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Abstract

In this work, a novel approach for the simulation of the railway catenary and panto-
graph dynamics is proposed. The partial differential equations describing the vertical
motion of the contact and carrier wires of the catenary are transformed in such a way
that the pantograph is at rest with respect to the new moving coordinate. The com-
putational domain is then truncated and absorbing boundary conditions are applied.
High computational performance due to a great reduction in variables is achieved.
The differences between this small scale system and a reference system with a fixed
catenary length and a moving pantograph are investigated.
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Chapter 1

Introduction

Figure 1.1: System Catenary/ Pantograph, taken from [1]

A numerical simulation of the complex catenary and pantograph dynamics (see
Fig. 1.1) can give a better insight on how they interact with one another and lead
to better design rules for the pantograph to prevent contact loss and electric arc-
ing. The dynamics are described by coupled partial differential equations (PDEs).
The classical approach for modelling the pantograph and catenary interaction [1] [3]
considers a resting catenary and a moving pantograph. This formulation is also pre-
dominant in recent work studying more complex phenomena like wind disturbances
and co-simulation of multi-body pantograph models [4]. For real-time applications a
simplified mathematical model at the expense of simulation accuracy can be obtained
by using the modal superposition principle [5] [6]. In the resting catenary formula-
tion, the maximal simulation time is limited by the length of the catenary and the
speed of the train. Longer simulations consequently increase the number of variables
of the dynamical system and the computational effort. Moreover, spurious reflections
occur if the pantograph is currently moving near the boundary. These unphysical
reflections decrease the quality of the simulation and directly disturb the pantograph-
catenary-interaction. A new approach that resolves these problems is presented here.

In this work a new formulation for the problem is introduced with the goals to

i) make the size of the computational domain independent from the simulation
time, and

ii) reduce the computational effort so that the simulation can be carried out in
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real-time without oversimplifying the underlying complex dynamic system.

This is achieved by a transformation of the PDEs which describe the catenary dy-
namics, to moving coordinates. The pantograph now remains at a fixed location
with respect to the new coordinate and the catenary moves over the pantograph
through the computational domain. To eliminate the disturbances due to reflections
at the boundaries, absorbing boundary conditions (ABCs) are introduced which ide-
ally let waves leave the computational domain without reflections. Thus, the length
of this system can be chosen reasonably small, reducing the number of variables to
be calculated. Using the transformed equations with a fixed pantograph an "endless"
catenary is approximated on a bounded computational domain.

1.1 Organization
In chapter 2 the fundamentals used in this work are explained. First the PDEs de-
scribing the vertical movement of an Euler-Bernoulli beam, which will be used to
model the catenary, as well as their discretization will be discussed. A numerical
solver algorithm is devised. Next, an overview of absorbing boundary conditions and
the perfectly matched layer formulation is given and their advantages and disadvan-
tages are discussed. In chapter 3 the complete system description is assembled and
the computational loop will be explained in detail. Chapter 4 gives a comparison be-
tween the moving system formulation and a traditional non-moving reference system.
The model accuracy as well as the computation time are investigated.



Chapter 2

Fundamentals

2.1 Equations of motion for the Euler-Bernoulli
beam

The Euler-Bernoulli-Beam equation with axial tensile load and fixed coordinates is
given by

ρA
∂2w(x, t)

∂t2 + β
∂w(x, t)

∂t
= −EI

∂4w(x, t)
∂x4 + T

∂2w(x, t)
∂x2 + f(x, t) (2.1)

Thereby, w(x, t) is the displacement field of the beam, ρA is the beam mass per unit
length, β the damping constant, EI the bending stiffness, T the tensile axial force
and f(x, t) is the vertical force density. This PDE is used to describe the transversal
motion of the contact and carrier wires of the catenary.
Since the desired problem formulation is to be expressed with respect to a moving
coordinate, so that the pantograph remains at a fixed center coordinate, the Euler-
Bernoulli beam equation has to be transformed. In the following, the transformation
is described as well as the methods used to obtain a numerical solution.

2.1.1 Transformation to moving coordinates
Equation (2.1) is transformed using a new coordinate x̂(t) = x+vt where v is the con-
stant and sub-critical pantograph speed. Because ∂x̂

∂x
= 1, the spatial partial deriva-

tives, ∂nw(x(t),t)
∂xn = ∂nw(x̂(t),t)

∂x̂n , remain simple. The new coordinate is time-dependent,
which has to be considered for the partial derivative with respect to t. Using implicit
differentiation one obtains

dw(x̂(t), t)
dt

= ∂w(x̂, t)
∂t

− v
∂w(x̂, t)

∂x̂
(2.2)

and

d2w(x̂(t), t)
dt2 = ∂2w(x̂, t)

∂t2 − 2v
∂2w(x̂, t)

∂x̂∂t
+ v2 ∂2w(x̂, t)

∂x̂2 (2.3)
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Inserting (2.2) and (2.3) into (2.1) leads to the following equation of motion for a
pretensioned Euler-Bernoulli beam with respect to a moving spatial coordinate.

ρAẅ + βẇ = −EIw′′′′ + (T − ρAv2)w′′ + βvw′ + 2vρAẇ′ + f(x̂, t) (2.4)

To keep the notation simple the abbreviations ∂w
∂t

= ẇ and ∂w
∂x̂

= w′ are used, with
higher order of derivatives respectively. Note that the transformed equation of motion
now contains the mixed derivative ẇ′.

2.1.2 Boundary and initial conditions
In order to obtain a unique solution for Eq. (2.4), initial and boundary conditions
have to be imposed. Since (2.4) is of second-order in time, two initial conditions are
required, e.g.

w(x̂, 0) = f(x̂) (2.5)

∂w(x̂, 0)
∂t

= g(x̂) (2.6)

The equations above specify the displacement and velocity fields at t = 0. Since
the solution w(x̂, 0) is continuous in space, the initial conditions f(x) and g(x) are a
function subjected to x. For the boundaries of the computational domain, there are
several conditions that can be applied. For instance

w(0, t) = c1 (2.7)
w(L, t) = c2

In the equations above, L denotes the length of the computational domain (0 ≤ x ≤
L). The displacement w at boundary position is pinned to a fixed value c1,2 for all time
instances. This type of boundary condition are called Dirichlet boundary conditions.
One can also specify the spatial derivative at boundary positions (Neumann boundary
conditions)

∂w(0, t)
∂x̂

= c3 (2.8)

∂w(L, t)
∂x̂

= c4

If the solution of the PDE is of periodic nature, periodic boundary conditions can be
applied.
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w(0, t) = w(L, t) (2.9)
∂w(0, t)

∂x̂
= ∂w(L, t)

∂x̂

With periodic boundary conditions, both boundaries are directly influenced by each
other. For a PDE describing a wave motion this means, that a wave exiting the
domain on one side is entering it on the other side. Later on, periodic boundary
conditions are used when calculating the static displacement of one span of the endless
catenary, since the displacement field outside of the computational domain is an
endless periodic sequence of the same static displacement.
With Neumann and Dirichlet boundary conditions applied, waves are totally reflected
at the boundary. Another type of boundary conditions which are designed to let
waves leave the computational domain without reflections are absorbing boundary
conditions (ABCs). These are discussed in chapter 2.3.

2.1.3 Discretizing the equations of motion
In order to obtain a numerical solution for the equation of motion of the axially
loaded Euler-Bernoulli beam with respect to moving coordinates, various methods
can be applied. For its simplicity a full-discrete finite difference approximation was
chosen. For a full discussion on finite difference methods and their applications to
wave equations see [7], [8].
In Eq. (2.4) the partial derivatives with respect to time and space are replaced by
the corresponding central finite difference approximations.

∂w(x̂, t)
∂t

≈ wj+1
n − wj−1

n

2∆t
∂2w(x̂, t)

∂t2 ≈ wj+1
n − 2wj

n + wj−1
n

∆t2

∂2w(x̂, t)
∂x̂2 ≈ wj

n+1 − 2wj
n + wj

n−1

∆x2

∂4w(x̂, t)
∂x̂4 ≈ wj

n+2 − 4wj
n+1 + 6wj

n − 4wj
n−1 + wj

n−2

∆x4

∂2w(x̂, t)
∂x̂∂t

≈ wj+1
n+1 − wj−1

n+1 − wj+1
n−1 + wj−1

n−1

4∆x∆t

(2.10)

In the difference approximations above, ∆t denotes the temporal step size and ∆x
the spatial step size. By discretizing the PDE, the displacement field is no longer
continuous. It is only defined at a finite number of discrete points in time and space.
Smaller temporal and spatial step sizes generate a finer mesh for a given length of
the beam and simulation time span, thereby increasing the number of discrete nodes
that have to be calculated. This typically improves the accuracy of the numerical
solution but also increases computational effort. To emphasize the fact that the
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Figure 2.1: Interior stencil when central differences are used.

displacement field is now discrete, the notation wj
n ≈ w(n∆x, j∆t) is introduced.

This is the approximated value of the continuous displacement field at the node with
time index j and space index n. When the finite difference approximations (2.10)
are inserted into (2.4), the following algebraic equation is obtained.

aT

wj+1
n−1

wj+1
n

wj+1
n+1

 = bT


wj

n−2
wj

n−1
wj

n

wj
n+1

wj
n+2

+ cT

wj−1
n−1

wj−1
n

wj−1
n+1

+ f j
n (2.11)

The row vectors aT , bT and cT in equation (2.11) contain the constant parameters
of the Euler-Bernoulli-beam equation:

aT =
(

vρA
2∆x∆t

ρA
∆t2 + β

2∆t
− vρA

2∆x∆t

)
(2.12)

bT =
(
− EI

∆x4 4 EI
∆x4 + T −ρAv2

∆x2 −6 EI
∆x4 − 2T −ρAv2

∆x2 + 2 ρA
∆t2 4 EI

∆x4 + T −ρAv2

∆x2 − EI
∆x4

)
(2.13)

cT =
(

vρA
2∆x∆t

ρA
∆t2 − β

2∆t
− vρA

2∆x∆t

)
(2.14)

Eq. (2.11) has to be evaluated for every discrete node and it turns out, that each node
is dependent to its neighbouring nodes due to the difference approximation. In Fig.
2.1 this dependency is illustrated. The graphical representation of these algebraic
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dependencies is called stencil. Because the mixed derivative term in Eq. (2.4) was
also discretized using central finite differences, the solution of a node at the next time
step wj+1

n cannot be explicitly computed. It also depends on its neighbouring nodes
at the next time step wj+1

n−1 and wj+1
n+1. Therefore, the displacement field at the next

time step has to be solved implicitly for every node at once. For that, Eq. (2.11) is
formulated for the entire spatial domain:

Awj+1 = Bwj + Cwj−1 + f j (2.15)

where

A =



. . .
aT 0

aT

0 aT

. . .

 , B =



. . .
bT 0

bT

0 bT

. . .

 (2.16)

C =



. . .
cT 0

cT

0 cT

. . .

 (2.17)

and

wj+1 =



...
wj+1

n−1
wj+1

n

wj+1
n+1
...


, wj =



...
wj

n−1
wj

n

wj
n+1
...


, wj−1 =



...
wj−1

n−1
wj−1

n

wj−1
n+1
...


, f j =



...
f j

n−1
f j

n

f j
n+1
...


(2.18)

As can be seen from Fig. 2.1, additional information is needed when the interior sten-
cil reaches the spatial boundary of the computational domain for the non-existing
nodes outside of the domain. Suitable boundary conditions are necessary. The val-
ues for the nodes outside of the boundary are either known (Dirichlet boundary
condition) or dependent on other nodes (Neumann, periodic, or absorbing boundary
conditions).
To avoid dependencies on nodes outside of the computational domain, the stencils
near the boundary can be modified such that no information outside of the bound-
ary is needed. This is achieved by using asymmetric forward or backwards difference
approximations for the spatial derivatives. Fig. 2.2 illustrates the central and the
asymmetric stencils at the boundary. Having a different finite difference approxi-
mation scheme at the boundary leads to altered aT , bT and cT row vectors for the
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Figure 2.2: Boundary stencil with asymmetric difference approximation
(left) and central difference approximation (right).

corresponding rows in Eq. (2.15). This modification did not eliminate the need for
boundary conditions, because Eq. (2.15) is ill-posed without boundary conditions,
meaning that no unique solution can be obtained.
The boundary conditions are then implemented by substituting the first and last row
in (2.15) with the discretized boundary condition equation. The displacement field
at the next time step wj+1

n can now be solved by inverting matrix A.

wj+1 = A−1Bwj + A−1Cwj−1 + A−1f j (2.19)

This is a simple time marching solver. With the discrete form of the initial conditions
(2.5)–(2.6) the solver can be started and continued for any desired amount of time
steps, assuming that the force density vector f j is known. The matrix inversion A−1

requires a great computational effort. Calculating the inverse every time step would
drastically slow down the solver, but since the matrix A is time-invariant, the inverse
can be calculated and stored once at the beginning of the solving process.

2.2 Fundamental solution and dispersion relation
For a detailed discussion about wave equations, their fundamental solutions and dis-
persion relation see [9], [10]. The complex fundamental solution of a PDE describing
wave motion is given by

w(x, t) = eiωxxeiωtt, (2.20)
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where ωt is the angular frequency, ωx the wave number and i the imaginary unit.
The group velocity vg is defined as

vg = − ∂ωt

∂ωx

(2.21)

and the phase velocity vp as

vp = − ωt

ωx

(2.22)

The phase velocity is the speed at which a fundamental wave with a certain wave
number and angular frequency propagates through space, whereas the group velocity
is the propagation speed of the envelope of a wave package containing several funda-
mental waves of neighbouring frequencies. The relation of angular frequency ωt and
wave number ωx is given by the dispersion relation. It is derived by inserting the
fundamental solution (2.20) into the wave equation. For demonstration purposes,
this procedure is shown for the scalar wave equation

∂2w

∂t2 = c2 ∂2w

∂x2 . (2.23)

Inserting (2.20) into (2.23) leads to the dispersion relation

ω2
t = c2ω2

x. (2.24)

From this equation, the group and phase velocity can be calculated,

vg = vp = ±c. (2.25)

The group and the phase velocity is the same and, furthermore, the phase veloc-
ity is constant for all wave numbers. This means that the continuous scalar wave
equation is dispersion-free. Now the dispersion relation for the discrete scalar wave
equation is investigated. The partial derivatives are substituted with their central
finite difference approximations.

wj+1
n − 2wj

n + wj−1
n = c2 ∆t2

∆x2 (wj
n+1 − 2wj

n + wj
n−1) (2.26)

The discrete fundamental solution is written as

wj
n = eiωx∆xn︸ ︷︷ ︸

κn

eiωt∆tj︸ ︷︷ ︸
τ j

. (2.27)

Inserted into the discrete wave equation the following relation is obtained:

τ − 2 + τ−1 = c2 ∆t2

∆x2 (κ − 2 + κ−1) (2.28)
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With

τ + τ−1 = 2 cos(ωt∆t)
κ + κ−1 = 2 cos(ωx∆x)

(2.29)

and

2 cos(ωt∆t) − 2 = −4sin
(ωt∆t

2
)2

2 cos(ωx∆x) − 2 = −4sin
(ωx∆x

2
)2

(2.30)

inserted into (2.28), the discrete dispersion relation for the scalar wave equation is

sin
(ωt∆t

2
)2

= c2 ∆t2

∆x2 sin
(ωx∆x

2
)2

. (2.31)

It can be seen that when the quantities ∆x and ∆t are small, (2.31) approximates
(2.24). Furthermore, if

∆x

∆t
= c (2.32)

the discrete dispersion relation is equal to the continuous dispersion relation. If the
ratio between the spatial and temporal grid size is not equal to the wave speed, then
the phase speed is a function of ωx and substantial dispersion due to the discretization
occurs.
An infinite set of frequency pairs (ωx, ωt) exists, but the quantities ωx∆x and ωt∆t
of the discrete fundamental solution can be confined to the interval [−π, π]. This can
be seen by investigating a standing wave

wn = eiωx∆xn = cos(ωx∆xn) + i sin(ωx∆xn). (2.33)

If ωx∆x = ±π the imaginary term in (2.33) is equal to zero and cos(πn) is ±1 for
all n; the standing wave is a sawtooth. All higher quantities ωx∆x > ±π result in a
wave that can not be resolved by the grid and gives rise to aliasing.

To obtain the discrete dispersion relation for the moving Euler-Bernoulli beam, the
same technique as described above can be used. When inserting the fundamental
solution (2.27) into the discretized equation of motion (2.11), and using the relations
(2.29)–(2.30) the discrete dispersion relation

sin
(ωt∆t

2
)2

=
( T

ρA
− v2

)∆t2

∆x2 sin
(ωx∆x

2
)2

+ EI∆t2

ρA∆x4

(
4 sin

(ωx∆x

2
)2

− sin(ωx∆x)2
)

+ v∆t

2∆x
sin(ωt∆t) sin(ωx∆x)

(2.34)
is obtained. When deriving this equation, damping was neglected. The dispersion
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Figure 2.3: Normalized phase velocity for the scalar wave equation (blue),
the non-moving Euler-Bernoulli beam (red) and the moving
Euler-Bernoulli beam (black) for v = 0.25c

relation for the non-moving Euler-Bernoulli beam is also contained in (2.34) and ob-
tained by setting the velocity of the moving coordinate system v to zero. Unlike the
scalar wave equation, where dispersion only occurs due to discretization, the Euler-
Bernoulli beam has also physical dispersion because of the bending stiffness EI.

In Fig. 2.3, the normalized phase velocity for the scalar wave equation, the non-
moving Euler-Bernoulli beam and the moving Euler-Bernoulli beam is plotted over
ωx∆x. There are two branches for the phase velocity, since there are left- and right-
going waves. The grid speed (2.32) was set to 0.9c causing dispersion for the discrete
scalar wave equation. It can be seen that waves with a low wave number travel at a
speed close to c, but for higher wave numbers, the phase velocity decreases substan-
tially. For the non-moving Euler-Bernoulli beam, the phase velocity increases with
ωx∆x, causing waves with a high wave number to travel faster. For the scalar wave
equation and the non-moving EBB, the two phase velocity branches are symmetrical
around zero. This is not the case for the moving EBB, since the phase speed is
reduced when travelling in the same direction as the moving coordinate system and
increased when moving in the opposite direction.

2.3 Absorbing boundary conditions
When computing the solution of an unbounded wave equation with a spatially dis-
cretizing method, the computational domain has to be truncated at finite lengths
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due to computational limitations, mainly computation speed and limited memory.
If the solution of this domain with fixed length should approximate the free space
solution of infinite length, absorbing boundary conditions are required. Ideally, those
let waves leave the computational domain without reflections. An analytic approach
for deriving ABCs is given by [11]. Discrete ABC formulations and its stability is
discussed in detail in [12] and [10].
In this chapter, the analytic construction mechanism of ABCs for the two-dimensional
wave equation, the simplified one-dimensional case and its limitations are discussed.
With the two-dimensional wave equation

∂2w

∂t2 = ∂2w

∂x2 + ∂2w

∂y2 , (2.35)

where the wave speed is scaled to 1, and its fundamental solution

w(t, x, y) = ei(ωtt+ωxx+ωyy), (2.36)

we obtain the continuous dispersion relation

ω2
t = ω2

x + ω2
y (2.37)

or

ωx = ± ωt

√
1 − s2

s =ωy

ωt

(2.38)

In this equation, the sign coming from the square root determines if a left- or a
right-going wave is to be considered (e.g. constructing ABCs for the left or right
boundary). The positive one-way dispersion relation

ωx = ωt

√
1 − s2 (2.39)

is that of a pseudodifferential equation, and therefore can not directly be converted
back to a differential equation, because of the square root. To make the conversion
possible, a Padé approximation of the square root is used

1st order :
√

1 − s2 ≈ 1

2nd order :
√

1 − s2 ≈ 1 − 1
2

s2
(2.40)

which leads to the following ABCs

1st order : ∂w

∂x
= ∂w

∂t

2nd order : ∂2w

∂x∂t
= ∂2w

∂t2 − 1
2

∂2w

∂y2

(2.41)

When deriving ABCs for the one-dimensional wave equation in the same way, there is
no square root that has to be approximated so they can be formulated exactly. Doing
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so leads to ABCs which are the same as the first order approximation of the two-
dimensional wave equation (since approximating the square root with

√
1 − s2 ≈ 1

leads to the one-dimensional dispersion relation).
So, for the one-dimensional wave equation we obtain the ABCs

ẇ = ±cw′ (2.42)

Since these conditions were derived from the continuous dispersion relation, where the
phase velocity is constant, they typically do not absorb waves perfectly when the wave
equation and the ABCs are discretized. As seen in Chapter 2.2, when discretizing
the wave equation, numerical dispersion occurs resulting in lower phase velocities
for higher wave numbers. Waves with a low wave number travel with a speed close
to c and are reasonably well absorbed, but the higher the difference between the
actual phase velocity of a wave with a certain wave number and c, the greater the
reflections are. Perfect absorption for all wave numbers can only be achieved when
relation (2.32) holds, since then the discrete and the continuous dispersion relation,
for which the ABCs were constructed, are equal. When these ABCs are imposed on
the Euler-Bernoulli beam, where dispersion is always present, again only waves with
a low wave number are absorbed well.

2.4 Perfectly matched layer
The key idea of the perfectly matched layer (PML) is to surround the computational
domain with an additional layer of finite thickness which absorbs waves entering it.
This is achieved by altering the fundamental solution inside the PML and translating
this modification of the fundamental solution back to a corresponding partial differ-
ential equation. To make sure that no reflections occur at the interface between the
PML and the computational core domain, the fundamental solution inside the PML
and the fundamental solution of the computational domain have to be the continuous
at the interface (perfectly matched). PMLs were first derived for electro-magnetic
waves (see [13]) where the wave equations are given in a split-field formulation. A
full discussion of PMLs is given by [14], [2].
Once again, the fundamental solution for the one-dimensional wave equation

w(x, t) = eiωxxeiωtt (2.43)

is considered. When evaluating it along a real-valued coordinate x, an oscillating
solution is obtained. Evaluating the fundamental solution along a complex contour
x̃ = x + if(x) results in

w(x̃, t) = eiωx(x+if(x))eiωtt = e−ωxf(x) eiωxxeiωtt︸ ︷︷ ︸
w(x,t)

. (2.44)

Note, that when f(x) is zero, one obtains the original fundamental solution, whereas
if f(x) is > 0, which defines the imaginary part of the complex contour x̃, an expo-
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Figure 2.4: Top: oscillatory fundamental solution when evaluated at a real x
contour. Bottom: The function f(x) linearly increases for x > 5
(absorbing region) and zero for x ≤ 5 resulting in exponential
decay inside the PML region. Taken from [2]

nential decay in space is added to the fundamental solution. This can be seen in Fig.
2.4. The solution inside the computational domain is unchanged and continuous at
the interface, therefore no reflections occur.
Since the complex coordinate x̃ is time invariant, ∂w(x,t)

∂t
= ∂w(x̃,t)

∂t
holds. Furthermore,

∂w(x,t)
∂x

= ∂w(x̃,t)
∂x̃

and, lastly, because the wave equation is invariant in x, the funda-
mental solution evaluated at a complex contour satisfies the same partial differential
equation with respect to the complex coordinate.

∂2w

∂t2 = ∂2w

∂x̃2 (2.45)

Since the partial differential equation with respect to a complex variable cannot easily
be solved, it is desired to transform the equation back to its original real-valued
coordinate x.

∂x̃ =
(
1 + i

df(x)
dx

)
∂x −→ ∂

∂x̃
= ∂(

1 + idf(x)
dx

)
∂x

(2.46)

With the relation above, Eq. (2.45) can be transformed. Before investigating the
transformation it is useful to define a suitable function f(x). Since in the coordinate
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transformation (2.46) only the derivative of the function f(x) is to be found, it seems
advantageous to formulate

f(x) = − 1
ωt

x∫
0

σ(ξ)dξ (2.47)

The function σ is called the damping profile. With a damping profile σ = const. a
complex contour as in Fig. 2.4 is obtained. The scaling − 1

ωt
is chosen because the

exponential decay of the fundamental solution

e−ωxf(x) = e

ωx
ωt

x∫
0

σ(ξ)dξ

= e
− 1

vp

x∫
0

σ(ξ)dξ

(2.48)

now contains ωx

ωt
, the inverse of the phase velocity vp, which is constant for non-

dispersive wave equations. This results in a constant decay for all fundamental waves
independent of their wave number ωx. If this scaling was not done, a high decay rate
is only achieved for high wave numbers. One way to perform the transformation is
realized by writing (2.45) in a split-field formulation

∂w

∂t
= ∂v

∂x̃
(2.49)

∂v

∂t
= ∂w

∂x̃
(2.50)

where w is the original displacement field and v an auxiliary field. Performing the
transformation in the split-field formulation gives an advantage as will be seen later,
but it introduces an additional artificial field. Now the transformation (2.46) with
the defined function f(x) is applied.

∂w

∂t
= iωtw = ∂v

∂x

1
(1 − i

ωt
σ(x))

(2.51)

∂v

∂t
= iωtv = ∂w

∂x

1
(1 − i

ωt
σ(x))

(2.52)

Multiplying by (1 − i
ωt

σ(x)) leads to

iωtw + σ(x)w = ∂w

∂t
+ σ(x)w = ∂v

∂x
(2.53)

iωtv + σ(x)v = ∂v

∂t
+ σ(x)v = ∂w

∂x
(2.54)

which are the equations for the PML in split-field formulation. Again, inside the
computational domain where σ(x) = 0 the solution is unchanged.
For an unsplit PML formulation, consider the wave equation (2.45). Using the trans-
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formation (2.46) with f(x) defined as in (2.47) yields

∂2w

∂t2 =
∂
(

∂w
∂x

ωt

ωt−iσ(x)

)
∂x

ωt

ωt − iσ(x)
(2.55)

Because the damping profile is dependent on x, the partial differentiation leads to

ẅ =
[
w′′ ωt

ωt − iσ(x)
− w′ ωt

(ωt − iσ(x))2 iσ′(x)
]

ωt

ωt − iσ(x)

=
[
w′′ − w′ iσ′(x)

ωt − iσ(x)

]
ω2

t

(ωt − iσ(x))2

(2.56)

To simplify the equation above, the shorthand notations for the partial derivatives
are used. By looking at the fundamental solution it can be seen that the partial
derivative with respect to time corresponds to

ẇ = iωtw (2.57)
ẅ = −ω2

t w (2.58)

Inserted into (2.56) and rearranging the equation gives

− ω2
t w + 2σ(x)iωtw + σ(x)2w = w′′ − iw′σ(x)

ωt − iσ(x)
(2.59)

The last step is to transform this equation in frequency domain back to its correspond-
ing partial differential equation. If multiplied by the denominator of the second term
on the right hand side, the corresponding partial differential equation would have a
third order derivative with respect to time and mixed derivatives (this problem does
not occur in the split-field formulation). If this is not wanted, an auxiliary field can
be used.

− ω2
t w + 2σ(x)iωtw + σ(x)2w = w′′ + Φ (2.60)

Φ = − iw′σ(x)
ωt − iσ(x)

(2.61)

This set of equations can be related back to a corresponding set of partial differential
equations

ẅ + 2σ(x)ẇ + σ(x)2w = w′′ + Φ (2.62)
Φ̇ + σ(x)Φ = w′σ′(x) (2.63)
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which is one possible unsplit PML formulation. There are many different possibilities
of introducing an auxiliary field to the equation (2.59) to avoid additional derivatives
of higher order, but some of these auxiliary fields tend to be unstable.
The continuous PML equations are perfectly absorbing, and the layer width can be
chosen arbitrarily small by using a high-valued damping profile. When the equations
are discretized this is not the case. If the damping profile would be chosen like in
Fig. 2.4 the problem arises that σ′(x) is a Dirac impulse at the interface. When
computing σ′(x) numerically this is only obtained for ∆x −→ 0. To avoid numeri-
cal reflections at the interface, ∆x should be chosen small and the damping profile
σ(x) to be of second or third order so that its derivative is continuous at the interface.

In [15] a perfectly matched layer is constructed for an elastically bedded Euler-
Bernoulli beam. Essentially, the same techniques described above are used. To
translate the frequency domain equation back to a corresponding PDE the forth-
order derivative in space is cast into four equations with first-order derivatives (as it
was done with the scalar wave equation above). Thus, the number of variables for
the beam with PML region quadruples, which drastically increases the computational
effort. Although the perfectly matched layer offers better absorption of waves in a
dispersive medium than the absorbing boundary conditions, the increase in variables
to be solved and the less straightforward implementation make this approach less
suitable for real-time computation. Thus in the remainder of this work the absorb-
ing boundary conditions are used.



Chapter 3

System description

In this chapter, the methodology discussed above will be used to assemble a model
of the pantograph-catenary dynamics. As opposed to other formulations (see [3],
[5]) the dynamics will be described with respect to a moving, pantograph-fixed, co-
ordinate system. The catenary, which is now moving over the resting pantograph,
is truncated at a length of one span (the spatial periodicity of the static solution).
Absorbing boundary conditions are imposed to minimize unphysical reflections at
the computational boundary so that the truncated catenary approximates an endless
catenary. This formulation has the advantage that the simulation time can be arbi-
trarily chosen and does not influence the length of the system and therefore decreases
the computational effort. This would not be the case if the dynamic model was given
with respect to a resting coordinate system. Since then the pantograph moves along
the catenary with a given velocity, the length of the system must be at least the
size of the distance the pantograph travels during the simulation time and has to be
increased even further for reflections at the boundary to not disturb the interaction
between the pantograph and the catenary.

Figure 3.1: Catenary and Pantograph system description

The main disadvantage of this new formulation is that the dropper positions are
time-dependent, and furthermore that the droppers enter and leave the computa-
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tional domain. There is no information outside the computational domain and the
discontinuous, sudden event of a dropper entering disturbs the dynamics. The same
applies for the mast position.

3.1 Catenary dynamics
The model of the coupled catenary and pantograph dynamics is shown in Fig. 3.1.
The catenary consists of the carrier wire and the contact wire. The carrier wire is
held by masts at a fixed height of h. The distance between two subsequent masts l
is also assumed as the periodicity of the catenary. The contact wire is suspended by
droppers from the carrier wire. This results in a coupling of the contact and carrier
wire dynamics. The lateral movement of the contact and carrier wire is described by
the moving Euler-Bernoulli beam equation (2.4) which is discretized and aggregated
into a state space system (2.15). For the contact and the carrier wire two separate
state space systems are obtained.

Acwj+1
c = Bcwj

c + Ccwj−1
c + f j

c (3.1)

Awwj+1
w = Bwwj

w + Cwwj−1
w + f j

w (3.2)

Here, the subscript c denotes the displacement and the parameters for the carrier
wire and w the displacement and parameters for the contact wires.

3.1.1 Applying absorbing boundary conditions
For its simplicity, the absorbing boundary conditions (2.41) are imposed at the
boundary of the contact and carrier wire.

ẇ = ±(c ∓ v)w′ (3.3)

Again, since dispersion occurs for the Euler-Bernoulli beam, only waves with phase
speed close to c are absorbed well. Because the wave motion is described with respect
to a moving coordinate system, the phase speed of left-going waves is increased by
v and for right-going waves decreased by v. This simple relationship only holds for
waves with a low wave number (see Fig 2.3). The sign of the ABCs above determines if
left- or right-going waves are to be absorbed (e.g. left or right boundary respectively).
Discretizing the equations above leads to the left boundary condition

wj+1
1 =

(
1 − (c + v) ∆t

∆x

)
wj

1 + (c + v) ∆t

∆x
wj

2 (3.4)
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nd nd+1 nd+2nd−1

xd(t)∆x

Figure 3.2: General position of the dropper in between two discrete nodes

and to the right boundary condition

wj+1
nmax

=
(

1 − (c − v) ∆t

∆x

)
wj

nmax
+ (c − v) ∆t

∆x
wj

nmax−1 (3.5)

An asymmetric stencil was used near the boundary when discretizing the Euler-
Bernoulli beam equation, so that the first and the last rows of the matrix equations
(3.1)–(3.2) need to be substituted with the discrete ABCs (3.4)–(3.5). Note that due
to different parameters the wave speed c is in general not the same for the contact
and the carrier wires. The algebraic equations (3.1)–(3.2) can be written as

(
Ac 0
0 Aw

)(
wj+1

c

wj+1
w

)
=
(

Bc 0
0 Bw

)(
wj

c

wj
w

)
+
(

Cc 0
0 Cw

)(
wj−1

c

wj−1
w

)
+
(

f j
c

f j
w

)
(3.6)

Awj+1 = Bwj + Cwj−1 + f j (3.7)

3.1.2 Adding dropper interaction
There are i droppers in a span coupling the vertical movement of the contact and
the carrier wires. They are modelled as a spring, so the force acting on the wires at
dropper position xd,i(t) is given by

Fd,i = kd,i[wc(xd,i(t)) − ww(xd,i(t)) − l0,i] (3.8)

In this equation kd,i is the spring constant, wc/w(xd,i(t)) the displacement of the
carrier and contact wire at the current dropper position and l0,i is the unstretched
length of a dropper which is chosen as such that the static sag of the contact wire is
minimal.
Note that the displacement of contact and carrier wires are only given at discrete
points wc/w(∆xn) so that the current dropper position xd(t) in general lies in between
two discrete nodes (see Fig. 3.2).
The displacements at dropper position wc/w(xd) is approximated by a linear interpo-
lation using the surrounding nodes
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w(xd) ≈ wnd
+ wnd+1 − wnd

∆x
(xd(t) − ∆xnd) (3.9)

The equation above is applied for both contact and carrier wire. For the sake of
clarity the subscript c/w was dropped in the equation above. When defining the
membership ratio

α = xd(t) − ∆xnd

∆x
(3.10)

the interpolation can be rewritten as

w(xd) ≈
(
1 − α α

)( wnd

wnd+1

)
(3.11)

Inserting this into (3.8) leads to

Fd = kd

[ (
1 − α α

)( wc,nd

wc,nd+1

)
−
(
1 − α α

)( ww,nd

ww,nd+1

)
− l0

]
(3.12)

The dropper force Fd acting between two discrete nodes is then linearly distributed
to the surrounding nodes by again using the membership ratio

(
Fd,nd

Fd,nd+1

)
=
(

1 − α
α

)
Fd (3.13)

When defining a distribution vector

ϕ =
(

1 − α
α

)
(3.14)

the distributed and interpolated dropper force can be written as

(
Fd,nd

Fd,nd+1

)
= kdϕϕT

(
wc,nd

wc,nd+1

)
− kdϕϕT

(
ww,nd

ww,nd+1

)
− kdϕl0 (3.15)

These forces are then divided by the spatial step size ∆x to obtain the force density
and then added to its corresponding force density entries f j

c and f j
w in (3.7) with a

negative sign for the carrier wire and a positive sign for the contact wire.
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...
f j

c,nd

f j
c,nd+1

...
f j

w,nd

f j
w,nd+1

...


= kd

∆x


0

−ϕϕT ϕϕT

0
ϕϕT −ϕϕT

0


︸ ︷︷ ︸

Bj
d

(
wj

c

wj
w

)
+ kd

∆x


0

ϕl0
0

−ϕl0
0


︸ ︷︷ ︸

f j
d

(3.16)

ϕϕT is a 4x4 matrix. The zero matrices in the equation above are of appropriate
size so that the ϕϕT entries lie in the correct rows and columns corresponding to
the whole solution vector

(
wj

c wj
w

)T
. The dropper interaction therefore results

in time-variant additional terms of the B matrix in (3.7) and an additional static
force component due to the unstretched dropper length l0. Rewriting (3.7) with all
droppers inside the computational domain gives

Awj+1 =
(
B +

∑
i

Bj
d,i

)
wj + Cwj−1 + f j +

∑
i

f j
d,i (3.17)

Since the dropper positions change with time with respect to the moving coordinate,
all dropper input matrices Bj

d matrices for every dropper have to be calculated anew
at each time step and added to the B matrix.
In the classical non-moving system formulation [3] the handling of droppers is more
straight forward and requires less computational effort since their positions are time-
invariant. The non-moving system formulation also allows for an easy implementation
of the effect of slackening droppers, meaning, that they become inactive when com-
pressed. The difficulties of incorporating slackening droppers in the moving system
formulation will be explained later.
When a dropper enters the domain, sudden large dropper forces disturb the solution
because the ABCs let waves leave the computational domain freely and do not take
into account that an increasingly important restriction in the height difference of con-
tact and carrier wires become active as the dropper approaches the computational
boundary. As a simple yet effective countermeasure to smooth those disturbances,
the stiffness of the dropper is adjusted with a blending function:

kd(xbd) = xbd

b
− sin

(2πxbd

b

) 1
2π

(3.18)

For xbd = l − xd(t), 0 ≤ xbd ≤ b denoting the distance between the dropper and
the boundary it has entered and b is the width of the blending area after which the
dropper stiffness is restored to its full value (see Fig. 3.3). This adjustment of the
dropper stiffness helped to decrease high frequency distortions of droppers entering
the computational domain.
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Figure 3.3: Blending function for the dropper stiffness

3.2 Pantograph model
A general discrete state space formulation of the pantograph dynamics can be given
by

wp
n+1 = fp(wp

n, Fcont(wp
n, wn)) (3.19)

where wp is the state vector of the pantograph and fp is a vector function. The con-
tact force Fcont is the only source responsible for a coupling of motion of the catenary
and the pantograph. If the contact force is explicitly given by the known states of
the pantograph and the catenary at the time step n, the discrete state space systems
describing the motion of the catenary and the pantograph can be solved separately
for the next time step with the contact force as an external input to both systems.
This allows a co-simulation of the catenary and interchangeable pantograph models.

In the following, a simple two-mass oscillator will be used as a pantograph model.
Its equations of motion are given by

m1wp,1 = − d1(ẇp,1 − ẇp,2) − c1(wp,1 − wp,2) − Fcont − m1g

m2wp,2 = − d2ẇp,2 + d1(ẇp,1 − ẇp,2) − c2wp,2+
c1(wp,1 − wp,2) + F0 − m2g

(3.20)

where mn is the mass of body n, g is the gravitational constant, c1 and d1 are the
spring and damping coefficients between the two masses and c2 and d2 the spring
and damping between the second mass and the inertial reference frame. Fcont is the
contact force between the first mass and the contact wire and F0 is a static force
pushing upwards against Body 2 to achieve contact between the pantograph head
(Body 1) and the catenary. The contact force is modelled as a unilateral spring which
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is only active when compressed:

Fcont = kcont(wp,1 − ww(xp)) if wp,1 − ww(xp) > 0
Fcont = 0 if wp,1 − ww(xp) ≤ 0

(3.21)

With the contact force the equations for the catenary (3.17) are extended to

Awj+1 =
(
B +

∑
i

Bj
d,i

)
wj + Cwj−1 + f j +

∑
i

f j
d,i + fcont (3.22)

3.3 Decoupling of static and dynamic solution
In equation (3.22) the static vectors f j, where each element consists of the static
force density −ρc/wAc/wg, and ∑

i f j
d,i, the static force density of the unstretched

dropper length, result in a static displacement of the catenary with respect to a
resting coordinate system. With moving coordinates, where the dropper positions
change, the static solution is different for every time step, so it is convenient to refer
to it as a pseudo-static solution.
When the length of the discrete system is exactly one span of the catenary, a specific
pseudo-static solution w0 from Eq. (3.22) can be obtained by first replacing the
absorbing boundary conditions for the carrier wire with Dirichlet boundary conditions
so that it is fixed at mast height for the left and the right boundaries. For the
contact wire, the absorbing boundary conditions are replaced with periodic boundary
conditions. The speed of the pantograph v is set to zero so that the non-moving
EBB equations are obtained and the pseudo-static solution can then be calculated
by setting

wj+1 = wj = wj−1 = w0 (3.23)

which leads to

w0 = (A − B −
∑

i

Bd,i − C)−1(f j +
∑

i

fd,i) (3.24)

Since only the static displacement of the catenary is of interest, interaction with
the pantograph was neglected. The decoupling of the static and dynamic solution
and replacing the absorbing boundary conditions for the computation of the static
solution is necessary, because with absorbing boundary conditions in place constant
forces lead to a continuous drift of the whole catenary, meaning that no static so-
lution can be obtained. In the non-moving system formulation, with only Dirichlet
boundary conditions which can exert restoring forces, a decoupling of the static and
dynamic solution is not necessary. This leads to an easy implementation of slack-
ening droppers. In the moving system formulation, the slackening of a dropper is a
discontinuous change of the static solution.
Fig. 3.4 shows an example static solution of the catenary. The individual unstretched
length of each dropper was chosen in such a way to minimize the static sag of the
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Figure 3.4: Static displacement of the catenary with mast height of h =
1.2m, span width l = 60m and i = 9 droppers

contact wire. The displacement of the contact wire alone is shown in Fig. 3.5. The
sag between the droppers causes an excitation of the pantograph.

The static solution computed above is valid for a specific dropper and mast position.
Let this be the pseudo-static solution at the start of the computational loop. The
pseudo-static solution differs for every time step to come since the catenary is moving
through the computational domain. When the travelled distance is equal to the
span width the pseudo-static solution is once again equal to that at the beginning.
Recomputing the pseudo-static solution at every time instance can be avoided by
shifting:

wj+1
0,n (n∆x) = wj

0,n(n∆x + ∆tv) (3.25)

This states that the pseudo-static solution at the next time step is obtained by
spatially shifting the current pseudo-static solution by ∆tv. Since wj

0 is only known
at discrete points, and n∆x + ∆tv lies in general between two grid points, quadratic
interpolation is used to calculate the value of the static solution between two discrete
points. Once k time steps have passed so that

n∆x + k∆tv ≥ (n + 1)∆x, (3.26)
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Figure 3.5: Static displacement of the contact wire; span width l = 60m and
i = 9 droppers

the entire static solution can be shifted

wj+k
0 =



0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
... . . .
1 0 0 0 . . .

wj
0 (3.27)

The static solution now only needs to be computed at the first time step, and for
every following step it is obtained by shifting and interpolation. The total solution
is then given by

wj = wj
d + wj

0 (3.28)

where wj
d denotes only the dynamic solution of the system. It is obtained by evalu-

ating (3.22) with all static forces (f j, and ∑i f j
d,i) neglected.
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3.4 Computational loop
The necessary steps to start, maintain, and end the computational loop in their
correct order are explained here and visualized in Fig. 3.6.

• Prepare: At first the time-invariant portions of the system matrices are built.
These are essentially the discretized Euler-Bernoulli beam equations for the
catenary without added droppers (3.7) and the state space system for the two-
mass oscillator pantograph model (3.20). The dropper matrices (3.16) at start-
ing position can be defined and the initial pseudo-static solution is computed
(3.24). Absorbing boundary conditions are applied and with the desired initial
conditions the computational loop can be started.

• Computational loop: Depending on the current states (dynamic and static
solution) of the catenary and the pantograph the current contact force is cal-
culated. The dropper matrices valid for the current time step are added. After
that, the dynamic solution of the catenary and the pantograph can be updated
for the next time step. To easily utilize different (possibly non-linear) pan-
tograph models, the catenary and pantograph states are not aggregated into
one system but rather computed separately. The pseudo-static solution for the
next time step is obtained by shifting and interpolating and added to the dy-
namic solution. The time-variant dropper matrices for the next iteration are
computed and stored as well as the mast position, for which Dirichlet condi-
tions are applied. The current iteration is now complete and all informations
to restart the computational loop are given.

• Post-processing: When the exit condition is met, the computational loop
is stopped and the generated data can be used for post-processing. The exit
condition may be a limitation of iterations (e.g. maximum simulation time),
but since in the moving-system formulation the total simulation time does not
increase the computational effort per time step, the loop could be continued
indefinitely.
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Prepare:

Time-invariant System matrices

Start

Initialize:

Dropper matrices

Compute pseudo-static solution

Define initial conditions

Compute contact force

Update catenary states Update pantograph states

Shift pseudo-static solution

Recompute Dropper matrices

Exit Condition met?
No

Yes

Postprocessing

End

Figure 3.6: Simulation flowchart



Chapter 4

Simulation results

In this chapter, the simulation results of the moving small-scale (SS) system proposed
in this work are compared against that of a traditional non-moving large-scale (LS)
system, which is described in detail in [3]. All computations are done with the
MATLAB software package. As mentioned in the previous chapter, the LS system
allows for an easy implementation of slackening droppers, whereas in the SS system
this is not straightforward possible because of the decoupled static and dynamic
solution. Therefore the effect of slackening droppers is present in the LS system
whereas in the SS system it is not.
The parameters for the catenary and the pantograph used in the following simulations
are outlined in Tables 4.1 and 4.3. The dropper configuration for the given catenary
resulting in a minimal static sag is shown in Table 4.2.

Table 4.1: Catenary parameters
Parameter Symbol Value

length of span l 60 [m]
distance carrier/contact wire h 1.2 [m]
mass per unit length (carrier) ρcAc 1.07 [kg/m]
mass per unit length (contact) ρwAw 1.35 [km/m]

viscous damping coefficient (carrier) βc 0.03 [Ns/m]
viscous damping coefficient (contact) βw 1 [Ns/m]

bending stiffness (carrier) EcIc 0 [Nm2]
bending stiffness (contact) EwIw [150 Nm2]

tensile force (carrier) Tc 16 [kN]
tensile force (contact) Tw 20 [kN]
gravitational constant g 9.81 [m/s2]

dropper stiffness kd 100 [kN/m]
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Table 4.2: Dropper configuration
Dropper Nr. 1 2 3 4 5 6 7 8 9

xd [m] 5 10.5 17 23.5 30 36.5 43 49.5 55
l0 [m] 0.984 0.803 0.646 0.552 0.520 0.552 0.646 0.803 0.984

Table 4.3: Pantograph parameters
Parameter Symbol Value

contact unilateral spring constant kcont 50 [kN/m]
spring stiffness 1 c1 50 [N/m]
spring stiffness 2 c2 4200 [N/m]

damping coefficient 1 d1 90 [Ns/m]
damping coefficient 2 d2 10 [Ns/m]

mass 1 m1 15 [kg]
mass 2 m2 7.2 [kg]

train velocity v 250 [km/h]

Figure 4.1: Large scale reference system at time instance t=0.7s with a
spatial step size of ∆x = 0.4m and a temporal step size of
∆t = 7 ∗ 10−4s
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In Fig. 4.1 the solution for the LS System at an arbitrarily chosen time instance
is shown. For a constant velocity of v = 250 km/h it takes the pantograph 0.864
seconds to pass one span of the catenary. For a simulation time of 10 seconds, the
catenary has to be at least 12 spans long. The LS system has 16 spans so reflections
at the boundary do not disturb the pantograph. The increased dropper distance at
mast position results in the negative peaks of the contact wire. The spatial grid size
∆x was chosen to be 0.4 m. In sum, there are 4817 variables to be solved for the
catenary. The temporal step size ∆t is 7 ∗ 10−4 s.

4.1 Test case 1: Uplift force of 260 N
The gravitational force of the two masses combined is 217.8 N. In the first test case
a constant force F0 = 260N acting on the second body of the pantograph is applied.
This leads to a mean static contact force of 42 N which is generally deemed to low.
A typical contact force of 120 N is desired (see [16]).
A comparison of the LS and SS simulation results is shown in Fig. 4.2. The depiction
of the LS system is just a cut-out of the total solution seen in Fig. 4.1 and overlaid to
be consistent with the moving coordinates, whereas the SS system is fully displayed.
Since in the moving formulation the length of the catenary is one span there are only
302 variables for the catenary with ∆x = 0.4 m.

Figure 4.2: Comparison between the LS (blue) and SS (green) system at the
time instance t=0.7s.

The pantograph-head displacements are compared in Fig. 4.3. The SS gives a good
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approximation of the dynamics although there is a slight overshoot. A period of
0.864s can be observed which is the time it takes for the pantograph to pass one span.
The peaks during a period occur when the pantograph currently moves between two
droppers.

Figure 4.3: Comparison between the pantograph-head displacement for the
LS (blue) and the SS (green) system.

To quantify the goodness of fit of the pantograph-head displacement, the normalized
mean square error is used.

fit = 1 −
∣∣∣∣∣∣ x − xref

x − mean(xref )
∣∣∣∣∣∣2 (4.1)

where x is the signal under test compared to the reference signal xref . The fit varies
between −∞ (bad fit) and 1(perfect fit). For the simulation above, a fit between the
SS and LS pantograph-head displacement of 0.86 is achieved.
The contact force is modelled as a unilateral spring with a spring constant of kcont =
50 kN/m. Therefore there are high frequency oscillations in the contact force. In
[16] it is stated, that the frequency range of interest is between 0-20 Hz. A zero
phase distortion low-pass filter is used to process the raw contact force data. In Fig.
4.4 the filtered contact forces between the pantograph and the catenary for the LS
and SS system are compared. As a result of the low static force contact loss can be
observed. The fit of the contact forces amounts to 0.66.
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Figure 4.4: Comparison of the filtered contact force between catenary and
pantograph-head for the LS (blue) and the SS (green) system.

Fig. 4.5 shows the power spectral density for both systems in the range of interest.
The first peak around 1.2 Hz is the span width frequency. The increase of the power
density at a frequency of 10.4 Hz is due to the droppers.
Overall, a good fit between the SS and LS system can be observed with the SS system
having a much faster computation time. In this test case, the simulation time was set
to 10 seconds. The runtime for the LS system was 90.1s, whereas the runtime for the
SS system was 14.9s. The computations were done on a personal laptop computer
(i8-4702MQ @ 2.20Ghz CPU, 8GB RAM).
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Figure 4.5: Power spectral density of the LS (blue) and SS (green) System.

4.2 Test case 2: Uplift force of 340 N
In the second test case, the catenary and pantograph parameters are the same as
in the first one, but the uplift force of to pantograph is increased to 340N. This re-
sults in a mean static contact force between pantograph and catenary of 121N. The
pantograph-head displacement is shown in Fig. 4.6. The overall dynamic is approx-
imated well, but the overshoot compared to the LS system increases with a higher
uplift force. One reason for this is that in the SS system the absorbing boundary
conditions don’t exert any restoring forces. Only the Dirichlet boundary condition
on the carrier wire at mast position keeps the whole catenary from drifting away.
When the mast leaves the computational domain on one side, the tie-down suddenly
disappears since no information outside the computational domain is used and the
carrier wire can move freely. A similar problem occurs when the mast enters the
computational domain. Suddenly a constraint on the carrier wire is enforced. This
rapid pull down of the carrier wire results in a wave travelling over the pantograph
for which the contact force decreases to the point of contact loss, see Fig. 4.7. The
distortion of the system by an incoming mast can also be seen by plotting the fit of
the contact wire for the SS in reference to the LS system over time (Fig. 4.8). The
pantograph-head fit is at 0.6 which is worse then the fit for the simulation with a
lower uplift force. The higher the uplift force the greater the incoming mast distor-
tion.
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Figure 4.6: Power spectral density of the LS (blue) and SS (green) System.

Figure 4.7: Filtered contact force for the LS (blue) and SS (green) system.
At 3.1s a decrease of the SS contact force can be observed which
occurs due to the distortion of an entering mast
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Figure 4.8: Fit of the contact wire for the SS in reference to the LS sys-
tem. The distortion of an incoming mast drastically decreases
the overall fit of the contact wire.

4.3 Test case 3: Elastically constrained contact
wire boundaries

As seen in the previous test case, the freely moving absorbing boundary of the con-
tact wire combined with the event of an incoming mast results in a distortion of the
solution. One possible way to incorporate the restoring effect of the mast is investi-
gated in this test case. On the boundaries of the carrier wire springs with a variable
stiffness are applied. To get the variable stiffness function, the equivalent stiffness of
the carrier wire is determined. For that, a constant force is applied to every node of
the carrier wire and the static displacement is calculated (for the carrier wire only).
If repeated for a second constant force, two static displacement fields are obtained
for which the varying contact stiffness can be determined by

∆wc,0 = k(x)∆F (4.2)

where ∆wc,0 is the difference between the two static displacement fields and ∆F is the
force difference. The equivalent variable stiffness of the carrier wire is shown in Fig.
4.9. The infinite stiffness at mast position is removed to avoid numerical difficulties
(the spring at the boundary is overruled anyway by the Dirichlet condition when the
mast is currently at boundary position)
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Figure 4.9: Equivalent variable stiffness of the carrier wire. A logarithmic
scale is used for the Y-axis

The spring at boundary position alters the catenary dynamics and therefore the
pantograph-head solution, see Fig. 4.10. An additional decaying transient behaviour
can be observed, but also the overshoot is diminished. Due to the variable springs the
pantograph-head fit is 0.35, which is less then in the previous test case. By looking
at the contact force (Fig. 4.11), it can be seen that the distortion of the wave gener-
ated by the mast entering the computational domain was removed. In Fig. 4.12the
contact wire fit over time is shown. A comparison with Fig. 4.8 yields, that adding
the variable springs has also helped to increase the overall fit of the contact wire.

Clearly the added springs at the boundary are too simple for an approach and they
alter the solution of the pantograph-head displacement in an unwanted way. But this
simple test case shows, that some additional boundary constraints are desired and
can help to improve the overall performance of the SS system approach.
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Figure 4.10: Pantograph-head displacement with a variable spring at bound-
ary position for the SS system

Figure 4.11: Comparison of the contact force with added variable spring at
boundary position for the SS system
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Figure 4.12: Fit of the contact wire with added variable springs at boundary
position for the SS system
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Conclusion

Figure 5.1: Continuously increasing mean runtime subjected to the number
of spans for the LS system (blue) compared to the constant mean
runtime for the SS system (green)

The transformation of the coupled catenary and pantograph dynamics to a moving
coordinate and introducing absorbing boundary conditions led to a lean formulation
of the problem where the computational domain is only of the length of one span of
the catenary. This greatly reduces the number of variables that have to be calculated
each time step, increasing computational efficiency. Furthermore, the length of the
moving small-scale system is independent of the simulation time, which is not the
case for a traditional non-moving system formulation. In other words, the runtime
for one time step is constant for any desired simulation time whereas in the non-
moving system formulation the runtime continuously increases with the simulation
time since the length of the system has to be increased accordingly. In Fig. 5.1
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the mean runtime of the LS system for one time step is plotted over the number of
spans that are simulated. If the SS and the LS system are both of the length of
one span, the LS system has a faster mean runtime because the transformation to
moving coordinates lead to fully populated discrete system matrices whereas in the
non moving formulation the discrete system matrices are sparse. After a length of
two spans the advantage of reduced variables outweighs the sparsity of the system
matrices.

The simulation error between the small-scale and the large scale system formulation
can be traced back to two main factors

1. The absorbing boundary conditions are only perfect if the discrete wave equa-
tion is dispersion free. Since for the Euler-Bernoulli beam there is always
dispersion only waves with a phase speed close to the pseudo-velocity c =

√
T

ρA

are absorbed which are typical waves with a low wave number. The greater the
difference between phase speed and pseudo-velocity the worse the absorption
of that particular wave.

2. Currently there is no information outside of the computational domain incorpo-
rated into the simulation. Incoming masts and droppers impose a discontinuous
constraint on the contact and carrier wire inducing distortion waves.

Future work to counter those problems is to find a suitable boundary control that is
able to absorb waves within a dispersive medium without adding too much computa-
tional effort. This can be done by rewriting the absorption properties of a perfectly
matched layer as an optimization problem to find a state-space controller that mimics
the behaviour. Thus no additional auxiliary fields are necessary.
As it was shown in test case 3 in the previous chapter, the assumption of total absorp-
tion at the boundary and therefore a free wave solution outside the computational
domain is not entirely justified as droppers and masts that left the domain or are
about to enter it do have an effect on the boundary. Certain appropriate additional
constraints are desired to improve the accuracy of the small-scale system formulation.
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