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Kurzfassung

Diese Arbeit untersucht verschiedene Lösungsansätze zur Anfragenbeantwor-
tung mittels e�zienter Pläne. E�ziente Pläne können mittels SQL Techniken
implementiert werden, daher stellt diese Arbeit eine Applikation für Datenbank
Technologien dar. Die Reformulierung einer Anfrage hilft dabei, Ausdrücke einer
Anfrage auf vollständing zugänglichen Datenbank Tabellen zu limitieren, so dass
solch ein Ausdruck einfach in einen e�zienten Plan konvertiert werden kann. Al-
le hier präsentierten Zugänge funktionieren anhand ihrer eigenen Bedingungen.
Sie teilen sich jedoch die fundamentale Strategie des Verbindens eines Beweises
mit einem Plan. Der Beweis ist der einer Beantwortbarkeit, gleichbedeutend mit
der Existenz einer Reformulierung der Anfrage in einem bestimmten �xierten
Vokabular, und der Plan ist eine ausführbare Anfrage, die aus einem Beweis
mittels Interpolationstechnik extrahiert wird.

Die Klassi�zierung der Herangehensweisen kann auf dem sie in Angri� neh-
menden Anfragebeantwortungsproblems, oder aber auf der Art des Beweises,
dass sie ausnutzt, basiert werden. Die ersten drei Kapitel sind grosso modo dem
Problemder ontologie-basiertenAnfragebeantwortung gewidmet. Daher sind die
Bedingungen, unter welche dieser Ansatz funktioniert, solche, die die Ontologie
und ihre Beziehung zur Anfrage einschränken, und hierbei besonders das zum
Einsatz kommende Datenmodells der Ontologie, eines D Box Datenmodells an-
statt des in Beschreibungslogiken gebräuchlichen A Box Datenmodells, welches
die Verwendung von Reformulierungstechniken anspornt. Die letzten beiden
Kapitel beschäftigen sichmit einem geringfügig abweichenden Problem: Anfrage-
beantwortung mittels eingeschränkter Schnittstelle. Hier gibt es keine Ontologie,
vielmehr Einschränkungen des Datenzugri�s und der üblichen Integritätsbe-
dingungen. So ist es essenziell immer noch ein Problem des Beantwortens einer
Anfrage angesichts vorhandener Beschränkungen. Die Technik zum Lösen dieses
Problemswurde bereits vor langer Zeit in Untersuchungen über die Prädikatenlo-
gik in Form von Präservierungs- und Interpolationstheoremen eingeführt. Deren
Anwendung in der Anfragebeantwortung hängt jedoch von der Verwendung
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dieser Techniken zur Reformulierung der ursprünglichen Anfrage in eine andere
Anfrage, welche vorhandene Datenbanktechniken handhabbarer nutzt.

Daher übergreifend aller Herangehensweisen, das Ziel der Reformulierung
ist immer eine ausführbare Anfrage, unabhängig davon, ob sich die Ausführ-
barkeit in einer sicheren Bereichsanfrage manifestiert, oder aber in einem Plan
einer relationalen Algebra. Am Ende von Kapitel Fünf präsentiere ich einen Al-
gorithmus zum Extrahieren einer Selektions-Projektions-Join-Anfrage anhand
eines vorwärts verketteten Beweises basierend auf Tupel-generierender Abhän-
gigkeiten als Beschränkungen. Obgleich der Beweis hier mittels einer Chase Folge
repräsentiert wird, ist es immer noch ein Implikationsbeweis, und der Plan wird
trotzdem noch mittels Interpolation extrahiert.



Abstract

This thesis is a study on di�erent approaches towards answering query via
e�cient plans. E�cient plans can be implemented by SQL technique, hence the
application to database technology. Reformulation of query helps to limit the
query expression to fully accessible database tables so that such an expression
can be easily translated into an e�cient plan. The approaches presented here
function under their own conditions. However, they share a fundamental strategy
of connecting proof with plan. The proof is an answerability proof, signifying the
existence of a reformulation of the query in a certain �xed vocabulary, and the
plan is an executable query extracted from the proof by interpolation technique.

The classi�cation of approaches can be based on the query answering problem
that they address, or it can be based on the kind of proof they exploit. Roughly
speaking, the �rst three chapters are devoted to the problem of ontology based
query answering. Therefore the conditions under which the approach functions
are those constraining the ontology and its relation to the query, especially the
data model employed by the ontology, a D box data model instead of the more
description-logic-conventional A box data model, which motivates the use of
reformulation technique. The last two chapters can be viewed as addressing a
slightly di�erent problem at hand: query answering over restricted interface.
There is no ontology here, rather restrictions on data access and the usual integrity
constraints. So it is essentially still the problem of answering query in face of
constraints. The technique for solving this problem has been introduced long time
ago in the study of predicate logic in the form of preservation and interpolation
theorems. However, its application in answering queries depends on the use of
these techniques to reformulate the original query into some other query that is
more manageable using database techniques. Therefore across the approaches
the goal of reformulation is always an executable query, whether this executability
reveals itself in a safe range executable query or a relational algebra plan. At
the end of chapter �ve I present an algorithm for extracting a Select-Project-Join-
plan from a forward chaining proof given tuple generating dependencies as
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constraints. Though the proof here is represented by a chase sequence, it is still
an entailment proof and the plan is still extracted by interpolation.
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CHAPTER 1
Introduction

Query answering over relational database has been well studied for decades,
whereas query answering with constraints over database is a relatively new
subject. When the constraints are viewed from the perspective of ontology, it is a
subject that straddles the commonground betweendescription logic and ontology
on the one hand, and query answering on the other. However, there is another
way of dealing with database constraints which stays more within the traditional
database technology of answering queries. It aims at using the constraints to
reformulate the query so that its rewritten form can be translated into a plan
that renders itself implementable in SQL. This idea of reformulation through
constraints has been investigated not just from the ontological point of view,
but also from interests in other constraints that we often encounter in practical
database applications, such as restricted interface of databases. This thesis o�ers
some understanding into the idea of reformulation through constraints, along
with its advantages and limits.

1.1 Active Domain Semantics and Domain
Independence

Conventional semantics of relational calculus has quanti�ed variables ranging
over all elements of the underlying domain, i.e., Dom. However, in the classical
de�nition of �rst order query semantics, the natural semantics of �rst order the-
ory is generalized to allow explicit speci�cation of the underlying domain. The
semantics thus generated for �rst order query φ is a relativized instance [Abite-
boul et al., 1994] over database signature schema R, which is a pair (d, I), where I
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1. Introduction

is a database instance over R, and adom(I, φ) ⊆ d ⊆ Dom. As usual, adom(I, φ)
denotes adom(I) ∪ adom(φ). adom(I) is the set of all constants occurring in I, and
adom(φ) is de�ned analogously. A relational calculus query φ is interpretable
over (d, I) if adom(φ) ⊆ d. If v is a valuation over free(φ) with range contained in
d, then I satis�es φ for v relative to d, denoted I |=d φ[v]. The recursive de�nition
along the structure of φ is de�ned as in the usual way for relational calculus.

Let Q = {(x1, . . . , xn) | φ} be a relational calculus query over schema R, and
let (d, I) be a relativized instance over R. Then the answer ofQ over the instance I
of R is denoted as follows:

Qd(I) = {v(x1, . . . , xn) | I |=d φ[v]} .

The queries under discussion here are all interpretable over relativized in-
stance (d, I). Given adom(I, φ) ⊆ d ⊆ Dom, the natural (unrestricted) interpreta-
tion of Q on I is denoted QDom(I); and the active domain interpretation of Q on I
is denoted Qadom(Q,I)(I), with shorthand Qadom(I).

The active domain semantics as de�ned above is the general assumption
associated with database queries. However, for reasons that shall unfold later,
an alternative approach to the semantics of relational calculus query is domain
independence with standard name assumption. Without further speci�cation,
we are talking about relational calculus query. A queryQ is domain independent
if for each instance I, and d, d′ ⊆ Dom, Qd(I) = Qd′(I).

By Codd’s equivalence theorem, we can prove that the domain independent
calculus and the calculus under active domain semantics are equivalent in their
expressive power. That is, for every domain independent calculus query there is
an equivalent query in the domain calculus under the active domain semantics.
However, there is one point worthy of remark. Domain calculus covers all the
queries under discussion here, where variables range over the underlying domain
of values, i.e., d. Though adom(I,Q)⊆ d, it is not guaranteed that for an arbitrary
element a in adom(Q), we have I(a) = a. This might cause problems when we
use domain independent queries such as Q = {x | x = a}. x is guarded by a,
therefore Q is domain independent, that is, Q(I) = Qadom(I). However, if we do
not assume standard name, then it is possible that Q(I) = bwhere b satis�es the
condition that b ∈ Dom, b 6= a and b /∈ adom(I, Q). In this case, we just have to
let I(a) = b, then the answer of Q under I, i.e., b, is in the active domain no more.
Hence, to achieve active domain semantics from domain independence, we must
also have standard name assumption (SNA). This being said, and given that we
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1.2. A Box or D Box: A Question with Ontology

are mostly dealing with domain independent queries, we can, without essential
loss, use natural interpretation of �rst order logic with SNA, instead of classical
domain calculus semantics.

1.2 A Box or D Box: A Question with Ontology
Now we take ourselves to the less classical question of answering queries over
relational databases with ontology. As we know, ontology, the meaningful ones
especially, often contains predicate vocabularies that do not exist in the underlying
database. Therefore the �rst question we encounter in handling query answering
with ontology is to ask, how we may model the data so as to make our query
understandable in it? In fact, ontology based query answering makes us query
the modeled data, not the original information lying in the base tables. In face of
this question, there are two streams of thought. They can simply be di�erentiated
by the way they model their data with respect to the original database. To put it
in a nutshell, one models it incompletely, and the other completely. This means,
in the incomplete data model or sound view, as it is sometimes called, for any
database predicate, its interpretation in the data model is contained in its original
interpretation, i.e., that in the original database. On the other hand, the complete
datamodel, or exact view correspondingly, has as interpretation of every database
predicate exactly the same set of tuples as in its original interpretation. A slightly
more formal de�nition is given below in the name of A box and D box for the
two kinds of data model.

Ontology imposes constraints on the data we use to answer queries. Given a
database instance Iwith constraints, there are twoways in which we can answer a
queryQ based on materialized views V , depending on whether the view instance
IV is generated from I on open or closed world assumption. If we perform query
answering with constraints on open world assumption, then IV ⊆ V(I); and if,
on the other hand, our query answering is based on closed world assumption,
then IV = V(I).

In the case of ontology based query answering, there are two ways of de�ning
ontology, i.e., as combination of KB with A box such that O = 〈KB,A〉, or as
combination of KB with D box, such as in O = 〈KB,D〉. Both A box and D box
model data from the original database in the same way that materialized view
does. Corresponding to query answering based on materialized views, A box
and D box also represent the two assumptions about looking at the database
information from the perspective of view. It is only that here we view the database
in the eyes of ontology. The view instance IA in A box is based on open world
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1. Introduction

assumption, whereas the view instance ID in D box is built on closed world
assumption.

However, the view instance is not equivalent with either A box or D box. In
fact it is only a part of our ontology. This is because bothA box andD box consist
of predicates and individual constants that are not in the original database, as the
data model is supposed to represent facts with respect to a theory of the database,
not raw, primitive data, hence the name ontology, signifying unto us the mystical
union between metaphysics and physics. A tuple of individual constants c̄ from
A box (or correspondingly D box) answers the query Q over ontology O i� c̄ is
a certain answer to Q with respect to all models of KB, regardless of what the
domain is, a notion that shall later be explained formally.

Therefore it makes a di�erence to query answering over materialized views
whether the view de�nition V gives us complete or incomplete knowledge about
the database instance I. In the context of ontology based query answering, it
makes a di�erence whether we use A box or D box to model our data. When c̄ is
a certain answer via A box, it must be an answer via D box, but not vice versa.
A result that can hardly occasion any wonder though, since we see the actual
database through our datamodel, and it is obviously easier to get a certain answer
when the model gives us complete knowledge about the underlying database.

Thus the two streams of thought lead to quite di�erent methodologies in
dealing with the complexity of query answering. The most important di�erence
lies in the fact that, for ontology that uses A box, reformulation of query is
irrelevant, whereas if one chooses to use D box, query reformulation is essential.
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CHAPTER 2
A Project on Exact Reformulation

2.1 The Importance of Being Exactly Reformulated
Both A box and D box worldview will eventually boil down to interpretation.
Whether an interpretation models an A box or a D box reveals itself by the way
it interprets plain database predicates. Since both A box and D box is a set of
assertions of the form A(a) and R(a, b), where A is a concept, and R a role in
the signature σ. An interpretation that models an A box interprets every A box
individual as itself, and keeps the extension of concepts and roles exactly as
they are in the A box. The rest of the predicates in the �rst order language are
randomly interpreted. The same holds for D box. Therefore from now on I shall
only speak of A box and D box as data models, or perspectives, which guide the
building of interpretation that models them, since interpretation is what we really
need for query answering. Though the common goal of both streams of thought
is to answer query with ontology e�ciently, they have di�erent subgoals. One
important division between them is the question of reformulating the query. This
is out of the question with an A box model, for it is too expansive. Since A box
models the actual data incompletely, the answer to a query via this data model
must be a certain answer, that is, an answer regardless of interpretation. For this
reason, we must consider all the legal interpretations. A database instance I is
legal for an ontology KB if there exists a model I of KB embedding I. Then I
as a database embedding interpretation is legal for KB. There are two ways of
embedding a database in an interpretation, I name them here soundly embedding
and embedding per se just to distinguish them from each other. An interpreta-
tion I soundly embeds a database instance I if for every a ∈ adom(I), I(a) = {a},
and for every database predicate P , (c1, · · · , cn) ∈ I(P ) if P (c1, · · · , cn) ∈ I. The
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2. A Project on Exact Reformulation

set of all such interpretations I that soundly embeds the database instance I is
denoted as SE(I). Let (x1, · · · , xn) be the set of free variables of Q, the set of
certain answers of a Q over I under KB is thus de�ned:

{v(x1, . . . , xn) | ∀I ∈M(KB) ∩ SE(I) : I, v |= Q(x1, . . . , xn)} .

As we can see, when we use A box as our data model, the process of ex-
tracting certain answers must take into consideration all legal models of the
ontology, thus its evaluation is a problem of validity, more speci�cally, valid-
ity of ground atoms. The answer to one model may not be the same as that to
another, by virtue of which that answer can not be a certain answer. For exam-
ple, given KB = {∀x(TomCat(x) ∨ Human(x) ∨ Rest(x))}, the query Q(x) =
TomCat(x) ∧ ∀y(Human(y) → (x 6= y)) over the database I = {TomCat(a),
Human(b)}with the active domain {a, b} has ∅ as the certain answer. This is be-
cause although there exist some legal interpretations, in this case, I such that I ∈
SE(I), that satisfy the query, such as when I(TomCat) = {a} and I(Human) =
{b}, matching one to one with that of I; there also exist other legal interpretations
such as I = {TomCat(a),Human(a),TomCat(b),Human(b), . . . } for which I 6|=
Q(x) for any x in the domain. Since query answering with A box is a matter
of entailment, the central concern becomes that of reducing the complexity of
ontology and query themselves so as to make the entailment manageable. This
is why relational calculus queries are rarely considered with A box, even the
domain independent ones, such as the query given in the above example. In
other words, complexity is a tradeo� between expressive power and e�ciency.

In the D box data model, the extensions of all database predicates exactly
match that of the original database, the answer to query over the database is
preserved under the ontology, hence it is also referred to as exact answers. It is
almost a dual notion of certain answer, i.e., what is in the complement of this set
is certainly not an answer. However, here we only consider interpretations that
embed, not soundly embed, the database, which is the other way of embedding a
database in an interpretation as we have earlier introduced. An interpretation I
embeds a database instance I if for every a ∈ adom(I), I(a) = {a} and for every
database predicate P , (c1, · · · , cn) ∈ I(P ) if and only if P (c1, · · · , cn) ∈ I. The
set of all such interpretations I that embeds the database instance I is denoted
as E(I). Clearly E(I) ⊆ SE(I). The notion of legal database instance being still
unchanged, the set of exact answers of a Q over I under KB is thus de�ned:

{v(x1, · · · , xn) | ∀I ∈M(KB) ∩ E(I) : I, v |= Q(x1, · · · , xn)} .

It is obvious from the de�nition that exact answers contain certain answers
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2.2. Much Ado About Model Reduction

due to the fact that E(I) ⊆ SE(I). If we use D box as the data model, given
exactly the same example as mentioned above, {x/a} is an exact answer. The
answer is exact in the sense that if {x/a} is not an answer, then it is not, indeed it
cannot be, the answer of any legal interpretation I embedding the database, in
this case, I ∈ E(I). Compared withA box, those answers toQ that are not certain
answersmight still be the exact answerswith respect to all legal interpretation that
embeds, not soundly embeds the database, that is, for every database predicate P ,
(c1, · · · , cn) ∈ I(P ) if and only if P (c1, · · · , cn) ∈ I. {x/a} is one such answer that is
preserved by �xing the interpretation of the database predicates, i.e., for all legal
interpretations I that embed I, we have I(TomCat) = {a} and I(Human) = {b},
therefore it is an exact answer, it is not a certain answer only because it is not the
answer under all interpretations that soundly embed I, that is with I(TomCat) ⊇
{a} and I(Human) ⊇ {b}.

What is less obvious but is equally natural as a consequence of using em-
bedding instead of soundly embedding is that it is now desirable to reduce Q
to a query which uses only the original database predicates, so that its answer
depends only upon the �xed extension of them, which never wavers in the chang-
ing world of ontology models. If we useA box as the knowledge base to compute
the answer to Q, the extension of database predicates in the A box is not certain,
changing from one legal interpretation to another, so long as it contains the
relevant predicate extension in the original database, therefore our knowledge
with respect to the database predicate concepts is incomplete. Given this charac-
teristic of A box modeling, even if there is a query reformulation in terms of the
plain database predicates, since we can’t deduce their interpretations in the actual
database from theA box facts, it is of no use, as we are looking for certain answers
anyway. However, with D box which contains the exact view of the underlying
database, then the predicates in the D box have exactly the same extension as
those in the actual database. Hence if there exists a domain independent refor-
mulation in terms of the database predicates, then the query evaluation problem
can be reduced to that of SQL evaluation on plain databases. Therefore, when
we take the D box or exact view perspective, the query reformulation problem in
terms of plain database predicates becomes essential.

2.2 Much Ado About Model Reduction
Although D box, as A box, might contain vocabulary that is beyond that of the
original database predicates, if the interpretation of the database predicates PDB
are �xed, andQ is implicitly determined by PDB, then there is an explicit de�nition,
or reformulation, ofQ in terms of the predicates of PDB. This being the case, ifKB
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2. A Project on Exact Reformulation

and Q are both domain independent, then the reformulation of Q is domain
independent, and its answers are directly determined by the interpretation of PDB.
Thereby we can reduce query answering over ontology to query reformulation
and query answering over plain database, amodel checking problem. The notions
of implicit determination, explicit de�nition and reformulation all have their
formal counterparts. The detailed explanation of these concepts and the process
of reducing ontology based query answering to model checking is the subject
that shall occupy the next few chapters. First we must sort out the prerequisites
for this reduction. It is a reduction from many models to one model, or from
entailment to model checking. There are three things to consider: standard name
assumption, domain independence of query with respect to ontology and �nite
controllability. I will come back to �nite controllability. SNA has been discussed
in the �rst chapter, now we turn to domain independence of query with respect
to ontology and query reformulation. The ontology itself is always assumed to
be domain independent.

Modeling data in D box makes it possible to reduce multiple models into
one model, because it keeps the interpretation of PDB �xed. However, this possi-
bility is eventually based on the domain independence of the reformulation Q̃
of Q in terms of the predicates in PDB, which again depends upon the domain
independence of Q with respect to KB. It has been proved in [Borgida et al.,
2010] that given a domain independent query Q and a set of domain indepen-
dent constraints in KB, if Q is implicitly determined by the database predicates
under KB, then the reformulated query Q̃ in terms of the database predicates
is domain independent. Later in [Franconi et al., 2013], the “if” in the claim is
strengthened into an “if and only if;” in the mean while, the condition of the
“only if” is weakened so that the original query Q only has to be domain inde-
pendent with respect to KB. That is to say, Q itself does not have to be domain
independent, it only requires that it is implicitly determined by the database
predicates PDB and is domain independent under all KB models. However, we
lose the “only if” if we have KB to be not domain independent. For example,
given an ontology KB = {∀x(TomCat(x) ∨ Lioness(x))}, a database instance
I = {Lioness(a)} and the query Q = ¬TomCat(x), Q is not safe but domain
independent for all the models of KB, besides, it is implicitly determined by PDB;
however, it has a domain independent reformulation Q̃ = Lioness(x). Hence the
failure of the “only if” direction. In �nding exact answers, we assume that KB is
consistent and non-tautological, and that there exists at least one interpretation
that is legal forKB. WhenKB is not domain independent, it restrains the domain
of legal interpretations. Continuous with the example, if we have as database in-
stance I = {Lioness(a),TomCat(b)}, then there is only one legal interpretation I
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2.2. Much Ado About Model Reduction

for the ontology, with its domain restricted to exactly I(TomCat) ∪ I(Lioness), for
it is the only model of KB that embeds I. So long as we extend the domain, there
will be element in the domain that is neither in TomCatI nor in LionessI , since
according to D box model, TomCatI ≡ I(TomCat) and LionessI ≡ I(Lioness),
therefore I becomes an illegal interpretation for KB. Of course if we use A
box model with TomCatI ⊇ I(TomCat) and LionessI ⊇ I(Lioness), then there
are in�nitely many models that are legal for the ontology, and the answer to Q
would be {x/a}, which is the certain answer to all such models. But then at the
same time A box model would make it redundant for us to be concerned with
perserving query answers with respect to plain database. This is contrary to the
intention of A box model, which breaks from the problems of the plain underly-
ing database, such as incompleteness et cetera, and lifts the query answering to a
di�erent level with only a sketch of the original database left in it. On the other
hand, to the ontology based query answering with respect to a D box model,
this result is essential, exactly because the reformulation makes it possible to
preserve query answers under the original database, without which the D box
representation would lose its advantage of reducing entailment to SQL e�ciency,
and the technique that applies to plain database query answering would not
apply. However, it is still an open question as to what might still be the necessary
and su�cient condition with respect to the query Q and its relation to KB in
order for the reformulation to be domain independent, when we allow KB to be
not domain independent. All we know so far is some piecemeal understanding
represented by examples, such as if KB is not domain independent, even if Q is
domain independent with respect to all KB models, the reformulation can still
not be guaranteed to be domain independent. The example is trivial, such as
when KB = {∀xA(x)}, PDB = {A}, and also Q = ∀xA(x), this naturally makes
the boolean queryQ implicitly determined by PDB and domain independent with
respect to all models of KB, namely, to constantly generate the answer {}. The
reformulation is itself, but not domain independent. If, on the other hand, KB
is domain independent, i.e., every sentence in it is domain independent, but Q,
though by itself is not domain independent, is domain independent under all
the models of KB, we do not lose the “if and only if” condition. Of course, if Q is
domain independent and the predicates ofQ are all in PDB, then its reformulation
is itself, and domain independent, regardless of KB. To point it out is not to
trivialize the question, but to turn to the more interesting point that whenQ is not
domain independent and is not entirely written in PDB, it cannot be guaranteed
to have a domain independent reformulation without reference to KB.
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2.3 Determinacy: From Implicit to Explicit
Implicit and explicit determinacy, or implicit determination and explicit de�ni-
tion, have been so far mentioned without thorough discussion. Now it is time
to provide a formal de�nition. For the sake of convenience, I from now on refer
to them as implicit and explicit determinacy. A set of predicates, denoted as
views V = {V1, V2, . . . }, which determine answers to a queryQ can be formulated
in �rst order model theory as implicit determinacy, which in its original context
is the question of whether we can de�ne a relation symbol in �rst order logic
(FOL) in terms of other relation symbols that are also in FOL. It is the well known
Beth de�nability [Fitting, 1990]. To put it in database context, it is the idea that
the views V provide enough information to uniquely determine the answer of Q.
The precise formulation dates back to Tarski [1935]. Given a relation symbol R, a
set of relation symbols R = {R1, R2, . . . }, and a theory ∆, which is a �nite set of
sentences in the signature of R ∪V ∪R, we say ∆ implicitly de�nes R in terms
of V i�

∀R,R′,V,R,R′(A(R; V; R) ∧ A(R′; V; R′)→ R ≡ R′) ,

where V = {V1, V2, . . . }, R = {R1, R2, . . . }, and R′ = {R′1, R′2, . . . }. A(R; V; R)
denotes the conjunction of all sentences in the theory ∆. The two theories,
A(R; V; R) and A(R′; V; R′) di�er from each other only in in terms of relation
symbols outside of the views.

Explicit determinacy, on the other hand, answers the question of whether for
a given relation symbol R, there exists an FOL formula φ built in the signature
of V that is equivalent with R under ∆. The move from implicit to explicit
determinacy gives rise to the original use of Craig interpolation. Many proof
systems have been used for interpolation. Among the most commonly used is
biased tableau method [Fitting, 1990], which I shall later come back to on the
subject of ontology based query answering. To generalize Craig interpolation
from FOL to an arbitrary language L, given that ∆ implicitly de�nes R in terms
of V, where ∆, R, V are all in the language of L, if there exists such a formula φ
which rewrites R using only relation symbols from V, then we say L is complete
for de�nition and R is explicitly de�ned by ∆ in terms of V. Craig interpolation
generates φ.

Beth proves completeness for FOL de�nition in [Beth, 1956]. Concerning
database applications the two questions are thoroughly investigated for the �rst
time by [Nash et al., 2010]. They provided a study of many logical systems,
fragments of FOLmostly, in search of an answer to the question of de�nition com-
pleteness. The essential question is, what is the smallest expansion of a de�nition
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complete logical system L in which de�nition completeness is preserved. This
part of history is mentioned here because the question of implicit and explicit
determinacy bears signi�cance for ontology based query answering on exact view
de�nition or exact reformulation of a query Q in terms of database predicates.
The existence of an exact reformulation of a query Qwhen Q and KB are both
expressed in FOL coincides with de�nition completeness of FOL. It has been
demonstrated that FOL is the smallest reformulation language that guarantees
de�nition completeness [Nash et al., 2010].
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CHAPTER 3
Proof to Plan

3.1 A Little History to Begin With

For historical reasons, implicit and explicit determinacy have their information
theoretic correspondents, namely, view determinacy and view-based rewriting.
Completeness for de�nition is also completeness for view-based rewriting. A
query Q is determined by a set of views V if and only if for any two database
instancesD1 andD2, if V(D1) = V(D2), thenQ(D1) = Q(D2). Such is a semantic
view of the intuitive notion that it is su�cient for a set of views to determine
the answer to a given query, in spite of the di�erence between the underlying
database instances. A corresponding syntactic understanding focuses on �nding
the exact reformulation of Q in a certain language L, usually a fragment of FOL,
such that the predicates of V are the only primitive symbols in the reformulation,
thus generating a new, reformulated query Q̃ such that Q and Q̃ are logically
equivalent under a set of database constraints Σ, i.e., Q ≡Σ Q̃. Given a query Q
and a set of views V in L, even when there is no view determinacy for Q in
terms of V, there can still be a rewriting of Q in L such that the rewritten query
is contained in, instead of equivalent with, Q, i.e., not an exact but a contained
rewriting of Q. Indeed the search and research for sound view determinacy was
actually earlier than that for exact view determinacy, there the focus was on
maximally contained query rewriting [Duschka and Genesereth, 1997]. Sound
view determinacy is view determinacy as de�ned shortly above where the view
in question is sound view, likewise for exact view determinacy, two notions as
were mentioned in section 1.2.
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On the one hand is determinacy, and on the other, rewriting, regardless of
whether they are views V or database predicates PDB under discussion. The
syntactic and semantic are two sides of any interesting query language when it
comes to query answering, and furthermore, they are linked. As mentioned at
the end of the last chapter, the study of the relationship between these two meta-
linguistic properties of a given language L gives rise to many results of de�nition
incompleteness [Nash et al., 2010]. The various names that have been adopted
to describe the link between the syntactic and semantic understanding of query
determinacy re�ect the di�erent attitudes towards the problem that had been
so far taken in history ranging from the early study of mathematical logic in the
nineteen-�fties, which was not even concerned with query determinacy, rather
with the de�nability of a �rst order formula, to the forefront of ontology based
data access (OBDA) in database theory. Here we assume de�nition completeness
so that there is a way from query determinacy to query rewriting, since the main
concern, the ultimate goal here is still to �nd an e�cient way to answer query
under constraints.

3.2 Streams of Ideas

Query answering in practice faces many constraints. So far the many facets of
the question under investigation can be combined and reformulated as looking
for e�cient plans that generate complete answers of a query in the presence of
integrity and other constraints. These other constraints can be internal access con-
straints on database relations, or it can be ontology with which the query shares a
language that goes beyond the database predicates. We focus on three things: the
plan must be e�cient, the answers must be complete, and the constraints must be
respected. To solve this many layered problem, there are several streams of ideas.
One major stream is inspired by the early 1950s’ study of �rst order logic with
its method of preservation and interpolation, dating back to the work of Tarski
and Craig [Fitting, 1990]. In subsequent texts I shall refer to this stream of idea
as the interpolation method. The other major stream answers query by using
constraints to chase and back chase, but this method does not apply generally to
arbitrary �rst order constraints, rather it works particularly well with a certain
guarded fragment of integrity constraints called tuple generating dependencies
(TGD). From now on I shall refer to this stream of idea as the chase method.
The work on OBDA with D box, the subject that occupies the early chapters, can
be roughly shovelled into the �rst stream, as it uses interpolation and biased
tableaux method to �nd exact answers, but it deserves some special attention
because ontology is no usual database schema constraints.
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Still the two major streams can in general be discussed under the suggestive
name of proof to plan, because the goal is to generate a plan that gives complete
answers to a query via proof of its answerability. Their di�erence lies in the kind
of proof they exploit. The answerability of the query generates an entailment
which can be proved valid with respect to all constraints, and by constructing
interpolation of the entailment, we formulate a plan, i.e., the interpolant. What
characterizes the method is that though di�erent proofs can be generated using
vastly di�erent kinds of constraints, including ontology, the proofs they generate
are answerability proofs. Franconi et al. [2013] proposes a proof that guarantees
implicit determinacy, which says that the query Q written in the language of
ontology KB has its answer determined by the source database regardless of the
interpretation of other relation symbols, since the worldview assumed here is D
box data model. This proof guarantees that the query Q has a reformulation in
terms of database predicates that is also generated by interpolation. This amounts
to the guarantee ofQ being answerable with the original database. Benedikt et al.
[2014] proposes various answerability proofs with respect to di�erent schema
access restriction axioms. A detailed discussion of various constraints and plans
that are generated by the answerability proof with respect to those constraints
shall be included in the following discussion of interpolation method. On the
other hand, the chase method directly generates a plan from a forward chaining
proof sequence via chasing. I shall also provide a detailed discussion of the chase
method in comparison with the interpolation method.

If a plan is generated, we would further like to know whether there is such a
method that guarantees that while it generates plan from proof, it generates a good
plan. But what does “good” mean in this context? In the results presented below,
there are two �avors of good plan. Strictly speaking, they are not comparable. If
we take access restrictions into consideration, then a good plan is an executable
rewriting of the query such that all the access patterns of the schema are respected.
There is an algorithm for generating such a plan [Benedikt et al., 2014, Deutsch
et al., 2007]. However, if we do not consider access restrictions at all, supposing
all database relations are perfectly accessible, then a good plan is a safe range
rewriting, we need to guarantee that the plan can be translated into a nice SQL
statement so that its execution can be carried out with low complexity [Franconi
et al., 2013].
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CHAPTER 4
Interpolation Method

4.1 Ontology, Database, Exact Reformulation
In the case of ontology based query answering, the whole of ontology, a �nite
set of �rst order sentences, can be regarded as a set of constraints in �rst order
logic, therefore the interpolation method applies. Franconi et al. [2013] has
laid out in detail the process of constructing �rst an answerability proof, and
then extract exact reformulation from it. Given an ontology KB, a �rst order
query Q that is domain independent with respect to KB, and a set of database
predicates PDB, an answerability proof guarantees that the answers of Q can be
completely determined by the interpretation of predicates in PDB. The theoretical
foundation of which can be found in sections 2.1 and 2.2. Here all database
predicates are assumed to be perfectly accessible, therefore the determination of
the answers ofQ by the interpretation of database predicates in PDB is equivalent
with implicit determinacy of Q by PDB. Applying Tarski’s de�nition of implicit
determinacy as we mentioned in section 2.3, given a relation symbol R, a set
of relation symbols R = {R1, R2, . . . }, and a theory KB which is a �nite set of
sentences in the signature ofR∪PDB∪R, we sayKB implicitly de�nesR in terms
of PDB i�

∀R,R′, PDB,R,R′(A(R; PDB; R) ∧ A(R′; PDB; R′)→ R ≡ R′) ,

where PDB = {P1, P2, . . . },R = {R1, R2, . . . }, andR′ = {R′1, R′2, . . . }. A(R; PDB; R)
denotes the conjunction of all sentences in the theory KB. The two theories,
A(R; PDB; R) and A(R′; PDB; R′) di�er from each other only in in terms of rela-
tion symbols outside of the set of database predicates PDB, i.e., those in R, as
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R ∩ PDB = ∅. The set of views in the original de�nition is now the whole PDB,
because there is no access restrictions.

This theorem of implicit determinacy can be then extended from a relation
symbol R to a �rst order logic formula Q such that a query Q is implicitly deter-
mined by a database with predicates PDB under the ontology KB i�

KB ∪ K̃B |= ∀x(Q(x) ≡ Q̃(x))

where Q̃ is the formula obtained fromQ by uniformly replacing every occurrence
of each non-database predicate R with a new predicate R̃ that does not occur
in PDB. And K̃B is likewise obtained from KB.

Given the answerability proof, namely, implicit determinacy, we obtain by
normal logical deduction the following tautology:

((
∧
KB ∧Q(x/c))→ (

∧
K̃B → Q̃(x/c))

c is a set of distinct new constants {c1, . . . , cn} outside ofKB andQ, assigned to the
set of free variables {x1, . . . , xn} (shorthand x) in Q. Given that the interpolant
extracted from the tautology is the sentence Q̂(c), meaning that all the free
variables in the original Q(x) has been grounded using constants c for the sake
of interpolant extraction, then Q̂(c/x), a �rst order formula with its free variables
substituted back, is the exact reformulation of Q under KB over PDB. From
now on, I use the shorthand Q̂ to denote the possibly open formula Q̂(c/x).
The interpolation method used here is Craig interpolation via tableaux method,
following the well-known mechanism of biased tableaux speci�ed in [Fitting,
1990]. Very simply speaking, it consists of two steps: �rst, construct a biased
closed tableaux corresponding to the contradiction formula which is the negation
of the tautology; second, compute interpolant from leaves to root following the
interpolation rules. Both the tableaux and interpolation rules are given in the
Appendix A and B, respectively.

Since the relations in PDB are all accessible without cost, once the interpolant
is extracted, we have got a plan to execute the query. However, to guarantee that
it is a good plan in the sense that it can be evaluated using SQL techniques, we
need to check a few things. This part of theory has been laid out in section 2.2.
Given the research so far, we should check whether KB is domain independent,
and whether Q is domain independent with respect to KB, if the answer is
yes to both these questions, then from the implicit determinacy of Q under KB
from PDB we can draw the conclusion that we have got a good plan, i.e., the exact
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reformulation Q̂, as it satis�es the conditions for being a domain independent query
expressed in terms of PDB. Since domain is of no consequence now, it is natural to
think of using the active domain. Hence to execute it means merely to check the
validity of it against one model, i.e., the database embeddingKBmodel restricted
to the active domain signatures. There is only one such model, therefore, such
model checking techniques as we use for evaluation of SQL applies. Formally,
let rng(v) denote the range of assignment v, C denote the set of database constants,
and σ(Q̂) denote the signature of Q̂, the following equality between the two sets
of answers holds:

{v(x1, . . . , xn) | ∀I ∈M(KB) ∩ E(I) : I, v |= Q(x1, . . . , xn)}

=
{
v(x1, . . . , xn) | rng(v) ⊆ adom(σ(Q̂), I) and

∀I = 〈C, ·I〉 ∈ E(I) : I|PDB∪C, v |= Q̂(x1, . . . , xn)

}

What this equality suggests is the �nal goal of ontology based query answer-
ing with D box data model, namely, the reduction from entailment problem to
model checking problem. I|PDB∪C denotes the interpretation I restricted to a
smaller signature, i.e., the interpretation with the same domain and the same
interpretation function but de�ned only for predicates in PDB and constants in C.
Such a I|PDB∪C as it is so de�ned is unique, and all the quanti�ed variables in Q̂
is guaranteed to be range-restricted. To deal with the still �oating non-range-
restricted free variables in Q̂, Franconi et al. [2013] introduced an active domain
predicate for each such free variable x in Q, i.e.,

AdomQ(x) :=
∨

P∈PQ

(
∃z1, . . . , zAR(P )−1

∨
c∈CQ

(x = c)

∨ (P (x, z1, . . . , zAR(P )−1) ∨ · · · ∨ P (z1, . . . , zAR(P )−1, x))
)
,

where PQ denotes predicates in Q and CQ denotes constants in Q. The purpose of
de�ning this new predicate is to guard the free variables that do not appear in
any positive predicates, therefore are not yet put into safe range. Then it follows
from this de�nition that

KB |= ∀x (Q(x1, . . . , xn)→ AdomQ(x1) ∧ · · · ∧ AdomQ(xn)) .

As Q̂(x1, . . . , xn) is the interpolant with free variables x1, . . . , xn, combining the
above logical deduction with interpolant extraction, we have

KB |= ∀x (Q(x1, . . . , xn)→ Q̂(x1, . . . , xn) ∧ AdomQ̂(x1) ∧ · · · ∧ AdomQ̂(xn)) .

Let Q̂∧Adom denote Q̂(x1, . . . , xn)∧AdomQ̂(x1)∧· · ·∧AdomQ̂(xn), it is obvious
that Q̂ ∧ Adom is ground safe-range, meaning that its grounding is safe-range.
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Since Q̂ is an exact reformulation of Q, this means that the answers of Q̂ exactly
coincides with that of Q. We now have a safe-range exact reformulation of Q
using only plain database predicates, hence a good plan.

4.2 Finite Controllability
It is obvious from the de�nition of ontology based query answering that we
must �rst obtain legal interpretations before we can answer Q. Such a legal
interpretation is a model ofKB that embeds the database instance I. As ourKB is
simply a set of �rst order sentences that are domain independent, as it happens,
for some KB, the entailment of implicit determinacy holds only in �nite models
of KB; and for others only in in�nite models of KB. In the case of the former, we
have to write

KB ∪ K̃B |=fin ∀x(Q(x)↔ Q̃(x)) ,

while
KB ∪ K̃B 6|= ∀x(Q(x)↔ Q̃(x))

in order to express implicit determinacy. The example 1 given in [Franconi
et al., 2013] provides a case where ∀x(Q(x)↔ Q̃(x)) is impossible to be deduced
from KB ∪ K̃B over models with in�nite domain, that is to say, in�nite domain
models that satis�es KB can not validate the sentence ∀x(Q(x)↔ Q̃(x)). On the
other side, the set of Peano axioms for de�ning the set of natural numbers N
using constant symbol 0 and a unary function symbol S does not admit �nite
models.

Therefore �nite controllability condition is important, because if we were
only to consider the �nite models of KB, we might lose both Beth and Craig
theorem validity. It has been demonstrated in [Hájek, 1977] that due to �niteness
of models, failure of Beth de�nability and failure of Craig interpolation will
follow. In [Hájek, 1977] failure of the two essential theorems are thus formally
expressed:

Failure of Beth De�nability. There is a �rst order L-sentence, which de�nes a
unary predicate P implicitly but not explicitly.

Failure of Craig Interpolation. Let L = {<, c}. There are an L∪{P}-sentence φ1
and anL∪{Q}-sentence φ2 so that φ1 |= φ2 but noL-sentence satis�es both φ1 |= θ
and θ |= φ2.
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Besides, the complexity of checking Beth de�nability with �nite models is an
open problem. When Beth de�nability and Craig interpolation fail, so does the
task of implicit and explicit determinacy. It defeats the object of reformulating a
query under ontology in order to answer it independent of the ontology. There-
fore [Franconi et al., 2013] assumes a fragment of �rst order logic with property
of �nite controllability, such that implicit and explicit determinacy under models
with in�nite interpretation coincides with that under models with �nite inter-
pretation with respect to such database predicates in PDB. As such, we avoid the
problems created by �nite and in�nite models.

4.3 Plans in Fragments of Relational Algebra
Ontology, considered as a set of constraints over the underlying database, con-
centrates on the relations between database predicates from a conceptual point
of view, describing the ontological picture of a logically possible world. However,
when we consider query answering in practical situations, the underlying tables
have logical properties of their own that must be taken into account. Apart from
the familiar primary key, foreign key, functional dependencies and other depen-
dencies, one salient feature that keeps coming up in practice is the accessibility of
tables. It often happens that extracting answers from a single table is impossible
without the help of other accessible tables, which in turn depends on other tables
for their accessibility, so on and so forth, thus forming a dependency graph on
the accessibility conditions required for answering a query. Though constraints
are di�erent, the central methodology is still interpolation based on entailment.
The entailment is an answerability proof, as was discussed in section 3.2, which
guarantees the existence of a plan to answer the query. And the extraction of
such a plan is also done by interpolation, following the blueprint of proof to plan.
In the case of these arbitrary �rst order logic constraints, when the complexity of
contraints goes beyond tuple generating dependencies, which shall be detailed in
later discussions on chase method, the existence of a plan is still implicated by the
answerability proof, which is an entailment holding between two �rst order logic
formulas under a set of rules that encode integrity and other database constraints.
Benedikt et al. [2014] has shown that the choice of axioms that encode access
restrictions on database predicates can make a di�erence in the answerability
proof, and consequently generate plans that are built on di�erent languages,
each using a subset of relational algebra operators. The plans so constructed are
given such various names as RA-plans, USPJ-plans, and in between, USPJ¬-plans.
Here the characters U, S, P, J indicates the relational algebraic operators that
get used in the building of algebraic expressions in the commands of the plan,
namely, union, select, project and join. RA-plans use the whole set of operators
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in relational algebra. USPJ¬-plans use positive RA operators with a restricted
di�erence operator E − E′, that is, the di�erence operator only applies in taking
output tuples of an algebraic expression E and subtracting out from them tuples
that are in some accessible relation R.

It is worth remarking that at the end of chapter 3, a good plan has been taken
to be an executable rewriting of the query such that all the access patterns of the
schema are respected. It has been shown in [Benedikt et al., 2014] that there is
a linear time procedure which converts an executable boolean �rst order query
into an RA-plan. And if the executable boolean query is existential, the result is
an USPJ¬-plan. If it is existential without inequalities, it can be converted into an
EUSPJ¬-plan, which is an USPJ¬-plan with further restriction that no inequality
is allowed to be used in select and join. If it is positively existential, the result is
an USPJ-plan. By the same token, if no inequality is allowed in the query, then it
is also not allowed in the select and join of the plan; therefore if the query is also
positive existential, then the result is an EUSPJ-plan.

4.4 Answerability Proof With Access Constraints
As is the custom of interpolation method, we �rst introduce an answerability
proof, which suggests the existence of a plan, and then use interpolation to
extract the plan out of the entailment under constraints. Since the constraints
here are not ontology, rather properties of database schema, especially those
concerning access restrictions, to introduce the answerability proof, we �rst have
to axiomatize the properties of access restrictions, a technique that �rst appears in
the work of Duschka et al. [2000] and Deutsch et al. [2007]. Given schema S0 with
access restrictions, the rules that encode these restrictions are de�ned not directly
on S0, rather on a new schema built upon S0, called Accessible Schema for S0,
denoted asAcSch(S0), which has no access restriction. The new schemaAcSch(S0)
contains all the constants and relation symbols of S0, besides, it also contains
for each relation symbol R two more copies, one denoted by AccessedR, the
other by InferredAccR. AcSch(S0) also has a unary relation accessible(x). The
constraints of AcSch(S0) are of three kinds:

1. Original integrity constraints of S0;

2. Substitution instance of original integrity constraints of S0, with each R
substituted by InferredAccR;

3. Three new axioms
a) ∀x(AccessedR(x)→ accessible(xi));
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b) ∀x(accessible(xj1) ∧ · · · ∧ accessible(xjm) ∧R(x)→ AccessedR(x));
c) ∀x(AccessedR(x)→ InferredAccR(x)).

where x is again shorthand for (x1, . . . , xn) and {xj1 , . . . , xjm} is a collection of
positions of R, called input positions, the access of which is a gateway for R to
become accessible. Benedikt et al. [2014] has shown that

Theorem 1 ([Benedikt et al., 2014]). For any conjunctive query Q and schema
S0 with �rst order integrity constraints and access restrictions, there is a USPJ-
plan for Q if and only if Q entails InferredAccQ with respect to AcSch(S0). In-
ferredAccQ is obtained from Q by replacing every occurrence of R in Q by Ac-
cessedR for every relation symbol R and adding a conjunct accessible(x) for
every free variable in Q.

As was mentioned in section 4.3, the choice of axioms that encode access
restrictions on database predicates can make a di�erence in the answerability
proof, and consequently generate plans that are built on di�erent languages, each
using a subset of relational algebra operators. While leaving everything in the
axiomatization so far unchanged, if we add two more rules to AcSch(S0):

∀x(AccessedR(x)→ R(x)) ;(1)
∀x(accessible(xj1) ∧ · · · ∧ accessible(xjm) ∧ InferredAccR(x)(2)

→ AccessedR(x)) ;

the resulting axiomatization is a new schema AcSch↔(S0), and following the
same interpolation method as in theorem 1, the plan we now obtain from the
answerability proof under the new schema AcSch↔(S0) is an RA-plan, i.e

Theorem 2 ([Benedikt et al., 2014]). For any relational query Q and schema S0
with �rst order integrity constraints and access restrictions, there is a RA-plan
for Q if and only if Q entails InferredAccQwith respect to AcSch↔(S0).

So we have a variant of theorem 1. Along this line of investigation, if we add a
di�erent rule to AcSch(S0) such as

∀x(accessible(x1) ∧ · · · ∧ accessible(xn) ∧ ¬R(x)→ InferredAccR(x))

still leaving everything else unchanged, we again obtain a new schemaAcSch¬(S0),
still using interpolation method from answerability proof under the new schema,
the plan is now an USPJ¬-plan.
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Theorem 3 ([Benedikt et al., 2014]). For any relational algebra query Q and
schema S0 with �rst order integrity constraints and access restrictions, there is a
USPJ¬-plan forQ if and only ifQ entails InferredAccQwith respect to AcSch¬(S0).

The method used for extracting plan in all three cases is access interpolation,
which is an extension of Craig interpolation theorem. Strictly speaking, what
we obtain from interpolation is not a plan for Q, rather an executable �rst order
query φ that is equivalent to Q over all the instances that satisfy the constraints
of the respective schema.

φ is an executable �rst order query in a schema S if and only if every binding
pattern in BindPatt(φ) is compatible with a method in S. To fully comprehend
these statements, we need the following de�nitions:

Method. A method mtR for a relation R symbol in S0 is a pair (R,M), whereM
is the set of input positions (a set of natural numbers) inR such that accessible(xi)
for all i ∈M is necessary for the access of relation R in S0. Every relation symbol
in S0 associates with it a set of methods.

Binding Pattern. A binding pattern is a pair (R,N), whereR is a relation symbol
andN is a set of positions inR. For a certain relation symbolR, its binding pattern
is compatible with a method (R,M) if N ⊆M .

Recursive De�nition. The binding pattern of a �rst order logic formula φ is a
set of binding patterns, denoted by BindPatt(φ), each corresponds to a relation
symbol occurring in φ. It is recursively de�ned as follows:

• BindPatt(>) = BindPatt(x = y) = ∅;

• BindPatt(R(x1, . . . , xn)) = {(R, {1, . . . , n})};

• BindPatt(¬φ) = BindPatt(φ);

• BindPatt(φ ∧ ψ) = BindPatt(φ) ∪ BindPatt(ψ);

• BindPatt(φ ∨ ψ) = BindPatt(φ) ∪ BindPatt(ψ);

• BindPatt(∃xR(x) ∧ φ) = BindPatt(φ) ∪ {(R, {i | xi 6∈ x})};

• BindPatt(∀xR(x)→ φ) = BindPatt(φ) ∪ {(R, {i | xi 6∈ x})};

The technique used to extract the interpolant is standard Craig interpolation
technique with a twist on binding patterns. The interpolant thus obtained is
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called access interpolant. Let φ and ψ be �rst order sentences. φ entails ψ. Then
there exists a �rst order sentence φ′ such that

1. φ entails φ′ and φ′ entails ψ.

2. A relation symbol R occurs positively (negatively) in φ′ only if R occurs
positively (negatively) in both φ and ψ.

3. A constant symbol occurs in φ′ only if it occurs in both φ and ψ.

4. IfBindPatt(φ) andBindPatt(ψ) are de�ned, thenBindPatt(φ′) ⊆BindPatt(φ)∪
BindPatt(ψ).

φ′ is the access interpolant. This access interpolant obtained from the answerabil-
ity proof ofQ, i.e., the proof thatQ entails InferredAccQ, is an executable query φ
that is logically equivalent with Q for all instances that satisfy the constraints
of S0. Once it is obtained, it can be converted into a plan PL in linear time. How-
ever, the structure of φ depends on the schema in which Q entails InferredAccQ.
Corresponding to the three theorems introduced above, when the entailment
proof is conducted in AcSch↔(S0), the resulting access interpolant φ is �rst order,
then PL is an RA-plan. When the proof is done in AcSch¬(S0), every relation
symbol in φ is only existentially quanti�ed, then PL is an USPJ¬-plan. And when
the entailment is valid with respect to AcSch(S0), every relation symbol in φ is
positive and only existentially quanti�ed, then PL is an USPJ-plan.
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CHAPTER 5
Chase Method

5.1 Chase Proof
We de�ne chase only with respect to embedded dependencies of the form

IC(L) := {∀x(U→ V) | U,V ∈ L}

where IC(L) denotes the set of inclusion constraints overL, which is the language
of conjunctive queries with equality atoms. x is the set of free variables. By a
sequence of logical steps, every embeddeddependency rule in conjunctive queries
(CQ) can be normalized into a set of constraints in the following form

∀xφ(x)→ ∃yρ(x, y)

referred to as tuple generating dependencies (TGD). Guarded TGD is a subclass of
TGD, which requires the free variables in the antecedent to be all guarded by con-
junction with an atom. The chase and backchase method in the work of [Deutsch
et al., 2006, 1999] set the foundation of the methodology to be introduced here: a
method of using constraints to chase the query.

It has been shown in [Benedikt et al., 2014] that with TGD constraints, we can
exploit chase proof, a proof via chase sequence, to construct a plan. Given a set
of dependencies Σ, a chase sequence consists of a sequence of database instances,
starting with the canonical instance Fi : 1 ≤ i ≤ n, where Fi+1 is obtained from Fi

by some rule in Σ. The set of facts in each Fi is a chase con�guration. And each
rule �ring generates a set of new facts. A homomorphism of a query Q′ into
the con�guration of a chase sequence is called a match for Q′. The notion of
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5. Chase Method

proof via chase sequence is as follows: for two conjunctive queries Q and Q′

with the same free variables, and a set of TGD constraints Σ, Q entails Q′ if and
only if there is a chase sequence with respect to Σ beginning with the canonical
database of Q that ends with a con�guration which has a match for Q′, i.e., there
exists a homomorphism of Q′ into the con�guration. The free variables of Q′
are mapped by the homomorphism to the variable constants in the canonical
database corresponding to the free variables of Q. The canonical database of Q
is the database instance I such that its elements are either constants or variable
constants, the latter are obtained from the variables of Q, with each variable in Q
corresponding to a variable constants in I, and for each (x1, . . . , xn) ∈ RI, there is
an atom R(x1, . . . , xn) in Q. A candidate matching for the �ring of a rule δ on Fi

is a tuple of constants from Fi that violates δ. Therefore the �ring of the rule δ
adds new constants called chase constants that form new facts in Fi+1. Intuitively
speaking, the chase constants are there to rectify the violation signi�ed by the
candidate matching.

We know from theorem 1 in section 4.3 that given accessible schemaAcSch(S0)
obtained from S0 and its rules, for any conjunctive query Q and schema S0 with
�rst order integrity constraints and access restrictions, there is a USPJ-plan for Q
i� Q entails InferredAccQ with respect to AcSch(S0). When the rules are in TGD
form (the integrity constraints and access restrictions are in guarded TGD form
already), we can extract a USPJ-plan directly from the chase sequence, and the
proof via the chase sequence is a forward chaining proof, from the canonical
database of Q to an instance Fn with a match for InferredAccQ. Later I shall
introduce an algorithm that performs the task of plan extraction from chase proof
with a focus on plan cost.

If we look from the perspective of plan cost, the kind of rule �rings we use
in the forward chaining proof fall into two categories: on the one hand original
integrity constraints and its copies, and on the other accessibility axiom. Both
generate chase constants, but only the latter amounts to relation access, which
is the source of cost. Therefore we calculate the cost of plan by the number of
�rings of the accessibility rule, i.e.,

∀x(accessible(cj1) ∧ · · · ∧ accessible(cjm) ∧R(c1, · · · , cn)
→ AccessedR(c1, · · · , cn))

On i-th step of the sequence, we keep track of the accessible elements of Fi by a
temporary table Ti, which starts with ∅ and expands as more accessibility rules
are �red. In the following algorithm, Fi is a state of the given canonical database
instance F in its evolution through rule �ring.
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For all the plans that appear in this discussion, the structure of the plan
is made of relational algebra expressions and access command in the form of
Comms(F,R(c),mt).

Algorithm 1 Building Plan from Chase
1: procedure Chase(database F , constraints Σ)
2: for σ ∈ Σ do
3: if F contains a candidate match for σ then
4: Fire σ in F
5: Add new σ-facts to F
6: end if
7: end for
8: return F
9: end procedure

1: procedure Plan(Q, InferredAccQ, Σ)
2: plan = ∅
3: F is canonical database of Q
4: C = ∅
5: To = ∅
6: while F has no match for InferredAccQ do
7: for σ ∈ ΣAC do
8: F = Chase(F,ΣIN )
9: F = Chase(F, {σ})
10: let T be the table for AccessedR(c1, · · · , cn) generated by σ
11: if To is ∅ then
12: To = T
13: end if
14: C = C ∪ const(F )
15: Select a method mtR for R
16: Take cji

from the subsetC ′ ofC such that each cji
∈ C ′ corresponds

to an attribute of T
17: Map element of C ′ into input position of mtR
18: Add access command Comms(F,R(c),mt) to plan
19: T := To ./ T
20: To = T
21: end for
22: end while
23: return plan
24: end procedure
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ΣIN is the set of integrity constraints. For strategic reasons, it is better to
exhaust the use of all integrity constraints before using access command for a
given set of facts, i.e., for each Fi. In this way the numbers of times we use the
access command can be reduced to the minimum. C is the set of chase constants
accumulated by rule �rings. T is a temporary table whose attributes are accessible
elements at each step of rule �ring. The access commandComms(F,R(c),mt) uses
a method mtR to access R, take from the subset C ′ of C such cji

that each cji
∈ C ′

corresponds to an attribute of T , and thenmap them into the input position ofmtR.
In plain language, this is the action of taking accessible constants from storage
and using them to access a relation. T := To ./ T symbolizes the generation of T
at step i through join with T at step i-1. Therefore T records at each state of F
all its accessible elements, such is the invariant of the while loop. Benedikt et al.
[2014] has pointed out that termination of chase on AcSch(S0) is guaranteed by
many restricted classes of the accessible schema, and has formulated soundness
and completeness of the technique, where completeness is restricted to �nite
instances.

5.2 In Comparison with Non-Chase Proof
The essential step of the above algorithm is the two chase steps and the access
command. The chase steps change the set of facts and might ultimately result
in a match for InferredAccQ, whereas the access command builds the plan and
renders relations accessible. In section 4.4, we mentioned that the constraints
of AcSch(S0) are of three kinds:

1. Original integrity constraints of S0;

2. Substitution instance of original integrity constraints of S0, with each R
substituted by InferredAccR.

3. Three new axioms
a) ∀x(AccessedR(x)→ accessible(xi));
b) ∀x(accessible(xj1) ∧ · · · ∧ accessible(xjm) ∧R(x)→ AccessedR(x));
c) ∀x(AccessedR(x)→ InferredAccR(x)).

The �rst two type of rules �re in Chase(F , Σ) and the three rules in the third
type together mark the use of access command Comms(F,R(c),mt). Rule (3a)
generates C ′ out of C whose elements corresponds to attributes of T , rule (3b)
maps the elements to input positions of R according to an access method mtR
and rule (3c) generate InferredAccR so that we can apply rules in the second
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type again. Benedikt et al. [2014] has indicated that for a conjunctive query Q,
every chase sequence proving InferredAccQ from Qwith respect to constraints
of AcSch(S0) generates a USPJ-plan that completely answers Q, which can be
translated to an executable query φ that is logically equivalent with Q for all
instances that satisfy the constraints of S0, thus an access interpolant. Similarly
for RA-plan and USPJ¬ with respect to AcSch↔(S0) and AcSch¬(S0), provided
thatQ is a conjunctive query. Each step i is associated with an intermediate chase
con�guration Fi and a partial plan PLi. AccessedFi denotes the conjunctive
query formed by taking the conjunction of all facts of the form InferredAccR(c)
in Fi and turning them into an existentially quanti�ed conjunction of facts R(w),
changing the chase constants c that satisfy accessible(c) to free variables and
other chase constants to existentially quanti�ed variables. Let Ti(I) be the instance
of table Ti produced by PLi when run on an instance I of schema S0, Benedikt
et al. [2014] has shown that �rstly, if Q returns a non-empty result on I, then Ti(I)
is non-empty; secondly, Ti(I) is a subset of AccessedFi(I); and lastly, when Fi

has a match for InferredAccQ, then AccessedFi entails Q. At the last step, when
Fi has a match for InferredAccQ, Ti(I) is �nally equivalent with AccessedFi(I).
By soundness, Ti(I) at the last step generates only answers for Q, therefore Ti(I)
is a subset of Q(I). Then it is as if PLi interpolates between AccessedFi and Q.

5.3 Query Answering Under Constraints
From logic programming point of view, a database instance is a collection of facts.
However, without TGD rules, we cannot determine the candidate match for a
certain rule using only database facts. Then the chase method is handicapped.
On the other hand, when we are allowed to use it, the chase method has the
advantage of avoiding the expensive tableaux technique for extracting plan from
proof and construct the plan directly from the chase sequence, as is shown by the
algorithm. Naturally it does not apply to ontology based query answering, the
central subject that occupies the �rst three chapters. If we choose to use D box
as our data model in answering query under ontology, then it is unavoidable to
reformulate the query through the technique of preservation and interpolation
via tableaux.

The entailment proof might take di�erent forms, but the technique of moving
from proof to plan still lies at the foundation of all the approaches presented.
This is because the problem addressed, regardless of its speci�c form, is basically
the problem of answering queries under constraints, be the constraints ontology,
access restrictions, or integrity constraints. Therefore the main methodology here
to solve this problem is to construct a proof which preserves a solution to the
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5. Chase Method

query in terms of a completely accessible schema, by accessing, by deduction,
even by ontology. This solution is brought to light by interpolation. In this sense
these di�erent approaches may be reunited.
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APPENDIX A
Tableaux Rules

LetC be the set of all constants in the input formulas of the tableau. Cpar extendsC
with an in�nite set of new constants. A constant is new if it does not occur
anywhere in the tableau. With these notations, we have the following rules:

• Propositional rules
Negation rules α−rule β−rule

X(¬¬ϕ)
X(ϕ)

X(¬>)
X(⊥)

X(¬⊥)
X(>)

X(ϕ1 ∧ ϕ2)
X(ϕ1)
X(ϕ2)

X(¬(¬ϕ1 ∧ ¬ϕ2))
X(ϕ1) | X(ϕ2)

• First order rules
γ−rule σ−rule

X(∀x.ϕ)
X(ϕ(t))

for any t ∈ Cpar

X(∃x.ϕ)
X(ϕ(c))

for a new constant c
• Equality rules

re�exivity rule replacement rule

X(ϕ)
X(t = t)

t ∈ Cpar occurs in ϕ

X(t = u)
Y (ϕ(t))
Y (ϕ(u))
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APPENDIX B
Interpolation Rules

Given a closed biased tableau, the interpolant is computed by applying interpolant
rules. An interpolant rule is written as S int−→ I , where I is a formula and

S = {L(φ1), L(φ2), . . . , L(φn), R(ψ1), R(ψ2), . . . , R(ψm)} .

• Rules for closed branches

r1. S ∪ {L(ϕ), L(¬ϕ)} int−→ ⊥ r2. S ∪ {R(ϕ), R(¬ϕ)} int−→ >

r3. S ∪ {L(⊥)} int−→ ⊥ r4. S ∪ {R(⊥)} int−→ >

r5. S ∪ {L(ϕ), R(¬ϕ)} int−→ ϕ r6. S ∪ {R(ϕ), L(¬ϕ)} int−→ ¬ϕ

• Rules for propositional cases

p1.
S ∪ {X(ϕ)} int−→ I

S ∪ {X(¬¬ϕ)} int−→ I
p2.

S ∪ {X(>)} int−→ I

S ∪ {X(¬⊥)} int−→ I

p3.
S ∪ {X(⊥)} int−→ I

S ∪ {X(¬>)} int−→ I
p4.

S ∪ {X(ϕ1), X(ϕ2)} int−→ I

S ∪ {X(ϕ1 ∧ ϕ2)} int−→ I
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p5.
S ∪ {L(ϕ1)} int−→ I1 S ∪ {L(ϕ2)} int−→ I2

S ∪ {L(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∨ I2

p6.
S ∪ {R(ϕ1)} int−→ I1 S ∪ {R(ϕ2)} int−→ I2

S ∪ {R(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∧ I2

• Rules for �rst order cases

f1.
S ∪ {X(ϕ(p))} int−→ I

S ∪ {X(∃x.ϕ(x))} int−→ I
where p is a parameter that
does not occur in S or ϕ

f2.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int→ I
if c occurs in {ϕ1, ..., ϕn}

f3.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ I
if c occurs in {ψ1, ..., ψm}

f4.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int−→ ∀x.I[c/x]
if c does not occur in {ϕ1, ..., ϕn}

f5.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ ∃x.I[c/x]
if c does not occur in {ψ1, ..., ψm}

• Rules for equality cases

e1.
S ∪ {X(ϕ(p)), X(t = t)} int−→ I

S ∪ {X(ϕ(p))} int−→ I

e2.
S ∪ {X(ϕ(u)), X(t = u)} int−→ I

S ∪ {X(ϕ(t)), X(t = u)} int−→ I

36



e3.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ t = u→ I
if u occurs in ϕ(t), ψ1, ..., ψm

e4.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ t = u ∧ I
if u occurs in ϕ(t), ψ1, ..., ψm

e5.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ I[u/t]
ifudoes not occur inϕ(t), ψ1, ..., ψm

e6.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ I[u/t]
ifudoes not occur inϕ(t), ψ1, ..., ψm
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