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Abstract

Nowadays, many disciplines in science and engineering deal with problems for which a solution relies
on knowledge about the characteristics of one or more given systems that can only be ascertained
based on restricted observations. This requires the fitting of an adequately chosen model, such that
it “best” conforms to a set of measured data. Depending on the context, this fitting procedure may
resort to a huge amount of recorded data and abundant numerical power, or contrarily, to only a
few streams of samples, which have to be processed on the fly at low computational cost. This
thesis, exclusively focuses on the latter scenario. It specifically studies unexpected behaviour and
reliability of the widely spread and computationally highly efficient class of gradient type algorithms.
Additionally, special attention is paid to systems that combine several of them.

Chapter 3 is dedicated to so called asymmetric algorithms. These are gradient type algorithms
that do not employ the (commonly used) unaltered input vector for regression. In a first step, it is
shown that for such algorithms, the mapping matrix of the underlying homogeneous recursion has
one singular value that is larger than one. This entails the risk of parameter divergence. Restricting
to the most prominent subclass of asymmetric algorithms, the least-mean-squares (LMS) algorithm
with matrix step-size, simulation experiments demonstrate that such divergence does not occur for
all step-size matrices, even under worst case conditions. Motivated by this observation, the first
part of this chapter dissects this phenomenon based on geometric arguments and comes to the novel
insight that persistently changing eigenspaces of the step-size matrix are at the core of this worst
case parameter divergence. In the second part, analytic as well as numeric methods are derived that
allow to intentionally provoke this type of divergence, in order to assess specific algorithms.

A combination of arbitrarily many symmetric algorithms, i.e., conventional LMS algorithms, is
addressed in Chapter 4. It considers a structure of such algorithms that mutually interfere with
each other via a linear memoryless coupling among their individual a priori errors. Conditions for
`2-stability as well as boundedness of the parameter error are derived. The primer are obtained by
the solution of a linear system of inequalities, resorting to the theory of M -matrices. The latter
are compactly stated by means of the Khatri-Rao matrix product. Finally, a practically relevant
case of coupling is analysed, where all of the individual adaptive schemes employ the same update
error. This situation is found to be equivalent to an LMS algorithm with matrix step-size, making it
accessible to the findings of Chapter 3.

The such obtained theoretic apparatus is applied in Chapter 5 to types of adaptive systems that
are encountered in real life. First, for an adaptive Wiener model in a configuration that is typically
used in digital pre-distortion of microwave power amplifiers, consisting of a linear filter followed by
a memoryless non-linearity, a condition for `2-stability and boundedness of its parameter error is
identified. Resorting to the knowledge gained about asymmetric algorithms, this boundedness is
then found to be extendible to less restrictive and practically more feasible constraints. Then, the
multichannel filtered-x LMS is studied in context of active noise control, leading to sufficient bounds
for `2-stability and boundedness of its parameter error. Finally, the theory of Chapters 3 and 4
is harnessed to confirm that parameter convergence of an arbitrarily sized multilayer perceptron
trained by the backpropagation algorithm can barely be ensured and strongly depends on the quality
of its parameter initialisation.
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Kurzfassung
Die Lösung vieler Problemstellungen im naturwissenschaftlichen und technischen Bereich beruht auf
Kenntnis eines Systems, das nur teilweise durch Beobachtungen erfasst werden kann. Typischerweise
wird in solchen Fällen ein passendes Modell gewählt, das einem Satz von gemessenen Daten
hinreichend gut angepasst werden kann. In manchen Fällen sind diese Daten sehr umfangreich und es
kann auf entsprechend leistungsstarke numerische Mittel zurückgegriffen werden. In anderen Fällen,
handelt es sich bei diesen Daten um einige wenige Ströme von Messwerten, die gleich nach ihrem
eintreffen mit geringem Rechenaufwand verarbeitet werden müssen. Diese Arbeit beschäftigt sich
ausschließlich mit letzterer Situation und betrachtet speziell das Verhalten sowie die Verlässlichkeit
von Gradientenverfahren, sowie von Strukturen die mehrere von diesen kombinieren.

Kapitel 3 widmet sich sogenannten asymmetrischen Algorithmen. Dies sind Gradientenverfah-
ren, bei denen die Regressionsrichtung nicht wie sonst üblich der Richtung des Eingangsvektors
entspricht. In einem ersten Schritt wird gezeigt, dass die korrespondierende homogene Rekursion
potentiell divergieren kann, da deren Koeffizientenmatrix einen Singulärwert größer eins besitzt.
Simulationsexperimente für eine der wichtigsten Teilklassen asymmetrischer Algorithmen, den Least-
Mean-Squares (LMS) Algorithmus mit Matrixschrittweite, eröffnen jedoch die Einsicht, dass diese
Divergenz selbst unter widrigsten Umständen in einigen Fällen nicht zutage tritt. Eine anschließende
detaillierte Analyse dieses Phänomens basierend auf geometrischen Argumenten führt zu der Er-
kenntnis, dass nur dann Divergenz auftreten kann, wenn sich die Eigenräume der Schrittweitenmatrix
unaufhörlich verändern. Der zweite Teil dieses Kapitels präsentiert zwei Methoden, mit deren Hilfe
konkrete Algorithmen auf die Existenz eines solchen Verhaltens getestet werden können. Beide
Methoden erlauben die Generierung ungünstiger Anregungsfolgen, wobei in einem Fall analytische
Mittel, im anderen Fall eine numerische Suche für deren Erzeugung eingesetzt wird.

Das vierte Kapitel konzentriert sich auf konventionelle Gradientenverfahren, hier auch als sym-
metrische Algorithmen bezeichnet. Es wird allerdings nicht nur ein solcher Algorithmus isoliert
betrachtet, sondern eine spezielle Struktur, die mehrere von diesen kombiniert, indem deren individu-
elle a priori Fehler gegenseitig linear und ohne Gedächtnis interferieren. Für diese Struktur werden
einerseits Bedingungen für `2-Stabilität hergeleitet, basierend auf der Lösung von Systemen linearer
Ungleichungen in Kombination mit der Theorie zu M -Matrizen. Andererseits erfolgt eine Analyse
auf Basis der Inhalte von Kapitel 3. Mit Hilfe des Khatri-Rao Matrixprodukt lassen sich so kompakte
Schranken angeben, die einen endlichen Grenzwert des Parameterfehlers garantieren. Schließlich
wird der für die Praxis relevante Spezialfall behandelt, bei dem alle einzelnen Gradientenverfahren
denselben Fehler benutzen um deren Parameter zu adaptieren. Es zeigt sich, dass das Verhalten
einer solchen Struktur durch einen LMS Algorithmus mit Matrixschrittweite beschrieben werden
kann, wodurch sämtliche Erkenntnisse aus Kapitel 3 zur Anwendung gebracht werden können.

Kapitel 5 wendet die zuvor entwickelte Theorie auf praktisch eingesetzte adaptive Systeme an. Dies
erlaubt für das, in der digitalen Vorverzerrung von Leistungsverstärkern eingesetzte, adaptive Wiener
Modell, bestehend aus einem linearen Filter gefolgt von einer gedächtnislosen Nichtlinearität, Bedin-
gungen für `2-Stabilität und für einen begrenzten Parameterfehler anzugeben. Äquivalente Ergebnisse
werden auch für den mehrkanaligen LMS Algorithmus mit gefiltertem Eingangssignal (MC-FXLMS),
verwendet in der aktiven Rauschunterdrückung, hergeleitet. Abschließend wird ein künstliches
neuronales Netz (ein mehrlagiges Perzeptron) betrachtet, das mittels Fehlerrückführung trainiert
wird. Das Resultat für ein solches Netz beliebiger Größe zeigt, dass Parameterkonvergenz kaum
garantiert werden kann und wesentlich von der Qualität der Initialisierung abhängt.
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Chapter 1
Introduction

A frequently encountered problem in science and engineering, is the necessity of obtaining a
quantitative description for the behaviour of some system that is only partially known or even
completely unknown. The underlying process to solve such a problem is usually referred to by the
term “system identification” [Zad56; Lju10]. In this work, the (partially) unknown system will be
denoted as reference system, its corresponding quantitative description as system model. A common
example for a system identification problem is found in the daily weather forecast. Here, the aim is
to prognosticate meteorological figures of merit, such as air temperature, atmospheric humidity, sky
cover, wind speed, and probability of precipitation. To accomplish this, a description of weather
dynamics, i.e., the system model, is required that allows to predict future weather conditions based
on observations of their past development [Cah15]. Here, the reference system coincides with the
terrestrial climate system in all of its facets.

The weather forecast employs system identification for prediction. However, it is also applied in
system analysis, extraction of simulation models, and controller design [SS89a]. A virtually countless
number of applications for system identification can be found in numerous disciplines [GS01],
such as, electrical engineering and communications [SS89a; Lju99; Hay02; Say03], biology and
biomedicine [e.g., FS12], in automotive applications [e.g., AHdR12], in aviation [e.g., Lju99; KM06],
as well as, in economics, and chemistry [Lju10]. This high importance of system identification is
concisely expressed by Lennart Ljung in [Lju10, p. 1]:

System identification is the art and science of building mathematical models of dynamic
systems from observed input-output data. It can be seen as the interface between the
real world of applications and the mathematical world of control theory and model
abstractions. As such, it is an ubiquitous necessity for successful applications.

A typical approach in system identification, is to first choose a system model which exhibits
sufficient degrees of freedom, in order to be later fitted to the behaviour of the reference system.
Two sources of information about the latter can be used to choose such a system model, (i) prior
knowledge and (ii) expectations deduced from observations.

Observations made through experiments are also the basis for the subsequent fitting process that
takes place as soon as an adequate model has been selected. In this second phase, the goal is to
“tune” the system model within the range that is reachable by its degrees of freedom, such that
it “best” approximates the real behaviour of the reference system. Here, the two quoted terms
inherently manifest the need for (i) a method that systematically modifies the system model, i.e.,
a training scheme, and (ii) some criteria that allow to evaluate the accuracy of the system model,
i.e., a metric or a cost function. The just described procedure is not necessarily executed only once,
instead, it may be iterated several times until the desired performance is reached [SS89a; Lju99;
Hay02; Lju10].
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1.1 Motivation
Due to the vast range of applications, the variants of used models and corresponding identification
algorithms are similarly manifold. The analyses presented in this work are restricted to a certain
class of system identification algorithms. Nevertheless, this class is of high relevance, as it covers
a multitude of parametrised adaptive schemes that are based on gradient descent. It specifically
includes the renowned and due to its robustness and computational simplicity widely used LMS
algorithm, as well as many of its generalisations [Hay02; Say03]. The here developed theory provides
deep insight to the internal mechanisms that decide on their convergence or divergence. Moreover,
it enables a closed representation and investigation of a structure that combines arbitrarily many
interacting gradient type algorithms.

The special interest which eventually lead to this work was initiated by the desire to design
robust methods for adaptive digital pre-distortion (DPD) of the microwave power amplifiers that
are employed in the transmitters of wireless communication systems. Briefly, the goal of DPD is
to virtually extend the linear operating area of the power amplifier towards higher input powers.
This is achieved by inserting a controller, i.e., the pre-distorter, which compensates the distortions
introduced by the power amplifier [EP97; ZD07]. As a result higher output powers can be achieved
which in turn improves the overall power efficiency of the transmitter. Hence, the power consumed
by the required auxiliary hardware is crucial for the applicability of a DPD scheme [Cri02; GH09].
Consequently, stringent restrictions with respect to computational complexity have to be met during
implementation. In terms of system identification, these algorithms have to comprise of the system
model, as well as the mechanism that accomplishes the fitting to the reference system, i.e., in context
of DPD, the inverse of the baseband model that corresponds to the power amplifier. Typically, the
fitting mechanism has to be able to track variations of the power amplifier characteristics.

For small bandwidths of the transmit signal, usually a memoryless pre-distorter can be used.
However, the increase in bandwidth [VRM01; Vuo01] which goes hand in hand with the evolution in
mobile networks [HT11], as well as new technologies, such as envelope tracking power amplifiers,
necessitate pre-distorters that additionally allow to compensate dispersive effects [ZDH+08; GZ11;
AEF12]. Cascade structures consisting of one linear dynamic block and one static non-linear block
are amongst the simplest models that are able to comply with this requirement. If such an approach
is adopted, typically, the system model of the power amplifier has the structure of a so called
(simplified)1 Wiener model, i.e., the linear dynamic block precedes the non-linear block [CCM+98;
RZV05; AR05; Asc05; Sil07; SOGG09]. With respect to low computational complexity, gradient
type algorithms are the most adequate update scheme.

For the such obtained adaptive Wiener model, in literature first and second order moments
stability analyses have been published [BCV00; CBV00; CBV01]. However, they rely on strong
statistical assumptions that may not be met in realistic scenarios. In contrast, the advantage of
deterministic stability and convergence analyses is that they do not necessitate to impose such
constraints. This in turn leads to often more conservative, yet more trustful stability bounds [SR96;
RS96a]. With the aim to perform such a deterministic analysis for the adaptive Wiener model, I
found that this can be systematically achieved by mapping it to an equivalent structure, consisting
of two coupled gradient type algorithms. Complementary, an alternative interpretation revealed the
Wiener model with gradient update to behave equivalent to an LMS algorithm with matrix step-size.
As a side effect, I observed for the latter class of algorithms the less known behaviour that under
unfortunate but possible circumstances, they can surprisingly diverge notwithstanding the use of a
1 In the context of power amplifier modelling and DPD, such a two-block cascade structure is simply called a Wiener

model. This convention is also (mostly) adopted in this work. The additional term “simplified” is included here, in
order to emphasise that the original Wiener model dating back to [Wie58] has a more general structure.
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(supposedly) correctly chosen step-size. These two insights, i.e., the equivalent coupled structure and
the surprising divergence effects of the LMS with matrix step-size, initiated the thorough analyses
presented in this work. They are introduced from a general point of view and detached from any
specific application. The afore described relation to the Wiener model is also included in more detail
in Section 5.2.

1.2 Original Contributions and Scope of this Work

The focus of this work lies exclusively on a deterministic analyses of gradient type algorithms in the
context of system identification. The contributions can be roughly separated into three main lines.

The first one, investigates hidden divergence of so called asymmetric algorithms. They are
characterised by a regression vector which has a different direction than the excitation vector. Such
algorithms are shown to bare an inherent risk of divergence in terms of their parameter vector. For
the LMS algorithm with matrix step-size, a rigorous geometric analysis of the mapping mechanisms
is provided. It reveals that permanently changing eigenspaces of the step-size matrix are the main
reason for potential parameter divergence. The such obtained clear picture extends previous results
in literature and allows to deduce constructive guidelines for the choice of “safe” matrix step-sizes.
As the here focussed divergence only occurs under adverse excitation situations, an analytical
method is derived for synthesis of test sequences – in the sequel referred to by the term worst
case (w.c.) sequences – that systematically allow to provoke such a malign scenario. On some
occasions, if the domain space of the excitation sequences is restricted, this analytical method may
not be applicable. For such cases, additionally, efficient numerical search schemes are proposed.

The second line of contributions is concerned with a specific structure of gradient type algorithms
that interact with each other via a linear memoryless coupling among their individual a priori
errors. Conditions for boundedness of the parameter vector as well as `2-stability bounds are derived.
Ties to the first line of contributions are established by a special and practically important case of
coupling that causes all individual gradient type algorithms to be updated by the same error. This
identical error case is identified to correspond to an LMS algorithm with matrix step-size. Knowing
about the drawbacks of asymmetric algorithm, guidelines are stated that ensure equivalence of this
identical error case with a symmetric algorithm, i.e., a gradient type algorithm with a regression
vector that is in parallel with the excitation vector.

Finally, the third line of contributions is formed by application of the afore obtained results to
practical scenarios. Specifically, it is shown that the widely used adaptive Wiener model that consists
of a finite impulse response (FIR) filter followed by a memoryless non-linearity, can be mapped to the
above mentioned identical error case of the coupled structure. By this, conditions for `2-stability and
boundedness of the parameter error vector are obtained. As second application, the multichannel
filtered-x LMS (MC-FXLMS) algorithm, typically deployed in active noise control (ANC), is mapped
to the coupled structure, again leading to rules and bounds for `2-stability and boundedness of
the parameter error vector. Finally, a multilayer perceptron of arbitrary size, trained by the
backpropagation algorithm, is expressed in terms of this coupled structure. The obtained results
disclose that convergence of the parameter error vector is hard to guarantee and that a well chosen
parameter initialisation is of crucial importance. It augments results from literature that either
require assumptions regarding the separability of input data, or restrict themselves to one single
layer.
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1.2.1 Contributions in Detail
After the afore provided brief overview of the contributions presented in this thesis, this section
goes more into detail. Below, our relevant publications are included by their bibliographic keys,
at the end of each heading. For convenience, their complete entries are enclosed in Section 1.2.2.
References to the work of other authors are excluded for the sake of brevity. A detailed discussion
of related literature is contained directly in the corresponding sections.

Hidden Divergence of Asymmetric Algorithms [DR09a; DR10; DRWR10; DR13]
Gradient type algorithms that use a regression vector that does not have the same direction as
the excitation vector are in this work referred to by the term asymmetric algorithms. Chapter 3 is
dedicated to their analysis, where emphasis is given to the special class of LMS algorithms with
matrix step-size. The first observation in Section 3.3 is that the mapping matrix occurring in the
homogeneous recursive part of such algorithms, always – except from degenerate or trivial cases
– has one singular value larger than one. The evoked speculation that this fact inherently entails
a permanent risk of divergence is refuted by counterexamples, such as the LMS algorithm with
constant matrix step-size, which is known to converge for adequately scaled step-sizes. That this also
holds in some cases of varying step-size matrices is illustrated by the comparison of two2 simulation
examples in Section 3.1. A detailed review of existing literature, in Section 3.2, demonstrates that
none of the available results is able to classify the considered matrix step-size with respect to their
w.c. convergence behaviour.

Based on this motivation, Section 3.4 presents a rigorous geometric dissection of the mapping
mechanisms that underlie such algorithms. The main result is achieved in Section 3.4.4, which clarifies
that persistent variations of the eigenspaces of the step-size matrix are necessary for divergence
under w.c. excitation. Additionally, it provides a novel perspective to the reason why the LMS
algorithm with fixed matrix step-size is ensured to remain bounded.

Resorting to operator trigonometry, Section 3.5 derives an analytical method to synthesise
excitation sequences that provoke diverging trajectories – if they exist for a given algorithm. As
an alternative, purely numeric search schemes are proposed that can be resorted to, if the analytic
methods are inapplicable. This may be the case if the excitation vectors have to obey some
additional constraints, such as a shift dependency (cf. Section 2.2), or if the domain of their elements
is non-continuous.

Gradient Type Algorithms with Linearly Coupled Update Errors [DR09b; DR15]
In Chapter 4, a novel structure is investigated that contains arbitrarily many gradient type algorithms,
which interfere with each other via a linear memoryless coupling of their individual a priori errors.
Conditions for `2-stability are derived in Section 4.4, based on the theory of M -matrices and their
application to the solution of linear systems of inequalities (cf. Section 4.2). Two different versions
of `2-stability are considered, one with respect to absolute, the other with respect to weighted
energies. Moreover, motivated by the mapping analysis of asymmetric algorithm in Chapter 3, the
mapping behaviour in terms of the combined parameter error vector is analysed in Section 4.5.
Employing the Khatri-Rao product, which is a generalisation of the Hadamard product to block
matrices, conditions for a bounded parameter error vector are derived. Finally, in Section 4.6, the
practically important situation is analysed, where all individual gradient type algorithms use the
same update error. As in this case, the behaviour of the adaptive coupled structure coincides with
an asymmetric algorithm, all results from Chapter 3 become applicable here. Specifically, the insight
that symmetric algorithms do not share the potential risk of divergence with asymmetric algorithms,
leads to criteria that ensure a bounded parameter error vector, as well as to `2-stability bounds.
2 In fact, Section 3.1 compares three examples. However, one of them is the LMS algorithm with constant matrix

step-size.
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Parameter Convergence of the Adaptive Wiener Model [DR10; DR11; DR12]
In Section 5.2, the adaptive Wiener model already mentioned in Section 1.1, is analysed by mapping
it to the coupled structure from Chapter 4. The criteria obtained for the identical error case in
Section 4.6 ensuring parameter convergence and `2-stability, directly apply in this case. Although,
the obtained condition is hard to enforce in practical situations, it still gives a guide on how
to foster stability. Moreover, it very compactly reveals that the risk of divergence reduces with
increasing quality of the estimated system model. Due to its practical relevance to non-linear
dispersive problems, the adaptive Wiener model has received considerable attention in literature.
Yet deterministic analysis are rare and to the knowledge of the author, the here obtained results are
in their form novel.

Stability and Convergence of the Multichannel Filtered-x LMS Algorithm
The filtered-x LMS (FXLMS) algorithm is known for decades. Several stochastic as well as
deterministic stability analyses have been conducted in literature. In the context of ANC, an
extension to multiple inputs and multiple outputs, the MC-FXLMS, has been introduced more
recently. Applying the results obtained for asymmetric algorithms (Chapter 3) and for the coupled
structure of gradient type algorithms (Chapter 4), in Section 5.3, novel conditions for boundedness
of the parameter error vector as well as `2-stability, are derived for the MC-FXLMS, under the
assumption of perfect knowledge of the secondary path. This is done step wise, starting with the
single input multiple output (SIMO) case in Section 5.3.1, continuing with the multiple input single
output (MISO) case in Section 5.3.2, and ending up at the most general multiple input multiple
output (MIMO) case in Section 5.3.3.

Convergence of a Multilayer Perceptron Trained by the Backpropagation Algorithm
In pattern recognition, a common training scheme of multilayer perceptrons is the backpropagation
algorithm. Although the latter dates back to the late sixties, a comprehensive picture of its
convergence behaviour is not available yet. In Section 5.4, the scheme is analysed by mapping it to
the structure of coupled gradient type algorithms from Chapter 4. The obtained result indicates
that convergence of the parameter error vector is strongly depending on the quality of the initial
sate, and in fact almost impossible to ensure. The main novelty is found in the chosen approach, as
well as, in the result, which does not require the restriction to one single layer or the assumption of
linearly separable training classes.

1.2.2 Related Publications
[DR09b] R. Dallinger and M. Rupp, “On robustness of coupled adaptive filters,” in Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Taipei, Taiwan, Apr. 2009, pp. 3085–3088.

[DR09a] R. Dallinger and M. Rupp, “A strict stability limit for adaptive gradient type
algorithms,” in Conference Record of the 43rd Asilomar Conference on Circuits,
Systems and Computers, Pacific Grove, CA, USA, Nov. 2009, pp. 1370–1374.

[DR10] R. Dallinger and M. Rupp, “Stability analysis of an adaptive Wiener structure,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Dallas, TX, USA, Mar. 2010, pp. 3718–3721.
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[DRWR10] R. Dallinger, H. Ruotsalainen, R. Wichman, and M. Rupp, “Adaptive pre-distortion
techniques based on orthogonal polynomials,” in Conference Record of the 44th

Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, USA,
Nov. 2010, pp. 1945–1950.

[DR11] R. Dallinger and M. Rupp, Adaptive digital pre-distortion based on two-block models,
IEEE Forum on Signal Processing for Radio Frequency Systems, Vienna, Austria,
Mar. 2011.

[DR12] R. Dallinger and M. Rupp, “Improved robustness and accelerated power amplifier
identification with adaptive Wiener models in the complex domain,” in Conference
Record of the 46th Asilomar Conference on Circuits, Systems and Computers, Pacific
Grove, CA, USA, Nov. 2012, pp. 787–791.

[DR13] R. Dallinger and M. Rupp, “On the robustness of LMS algorithms with time-variant
diagonal matrix step-size,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, May 2013,
pp. 5691–5695.

[DR15] R. Dallinger and M. Rupp, “Stability of adaptive filters with linearly interfering
update errors,” in Proceedings of the 23rd European Signal Processing Conference,
Nice, France, Sep. 2015, pp. 2731–2735.

1.3 Brief Outline
As a complement to Section 1.2.1, this section provides a rough overview of this thesis.

Chapter 2 (Preliminaries) provides the most important background information that is required
for the following chapters. It is kept rather concise and by far not exhaustive. Nevertheless, it is
also intended to provide an overview of selected references which quickly enable the reader to clarify
unclear points. The chapter first introduces the adaptive algorithm that is at the core of all of the
algorithms considered in this work. After a short discussion regarding possible interpretations of
the input sequences, it introduces the methods and definitions that are required for the following
analyses of stability and convergence.

Chapter 3 (Asymmetric Gradient Type Algorithms) focuses on parameter convergence of one single
gradient type algorithms with matrix step-size. Such algorithms are called asymmetric throughout
this work. An introducing simulation experiment reveals that diverging behaviour can occur, even if
conventional stability bounds are safely fulfilled. It raises the question under which conditions such
an effect can be observed. After a review of the findings available from existing literature, Section 3.3
returns to the original question and answers it on the basis of a detailed theoretic dissection of the
underlying mapping mechanisms. The remainder of Chapter 3 then presents methods that allow to
synthesise excitation sequences in order to provoke possible diverging modes for a given algorithm.
Such sequences are also referred to by the term w.c. sequences in this work. First, Section 3.5
takes an analytic synthesis approach which applies if the excitation sequences can be chosen rather
arbitrarily. In situations where they are subject to stronger restrictions, Section 3.6 provides a
numeric alternative.
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Chapter 4 (Coupled Adaptive Filters) starts by introducing a structure consisting of arbitrary
many gradient type algorithms that are linearly coupled via their individual update errors. In
Section 4.4 conditions for `2-stability are derived based on the solution of a specific kind of system
of inequalities. These results are complemented in Section 4.5 by a mapping analysis which applies
the same idea that underlies the theory in Chapter 3. Finally, a tight relation to Chapter 3 is
established in Section 4.6, which treats the coupled structure in the special case, when some or all
of the gradient type algorithms use the same error to adapt their parameters.

Chapter 5 (Examples and Applications) finally connects the theoretic results from the foregoing
chapters with applications. Section 5.1 discusses two idealised cases of coupled adaptive filters
which allow for a clear comparison of the two methods developed in this work. The following
Section 5.2 gives more details on the adaptive Wiener model that has already been briefly addressed
in Section 1.1. For the MC-FXLMS, in the context of ANC, Section 5.3 derives bounds that ensure a
bounded parameter error vector, respectively, `2-stability. Finally, in Section 5.4, the general coupled
structure from Chapter 4 is applied to a neural network that is trained by the backpropagation
algorithm. The result illustrates convergence problems that are faced for such schemes.

Chapter 6 (Conclusions) summarises the novel results presented in this thesis. The newly obtained
insights that are critically discussed. Moreover, open questions and ideas for future research are
pointed out.

Appendix A (Singular Values of Mapping Matrix Bk) contains the derivations for the two non-unit
singular values that occur in the mapping matrix of asymmetric algorithms, discussed in Chapter 3.

Appendix B (Complement to Section 3.5) collects complementary calculations that are required
for the analytical design of w.c. sequences in Section 3.5.

Appendix C (Mathematical Supplement) is a conglomeration of several brief paragraphs on
mathematical topics that are used in this thesis. It covers operator trigonometry, M -matrices, and
details about submatrices.

Appendix D (Proofs) contains the proofs for Chapters 3 to 5.

1.4 Notation
In this section, notational conventions are introduced that apply to the whole thesis. A detailed list
of frequently used mathematical symbols can be found subsequently to the appendix, starting on
page 177. The latter list is complemented by Table 4.1, Table 5.2, and Table 5.3, which summarise
the symbols describing the coupled structure in Chapter 4, the MC-FXLMS in Section 5.3, and the
multilayer perceptron in Section 5.4, respectively.

Scalars, Vectors, and Matrices: Scalars are typeset in the standard mathematical slanted font,
e.g., k. Vectors are indicated by small letters, matrices by capital letters, both in upright boldface
characters, e.g., u and U. Scalars typically enclose their arguments in brackets, e.g., µ(k). Arguments
of vector- or matrix-valued entities are mostly attached as a subscript, e.g., uk and Uk. However,
few exceptions exist. For example, mixing of both kinds of notation occurs in Section 5.2, where
non-linear function hw2(y(k)) is parametrised by vector w2 and additionally depends on scalar
input y(k).
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Iteration Index k: The integer k denotes the index of the instantaneous iteration. It represents the
independent variable throughout this work. Value k = −1 indicates initialisation, the first actual
calculation is executed at k = 0. In general, the number of iterations is unbounded, meaning that in
theory, k is incremented by 1 up to infinity.

Symbols with Caret (ˆ): As this thesis adopts the perspective of system identification, in almost
all cases, a reference system has to be identified by an adaptively modified system model. One
of the main assumptions made later on (cf. Section 2.1) that applies to the complete work, is
that both of these systems have the same structure. Thus, both of them have almost the same
mathematical description. To reflect this fact, the symbols corresponding to the adaptive system
model are identical to those used for the reference system, augmented by a Caret, e.g., w denotes
the parameter vector of the reference system, ŵk the parameter vector of the system model.

Symbols with Tilde (˜): The tilde symbol has two different meanings in this work. On the one
hand, it denotes the difference among the parameter vectors of the reference system and the system
model. Hence, if the primer is denoted by w and the latter by ŵk, the parameter error vector is
given by w̃k = w− ŵk (cf. (2.10)). On the other hand, it indicates that a symbol refers to a noisy
entity, e.g., throughout this work, d̃(k) refers to the output of the reference system in presence of
noise, the symbols of the noiseless version is d(k).

Implicit Extension to all k: In statements like µ(k) ∈ R0+, it is implicitly assumed that they apply
to all k ≥ 0.

Meaning of the Phrase “for all k”: In some statements, the phrase “for all k” is used. In most
cases, it can actually be replaced by “for almost all k”, in the sense that a finite number of exceptions
may be acceptable. Although the latter formulation would be formally more general, the primer is
used in this thesis for simplicity reasons.

Suppression of Iteration Index k: On some occasions, the dependency on iteration index k, is
inherently clear and does not contribute essential information to the context. Then, for reasons of
readability the corresponding argument is consistently suppressed for all symbols in the scope. The
suppression will be indicated by a light grey bar in the outer page margin, usually accompanied by
an introducing comment such as “Below, iteration index k is suppressed.”. In these cases, symbols
that refer to the preceding iteration k − 1 are underlined, e.g., w̃ is then synonymous for w̃k−1.

Omitting Trivial Indices: On a few occasions, specifically in Section 5.3, special cases are considered
for which the range of one, or more, indices reduces to one single value. Then, the corresponding
trivial subscripts are collapsed. For example, symbol ẽi,j,l(k), modifies to ẽi,j(k) if l ≡ 1, or similarly,
vector ŵi,j,k reduced to ŵi,k, if j ≡ 1. Although, this convention is not completely unambiguous,
the context should make the meaning clear.

Skipping of Argument Bk for Symbols that refer to Mapping Matrix Bk: In this work, eigenval-
ues λi(k), eigenvectors qi,k, singular values σi(k), and singular vectors, ri,k and ti,k, refer to the
mapping matrix Bk. Otherwise, the corresponding symbols include the addressed matrix in form of
an argument, e.g, λi (D), qi (D).
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Index ranges: If an operator, e.g.,
∑

or
∏

, is applied to a whole sequence of arguments, identified
by an index i ∈ {istart, . . . , istop}, this may be equivalently written as

istop
operator
i=istart

. . . , or, operator
i∈{istart,...,istop}

. . . . (1.1)

Open, Half-Open, and Closed Intervals: Intervals on the real axis are represented by a pair of
values in brackets. If the interval boundaries are given by real numbers a and b, (a, b) denotes the
open interval, [a, b] the closed interval, and either (a, b], or [a, b), the left- or right-open interval,
respectively. Note that the order of the limits is not required to fulfil a ≤ b.

Norms, Sequences, and Pairs: Throughout this work, the symbol ‖.‖ denotes the Euclidean norm.
A sequence is indicated by braces, enclosing the symbol that denotes one specific sample, e.g., {u(k)}
refers to the sequence of all excitation samples u(k), here typically, k ≥ −1. A pair of values is
indicated by angle brackets, e.g, 〈a, b〉.

Symbols with a Prime (′): The prime (′) is not used consistently throughout this work. In
most cases, it indicates a relation among – except from the prime – identical symbols. However,
in Sections 5.2 and 5.4 it also denotes the first order derivative. On rare occasions, such as in
Section 3.4.2, more than one prime is required, i.e., .′′ and .′′′. Yet, their meaning is analogous to
the single prime.

1.5 Comment on the Graphical Representation of Simulation
Results

In this work, plots with a large number of data points have been sampled down in order to reduce the
file size of this document. This downsampling is not done in an equidistant way, but instead, it uses
the (Ramer-)Douglas-Peucker algorithm [Ram72; DP73]. By this, for common scaling and adequate
settings of the allowed deviation error, the shape of the processed graphs is perceived identical to
their original shape. The processing was performed with the C++ implementation of the algorithm
that is included in the Open Source Computer Vision Library (OpenCV) [OCV14] (version 2.4.11),
in conjunction with a Matlab interface based on mexopencv (version 2.4.5) [Yam14]3. Below the
affected figures are listed:

• Figure 3.1,

• Figure 3.2,

• Figure 3.4,

• Figure 3.5,

• Figure 3.6,

• Figure 3.11,

• Figure 3.12,

• Figure 5.3,

• Figure 5.4.

Confidence intervals are all estimated by function bootci provided by Matlab. Their estimation
is based on 1 000 bootstrap samples of the ensemble data, obtained by the performed Monte Carlo
simulations. For calculation, the “bias corrected and accelerated percentile method” was used [ZB98;
ZI07].

3 OpenCV and mexopencv are both available under a Berkeley Software Distribution (BSD) license.





Chapter 2
Preliminaries

The purpose of this chapter is to concisely present a conglomeration of already known and well
established methods, schemes, and notions. They are considered fundamental for the following
chapters. Clearly, their selection has to incorporate space limitations, and is based on a subjective
decision. Hence, related topics may require further reading.

Section 2.1 briefly describes gradient type algorithms which are at the core of all algorithms
throughout this work. As the input sequences that are used for excitation of such algorithms, play
an important role, Section 2.2 discusses some common interpretations of their meaning, and in
which situations these are encountered. Additionally, the notion of persistent excitation (PE) – in
a deterministic regime – is introduced, up to the extend that is necessary here. Some basic facts
about homogeneous recursions and a first motivation for Chapter 3 are provided in Section 2.3;
complemented by a very short excursus to the impact of nonhomogeneous portions. Finally, the
theoretic framework for the here used notions of stability is established by Section 2.4.

2.1 System Identification using Gradient Type Algorithms
This thesis focuses on the problem of adaptive system identification1, which aims to iteratively
adjust a tunable system – also referred to by the term system model – such that it best resembles
the behaviour of some unknown reference system. Here, such an iterative adjustment is assumed to
be done by some sort of gradient type algorithm that is intended to traverse the surface of a cost
function down to its global minimum [Lju99; Hay02; Say03]. The following assumptions are valid
for the whole scope of this work:

1. The reference system is described by a time-invariant vector of parameters, e.g., w, of known
length, e.g., M .

2. The reference system has the same number of parameters as the (adaptive) system model. The
latter is described by a parameter vector, e.g., ŵk, that is adapted from iteration to iteration.

3. The excitation of both systems may be scalar or vector-valued. Their responses are in any
case scalar.

4. For each iteration k, the output of both, the reference system, as well as the adaptive system
model, is linear in the corresponding parameter vector.

5. The reference system, the excitation sequences, the noise sequences, and the initial states of

1 System identification schemes are also often referred to by the term “model reference techniques” [BA80a; LS85; ÅW95].
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Figure 2.1: Basic structure of adaptive system identification.

the system models are bounded2.

6. The reference system and the system model operate perfectly synchronous, and are excited by
the same excitation sequence.

7. The response of the reference system may be contaminated by (unknown) additive noise.

Figure 2.1 depicts the basic structure of a system identification setting. For each iteration k, the
reference system and the system model, given by

w =
[
w1 w2 · · · wM

]T ∈ CM , (2.1)

and

ŵk−1 =
[
ŵ1(k − 1) ŵ2(k − 1) · · · ŵM (k − 1)

]T ∈ CM , (2.2)

respectively, are excited by excitation vector uk ∈ CM . Response d̂(k) of the system model is
computed and compared to response d̃(k) of the reference system. Based on the observed error

ẽ(k) = d̃(k)− d̂(k), (2.3)

the system model is updated at the end of each iteration. It is common practice [BA80a; And82;
Set92; BKS93; Hay02; Say03] to subsume inaccurate modelling, variations of the reference system,
and measurement noise in (unknown) additive noise v(k). Here, in agreement with the convention
pointed out in Section 1.4, the symbol d̃(k) reflects the fact that it is a noisy variant of the actual
system output d(k). The same applies in an analogous way to errors ẽ(k) and e(k).

The actual update mechanism which maps old estimate ŵk−1 to new vector ŵk, depends on the
metric that is introduced in order to assess the quality of the adapted system model. If a gradient
type algorithm is employed that does not (explicitly) depend on more than one previous iteration,
the update equation has the form [Men73; LS85; Hay02; Say03; Kre09]

ŵk = ŵk−1 − µ(k)Mk

(
∂J(ŵ)

∂ŵ

∣∣∣∣ŵ=ŵk−1

)H
, (2.4)

2 Note that for most of the simulations performed in this work, Gaussian distributed random variables are used as basis
for excitation sequences and noise sequences. Hence, they are formally unbounded. However, they are in fact only
quasi-Gaussian, as numeric precision forces their domain to be limited. Similarly, in applications, signals have to
undergo analogue-to-digital and digital-to-analogue conversion, which inherently enforces a restriction of their range of
values to a finite interval.
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where µ(k) is a positive step-size, Mk is a positive definite step-size matrix, and J(.) is a cost
function. The for its simplicity and robustness renowned LMS algorithm that dates back to [WH60],
is obtained for

Mk = I, (2.5)

and

JLMS(ŵ) = E
{
|ẽ(k)|2

}
⇒
(
∂J(ŵ)

∂ŵ

∣∣∣∣ŵ=ŵk−1

)H
= −E {u∗

kẽ(k)} , (2.6)

if the expectation is replaced by the instantaneous (and noisy) approximation [Say03, pp. 214f.]

E {u∗
kẽ(k)} ≈ u∗

kẽ(k). (2.7)

Cost function (2.6), together with approximation (2.7), is adopted for this whole thesis. However,
the special step-size matrix in (2.5) only applies to Chapter 4. In contrast, the goal of Chapter 3
is to carve out subtle implications for algorithms with Mk 6= I. In fact, all of the gradient type
algorithms this work focuses on, are basically of the form

ŵk = ŵk−1 + µ(k)Mku∗
kẽ(k). (2.8)

The actual definition of the update error ẽ(k) varies, but it is always given by (2.3) or a linear
combination of several errors of this type. In the latter case, the symbol ẽ(k) is replaced by ε̃i(k)
(cf. (4.2)). Defining regression vector

xk , M∗
kuk, (2.9)

and introducing parameter error vector

w̃k , w− ŵk, (2.10)

(2.8) can be equivalently written as

w̃k = w̃k−1 − µ(k)x∗
kẽ(k). (2.11)

With the a priori error expressed in terms of w̃k−1, i.e.,

ẽ(k) = wTuk − ŵT
k−1uk + v(k) = uT

k w̃k−1 + v(k), (2.12)

eventually, update equation (2.8) is obtained in terms of the parameter error vector as

w̃k = w̃k−1 − µ(k)x∗
kuT

k w̃k−1 − µ(k)x∗
kv(k) (2.13)

=
[
I− µ(k)x∗

kuT
k

]
w̃k−1 − µ(k)x∗

kv(k). (2.14)
= Bkw̃k−1 − µ(k)x∗

kv(k), (2.15)

with mapping matrix

Bk , I− µ(k)x∗
kuT

k . (2.16)

Equation (2.15) is a nonhomogeneous first-order system of linear difference equations that is
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nonautonomous, since Bk varies with iteration index k [Aga92; Ela99]. In the noiseless case, i.e.,
v(k) ≡ 0, it reduces to the homogeneous recursion

w̃k =
[
I− µ(k)x∗

kuT
k

]
w̃k−1 (2.17)

= Bkw̃k−1, (2.18)

which is of central importance for this thesis.
Algorithms of structure (2.8), with Mk 6= I, are addressed by different names, such as second-order

gradient algorithm [Men73, p. 200], generalised gradient descent algorithm [Kre09, p. 53], or simply
LMS with matrix step-size [RC00]. From (2.9), it can be seen that Mk 6= I leads to a regression
vector that has a different direction than the excitation vector, causing matrix x∗

kuT
k in (2.16), and

consequently, also mapping matrix Bk, to be nonsymmetric. Accordingly, in this work, this type
of algorithms is coined by the term asymmetric algorithm. If contrarily, Mk ≡ I, the description
symmetric algorithm is used to emphasise this difference.

Since the behaviour of the parameter error vector defined in (2.10) is at the core of all analyses
pursued in this work, the performance metric used in the simulations will be the parameter mismatch,
denoted by m(k). It is defined as

m(k) , E

{
‖w̃k‖2

‖w̃−1‖2

}
, (2.19)

with w̃−1 being the parameter error vector at algorithm initialisation. As the actual expectation
cannot be captured by simulations, the ensemble average, together with its 95 %-confidence intervals,
as well, as the extremal range over the whole ensemble, will be used for evaluation.

2.2 Excitation Sequences
The system model in Figure 2.1 is assumed to have a vector-valued input of adequate dimension, but
the nature of its individual entries has not further been discussed, yet. Section 2.2.1 makes up for
that and describes four different common interpretations, which cover a wide range of applications.
Then, Section 2.2.2 goes one step beyond by considering the whole sequence of input vectors. It
introduces the notion of persistent excitation, which plays an important role in the context of
parameter convergence.

2.2.1 Interpretation of Excitation Vectors
The meaning of the excitation vector uk at the input of the structure in Figure 2.1 strongly depends
on the actual physical background of the reference system, and is tightly related to the chosen
system model. In any case, forgetting about additive noise v(k) in Figure 2.1, for each iteration k,
the output of both systems is obtained by summing up over the M entries in uk, weighted by the
respective parameter vector, i.e.,

d(k) = wTuk, and d̂(k) = ŵT
k−1uk. (2.20)

In Sections 2.2.1.1 to 2.2.1.4, four different interpretations of excitation vector uk are presented
which also clarify the related meaning of its entries.
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2.2.1.1 Linear Combiner

The most general situation is obtained, if both systems in Figure 2.1 are assumed to be linear
combiners. This means that at each iteration step, one completely new excitation vector arrives
at their input. Although the individual entries of the excitation vector may depend on each other,
this is not structurally reflected by this type of model. Typically, systems with multidimensional
input data lead to this situation. Then, the input vectors may represent, e.g., arbitrary patterns or
feature vectors [WH60; WL90; Hay94]. Of course, also the cases described in the following sections
can be considered as a linear combiner case, however, with additional constraints adhering to the
elements of the excitation vector.

Especially, statistical analyses often rely on the assumption that the elements of the excitation
vector are independent or uncorrelated [Gar84; FW85; TF88; Hay02; Say03]. Such a simplifica-
tion can also be interpreted as a fictive replacement of the actual model structure, e.g., an FIR
filter (cf. Section 2.2.1.2) by a linear combiner.

2.2.1.2 Finite Impulse Response Filter

In adaptive filtering, the two blocks in Figure 2.1 frequently represent linear dispersive single input
single output (SISO) systems, described by FIR filters [WH60; Ung72; Hay02; Say03]. Then, both of
them are excited by the same scalar input sequence {u(k)}. Whereas, the actual excitation vector
at iteration k consists of the M most recent input samples, i.e.,

uk =
[
u(k) u(k − 1) · · · u(k −M + 1)

]T
. (2.21)

In this case, the two parameter vectors in (2.20) correspond to the tap weights of the individual
FIR filters, the vector uk to the state of the delay line at iteration k.

2.2.1.3 Non-linear Basis Expansion

If the reference system is an (unknown) memoryless non-linearity, one approach in system iden-
tification is to pre-select a set of non-linear basis functions, and adaptively find the “best” set of
expansion coefficients. Assuming that the scalar input at iteration k is given by u(k), the set of
non-linear basis functions ψm (.), m ∈ {1, . . . ,M}, evaluated at u(k), can be composed into the
corresponding excitation vector [MS00a], according to

uk =
[
ψ1 (u(k)) ψ2 (u(k)) · · · ψM (u(k))

]T
. (2.22)

Then, (2.20) resembles the two non-linear models

d(k) =

M∑
m=1

wmψm (u(k)) and d̂(k) =

M∑
m=1

ŵm(k − 1)ψm (u(k)) . (2.23)

The actual choice of basis functions strongly depends on the expected behaviour of the reference
system and the statistical properties of the excitation sequence {u(k)}. As an example, for smooth
functions with rather low order of non-linearity, a monomial basis may be adequate [MS00a], i.e., in
the simplest case, for u(k) ∈ R,

ψm (u(k)) = um−1(k). (2.24)
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If the probability density function (pdf) of the excitation sequence is known a priori, the use of
a polynomial basis may allow to achieve probabilistic orthogonality among the individual basis
functions [RZ04; RQZ04; Abr72], which leads to improved convergence of the employed gradient type
algorithm [DRWR10]. In order to reduce the computational complexity, piecewise linear functions
can be used as an alternative basis [CWB+12; Che14].

2.2.1.4 Volterra Series

Out of the four here presented approaches, the by far widest range of functions can be covered
by truncated Volterra Series. They combine the non-linear basis expansion in Section 2.2.1.3 with
the linear dynamic system in Section 2.2.1.2 [Sch80; MS00a]. In the real valued case, a system of
non-linearity order P ≥ 0 can be described by a (discrete-time truncated) Volterra Series of the form

d(k) = h0 +

M1−1∑
l1=0

h1(l1)u(k − l1) +
M2−1∑
l1=0

M2−1∑
l2=0

h2(l1, l2)u(k − l1)u(k − l2) + · · ·

+

MP−1∑
l1=0

· · ·
MP−1∑
lP=0︸ ︷︷ ︸

P sums

hP (l1, . . . , lP )u(k − l1) · · ·u(k − lP )︸ ︷︷ ︸
P factors

,
(2.25)

with Volterra kernels hp : Np0 7→ R and memory lengths Mp ≥ 0, p ∈ {0, . . . , P}. Again, (2.25) can
be brought into the vector product form in (2.20). This is basically done by stacking all products of
u(.) that occur in (2.25) into an excitation vector, and by associating the parameter vector with a
stacked version of all discrete Volterra weights. For further details on this process, see, e.g., [EP97;
MS00a; Asc05; Dal07]. The advantage of this method is that the resulting models are still linear
in parameters, and thus, suited for adaptation by a gradient type algorithm. The disadvantage is
the tremendous number of parameters that is obtained even for low non-linearity orders and short
memory lengths. As a consequence, in literature many works propose methods to smartly reduce
the number of parameters [KK01; ZPB06; ZDH+08; AZF+11; AZF+13].

2.2.2 Persistent Excitation
Section 2.2.1 presents several possible interpretations of the nature underlying the excitation
vectors uk. While the analyses presented in Chapters 3 and 4 do not directly rely on the source
of excitation, they do depend on the space that is spanned by the excitation sequence {uk}. This
insight is not new and a wide range of literature studies this issue of PE (also referred to as mixing
condition [WM79], or sufficient richness condition [BS83]) from several points of view. For further
reading, [Bit84] is recommended as starting point, as it allows for smooth yet concise access to this
topic. Moreover, it contains a multitude of additional references [amongst others, WM79; AJ82].
A more system theoretic perspective is found in [SK95; Lju99]. With respect to gradient type
algorithms, the works [SMA+88; SAJ89; Set92] are of special interest. Specifically, the latter two
are tightly related to Chapter 3, and their gist is applied in Section 3.2.

Here, the notion of PE is presented briefly, in a deterministic context, which should still give
enough insight for the scope of this work. The following definition combines the corresponding
statements in [Bit84, p. 185; SMA+88, p. 615; SAJ89, p. 391; Set92, p. 2202].
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Definition 2.1: Persistent Excitation (in a deterministic sense)

The sequence of excitation vectors {uk} is persistently exciting for the gradient type algorithm
in (2.8), if for all iterations k, a constant and finite K ≥M can be found such that all, i.e.,
i ∈ {1, . . . ,M}, eigenvalues λi(U(K)

M,k) of the accumulated excitation matrix

U(K)
M,k ,

k∑
j=k−K+1

Mju∗
juT

j , (2.26)

satisfy

Re
{
λi

(
U(K)

M,k

)}
≥ A > 0. (2.27)

From Definition 2.1, it becomes clear that even though the actual source of excitation is not of
direct importance, it of course inherently influences the behaviour of the gradient type algorithms.

2.3 Homogeneous First-Order System of Linear Difference
Equations

Recursions of the form (2.18) play a central role in this thesis. This section reviews some important
facts about their mapping behaviour. At this point, no special structure of mapping matrix Bk is
presumed. Hence, (2.16) is temporarily discarded until the end of this section. Accordingly, the here
obtained insights are of general validity and not restricted to algorithms of the kind in (2.17). Before
focus is brought to the central homogeneous recursion (2.18), Section 2.3.1 provides few prerequisites
and conventions. After that the autonomous case, i.e., Bk ≡ B, is considered in Section 2.3.2. The
more general nonautonomous case that corresponds to a variant mapping matrix is addressed in
Section 2.3.3.

2.3.1 Eigenvalues and Singular Values of Mapping Matrix Bk

The important facts introduced in this section are not restricted to a special mapping matrix Bk,
they are valid for any square matrix belonging to CM×M . Without loss of generality (wo.l.o.g.), Bk

is diagonalised by the singular value decomposition (SVD) [see, e.g., HJ13, Theorem 2.6.3], i.e.,

Bk = RkΣkTH
k ,

Rk , [r1,k, ..., rM,k] ,

Tk , [t1,k, ..., tM,k] ,

Σk ,
M

diag
i=1
{σi (k)} ,

(2.28)

where Rk and Tk are unitary square matrices of dimension M ×M , i.e., RkRH
k = RH

kRk = I,
TkTH

k = TH
kTk = I, and where σi (k) ∈ R0+ are the singular values of Bk, such that

σmax(Bk) = σ1 (k) ≥ σ2 (k) ≥ . . . ≥ σM (k) = σmin(Bk). (2.29)

The squared singular values σ2i (k) are identical to the eigenvalues of the Gramian matrix BH
kBk, or

its conjugate transpose BkBH
k . The left-sided singular vectors ri,k are the eigenvectors of BkBH

k ,
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the right-sided singular vectors ti,k are the eigenvectors of BH
kBk. Moreover, let λi (k) ∈ C be the

eigenvalues of Bk [HJ13, Definition 1.1.2]. Analogous to the singular values, wo.l.o.g., they are
assumed to be sorted such that

S(Bk) = |λmax(Bk)| = |λ1 (k)| ≥ |λ2 (k)| ≥ . . . ≥ |λM (k)| = |λmin(Bk)| , (2.30)

where S(Bk) ∈ R0+ denotes the spectral radius of Bk, which by definition is identical to the modulus
of its maximum eigenvalue [HJ13, Definition 1.2.9]. An important relation between the eigenvalues
in (2.30) and the singular values (2.29) is given by [Wey49; Hor54; MOA11, p. 317],

m∏
i=1

|λi (k)| ≤
m∏
i=1

σi (k) ; m = 1, . . . ,M − 1,

M∏
i=1

|λi (k)| =
M∏
i=1

σi (k) .

(2.31)

A direct consequence of (2.31) is

σ1 (k) ≥ S(Bk) = |λ1 (k)| ≥ |λM (k)| ≥ σM (k) . (2.32)

2.3.2 Mapping Behaviour of Autonomous Recursions

The autonomous case, i.e., Bk = B, of recursion (2.18) is well studied [Var62, pp. 6ff.; Men73, p. 24;
HY81, p. 8; GV96, p. 509; MS00b, p. 701; Hig02, p. 339; HJ13, Corollary 5.6.14]. Accordingly, with
initial state w̃−1, the solution of (2.18) is found as

w̃k = Bk+1w̃−1, k ≥ 0, (2.33)

for which limk→∞ w̃k = 0 is ensured for all w̃−1, if and only if (iff)

S(B) < 1. (2.34)

With the latter condition satisfied, a subtle fact that is less widely known concerns the upper bound

sup
k≥0
{‖w̃k‖} , (2.35)

reached by parameter error distance ‖w̃k‖ in (2.33). While for Hermitian matrices, it is easy to see
that supremum (2.35) coincides with S(B) ‖w̃−1‖ (for k = 0), as pointed out in [Hig02, pp. 340ff.],
for non-Hermitian matrices, the exact value of (2.35) can be arbitrarily high, and is in most cases
only accessibly via approximate bounds. The reason for the existence of this behaviour can be
explained by (2.32), as it shows that with (2.34) satisfied, it is still possible that at least one singular
value is strictly larger than one. Contemplate, e.g., the case [Hig02, pp. 340ff.]

B =

[
a b
0 a

]
, (2.36)
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with 0 < a < 1, b ∈ R. This matrix has the eigenvalues λ1 = λ2 = a, however, its maximum singular
value is given by

σ1 = b

√
1

2
+
(a
b

)2
+

√
1

4
+
(a
b

)2
, (2.37)

which even if a� 1, can be made arbitrarily large just by choosing a sufficiently large value for b.
Even more extreme is the situation in the case of nilpotent matrices. For these, all eigenvalues

can be shown to be zero [HJ13; Gra13, p. 61]. Nevertheless, their largest singular value can be
essentially greater than zero. Consider, e.g., the following nilpotent (6×6)-matrix B found in [Bee12,
Subsection NLT]

B =



−3 3 −2 5 0 −5
−3 5 −3 4 3 −9
−3 4 −2 6 −4 −3
−3 3 −2 5 0 −5
−3 3 −2 4 2 −6
−2 3 −2 2 4 −7

 . (2.38)

It can be verified that B4 = 0, that all eigenvalues of B are zero, and that the maximum singular
value evaluates to σ1 = 21.970 458 ... .

In summary, (2.34) ensures convergence in the limit but for non-Hermitian matrices B, it does
not allow to conclude that the sequence {‖w̃k‖} is monotonously decreasing.

2.3.3 Mapping Behaviour of Nonautonomous Recursions
For nonautonomous recursions, i.e., if the mapping matrix in recursion (2.18) varies with iteration
index k, the decision on convergence is an involved problem, and a condition similarly compact as
(2.34) is far out of reach [Men73, p. 193; BBC+94, p. 14; Kah13, p. 13]. To see the insufficiency of
(2.34), consider a recursion such as in (2.18), where for all k > −1, (2.34) is satisfied, but where at
least one singular value is strictly larger than one, i.e., σ1 (k) ≥ 1 + δσ with some δσ > 1. Then, in
the unlikely but possible situation that for each iteration, the a priori parameter error vector w̃k−1

is in parallel with t1,k in (2.28),

w̃k = σ1 (k) w̃k−1 ≥ (1 + δσ) w̃k−1 ≥ (1 + δσ)
k+1 w̃−1 ≥ (1 + kδσ) w̃−1, (2.39)

which clearly grows unbounded with increasing k. The assumption w̃k−1 ‖ t1,k, for all k, which is
equivalent to r1,k−1 = ±t1,k, imposes very strong restrictions on Bk. However, as it will be seen in
Section 3.4.1 (specifically, Lemma 3.4), it actually occurs for the algorithmic structure in (2.17).
Moreover, a more detailed look shows that slight deviations from w̃k−1 ‖ t1,k still lead to a growth.
To see this, first assume, wo.l.o.g., that the singular values can be separated into three groups,

Group 1: σi (k) > 1, for 1 ≤ i ≤ ı̂+,
Group 2: σi (k) = 1, for ı̂+ < i < ı̂−,
Group 3: σi (k) < 1, for ı̂− ≤ i ≤M ,

with adequate indices ı̂+ and ı̂− that satisfy ı̂+ ≤ ı̂−, where equality occurs if no unit singular value
exists. Then, with the parameter error vector transformed to the space spanned by the right-sided
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singular vectors,

w̃′
k−1 =

[
w̃

′
1 (k − 1) · · · w̃

′
M (k − 1)

]T
, Tkw̃k−1, (2.40)

since Rk and Tk are unitary, the parameter error increment defined as

W (k) , ‖w̃k‖2 − ‖w̃k−1‖2 , (2.41)

satisfies [DR09a]

W (k) = ‖Bkw̃k−1‖2 − ‖w̃k−1‖2 =
∥∥∥RkΣkTH

k w̃k−1

∥∥∥2 − ‖w̃k−1‖2

=
∥∥∥ΣkTH

k w̃k−1

∥∥∥2 − ∥∥∥TH
k w̃k−1

∥∥∥2 = w̃H
k−1Tk

(
Σ2
k − I

)
TH
k w̃k−1

=

ı̂+∑
i=1

[σ2i (k)− 1]
∣∣∣w̃′

i (k − 1)
∣∣∣2 − M∑

i=ı̂−

[1− σ2i (k)]
∣∣∣w̃′

i (k − 1)
∣∣∣2 > 0,

(2.42)

as long as

ı̂+∑
i=1

[σ2i (k)− 1]
∣∣∣w̃′

i (k − 1)
∣∣∣2 > M∑

i=ı̂−

[1− σ2i (k)]
∣∣∣w̃′

i (k − 1)
∣∣∣2 . (2.43)

Obviously, for a given set of singular values at iteration k, the squared magnitudes |w̃′
i (k − 1) |2 act

as weighting factors in (2.43). While the afore considered case w̃k−1 ‖ t1,k leads to the maximum
increase of ‖w̃k‖ in iteration k, in general, a whole subspace is described by (2.43) that causes the
parameter error vector to elongate. Throughout this work, this space is often addressed as worst
case, or briefly as w.c., subspace (cf. Section 3.3.3). The crucial difference to the autonomous case
in Section 2.3.2 is that the unitary matrices Rk and Tk change from iteration to iteration. By this,
an alignment can occur such that (2.43) is satisfied for all k.

2.3.4 Implications to the Nonhomogeneous Case
Although, the mapping analyses in this work exclusively consider homogeneous recursions, in almost
all practical situations, an external driving force exists that introduces an additional nonhomo-
geneous component. This section briefly discusses the implications that can be deduced for the
nonhomogeneous case, based on the insights obtained for the homogeneous case.

In this work, the nonhomogeneous component originates from additive noise. One possibility
to assess the influence of noise is to conduct a separate analysis. This is done for the coupled
structure in Chapter 4. There, on the one hand, results are obtained for the mapping behaviour
of the homogeneous system. On the other hand, rather independently from the mapping analysis,
`2-stability is considered, which focuses on stability in the presence of noise with bounded energy.

For the asymmetric algorithms discussed in Chapter 3 – and also for the general identical error
case of the coupled structure in Section 4.6 – the here adopted method that is used to study
`2-stability fails. Yet, it has to be noted that for specific asymmetric algorithms, `2-stability has
been shown [SR96; Rup11a]. Nevertheless, also based on the mapping behaviour of the homogeneous
recursion, some instructive insights can be gained. A brief look to the results that are available for
the conventional LMS algorithm gives some orientation. Besides from the multitude of statistical
analyses [see, e.g., Bit84; Hay02; Say03], in the deterministic regime, `2-stability [,e.g., SR96], as
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well as, total stability in conjunction with PE have proven valuable [Bit84; Set92, p. 2201]. As
pointed out afore, `2-stability seems to be hard to establish in general for asymmetric algorithms.
Similarly, the total stability theorem relies on exponential stability of the homogeneous recursion,
which appears unlikely to be true for asymmetric algorithms in general. However, one class of results
for the conventional LMS, is found to be considerably instructive. Accordingly, the violation of PE
in the presence of noise, bears the risk of an unbounded drift of the parameter error vector [SLJB86;
Nas99]. Anticipating the findings of Chapter 3, asymmetric algorithms are susceptible to hidden
diverging modes. Taking this into account, even in specific situations, where such modes cannot be
excited, it has to be expected that the phenomenon of parameter drift also exists for asymmetric
algorithm. This becomes even more plausible in the following way. For the general asymmetric
algorithm, accumulating (2.15) from the initial iteration k = 0 up to some certain iteration K ≥ 0,
leads to

w̃K =

 K←−∏
l=0

Bl

 w̃−1 −
K∑
l=1

µ(l)v(l)

 K←−∏
n=l+1

Bn

u∗
l . (2.44)

Taking the squared Euclidean norm and applying the triangle inequality [MS00b, p. 72], gives

‖w̃K‖2 ≤

∥∥∥∥∥∥
 K←−∏
l=0

Bl

 w̃−1

∥∥∥∥∥∥
2

+
K−1∑
l=1

|µ(l)|2 |v(l)|2
∥∥∥∥∥∥
 K←−∏
n=l+1

Bn

u∗
l

∥∥∥∥∥∥
2

+ |µ(K)|2 |v(K)|2 ‖uK‖2 .

(2.45)

The first term on the right-hand side corresponds to the homogeneous part. As the bound provided
by the triangle inequality is indeed reachable, it becomes clear that even if the homogeneous part
converges towards zero – which is not necessarily guaranteed for asymmetric algorithms – the second
term on the right-hand side of (2.45) can still cause an unbounded drift of the parameter error
distance ‖w̃k‖2. Hence, these algorithms cannot be expected to behave more benign with respect to
a potential parameter drift than the conventional LMS algorithm.

2.4 Stability and Convergence

This section briefly introduces different notions of stability that are of relevance for this work. As
the topic stability is a vast area, literature is similarly vast. Comprehensive access to this topic is
provided by [Kha02; ZDG96]. The book [Vid02] is an extensive reference and considerably condensed.
For a general introduction to adaptive control, [LLM98; ÅW95] are suggested. Last but not least,
the well known reference books [Hay02; Say03] are recommended, if a focus on adaptive filters is
desired.

The approach pursued by the analyses in this work is purely deterministic and barely requires
any a priori knowledge about the involved signals and systems. Two notions of stability are of
special relevance for the corresponding problems. The first one, uniform stability, is introduced in
Section 2.4.1. It basically allows to investigate the convergence behaviour of the parameter error
vector. The second one, `p-stability, is described in Section 2.4.2. It focuses on the energy of the
update error with respect to the disturbance energies.
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2.4.1 Uniform Stability
In the optimal case, the parameter vector estimated by a system identification algorithm, should
unconditionally converge towards the unknown reference vector. In terms of parameter error
vector w̃k introduced in (2.10), this means

k →∞ ⇒ w̃k → 0. (2.46)

Contemplating homogeneous recursion (2.18), w̃k−1 = 0 is an equilibrium, as Bkw̃k−1 = Bk0 = 0.
However, whether this equilibrium is actually attracting – and thus stable – depends on the sequence
of matrices {Bk}. Moreover, the question remains open whether this equilibrium is unique.

To answer the above posed questions, many approaches have been proposed in literature. They
are reviewed in more detail in Section 3.2. As done in [Men73], one notion of stability is based on
Lyapunov theory [Vid02]. Starting point is the assumption that the sequence {Bk} is given a priori.
Furthermore, it is assumed that iteration index k is always transformed such that initialisation takes
place at k = −1, and the first actual calculation is performed at k = 0. Then, a so called motion
vector sk(w̃−1) can be introduced, which describes the unique solution of (2.18) for all k ≥ 0, given
an initial state w̃−1. With this at hand, based on [Men73, pp. 193ff.; Vid02, pp. 136f.], the following
notion of stability can be introduced.

Definition 2.2: Uniform Stability

An equilibrium state w̃e ∈ CM of recursion (2.18) is said to be uniformly stable, if for any real
number ε > 0, a positive δ(ε) can be found, for all k ≥ −1, such that the trajectory sk(w̃−1)
that is unique for a given initial state w̃−1, satisfies

‖w̃−1 − w̃e‖ ≤ δ(ε)⇒ ‖sk(w̃−1)− w̃e‖ ≤ ε. (2.47)

Thus, a uniformly stable equilibrium w̃e ensures that for any initial state w̃−1, with a distance to
w̃e that is not larger than ε, trajectory sk(w̃−1) remains bounded within a ball with finite radius
δ(ε). As a consequence, neither does uniform stability give any insight to the speed of convergence,
nor does it – except from boundedness – entail any quantitative restriction to the radius δ(ε).
Obviously, even if the origin is found to be an equilibrium that satisfies Definition 2.2, the afore
mentioned desired behaviour of (2.46) is by far not ensured3. However, if by contrast 0 – or any other
equilibrium – can be found that violates Definition 2.2, it is ensured that under no circumstance
(2.46) is unconditionally true. This is of importance for the line of argumentation that is adopted in
Chapter 3, where the potentially unstable behaviour of asymmetric algorithms is revealed.

2.4.2 Input-Output Stability
In situations where assumptions about statistical properties of the involved signals and systems
are not justified or, due to lack of knowledge impossible, different approaches are required in order
to assess the stability of a control system [RS96a; HSK99]. One famous candidate out of these
alternative approaches is input-output stability which dates back to Sandberg and Zames [Zam66] in
the 1960s [Vid02]. It is a purely deterministic framework and basically analyses the image space that
is obtained if a system is fed by functions or sequences from a given domain space. In continuous
time, domain and image space are described by function spaces, in discrete time, they are represented
3 In order to ensure an unconditional satisfaction of (2.46), equilibrium 0 would need to be uniformly asymptotically

stable in the large [Men73, p. 196].

Erratum 1
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by sequence spaces. The sequel of this section briefly introduces those parts of this theory that will
be required in Section 4.4. They can be found in more detail in [Vid02; Kha02; vdS00; DV75], out
of which especially [DV75] is almost exclusively dedicated to the introduction of this theory.

Definition 2.3: `p-Space of Scalar Sequences

The `p-space, with p ∈ [1,∞), contains all sequences {zk}, with k ≥ 0, for which

∞∑
k=0

|zk|p <∞, (2.48)

where the elements zk can be taken from some arbitrary field (in the algebraic sense). By
endowing `p with the norm for all {zk} ∈ `p

‖zk‖`p , p

√√√√ ∞∑
k=0

|zk|p, (2.49)

the space becomes a Banach space.

In this work, the field from which sequence elements zk are taken, is typically the set of complex
numbers, i.e., zk ∈ C, or the set of real numbers zk ∈ R. Note that for reasons of readability the
brackets {·} (indicating a sequence) are omitted on the left-hand side of (2.49). On the right-hand
side however, the symbol zk actually refers to the individual elements of the sequence {zk}.

Definition 2.4: `p-Space of Vector Valued Sequences

The `Mp -space, with M ∈ N and p ∈ [1,∞), contains all sequences {zk}, with k ≥ 0, for which

∞∑
k=0

‖zk‖pp <∞, (2.50)

where the vector valued elements zk can be taken from some arbitrary field (in the algebraic
sense) with dimension M . By endowing `Mp with the norm for all {zk} ∈ `Mp

‖zk‖`p , p

√√√√ ∞∑
k=0

‖zk‖pp, (2.51)

the space becomes a Banach space.

Note that the field from which the vectors zk are taken, is in most cases the set of complex-valued
vectors of some dimension M , i.e., zk ∈ CM . Moreover, accepting a slight inaccuracy in notation,
the norm in (2.51), uses the same symbol as in (2.49). This is done as the different typefaces of
scalars and vectors, as well as, the context should make clear which norm is addressed. Finally, it is
mentioned that according to [Kha02, p. 196] in (2.51), the used vector norm does not necessarily
have to be the p-norm. However, this is the way how the `p-norm for vector valued sequences is
commonly defined.

Sequences contained in one of the spaces defined by Definitions 2.3 and 2.4 can be considered



Chapter 2 Preliminaries 24

as finite energy sequences. The notion of input-output stability is based on this interpretation, as
it defines a system as stable, if it always responds with an energy limited sequence, as long as the
input sequence has finite energy. The following definition renders this more precisely4.

Definition 2.5: `p-Stability (with Finite Gain)

A system described by a mapping H, with image space contained in `p, is `p-stable, as long
as its domain space also belongs to `p, i.e.,

H : `p 7→ `p. (2.52)

If moreover, for any input sequence {zk} ∈ `p, output sequence {ζk} satisfies

‖ζk‖`p ≤ gp ‖zk‖`p + bp, (2.53)

with finite constants gp ∈ R0+ and bp ∈ R0+, the system is called `p-stable with finite gain.
For an `p-stable system H, the smallest possible value for gp is called the `p-gain of H. It is
defined as

gp(H) , arg inf
gp

∀{zk}∈`p

{
‖ζk‖`p ≤ gp ‖zk‖`p + bp

}
. (2.54)

Definition 2.5 analogously applies to the case of input and/or output sequences with vector-valued
elements.

To see, how this theory is put into practice, results from [SR95b; RS96a; SR96] that address
`2-stability of the conventional LMS algorithm (see Section 2.1), are briefly repeated in the remainder
of this section. Starting point is update equation (2.8), with identity step-size matrix, i.e., (2.5).
Taking the squared Euclidean norm on both sides of (2.8) gives

‖w̃k‖2 = ‖w̃k−1‖2 + µ2(k) ‖uk‖2 |ẽ(k)|2 − 2µ(k)Re {ẽ(k)e(k)∗} . (2.55)

Substituting the noisy error ẽ(k) with (2.12), expanding by µ(k) |v(k)|2 − µ(k) |v(k)|2 on the right-
hand side, rearranging terms, and finally reinserting ẽ(k) leads to

‖w̃k‖2 + µ(k) |e(k)|2 = ‖w̃k−1‖2 + µ(k) |v(k)|2 + µ(k) |ẽ(k)|2
(
µ(k) ‖uk‖2 − 1

)
. (2.56)

With the well known step-size bounds5

0 ≤ µ(k) ‖uk‖2 ≤ 1, (2.57)

(2.56) satisfies a local passivity relation of the form

‖w̃k‖2 + µ(k) |e(k)|2 ≤ ‖w̃k−1‖2 + µ(k) |v(k)|2 . (2.58)

4 Note that the definition is almost equivalent to the definition of `p-stability in [Vid02, p. 365]. As in this thesis, all
systems can be described by an actual mapping H : `p 7→ `p, the further abstraction introduced in [Vid02, p. 277] that
describes a system more generally as a binary mapping, is skipped here. Instead, the interpretation of [Kha02, p. 197]
is adopted, taking into account that in discrete time the separate use of extended sequence spaces is not required, as
pointed out in [Vid02, p. 365].

5 Note that upper bound 1, on the right-hand side of (2.57), is replaced by 2, if common independence assumptions are
adopted, and stability in the mean-square sense is addressed instead [Hay02; Say03].
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To obtain a global statement, (2.58) is summed up on both sides from 0 to some certain iteration K ≥
0 and bounded based on the Minkowsky inequality [MS00b, p. 871], yielding√√√√ K∑

k=0

µ(k) |e(k)|2 ≤ ‖w̃−1‖+

√√√√ K∑
k=0

µ(k) |v(k)|2. (2.59)

Comparing this result with (2.53) shows that (2.57) establishes `2-stability for the LMS, in the sense
that bounded energy of the weighted noise sequence {

√
µ(k)v(k)} ensures bounded energy of the

sequence of weighted a priori errors {
√
µ(k)e(k)}.

Erratum 2





Chapter 3
Asymmetric Gradient Type

Algorithms

In adaptive system identification, based on stochastic gradient search, in many situations, matrix
step-sizes are used to improve convergence speed. For example, [MKK93] proposes a constant
diagonal step-size matrix with exponentially decaying entries in order to speed up identification of a
room impulse response. Here, the exponential decay constant has to be determined separately in
advance. This requirement is overcome by other approaches which employ a time-varying matrix
step-size. Out of these, one prominent example is the proportionate normalised LMS (PNLMS)
algorithm [Dut00]. The PNLMS algorithm has been designed to accelerate convergence of echo
cancellation algorithms in analogue landline telephone networks, which show long but rather sparse
impulse responses. Several modifications have been proposed, e.g., [Gay98; BG02; dSTSM09;
dSTSM10].

Moreover, other iterative minimisation methods, which aim to increase adaptation speed by
use of a more accurate direction of the stochastic gradient, can be considered as gradient type
algorithm with matrix step-size. For example, the recursive-least-squares (RLS) algorithm and the
Gauß-Newton algorithm (for a quadratic cost function) rely on an iteratively improved estimate of
the inverse autocorrelation matrix in lieu of the step-size matrix [RS95; RS96c; Say03, pp. 245ff.].
Similarly, the pseudo affine projection (PAP) algorithm – a predecessor of the well known affine
projection algorithm (APA) [OU84] – and its variant in [Rup98; BSC99] are of that kind.

Also in the case of an adaptive system model that employs a basis of non-linear functions (cf. Sec-
tion 2.2.1.3), the derivation of the corresponding gradient type algorithm introduces a matrix
step-size which contains the first derivatives of the basis functions [e.g., MS00a; RZ04; RQZ04;
CWB+12; Che14].

All of these algorithms share the property that their regression vector has a different direction than
their excitation vector. Hence, as motivated in Section 2.1, they belong to the class of asymmetric
algorithms. An example for an asymmetric algorithm that does not rely on an explicit matrix
step-size is the signed regressor LMS (SR-LMS) [Luc65, p. 557; Say03], which performs regression
based on a computationally efficient regression vector that contains the elements of the excitation
vector, reduced to their signs.

Asymmetric algorithms are at the focus of this chapter. More specifically, their convergence and
divergence behaviour under w.c. conditions, is the main concern, here. One of the major goals
pursued, is to reveal unbounded growth of the parameter vector, and find explanations for scenarios
where the latter remains bounded. It has to be emphasised that, as a consequence, most of the
following investigations take a rather unconventional perspective. Typically, the aim is to prove
convergence, here, in contrast, more attention is paid to the contrary case. The reader is asked to
keep this in mind in the sequel, as otherwise, the line of arguments may in some points appear
counter-intuitive.
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Why in this thesis – entitled to deal with coupled adaptive filters – the chapter with the largest
extent deals with asymmetric algorithm, has the following reason. The actual coupled structure,
considered in Chapter 4, is found in Section 4.6 to have a practically important mode of operation –
the so called identical error case – that can be described by an LMS algorithm with matrix step-size.
The just mentioned practical relevance is established in Chapter 5, where the adaptive Wiener
model and the MC-FXLMS are analysed by mapping them to such a coupled adaptive structure
that operates exactly in this mode. Beyond these examples, many other combinations of gradient
type algorithms, such as cascaded structures, can be analysed in this way.

This chapter is organised as follows. Comparison of three simulation experiments with LMS al-
gorithm with matrix step-size in Section 3.1, demonstrates the problem of hidden divergence and
poses three questions which motivate the following analyses. As the here considered algorithms are
known for decades, a wide range of related literature can be found. In Section 3.2, an overview
about existing results is given. Out of these, the three most relevant are applied to the simulation
experiments from Section 3.1, in order to demonstrate that they do not allow for a conclusive
interpretation of the observed behaviour. As an introductory step, Section 3.3 determines the
eigenvalues and singular values of the underlying mapping matrix. It is found that the latter has
(almost) always one singular value that is larger than one. Hence, resorting to the arguments of
Section 2.3.2, the corresponding homogeneous recursion may lead to an increase of the parameter
error distance. Knowing about this inevitable risk, Section 3.4 aims to answer the questions that are
motivated by the simulation experiments in Section 3.1. This is achieved by a detailed investigation
of the geometric mechanisms that happen during one iteration of the homogeneous recursion. First,
Section 3.4.1 studies general mapping characteristics of asymmetric algorithms that are independent
from any matrix step-size. The existence of a matrix step-size is then covered in Sections 3.4.2
and 3.4.3. Section 3.4.4, finally brings all the afore obtained results together and carves out the
important properties that decide on convergence and divergence. With all the obtained insights to
hidden divergence, the remaining two sections engage in the synthesis of excitation sequences that
provoke this phenomenon. In a first step, this is approached analytically in Section 3.5. In situations
of excitation sequences with restricted domain, these analytical methods may not be applicable.
Hence, a numerical alternative is provided by Section 3.6, which derives efficient search algorithms
in order to synthesise w.c. sequences.

3.1 Motivation
In order to motivate the extensive mapping analysis presented in this chapter, this section starts
with simulation experiments which extend those presented in [DR09a]. Let us consider a stochastic
gradient algorithm of the type (2.8) with a positive definite diagonal matrix step-size, i.e.,

Mk = Dk =
M

diag
i=1
{di(k)} , with di(k) > 0, i ∈ {1, . . . ,M} . (3.1)

In order to normalise the excitation power, the scalar step-size µ(k) > 0 is chosen according to

µ(k) =
µ̄

uH
kDkuk

=
µ̄

‖uk‖2Dk

, (3.2)

with the normalised step-size µ̄ ∈ (0, 2). The fixed reference system and the system model are
represented by linear combiners (cf. Section 2.2.1.1) of length M with parameter vectors w ∈ CM
and ŵk ∈ CM , respectively. Real and imaginary parts of the entries in w are all independently drawn
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from a uniform distribution over interval (0, 1]. Then, the vectors are scaled such that ‖w‖ = 1. No
additive noise is added at the output of the reference system. All simulations in the following two
sections use normalised step-sizes selected from

µ̄ ∈ {0.05, 0.5} . (3.3)

By this, it is possible to observe that the investigated effects are only affected in their intensity by
the (normalised) step-size but not their existence, as long as

0 < µ̄ < 2. (3.4)

The justification for this bound is given further down in Lemma 3.1. If the step-size matrix simplifies
to identity, the here considered algorithm coincides with the normalised least-mean-squares (NLMS)
algorithm. Then, (3.4) resembles the corresponding well known step-size bound that ensures stability
in several senses, depending on the perspective of analysis and chosen ancillary assumptions [NN67;
BA80a; BA80b; Abu82; Ber86; TF88; Hay02; Say03]. Moreover, (3.4) agrees with the step-size
bounds for LMS algorithm with matrix step-sizes stated in [Men73, Theorem 4-4; MKK93; Dut00;
BG02]. Finally, as choice (3.3) guarantees µ̄ < 1, also the local passivity relations in [SR96] and the
`2-stability condition in [RC00] are satisfied.

By numerical experiments, three versions of the algorithm (2.8) with (3.2) are investigated in the
sequel. The three variants are addressed by the superscripts (I) to (III), where

Algorithm I uses a constant step-size matrix D(I), which contains random diagonal entries, drawn
from a uniform distribution on the interval (0, 1].

Algorithm II uses a varying diagonal step-size matrix D(II)
k , which only slightly differs from the

identity matrix. For each iteration, its entries are independently chosen from a uniform
distribution on the interval (0.9, 1].

Algorithm III also employs a varying step-size matrix. Here, for each iteration k, M independent
random values are generated from a constant pdf over the interval (0, 1]. They are then brought
in descending order and used as diagonal elements of the corresponding step-size matrix D(III)

k .
Thus, d(III)1 (k) ≥ d(III)2 (k) ≥ . . . ≥ d(III)M (k).

All of the involved systems have length M = 10. For the three algorithms, two sets of Monte Carlo
simulations are performed, with Navg = 100 runs each. For the first set, the systems are simply
excited by complex-valued random vectors that are drawn from NM

C (0, I) [MS00b]. For the second
set of simulations, for each iteration k, the excitation vector is generated by a w.c. search, i.e., uk is
chosen from a set of Nw.c. = 10 000 random realisations such that parameter error distance ‖w̃k‖ is
maximised. This is a straightforward approach to approximatively maximise the parameter error
increment W (k) in (2.41). Further details on this procedure are described in Section 3.6. Figure 3.1
shows the results in terms of the estimated parameter mismatch (cf. (2.19)). On the left-hand side,
the behaviour with purely random excitation is depicted. Clearly, all of the graphs show converging
behaviour. A steady state is reached due to the limited precision of computation, as no noise v(k) is
added. On the first glance it may irritate that Algorithm I, in Figure 3.1(a), converges in the mean
with a rather poor rate. However, this is not surprising as in the long run, the latter is dictated by the
smallest entry in D(I). Since the M diagonal elements d(I)i are randomly drawn from interval (0, 1],
it is not surprising that the minimal value is likely to be considerably low in magnitude. Note that
especially for the larger step-size, the variance is much larger compared to the other two algorithms.
This is due to the stronger variations of the step-size matrix with respect to the whole ensemble.
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(a) Algorithm I with random excitation.
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(b) Algorithm I with w.c. excitation.
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(c) Algorithm II with random excitation.
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(d) Algorithm II with w.c. excitation.
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(e) Algorithm III with random excitation.
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(f) Algorithm III with w.c. excitation.

µ̄ = 0.05 µ̄ = 0.5

ensemble average 95 %-confidence intervals extremal range

Figure 3.1: Learning behaviour of the three algorithms in terms of their estimated parameter mismatch m(k) (cf. (2.19)),
for the two step-size values in (3.3). The estimates for mean, confidence intervals, and extrema originate from
simulations with 100 Monte Carlo runs.
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Yet, the extrema show that some – or at least one – of the randomly chosen step-size matrices lead
to a learning performance that even outperforms Algorithm II in Figure 3.1(c). The latter has a
step-size matrix similar to identity, and thus, performs comparable to an NLMS algorithm. Finally,
for random excitation, Algorithm III, in Figure 3.1(e), shows an average convergence rate between
Algorithms I and II. As mentioned for Algorithm I, on the long run, the speed of convergence is
dictated by the smallest entry of the step-size matrix. Since the latter is varying over all iterations,
on average it appears to be effectively larger than for Algorithm I.

Let us now move our attention to the right column of Figure 3.1, i.e., the results for the three
algorithms with w.c. excitation. Algorithm I, and III, in Figure 3.1(b) and Figure 3.1(f), respectively,
seem to ensure boundedness, if not even some kind of convergence for the parameter error vector.
Striking is the fact, that Algorithm II – the scheme which for random excitation lead to the best
average convergence rates and a behaviour similar to the NLMS algorithm – now, gives reason to
suspect some kind of diverging behaviour.

Supposing that the w.c. search leads to reliable insight regarding convergence, respectively,
divergence, of the parameter error vector, the intriguing question is what property of the step-size
matrix is the reason for the different behaviours. Comparing Algorithm I and II may tempt to blame
the time-varying nature of D(II)

k . However, as the step-size matrix of Algorithm III also varies with
time, and indeed shows considerably stronger fluctuations of its elements than Algorithm II, the
answer cannot be that simple. In fact, it can be observed – though not presented here – that under
w.c. excitation, the increasing parameter mismatch of Algorithm II persists, even if the fluctuations
of the step-size matrix are further reduced. A glimpse to the solution is given by the remaining
difference between D(II)

k and D(III)
k , which is that the latter keeps its elements in sorted order over

all iterations k.
Summarising, the presented simulation results pose the questions:

1. Does Algorithm II in fact diverge under w.c. excitation?

2. Does the parameter error vector of the other two algorithms actually remain bounded?

3. What exactly makes the difference which decides on boundedness or divergence?

These questions are approached by Sections 3.2 to 3.4. First, Section 3.2 reviews results existing in
literature. Out of these, it consults the three most relevant approaches, in order to find explanations
for the behaviour observed in the afore simulation experiment. Then, Sections 3.3 and 3.4 follow a
novel path to extend insight. By this, the three questions, can be revisited again in Section 3.4.4.

3.2 Related Work
Since gradient type algorithms have been studied for decades now, a wide range of literature is
available on this topic. This section provides a detailed discussion of results relevant to this work.
First, Sections 3.2.1 to 3.2.3 review three tightly related methods and applies them to the simulation
experiment in Section 3.1. After that, Section 3.2.4 gives an overview of works that consider similar
topics.

3.2.1 Condition Ensuring `2-Stability
Gradient type algorithms with positive definite matrix step-size Mk that use update rule (2.8), are
considered in [RC00]. As a first step, it is shown that for a constant step-size matrix, the algorithm
can be mapped to a conventional LMS algorithm. For the general case of varying step-size matrices,
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Figure 3.2: Accumulated matrix deviation SD(k) (cf. (3.5)) for Algorithms II and III. Algorithm I is omitted, as here, the
deviation trivially coincides with zero. Note that the graphs do not depend on the step-size, and are thus
valid for both cases µ̄ ∈ {0.05, 0.5}. Extrema and confidence intervals are included, however, they are too
narrow to be distinguished from the average.

boundedness of the parameter error vector w̃k and convergence of the update error ẽ(k) is basically
tied to finite noise energy and convergence of the accumulated matrix deviation,

SM(k) =

k∑
l=0

∥∥∥M
1
2
l −M

1
2
l+1

∥∥∥, (3.5)

to a finite limit for k →∞. Alternatively, [SR96] derives corresponding local passivity relations and
shows `2-stability for constant step-size matrices. An extension to algorithms with non-Hermitian
fixed step-size matrices is provided in [Rup11a].

Let us see what the just reviewed approach tells us about the algorithms from the simulation
experiment in Section 3.1. Accordingly, Algorithm I is ensured to be `2-stable which – as no noise
at all is added – also implies boundedness of the parameter error vector. For PE (cf. Section 2.2.2),
even convergence can be concluded. Clearly, as step-size matrix D(I) is fixed, the accumulated matrix
deviation in (3.5) is identical to zero. For Algorithms II and III, the situation is completely different.
Both, D(II)

k and D(III)
k , keep changing over all iterations. Not very surprising is the evaluation

of SD(II)(k) and SD(III)(k), depicted in Figure 3.2. Obviously, in either case, it grows unbounded,
entailing that based on this theory, no conclusive statement regarding convergence or stability can
be achieved for Algorithms II and III.

3.2.2 Lyapunov Based Convergence Condition
Stability and convergence of algorithms belonging to the class that here addressed by the term
“asymmetric algorithms”, specifically, for the LMS algorithm with matrix step-size, has been
investigated for decades. One early work with a strong focus on this topic is [Men73]1. Especially,
the deterministic analysis of uniform (asymptotic) stability in the large, respectively, convergence of
1 In [Men73, pp. 199f.], algorithms of the form (2.8) with a step-size matrix different from identity, are referred to as

second-order gradient algorithms instead of the here used term asymmetric algorithms.
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the parameter error vector, presented in Chapter 4 [ibid.] – and specifically Section 4.4.5 [ibid.] –
are closely related to the contents of this chapter. Accordingly, based on the “Second Method of
Lyapunov”, convergence of the parameter error vector towards 0 is ensured almost always2, for a
step-size normalised according to (3.2) and obeying (3.4), if the step-size matrix

• is diagonal, i.e., of the structure in (3.1),

• is positive definite, i.e., di(k) > 0 for i ∈ {1, . . . ,M}, and k ≥ 0,

• contains at least one main diagonal element d̂(k), with index ̂ ∈ {1, . . . ,M}, that shows for all
k ≥ 0, smaller relative fluctuations than the remaining elements, i.e., for i ∈ {1, . . . ,M} \ {̂},

d̂(k + 1)− d̂(k)
d̂(k)

≤ di(k + 1)− di(k)
di(k)

⇔
d̂(k + 1)

d̂(k)
≤ di(k + 1)

di(k)
. (3.6)

From the right-hand side of (3.6), since all the diagonal elements are positive, a direct consequence
is that for any K > 0,

K−1∏
k=0

d̂(k + 1)

d̂(k)
≤

K−1∏
k=0

di(k + 1)

di(k)
⇒

d̂(K)

d̂(0)
≤ di(K)

di(0)
. (3.7)

Hence, also globally, the relative fluctuations of d̂(k) have to be smaller than those of the remaining
di(k).

Again, an interesting point is, what insight this theory provides to the three algorithms in
Section 3.1. As the step-size matrix of Algorithm I is diagonal, positive definite, and constant, it is
trivially found to satisfy all of the above required conditions. Hence, almost always convergence of
its parameter error vector can be concluded. For Algorithm II and III, the step-size matrices are
also diagonal and positive definite. The implications of the third of the above requirement, however,
are not that obvious. For assessment, the data that were collected in the simulation experiments
conducted for Section 3.1, are consulted again. In fact, only one of the two considered normalised
step-sizes µ̄ (cf. (3.2)) has to be taken into account, as both of them satisfy (3.4), and do not further
affect (3.6). The evaluation is done in two steps. First, for each of the 100 Monte Carlos runs and
for each iteration k, index ̂ is detected that locally satisfies (3.6). Moreover, for each Monte Carlo
run, the number of consecutive iterations is determined, for which ̂ does not change – in the sequel
abbreviated by the term run length. As an extension, the whole range of iterations is split up into
10 blocks of the same length 10 000, in order to roughly monitor whether the observed behaviour
changes with progress of iterations. Stacking the individual results for all of these 10 blocks on top
of each other, the histograms depicted in Figure 3.3 are obtained. The height of the histogram bars
shows, in % of all iterations and all Monte Carlo runs, how often each of the dimensions {1, . . . ,M}
coincides with ̂. As the separate Monte Carlo runs are not distinguished, this information implicitly
averages over the whole ensemble and is thus, on its own, only of restricted value. For this reason,
also the maximum run lengths for each of the blocks is shown – and encoded by different colours
and hatching. As a consequence, it is revealed that for Algorithm II, the index ̂ changes at least
after every second iteration, and for Algorithm III, at least after every fifth iteration. Accordingly,
both of them do not satisfy (3.6), which inhibits a conclusive answer regarding their convergence.

2 The additional phrase “almost always” addresses here the fact that permanent orthogonality among the parameter
error vector and the excitation vector causes the algorithm to remain in the same state. In this work, such a situation
is later on precluded by assuming non-stalling adaptation (cf.Assumption 3.1).
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Only a hint may be found by the different statistics that are approximately revealed by the differing
shapes of the two histograms.

3.2.3 Divergence Caused by Non-Persistent Excitation
Of similarly high relevance for the analyses in this chapter is [Set92], which investigates local
exponential stability of gradient type algorithms with memoryless, sign preserving non-linear
modifications of the regression vector and/or the update error. The idea therein is to consider an
auxiliary algorithm that uses recursion (2.18), however, with the mapping matrix Bk replaced by a
sliding average. Accordingly, if the such obtained autonomous algorithm is exponentially stable,
based on the slow time variation lemma [SAJ89, Lemma 3], exponential stability of the original
nonautonomous algorithm can be concluded. In analogy to w.c. excitation considered in this work
(cf. Section 3.3.3), for a non-linear memoryless map among the excitation vector and the regression
vector, the existence of excitation sequences that lead to an increase of the parameter error distance
is stated [Set92, Lemma 4]. This is shown, based on the fact that then, it is always possible to find
excitation sequences that cause the sliding average of the excitation matrix U(K)

M,k in (2.26) to have
at least one eigenvalue with negative real part. As a complement to the results on gradient type
algorithms with memoryless non-linearities, [SAJ89] considers the case of modifications imposed to
the regression vector and/or the update error that are linear but introduce memory.

The rest of this section, studies the insights that this approach provides to Algorithms I–III from
Section 3.1. The evaluation is based on the corresponding simulation data and resorts to the brief
description of PE, presented in Section 2.2.2. Accordingly, special attention has to be given to the
real parts of the eigenvalues of excitation matrix U(K)

D,k . For convenience, the definition of the latter,
found in (2.26), is repeated below3,

U(K)
D,k =

k∑
j=k−K+1

Dju∗
juT

j , (3.8)

where depending on the considered algorithm, the step-size matrix is selected from (cf. Section 3.1)

Dk ∈
{

D(I),D(II)
k ,D(III)

k

}
. (3.9)

In a first step, scope K of the running average in (3.8) is chosen, such that it grows with iteration
step k, i.e., K = k+1. By this, for each iteration step, the average over the whole iteration history is
taken into account. This obviously, does not comply with Definition 2.1, as there, scope K is required
to be constant. Nevertheless, without knowledge of an adequate choice, this seems reasonable for a
first approach. Figure 3.4 depicts the corresponding results, for all of the three algorithms and for
both types of excitation – random and w.c. excitation. However, for reasons of visual clarity, only
step-size µ̄ = 0.5 is included, for the other step-size value, the results do not show any qualitatively
important difference. The individual graphs represent the real parts of the eigenvalues of excitation
matrix U(K)

D,k , sorted such that

Re
{
λ1

(
U(K)

D,k

)}
≥ Re

{
λ2

(
U(K)

D,k

)}
≥ · · ·Re

{
λM

(
U(K)

D,k

)}
. (3.10)

In the left column of Figure 3.4, representing the case of random excitation, all such real parts
3 In contrast to (2.26), the step-size matrix in (3.8) is denoted by Dk, as in this context, the latter is known to be of

diagonal structure.
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(a) Algorithm II with w.c. excitation.
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(b) Algorithm III with w.c. excitation.

22 maximum run length of 2 33 maximum run length of 3
44 maximum run length of 4 55 maximum run length of 5

Figure 3.3: Histograms showing the occurrences of index ̂ ∈ {1, . . . ,M} in (3.6), in percent of all N = 100 000 iterations,
and all Navg = 100 Monte Carlo runs. The iteration rage is split up into 10 consecutive blocks of length 10 000
each, for which the results are stacked upon each other in the histogram. The numbers inside the individual
histogram bars correspond to the maximum run length for which ̂ = i. (For bars of insufficient height, the
numbers are suppressed.)
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(a) Algorithm I with random excitation.
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(b) Algorithm I with w.c. excitation.
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(c) Algorithm II with random excitation.
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(d) Algorithm II with w.c. excitation.
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(e) Algorithm III with random excitation.
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(f) Algorithm III with w.c. excitation.
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Figure 3.4: Real part of the eigenvalues of excitation matrix U(k+1)
D,k defined in (2.26). Since the superscript grows with

iteration k, the matrix actually incorporates the whole history of excitation, instead of only a restricted
moving average. For reasons of clarity, only the results for µ̄ = 0.5 are depicted.
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(a) Algorithm I with w.c. excitation – zoom level 1.
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(b) Algorithm I with w.c. excitation – zoom level 2.
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(c) Algorithm II with w.c. excitation – zoom level 1.
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(d) Algorithm II with w.c. excitation – zoom level 2. Dif-
ferently scaled abscissa!
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(e) Algorithm III with w.c. excitation – zoom level 1.
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(f) Algorithm III with w.c. excitation – zoom level 2.
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Figure 3.5: Minimum real part of the eigenvalues of excitation matrix U(k+1)
D,k defined in (2.26). The graphs show two

different levels of magnification, omitting all eigenvalues with a real part larger than that of λ10(U(K)
D,k ). Here,

both step-sizes, µ̄ ∈ {0.05, 0.5}, are considered again.
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of Algorithm II and III are inevitably positive. Hence, PE is ensured. For Algorithm I, this is
visually hard to decide, however, anticipating the observation found in Figure 3.5 further down, the
corresponding real parts are also verified to be larger than zero. The right-hand side, which contains
the results for w.c. excitation, reveals that all but the last eigenvalues have positive real parts. In
order to decide on the remaining eigenvalues λ10(U(K)

D,k), for all algorithms a more detailed look is
required.

Figure 3.5 presents two scales of magnification. As now the number of depicted graphs has reduced
noteworthy, the second step-size, µ̄ = 0.05, is temporarily included again for reference. The right
column finally reveals the desired insight. As anticipated before, for Algorithm I all of the respective
eigenvalues are in the right complex half-plane. The same applies to Algorithm III. Hence, both
of them are persistently excited. For Algorithm II, for the larger step-size, clearly, a negative real
part occurs. In case of the larger step-size, however, after a short period of approximately 14 000
iterations, for all Monte Carlo runs, the real parts have turned from negative to positive, and
seem to proceed with this trend of growth. This observation hints us with a possible choice of a
constant value for scope K, in order to evaluate the actual running average in (3.8). Hence, as
a final step of evaluation, the latter expression is calculated for three different values of K, i.e.,
K ∈ {10 000, 15 000, 20 000}. Figure 3.64 shows the results with w.c. excitation and normalised
step-size µ̄ = 0.5. For reference, it additionally includes the results obtained for Algorithm III.
Accordingly, it can be identified that for all Monte Carlo runs, Algorithm II is persistently excited
for K ≥ 20 000. For Algorithm III this holds for all three values of K.

This evaluation reveals that the diverging effect observed for Algorithm II under w.c. excitation,
observable in Figure 3.1(d), is for step-size µ̄ = 0.5 not caused by insufficient persistency of excitation.
For the second step-size µ̄ = 0.05, the graphs are not that conclusive. However, it is expected that
the same behaviour occurs. Yet, due to the smaller step-size, with a considerably lower rate of
progress.

3.2.4 Further Related Methods and Results
The SR-LMS [Luc65, p. 557; Mos70; CM80] uses a regression vector that only contains {±1}, as its
elements are obtained by reducing the individual entries of the excitation vector to their signs. This
algorithm is a well known and conceptually simple member out of the class of the here considered
asymmetric algorithms. Due to its low computational complexity, it has been focus of several works
that also point out the existence of excitation sequences that provoke divergence of the parameter
error vector. Specifically, [CM81] briefly mentions geometric arguments that are related to the
ones visualised in Figure 3.8 further down. [SMA+88, Theorem 2] confirms this insight based on
the theory of persistence of excitation from a deterministic as well as from a stochastic point of
view. In his correspondence to [CM81], [Ber85] argues that in a Gaussian regime convergence of
the parameter error vector is ensured. [BKS93] extends the stochastic analysis by considering the
impact of the pdf that underlies the excitation process.

A problem that is also closely related to the considerations in this chapter is the stability of
discrete-time switched linear systems [Ant00; Mar06; LA09]. In this context, again a recursion of
the form in (2.18) is studied. Then, w̃k does not refer to a parameter error vector but instead, it
has the meaning of a state vector. Mapping matrix Bk varies with iteration index k, however, it can
only assume one out of a finite set of discrete modes. The mapping of each of these modes to the
respective iteration instant, i.e., the selection of the active mode, is determined by a switching signal.

4 Note that in both subfigures, visualisation of the maxima is suppressed. This is done in order not to overload them and
since the maxima are not relevant in this context.
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(a) Algorithm II with w.c. excitation.
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(b) Algorithm III with w.c. excitation.
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Figure 3.6: Graphical evaluation of persistency of excitation under w.c. excitation, for Algorithms II and III of the
simulation experiments in Section 3.1. Depicted is the eigenvalue of excitation matrix U(K)

D,k (cf. (3.8)) with
smallest real part, for the three scopes K ∈ {10 000, 15 000, 20 000}. In all cases, the step-size is set to µ̄ = 0.5.
In contrast to other figures, here, only the ensemble minima are included. Maxima are excluded, for reasons of
visual clarity, and since they do not provide any further insight with respect to PE.

As pointed out in [LA09], also in this situation, divergence of the state vector may occur, even if all
autonomous recursions that correspond to the individual modes of Bk are exponentially stable. In
this context, one approach of stability analysis investigates the spectral radius of all possible matrix
products that can be composed by selecting a certain number of modes [LA05; LA09]. Another
method considers a modified recursion, where the mapping matrix can assume any value out of
the convex hull that contains all of the original discrete modes. Either of these stability analysis
does not seem applicable to the algorithms that are focussed in this chapter, as here, infinite many
non-discrete modes exist.

For specific algorithms, belonging to the class of asymmetric algorithms, several studies on
convergence have been pursued. Most of them are based on statistical considerations, e.g., [MKK93;
Dut00] for the PNLMS algorithm with fixed and varying step-size matrix, respectively, and [dBBC05;
dBB09] for the PAP algorithm. A deterministic analysis of the latter, in terms of `2-stability, can be
found in [Rup11b]. Moreover, [RS95; RS96c] investigate the Gauß-Newton algorithm, respectively,
the RLS algorithm, and derive conditions for `2-stability based on the small gain theorem.

A topic that is related to expanding, respectively, diverging behaviour of the parameter error
vector, studied in this chapter, is addressed in literature by the term “parameter drift” [GMW82;
Cio87; SLJB86; LSR93; Nas99, pp. 211ff.; Say03, p. 428]. For the LMS algorithm – without matrix
step-size – this phenomenon is observed only for specific excitation sequences and may be caused
due to several reasons,

1. finite precision and related bias due to non-odd quantiser functions [GMW82; Cio87; Nas99],

2. dynamics of the reference system that are not covered by the system model [RVAS81; IK84],

3. positive feedback in the error path, e.g., if the system model is an infinite impulse response (IIR)
filter and the feedback filter component does not satisfy the strict positive realness (SPR)
condition [LSR93; see, e.g., SK95, for details on SPR],
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4. the existence of biased additive noise [Nas99], or even unbiased and finite energy noise,
if the excitation sequence contains certain components that decay faster than the noise
sequence [SLJB86].

What is remarkable and pointed out by [GMW82, p. 1818; SLJB86, p. 874; LSR93, p. 585], is the
fact that even if parameter drift occurs and tends towards infinity, this is not necessarily observable
in the a priori error, which in fact still may converge towards zero, respectively, a steady state power
that agrees with the present noise level.

The expanding behaviour of the parameter error vector for asymmetric algorithms show some
distinguishing differences to the above listed phenomena that are observed in the context of parameter
drift:

ad 1. As the derivations in this chapter are all obtained analytically, effects caused by finite precision
effects can be neglected. The obtained statements are in fact independent from any numerical
representation.

ad 2. One of the strong assumptions adopted in this work, is that the structure of the chosen system
model perfectly agrees with the actual structure of the reference system (cf. Section 2.1). Thus,
the existence of unmodelled dynamics can be discarded.

ad 3. The here analysed gradient type algorithms are all assumed to operate on systems that do not
introduce any feedback. Hence, e.g., adaptive IIR filters based on either the equation error
method, or the output error method [Hay02] are not covered. This entails that here, a positive
feedback in the error path cannot occur.

ad 4. Most of the here obtained results assume the absence of any noise. Note that also the simulation
experiments in Section 3.1 exclude any disturbances. Consequently, parameter drift phenomena
that are caused by noise cannot arise.

It is emphasised that at the time of this being written, it is not completely resolved how agreement
can be established among the divergence behaviour observed in this chapter and the conditions
on PE in [SLJB86; Set92]. Yet there is evidence that insufficient excitation – or any of the other
applicable parameter drift mechanism described above – cannot completely explain the occurrence
of the here studied effects. This becomes clear as here, the parameter error distance is found to
grow exponentially (cf., e.g., Figure 3.1(d)), whereas parameter drift due to insufficient excitation or
additive noise, typically leads to increase rates that are much lower [SLJB86; Nas99].

3.3 Mapping Matrix Bk of Asymmetric Algorithms
This section, investigates the eigenvalues, the singular values, and the singular vectors of mapping
matrix Bk ∈ CM×M in (2.16) that is specific for asymmetric algorithms. This establishes the basis
for the rest of this chapter, which thoroughly investigates internal divergence provoking mechanisms
of asymmetric algorithms, based on geometric considerations. At this point, no specific relation
among the excitation vector and the regression vector is assumed. It is emphasised that the obtained
findings do not depend on any step-size matrix as introduced in (2.9), and as it is the case in
Section 3.1. Existence of a step-size matrix will be taken into account from Section 3.4.2 on.
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Initially, for reasons of convenience, effective step-size α(k) ∈ C and correlation coefficient ρ(k) ∈ C,
0 ≤ |ρ(k)| ≤ 1 are introduced according to

α(k) , µ(k)‖uk‖‖xk‖, (3.11)

ρ(k) ,
xT
ku∗

k

‖uk‖‖xk‖
, (3.12)

together with the complex argument amongst them,

ϕαρ∗(k) , arc (α(k)ρ∗(k)) = arc
(
α(k)

ρ(k)

)
. (3.13)

3.3.1 Eigenvalues of Mapping Matrix Bk

From (2.16) it can be directly verified that one eigenvector q1,k of mapping matrix Bk is given by
the direction of x∗

k, corresponding to the eigenvalue

λ1(k) = 1− µ(k)uT
kx∗

k = 1− α(k)ρ∗(k). (3.14)

The remaining M − 1 eigenvectors qi,k ⊥ x∗
k, i = 2, . . . ,M span the eigenspace belonging to

eigenvalue λ2(k) = 1 that has (algebraic and geometric) multiplicity M − 1 [Bit84]. Hence, due to
the structure of Bk, for M > 1, its spectral radius can never be smaller than one. However, as given
in the following lemma, it can at least be ensured not to exceed a value of one.

Lemma 3.1: Condition for a Unit Spectral Radius, i.e., S(Bk) = 1

For M > 1, the spectral radius of mapping matrix Bk in (2.16) is equal to one, iff

|ϕαρ∗(k)| ≤
π

2
, and |α(k)| |ρ(k)| ≤ 2 cos (ϕαρ∗(k)) . (3.15)

Proof. Since all eigenvalues of Bk are equal to one except from λ1(k), bounding its magnitude by
one is necessary and sufficient for a spectral radius of one. The conditions in (3.15) are obtained
from |λ1(k)| = |1− α(k)ρ∗(k)| ≤ 1.

As discussed in Section 2.3.2, under the assumption of a constant mapping matrix, i.e., Bk ≡ B,
Lemma 3.1 does not ensure convergence but it at least excludes the possibility of an unbounded growth
of the parameter error vector in (2.18). Note that the conditions in (3.15) cause product α(k)ρ∗(k) to
be contained inside, or on, a circle in the complex plane, with radius 2, centred at 1 + 0. Specifically,
in the common case of a real-valued positive step-size, this entails that the correlation coefficient
has to be non-negative, or equivalently – from a geometric perspective – that the angle enclosed by
the excitation vector and the regression vector is required to be non-obtuse.

Note that Lemma 3.1 is assumed to be satisfied throughout the whole chapter. This makes sense,
as the goal here is the investigation of hidden diverging behaviour. This in turn would be a trivial
task if Lemma 3.1 is violated, as then, divergence is guaranteed.

3.3.2 Singular Value Decomposition of Bk

This section resembles and extends the findings of [DR09a]. Below, the notation introduced in
Section 2.3.1, and especially, (2.28), is adopted. Moreover, for the sake of readability, iteration
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index k is suppressed. The general structure of the mapping matrix for asymmetric algorithm in
(2.16) leads to the following expressions for the Gramian of B, respectively its Hermitian,

BHB = I + |µ|2 ‖x‖2 u∗uT −
(
µ∗u∗xT + µx∗uT) , (3.16)

BBH = I + |µ|2 ‖u‖2 x∗xT −
(
µ∗u∗xT + µx∗uT) . (3.17)

Obviously, any vector v orthogonal to the hyperplane spanned by the two vectors x∗ and u∗, i.e.,

v ⊥ Su∗,x∗ , with Su∗,x∗ , span {x∗,u∗} , (3.18)
leads to

BHBv = BBHv = v, (3.19)

which entails that 1 is singular value of B. More precisely, since the orthogonal complement S⊥u∗,x∗

of Su∗,x∗ has dimension M − 2, it is always possible to identify M − 2 mutually orthogonal vectors
vi ∈ S⊥u∗,x∗ that satisfy (3.19). Obviously, such a set of vectors forms an orthonormal basis for S⊥u∗,x∗ .
From (3.19), it also becomes clear that if v is a right-sided singular vector of B, it is identical to the
corresponding left-sided singular vector of B, and vice versa. Consequently, matrix B has one unit
singular value with multiplicity M − 2 and singular vectors – both, left and right-sided – contained
in S⊥u∗,x∗ , i.e.,

σi = 1, ri= ti ∈ S⊥u∗,x∗ ⊥ Su∗,x∗ , i ∈ {3, ...,M} , (3.20)

where, wo.l.o.g., it is assumed that the corresponding indices cover the last M −2 values of the whole
index range. Note that further down, in the context of (3.30), this assumption is found to slightly
violate the convention introduced in (2.29). However, as the latter is not of central importance in
this section, the level of confusion should be tolerable.

The two remaining singular vectors, r1 and r2, respectively, t1 and t2, corresponding to singular
values σ1 and σ2, are all completely contained in Su∗,x∗ . Thus, they can be expressed as a linear
combination of unit vectors eu and ex, having the direction as u and x, respectively, i.e.,

ri = aie∗
u + bie∗

x, ti = b∗i e∗
u + a∗i e∗

x, (3.21)

with i ∈ {1, 2}, and the complex-valued coefficients ai, bi that typically both depend on the here
suppressed iteration index k. The similar structure of the left and right-sided singular vectors in
(3.21), is a direct consequence of the fact that (3.17) can be obtained from (3.16) by simply swapping
u and x, and vice versa. Since BBHri = σ2i ri has to be true for arbitrary u and x, and since
‖ri‖ , 1 – ensuring ri 6= 0 – with (3.16), a comparison of coefficients yields

σ2i = 1 +
|α|2

2
− Re {αρ∗}+ (−1)i−1

√(
|α|2
2
− Re {αρ∗}

)2

+ |α|2 (1− |ρ|2), (3.22)

ai =
|α| exp

(
12 arc (ci)

)√(
1− σ2i

)2
+ |α|2 (1− |ρ|2)

, (3.23)

bi = aici, (3.24)

Erratum 3
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with

ci ,
1− σ2i
α∗ − ρ. (3.25)

In the real-valued case, the term 1
2 arc (ci) in (3.23) assumes either5 0 or π

2 . Hence, in the latter case,
the above expressions would result in complex-valued singular vectors. This can be circumvented, if
for ci < 0, the singular vectors are properly phase-compensated according to (note that in any case,
|ci| = σi)

ri = |ai| (e∗
u − σie∗

x) , ti = |ai| (σie∗
u − e∗

x) . (3.27)

The justification for this modification is based on the general structure of the SVD in (2.28). As
with a diagonal matrix of the form

Ψ ,
M

diag
i=1
{exp (ψi)} , (3.28)

containing arbitrary angles ψi ∈ (−π, π] – which may depend on the here suppressed iteration
index k – the SVD in (2.28) leads to [HJ13]

B = RΣTH = RΨΨH︸ ︷︷ ︸
I

ΣTH = RΨΣΨHTH = RΨ︸︷︷︸
R′

Σ(TΨ︸︷︷︸
T′

)H = R′ΣT′H. (3.29)

Thus, the phase-rotated unitary matrices R′ and T′ are also adequate modal matrices for the SVD.

Note that, wo.l.o.g., (3.22) defines the singular values, σ1 and σ2, to be obtained by the positive
and the negative square-root, respectively. It can easily be verified that this entails

σ1 ≥ σj = 1 ≥ σ2, with j = 3, . . . ,M, (3.30)

which allows to identify that σ1 and σ2 coincide with the maximum and the minimum singular value,
respectively, i.e., σmax = σ1 and σmin = σ2. As already pointed out afore, this violates the index
ordering introduced in (2.29). However, σ1 ≥ σ2 still holds and as in the sequel, the unit singular
values are only of peripheral interest, the here chosen indexing sacrifices consistency in favour of
readability.

The dependency of the two non-unit singular values, given by (3.22), with respect to the effective
step-size, the correlation coefficient, and complex argument ϕαρ∗(k) is discussed in Appendix A.
Here, the results are condensed in the following two statements, Theorem 3.1 and Lemma 3.2, which
specify their overall extremal ratings and their dependency on the complex argument ϕαρ∗(k).

5 It can be verified that for α ∈ R0+ and ρ ∈ [−1, 1], c1 = −σ1 ≤ 0, and

c2 =

{
σ2 ≥ 0; for αρ ≤ 1

−σ2 ≤ 0; for αρ > 1
. (3.26)
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Bounds for the two Non-Unit Singular Values of Bk

Theorem 3.1: Bounds for the two Non-Unit Singular Values of Bk

With the magnitude of correlation coefficient ρ(k) in (3.12), (inherently) bounded by
0 ≤ |ρ(k)| ≤ 1, and an arbitrary effective step-size α(k) ∈ C, the two non-unit singular
values, σ1 (k) and σ2 (k), specified by (3.22) are in any case bounded from above by

σ̂1(k) , max
|ρ(k)|∈[0,1],

ϕαρ∗ (k)∈[−π,π]

{σ1 (k)} = σ1 (k)
∣∣∣|ρ(k)|=1,ϕαρ∗ (k)=π

= 1 + |α(k)| , (3.31)

σ̂2(k) , max
|ρ(k)|∈[0,1],

ϕαρ∗ (k)∈[−π,π]

{σ2 (k)} = σ2 (k)
∣∣∣|ρ(k)|=1,ϕαρ∗ (k)=π

= 1, (3.32)

and bounded from below by

σ̌1(k) , min
|ρ(k)|∈[0,1],

ϕαρ∗ (k)∈[−π,π]

{σ1 (k)} = σ1 (k)
∣∣∣|ρ(k)|=1,ϕαρ∗ (k)=0

=

{
1; |α(k)| ≤ 2

|α(k)| − 1; |α(k)| > 2
,

(3.33)

σ̌2(k) , min
|ρ(k)|∈[0,1],

ϕαρ∗ (k)∈[−π,π]

{σ2 (k)} =


σ2(k)

∣∣∣|ρ(k)|=1,ϕαρ∗ (k)=0
= 1− |α(k)| ; |α(k)| ≤ 1

σ2(k)
∣∣∣|ρ(k)|= 1

|α(k)| ,ϕαρ∗ (k)=0 = 0; |α(k)| > 1
, (3.34)

with complex argument ϕαρ∗(k) defined in (3.13).

Proof. See Appendix A.3 for a sketched proof.

Dependency of the two Non-Unit Singular Values on ϕαρ∗(k)
Lemma 3.2: Dependency of the two Non-Unit Singular Values on ϕαρ∗(k)

Assuming that the two non-unit singular values, σi (k), i ∈ {1, 2}, are given for a certain
pair 〈α(k), ρ(k)〉 of the effective step-size and the correlation coefficient. Then, for an altern-
ative pair 〈α′(k), ρ′(k)〉, which preserves magnitudes, i.e., |α′(k)| = |α(k)| and |ρ′(k)| = |ρ(k)|,
but leads to a complex argument ϕα′ρ′∗(k) according to (3.13) that is larger in magnitude,
i.e., 0 ≤ |ϕαρ∗(k)| <

∣∣ϕα′ρ′∗(k)
∣∣ ≤ π, the corresponding alternative singular values satisfy

σ
′
i (k) > σi (k) . (3.35)

Proof. The proof is given in Appendix A.2.3.

3.3.3 Meaning of the Worst Case
In Section 2.3.3, (2.42), respectively, (2.43), state the condition which has to hold in order to obtain
an increasing parameter error distance. In this work, such a situation is briefly referred to as worst
case (w.c.). The aim of this section is to take a more detailed look at this situation, and to clarify
the meaning of the term “worst case”. Adopting the notion of [Mar06], the situation of a w.c. can
be compared with the recursion – out of all recursions of type (2.18) that can be generated given
certain domains for the excitation sequence and the sequence of regression vectors – that follows



45 3.4 Mapping Analysis of Asymmetric Algorithms

the worst trajectory in terms of the parameter error vector, given an initial value w̃−1. With the
results achieved for the SVD of the mapping matrix in Section 3.3.2, it is clear that for asymmetric
algorithms, (2.43) simplifies to [DR09a]

(σ21 (k)− 1)
∣∣∣tH

1,kw̃k−1

∣∣∣2 > (1− σ22 (k))
∣∣∣tH

2,kw̃k−1

∣∣∣2 , (3.36)

where the relevant w̃′
i (k) = tH

i,kw̃k−1 have been reinserted. Clearly, for given σ1 (k) and σ2 (k),
the absolute w.c., in the sense that parameter error increment W (k) in (2.42), respectively, (3.36),
is maximised, occurs if w̃k−1 ‖ t1,k. Note however, that the non-unit singular values, as well as
their corresponding singular vectors, are a function of the excitation and the regression vector. In
a practical situation, typically, an a priori parameter error vector w̃k−1 is given as result of the
previous iteration. Then, in the context of a w.c. analysis, the goal is to find the combination
of uk and xk that maximises (2.42). Of course, contrarily one may also be interested in showing
that no such pair exists. Especially, in the common case of a regression vector that is related to
the excitation vector by a step-size matrix as it is given in (2.9), i.e., xk = M∗

kuk, the singular
values and vectors depend on uk in a strongly non-linear way. Consequently, finding the uk that
actually maximises (3.36) for a given w̃k−1, is rather involved and in general only accessible to
numerical methods. For this reason, the term w.c. is here used in a looser meaning, as it refers
to any situation for which (2.42), respectively, (2.43), is satisfied. Section 3.5 develops methods
that allow to analytically identify such w.c. excitation vectors. Section 3.6 in turn approaches this
problem numerically and proposes efficient search algorithms in order to find them.

3.4 Mapping Analysis of Asymmetric Algorithms
After raising the question about the reasons for hidden divergence that can be observed in the
simulation experiments of Section 3.1, the discussion of existing literature in Section 3.2 indicated
that still only a partial understanding of the observed effects is available. Then, Section 3.3 studied
the characteristics of the mapping matrix of asymmetric algorithms and revealed that this matrix
seems to inherently introduce the risk of an increasing parameter error distance. As a consequence,
this section continues with the aim to develop novel theoretical insights in order to extend the
knowledge about the convergence behaviour of asymmetric algorithms. First, a brief overview, in
conjunction with Figure 3.7, is provided facilitate orientation.

Section 3.4.1 starts with an investigation of the mapping mechanisms that can be observed
for asymmetric algorithms under w.c. excitation. This is done from the most general point of
view, meaning that the excitation vector and the regression vector are assumed to be completely
independent. After this, we will know about certain directions of the parameter error vector that are
ensured to be increased in length by mapping matrix B (cf. Lemma 3.4), as well as about situations
which inhibit any growth of the parameter error distance (cf. Lemma 3.6). Also a first insight to the
direction of change is achieved (cf. Lemma 3.5).

As the point of view adopted by Section 3.4.1, which assumes the regression vector to be completely
independent from the excitation vector, is hardly the case in practice, Section 3.4.2 takes the next
step and considers the typical case of a step-size matrix that imposes a linear dependence among the
latter two vectors. The first two formal statements (Lemmas 3.7 and 3.8) establish a relation among
(rather) general step-size matrices and more specific positive definite diagonal step-size matrices.
By this it is clarified if, and how, results valid for the latter case, can be applied to gain insight for
the primer. Additionally, Lemma 3.9 points a very general mapping behaviour that holds for any
normal matrix. This will be important in Section 3.4.3 to analyse the trajectory of the parameter
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Figure 3.7: Overview over the statements derived in this Section 3.3, together with their dependencies.

error vector for an algorithm under w.c. excitation.
Section 3.4.2 paves the way to justify the assumption of a positive definite diagonal step-size

matrix. This in turn gives access to a set of conclusive insights that altogether lead to Theorems 3.2
and 3.3 in Section 3.4.4. In brief, Lemma 3.11 shows in which cases, a growth of the parameter error
distance is impossible. It can be considered as a specialised version of Lemma 3.6. Lemmas 3.12
and 3.13 are important to assess the trajectory that is under w.c. conditions, followed by the
parameter error vector. Lemma 3.14 and Theorem 3.2 identify those directions of the parameter
error vector, for which an increase of the parameter error distance can occur.

Finally, the results from Sections 3.4.1 to 3.4.3 are condensed in Section 3.4.4. There, Theorem 3.2
comes to the conclusion that a fixed matrix step-size prohibits the existence of hidden convergence.
This result is already known [SR96; RC00], yet to the knowledge of the author, the presented
approach is new and provides further understanding of gradient type algorithms with matrix step-
size. In contrast, no comparable results seem to exist with respect to Theorem 3.3. The latter
provides a necessary condition for the existence of hidden divergence, which additionally gives insight
what characteristics practical step-size matrices should not have. By this, eventually, the crucial
differences among the three algorithms considered in Section 3.1 can be carved out.

3.4.1 Independent Regression Vector
In this section, a detailed analysis of the local convergence behaviour for the gradient type algorithm
in (2.17) is presented. At this point, no specific assumptions regarding the relation among the
excitation vector and the regression vector are made. Contrarily, they are assumed to be completely
independent. Restrictions induced by a step-size matrix are deferred to Section 3.4.2. Nevertheless,
in both sections, argumentation is based on the geometric mapping mechanisms happening inside
the M -dimensional space – or an orthogonal projections of it – that contains the parameter error
vector. The analysis is tightly related to the condition for local growth (2.43) in Section 2.3.3. Thus,
let us start with the parameter error increment W (k) defined in (2.41), tailored to the specific form
of the noiseless update equation (2.17),

W (k) = |µk|2 ‖xk‖2
∣∣w̃T

k−1uk
∣∣2 − 2Re

{
µk
(
w̃T
k−1xk

)∗ (w̃T
k−1uk

)}
. (3.37)
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With effective step-size α(k) from (3.11), and unit vectors, euk
and exk

, that correspond to excitation
vector uk and regression vector xk, respectively, (3.37) is equivalent to

W (k) = |α(k)|2
∣∣w̃T

k−1euk

∣∣2 − 2Re
{
α(k)

(
w̃T
k−1exk

)∗ (w̃T
k−1euk

)}
. (3.38)

Clearly, for α(k) = 0 or w̃T
k−1euk

= 0, W (k) = 0. Therefore, we continue with the constraint of
non-stalling adaptation given in the following assumption.

Non-Stalling Update Conditions
Assumption 3.1: Non-Stalling Update Conditions

If the effective step-size is different from zero, and the excitation vector is not perfectly aligned
with the parameter error vector, i.e.,

α(k) 6= 0, and w̃T
k−1euk

6= 0, (3.39)

parameter error increment W (k) in (3.37) and (3.38), does not trivially vanish.

Under these restrictions, (3.38) can be rewritten as

W (k) = |α(k)|2
∣∣w̃T

k−1euk

∣∣2 [1− 2Re
{

w̃T
k−1exk

α(k) w̃T
k−1euk

}]
, (3.40)

and the following lemma can be formulated, which is of central importance throughout this section.

Condition for Expanding Worst Case Behaviour
Lemma 3.3: Condition for Expanding Worst Case Behaviour

The mapping in (2.17) leads to an increase of parameter error distance ‖w̃k‖ iff

W (k) = |α(k)|2
∣∣w̃T

k−1euk

∣∣2 − 2Re
{
α(k)

(
w̃T
k−1euk

) (
w̃T
k−1exk

)∗}
> 0, (3.41)

or equivalently, for non-stalling adaptation (cf. Assumption 3.1), if

Re
{

w̃T
k−1exk

α(k) w̃T
k−1euk

}
<

1

2
. (3.42)

Section 3.3.2 shows that mapping matrix Bk for the here considered gradient type algorithm in (2.16),
has exactly one singular value σ1 (k) ≥ 1, one singular value σ2 (k) ≤ 1, and M − 2 unit singular
values. Let us assume that the algorithm arrived at iteration k and that the current a priori
parameter error vector is in a certain but arbitrary state w̃k−1. Knowing that for (3.39), the
maximum singular value is always larger than one, the question is whether in any case, a pair uk
and xk can be found such that the condition in Lemma 3.3 is satisfied. Before a rigorous statement
of existence is given in Lemma 3.4, a less formal thought experiment is presented.

Contemplate, an excitation vector and a regression vector,

u′
k = Vkuk, x′

k = Vkxk, (3.43)

which are both arbitrary up to the not yet justified fact that they are related to uk and xk by some
unitary matrix Vk ∈ CM×M . Due to unitary invariance of the Euclidean norm [HJ13, Sec. 5.2],
with (3.11) and (3.12), the corresponding effective step-size α′(k) and correlation coefficient ρ′(k),



Chapter 3 Asymmetric Gradient Type Algorithms 48

are obtained as

α′(k) = µ(k)
∥∥u′

k

∥∥∥∥x′
k

∥∥ = µ(k) ‖Vkuk‖ ‖Vkxk‖ = µ(k) ‖uk‖ ‖xk‖ = α(k) (3.44)

ρ′(k) =
x′T
k u′∗

k∥∥u′
k

∥∥∥∥x′
k

∥∥ =
xT
kVT

kV∗
ku∗

k

‖Vkuk‖ ‖Vkxk‖
=

xT
ku∗

k

‖uk‖ ‖xk‖
= ρ(k). (3.45)

As found in Section 3.3.2, the singular values – and also the eigenvalues – of Bk are completely
determined by ρ(k) and α(k). Hence, (3.44) and (3.45) show their invariance with respect to a
rotation of uk and xk by an arbitrary unitary matrix Vk. Furthermore,

B′
k = I− µ(k)x′∗

k u′T
k = I− µ(k)V∗

kx∗
kuT

kVT
k = V∗

k

[
I− µ(k)x∗

kuT
k

]
VT
k = V∗

kBkVT
k , (3.46)

and with (2.28), the SVD of B′
k is identified as

B′
k = R′

kΣkT′
k

H
= V∗

kRkΣkTH
kVT

k ⇒ Rk = VT
kR′

k, Tk = VT
kT′

k. (3.47)

Thus, starting with some vectors u′
k and x′

k an intermediate mapping matrix B′
k can be obtained.

Performing the SVD, yields matrix T′
k of its right-sided singular vectors. If then, a unitary matrix Vk

is chosen such that its first column coincides with the complex conjugate of the singular vector t′1,k,
then

T′
k

HV∗
kw̃k−1 = ‖w̃k−1‖ e1 ⇒ V∗

kw̃k−1 = ‖w̃k−1‖ t′1,k, (3.48)

where e1 is the first basis vector of the underlying Cartesian coordinate system. Hence, under
constraint (3.39) which ensures σ1(k) > 1 (cf. Section 3.3.2), mapping matrix Bk obtained for the
original vectors uk = VH

ku′
k and xk = VH

kx′
k in (3.43), leads to

‖w̃k‖ = ‖Bkw̃k−1‖ = σ1(k) ‖w̃k−1‖ > ‖w̃k−1‖ ⇒W (k) > 0. (3.49)

As it is always possible to choose Vk according to (3.48), the above derivation allows to conclude
that if the regression vector can be independently chosen from the excitation vector, W (k) > 0 is
always achievable.

In practical settings, such a complete independence will never be the case. Then, (3.48) may
barely be achievable. However, as Section 3.3 has shown, Bk has only one singular value, σ2(k),
that is less than one. Accordingly, W (k) > 0 still holds as long, as w̃k−1 6⊥ t1,k and w̃k−1 ⊥ t2,k.
With this objective, (3.48) modifies to the more relaxed requirements

t′H1,kV∗
kw̃k−1 6= 0, and t′H2,kV∗

kw̃k−1 = 0. (3.50)

For practical gradient type algorithms, (3.50) is much more likely to occur than (3.48). Finally, it
should be noted that (3.50) still does not allow to derive all pairs 〈uk,xk〉 that satisfy condition
(2.43) for a positive parameter error increment. This further extension is skipped here, as it does not
provide any further understanding of the underlying mechanisms. Instead, the just found insights
are condensed in the following lemma.

Expanding Behaviour for Unconstrained uk ∦ xk
Lemma 3.4: Expanding Behaviour for Unconstrained uk ∦ xk

Assuming non-stalling adaptation (cf. Assumption 3.1), then, inequalities (3.41) and (3.42)
have at least one solution, if uk and xk are not in parallel and can be chosen independently.

Proof. See Appendix D.1.1.



49 3.4 Mapping Analysis of Asymmetric Algorithms

If the parameter error increment W (k) is positive, i.e., Lemma 3.3 holds, it is additionally possible
to gain insight how the mapping by Bk influences the direction of the parameter error vector. This
knowledge is expressed in the next lemma, which will prove useful further down, as it tells us in
simple terms that under w.c. excitation, the parameter error vector is attracted by the regression
vector and repelled by the excitation vector.

Direction of Expansion of the Parameter Error Vector
Lemma 3.5: Direction of Expansion of the Parameter Error Vector

If the conditions required by Lemmas 3.1 and 3.3 are satisfied, then, the (expanding) mapping
w̃k = Bkw̃k−1 turns the parameter error vector w̃k−1 away from the complex conjugate u∗

k of
the excitation vector and towards the complex conjugate x∗

k of the regression vector.

Proof. See Appendix D.1.2.

Similarly important to the statement of Lemma 3.5, is the fact that parallelism of the excitation
vector and the regression vector renders the conditions of Lemma 3.3 unreachable. Hence, it inhibits
a growth of the parameter error vector, which is the gist of the following lemma.

Non-Expanding Behaviour for uk ‖ xk, i.e., |ρ(k)| = 1
Lemma 3.6: Non-Expanding Behaviour for uk ‖ xk, i.e., |ρ(k)| = 1

For |ρ(k)| = 1, the parameter error distance can never increase if (3.15) is satisfied.

Proof. See Appendix D.1.3.

3.4.2 Normal Step-Size Matrix
The investigations in the previous section, focussed on the case that the regression vector is completely
independent from the excitation vector. This section, in contrast, assumes a linear dependency
by a possibly time-varying matrix step-size. Specifically, inserting regression vector (2.9) into the
homogeneous recursion in (2.17), modifies the latter to

w̃k =
[
I− µ(k)Mku∗

kuT
k

]
w̃k−1, (3.51)

with step-size matrix Mk ∈ CM×M . In order to simplify the following investigations, a further
assumptions is being made.

Real-Valued Step-Size and Positive Definite Step-Size Matrix
Assumption 3.2: Real-Valued Step-Size and Positive Definite Step-Size Matrix

1. Step-size µ(k), and thus, the effective step-size α(k) as well, are real-valued and non-
negative.

2. Step-size matrix Mk is (Hermitian and) positive definite.

Point 1 in Assumption 3.2 does not pose any actual restriction as, wo.l.o.g., any phase rota-
tion arc (µ(k)) introduced by the step-size can be incorporated into a modified step-size matrix M′

k,

µ(k)Mk = |µ(k)|︸ ︷︷ ︸
µ′(k)

exp( arc (µ(k)))Mk︸ ︷︷ ︸
M′

k

. (3.52)

The second assumption is of course restrictive and needs further justification:
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a. Due to Lemma 3.1, in order to ensure a spectral radius bounded by one – and thus, the
possibility for convergence – the numerical range [GR97] of the step-size matrix has to be
contained within the right complex half-plane (including the imaginary axis). Accordingly,
Hermitian step-size matrices are not allowed to be negative definite or indefinite. Hence, the
motivation to assume positive definiteness.

b. Gradient type algorithms with matrix step-size do not require the latter to be Hermitian. Not
even the analysis presented in the sequel is bonded to such an assumption. In fact, it is at
least applicable to step-size matrices that belong to the class of normal matrices, which in
turn contains Hermitian matrices as a subclass [HJ13, Sec. 2.5]. However, as Lemma 3.8 shows
below, the singular value spread of mapping matrix Bk is minimised if all eigenvalues of Mk

are real-valued and positive. Accordingly, if the step-size matrix would actually be normal but
not Hermitian, the analysis of an equivalent algorithm that uses its nearest positive definite
equivalent, i.e., the matrix that is obtained by replacing the eigenvalues by their magnitudes,
may still result in conclusive results. Specifically, if an asymmetric algorithm based on the
nearest positive definite equivalent is found to diverge, the algorithm that employs the original
normal matrix cannot be expected to qualitatively behave differently. Of course, in the case
of convergence such a deduction is in general not allowed. However, as this work prioritises
the unmasking of hidden divergence, it seems justified to restrict to Hermitian (and positive
definite) matrices for the sake of clarity.

c. Most gradient type algorithms algorithms are found to utilise a positive definite diagonal
step-size matrix [MKK93; Gay98; Dut00; BG02; dSTSM09; dSTSM10], which is more than
covered by Assumption 3.2. Hence, Point 2 of Assumption 3.2 is again justified from a practical
point of view.

The first and the last of the above justifications are rather evident or self-contained. The second one,
requires further examination. Before this is done, a very important simplification that is accessible
for any normal step-size matrix, is presented below in Lemma 3.7.

Equivalence of Normal and Diagonal Step-Size Matrix
Lemma 3.7: Equivalence of Normal and Diagonal Step-Size Matrix

If step-size matrix Mk ∈ CM×M is normal, with eigendecomposition [HJ13, Theorem 2.5.3]

Mk = QM,kΛM,kQH
M,k, ΛM,k ,

M
diag
i=1
{λi(Mk)} , (3.53)

and QM,k being unitary, by introducing the rotated vectors

u′
k , QT

M,kuk, w̃′
k , QH

M,kw̃k, and w̃′′
k−1 , QH

M,kw̃k−1, (3.54)

for each iteration step k, (3.51) can be mapped to

w̃′
k =

[
I− µ(k)ΛM,ku′∗

k u′T
k

]
w̃′′
k−1. (3.55)

The proof of Lemma 3.7 is straightforward and skipped here. A very similar reasoning was used for
positive definite matrices in [SR96; RC00]. The latter references, however, do not employ a length
and angle preserving rotation as it is done in Lemma 3.7 due to QM,k being unitary. There, instead
an orthogonal coordinate transform is applied, based on a Cholesky factorisation of the step-size
matrix [HJ13, Corollary 7.2.9]. The reason why here, the eigendecomposition is preferred to the
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Cholesky factorisation, is the length preserving property [HJ13, Sec. 5.2] of QM,k, entailing∥∥u′
k

∥∥ = ‖uk‖ , and
∥∥w̃′′

k

∥∥ =
∥∥w̃′

k

∥∥ = ‖w̃k‖ . (3.56)

Hence, as crucial consequence,∥∥w̃′
k

∥∥2 − ∥∥w̃′′
k−1

∥∥2 = ‖w̃k‖2 − ‖w̃k−1‖2 =W (k), (3.57)

which shows that in terms of the Euclidean norm, with the scope of one single iteration, the mapping
behaviour of (3.55), is equivalent to the mapping behaviour of the original homogeneous recursion
in (3.51). Based on this insight, Lemma 3.7 provides the key to extend the results of Section 3.4.3 –
that are restricted to positive definite diagonal step-size matrices – to non-diagonal normal matrices.

Yet, it is important to notice that for modal matrices QM,k that depend on iteration step k,
Lemma 3.7 does not allow to conclude that the algorithm can completely be replaced by its equivalent
with diagonal step-size matrix. This is, because w̃′

k calculated during iteration k is not identical to
w̃′′
k, which represents the a priori parameter error vector of iteration k + 1. Only if the sequence
{Mk} has a constant modal space, the unitary matrices do not depend on k, i.e., QM,k = QM, and
w̃′
k = QH

Mw̃k = w̃′′
k.

After this excursus about usability and limitations of results obtained for diagonal step-size
matrices, let us turn our focus back to the justification of Point 2 in Assumption 3.2.

Minimum Singular Value Spread for Real-Valued Eigenvalues
Lemma 3.8: Minimum Singular Value Spread for Real-Valued Eigenvalues

If for an arbitrary iteration step k the asymmetric algorithm in (3.51) has a real-valued non-
negative step-size µ(k) and a normal step-size matrix Mk, then, for given magnitudes |λi (Mk)|
of the eigenvalues in (3.53), the maximum (minimum) singular value of the corresponding
mapping matrix Bk in homogeneous recursion (2.16) is minimised (maximised), if all entries
satisfy λi (Mk) ∈ R0+, i.e., if ΛM,k ≥ 0.

Proof. See Appendix D.1.4.

Lemma 3.8 shows that a detailed analysis of gradient type algorithms with positive definite
step-size matrix allows to deduce statements for algorithms with more general step-size matrices.
Accordingly, Point 2 in Assumption 3.2 is indeed reasonable.

Finally, before moving on to the next section which is dedicated to a detailed analysis of gradient
type algorithms with positive definite diagonal step-size matrix, another important property of
normal step-size matrices is investigated. Formulated in a general way, it gives insight to the changes
of direction that are introduced by a normal step-size matrix, during the mapping of an excitation
vector to the corresponding regression vector. In conjunction with Lemma 3.5 that is concerned
with the direction of w̃k in the case of a positive parameter error increment, i.e., W (k) > 0, the
following Lemma 3.9 will be of central importance in Section 3.4.4.

Amplifying and Attenuating Eigenspaces
Lemma 3.9: Amplifying and Attenuating Eigenspaces

For an arbitrary normal matrix A ∈ CM×M , with eigenvalues λi (A), i ∈ {1, . . . ,M}, and
some non-zero vector x ∈ CM , the relative growth imposed by the mapping Ax to the
component contained in the eigenspace E (λi (A)) is given by |λi (A)| − 1.

Proof. See Appendix D.1.5.
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3.4.3 Positive Definite Diagonal Step-Size Matrices

Lemmas 3.7 and 3.8 show that gradient type algorithms with positive definite diagonal step-size
matrix allow to infer insight to the behaviour of algorithms with more general step-size matrix. For
this reason, this section essentially extends the findings in [DR13], and presents a concise analysis of
the mapping mechanisms that can be observed for a step-size matrix that is diagonal and positive
definite. Note however, that the wording of the below given statements only requires positive
definiteness, as the extension to non-diagonal step-size matrices is ensured by Lemma 3.7. Moreover,
for the same reason, I will also stick to the more general notion of eigenvalues and eigenvectors (as
well as eigenspaces), although for diagonal step-size matrices the primer coincide with their diagonal
entries, the latter with the basis vectors.

Accordingly, the here considered algorithms use the general update equation of asymmetric
algorithms, given in (2.17), with the regression vector and its unit vector given by (cf. (2.9))

xk = Dkuk, exk
=

Dkeuk

‖Dkeuk
‖
, (3.58)

where euk
denotes the unit vector with direction of excitation vector uk, and a diagonal step-size

matrix

Dk ,
M

diag
i=1
{di(k)} , with di(k) ∈ R+, i ∈ {1, . . . ,M} . (3.59)

Thus, the effective step-size and the correlation coefficient in (3.11) and (3.12), respectively, modify
to

α(k) = µ(k) ‖uk‖ ‖Dkuk‖ = µ(k) ‖uk‖2 ‖Dkeuk
‖ , (3.60)

ρ(k) =
uT
kDku∗

k

‖uk‖ ‖Dkuk‖
=

eT
uk

Dke∗
uk

‖Dkeuk
‖

= eT
xk

e∗
uk
, (3.61)

and since α(k) ∈ R0+, the complex argument in (3.13) becomes

ϕαρ∗(k) = arc (α(k)ρ∗(k)) = arc (ρ∗(k)) = − arc (ρ(k)) . (3.62)

Hence, the mapping matrix from (2.16) can be expressed as

Bk = I− µ(k)x∗
kuT

k = I− µ(k)Dku∗
kuT

k (3.63)

= I− µ(k) ‖uk‖ ‖Dkuk‖
Dke∗

uk

‖Dkeuk
‖

eT
uk

= I− α(k)e∗
xk

eT
uk
. (3.64)

The correlation coefficient in (3.61) looks similar to a Rayleigh quotient (cf. (C.1)) [Theorem 4.2.2
HJ13], but it is not identical. In fact, it is a function that is well studied in context of operator
trigonometry [Gus00; Rao05; GR97], and gives access to the notion of antieigenvalues and antieigen-
vectors. Appendix C.1 provides further details about this topic, which can be directly applied to
prove the following lemma.
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Minima and Maxima of Correlation Coefficient ρ(k)
Lemma 3.10: Minima and Maxima of Correlation Coefficient ρ(k)

With a positive definite step-size matrix Dk, the correlation coefficient in (3.61) is real-valued
and positive. It assumes its maximum value

ρmax(k) , max
uk∈CM

{ρ(k)} = 1, (3.65)

if the excitation vector uk is in parallel with one of the M eigenvectors of Dk, i.e., one of the
elementary basis vectors. Its minimum is given by

ρmin(k) , min
uk∈CM

{ρ(k)} =
2
√
dmin(k)dmax(k)

dmax(k) + dmax(k)
, (3.66)

with

dmin(k) ,
M

min
i=1
{di(k)} , dmax(k) ,

Mmax
i=1
{di(k)} . (3.67)

The correlation coefficient reaches its minimum, if uk is in parallel with one of the first
antieigenvectors of Dk.

Proof. Since ρ(k) in (3.61) obeys the Kantorovich inequality (cf. (C.6)), its minimum is by definition
identical to the first antieigenvalue of step-size matrix Dk (cf. (C.3)). Consequently, this minimum is
achieved if the excitation vector coincides with one of the first antieigenvectors of Dk (cf. (C.5)).

A first consequence of (3.61) is the following lemma which directly allows to apply Lemma 3.6 to
the matrix step-size case.

|ρ(k)| = 1 and Non-Expanding Behaviour for uk ∈ E(di(k))
Lemma 3.11: |ρ(k)| = 1 and Non-Expanding Behaviour for uk ∈ E(di(k))

For a positive definite step-size matrix, the parameter error distance can never increase, if
step-size condition (3.15) is satisfied, and if excitation vector uk is completely contained in
eigenspace E(di(k)) of eigenvalue di(k) of step-size matrix Dk.

Proof. That |ρ(k)| = 1 is equivalent to uk ∈ E(di(k)) is a direct consequence of Lemma 3.10. From
|ρ(k)| = 1, in turn, with (3.15) being satisfied, Lemma 3.6 allows to conclude that the parameter
error increment does not increase.

Lemma 3.11 provides a statement about the overall energy contained in the parameter error vector,
and is only valid for special directions of the excitation vector. The next lemma, in contrast,
is concerned with the energies in the individual dimensions of the parameter error vector. The
statement is true for all iterations that satisfy step-size condition (3.15). Moreover, it has to be
pointed out that Point 1 in Assumption 3.2 is not required for Lemma 3.12, as it holds for any
complex-valued effective step-size.

Erratum 4
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Non-Increasing Element of the Parameter Error Vector
Lemma 3.12: Non-Increasing Element of the Parameter Error Vector

If at iteration step k, step-size condition (3.15) is satisfied and the step-size matrix Dk is
positive definite, then, for α(k) ∈ C, at least one element w̃i (k) of the parameter error
vector w̃k can be found that does not increase, i.e.,

∃i ∈ {1, . . . ,M} : |w̃i (k)| ≤ |w̃i (k − 1)| . (3.68)

Proof. See Appendix D.1.6.

Based on Lemma 3.12, a further interesting behaviour of the algorithm can be discovered. It
can be considered as complement to Lemma 3.10, as it investigates the mechanisms that operate
if the parameter error vector is contained in one of the eigenspaces of the step-size matrix. Its
statement is an important key to geometrically understand, why algorithms with constant step-size
matrix at some point have to converge, as long as step-size condition (3.15) is fulfilled. Similar to
Lemma 3.12, also Lemma 3.13 ignores Point 1 in Assumption 3.2 and allows the effective step-sizes
to be complex-valued.

Parameter Error Leakage for w̃k−1 ∈ E(di(k))
Lemma 3.13: Parameter Error Leakage for w̃k−1 ∈ E(di(k))

If step-size condition (3.15) is satisfied for any α(k) ∈ C, and step-size matrix Dk is positive
definite, a parameter error vector that is completely contained in the eigenspace of one of the
eigenvalues of the step-size matrix, i.e., w̃k−1 ∈ E(di(k)), leads to a leakage of the parameter
error power from E(di(k)) into the orthogonal complement of E(di(k)), i.e.,

|w̃j (k)|2 − |w̃j (k − 1)|2
{
≤ 0; ej ∈ E(di(k))
≥ 0; ej 6∈ E(di(k))

. (3.69)

Proof. See Appendix D.1.7.

Lemma 3.13 does not give any insight how the described leakage affects the parameter error
increment W (k). Under which conditions the latter can be positive despite the existence of leakage,
is covered by Lemma 3.14, which again does not depend on Point 1 in Assumption 3.2.

Increasing Parameter Error Distance with w̃k−1 ∈ E(di(k))
Lemma 3.14: Increasing Parameter Error Distance with w̃k−1 ∈ E(di(k))

Assuming non-stalling adaptation (cf. Assumption 3.1), if step-size condition (3.41) is satisfied
for any α(k) ∈ C, and if w̃k−1 ∈ E(di(k)), an excitation vector can be found such that the
parameter error increment W (k) is positive iff

|α(k)|
cos (arc (α(k)))

> 2
di(k)

dmax(k)
. (3.70)

Specifically, for i such that di(k) = dmax, (3.70) can never be satisfied.

Proof. See Appendix D.1.8.

The final piece that is required before the questions posed by the simulation example in Section 3.1
can be answered, concerns the existence of an excitation vector such that the parameter error
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increment W (k) is positive. Lemma 3.15 is a version of Lemma 3.4 tailored to the case that the
regression vector is not independent from the excitation vector but related to the latter via step-size
matrix Dk.

Expanding Behaviour for w̃k−1 ∦ Dkw̃k−1

Lemma 3.15: Expanding Behaviour for w̃k−1 ∦ Dkw̃k−1

For non-stalling adaptation (cf. Assumption 3.1), and if the parameter error vector w̃k−1 is
not completely contained in one single eigenspace of the positive definite step-size matrix Dk,
i.e., w̃k−1 ∦ Dkw̃k−1, there always exists at least one excitation vector for which the parameter
error distance increases.

Proof. See Appendix D.1.9. However, note that this proof relies on Inequality (3.92), which is
obtained further down on page 60. The reader may prefer to temporarily postpone the proof until
the latter inequality is derived and explained. A corresponding reminder is included there.

Figure 3.8 further down in Section 3.5 gives a geometrically illustrative interpretation of
Lemma 3.15. Note that in the context of the SR-LMS algorithm – which also belongs to the
class of asymmetric algorithms – [CM81] came to an insight that agrees with Lemma 3.15.

3.4.4 Impact of Matrix Step-Sizes to the Convergence Behaviour
With all the insights obtained in Sections 3.4.1 to 3.4.3, it is now possible to return to the simulation
example in Section 3.1. Specifically, the three questions that are raised on page 31, are still open.
They are repeated here, for convenience:

1. Does Algorithm II in fact diverge under w.c. excitation?

2. Does the parameter error vector of the other two algorithms actually remain bounded?

3. What exactly makes the difference which decides on boundedness or divergence?

For Algorithm I, Question 2 can be answered based on existing results from literature [RC00].
Accordingly, an asymmetric algorithm with invariant positive definite step-size matrix can be
mapped to a symmetric algorithm, i.e., algorithms out of the LMS family, which allows to resort to
the wide range of available analyses that have been conducted for the latter. As a consequence, for
the step-sizes chosen in the simulation experiments, the parameter error vector of Algorithm I is
ensured to remain bounded. In fact, for PE it is even guaranteed to converge – in the noiseless case
– to the zero vector [e.g., Bit84; SR96; Hay02; Say03]. Nevertheless, as a first step to the answer of
Question 3, the following theorem is given.

Bounded Parameter Error Distance for Constant Matrix Step-Size
Theorem 3.2: Bounded Parameter Error Distance for Constant Matrix Step-Size

If (3.15) is satisfied, and the step-size matrix is positive definite and constant, i.e., Dk = D,
with its minimum and maximum eigenvalue, dmin and dmax, defined by (3.67), then, under
w.c. excitation, parameter error vector w̃k converges to one of the eigenspaces E(di), for which

α(k) ≤ 2
di
dmax

. (3.71)

Erratum 5
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Proof. For w̃k−1 ∦ Dw̃k−1, the existence of an uk leading to W (k) > 0 is ensured by Lemma 3.15.
Due to Lemma 3.5, such an increase will additionally turn the parameter error vector into the
direction of the regression vector xk. As the latter is given by xk = Duk, Lemma 3.9 allows to
conclude that xk tends to turn towards the eigenspaces of step-size matrix D that correspond to
eigenvalues with larger magnitude. Therefore, as w̃k−1 follows xk, it also tends to align with the
eigenspaces of eigenvalues with larger magnitude. Lemmas 3.11 and 3.15 show that this process
goes on until the parameter error vector perfectly aligns with one of the eigenspaces of D, i.e.,
w̃k−1 ∈ E(di). Then, as long as uk 6⊥ w̃k−1, from Lemma 3.13, it is seen that the next iteration will
reduce the energy contained in the component of w̃k−1 that belongs to E(di), while the remaining
components (that are zero before the iteration) increase their energy. Whether this also goes along
with an increase of the overall parameter error increment is decided by the step-size bound given
in Lemma 3.14. Accordingly, the parameter error increment will only increase if (3.70) is satisfied.
Otherwise, it will at most remain constant. In the primer case, the before described process will
continue. In the latter case, the process has reached its maximum and the parameter error increment
will either remain constant if Assumption 3.1 is violated, or decrease. This maximum is reached at
latest as w̃k−1 ∈ E(dmax). That ‖w̃k‖ remains bounded during this process is a direct consequence
of the above mentioned fact that an asymmetric algorithm with invariant step-size matrix can be
mapped to a symmetric algorithm [RC00]. Finally, note that (3.71) is directly obtained from (3.70)
by bounding the cosine by one.

The arguments used in the proof of Theorem 3.2 also give the answer to Question 2 with respect
to Algorithm III. This algorithm shows considerable fluctuations in its step-size matrix. However,
it keeps them sorted. Since the step-size matrix is diagonal, this means that also its eigenspaces
remain constant – just the eigenvalues change. As the arguments in the above proof are exclusively
based on the eigenspaces, from this perspective, the only difference among Algorithm I and III is
that in the latter case, di and dmax depend on the iteration index k. Note that under the assumption
of non-stalling adaptation (cf. Assumption 3.1), (3.71) is always true for i such that di = dmax, or
with respect to Algorithm III, di(k) = dmax(k). Consequently, also in the latter case, the parameter
error vector will converge to an eigenspaces of step-size matrix Dk and thus, remain bounded.

Finally, Question 1 and Question 3 can be answered together by the following theorem.

Necessary Condition for Parameter Divergence
Theorem 3.3: Necessary Condition for Parameter Divergence

If step-size condition (3.15) is satisfied, and the step-size matrix is positive definite, the
parameter error vector can only diverge if all of the eigenspaces of the step-size matrix keep
changing persistently.

Proof. The proof follows the same lines as the proof of Theorem 3.2. The difference is that due
to Lemma 3.15, the ever changing eigenspaces allow for a permanent increase of the parameter
error distance. As none of the eigenspaces remains constant, due to parameter leakage shown
in Lemma 3.13, it is ensured that the parameter error vector does not get stuck in one of the
eigenspaces.

As an addition to Theorem 3.3, Lemmas 3.5 and 3.9 allow the loose interpretation that under
w.c. excitation, the parameter error vector is “dragged” around in the containing space. Where the
direction of change is dictated by the eigenspaces of the step-size matrix.
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3.5 Worst Case Excitation – Analytic Approach

Section 3.4.2 is concerned with the existence of expanding behaviour based on the underlying
geometric mechanisms that decide on convergence and divergence. This section in turn, provides
analytic methods in order to design w.c. excitation sequences for asymmetric algorithms with positive
definite diagonal step-size matrix. Again, based on Lemma 3.7 in Section 3.4.2, the such obtained
results directly extend to the case of Hermitian step-size matrices and due to Lemma 3.8, they are
also valuable for algorithms with non-Hermitian but normal step-size matrix.

Throughout this whole section, iteration index k is suppressed. Symbols w̃ and ew̃, refer to w̃k−1

and ew̃k−1
, respectively. As a first step, the expression for parameter error increment W in (3.41) is

modified to reflect the assumption of a positive definite diagonal step-size matrix

W = |α|2
∣∣w̃Teu

∣∣2 − 2Re
{
α
(
w̃Teu

)∗ w̃TDeu
‖Deu‖

}
, (3.72)

or equivalently,

W =
1

‖Deu‖

[
|α|2 ‖Deu‖

∣∣w̃Teu
∣∣2︸ ︷︷ ︸

1

− 2Re
{
α
(
w̃Teu

)∗ w̃TDeu

}
︸ ︷︷ ︸

2

]
. (3.73)

Term 2 in (3.73) is only affected by portions of the excitation vector that are contained in hyperplane

Sw̃∗,Dw̃∗ , span {w̃∗,Dw̃∗} . (3.74)

Term 1 , in contrast, also depends on the components of u that belong to the orthogonal complement
of Sw̃∗,Dw̃∗ , i.e.,

S⊥w̃∗,Dw̃∗ ,
{

x ∈ CM
∣∣∣yHx = 0, ∀ y ∈ Sw̃∗,Dw̃∗

}
. (3.75)

Figure 3.8 schematically depicts the geometric meaning of (3.73) in a real-valued regime, projected
onto the plane Sw̃∗,Dw̃∗ . The hatched areas represent the case W > 0, i.e., the areas of increasing
parameter error distance. More specifically, the single hatching indicates those regions where Term 2
is less than zero. The double hatching refers to the case where Term 2 is positive but still too
weak in order to compensate Term 1 . Note that a similar argumentation has been adopted in the
context of the SR-LMS algorithm in [CM81].

As Term 1 is non-negative, W > 0 is ensured, as soon as Term 2 is negative. Hence, sufficient
conditions for W > 0 can be derived by restricting to an analysis of

Re
{
α
(
w̃Teu

)∗ w̃TDeu

}
< 0. (3.76)

The following Section 3.5.1 focuses on excitation vectors – or more precisely the corresponding
unit vectors eu ∈ Sw̃∗,Dw̃∗ – that satisfy (3.76) under the assumption of an arbitrary but given w̃.
Section 3.5.2 discusses the ramifications caused by components of the excitation vector that do not
belong to hyperplane Sw̃∗,Dw̃∗ .
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Figure 3.8: Geometric interpretation of the w.c. excitation regions within hyperplane Sw̃∗,Dw̃∗ , spanned by the excitation
vector and the regression vector. If the projection of some excitation vector onto Sw̃∗,Dw̃∗ is contained within
any of the hatched w.c. regions, the parameter error increment W (k) is ensured to be non-negative. Note
that the two w.c. sectors caused by 1 in (3.73) do not necessarily have the same opening angle. The cosine of
the maximally possible angle ΘD,max between ew̃ and eDw̃ coincides with ρmin from (3.66). Note that eDw̃ is
the unit vector corresponding to Dw̃

3.5.1 Identification of Worst Case Excitation Vectors

As this section focuses on the excitation vectors that satisfy (3.76), only those of their components
that are contained in Sw̃∗,Dw̃∗ (cf. (3.74)), are relevant here. This is reflected by the decomposition

eu = aue∗
w̃ + buDe∗

w̃ = [auI + buD] e∗
w̃, (3.77)

with coefficients au, bu ∈ C. In order to satisfy ‖eu‖ = 1, they have to satisfy

‖eu‖ = fD
(
ew̃, au, bu

) !
= 1, (3.78)

with the newly introduced function

fD
(
ew̃, au, bu

)
,
√
|au|2 + |bu|2

∥∥Dew̃
∥∥2 + 2Re {a∗ubu}

∥∥D1/2ew̃
∥∥2. (3.79)

Inserting (3.78) in (3.76), together with the substitutions

eT
w̃eu = au + bueT

w̃De∗
w̃, (3.80)

eT
w̃Deu = aueT

w̃De∗
w̃ + bu

∥∥Dew̃
∥∥2 , (3.81)

after division by ‖w̃‖2 and with α ∈ R+ (cf. Assumption 3.2), leads to∥∥∥D1/2ew̃

∥∥∥2 + Re {a∗ubu}
[∥∥Dew̃

∥∥2 − ∥∥∥D1/2ew̃

∥∥∥4] < 0. (3.82)
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The cosine of angle ΘD(ew̃) between vectors ew̃ and Dew̃, is given by the ratio

0 < cos
(
ΘD(ew̃)

)
,

∥∥D1/2ew̃
∥∥2∥∥Dew̃
∥∥ ≤ λ̄1 (D) ,

2
√
d1dM

d1 + dM
≤ 1. (3.83)

The bound on the left-hand side is a direct consequence of the positive definitness of step-size
matrix D. The bound on the right-hand side corresponds to the first antieigenvalue λ̄1 (D) of step-
size matrix D. It is a fundamental notion introduced in the context of operator trigonometry [Gus95;
GR97; Gus00]. Details and further definitions can be found in Appendix C.1. Clearly, (3.83) entails

0 ≤
∣∣ΘD(ew̃)

∣∣ < π

2
. (3.84)

Equation (3.83) together with the trigonometric identity sin2
(
ΘD(ew̃)

)
= 1−cos2

(
ΘD(ew̃)

)
modifies

(3.82) to

cos
(
ΘD(ew̃)

)
+ Re {a∗ubu}

∥∥Dew̃
∥∥ sin2

(
ΘD(ew̃)

)
< 0. (3.85)

With the complex argument of the product a∗ubu,

ϕaubu , arc (a∗ubu) , (3.86)

(3.85) becomes

cos
(
ΘD(ew̃)

)︸ ︷︷ ︸
∈(0,1]

+ |au| |bu|︸ ︷︷ ︸
≥0

∥∥Dew̃
∥∥︸ ︷︷ ︸

>0

sin2
(
ΘD(ew̃)

)︸ ︷︷ ︸
∈[0,1)

cos (ϕaubu)︸ ︷︷ ︸
∈[−1,1]

< 0. (3.87)

Thus, (3.82), or equivalently, (3.76), can only be satisfied if

|ϕaubu | ∈
(π
2
, π
]
. (3.88)

With (3.88) being fulfilled, Inequalities (3.82) and (3.87) provide the following condition for W > 0

|au| |bu| |cos (ϕaubu)| >
∥∥D1/2ew̃

∥∥2∥∥Dew̃
∥∥2 − ∥∥D1/2ew̃

∥∥4 =
cos
(
ΘD(ew̃)

)∥∥Dew̃
∥∥ sin2

(
ΘD(ew̃)

) . (3.89)

Using the complex argument ϕaubu , (3.79) can be equivalently written as

fD
(
ew̃, au, bu

)
=

√
|au|2 + |bu|2

∥∥Dew̃
∥∥2 + 2 |au| |bu| cos (ϕaubu)

∥∥D1/2ew̃
∥∥2, (3.90)

by which (3.78) entails

|au|2 + |bu|2
∥∥Dew̃

∥∥2 + 2 |au| |bu| cos (ϕaubu)
∥∥∥D1/2ew̃

∥∥∥2 = 1. (3.91)

Condition (3.91) makes clear that the magnitudes of the coefficients, au and bu, are elliptically
interrelated. This fact is illustrated by Figure 3.9, which also visualises the parametrisation of the
coefficients au and bu, summarised in Definition Table 3.1. A detailed derivation is provided in
Appendix B.

Eventually, this shows that (3.76), and thus W > 0, is satisfied if complex argument ϕaubu and
product |au| |bu| fulfil (3.88) and (3.89), respectively. In the 〈|au| , |bu|〉-plane, (3.89) covers all points

Erratum 6
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Figure 3.9: Relation among magnitudes |au| and |bu|, with effective step-size α = 1, strongly decaying step-size mat-
rix D =

√
M diagM−1

i=0 {10−3(M − i)4}, and parameter error vector w̃ = 1. Definition Table 3.1 defined the
referenced symbols. A detailed derivation can be found in Appendix B.

that lie above a hyperbola, which asymptotes coincide with the |au|-axis and |bu|-axis. Consequently,
together with the afore developed insight that |au| and |bu| depend elliptically from each other, the
solutions of (3.89) are found by overlapping a hyperbola with an ellipsis. This fact is illustrated
in Figure 3.10, where three cases of complex argument ϕaubu are considered. At this point, details
about their meaning are not important, they will be clarified further down, in the context of
Inequality (3.92). However, what can already be observed, is that for |ϕaubu | = π, a clear overlap
occurs. For the other two values of |ϕaubu |, in one case, both geometric objects touch only in one
point, in the other case, they are completely disjoint. Accordingly, out of these three scenarios, only
for the first one, (3.89) has a solution – in fact, a whole range of solutions. A detailed derivation
of the just described intersection process is included in Appendix B. Therein, (B.32) provides the
minimum magnitude of angle ϕaubu that solves (3.89). Accordingly, a solution of the latter only
exists, if6

cos (ϕaubu) > cos
(
ϕ̌limit
aubu

)
=

2
∥∥Dew̃

∥∥∥∥D1/2ew̃
∥∥2∥∥Dew̃

∥∥2 + ∥∥D1/2ew̃
∥∥4 =

2 cos
(
ΘD(ew̃)

)
1 + cos2

(
ΘD(ew̃)

) . (3.92)

6 As a reminder, Inequality (3.92) completes the prerequesites that are required for the proof of Lemma 3.15. Hence, all
the arguments in the corresponding Appendix D.1.9 are accessible at this point.
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Definition Table 3.1: Parametrisation of Worst Case, given by (3.77)

|au| = âu sin (ϑ− ϑau) , |bu| = b̂u sin (ϑ− ϑbu) , ϑ ∈ [ϑbu , ϑau + π] , (3.93)

with the amplitudes

âu ,
∥∥Dew̃

∥∥ b̂u, (3.94)

b̂u ,

∥∥Dew̃
∥∥√∥∥Dew̃

∥∥2 − ∥∥D1/2ew̃
∥∥4 cos2 (ϕaubu)

=
1√

1− cos2
(
ΘD(ew̃)

)
cos2 (ϕaubu)

. (3.95)

The offset angles are given by

ϑau , arctan


√∥∥Dew̃

∥∥2 − ∥∥D1/2ew̃
∥∥4 cos2 (ϕaubu)∥∥D1/2ew̃

∥∥2 cos (ϕaubu)

(
1−

∥∥Dew̃
∥∥2 Ǎ2

)
= arctan


√
1− cos2

(
ΘD(ew̃)

)
cos2 (ϕaubu)

cos
(
ΘD(ew̃)

)
cos (ϕaubu)

(
1−

∥∥Dew̃
∥∥2 Ǎ2

) , (3.96)

ϑbu , − arctan

 ∥∥D1/2ew̃
∥∥2 cos (ϕaubu)√∥∥Dew̃

∥∥2 − ∥∥D1/2ew̃
∥∥4 cos2 (ϕaubu)

1

Â2 − 1

+

{
π; cos (ϕaubu) > 0

0; otherwise

= − arctan

 cos
(
ΘD(ew̃)

)
cos (ϕaubu)√

1− cos2
(
ΘD(ew̃)

)
cos2 (ϕaubu)

1

Â2 − 1

+

{
π; cos (ϕaubu) > 0

0; otherwise
.

(3.97)

The lengths of the semi-major and semi-minor axes of the resulting ellipse are found as

{Â, Ǎ} ,

√√√√√√1 +
∥∥Dew̃

∥∥2 ±√(1− ∥∥Dew̃
∥∥2)2 − 4

∥∥D1/2ew̃
∥∥4 cos2 (ϕaubu)

2
∥∥D1/2ew̃

∥∥4 cos2 (ϕaubu)
, (3.98)

which is meant in the sense that Â is obtained by the positive and Ǎ by the negative square-root.
Finally, note that the difference ϑau,bu , ϑau − ϑbu of the offset angles satisfies

cos (ϑau,bu) =

∥∥D1/2ew̃
∥∥2 |cos (ϕaubu)|∥∥Dew̃

∥∥ = cos
(
ΘD(ew̃)

)
|cos (ϕaubu)| . (3.99)
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Figure 3.10: Visualisation of the overlapping process described by (3.89). Additionally, the impact of Terms 1 and 2 in
(3.73) can be identified. The solid lines correspond to a negative Term 2 , which coincides with an overlap of
hyperbola and the ellipsis. The dotted lines represent the case when Term 2 is positive but still less than
Term 1 , again causing W > 0. Then, (3.89) does not have a solution, which is represented by ϕaubu = ϕbelow

aubu .
Dashed parts of the elliptic arcs refer to pairs 〈au, bu〉 that ensure a decreasing parameter error distance.

Returning to Figure 3.10 for a second time, the lacking details can be discussed now. It is easy to
see that the range of product |au| |bu| that satisfies (3.89), grows with increasing |ϕaubu | ∈

(
π
2 , π

]
.

This is the reason why in Figure 3.10, for |ϕaubu | = π, the overlap between hyperbola and ellipsis
is most extensive. According to (3.92), ϕ̌limit

aubu
is the limiting angle (in magnitude) for (3.89). This

is represented in Figure 3.10 by the pair of hyperbola and ellipsis that touches only in one point.
Finally, for |ϕaubu | = ϕbelow

aubu
< ϕ̌limit

aubu
, no solution exists for (3.89), which is reflected by the disjoint

pair of curves.
In addition to the visual evaluation of (3.89), which only relies on Term 2 in (3.73), Figure 3.10

also gives insight to the impact of Term 1 . While the solid lines of the elliptic arcs indicate negative
values of Term 2 , portions for which the latter is positive but still less than Term 1 , are depicted
by dotted lines. Note that even in the third case for which |ϕaubu | = ϕbelow

aubu
, a dotted part exists,

meaning that there still W > 0. This confirms that the limiting angle ϕ̌limit
aubu

in (3.92) is a conservative
bound for the complex argument among the pair of coefficients 〈au, bu〉 that allows for an increase
of the parameter error distance.

3.5.2 Influence of Orthogonal Components of the Excitation Vector
In (3.73), it is found that Term 2 is only influenced by the portions of u that belong to hyper-
plane Sw̃∗,Dw̃∗ , defined in (3.74). While the same applies to the squared magnitude of the inner
product of Term 1 in (3.73), squared norm ‖Deu‖2 is modified by any change of u, independently
whether inside and outside of Sw̃∗,Dw̃∗ . This can be quantified, if corresponding unit vector eu is
decomposed into two orthogonal parts,

eu = aSeS + b⊥S e⊥
S , (3.100)
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with unit vectors (cf. (3.74) and (3.75))

eS ∈ Sw̃∗,Dw̃∗ , and e⊥
S ∈ S⊥w̃∗,Dw̃∗ . (3.101)

Thus, taking into account that eS and e⊥
S can incorporate any arbitrary phase rotation, wo.l.o.g.,

coefficients aS and b⊥S can be restricted to be real-valued, hence,

aS , b
⊥
S ∈ [0, 1] , and b⊥S =

√
1− aS

2
. (3.102)

Since w̃Teu = aSw̃TeS and w̃TDeu = aSw̃TDeS , inserting (3.100) in (3.73), leads to

W =
aS

2

‖Deu‖

[
|α|2 ‖Deu‖

∣∣∣w̃TeS

∣∣∣2 − 2Re
{
α
(

w̃TeS

)∗
w̃TDeS

}]
, (3.103)

where

‖Deu‖2 = aS
2
∥∥∥DeS

∥∥∥2 + (1− aS2
)∥∥∥De⊥

S

∥∥∥2 + 2aS

√
1− aS

2Re
{

eS
HDDe⊥

S

}
. (3.104)

It is straight forward to see that with the extremal eigenvalues of D, dmin and dmax, defined in (3.67),∥∥∥DeS

∥∥∥ ∈ [dmin, dmax] , as well as,
∥∥∥De⊥

S

∥∥∥ ∈ [dmin, dmax] . (3.105)

The right-most term in (3.104), which in general is complex-valued, can be bounded as

0 ≤
∣∣∣Re

{
eS

HDDe⊥
S

}∣∣∣ ≤ ∣∣∣eS
HDDe⊥

S

∣∣∣ ≤ d2max − d2min
2

, (3.106)

where the maximum is assumed for

eS =
1√
2
(ei + ej) , e⊥

S =
1√
2
(ei − ej) , (3.107)

if the unit vectors ei and ej are the eigenvectors that correspond to the minimum and the maximum
eigenvalue of D, respectively. In terms of ordering convention (2.30), this would mean i = 1 and
j =M , or vice versa. That (3.107) actually leads to the maximum in (3.106), is a consequence of
orthogonality e H

S e⊥
S = 0 and the Wielandt inequality (see (C.7)) [Rao05; Lin13]. Then,∥∥∥DeS

∥∥∥2 = ∥∥∥De⊥
S

∥∥∥2 = d2max + d2min
2

. (3.108)

Comparing (3.103) with (3.73) shows that an analysis which does not restrict u to hyper-
plane Sw̃∗,Dw̃∗ , except from scaling factor a 2

S , does not affect Term 2 in (3.73). However, Term 1
in (3.73) is not only scaled by a 2

S , since in (3.103), ‖Deu‖ occurs, instead of
∥∥DeS

∥∥. With all of
the above insights, (3.103) can finally be re-written in a form of almost the same structure as (3.73),

W =
aS

2

‖Deu‖

[
|α|2 γ

∥∥∥DeS

∥∥∥ ∣∣∣w̃TeS

∣∣∣2 − 2Re
{
α
(

w̃TeS

)∗
w̃TDeS

}]
, (3.109)
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with factor

γ ,
‖Deu‖∥∥DeS

∥∥
=

√√√√aS
2
+
(
1− aS

2
) ∥∥De⊥

S
∥∥2∥∥DeS
∥∥2︸ ︷︷ ︸

∈
[

d2min
d2max

,
d2max
d2min

]
+ 2aS

√
1− aS

2

∥∥De⊥
S
∥∥∥∥DeS
∥∥Re

{
eS

HDDe⊥
S∥∥DeS

∥∥∥∥De⊥
S
∥∥
}

︸ ︷︷ ︸
due to the Wielandt inequality (C.7):

∈
[
− d2max−d2min

d2max+d2min
,
d2max−d2min
d2max+d2min

]
. (3.110)

Factor γ reflects how the instantaneous power of excitation vector u divides into Sw̃∗,Dw̃∗ and
S⊥w̃∗,Dw̃∗ . It scales the expression on the left-hand side within the brackets of (3.109), and is
contained in interval

γ ∈
[
dmin
dmax

,
dmax
dmin

]
. (3.111)

Figure 3.11 visualises the dependency of γ with respect to coefficient aS . Shown are the minima and
maxima for three different types of real-valued excitation vectors. The underlying step-size matrix
is given by D = diagMi=1{1− 0.6(i− 1)}. The two unit vectors in (3.100) have a specific mutually
orthogonal form, according to

eS = cos (ψ) ei + sin (ψ) ej , e⊥
S = cos (ψ) ei − sin (ψ) ej , (3.112)

where angle ψ is swept from −π to π. The three cases only differ in the choice of the indices indices
i and j:

Case i j =M − i+ 1

1 1 10
2 3 8
3 5 6

The resulting graphs in Figure 3.11 confirm that components of u which are orthogonal to Sw̃∗,Dw̃∗ ,
may either increase or reduce the w.c. subspace of CM that leads to a growth of the parameter error
distance. In any case, vectors u for which Term 2 in (3.73) – or equivalently, the right-hand side
term in the brackets of (3.109) – becomes negative, will always cause W > 0.

Finally, in order to asses the impact of orthogonal components to the synthesised w.c. sequences,
the simulation experiment in Section 3.1, is repeated twice for Algorithm II with µ̄ = 0.5. In both
cases, w.c. excitation is used. However, in contrast to the original simulation setting in Section 3.1,
which employed a search method to identify the w.c. directions, here, this is achieved by the afore
introduced analytical approach. Once without any orthogonal components, i.e., aS = 1. A second
time, with excitation power ‖u‖2 randomly distributed over all M = 10 dimensions, more specifically,
in each iteration, aS is drawn equally likely from interval [0, 1]. Figure 3.12 depicts estimated
parameter mismatch m(k) (cf. (2.19)), for both cases. In accordance with (3.110), the second variant
leads to slower growth than the first one, since the latter can resort to the complete excitation
power to follow the diverging trajectories. For reference, also the results for the originally performed
numerical search, with Nw.c. = 10 000 random trials, is included. This allows to observe that the
analytical w.c. synthesis outperforms the search method, with respect to their ability of maximising
the rate of divergence.
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3.6 Worst Case Excitation – Numeric Search
In some situations, synthesis of w.c. excitation vectors is not possible with the analytic approach
presented in Section 3.5, e.g., in cases where the step-size matrix is non-normal or, if the excitation
space is restricted. As pointed out in Chapter 3, the primer case occurs only rarely – at least
from a practical point of view. The second scenario, however, is of high relevance. For example,
as described in Section 2.2.1.2, if the reference and the adaptive system represent FIR filters, the
excitation vector is given by the delay vector in (2.21). Then, the first entry of uk corresponds
to the most recent input sample, while the remaining vector elements contain the input samples
from the foregoing M − 1 consecutive iterations. As the latter ones cannot be changed any more at
that point, the space from which uk can be chosen collapses to a line in the M -dimensional space.
A second example for a restricted excitation space is observed, if the individual elements of the
excitation vector are taken from a restricted set. The simplest and most obvious case in context of
telecommunications, is a binary symbol alphabet, meaning that each entry in uk can only assume
one out of two values [BLM04].

Methods which allow to synthesise w.c. excitation sequences in such cases, are focus of this section.
The most general formulation is given in terms of (2.17), without any assumption regarding the
relation among uk and xk. Then, a pair of the latter is searched for, which satisfies

〈uk,xk〉w.c.,k , arg max
〈uk,xk〉

‖uk‖= U(k)
‖xk‖=X(k)

{‖Bkw̃k−1‖} , with Bk , I− µ(k)x∗
kuT

k , (3.113)

where U(k) > 0 and X(k) > 0 are some given vector lengths. The solution depends on initial value
w̃−1, step-size µ(k), U(k) and X(k), as well as on the sets that underlie the individual elements
of uk and xk. With respect to hidden divergence, larger values of µ(k), U(k) and X(k) lead to a
larger w.c. space. This is a direct consequence of the findings about the maximum singular value of
mapping matrix Bk in Section 3.3.2. Alternatively, e.g., (3.76) also confirms this.

In the sequel, the search in (3.113) is tailored to two specific types of step-size matrices. Section 3.6.1
starts with the case of a general step-size matrix that maps the excitation vector linearly to the
regression vector. The restriction to normal step-size matrices is discussed in Section 3.6.2.

3.6.1 General Step-Size Matrix
As a first step, in this section, (3.113) is reformulated in order to reflect the most general case of an
asymmetric algorithm with matrix step-size, i.e., in accordance to (2.9). This means that (3.113)
changes to

uw.c.,k , arg max
uk

‖uk‖=U(k)

{‖Bkw̃k−1‖} , with Bk = I− µ(k)Mku∗
kuT

k . (3.114)

In contrast to (3.113), regression vector xk has here inherently moved to the right-hand side.
Below iteration index k is suppressed. Symbol w̃ refers to w̃k−1.In Section 3.3.2, it was found

that the left and right-sided singular vectors, r1 and t1, corresponding to maximum singular
value σmax = σ1, as well as, r2 and t2, corresponding to minimum singular value σmin = σ2, are
contained in hyperplane Su∗,x∗ (cf. (3.18)). Accordingly, in order to achieve a w.c. situation, w̃ has
to be completely contained in this hyperplane, i.e.,

w̃ = aw̃u∗ + aw̃bw̃x∗ = aw̃
[
I + bw̃M

]
u∗, (3.115)
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with adequately chosen coefficients aw̃ ∈ C \ {0}, bw̃ ∈ C, both typically varying with suppressed
iteration index k. If matrix

M̄bw̃ , I + bw̃M (3.116)

is invertible, (3.115) gives

u =
1

a∗w̃
M̄−∗

bw̃
w̃∗. (3.117)

This allows to choose excitation vector u, such that w̃ ∈ Su∗,x∗ . Inserting (3.117) on the right-hand
side of (3.114), yields

B = I− µ∣∣aw̃
∣∣2MM̄−1

bw̃
w̃w̃HM̄−H

bw̃
. (3.118)

Equation (3.118) could already be used to identify w.c. excitation vector uw.c.,k, represented by the
pair

〈
aw̃, bw̃

〉
that solves (3.114). However, (3.118) does not provide direct access to the length of u,

this can be circumvented – with u 6= 0 – by substituting
∣∣aw̃
∣∣, based on

‖u‖ =

∥∥∥M̄−1
bw̃

w̃
∥∥∥∣∣aw̃

∣∣ u 6=0⇒
∣∣aw̃
∣∣ =

∥∥∥M̄−1
bw̃

w̃
∥∥∥

‖u‖ . (3.119)

Then, (3.114) becomes

bw̃,w.c.,k , arg max
bw̃,k

‖uk‖=U(k)


∥∥∥∥∥∥∥
I− µ(k) ‖uk‖2∥∥∥M̄−1

bw̃,k
w̃k−1

∥∥∥2MkM̄−1
bw̃,k

w̃k−1w̃H
k−1M̄−H

bw̃,k

 w̃k−1

∥∥∥∥∥∥∥
 . (3.120)

Compared to (3.113), in (3.120), the dimension of the search space has massively reduced, as only one
complex-valued variable has to be identified. However, the cost function is now strongly non-linear
in this single variable, resulting in a solution that is in general only accessibly by numerical methods.

3.6.2 Normal Step-Size Matrix
If step-size matrix Mk is a normal matrix, Lemma 3.7 applies and it can be verified that also M̄bw̃k

in (3.116) is diagonalised by QM,k according to

M̄bw̃,k = QM,kΛ̄bw̃,kQ
H
M,k, with Λ̄bw̃,k , I + bw̃,kΛM,k. (3.121)

Then, taking unitary invariance of the Euclidean norm into account, with w̃′′
k−1 defined in (3.54),

(3.120) modifies to

bw̃,w.c.,k , arg max
bw̃,k

‖uk‖=U(k)


∥∥∥∥∥∥∥
I− µ(k) ‖uk‖2∥∥∥Λ̄−1

bw̃,kw̃
′′
k−1

∥∥∥2ΛM,kΛ̄
−1
bw̃,kw̃

′′
k−1w̃′′H

k−1Λ̄
−H
bw̃,k

 w̃′′
k−1

∥∥∥∥∥∥∥
 . (3.122)

Note that although looking similar to (3.120), (3.122) has a much lower complexity, since all contained
matrices are diagonal.





Chapter 4
Coupled Adaptive Filters

In Chapter 3, asymmetric gradient type algorithms are studied which contain one isolated asymmetric
algorithm that is updated based on one single update error. The latter is obtained by comparison
between the responses of reference system and system model. There, special emphasis is given to
algorithms which employ unconventional directions for regression. This chapter falls back to the
standard symmetric algorithm which uses the complex conjugate of its excitation vector to determine
the direction of decent. However, instead of only one such algorithm, here, arbitrarily many are
considered, which interfere with each other via a memoryless linear coupling among their individual
a priori errors. There are several motivations which raise interest for such a structure.

In practice, such as sensor networks and multichannel ANC, several gradient type algorithms are
combined in one system [ASSC02; KM08]. In such situations, interference between the individual
algorithms may occur by desire of the designer, or due to imperfect physical conditions, e.g., circuit
crosstalk or interference among transducers. In Section 5.3, for example, it is found that the
MC-FXLMS applied to ANC can be mapped to the here considered coupled structure, enabling
analysis of its stability and convergence behaviour. As motivated in Section 5.2, a similar situation
is encountered in the context of cascaded structures consisting of several gradient type algorithms.
Analysis of even more complicated structures such as neural networks, are accessible by the here
considered structure as well (cf. Section 5.4).

As a consequence, this chapter is dedicated to introduce this special coupled structure and to
investigate some of its properties. A detailed description is given in Section 4.1. Followed by an
`2-stability analysis in Section 4.4, which is based on the concept of input-output stability according
to Section 2.4.2. Before this can be accomplished, as a prerequisite, Section 4.2 introduces a method
better known in the context of economics that allows to solve specific types of linear systems of
inequalities. Complementary to `2-stability, Section 4.5 adopts the method of the mapping analysis
performed for asymmetric algorithms in Section 3.4, and applies it to the coupled structure. By
means of the Khatri-Rao matrix product that is introduced in Section 4.3, a compact mathematical
formulation of the underlying mapping mechanisms is presented, which in turn gives access to
conclusive conditions for boundedness of the parameter error vector. The chapter closes in Section 4.6
with the discussion of a special scenario, which is characterised by adaptation of all individual
gradient type algorithms, based on one single update error. The practical relevance of this specific
case will become clear in Chapter 5, which discusses some of its applications.

The most important results in this chapter are found in Sections 4.4 and 4.5. The primer
presents Theorems 4.1 and 4.2 which provide bounds ensuring `2-stability in terms of absolute
and weighted energies, respectively. Section 4.5 states in Lemmas 4.3 and 4.4 conditions for a
non-increasing parameter error distance. Of special practical interest is the identical error case,
considered in Section 4.6. Finally, the two auxiliary methods introduced in Sections 4.2 and 4.3
deserve attention from a theoretical point of view. Although not new by themselves, they are novel
in the here presented context.
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4.1 General Coupled Adaptive Structure
In this section, the coupled structure is introduced that is focus of this whole chapter. It consists of
N ≥ 2 symmetric algorithms, i.e., conventional LMS algorithms, which mutually interact with each
other via a linear memoryless coupling among their individual a priori errors. Defining the set of
indices

N , {1, . . . , N} , (4.1)

this means that update error ε̃i(k) of the ith adaptive filter is given by a linear combination of all
individual a priori errors ẽj(k), j ∈ N , i.e.,

ε̃i(k) ,
∑
j∈N

νij(k)ẽj(k), (4.2)

with coupling factors νij(k) ∈ C. Out of these, those with identical indices, i.e., νii(k), are
distinguished from the others with i 6= j, as the primer scale the a priori error that corresponds to
the adaptive filter with the same index. In order to reflect their special meaning, these νii(k) are
also referred to by the term main coupling factors. This is also expressed by (4.2), if re-written as

ε̃i(k) , νii(k)ẽi(k) +
∑

j∈N\{i}

νij(k)ẽj(k). (4.3)

Each of the parameter vectors ŵi,k, corresponding to adaptive filter i, is updated by a conventional
LMS algorithm. Hence, as described in Section 2.1, the adaptive process aims to minimise the cost
function on the left-hand side of (2.6), i.e., E{|ẽi(k)|2}, based on its instantaneous approximation in
(2.7), i.e., |ẽi(k)|2. Accordingly, due to the interferences in (4.3),

ŵi,k = ŵi,k−1 + u∗
i,kε̃i(k), (4.4)

where ui,k represents the corresponding excitation vector. Comparing (4.4) with the update equation
of the conventional LMS algorithm, i.e., (2.8), with the step-size matrix replaced by identity
(cf. (2.5)), indicates that all terms in the sum on the right-hand side of (4.3) act as disturbance for
the corresponding update. Adopting the assumptions listed in Section 2.1, parameter vector wi,k

of reference system i has the same length Mi as parameter vector ŵi,k. Thus, the parameter error
vector (cf. (2.10))

w̃i,k , wi,k − ŵi,k, (4.5)

can be introduced, which allows to write (4.4) equivalently as,

w̃i,k = w̃i,k−1 − u∗
i,kε̃i(k). (4.6)

Figure 4.1 visualises the such obtained coupled adaptive structure. It also includes additive
noise vi(k) that affects the individual reference outputs di(k). The meaning of this noise is analogous
to v(k), introduced in the context of (2.4) in Section 2.1. Therefore, the a priori errors ẽi(k) include
some noise, and can thus be split up into

ẽi(k) , ei(k) + vi(k), with ei(k) , uT
i,kw̃i,k−1. (4.7)
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Figure 4.1: The coupled adaptive structure considered in this chapter. It consists of N individual LMS algorithms that
mutually interfere with each other via a linear memoryless coupling among their a priori errors ẽi(k).
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This also allows to separate update errors ε̃i(k) into a noiseless error component εi(k) and additive
noise v(ε)i (k), i.e.,

ε̃i(k) , εi(k) + v
(ε)
i (k) =

∑
j∈N

νij(k)ẽj(k), (4.8)

with

εi(k) ,
∑
j∈N

νij(k)ej(k), and v
(ε)
i (k) ,

∑
j∈N

νij(k)vj(k). (4.9)

Note that (4.4) and (4.6) correspond to an LMS update rule with unit step-size. However, this
does not restrict generality. This can be verified by introducing the coupling factors normalised to
some step-size µi(k) 6= 0,

ν ′ij(k) ,
νij(k)

µi(k)
, with i, j ∈ N , (4.10)

and the modified update error

ε̃′i(k) ,
ε̃i(k)

µi(k)
=
∑
j∈N

ν ′ij(k)ẽj(k), (4.11)

The, update equation (4.4)1 becomes

ŵi,k = ŵi,k + µi(k)u∗
i,kε̃

′
i(k), (4.12)

which shows the typical structure that includes a step-size. Table 4.1 summarises all of the so far
occurred symbols and their meaning.

4.2 Systems of Inequalities Involving Z-Matrices
Section 4.4 will present an `2-stability analysis of the coupled structure introduced in Section 4.1.
In Sections 4.4.2 and 4.4.3, this will end up in the problem of solving a linear system of inequalities.
As preparation, this section discusses an approach for its solution, based on a method adopted from
economics2.

Consider a system of N inequalities of the form

Za 4 b, (4.13)

where Z ∈ RN×N is assumed to be a so called Z-matrix [FP62; BP79], meaning that all of its
off-diagonal entries are non-positive, its diagonal entries are arbitrary. The vectors a and b, both
have length N , and are constrained to contain only non-negative elements. Order relation “4” is
meant in an elementwise sense. The goal is to investigate if there exist matrices Z, for which (4.13)
entails

a 4 Z−1b, (4.14)

1 Equation (4.6) is modified analogously.
2 This system of inequalities in (4.13) is tightly related to Leontief’s input-output analysis in economics [BP79, pp. 242ff.].
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Table 4.1: Mathematical Symbols Describing the ith Gradient Type Algorithm

N total number of individual adaptive filters

N set containing all indices, i.e., N = {1, . . . , N}

u
(i)
j,k scalar input that excites dimension j of gradient type algorithm i

ui,k excitation vector ui,k ,
[
u
(i)
1,k, u

(i)
2,k, . . . u

(i)
Mi,k

]T
of gradient type algorithm i

wi parameter vector of reference system i

ŵi,k parameter vector of system model i

w̃i,k parameter error vector w̃i,k , wi − ŵi,k of gradient type algorithm i

di(k) noiseless response of ith reference system, di(k) , wT
i ui,k

vi(k) additive noise affecting the output of reference system i

d̃i(k) noisy response of ith reference system, d̃i(k) , di(k) + vi(k)

d̂i(k) response of ith system model, d̂i(k) , ŵT
i,kui,k

ei(k) noiseless a priori error that occurs between the outputs of reference system i and the
corresponding system model, ei(k) , di(k)− d̂i(k)

ẽi(k) noisy a priori error that occurs between the outputs of reference system i and the
corresponding system model, ẽi(k) , d̃i(k)− d̂i(k) = ei(k) + vi(k)

εi(k) update error used by gradient type algorithm i, excluding any noise, cf. (4.9)

ε̃i(k) noisy update error used by gradient type algorithm i, cf. (4.2) and (4.3)

v
(ε)
i (k) overall noise, affecting update error ε̃i(k), cf. (4.9)

νij(k) coupling factor that determines which amount of a priori error ẽj(k) is coupled into
update error ε̃i(k)

µi(k) step-size of ith gradient type algorithm, cf. (4.12)

ε̃′i(k) noisy update error used by gradient type algorithm i with update equation (4.12), i.e.,
ε̃i(k) normalised by µi(k), cf. (4.11)

ν ′ij(k) coupling factors νij(k) normalised by step-size µi(k), cf. (4.10)



Chapter 4 Coupled Adaptive Filters 74

and if so, what criteria such a matrix has to meet. Clearly, invertibility of Z is necessary for (4.14)
to hold. However, since the elements of the vectors a and b are constrained to be non-negative,
it seems likely that further restrictions have to be imposed. Moreover, it can be expected that
the order relation will not be preserved for an arbitrary matrix Z. A straightforward approach to
convert (4.13) into (4.14) would be to apply Gaussian elimination [MS00b, pp. 279ff.]. However, care
has to be taken in order not to affect the order relation. Clearly, pivoting and adding up positive
multiples of rows does not pose any problem. As soon as the negative multiple of a row is required
in order to eliminate an element, the method fails as then the order relation changes direction, and
a simple additive combination with one of the other rows is not allowed any more.

Performing the steps of Gaussian elimination, provides more insight. Assuming, wo.l.o.g., that
(Z)11 is different from zero, the off-diagonal elements of the first column can be zeroed by adding the
first line, multiplied by the non-negative factors −(Z)j1, to each of the other lines with j ∈ {2, . . . , N}
that in turn are all multiplied by (Z)11. This shows that (Z)11 has to be positive, otherwise, it
would alter the order relation for all of the lines j. Assuming (Z)11 > 0, the obtained matrix, which
is referred to by Z′, contains entry (Z′)22 = (Z)11(Z)22− (Z)12(Z)21. Moreover, it is easy to see that
all non-positive elements of the original matrix Z, are ensured to remain non-positive in Z′. In the
next step, the off-diagonal elements of the second column of Z′ have to be turned to zero. Following
the same arguments as before, this is only possible if (Z′)22 has its sign opposite to all non-zero
elements in column 2, below the diagonal of Z′. Excluding the case that all of them are zero, this
entails (Z′)22 > 0. It can be verified that (Z′)22 coincides with the second leading principal minor
of Z (cf. Appendix C.3). Proceeding with this scheme reveals that also all other leading principal
minors of Z have to be positive. This motivates the conjecture that if Z is a Z-matrix, positivity of
all of its leading principal minors is sufficient for the existence of (4.14).

That this conjecture indeed holds can be seen by introducing a vector δ of slack variables [BV09],
in order to re-write (4.13) in terms of an equality with side constraint, i.e.,

Za + δ = b, under constraint δ < 0. (4.15)

Since Z is per definition, constrained to be a Z-matrix, it has a very special structure. Additionally
requiring its leading principal minors to be positive, makes it even more special. The such defined
matrix is a so-called M -matrix [FP62; BP79; Moy77], which possesses interesting properties that
are summarised in Appendix C.2. Accordingly, the set of solutions for a in (4.13) is ensured to be
bounded, meaning that the order relation is preserved by inverting Z. This can also be observed
directly from (4.15) by recognising the remarkable property that the inverse of an M -matrix
exclusively contains positive elements, as then,

Z−1 � 0, b < 0, δ < 0 ⇒ a = Z−1b− Z−1δ︸ ︷︷ ︸
<0

⇒ a 4 Z−1b︸ ︷︷ ︸
<0

. (4.16)

At this point, it has to be noted that this result agrees with the criteria stated in [HV83, pp. 203ff.].
As a refinement, based on [Nik68, p. 95], the condition of Z being an M -matrix is found to be not
only sufficient but also necessary for (4.14) to exist.

4.3 The Khatri-Rao Product
The previous section acts as preparation for the `2-stability analysis in Section 4.4. Analogously, this
section establishes prerequisites required by Section 4.5. There, for the conducted mapping analysis
– similar to the one for asymmetric algorithms in Section 3.4 – additional means are required, in
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order to achieve compact results on boundedness of the parameter error vector. The here introduced
Khatri-Rao product, provides the key to achieve this.

The Khatri-Rao product was originally introduced in [KR68; Rao70] as a column-wise Kronecker
product for matrices with the same number of columns. In [HM92], a block-Kronecker product
was introduced which can be considered as extension of the original Khatri-Rao product to block
matrices. In fact, in more recent literature the term Khatri-Rao addresses matrix products of the
latter kind [see, e.g., CZY02; LT08]. Such matrix products can also be considered as generalisation of
the Hadamard product to block matrices [HM92]. Alternatively, the conventional Kronecker product
is found to be a special case of the Khatri-Rao product [Liu99; CZY02; LT08]. In literature, different
symbols are used for the Khatri-Rao product, out of which a common variant is “∗” [Liu99; CZY02;
LT08]. As in signal processing the latter is almost exclusively reserved for the convolution [see, e.g.,
OWN97], in order to reduce the risk of confusion, in this thesis, the notation “�” from [HM92] is
adopted.

A detailed definition is included in Definition Table 4.1, on page 76. The matrix obtained by the
Khatri-Rao product in (4.20) is a submatrix (cf. Appendix C.3) of Kronecker product A⊗A′ [HM92],
i.e., A � A′ can be obtained from A⊗A′ by deleting certain columns and rows3. Accordingly,

A � A′ = ST
r
(
A⊗A′)Sc, (4.17)

where matrices Sr ∈ {0, 1}MM ′×M� and Sc ∈ {0, 1}NN
′×N� are block matrices that consist of

identity and zero blocks. Further down, (4.24) represents a special example for such a matrix. As a
consequence, it can be concluded [HM92] that the singular values σi(A � A′) interlace the singular
values σj(A⊗A′). Appendix C.3 reviews this relation in more detail. Specifically, (C.9) allows to
state this fact more precisely [HJ99, Corollary 3.1.3],

σj
(
A⊗A′) ≥ σj (A � A′) ≥ σj+r (A⊗A′) , j ∈ {1, . . . ,min{MM ′, NN ′}}, (4.18)

assuming decreasingly sorted singular values, and given that

r =MM ′ −M� +NN ′ −N� (4.19)

is the number of deleted rows and columns. If moreover both matrices A and A′ are Hermitian,
and symmetrically (but not necessarily identically) partitioned, then, A � A′ and A⊗A′ are both
Hermitian and the interlacing property also holds for the eigenvalues. If A and A′ are additionally
positive semi-definite, then, also A � A′ is positive semi-definite [HM92].

3 Note that [LT08, p. 164] presents a slightly differing statement. There, the matrices Sr and Sc in (4.17) not only perform
deletions of certain rows and columns but they additionally include permutations. This however, destroys the fact that
A � A′ is a submatrix of A ⊗ A′, which in turn prohibits the use of the interlacing property for the singular values.
[LT08] does not present a proof and refers to [ZYC02; KNW91]. This brings me to the supposition that the statement
in [LT08] was derived in two steps: [ZYC02] shows that the Khatri-Rao product is a submatrix of the Tracy-Singh
product, the latter in turn is proven in [KNW91] to be related to the Kronecker product via permutations that are based
on the commutation matrix, introduced in [MN79]. If in [LT08] the permutation is trivial, i.e., identity, then, it agrees
with [HM92]. In order to face this unclear situation, I verified that the special structure of the Khatri-Rao products
that occur in this thesis is in fact a submatrix of the corresponding Kronecker product. Hence, the applicability of
[HM92] is ensured.
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Definition Table 4.1: The Khatri-Rao Product [Liu99; HM92]

Let A ∈ CM×N and A′ ∈ CM ′×N ′ be partitioned into blocks Aij ∈ CMi×Nj and A′
ij ∈ CM

′
i×N ′

j ,
with i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, where

1 ≤ I ≤ min
{
M,M ′} , and 1 ≤ J ≤ min

{
N,N ′} ,

such that
I∑
i=1

Mi =M, and
I∑
i=1

M ′
i =M ′,

J∑
j=1

Nj = N, and
J∑
j=1

N ′
j = N ′,

Then, the partitioning of the matrices A and A′ has the form

A ,


A11 A12 · · · A1J

A21 A22 · · · A2J
...

... . . . ...
AI1 AI2 · · · AIJ

 , A′ ,


A′

11 A′
12 · · · A′

1J

A′
21 A′

22 · · · A′
2J

...
... . . . ...

A′
I1 A′

I2 · · · A′
IJ

 .
The Khatri-Rao product of the matrices A and A′ is contained in CM�×N� , and defined as

A � A′ ,


A11 ⊗A′

11 A12 ⊗A′
12 · · · A1J ⊗A′

1J

A21 ⊗A′
21 A22 ⊗A′

22 · · · A2J ⊗A′
2J

...
... . . . ...

AI1 ⊗A′
I1 AI2 ⊗A′

I2 · · · AIJ ⊗A′
IJ

 , (4.20)

with

M� ,
I∑
i=1

MiM
′
i , N� ,

J∑
j=1

NjN
′
j . (4.21)

Finally, the notion of a symmetric partitioning is introduced, using matrix A as example. The
matrix A is said to be partitioned symmetrically if I = J and Mi = Ni, ∀i ∈ {1, . . . , I}.

In this thesis, the encountered Khatri-Rao products are of a special kind, which is obtained
if matrix A in Definition Table 4.1 is of dimension I × J and each of its elements is scalar, i.e.,
(A)ij = Aij , with Mi = 1, ∀ 1 ≤ i ≤ I = M , and Nj = 1, ∀ 1 ≤ j ≤ J = N . Then, in (4.20) the
Kronecker product in each of the blocks reduces to a simple multiplication of a matrix by a scalar,

A � A′ =


A11A′

11 A12A′
12 · · · A1JA′

1J

A21A′
21 A22A′

22 · · · A2JA′
2J

...
... . . . ...

AI1A′
I1 AI2A′

I2 · · · AIJA′
IJ

 . (4.22)
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It is easy to verify that in this case

A � A′ = ST
r
(
A⊗A′)Sc, (4.23)

with selection matrix (no permutations required)

ST
r ,

IM1

0 IM2

IM3

IMI





0M1×(M′−N1) 0M1×M′ 0M1×M′ 0M1×M′

0M2×M′ 0M2×
∑I

i=3 Mi
0M2×M′ 0M2×M′

0M3×M′ 0M3×M′ 0 0M3×
∑I

i=4Mi
0M3×M′

0MI×M′ 0MI×M′ 0MI×M′ 0MI×(M′−MI )

(4.24)

where Mi ,M ′
i and Nj , N ′

j was used. Note that

ST
r Sr = IM� , (4.25)

and

SrST
r =

I⊕
i=1

(IMi ⊕ 0M ′) , (4.26)

where the direct sum [HJ13, Section 0.9] is employed to construct the block diagonal matrix in (4.26).
Due to its similarity to Sr, for selection matrix Sc, expressions analogous to (4.24) and (4.26), are
simply obtained by replacing all symbols, M and I, by symbols, N and J , respectively.

If in addition, the partitioning of matrix A′ is symmetric, the two selection matrices are identical
and A � A′ is a principal submatrix of A⊗A′ [HM92]. Finally, two lemmas are presented which
are required in Section 4.5.

Lemma 4.1: Matrix Product of two Khatri-Rao Products

Let A,A′ ∈ CI×I be partitioned elementwise. Let moreover C,C′ ∈ CM×M be symmetrically
partitioned in the same way, such that their partitioning agrees with the partitioning of A
and A′. Then,4

(A � C)
(
A′ � C′)H

=

I∑
i=1

(
aia′H

i

)
�

(
I

col
j=1

{
Cji

} I
row
j=1

{
C′H
ji

})
, (4.27)

where ai and a′
i denote the columns of matrices A and A′, respectively, and Cij and C′

ij

denote the blocks obtained by the partitioning of matrices C and C′, respectively.

Proof. See Appendix D.2.1.

4 The symbol CH
ij denotes the conjugate transpose of the matrix block Cij (in row i and column j of block matrix C).

Thus,

I

row
j=1

{
CH

ij

}
=

(
I

col
j=1

{Cji}
)H

. (4.28)



Chapter 4 Coupled Adaptive Filters 78

Finally, a special case of Lemma 4.1 is presented that leads to a considerable simplification, which
will be of great value in the proof of Lemma 4.3.

Lemma 4.2: Special Case of Lemma 4.1

Consider the mixed product in (4.27). If the assumptions of Lemma 4.1 are adopted, and if
additionally

I
col
j=1

{
Cji

} I
row
j=1

{
C′H
ji

}
= c(i)C, (4.29)

with c(i) ∈ C, ∀i ∈ {1, . . . , I}, and C ∈ CM×M . Then,

(A � C)
(
A′ � C′)H

=

(
A

I
diag
i=1
{c(i)}A′H

)
� C. (4.30)

Proof. See Appendix D.2.2.

4.4 `2-Stability of Coupled Adaptive Filters
This section presents an input-output stability analysis for the coupled adaptive structure from
Section 4.1. As a result, sufficient conditions for two versions of `2-stability are obtained in
Theorems 4.1 and 4.2. For the reader unfamiliar with this kind of stability theory, Section 2.4.2
is recommended as starting point, as it provides a smooth introduction, by briefly repeating the
derivation of `2-stability for the conventional LMS algorithm [RS96a; SR96]. Although the coupled
structure considered in this section is considerably more complex, the underlying principles remain
the same.

First, in Section 4.4.1, general passivity, as well as, relations among error and noise energies are
derived. With this basis, Sections 4.4.2 and 4.4.3 apply the findings of Section 4.2, in order to
identify `2-stability in terms of absolute and weighted energies, respectively.

4.4.1 Energy Relations for Coupled Adaptive Filters
In this section, the principles introduced in Section 2.4.2 are adopted to complete the first step
in the derivation of `2-stability conditions for the coupled structure described in Section 4.1. The
goal is to derive energy relations in the style of (2.59), separately for each of the adaptive filters in
Figure 4.1. Analogous to Section 2.4.2, starting point is update equation (4.6) of one individual
filter, for which the squared Euclidean norm is found to satisfy

‖w̃i,k‖2 = ‖w̃i,k−1‖2 + ‖ui,k‖2 |ε̃i(k)|2 − 2Re {ei(k)∗ε̃i(k)} , (4.31)

where (4.7) was used. The next step is to insert ε̃i(k) from (4.6). To do so, temporarily the overall
disturbance v′i(k) is defined that affects adaptive filter i,

v′i(k) , vi(k) +
∑

j∈N\{i}

νij(k)

νii(k)
ẽj(k). (4.32)

At this point a restriction has to be imposed.
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Real-Valued Main Coupling Factors
Assumption 4.1: Real-Valued Main Coupling Factors

For all iteration steps k, the main coupling factors νii(k), i ∈ N are all real-valued and
non-zero, i.e., νii(k) ∈ R \ {0}.

With this assumption, inserting (4.32) into (4.31), leads to

‖w̃i,k‖2 = ‖w̃i,k−1‖2 + ‖ui,k‖2 |ε̃i(k)|2 − 2νii(k) |ei(k)|2 − 2νii(k)Re
{
ei(k)

∗v′i(k)
}
. (4.33)

Expanding on the right-hand side with νii(k) |v′i(k)|
2 − νii(k) |v′i(k)|

2 and recognising that∣∣ei(k) + v′i(k)
∣∣2 = |ei(k)|2 + 2Re

{
ei(k)

∗v′i(k)
}
+
∣∣v′i(k)∣∣2 , (4.34)

yields

‖w̃i,k‖2 = ‖w̃i,k−1‖2 + ‖ui,k‖2 |ε̃i(k)|2 − νii(k) |ei(k)|2 − νii(k)
∣∣ei(k) + v′i(k)

∣∣2 + νii(k)
∣∣v′i(k)∣∣2 .

(4.35)

Finally, using Assumption 4.1 for a second time, together with ε̃i(k) = νii(k) (ei(k) + v′i(k)), gives

‖w̃i,k‖2 + νii(k) |ei(k)|2 = ‖w̃i,k−1‖2 + νii(k)
∣∣v′i(k)∣∣2 + |ε̃i(k)|2(‖ui,k‖2 − 1

νii(k)

)
. (4.36)

Thus, analogous to (2.57), condition

0 < νii(k) ≤
1

‖uk‖2
, (4.37)

allows to conclude passivity, such that after calculation of the update, the overall error power is
never larger than the power of disturbances, i.e.,

‖w̃i,k‖2 + νii(k) |ei(k)|2 ≤ ‖w̃i,k−1‖2 + νii(k)
∣∣v′i(k)∣∣2 . (4.38)

Summing (4.38) up, on both sides from the first iteration k = 0, up to a certain iteration K ≥ 0,
with initial state k = −1, and applying the Minkowsky inequality [MS00b, p. 871], leads to an
energy relation analogous to (2.59),√√√√ K∑

k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+

√√√√ K∑
k=0

νii(k) |v′i(k)|
2. (4.39)

While in case of the LMS algorithm, in (2.59) the derivation was complete after this step, here,
the situation is different. This becomes obvious by reinserting overall disturbance v′i(k), defined in
(4.32), and splitting up a priori error ẽi(k), into its noiseless component and its additive noise as
done in (4.7),√√√√ K∑

k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+

√√√√√ K∑
k=0

νii(k)

∣∣∣∣∣∣
∑

j∈N\{i}

νij(k)

νii(k)
ej(k) +

∑
j∈N

νij(k)

νii(k)
vj(k)

∣∣∣∣∣∣
2

. (4.40)

The reason why the derivation cannot stop at this point, is that not only ei(k) is an output of the
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system, but all ej(k), j ∈ N \ {i} as well. As the latter occur on the right-hand side of (4.40), this
inequality does not constitute any useful bound. This becomes even more obvious by applying the
triangle inequality [MS00b, p. 72], and after resorting to the Minkowsky inequality for another time,√√√√ K∑

k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+

√√√√ K∑
k=0

∑
j∈N\{i}

|νij(k)|2

νii(k)
|ej(k)|2 +

√√√√ K∑
k=0

∑
j∈N

|νij(k)|2

νii(k)
|vj(k)|2.

(4.41)

Clearly, (4.41) constitutes a system of inequalities with respect to some sort of energies of the
noiseless update errors ei(k). This is now the point where Section 4.2 proves useful. The following
two sections apply the corresponding findings in order to state conditions for two types of `2-stability.
It has to be emphasised that above as well as in Sections 4.4.2 and 4.4.3, the derivations are based
on the triangle inequality and the Minkowsky inequality, which both are applicable for any `p-norm.
Thus, it is possible – yet not presented here – to generalise the results, i.e., Theorems 4.1 and 4.2,
such that they are formulated in terms of `p-stability.

4.4.2 `2-Stability in Terms of Absolute Energies

In this section, conditions for `2-stability of the coupled structure presented in Section 4.1 are
deduced. This is achieved by bringing (4.41) into a system of inequalities of the same type as
discussed in Section 4.2. In Section 4.4.3 similar arguments will lead to `2-stability in a different
sense. As a first step, further definitions are required which are presented in Definition 4.1.

Definition 4.1: Absolute Energies up to Iteration K

Vector composed by the absolute energies Ei(K) of the individual noiseless a priori errors

eK ,
[
E1(K) · · · EN (K)

]T
, with Ei(K) ,

√√√√ K∑
k=0

|ei(k)|2. (4.42)

Vector composed by the absolute energies E(ε)
i (K) of the noiseless update errors

εK ,
[
E

(ε)
1 (K) · · · E

(ε)
N (K)

]T
, with E

(ε)
i (K) ,

√√√√ K∑
k=0

|εi(k)|2. (4.43)

Vector composed by the absolute energies Vi(K) of the individual additive noise sequences

vK ,
[
V1(K) · · · VN (K)

]T
, with Vi(K) ,

√√√√ K∑
k=0

|vi(k)|2. (4.44)

Additionally, some bounds of the coupling factors as well as related matrices are required that can
be found in Definition Table 4.2 on page 83. Before the derivation can start, it is convenient to
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collect the energies contained in the initial parameter error vectors in vector

ω−1 ,
[
‖w̃1,−1‖ · · · ‖w̃N,−1‖

]T
. (4.45)

With this at hand, since

√
ν̌ii(K)

√√√√ K∑
k=0

|ei(k)|2 ≤

√√√√ K∑
k=0

νii(k) |ei(k)|2, (4.46)

by reordering of sums and a further application of Minkowski’s inequality, (4.41) modifies to√√√√ K∑
k=0

|ei(k)|2 ≤
‖w̃i,−1‖√
ν̌ii(K)

+
∑

j∈N\{i}

η̂ij(K)√
ν̌ii(K)

√√√√ K∑
k=0

|ej(k)|2 +
∑
j∈N

η̂ij(K)√
ν̌ii(K)

√√√√ K∑
k=0

|vj(k)|2, (4.47)

which holds for all ei(k), thus, with the elementwise order relation “4” and Definition Table 4.2,

eK 4 Ď−1
ν,Kω−1 +

(
I− ∆̄K

)
eK + Ď−1

ν,K

(
D̂ν,K + I− ∆̄K

)
vK . (4.48)

The set of inequalities in (4.48) can be brought to the structure of (4.13),

∆̄KeK 4 Ď−1
ν,Kω−1︸ ︷︷ ︸
<0

+ Ď−1
ν,K

(
D̂ν,K + I− ∆̄K

)
vK︸ ︷︷ ︸

<0

. (4.49)

For the noiseless update error εi(k), an expression similar to (4.49) can be found, as due to the
triangle inequality [MS00b, p. 72], with from (4.9), it holds that

|εi(k)|2 ≤ ν2ii(k) |ei(k)|
2 +

∑
j∈N\{i}

|νij(k)|2 |ej(k)|2 , (4.50)

for which the Minkowsky inequality leads to the energy bound√√√√ K∑
k=0

|εi(k)|2 ≤

√√√√ K∑
k=0

ν2ii(k) |ei(k)|
2 +

√√√√ K∑
k=0

∑
j∈N\{i}

|νij(k)|2 |ej(k)|2. (4.51)

With maximum coupling factors ν̂ij(K), defined in Definition Table 4.2, after exchanging sums and
application of the Minkowsky inequality, the energy of the noiseless update error is bounded by√√√√ K∑

k=0

|εi(k)|2 ≤
∑
j∈N

ν̂ij(K)

√√√√ K∑
k=0

|ej(k)|2, (4.52)

or equivalently,
εK 4 ∆̂ν,KeK . (4.53)

Eventually, (4.49), (4.53), and the insights from Section 4.2, open up access to the following theorem.
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Theorem 4.1: `2-Stability in Terms of Absolute Energies

Consider the structure of coupled adaptive gradient type algorithms defined by (4.4)–(4.9),
with the real-valued main coupling factors fulfilling for all i ∈ N , k = 0, . . . ,K,

0 < νii(k) ≤ ‖ui,k‖−2 , (4.54)

and the cross coupling factors νij(k) ∈ C. With ω−1 from (4.45), Definition 4.1, and
Definition Table 4.2, positive definiteness of the matrix relating absolute energies, i.e.,

∆̄K > 0 (4.55)

is sufficient for `2-stability in terms of individual a priori error energies, according to

eK 4 ∆̄
−1
K Ď−1

ν,K

(
ω−1 + ∆̂η,KvK

)
, (4.56)

as well as, in terms of update error energies, according to

εK 4 ∆̂ν,K∆̄
−1
K Ď−1

ν,K

(
ω−1 + ∆̂η,KvK

)
. (4.57)

4.4.3 `2-Stability in Terms of Weighted Energies
The ideas and derivations in this section tightly follow the arguments of Section 4.4.2. Thus,
explanations are kept rather brief here. Vectors εK and ω−1 containing the absolute energies of the
noiseless update errors and the energy of the individual initial parameter error vectors, respectively,
as well as diagonal matrix D̂ν,K of maximum main coupling magnitudes, are left unchanged and can
be found in Definition Table 4.2. Further required entities are specified in Definitions 4.2 and 4.3. To
emphasise their analogy, except from being augmented by the prime character (′), the used symbols
remain the same as in Section 4.4.2.

Definition 4.2: Bounds for the Coupling Factors and Related Matrices, used in Context
of the `2-Stability in terms of Weighted Energies

Maximum magnitude of the normalised coupling factors up to iteration K

η̂′ij(K) , max
0≤k≤K

{
|νij(k)|√
νii(k)νjj(k)

}
. (4.58)

Matrix relating weighted energies

∆̄
′
K ,


1 −η̂′12(K) · · · −η̂′1N (K)

−η̂′21(K) 1 · · · −η̂′2N (K)
...

... . . . ...
−η̂′N1(K) −η̂′N2(K) · · · 1

 . (4.59)

Bounding matrix for weighted energies

∆̂
′
η,K , 2I− ∆̄

′
K . (4.60)
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Definition Table 4.2: Bounds for the Coupling Factors and Related Matrices, used in
Context of `2-Stability for Absolute Energies

Minimum and maximum magnitude of coupling factors νij(k), up to iteration K

ν̌ij(K) , min
0≤k≤K

{|νij(k)|} , ν̂ij(K) , max
0≤k≤K

{|νij(k)|} , (4.61)

and the related diagonal matrices of minimum and maximum main coupling square roots

Ďν,K ,
N

diag
i=1

{√
ν̌ii(K)

}
, D̂ν,K ,

N
diag
i=1

{√
ν̂ii(K)

}
. (4.62)

Matrix of maximum coupling magnitudes

∆̂ν,K ,

 ν̂11(K) · · · ν̂1N (K)
... . . . ...

ν̂N1(K) · · · ν̂NN (K)

 . (4.63)

Maximum magnitudes of normalised coupling factors, up to iteration K (note that due to
Assumption 4.1, νii(k) ∈ R \ {0})

η̂ij(K) , max
0≤k≤K

{
|νij(k)|√
νii(k)

}
. (4.64)

Matrix relating absolute energies

∆̄K ,


1 − η̂12(K)√

ν̌11(K)
· · · − η̂1N (K)√

ν̌11(K)

− η̂21(K)√
ν̌22(K)

1 · · · − η̂2N (K)√
ν̌22(K)

...
... . . . ...

− η̂N1(K)√
ν̌NN (K)

− η̂N2(K)√
ν̌NN (K)

· · · 1

 . (4.65)

Bounding matrix for absolute energies

∆̂η,K , D̂ν,K + Ďν,K

(
I− ∆̄K

)
. (4.66)
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Definition 4.3: Weighted Energies up to Iteration K

Vector composed by the weighted energies E′
i(K) of the individual noiseless output errors

e′
K ,

[
E′

1(K) · · · E′
N (K)

]T
, with E′

i(K) ,

√√√√ K∑
k=0

νii(k) |ei(k)|2, (4.67)

Vector composed by the weighted energies V ′
i (K) of the individual additive noise sequences

v′
K ,

[
V ′
1(K) · · · V ′

N (K)
]T
, with V ′

i (K) ,

√√√√ K∑
k=0

νii(k) |vi(k)|2. (4.68)

Re-writing energy relation (4.41) as√√√√ K∑
k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+

√√√√ K∑
k=0

∑
j∈N\{i}

|νij(k)|2

νii(k)νjj(k)
νjj(k) |ej(k)|2

+

√√√√ K∑
k=0

∑
j∈N

|νij(k)|2

νii(k)νjj(k)
νjj(k) |vj(k)|2, (4.69)

based on the Minkowsky inequality, the following bound can be found√√√√ K∑
k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+
∑

j∈N\{i}

η̂′ij(K)

√√√√ K∑
k=0

νjj(k) |ej(k)|2

+
∑
j∈N

η̂′ij(K)

√√√√ K∑
k=0

νjj(k) |vj(k)|2. (4.70)

This is equivalent to a system of inequalities of the same type as in Section 4.2,

∆̄
′
Ke′

K 4 ω−1 + ∆̂
′
η,Kv′

K . (4.71)

To show that `2-stability with respect to the individual noiseless a priori errors ei(k) also entails
`2-stability in terms of the noiseless update errors, (4.50) is modified to

|εi(k)|2 ≤ νii(k)

νii(k) |ei(k)|2 + ∑
j∈N\{i}

|νij(k)|2

νii(k)νjj(k)
νjj(k) |ej(k)|2

 . (4.72)

After a few basic steps and application of the Minkowsky inequality, the following bound is obtained√√√√ K∑
k=0

|εi(k)|2 ≤
√
ν̂ii(K)


√√√√ K∑

k=0

νii(k) |ei(k)|2 +
∑

j∈N\{i}

η̂′ij(K)

√√√√ K∑
k=0

νjj(k) |ej(k)|2
 , (4.73)
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and as a consequence,

εK 4 D̂ν,K∆̂
′
η,Ke′

K 4 D̂ν,K∆̂
′
η,K

(
2I− ∆̂

′
η,K

)−1 (
ω−1 + ∆̂

′
η,Kv′

K

)
. (4.74)

Based on (4.71) and (4.74), together with Section 4.2, the following theorem can be formulated.

Theorem 4.2: `2-Stability in Terms of Weighted Energies

Consider the structure of coupled adaptive gradient type algorithms defined by (4.4)–(4.9),
with the real-valued main coupling factors fulfilling for all i ∈ N , k = 0, . . . ,K,

0 ≤ νii(k) ≤ ‖ui,k‖−2 , (4.75)

and the cross coupling factors νij(k) ∈ C. With ω−1 from (4.45), and Definitions 4.2 and 4.3,
positive definiteness of the matrix relating weighted energies, i.e.,

∆̄
′
K > 0 (4.76)

is sufficient for `2-stability in terms of individual weighted a priori error energies, according to

e′
K 4 ∆̄

′ −1
K

(
ω−1 + ∆̂

′
η,Kv′

K

)
, (4.77)

as well as, in terms of update error energies, according to

εK 4 D̂ν,K∆̂
′
η,K∆̄

−1
K

(
ω−1 + ∆̂

′
η,Kv′

K

)
, (4.78)

where εK is given by (4.43) and D̂ν,K by (4.62).

Note that although claiming to be expressed in terms of weighted energies, (4.78) in Theorem 4.2
provides bounds for the update error energies without any weighting. This is done, as the obtained
form is also sufficient for `2-stability in terms of the weighted update error energies, which can be
verified from (4.73).

4.5 Mapping Analysis of Coupled Adaptive Filters

After considering `2-stability of the coupled structure presented in Section 4.1, in this section, the
view point is switched from input-output stability to the mapping behaviour of the homogeneous
recursion. The underlying idea is the same as presented in Section 2.3.3. First, based on the Khatri-
Rao product introduced in Section 4.3, Lemma 4.3 provides a strict condition for non-increasing
parameter error distance. As the latter contains a rather involved dependency among coupling
factors νij(k) and excitation vectors ui,k, a more convenient but only sufficient condition is presented
in Lemma 4.4. The latter still depends on the excitation vectors but only in terms of their norms.
In order to further improve applicability, Lemma 4.5 states a useful expression that is necessary for
Lemma 4.4 to hold. Extensions – which will be discusses in place – to Lemma 4.5 are established
by Lemma 4.6 and Conjecture 4.1. Finally, Theorem 4.3 reformulates Lemma 4.3 for an arbitrary
number of iterations.

As in Section 3.3, starting point is a homogeneous but nonautonomous recursion of the form
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(2.18), i.e.,

w̃k = Bkw̃k−1. (4.79)

The only difference is that now the parameter error vector is a combination of all separate parameter
error vectors w̃i,k, i.e.,

w̃k ,
N
col
i=1
{w̃i,k} ∈ CM , with M ,

∑
i∈N

Mi. (4.80)

As a consequence, mapping matrix Bk that in (2.16) corresponds to an asymmetric algorithm, has
to be modified adequately in order to resemble the structure of Figure 4.1. It is straightforward to
see that (4.79) with the parameter error vector given by (4.80), is in the noiseless case, equivalent to
a combination of recursions (4.6), if

Bk = I−

 ν11(k)u
∗
1,kuT

1,k · · · ν1N (k)u∗
1,kuT

N,k
...

...
νN1(k)u∗

N,kuT
1,k · · · νNN (k)u∗

N,kuT
N,k

 . (4.81)

At this point, it is time to resort to Section 4.3 which introduces the Khatri-Rao product. The
latter allows to write Bk in a very compact form. Moreover, in Lemma 4.4, it opens up access to
the derivation of a practically useful sufficient condition for non-expanding behaviour. As a first
step, analogous to (4.80), let

uk ,
N
col
i=1
{ui,k} ∈ CM , (4.82)

be the combination of all individual excitation vectors ui,k, and

Uk , u∗
kuT

k ∈ CM×M . (4.83)

be the complex conjugate of its outer product. Additionally, introducing the coupling matrix

∆k ,

 ν11(k) · · · ν1N (k)
...

...
νN1(k) · · · νNN (k)

 , (4.84)

containing all the individual coupling factors, (4.81) is compactly written as

Bk = I−∆k � Uk. (4.85)

The partitioning of the Khatri-Rao product in (4.85) is elementwise for ∆k, and for Uk done
according to the partitioning vector

pu ,
[
M1 M2 · · · MN

]T
. (4.86)

The compact version of mapping matrix Bk in (4.85) allows to derive a strict condition for non-
increasing parameter error distance, provided by the following lemma.
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Lemma 4.3: A Strict Condition for Non-Expanding Behaviour of Bk

Mapping matrix Bk in (4.85), with Uk and ∆k given by (4.82) and (4.84), respectively, has
no singular value larger than one, iff

Γk � Uk ≥ 0, (4.87)

where

Γk , ∆k +∆H
k −∆H

kDu,k∆k, and Du,k ,
N

diag
i=1

{
‖ui,k‖2

}
. (4.88)

Proof. See Appendix D.2.3.

Deriving practically feasible bounds from (4.87), is expected to be rather involved in practical
situations. Hence, a simplification is desirable, which is provided by the following lemma.

Lemma 4.4: Sufficient Condition for Non-Expanding Behaviour of Bk

Mapping matrix Bk in (4.85), with Uk and ∆k given by (4.82) and (4.84), respectively, has
at least M −N unit singular values. Moreover, no singular value is larger than one, if the
matrix Γk in (4.88) is positive semi-definite, i.e.,

Γk ≥ 0. (4.89)

Proof. See Appendix D.2.4.

Although (4.89) is less involved compared to the strict condition in (4.87), it still may be challenging
to deduce practically feasible convergence bounds. Hence, the next lemma aims to provide some
further support. The achieved simplification is noteworthy as it only depends on the eigenvalues of
coupling matrix ∆k and on the minimum of all norms ‖ui,k‖.

Lemma 4.5: Necessary Condition for Γk ≥ 0 (cf. (4.89))

With non-vanishing excitation, i.e., ui,k 6= 0, for all i ∈ N , in order to satisfy (4.89), it is
necessary that all the eigenvalues λi (∆k) of the (non-nilpotent) coupling matrix ∆k in (4.84),
comply with

0 ≤ Re {λi (∆k)} ≤
1

2
|λi (∆k)|2 qH

i (∆k)Duqi (∆k) , (4.90)

where qi (∆k) denotes the eigenvectors of ∆k. Clearly, (4.90) is ensured if

0 ≤ Re {λi (∆k)} ≤
1

2
|λi (∆k)|2 min

i∈N

{
‖ui,k‖2

}
. (4.91)

Proof. See Appendix D.2.5.
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According to (4.90), the eigenvalues of ∆k have to be contained in a circle in the complex plane,
centred on the real axis at the value of its radius, which is given by [qH

i (∆)Duqi (∆k)]
−1. The

drawback of (4.91) is that it is only necessary but not sufficient for (4.89). Hence, the latter is
ensured to be violated, if (4.91) is violated, but the reversed implication is not necessarily true.

Finally, the following lemma, ensures that for a normal coupling matrix, Lemma 4.5 can be
satisfied. Conjecture 4.1 argues that in most cases of a non-normal coupling matrix, the opposite is
the case.

Lemma 4.6: Complement to Lemma 4.5, for ∆k being a Normal Matrix

If the coupling matrix ∆k is normal, the order relation on the left-hand side of (4.90) and (4.91)
is ensured to hold.

Proof. See Appendix D.2.6.

Conjecture 4.1: Complement to Lemma 4.5, if ∆k is not a Normal Matrix

If the coupling matrix ∆k is not normal, the order relation on the left-hand side of (4.90)
and (4.91) is (in most cases) violated.

(Partial) Proof. See Appendix D.2.7.

Lemma 4.6 and Conjecture 4.1 show a strong analogy to Chapter 3. There, it was found that
(excluding trivial cases) asymmetric algorithms always have a mapping matrix Bk with a singular
value larger than one. Only if the regression vector is the complex conjugate of the excitation vector,
a symmetric algorithm is obtained for which Bk can be ensured to be non-expanding. From this
point of view, Lemma 4.6 can be considered as condition leading to a generalised form of a symmetric
algorithm, while if violated, the algorithm behaves like a generalised asymmetric algorithm.

Finally, Lemmas 4.3 and 4.4 are extended from a per-iteration point of view to a global statement.

Theorem 4.3: Non-Expanding Behaviour in the Noiseless Case

Consider the structure of coupled adaptive gradient type algorithms defined by (4.4)–(4.9),
with coupling factors νij(k) ∈ C. Let ∆k be the matrix of coupling factors, defined in (4.84),
and Uk be the outer product of excitation vector ui,k, defined in (4.83), then, (4.87) is
necessary and sufficient, (4.89) only sufficient for

‖w̃k‖ ≤ ‖w̃k−1‖ , ∀k = 0, . . . (4.92)

i.e., the length of the combined parameter error vector w̃k as introduced in (4.80) will never
increase with increasing iteration index k.

Proof. This Theorem 4.3 directly follows from Lemmas 4.3 and 4.4.
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4.6 Identical Error Case
A special situation occurs, if some of the individual coupled adaptive algorithms in Figure 4.1 rely
on the same update error for the calculation of their parameter estimates. This case occurs more
often than possibly expected, as, e.g., cascaded adaptive structures can be mapped to this case
(cf. Section 5.2). In the sequel, wo.l.o.g., it is assumed that the first N ′ ≤ N algorithms do their
adaptation based on one common update error, except from a scaling factor µi′(k), for which the
same symbols is used as for the step-size in (4.10)–(4.12), since their algorithmic effect is identical.
Let

N ′ , {1, . . . , N ′} ⊆ N (4.93)

denote the set of indices which addresses the group of algorithms that are updated by the joint error.
The latter, denoted by ε̃′(k), is defined below in (4.96). The corresponding coupling factors νi′j(k),
i′ ∈ N ′, j ∈ N , can be factorised by

νi′j(k) = µi′(k)νj(k), (4.94)

leading for the individual update errors (4.8) to

ε̃i′(k) =
∑
j∈N

µi′(k)νj(k)ẽj(k) = µi′(k)
∑
j∈N

νj(k)ẽj(k) = µi′(k)ε̃
′(k), (4.95)

with common update error

ε̃′(k) ,
∑
j∈N

νj(k)ẽj(k). (4.96)

Note that the sums in (4.95) and (4.96) cover the whole index range and are not restricted to the
subset N ′. Inserting coupling factors νi′j(k) into the coupling matrix ∆k in (4.84), clearly causes the
latter to become rank deficient with rank{∆k} ≤ N −N ′ + 1. As a consequence, (4.55) and (4.76)
are violated, entailing Theorems 4.1 and 4.2 to be inapplicable. Thus, no statement regarding the
`2-stability of the coupled structure with (partially) identical update errors can be made. It is
important to notice that this situation does not allow to conclude instability in the `2-sense. It only
indicates that the identical error case cannot be analysed by Theorems 4.1 and 4.2.

For the mapping analysis in Section 4.5, the underlying theory does not require ∆k to be invertible.
In fact, since Lemma 4.3 is necessary and sufficient, it is accessible for arbitrary coupling matrices.
Also the practically more relevant Lemma 4.4 remains valid for singular coupling matrices. Based on
Lemma 4.5, together with the extending statements, Lemma 4.6 and Conjecture 4.1, the following
conjecture is found.

Conjecture 4.2: Γk ≥ 0 in the Identical Error Case

In the identical error case, Condition (4.89) in Lemma 4.4 can only be satisfied if the coupling
matrix ∆k is normal.

Proof. For a normal ∆k, Lemma 4.6 ensures Γk ≥ 0. Conjecture 4.1 in turn, shows that non-normal
∆k lead to Γ 6≥ 0. If Conjecture 4.1 could be shown to hold for any non-normal coupling matrix,
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the above statement would become strict.

Conjecture 4.2 has a strong impact to the degrees of freedom for µi′(k) and νj(k). As the following
Lemma 4.7 shows, in the case that the coupling matrix is not only normal but also Hermitian, it
entails that coupled adaptive filters with common update error behave identical to a symmetric
algorithm. For simplicity reasons, wo.l.o.g., assume that N ′ = N . Then, inserting (4.96) in (4.6),
together with the combined parameter error vector in (4.80), and the combined excitation vector in
(4.82), the overall update equation in the noiseless case is obtained as

w̃k = w̃k−1 −

(
N⊕
i=1

µi(k)IMi

)
u∗
kuT

k

(
N⊕
i=1

νi(k)IMi

)
w̃k−1, (4.97)

where the block diagonal matrices are expressed by the direct sum [HJ13, Section 0.9].

Lemma 4.7: Identical Error Case with Hermitian coupling matrix

In the identical error case, the coupling matrix ∆k is Hermitian iff all µi′(k) are related to
the corresponding ν∗i′(k), i′ ∈ N ′, by the same proportionality constant a(k) ∈ C, i.e.,

νi′(k) = a(k)µ∗i′(k). (4.98)

Proof. A Hermitian coupling matrix requires νi′j(k) = ν∗ji′(k), which due to (4.94) entails
µi′(k)νj(k) = µ∗j (k)ν

∗
i′(k). Thus,

µi′(k)

µ∗j (k)
=
ν∗i′(k)

νj(k)
⇒ νi′(k) = ν∗1(k)

νi′(k)

ν∗1(k)
= ν∗1(k)

µ∗i′(k)

µ1(k)
=
ν∗1(k)

µ1(k)
µ∗i′(k).

Inserting (4.98) into (4.97), leads to

w̃k = w̃k−1 − a(k)

(
N⊕
i=1

µi(k)IMi

)
u∗
k︸ ︷︷ ︸

u′∗
k

uT
k

(
N⊕
i=1

µi(k)IMi

)
︸ ︷︷ ︸

u′T
k

w̃k−1. (4.99)

This algorithm obviously behaves like a symmetric algorithm with step-size a(k) and excitation
vector u′

k. In the general case, with non-zero coupling factors, defining the transformed excitation
vector

u′
k ,

(
N⊕
i=1

νi(k)IMi

)
uk, (4.100)

(4.97) becomes

w̃k = w̃k−1 −

(
N⊕
i=1

µi(k)

νi(k)
IMi

)
u′∗
k u′T

k w̃k−1, (4.101)

which obviously corresponds to the homogeneous update equation of a gradient type algorithm with
matrix step-size, according to (2.8).
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For practical usage, Conjecture 4.2 would be more adequate if it would state conditions regarding
the singular values of Bk. However, at the moment when I am writing these lines, a missing link
exists which prevents me from doing so. Let me point this out in more detail. Lemmas 4.5 and 4.6
and Conjecture 4.1 provide necessary conditions for Γk ≥ 0, which due to Lemma 4.4 are in turn
sufficient for a non-expanding Bk. Consequently, a violation of Lemma 4.5, Lemma 4.6, and/or
Conjecture 4.1 ensures Γk 6≥ 0. The latter however does not allow to conclude that Bk is expanding,
as Lemma 4.4 is only sufficient and not necessary. Thus, the mentioned missing link is a statement
of the form “Γk 6≥ 0⇒ Γk � Uk 6≥ 0”, which I have not been able to show up to now.





Chapter 5
Examples and Applications

After the considerations of Chapters 3 and 4 with strong theoretical focus, this chapter presents
four different applications. As an introduction, Section 5.1.1 considers two adaptive filters that are
coupled according to Chapter 4. Two configurations of coupling factors are discussed. The first one
shows perfectly symmetric coupling and provides insight to the application of Theorems 4.1 and 4.2
and Lemmas 4.3 and 4.4. The second configuration represents an identical error case as introduced
in Section 5.1.3.2, and demonstrates its relation to asymmetric algorithms. Simulation experiments
are included for further illustration.

The Wiener model which is mentioned in Section 1.1, as one of the main motivations that lead to
this thesis, is analysed in Section 5.2. As it can be represented as an identical error case, according
to Section 4.6, Lemma 4.7 gives access to a condition that allows to ensure `2-stability and a
non-expanding parameter error vector.

The third applications is found in Section 5.3, which thoroughly studies `2-stability and the mapping
behaviour of the MC-FXLMS algorithm in the context of ANC. The main results are developed step
by step, starting in Section 5.3.1 with a scenario that only contains one reference microphone and one
cancelling loudspeaker, but several error microphones. The case of an aritrary number of reference
microphones and cancelling loudspeakers but with only one single error microphone is covered by
Section 5.3.2. Section 5.3.3 eventually states conditions for `2-stability and non-expanding mapping
behaviour of the general MC-FXLMS algorithm.

Finally, in Section 5.4, the whole apparatus of Chapter 4 is harnessed to extend the insights to the
still not completely understood convergence behaviour of the backpropagation algorithm, employed
for the training of a neural network, more specifically, a multilayer perceptron.

5.1 Special Case of Two Coupled Adaptive Filters
As first application of the theory presented in Chapter 4, this section considers a strongly simplified
and rather generic example of two coupled filters, i.e., in (4.1) N = 2 and N = {1, 2}. Figure 5.1
shows the specific structure that is obtained from Figure 4.1 in this case. The reason for choosing
this example is twofold. First, it gives a good overview about the difference between the `2-
stability bounds obtained in Section 4.4.2, and the convergence conditions in Section 4.5. Second,
the structure will also be of value in the following Section 5.2.

The obtained results are tightly related to the ones presented in [DR09b; DR15]. However, there,
the derivations are a priori restricted to N = 2, and do not cover the general case of arbitrary N > 2.
Moreover, in these works, the coupling factors are inherently restricted to be real-valued.

Section 5.1.1 briefly discusses `2-stability for the objective coupled structure. The mapping
behaviour in terms of the parameter error vector is analysed in Section 5.1.2, which is condensed in
Corollary 5.1. Finally, two generic examples with strong symmetries of their coupling factors are
considered in Section 5.1.3. The first one, is tailored to comprehensively carve out the strictness of
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�̂1,k,k�̂1,k

ε̃1(k)ε̃1(k)
ν1111(k)ν11(k)

ν2222(k)ν22(k)

ν2121(k)ν21(k)

ν1212(k)ν12(k)

ε̃2(k)ε̃2(k)

v1(k)v1(k)

�1,k,k�1,k �1�1

�̂2,k,k�̂2,k

v2(k)v2(k)

�2,k,k�2,k �2�2

Figure 5.1: Two Coupled Adaptive Filters. This structure is obtained from Figure 4.1 for N = 2.

Corollary 5.1. The second one, also applies Corollary 5.1 in order to illustrate the implications of
the identical error case from Section 4.6.

5.1.1 `2-Stability of Two Coupled Adaptive Gradient Type Algorithms
For the coupled structure in Figure 5.1, `2-stability bounds are obtained from Theorems 4.1 and 4.2,
by inserting N = 2. Both theorems require the main coupling factors to be real-valued and to satisfy,

0 ≤νii(k) ≤
1

‖ui,k‖2
, (5.1)

with i ∈ N . Then, according to Theorem 4.1, additional positive definiteness of coupling matrix ∆̄K ,
defined in Definition Table 4.2, i.e.,

∆̄K =


1 − 1√

ν11(k)
max

0≤k≤K

{
|ν12(k)|√
ν11(k)

}

− 1√
ν22(k)

max
0≤k≤K

{
|ν21(k)|√
ν22(k)

}
1

 > 0. (5.2)

is sufficient for `2-stability in terms of absolute energies. Equivalently [HJ13, Observation 7.1.2],
since the elements on the main diagonal are ensured to be positive, det

(
∆̄K

)
> 0 leads to(

max
0≤k≤K

{
|ν12(k)|√
ν11(k)

})(
max

0≤k≤K

{
|ν21(k)|√
ν22(k)

})
<
√
ν11(k)ν22(k). (5.3)

Similarly, due to (4.76) in Theorem 4.2, positive definiteness of matrix ∆̄
′
K , defined in Definition 4.3,

is sufficient to ensure `2-stability in terms of weighted energies. As before, the equivalent condition
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det(∆̄′
K) > 0 gives(

max
0≤k≤K

{
|ν12(k)|√
ν11(k)ν22(k)

})(
max

0≤k≤K

{
|ν21(k)|√
ν11(k)ν22(k)

})
< 1. (5.4)

For constant coupling factors, Conditions (5.3) and (5.4) coincide and simplify to

|ν12| |ν21| < ν11ν22 ≤
1

maxk≥0

{
‖u1,k‖2

}
maxk≥0

{
‖u2,k‖2

} , (5.5)

where the bound on the right-hand side is a consequence of (5.1). This perfectly agrees with the
result in [DR09b]. The only difference is that there, the coupling factors do not inherently include
the step-sizes of the underlying gradient type algorithms. The equivalence can easily be verified
based on (4.10)–(4.12).

5.1.2 Convergence Behaviour of Two Coupled Gradient Type Algorithms

In this section, instead of `2-stability, the mapping behaviour of the corresponding homogeneous
recursion is considered, according to Section 4.5. The elements of matrix Γk in (4.88) are identified
as

(Γk)11 = 2Re {ν11(k)} − |ν11(k)|2 ‖u1,k‖2 − |ν21(k)|2 ‖u2,k‖2 , (5.6)
(Γk)22 = 2Re {ν22(k)} − |ν22(k)|2 ‖u2,k‖2 − |ν12(k)|2 ‖u1,k‖2 , (5.7)

(Γk)12 = (Γk)
∗
21 = ν12(k) + ν∗21(k)− ν∗11(k)ν12(k) ‖u1,k‖2 − ν22(k)ν∗21(k) ‖u2,k‖2 . (5.8)

According to Lemma 4.4, in the noiseless case, non-expanding behaviour of the homogeneous
recursion is guaranteed if Γk ≥ 0, or equivalently [HJ13, Observation 7.1.2],

[(Γk)11 ≥ 0] ∧ [(Γk)22 ≥ 0] ∧ det (Γk) = (Γk)11 (Γk)22 − |(Γk)12|
2 ≥ 0. (5.9)

Equation (5.9) is rather concise. However, as it is based on Lemma 4.4, it is only sufficient for
non-expanding behaviour. Nevertheless, the simplicity of the here considered case, due to N = 2,
allows to directly evaluate Lemma 4.3 which opens up access to sufficient and necessary conditions.
The corresponding Corollary 5.1 leads to the same result as in [DR15], here, extended to the
complex-valued case.



Chapter 5 Examples and Applications 96

Corollary 5.1: Strict Condition for Non-Expanding Behaviour if N = 2

Consider the structure of two coupled adaptive gradient type algorithms, i.e., N = 2, defined
by (4.4)–(4.9). Then, the elements of the 2× 2 matrix Γk in (4.88) are given by (5.6)–(5.8).
Under the assumption that ui,k 6= 0, i ∈ N = {1, 2}, with the three conditions

A. (Γk)11 (Γk)22 ≥ |(Γk)12|
2,

B. (Γk)11 ‖u1,k‖2 + (Γk)22 ‖u2,k‖2 > 0,

C. (Γk)11 ‖u1,k‖2 + (Γk)22 ‖u2,k‖2 < 0,

for increasing k ≥ 0, norm ‖w̃k‖ of the combined parameter error vector in (4.80),

1. can never increase, iff, (A ∧ B),

2. can never decrease, iff (A ∧ C),

3. can do both, increase or decrease, depending on ui,k, iff A is violated, and (B ∨ C),

4. is ensured to remain constant, iff B and C are violated.

Proof. See Appendix D.3.1.

Although (5.9) was obtained from Lemma 4.4 as sufficient condition for non-expanding behaviour,
a comparison with Corollary 5.1 shows that it almost precisely captures the strict condition for non-
expanding behaviour from the latter. For (Γk)ii ≥ 0 both conditions actually coincide. Nevertheless,
Corollary 5.1 provides much more insight to the possible mapping mechanisms.

5.1.3 Two Illustrative Examples with Strong Symmetries
Finally, in this section, the results of Sections 5.1.1 and 5.1.2 are illustrated by two specific
configurations of the coupled structure in Figure 5.1. Both of them show strong symmetries which
are idealised and probably rarely met in practice. However, they lead to a very clear picture of the
corresponding bounds. First, Section 5.1.3.1 considers two coupled gradient type algorithms with
identical main and cross coupling factors. Then, Section 5.1.3.2 analyses a simple configuration with
identical update errors.

5.1.3.1 Symmetric Cross Coupling

In this section, it is assumed that the coupling factors in Figure 5.1 satisfy

ν11 = ν22 = µ, ν12 = ν21 = µν, (5.10)

with real-valued constants µ and ν. Moreover, the excitation sequences are assumed to have invariant
and identical power, i.e.,

‖u1,k‖2 = ‖u2,k‖2 = U > 0. (5.11)

This is not as restricting as it may seem at the first glance. Indeed, it is perfectly met if, e.g., the
excitation vectors represent the delay line of FIR filters, as described in Section 2.2.1.2, and if the
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Figure 5.2: Graphical representation of the 4 cases in Corollary 5.1, for two coupled gradient type algorithms that satisfy
the symmetry requirements in (5.10).

samples of the two corresponding scalar input sequences contain by the baseband symbols of a
constant envelope modulation scheme [Pro95; BLM04].

For such a configuration, (5.5) provides the `2-stability bound [DR09b]

|ν| < 1, 0 ≤ µU ≤ 1. (5.12)

With respect to the mapping analysis, inserting (5.10) in (5.6)–(5.8) gives

(Γk)11 = (Γk)22 = µ
[
2− µU

(
1 + ν2

)]
, (Γk)12 = (Γk)21 = 2µν (1− µU) , (5.13)

which modifies the three conditions in Corollary 5.1 to

A. (µ = 0) ∨ (|ν| = 1) ∨
〈
(|ν| 6= 1) ∧

[(
µU − 2

1 + |ν|

)(
µU − 2

1− |ν|

)
≥ 0

]〉
,

B. µ
[
2− µU

(
1 + ν2

)]
> 0,

C. µ
[
2− µU

(
1 + ν2

)]
< 0.

Figure 5.2 visualises the evaluation of the four cases in Corollary 5.1, after inserting the above
conditions. Clearly, for two coupled gradient type algorithms that satisfy (5.10), non-expanding
behaviour can only be ensured for

−1 ≤ ν ≤ 1, and 0 ≤ µU ≤ 2

1 + |ν|
. (5.14)
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Table 5.1: Values of Normalised Step-Size µU obtained for ν in (5.18)

ν bound for µU in (5.14) µU 1 % below bound µU 1 % above bound

0 2 1.980 2.020

0.25 1.6 1.584 1.616

0.5 1.3̇ 1.320 1.347

0.75 1.142857 1.131 1.154

1 1 0.990 1.010

It can be verified that these bounds coincide with the sufficient conditions that are obtained from (5.9).
Consequently, in this symmetric scenario, Lemma 4.4 is necessary and sufficient.

The following simulation experiments demonstrate the strictness of (5.9). Either of the reference
systems as well as the system models of the here considered coupled structure are FIR filters
comprising of five taps, i.e.,

M1 =M2 =M = 5. (5.15)

The individual filter weights of the reference systems are drawn from NC (0, 1). Similarly, the
individual entries ŵi(−1) of the adaptive parameter vectors are randomly initialised by drawing
them from NC

(
0, 1

M

)
. In order to ensure (5.11), the elements of sequences, {u1(k)} and {u2(k)},

that excite the two branches of the coupled structure, are taken from a quadrature phase shift
keying (QPSK) alphabet [Pro95; BLM04], i.e, with i ∈ N ,

ui(k) ∈
{

1 + √
2
,
−1 + √

2
,−1 + √

2
,
1− √

2

}
. (5.16)

Hence,
U = ‖ui,k‖2 =M = 5. (5.17)

The response of each of the reference systems is affected by additive noise vi(k) that is randomly
generated from NC(0, σ

2
v), with variance σ2v = 10−4. For each of the below specified parameter

settings, Navg = 200 Monte Carlo runs are performed.
For five values of coupling factor ν,

ν ∈ {0, 0.25, 0.5, 0.75, 1} , (5.18)

four cases are investigated. The first pair of simulations chooses the normalised step-size µU one
percent below the bound in (5.14) and studies the resulting convergence behaviour for random,
as well as for w.c. excitation. The second pair is almost identical, however, µU is selected one
percent above the bound in (5.14). Table 5.1 gives an overview of the actual values. For the case of
random excitation, the input samples ui(k), drawn from (5.16), are independently and identically
distributed. Worst case excitation is achieved by a full search that is performed for each iteration k.
The search selects the excitation vectors, u1,k and u2,k, such that the instantaneous combined
parameter error distance ‖col{w̃1,k, w̃2,k}‖ is maximised. Due to the restricted domain (5.16) of the
excitation samples, and the shift dependency that results from the FIR structure of the individual
filters (cf. (2.21)), the search space is restricted to only 16 variants per iteration. This is, as the shift
dependency entails that only the first element of each of the two excitation vectors can be modified,
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the other elements contain the preceding samples of the excitation sequences. Due to the restricted
domain in turn, these two remaining variables can each only assume one out of four values. Hence,
24 = 16 possible excitations cases exist per iteration.

Figures 5.3(a) and 5.3(b) allows to observe that with normalised step-size µU chosen one percent
below the bound in (5.14), neither random, nor w.c. excitation lead to divergence of the combined
parameter mismatch (cf. (2.19)), i.e., the parameter mismatch that refers to the stacked parameter
error vector col{w̃1,k, w̃2,k} (cf. (4.82)). For µU selected one percent above the bound in (5.14),
the results are still similar for random excitation. As Figure 5.3(c) shows, the coupling factors
ν ∈ {0.25, 0.5, 0.75} lead to convergence of the combined parameter error vector towards the
steady state that results from the additive noise. For ν ∈ {0, 1}, diverging behaviour can be observed.
In the primer case, this is not surprising, as ν = 0 entails that the two gradient type algorithms
are independent. Hence, this scenario is equivalent to two isolated NLMS algorithms that are both
operated beyond their (sharp) step-size limit [NN67; Hay02; Say03]. Case ν = 1 coincides with the
upper bound on the left-hand side of (5.14) and also results in divergence of the combined parameter
error vector. Since this effect does not occur for ν = 1 in Figures 5.3(a) and 5.3(b), it can be
concluded that (5.14) is also tight for ν = 1. Finally, the results for w.c. excitation depicted in
Figure 5.3(d), unveil that also for ν ∈ {0.25, 0.5, 0.75} divergence of the combined parameter error
vector occurs in almost1 all cases. Consequently, (5.14) is indeed tight for all of the here considered
values of coupling factor ν in (5.18).

5.1.3.2 Identical Error Case

In this section, the coupled structure in Figure 5.1 is considered in the case of identical update errors.
It is a specific scenario of the system analysed in Section 4.6, with the coupling factors given by

ν11 = ν12 = µ, ν22 = ν21 = aµ, (5.19)

where a, µ ∈ R. As in Section 5.1.3.1, the excitation sequences are assumed to have constant
and identical power, hence, (5.11) remains valid. In contrast to Section 5.1.3.1, here, (5.5) is not
applicable since

|ν12| |ν21| = aµ2 6< ν11ν22 = aµ2. (5.20)

Consequently, a statement regarding `2-stability is not possible based on the theory in Section 4.4.
Yet, a study of the mapping behaviour according to Section 4.5 is still accessible. Inserting (5.11)
and (5.19) in (5.6)–(5.8) gives

(Γk)11 = µ
[
2− µU

(
1 + a2

)]
, (5.21)

(Γk)22 = µ
[
2a− µU

(
1 + a2

)]
= (Γk)11 − 2µ (1− a) , (5.22)

(Γk)12 = (Γk)21 = µ
[
1 + a− µU

(
1 + a2

)]
= (Γk)11 − µ (1− a) . (5.23)

Hence,

(Γk)11 (Γk)22 − |(Γk)12|
2 = −µ2 (1− a)2 ≤ 0 ⇒ (Γk)11 (Γk)22 ≤ |(Γk)12|

2 , (5.24)

1 Note that the ensemble minima in Figure 5.3(d) do not continue to grow with increasing k. However, this behaviour is
ensured to apply only to a few outliers of the ensemble as the average, as well as the 95 %-confidence intervals show
divergence.
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(a) Normalised step-size µU , chosen 1 % below the bound
in (5.14), i.e., the values are given by the second column
on the right-hand of Table 5.1. Excitation of both gradi-
ent type algorithms is random.
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(b) Normalised step-size µU , chosen 1 % below the bound
in (5.14), i.e., the values are given by the second column
on the right-hand of Table 5.1. Here, in contrast to
Figure 5.3(a), w.c. excitation is used.

ν = 0.00, µU = 1.980 ν = 0.25, µU = 1.584 ν = 0.50, µU = 1.320

ν = 0.75, µU = 1.131 ν = 1.00, µU = 0.990

ensemble average 95 %-confidence intervals extremal range
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(c) In contrast to Figures 5.3(a) and 5.3(b), normalised
step-size µU is chosen 1 % above the bound in (5.14), i.e.,
the values are given by the right column in Table 5.1.
Excitation of both gradient type algorithms is random.
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(d) As in Figure 5.3(c), normalised step-size µU is
chosen 1 % above the bound in (5.14), i.e., the values
are given by the right column in Table 5.1. Here, w.c.
excitation is used.

ν = 0.00, µU = 2.020 ν = 0.25, µU = 1.616 ν = 0.50, µU = 1.347

ν = 0.75, µU = 1.154 ν = 1.00, µU = 1.010

ensemble average 95 %-confidence intervals extremal range

Figure 5.3: Evaluation of bound (5.14) that applies to the coupled structure in Figure 5.1 with coupling symmetries in
(5.11) and (5.12). The five values of coupling factor ν in (5.18) are considered. The domain of the excitation
sequences is restricted to the QPSK-symbols in (5.16).
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which entails that Condition A in Corollary 5.1 can only be satisfied (by identity), if µ = 0 or
a = 1. Inserting this in (5.21)–(5.23) shows that then, for µ = 0, the constant Case 4 occurs in
Corollary 5.1. For a = 1, all four elements of Γk are identical and the coupled structure reduces to a
symmetric algorithm, which is an inherent application of Lemma 4.7. In all other situations, i.e.,
µ 6= 0 and a 6= 1, in Corollary 5.1, Condition A is violated and either Condition B or Condition C
holds, resulting in the indifferent Case 3.

For illustration of the above findings, two simulation experiments are performed. Almost all
of the simulation settings described in Section 5.1.3 remain valid, here. The only difference is
found in the choice of the coupling factors which have to be modified in order to reflect (5.19).
As found in Section 4.6, the identical error case, maps to an gradient type algorithm with matrix
step-size (cf. (4.101)). Hence, analogous to the simulation experiments in Section 3.1, choosing

µ =
µ̄

(1 + a)U
. (5.25)

with normalised step-size µ̄, the excitation power is normalised and the spectral radius of the
corresponding mapping matrix is ensured to be less than one, if 0 < µ̄ < 2 (cf. Lemma 3.1). Two
values for a and three values for µ̄ are considered

a ∈ {0.5, 1} , and µ̄ ∈ {0.5, 1.95, 2.05} , (5.26)

respectively. Hence, each simulation experiment investigates six parameter constellations. In a first
step, the coupled structure is excited by random QPSK symbols drawn from (5.16). Figure 5.4(a)
shows the results in terms of the combined parameter mismatch (cf. (2.19) and (4.82)). Clearly,
only for µ̄ = 2.05, independently from a, divergence occurs. This is not surprising as it leads to a
violation of Lemma 3.1, which necessarily provokes divergence. Note that due to a = 1, the scheme
coincides with an NLMS algorithm. Hence, this observation perfectly agrees with the corresponding
well known step-size bound [NN67; Hay02; Say03]. A repetition of the same experiment with
w.c. excitation leads to the graphs in Figure 5.4(b). Although quantitatively different, they are
qualitatively similar to those in Figure 5.4(a). Even if the restriction to FIR filters is discarded and
linear combiner (cf. Section 2.2.1.1) are used instead, all cases with µ̄ < 2, end up in convergence –
due to its similarity no figure included. For a = 0.5, the asymmetric nature of the algorithm may
tempt to expect divergence, also for µ̄ < 2. The answer for this possibly counterintuitive observation
is found in Section 3.4.4. Accordingly, since a and µ are constant, also the step-size matrix of the
equivalent asymmetric algorithm is invariant, which in turn ensures a parameter error distance that
remains bounded (cf. Theorem 3.2).

5.2 The (Simplified) Wiener Model
In many system identification applications the (unknown) reference system shows non-linear beha-
viour [KH86; KAWC95; GS01; DLA03; RZV05; GH09]. If such a system – which is here assumed
to be SISO – is memoryless, i.e., at any arbitrary time instant, its output only depends on the
instantaneous2 input value, the system model is required to implement a (non-linear) one-to-one
mapping, i.e., a look-up table (LUT). In such a case, the parametrisation based on a non-linear basis,
as introduced in Section 2.2.1.3, leads to a model that is linear in its parameters. This again allows
to use a gradient type algorithm in order to perform the adaptive system identification process.
The situation becomes more involved, if the output of the reference system additionally depends on
2 A fixed and known delay between input and output would also be acceptable.
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(a) Excitation by random QPSK (cf. (5.16)) symbols.
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(b) Excitation by QPSK (cf. (5.16)) symbols, such that in
each iteration, the parameter error distance is maximised.

a = 0.5, µ̄ = 0.5 a = 0.5, µ̄ = 1.95 a = 0.5, µ̄ = 2.05

a = 1.0, µ̄ = 0.5 a = 1.0, µ̄ = 1.95 a = 1.0, µ̄ = 2.05

ensemble average 95 %-confidence intervals extremal range

Figure 5.4: Convergence behaviour of the two coupled adaptive filters in Figure 5.1, in the case of identical update errors.
The coupling factors are given by (5.26).

the history of its input. Then, one of the most general approaches would be to use Volterra Series
(cf. Section 2.2.1.4). While this again leads to a model that is linear in parameters, the downside
is the immense number of parameters that has to be estimated, even for reasonable non-linearity
orders and short memory lengths. Hence, in scenarios which give access to some a priori knowledge
about the unknown reference system, simplifications are desired which allow to reduce computational
complexity and speed up adaptation.

One such approach that remarkably reduces the number of parameters, is the Wiener model. It
contains the cascade of a linear filter followed by a memoryless non-linearity. Figure 5.5 depicts an
adaptive system identification structure, where the reference system as well as the system model are
represented by a Wiener model. As pointed out at the beginning of Section 2.1, any behaviour of the
reference system that cannot be described by the Wiener model, is subsumed in additive noise v(k).

For the structure in Figure 5.5, several adaptive algorithms and stability analyses are found in

y (k)y (k) d(k)d(k)

v(k)v(k)

d̃(k)d̃(k) ε̃(k)ε̃(k)

ŷ (k)ŷ (k) d̂(k)d̂(k)

u(k)u(k)

�̂1,k,k�̂1,k

�1�1 �2�2

�̂2,k,k�̂2,k

Figure 5.5: An adaptive system identification system based on the Wiener model that consists of a cascade of a linear
filter and a memoryless non-linearity. Here, the unknown reference system in the top branch is assumed to
have the same structure as the adaptive system model in the bottom branch. Inaccuracies of modelling are
subsumed in the additive noise v(k).
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literature. One approach is given in [Gre92; PHW07], which describe the linear part by a state-space
model and use a non-parametric representation of the non-linearity. The primer is identified by
least-squares, the latter by an adaptive kernel method. Convergence is analysed in terms of first and
second order moments. Two further identification methods are proposed in [RZV05]. Both of them
represent the linear dynamic system as an FIR filter and use a non-linear basis expansion to describe
the non-linear part. The first proposed identification algorithm is based on alternating projections,
the second one on a minimum norm argument. Finally, [Wig94; Wig95] assume the non-linearity to
be known a priori and employ the Gauß-Newton algorithm to identify the linear part represented by
an IIR filter. Analyses of local and global convergence are performed. The extension to an unknown
non-linearity that is described by either piecewise linear or piecewise quadratic functions is covered
in [Wig90].

All of the above described approaches require a considerable amount of computational power.
The case of computationally less expensive pure gradient type algorithms is considered in [BCV00;
CBV00; CBV01]. First and second order moments analysis as well as mean tracking behaviour of
the parameter error vector is analysed under common independence assumptions [Hay02; Say03].
In the sequel, a complementary deterministic analysis for this type of adaptive Wiener model is
discussed based on the theories in Chapters 3 and 4. The underlying idea has been published in
[DR10]. An improvement for the therein used gradient type algorithm was proposed in [DR12].

Following the lines of [BCV00; CBV00; CBV01; AR03], the output of the first block in the cascade,
represented by an FIR filter, is given by

y(k) , uT
kw1, ŷ(k) , uT

k ŵ1,k−1, (5.27)

where excitation vector uk contains the M1 entries of the delay line corresponding to the FIR filters,
as described in Section 2.2.1.2. Assuming that a non-linear basis has been chosen consisting of M2

basis functions ψm : R 7→ R, m ∈ {1, . . . ,M2}, the non-linear one-to-one mappings of the second
blocks in the cascade can be defined as

hw2(y(k)) ,
M2∑
m=1

w2,mψm (y(k)) = wT
2ψ(y(k)) , (5.28)

hŵ2
(ŷ(k)) ,

M2∑
m=1

ŵ2,m (k − 1)ψm (ŷ(k)) = ŵT
2,k−1ψ(ŷ(k)) , (5.29)

where the vector of basis functions ψ (.) ∈ RM2 has been introduced in accordance to (2.22), i.e.,

ψ(.) ,
[
ψ1 (.) . . . ψM2 (.)

]T
. (5.30)

Assuming that the linear part has been identified perfectly, the adaptive update of the non-linear
part can be done using the conventional LMS algorithm algorithm, i.e.,

ŵ2,k = ŵ2,k−1 + µnl(k)ψ(ŷ(k)) ε̃(k), (5.31)

with some real-valued positive step-size µnl(k), and

ε̃(k) = d̃(k)− d̂(k) = d(k)− d̂(k)︸ ︷︷ ︸
ε(k)

+v(k) = w̃T
2,k−1ψ(ŷ(k))︸ ︷︷ ︸

ε(k)

+v(k). (5.32)

If a stochastic gradient update is used also for the linear part, and if analogous to (2.6) and (2.7),
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cost function E
{
ε̃2(k)

}
is employed, the following gradient is obtained (suppressing iteration index k

in the next line)

∂ε̃2

∂ŵ1
= 2ε̃

∂ε̃

∂ŵ1
= 2ε̃

∂

∂ŵ1

{
hw2

(
wT

1u
)
− hŵ2

(
ŵT

1u
)
+ v
}
= −2ε̃h′

ŵ2

(
ŵT

1u
)

uT. (5.33)

Including the constant factor 2 into the real-valued positive step-size µlin(k), this leads to the
stochastic gradient update of parameter vector ŵ1,k, according to

ŵ1,k = ŵ1,k−1 + µlin(k)ukh
′
ŵ2,k−1

(
ŵT

1,k−1uk
)
ε̃(k). (5.34)

Note that the gradient descent can only reliably lead to the actual minimum of the cost function, if
the latter does not show local minima. While this is ensured for (5.31), it is in general not guaranteed
for (5.34), as it contains an – at this point almost arbitrary – non-linearity in its auxiliary path.
With the vector consisting of the first order derivatives of the basis functions ψm,

ψ′(.) ,
[

dψ1(.)
d. . . .

dψM2
(.)

d.

]T
, (5.35)

based on (5.29), (suppressing iteration index k for the remainder of this sentence), derivative h′
ŵ2

(ŷ)

is equivalent to (note that for derivative h′
w2

(y) an analogous relation holds)

h
′
ŵ2

(ŷ) =
d
dŷ

{
M2∑
m=1

ŵ2,mψm (ŷ)

}
=

M2∑
m=1

ŵ2,m
dψm (ŷ)

dŷ = ŵT
2ψ

′(ŷ) . (5.36)

Inserting (5.36) in (5.34) gives the completely equivalent update equation

ŵ1,k = ŵ1,k−1 + µlin(k)ukŵT
2,k−1ψ

′(ŵT
1,k−1uk

)
ε̃(k). (5.37)

In the sequel, the goal is to map the combination of the two gradient type algorithms given by
(5.31) and (5.34) to the coupled structure introduced in Chapter 4, more specifically, to the one in
Figure 5.1. To do so, as a first step, the noiseless a priori error ε(k) is expanded to

ε(k) = d(k)− d̂(k) = hw2(y(k))− hŵ2,k−1
(ŷ(k)) (5.38)

= hw2(y(k))− hw2(ŷ(k))︸ ︷︷ ︸
1

+hw2(ŷ(k))− hŵ2,k−1
(ŷ(k))︸ ︷︷ ︸

2

. (5.39)

At this point it is necessary to assume that the non-linear one-to-one mapping hw2 is differentiable
on the open interval (y(k) , ŷ(k)). Then, due to the mean value theorem [MS00b, p. 626; HSK94,
pp. 11ff.; SR95a; RS96b; RS97]3,

hw2(y(k))− hw2(ŷ(k)) = h
′
w2

(η(k)) (y(k)− ŷ(k)) (5.40)

= h
′
w2

(η(k))
(
uT
kw1 − uT

k ŵ1,k−1

)
(5.41)

= h
′
w2

(η(k))uT
k w̃1,k−1, (5.42)

with some intermediate value η(k) ∈ [y(k) , ŷ(k)]. Equation (5.42) obviously coincides with 1 in

3 Note that the mean value theorem for vector valued functions in [McL65] ensures that the identity in (5.40) also holds
if hw2 is replaced by the decomposition in (5.28).
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(5.39). For 2 , basis expansions (5.28) and (5.29), give

hw2,k−1
(ŷ(k))− hŵ2,k−1

(ŷ(k)) = (w2 − ŵ2,k−1)
Tψ(ŷ(k)) = w̃T

2,k−1ψ(ŷ(k)) . (5.43)

Hence, with (5.42) and (5.43), noiseless a priori error (5.39) is found to be equivalent to

ε(k) = h
′
w2

(η(k)) w̃T
1,k−1uk + w̃T

2,k−1ψ(ŷ(k)) . (5.44)

Eventually, substituting the individual noiseless a priori errors,

e1(k) , w̃T
1,k−1uk, e2(k) , w̃T

2,k−1ψ(ŷ(k)) , (5.45)

in (5.44), yields the (noisy) a priori error ε̃(k)

ε̃(k) = h
′
w2

(η(k)) e1(k) + e2(k) + v(k), (5.46)

that has the structure of the a priori error in (4.96), for the coupled structure with identical errors.
Inserting (5.46) in (5.31) and (5.34), leads to the desired set of update equations

ŵ1,k = ŵ1,k−1 + µlin(k)ukh
′
ŵ2,k−1

(
ŵT

1,k−1uk
) [
h

′
w2

(η(k)) e1(k) + e2(k) + v(k)
]
, (5.47)

ŵ2,k = ŵ2,k−1 + µnl(k)ψ(ŷ(k))
[
h

′
w2

(η(k)) e1(k) + e2(k) + v(k)
]
. (5.48)

Comparing, (5.47) and (5.48) with the identical error case discussed in Section 4.6, it is found
that the adaptive system in Figure 5.5, updated according to (5.31) and (5.34), is equivalent to
the coupled structure in Figure 5.1. With the factorisation of the coupling factors in (4.94), the
(effective) step-sizes and coupling factors are identified as

µ1(k) = µlin(k)h
′
ŵ2,k−1

(
ŵT

1,k−1uk
)
, ν1(k) = h

′
w2

(η(k)) , (5.49)

µ2(k) = µnl(k), ν2(k) = 1. (5.50)

As pointed out in Section 4.6, such a structure is in general not accessible too the `2-stability
analysis in Section 4.4. Yet, according to [AR03], conditions for `2-stability of such a structure
can indeed be established. This confirms the remark in Section 4.6 that failing of the theory in
Section 4.4 does not allow to conclude instability in the `2-stable-sense. Moreover, in Section 4.6,
it is found that the identical error case can be mapped to an asymmetric algorithm implying the
validity of all the findings of Chapter 3. Specifically, Lemma 4.7 is applicable, which provides a
condition that guarantees the algorithm to reduce to a symmetric algorithm. This in turn, entails
non-expanding behaviour (for adequately chosen step-sizes). Applying the latter lemma to the
step-sizes and coupling factors in (5.49) and (5.50), translates to condition

µlin(k)h
′
ŵ2,k−1

(
ŵT

1,k−1uk
)
= µnl(k)h

′
w2

(η(k)) . (5.51)

Note that since in practical situations, the reference system is unknown and only its input u(k) and
output d̃(k) are accessible, in (5.51) neither hw2 , nor η(k) can be determined exactly. Nevertheless,
under the assumption of uniform convergence [Rud09, p. 255],

ŵ2,k → w2 ⇒ hŵ2,k
→ hw2 , (5.52)
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and due to
ŵ1,k → w1 ⇒ ŷ(k)→ y(k) ⇒ η(k)→ ŵT

1,k−1uk, (5.53)

it becomes clear that increasing accuracy of estimates ŵ1,k and ŵ2,k, facilitates an approximate
satisfaction of (5.51). Similarly, this confirms that parameter initialisation also influences the risk of
hidden divergence.

Finally, stepping back to Section 3.4.4, it is known that asymmetric algorithms do not necessarily
lead to parameter divergence under w.c. excitation. Hence, even if (5.51) is violated, the parameter
error vector of the resulting algorithm may still be ensured to remain unconditionally bounded.
In fact, based on Section 4.6, it is found that the step-size matrix of the equivalent asymmetric
algorithm in (4.101) is diagonal with M1 entries given by the quotient, obtained by dividing the
left-hand side of (5.49) by its right-hand side, and M2 entries equal to µ2(k) in (5.50). Accordingly,
the resulting step-size matrix has only two different eigenvalues with multiplicities M1 and M2.
As a consequence, the step-sizes, µlin(k) and µnl(k), provide means to inhibit the fulfilment of the
necessary condition for parameter divergence in Theorem 3.3. This in turn shows that although
(5.51) cannot be precisely satisfied in practical situations, the parameter error of the adaptive Wiener
model still can in most cases be ensured to converge to a finite limit – even under w.c. excitation.

5.3 Multichannel Filtered-x LMS Algorithm
In this section, the results of Chapter 4 are applied to the MC-FXLMS algorithm which is, e.g.,
used in broadband feed-forward ANC applications [KM99; KM08; KGK12; Tab12; GP13]. In simple
geometric settings, such as a narrow duct, in which an almost plane sound wave propagates, the
FXLMS algorithm achieves considerable noise suppression. In less regular scenarios, the resulting
complicated sound field requires further effort. As a direct consequence, the MC-FXLMS algorithm
has been independently proposed by [Mor80; WSS81] as a MIMO extension of the FXLMS algorithm.
Figure 5.6 depicts a SISO broadband feed-forward ANC system and its corresponding system model.
The underlying principle is that the cancelling loudspeaker in Figure 5.6(a) emits a sound wave
(corresponding to signal d̂(k)), such that due to destructive interference, in the vicinity of the error
microphone, the inbound noise (represented by signal ẽ(k)) is evened out. In such a feed-forward
system, the compensation signal is generated by filtering the arriving noise signal u(k) that is
received by the reference microphone. The required filter (with parameter vector ŵk) is estimated
based on reference (noise) signal u(k) and error signal ẽ(k). Identification of the filter by means
of the conventional LMS algorithm is degraded or even inhibited due to the delay and dispersion
introduced by the secondary path Sk between the cancelling loudspeaker and the error microphone.

Assuming slowly changing acoustic channels and purely linear behaviour, the system in Fig-
ure 5.6(b) has equivalent behaviour to the scenario in Figure 5.6(a). However, here, reference
signal u′(k) is pre-filtered by an estimate Ŝk of the secondary path. This allows to compensate
the afore mentioned delay and dispersion, and describes the principle underlying the famous
FXLMS algorithm. A crucial point here, is necessity for estimate Ŝk of the secondary path. However,
observations have shown that in many cases the accuracy of the secondary path model is not
critical. Often even a one tap filter, i.e., a simple delay, suffices in order to achieve a possibly slowly
converging but still reliable performance [LLP89; FBL93; LLP92; Bja95; KM08; TA10; KGK12].

The FXLMS algorithm is well studied, yet research of its convergence is still ongoing [TA10]. A
stochastic analysis of the FXLMS algorithm for spherically invariant excitation processes as well as
a good overview about available results can be found in [Bja95]. Stability in the mean is treated
in [FBL93]. A mean square analysis for different secondary path models can be found in [TA10;
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(a) Physical system. Dotted lines indicate acousitc paths. The “+” sign in the error microphone indicates that there,
noise compensation is achieved by acoustic superposition.
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(b) Equivalent system model under the assumption of slowly
changing primary and secondary paths as well as small step-sizes.
Moreover, acoustic feedback from the cancelling loudspeaker to
the primary microphone is neglected.

Figure 5.6: Broadband feed-forward ANC based on the FXLMS algorithm.
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Figure 5.7: Multichannel broadband feed-forward ANC. Dotted lines indicate acoustic paths. The “+” sign in the error
microphones indicates that there, noise compensation is achieved by acoustic superposition.

TA11; Tab12], as well as in [LLP89; LLP92; RF94]. A deterministic study for sinusoidal excitation
is given in [ESN87; VM06]. An alternative deterministic approach is pursued in [RS96a; RS98],
which investigate `2-stability of the FXLMS algorithm based on the small gain theorem.

The here considered MC-FXLMS algorithm is a direct extension of the FXLMS algorithm. Ac-
cordingly, the system underlying its application to ANC depicted in Figure 5.7 is straightforwardly
obtained from the structures in Figure 5.6, by using I reference microphones, J cancelling loud-
speakers, and L error microphones instead of only one of each. An overview of related symbols
can be found in Table 5.2. Note that in this section, indices which are fixed to one single value are
omitted. This is done for the sake of notational simplicity. The resulting ambiguity is minimised
by the context. With i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, and l ∈ {1, . . . , L}, the individual parameter
vectors ŵi,j,k are updated by

ŵi,j,k = ŵi,j,k−1 +
L∑
l=1

µi,j,l(k)u′∗
i,j,l,kε̃

′
l(k), (5.54)

with

ε̃′l(k) ,
I∑
i=1

J∑
j=1

ẽi,j,l(k) =
I∑
i=1

J∑
j=1

ei,j,l(k)︸ ︷︷ ︸
ε′l(k)

+
I∑
i=1

J∑
j=1

vi,j,l(k)︸ ︷︷ ︸
v
(ε′)
l (k)

, (5.55)
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Table 5.2: List of Mathematical Symbols Describing the Multichannel Filtered-x LMS

I number of reference microphones, corresponding index i is taken from {1, . . . , I}
J number of cancelling loudspeakers, corresponding index j is taken from {1, . . . , J}
L number of error microphones, corresponding index l is taken from {1, . . . , L}
Pi,l,k (acoustical) primary path between reference microphone i and error microphone l
Sj,l,k (acoustical) secondary path between cancelling loudspeaker j and error microphone l
Ŝj,l,k estimate of secondary path Sj,l,k
ui(k) discrete time signal at reference microphone i
ui,k excitation vector, i.e., tapped delay line, at output of reference microphone i
u′i,j,l(k) excitation signal, corresponding to ui(k) filtered by estimated secondary path Ŝj,l,k
u′
i,j,l,k excitation vector, i.e., tapped delay line, of adaptive filer 〈i, j〉, if excited by u′i,j,l(k)

wi,j parameter vector representing the reference system between reference microphone i,
and cancelling loudspeaker j

ŵi,j,k adaptively estimated version of parameter vector wi,j

w̃i,j,k parameter error vector w̃i,j,k = wi,j − ŵi,j,k

Mi,j length of parameter vectors wi,j and ŵi,j,k, which are assumed be have the same length
M total number of parameters, i.e., sum over all Mi,j

µi,j,l(k) step-size of adaptive filter 〈i, j〉, using the signal of error microphone l
di,l(k) noiseless output of primary path 〈i, l〉
d̃i,l(k) output of primary path 〈i, l〉, including noise; represents the (acoustic) signal which

would be received by error microphone l, in absence of an ANC
d̂i,j(k) output of adaptive filter 〈i, j〉, if excited by ui(k)
d̂′i,j,l(k) output of adaptive filter 〈i, j〉, if excited by pre-filtered u′i,j,l(k)

ei,j,l(k) noiseless a priori error of adaptive filter 〈i, j〉, using error microphone l (cf. (5.56))
vi,j,l(k) additive noise present at error microphone l, “seen” by adaptive filter 〈i, j〉
ẽi,j,l(k) noisy version of ei,j,l(k)
ε′l(k) noiseless error at error microphone l (cf. (5.55))
v
(ε′)
l (k) overall noise “seen” by error microphone l
ε̃′l(k) noisy version of ε′l(k) and actual output of error microphone l
U′
k matrix combining all pre-filtered excitation vectors (cf. (5.59))

ek vector of noiseless overall a priori errors in the SIMO case (cf. (5.60))
vk vector of additive noise signals in the SIMO case (cf. (5.61))
ẽk noisy version of ek (cf. (5.62))
Dk step-size matrix (cf. (5.63))
ε′k vector of noiseless overall a priori errors in the MIMO case (cf. (5.92))
v(ε′)
k vector of additive noise signals in the MIMO case (cf. (5.93))

Dl,k step-size matrix in the MIMO case, using error signal l (cf. (5.82))
fIJ (.) bijective function, mapping one dimensional indices to two-dimensional indices

(cf. (5.72))
ı̈ one-dimensional which is equivalent to 〈i, j〉
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and
ẽi,j,l(k) , w̃T

i,j,k−1u′
i,j,l,k︸ ︷︷ ︸

ei,j,l(k)

+vi,j,l(k). (5.56)

Also the MC-FXLMS algorithm has been investigated in literature with respect to its convergence,
robustness, and stability. A frequency domain stability analysis for a discrete spectrum of the
primary source is presented in [ESN87; EBN92]. A different approach is taken in [WR99], which
applies the ordinary differential equation method [Lju77; Lju99], in order to study convergence
with probability one for the single input MC-FXLMS algorithm, i.e., I = 1. Based on, e.g., [IS96;
LLM98], asymptotic convergence with respect to stochastic uncertainties of the secondary path is
investigated in [Fra04; FVE07; FEV07].

In the sequel, these results are complemented by an analysis of `2-stability and an investigation
of the mapping behaviour, under the assumption of perfectly known secondary paths. This is an
idealised and debatable scenario. Nevertheless, it seems tolerable for two reasons. First, as pointed
out in some of the above mentioned works, the FXLMS algorithm and its MIMO extension are
rather robust with respect to modelling errors of the secondary path. Second, this assumption allows
to obtain results which are conclusive despite being idealised. Indeed, many works in literature also
resort to this simplifications, in order to end up with comprehensive results [ESN87; EBN92; FBL93;
Bja95; Ell00].

The analysis of the MC-FXLMS algorithm is presented in three steps. Section 5.3.1 considers the
simplest extension of the FXLMS algorithm by only increasing the number of error microphones,
i.e., I = J = 1, L > 1. In Section 5.3.2, this restriction is reversed, meaning that an arbitrary
number of reference microphones and cancelling loudspeakers is opposed by only one single error
microphone, i.e., I > 1, J > 1, L = 1. Finally, Section 5.3.3 combines the results of Sections 5.3.1
and 5.3.2, in order to analyse the general case. The terms SIMO, MISO, and MIMO will be used to
address the respective versions of the MC-FXLMS algorithm. In order to prevent confusion, it is
emphasised that here, the term “single/multiple output” does not refer to the number of cancelling
loudspeakers, but instead to the number of error microphones. The justification for this choice
will become clear further down in Figure 5.8, which visualises that the existence of more than one
cancelling loudspeakers translates to an increase of effective inputs to the MC-FXLMS algorithm.

5.3.1 The Single Input Multiple Output Case
The simplest extension of the FXLMS algorithm is obtained if in Figure 5.7, only one reference
microphone and one cancelling loudspeaker is used, i.e., I = J = 1, whereas multiple error
microphones are employed, i.e., L > 1. Then, only one single adaptive filter is updated according to
the update equation

ŵk = ŵk−1 +
L∑
l=1

µl(k)u′∗
l,kε̃

′
l(k), with ε̃′l(k) = ẽl(k) , w̃T

k−1u′
l,k︸ ︷︷ ︸

ε′l(k)=el(k)

+ vl(k)︸ ︷︷ ︸
v
(ε′)
l (k)

, (5.57)

where parameter error vector w̃k is defined in (2.10). In (5.57), the symbols stick with the notation
introduced in the introductory part of this section, while additionally the convention is adopted
that trivial indices, i.e., indices which only assume one single value, are omitted. The such obtained
adaptive algorithm in (5.57) coincides with the averaged LMS found in [KD75; HC90]. It is a specific
version of the more general higher order LMS from [Glo79]. Yet, it has to be pointed out that it
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differs from similar data-reusing LMS algorithms, as, e.g., in [SW83; RS89], the parameter vector is
updated several times based on the same input/output (I/O) data, or alternatively, in [SJ93], past
I/O data are used to “upsample” adaptation of the parameter vector. In terms of the parameter
error vector, (5.57) modifies to

w̃k = w̃k−1 −
L∑
l=1

µl(k)u′∗
l,kẽl(k), (5.58)

which becomes even more compact by introducing

U′
k ,

[
u′
1,k · · · u′

L,k

]
, (5.59)

ek ,
[
u′T
1,kw̃k−1 · · · u′T

L,kw̃k−1

]T
= U′T

k w̃k−1, (5.60)

vk ,
[
v1(k) · · · vL(k)

]T
, (5.61)

ẽk , ek + vk, (5.62)

Dk ,
L

diag
l=1
{µl(k)} , (5.63)

leading to
w̃k = w̃k−1 −U′∗

k Dkẽk. (5.64)

Equation (5.64) has a structure similar to a symmetric algorithm in the sense of Section 2.1. The
only difference is that excitation vector is replaced by matrix U′

k of excitation vectors. Moreover,
scalar step-size µ(k) is in general replaced by diagonal matrix Dk. At this point, it is emphasised
that although the latter is a step-size matrix and uses the same symbol as the diagonalised version of
step-size matrix Mk in Section 3.4.3, (5.64) does not represent an asymmetric algorithm. Actually,
the analogy of (5.64) to the conventional LMS algorithm allows to extend the `2-stability analysis
from [RS96a; SR96] that is also sketched in Section 2.4.2. Thus, the theory established in Section 4.4,
and specifically, Theorems 4.1 and 4.2, do not even need to be consulted to state the following
lemma.

Lemma 5.1: `2-Stability of the SIMO MC-FXLMS

The SIMO MC-FXLMS algorithm described by (5.57), or equivalently by (5.59)–(5.64), with
µl(k) ∈ R+, l ∈ {1, . . . , L}, is `2-stable, in the sense√√√√ K∑

k=0

eH
kDkek ≤ ‖w̃−1‖+

√√√√ K∑
k=0

vH
kDkvk, (5.65)

if
D−1
k ≥ U′T

k U′∗
k , or equivalently, U′T

k DkU′∗
k ≤ I. (5.66)

Proof. See Appendix D.3.2.

Also the mapping behaviour of the homogeneous first-order system of linear difference equations in
the noiseless case is similar to the analysis for the conventional LMS algorithm. Based on Section 2.3,
the corresponding findings are summarised in the next lemma.
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Lemma 5.2: Non-Expanding Behaviour of the SIMO MC-FXLMS

For the SIMO MC-FXLMS algorithm described by (5.57), or equivalently by (5.59)–(5.64), in
the noiseless case, the norm of the parameter error vector is ensured to satisfy

‖w̃k‖ ≤ ‖w̃k−1‖ , ∀k = 0, . . . (5.67)
iff

D−1
k ≥

1

2
U′T
k U′∗

k , or equivalently, U′∗
k DkU′T

k ≤ 2I. (5.68)

Proof. See Appendix D.3.3.

Clearly, (5.68) allows twice as large step-sizes µl(k) than (5.66). For the latter, a rough sufficient
condition can directly be found by the fact that the maximum eigenvalue of a matrix is bounded
from above by its trace, leading to

Lmax
l=1
{µl(k)} ≤

1

tr
{

U′T
k U′∗

k

} =
1∑L

l=1 ‖u′
l,k‖

2
. (5.69)

Multiplying the upper bound in (5.69) by two, provides a sufficient condition for (5.68). Finally, it
is pointed out that if all step-sizes are identical, i.e., µl(k) ≡ µ(k), (5.68) in Lemma 5.2 resembles
the result given in [EBN92, therein, right after (15)], which is obtained for excitation of a leaky
MC-FXLMS algorithm with discrete sinusoidal signals.

5.3.2 The Multiple Input Single Output Case
As seen in the previous section, the SIMO MC-FXLMS algorithm is equivalent to an averaged LMS al-
gorithm. As the latter can be considered as a matrix version of the conventional LMS algorithm,
the analysis of its `2-stability as well as its mapping behaviour are obtained by a straightforward
extension of the derivations for the conventional LMS algorithm. Hence, if the conditions are
modified accordingly, averaging preserves `2-stability, as well as contracting behaviour. In fact, also
in the MIMO case, the use of multiple error microphones can be considered as a way of averaging.
Before this general situation is investigated in Section 5.3.3, this section focuses on the MISO case
as an intermediate step.

Based on Figures 5.6(b) and 5.7, it is straightforward to identify the equivalent structure in
Figure 5.8. As in Figure 5.6(b), the assumption of slowly changing primary and secondary paths as
well as small step-sizes is required. Again, feedback from the cancelling loudspeakers to the reference
microphones is neglected. Excluding the SISO case, i.e., the conventional FXLMS algorithm with
I = J = L = 1, the obtained structure in Figure 5.8 covers all three cases, possible with L = 1, i.e.,
(i) I = 1, J > 1, (ii) I > 1, J = 1, and (iii) I > 1, J > 1. The parameter update is performed by

ŵi,j,k = ŵi,j,k−1 + µi,j(k)u′∗
i,j,kε̃

′(k), (5.70)
with

ε̃′(k) ,
I∑
i=1

J∑
j=1

ẽi,j(k) =

I∑
i=1

J∑
j=1

ei,j(k)︸ ︷︷ ︸
ε′(k)

+

I∑
i=1

J∑
j=1

vi,j(k)︸ ︷︷ ︸
v(ε

′)(k)

, (5.71)
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ẽ1,1(k)ẽ1,1(k)

ε̃′(k)ε̃′(k)
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ẽI,J,J(k)ẽI,J(k)
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Figure 5.8: Equivalent coupled structure of the MISO MC-FXLMS algorithm under the assumption of slowly changing
primary and secondary paths as well as small step-sizes. Moreover, acoustic feedback from the cancelling
loudspeaker to the primary microphone is neglected.

where ẽi,j(k) and ei,j(k) are given by (5.56), after collapsing trivial index l. Clearly, all parameter
updates are based on the same update error. Without any further detailed identification of the
coupling factors, this shows that the MISO MC-FXLMS algorithm leads to an identical error case
in the sense of Section 4.6. As a consequence, the coupling matrix ∆k in (4.84) is ensured to
be rank deficient and the `2-stability analysis in Section 4.4 is only applicable if condition (4.98)
in Lemma 4.7 is satisfied. Then, also due to Conjecture 4.2 also contracting behaviour of the
MISO MC-FXLMS algorithm can be established. As a first step, care has to be taken regarding the
indexing of the coupling factors. Comparing (5.71) with (4.8) shows strong similarities. However,
while (4.8) only sums up along one index, (5.71) is found to sum up along two indices. This is
in fact only a side-effect of the notation introduced in Figure 5.8. In this figure, the choice for
a two-dimensional indexing is used in order to reflect the underlying regular structure. In fact,
introducing any arbitrary bijective function

fIJ : {1, . . . , IJ} 7→ {1, . . . , I} × {1, . . . , J} (5.72)

that allows to unambiguously map a one dimensional index ı̈ ∈ {1, . . . , IJ} to a pair of indices 〈i, j〉
with i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, (5.71) can be rewritten as

ε̃′(k) =

IJ∑
ı̈=1

ẽfIJ (ı̈)(k), (5.73)

which now structurally agrees with (4.96). Comparing the latter with (5.73) shows that all coupling
factors νı̈(k) are identical to one. Hence, due to Lemma 4.7, all step-sizes µi,j(k) have to be identical.
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This insight leads to the following lemma.

Lemma 5.3: Non-Expanding Behaviour of the MISO MC-FXLMS

For the MISO MC-FXLMS algorithm described by (5.70) and (5.71), in the noiseless case,
the overall squared norm over all parameter error vectors is ensured to satisfy

I∑
i=1

J∑
j=1

‖w̃i,j,k‖2 ≤
I∑
i=1

J∑
j=1

‖w̃i,j,k−1‖2 , ∀k = 0, . . . (5.74)

if for all i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, µi,j(k) = µ(k), and if additionally,

|µ(k)|2
I∑
i=1

J∑
j=1

∥∥u′
i,j,k

∥∥2 ≤ 2Re {µ(k)} . (5.75)

Proof. See Appendix D.3.4.

With all the step-sizes being identical, mapping matrix Bk in (4.79) that corresponds to the
MISO MC-FXLMS algorithm, is found to be Hermitian. Moreover, due to (4.99), the resulting
algorithm is symmetric, and Bk corresponds to (2.16) with identity step-size matrix. Therefore,
(5.75) is equivalent to (3.15). The geometric meaning of (5.75) in the complex plane, is that
step-size µ(k) is contained inside or on a circle with centre rµ(k) + 0 and radius

rµ(k) =
1∑I

i=1

∑J
j=1 ‖u′

i,j,k‖
2
. (5.76)

Finally, with the `2-stability analysis for the conventional LMS algorithm in Section 2.4.2, the
following lemma can be directly formulated.

Lemma 5.4: `2-Stability of the MISO MC-FXLMS

For the MISO MC-FXLMS algorithm described by (5.70) and (5.71), with ε′(k) and v(ε
′)(k)

defined in (5.71), `2-stability in the sense√√√√ K∑
k=0

µ(k) |ε′(k)|2 ≤

√√√√ I∑
i=1

J∑
j=1

‖w̃i,j,−1‖2 +

√√√√ K∑
k=0

µ(k)
∣∣v(ε′)(k)∣∣2, (5.77)

is ensured, if for all i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, µi,j(k) = µ(k) ∈ R0+, and

µ(k) ≤ rµ(k), (5.78)

with rµ(k) given in (5.76).

5.3.3 The Multiple Input Multiple Output Case
Eventually, this section considers the general case of a MIMO MC-FXLMS algorithm, given by
(5.54)–(5.56), based on the findings of the foregoing sections. In contrast to the MISO case considered
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in Section 5.3.2, now, more than one error microphones exist. As already identified in Section 5.3.1,
this situation leads to an averaged version of the corresponding MISO algorithm. However, while
in the SIMO case, in Section 5.3.1, the algorithm was found be behave equivalent to a generalised
symmetric algorithm, here, the MIMO case can be identified as a generalised asymmetric algorithm.
To see this, the bijective index transformation function fIJ in (5.73) is applied to (5.54)–(5.56).
With ı̈ ∈ {1, . . . , IJ}, this gives the completely equivalent set of expressions,

ŵfIJ (ı̈),k = ŵfIJ (ı̈),k−1 +
L∑
l=1

µfIJ (ı̈),l(k)u′∗
fIJ (ı̈),l,kε̃

′
l(k), (5.79)

with

ε̃′l(k) =

IJ∑
ı̈=1

ẽfIJ (ı̈),l(k) =

IJ∑
ı̈=1

efIJ (ı̈),l(k)︸ ︷︷ ︸
ε′l(k)

+

IJ∑
ı̈=1

vfIJ (ı̈),l(k)︸ ︷︷ ︸
v
(ε′)
l (k)

. (5.80)

By introducing the stacked parameter vector analogous to (4.80), and the lth stacked excitation
vector analogous to (4.82),

ŵk ,
IJ
col
ı̈=1

{
ŵfIJ (ı̈),k

}
, and u′

l,k ,
IJ
col
ı̈=1

{
u′
fIJ (ı̈),k

}
, (5.81)

respectively, the combination of (5.79), for all ı̈ ∈ {1, . . . , IJ}, is compactly written as

ŵk = ŵk−1 +
L∑
l=1

(
IJ⊕
ı̈=1

µfIJ (ı̈),l(k)IMı̈

)
︸ ︷︷ ︸

step-size matrix Dl,k

(
u′
l,k

)∗
ε̃′l(k), (5.82)

where Mı̈ represents the number of parameters in ŵfIJ (ı̈),k. Thus, the total number M of parameters,
i.e., the length of ŵk is obtained as

M =
IJ∑
ı̈=1

Mı̈. (5.83)

Reverting for a moment to the MISO MC-FXLMS algorithm in Section 5.3.2, i.e., the here considered
algorithm restricted to one single error microphone, hence, L = 1, (5.82) is found to have the same
structure as (2.8). This shows that in the general case, the MISO MC-FXLMS algorithm is equivalent
to an asymmetric algorithm and all the findings in Chapter 3 are applicable. It also confirms that
the requirement for identical step-sizes in Lemma 5.3 leads to a symmetric algorithm. With these
insights, returning to the MIMO case, the MC-FXLMS algorithm is found to behave like an averaged
asymmetric algorithm.

While for this general case, `2-stability cannot be analysed with the theory of Section 4.4, a
mapping analysis of the underlying homogeneous first-order system of linear difference equations in
the noiseless case is possible. Based on (5.80)–(5.82), with parameter error vector w̃k, corresponding
to the stacked parameter vector ŵk in (5.81),

ε′l(k) = w̃T
ku′

l,k, (5.84)
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mapping matrix Bk in the corresponding recursion of the form (4.79) is found to be given by

Bk = I−
L∑
l=1

Dl,k

(
u′
l,k

)∗ (u′
l,k

)T
=

1

L

L∑
l=1

[
I− LDl,k

(
u′
l,k

)∗ (u′
l,k

)T︸ ︷︷ ︸
Bl,k

]
. (5.85)

Analysing the singular values of Bk in an exact way, would lead to a necessary and sufficient criterion
for non-expanding behaviour of recursion (4.79). Here, the derivation is simplified, leading to only
sufficient criteria which, however, still provide considerable insight. Assuming a descending sorting of
the individual singular values σm (Bl,k), m ∈ {1, . . . ,M}, with [HJ99, Theorem 3.3.16], the largest
singular value of Bk is bounded by

σmax(k) ≤
1

L

L∑
l=1

σ1 (Bl,k) , (5.86)

hence,
σ1(Bl,k) ≤ 1, ∀l ∈ {1, . . . , L} ⇒ σmax(k) ≤ 1. (5.87)

As found in Section 3.3.2, the left-hand side in (5.86) can only be satisfied if all of the individual
mapping matrices Bl,k correspond to a symmetric algorithm. This in turn requires that the regression
vector of each of the individual mappings is in parallel with the respective excitation vector. The
latter requirement entails that step-size matrices Dl,k have to be a multiple of the identity matrix,
which is only possible if for all l ∈ {1, . . . , L},

µfIJ (1),l(k) = . . . = µfIJ (IJ),l(k) = µl(k), (5.88)
as then,

Dl,k = µl(k)IM . (5.89)

Then, Lemma 5.3 applies and leads to the following slightly modified theorem.

Theorem 5.1: Non-Expanding Behaviour of the MIMO MC-FXLMS

For the MIMO MC-FXLMS algorithm described by (5.54)–(5.56), in the noiseless case, the
overall squared norm over all parameter error vectors is ensured to satisfy

I∑
i=1

J∑
j=1

‖w̃i,j,k‖2 ≤
I∑
i=1

J∑
j=1

‖w̃i,j,k−1‖2 , ∀k = 0, . . . (5.90)

if for all i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, and l ∈ {1, . . . , L}, µi,j,l(k) = µl(k), and if additionally,

|µl(k)|2
I∑
i=1

J∑
j=1

∥∥u′
i,j,l,k

∥∥2 ≤ 2

L
Re {µl(k)} . (5.91)

Proof. Most of this proof is already covered by the above conducted derivation. The division by L
on the right-hand side of (5.91) directly follows from (5.85), since the power of the excitation vectors
is scaled by the factor

√
L.

Since under constraint (5.88), (5.82) perfectly agrees with (5.57), also `2-stability can be ensured
based on the following theorem.
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Theorem 5.2: `2-Stability of the MIMO MC-FXLMS

If for all i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, and l ∈ {1, . . . , L}, µi,j,l(k) = µl(k) ∈ R+, the diagonal
positive definite step-size matrix Dk can be defined according to (5.63). Using (5.81), let
moreover (5.60) and (5.61) be modified to

ε′k ,
[
ε′1(k) · · · ε′L(k)

]T
, (5.92)

v(ε′)
k ,

[
v
(ε′)
1 (k) · · · v

(ε′)
L (k)

]T
, (5.93)

with ε′l(k) and v
(ε′)
l (k) defined in (5.80). Then, the MIMO MC-FXLMS algorithm described

by (5.79) and (5.80) is `2-stable, in the sense√√√√ K∑
k=0

ε′Hk Dkε
′
k ≤ ‖w̃−1‖+

√√√√ K∑
k=0

v(ε′)H
k Dkv

(ε′)
k , (5.94)

if
D−1
k ≥ U′T

k U′∗
k , or equivalently, U′T

k DkU′∗
k ≤ I, (5.95)

where excitation matrix U′
k, defined in (5.59), contains the stacked excitation vectors in (5.81).

5.4 Multilayer Perceptrons Trained by the Backpropagation
Algorithm

Finally, this section, applies the formalism established in Chapter 4 in order to gain further insight
into the mapping behaviour of a multilayer perceptron4. The latter is a feed forward neural
network [Hay94] and has a wide range of applications, such as image recognition, handwriting
recognition, speech recognition, and natural language processing [see, e.g., Hay94; Roj96; Nie14].
Supervised learning is a common method to train such structures and often implemented by the
backpropagation algorithm which basically is a gradient descent scheme [GT92; RHW86a; RHW86b].
The latter seems to date back to a work of Bryson et al. [BH69] and was independently proposed in
different flavours and contexts by several authors [BH69; Wer74; Par82; LeC86; RHW86b]. For a
brief historical overview see, e.g., [RHW86a; Hec89; Wer90], a more detailed introduction can be
found in, e.g., [Hay94; Roj96; Nie14].

To my knowledge, for a multilayer perceptron of arbitrary size that is trained by the back-
propagation algorithm, no general analysis of convergence exists. According to [Hay94, p. 153], the
backpropagation algorithm cannot be shown to converge. Moreover, [GG91; APT99] point out that
there barely exists any analysis considering the dynamical behaviour of multilayer perceptrons, i.e.,
their boundedness and convergence. In literature, it is well documented that the cost function of the
backpropagation algorithm may manifest several local minima as well as regions of marginal slope.
Both are reason, why under adverse circumstances, the learning performance of this algorithm is poor.
4 In this work, the here considered kind of multilayer neural network is addressed by the common term multilayer

perceptron as done, e.g., in [Bis92; Hay94; Roj96; She12]. However, as pointed out in [Nie14, Chapter 1], it should be
noted that the underlying structure does not contain perceptrons in a strict sense, as the activation function of the
latter is assumed to be step-shaped. Thus, it is not differentiable. Here, in contrast, differentiability of the activation
function is of central importance in order to apply the backpropagation algorithm [Hay94; Roj96].
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Hence, a multitude of methods have been published which aim to circumvent these problems [Hay94;
Roj96; Møl97; She12]. In the context of pattern classification, under certain assumptions, the
existence of local minima can be precluded if the training patterns are linearly separable into
disjoint classes. In this framework, convergence of a single layer perceptron is proved in [SS89b],
and extended to a more general multilayer structure in [GT92].

Here, an approach is adopted that does not impose any restriction to the occurring input patterns.
The perspective is motivated from a system identification point of view, and considers the multilayer
perceptron trained by the backpropagation algorithm in a pattern-by-pattern mode. By this, it
complements the findings in [HSK94; SR95a; RS96b; RS97], which investigate H∞-optimality under
PE and `2-stability for the single layer case. The latter two works also allow for recurrence, i.e.,
a feedback from the network output to the input. Additionally, [Set92] derives a persistence of
excitation condition that guarantees local exponential stability for a single layer perceptron trained by
the backpropagation algorithm and claims that the result can be extended to multilayer perceptrons,
if adequate identifiability assumptions for the reference neural network are available. The key
assumption made therein is that in the corresponding homogeneous recursion of type (4.79), a sliding
average over a certain number of consecutive mapping matrices Bk shows sufficiently slow variations.

The most central assumption made here, is that the training data, i.e., the set of observed I/O
pairs, is (or could be) obtained from a reference multilayer perceptron, which is constant and of
known structure. Of course, the corresponding network weights are considered unknown. The
goal of the system identification process is to adapt a multilayer perceptron of the same structure,
such that, in the limit, its weights coincide with the weights of the reference multilayer perceptron.
An important subtlety is the fact that the training data are not required to actually originate
from a multilayer perceptron, they can actually be provided by any arbitrary reference source.
However, they are required to belong to the space of training data that can be represented by the
assumed network structure. It may be possible to relax this restriction by including additive noise,
as explained in Section 2.1, but this is beyond the scope of the here presented analysis.

In the sequel, details on the functionality of the multilayer perceptron and the backpropagation
algorithm are not covered extensively, as they can be found in most of the above mentioned
literature [e.g., Hay94; Roj96; Nie14]. Instead, only the structural and algorithmic details are
described that are of relevance, here. The used notation is mostly motivated by [Roj96], however,
with slight differences. The convention of this thesis is retained that symbols with a caret, e.g., ŵ(l)

j ,
refer to the (adaptive) system model, those without, to the (unknown) reference system. The used
symbols and their meaning are listed in Table 5.3. Note that there, if applicable, the symbols are
shown with caret. Hence, they refer to the adaptive multilayer perceptron, i.e., the system model.
Nevertheless, due to the assumption of identical structure, omitting the caret directly gives the
symbols that correspond to thereference system. Figure 5.9 provides a graphical representation of
the considered multilayer perceptron. Each neuron is assumed to use the same activation function f
which is here only required to be real-valued and differentiable. The vertical dashed lines indicate
the boundaries between the individual network layers. Hence, except from the left-most and the
right-most boundary, the outputs of layer l coincide with the inputs of the following layer l + 1.
Layer 0 represents the input layer, and does not contain any computational resources. It is assumed
that the set of inputs of each layer is fully meshed with its neurons. Although not explicitly
demonstrated here, the analysis still holds for networks with incompletely meshed layers. The only
reason for excluding this more general case, is that it would make notation even more difficult to
follow. Anyhow, connections that cross layer boarders are not allowed.

After this structural description of the multilayer perceptron, the update mechanism is explained
that is achieved by the backpropagation algorithm. The vectors ŵ(l)

j containing the weights of all
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Table 5.3: List of Mathematical Symbols Describing the Multilayer Perceptron

L number of layers
L0 set of indices addressing al layers; L , {0, . . . , L}, thus, below l ∈ L
L set of indices addressing all layers except from the input layer; L , L0 \ {0}, thus, here,

in most cases l ∈ L, it will be explicitly stated if l ∈ L0
Nl number of neurons in layer l, l ∈ L0
Nl set of indices addressing the neurons in layer l; Nl , {1, . . . , Nl}, l ∈ L0
ŵ

(l)
ij real-valued weight of edge, from neuron i, layer l− 1 to neuron j, layer l, i ∈ Nl−1, j ∈ Nl

ŵ(l)
j vector of all edge weights that end at neuron j in layer l, thus, ŵ(l)

j ∈ RNl−1 , j ∈ Nl
Ŵ(l) matrix containing all weights of layer l; Ŵ(l) ,

[
ŵ(l)

1 · · · ŵ(l)
Nl

]
∈ RNl−1×Nl

ξ̂
(l)
j stimulus level of neuron j in layer l; ξ̂(l)j , ŵ(l)T

j x̂(l−1) ∈ R, j ∈ Nl
ξ̂
(l) vector of stimulus levels of all neurons in layer l; ξ̂(l) ,

[
ξ̂
(l)
1 · · · ξ̂

(l)
Nl

]T
= Ŵ(l)Tx̂(l−1) ∈ RNl

f(.) activation function with derivative f ′(.), here, most generally, f : R 7→ R and f ′ : R 7→ R0+

x̂
(l)
j activation level of neuron j in layer l; x̂(l)j , f(ξ̂

(l)
j ) ∈ R, l ∈ L0

x̂(l) vector of activation levels of all neurons in layer l; x̂(l) ,
[
x̂
(l)
1 · · · x̂

(l)
Nl

]T
∈ RNl , l ∈ L0

δ
(l)
j real-valued error, propagating back to neuron j in layer l, j ∈ Nl
δ(l) vector of errors propagated back to the neurons in layer l; δ(l) ∈ RNl

µ
(l)
j step-size used to update weight vector ŵ(l)

j , µ(l)j ∈ R0+

D(l)
µ diagonal matrix containing the step-sizes used in the update process of the neurons in

layer l; D(l)
µ , diagj∈Nl

{
µ
(l)
j

}
∈ RNl×Nl

0+

F(l) diagonal matrix containing the derivatives of the activation function evaluated at the
current stimulus level of each neuron in layer l; F(l) , diagj∈Nl

{
f ′(ξ̂

(l)
j )
}
∈ RNl×Nl

0+

η
(l)
j mean stimulus value lying in the interval

[
ξ̂
(l)
j , ξ

(l)
j

]
F(l)
η diagonal matrix containing the derivatives of the activation function evaluated at the

mean values η(l)j ; F(l)
η , diagj∈Nl

{
f ′(η

(l)
j )
}
∈ RNl×Nl

0+

w̃
(l)
ij difference between weight w(l)

ij of the reference system and weight ŵ(l)
ij of the adaptive

neural network; w̃(l)
ij , w

(l)
ij − ŵ

(l)
ij

w̃(l)
j analogous to w̃(l)

ij , the weight error vector of layer l; w̃(l)
j , w(l)

j − ŵ(l)
j

W̃(l) analogous to w̃(l)
ij and w̃(l)

j , the weight error matrix of layer l; W̃(l) , W(l) − Ŵ(l)

∆x
(l)
j deviation between the activation of node j in layer l of the reference system and the

activation of the same node in the adaptive neural network; ∆x(l)j , x
(l)
j − x̂

(l)
j , l ∈ L0

∆x(l) vector of all deviations ∆x
(l)
j of layer l; ∆x(l) ,

[
∆x

(l)
1 · · · ∆x

(l)
Nl

]T
∈ RNl , l ∈ L0

e
(l)
j generic deviation of the stimulus level of node j in layer l in the adaptive neural network,

from the stimulus level of the same node in the reference system, if the latter would be
stimulated by the same input vector x̂(l−1):
e
(l)
j , w(l)T

j x̂(l−1) − ξ̂(l)j = w(l)T
j x̂(l−1) − ŵ(l)T

j x̂(l−1) = w̃(l)T
j x̂(l−1), l ∈ L0

e(l) vector of all generic stimulus deviations e(l)j in layer l:
e(l) ,

[
e
(l)
1 · · · e

(l)
Nl

]T
= W̃(l)Tx̂(l−1) ∈ RNl , l ∈ L0
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Figure 5.9: General structure of the here considered multilayer perceptron. In the output layer l = L, the activation
functions are slightly shaded as their existence depends on the chosen cost function. Including them, leads to
the minimisation of the squared error. If in turn the cross-entropy cost function is used as error measure, they
can be omitted.

edges that end at neuron j of layer l, are updated according to5

ŵ(l)
j,new = ŵ(l)

j + µ
(l)
j x̂(l−1)δ

(l)
j . (5.96)

The similarity of (5.96) with (2.8) well resembles that backpropagation is a gradient type algorithm
with identity step-size matrix. Clearly, the update is proportional to the back propagated error δ(l)j .
Combining all of the Nl vectors ŵ(l)

j belonging to layer l, column by column, in matrix Ŵ(l), the
weight update for the whole layer l is compactly written as

Ŵ(l)
new = Ŵ(l) + x̂(l−1)δ(l)TD(l)

µ . (5.97)

Equation (5.97) introduces vector δ(l) of errors, back propagated to neuron j of layer l, as well as
diagonal step-size matrix D(l)

µ that contains the step-sizes of the individual neurons (cf. Table 5.3).
It is important to notice that the influence of this matrix is different from the step-size matrices
occurring in the context of asymmetric algorithms in Chapter 3. Here, D(l)

µ is simply introduced
for reasons of a compact notation. Still, the separate algorithms are given by (5.96) and are thus
symmetric.

Up to now, the actual meaning of back propagated error δ(l)j is not further specified. To make
up for this, consider deviation ∆x

(l)
j = x

(l)
j − x̂

(l)
j between the output, i.e., the activation level,

x̂
(l)
j of neuron j in layer l, belonging to the adaptive multilayer perceptron, and the corresponding

5 In contrast to the rest of this work, in this section, no iteration index k is used here. This is mainly done to reduce the
number of subscripts, superscripts and arguments. Of course, the involved entities generally change from update to
update.
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activation level x(l)j of the reference system. In the real world, the only deviations x(l)j that can be
observed, are those at the output layer l = L and those at the input layer l = 0. While inputs to the
neural network traverse the structure in Figure 5.9 from left to right, the idea of the backpropagation
algorithm is, to let the (accessible) errors at the output propagate backwards (from right to left),
in order to quantify the necessary modification of the network weights. On their way back to the
input nodes, the output errors are scaled by the edge weights and by the differential gains that are
introduced by the non-linearity in each of the passed neurons. For a certain neuron, this gain is
given by the first derivative of the activation function, evaluated at its stimulus level, i.e., the sum
of all weighted inputs arriving at this neuron. Eventually, referring to the definitions in Table 5.3,
due to the chain rule, error vectors δ(l), l ∈ {1, . . . , L− 1}, are found as [Roj96, p. 171]

δ(l) = F(l)Ŵ(l+1) · · ·F(L−1)Ŵ(L)δ(L). (5.98)

Depending on whether the squared error or the cross-entropy cost function [Nie14] should be
minimised by the backpropagation algorithm, in the output layer, i.e., l = L, error vector δ(L) is
given by

δ(L) = F(L)∆x(L), or δ(L) = ∆x(L), (5.99)

respectively. Defining

FC ,

{
F(L) for a squared error cost function
INL

for a cross-entropy cost function
, (5.100)

and matrix6

Ω(l) ,


L−1−→∏
m=l

F(m)Ŵ(m+1)

FC l ∈ L \ {L}

FC l = L

, (5.101)

of dimension the Nl ×NL, (5.98) and (5.99) can be combined to

δ(l) = Ω(l)∆x(L). (5.102)

So far, the derivation does not contain any essential difference with respect to literature. This
changes at this point, as below, the multilayer perceptron in Figure 5.9, trained by the backpropaga-
tion algorithm, is shown to be representable as a coupled structure in the sense of Section 4.1. As a
first step, observe that the errors between the reference activation levels and the activation levels of
the adaptive multilayer perceptron in layer l are given by (cf. Table 5.3)

∆x(l) = x(l) − x̂(l) =
Nl

col
j=1

{
f
(
ξ
(l)
j

)
− f

(
ξ̂
(l)
j

)}
. (5.103)

Similarly to Section 5.2, applying the mean value theorem [MS00b, p. 626; HSK94, pp. 11ff.; SR95a;

6 The arrow on top of the product operator indicates how the operands are ordered with increasing index.
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RS96b; RS97] in each row, leads to (cf. Table 5.3)

∆x(l) =
Nl

col
j=1

{
f ′
(
η
(l)
j

)(
ξ
(l)
j − ξ̂

(l)
j

)}
= F(l)

η

Nl

col
j=1

{
ξ
(l)
j − ξ̂

(l)
j

}
= F(l)

η

(
ξ(l) − ξ̂(l)

)
(5.104)

= F(l)
η

(
W(l)Tx(l−1) − Ŵ(l)Tx̂(l−1)

)
(5.105)

= F(l)
η

((
W(l) − Ŵ(l)

)T
x(l−1) + Ŵ(l)T

(
x(l−1) − x̂(l−1)

))
(5.106)

= F(l)
η

(
W̃(l)Tx(l−1) + Ŵ(l)T∆x(l−1)

)
(5.107)

= F(l)
η

((
W(l) − Ŵ(l)

)T
x̂(l−1) + W(l)T

(
x(l−1) − x̂(l−1)

))
(5.108)

= F(l)
η

(
W̃(l)Tx̂(l−1) + W(l)T∆x(l−1)

)
. (5.109)

While the backpropagation algorithm describes how the error at the output layer propagates back
to the nodes of the hidden layers, (5.107) and (5.109) describe how the deviations of each layer
accumulate up to the overall deviation in the output layer. Therefore, they can be considered as a
reversed form of the backpropagation algorithm.

In the learning phase, the I/O-pairs {x(0),x(L)} are provided. On the one hand, as the input of
the reference system is the same as the input of the adaptive multilayer perceptron, i.e., x(0) = x̂(0),
the deviation ∆x(0) = 0. On the other hand, the deviation in the output layer is directly accessible
and thus known. Therefore, due to (5.109),

l = 0 : ∆x(0) = 0

l = 1 : ∆x(1) = F(1)
η

(
W̃(1)Tx̂(0) + W(1)T∆x(0)

)
= F(1)

η W̃(1)Tx̂(0)

l = 2 : ∆x(2) = F(2)
η

(
W̃(2)Tx̂(1) + W(2)T∆x(1)

)
=

= F(2)
η W̃(2)Tx̂(1) + F(2)

η W(2)TF(1)
η W̃(1)Tx̂(0)

l = 3 : ∆x(3) = F(3)
η W̃(3)Tx̂(2) + F(3)

η W(3)TF(2)
η W̃(2)Tx̂(1) + F(3)

η W(3)TF(2)
η W(2)TF(1)

η W̃(1)Tx̂(0)

...
...

l = L : ∆x(L) = F(L)
η W̃(L)Tx̂(L−1) + F(L)

η W(L)TF(L−1)
η W̃(L−1)Tx̂(L−2)

+ · · ·+︸ ︷︷ ︸
L− 3 terms

F(L)
η W(L)T · · ·F(2)

η W(2)TF(1)
η W̃(1)Tx̂(0).

From the last expression, it can be concluded that for l ∈ L,

∆x(l) =

l∑
m=1

 l←−∏
n=m+1

F(n)
η W(n)T

F(m)
η W̃(m)Tx̂(m−1)︸ ︷︷ ︸

e(m)

 (5.110)

=
l∑

m=1

Θ
(m)
l e(m), (5.111)
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with the Nl ×Nm matrix

Θ
(m)
l ,

 l←−∏
n=m+1

F(n)
η W(n)T

F(m)
η . (5.112)

Especially, for ∆x(L), this entails

∆x(L) = Θe, (5.113)

with the vector of length N ,
∑

l∈LNl,

e ,
L

col
l=1

{
e(l)
}
, (5.114)

and the NL ×N matrix

Θ ,
L

row
l=1

{
Θ(l)

}
. (5.115)

By inserting (5.113) in (5.102), the following compact relation between δ(l) and e is found,

δ(l) = Ω(l)Θe, (5.116)

with Ω(l), defined by (5.100) and (5.101), and Θ according to (5.112) and (5.115). Each element
of e corresponds to one combination of w̃(l)T

j x̂(l−1), for j ∈ Nl, and l ∈ L. Each δ
(l)
j in turn, is a

linear combination of those entries. With this in mind, after inserting (5.116) in update equation
(5.96), it can be seen that the multilayer perceptron has algorithmically the same structure as the
coupled structure given by (4.4)–(4.9). Therefore, its stability can be analysed based on the results
presented in Chapter 4.

To do so, first recognise that the coupling matrices in Sections 4.4 and 4.5 all relate the individual
a priori errors to the update errors. Here, the primer are represented by the elements of e, the latter
by the elements of all the δ(l). Hence, coupling matrix ∆MLP (cf. (4.84)) that corresponds to the
multilayer perceptron can be identified, according to

δ ,
L

col
l=1

{
δ(l)
}
=

L
col
l=1

{
Ω(l)Θe

}
=

L
col
l=1

{
Ω(l)

}
︸ ︷︷ ︸

,Ω

Θe = ΩΘ︸︷︷︸
∆MLP

e. (5.117)

Matrix Ω is upright rectangular and has NL columns, matrix Θ in turn is a lying rectangular
matrix with NL rows. Accordingly, due to Sylvester’s inequality [HJ13, Section 0.4.5] regarding the
rank of a matrix product, the rank of the corresponding coupling matrix ∆MLP is bounded by

rank {∆MLP} ≤ NL. (5.118)

Therefore, ∆MLP is rank deficient and consequently, in the best case positive semi-definite This
entails that Theorems 4.1 and 4.2 cannot be applied, inhibiting any statement regarding `2-stability
of the multilayer perceptron trained by the backpropagation algorithm. However, Lemma 4.3 is not
affected by ∆MLP being singular. Taking into account the complicated structure of the latter, in
general, it can be expected to be a non-normal matrix. Hence, based on Conjecture 4.1, in most
cases, Lemma 4.4 will not hold. As a consequence, also Lemma 4.3 seems hard to satisfy, which
eventually allows to conjecture that for the multilayer perceptron trained by the backpropagation
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algorithm, non-expanding mapping behaviour in terms of the weight error matrices, can hardly be
ensured. Furthermore, analogously to the Wiener model discussed in Section 5.2, this result also
confirms that the initialisation of the edge weights directly affects the convergence behaviour of the
backpropagation algorithm.

Note that the above derivation puts one detail aside. The output of an artificial neuron typically
does not only depend on its inputs, i.e., its stimulus level, but also on a threshold value that may be
constant or adaptive as well. The here considered structure seems to ignore this point. However,
this is justified for the following reasons. On the one hand, as explained in [Roj96, Chapter 7.3],
bias weights can easily be taken into account by extending the neural network. Moreover, the back
propagating errors do not need to traverse the corresponding bias edges, as they are not connected
to any preceding layer. On the other hand, the applied theory in Chapter 4 completely ignores the
fact that the inputs of intermediate layers are given by the outputs of their preceding neighbour
layers. Thus, the only step that is necessary to reflect the existence of such thresholds, is to modify
the weight matrices appropriately. As this modification is not expected to essentially affect the
above found insights, a more detailed investigation is skipped here and left for future work.



Chapter 6
Conclusions

Identification of unknown systems based on observable data is an ubiquitous problem encountered
in many disciplines of science and engineering. In some situations, such as weather forecast, these
unknown systems are of substantial complexity. However, their identification can resort to a vast
amount of data and a high-performance infrastructure for numeric solutions. In other scenarios
in turn, only a moderate complexity is faced, while strong restrictions with respect to available
computational capacity are imposed. This thesis completely focuses on the latter case.

One main motivation for its contents arose in the context of DPD for microwave power amplifiers.
There, a typical low complexity approach makes use of adaptive Wiener models, i.e., two-block
models which consist of a linear filter followed by a non-linear one-to-one mapping. The investigation
of convergence and stability of such systems triggered the development of the presented methods.
With progress of the conducted research, the original focus on adaptive two-block models has been
extended towards more general structures. As a result, the presented methods became more and
more independent, and in the current form, they establish a widely self contained theory.

Below, Section 6.1 briefly points out the key results presented in this thesis, reviews some
interrelations, and gives complementary comments. A critical discussion about open issues and
possible directions for future research is provided in Section 6.2. Finally, this work is closed by a few
concluding remarks in Section 6.3.

6.1 Summary of Key Results
The two main topics in this thesis – the analysis of asymmetric algorithms in Chapter 3, and the
study of coupled gradient type algorithms in Chapter 4 – on the first glance, appear rather unrelated.
However, especially the identical error case, discussed in Section 4.6, reveals how the primer helps to
understand the latter. Two insights of Chapter 3 stand out. On the one hand, Theorem 3.1 shows that
the most typical kind of asymmetric algorithms, the LMS algorithm with matrix step-size, inherently
introduces the risk of parameter divergence. The reason why such divergence cannot always be
provoked, and conditions for its existence, are presented in Section 3.4.4 (cf. Theorems 3.2 and 3.3).
In conjunction with the simulation experiments introduced in Section 3.1, and their reconsideration
in Section 3.2, it is made clear that the necessary condition for parameter divergence given in
Theorem 3.3, is novel and extends existing knowledge about this kind of algorithms. As Theorem 3.3
is only necessary and lacks sufficiency, in some situations, a reliable verdict on convergence may not
be accessible. Then, as an alternative, Sections 3.5 and 3.6 provide analytical as well as numerical
means for synthesis of w.c. excitation sequences. By this, simulation experiments can be conducted,
in order to test given algorithms for existence of diverging modes. If possible, the numerical method
should only be employed, if the analytical approach is not applicable (cf. Section 3.6 for details), as
the latter ensures to find diverging modes, if they exist at all. Moreover, the achieved simulation
times are a fraction of those required by the numerical method.
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The coupled structure introduced in Section 4.1 may appear rather generic at first. For sure, in this
context, the topic most debated with colleagues and scientific reviewers, are the circumstances which
may cause the errors of several gradient type algorithms to become coupled in such a way. As pointed
out at the beginning of Chapter 4, one can imagine physical effects that introduce interference.
Alternatively, this structure opens up the possibility to intentionally introduce a dependency among
the quality of several estimates. Hence, the designer may on purpose make use of such a linear
coupling. However, the most important reason for the coupled structure of Chapter 4 to occur,
is attributed to algorithmic analysis. The four applications discussed in Chapter 5 are intended
to justify this fact. Specifically, the investigation of the MC-FXLMS algorithm in Section 5.3,
shows how this method opens up access to systematic derivation of concise mapping and stability
conditions. The investigation of the multilayer perceptron trained by the backpropagation algorithm,
in Section 5.4, in turn, demonstrates that considerable effort my be required to successfully map a
given algorithm to such a coupled structure.

While the investigations of asymmetric algorithms, presented in Chapter 3 provide incremental
contributions to a widely studied family of algorithms, the coupled structure in Chapter 4, has
not been considered by other authors. Hence, the obtained results are novel to a wide extent.
Although `2-stability is a well established notion (cf. Section 2.4.2), its extension based on the
theory of M -matrices (cf. Section 4.2), to a system of gradient type algorithms (cf. Section 4.4), is
to my best knowledge, new in this field. Similarly, the results of the mapping analysis conducted in
Section 4.5 appear to be original contributions. One intention of Chapter 5 is to demonstrate that
this mapping analysis has a somewhat wider reach compared to `2-stability. This is seen as the latter
fails specifically in all identical error cases, i.e., Sections 5.1.3.2, 5.2, and 5.3. Then, the mapping
analysis is still applicable, and allows to identify conditions for a non-expanding parameter error
distance via Lemma 4.7. The latter lemma establishes the link to Chapter 3 and has a remarkable
side-effect: as it leads to algorithms that are symmetric, the (originally failing) `2-stability analyses
of Section 4.4 become employable again.

6.2 Critical Discussion, Open Issues, and Outlook
The theory developed in Chapters 3 and 4 rests upon rigorous derivations and provides several new
insights to the characteristics that inhere gradient type algorithms, respectively, combinations of
them. Although general applicability and completeness has been one of the goals pursued in this
thesis, open issues remain. These are addressed in the sequel of this section. Section 6.2.1 focuses on
the derivations regarding asymmetric algorithms in Chapter 3. The results obtained for the coupled
structure in Chapter 4 are discussed in Section 6.2.2. However, at first, one restriction is pointed
out that applies in either case.

Throughout this thesis, the parameter vector of the reference system is assumed to be constant
(cf. Section 2.1). Hence, from a formal point of view, any variation of the latter would cause the
presented results to fail. Yet, intuitively, up to a certain degree, drifts and small fluctuations are
expected to be acceptable. Nevertheless, being based on intuition, this is just a speculation and its
verification requires further investigation.

6.2.1 Considerations with Respect to Asymmetric Algorithms in Chapter 3
The mapping analysis for the homogeneous recursion of asymmetric algorithms in Chapter 3 gives a
detailed picture about the mechanisms that occur during one iteration. It also allows to deduce
the progress over a finite number of iterations. What is not completely covered, is the extension to
behaviour in the limit, i.e., for k →∞. This is specifically reflected in the proof of Theorem 3.2,
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which has to resort to [RC00], in order to ensure boundedness of the described mapping process.
This is necessary, as without any further reasoning, the convergence of the parameter error vector to
one of the eigenspaces of the step-size matrix, does not inherently entail its boundedness.

Also Theorem 3.3 leaves space for improvement. It requires a persistent change of all eigenspaces
of the step-size matrix. Intuitively, the same is expected to hold, if some of the eigenspaces are
invariant, as long as the one, corresponding to the eigenvalue with maximum real part, is not
amongst them. Consequently, it is desirable to state Theorem 3.3 more precisely, clarifying the
corresponding details.

Regardless which of the approaches presented in Sections 3.5 and 3.6 is chosen, the numerical
assessment of hidden divergence for a given asymmetric algorithm bares two limiting subtleties,
which are not that obvious at first glance. The first one is of relevance, if a real-world system
identification process has to be analysed – in contrast to a simulated one. Then, the parameter vector
of the reference system is unknown, causing the parameter error vector to be inaccessible. Hence,
neither the analytic approach, nor the numeric search for w.c. excitation vectors can be employed.
Consequently, the synthesis of w.c. excitation sequences, based on the methods in Sections 3.5
and 3.6, is restricted to simulations.

The second limiting subtlety concerns the fact that divergence of the parameter error vector may
depend on its initial state. Thus, a set of Monte Carlo simulations that does not reveal an unbounded
growth of the parameter error vector, does not allow to conclude unconditional boundedness of
the latter. Only the contrary situation leads to a conclusive result. Accordingly, if a Monte Carlo
simulations ends up in at least one run with diverging parameter error vector, it is ensured that the
considered algorithm is not guaranteed to converge.

As pointed out at the end of Section 3.2.4, it is not completely clarified how the here revealed
hidden divergence of asymmetric algorithm blends with the phenomena described in [SLJB86; Set92;
Nas99], which are all in some sense caused by insufficient persistency of excitation. The in this work
observed rates of divergence as well as the numerically verified fulfilment of PE, both indicate that
the here observed behaviour is of different nature. Yet, a formal investigation remains open.

A last possible direction for future research with respect to the asymmetric algorithms in Chapter 3
addresses parameter leakage. The latter is known to be a measure which effectively reduces the
parameter drift that can be observed for the conventional LMS algorithm [CM81; Nas99]. This
motivates to study parameter divergence for leaky asymmetric algorithms, or specifically, for a leaky
version of the LMS algorithm with matrix step-size.

6.2.2 Considerations with Respect to the Coupled Structure in Chapter 4
The bounds ensuring `2-stability of the coupled structure in Section 4.4 have to be expected to be
conservative in most cases. The reason for this is the repeated application of triangle and Minkowsky
inequality in the derivations of Theorems 4.1 and 4.2. Hence, an interesting open topic is the
identification of alternative arguments which allow to circumvent the frequent use of these latter
two inequalities.

The possibly most prevalent open issues with respect to the mapping analysis of the homogeneous
recursion that underlies the coupled structure in Chapter 4, are two weak links in the chain of
statements in Section 4.5. The first one is based on the fact that Lemma 4.4 is sufficient for
non-expanding behaviour of the parameter error vector. The following Lemma 4.5, however, is only
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necessary for Lemma 4.4. Hence, the latter – and thus non-expanding behaviour – is not ensured to
hold, if Lemma 4.5 is satisfied. Moreover, a violation of Lemma 4.5 entails Lemma 4.4 to fail. Yet,
as the latter is a sufficient condition, even then, non-expanding w.c. behaviour is possible. Thus, as
pointed out at the end of Section 4.6, the first mentioned missing link is a statement, complementary
to Lemma 4.4, of the form “Γk 6≥ 0⇒ Γk � Uk 6≥ 0”, and/or a sufficient counterpart to Lemma 4.5.

The second weak link is of less significance but still desirable to be reinforced. As some unusual
but still possible coupling matrices are not covered by the proof of Conjecture 4.1, it is incomplete.
A specific consequence is that in the identical error case, Lemma 4.7 has only the limited rigour of a
conjecture, as it does not strictly clarify whether the coupling matrix has to be normal in order to
ensure Lemma 4.4.

Chapter 5 demonstrates how the findings about the coupled structure in Chapter 4 can be
leveraged to study the behaviour of cascaded and otherwise combined gradient type algorithms.
With respect to the mapping analysis in the sense of Section 4.5, it has to be noted that all of the
excitation vectors are inherently assumed to be independent. Based on Chapter 5, it becomes clear
that this is only partially the case, if the coupled structure is obtained as an intermediate step in
the analysis of some specific algorithm. Dependencies among the excitation vectors do not cause the
obtained results to be invalid. Yet, it has to be kept in mind that then, the original algorithm may
show more benign convergence behaviour than the equivalent coupled structure. In other words,
the obtained convergence conditions may be rather conservative. In some situations, Monte Carlo
simulations employing Section 3.5 or Section 3.6 in order to provoke w.c. excitation, allow to asses
the tightness of the theoretically derived bounds.

Finally, one further idea for extension of the coupled structure in Chapter 4 is sketched. The
analysis of the MC-FXLMS algorithm in Section 5.3 assumes perfect knowledge of the secondary
paths. If this assumption is dropped, the obtained structure modifies to a combination of gradient
type algorithms, where each of the individual regression vectors deviates from the conjugate of the
corresponding excitation vector. Hence, a system of coupled asymmetric algorithms is obtained.
Accordingly, as Chapter 4 restricts the individual gradient type algorithms to be symmetric, an
extension towards asymmetric algorithms is desirable.

6.3 Conclusion
More than half a century ago, with the seminal works of Widrow and Hoff [WH60] and Kalman [Kal60],
adaptive filtering gained more and more attention. Meanwhile, the amount of available literature
dealing with this topic has become remarkably vast. Nevertheless, still, open questions remain. This
work aims to answer yet another few of them.

Although the phenomenon of hidden diverging modes in asymmetric algorithms has already been
investigated in earlier works by other authors (cf. Section 3.2), this thesis provides novel means in
order to explain, reveal, and prevent their occurrence. Additionally, it extends the understanding of
the underlying mechanisms. Altogether, this enables the designer of such algorithms to act with
more awareness regarding convergence and stability.

Although separately operating gradient type algorithms are well understood, their combination
still poses challenges with respect to convergence and stability. The in this work presented structure
of interfering gradient type algorithms (cf. Chapter 4), together with the developed theory, is
intended to ease design and analysis of such systems that incorporate several interacting gradient
type algorithms. Specifically, its application to the adaptive Wiener model and the MC-FXLMS in
context of ANC, leads to novel interpretations and bounds, and well demonstrates its effectiveness.



Appendix A
Singular Values of

Mapping Matrix Bk

This appendix provides the derivations related to Section 3.3.2. First, Appendix A.1 derives the
quadratic equation that directly leads to (3.22). Then, Appendix A.2 presents a detailed discussion
of the dependency of the two non-unit singular values, σ1 and σ2, on the effective step-size α, the
correlation coefficient ρ, and the complex argument ϕαρ∗ among them – cf. (3.11)–(3.13), respectively.
Along the way, Appendix A.2.3 provides the proof for Lemma 3.2. Moreover, based on the obtained
insights, Appendix A.3 determines the extremal behaviour of σ1 and σ2, leading to the bounds in
Theorem 3.1. Until the end of this appendix, iteration index k is suppressed.

A.1 Derivation of the Non-Unit Singular Values of Bk

The singular values of mapping matrix B are defined as the solutions to the equation

det
(

BHB− σ2I
)
= 0. (A.1)

It can be straightforwardly solved by the Sherman-Morrison-Woodbury formula1 [HJ13, Section 0.7.4]
and Cauchy’s formula for the determinant of a rank-one perturbation (cf. footnote on 130). However,
here, an even simpler approach is adopted based on Vieta’s formulas. In Section 3.3.2, it is found
that B has a unit singular value with multiplicity M − 2. For the remaining two, the following
relations hold [see, e.g., HJ13, Section 1.2]

tr
(

BHB
)
=

M∑
i=1

σ2i = σ21 + σ22 +M − 2, (A.4)

det
(

BHB
)
= |det (B)|2 =

M∏
i=1

σ2i = σ21σ
2
2, (A.5)

1 For an invertible matrix A ∈ CMA×MA and some matrices C ∈ CMA×MD , D ∈ CMD×MD , and E ∈ CMD×MA , such that
D−1 + EA−1C is invertible, it can be shown that

(A + CDE)−1 = A−1 − A−1C
(
D−1 + EA−1C

)−1 EA−1. (A.2)

Especially, for MD = 1, the matrix D reduces to a scalar d ∈ C, and the matrices C = c ∈ CMA and E = eT, with
e ∈ CMA , reduce to a column vector, respectively, a row vector. For deTA−1c 6= −1, this leads to(

A + dceT
)−1

= A−1 − d

1 + deTA−1cA−1ceTA−1. (A.3)
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where equivalently, BBH could have been used instead of BHB. Consequently, from (A.4) together
with (3.16), or (3.17), (3.11) and (3.12), it follows that

σ21 + σ22 = 2 + |α|2 − 2Re {αρ∗} , (A.6)

and from (A.5), using Cauchy’s formula for the determinant of a rank-one perturbation2 [HJ13,
Equation 0.8.5.11],

σ21σ
2
2 = |1− αρ∗|2 . (A.7)

With this at hand, Vieta’s formulas directly lead to the quartic equation,

σ4i − σ2i
(
2 + |α|2 − 2Re {αρ∗}

)
+ |1− αρ∗|2 = 0. (A.9)

Since (A.9) does neither contain a first nor a third order term, its roots are found via the equivalent
quadratic equation in σ2i . It can be verified that all of the four roots are ensured to be real-valued.
As a consequence, two of them are non-negative, the other two are non-positive, where the latter
have the same magnitudes as the primer. Taking into account that the singular values are by
definition non-negative, the negative roots can be discarded, by which the two singular values in
(3.22) are obtained.

A.2 Analysis of the two Non-Unit Singular Values of Bk

This appendix thoroughly analyses the dependency of the two non-unit singular values of mapping
matrix B, on the effective step-size α, the correlation coefficient ρ, and the complex argument ϕαρ∗ .
The goal is to develop a clear picture of the corresponding functions, in order to prepare for the
specification of bounds and extremal ratings in the following Appendix A.3. In order to improve
readability, first the following definitions and abbreviations are introduced:

a , |α| ∈ R0+, ϕα , arc {α} ∈ (−π, π] ⇒ α = aeϕα , (A.10)
r , |ρ| ∈ [0, 1] , ϕρ , arc {ρ} ∈ (−π, π] ⇒ ρ = reϕρ , (A.11)
ϕ , ϕα − ϕρ mapped to (−π, π] ⇒ ϕ = arc {αρ∗} , (A.12)

g = fg(a, r, ϕ) ,
a

2
− r cos (ϕ) ∈

[a
2
− r, a

2
+ r
]
⊂ [−1,∞) , (A.13)

ηi = fη,i(a, r, ϕ) , g + si
√

1 + g2 − r2 ⇒ σ2i = 1 + aηi. (A.14)

In (A.14) the sign factor si is introduced, which is defined as

si , (−1)i−1. (A.15)

Note that 0 ≤ η1 ≤ |g| +
√
1 + g2, where the bound from below is due to the fact that since

0 ≤ r ≤ 1, the square-root is always larger than or equal to the magnitude of g. The bound from
above is trivially verified from (A.14). For η2, it analogously follows, − |g| −

√
1 + g2 ≤ η2 ≤ 0.

2 For an invertible square matrix A ∈ CM×M and two vectors a,b ∈ CM , the following relation holds

det
(

A + abT
)
= det (A)

(
1 + bTA−1a

)
. (A.8)
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According, to the right-hand side of (A.14), both ηi affinely map to the two non-unit singular
values. Hence, in order to locate their extrema – respectively, the extrema of their squares – the
first order partial derivatives of g and ηi with respect to a, r, and ϕ are required. These are found
to evaluate to

∂g

∂a
=

1

2
,

∂g

∂r
= − cos (ϕ) , ∂g

∂ϕ
= r sin (ϕ) , (A.16)

and

∂ηi
∂a

=
∂g

∂a

(
1 + si

g√
1 + g2 − r2

)
︸ ︷︷ ︸

∈[0,2]

= si
ηi

2
√
1 + g2 − r2

=
|ηi|

2
√
1 + g2 − r2

, (A.17)

∂ηi
∂r

=
∂g

∂r
+ si

g ∂g∂r − r√
1 + g2 − r2

= −

(
cos (ϕ) + si

g cos (ϕ) + r√
1 + g2 − r2

)
= −|ηi| cos (ϕ) + sir√

1 + g2 − r2
, (A.18)

∂ηi
∂ϕ

=
∂g

∂ϕ

(
1 + si

g√
1 + g2 − r2

)
= si

ηir sin (ϕ)√
1 + g2 − r2

=
|ηi| r sin (ϕ)√
1 + g2 − r2

. (A.19)

A.2.1 Dependency with respect to the Magnitude of the Effective Step-Size
The first order partial derivative of ηi with respect to a in (A.17) is always non-negative. However,
this is not true for the corresponding first order partial derivative of σ2i ,

∂(σ2i )

∂a
= ηi + a

∂ηi
∂a

(A.17)
= ηi

(
1 +

sia

2
√
1 + g2 − r2

)
. (A.20)

Accordingly, for σ21, the first order partial derivative with respect to a is non-negative,

∂(σ21)

∂a
≥ 0, (A.21)

with identity at the roots of η1, i.e., for

r = 1 ∧ |ϕ| ≤ π

2
∧ a ≤ 2 cos (ϕ) . (A.22)

For σ22, i.e., with sign factor s2 = −1, (A.20) is zero at the roots of η2, which occur at

r = 1 ∧
[π
2
≤ |ϕ| ≤ π ∨

(
|ϕ| < π

2
∧ a ≥ 2 cos (ϕ)

)]
, (A.23)

complemented by the roots of the bracket expression in (A.20). Only for r > 0 ∧ |ϕ| < π
2 one such

additional root exists, found at

ǎ2 =
1− r2 sin2 (ϕ)

r cos (ϕ)
. (A.24)

For π
2 ≤ |ϕ| ≤ π, the bracket expression in (A.20) is non-negative (identical to zero for r = 1∧|ϕ| = π

2
and in the limit for a→∞). This entails that then, the first order derivative of σ22 with respect to
a is in any case less than or equal to zero. If in contrast, a valid, i.e., a non-negative, root (A.24)
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exists, the bracket expression in (A.20) is 〈greater than|less than〉3, zero for 〈a < ǎ2|a > ǎ2〉. Thus,
the behaviour of the first order partial derivative of σ22 with respect to a can be summarised as

∂(σ22)

∂a


< 0; for π

2 < |ϕ|≤π ∨
(
|ϕ|= π

2 ∧ r<1
)
∨
[
|ϕ|< π

2 ∧ (r>0 ∧ a<ǎ2) ∨ (r=1 ∧ a<2 cos (ϕ))
]

= 0; for
〈
r = 1 ∧

[
π
2 ≤ |ϕ| ≤ π ∨

(
|ϕ| < π

2 ∧ a ≥ 2 cos (ϕ)
)]〉
∨
[
r > 0 ∧ |ϕ| < π

2 ∧ a = ǎ2
]

> 0; for 0 < r < 1 ∧ |ϕ| < π
2 ∧ a > ǎ2

The maximum of σ22 is always one and occurs at a = 0, and for r = 1 also at a ≥ 2 cos (ϕ). The
minimum is either

min
a∈R0+

σ22 = r2 sin2 (ϕ) , (A.25)

located at ǎ2 if r > 0 and |ϕ| ≤ π
2 , or

min
a∈R0+

σ22 = r2, (A.26)

which is only reached in the limit a→∞, for π
2 < |ϕ| ≤ π.

A.2.2 Dependency with respect to the Magnitude of the Correlation
Coefficient

The first order partial derivative of σ2i with respect to r is found to be

∂(σ2i )

∂r
= a

∂ηi
∂r

(A.18)
= − a√

1 + g2 − r2

{
η1 cos (ϕ) + r; for i = 1

|η2| cos (ϕ)− r; for i = 2
. (A.27)

For a = 0, (A.27) becomes zero for both cases. Acknowledging that, for the rest of this appendix,
the focus is kept on a > 0. Then, (A.27) gives

∂(σ21)

∂r
< 0 ⇔ η1 cos (ϕ) + r > 0, (A.28)

∂(σ22)

∂r
< 0 ⇔ |η2| cos (ϕ)− r > 0. (A.29)

Anticipating following findings, at this point, three special values of a are introduced:

a1 = 2 cos (ϕ)− 1

cos (ϕ)
=

cos (2ϕ)
cos (ϕ)

= cos (ϕ)
(
1−tan2 (ϕ)

)
≥ 0, for |ϕ| ∈

[
0,
π

4

]
∪
(
π

2
,
3π

4

]
,

(A.30)

a2 = 2 cos (ϕ)− 1

2 cos (ϕ)
=

3− 4 sin2 (ϕ)

2 cos (ϕ)
=

cos (ϕ)
2

(
3− tan2 (ϕ)

)
≥ 0, for |ϕ| ∈

[
0,
π

3

]
∪
(
π

2
,
2π

3

]
,

(A.31)

a3 = 2 cos (ϕ) ≥ 0, for |ϕ| ≤ π

2
. (A.32)

Each of the values is tied to a certain range of angle ϕ. Outside of these ranges, the corresponding
value becomes negative and is thus not a valid value for magnitude a. Furthermore, note that under
3 The abbreviated notation “…〈A|B〉 …〈C|D〉 …” expands to two statements: “…A …C …”, and “…B …D …”.



133 A.2 Analysis of the two Non-Unit Singular Values of Bk

the assumption of their existence, a1, a2, and a3 satisfy the following relations

0 < a3 < a2 < a1, for π

2
< |ϕ| < π, (A.33)

0 < a1 < a2 < a3, for |ϕ| < π

2
. (A.34)

In the next step, the roots for the right-hand side of (A.28) and (A.29) are calculated. From
(A.22) and (A.23), it is already known that ηi 6= 0 if r < 1. Therefore, even if a = 0, the value r = 0
can only be a root iff |ϕ| = π

2 . Keeping this in mind, in the following, the cases r = 0 and |ϕ| = π
2

do not need to be considered further. This, together with restriction a > 0 that has been introduced
right after (A.27), in combination with the facts, η1 ≥ 0 and η2 ≤ 0, leads to

∂(σ21)

∂r
< 0, for |ϕ| < π

2
, (A.35)

∂(σ22)

∂r
> 0, for π

2
< |ϕ| < π. (A.36)

A.2.2.1 Details for the First Singular Value

For |ϕ| < π
2 , expression (A.35) is already available. Hence, what remains open for singular value σ1,

is the analysis for π
2 < |ϕ| ≤ π. This is done by identifying the magnitude r – further down in

(A.39), the solution is denoted r̂1 – that solves the right-hand side of (A.28), with identity to zero.
Re-inserting η1 from (A.14), leads to

r2 sin2 (ϕ)− ra |cos (ϕ)| − cos2 (ϕ) = 0, (A.37)

under the constraint

a ≤ 2r sin2 (ϕ)

|cos (ϕ)|
. (A.38)

Equation (A.37) is solved by (note that the second solution would be less than zero which is no
valid value for r)

r̂1 =
a

2

|cos (ϕ)|
sin2 (ϕ)

1 +
√
1 +

(
2

a

)2

sin2 (ϕ)

 . (A.39)

In order to ensure r̂1 ≤ 1, magnitude a additionally has to be bounded from above by a1 in (A.30),
i.e.,

a ≤ a1, (A.40)

which imposes the additional restriction π
2 < |ϕ| <

3π
4 to the range of ϕ for which a valid r̂1 exists.

Note that (A.38) is implied by (A.40), since here, only π
2 < |ϕ| ≤ π is of relevance. If a valid r̂1

exists, the right-hand side expression of (A.28) is 〈negative|positive〉, for 〈r < r̂1|r > r̂1〉, which
shows that r̂1 is a maximum of σ21. Eventually, the behaviour of the first order derivative of σ21 can
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be carved out:

∂(σ21)

∂r


< 0; for a > 0 ∧

[
|ϕ| < π

2 ∨
(
|ϕ| = π

2 ∧ r > 0
)
∨
(
π
2 < |ϕ| <

3π
4 ∧ a ≤ a1 ∧ r > r̂1

)]
= 0; for a = 0 ∨

(
r = 0 ∧ |ϕ| = π

2

)
∨
(
π
2 < |ϕ| <

3π
4 ∧ a ≤ a1 ∧ r = r̂1

)
> 0; for a > 0 ∧

{〈
π
2 < |ϕ| <

3π
4 ∧ [(a ≤ a1 ∧ r < r̂1) ∨ a > a1]

〉
∨ 3π

4 ≤ |ϕ| ≤ π
}

Accordingly, for a > 0, and if either r > 0 or |ϕ| 6= π
2 , σ21 assumes its maximum at

r = 0, for |ϕ| ≤ π

2
, (A.41)

r = r̂1, for π

2
< |ϕ| < 3π

4
∧ a < a1, (A.42)

r = 1, for
(
π

2
< |ϕ| < 3π

4
∧ a > a1

)
∨ 3π

4
≤ |ϕ| ≤ π. (A.43)

As a consequence, the minimum of σ21 with respect to r is found at its limits, i.e., r = 0 or r = 1.
From (A.10)–(A.14), the corresponding values are obtained as

σ21

∣∣∣
r=0

= 1 +
a2

2
+ a

√
1 +

a2

4
, (A.44)

σ21

∣∣∣
r=1,π

2
<|ϕ|≤π = 1 + a2 + 2a |cos (ϕ)| . (A.45)

It can be verified that σ21
∣∣
r=0

> σ21
∣∣
r=1,π

2
<|ϕ|≤π , for a < a2 (cf. (A.31)), which allows to conclude

that the minimum of σ21 is found at

r = 0, for
(
π

2
< |ϕ| ≤ 2π

3
∧ a ≥ a2

)
∨ 2π

3
< |ϕ| ≤ π, (A.46)

r = 1, for
(
π

2
< |ϕ| ≤ 2π

3
∧ a ≤ a2

)
∨ |ϕ| < π

2
. (A.47)

At a = a2, the minimum value of σ21 occurs at r = 0 as well as at r = 1. Note moreover that (A.47)
is only valid if π

2 < |ϕ| ≤
2π
3 .

A.2.2.2 Details for the Second Singular Value

Stepping back to (A.29), remembering that (A.36) already covered the case π
2 < |ϕ| < π, and

keeping in mind that the above analysis has been restricted to a > 0, r > 0, and |ϕ| < π
2 , below, a

similar path is followed as in Appendix A.2.2.1. First, the magnitude r is sought which solves the
right-hand side of (A.29), with identity to zero, i.e., after re-inserting for η2 from (A.14),

r2 sin2 (ϕ) + ra cos (ϕ)− cos2 (ϕ) = 0, (A.48)

which differs from (A.37), only in the sign of the term linear in r. The root of (A.48) is found at
(note that as for (A.37), the second solution would be less than zero which is not a valid value for r)

ř2 =


1
a ; for ϕ = 0

a
2

cos(ϕ)
sin2(ϕ)

[
−1 +

√
1 +

(
2
a

)2 sin2 (ϕ)

]
; otherwise

. (A.49)
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In order to ensure r ≤ 1 in (A.49), condition a ≥ a1 has to be satisfied. Bound a1 is defined in
(A.30), from which it is also found that for the relevant range of ϕ, a1 only exists if |ϕ| < π

4 . Hence,
for |ϕ| ∈

[
π
4 ,

π
2

]
, (A.48) always has a (non-negative) root in domain of r, i.e., [0, 1]. It can easily be

verified that the right-hand side expression in (A.29) is positive for r < ř2, and negative for r > ř2.
This clarifies that r = ř2 is a minimum of σ22. Finally, the point is reached, where the first order
derivative of σ22, with respect to r, can be specified:

∂(σ22)

∂r


< 0; for a > 0 ∧

〈
|ϕ| < π

4 ∧ [a < a1 ∨ (a ≥ a1 ∧ r < ř2)] ∨
(
π
4 ≤ |ϕ| <

π
2 ∧ r < ř2

)〉
= 0; for a = 0 ∨

(
r = 0 ∧ |ϕ| = π

2

)
∨
〈
r = ř2 ∧

[(
|ϕ| < π

4 ∧ a ≥ a1
)〉
∨ π

4 ≤ |ϕ| <
π
2

]
> 0; for a > 0 ∧

{〈[(
|ϕ| < π

4 ∧ a ≥ a1
)
∨ π

4 ≤ |ϕ| <
π
2

]
∧ r > ř2

〉
∨ π

2 < |ϕ| < π
} .

Consequently, for a > 0, and with either r > 0 or |ϕ| 6= π
2 , the minimum of σ22 is found at (note that

ř2 = 1 for a = a1 and a valid angle ϕ)

r = 0, for π

2
< |ϕ| < π, (A.50)

r = ř2, for
(
|ϕ| < π

4
∧ a ≥ a1

)
∨ π

4
≤ |ϕ| < π

2
, (A.51)

r = 1, for |ϕ| < π

4
∧ a ≤ a1. (A.52)

Analogous to Appendix A.2.2.1, it can be concluded that the maximum occurs either at r = 0 or
r = 1. From (A.10)–(A.14), it is found that

σ22

∣∣∣
r=0

= 1 +
a2

2
− a
√

1 +
a2

4
, (A.53)

σ22

∣∣∣
r=1,|ϕ|<π

2

=

{
1 + a2 − 2a cos (ϕ) ; for a < a3

1; for a ≥ a3
, (A.54)

with a3 defined in (A.32). Based on (A.53) and (A.54), it can be observed that σ22
∣∣
r=0

> σ22
∣∣
r=1,|ϕ|<π

2
,

for 0 < a < a2. Therefore, the maximum of σ22 is found at

r = 0, for
(
|ϕ| < π

3
∧ a ≤ a2

)
, (A.55)

r = 1, for
(
|ϕ| < π

3
∧ a ≥ a2

)
∨
(π
3
< |ϕ| < π

2
∨ π

2
< |ϕ| ≤ π

)
. (A.56)

At |ϕ| = π
2 , σ22 is constant with respect to r. Moreover, for a = a2, the maximum of σ22 occurs at

r = 0, as well as at r = 1.

A.2.3 Dependency with respect to the Phase Offset
The first order partial derivative of σ2i with respect to ϕ is obtained from (A.12), as

∂(σ2i )

∂ϕ
= a

∂ηi
∂ϕ

(A.19)
= a

|ηi| r sin (ϕ)√
1 + g2 − r2

. (A.57)

Clearly, the sign on the right-hand side of (A.57) is dictated by the sine of ϕ. Consequently, ϕ = 0
leads to the smallest achievable value of σi, ϕ = π to the largest achievable value. Thus, both
non-unit singular values increase monotonously with |ϕ|. This proves Lemma 3.2.
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A.3 Bounds on the Singular Values of Bk

Eventually, the results obtained in Appendix A.2 can be summarised in order to justify Theorem 3.1.
For reasons of orientation, a schematic overview of the results is provided in Figure A.1, which
allows to identify the location of minima and maxima with respect to magnitude r, parametrised by
the pair 〈a, ϕ〉. The first important fact to keep in mind – expressed by (A.57) – is that both of the
singular values increase with an increasing magnitude of angle ϕ (mapped to the interval (−π, π]).
Moreover, due to (A.21), σ1 always grows together with magnitude a. Finally, as found at the end
of Appendix A.2.1, σ2 ≤ 1.

In order to obtain the upper bound (3.31) on σ1, first it is observed that due to (A.35) for |ϕ| ≤ π
2 ,

the maximum is found at r = 1. Moreover, (A.57) entails that σ1 further grows with |ϕ| > π
2 . Then,

(A.43) shows that for |ϕ| = π, the maximum remains at r = 1. Hence, maximum σ̂1 is found at r = 1,
ϕ = π. Upper bound σ̂2 = 1 in (3.32) has already been identified at the end of Appendix A.2.1.
The location r = 1, ϕ = 0 for lower bound σ̌1 = 1 in (3.33), directly follows from (A.35) and (A.57).
Finally, lower bound σ̌1 = 1 in (3.34) requires to distinguish two cases. Due to (A.52), up to a = 1,
the minimum is found at r = 1, ϕ = 0 – where at a = 1, the minimum has reached zero. For a > 1,
(A.51) has to be used, which allows to verify that for ϕ = 0, ř2 = 1

a , the minimum remains at zero.
Note that additionally, from (3.32), (3.33), (A.6), and (A.57),

σ21 ≥

{
1 + a2 − 2ar cos (ϕ) ; for a 6= 0 and a > 2r cos (ϕ)
1; otherwise

, (A.58)

can be derived. Similarly,

σ22 ≤

{
1 + a2 − 2ar cos (ϕ) ; for a < a < 2r cos (ϕ)
1; otherwise

. (A.59)
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(a) Maximum singular value σ1.
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��������1� ��������0����1� ����0

(b) Minimum singular value σ2.

Figure A.1: This diagram abstractly describes the behaviour of the two non-unit singular values σ1 and σ2, by summarising
the results obtained in Appendix A.2. The ordinate does not carry any information. Each horizontal line
indicates the interval of the complex argument ϕ, for which the corresponding configuration can occur. A
filled circle at the line end indicates that the value of ϕ is included, an empty circle indicates an exclusion.
The actual configuration is described on top of the horizontal line. The number or symbol following the
character “@”, specifies the location of the minimum (MIN), respectively, the maximum (MAX), in terms of
magnitude r. In two simple cases, the corresponding value of the singular value is also given in brackets. The
valid range for magnitude a is found below the horizontal line. The behaviour is symmetric with respect to
ϕ = 0, except from the fact that ϕ = −π is not included since ϕ ∈ (−π, π].





Appendix B
Complement to

Section 3.5

This appendix provides the derivations that provide the basis for Section 3.5, and specifically, (3.92).
For sake of brevity, the following substitutions are introduced (suppressing iteration index k, ew̃ is
the unit vector that corresponds to w̃k−1)

a1 = |au| , a2 = |bu| , (B.1)

β =
∥∥Dew̃

∥∥ , γ = cos (ϕaubu)
∥∥∥D1/2ew̃

∥∥∥2 , (B.2)

and with the cosine between ew̃ and Dew̃ denoted by cos
(
ΘD(ew̃)

)
(cf. (3.83)),

υ =

∥∥D1/2ew̃
∥∥2

|cos (ϕaubu)|
[∥∥Dew̃

∥∥2 − ∥∥D1/2ew̃
∥∥4] =

cos
(
ΘD(ew̃)

)
|cos (ϕaubu)|

∥∥Dew̃
∥∥ sin2

(
ΘD(ew̃)

) . (B.3)

Then, (3.91) is equivalent to

f (a1, a2) , a21 + β2a22 + 2γa1a2 = aTAa = 1, (B.4)

with

a1, a2 ∈ R, a ,
[
a1 a2

]T
, A ,

[
1 γ
γ β2

]
, β ∈ R+, γ ∈ [−β, β] . (B.5)

B.1 Semi-Minors and Semi-Majors of the Ellipse

Equation (B.4) describes an ellipse in the 〈a1, a2〉-plane that is parametrised by β and γ. Accordingly,
the lengths of its semi-minor and semi-major are given by the square-root of the reciprocal eigenvalues
of matrix A, i.e., 1√

λ1(A)
, and 1√

λ2(A)
, respectively. The latter eigenvalues are given by

λi (A) =
1 + β2

2
+ (−1)i−1

√(
1 + β2

2

)2

+ γ2 − β2 = 1 + β2

2
+ (−1)i−1

√(
1− β2

2

)2

+ γ2, (B.6)
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with i ∈ {1, 2}. Since β2 − γ2 ≥ 0, it follows that

0 ≤
(
1− β2

2

)2

≤
(
1 + β2

2

)2

+ γ2 − β2 =
(
1− β2

2

)2

+ γ2 ≤
(
1 + β2

2

)2

, (B.7)

which in turn allows to state

0 ≤ λ2 (A) ≤ min
{
1, β2

}
≤ 1 ≤ max

{
1, β2

}
≤ λ1 (A) ≤ 1 + β2. (B.8)

The corresponding eigenvectors evaluate to

qi (A) =
|γ|√

(1− λj (A))2 + γ2

[
1−λj(A)

γ 1
]T
, (B.9)

where j = {1, 2} \ {i}. Hence, for γ > 0, the semi-majors (i = 2, j = 1) fall into the second and
forth quadrant of the 〈a1, a2〉-plane, for γ < 0, they fall into the first and third quadrant. For the
semi-minors the contrary applies. The acute angles, θ1 and θ2, that the semi-axes enclose with the
a1-axis are given by

cos (θi) =
|1− λj (A)|√

(1− λj (A))2 + γ2
=

|γ|√
(1− λi (A))2 + γ2

. (B.10)

Thus,

γ ≥ 0⇒ θ1 ∈
[
0,
π

2

)
, θ2 ∈

[
−π
2
, 0
)
, γ < 0⇒ θ1 ∈

(
−π
2
, 0
)
, θ2 ∈

(
0,
π

2

)
, (B.11)

and

sin (θi) = −
sign(γ) (1− λi (A))√
(1− λi (A))2 + γ2

=
γ (−1)i−1√

(1− λj (A))2 + γ2
. (B.12)

Moreover, it can be verified that

tan (2θi) =
2γ

1− β2
, (B.13)

and that tan (θ1) = − cot (θ2).

B.2 Parametrisation of the Ellipse
Based on the results of Appendix B.1, it is straightforward to parametrise the elliptical arc in
the first quadrant – which is the only valid one as a1 ≥ 0, a2 ≥ 0 – of the 〈a1, a2〉-plane, with
angle ϑ ∈ [ϑ2, ϑ1 + π], according to

a1 =
cos (θ1)√
λ1 (A)

cos (ϑ)− sin (θ1)√
λ2 (A)

sin (ϑ) = â1 sin (ϑ− ϑ1) , (B.14)

a2 =
sin (θ1)√
λ1 (A)

cos (ϑ) + cos (θ1)√
λ2 (A)

sin (ϑ) = â2 sin (ϑ− ϑ2) , (B.15)
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where

âi ,

√
cos2 (θi)
λ1 (A)

+
sin2 (θi)

λ2 (A)
⇒ â1 = βâ2 =

β√
λ1 (A)λ2 (A)

=
β√

β2 − γ2
, (B.16)

ϑ1 , arctan

(√
λ2 (A)

λ1 (A)
cot (θ1)

)
, (B.17)

ϑ2 , arctan

(√
λ2 (A)

λ1 (A)
cot (θ2)

)
+

{
π; γ > 0

0; otherwise
. (B.18)

Moreover, without presenting the details of the derivation, for the difference

ϑ12 , ϑ1 − ϑ2, (B.19)

it can be shown that

cos (ϑ12) = −
γ

β
. (B.20)

B.3 Maximum of Product a1a2
As a preparation for the in Appendix B.4 performed intersection of the ellipse with a hyperbola, here,
the rectangle with side lengths a1 and a2 is sought that encloses the largest surface area A ,max (β, γ),
i.e.,

A ,max (β, γ) , max
a1,a2

s.t. (B.4)

{A (a1, a2)} , (B.21)

with

A (a1, a2) , a1a2. (B.22)

Clearly, A ,max (β, γ) equivalently provides the minimum upper bound for the product a1a2. Here,
point 〈a1, a2〉 that leads to A ,max (β, γ), is identified based on the fact that at this point, the
tangent along the ellipse coincides with the tangent along the hyperbola, described by (B.22) with
A (a1, a2) kept constant.

The partial derivatives of the implicitly defined functions in (B.4) and (B.22) are obtained as

∂f (a1, a2)

∂a1
=
∂f (a1, a2)

∂a2

da2
da1

= 2

[
a1 + β2a2

da2
da1

+ γ

(
a2 + a1

da2
da1

)]
, (B.23)

∂A (a1, a2)

∂a1
=
∂A (a1, a2)

∂a2

da2
da1

= a2 + a1
da2
da1

. (B.24)

If (B.22) is maximised, the partial derivative in (B.24) has to evaluate to zero, i.e.,

∂A (a1, a2)

∂a1

!
= 0 ⇒ da2

da1
= −a2

a1
. (B.25)

Hence, since the tangents of both graphs have to coincide,

∂f (a1, a2)

∂a1

!
= 0 ⇒ da2

da1
= − a1 + γa2

γa1 + β2a2
, (B.26)
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leading to
a2
a1

!
=

a1 + γa2
γa1 + β2a2

⇒ a1 = ±βa2. (B.27)

Thus, in the 〈a1, a2〉-plane, the maximum is found along the two lines with slope ± 1
β , and

A ,max (β, γ) = βa22. (B.28)

Inserting the right-hand side of (B.27) in (B.4) gives

a22 =
1

2β (β + γ)
, (B.29)

which finally provides the maximum surface area, exclusively in terms of β and γ,

A ,max (β, γ) =
1

2 (β + γ)
. (B.30)

B.4 Intersecting the Ellipse with a Hyperbola
The bound (3.89) describes a hyperbola in the 〈a1, a2〉-plane, which is identical to

f (a1, a2) ,
a1a2
υ

= 1, (B.31)

with υ 6= 0 given by (B.3). Based on the insights from Appendix B.3, it is clear that hyper-
bola f (a1, a2) in (B.31) intersects with ellipse f in (B.4), iff

A ,max (β, γ) ≥ υ ⇒
1

2 (β + γ)
≥ υ, (B.32)

which is equivalent to bound (3.92).
Moreover, from (B.31), it follows with i ∈ {1, 2}, j ∈ {1, 2} \ {i} that

ai =
υ

aj
. (B.33)

Inserting (B.33) in (B.4), leads to

a41 + a21 (2γυ − 1) + β2υ2 = 0, (B.34)
and

(βa2)
4 + (βa2)

2 (2γυ − 1) + β2υ2 = 0. (B.35)

Accordingly,

a21 = β2a22 =
1

2
− γυ ±

√(
1

2
− γυ

)2

− β2υ2, (B.36)

where the argument of the square-root is non-negative iff (B.32) is satisfied. As the squares on
the left-hand side of (B.36) have to be non-negative, the solution on the right-hand side has to be
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non-negative as well. Hence, with β 6= 0 and υ 6= 0, it is found that this entails

γυ <
1

2
. (B.37)

Finally, if Conditions (B.32) and (B.37) are satisfied, based on (B.31) and (B.36) the four intersection
points are obtained by

a(i) =
[
a+

a−
β

]T
, a(ii) =

[
a−

a+
β

]T
, a(iii) =

[
−a+ −a−

β

]T
, a(iv) =

[
−a− −a+

β

]T
, (B.38)

with

a+ ,

√√√√1

2
− γυ +

√(
1

2
− γυ

)2

− β2υ2, a− ,

√√√√1

2
− γυ −

√(
1

2
− γυ

)2

− β2υ2. (B.39)

The angles θ(i) to θ(iv), enclosed by the a1-axis and the four rays from the origin through those
intersection points, can be calculated from

tan
(
θ(i)
)
=
a
(i)
2

a
(i)
1

= tan
(
θ(iii)

)
=
a
(iii)
2

a
(iii)
1

=
|υ|
a2−
, (B.40)

tan
(
θ(ii)
)
=
a
(ii)
2

a
(ii)
1

= tan
(
θ(iv)

)
=
a
(iv)
2

a
(iv)
1

=
|υ|
a2+
, (B.41)

and their difference obeys

θ(i) − θ(ii) = θ(iii) − θ(iv) = arctan


√(

1
υ − 2γ

)2 − 4β2

1 + β2

 . (B.42)





Appendix C
Mathematical Supplement

This appendix briefly introduces some mathematical concepts and notions that are required in
this thesis. Appendix C.1 presents basics about operator trigonometry and is specifically relevant
for Sections 3.4.2 and 3.5. The M -matrices defined in Appendix C.2 are key to the solution of
the system of linear difference equations in Section 4.2 and thus, fundamental for the `2-stability
analysis of the coupled structure in Section 4.4.1. Finally, Appendix C.3 provides some facts about
submatrices, minors, and leading principal minors of a matrix. They are of special importance for
the mapping analysis of the coupled structure in Section 4.5 that resorts to Section 4.3.

C.1 Operator Trigonometry
Operator trigonometry dates back to 1966 and is coined by Karl Gustafson [Gus00]. Originally, it
was restricted to positive definite matrices. However, meanwhile it is extended to arbitrary invertible
matrices [ibid.]. It is tightly related to the notion of antieigenvalues and antieigenvectors, which can
be considered as the opposite of eigenvalues and eigenvectors. This becomes clear by comparing
their definitions. While the eigenvectors are by definition [Definition 1.1.2 HJ13] the invariant
directions attributed to a matrix1 A ∈ CM×M , A > 0, the antieigenvectors are the directions to
which A imposes the strongest angular change. Further insight is gained by comparing the maximum
eigenvalue λ1 (A) and the maximum antieigenvalue λ̄1 (A). The primer can be defined based on the
Rayleigh quotient [Theorem 4.2.2 HJ13],

λ1 (A) , max
x∈CM\{0}

xHAx
‖x‖2

, (C.1)

the latter is defined as [Gus00]

λ̄1 (A) , min
x∈CM\{0}

xHAx
‖x‖ ‖Ax‖ . (C.2)

The maximum antieigenvalue is found to coincide with the cosine of the largest (acute) angle that
can occur between a vector x 6= 0 and its image Ax.

More generally, the antieigenvalues λ̄i (A), i ∈ {1, . . . ,
⌊
M
2

⌋
} are defined as [Gus00; Rao05]

λ̄i (A) , min
x⊥S̄i

xHAx
‖x‖ ‖Ax‖ =

2
√
λi (A)λj (A)

λj (A) + λj (A)
, (C.3)

1 For simplicity reasons, here, only the case of positive definite non-derogatory matrices is considered, i.e., all eigenvalues
are positive and unique. Details about the more general cases, i.e, matrices that posses non-positive or complex-valued
eigenvalues, possibly with multiplicities higher than one, can be found in [Gus00].
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where j =M − i+1, and with the set of eigenvectors ql (A), l ∈ {1, . . . ,M} of matrix A, S̄i denote
the spaces

S̄i ,

{
∅; i = 1

span {q1 (A) , . . . ,qi−1 (A) ,qj+1 (A) , . . . ,qM (A)} ; otherwise
. (C.4)

The corresponding pairs of antieigenvector q̄i (A) ∈ CM are given by

q̄±
i (A) , ±

√
λj (A)

λi (A) + λj (A)
qi (A) +

√
λi (A)

λi (A) + λj (A)
qj (A) . (C.5)

An extension to derogatory positive definite matrices is found in [Gus00, Theorem 3.1].
A direct consequence of (C.3) is the so called Kantorovich inequality [GR97, pp. 50f.; Rao05],

1 ≥ xHAx
‖x‖ ‖Ax‖

≥
2
√
λ1 (A)λM (A)

λ1 (A) + λM (A)
= λ̄1 (A) . (C.6)

Finally, for two orthogonal vectors, x, z ∈ RM , x ⊥ z, the Wielandt inequality states the following
bound [Rao05] (

xTAz
)2

(xTAx) (zTAz) ≤
λ1 (A)− λM (A)

λ1 (A) + λM (A)
= 1− λ̄21 (A) ≤ 1. (C.7)

C.2 M -Matrices
In this appendix, some facts and properties of the class of M -matrices2 are summarised. Detailed
information can be found in [FP62], where M -matrices in general, and non-singular M -matrices,
are referred to by the terms “matrix of class K0”, and “matrix of class K”, respectively. Moreover,
[BP79] and [HJ99, pp. 112ff.] treat this topic elaborately. A brief introduction can be found, e.g., in
[Moy77]. Below, the scalars, vectors and matrices are all assumed to be real-valued.

M -Matrices [BP79, p. 133]
Definition C.1: M-Matrices [BP79, p. 133]

Any matrix A of the form3

A , sI−C, s > 0, C < 0, (C.8)

for which s ≥ S(C), is called an M -matrix.

Such matrices have some remarkable properties, of which a few are presented below. The following
conditions are equivalent to the fact that A is a non-singular M -matrix:

1. A is given by (C.8) and s > S(C),

2. each real eigenvalue is positive,

3. all leading principal minors (cf. Appendix C.3) of A are positive,
2 According to [HV83] M -matrices are a generalisation of Minkowski matrices [Won53].
3 The order relation “<” is understood elementwise. S(C) denotes the spectral radius of matrix C.
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4. all principal minors (cf. Appendix C.3) of A are positive,

5. A is a monotone matrix, i.e., Ax < 0⇒ x < 0,

6. A is a positive stable matrix, i.e., the real part of all eigenvalues is positive,

7. the inverse of A has no negative entries, i.e., it is a non-negative matrix,

8. for each y < 0, the set {x < 0|Ax 4 y} is bounded, and A is non-singular.

Moreover, note that for a positive (definite) diagonal matrix D and an M -matrix A, the products
DA and AD are again M -matrices.

C.3 Submatrices and Minors

Submatrices and Minors [HJ13, Section 0.7]
Definition C.2: Submatrices and Minors [HJ13, Section 0.7]

Let A ∈ CM×N be an arbitrary matrix. Then A′ ∈ CM ′×N ′ , with M ′ ≤M and N ′ ≤ N , is
called a submatrix of A, if it is obtained by deleting a certain number of rows and/or columns
of A. If specifically, with deletion of the ith row, with i ∈ {1, . . . ,min{M,N}} also column i is
deleted, then, the resulting matrix is called a principal submatrix. If A is additionally square,
i.e., M = N , and A′ contains all rows and columns of A up to, or starting from, a certain
index ı̂ ≤M , matrix A′ is called a leading, or a trailing, principal minor of A, respectively.

If A′ is a submatrix of A, determinant det (A′) is called a minor of A. Analogously, det (A′)
is called a principal minor, a leading principal minor, or a trailing principal minor of A, if A′

is a principal submatrix, a leading, or a trailing principal submatrix of A, respectively.

According to [HJ99, Corollary 3.1.3], if r ∈ N0 is the number of deleted rows and columns. Then,
the singular values σi (A) of A are interlaced by the singular values σi′ (A′) of A′, in the following
sense

σj (A) ≥ σj
(
A′) ≥ σj+r (A) , j ∈ {1, . . . ,min{M,N}}, (C.9)

where the singular values of each matrix are assumed to be sorted in descending order, i.e.,
σi (A) ≥ σj (A), for i ≥ j, and σi′ (A′) ≥ σj′ (A′), for i′ ≥ j′. Moreover, all singular values σi (A) ≡
0, for any i > min{M,N}, and σi′ (A′) ≡ 0, for any i′ > min{M ′, N ′}.





Appendix D
Proofs

In several of the following proofs, iteration index k is suppressed. They are marked by a grey bar in
the outer page margin. Underlined symbols refer to a priori entities, e.g., w̃ is equivalent to w̃k−1,
and w̃i corresponds to w̃i (k − 1).

D.1 Proofs for Chapter 3

D.1.1 Proof of Lemma 3.4

The proof uses the fact that (3.41) is always satisfied if its right-hand side is negative. Two cases
have to be considered:

1. u ∦ x and ρ 6= 0: Let the regression vector and the parameter error vector be decomposed as

ex = ρ
(

eu + x⊥u e⊥
u

)
, with x⊥u ∈

{
z ∈ C

∣∣∣∣ |z| =√|ρ|−2 − 1

}
, (D.1)

w̃ = wue∗
u + w⊥

u e⊥∗
u + w⊥

u,xe⊥
u,x, with wu, w

⊥
u , w

⊥
u,x ∈ C, (D.2)

where eu, e⊥
u , and e⊥

u,x are mutually orthogonal, and wu 6= 0 since (3.39) is satisfied. Then,

2Re
{
α
(
w̃Teu

) (
w̃Tex

)∗}
= 2 |α| |ρ|Re

{
eϕαρ∗

(
1 + x⊥u

w⊥
u
wu

)∗}
(D.3)

can always become negative as arc
(
x⊥u
)
∈ (−π, π] and

∣∣x⊥u ∣∣ ∈ R0+.

2. u ∦ x and ρ = 0, i.e., u ⊥ x: In this case, (D.1) is unnecessary, and in (D.2), e⊥
u = ex, thus,

2Re
{
α
(
w̃Teu

) (
w̃Tex

)∗}
= 2 |α|Re

{
e(arc(α))wuw

⊥∗
u

}
, (D.4)

where the complex argument of w⊥
u is determined by the choice of ex. As the latter is assumed

to be unconstrained, it can always be chosen such that (D.4) is negative.
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D.1.2 Proof of Lemma 3.5

For the first part of Lemma 3.5, consider∣∣∣w̃He∗
u

∣∣∣2 = ∣∣∣w̃H (I− α∗e∗
ueT

x
)

e∗
u

∣∣∣2 = ∣∣∣w̃He∗
u

∣∣∣2 |1− α∗ρ|2 = 1 + |αρ|2 − 2 |αρ| cos (ϕαρ∗) , (D.5)

which by inserting |αρ| ≤ 2 cos (ϕαρ∗) from (3.15), leads to
∣∣w̃He∗

u
∣∣2 ≤ ∣∣w̃He∗

u
∣∣. Since furthermore

‖w̃‖2 > ‖w̃‖2 due to (3.42), it follows that the acute angle1 enclosed by w̃ and u is larger than the
acute angle between w̃ and u.

For the second part, first it is assumed that w̃Tex 6= 0, with Lemma 3.1 the following holds

∣∣∣w̃He∗
x

∣∣∣2 = ∣∣∣w̃H (I− α∗e∗
ueT

x
)

e∗
x

∣∣∣2 = ∣∣∣w̃He∗
x

∣∣∣2 ∣∣∣∣∣1−
(
αw̃Teu

w̃Tex

)∗∣∣∣∣∣
2

=
∣∣∣w̃He∗

x

∣∣∣2 [1 + ∣∣∣∣αw̃Teu

w̃Tex

∣∣∣∣2(1− 2Re
{

w̃Tex
α w̃Teu

})]
≥
∣∣∣w̃He∗

x

∣∣∣2 . (D.6)

The fact that ‖w̃‖2 > ‖w̃‖2, together with (D.6), yields the second statement of Lemma 3.5. To
complete the proof, for the before excluded case w̃Tex = 0, from the first line of (D.6) and from
(3.39), which is implied by (3.42), it directly follows that

∣∣w̃He∗
x
∣∣2 = |α|2 ∣∣w̃He∗

u
∣∣2 > 0 =

∣∣w̃He∗
x
∣∣2.

D.1.3 Proof of Lemma 3.6

Condition |ρ| = 1 is equivalent to eT
xe∗

u = exp( arc (ρ)). Thus, ex = exp( arc (ρ))eu, which causes
the violation of the condition for expanding w.c. behaviour (3.42), since

Re
{

w̃Tex

αw̃Teu

}
= Re

{
e−ϕαρ∗

w̃Teu

|α| w̃Teu

}
=

cos (ϕαρ∗)
|α|

≥ 1

2
, (D.7)

where the order relation on the right-hand side is a consequence of the step-size bound (3.15), which
due to |ρ| = 1, results in |α| ≤ 2 cos (ϕαρ∗).

1 Note that in the proof of Lemma 3.5, arguments regarding the angle between two complex-valued vectors are derived,
based on the magnitude of their inner product. This is not the only way, an angle between to vectors in the
multidimensional complex-valued space can be defined. An alternative definition replaces the magnitude by the
real-part. Both of these definitions have their justification. The latter preserves validity of the law of cosines in
Euclidean geometry. However, e.g., for the inner product of some (non-zero) vector with the same vector multiplied by
, it returns zero, i.e., an angle of ±π

2
. From the purely geometric point of view adopted in that proof, an arbitrary

non-zero multiple of a vector does not change the line of its direction. Hence, multiplying the operands of an inner
product by a (complex-valued non-zero) factor should not change its result. Especially, the angle between a vector and
the same vector multiplied by a non-zero scalar should in any case evaluate to zero. This is the reason why here, the
definition based on the magnitude is chosen, as it satisfies these geometric requirement [Sch01; RKS10; LS12].
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D.1.4 Proof of Lemma 3.8

Let

Λ|λ| ,
M

diag
i=1
{|λi (M)|} , Λarc(λ) ,

M
diag
i=1
{exp( arc (λi (M)))} . (D.8)

Contemplate two cases, (A) a positive semi-definite diagonal step-size matrix ΛM,A = Λ|λ|, and
(B) a general diagonal step-size matrix ΛM,B = Λ|λ|Λarc(λ) with complex entries that have the same
magnitudes as in Case A. First, notice that the effective step-size α defined in (3.11) is identical in
both cases. Furthermore, using (3.12), the corresponding correlation coefficients are given by

ρA =
uTΛ|λ|u∗

‖u‖
∥∥Λ|λ|u

∥∥ ∈ R0+, ρB =
uTΛ|λ|Λ

∗
arc(λ)u∗

‖u‖
∥∥Λ|λ|u

∥∥ ∈ C. (D.9)

Since µ ∈ R0+ and ρA ∈ R0+, the squared maximum singular values are obtained from (3.22) as

σ2max,A = 1 +
α2

2
− αρA +

√(
α2

2
− αρA

)2

+ α2
(
1− ρ2A

)
,

σ2max,B = 1 +
α2

2
− αRe {ρB}+

√(
α2

2
− αRe {ρB}

)2

+ α2
(
1− |ρB|2

)
,

(D.10)

which leads to

σ2max,A − σ
2
max,B = α

(
Re {ρB} − ρA +

√
α2

4
− αρA + 1−

√
α2

4
− αRe {ρB} − Im2 {ρB}+ 1

)
.

(D.11)

From (D.9), it follows that

−2ρA ≤ Re {ρB} − ρA =

∑M
i=1 |λi (M)| |ui|2 [cos (arc (λi (M)))− 1]

‖u‖
∥∥Λ|λ|u

∥∥ ≤ 0, (D.12)

which together with the fact that the difference of the two square-roots in (D.11) is never larger
than zero (with identity at ρB = ρA), allows to conclude that σ2max,A ≤ σ

2
max,B. The transition from

a diagonal step-size matrix to a normal step-size matrix is established by Lemma 3.7. The proof for
the minimum singular values is analogous and not presented here.

D.1.5 Proof of Lemma 3.9

Let λi (A) and qA,i, i ∈ {1, . . . ,M}, be the eigenvalues and the eigenvectors, respectively, of
some normal matrix A ∈ CM×M . Let further M (λi (A)) ⊆ {1, . . . ,M} denote the set of all
indices for which i, j ∈ M (λi (A)) ⇒ λi (A) = λj (A). Then, all λj (A), with j ∈ M (λi (A)),
correspond to one eigenvalue of A with (geometric and algebraic) multiplicity |M (λi (A))|, and
eigenspace E (λi (A)) spanned by qA,j . For some non-zero vector x and the (M × |M (λi (A))|)
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matrix

Qλi(A) , row
j∈M(λi(A))

{
qA,j

}
, (D.13)

the component of Ax inside E (λi (A)), and its corresponding norm, are given by

QH
λi(A)Ax = λi (A)QH

λi(A)x, respectively,
∥∥∥QH

λi(A)Ax
∥∥∥ = |λi (A)|

∥∥∥QH
λi(A)x

∥∥∥ . (D.14)

Thus, the relative increase imposed by the mapping Ax to the component of x inside E (λi (A)) is∥∥∥QH
λi(A)Ax

∥∥∥− ∥∥∥QH
λi(A)x

∥∥∥∥∥∥QH
λi(A)x

∥∥∥ = |λi (A)| − 1.

D.1.6 Proof of Lemma 3.12

The update of ith element w̃i of parameter error vector w̃ is given by

w̃i = w̃i − α
die

∗
u,i

‖D∗eu‖
eT

uw̃. (D.15)

Thus, with a positive definite step-size matrix D, i.e., di ∈ R+, the difference of the squared
magnitudes is obtained as

|w̃i|2 − |w̃i|
2 =

di
‖Deu‖

[
|α|2 di |eu,i|2

‖Deu‖
∣∣eT

uw̃
∣∣2 − 2Re

{
αe∗u,iw̃

∗
i eT

uw̃
}]

. (D.16)

If |w̃i| > |w̃i| should hold for all i ∈ {1, . . . ,M}, it follows from (D.16) that

|α|2 di |eu,i|2

‖Deu‖
∣∣eT

uw̃
∣∣2 > 2Re

{
αe∗u,iw̃

∗
i eT

uw̃
}
, ∀ i ∈ {1, . . . ,M} . (D.17)

Summing (D.17) up on both sides, from i = 1 to i =M , preserves the order relation and leads to

|α|2 ρ
∣∣eT

uw̃
∣∣2 > 2

∣∣eT
uw̃
∣∣2 Re {α} , (D.18)

where the order of summation and real-part operation has been exchanged. Moreover, due to
D > 0⇒ ρ ∈ (0, 1], the identities

M∑
i=1

di |eu,i|2

‖Deu‖
= |ρ| = ρ, and

M∑
i=1

e∗u,iw̃
∗
i =

(
eT

uw̃
)∗
, (D.19)

have been inserted. Under Assumption 3.1, (D.18) entails |α| ρ > 2 cos (arc (α)) , which clearly
contradicts to (3.15), as arc (αρ∗) = arc (α). Thus, (D.17) cannot hold for all i, yielding (3.68).
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D.1.7 Proof of Lemma 3.13

Let M (di) ⊆ {1, . . . ,M} denote the set of indices that address the unit vectors which belong to
eigenspace E(di). Since w̃ ∈ E(di), for a component w̃j that is not contained in E(di), i.e., j 6∈ M (di),
w̃j = 0, and (D.16) becomes

|w̃j |2 −
∣∣w̃j∣∣2 = |w̃j |2 = [|α| dj |eu,j |

‖Deu‖
∣∣eT

uw̃
∣∣]2 ≥ 0. (D.20)

For the remaining components w̃j , summing up (D.16) on both sides over all j ∈M (di), with

∑
j∈M(di)

di |eu,j |2

‖Deu‖
= |ρ| = ρ, and

∑
j∈M(di)

e∗u,jw̃
∗
j =

(
eT

uw̃
)∗
, (D.21)

gives with Assumption 3.1∑
j∈M(di)

(
|w̃j |2 −

∣∣w̃j∣∣2) =
di |α|
‖Deu‖

∣∣eT
uw̃
∣∣2 [|α| ρ− 2 cos (arc (α))] ≤ 0, (D.22)

where the upper bound is reached with D > 0⇒ ρ ∈ (0, 1], if α and ρ achieve the limit of step-size
condition (3.15).

D.1.8 Proof of Lemma 3.14

For w̃ ∈ E(di), with D > 0⇒ ρ ∈ (0, 1], (3.41) gives

W = |α|
∣∣w̃Teu

∣∣2 [|α| − 2di cos (arc (α))
‖Deu‖

]
=

2Re {α}
ρ

∣∣w̃Teu
∣∣2 [ |α| ρ

2 cos (arc (α))
− diρ

‖Deu‖

]
(D.23)

In order to ensure the existence of a vector eu such that W > 0, this leads to the condition (indicated
by the exclamation mark)

1 ≥
(3.15)

|α| ρ
2 cos (arc (α))

!
>

(3.41)

diρ

‖Deu‖
= di

eT
uDe∗

u
eT

uD2e∗
u
= di

(Du)T D−1 (Du)∗

(Du)T (Du)∗︸ ︷︷ ︸
Rayleigh quotient

≥ di
dmax

, (D.24)

where the lower bound on the right-hand side directly follows from the properties of the Rayleigh
quotient (cf. (C.1)). For a given step-size α, the left-hand side of (D.24) assumes its maximum for
ρ = 1, i.e., if eu is completely contained in one of the eigenspaces of step-size matrix D. Especially,
if this eigenspace corresponds to dmax, the Rayleigh quotient on the right-hand side reaches its
minimum. Therefore, (3.70) is necessary and sufficient in order to guarantee the existence of at
least one excitation vector that causes the parameter error distance to increase. For di = dmax, the
right-hand side of (D.24) becomes one. In this case, due to step-size condition (3.15), no solving α
can be found.
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D.1.9 Proof of Lemma 3.15

If the pair of coefficients 〈au, bu〉 satisfies (3.88), (3.92) ensures the existence of at least one excitation
vector that satisfies (3.82), which in turn is sufficient for W > 0. Thus, in order to prove Lemma 3.15,
it is only necessary to show that (3.92) can always be fulfilled as long as w̃ is not completely
contained in one single eigenspace of step-size matrix D. It is easy to see from (3.83) and can also
be verified in [Gus95; GR97; Gus00] that the latter requirement ensures cos (ΘD(ew̃)) < 1 from
(3.83), as then w̃ ∦ Dw̃, or equivalently in terms of the unit vectors, ew̃ ∦ Dew̃. This entails the
right-hand side of (3.92) to be strictly less than one. Consequently, as for ϕaubu = π the left-hand
side equals one and thus satisfies (3.92), for ew̃ ∦ Dew̃, e.g., using decomposition (3.77), it is always
possible to find an eu such that W > 0.

D.2 Proofs for Chapter 4
D.2.1 Proof of Lemma 4.1
Since both matrices C and C′ have the same symmetric partitioning, both of them can be represented
via the Kronecker product using (4.23), where the selection matrices are identical. Let S denote this
common selection matrix, then,

(A � C)
(
A′ � C′)H

= ST
(

A⊗C
)

SST
(

A′H ⊗C′H
)

S (D.25)

= ST I
row
i=1

{
ai ⊗C

}
SST I

col
i=1

{
a′H
i ⊗C′H

}
S. (D.26)

The matrix SST in the middle of the above line is given by (4.26). It deletes columns of the matrix
to the left and ananlogously rows in the matrix to the right. Taking this into account, gives

(A � C)
(
A′ � C′)H

= ST I
row
i=1

{
ai ⊗

I
col
j=1

{
Cji

}} I
col
i=1

{
a′H
i ⊗

I
row
j=1

{
C′H
ji

}}
S (D.27)

= ST
I∑
i=1

(
ai ⊗

I
col
j=1

{
Cji

})(
a′H
i ⊗

I
row
j=1

{
C′H
ji

})
S (D.28)

= ST
I∑
i=1

(
aia′H

i

)
⊗
(

I
col
j=1

{
Cji

} I
row
j=1

{
C′H
ji

})
S, (D.29)

which is found via (4.23) to result in (4.27).

D.2.2 Proof of Lemma 4.2
Inserting (4.29) in (D.29), leads to

(A � C)
(
A′ � C′) = ST

I∑
i=1

(
aia′H

i

)
⊗ (c(i)C)S (D.30)

= ST

((
I∑
i=1

c(i)aia′H
i

)
⊗C

)
S (D.31)

= ST
[(

A
I

diag
i=1
{c(i)}A′H

)
⊗C

]
S, (D.32)

which is equivalent to (4.30).
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D.2.3 Proof of Lemma 4.3
The singular values σi(Bk) of Bk can be calculated via the eigenvalues of its Gramian

BH
kBk = (I−∆k � Uk)

H (I−∆k � Uk) (D.33)
= I−∆k � Uk − (∆k � Uk)

H + (∆k � Uk)
H (∆k � Uk) , (D.34)

which will be simplified in the sequel. First notice that in the above Khatri-Rao products both
matrices ∆k and Uk are symmetrically partitioned (see Definition Table 4.1), thus, according to
Section 4.3, a selection matrix S exists such that

∆k � Uk = ST (∆k ⊗Uk)S. (D.35)

Hence,

(∆k � Uk)
H = ST (∆k ⊗Uk)

H S = ST
(
∆H
k ⊗UH

k

)
S = ∆H

k � Uk, (D.36)

where the transition to the right-most term is possible since Uk is Hermitian. Equation (D.34) can
be consulted in order to simplify the mixed product on the right-hand side of (D.34). However,
beforehand, it is necessary to verify whether (4.29) applies. This is in fact the case, which can be
seen by inserting the individual blocks of Uk, i.e.,

Uij,k , u∗
i,kuT

j,k with i, j ∈ N , (D.37)

in (4.29). This together with the partitioning in (4.86), leads to

N
col
i=1

{
Uij,k

} N
row
i=1

{
UH
ij,k

}
=

N
col
i=1

{
Uij,k

} N
row
i=1
{Uji,k} = u∗

kuT
j,ku∗

j,kuT
k = ‖uj,k‖2 Uk. (D.38)

Consequently, Lemma 4.2 does indeed apply and

(∆k � Uk)
H (∆k � Uk) =

(
∆H
kDu,k∆k

)
� Uk, (D.39)

with the diagonal matrix Du,k from (4.88). Inserting (D.36) and (D.39) in (D.34) yields

BH
kBk = I−

(
∆k +∆H

k −∆H
kDu,k∆k︸ ︷︷ ︸

Γk in (4.88)

)
� Uk. (D.40)

Referring to Section 4.3, the matrix obtained by the Khatri-Rao product in (D.40) is Hermitian. As
a consequence, it is easy to see that all eigenvalues of BH

kBk are less or equal to one iff (4.87) is
satisfied.

D.2.4 Proof of Lemma 4.4
According to Section 4.3, Γk ≥ 0 together with Uk ≥ 0 is sufficient for (4.87). Condition Uk ≥ 0 is
always fulfilled since Uk has rank one and the one eigenvalue that differs from zero is non-negative
and given by ‖uk‖2. Consequently, (4.89) is sufficient for σi (Bk) ≤ 1, ∀i ∈ {1, . . . ,M}.

It remains open to show that Bk has at least M − N unit singular values. From [HJ99, The-
orem 4.2.15] and with the fact that Uk has rank one, it follows that the null space of the Kronecker
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product ∆k ⊗Uk has dimension (M − 1)N . Moreover, note that due to (4.23),

Bk = I−∆k � Uk = IN − ST (∆k ⊗Uk)S = ST (IMN −∆k ⊗Uk)S, (D.41)

is a submatrix of IMN −∆k ⊗Uk. It is obvious that the latter maps any vector contained in the
null space of ∆k ⊗Uk to itself and thus, has (at least) (M − 1)N unit singular values. Finally, the
interlacing property (C.9) for the singular values of a submatrix (with r given by (4.19)), ensures
that Bk cannot have more than N singular values that differ from one.

D.2.5 Proof of Lemma 4.5

With the eigenvalues and eigenvectors of ∆ briefly denoted by λi and qi, respectively, and i ∈ N ,

qH
i Γqi = qH

i ∆qi︸ ︷︷ ︸
λi

+qH
i ∆

Hqi︸ ︷︷ ︸
λ∗i

−qH
i ∆

HDu∆qi︸ ︷︷ ︸
|λi|2(qH

i Duqi)

= 2Re {λi} − |λi|2 qH
i Duqi. (D.42)

In order to satisfy (4.89), xHΓx ≥ 0 has to hold for any vector x ∈ CM . Thus, specifically qH
i Γqi ≥ 0

has to hold for all qi. With the constraint of non-vanishing excitation, i.e., Du > 0⇔ qH
i Duqi > 0,

it is easy to see that a violation of (4.90) causes (D.42) to become negative for at least one eigenvector
of ∆, which entails Γ 6≥ 0. If ∆ is nilpotent, all of its eigenvalues are zero causing the above
argument to fail.

D.2.6 Proof of Lemma 4.6

Let the eigenvalues and eigenvectors of ∆ briefly be denoted by λi and qi, respectively, with
i ∈ N . If ∆ is normal, i.e., qH

i qj = 0, for all i, j ∈ N , i 6= j, and ∆ is diagonalised by unitary
matrix Q∆ =

[
q1 · · · qN

]
, i.e., ∆ = Q∆Λ∆QH

∆, with Λ∆ = diagNi=1 {λi}. Then, (4.89) is
equivalent to

Re {Λ∆} ≥
1

2
Λ∗

∆QH
∆DuQ∆Λ∆ ≥ 0, (D.43)

which is synonymous for Re {λi} ≥ 0. The rightmost order relation is a consequence of Sylvester’s
law of inertia [HJ13, Theorem 4.5.8] which ensures QH

∆DuQ∆ > 0 and the fact [cmp. HJ13,
Observation 7.1.8] that the matrix product in the middle of (D.43) leads to a positive semi-definite
matrix with null space identical to that of QH

∆DuQ∆Λ∆.

D.2.7 Proof of Conjecture 4.1

This proof is considered incomplete as it does not cover certain special cases of non-normal matrices,
e.g., nilpotent matrices, non-diagonalisable matrices. It may also fail for some non-normal matrices
with an eigenspace that contains a subset of mutually orthogonal eigenvectors.

Assuming the existence of m,n ∈ N , m 6= n, such that Re {λm} > 0, λn = 0, and qH
mqn 6= 0.
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Then, it follows from (D.42), with some factor a ∈ C \ {0},

(qm + aqn)H Γ (qm + aqn) = qH
mΓqm︸ ︷︷ ︸

2Re{λi}−|λi|2 qH
i Duqi

+ |a|2 qH
nΓqn︸ ︷︷ ︸
0

+2Re
{
aqH

mΓqn︸ ︷︷ ︸
aλm qH

mqn

}
. (D.44)

Choosing a = − 1
qH
mqn

, (4.89) is found to be violated, as (D.44) becomes

(qm + aqn)H Γ (qm + aqn) = − |λm|2 qH
mDuqm < 0. (D.45)

D.3 Proofs for Chapter 5

D.3.1 Proof of Corollary 5.1

This proof follows the lines of [DR15]. Here, a slightly more general version is presented, which
allows the coupling factors to be complex-valued. Moreover, it improves rigour with respect to
[DR15].

As done in proof of Lemma 4.3, the singular values of mapping matrix B in recursion (4.79) are
analysed. With the partitioning vector in (4.86) given by pu =

[
M1 M2

]T, and the abbreviations

Γ11 , (Γ)11 , Γ12 , (Γ)12 = (Γ)∗21 , Γ22 , (Γ)11 . (D.46)

it follows from (D.40) for the Gramian matrix of B,

BHB = I− Γ� U = I−
[
Γ11 Γ12

Γ∗
12 Γ22

]
�

[
u∗
1uT

1 u∗
1uT

2

u∗
2uT

1 u∗
2uT

2

]
= I−

[
Γ11u∗

1uT
1 Γ12u∗

1uT
2

Γ∗
12u∗

2uT
1 Γ22u∗

2uT
2

]
. (D.47)

The here conducted analysis bares strong similarities to Section 2.3.3. The right-sided singular
vectors tj of B, j ∈ {1, . . . ,M}, coincide with the eigenvectors of the Gramian in (D.47). With
domain D1 = CM1 of u1 and domain D2 = CM2 of u2, the singular vectors are found to be contained
in the direct sum of both, i.e., tj ∈ D = D1 ⊕D2 = CM , with M =M1 +M2. Hence, the singular
vectors can be decomposed into their projection tD1

j ∈ CM onto D1, and their projection tD2
j ∈ CM

onto D2, such that

tj = tD1
j + tD2

j . (D.48)

Conversely, for excitation vectors u1 and u2, an extension into D can be defined as

uD
1 , col {u1,0M2} ∈ CM , uD

2 , col {0M1 ,u2} ∈ CM . (D.49)

With (D.49), (D.47) can be equivalently written as

BHB = I− Γ11

(
uD
1

)∗ (uD
1

)T − Γ12

(
uD
1

)∗ (uD
2

)T − Γ∗
12

(
uD
2

)∗ (uD
1

)T − Γ22

(
uD
2

)∗ (uD
2

)T
, (D.50)

which directly shows that any singular vector that is orthogonal to

SD1,2 , span
{

uD
1 ,uD

2

}
, (D.51)

Erratum 16
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corresponds to the unit singular value. As SD1,2 defines a plane in CM , (D.51) also allows to conclude
that M − 2 such (right-sided) singular vectors can be found, entailing that σj = 1, wo.l.o.g., with
j ∈ {3, . . . ,M}. As already pointed out in Section 3.3.2, the choice of indices may lead to a violation
of the ordering assumed in Section 2.3.1. However, similarly to Section 3.3.2, here, the latter ordering
is not of central importance, thus, confusion is hopefully kept on a tolerable level. The remaining
two singular values can, e.g., be calculated by identifying the roots of (A.1), which is straightforward
and therefore skipped here. The derivation results in

σ2i = 1− 1

2

(
Γ11 ‖u1‖2 + Γ22 ‖u2‖2

)
+ (−1)i−1 1

2

√
(Γ11 ‖u1‖2 − Γ22 ‖u2‖2)2 + 4Γ2

12 ‖u1‖2 ‖u2‖2

(D.52)

= 1− 1

2

(
Γ11 ‖u1‖2 + Γ22 ‖u2‖2

)(
1 + (−1)i−1

√
1 +

4(Γ2
12 − Γ11Γ22) ‖u1‖2 ‖u2‖2

(Γ11 ‖u1‖2 + Γ22 ‖u2‖2)2

)
, (D.53)

where, wo.l.o.g., i ∈ {1, 2}, thus, σ1 ≥ σ2. Finally, notice that that in Corollary 5.1 the

1. non-increasing behaviour in Case 1 corresponds to σ1 ≤ 1,

2. the non-decreasing behaviour in Case 2 corresponds to σ2 ≥ 1,

3. the indefinite behaviour in Case 3 corresponds to σ1 > 1 > σ2, and

4. the length-preserving behaviour in Case 4 corresponds to σ1 = σ2 = 1.

With all this at hand, it remains open to show that the four above listed configurations of singular
values correspond to the conditions given in Cases 1 to 4 of Corollary 5.1.

Case 1, i.e., 1 ≥ σ1 ≥ σ2:
From (D.52), it is found that if Condition B is violated, σ1 ≥ 1. Hence, Condition B is
necessary for Case 1. Then, it follows from (D.52), that σ1 ≤ 1 is equivalent to√

(Γ11 ‖u1‖2 − Γ22 ‖u2‖2)2 + 4Γ2
12 ‖u1‖2 ‖u2‖2 ≤ Γ11 ‖u1‖2 + Γ22 ‖u2‖2 , (D.54)

which entails after squaring on both sides,

Γ2
12 ≤ Γ11Γ22. (D.55)

Accordingly, Condition A is sufficient for Case 1.

Case 2, i.e., σ1 ≥ σ2 ≥ 1:
Analogous to the above case, Condition C is found to be necessary for σ2 ≥ 1. Then, based on
(D.52), the latter condition translates to√

(Γ11 ‖u1‖2 − Γ22 ‖u2‖2)2 + 4Γ2
12 ‖u1‖2 ‖u2‖2 ≤ −

(
Γ11 ‖u1‖2 + Γ22 ‖u2‖2

)
, (D.56)

which as before, entails (D.55). Consequently, Condition A is sufficient for Case 2.

Case 3, i.e., σ1 > 1 > σ2:
Together with the constraint that the excitation vectors u1 and u2 do not vanish, satisfying
either Condition B or C ensures the left-hand bracket expression in (D.53) to be non-zero.
Then, in the right-hand bracket expression, the square-root has to be larger than one, in order
to obtain σ1 > 1 > σ2. This in turn can only be achieved if Condition A is violated.
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Case 4, i.e., σ1 = σ2 = 1:
As already found before, fulfilling either Condition B or C is necessary for σ1 6= 1 and σ2 6= 1.
Hence, if both are violated, i.e., Γ11 ‖u1‖2 + Γ22 ‖u2‖2 = 0, σ1 = σ2 = 1.

D.3.2 Proof of Lemma 5.1
From (5.64), it is found that

‖w̃k‖2 =
(

w̃H
k−1 − ẽH

kDkU′T
k

)(
w̃k−1 −U′∗

k Dkẽk
)

(D.57)

= ‖w̃k−1‖2 + ẽH
kDkU′T

k U′∗
k Dkẽk − 2Re

{
eH
kDkek + vH

kDkek
}
. (D.58)

Adding vH
kDkvk − vH

kDkvk on the right-hand side, the latter expression modifies to

‖w̃k‖2 = ‖w̃k−1‖2 + vH
kDkvk − eH

kDkek − ẽH
kDk

[
D−1
k −U′T

k U′∗
k

]
Dkẽk, (D.59)

which has the same structure as (2.56). Accordingly, the same line of arguments can be followed.
Since Dk ≥ 0, ẽH

kDk

[
D−1
k −U′T

k U′∗
k

]
Dkẽk ≥ 0 is equivalent to,

D−1
k −U′T

k U′∗
k ≥ 0 ⇔

[
I U′∗

k

U′T
k D−1

k

]
≥ 0 ⇔ I−U′T

k DkU′∗
k ≥ 0, (D.60)

where the equivalence of semi-definiteness of a Hermitian matrix and its Schur complement was
used [HJ13, Theorem 7.7.9] twice. Then, summing (D.59) on both sides up, from initialisation, i.e.,
k = −1, to some iteration index K, and by applying the Minkowsky inequality, (5.65) is obtained.

D.3.3 Proof of Lemma 5.2
From (5.64), it follows that the homogeneous recursion of the form (2.17), corresponding to (5.58)
has a mapping matrix

Bk , I−U′∗
k DkU′T

k . (D.61)

As Bk is Hermitian, its spectral radius is equivalent its maximum singular value, which in turn
represents the maximum stretching that can occur when w̃k−1 is mapped to w̃k by (2.17) with Bk

from (D.61). It is straight forward to see that the eigenvalues2 λi of Bk are given by

λi = 1− λi
(
U′∗
k DkU′T

k

)
, (D.62)

and that λi ≤ 1 since Dk ≥ 0. Thus, |λi| ≤ 1 is ensured iff,

λi
(
U′∗
k DkU′T

k

)
≤ 2, or equivalently, 2I−U′∗

k DkU′T
k ≥ 0. (D.63)

Similarly to (D.60), the left-hand side of (5.68) commutes with the right-hand side.

2 As pointed out in Section 1.4, the arguments for eigenvalues and singular values that refer to mapping matrix Bk, are
suppressed throughout this whole thesis.
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D.3.4 Proof of Lemma 5.3
Since all coupling factors νı̈(k) = 1, and the step-sizes are identical, the coupling matrix is given by
∆k = µ(k)11T. Hence, Γk from (4.88) is obtained as

Γk = ∆k +∆H
k −∆H

kDu′,k∆k = µ(k)11T + µ(k)∗11T − |µ(k)|2 11TDu′,k11T (D.64)

=
[
2Re {µ(k)} − |µ(k)|2

(
1TDu′,k1

)]
11T. (D.65)

Thus, (4.89) in Lemma 4.4 can only be satisfied if (5.75) holds.
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Frequently used Symbols

Note that the following table contains only a subset of the most frequently used symbols. Additionally,
it is complemented by Tables 4.1, 5.2, and 5.3, which summarise the symbols describing the coupled
structure in Chapter 4, the MC-FXLMS in Section 5.3, and the multilayer perceptron in Section 5.4,
respectively.

N set of natural numbers (excluding zero)

N0 set of non-negative integers

Z set of integers

R set of real numbers

R0+ set of non-negative real numbers

R+ set of positive real numbers

R− set of negative real numbers

C set of complex numbers

N dim.
field (., .) normal distribution, where the first argument specifies the mean, the second the

variance; the subscript specifies the field of numbers, e.g., R or C; an optional
superscript indicates that a multivariate distribution of corresponding dimension
is addressed, then, the second argument stands for the covariance matrix [MS00b]

E {.} (probabilistic) expected value

d differential
∂.

∂.
partial derivative

expr.
∣∣∣
constr.

evaluation of some expression under a given constraint

〈., .〉 constitutes a pair of its arguments

{.} indicates a sequence of its argument

|.| cardinality of a set; note that the absolute value is denoted by the same notation,
the meaning should be clear from the context

sup supremum

⇔ logical equivalence

, defined as

>,≥, <,≤ order relations; if operands are Hermitian matrices, they are understood in the
sense of Löwner partial ordering [HJ13, Definition 7.7.1], e.g., with Hermitian
matrices A and B, A > B means that A−B is positive definite

�,<,≺,4 element by element order relations; the operands are required to have the same
dimension
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⇒ logical implication

. 7→ . “maps to”, i.e., left operand, the domain, is mapped to right operand, the image

.→ . “towards”, i.e., left operand approaches right operand in the limit

∧ logical conjunction, i.e., binary logical operator “and”

∨ logical inclusive disjunction, i.e., binary logical operator “or”

∀ for all

  ,
√
−1

.∗ complex conjugate

.T transpose of a vector or a matrix

.H conjugate transpose of a vector or a matrix

.−∗ matrix inverse of the complex conjugate of an invertible square matrix

.−H matrix inverse of the conjugate transpose of an invertible square matrix

sign(.) returns (element by element) the sign of its argument

Re {.} (element by element) real part

Im {.} (element by element) imaginary part

|.| (element by element) absolute value; note that the cardinality of a set is denoted
by the same notation, the meaning should be clear from the context

arc (.) (element by element) complex argument

‖.‖ Euclidean norm (2-norm)

‖.‖p p-norm

‖.‖A weighted vector norm, with a positive definite weighting matrix A

‖.‖`p `p-norm (cf. Section 2.4.2)
istop
diag
i=istart

{.} diagonal matrix obtained by placing its arguments along the main diagonal,
top-left to bottom-right

col {.} The column operator stacks the elements of its argument list upon each other,
where the first one is on top, the last at the bottom. The elements of the argument
list are required to have the same number of columns. Hence, scalars and (column)
vectors are allowed to occur in one single list, e.g., col {a,b, c} =

[
a cT]T, with

a being scalar and b and c (column) vectors of arbitrary size. Instead of an
argument list, the operator may be written in the form of an indexed argument
and a given index range.

row {.} The row operator generates a row from the elements of its argument list. It is
analogous to the col-operator.

⊕ the direct sum [GV96, p. 49]
istop⊕
i=istart

operator version of the direct sum, it expands to a sequence of its arguments,
joined together by istop − istart direct sums
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⊗ the Kronecker (tensor) product

� the Khatri-Rao product, a block-Kronecker product, (cf. Section 4.3)
istop←−∏
i=istart

product running from right to left, i.e., the element with index istart is the
right-most, the element with index istop the left-most

istop−→∏
i=istart

product running from left to right, i.e., the element with index istart is the
left-most, the element with index istop the right-most

I or IM identity matrix, i.e., all main diagonal entries are equal to one, all other elements
are zero; the dimension of the matrix is either inherently given by the context
or explicitly specified by a subscript M

0 or 0R×C all-zero matrix or column vector; its actual dimension is either inherently given
by the context or explicitly specified by a subscript in the form 0R×C , where R
represents the number of rows and C the number of columns

1 all-ones column vector

span {.} space spanned by its arguments

. ‖ . left and right operand are in parallel

. ⊥ . left and right operand are perpendicular; operands may be single vectors or
whole vector spaces

tr {.} trace of matrix

rank {.} rank of matrix

λi (.) ith eigenvalue of matrix given as argument

qi (.) ith eigenvector of matrix given as argument

S(.) spectral radius of the matrix given as argument; coincides with the maximum
magnitude of its eigenvalues

E (.) the eigenspace corresponding to the eigenvalue given as argument

M (.) for an eigenvalue given as argument, this symbol represents the index set that
contains the indices of all eigenvectors that span the eigenspace E (.) of the same
eigenvalue (cf. proof of Lemma 3.9)

σi (.) ith singular value of matrix given as argument

k iteration index, initialisation takes place at k = −1, calculations start at k = 0

Bk mapping matrix (cf. (2.16))

λi (k) ith eigenvalue of mapping matrix Bk (cf. Section 3.3.1)

qi (k) ith eigenvector of mapping matrix Bk (cf. Section 3.3.1)

σi (k) ith singular value of mapping matrix Bk (cf. (2.28))

ri,k left-sided singular vector of mapping matrix Bk (cf. Section 2.3.1)

ti,k right-sided singular vector of mapping matrix Bk (cf. Section 2.3.1)
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Rk unitary square matrix containing the left-sided singular vectors of mapping
matrix Bk (cf. (2.28))

Tk unitary square matrix containing the right-sided singular vectors of mapping
matrix Bk (cf. (2.28))

uk excitation vector

euk
unit vector pointing in direction of excitation vector uk

U(K)
M,k excitation matrix considering the K preceding iteration steps (cf. (2.26))

xk regression vector

exk
unit vector pointing in direction of regression vector xk

wi one single parameter of the reference system

ŵi(k) one single parameter of the system model

w parameter vector of the reference system, assumed to be constant throughout
the work (cf. (2.1), Figure 2.1)

ŵk parameter vector of the system model (cf. (2.2), Figure 2.1)

w̃k parameter error vector, defined as w̃k , w− ŵk (cf. (2.10), Figure 2.1)

ew̃k
unit vector pointing in direction of parameter error vector w̃k

eDkw̃k−1
unit vector pointing in direction of Dkw̃k−1

w̃ in text parts with suppressed iteration index k, w̃ is synonymous for w̃k−1

ew̃ unit vector pointing in direction of parameter error vector w̃, hence, it is
equivalent to ew̃k−1

w̃i (k) one entry of parameter error vector w̃k

w̃i in text parts with suppressed iteration index k, w̃i is synonymous for w̃i (k − 1)

Su∗
k,x

∗
k

hyperplane spanned by u∗
k and x∗

k (cf. (3.18))

S⊥u∗
k,x

∗
k

space orthogonal to hyperplane Su∗
k,x

∗
k

(cf. (3.20))

Sw̃∗
k−1,Dw̃∗

k−1
hyperplane spanned by w̃k−1 and Dkw̃k−1, with diagonal step-size matrix Dk

(cf. (3.74))

S⊥w̃∗
k−1,Dw̃∗

k−1
space orthogonal to hyperplane Sw̃∗

k−1,Dw̃∗
k−1

(cf. (3.75))

J(.) cost function (cf. Section 2.1)

m(.) parameter mismatch (cf. (2.19))

W (k) parameter error increment W (k) , ‖w̃k‖2 − ‖w̃k−1‖2 (cf. (2.41))

v(k) additive noise (cf. Figure 2.1)

d(k) noiseless response of reference system, i.e., d(k) , wTuk (cf. (2.20), Figure 2.1)

d̃(k) noisy response of reference system, i.e., d̃(k) , d(k) + v(k) (cf. Figure 2.1)

d̂(k) response of system model, i.e., d̂(k) , ŵT
k−1uk (cf. (2.20), Figure 2.1)
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e(k) noiseless a priori error between the response of the reference system and the
response of the system model, i.e., e(k) , d(k) − d̂(k) = wTuk − ŵT

k−1uk =

w̃T
k−1uk

ẽ(k) noisy error between the response of the reference system and the response of the
system model, i.e., ẽ(k) , d̃(k)− d̂(k) = e(k) + v(k) (cf. (2.3), Figure 2.1)

µ(k) scalar step-size

µ̄ normalised step-size (cf. (3.2))

Mk general step-size matrix

Dk diagonal step-size matrix (cf. (3.1))

di(k) diagonal elements of step-size matrix Dk

α(k) effective step-size (cf. (3.11) and (3.60))

ρ(k) correlation coefficient (cf. (3.12) and (3.61))

ϕαρ∗(k) complex argument among ρ∗(k) and α(k) (cf. (3.13))

ψi (.) ith non-linear basis function ψi : R 7→ R (cf. Sections 2.2.1.3 and 5.2)

ψ(.) vector of non-linear basis functions, evaluated at given scalar argument (cf. (5.30))

ΘD(x) (acute) angle enclosed by some vector x and its image Dx, with D ≥ 0 (cf. (3.83))



Frequently used Symbols 182



Acronyms

ANC active noise control
APA affine projection algorithm
BSD Berkeley Software Distribution
DPD digital pre-distortion
FIR finite impulse response
FXLMS filtered-x LMS
I/O input/output
iff if and only if
IIR infinite impulse response
LMS least-mean-squares
LUT look-up table
MC-FXLMS multichannel filtered-x LMS
MIMO multiple input multiple output
MISO multiple input single output
NLMS normalised least-mean-squares
OpenCV Open Source Computer Vision Library
PAP pseudo affine projection
pdf probability density function
PE persistent excitation
PNLMS proportionate normalised LMS
QPSK quadrature phase shift keying
RLS recursive-least-squares
SIMO single input multiple output
SISO single input single output
SPR strict positive realness
SR-LMS signed regressor LMS
s.t. subject to
SVD singular value decomposition
w.c. worst case
wo.l.o.g. without loss of generality





Index

A

antieigenvalue 52, 53, 59, 145
activation function 117, 118, 120
activation level 118, 120, 121
second-order gradient algorithm 14, 32
asymmetric algorithm v, vii, 3–7, 14, 20–22, 27, 28, 32,

38–41, 44, 45, 50–52, 55, 56, 66, 69, 74, 86, 88,
93, 101, 105, 106, 111, 114, 115, 120, 125–128

generalised gradient descent algorithm 14
Gauß-Newton algorithm 27, 39, 102
symmetric algorithm v, vii, 3, 4, 14, 55, 69, 88, 90, 99, 105,

111, 114–116, 120, 126
averaged LMS 110, 112
accumulated matrix deviation 31, 32
active noise control (ANC) v, vii, 3, 5, 7, 69, 93, 106, 108,

128
affine projection algorithm (APA) 27
a priori error v, vii, 3, 4, 13, 25, 40, 69, 70, 72, 79–81, 84,

85, 104, 105, 108, 123, 180
uniform asymptotic stability in the large 22
autonomous 17, 18, 20, 34, 38

B

backpropagation algorithm v, vii, 3, 5, 7, 93, 117, 118,
120–123, 125

Berkeley Software Distribution (BSD) 9

C

correlation coefficient 40, 41, 43, 44, 47, 52, 129, 130, 132,
151, 180

cross-entropy cost function 118, 121
coupling factor 70, 72, 81, 82, 85, 86, 88–90, 93, 95, 96, 98,

99, 101, 105, 112, 113, 157, 159
Cholesky factorisation 50
confidence interval 9, 29, 32, 34, 38, 64, 99, 101
cancelling loudspeaker 93, 106, 108, 110, 112

D

direct sum 77, 90, 157
Douglas-Peucker 9
parameter error increment 20, 29, 45–48, 51, 53–55, 57, 179
digital pre-distortion (DPD) v, vii, 2, 125
data-reusing LMS 110

E

error microphone 93, 106, 108, 110, 112, 114, 115
eigenspace v, vii, 3, 4, 41, 51, 53–56, 126, 127, 151, 153,

154, 156, 178

effective step-size 40, 43, 44, 46, 47, 49, 52–54, 60, 129–131,
151, 180

envelope tracking 2
eigenvalue 8, 16–19, 28, 34, 38, 40, 41, 48, 50, 51, 53–56, 63,

75, 87, 106, 112, 127, 139, 145–147, 151, 154–156,
159, 177, 178

eigendecomposition 50
exponential stability 34, 38, 118

F

finite impulse response (FIR) ix, 3, 15, 64, 96, 98, 101–103
filtered-x LMS (FXLMS) 5, 106, 108, 110, 112

G

Gaussian elimination 72, 74
Gramian matrix 17, 41, 154, 157
gradient type algorithm v, vii, 1–6, 11–13, 15–17, 27, 31,

34, 40, 46–48, 50, 51, 69, 72, 90, 94–97, 99, 101,
103, 104, 120, 125, 126, 128

H

Hadamard product 4, 75
Hermitian matrix 18, 32, 41, 49, 50, 56, 75, 90, 114, 155,

159, 177
higher order LMS 110
homogeneous v, vii, 4, 11, 17, 20–22, 28, 49, 51, 85, 95, 111,

115, 118, 126, 127

I

independence assumptions 103
identical error 3, 20, 69, 88, 93, 105, 125, 126, 128
if and only if (iff) 18, 41, 47, 54, 86, 90, 95, 111, 133, 142,

155, 159
infinite impulse response (IIR) 39, 40, 102
input-output stability 22, 23, 69, 78, 85
iteration step 14, 34, 50, 51, 53, 78

K

Kantorovich inequality 53, 146
Khatri-Rao product v, vii, 4, 69, 74–77, 85, 86, 155, 177
Kronecker product 75, 76, 154, 155, 177

L

`2-stability v, vii, 3–7, 20, 24, 25, 29, 32, 39, 69, 72, 74,
78, 80–82, 84, 85, 89, 93–95, 97, 99, 105, 106,
110–112, 114–116, 118, 123, 126, 127, 145

linear combiner 14, 15, 28, 101
Leontief’s input-output analysis 72
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least-mean-squares (LMS) v, vii, 1–4, 12–14, 20, 21, 24, 25,
27–29, 31, 32, 39, 55, 69, 70, 72, 78, 79, 103, 106,
111, 112, 114, 125, 127

law of cosines 150
leading principal minor 74, 145–147
`p-space 22, 23
`p-stability 21, 23, 80
look-up table (LUT) 101
Lyapunov 22, 32

M

parameter mismatch 14, 29, 31, 64, 99, 101, 179
positive definite 33, 45, 46, 49–51, 55, 56, 59, 116, 145, 146,

152
mapping matrix v, 4, 7, 8, 13, 14, 17, 19, 28, 34, 38, 40, 41,

44, 45, 47, 48, 50–52, 66, 86, 87, 101, 114, 115,
118, 129, 130, 157, 159, 178

Monte Carlo 9, 29, 33, 38, 98, 127, 128
mixing condition 16
main coupling factor 70, 78, 94
multichannel filtered-x LMS (MC-FXLMS) v, vii, x, 3, 5,

7, 27, 69, 93, 106–116, 125, 128, 177
excitation matrix 16, 34, 38, 116, 178
multiple input multiple output (MIMO) x, 5, 106, 108, 110,

112, 114–116
Minkowsky inequality 24, 79–81, 84, 127, 159
minor 145, 147
multiple input single output (MISO) x, 5, 110, 112–115
multilayer perceptron v, 3, 5, 7, 93, 117, 118, 120–123, 125,

177
M -matrix v, vii, 4, 7, 74, 126, 145–147
system model 1, 2, 4, 8, 11, 12, 14, 28, 39, 40, 69, 72, 98,

101, 102, 118, 179, 180
matrix step-size v, vii, 2–4, 6, 14, 27–29, 31, 32, 39, 45, 46,

49, 50, 53, 55, 66, 90, 101, 125, 127
mean value theorem 104, 121

N

nonautonomous 13, 17, 19, 34, 85
non-Hermitian matrix 18, 19, 56
nonhomogeneous 11, 13, 20
normalised least-mean-squares (NLMS) 29, 31, 99, 101
neural network 7, 69, 93, 117, 118, 120, 124
normal matrix 45, 50, 51, 56, 64, 66, 67, 88–90, 123, 128,

151, 156
non-stalling adaptation 32, 47, 48, 54, 56
parameter error distance 18, 21, 28, 29, 34, 40, 44–47, 49,

53–57, 62, 64, 69, 85, 86, 98, 101, 126, 153

O

Open Source Computer Vision Library (OpenCV) 9
operator trigonometry 4, 7, 52, 59, 145

P

power amplifier v, vii, 2
pseudo affine projection (PAP) 27, 39

parameter drift 20, 21, 39, 40, 127
pre-distorter 2
probability density function (pdf) 15, 29, 38
persistent excitation (PE) ix, 11, 14, 16, 20, 32, 34, 38, 40,

55, 118, 127
principal minor 146, 147
proportionate normalised LMS (PNLMS) 27, 39
primary path 106, 108, 112
principal submatrix 147
piecewise linear 15

Q

quadrature phase shift keying (QPSK) 98, 99, 101

R

recursion 18, 19
reference system 1, 2, 8, 11, 12, 14, 15, 39, 40, 69, 70, 72,

98, 101, 102, 105, 108, 118, 126, 127, 178–180
recursive-least-squares (RLS) 27, 39
reference microphone 93, 106, 108, 110, 112
Rayleigh quotient 52, 145, 153

S

squared error cost function 121
excitation sequence vii, 3, 4, 6, 11, 12, 14–16, 28, 34, 38,

39, 44, 56, 66, 96, 98, 99, 125, 127
small gain theorem 39, 106
system identification 1–3, 8, 11, 12, 15, 21, 27, 101, 102,

118, 127
single input multiple output (SIMO) x, 5, 108, 110–112,

114
single input single output (SISO) 15, 101, 106, 112
stimulus level 118, 120, 124
system of linear difference equations 13, 17, 111, 115, 145
switched linear system 38
submatrix 7, 75, 77, 145, 147, 156
Sherman-Morrison-Woodbury formula 129
secondary path 5, 106, 108, 110, 112, 128
strict positive realness (SPR) 39
spectral radius 18, 38, 41, 49, 101, 146, 159, 178
sufficient richness condition 16
signed regressor LMS (SR-LMS) 27, 38, 55, 57
step-size 2, 4, 12, 24, 28, 29, 32–34, 38, 41, 49, 51, 53–56, 66,

72, 88, 90, 95, 98, 99, 101, 103–106, 108, 111–115,
118, 120, 150, 153, 159, 180

step-size matrix v, vii, 3, 4, 12, 13, 24, 27, 29, 31–34, 39,
40, 45, 46, 49–57, 59, 60, 64, 66, 67, 70, 101, 106,
108, 111, 114–116, 120, 126, 127, 151–154, 179,
180

subject to (s.t.) 141
slow time variation lemma 34, 118
singular value v, vii, 4, 7, 8, 17–20, 28, 40, 42–45, 47, 48,

50, 51, 66, 75, 86–88, 90, 116, 129, 130, 133–136,
147, 151, 154–159, 178

singular value decomposition (SVD) ix, 17, 41, 43, 44, 48

T

triangle inequality 21, 79–81, 127
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U

uniform stability 21, 22
unitary invariance 47
unitary matrix 48, 50, 51, 156, 178

V

antieigenvector 52, 53, 145, 146
eigenvector 8, 17, 41, 51, 52, 63, 87, 140, 145, 151, 156, 157,

178
excitation vector 3, 4, 12, 14–16, 27, 29, 31, 32, 34, 38, 40,

41, 45–49, 51–55, 57, 58, 62, 64, 66, 67, 69, 70,
72, 85, 86, 88, 90, 96, 98, 103, 108, 111, 115, 116,
127, 128, 153, 154, 157, 158, 178

Vieta’s formula 129, 130
motion vector 22
Volterra Series 16, 101
parameter vector 3, 8, 11, 14–16, 21, 27, 28, 70, 72, 98, 104,

106, 108, 110, 115, 126, 127, 179
parameter error vector 3–5, 7, 8, 13, 14, 19–21, 31–33,

38–41, 44–49, 51, 53–56, 60, 69, 70, 72, 74, 80, 82,

86, 88, 90, 93, 95, 99, 103, 106, 108, 110, 111, 113,
115, 116, 126, 127, 149, 152, 179

regression vector vii, 3, 4, 13, 14, 27, 34, 38, 40, 41, 44–49,
51, 52, 54, 55, 57, 66, 88, 116, 128, 149, 178

singular vector 8, 40, 42, 43, 45, 48, 66, 157
left-sided singular vector 17, 42, 66, 178
right-sided singular vector 17, 19, 42, 48, 66, 178
state vector 38

W

worst case (w.c.) v, vii, ix, x, 3, 4, 6, 7, 20, 27–29, 31, 33,
34, 38, 44–48, 55–59, 61, 63–67, 98, 99, 101, 106,
125, 127, 128, 150

Wielandt inequality 63, 146
Wiener model v, vii, 2–4, 7, 27, 93, 101–103, 106, 123, 125,

128
without loss of generality (wo.l.o.g.) 17, 19, 42, 43, 49, 63,

74, 88, 90, 157, 158

Z

Z-matrix 72, 74





Errata

In the sequel, important errors and typos are addressed, which occurred in the approved and printed
version of this thesis.

Erratum 1 (p. 22)
In the explanation following Definition 2.2, the use of ε and δ(ε) is confused. The first sentence has
to be reworded to

Thus, a uniformly stable equilibrium w̃e ensures that for any sufficiently close initial
state w̃−1, with a distance to w̃e that is not larger than δ(ε), trajectory sk(w̃−1) remains
bounded within an M -dimensional ball of finite radius ε.

Erratum 2 (p. 25)
The actual relation that is used to get form (2.58) to (2.59) is not the Minkowsky inequality, but
instead, the fact that the 1-norm of a vector always upper bounds its 2-norm (cf. (E.8)).

Erratum 3 (p. 42)
It is not correct that the matrix in (3.17) is the Hermitian of (3.16). The sentence before (3.16)
and (3.17) has to be modified to

The general structure of the mapping matrix for asymmetric algorithm in (2.16) leads to
the following expressions for the Gramian of the columns, respectively the rows, of B …

Erratum 4 (p. 53)
The denominator of the right-hand side expression in (3.66) has to be corrected to dmin(k)+ dmax(k).

Erratum 5 (p. 55)
The claim of Theorem 3.2 goes too far, as its proof is not able to justify it up to its whole extent.
The theorem has to be loosened to (changes are typeset in italics)

If (3.15) is satisfied, and the step-size matrix is positive definite and constant, i.e., Dk = D,
with its minimum and maximum eigenvalue, dmin and dmax, defined by (3.67), then,
under worst case (w.c.) excitation, parameter error vector w̃k converges asymptotically
to the union of all eigenspaces E(di), for which

α(k) ≤ 2
di
dmax

. (E.2)

This page did not exist in the originally approved version of this thesis.



Errata E.2

Erratum 6 (p. 59)
The order of terms in (3.83) is broken, the correct form is given by

0 < λ̄1 (D) ,
2
√
d1dM

d1 + dM
≤ cos

(
ΘD(ew̃)

)
,

∥∥D1/2ew̃
∥∥2∥∥Dew̃
∥∥ ≤ 1. (E.3)

Consequently, the two sentences following (3.83) have to be reformulated to

The bound on the left-hand side of the cosine corresponds to the first antieigenvalue λ̄1 (D)
of step-size matrix D. It is always positive since D is assumed to be positive definite.

Moreover, (3.84) can be confined to

0 ≤
∣∣ΘD(ew̃)

∣∣ < arccos
(
λ̄1 (D)

)
<
π

2
. (E.4)

Erratum 7 (p. 80)
On page 80, it is said that (4.41) is obtained from (4.40) by combined application of the triangle
and the Minkowsky inequality. As the latter just generalises the former to any p-norm [MS00b,
p. 871], bellow, it is clarified that indeed only the triangle inequality in its basic form is required
here. However, instead, an additional relation among the 1-norm and the 2-norm of a vector has to
be applied. As a consequence, (4.41) has to be modified slightly.

Defining the two sequences for k ≥ 0

ai(k) ,
∑

j∈N\{i}

νij(k)√
νii(k)

ej(k), bi(k) ,
∑
j∈N

νij(k)√
νii(k)

vj(k), (E.5)

(4.40) is equivalent to√√√√ K∑
k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+

√√√√ K∑
k=0

|ai(k) + bi(k)|2. (E.6)

Thus, due to the triangle inequality, an upper bound is given by√√√√ K∑
k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+

√√√√ K∑
k=0

|ai(k)|2 +

√√√√ K∑
k=0

|bi(k)|2. (E.7)

In order to end up at (4.41), property1 [GV96, p. 53]

‖v‖ ≤ ‖v‖1 ≤
√
N ‖v‖ , (E.8)

is consulted, which allows to bound the 1-norm of some N -dimensional vector v ∈ CN by its 2-norm,

1 Note that in this thesis the symbol ‖.‖ without any subscript denotes the 2-norm.

This page did not exist in the originally approved version of this thesis.
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leading to

|ai(k)| =

∣∣∣∣∣∣
∑

j∈N\{i}

νij(k)√
νii(k)

ej(k)

∣∣∣∣∣∣ ≤
∑

j∈N\{i}

∣∣∣∣∣ νij(k)√
νii(k)

ej(k)

∣∣∣∣∣ ≤ √N − 1

√√√√√ ∑
j∈N\{i}

∣∣∣∣∣ νij(k)√
νii(k)

ej(k)

∣∣∣∣∣
2

,

(E.9)

|bi(k)| =

∣∣∣∣∣∣
∑
j∈N

νij(k)√
νii(k)

vj(k)

∣∣∣∣∣∣ ≤
∑
j∈N

∣∣∣∣∣ νij(k)√
νii(k)

vj(k)

∣∣∣∣∣ ≤ √N
√√√√∑

j∈N

∣∣∣∣∣ νij(k)√
νii(k)

vj(k)

∣∣∣∣∣
2

. (E.10)

Inserting (E.9) and (E.10) in (E.7), results in√√√√ K∑
k=0

νii(k) |ei(k)|2

≤ ‖w̃i,−1‖+
√
N − 1

√√√√ K∑
k=0

∑
j∈N\{i}

|νij(k)|2

νii(k)
|ej(k)|2 +

√
N

√√√√ K∑
k=0

∑
j∈N

|νij(k)|2

νii(k)
|vj(k)|2, (E.11)

which corrects (4.41).

Erratum 8 (p. 81)

In (4.50), the right-hand side has to be multiplied by number N of coupled gradient type algorithms,
in Eqs. (4.51) to (4.53) and (4.57) by

√
N . This can be seen, starting with the left-hand side of

(4.9), i.e.,

εi(k) ,
∑
j∈N

νij(k)ej(k). (E.12)

Hence, the squared magnitude of update error εi(k) can be bounded from above by

|εi(k)|2 =

∣∣∣∣∣∣
∑
j∈N

νij(k)ej(k)

∣∣∣∣∣∣
2

≤

∑
j∈N
|νij(k)| |ej(k)|

2

≤ N
∑
j∈N
|νij(k)|2 |ej(k)|2 , (E.13)

where validity of the final step can either be verified by Young’s inequality2 [Nas99, p. 257] or by
property (E.8).

2 G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed. Cambridge, UK: Cambridge University Press, 1997.

This page did not exist in the originally approved version of this thesis.



Errata E.4

Erratum 9 (p. 82)

Errata 7 and 8 require a slight modification of Theorem 4.1. This is, as the changes of (4.41),
introduced by Erratum 7, analogously apply to (4.47), i.e.,√√√√ K∑

k=0

|ei(k)|2

≤ ‖w̃i,−1‖√
ν̌ii(K)

+
√
N − 1

∑
j∈N\{i}

η̂ij(K)√
ν̌ii(K)

√√√√ K∑
k=0

|ej(k)|2 +
√
N
∑
j∈N

η̂ij(K)√
ν̌ii(K)

√√√√ K∑
k=0

|vj(k)|2. (E.14)

Modifying the definition of coupling matrix ∆̄K in (4.65), which establishes the relation among
absolute energies, to

∆̄K ,


1√
N−1

− η̂12(K)√
ν̌11(K)

· · · − η̂1N (K)√
ν̌11(K)

− η̂21(K)√
ν̌22(K)

1√
N−1

· · · − η̂2N (K)√
ν̌22(K)

...
... . . . ...

− η̂N1(K)√
ν̌NN (K)

− η̂N2(K)√
ν̌NN (K)

· · · 1√
N−1

 , (E.15)

for N ≥ 2, the set of inequalities in (4.49) changes slightly to

∆̄KeK 4
1√
N − 1

Ď−1
ν,Kω−1 +

√
N

N − 1

(
Ď−1
ν,KD̂ν,K +

1√
N − 1

I− ∆̄K

)
vK . (E.16)

Then, together with factor
√
N , introduced due to Erratum 8, and redefinition of the bounding

matrix for absolute energies to

∆̂η,K ,
√
N − 1D̂ν,K + Ďν,K

(
I− ∆̄K

)
, (E.17)

(4.56) and (4.57) become

eK 4
1√
N − 1

∆̄
−1
K Ď−1

ν,K

(
ω−1 +

√
N

N − 1
∆̂η,KvK

)
, (E.18)

and

εK 4

√
N

N − 1
∆̂ν,K∆̄

−1
K Ď−1

ν,K

(
ω−1 +

√
N

N − 1
∆̂η,KvK

)
. (E.19)

Erratum 10 (p. 84)

As a consequence of the missing factor addressed by Erratum 8, also the right-hand side of (4.72)
has to be multiplied by N , the right-hand sides of (4.73), (4.74), and (4.78) by

√
N .
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Erratum 11 (p. 85)

Analogous to the explanation in Erratum 7, (4.69) has to be modified to√√√√ K∑
k=0

νii(k) |ei(k)|2 ≤ ‖w̃i,−1‖+
√
N − 1

√√√√ K∑
k=0

∑
j∈N\{i}

|νij(k)|2

νii(k)νjj(k)
νjj(k) |ej(k)|2

+
√
N

√√√√ K∑
k=0

∑
j∈N

|νij(k)|2

νii(k)νjj(k)
νjj(k) |vj(k)|2, (E.20)

which turns (4.71) into

∆̄
′
KeK 4

1√
N − 1

ω−1 +

√
N

N − 1

[
∆̄

′
K +

(
1− 1√

N − 1

)
I
]

vK , (E.21)

where in a way similar to (E.15), matrix ∆̄
′
K , which relates the weighted error energies, originally

defined in (4.59), is redefined to

∆̄
′
K ,


1√
N−1

−η̂′12(K) · · · −η̂′1N (K)

−η̂′21(K) 1√
N−1

· · · −η̂′2N (K)
...

... . . . ...
−η̂′N1(K) −η̂′N2(K) · · · 1√

N−1

 . (E.22)

Introducing the bounding matrix for absolute energies, originally specified in (4.60), slightly different,
as

∆̂
′
η,K ,

√
N

[
∆̄

′
K +

(
1− 1√

N − 1

)
I
]
, (E.23)

(4.77) modifies to

e′
K 4

1√
N − 1

∆̄
′ −1
K

(
ω−1 + ∆̂

′
η,Kv′

K

)
. (E.24)

Then, according to Erratum 10, taking the missing factor
√
N into account, (4.78) becomes

εK 4
1√
N − 1

D̂ν,K∆̂
′
η,K∆̄

−1
K

(
ω−1 + ∆̂

′
η,Kv′

K

)
. (E.25)

Erratum 12 (p. 87)

The proof of Lemma 4.5 in Appendix D.2.5 is correct. However, (4.90) and (4.91) do not agree with
it. Equation (4.90) should have the form

0 ≤ 1

2
|λi (∆k)|2 qH

i (∆k)Duqi (∆k) ≤ Re {λi (∆k)} , (E.26)
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and (4.91) has to be modified to,

0 ≤ 1

2
|λi (∆k)|2 max

i∈N

{
‖ui,k‖2

}
≤ Re {λi (∆k)} . (E.27)

Note that the explanations following Lemma 4.5 are based on the correct forms of (4.90) and (4.91),
and thus, remain valid without modification.

Erratum 13 (p. 146)
The term in the middle of (C.7) has to be squared, i.e.,(

xTAz
)2

(xTAx) (zTAz) ≤
(
λ1 (A)− λM (A)

λ1 (A) + λM (A)

)2

= 1− λ̄21 (A) ≤ 1. (E.28)

Erratum 14 (p. 150)
On the right-hand side of (D.5), a multiplicative factor is missing. It has to be modified to∣∣∣w̃He∗

u

∣∣∣2 = . . . =
∣∣∣w̃He∗

u

∣∣∣2 (1 + |αρ|2 − 2 |αρ| cos (ϕαρ∗)
)
. (E.29)

Erratum 15 (p. 151)

In the paragraph following (D.12), it is argued that the difference of the two square roots in (D.11)
is never larger than zero. This is not true in general, as combinations of ρB and α exist, for which it
becomes positive. Nevertheless, as shown in the sequel of this Erratum, the drawn conclusion that
σ2max,A ≤ σ

2
max,B still holds.

As a first step, from Lemma 3.2, or equivalently, (A.57), it can be seen that the two non unit
singular values increase monotonously with growing magnitude of the complex argument ϕαρ∗ . For
the maximum singular value σ1, the same holds with respect to the magnitude of effective step-size α
(cf. (A.21)). Moreover, due to (A.35), σ1 increases with falling magnitude |ρ| of the correlation
coefficient, as long as −π

2 < ϕαρ∗ <
π
2 . Lets keep this in mind for a moment.

For the two cases, A and B, considered in the proof of Lemma 3.8, it is easy to verify that

|ρB| ≤ |ρA| , (E.30)
and

ϕαρ∗,A , arc (αρ∗A) ≡ 0, (E.31)

whereas

ϕαρ∗,B , arc (αρ∗B) (E.32)

is typically different from zero. Thus, from (E.31) and (E.32), it is clear that

0 =
∣∣ϕαρ∗,A∣∣ ≤ |ϕαρ∗,B| . (E.33)
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As in both cases, the effective step-size is identical, the afore memorised dependency of the maximum
singular value with the correlation coefficient, allows to conclude that for −π

2 < ϕαρ∗,B < π
2 ,

σmax,A ≤ σmax,B is ensured.

Finally, it has to be shown that latter condition, σmax,A ≤ σmax,B, also holds for

π

2
≤ |ϕαρ∗,B| ≤ π. (E.34)

According to (D.11), as α ∈ R0+, this is equivalent to requiring

Re {ρB} − ρA +

√
α2

4
− αρA + 1−

√
α2

4
− αRe {ρB} − Im2 {ρB}+ 1

!
≤ 0. (E.35)

From (E.30), (E.33), and (E.34), with the fact ρA ∈ [0, 1], it follows that

Re {ρB} = −γRe {ρA} = −γρA, (E.36)

with some real-valued factor γ ∈ [0, 1]. Inserting (E.36) in (E.35), multiplying the whole expression
by −1, and separating terms, this translates to requirement

γρA + ρA +

√
α2

4
+ αγρA − Im2 {ρB}+ 1

!
≥
√
α2

4
− αρA + 1. (E.37)

Squaring (E.37) on both sides, after basic rearrangement of terms, the following expression is
obtained

ρ2A (1 + γ)2 + αρA (1 + γ)− Im2 {ρB}+ 2ρA (1 + γ)

√
α2

4
+ αγρA − Im2 {ρB}+ 1

!
≥ 0. (E.38)

As for the imaginary part of ρB, it holds that

Im2 {ρB} = |ρB|2 − Re2 {ρB} = |ρB|2 − γ2ρ2A
(E.30)
≤ ρ2A

(
1− γ2

)
, (E.39)

the left-hand side of (E.38) can be bounded from below, yielding

ρ2A (1 + γ)2 + αρA (1 + γ)− Im2 {ρB}+ 2ρA (1 + γ)

√
α2

4
+ αγρA − Im2 {ρB}+ 1

(E.39)
≥ (1 + γ)

(
ρ2A (1 + γ) + αρA − ρ2A (1− γ) {ρB}+ 2ρA

√
α2

4
+ αγρA − Im2 + 1

)
. (E.40)

The right-hand side of (E.40) can be further simplified to

ρA (1 + γ)︸ ︷︷ ︸
≥0

2 γρA︸︷︷︸
≥0

+ α︸︷︷︸
≥0

+2

√
α2

4
+ αγρA − Im2 {ρB}+ 1︸ ︷︷ ︸

≥0

 ≥ 0, (E.41)

which shows that (E.38), and as a consequence (E.35) is satisfied. Hence, σmax,A ≤ σmax,B is ensured
to hold also for (E.34), and is thus valid for any ϕ ∈ (−π, π].
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Erratum 16 (p. 157)
In (D.44), in the expression beneath the leftmost brace that specifies term qH

mΓqm in more detail,
index i has to be replaced by m, i.e.,

qH
mΓqm = 2Re {λm} − |λm|2 qH

mDuqm. (E.42)
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