listen
Node S Listen

Figure 6.4: Listening duty cycles of nodes within node H communication range.

and received and finally processed by node S. All these operations have an energy cost, which is
annotated in the transaction.

Ordinary Node

Sink Node

Sender Node

Transit Node

Main path

Subsidiary path

F	 H	 I	

K	

B	

S	

Figure 6.5: Topology of a transaction. All messages exchanged in the network with the same data content
are shown.

Hence, the transaction keeps track of all communication operations all over the network that are
related to the same end-to-end communication. It can be argued that the same result could have
been achieved by using messages with a common identifier, but the transaction approach has clear
advantages:

• As shown in Section 6.2.1, the transaction approach also improves simulation performance.
The transaction optimizes the memory requirements by using a common piece of allocated

94

Energy Profiling Performance and Evaluation

memory for all the information that remains invariable along the whole end-to-end commu-
nication process.

• Having separated messages with common identifiers reduces the possibilities of improving
simulator logging intelligence and leaves all data mining to post-analysis of logged data.
With the transaction it is very easy, for instance, to record the accumulated energy con-
sumption data and log only those transactions whose energy consumption is over a specific
threshold. Creating simulating logs is actually one of the biggest pitfalls for simulation per-
formance, and therefore, providing the simulator with the tools to identify which information
is more relevant and should be logged, is a significant boost to simulation performance.

6.1.4 The Transaction as an Energy Profile

The next step is to show how the transaction energy profiling approach can be leveraged to make
high level design decisions. The transaction profiling permits estimating the cost of communica-
tion, i. e. how much energy was consumed in the network to transmit some specific information.

The network topology plays a crucial role in the energy cost of a transaction and the impact in
the whole network. The next simulations evaluate the cost of transactions depending on the nodes
which generated them. The first example is shown in Figure 6.6. The bars represent the simulated
energy of transactions depending on the nodes that originally generated them.

A B C D E F G H I J K L M N O P Q R T U V W X Y
0

10

20

30

40

Sender Node

E
ne

rg
y
C
on

su
m
pt
io
n(
µ
J
)

Figure 6.6: Transactions average energy cost depending on the nodes that generated them. Broadcast
case.

In this first example, the routing scheme is broadcasting with a Time-To-Live (TTL) of one. In
this case, most energy expensive transactions are those, whose sender node has a higher number

95

Energy Profiling Performance and Evaluation

of neighbours. The more neighbour nodes, the more possibilities for the message to be forwarded
further and cause more energy consumption. As TTL = 1 only direct neighbours are entitled
to retransmit the message. Thus, the nodes whose transactions have less energy impact in the
network are the nodes in the corners, which only have 3 direct neighbours. However, these
transactions are more prone to fail, as the chances to get a transit node listening are reduced to
these 3 neighbour nodes.

On the other hand, the nodes that generate the transactions with a higher energy impact on the
network turn to be nodes H, L, M and Q. All of them have 8 neighbours, one of them is the
sink node, but the other 7 are potential transit nodes that would forward the message. However,
there are four more nodes with 8 neighbours (G, I, P and R) that have less energy impact. To
understand the difference it is necessary to evaluate the second order neighbours. Node G and
its symmetrically analogous nodes have 8 direct neighbours plus only 6 second order neighbours.
However, node H and its symmetrically analogous nodes, have 8 direct neighbours plus 11 second
order neighbours. This means that after forwarding, there are 5 potential receivers for messages
from node H than from node G. If these nodes are listening they will spend energy receiving the
message.

Now, in Figure 6.7 it can be observed a similar diagram for the same network but with precon-
figured (ideal) routes. The graphic depicts two clear groups, which in the network correspond to
two cases: nodes directly connected with the sink node and nodes at one node distance from the
sink node.

A B C D E F G H I J K L M N O P Q R T U V W X Y
0

2

4

6

8

10

12

14

16

Sender Node

E
ne

rg
y
C
on

su
m
pt
io
n(
µ
J
)

Figure 6.7: Transactions average energy cost depending on the nodes that generated them. Ideal routing
case.

The number of neighbours has now a minor influence, as only the node selected as next hop in
the preconfigured route is entitled to forward the message. Therefore, although neighbours will

96

Energy Profiling Performance and Evaluation

still receive the message if they are listening, they will just discard it after checking that it is not
for them.

Now, depending on the frequency of generating messages it is easy to establish a comparison
between both approaches. Moreover, the energy margin for the routing algorithm overhead which
is worthy can be calculated, and depending on how volatile routes are, a good decision can be
made.

6.2 Simulation Performance Evaluation

The challenge in providing energy awareness through modelling and simulation is not only to
achieve supplying the required data. A model can be extended and refined in order to reveal more
and more details. However, the trade-off between accuracy and simulation performance is the
main difficulty to overcome. The model not only has to provide the required information, but it
must provide it within some simulation time boundaries.

The extensions to state-of-the-art simulators that enable a better estimation of energy consump-
tion can be classified in two categories:

• Energy profiles: They fill the semantic gap in order to provide high-level abstraction
without losing energy awareness. Keeping track of energy consumption implies a simulation
overhead. To compensate this overhead, in this work, energy profiling has been implemented
in combination with some high-level modelling approaches. The results of that combination
will be evaluated next.

• Environmental effects: Cyber-Physical Systems cannot be evaluated without consider-
ing the environment, which is an active part of the system and determines its behaviour.
However, adding physical processes to simulation is a very challenging task, that usually
requires a combination of event-based simulation (typical for hardware-software simulation)
and continuous simulation paradigms (for physical processes). The evaluation of this work
shows therefore the performance of some hybrid models and how they scale.

6.2.1 Transaction Level Abstraction

The first evaluation consists in an example of wireless sensor network, which has been implemented
using the PAWiS Framework, an OMNeT++ based WSN simulator, described in Section 3.2.1.2,
and a similar implementation using the SICYPHOS framework and exploiting the transaction-level
modelling approach.

The PAWiS implementation uses an ordinary message approach, where every point-to-point trans-
mission is modelled separately and every message is cloned as many times as the number of
potential receiving nodes.

Both frameworks provide a similar propagation model, based on attenuation and capable of mod-
elling interferences and collisions. They also provide generic functionality to model wireless com-
munications. However the users must define their own hardware and software models, their ap-
plication, as well as user-defined protocol stacks and communication architecture. Both are based

97

Energy Profiling Performance and Evaluation

Measure	
Temperature	 (t)	

Send	 Message	

Listen	

Idle	

|Δt|	 >	 1°C	

yes

no

Figure 6.8: Flowchart of temperature measurement application.

on C++ and event-based simulation. While OMNeT++ focus is network engineering, SystemC
focuses on hardware and software co-design.

The example consists in a temperature sensor application. The communication stack is integrated
by a basic MAC layer to determine when the node is listening and messages can be received and
a very simple routing layer, to be able to test how multi-hop communication performs.

The application implemented consists of nodes measuring temperature periodically. The flowchart
for the temperature measurement application is shown in Figure 6.8. If the temperature variation
is over a user-defined threshold, the new value is reported through the network.

Likewise, the flowchart for message reception is shown in Figure 6.9. The destination of tempera-
ture data is always the sink node. However, it may not be directly reachable. Therefore, ordinary
nodes must work also as transition nodes. Every node in the network which is listening and within
the range of the sender node, receives the message and checks errors and integrity. If the receiver
is not the sink node, it forwards the message. To avoid infinite loops, a Time-To-Live value is
attached to the message, which decreases on every hop. If this value reaches 0, the message is
discarded.

Error calculation must be implemented out of the framework too, as it depends on modulation.
In the example, errors are calculated for a 4-QAM modulation.

Simulation results, shown in Table 6.1, are intended to check the new TLM-based framework
performance, in terms of simulation speed. This results are compared with those obtained using
the PAWiS framework.

Table 6.1: Simulation Time Results

PAWiS SICYPHOS
Nodes: 3 - Time: 24h 2,462s 2,397s
Nodes: 15 - Time: 24h 47,783s 32,819s
Nodes: 25 - Time: 24h 3mins 3,6s 1min 2,27s

98

Energy Profiling Performance and Evaluation

Incoming	
Transmission	 Discard	 Message	

Receive	 Message	 Forward	 Message	

listening	

Sink	 node	 TTL	 >=	 0	

yes

no

no

no

yes yes

Figure 6.9: Flowchart of message reception application.

The table presents results for 24 hours of simulated time and different amount of nodes. In the
first simulation the number of nodes to simulate is 3, which is an absolutely attainable value, so
both frameworks require very little time. The SICYPHOS framework required 2,6% less time,
which is almost negligible. In the second simulation, a network with 15 nodes is tested. In this
case, the SICYPHOS framework improved PAWiS results by 31,32%, which makes a significant
difference. With 25 nodes the improvement is even higher, with 49,7% less time for the SICYPHOS
framework.

Performance improvements can be accounted to SystemC simulation kernel being more efficient
than OMNeT++. However, the improvement increase with the number of nodes can only be
accounted to the higher-level approach followed by the SICYPHOS framework, which has the
following advantages:

• The SICYPHOS transaction uses the same data structure for all the messages with the same
payload. Therefore, when a node forwards a message, it must just fill its specific headers
and the particular conditions for every receiving node, while in OMNeT++ and other WSN
simulators, the whole message must be copied with new memory space allocation for every
potential receiving node.

• The SICYPHOS transactions are used through a memory manager, which maintains a pool
of instantiated transactions and prevents from allocating and populating new memory space
every time a message is generated.

In particular, in mobile ad-hoc networks simulation it is crucial to handle the complexity of
huge networks. Simulators typically include some truncation threshold to avoid simulating the
propagation to nodes where the effect is negligible. However, in dense networks, it is still easy
to have to replicate a message too many times. In this scenarios, the transaction level approach
gains special relevance, as the same payload is used and no data structure copying is required.

99

Energy Profiling Performance and Evaluation

6.3 Multi-Domain Simulation

A fundamental step in the way to energy awareness of Cyber-Physical Systems is to integrate
the environmental effect into simulations. CPS are very interactive and their usage of resources
depends highly on the environmental conditions.

This evaluation aims to be a performance analysis to study the impact and ponder the expectations
on performance of hybrid simulation using the framework. Comparisons with other simulators
are intentionally avoided due to the infeasibility of defining an analogous simulation environment.
There are very few simulators with a similar scope, and every simulation environment has a
different focus and handles the trade-offs from a different perspective, making emphasis in different
aspects and using models with different detail levels, which ultimately leads to unfair comparisons.

The performance analysis and evaluation is done using virtual scenarios based on a fridge model
validated during the SmartCoDe Project [MDH+12].

6.3.1 SmartCoDe Project

SmartCoDe project aimed to build a Cyber-Physical Energy System, in which a distributed energy
management application could control the energy demand and adapt it to the energy supplied by
a wind turbine and to the real-time prices provided by the electric utility companies.

As part of the project, a SoC was designed, which included wireless communication based on
ZigBee standard, power metering, power supply, and smart-card based security [MDG10].

The SmartCoDe application was developed using the SICYPHOS Framework, which enabled
building a virtual prototype, on top of which, the application software could be developed while
the hardware platform was unavailable. After manufacturing the application code was successfully
migrated from the simulated prototype to the real PCB prototype.

Therefore, the SmartCode node implementation demonstrates the capability of the SICYPHOS
framework in model-based design methodologies.

6.3.2 Evaluation Scenario

The evaluation scenario is an energy management application that controls the compressor in a
number of fridges depending on an energy cost function. This energy cost function, is built based
on the electricity market prise fluctuation, as well as the amount of renewable energy that is and
will be available, estimated using weather forecasts.

The energy management application is built over a distributed system consisting of an energy
management unit, controller nodes attached to every fridge and temperature sensor nodes, which
must be installed inside the fridges. Communication is wireless using ZigBee communication
protocol stack. According to the ZigBee terminology, we can distinguish the following device
types:

• ZigBee Coordinator (ZC): It is the Energy Management Unit (EMU). Apart from being
the network coordinator, it acts as a gateway to the external information such as weather
forecasts and electricity market price.

100

Energy Profiling Performance and Evaluation

EMU	

JN5148	 /	 ZigBee	 Model	

JN5148	 Model	

IEEE	 802.15.4	

AODV	

Fridge	 Model	

ActuaBon	

Sensor	

Virtual	 Storage	 Node	 Model	

JN5148	 /	 ZigBee	 Model	

ActuaBng	
Interface	

Sensing	
Interface	

JN5148	 Model	

IEEE	 802.15.4	

Virtual	
Storage	

ApplicaBon	

AODV	 Wireless	 PropagaBon	
Model	

Figure 6.10: SmartCoDe application.

• ZigBee Router (ZR): They are the nodes attached to the appliances, and responsible for
switching them on or off. They must be therefore connected to the power grid and they
have available energy to act as routers.

• ZigBee End Device (ZED): The temperature sensor nodes are implemented as end de-
vices. They have to be inside the fridges and they operate on batteries. Therefore, they
must sleep most of the time and only wake up periodically to report the temperature inside
the fridge.

Regarding the physical part, the simulation includes physical model for the temperature variation
within the fridges. Temperature variation is modeled as an RC low-pass filter, which is an already
validated approach [KR07] [EWP12]. This low-pass filter, depicted in Figure 6.10 can be modelled
very easily as a SystemC-AMS module, using the Timed Data Flow (TDF) Model of Computation,
which already provides the Laplace trasform tools to compute the low-pass filter transfer function,
shown in Equation 6.1.

H(s) =
1

1 +RCs
(6.1)

Table 6.2: Simulation performance for different temperature simulation time periods

Simulated Time Execution Time

1h 1.024s

24h 22.949 s

1 week 158.518 s

Using this simple physical model, the energy management algorithm for the fridge could be de-
signed, validated and verified using a simulated scenario, before the hardware platform was avail-
able and before the whole network was deployed.

101

Energy Profiling Performance and Evaluation

0 500 1,000 1,500 2,000
0

50

100

150

Number of Appliances

E
xe
cu

ti
on

ti
m
e
(s
)

Figure 6.11: Simulation Performance for different number of appliances.

Figure 6.10 summarizes the whole SmartCoDe application model. Table 6.2 shows the execution
time for a scenario using 4 fridges. Execution time grows almost linearly even for the very short
simulation, which reveals that the overhead due to initialization of SystemC modules and TLM
communication data structure has no significant impact in execution time. Figure 6.11 shows the
execution time growth in relation to the number of simulated fridges (with no communication),
where two different intervals can be identified with linear growth but different slopes. The main
reason for the increasing slope starting at about a thousand nodes can be found memory. For
instance, when the number of simultaneous transactions exceeds the maximum number of trans-
actions in the memory manager pool, the generation of new transactions is more expensive in
terms of performance.

upper bound 5.47 °C

lower bound 3.35 °C

bang-bang control cost-function dependent PI-control 6000 12000 18000 seconds

4

cost-function
power

Real

Fridge:
3

5 °C

Figure 6.12: Simulation Screenshot, together with an example from a real fridge. [MDH+12]

After development in the simulated environment, the application was ported to a hardware plat-

102

Energy Profiling Performance and Evaluation

form, specifically the JN5148 from Jennic/NXP and a real fridge was controlled in laboratory
conditions. The output of the simulation together with the real fridge is shown in Figure 6.12.

103

Energy Profiling Performance and Evaluation

104

7 Discussion and Outlook

Ultra-low power embedded systems, together with wireless communications have advanced greatly
in the last decades, empowering the development of new technologies such as Wireless Sensor
Networks (WSN) and new forms of Cyber-Physical Systems. More important than the low price
of the devices is the inexpensiveness and simplicity of the deployment of a big amount of networked
devices. These networks of devices are the foundation for all kind of distributed applications that
can retrieve information and even interact with the environment of the devices at their location.

A primary challenge of this kind of systems is the energy supply. In order to keep the installation
and maintenance of these systems easy and at a low cost, they must be autonomous devices with
wireless communication and wireless power supply. Hence, batteries and energy harvesters have
become typical power sources for these devices. The former has a limited energy budget, while
the latter has a limited energy consumption flow. It is therefore crucial to optimize the energy
consumption to maximize the energy lifetime or to obtain the required performance in spite of
the energy restrictions.

Energy optimization affects all layers of abstraction of the system. A wireless sensor network, with
hundreds or even thousands of nodes is a fault-tolerant system, with a high level of redundancy.
The system will be operative even if many of its nodes run out of energy. Energy optimization
must therefore consider not only the effects of energy consumption in a node, but also the global
effects of energy consumption all over the network. Energy optimization measures may require a
coordinated network strategy, i.e. a distributed energy optimization which maximizes the lifetime
of the distributed application, even though some nodes might run out of energy far before the end
of the overall system lifetime.

Most applications are designed to run unattended for very long periods of time. Ease of devices
installation has led to scenarios where the location of the devices is not planned or even random.
Furthermore, the system behaviour is greatly affected by the environmental conditions at the
deployed location. It is therefore very complicated to validate and verify the system in laboratory
conditions. Experiments would require recreating very specific conditions and very long operating
time for evaluation. Model-Based Design methodologies enable the use of models to evaluate the
long term operation of many very different scenarios with very divers node distribution and a
variety of environmental conditions.

In particular, models are specially useful for energy consumption evaluation. They enable the
exploration of energy optimization strategies and configurations, evaluating their impact in a
hardware platform that is specifically being designed in parallel and is therefore not available.

105

Discussion and Outlook

Moreover they enable estimation of energy consumption metrics that are difficult, if not impossible,
to obtain from measurements. Furthermore, they enable the evaluation of very different and long
term scenarios, which are otherwise not possible.

This thesis has proposed some specific models for power consumption and some profiling techniques
to create high level energy consumption information. The approach and implementations have
been described in previous chapters, as well as the results of their application. This chapter will
discuss the approach and the final results from a general perspective.

In addition, infeasibility of evaluation on the real systems also hinders the validation of the
used models. It is therefore necessary to discuss the limitations of these models and how these
limitations can affect the final system together with some strategies and trends to improve the
models reliability and prevent critical failures due to an unrealistic or incorrect model.

Finally, the energy optimization problem will definitely be a matter of research in the next future.
Energy efficiency improvements will lead to new applications that demand more complex compu-
tation that will continuously challenge the technologies and methodologies of system design. This
chapter ends with some comments and thoughts that aim to provide vision and outlook about the
future of the energy optimization topic.

7.1 Power and Energy Consumption Models

The State-of-the-Art analysis revealed that although there is general consent in the use of mod-
elling to estimate power and energy consumption in electronic embedded systems, there is no
standard approach to create those power and energy models. Additionally, there has been a
chaotic proliferation of simulation platforms. Most of them are, in theory, flexible and extensible,
but in practice they have been mostly volatile and ad hoc solutions, which have been hardly reused
for further problems with different focus.

7.1.1 Hardware Models

Even for the omnipresent approach based on Finite-State-Machines to model the power consump-
tion of digital systems, there is a lack of consistency and consensus. They are used in very different
ways and, in most cases, formal definition is absolutely missing. This lack of formal definitions
of Finite-State-Machines applied to energy estimation, is probably the cause for every approach
using a different and specific definition.

Traditional Finite-State-Machine approach is based on digital systems and dynamic and static
power components. At every state, only static power is consumed, while dynamic power is con-
sumed during state transitions. The Finite-State-Machine proposed here has several advantages
for high-level modelling.

• It does not require knowledge about how many transistors and voltage levels change in the
system to estimate its energy consumption.

• It is based on the electrical characteristics that are public and disclosed in the comercial
product datasheets.

106

Discussion and Outlook

• Associates the power consumption states with the system functional states so that the high
level designer can easily trigger the state changes without knowing the low-level hardware
implementation.

The Power-State-Machines proposed leverages from modern power management strategies where
there is a high-level of control of active subsystems within a chip, through the use of clock and
power gating, which specify different domains where clock signal or even supply voltage can be
switched on and off.

However, there is one subsystem that has to be model in detail in order to obtain accurate estima-
tions. Energy consumption of microcontrollers depends on how much time is required to execute
the software tasks. This time depends on the microcontroller clock frequency, instruction set and
even deeper implementation details, such as the cache-memory architecture and further execution
optimization strategies such as branch prediction or out-of-order execution. For very low-power
applications, the best performance per power in current state-of-the-art is being obtained by very
simple microcontroller architectures, mostly RISC architectures with no kind of speculative exe-
cution. The use of at least an Instruction-Set Simulator (ISS) is therefore recommended in order
to obtain accurate estimations.

7.1.2 Limitations of Computational Models

Along this work, different models have been developed and used for different projects, that have
shown their convenience and helpfulness along the whole design process and in the energy opti-
mization problem in particular.

However, the same reasons that motivate the use of models for the energy optimization prob-
lem, make them very complicated to be validated against real data. They can be calibrated
and partially validated through some measurements and experiments that can be carried out in
laboratory, but there are major difficulties to achieve a complete validation that remain unsolved:

• Unavailability of the embedded platform until manufacture. Models are used to enable
hardware and software co-design, so that software development can start before the hardware
platform is manufactured and available.

• Infeasibility of performing measures on the System-on-Chip (SoC). Even with a hardware
platform available, it is not always possible to obtain the measurements that would be
required to create an accurate model. Furthermore, SoCs will most likely contain Intellectual
Property (IP) blocks where details about implementation are not available.

• Unpredictability of the operation conditions. Operation conditions are represented by vari-
ables that may range within different ranges. Although simulation permits multiple execu-
tions, finding the corner cases and worst case scenarios is typically another whole scientific
challenge.

• Long term evaluation. Some long term effects will not be foreseen in the models used in the
design phase. Technology changes very fast and there is no experience nor perspective to
evaluate long term effects in the technology in use.

107

Discussion and Outlook

These hurdles are therefore inherent to the current technology requirements and limits the reli-
ability of the models. To avoid the wrong models to jeopardize system design, it is crucial to
continuously refine the models through model verification and validation, as long as possible, of
all assumptions made when creating the concept of the model.

Furthermore, these limitations greatly encourage the reusability of the models. The lack of stan-
dardized cross-disciplinary modelling platforms and languages results in models that required
huge effort to be created, verified, refined and validated and can later no longer be used in further
projects because the application requires a different simulation approach. The use of already
validated models could decidedly simplify and improve reliability of the Model-Based Design
methodologies.

The FMI Standard has been a significant advancement in this direction, but further improvements
in model reuse must still be made in the next future.

7.2 Conclusions on Energy Profiling

Apart from the hardware and software co-design. A virtual prototype permits estimating mea-
surements that would require the real platform to be available. Furthermore, some measurements
are infeasible even with the hardware platform available and deployed. In particular, measuring
energy consumption has very hard constraints.

Distributed embedded systems are often integrated by very inexpensive devices, where measure-
ment circuitry is not affordable, in terms of cost, size and even energy consumption.

Measurements in software require data processing and energy consumption. Moreover, finding out
the subprocess that is responsible for every slice of energy consumed is costly and complex and
is often not affordable by the very low cost and low power devices that integrate wireless sensor
networks.

The presented virtual platform that recreates hardware, software, network and physical environ-
ment has shown that it is possible to obtain estimations of system performances in the final
conditions. Furthermore, it enables the definition of more complex data structures, that are only
possible in simulation, that account for energy consumption of high level components and permits
a deeper and more complex analysis.

This work has exploited this possibility in order to obtain high-level information of energy con-
sumption. The result of this research are the different types of energy profiles, described in
Chapter 4.

These energy profiles have been successfully implemented in the SICYPHOS framework. Based
on the simulation results, some conclusions can be extracted.

7.2.1 Hardware Profiles

Power consumption models are based on hardware models. For this reason, the necessity of
defining hardware profiles might not be foreseen. However, network nodes are heterogeneous
devices that are integrated by very different subsystems.

108

Discussion and Outlook

Moreover, current architecture optimization strategies tend to distribute the computation re-
sources among several processing units or cores. We can see for instance very specific cores
optimized and dedicated to execute certain tasks, such as the protocol stack. When their func-
tionality is not needed they can be switched off, resulting in more efficient energy consumption
than a more flexible processor running for longer time intervals.

Being able to group power models into higher level hardware structures is therefore very useful
for architecture exploration.

In the implementation this is done by exploiting the hierarchy among the SystemC modules.
Through the framework, when the user asks for power consumption of a module, it sums up the
power consumption values of all its submodules.

7.2.2 Software Profiles

Software developers do typically know how to increase the efficiency of their code. However, they
do not have information about how much energy is required to perform the programmed tasks.

The software profiles proposed here give the designer the flexibility to define its own software
activities while the simulation framework accounts the energy consumption this activity can be
liable for. Implementation in SICYPHOS is very simple and places responsibility in the software
designer, who has freedom to define his own activities but must then explicitly switch on and off
the activities.

The implemented activities have shown their effectiveness in showing that software tasks do have
a greater impact in power consumption. Fine comparison is only possible when using accurate
processor models, but they are actually required anyhow for accurate power estimation as well, in
order to find out the execution times. If accurate models are not available, coarse-grained software
profiles do also enable identifying which tasks are more power consuming and therefore should
receive special attention from the designer.

However, the implemented activities have limited value for multi-tasking environments, where
several simultaneous activities can be executed at the same time. At the current state, this is
barely the case for ultra-low power sensor nodes, but this might change in the future and requires
further research.

7.2.3 Communication Profiles

Hardware and software profiles can be found in literature in different forms and applications.
They have been adapted to the specific application in distributed embedded systems.

However, for estimating the energy consumption of communication, no previous approach could
be found in literature. Therefore, the communication profiling approach presented here is a novel
approach and most likely the major contribution of this thesis to the high level energy optimization
problem.

Implementation was made in combination with an abstraction of the communication model in-
spired in Transaction-Level Modelling for bus communication. The result is that the simulation
does not just run based on the hardware nodes, but can also be seen from a communication per-
spective, where the end-to-end communication transactions are the simulation central structures.

109

Discussion and Outlook

Hence, new metrics can be used and shown after simulation, such as the energy consumption
of a transaction all over the network. Transactions can therefore be optimized by configuring
the routing algorithms and the topology in order to reduce hops, retransmissions and any other
operation that might result in very inefficient end-to-end communications.

Moreover, comparisons between communication profiles and hardware and software profiles enable
an energy efficiency analysis of decentralised and centralised approaches, which are a crucial design
decision in distributed systems, that has to be made very early and has great impact in system
energy consumption and performance. Purely centralised approaches require more communication
to blindly deliver data to the central unit that will process it. Decentralised approaches use more
intelligent (and more expensive and energy demanding) end devices that are able to process the
data at its origin and make decisions that lead to less traffic and less communication effort.

From the energy point of view, decentralised approaches require less computation and processing
energy consumption but more communication energy consumption. Profiling enables assessing
the contribution of each part in order to optimize the energy consumption distribution to extend
the energy lifetime of the distributed application.

7.3 Simulation Framework for Energy Optimization

Apart from the structures and requirements to model the power consumption of the hardware
subsystems, it is crucial to consider the effects of communication and physical processes that are
part of the feedback closed loop of Cyber-Physical Systems in order to optimize the overall energy
consumption of the system.

In literature, some multi-domain simulators have been introduced, such as Ptolemy II and Mod-
elica. This work proposed a multi-domain modelling approach based on SystemC simulation
libraries, which is already widely used for virtual prototyping. This way, there is no need for
coupling different simulators, but all hardware, software, communication and physical processes
can be simulated in the same environment. There is also no need to learn a different language, as
the approach is built on top of a hardware software co-design standard.

The idea of virtual prototyping is to start developing software before the hardware platform is
available. However, in distributed embedded systems with cyber-physical interaction, the appli-
cation development not only needs to consider the hardware where it will be executed. It also
requires some knowledge about network topology and architecture and about the physical process
that will be part of the system. The proposed platform enhances the current virtual prototyp-
ing concept by extending it with communication and physical environment models. All these
extensions are made using the same virtual prototyping tools, with no need of co-simulation with
external tools.

7.3.1 Energy optimization of hardware architecture

Energy optimization of the hardware architecture was already possible with the traditional vir-
tual prototype approach. However, the simulation approach and implementation proposed here
enhances its possibilities from the distribution point of view.

The simulation platform enables the exploration of how to distribute the computation resources
in a distributed system. In distributed systems, there is a basic trade-off between communication
and resources distribution.

110

Discussion and Outlook

• Simple systems with less intelligence and lower price and power consumption need to com-
municate more frequently to have the information processed.

• More intelligent systems can partially process the information and reduce communication,
but will have higher cost and consume more power.

The exploration of different distribution options, together with the energy profiling tools, can
help the designer to find out which computation resources distribution results in the most energy
efficient overall system.

7.3.2 Energy optimization of network architecture

The virtual prototype of the whole distributed system enables comparing the energy consumption
of different network architectures and configurations. The interfaces defined in SICYPHOS based
on TLM interoperability, permit rapidly configuring and customizing the communication protocol
stack and very easily exchange the algorithms on each layer without affecting the rest of the stack.

The flexibility and interoperability of TLM interfaces applied to network communication can be
used together with the network wide energy profiling approach, which is also implemented in
SICYPHOS, to estimate and compare the energy efficiency of different protocols and parame-
terizations. The protocols used definitely have an impact in system performance and in energy
consumption. However, it is very complicated to account the energy cost of communication.
Network energy profiles make this possible and easy to achieve.

Furthermore, all aspects must be combined in order to obtain the most effective results. For
instance, depending on the resources distribution, different network architectures might be possi-
ble. Best decisions can only be made if all aspects are considered. The virtual prototype enables
considering all these aspects at an early development stage.

7.3.3 Software energy optimization

The hardware virtual prototype permits developing the code of the software that will later run on
the platform. However, with a virtual prototype of an isolated node, the software of a distributed
system cannot be properly validated. Thus, although the virtual prototype might still help to
ensure that the machine code will execute with no compilation or runtime errors, it is not possible
to validate the network and physical interaction aspects of the application, which is actually the
most critical part of many distributed embedded systems applications.

The SICYPHOS framework extends the hardware/software co-design approach by adding network
and physical models that enable the validation and refinement of distributed software applications
before the hardware is manufactured and installed and the distributed application is deployed.

This prototype also enables testing the software under different environmental conditions, in order
to find corner-cases and weaknesses.

The framework adds software energy profiles in order to identify which software tasks are more crit-
ical for energy consumption. Using the prototype in combination with the profiles, the software
application can be optimized for most efficient energy consumption. Furthermore, considering
different effects that the network and the physical environment has on the application, several
strategies or presets can be defined, to conform a basic energy management that could be imple-
mented in simple devices that have no intelligence to create them themselves.

111

Discussion and Outlook

112

Literature

[Ad] Adam Dunkel . Contiki Operating System

[Acca] Accellera Systems Initiative. SystemC. Accellera Systems Initiative

[Accb] Accellera Systems Initiative. SystemC-AMS. SystemC-AMS Working
Group

[Agr11] Agrawal, Dharma: Designing Wireless Sensor Networks: from theory to appli-
cations. In: Central European Journal of Computer Science 1 (2011), S. 2–18. –
10.2478/s13537-011-0007-z. – ISSN 1896–1533

[Ber] Berkeley, EECS Dept. U. Ptolemy II. UC Berkeley EECS Dept.

[BHS98] Benini, L. ; Hodgson, R. ; Siegel, P.: System-level power estimation and
optimization. In: Low Power Electronics and Design, 1998. Proceedings. 1998
International Symposium on, 1998, S. 173–178

[BKL+04] Baldwin, Philip ; Kohli, Sanjeev ; Lee, Edward A. ; Liu, Xiaojun ; Zhao,
Yang ; Ee, Contributors C. T. ; Brooks, Christopher ; Krishnan, N. V. ;
Neuendorffer, Stephen ; Zhong, Charlie ; Zhou, Rachel: VisualSense: Visual
modeling for wireless and sensor network systems / UCB ERL Memorandum
UCB/ERL M04/8. 2004. – Forschungsbericht. Technical Memorandum

[BLT10] Brooks, Christopher X. ; Lee, Edward A. ; Tripakis, Stavros: Exploring models
of computation with ptolemy II. In: Proceedings of the eighth IEEE/ACM/IFIP in-
ternational conference on Hardware/software codesign and system synthesis. New
York, NY, USA : ACM, 2010 (CODES/ISSS ’10). – ISBN 978–1–60558–905–3, S.
331–332

[BOA+11] Blochwitz, Torsten ; Otter, M ; Arnold, M ; Bausch, C ; Clauß, C ;
Elmqvist, H ; Junghanns, A ; Mauss, J ; Monteiro, M ; Neidhold, T
[u. a.]: The functional mockup interface for tool independent exchange of simula-
tion models. In: Modelica’2011 Conference, March, 2011, S. 20–22

[BROV11] Boano, Carlo A. ; Römer, Kay ; Österlind, Frederik ; Voigt, Thiemo: Demo
Abstract: Realistic Simulation of Radio Interference in COOJA. In: European
Conference on Wireless Sensor Networks (EWSN 2011), 2011

113

LITERATURE LITERATURE

[CBP+05] Chen, Gilbert ; Branch, Joel ; Pflug, Michael ; Zhu, Lijuan ; Szyman-
ski, Boleslaw: SENSE: A Wireless Sensor Network Simulator. In: Szymanski,
Boleslaw K. (Hrsg.) ; Yener, BÃĳlent (Hrsg.): Advances in Pervasive Comput-
ing and Networking. Springer US, 2005. – 10.1007/0-387-23466-7_13. – ISBN
978–0–387–23466–3, S. 249–267

[Cen11] Center for Adaptive Wireless Systems. AVRORAz: enabling ieee 802.15.4
compliant emulations. 2011

[Chi07] Chipcon. Chipcon CC2420 Datasheet. Texas Instruments. 2007

[CLZ06] Cheong, Elaine ; Lee, Edward A. ; Zhao, Yang: Viptos: A Graphical Develop-
ment and Simulation Environment for TinyOS-based Wireless Sensor Networks /
EECS Department, University of California, Berkeley. 2006 (UCB/EECS-2006-
15). – Forschungsbericht. Technical Report

[CMTG04] Conti, M. ; Maselli, G. ; Turi, G. ; Giordano, S.: Cross-layering in mobile ad
hoc network design. In: Computer 37 (2004), Nr. 2, S. 48–51. – ISSN 0018–9162

[CS02] Chen, G. ; Szymanski, B.K.: COST: a component-oriented discrete event simula-
tor. In: Winter Simulation Conference 1 (2002), S. 776–782. ISBN 0–7803–7614–5

[DLRJ00] Dick, Robert P. ; Lakshminarayana, Ganesh ; Raghunathan, Anand ; Jha,
Niraj K.: Power analysis of embedded operating systems. In: Proceedings of the
37th Annual Design Automation Conference. New York, NY, USA : ACM, 2000
(DAC ’00). – ISBN 1–58113–187–9, S. 312–315

[DLV12] Derler, P. ; Lee, E.A. ; Vincentelli, A.-S.: Modeling Cyber-Physical Systems.
In: Proceedings of the IEEE 100 (2012), Nr. 1, S. 13–28. – ISSN 0018–9219

[DMHG10] Damm, M. ; Moreno, J. ; Haase, J. ; Grimm, C.: Using Transaction Level Mod-
eling techniques for wireless sensor network simulation. In: Design, Automation
Test in Europe Conference Exhibition (DATE), 2010, 2010. – ISSN 1530–1591, S.
1047 –1052

[DMN10a] Du, Wan ; Mieyeville, Fabien ; Navarro, David: IDEA1: A SystemC-based
system-level simulator for wireless sensor networks. In: Wireless Communica-
tions, Networking and Information Security (WCNIS), 2010 IEEE International
Conference on, 2010, S. 618 –622

[DMN10b] Du, Wan ; Mieyeville, Fabien ; Navarro, David: Modeling Energy Con-
sumption of Wireless Sensor Networks by SystemC. In: Systems and Networks
Communication, International Conference on 0 (2010), S. 94–98. ISBN 978–0–
7695–4145–7

[DOTH07] Dunkels, Adam ; Osterlind, Fredrik ; Tsiftes, Nicolas ; He, Zhitao: Software-
based on-line energy estimation for sensor nodes. In: Proceedings of the 4th work-
shop on Embedded networked sensors. New York, NY, USA : ACM, 2007 (EmNets
’07). – ISBN 978–1–59593–694–3, S. 28–32

[DQ] Davide Quaglia, Francesco S. SystemC Network Simulation Library

114

LITERATURE LITERATURE

[ELVAMS+06] Egea-Lopez, E. ; Vales-Alonso, J. ; Martinez-Sala, A. ; Pavon-Mario,
P. ; Garcia-Haro, J.: Simulation scalability issues in wireless sensor networks.
In: Communications Magazine, IEEE 44 (2006), Juli, Nr. 7, S. 64 – 73. – ISSN
0163–6804

[EOF+09] Eriksson, Joakim ; Osterlind, Fredrik ; Finne, Niclas ; Dunkels, Adam
; Tsiftes, Nicolas ; Voigt, Thiemo: Accurate Network-Scale Power Profiling
for Sensor Network Simulators. In: Roedig, Utz (Hrsg.) ; Sreenan, Cormac
(Hrsg.): Wireless Sensor Networks Bd. 5432. Springer Berlin / Heidelberg, 2009.
– 10.1007/978-3-642-00224-3_20, S. 312–326

[EOH+09] Elmqvist, Hilding ; Otter, Martin ; Henriksson, Dan ; Thiele, Bernhard
; Mattsson, Sven E. ; Systèmes, Dassault ; Lund, Sweden D.: Modelica for
embedded systems. In: Proc. of the 7-th International Modelica Conference, 2009,
S. 354–363

[Ern98] Ernst, R.: Codesign of embedded systems: status and trends. In: Design Test
of Computers, IEEE 15 (1998), Nr. 2, S. 45–54. – ISSN 0740–7475

[EWP12] Elsheikh, A ; Widl, E. ; Palensky, P.: Simulating complex energy systems with
Modelica: A primary evaluation. In: Digital Ecosystems Technologies (DEST),
2012 6th IEEE International Conference on, 2012. – ISSN 2150–4938, S. 1–6

[FDLS08] Fonseca, Rodrigo ; Dutta, Prabal ; Levis, Philip ; Stoica, Ion: Quanto: track-
ing energy in networked embedded systems. In: Proceedings of the 8th USENIX
conference on Operating systems design and implementation. Berkeley, CA, USA
: USENIX Association, 2008 (OSDI’08), S. 323–338

[FGSS98] Fornaciari, William ; Gubian, Paolo ; Sciuto, Donatella ; Silvano, Cristina:
Power estimation of embedded systems: a hardware/software codesign approach.
In: Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 6 (1998),
Nr. 2, S. 266–275

[FQS08] Fummi, F. ; Quaglia, D. ; Stefanni, F.: A SystemC-based framework for model-
ing and simulation of networked embedded systems. In: Specification, Verification
and Design Languages, 2008. FDL 2008. Forum on, 2008, S. 49–54

[GEC+04] Girod, Lewis ; Elson, Jeremy ; Cerpa, Alberto ; Stathopoulos, Thanos ;
Ramanathan, Nithya ; Estrin, Deborah: EmStar: a software environment
for developing and deploying wireless sensor networks. In: Proceedings of the
annual conference on USENIX Annual Technical Conference. Berkeley, CA, USA
: USENIX Association, 2004 (ATEC ’04), S. 24–24

[GHJV95] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides, John: Design
Patterns: Elements of Reusable Object-oriented Software. 1. Boston, MA, USA :
Addison-Wesley Longman Publishing Co., Inc., 1995. – ISBN 0–201–63361–2

[GKM82] Graham, Susan L. ; Kessler, Peter B. ; Mckusick, Marshall K.: Gprof: A
call graph execution profiler. In: Proceedings of the 1982 SIGPLAN symposium
on Compiler construction. New York, NY, USA : ACM, 1982 (SIGPLAN ’82). –
ISBN 0–89791–074–5, S. 120–126

115

LITERATURE LITERATURE

[GLB+03] Gay, David ; Levis, Philip ; von Behren, Robert ; Welsh, Matt ; Brewer,
Eric ; Culler, David: The nesC language: A holistic approach to networked
embedded systems. In: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation. New York, NY, USA : ACM,
2003 (PLDI ’03). – ISBN 1–58113–662–5, S. 1–11

[GNMO12] Galos, Mihai ; Navarro, David ; Mieyeville, Fabien ; O’Connor, Ian: A
cycle-accurate transaction-level modelled energy simulation approach for hetero-
geneous Wireless Sensor Networks. In: New Circuits and Systems Conference
(NEWCAS), 2012 IEEE 10th International IEEE, 2012, S. 209–212

[GRE+07] Girod, Lewis ; Ramanathan, Nithya ; Elson, Jeremy ; Stathopoulos,
Thanos ; Lukac, Martin ; Estrin, Deborah: EmStar: A software environment
for developing and deploying heterogeneous sensor-actuator networks. In: ACM
Trans. Sen. Netw. 3 (2007), August. – ISSN 1550–4859

[GSR+04] Girod, Lewis ; Stathopoulos, Thanos ; Ramanathan, Nithya ; Osterweil,
Eric ; Schoellhammer, Tom ; Kapur, R. EmTOS: A Development Tool for
Heterogeneous Sensor Networks. 2004

[GZD+00] Gajski, Daniel D. ; Zhu, Jianwen ; Domer, Rainer ; Gerstlauer, Andreas ;
Zhao, Shuqing: SpecC: Specification Language and Methodology. 1. Springer,
März 2000. – ISBN 0792378229

[HMD11] Haase, J ; Moreno, J ; Dietrich, D: Power-Aware System Design of Wireless
Sensor Networks: Power Estimation and Power Profiling Strategies. In: Industrial
Informatics, IEEE Transactions on (2011), Nr. 99, S. 1–1

[HRFR06] Henderson, Thomas R. ; Roy, Sumit ; Floyd, Sally ; Riley, George F.: ns-
3 project goals. In: Proceeding from the 2006 workshop on ns-2: the IP network
simulator. New York, NY, USA : ACM, 2006 (WNS2 ’06). – ISBN 1–59593–508–8

[HSW+00] Hill, Jason ; Szewczyk, Robert ; Woo, Alec ; Hollar, Seth ; Culler, David
; Pister, Kristofer: System architecture directions for networked sensors. In:
SIGPLAN Not. 35 (2000), November, S. 93–104. – ISSN 0362–1340

[IEE06] IEEE standard 802.15.4-2006: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs). . Piscataway, USA: IEEE Standards Association, September
2006

[IEE12] IEEE standard 1666-2011: IEEE Standard for Standard SystemC Language
Reference Manual . 2. Piscataway, USA: IEEE Standards Association, Januar
2012

[IFF96] Ierusalimschy, Roberto ; de Figueiredo, Luiz H. ; Filho, Waldemar C.:
Lua: an extensible extension language. In: Softw. Pract. Exper. 26 (1996), June,
S. 635–652. – ISSN 0038–0644

[Ini13] Initiative, Accellera S.: Standard SystemC AMS extensions 2.0 Language Ref-
erence Manual. . : Accellera Systems Initiative, März 2013

116

LITERATURE LITERATURE

[Ins] Institute, Information S. The Network Simulator - ns-2

[JMF+96] Jones, Michael B. ; McCulley, Daniel L. ; Forin, Alessandro ; Leach, Paul J.
; Roşu, Daniela ; Roberts, Daniel L.: An overview of the Rialto real-time
architecture. In: Proceedings of the 7th workshop on ACM SIGOPS European
workshop: Systems support for worldwide applications. New York, NY, USA :
ACM, 1996 (EW 7), S. 249–256

[Joh99] Johnson, David B.: Validation of Wireless and Mobile Network Models and Sim-
ulation. In: In Proceedings of the DARPA/NIST Network Simulation Validation
Workshop, 1999

[KAB+03] Kim, Nam S. ; Austin, Todd ; Baauw, D ; Mudge, Trevor ; Flautner,
Krisztián ; Hu, Jie S. ; Irwin, Mary J. ; Kandemir, Mahmut ; Narayanan,
Vijaykrishnan: Leakage current: Moore’s law meets static power. In: Computer
36 (2003), Nr. 12, S. 68–75

[Kal09] Kalicinski, Marcin: RAPIDXML Manual. 1.13. : , 2009. – Version 1.13

[Kes88] Keshav, Srinivasan: REAL: A Network Simulator / University of California at
Berkeley. 1988. – Forschungsbericht.

[Kop11] Kopetz, Hermann: Internet of Things. In: Real-Time Systems. Springer US,
2011 (Real-Time Systems Series). – ISBN 978–1–4419–8236–0, S. 307–323

[KR07] Kupzog, F. ; Roesener, C.: A closer Look on Load Management. In: Industrial
Informatics, 2007 5th IEEE International Conference on Bd. 2, 2007. – ISSN
1935–4576, S. 1151–1156

[Lee08a] Lee, E.A.: Cyber Physical Systems: Design Challenges. In: Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium
on, 2008, S. 363 –369

[Lee08b] Lee, E.A.: Cyber Physical Systems: Design Challenges. In: Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium
on, 2008, S. 363–369

[Lee09] Lee, Edward A.: Finite State Machines and Modal Models in Ptolemy II / EECS
Department, University of California, Berkeley. 2009 (UCB/EECS-2009-151). –
Forschungsbericht.

[LLWC03] Levis, Philip ; Lee, Nelson ; Welsh, Matt ; Culler, David: TOSSIM: accurate
and scalable simulation of entire TinyOS applications. In: Proceedings of the 1st
international conference on Embedded networked sensor systems. New York, NY,
USA : ACM, 2003 (SenSys ’03). – ISBN 1–58113–707–9, S. 126–137

[LN01] Liu, Jason ; Nicol, David M. DaSSF 3.1 User’s Manual. http://users.cis.
fiu.edu/~liux/research/projects/dassf/papers/dassf-manual-3.1.ps. Au-
gust 2001

[LPN+01] Liu, Jason ; Perrone, L. F. ; Nicol, David M. ; Liljenstam, Michael ; El-
liott, Chip ; Pearson, David: Simulation Modeling of Large-Scale Ad-hoc
Sensor Networks. In: European Simulation Interoperability Workshop, 2001

117

http://users.cis.fiu.edu/~liux/research/projects/dassf/papers/dassf-manual-3.1.ps
http://users.cis.fiu.edu/~liux/research/projects/dassf/papers/dassf-manual-3.1.ps

LITERATURE LITERATURE

[LS11] Lee, E.A. ; Seshia, S.A.: Introduction to Embedded Systems: A Cyber-physical
Systems Approach. . Lulu.com, 2011. – ISBN 9780557708574

[LW04] Landsiedel, Olaf ; Wehrle, Klaus: AEON: Accurate Prediction of Power Con-
sumption in Sensor Networks. In: In Proceedings of The Second IEEE Workshop
on Embedded Networked Sensors (EmNetS-II, 2004

[LWTP05] Landsiedel, Olaf ; Wehrle, Klaus ; Titzer, Ben L. ; Palsberg, Jens: En-
abling detailed modeling and analysis of sensor networks. In: Praxis der Informa-
tionsverarbeitung und Kommunikation 28 (2005), Nr. 2, S. 101–106

[MB04] Mahlknecht, S. ; Bock, M.: CSMA-MPS: a minimum preamble sampling
MAC protocol for low power wireless sensor networks. In: Factory Communication
Systems, 2004. Proceedings. 2004 IEEE International Workshop on, 2004, S. 73 –
80

[MDG10] Mahlknecht, S. ; Damm, M. ; Grimm, C.: A Smartcard based approach for a
secure energy management node architecture. In: Industrial Informatics (INDIN),
2010 8th IEEE International Conference on, 2010, S. 769–773

[MDH+12] Moreno, Javier ; Damm, Markus ; Haase, Jan ; Grimm, Christoph ; Holleis,
Edgar: Unified and comprehensive electronic system level, network and physics
simulation for wirelessly networked cyber physical systems. In: Specification and
Design Languages (FDL), 2012 Forum on IEEE, 2012, S. 68–74

[MEO98] Mattsson, Sven E. ; Elmqvist, Hilding ; Otter, Martin: Physical system
modeling with Modelica. In: Control Engineering Practice 6 (1998), Nr. 4, S.
501–510

[MGH05] Mahlknecht, Stefan ; Glaser, Johann ; Herndl, Thomas: PAWiS: Towards
a Power Aware System Architecture for a SoC/SiP Wireless Sensor and Actor
Node Implementation. In: Proceedings of 6th IFAC International Conference on
Fieldbus Systems and their Applications, 2005, S. 129–134

[MHSM10] Möstl, Georg ; Hagelauer, Richard ; Springer, Andreas ; Müller, Gerhard:
Accurate power-aware simulation of wireless sensor networks considering real-life
application code. In: Proceedings of the 13th ACM international conference on
Modeling, analysis, and simulation of wireless and mobile systems. New York,
NY, USA : ACM, 2010 (MSWIM ’10). – ISBN 978–1–4503–0274–6, S. 31–38

[Mod13] Modelica Association Project: Functional Mock-up Interface for Model
Exchange and Co-Simulation. In: Functional Mock-up Interface Standard (2013)

[MPGD13] Molina, J.M. ; Pan, Xiao ; Grimm, C. ; Damm, M.: A framework for model-
based design of embedded systems for energy management. In: Modeling and Sim-
ulation of Cyber-Physical Energy Systems (MSCPES), 2013 Workshop on, 2013,
S. 1–6

[NC11] Nygren, Johannes ; Carlsson, Bengt: Benchmark simulation model no. 1 with
a wireless sensor network for monitoring and control. In: Uppsala University
(2011)

118

LITERATURE LITERATURE

[NG03] Naoumov, Valeri ; Gross, Thomas: Simulation of large ad hoc networks. In:
Proceedings of the 6th ACM international workshop on Modeling analysis and sim-
ulation of wireless and mobile systems. New York, NY, USA : ACM, 2003 (MSWIM
’03). – ISBN 1–58113–766–4, S. 50–57

[Ö06] Österlind, Fredrik. A Ray-Tracing Based Radio Medium in COOJA. Dezember
2006

[ODE+06] Osterlind, F. ; Dunkels, A. ; Eriksson, J. ; Finne, N. ; Voigt, T.: Cross-
Level Sensor Network Simulation with COOJA. In: Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, 2006. – ISSN 0742–1303, S. 641 –648

[OED10] Österlind, Fredrik ; Eriksson, Joakim ; Dunkels, Adam: Cooja TimeLine:
a power visualizer for sensor network simulation. In: Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems. New York, NY, USA : ACM,
2010 (SenSys ’10). – ISBN 978–1–4503–0344–6, S. 385–386

[PAP08] de Paz Alberola, Rodolfo ; Pesch, Dirk: AvroraZ: extending Avrora with
an IEEE 802.15.4 compliant radio chip model. In: Proceedings of the 3nd ACM
workshop on Performance monitoring and measurement of heterogeneous wireless
and wired networks. New York, NY, USA : ACM, 2008 (PM2HW2N ’08). – ISBN
978–1–60558–239–9, S. 43–50

[PBM+04] Polley, J. ; Blazakis, D. ; McGee, J. ; Rusk, D. ; Baras, J.S.: ATEMU: a
fine-grained sensor network simulator. In: Sensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communica-
tions Society Conference on, 2004, S. 145 – 152

[PCC+08] Perla, Enrico ; Catháin, Art ;̇ Carbajo, Ricardo S. ; Huggard, Meriel ;
Mc Goldrick, Ciarán: PowerTOSSIM z: realistic energy modelling for wireless
sensor network environments. In: Proceedings of the 3nd ACM workshop on Perfor-
mance monitoring and measurement of heterogeneous wireless and wired networks.
New York, NY, USA : ACM, 2008 (PM2HW2N ’08). – ISBN 978–1–60558–239–9,
S. 35–42

[PCN] of Pervasive Computing, Center ; Networking. SENSE: Sensor Network
Simulator and Emulator

[PN02] Perrone, L.F. ; Nicol, D.M.: A scalable simulator for TinyOS applications. In:
Simulation Conference, 2002. Proceedings of the Winter Bd. 1, 2002, S. 679 – 687
vol.1

[PR02] Kap. 1 In: Pedram, M. ; Rabaey, J.M.: Power aware design methodologies.
Kluwer Academic, 2002, S. 2–3. – ISBN 9781402071522

[PSS00] Park, Sung ; Savvides, Andreas ; Srivastava, Mani B.: SensorSim: a simula-
tion framework for sensor networks. In: Proceedings of the 3rd ACM international
workshop on Modeling, analysis and simulation of wireless and mobile systems.
New York, NY, USA : ACM, 2000 (MSWIM ’00). – ISBN 1–58113–304–9, S.
104–111

119

LITERATURE LITERATURE

[PVS+08] Prabhakar, T.V. ; Venkatesh, S. ; Sujay, M.S. ; Kuri, J. ; Praveen, K.:
Simulation blocks for TOSSIM-T2. In: Communication Systems Software and
Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Confer-
ence on, 2008, S. 17 –23

[RHWG95] Rosenblum, M. ; Herrod, S.A. ; Witchel, E. ; Gupta, A.: Complete computer
system simulation: the SimOS approach. In: Parallel Distributed Technology:
Systems Applications, IEEE 3 (1995), Nr. 4, S. 34 –43. – ISSN 1063–6552

[RSZ04] Raghavendra, C.S. ; Sivalingam, K.M. ; Znati, T.: Wireless Sensor Networks.
. Springer, 2004 (Ercoftac Series). – ISBN 9781402078835

[Sav98] Savage, John E.: Models of computation. Bd. 136. . Addison-Wesley Reading,
MA, 1998

[SHC+04] Shnayder, Victor ; Hempstead, Mark ; Chen, Bor-rong ; Allen, Geoff W. ;
Welsh, Matt: Simulating the power consumption of large-scale sensor network
applications. In: Proceedings of the 2nd international conference on Embedded
networked sensor systems. New York, NY, USA : ACM, 2004 (SenSys ’04). –
ISBN 1–58113–879–2, S. 188–200

[SHK+06] Sobeih, A. ; Hou, J.C. ; Kung, Lu-Chuan ; Li, Ning ; Zhang, Honghai ; Chen,
Wei-Peng ; Tyan, Hung-Ying ; Lim, Hyuk: J-Sim: a simulation and emulation
environment for wireless sensor networks. In: Wireless Communications, IEEE
13 (2006), August, Nr. 4, S. 104 –119. – ISSN 1536–1284

[SIS] for Software Integrated Systems, Institute. JProwler

[SRMB98] Schulz, S. ; Rozenblit, Jerzy W. ; Mrva, M. ; Buchenriede, K.: Model-based
codesign. In: Computer 31 (1998), Nr. 8, S. 60–67. – ISSN 0018–9162

[SVML03] Simon, G. ; Volgyesi, P. ; Maroti, M. ; Ledeczi, A.: Simulation-based
optimization of communication protocols for large-scale wireless sensor networks.
In: Aerospace Conference, 2003. Proceedings. 2003 IEEE Bd. 3, 2003, S. 1339–
1346

[Teca] Technologies, Scalable N. Qualnet

[Tecb] Technology, Riverbed. OPNET

[TLP05] Titzer, Ben L. ; Lee, Daniel K. ; Palsberg, Jens: Avrora: scalable sensor
network simulation with precise timing. In: Proceedings of the 4th international
symposium on Information processing in sensor networks. Piscataway, NJ, USA :
IEEE Press, 2005 (IPSN ’05). – ISBN 0–7803–9202–7

[TMW94] Tiwari, V. ; Malik, S. ; Wolfe, A.: Power analysis of embedded software: a
first step towards software power minimization. In: Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 2 (1994), Dezember, Nr. 4, S. 437 –445.
– ISSN 1063–8210

[UCL11] UCLA Compilers Group. AVRORA: The AVR Simulation and Analysis
Framework. 2011

120

LITERATURE LITERATURE

[VGE03] Vachoux, A. ; Grimm, C. ; Einwich, K.: Analog and mixed signal modelling
with SystemC-AMS. In: Circuits and Systems, 2003. ISCAS ’03. Proceedings of
the 2003 International Symposium on Bd. 3, 2003, S. III–914–III–917 vol.3

[VNPJ96] Valderrama, C.A. ; Nacabal, F. ; Paulin, P. ; Jerraya, A.A.: Automatic
generation of interfaces for distributed C-VHDL cosimulation of embedded sys-
tems: an industrial experience. In: Rapid System Prototyping, 1996. Proceedings.,
Seventh IEEE International Workshop on, 1996, S. 72–77

[WB13] Wang, Baobing ; Baras, J.S.: HybridSim: A Modeling and Co-simulation
Toolchain for Cyber-physical Systems. In: Distributed Simulation and Real Time
Applications (DS-RT), 2013 IEEE/ACM 17th International Symposium on, 2013.
– ISSN 1550–6525, S. 33–40

[WNP11] Wu, He ; Nabar, Sidharth ; Poovendran, Radha: An Energy Framework for
the Network Simulator 3 (ns-3). In: Proceedings of SIMUTools 2011, 2011

[WPW00] Wu, Qing ; Pedram, M. ; Wu, Xunwei: Clock-gating and its application to
low power design of sequential circuits. In: Circuits and Systems I: Fundamental
Theory and Applications, IEEE Transactions on 47 (2000), März, Nr. 3, S. 415
–420. – ISSN 1057–7122

[WR96] Witchel, Emmett ; Rosenblum, Mendel: Embra: fast and flexible machine
simulation. In: Proceedings of the 1996 ACM SIGMETRICS international confer-
ence on Measurement and modeling of computer systems. New York, NY, USA :
ACM, 1996 (SIGMETRICS ’96). – ISBN 0–89791–793–6, S. 68–79

[YHE02] Ye, Wei ; Heidemann, J. ; Estrin, D.: An energy-efficient MAC protocol
for wireless sensor networks. In: INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE Bd. 3, 2002. – ISSN 0743–166X, S. 1567 – 1576 vol.3

[ZBG98] Zeng, Xiang ; Bagrodia, Rajive ; Gerla, Mario: GloMoSim: a library for
parallel simulation of large-scale wireless networks. In: Proceedings of the twelfth
workshop on Parallel and distributed simulation. Washington, DC, USA : IEEE
Computer Society, 1998 (PADS ’98). – ISBN 0–8186–8457–7, S. 154–161

121

Javier Moreno Molina
Curriculum Vitae

Peter-Bardens-Str. 9
67661 Kaiserslautern

H +49 (0) 176 565 94137
B javiermorenomolina@gmail.com

Madrid, 10th July, 1984

Education
2002-2007 Master of Science in Telecommunication Engineering, Madrid Technical University, 2

Semesters + Master Thesis in Vienna University of Technology.

Experience
2008-2012 Project Assistant, Vienna University of Technology, Vienna, Institute for Computer Technol-

ogy.

Projects
PAWiS:, Implementation of novel MAC and routing protocols for wireless sensor networks
within a framework, developed with OMNeT++, to simulate WSNs.
SNOPS:, SystemC and Transaction Level Modelling (TLM) based framework development
for simulating hardware, network and system level of wireless sensor networks..
SmartCoDe:, Virtual prototype of smart metering systems capable to sense, actuate and
wireless communicate among them and with an energy management system. Implementation
of the embedded application and ZigBee custom profile..

2012-2015 University Assistant, University of Kaiserslautern, Kaiserslautern, Workgroup on Design of
Cyber-Physical Systems.

Master Thesis
title Routing Algorithms for Air Traffic Services Communication Networks

supervisors O. Univ. Prof. Dipl.-Ing. Dr.techn. Dietmar Dietrich and Univ.Ass. Dipl.-Ing. Thomas
Rausch

grade 1 (Excellent)
description Adaptation of routing algorithms from both packet and circuit switching networks to a circuit switching

network based on Air Traffic Services communication networks. Simulation and performance evaluation
of the algorithms adapted. Combination of the most advantageous features into a single routing
algorithm.

Selected Publications
J. Moreno Molina, M. Damm, J. Haase, E. Holleis, and C. Grimm, “Model based design of distributed
embedded cyber physical systems,” in Models, Methods, and Tools for Complex Chip Design. Springer,
2014, pp. 127–143.

J. Moreno Molina, X. Pan, C. Grimm, and M. Damm, “A framework for model-based design of embed-
ded systems for energy management,” in Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2013 Workshop on. IEEE, 2013, pp. 1–6.

mailto:javiermorenomolina@gmail.com

J. Moreno Molina, M. Damm, J. Haase, C. Grimm, and E. Holleis, “Unified and comprehensive elec-
tronic system level, network and physics simulation for wirelessly networked cyber physical systems,” in
Specification and Design Languages (FDL), 2012 Forum on. IEEE, 2012, pp. 68–74.

J. Moreno Molina, J. Wenninger, J. Haase, and C. Grimm, “Energy profiling technique for network-level
energy optimization,” in AFRICON, 2011. IEEE, 2011, pp. 1–6.

J. Moreno Molina, J. Haase, and C. Grimm, “Energy consumption estimation and profiling in wireless
sensor networks,” in Architecture of Computing Systems (ARCS), 2010 23rd International Conference
on. VDE, 2010, pp. 1–6.

J. Haase, J. M. Molina, and D. Dietrich, “Power-aware system design of wireless sensor networks:
Power estimation and power profiling strategies,” Industrial Informatics, IEEE Transactions on, vol. 7,
no. 4, pp. 601–613, 2011.

M. Damm, J. Moreno Molina, J. Haase, and C. Grimm, “Using transaction level modeling techniques
for wireless sensor network simulation,” in Proceedings of the Conference on Design, Automation and
Test in Europe. European Design and Automation Association, 2010, pp. 1047–1052.

Languages
Spanish C2 Mother tongue

English C2 High speaking, writing, and reading comprehension level.

German C1 Good speaking, writing and reading skills. Courses until B2 level at Goethe
Institute, Deutsch Academy and Sprachenzentrum (Universität Wien). +8 years

studying and working in german-speaking countries.
French A2 600 hours at high school.

Good understanding and writing skills and basic oral skills.

	dissertation_pdf
	CVMoreno20150217

