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Biopharmaceutical products will be important drivers of improving medical treatments and 

the standard of living in the 21
th

 century. The development and commercialization of 

biosimilar monoclonal antibodies is a major milestone to maximize patient benefit, as these 

products deliver equivalent clinical effect at lower costs than the originator product. One of 

the major challenges in biosimilar development is to adjust the quality profile of the drug 

substance with technological control strategies in a tight range which is ultimately determined 

by the characteristics of the originator product. This goal is in accordance with the quality by 

design (QbD) paradigm, which demands the thorough understanding of interactions between 

process parameters and product quality attributes to assure consistent process output. 

This thesis focuses on the implementation of QbD tools into biosimilar process development 

aiming to understand links between process parameters and product quality attributes in a 

fed-batch recombinant CHO process producing a monoclonal antibody. In order to achieve 

this targeted knowledge, four essential steps have been identified and accomplished. First, 

standard risk assessment tools were tailored to address the above discussed unique 

characteristics of biosimilar development. These novel tools allowed a risk-based 

investigation of the complex interactions between critical process parameters (CPPs) and 

critical quality attributes (CQAs). Thereby, physiological features of the production cells were 

identified to have a vast impact on these interactions. Accordingly, the second step was to 

develop workflows for the quantification of physiological variables on the level of cell 

metabolism and to investigate the effect of multiple CPPs on these variables. Thereafter, 

novel control strategies were developed to steer physiological features such as the metabolic 

switch to lactate uptake as well as specific productivity in the fed-batch process. The control 

of physiological variables enabled the combination of standard QbD tools with the 

physiological approach. Consequently, the final step was to involve the controlled 

physiological features as input and output variables in design of experiment (DoE), 

multivariate data analysis (MVDA) and process analytical technology (PAT) tools.  

The essential novelty of the presented work is the combination of QbD tools with the 

quantification of physiological variables in cell culture process development. This approach 

enables the generation of enhanced process understanding and the development of a novel 

control strategy to adjust a CQA of the product. The anticipated benefit of the presented 

workflow over conventional QbD approaches is the identification of novel CQA control 

strategies based on sound process understanding, an aspect especially relevant for biosimilar 

development.
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Biopharmazeutische Produkte sind wichtige Treiber für die Verbesserung von medizinischen 

Behandlungen und Lebensqualität im 21. Jahrhundert. Dabei ist die Vermarktung von 

Biosimilars, die einen gleichwertigen therapeutischen Effekt wie das Originalprodukt zu 

einem niedrigeren Preis anbieten, ein wesentlicher Schritt, um den Patientennutzen von 

biopharmazeutischen Therapien zu maximieren. Eine der größten Herausforderungen in der 

Entwicklung von Biosimilars ist es das Qualitätsprofil des biosimilaren Arzneistoffes mit 

Hilfe von technologischen Kontrollstrategien in dem von dem Originalprodukt vorgegebenen 

engen Bereich einzustellen. Der risiko- und wissenschaftsbasierte Ansatz Quality by Design 

(QbD), der darauf abzielt, durch das vertiefte Verständnis der Zusammenhänge zwischen 

technologischen Parametern und Produktqualität gleichmäßig gutes Output im 

Herstellungsprozess sicherzustellen, bietet eine Lösung für diese Herausforderung. 

Diese Doktorarbeit untersucht die Implementierung von QbD-Methoden in den 

Herstellungprozess von Biosimilars anhand des Beispiels der Produktion eines biosimilaren 

monoklonalen Antikörpers (mAb) durch rekombinante CHO-Zellen. Vier wesentliche 

Schritte wurden identifiziert und durchgeführt, um den Effekt von technologischen 

Parametern auf die Qualitätsattribute des produzierten Wirkstoffs zu verstehen. Als erster 

Schritt wurde eine an die Entwicklung von Biosimilars angepasste Methode der 

Risikobewertung entwickelt, um die komplexen Interaktionen zwischen kritischen 

Technologieparametern (critical process parameter, CPP) und kritischen Qualitätsattributen 

(critical quality attribute, CQA) zu untersuchen. Die Anwendung dieses strukturierten 

Ansatzes hat ergeben, dass diese Interaktionen letztendlich von den physiologischen 

Eigenschaften der Produktionszellen geprägt sind. Der zweite Schritt des Projektes war 

dementsprechend die Entwicklung von Methoden für die Quantifizierung von 

physiologischen Variablen auf der Ebene des Zellmetabolismus. Anschließend wurden neue 

Kontrollstrategien entwickelt, um physiologischen Variablen, wie zum Beispiel Laktat-

Metabolismus und spezifische Produktivität, während des Herstellungsprozesses zu steuern. 

Diese Kontrollstrategien ermöglichten den letzten Schritt der Arbeit, nämlich die Verbindung 

des physiologischen Ansatzes mit Standardmethoden des QbD. In diesem Rahmen wurden die 

kontrollierten physiologischen Eigenschaften als Input- und Outputvariablen in die Methoden 

Design of Experiment (DoE), multivariate Datenanalyse (MVDA) und Process Analytical 

Technology (PAT) eingebunden. 

Das Novum der Doktorarbeit ist die Kombination von QbD-Methoden mit der Untersuchung 

von Zellphysiologie in der Entwicklung eines CHO-Prozesses. Dieser Ansatz ermöglicht das 
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gründliche Verstehen von Interaktionen zwischen technologischen Parametern und den 

Qualitätsattributen der Wirkstoffe. Durch die Entwicklung einer neuen Kontrollstrategie für 

die Einstellung eines CQAs wurde die Anwendbarkeit und der antizipierte Nutzen des QbD-

Ansatzes für die Entwicklung von Biosimilars demonstriert. 
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Introduction 

The pharmaceutical industry experienced an outstanding development throughout the 20
th

 

century. The first blockbuster drug, aspirin, was already introduced at the turn of the previous 

century. The swift scientific progress in pharmaceutical development around the time of the 

two world wars enabled the development of the first two biotechnology-derived medicines: 

insulin and penicillin. In the 1950s and 1960s health authorities introduced the foundations of 

a highly regulated market and meanwhile the pharmaceutical industry went global. The 

revolution in the development and manufacture of small molecule substances enabled the 

production of several blockbuster drugs, which led to great improvements in the standard of 

living in the second half of the century. In 1982, the first recombinant protein product was 

approved in the United States and since then the importance of biopharmaceuticals has been 

increasing in the treatment of several diseases. Around the turn of the millennium, the first 

monoclonal antibodies were introduced, allowing specific and effective treatment for many 

chronic diseases such as cancer and autoimmune disorders. The production of these drugs at 

low prices and high quantities could impact on human health in the 21
st
 century to a similar 

extent as the blockbuster medicines of the 20
th

 century (Ecker et al. 2015). 

Biopharmaceuticals and biosimilars  

The clinical performance of biopharmaceuticals is influenced by the molecular structure of 

the active drug substance. Recombinant glycoprotein products, the largest group of 

biopharmaceuticals in terms of sales volume and growth (Walsh 2014), possess a highly 

complex three dimensional structure. These proteins have several sites which are prone to 

variability, including disulfide bridges, C-terminal lysine residues as well as the glycosylation 

pattern at dedicated positions of the amino acid sequence. As changes in these molecular 

features affect the clinical performance (safety and efficacy) of therapeutic proteins, they are 

also referred to as product quality attributes (Eon-Duval et al. 2012). Even approved 

biopharmaceuticals show a considerable variability in quality attributes such as glycosylation 

as a consequence of changes in the manufacturing process (Schiestl et al. 2011) or lot-to-lot 

variability in raw materials (Gilbert et al. 2014). 

Biosimilars are follow-on therapeutic protein products which aim to deliver equivalent 

clinical effect as the respective originator product; however, due to their lower costs they offer 

economic benefits for healthcare systems and patients. The term “biosimilar” has been 

introduced by the European Medicines Agency (EMA) based on the recognition that 
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biological products can be only similar to the reference product, but not the same, due to the 

high complexity of the protein structure (EMA 2015). However, market approval of 

biosimilars is under strict regulatory oversight. For example, the EMA has issued numerous 

general as well as product specific guidelines in order to define the requirements towards 

biosimilar applicants for the demonstration of similarity with the originator product. The 

cornerstone of similarity is a range of comparability studies at the level of structural 

biochemical properties, in other words the comparison of product quality attributes (Declerck 

2013). Accordingly, the target quality attribute ranges of biosimilar products are ultimately 

determined by the characteristics of the originator product (Figure 1). 

 
Figure 1. The challenge of targeting quality attribute ranges in biosimilar process development. Quality 

attributes (QA1-n) with a relevant impact on clinical performance have to be strictly controlled within the 

biosimilarity target range. In contrast, for quality attributes (QA) with low effect on clinical performance and 

comparability (QAlow effect), a control range outside the original product’s range can be also defined. 

Meeting predefined quality attribute ranges with technological control strategies is one of the 

biggest challenges of biosimilar development. On the one hand, the physiological 

characteristics of the production clone determine which range is feasible at all. On the other 

hand, technological constraints such as scalability or more often upcoming patent issues can 

also narrow down the operational flexibility to target the range of biosimilarity with quality 

attributes. This is especially true for biosimilar monoclonal antibody (mAb) process 

development, where the rapidly increasing number of technological patents constrain the 

opportunities to adjust quality attributes to a high extent. Moreover, mAbs have numerous 

quality attributes due to their complex structure and post-translational modifications 

(Declerck 2013). The development of control strategies which steer product quality attributes 

into the predefined tight ranges is therefore essential for successful biosimiar mAb 

development. This aim is in accordance with the Quality by Design paradigm which calls for 

the development of control strategies based on sound science to ensure product consistency in 

terms of quality. 
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Quality by Design 

QbD  is defined in the International Conference on Harmonisation (ICH) Q8 guideline as “a 

systematic approach to development that begins with predefined objectives and emphasizes 

product and process understanding and process control, based on sound science and quality 

risk management” (ICH 2009). In the context of QbD, process understanding can be 

interpreted as the structured scientific knowledge on how critical process parameters (CPPs) 

affect critical quality attributes (CQAs) in the manufacturing technology. For the 

pharmaceutical industry, the generation of process understanding has been one of the most 

important anticipated benefits of QbD (Cook et al. 2014). As discussed above, this knowledge 

is essential for biosimilar production, in order to keep product quality attributes in the 

predefined tight CQA ranges (Figure 2). Thus, the ultimate goal of QbD, which is to ensure 

product quality by the manufacturing process itself and not only by final product testing 

(Rathore and Winkle 2009), is an enabler of successful biosimilar process development. 

Control strategies which deliver consistent process output, and thus reduce the number of 

failed batches, are necessary to keep production costs low and ensure profitability in this 

highly competitive market segment. Accordingly, the implementation of QbD into biosimilar 

development is an obvious business interest for the pharmaceutical industry (Kenett and 

Kenett 2008; Luciani et al. 2015). 

 

Figure 2. Quality by Design for biosimilars. Biosimilar process development starts with product design, which 

is the definition of the intended Quality Target Product Profile (QTPP) based on the extensive characterization of 

the reference product. This goal has to be kept considered throughout the selection of CQAs as well as the 

identification of CPPs (process design). For more details see text. 
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Process design to target CQAs 

As discussed previously, process understanding starts with the characterization of CPP-CQA 

interactions. However, this task represents a scientific challenge in biopharmaceutical 

technology development due to the complexity of the process, the production host and the 

product itself. The high number of controlled and non-controlled process parameters 

necessitates laborious experimentation to identify the relationships between CPPs and CQAs. 

Hence, the anticipated extent of process understanding for QbD is usually constrained to the 

necessary minimum. First, the most critical process parameters are selected with risk 

management approaches. Thereafter, statistical tools, such as design of experiments (DoE) 

and multivariate data analysis (MVDA), are applied to define a multidimensional combination 

of CPPs (also referred to as the design space) within which the process delivers the product in 

the targeted CQA ranges (Abu-Absi et al. 2010; Rouiller et al. 2012). Although these 

approaches facilitate the characterization of CPP-CQA interactions, the high number of 

indirect or unidentified influencing factors renders the sound understanding of these 

interactions solely based on statistical considerations impossible. 

Due to their biological nature, recombinant expression systems (i.e. the production cells) add 

an inherent variability to the production process, thereby influencing the characteristics of 

CPP-CQA interactions. An unforeseen biological variability in the process can lead to 

significant changes in product quality attributes and - in the worst case - result in out-of-

specification batches. In order to develop control strategies, which are able to manage such 

variances, the behavior of the production cells in the manufacturing process has to be 

extensively characterized. For this, process understanding has to go beyond verifying 

CPP-CQA links with statistical approaches, and investigate these interactions on the level of 

cell physiology. Understanding cell physiology enables the identification of mechanistic links 

between process parameters, cell physiology and product quality. This knowledge is referred 

to as enhanced process understanding in this thesis (Figure 3). 
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Figure 3. Basic QbD tools for process design and the physiological way through the investigation and 

control of physiological parameters [2]. 

Recent advancements in systems biology enable the investigation of different features of cell 

physiology (e.g. metabolome, transcriptome and proteome), which together define the 

physiological phenotype of the production cell (Dickson 2014; Heffner et al. 2014; 

Vishwanathan et al. 2014). It is already a well-accepted paradigm that the relationship 

between process input (CPPs) and process output (CQAs) parameters is ultimately determined 

by intracellular mechanisms occurring at multiple layers of cell physiology (Carinhas et al. 

2012). In order to generate and to benefit from physiological understanding, two types of 

knowledge have to be gathered (Figure 3). First, the effect of process parameters on cell 

physiology has to be investigated. The goal is to gather a sound understanding of how 

technological control parameters and process variables affect physiological features such as 

protein expression, metabolic fluxes or the energetic status of the cells. A time-resolved 

investigation of these interactions is essential to understand the background of shifts in cell 

physiology during the production process. This knowledge can be subsequently used to steer 

cell physiology in the favored direction, for example by process parameter shifting or the 

addition of dedicated substances. The second type of knowledge to be gathered is the 

understanding how the physiological status of the cells affects the quality attributes of the 

product. All intracellular mechanisms which play a role in mRNA transcription, maturation 

and translation as well as in the post-translational modification and secretion of proteins 

might affect the quality of the recombinant product. Moreover, these mechanisms are 
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dependent on other, even more complex physiological features (e.g. cell metabolism or redox 

homeostasis). As interactions between cell physiology and product quality are determined on 

the cellular level, they are independent of the production scale and thus the knowledge on 

these interactions is scalable. 

A considerable amount of studies is available in the scientific literature on how process 

parameters affect cell physiology. However, the link of product quality attributes to the cell’s 

physiological status is still rare. In order to demonstrate the benefit of the physiological 

approach proposed in Figure 3, two steps are necessary. First, physiological variables should 

be identified which affect Critical Quality Attributes. Thereafter, the identified physiological 

variables (“Critical Physiological Variables”) should be controlled at different levels in order 

to investigate their effect on CQAs. 

Thesis scope: A quality by design approach for enhanced process understanding 

The studies summarized in this thesis aim to demonstrate the implementation of QbD tools in 

process design for biosimilar production with the ultimate goal to adjust CQAs. Thereby, the 

focus is on the generation of enhanced process understanding via the investigation of cell 

physiology, and the development of science-based CQA control strategies as promoted by the 

QbD paradigm. The manuscripts included in this thesis are related to the different steps 

towards the implementation of the proposed physiological approach (Figure 4). 

 
Figure 4. Critical Process Parameters, Critical Physiological Parameters and Critical Quality Attributes 

investigated in this thesis. Citations in square brackets refer to the manuscripts included in the thesis. 
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The first two manuscripts provide the conceptual basis for the proposed approach focusing on 

cell physiology as a key to enhanced process understanding. The very first manuscript is a 

methodological contribution which demonstrates how tailored risk management can 

accelerate process development for biosimilars [1]. Then, a review contribution summarizes 

the state of the art for the quantification and control of physiological variables in cell culture 

processes [2]. The subsequent manuscripts discuss experimental results generated in a total 

number of 46 cultivations in 10 different experimental setups, which demonstrate the 

implementation and benefits of the proposed physiological approach. CPPs identified in the 

initial risk assessment [1] were adjusted to different levels in order to investigate their effect 

on physiological features such as specific growth rate, cell respiration, the switch to lactate 

uptake and specific productivity. The links between process parameters and cell physiology 

were investigated using physiological variables calculated on the basis of off-line 

measurement results [3,4]. Moreover, the implementation of on-line monitoring tools for the 

assessment of physiological changes in manuscripts five and six enabled to investigate the 

effect of process parameters on cell physiology on-line [5,6]. The implementation of a feeding 

strategy based on the on-line monitored oxygen uptake rate (OUR) enabled to control specific 

productivity at multiple levels and to investigate the link between this physiological variable 

and product glycosylation [6]. Explaining the link between cell physiology and a product 

CQA, the last manuscript demonstrates the benefits of the proposed physiological approach 

for the development of novel CQA control strategies. 
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Quality by Design tools used within this thesis 

As discussed in the previous sections, the application of QbD tools facilitate the generation of 

process understanding. Moreover, in order to achieve enhanced process understanding in 

biopharmaceutical processes, CPP-CQA interactions have to be investigated on a 

physiological level and not only on an empirical level. 

This thesis can be considered as a case study which aims to combine standard QbD tools with 

the investigation of physiological variables in order to achieve enhanced process 

understanding (Table I). 

Table I.  QbD tools used in the different manuscripts of this thesis. The rows indicate the six manuscripts 

involved in the thesis with short titles and citation numbers in square brackets. Columns indicate QbD tools used 

in the different manuscripts. Blue fields indicate the tools which were applied in the respective manuscript. 
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COMMENTARY

Risk-based Process Development of Biosimilars as Part of
the Quality by Design Paradigm
DÉNES ZALAI1,2, CHRISTIAN DIETZSCH2, and CHRISTOPH HERWIG2,*

1Gedeon Richter Plc., Department of Biotechnology, Budapest, Hungary; and 2Vienna University of Technology,
Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria ©PDA, Inc. 2013

ABSTRACT: In the last few years, several quality by design (QbD) studies demonstrated the benefit of systematic
approaches for biopharmaceutical development. However, only very few studies identified biosimilars as a special case of
product development. The targeted quality profile of biosimilars is strictly defined by the originator’s product characteristic.
Moreover, the major source of prior knowledge is the experience with the originator product itself. Processing this
information in biosimilar development has a major effect on risk management and process development strategies.
The main objective of this contribution is to demonstrate how risk management can facilitate the implementation of QbD
in early-stage product development with special emphasis on fitting the reported approaches to biosimilars. Risk
assessments were highlighted as important tools to integrate prior knowledge in biosimilar development. The risk
assessment process as suggested by the International Conference on Harmonization (ICH Q9) was reviewed and three
elements were identified to play a key role in targeted risk assessment approaches: proper understanding of target linkage,
risk assessment tool compliance, and criticality threshold value. Adjusting these steps to biosimilar applications helped to
address some unique challenges of these products such as a strictly defined quality profile or a lack of process knowledge.
This contribution demonstrates the need for tailored risk management approaches for the risk-based development of
biosimilars and provides novel tools for the integration of additional knowledge available for these products.

KEYWORDS: Biosimilars, Process development, Risk assessment, Quality by design

LAY ABSTRACT: The pharmaceutical industry is facing challenges such as profit loss and price competition. Companies
are forced to rationalize business models and to cut costs in development as well as manufacturing. These trends recently
hinder the implementation of any concepts that do not offer certain financial benefit or promise a long return of investment.
Quality by design (QbD) is a concept that is currently struggling for more acceptance from the side of the pharmaceutical
industry. To achieve this, the major goals of QbD have to be revisited and QbD tools have to be subsequently developed.
This contribution offers an example as to how implement risk management in early-stage biosimilar development as
part of the QbD concept. The main goal was to go beyond the conventional QbD workflow and to adjust risk
management to the challenges of biosimilar products. Accordingly, instead of using methods like failure mode and
effects analysis, recommendations of the ICH Q9 guideline were reviewed and put into practice by creating tailored
risk assessment tools. The novelty of this contribution is to report those tailored tools ready-to-use for early
bioprocess development of biosimilars along QbD principles.

Introduction

Biosimilars are a promising segment of the pharma-
ceutical market forecasted to reach $4 – 6 billion in

sales by 2016 (1). It is generally recognized that
biosimilar products offer equivalent medical treat-
ment, both in efficacy and safety to the reference
product, but at lower costs for patients and healthcare
systems (2). Therefore, significant efforts have been
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made in the last years to create a supportive regulatory
environment for the application process of these prod-
ucts (3–5). The requirement for biosimilar approval is
an equivalent clinical performance and a high similar
quality profile to the originator product (6, 7). The
success of biosimilars depends on the ability to reach
this target. Thus, risk-based approaches and enhanced
product knowledge are key elements of their develop-
ment (2). This progress is in accordance with the
quality by design (QbD) paradigm, which promotes
pharmaceutical development based on risk manage-
ment and sound science (8).

The QbD workflow starts with the definition of the
targeted clinical performance in the Quality Target
Product Profile (QTPP) document (9), the basis of the
manufacturing process to deliver a product that meets
these quality specifications. Accordingly, QbD defines
a systematic business process for pharmaceutical de-
velopment where the major objective is product qual-
ity. Linking process understanding to product under-
standing and ultimately to the desired QTPP is
therefore a cornerstone of QbD approaches (10, 11).
These linkages are based on scientific knowledge and
quantified through the assessment of criticality. Crit-
icality measures the significance of certain variables in
the investigated interaction. The assessment of criti-
cality as it relates to product quality is determined as
a function of risk (12). Consequently, risk manage-
ment plays a key role in QbD by creating a platform
for linking subsequent stages in pharmaceutical devel-
opment.

QbD applications have been reported many times for
biopharmaceuticals (9, 13, 14); however, these publi-
cations focused more on scientific understanding and
did not detail the risk management process. Although
the A-Mab case study demonstrated the risk manage-
ment process more in detail, the study originated a
significant amount of information from platform
knowledge of xyz monoclonal antibodies (mAbs) (15).
A major difference between biosimilars and original
biopharmaceuticals is that biosimilars are designed to
provide alternatives to originator products after patent
expiration. Biosimilar development is therefore based
on the characteristics of the originator product and
relies on existing prior experience with the same drug
substance and product. Risk management has to inte-
grate this specific piece of information in decisions
throughout the development process. However, to our
knowledge, risk management approaches for biosimi-

lars have not been reported until now in the scientific
literature.

The present contribution reports the implementation of
risk management as part of the QbD workflow in
early-stage biosimilar development. Risk assessments
were identified as logical linkages between product
development stages and as tools to integrate prior
existing product knowledge. The risk assessment pro-
cess as defined by the International Conference on
Harmonization for Quality Risk Management (ICH
Q9) was reviewed and three elements of the risk
assessment process were identified to have a major
impact on its outcome. These elements were investi-
gated in detail with special emphasis on their applica-
tion in biosimilar development. This study proposes
novel risk assessment tools adapted to early-stage
biosimilar process development to address the unique
challenges of these products.

Positioning Risk Assessments in the QbD Workflow

Biopharmaceutical product development is a multi-
stage process that involves various activities from
molecule design to process engineering. QbD connects
these activities by creating a structured workflow
based on risk management. According to the ICH Q9
guidance, a basic principle of quality risk management
is that the assessment of risk to quality should always
target the protection of the patient (16). In this respect,
risk assessments connect consecutive stages of prod-
uct development to each other and ultimately to the
desired clinical performance recorded in the QTPP
document.

Figure 1 traces a QbD workflow for early-stage prod-
uct development. The first step is to select targeted
indications, intended clinical performance, and dosage
forms. These decisions can be performed with the help
of a business risk assessment, but beyond the scope of
this article. All details are summarized in the QTPP,
which assures a platform to synchronize the develop-
ment process with the proposed product characteris-
tics. This document should contain all relevant informa-
tion on the intended quality profile and has to be updated
regularly throughout the lifecycle of the product.

The connection of product development and process
development to the QTPP is an important part of the
QbD paradigm. In this logical flow chart, linkages
(diamonds on Figure 1) are the risk assessments,
where the decisions on criticality with respect to prod-
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uct quality are met. Finally, these decisions have a
major impact on the experimental design of process
development.

Although the above discussed workflow for product
development is valid for both biosimilars and original
biologics, a major difference is the source of informa-
tion processed in risk assessments (Figure 1). Regard-
ing product quality, strict specifications based on the
originator’s quality profile are defined for biosimilars,
which have to be met accordingly. As the production
process of the originator product is undisclosed, no
process development and manufacturing knowledge is
available for follow-on biologics producers. These
differences should be considered in order to fit risk
management to the purposes of biosimilar process
development. The risk assessment process as de-
scribed in ICH Q9 should be reviewed and developed
accordingly.

The Risk Assessment Process

The most common operative manifestation of risk
management in pharmaceutical development is risk
assessment. Although ICH Q9 supports the selection
of risk assessment methods on a case-by-case basis, it
recommends a general model (Figure 2) as part of the
quality risk management concept (16).

The three-step model initiates risk assessment with the
identification of risk by understanding the linkage
between the analyzed steps of product development,
for example, between critical quality attribute (CQA)
and critical process parameter (CPP) selection. In or-
der to visualize the logical linkage and to sort all
attributes by categories for the risk analysis, decision
tools such as an Ishikawa diagram can be used. After-
wards, the risk question—a clearly formulated sen-
tence referring to the goal of the risk assessment—is
defined. Risk question formulation supports the pro-
cess to obtain an agreement on the purpose of the risk
assessment. The progress of risk question formulation
might be a challenging task due to the complex nature
of biologics and the diverse concerns of interdisciplin-
ary risk assessment teams.

The second step focuses on the assessment of critical-
ity with the help of risk analysis tools. According to
the ICH Q9 guidance, risk is always defined as a
function of the severity of potential harm. Conse-
quently, a risk assessment tool always contains a fac-
tor that represents this severity. Additional factors can
be chosen to optimize the tool for the exact purpose
(13). After defining the score ranges for each factor,
the maximal risk score can be calculated and subse-
quently the criticality threshold can be set. Although
the threshold value has a great influence on the out-

Figure 1

Differences in the source of information throughout product development of biosimilars and original biologics.
Diamonds represent decision points where risk assessments are performed to select critical variables for the
next step of product development. Those steps of product development that are not detailed in this contribution
are colored grey.
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come of the risk assessment, there is no best practice
reported for defining its value.

The last step of risk assessments is the calculation of
risk scores and the subsequent ranking of the attri-
butes. Finally, attributes receiving higher risk scores
as the criticality threshold are designated as critical.

Eventually, the outcome of the risk assessment is
dependent on the following elements of the process:

1. Risk question definition

2. Tailored risk assessment tool

3. Criticality threshold definition

However, even very sophisticated risk assessment
tools can not extract valuable information from bad-
quality input data (17). In other words, risk assessment
is a decision tool to identify criticality and does not
replace the need for scientific knowledge. Accord-
ingly, lack of information in early-stage process de-
velopment was reported to be a major obstacle of risk

assessment approaches (13). However, the growing
experience of the pharmaceutical industry for the pro-
duction of biologics will serve as a robust input for
such purposes in the future. In order to integrate this
knowledge in biopharmaceutical development, tai-
lored risk assessment approaches are needed that are
able to process prior knowledge in risk decisions.
Therefore, the three critical elements of risk assess-
ment will be analyzed in the following sections as part
of the early-stage process development of a biosimilar
mAb.

1. Risk Question Definition and Target Linkages

In the QbD paradigm, risk assessments create junc-
tions between successive stages of product develop-
ment. Thereby, understanding of linkages between
these stages is initiated by a suitable risk assessment
approach. First, visual and interactive tools can be
used to organize data in accordance with the recom-
mendations of the ICH Q9 guideline (16). The type of
the visual tool can be selected based on the nature of
the applied risk assessment technique. In early-stage
process development, risk assessment is a deductive

Figure 2

The general risk assessment process. The box on the left traces the three steps of risk assessment as described
by ICH Q9, whereas the box on the right represents essential tools supporting the risk assessment process.
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problem, answering the question: “What can cause a
failure in the clinical performance of the product?”. In
order to trace back this problem to possible causes,
visual tools such as Ishikawa diagrams are appropri-
ate. In contrast, when the risk assessment addresses
inductive problems answering the question “What can
go wrong in the production process?”, other types of
visual tools such as flow charts or process mapping
might be more suitable.

Ishikawa diagrams help to identify logical connections
between different types of product- or process-related
attributes and thus support a better understanding of
linkages between clinical performance, product, and
process. This enhanced understanding can be then
condensed into risk questions in order to support the
identification of critical attributes via targeted risk
assessments. Although the formulation of risk ques-
tions has not yet been a routine task in risk assess-
ments, their use can facilitate the development of
tailored risk assessment tools. In this contribution, risk
questions are used to tighten the focus of risk assess-
ments by enhancing the logical background of the
linkages (Figure 3). A well-defined risk question al-

ready denominates some factors of the risk assessment
tool. For example, the risk question for CQA selection
contains the word “deviation”, which is also the third
factor in the CQA risk assessment tool.

After the definition of CQAs, process parameters
with a possible effect on these quality attributes are
collected. Another benefit of Ishikawa diagrams is
the possibility to structure the high number of pa-
rameters that influence cell culture performance. In
Figure 3, process variables are divided into two
groups and several subgroups in order to classify
potential CPPs. This structure supported the under-
standing of the mechanism of action as to how
different variables might affect product quality and
served as a road map for the assessment of criticality.
Accordingly, process variables were divided into two
main groups: Processing and Physiology. The latter
group was defined after the identification of cell phys-
iology as a complex variable with major effect on
product quality in cell culture processes. Although the
complex physiology of mammalian cells (e.g., Chi-
nese hamster ovary, CHO) has been investigated in
many studies (18 –20), there is little known about how

Figure 3

Multi-level Ishikawa diagram depicting the connection between process parameters, critical quality attributes,
and the targeted quality profile. Dataset of a selected QTPP specification (glycosylation pattern) and a selected
CQA (galactosylation) is shown as an example. Dashed lines represent the logical linkage between consecutive
stages of process development, condensed in Risk Questions.
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this information can be coupled to product quality
(10). Therefore, physiological parameters such as spe-
cific rates have to be defined that support the extrac-
tion of scalable and science-based information on
physiology–product quality interactions in bioprocess
development (21). The identification of such physio-
logical parameters in early-stage development has to
be facilitated by structured risk assessment ap-
proaches.

Ishikawa diagrams and risk questions support the
proper understanding of linkages targeted by risk as-
sessments. With the help of these tools, interdisciplin-
ary team members can come to an agreement on the
scope of risk assessments. Due to high complexity of
targeted bioprocesses, the approach depicts a promis-
ing tool for more efficient process development, espe-
cially in its early stages.

2. Development of Tailored Risk Assessment Tools

Risk assessment tools convert subject knowledge into
quantitative information in order to assess criticality.
The outcome is the risk number (RN), which is cal-
culated by multiplying two or more factors. Although
the ICH Q9 guideline lists a variety of risk assessment
tools, it does not provide a clear definition as how to
select the most appropriate one for the specific pur-
pose. Some studies have reported the use of these tools
during biopharmaceutical product development (13,
22), but they did not provide extensive information on
the reasons for selection. As discussed already above,
the factor “Severity” is always included in the risk
assessment tool to express the potential harm on phar-
maceutical quality as the basis for the determination of
criticality. Additional factors are used to improve the
risk assessment tool by breaking up the risk into
multiple components. For example, “Uncertainty” is
often used as a second factor beside “Severity” to
include the quality of input data as a possible source of
risk (15). This is especially relevant in early-stage pro-
cess development, where scientific knowledge is often
lacking to fully understand the linkage between product-
and process-related parameters. The two factors “Sever-
ity” and “Uncertainty” were included in both CQA and
CPP risk assessment tools within this study.

If additional information is available that can increase
the selectivity of the risk assessment, the tool has to be
appended in order to process all the information at
hand. An example is the original product’s quality
profile for biosimilars. Biosimilar guidelines in the

European Union and United States put emphasis on
analytical comparability with the original product
(23). Consequently, the quality profile of biosimilars
is highly determined by the originator product. In
order to involve this additional information in biosimi-
lar development, a third factor called “Deviation” was
added to the here-described risk assessment tool for
CQA selection (Table I). This factor incorporates the
extent of acceptable deviations from the originator
product’s quality profile. Quality attributes with minor
importance would receive a low “Deviation” score,
indicating a higher acceptable deviation. Thus, this
factor helps to prioritize the quality attributes for
product development based on their effect on biosimi-
larity. However, as communicated by regulatory bod-
ies, the effect of a deviation from the originator in
attributes with low relevance has to be justified as well
in biological assays. The factor “Deviation” can also
contain information about the purification capacity of
downstream process steps if the risk assessment is
conducted for the determination of CQAs in upstream
process development (see Table I).

Another example to incorporate additional informa-
tion into the risk assessment in this study was, con-
sidering the complexity of mechanisms, how process
parameters can affect the investigated quality attri-
butes. Accordingly, beside the factors “Severity” and
“Uncertainty”, a third factor called “Complexity” was
added to the risk assessment tool of CPP selection.
This factor quantifies as to which extent the mecha-
nism of the CPP-CQA interaction can be described by
a scientifically developed formula (Table I). The
higher the score, the more complex the mechanism and
the less information is available on its quantification.
As the lack of reliable information on CPP-CQA in-
teractions raise the “Uncertainty” score of almost each
process parameters and variables in early-stage pro-
cess development, including “Complexity” as a third
factor helped to differentiate CPP candidates based on
scientific considerations. Introducing this factor also
emphasizes the scope of CPP risk assessment at this
stage of process development, which is not to select
critical parameters for a finalized manufacturing pro-
cess but rather to rank parameters in order to prioritize
experiments for process development. These consid-
erations justify the development of novel tools as
described above instead of failure mode and effects
analysis (FMEA), which is commonly used to assess
the criticality of process parameters in manufacturing
processes (22).
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In order to demonstrate the effect of factor selection
on the result of risk assessment, the ratio of critical
attributes was calculated for the case of two or three
factors. As shown in Table II, the addition of a third
factor decreased the ratio both in CQA and in CPP risk
assessment. This observation suggests that the integra-
tion of additional knowledge with an appropriate fac-

tor in the risk assessment tool leads to the reduction of
critical attributes and hence simplifies experimental
design for early process development. The lower num-
ber of critical attributes does not mean higher risk
acceptance, but rather risk reduction by enhanced in-
tegration of prior knowledge into product develop-
ment via efficient risk assessment tools.

3. Threshold Definition for Risk Assessment

The criticality threshold expresses the level of risk that
is accepted for a product or a process. As already
stated above, its value has a great influence on the
outcome of the risk assessment. However, only a few
publications discuss the rationale behind threshold
selection. The A-Mab case study considers risk rather
as a continuum and consequently does not define a
single threshold value but rather ranges for different
categories of criticality (15). At the end, this approach
also results in a single threshold value, which is the
lower end of the category still defined as critical.
Another study selects criticality threshold by consid-

Table I
Overview of the Risk Assessment Tools for CQA and CPP Selection

CQA Risk Assessment CPP Risk Assessment

Linkage CQAs—QTPP specification CPPs—CQA ranges

Risk Question How critical is the effect of a
possible deviation from the
innovator’s quality profile
with respect to safety and
efficacy?

How critical is the effect of the
process parameter or process
variable on CQAs?

RA tool RN � Severity � Uncertainty �
Deviation

RN� Severity � Uncertainty �
Complexity

Scores for the
third factor

Deviation (from the quality
profile of the reference
material)

1 no deviation in the quality
profile

2 low deviation in the quality
profile or robust purification
method

3 deviation, limited purification
efficiency

4 severe deviation in the quality
profile limited purification
efficiency

5 severe deviation in the quality
profile, variant cannot be
purified

Complexity (of the mechanism
responsible for the CPP-CQA
effect)

1 mechanism described by a
physical law

2 simple mechanism with well-
known characteristics

3 complex mechanism with
previously reported
quantitative interactions

4 complex mechanism without
quantified characteristics

5 very complex mechanism

Table II
Decreased Number of Critical Attributes with
Risk Assessment Tools Using Three Factors. The
values represent the percentage of critical attributes
with respect to all attributes involved in the risk
assessment. Threshold values for the selection of
criticality were defined based on the rule of T �
1/n�RNmax, where n is the number of factors.

CQA Risk
Assessment

CPP Risk
Assessment

2 factors 67% 53%

3 factors 50% 39%
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ering the cardinality of factors which have scores
above the minimum value (22). Finally, the threshold
value is always determined based on the acceptable
level of risk (24). In the literature, threshold values
around 0.2�RNmax are commonly reported, resulting in
an average of 70% of critical attributes (13, 15, 22).
However, applying a static formula for criticality
threshold calculation leads to variable outcomes when
the number of factors is changed in the risk assessment
tool. Thus, general formulas should be developed in
order to deliver comparable results when adjustments
in the risk assessment tool are made. Such a formula is
1/n�RNmax, which calculates the criticality threshold
based on the number of factors (n) involved in the risk
assessment tool.

In order to investigate the effect of threshold selection
on the outcome of risk assessment (i.e., the number of
attributes considered as critical), we applied different
threshold values based on mathematical rationale (Ta-
ble III).

The final goal of criticality threshold selection in
early-stage process development is to identify factors
for the design of experiments along what is executable
in the very strict development timeline of biosimilars.
In this respect, the number of critical parameters is an
important indicator of factor selection because it has a
major effect on the experimental design. Table III
confirms the effect of threshold selection on the num-
ber of critical attributes. Moreover, it also demon-
strates the need for threshold selection strategies that

take the number of factors applied in the risk assess-
ment tool into account. Accordingly, the results sug-
gest that 1/n�RNmax is an appropriate formula for
threshold calculation.

Iteration of Risk Assessment

Risk assessments deliver a rank of attributes based
on the calculated risk number. Moreover, attributes
with a higher risk number than a predefined thresh-
old are designated as critical. Thus, the final out-
come of the risk assessment is the rank and the
number of critical attributes. Based on these results,
the most critical tasks for process development are
prioritized and the first process characterization
studies are designed. The knowledge gained in these
experiments can result in increased process under-
standing and a subsequent variation in the criticality
of some attributes. Therefore the risk assessment
can be revised to integrate the obtained knowledge
in process development decisions (see Figure 4).

Iteration of risk assessments as part of the QbD
workflow has been already reported in the A-Mab
study (15). The basis for the revision was the in-
creased scientific knowledge gained in process char-
acterization studies, which resulted in the subse-
quent reduction of some attributes’ criticality.
However, other reasons can also enforce the re-
evaluation of risk assessment results, for instance,
an unexpected high number of critical parameters
assessed. By increasing the threshold value, the
number of critical parameters can be reduced, re-
sulting in a subsequent simplification of the exper-
imental design for process development (25). An-
other reason for threshold modification is, for
example, that important attributes are designated as
noncritical by the risk assessment process. This
indicates an initially too high defined threshold
value, and a subsequent reduction is necessary.

The use of inappropriate factors in the risk assessment tool
can lead to an unexpected rank of the attributes. In such
cases, the risk assessment tool itself has to be revised and
factors modified. Decision points and reasons for risk as-
sessment iteration are visualized in Figure 4.

Although the outcome of risk assessments can be modified
by iterative processes shown on Figure 4, the predefined
goal has to be considered in order to avoid missing the aim
of the risk assessment.In other words, revisions and subse-
quent adjustments in the threshold value or the risk assess-

Table III
Critical Attribute Selection Using Different
Threshold Calculation Formula. Values represent
the percentage of critical attributes with respect to
all attributes. Criticality was assessed with tools
using 2 or 3 factors as described above. RNmax

represents the maximal value of the risk score (all
factors at maximum score). Values in bold represent
criticality corresponding to the T � 1/n�RNmax rule.

Threshold
calculation

formula

CQA Risk
Assessment

CPP Risk
Assessment

2
factors

3
factors

2
factors

3
factors

1/5 � RNmax 89 % 78 % 99 % 72 %

1/3 � RNmax 89 % 50 % 81 % 39 %
1/2 � RNmax 67 % 11 % 53 % 6 %
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ment tool should not compromise patient safety for the
simplification of product development.

Another interesting issue in risk management is the han-
dling of noncritical data. Variables with a lower score
than the risk threshold are designated as noncritical and
do not have to be included further in description of
design space (12). However, the assessment of criticality
is not static and might change with the increase of
product and process understanding. Consequently, non-
critical variables can become critical throughout product
development. Therefore, handling of noncritical data is a

major question of QbD approaches. Well-developed risk
assessment tools enable a more accurate determination of
criticality and reduce the possibility of underestimated risk.
Moreover, scheduled iterations in the QbD workflow sup-
port the revision of previously taken incorrect decisions. All
these conclusions highlight the key role of risk management
in early-stage biosimilar process development.

Conclusions

QbD has been gaining an increasing acceptance from
the pharmaceutical industry as well as from regulatory

Figure 4

Iteration processes in CPP risk assessment. Dashed lines represent possible iteration reasons and paths.
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authorities. The number of QbD drug submissions
has been steadily increasing for small molecules,
and the first QbD submissions have already been
reported for biologics as well. One of the key ele-
ments on which the authorities focus on during the
review process of QbD submissions is how the
connection between defining QTPP, identifying
CQAs, and selecting CPPs is established. The use of
risk-based methods is anticipated to create these
connections; however, the approaches are influ-
enced by the characteristics of the product and the
amount of existing prior knowledge.

The recent commentary discussed the application of
risk management as part of the QbD paradigm for
biosimilars. A QbD workflow for early-stage prod-
uct development was traced to define a path from
QTPP to the first set of CPPs based on scientific
considerations and risk management principles.
Thereby, major differences between the process de-
velopment of biosimilars and original biologic ap-
proaches were identified:

● A key difference in the development of biosimilars
is the source of prior knowledge. Both the targeted
quality profile and the available clinical experience
are determined by the original product. Risk as-
sessments were proposed as a tool to integrate this
additional information into biosimilar develop-
ment. Consequently, risk assessments not only as-
sure the logical integrity of risk-based QbD ap-
proaches but also help to process prior knowledge
for biosimilars.

● Tailored risk assessment approaches are needed to
process additional information in the risk-based
development of biosimilars. Therefore, the risk
assessment process as suggested by ICH Q9 was
reviewed and three elements were identified to
play a key role in targeted risk assessment ap-
proaches: proper understanding of target linkage,
risk assessment tool compliance, and criticality
threshold value.

● Increased process understanding is an important
cornerstone of the QbD paradigm. The novel ap-
proaches reported in this study for CPP risk as-
sessment (clustering of process parameters in pro-
cessing and physiology, inclusion of the factor
“Complexity” in the risk assessment tool) are an
important step towards this paradigm change.

The integration of these findings into biosimilar
applications via tailored risk management ap-
proaches triggers the ultimate goal of pharmaceuti-
cal development, which is product quality. As es-
sential novelty of this contribution, those tailored
tools and the proposed workflow, can now be used
generically for early bioprocess development of bio-
similars along QbD principles. The integration of
similar risk-based approaches into QbD submissions
is expected to be encouraged by the authorities, as
indicated by the ICH Q10 guideline and QbD pilot
programs. The advantage for the industry is not
supposed to be any reduction of regulatory require-
ments but rather opportunities for more flexible
approaches to meet these requirements. Over the
long term, this flexibility can lead to the promised
benefits of QbD such as reduction of development
costs and time. These conclusions confirm risk man-
agement as an important element of the implemen-
tation of QbD principles for biosimilar development
in the future.
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Abstract: The shift from empirical to science-based process development is considered to be a key 
factor to increase bioprocess performance and to reduce time to market for biopharmaceutical products 
in the near future. In the last decade, expanding knowledge in systems biology and bioprocess technol-
ogy has delivered the foundation of the scientific understanding of relationships between process input parameters and 
process output features. Based on this knowledge, advanced process development approaches can be applied to maximize 
process performance and to generate process understanding. This review focuses on tools which enable the integration of 
physiological knowledge into cell culture process development. As a structured approach, the availability and the pro-
posed benefit of the application of these tools are discussed for the subsequent stages of process development. The ulti-
mate aim is to deliver a comprehensive overview of the current role of physiological understanding during cell culture 
process development from clone selection to the scale-up of advanced control strategies for ensuring process robustness. 

Keywords: Biopharmaceuticals, cell physiology, mammalian cell culture, Process Analytical Technology, process develop-
ment, Quality by Design. 

INTRODUCTION 

 Biopharmaceuticals have been a major contributor of 
growth in the pharmaceutical industry during the last decade. 
Thereby, recombinant protein therapeutics produced in cell 
culture processes have gained particular importance due to 
the growing portfolio and sales volume [1]. The economic 
success has triggered a scientific revolution to increase sys-
tems biology and process technology knowledge of mam-
malian production systems. The swift scientific progress has 
been resumed in excellent reviews covering different aspects 
such as cell line development [2-5], high throughput process-
ing systems [6-8], omics approaches [9-13], process opera-
tions and monitoring [14-17], as well as process develop-
ment [18]. Today’s challenge is to integrate this expanding 
body of knowledge into advanced development strategies 
and facilitate science-based process development in order to 

• increase product yields, 
• be more efficient in terms of time to market,  
• avoid fail batches and  
• allow effective platform learning, which conse-

quently will enable to transfer the knowledge to an-
other process, product and site. 
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Institute of Chemical, Engineering, Vienna University of Technology, 
Gumpendorfer Strasse 1a/166_4 A-1060 Vienna, Austria; Tel: +43 1 58801 
166400; Fax: +43 1 588 01 166980; E-mail: christoph.herwig@tuwien.ac.at 

 In the biopharmaceutical industry, the available scientific 
knowledge has not yet been routinely implemented in proc-
ess development; instead, heuristic approaches are still often 
in use which have been created to develop platforms for cell 
culture processes. However, such approaches mostly rely on 
empirical experimentation and rarely deliver a sound scien-
tific understanding of the process. Thus, heuristic approaches 
often fail to run the process (or the production host) at its 
maximum performance potential. In contrast, this review 
focuses on the tools available to enable advanced process 
development. The cornerstone of advanced development 
strategies is the thorough understanding of the interactions 
between the production cell line and the process, which to-
gether define the physiological phenotype and ultimately the 
product [13]. The key of this understanding is the perception 
that the relationship between process inputs (process parame-
ters and the production host) and process outputs (physio-
logical phenotype and product quality) is ultimately deter-
mined by intracellular mechanisms occurring at multiple 
layers of cell physiology. Accordingly, advanced develop-
ment strategies implement tools that: 

1) Generate physiological knowledge through the 
identification and quantification of physiological 
markers. 

2) Link the gained physiological knowledge to process 
output and subsequently use this information to fa-
cilitate process development. 

 Here, the goal is to identify which kind of tools are re-
quired for the two subsequent steps of the physiological ap-

C. Herwig
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proach (Fig. 1) and to demonstrate the perceived benefits of 
their application. As a structured approach in this review, we 
discuss the following tasks of process development (Fig. 2). 

1) Existing tools for the integration of physiological 
information in clone screening and selection. 

2) Recent advancements in media selection and opti-
mization using physiological approaches. 

3) Tools for the model-based estimation of physiologi-
cal variables in cell culture processes with special 
emphasis on possible real-time applications. 

4) Implementation of physiological knowledge in 
process control strategies. 

 The implementation of physiological knowledge in proc-
ess development and control is in accordance with the Qual-
ity by Design (QbD) and Process Analytical Technology 
(PAT) initiatives which were introduced by regulatory bod-
ies to stimulate and enforce the generation of process under-
standing to ensure a quality product. A cornerstone of these 
initiatives is to understand the effect of Critical Process Pa-
rameters (CPPs) and Critical Quality Attributes (CQAs). 
Moreover, pharmaceutical companies are also interested to 
extend this understanding to key performance indicators 
(KPI), such as product titer, from an economical point of 
view. In biotechnological processes, the key to understand 
the relationship between CPPs, CQAs and KPIs is the gen-
eration of physiological knowledge [19]. Accordingly, the 
focus of this review is in alignment with the directives of 
QbD and PAT. 

1. CELL LINE SELECTION 

 Generation of the producer cell clone is the first chal-
lenge to be faced during biopharmaceutical process devel-
opment. It requires considerable amount of time, costs and 

labor representing a critical period in the timeline of the bio-
pharmaceutical projects.  
 The generation of the producer cell line typically starts 
with the expression of the targeted product in various cell 
lines screening for the most appropriate host. Chinese ham-
ster ovary cells (CHO), mouse myeloma cells, human em-
bryonic kidney-293 (HEK-293), baby hamster kidney 
(BHK), and human embryonic retinoblastoma (PerC6) cell 
lines are the most frequently applied mammalian cell lines in 
the biopharmaceutical industry [20]. It is notable, that the 
majority of biopharmaceuticals are produced in the various 
cell lines of CHO [4, 5].  
 Although the generated clones (cell lines) originate from 
the same host, their physiological phenotypes (i.e productiv-
ity, product quality, cell growth) display high divergence 
[21, 22]. This high divergence explains the need of the inser-
tion of a highly effective clone selection step into the devel-
opment process. After DNA transfer of the sequence encod-
ing the product into the selected host cell line(s), a few num-
bers of polyclonal pools are generated containing a large 
number of potential candidates of the production clone. The 
selection of the production clone from the cell pools occurs 
usually in two major rounds of selection. First, hundreds or 
thousands of individual clones are screened and examined 
generating a set of clones of tens, referred, as leader clones. 
Afterwards, these potential candidates are further screened to 
select the final production clone. The number of the host cell 
lines, pools, and individual clones are mainly dependent on 
screening capacities, timelines and usually varies in each 
project. 
 Here, we aimed to discuss the possible strategies which 
have been established to develop the efficiency of clone se-
lection. Investigating the available tools of clone selection 
(Fig. 1), empirical approaches seem to mainly dominate over 
physiology-based strategies. Most probably due to the high 

 
 
Fig. (1). The empirical and the physiological ways of process development and control. Empirical approaches describe direct relationships 
between process input and process output variables. Approaches based on physiological knowledge integrate scientific understanding and 
provide an opportunity for more efficient process development.  
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number of clones to be screened, the empirical clone selec-
tion primarily focuses on the analysis of the physiological 
phenotypes (i.e. high productivity, product quality), using 
them as selection markers, without the deeper understanding 
their cell physiological background, which we referred here 
as to physiology-based development. In the following few 
paragraphs, we aimed to give a short overview of both de-
velopment strategies, illustrated with the examples of some 
recent studies, and also to discuss the possibility of the inte-
gration of physiological knowledge into clone selection. 

1.1. Empirical Clone Selection 

 Focusing on the targeted physiological phenotype of the 
clone to be selected, the major drives are high productivity 
and the achievement of the desired quality profile of the 
product, i.e. glycosylation pattern, charge variant profile, 
aggregation, and correct folding. In order to improve the 
selection on these criteria, more strategies has been applied 
such as (1) the increase of the efficiency of selecting high-
producers, (2) the increase of the number of selection mark-
ers, and (3) improve cultivation technology of clone selec-
tion (Table 1). 

1.1.1. Increase Selection Efficiency 

 Traditionally, limiting dilution has been used for clone 
selection. By high dilution, the survival of the single cell 
clones is very low increasing the risk to lose the rare occur-
ring high-producing clones [23]. In order to avoid this, sev-
eral advanced technical improvements have been developed 
by using high-throughput and robotics techniques for the 
elevation of the number of the examined clones and/or the 
enhancement of the probability to isolate high-level produc-
ers. Furthermore, these techniques also succeeded in cou-
pling the measurement of productivity with single cell isola-
tion. Fluorescence activated cell sorting have been employed 
for the rapid screening of millions of cells followed by the 
isolation of high-producing clones [24-26]. The efficiency of 
selecting high productivity clones were also achieved with 
various semi-solid media based techniques such as matrix-
based selection assay (MBSA) [27], gel microdrop technol-
ogy (GMT) [28], laser enabled analysis and processing 
(LEAP) [29], and also the automated combination of these 
techniques [30, 31].  

1.1.2. Increase the Number of Selection Markers 

 Extension of the numbers of phenotypic parameters ex-
amined during clone selection can also contribute to the en-
hancement of process development strategies. Besides pro-

ductivity, the early integration of the analysis of the product 
quality attributes into clone selection is also advantageous, 
because numerous quality attributes, i.e. protein glycosyla-
tion, charge variant profile, aggregation (folding), biological 
activity, are mainly defined by the physiological characteris-
tics of the cell and these attributes can be modified only 
moderately by cultivation parameters [32-34]. The early 
analysis of quality attributes can enhance the probability to 
reach the targeted quality profile, an aspect especially impor-
tant in the development of biosimilar products. The devel-
opment of rapid high-throughput methods could be an alter-
native solution. Recently, a high-throughput method has 
been developed and used for the analysis of intraclonal vari-
ability of glycoprotein sialylation [35], while another array-
based glycoprofiling technique has been developed for clonal 
selection [36]. For charge variant analysis, a newly devel-
oped screening assay on a chip has been developed and its 
applicability has been tested in case studies of biological 
process development [37]. Affinity screens, aiming the esti-
mation of biological activity, can also be optional; tech-
niques are available using surface plasma resonance or label-
free biosensors [38, 39]. 

1.1.3. Improve Cultivation Technology of Clone Selection 

 Finally, the efficiency of clone selection can also be in-
creased by its combination with “traditionally” subsequent 
process development elements such as media, feed and con-
trol strategy optimization; this can speed up then the entire 
process development and also cut timelines in the project. 
This idea has been supported, for example, by the compara-
tive analysis of selected clones propagated under batch or 
fed-batch conditions [40]. Fed-batch cultivation is currently 
the major form for mammalian cell processes. The change 
from batch to fed-batch resulted in divergence in quality 
attributes (glycosylation and charge variants) of the product 
highlighting the advantage of inserting the production proc-
ess parameters into the process development stream, as early, 
as possible, even into clone selection. The minimization of 
the cultivation parameter differences between clone selection 
and production process – naturally under possible circum-
stances – also reduce the risk to lose the phenotypes obtained 
during the clone selection. 

1.2. Physiology-based Clone Selection 

 The physiological phenotype of a clone can be modified 
by various cultivation parameters, but it can be performed 
only within certain limitations, which are strongly deter-
mined by the genotype of the selected clone. The deeper 
understanding of these limitations on the cell physiological 

 
 
Fig. (2). A chronological overview of cell culture process development. This review focuses on the tasks marked with black boxes. 
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level during clone selection could provide further valuable 
information for the subsequent process development steps to 
predict not only the physiological phenotype of the clones 
but also their potential for optimization. Potential tools for 
the generation of cell physiological knowledge (1.2.1) and 
that of subsequent application are discussed below (1.2.2) 
and summarized in Table 1. 

1.2.1. Generate Physiological Knowledge for Clone Selec-
tion 

 As discussed above, the traditional principal criteria for 
clone selection is obviously the generation of clones with 
high productivity. Since the physiological background of 
high productivity has not been completely clarified yet, 
deeper understanding of its complex trait has been aimed in 
several studies. Omics approaches, a tool for this, provide a 
global view of cellular biological activities through the quan-
titative analysis of gene expression at the mRNA level (tran-
scriptomics), at the level of the expressed proteins (pro-
teomics) or they give a complex overview of the metabolite 
species of the cell at a certain time point (metabolomics) [12, 
41]. The most recent approach, fluxomics comprises a num-
ber of various methods with a common focus, metabolic flux 
analysis which aimes the measurement and estimation of 
biochemical reaction rates within an organism. The gener-
ated results share a critical link amongst genes, proteins and 
phenotype [42]. The recent publication of the first genomic 
next-generation sequencing of CHO-K1 cells was certainly a 
milestone in this field [43]. The type of the identified poten-
tial markers of high productivity varies from a single or 
small numbers to larger set(s) of key element(s). A recent 
transcriptome analysis of CHO cells resulted in the selection 
of one potential key factor regulating productivity in the 
mTOR signaling pathway [44]. Another analysis targeting a 
much wider (genome scale) range of genes in the combina-
tion of proteomics identified further potential genes and pro-
teins [45]. Further combinations of multiple omics ap-
proaches (transcriptomics, metabolomics, and fluxomics) has 
been recently used to analyze recombinant protein produc-
tion in HEK293 cells [46]. Instead of single key regulator(s) 
for high productivity, the meta-analysis using the data of 
previous transcriptome studies, has recently introduced a set 
of genes in different functional classes, such as cell growth 
and death control, energy metabolism, mRNA and protein 
processing [11]. Using metabolomics, a recent study has 
aimed to elucidate the key characteristics for high protein 

expression in CHO cells [47] while another one analyzed the 
clonal variations [48]. The physiological background of key 
physiological phenotypes such as culture growth rate and 
productivity could be investigated by large-scale microarray 
profiling [49]. The variation of clonal growth rate of CHO 
cells has been also characterized on transcriptome level pro-
viding more insight into the physiological background of the 
targeted phenotypes [50]. 

1.2.2. Use of Physiological Knowledge for Clone Selection 

 The deeper understanding of physiological phenotypes, 
i.e. high productivity, on genetic, RNA, protein or metabolite 
level are often discussed to provide potential targets for the 
generation of improved cell lines or for clone selection 
markers of high-expressors [45, 47, 51, 52]. Numerous suc-
cessful cell engineering strategies have been developed to 
improve protein expression targeting a wide variety of 
mechanisms involving transcription, translation, folding, 
protein processing or secretion, as well, as mechanisms of 
cell physiology, such as cell proliferation and survival [53, 
54] or to generate host cells for protein quality improvement 
for example with modified glycosylation potencies [5]. Thus 
the linkage between cell physiology and the targeted physio-
logical phenotypes has already been successfully applied in 
the development of improved cell lines.  

 In contrast, the integration of the physiological knowl-
edge into advanced high-throughput clone selection tech-
niques are currently not yet in the routine use according to 
our knowledge; however, it may have potentials for ad-
vanced process understanding and optimization. For exam-
ple, high productivity has been successfully predicted based 
on gene transcription data [55]. Such tools using physiologi-
cal knowledge can be applied in the future to validate the 
physiological phenotype obtained in the empirical clone se-
lection strategy. Furthermore, it has been shown that the ma-
jority of cells in transfected cell populations are functionally 
limited in terms of specific productivity; high productivity 
clones exceed this functional threshold in the cellular syn-
thetic processes [56]. The monitoring of these limitations and 
competencies early in the clone selection might also deliver 
additional information for subsequent optimization of the 
clones. Based on transcriptional profiling in early-stage de-
velopment, the prediction of other key physiological pheno-
types such as syalilation capacity or stress resistance has 
been envisioned [52]. 

Table 1. Tools for advanced clone selection. 

Clone selection 

Empirical development Physiological knowledge integrated in development 

I. Tools to generate physiological knowledge II. Tools to use physiological knowledge • Increasing the efficiency of selecting high-
producers 

• Increasing the number of selection markers 
(i.e. quality) 

• Improve cultivation technology of clone selec-
tion (i.e. fed-batch)	  

• Gene expression  
(sequencing, transcriptomics) 

• Protein expression (proteomics) 

• Metabolites (metabolomics)	  

• Mostly used for the development of new 
cell line generation strategies 

• Predict physiological phenotypes	  
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2. MEDIA SELECTION AND OPTIMIZATION 

 As basal and feed media vastly determine cell culture 
performance and product quality attributes, media selection 
and optimization have become one of the key steps in bio-
process development. Numerous chemically defined cell 
culture media products are commercially available [57] and 
several biopharmaceutical companies develop proprietary 
media platforms [58]. The commonly used heuristic ap-
proach for media screening is to compare several media for-
mulations and select the best candidates based on product 
titer or quality profile. The following step is media optimiza-
tion based on spent broth analysis information to overcome 
possible nutrient limitations [59] or the addition of supple-
ments to adjust product quality profile [60]. However, a 
thorough understanding of interactions between medium 
composition, cell physiology and process performance is not 
delivered by such approaches. Moreover, heuristic approaches 
rely on trial-and-error experimentation characterized by a 
high number of experiments and a high probability to fail in 
finding the optimum. Advanced knowledge-based methods 
are needed to increase the efficiency of media development 
and to maximize process performance. Thereby, the first step 
is to understand the effect of media composition on cell 
physiology and to link this physiological information to proc-
ess performance. This knowledge can be subsequently used to 
modify media composition in order to achieve the targeted 
physiological phenotype in the manufacturing process. 

2.1. Approaches to Understand the Effect of Media Com-
position on Cell Physiology and the Link to Process Out-
put 

 The most commonly considered level of cell physiology 
is metabolism in cell culture development. As demonstrated 
in numerous publications, investigating the interactions be-
tween media composition, metabolic data, and process per-
formance can deliver useful information for media develop-
ment. Recent studies reported differences in cell growth in 
different basal media formulations and detected correlations 
between metabolite concentrations and cell growth charac-
teristics with MVDA methods [61, 62]. Interestingly, Diet-
mair et al. reported that the observed differences could not 
be explained on the basis of extracellular concentration pat-
terns; profiling intracellular metabolites is also nessesary 
[62]. Accordingly, due to the complexity of mammalian cell 
metabolism and cell culture media, advanced analytical 
methods (e.g. determination of intracellular metabolite con-
centrations) and evaluation approaches (e.g. multivariate 
data analysis) are required in order to understand the impact 
of different media formulations on a metabolic level. 
 Advanced evaluation approaches should also include 
proper data processing to gain useful metabolic information. 
Instead of looking at concentration data, De Alwis et al. cal-
culated specific rates and conducted partial least squares 
regression to uncover correlations between amino acid fluxes 
and the resulting physiological phenotype (growth rate, pro-
ductivity and byproduct formation) [63]. Based on the re-
sults, the authors could derive valuable knowledge for media 
optimization from a few batch cultivations. However, spe-
cific rates are subjected to multiple type of errors (error 
propagated from prime variable measurements or the error of 

the calculation method), the sum of which can render the 
statistical analysis of specific rate datasets to be difficult 
[64]. Selvasaru et al. reported a workflow integrating spe-
cific rate calculation, data reconciliation, and elemental bal-
ancing to generate datasets for multivariate statistical analy-
sis in order to detect correlations between metabolite fluxes 
and the physiological phenotype [65]. The authors identified 
possible sources of errors in specific rate calculations and 
offered methods to identify these types of errors and reduce 
their impact on the statistical evaluation. 
 The high connectivity of metabolic pathways in mam-
malian cells renders conclusions based on data-driven statis-
tical approaches to be of limited use. As demonstrated by 
Selvarasu et al. in a later study, understanding the intracellu-
lar effects behind statistical correlations can be used to gain 
an enhanced knowledge of cell metabolism [66]. By conduct-
ing a systematic analysis of metabolite concentrations and 
metabolic flux analysis (MFA), the authors could identify 
intracellular oxidative stress as a cause of cell growth limita-
tion and a potential target of media development. Kyri-
akopoulos and Kontoravdi used flux balance analysis (FBA) 
to understand the effect of feed medium composition on me-
tabolism and on physiological features such as cell growth 
and productivity [87]. Thereby, FBA revealed a connection 
between high asparagine consumption and ammonia accu-
mulation, which subsequently led to a limitation in cell 
growth. These results demonstrate that approaches delivering 
a comprehensive overview on intracellular metabolic fluxes 
such as FBA or MFA are key methods to interpret the effect 
of medium composition on cell metabolism. The drawback 
of the reported metabolic models is that they only consider 
main catabolic and anabolic pathways. However, other 
pathways such as nucleotide sugar metabolism play a key 
role in cell growth [62] and protein glycosylation [67]. Models 
describing nucleotide sugar fluxes in protein glycosylation 
have been recently reported [68]. The integration of these 
pathways in metabolic models would accelerate a mechanis-
tic understanding of interactions between media composi-
tion, culture metabolism and process performance [69]. 
 Metabolism is only one layer of cell physiology. The 
metabolic fingerprint of the cell is influenced by complex 
control mechanisms occurring on the transcriptomic and 
proteomic level. Accordingly, in order to understand the ef-
fect of media composition on cell physiology, the considera-
tion of gene- and protein expression data might be necessary. 
A good example is basal medium copper content [70], which 
has been reported to affect lactate metabolism and culture 
performance [71]. Both a detailed metabolomic investigation 
[72] as well as a gene expression study [73] failed to uncover 
the exact physiological background of the phenomenon. 
However, a recent proteomic study reported that copper 
might exert its effect by influencing protein assembly in the 
mitochondrial electron transport chain [74]. The complex 
effect of copper on cell physiology demonstrates the need for 
complete omics approaches to facilitate the understanding of 
the effect of medium composition on a cellular level. The 
ultimate goal should be the development of mathematical 
models incorporating multiple layers of cell physiology. 
Meshram et al. reported the coupling of a population-balance 
model of apoptosis and a metabolic flux model to describe 
different stages of cell death in batch cultivations [75]. By 
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estimating the activity of the intrinsic apoptotic pathway 
using an ammonia accumulation-dependent term, the model 
established a connection between a metabolic byproduct and 
an undesirable physiological phenotype. Such a model can 
be used to assess the effect of modifications in media com-
position on metabolism and on the resulting physiological 
phenotype. 
 Beside the challenges of physiological characterization, 
media development is also characterized by complex ex-
perimental designs due to the high number of media compo-
nents. In order to describe correlations between media com-
position and process performance, multivariate experimental 
designs investigating more concentration levels for the indi-
vidual components should be performed [76]. Thereby, an-
other challenge is the complex media formulation procedure 
which has to be repeated for each individual point of the 
experimental space. Accordingly, advanced approaches are 
needed for experimental design, media formulation, execu-
tion and data exploitation. First, the number of experiments 
can be kept low by choosing proper experiment designs. It 
has been reported that a screening design involving 31 runs 
was sufficient to investigate the effect of 15 media compo-
nents as well as higher order interaction effects of these 
components on culture performance [77]. An advanced tool 
to overcome media formulation problems is media blending. 
In this approach, the levels of the individual components are 
adjusted by mixing different media formulations. By a sys-
tematic design of the blended formulations and sound statis-
tical analysis, it is possible to detect the effect of individual 
components on culture performance [78]. Using automated 
media blending and a high-throughput cultivation system, 
Roullier et al. executed 376 cultivations in a single experi-
ment campaign to test the effect of 43 components at three 
concentration levels [79]. Moreover, in order to support data 
exploitation from the large dataset, the authors applied ad-
vanced data analysis tools such as MVDA and score ranking.  
 For a detailed review of advanced microscale bioreactor 
systems the reader is referred to the works of Bareither and 
Pollard as well as Long et al. [6, 7]. Such systems are also an 
important tool for the implementation of integrated experi-
mental approaches which investigate the multivariate effect 
of cell line, basal medium and feed medium on culture per-
formance. A recent contribution of Xiao et al. reported a 
considerably shortened development time by using an inte-
grated media optimization approach [80]. The authors con-
ducted a multivariate experiment design where both basal 
and feed media were included as factors. This approach en-
abled to find the optimal media combination in three months 
compared to the one year long timeline of the classical se-
quential optimization. As the response on media develop-
ment can be cell line-dependent [67, 81], defining cell line as 
a factor in integrated experimental designs is essential to 
understand the interactions between clone selection and me-
dia development [60]. 

2.2. Use of Physiological Knowledge in Advanced Media 
Development Approaches 

 The most important physiological features of a fed-batch 
cell culture process are high viable cell density, high specific 
productivity, and product quality attributes that meet the 

targeted CQA range. Thus, an advanced media development 
strategy has to use the available knowledge on the correla-
tions between media composition and cell physiology in or-
der to adjust the three key features of cell culture perform-
ance. There are already several examples in the scientific 
literature which show a successful application of physiologi-
cal understanding for media development (Table 2). 

2.2.1. Cell Growth 

 Mechanistic knowledge on cell metabolism can be used 
to tailor media composition for improved metabolic and cell 
growth profiles. For example, interconnections between 
metabolic pathways can be used to reduce the production of 
toxic metabolites. Based on metabolic flux analysis results, 
Xing et al. successfully decreased ammonia accumulation 
and increased peak VCD by the targeted modification of feed 
media composition (e.g. decreasing glycine content and 
changing the ratio of glutamine and asparagine) [82]. The 
investigation of amino acid transport mechanisms can be 
also important for medium design. A recent paper combining 
metabolomics and transcriptomics reported an upregulation 
of gluthatione-associated amino acid transporters in the sta-
tionary phase [83]. This phenomenon indicates the onset of 
intracellular oxidative stress which can be overcome by add-
ing antioxidants to reach higher viable cell densities [66]. 
Membrane synthesis is a key feature of cell proliferation; 
however, lipid metabolism is not routinely monitored during 
process development. Based on the analysis of lipid synthe-
sis pathways using transcriptomic data, Schaub et al. suc-
cessfully increased viable cell density by supplementing the 
basal medium with chemically defined lipids [84]. 

2.2.2. Productivity 

 As amino acids are the structural building units of pro-
teins, media optimization strategies targeting the increase of 
cell specific productivity are focusing on balancing the 
amino acid content of basal and feed media. The detrimental 
effect of amino acid limitations on productivity has been 
demonstrated by several studies [85, 86]. In order to avoid 
such limitations, the amino acid content of the feed medium 
has to be adjusted to the metabolic characteristics of the pro-
ducer cell line. An advanced method for this task is to de-
termine specific amino acid uptake rates in batch cultures 
and accordingly modify feed medium composition [87, 88]. 
Moreover - although amino acid transport is not the rate-
limiting step of protein synthesis [83] - knowledge on the 
synergistic effects at transporter proteins might be necessary 
to optimize the concentration of competing amino acids [88]. 
Based on the knowledge of metabolic pathways, amino acid 
supplementation can be used to control metabolic fluxes in 
order to achieve the targeted physiological phenotype [89]. 
For example, as high specific productivity has been reported 
to correlate with high TCA activity [90], strategies to en-
hance TCA fluxes can be used to enhance product titers. 
Accordingly, Sellick et al. supplemented the feed medium 
based on intracellular metabolite profiling data to reach 
higher TCA activity and reported the increase in culture pro-
ductivity [91]. 
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Table 2. Examples of using physiological knowledge in media development. 

Toolset used I. II. 

Physiological pheno-
type/product quality 

Physiological 
level 

Physiological understanding 
Link to physiological pheno-
type / product quality 

Action taken based on 
physiological knowledge 

Ref. 

Metabolic 
Interconnection between glycine and 
ammonia production 

Toxic NH4
+ production inhib-

its cell growth 

Reduction of medium 
glycine content to decrease 
ammonia production 

[82] 

Transcriptional 
Bottleneck in lipid synthesis path-
ways on the level of protein tran-
scription 

Decreased cell growth due to 
low lipid availability 

Optimization of medium 
lipid composition 

[84] Cell growth 

Metabolic 
Intracellular glutathione concentra-
tion correlated with the transition to 
stationary phase 

Oxidative stress plays an 
important role in growth 
inhibition 

Addition of antioxidants [66] 

Metabolic 
Amino acid uptake rates are cell-line 
dependent 

Balanced amino acid metabo-
lism is required for maximal 
specific productivity 

Determine amino acid 
uptake rates and define 
medium composition 
accordingly 

[83] 

Productivity 

Metabolic 
TCA cycle activity is dependent on 
amino acid metabolism 

High TCA activity is required 
for high specific productivity 

Increase the concentration 
of amino acids which are 
fueling the TCA cycle 

[91] 

Metabolic 
High NH4

+ concentration leads to an 
increase in the intracellular pH 

The intracellular pH has an 
effect on product glycosyla-
tion 

Adjust medium composi-
tion to optimize metabo-
lism and decrease NH4

+ 
production 

[92, 
93] 

Product quality 

Metabolic 
Bottlenecks in nucleotide sugar 
metabolism affect the availability of 
precursors for protein glycosylation 

Nucleotide sugar precursors 
are required for appropriate 
glycosylation 

Adjust medium composi-
tion to overcome glycosy-
lation bottlenecks 

[96] 

 
2.2.3. Product Quality 

 The most frequently investigated quality attribute of 
monoclonal antibodies is N-linked glycosylation, as it shows 
high variability, has a great impact on the biological activity 
of the product and cannot be modified by standard down-
stream techniques. Fan et al. recently showed that combina-
tions of different basal and feed media deliver very different 
glycosylation patterns [67]. Thus, the investigation of the 
effect of media development on a physiological level is es-
sential to understand the responses in product glycosylation. 
The authors detailed three major mechanisms which can af-
fect the glycan structure of the product: product-associated 
mechanisms, resident protein-associated mechanisms, and 
metabolic mechanisms. The detailed metabolic and gene 
expression analysis revealed that insufficient glycosylation 
can be caused by bottlenecks in nucleotide sugar metabo-
lism. However, metabolic features which can be controlled 
by media development can also act on product quality 
through resident protein-associated mechanisms. Such a 
mechanism is the accumulation of ammonia leading to an 
increased intracellular pH, which subsequently affects the 
expression or the activity of glycosylation enzymes. Accord-
ingly, medium composition was successfully adjusted to 
influence product glycosylation through the control of am-
monia accumulation [92, 93]. Nucleosides, sugar precursors 
and trace elements have been used as media supplements in 
advanced experimental designs to precisely adjust product 

galactosylation [94]. Wong et al. demonstrated that these 
supplements can influence both the expression of glycosyla-
tion-associated Golgi proteins (resident protein-associated 
mechanisms) as well as the availability of nucleotide sugars 
within the Golgi lumen (metabolic mechanisms) [95]. A 
comprehensive study of Amand et al. investigating the effect 
of media supplementation on product glycosylation com-
bined the benefit of advanced experiment designs and in-
depth physiological analysis [96]. Based on the results, the 
authors could develop medium supplementation strategies to 
adjust the relative abundance of individual glycoforms. 
Moreover, the same authors also developed a mathematical 
model of product glycosylation to simulate the effect of dif-
ferent sugar nucleotide concentrations and glycosylation 
enzyme levels on the quality profile of the product [97]. 
Similar mathematical models might be a powerful tool to 
assess the effect of the supplementation of glycosylation 
precursors in the future. Furthermore, the detailed knowledge 
of the glycosylation pathways can be also used for the tar-
geted activation or repression of selected steps in the glyco-
sylation machinery by the addition of enzyme cofactors or 
inhibitors in cell culture medium [98]. 

2.3. Raw Material Variability in Cell Culture Media 

 Raw material variability, particularly lot-to-lot variability 
in cell culture media, is a major source of deviations in bio-
pharmaceutical processes [99, 100]. Accordingly, the control 
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of medium variability is a key task already in process devel-
opment. The first step is to identify the source of variability 
and assess its effect on cell culture performance. Due to the 
high complexity of cell culture media, advanced analytical 
tools are needed to detect differences in their composition. 
Spectroscopic methods have been demonstrated to be power-
ful tools to detect lot-to-lot variability in basal media formu-
lations [101, 102]. The prediction of cell culture performance 
with multivariate tools based on the spectroscopic data of 
different lots of basal medium [103] and of soy hydrolysates 
[104, 105] has been also reported. Moreover, the use of ad-
vanced analytical tools such as UHPLC-MS-MS and GC-MS 
enabled the identification of soy hydrolysate compounds 
which triggered cell growth and IgG production [106]. A 
similar approach was successfully used by Richardson et al. 
to identify components in soy hydrolysates which were re-
sponsible for the observed variability in product yield in two 
different CHO processes [107]. Based on this information, 
the authors achieved an improvement in product titer by se-
lectively adding one of the identified components to the 
process. Accordingly, a thorough understanding of raw mate-
rial variability is not only important to ensure risk mitigation 
and increase process robustness, but such knowledge can be 
also used in advanced process development approaches to 
improve process performance. 

3. REAL-TIME MONITORING OF MAMMALIAN 
BIOPROCESSES 

 As mentioned previously, enhanced process understand-
ing can be achieved by implementation of tools which focus 
on (I) generation of physiological knowledge and (II) linking 
the gained physiological knowledge to process output and 
subsequent use of this information for process improvement 
(Fig. 1). In this context, process monitoring strategies play 
an important role for generating physiological understanding 
by delivering physiological information. Moreover, physio-
logical information can be also the basis of advanced control 
strategies, which necessitate timely measurements of the 
desired attributes. Bioprocess monitoring strategies can be 
differentiated as either off-line or real-time methods accord-

ing to the availability of the information for subsequent con-
trol strategies. 

 Off-line methods, in which a sample is manually taken 
from the bulk of the bioreactor or downstream unit operation 
and analyzed in the laboratory with a time delay, provide 
often a variety of information with high precision. However, 
the obvious drawback of off-line monitoring is the inconsis-
tent delay between sampling and analysis times, which com-
plicates the use of results for improvement of running proc-
esses. In contrast, real-time monitoring techniques have the 
advantage of providing information during the process. The 
term “real-time” suggests that a pre-defined deadline should 
be upheld to produce the results of the analysis. Despite in-
creasing interest towards implementation of real-time moni-
toring strategies in recent years, as reviewed by several 
authors [15, 17, 108, 109], most available analytical devices 
are not capable of directly measuring the physiological state 
of organisms; therefore, they do not contribute to the under-
standing of the process on a physiological level.  
 However, software sensors (soft-sensors), which combine 
mathematical models and real-time measurements, provide a 
powerful tool for the indirect monitoring of inaccessible 
process parameters, physiological characteristics, and quality 
attributes of bioprocesses [110]. Hence, soft-sensors can not 
only be used for linking process parameters and cell physiol-
ogy (Fig. 3-I), but also to link the physiological phenotype to 
product quality attributes (Fig. 3-II). The implementation of 
real-time soft-sensing strategies requires advanced modeling 
as well as real-time monitoring techniques. The first part of 
this section reviews recent advances with respect to mathe-
matical modeling of physiological aspects of mammalian cell 
cultures (empirical as well first-principle models), focusing 
on approaches which are particularly promising for imple-
mentation of real-time soft-sensing and control strategies. 
Subsequently, frequently employed real-time monitoring 
strategies, required for implementation of soft-sensors, will 
be reviewed. While this section considers soft-sensing appli-
cations for process monitoring, in section 4, utilization of 
soft-sensors for control applications will be reviewed. 

 
 

 
 
Fig. (3). Soft-sensors can be used as tools for generating physiological knowledge as well as using physiological knowledge for real-time 
monitoring of quality attributes. Soft-sensors combine measurements provided by process analytical technologies with mechanistic and/or 
empirical models.  
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3.1. Model-based Monitoring of Mammalian Cell Cul-
tures 

 Physiological knowledge can be represented by mathe-
matical models, which are either empirical (data-driven) or 
mechanistic (based on first-principles). Such models can be 
subsequently used for soft-sensing or control applications. 

3.1.1. Empirical Models 

 Statistical methods can be employed for generation of 
physiological understanding as well as developing empirical 
models linking process parameters with cell physiology and 
quality attributes. In recent years, several authors have re-
ported the application of statistical methods to cell culture 
bioprocess datasets for generation of physiological knowl-
edge and monitoring techniques. For example, Le et al. ap-
plied kernel-based support vector regression (SVR) and par-
tial least square regression (PLSR) to time-series data of 134 
process parameters acquired through the inoculum train and 
production bioreactors of 243 runs to predict the final anti-
body concentration and final lactate concentration [111]. The 
authors found that the history of the culture (inoculum train) 
has a significant influence on the final process outcome. It 
was also possible to identify that the parameters related to 
lactate metabolism and cell viability have the highest influ-
ence on the process outcome. In addition, devising a real-
time process monitoring strategy for predicting the final 
product concentration of a run could be envisioned. Simi-
larly, Mercier et al. applied multivariate data analysis 
(MVDA) methods, namely principal component analysis 
(PCA) and PLS methods, on early development datasets of a 
human cell cultivation system in order to identify the effects 
of scale changes on the quality attributes of the process, con-
cluding that none of the critical quality attributes were af-
fected by scale-related variables [112].  
 Despite the usefulness of empirical modeling approaches 
for linking process parameters and quality attributes, the 
modeling often necessitates large amounts of training data, 
typically not available during bioprocess development 
stages. In addition, arriving at physiological interpretations 
based on the structure of empirical models is often challeng-
ing. For instance, whereas empirical models can be used to 
assess the influencing factors on quality attributes (Fig. 3-I), 
the underlying mechanisms influencing process outcome (the 
physiological phenotype) cannot be readily extracted. De-
spite this limitation, empirical modeling provides an invalu-
able tool for identification of significant influencing factors, 
and additionally a ground for generating hypotheses about 
the underlying cellular physiology. Subsequently, mechanis-
tic models, which rely on the fundamental principles of the 
system, have been gaining momentum in their application 
towards cell culture bioprocesses. 

3.1.2. Mechanistic Models 

 Mechanistic models are mathematical formulations of the 
internal operation of systems in terms of their constituent 
parts and mechanisms [113]. By relying on fundamental 
principles, such as mass and charge balances, mechanistic 
models do not require exhaustive training datasets; however, 
since these models often contain an empirical part (e.g. en-

zyme kinetics parameters), some degree of model calibration 
using process datasets is necessary. An example of a recent 
effort is published by Jedrzejewski et al., where a mechanis-
tic modeling framework for linking the extracellular envi-
ronment and intracellular metabolites of CHO cells with the 
glycosylation pattern of the final product has been developed 
[69]. Since this approach links process parameters (extracel-
lular environment) with cell physiology (intracellular con-
centrations) and quality attributes (glycosylation), it can be 
considered to include both sets of toolsets reviewed here (Fig 
3- I and II). The underlying kinetic model is based on en-
zyme kinetic expressions, mainly Michaelis-Menten kinetics, 
for describing the concentration of intracellular nucleotide 
sugars as a response to extracellular concentrations. The in-
tracellular nucleotide concentrations are subsequently used 
to predict the cumulative N-linked glycosylation of the anti-
body Fc region using another dynamic model describing 
monoclonal antibody glycosylation and nucleotide sugar 
donor transport within the Golgi apparatus [114]. The con-
trollability of such a system, that is the feasibility of achiev-
ing specific glycan distributions by variation of process pa-
rameters, has been recently addressed [115]. Combined with 
a robust real-time-capable simulation system, such ap-
proaches could find utility towards solving a highly relevant 
industrial challenge, namely steering bioprocesses towards 
production of pharmaceuticals with desired glycan distribu-
tions.  
 The recently sequenced CHO-K1 genome has led to an 
increased interest in ‘omics’ approaches that are relevant for 
bioprocessing applications and constitute a deeper form of 
mechanistic understanding of the biological system [12]. 
Computational models of cell metabolism, which are used to 
simulate metabolic fluxes, can be coupled with extracellular 
process conditions (e.g. substrate concentrations) via kinetic 
expressions. When integrated with omics datasets (transcip-
tomic, metabolomic, or fluxomic) these approaches can lead 
to novel insights into the physiological characteristics of 
production systems. Works on the topic of dynamic meta-
bolic flux analysis of CHO cell cultures have been reviewed 
previously [116]. While metabolic flux methods have often 
been employed for comparative analysis of fluxes between 
different process phases or conditions [117, 118], real-time-
capable applications have been rare. Here, we present an 
overview of some research efforts which are promising with 
respect to applicability towards real-time bioprocess moni-
toring and control (Table 3). 
 Combination of metabolic flux modeling with models of 
the bioreactor environment (e.g. dilution effects and uptake 
rates of extracellular metabolites) provides a promising tool 
for real-time monitoring and control applications. An inter-
esting contribution by Meshram et al. presents an integrated 
model of extracellular metabolites and intracellular fluxes in 
addition to intracellular caspases, which are found to be an 
indication for apoptosis in CHO cell culture [75]. The model 
has been further enhanced by considering different subpopu-
lations, so that monoclonal antibody production could be 
described after the exponential phase. Combined with real-
time measurements of extracellular metabolites, such a 
model could potentially provide real-time information re-
garding the apoptotic state of different sub-populations. 
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 Computational platforms for realizing real-time physio-
logical monitoring have been previously reported. For a 
comparison of software applications for quantitative meta-
bolic flux analysis, the reader is referred to a recent publica-
tion by Dandekar et al. [119]. Goudar et al. reported the use 
of a quasi real-time combination of on-line and off-line data 
to estimate metabolic fluxes [120]. The utility of the pre-
sented approach was demonstrated using CHO cells culti-
vated in perfusion reactors where exposure to lower nutrient 
concentrations shifted cellular metabolism toward a more 
efficient state, namely increased flux into the TCA cycle. In 
addition, the authors performed sensitivity analysis in order 
to identify the necessary on-line and off-line measurement 
methods required for the estimations. Similarly, Henry et al. 
developed a system for on-line estimation of intracellular 
fluxes using a metabolic model for HEK-293 cells [121]. 
The authors envisioned control applications in which the 
physiological state of the cell is held constant. More recently, 
Ohadi et al. reported a soft-sensor based on an Extended 
Kalman Filter (EKF), combining fluorescence spectroscopy 
with a dynamic mechanistic model for prediction of viable 
and dead cells, recombinant protein, glucose, and ammonia 
concentrations [122]. The performance of this soft-sensor 
was compared with the performance of a purely data-driven 
soft-sensor based on fluorescence spectroscopy, with the 
EKF-based soft-sensor providing consistently better estima-
tions for 10 CHO batch cultures. 
 Whereas these strategies provide suitable computational 
platforms for real-time applications, further integration with 
omics datasets (e.g. fluxomic) is necessary in order to arrive 
at verified predictions. In addition, most authors envision the 
implementation of the devised monitoring strategies for po-
tential control applications; however, reports of such efforts 
are rare. In the future, as more knowledge about the intracel-
lular mechanisms of mammalian cells becomes available, 
metabolic models incorporating a variety of omics data are 

expected to play a more pronounced role for real-time bio-
process monitoring and control applications, effectively aim-
ing at improving process efficiency and product quality. 

3.2. Process Analytical Technologies for Real-time Moni-
toring of Cell Culture Variables 

 Implementation of the aforementioned model-based 
monitoring approaches often necessitates the availability of 
real-time/on-line analyzers for measurement of various proc-
ess variables, which provide input to the computational algo-
rithms for either empirical or mechanistic models. This sec-
tion of the review covers recent advances regarding monitor-
ing of relevant cell culture process parameters and quality 
attributes, focusing on methods with a potential for real-time 
implementation. Despite the availability of several technolo-
gies for real-time measurement of extracellular components 
and biomass characteristics (e. g. in-line spectroscopic and 
capacitance methods) wide-spread industrial implementation 
of these methods is hindered by complicated calibration pro-
cedures (e.g. multivariate statistical modeling). In addition, 
the transferability of models across processing scales and 
equipment is an active area of research. 

3.2.1. Extracellular Substrates and Metabolites 

 Direct real-time measurement of extracellular metabolites 
and substrates is one of the cornerstones of model-based 
soft-sensor implementations. For mammalian cell culture 
processes, typical components to be measured include glu-
cose, lactate, glutamine, glutamate, and ammonium. In re-
cent years, the applicability of vibrational spectroscopic 
methods has been demonstrated, and a detailed review of 
these methods and the accompanying modeling/chemometric 
methodologies are available [123]. While most reported 
works demonstrate the applicability of selected measurement 
techniques, demonstrations of real-time implementations are 
few. Here we highlight contributions with demonstrated real-

Table 3. Summary of recent mechanistic modeling approaches suitable for real-time monitoring on physiological level. 

Toolset used I. II. 

Physiological 
phenotype / prod-
uct quality 

Physiological 
level 

Physiological understanding 
Link to physiological pheno-
type / product quality 

Action taken based on 
physiological knowledge 

Ref. 

Metabolic 
Interconnection between extracellu-
lar metabolites and intracellular 
fluxes 

Concentration of intracellular 
caspases influences apoptosis 

Utilization of the model for 
monitoring monoclonal 
antibody production 

[75] 

Metabolic 
Physiological variables described as 
function of extracellular concentra-
tions using Monod-type equations 

Viable and dead cell density 
and mAb concentration linked 
to intracellular fluxes 

Integrated model used for 
prediction of viable and 
dead cell densities, mAb 
concentration, and extracel-
lular metabolites 

[122] Cell characteristics 

Metabolic 
Metabolic flux analysis used for esti-
mation of intracellular fluxes as a 
function of extracellular concentrations 

NA NA [120] 

Product character-
istics 

Metabolic 
Extracellular environment has an 
effect on intracellular nucleotide 
concentrations 

Intracellular nucleotide con-
centrations affect the N-linked 
glycosylation patterns of anti-
bodies 

Integrated process model 
was developed for predic-
tion of glycosylation pat-
terns 

[69, 
114, 
115] 
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time implementation capabilities. For instance, real-time 
measurement of glucose concentration has been demon-
strated in CHO bioprocesses via in-situ Raman spectroscopy 
[124]. With a consistent measurement interval of 6 minutes 
the authors were able to demonstrate successful control of 
glucose concentration using a closed-loop non-linear model-
predictive controller. Similarly in another contribution, Abu-
Absi et al. verified the feasibility of real-time measurements 
of glutamine, glutamate, glucose, lactate, ammonium using 
in-situ Raman spectroscopy with an excitation wavelength of 
785 nm [125]. In a recent study, the performance of multi-
variate calibration models for measurement of several me-
tabolites using Raman spectroscopy was compared across 
different processing scales, from 3 L up to 2000 L. Models 
generated in small scale fermentations were applied to larger 
scales, and for some metabolites, model predictions were 
found to be acceptable. The authors also suggested a 
workflow for generation and adaptation of models, providing 
a general approach for future applications [126]. 

3.2.2. Product Quality Attributes (Post Translational Modi-
fications) 

 Recombinant protein biopharmaceuticals are mainly pro-
duced in mammalian cell culture processes due to the com-
plex and stringent requirements with respect to post-
translational modifications (PTMs). Glycosylation, a particu-
lar example of PTM and considered one of the most crucial 
quality attributes, is the addition of glycan structures to poly-
peptide chains. It is known to influence the physico-chemical 
properties of proteins (e.g. folding, solubility, electrical 
charge, stability) in addition to clinical function (e.g. effi-
cacy, in vivo half-life, immunogenicity) [15]. Therefore, real-
time monitoring of glycosylation patterns in cell culture bio-
processes is considered an important step towards implemen-
tation of the QbD paradigm, potentially enhancing regulatory 
acceptance and shortening the time to market. Furthermore, 
in the context of production of biosimilar products, regula-
tory authorities demand comparative studies showing the 
similarity of products with the original biologic products 
with respect to PTMs, especially glycosylation. 

 Traditionally, quantitative methods for characterization 
of glycosylation patterns are time and labor consuming, in-
volving enzymatic digestion, labeling, derivatization and 
separation using chromatographic techniques (gel electro-
phoresis) or mass spectroscopy (MS). In recent years, several 
developments have emerged which focus on shortening the 
complexity and duration of the analysis method. As high-
lighted by Pais et al. by combining fluorescent labeling and 
ultra-performance liquid chromatography (UPLC), results 
can be attained within 90 minutes [15]. In another approach, 
an at-line assay to isolate MAb charge variants in near real-
time was proposed as a quality control technique. The 
method could be performed by automatic sampling from the 
bioreactor and results could be attained within two hours 
[127]. The at-line application of analytic methods with high 
measurement accuracy is attractive; however, it often poses 
additional risk of contamination at the location of sampling 
and filtration. In this respect, in-situ methods involving spec-
troscopic techniques can provide advantages. In recent years, 
several authors have reported attempts utilizing vibrational 

spectroscopic methods, especially Raman, for monitoring 
protein quality [128-130]; however, such techniques are not 
used routinely for the monitoring of product quality attributes. 
As mentioned before, the complexity of calibration methods 
and lack of calibration datasets can often be a limiting factor 
for widespread adaptation of spectroscopic methods.  

3.2.3. Cell Characteristics (e.g. vcd, Viability, Apoptosis) 

 In mammalian cell culture processes, cell-related vari-
ables, such as viable cell density (VCD), viability, and apop-
tosis, are known to have a large influence on the quality at-
tributes of the process and recombinant protein titer [75]. In 
addition, viable cell density is often a key variable that needs 
to be controlled in perfusion systems to ensure the consis-
tency of the process. Therefore, demand for real-time moni-
toring techniques of these variables is strong.  
 Radio-frequency impedance methods (dielectric spec-
troscopy), in which the permittivity of the culture fluid is 
measured at multiple frequencies, have been long used to 
measure parameters related to cells and are considered reli-
able because of their perceived simplicity and accuracy [131, 
132]. A recent example of the estimation of VCD in CHO 
cell cultures using dielectric spectroscopy and multivariate 
regression models is provided by Lee et al. [132]. The 
authors compared the performance of different multivariate 
techniques with the classical Cole-Cole equation-based ap-
proaches and found that multivariate methods, particularly a 
locally weighted partial least squares model, offered the best 
estimation performance. Similarly, Párta et al. employed 
dielectric spectroscopy for online monitoring of VCD in in-
dustrial CHO cultivations, comparing the performance of 
various preprocessing and modeling techniques [133]. The 
authors were able to demonstrate the feasibility of on-line 
VCD measurement during both the growth as well as decline 
phases using multivariate calibration approaches. 
 Alternatively, many authors have reported the use vibra-
tional spectroscopic methods for measurement of cell-related 
variables of cell culture processes. For instance, Sandor et al. 
compared the performance of MIR and NIR for monitoring 
total cell count (TCC) and viability in cell culture processes 
and reported that NIR provided slightly more accurate pre-
dictions when applied to an external validation dataset [134]. 
Abu-Absi et al. also reported the utility of in-line Raman 
spectroscopy for measuring TCC and TCD [125]. Compar-
ing the cross-scale performance of calibration models for 
Raman spectroscopy, Berry et al. found that models for pre-
diction of cell characteristics exhibited scale-dependent ef-
fects and were not suitable for transfer from development 
scale to manufacturing [126]. 
 In-situ microscopy is another potentially real-time capa-
ble method and has a relatively long history of being applied 
for monitoring of mammalian cell cultures. More than a dec-
ade ago, Joeris et al. reported the measurement of cell den-
sity, cell size distribution, and degree of aggregation using 
in-situ microscopy and real-time digital image processing 
software [135]. More recently, Widemann et al. demon-
strated real-time monitoring of viability using an in-situ mi-
croscopic cytometric method [136]. By coupling in-flow 
imaging capabilities, flow-cytometry, and high-throughput 
image analysis software, imaging flow cytometric ap-
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proaches have been attracting more interest for applications 
involving morphological characteristics of organisms [137].  

4. ADVANCED CONTROL TOOLS FOR MAMMAL-
IAN CELL CULTURES 

 Mammalian processes are highly complex with diverse 
requirements for nutrient availability and susceptibility to-
wards changes in process parameters. Accordingly, sophisti-
cated control tools are required to tightly control process 
parameters and nutrient availability within the targeted 
ranges. This section of the review deals with technological 
process control strategies, such as feed profile, pH, tempera-
ture, and pO2 control. One key aspect of mammalian proc-
esses is the control of overflow metabolism (e.g. lactate pro-
duction). Many authors have shown that lactate overflow 
may be detrimental to product quantity and quality [138-
140]. A recent review states that lactate metabolism is a ma-
jor challenge in cell culture bioprocess development [14]. 
Balanced metabolism can be achieved by the proper adjust-
ment of the process technological parameters. The possibilities 
for technological process control strategies to maintain a bal-
anced substrate flux depend on the choice of process mode.  

Batch 

 Batch is the most simple process mode. The nutrients are 
available for the cells in excess until the onset of limitations, 
thus nutrient availability cannot be controlled in a batch 
process. However, other process parameters (pH, tempera-
ture and pO2 settings) can be adjusted to steer cell metabo-
lism in the desired way. 

Fed-batch 

 The feed rate of substrates (e.g. C-sources or amino ac-
ids) can be adjusted beside other process parameters (pH, 
temperature and pO2 settings) in order to adjust cell metabo-
lism during the cultivation. Fed-batch is the most widely 
used process mode nowadays.  

Continuous / Perfusion Process 

 This process mode offers the possibility to remove over-
flow and toxic metabolites such as lactate or ammonia, 
which have a detrimental effect on the cells. While the feed-
ing rate in a continuous process is governed by the maximum 
specific growth rate, the perfusion rate in a perfusion process 
can be selected independently of the specific growth rate 
since the cells are retained within the process. Despite its 
advantages, this process mode requires the most complex 
technical facilities and sophisticated control strategies. 
 Control strategies can be differentiated with respect to the 
source of information for process manipulations. Open loop 
control strategies do not require measurement of real-time 
inputs. While open loop control has the advantage of being 
simpler to apply, it cannot be adapted to the highly dynamic 
and variable physiology of mammalian cell culture proc-
esses. Hence, open loop strategies are often not flexible 
enough or are only useful for very well characterized proc-
esses with limited variability. In contrast, closed loop strate-
gies can be flexibly adapted to variations in the physiology; 
however, these strategies require real-time measurements of 

physiological variables to adapt. As reviewed in the previous 
section, a great amount of PAT tools have been reported 
offering the possibility to monitor a large number of different 
process variables in real-time, which are then available as an 
input for control strategies. However, open loop control 
strategies, for example bolus feed additions in pre-defined 
amounts, are still frequently used rather than timely adaptive 
control strategies. The potential of the application of PAT 
tools in closed loop control strategies to improve process 
performance is still not fully exploited. In order to facilitate 
the use of advanced control strategies, the ability of these 
tools has to be demonstrated in order to satisfy the most im-
portant criteria towards pharmaceutical processes (e.g. sim-
plicity, transferability, robustness). 

4.1. Control of Process Parameters: pH, Temperature 
and pO2 

 These basic process parameters can be modulated in all 
process modes to steer cell metabolism towards a balanced 
substrate flux among production, biomass formation and 
catabolism. This is very simple to apply since these process 
parameters are routinely measured in situ in most bioreactor 
systems for mammalian cell culture. 

4.1.1. Modulation of Process Parameters such as pH, Tem-
perature, pO2 etc. in Mammalian Cell Culture 

 Shifting of pH or temperature is often used for process 
optimization to maximize biomass productivity in the first 
cultivation  phase while to promote high product titers and to 
limit by-product formation in the later phase [141]. The re-
duction of the temperature from 37°C to 32.5°C was shown 
to result in a decrease in growth, metabolite and lactate pro-
duction [142]. Variation of the pH value within the physio-
logically viable range from 6.85 to 7.8 greatly effects lactate 
production. At a lower pH, a decreased specific lactate pro-
duction rate was reported, which may have beneficial effect 
on viable cell density and productivity [143, 144]. Dissolved 
oxygen concentration at very low levels (< 10%) was shown 
to have an effect on lactate metabolism resulting in an in-
creased overflow metabolism (lactate production) and a de-
creased viable cell density [145, 146]. 

4.1.2. Feed Control Strategies Mixed with Control of Other 
Process Parameters 

 pH-auxostat is a processing strategy which applies in-situ 
pH measurement to control the feed rate in fed-batch and 
continuous mode. This strategy was introduced in CHO per-
fusion processes; however, the lack of reliable real-time in-
formation on closed loop feedback control has prevented the 
application of advanced process control strategies [147]. 
More recently a pH-auxostat control strategy has been suc-
cessfully implemented to control the feeding rate in a fed-
batch culture [148].  
 As discussed at the media optimization section, numer-
ous media supplements are known which can influence 
CQAs such as product glycosylation. Advances in the real-
time determination of CQAs [149] will enable the 
implementation of control strategies which adjust the feeding 
rate of media supplements with respect to the real-time 
measured CQA profile. 
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4.2. Direct Closed Loop Feed Control Algorithms 

 There are two different approaches for feeding control: i) 
adaptation of the feeding rate based on the real-time meas-
urement of a limiting substrate (e.g. glucose or glutamine); 
ii) measurement of viable cell density. In both approaches, 
the real-time measurement is directly linked to the control of 
the feed rate. 
 The implementation of a feedback control algorithm 
maintaining glutamine concentration at a level of 0.1 mM by 
on-line direct measurement of glutamine was reported to 
improve both cell densities and viral production [150]. An 
on-line monitoring and automated fed-batch system was used 
to control glucose and glutamine concentration which had a 
significant effect on cellular metabolism leading to an in-
creased efficiency of nutrient utilization, altered byproduct 
synthesis, while it had no effect on cell growth rate [151]. 
Furthermore, a review from 2009 showed that near infrared 
spectroscopic techniques are extensively used for monitoring 
and control of cell culture processes [152]. 
 Capacitance was measured to dynamically adapt the 
feeding rate in a fed-batch culture based on the measurement 
of viable cell density [131]. Other authors have compared the 
two different approaches (measurement of the limiting sub-
strate or viable cell density) for automated dynamic feeding 
[153]. The first was based on the real-time estimation of vi-
able cell density based on capacitance measurement, while 
the other was based on automated at-line glucose measure-
ments. The authors found that measurement of glucose was 
superior to feed control based on measurement of VCD, al-
though they also stated that not all cell lines profited equally 
from this approach and that the optimization of feed compo-
sition was also critical for optimization of the process. 

4.3. Soft-sensor Closed Loop Feed Control Algorithms 
 As mentioned in section 3 of this review, a soft-sensor is 
an algorithm which is able to calculate the desired output(s) 
from multiple inputs using a mathematical algorithm (e.g. a 
mechanistic model which represents the growth kinetics of the 
culture). The output of the soft-sensor can be used to control 
the feeding rate in fed-batch and perfusion processes. 

 A soft-sensor based approach was used as early as 2003 
to control a mammalian process reported by Frahm et al. 
[154]. The control strategy was based on an adaptive open 
loop control algorithm (without real-time measurement) with 
an interface for automated adaption to new information de-
rived from off-line samples. In a later contribution, the 
authors tested different soft-sensor approaches to control the 
feeding rate in fed-batch cultivations. For well-characterized 
processes, the authors suggested the application of a fixed 
feed rate trajectory, while they recommended adaptive feed-
ing control for new processes, because adaptive feeding 
strategies do not require extensive process knowledge [155]. 
The incorporation of on-line nutrient measurement informa-
tion into adaptive feed control will also enable the adjust-
ment of feeding strategies to the different nutrient demand of 
different cell lines in early phase process development [88]. 
Real-time Raman spectroscopy was used to determine resid-
ual substrate concentrations and the integration of these data 
in a model-based feed rate controller was demonstrated in 

fed-batch process [124]. More recently a model-based strat-
egy has been used by Aehle et al. in a fed-batch process by 
using oxygen uptake rate as an input variable for the estima-
tion of viable cell density and the subsequent adaptive con-
trol of the feeding rate [156]. The same authors have also 
found that their adaptive feed control approach delivers in-
creased batch-to-batch reproducibility [157]. A similar feed 
control method was used by other authors to control the feed 
rate in a perfusion process. The feeding of amino acids was 
controlled on the basis of the determination of the oxygen 
uptake rate during perfusion; furthermore, the application of 
the adaptive control approach resulted in increased viable 
cell density and volumetric productivity [158]. 

4.4. Applicability for Commercial Production 

4.4.1. Summary of Available Control Actions 

 Conventional (heuristic) process control is open loop and 
less flexible with respect to variability in cell physiology 
possibly appearing in manufacturing processes. Therefore, 
open loop control strategies should be used for well-
characterized processes after excluding process variability 
during process development. 
 The potential of advanced process control strategies have 
been often shown to improve product yield and product qual-
ity (Table 4). Advanced process control integrates the benefit 
of adaptive control and closed loop control strategies. Ad-
vanced control strategies use process understanding to con-
trol cell physiology based on real-time measured signals to 
balance substrate flux between production, biomass forma-
tion and catabolism. The proposed benefit of these advanced 
processing strategies is controlled and consistent process 
output and a reduction in the number of out-of-specification 
batches. 
 Table 5 summarizes the possible control actions of ad-
vanced processing strategies with respect to the applicable 
process mode (batch, fed-batch or perfusion) and the complex-
ity of the control algorithm (direct or soft-sensor control). 

4.4.2. Evaluate Complexity and Ease of Application 

 While advanced process control strategies and new proc-
ess technological concepts are abundantly available in the 
literature, they are rarely applied in the industry for commer-
cial production. 
 Typical acceptance criteria for advanced control strate-
gies within the industry are simplicity of operation, transfer-
ability to similar processes or other scales and robustness 
with regard to probe failure (Table 6). The modulation of 
basic process parameters within the knowledge space deter-
mined during process development is simple to realize and 
already used within the industry to a larger extent. Direct 
control action on the perfusion- or feed rate is also relatively 
simple and robust, if it is based on non-invasive/in-line 
probes. However, the transferability and flexibility to adapt 
the control strategy to similar processes and other scales is 
lower compared to soft-sensor control algorithms. If at-
line/invasive sensor inputs are used, the transferability and 
robustness are reduced for both direct control actions and 
soft-sensor closed loop control algorithms. 
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Table 4. Overview of advanced processing tools published in the scientific literature. 

Toolset used I. II. 

Physiological pheno-
type / product quality 

Physiological 
level Physiological understanding Link to physiological pheno-

type / product quality 
Action taken based on 
physiological knowledge 

Ref. 

Limited control of byproduct for-
mation and onset of nutrient limita-
tion 

Modulation of basic process 
parameters 

[141-146] 

Full control of nutrient limitation 
on a desired level and limited con-
trol of byproduct formation 

[88, 124, 150-
155, 158] 

Metabolic balance be-
tween substrates and 
products 

Metabolic 

Full control of cell growth on a 
desired level and limited control of 
byproduct formation 

Increase productivity and / 
or improve product quality 

Act on feed-/perfusion rates 

[131, 153, 
156, 157] 

 

Table 5. Overview of process modes and control tools published in the scientific literature. 

Batch Fed-batch, Continuous Perfusion Direct control Soft-sensor control 

Basic controls (pH, temperature and pO2) [141-146] [147, 148] 

 Feed rate [131, 150-153] [88, 124, 155-157] 

 Perfusion rate  [18, 154] 

 

Table 6. Acceptance criteria for advanced control strategies within the industry. 

Control strategy Simplicity Transferability Robustness 

Modulation of basic process parameters (e.g. pH shift) +++ + ++ 

Direct control of perfusion- / feed rate based on non-invasive in-line sensor inputs (e.g. off-gas) ++ + ++ 

Direct control of perfusion- / feed rate based on invasive on- at-line sensors (e.g. filtration probes) - + - 

Soft-sensor closed loop control algorithms based on non-invasive in-line sensor inputs (e.g. off-gas) - +++ + 

Soft-sensor closed loop control algorithms based on invasive on- at-line sensors (e.g. filtration probes) -- ++ -- 

 
CONCLUSIONS 

 An increasing number of scientific publications indicate 
that physiological knowledge is growing for mammalian cell 
culture technologies. This knowledge facilitates the move 
from empirical process development towards the routine use 
of physiology-based approaches. In order to support the im-
plementation of such approaches, two major toolsets are re-
quired. The first challenge is to generate physiological 
knowledge by the quantification and system-level evaluation 
of physiological markers such as metabolic pathway activi-
ties, transcript levels or morphological information. The sec-
ond toolset is required to link the physiological knowledge to 
process output, for example by predicting the physiological 
phenotype or product quality based on a physiological 
marker or a system-level model. The ultimate goal is then to 

implement the physiological knowledge in advanced process 
development and control strategies. A qualitative gap analy-
sis is provided below in order to demonstrate the availability 
of the toolsets for the reviewed tasks of process development 
(Fig. 4). 
 Numerous tools have been reported in the scientific lit-
erature for the identification and quantification of physio-
logical markers. Although system-level models have been 
recently reported which integrate different types of physio-
logical information, the application of such models in the 
reviewed process development tasks is still rare. Similarly, 
the implementation of physiological knowledge in process 
development is rather a future perspective as a routine exer-
cise. For example, clone selection strategies which use 
physiological markers have not been reported in routine 
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process development strategies. Also in the other reviewed 
process development tasks, the application of physiological 
approaches is limited to individual cases. However, these 
studies already perceive the benefits of integrating physio-
logical information into process development, namely 

• increased efficiency in process development by tar-
geted optimization, 

• increased process performance delivered by adap-
tive process control strategies which respond to 
physiological changes during the cultivation, 

• model-based prediction of process optimum and in 
general, enhanced process understanding which can 
support QbD filings. 

FUTURE PERSPECTIVES 

 Due to the high complexity of mammalian cell physiol-
ogy and cell culture processes, empirical approaches were 
used for a long time in process development. The advent of 
Quality by Design provoked the identification of causality 
links between process parameters and product quality attrib-
utes. The next challenge is to implement systems biology 
knowledge in cell culture development in order to under-
stand the mechanistic links between process input, cell 
physiology and the resulting phenotype. As demonstrated in 
this review, many of the necessary tools are already avail-
able; however the completion of the toolset with the missing 
approaches is a future task. For example, the integration of 
physiological data in system-level models is necessary to 
deliver a sound scientific understanding of the interactions 

between the host cell and the production process. Based on 
this knowledge, genetic engineering tools for the targeted 
modification of physiological features will be applied. 
Moreover, physiological markers will be used in early proc-
ess development in order to increase the efficiency of clone 
and media selection. The integration of physiological infor-
mation in process monitoring tools will also enable to de-
velop adaptive control tools to drive robust processes at their 
potential performance maximum. 
 The routine application of available and novel physio-
logical tools for cell culture process development will be 
facilitated by several factors in the near future. First, expand-
ing biopharmaceutical product portfolios will necessitate 
subtle solutions in bioprocess development, for example to 
meet the strict quality specifications of biosimilar drug sub-
stances or to rapidly develop manufacturing technologies for 
personalized medicine products. Meanwhile, economical 
drivers will force pharmaceutical companies to reduce the 
number of out-of-specification batches and to increase the 
efficacy of process development, which goals can be ulti-
mately achieved through enhanced process knowledge. Fi-
nally, as already forecasted in the Quality by Design frame-
work, regulatory bodies will demand increased process un-
derstanding and the demonstration of control strategies 
which assure constant product quality in future process vali-
dation documents [159]. In accordance with this, the concept 
paper of the ICH Q12 guideline encourages the application 
of advanced development and control strategy approaches to 
provide scientific foundations for knowledge management 
throughout the lifecycle of the product. 

 
 
Fig. (4). Gap analysis of the availability of tools required for physiological approaches in process development. White coloring indicates 
routinely used tools, grey coloring indicates available but rarely reported tools and black coloring marks gaps where tools have been not re-
ported in the scientific literature.  
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Abstract 

Pharmaceutical companies make great efforts to improve bioprocess technologies in order to 

meet increasing demands for monoclonal antibodies. As cost and time are becoming factors 

with increasing importance in bioprocess development, enhanced approaches are needed to 

extract valuable information from a limited number of experiments. Thereby, the principles of 

Quality by Design can be used as a guide to improve data exploitation or to rationalize 

experimental effort. This contribution presents a workflow for the exploitation of the 

information in physiological variables from simple uni- or bivariate Chinese Hamster Ovary 

experiments. Specific rates with temporal resolution were calculated to extract quantitative 

information on cell physiology in different phases of fed-batch cultivations. Different aspects 

of bioprocess development such as stirring speed, medium composition or inoculation 

strategy were investigated and statistical tests were conducted in order to verify the effects of 

the experimental factors on cell physiology. The presented workflow shows existing tools of 

process development such as univariate experiments and statistical tests in order to 

demonstrate their interpretation in the Quality by Design context. Thereby, novel 

characteristics of the physiological responses to the investigated process parameters such as 

changes in specific growth rate or overflow metabolism could be identified. 

 

Introduction 

The amount of different monoclonal antibody products (MAbs) produced in the 

pharmaceutical industry has increased drastically in the last decades. Thereby a great amount 

of experience has been gathered about the expression of MAbs with mammalian hosts such as 

Chinese Hamster Ovary (CHO) cell lines. The implementation of Quality by Design (QbD) 

for biopharmaceuticals has accelerated the generation of process knowledge even further. 

However, the guidelines of the International Conference on Harmonization (ICH) have left 

open questions which kind of process understanding is necessary for QbD [1]. 

Numerous publications demonstrated how QbD tools such as risk assessments and 

multivariate experiment designs (DoEs) can be used to gain a better understanding of the 

manufacturing process [2-4]. Risk-based approaches support process characterization by 

integrating prior knowledge from other processes on the same platform or by decreasing the 

number of investigated process parameters based on scientific considerations [5]. Multivariate 

designs are subsequently used to gain enhanced process understanding in a reduced number of 

experiments. Despite these benefits of multivariate designs, univariate experiments are still 
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frequently used, since their experimental plans are easier to perform, especially if unexpected 

issues such as variations in inoculums material or cell culture medium components show up. 

It is important to apply the same quality requirements of statistical validity and reproducibility 

to simple experimental designs as for a full blown DoE approach [6]. We propose that - 

similarly to the workflows reported for the analysis of multivariate datasets [7,8] - univariate 

experiments should be carefully evaluated within a structured workflow to avoid redundant 

follow up experiments and to extract all the information the dataset contains. Thereby, basic 

principles of QbD such as the call for science- and risk-based methods should be used as a 

guide to develop enhanced workflows.  

The first step is to gain scientific understanding by consequent data exploitation in order to 

extract the necessary information from a lower number of experiments. This starts with proper 

choice of process variables with high information content for the design and evaluation of the 

experiments [9]. Physiological variables such as specific rates deliver scale- and technology-

independent information about the growth kinetics and metabolic behavior of cells in the 

cultivation. As these variables contain condensed process information, their use often leads to 

enhanced process understanding more directly compared to prime variables such as viable cell 

density or metabolite concentrations [10,11]. Specific rates quantify material fluxes related to 

a single cell in a finite time period, however, they are often calculated from prime variables 

measured at discrete time points. The standard error of prime variable measurements, as well 

as the slow dynamics of cell metabolism result in low signal to noise ratio (SNR) of the 

calculated specific rates in mammalian cell cultivations [12]. In order to decrease the relative 

error propagated from prime variables in the specific rates, many studies calculated these 

variables for the whole cultivation simply by looking at a long temporal history to compare 

different experimental setups [13-16]. However, choosing a too large time period for the time 

history decreases the temporal resolution of specific rates and compromises the detection of 

different phases and distinct events during the process. This may render the detection of 

physiological changes and process events typically occurring in mammalian fed-batch 

cultivations impossible. Accordingly, the time period of specific rate calculation has to be 

chosen short enough in order to achieve adequate temporal resolution of the physiological 

changes and to support scientific understanding throughout process development.  

Quality by Design promotes the use of risk-based approaches for the design [17] as well as for 

the evaluation of experiments [18]. Statistical tests are valuable tools to challenge hypotheses, 

which have been previously imposed based on the investigated data, in a scientifically sound 

way. By the careful definition of acceptable risks for false positives or false negatives, which 
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one considers acceptable during process development, these tools can be used to decrease the 

number of experiments required for a decision. Tools for the planning and statistical 

evaluation of multivariate experiments, such as Design of Experiments (DoE), are available 

and routinely used in scientific and industrial research groups [2,4,19]. However, despite their 

ease of applicability, proper statistical evaluation of univariate experiments is often missing in 

scientific publications. A number of very simple univariate tests (e.g.: t-test, f-test) which are 

well documented in standard text books for statistical data analysis can be used for such 

purposes in analysis of variance (ANOVA). While these tests are easy to apply, a careful 

application of appropriate statistical tools and the definition of the risk threshold have a major 

impact on the outcome of the analysis.  

In this study, a structured workflow was applied to analyze univariate experiments and simple 

bivariate designs from the development of a CHO cell culture process producing a 

monoclonal antibody. First, specific rates were calculated for distinct time periods in order to 

gain temporal resolution of physiological changes. These variables were used to understand 

the effect of selected process parameters on cell physiology. Analysis of variance was 

subsequently conducted in order to support hypothesis testing. The reported workflow 

enabled to assess the criticality of the investigated process parameters with respect to their 

effect on cell growth and metabolite formation. To our knowledge, a detailed investigation of 

the effect of these process parameters on cell physiology has either not been reported in the 

literature before (basal medium insulin content or inoculation strategy), or it was not analyzed 

in a temporally resolved fashion (stirring speed). 

 

Materials and methods 

Cell line and preculture 

A Chinese hamster ovary (CHO-K1) cell line producing an IgG1 monoclonal antibody was 

cultivated in disposable shake flasks before inoculating the bioreactors. Stocks were revived 

in commercially available basal medium (ActiCHO P, GE Healthcare, Little Chalfont, UK), 

supplemented with 8 mM L-Gln (Life Technologies, Carlsbad, CA) and 5 mg/l Insulin (GE 

Healthcare, Little Chalfont, UK). The cells were sub-cultured every 3–4 days with a seeding 

density of 0.3·10
6
 cells/ml and were grown in shake flasks of different scales. The shake 

flasks were incubated at 37°C with humidified air containing 5% CO2 at 110 rpm orbital 

stirring speed. 

Bioreactor cultivations 
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Fed-batch cultivations were performed in bioreactors with 1 l maximal working volume 

(Sartorius AG, Göttingen, Germany). The bioreactors were equipped with on-line pH, 

temperature and pO2 probes and the process parameters were controlled by a Biostat BPlus 

Twin DCU (Sartorius AG, Göttingen, Germany). The targeted seeding cell density was 

0.5·10
6
 cells/ml. If not specified differently in the Results and Discussion section, the 

following parameters were used for the cultivations. Stirring speed was set to 125 rpm, 

cultivation temperature was 37 °C and the dissolved oxygen rate was maintained at 40 % of 

air saturation by air–oxygen mixture sparging. pH was maintained in the range of 7.15 ± 0.05 

by automatic addition of 10 % H3PO4 solution or 0.5 M Na2CO3 solution. In order to reduce 

foaming, FoamAway (Life Technologies, Carlsbad, CA) was added. The basal medium was 

the same as the one used for the preculture (vide supra). Feeding was initiated on day 3 by 

adding feed medium to the cultivation every second day. The actual feed volume was 

determined as 5% of the current broth volume. The feed medium was a commercially 

available medium (Excell, Sigma-Aldrich Corp., St. Louis, MO) supplemented with amino 

acids. 

Inoculation procedures 

In the experiment investigating the effect of inoculation strategy two different inoculation 

procedures were applied. For the direct transfer in the bioreactor (marked with “D”), the 

calculated amount of inoculum broth was first loaded from the shake flask into a sterile 

vessel. The volume of the broth was refilled up to 100 ml with fresh basal medium. The 

vessel containing the cell broth was subsequently connected aseptically to the bioreactor and 

an overpressure was added on the vessel to initiate the transfer into the bioreactor. For the 

other inoculation procedure (marked with “C”), the calculated amount of inoculum broth was 

first centrifuged in sterile centrifuge tubes at 300 g for 10 minutes. The supernatant was 

discarded, the cell pellet was subsequently re suspended in 100 ml fresh basal medium and the 

cell broth was transferred into the bioreactor with a sterile vessel as described above. 

Measurements 

Real-time measurements 

The bioreactors were placed on balances (BB30, Mettler Toledo, Zurich, Switzerland) to 

determine broth volume gravimetrically. At the end of the cultivations, the broth volume was 

measured volumetrically and the error of the gravimetric determination was verified to be less 

than 5% in all experiments. Feed medium and glucose stock solution volumes were also 

determined gravimetrically with balances (MS8001SE, Mettler Toledo, Zurich, Switzerland). 

The balance signals as well as on-line measured process parameters (pH, pO2, and 
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temperature) were collected by the Biostat BPlus DCUs and processed in the Citect SCADA 

system (Schneider Electric, Rueil-Malmaison, France) via local area network connection. 

At-line and off-line measurements 

At-line samples were taken every 24 hours or more frequently in order to measure several 

process variables. pH measurement for in situ pH meter re calibration was performed with a 

S47 SevenMulti pH meter (Mettler Toledo, Zurich, Switzerland). Viable cell density as well 

as viability was determined in triplicates by Countess automated cell counter (Life 

Technologies, Carlsbad, CA). Samples were centrifuged at 3000 rpm for 10 minutes (Rotanta 

460 R, Hettich Zentrifugen, Kirchlengern, Germany) and cell-free supernatants were stored at 

-20 °C until further analysis. Glucose, lactate and ammonium concentrations were determined 

in duplicates by enzymatic assays (GM8, Analox Instruments, London, UK). Amino acid 

concentrations were determined by NMR (Bruker 500 MHz Avance III, Bruker Biospin, 

Rheinstetten, GE). Glutamine and alanine concentrations were determined with this method 

with a standard error lower than 5% as determined by measuring duplicates of three selected 

samples (data not shown). 

Calculation of specific rates and statistical analysis 

Specific rates were calculated in MS Excel (Microsoft Corporation, Redmond, WA) from the 

measured prime variables by using Equations 1-4. 
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qs             (3) 
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The time window (dt in equations 2 and 3) of specific rate calculation was determined to be 

24 hours. This value was low enough to gain a sufficient temporal resolution of cell growth 

and metabolism, and high enough to minimize the effect of error propagation from prime 

measurement errors. 

An in-house developed Matlab script (MathWorks Inc., Natick, MA) was used to perform 

analysis of variance (anova1 and anova2, http://www.mathworks.de/de/help/stats, retrieved 

February 21, 2014) on the specific rate datasets. The significance level α has to be carefully 

defined for statistical tests such as ANOVA. The significance level corresponds to the risk 
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that the effect in question occurred merely by chance. Since effects identified in early process 

development are usually analyzed repeatedly in the further stages of development, it may be 

acceptable to take a higher risk to decrease the number of required experiments, in order to 

rationalize cell culture development costs. Another script was used to calculate the statistical 

power and the probability for false negatives (type II errors) of a performed ANOVA test 

Model I (powerAOVI, Trujillo-Ortiz, A. and R. Hernandez-Walls. 2002). False negatives 

(type II errors) can be a much greater issue than false positives (type I errors), since it is 

generally more safe to have a closer look at any given problem, than neglecting the potential 

problem from start, only based on a limited amount of experiments. If one is forced to make a 

choice, it is probably better to “get lost in the woods”, than “failing to find the woods in the 

first place” (Figure 1). Type II errors can potentially lead to very high cost and can potentially 

result in unexpected disaster later in the product life cycle, if it is decided not to look at a 

certain problem any further due to a false negative [20]. 

 

Figure 1. The alpha-beta war according to Propst [20]. A) Type I and Type II errors of decisions made based 

on the outcome of statistical tests. B) Consequences of decision correctness on process development. 

 

The probability for false negatives can be especially high for low sample sizes (< 5) and a low 

threshold definition for the significance level α (Figure 2). Based on these considerations, the 

threshold of significance α was chosen to be 0.1. This means that the risk that the effect in 

question occurred merely by chance (= Type I error) is less than 10%.  For α is equal to 0.1, 

the probability for a false negative (type II errors) and low sample sizes (<5) is only lower 

than 10% if the effects size is larger than 4-5 times the standard deviation. In contrast, for low 

α (= 0.01), much higher effects sizes are required to reach a probability lower than 10% 

(Figure 2). 
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Figure 2. ß-error (the chance for false negatives) in dependence of the effect-size for two treatments (e.g. 

one factor with two levels). A) α=0.1 and sample size = 3 (e.g.: two levels of one factor with one replicate) 

(B) α=0.1 and sample size = 4 (e.g.: two levels of one factor with two replicates) (C) α=0.01 and sample size = 3 

(D) α=0.01 and sample size = 4 

 

Results and discussion 

The goal of this study was to characterize the effect of different process parameters on 

physiological variables in simple uni- and bivariate mammalian cell culture experiments. The 

process parameters were selected based on a structured risk assessment we reported 

previously [5]. Although the risk assessment was conducted to assess the effect of process 

parameters on the critical quality attributes (CQAs) of the product, we investigated the links 

between process parameters and physiological variables in the recent contribution in order to 

generate physiological knowledge first [21]. 

One experimental design included the factor basal medium insulin content, which is related to 

medium formulation and the control of overflow metabolism, while the other two 

experimental designs (stirring speed and inoculation strategy) investigated factors related to 

scale-up activities. Table 1 reviews publications investigating the effect of similar parameters 

on CHO processes. The novelty of the recent contribution is the deeper understanding of these 

effects by using the reported workflow for the characterization of cell physiology. 
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Table 1. Factors chosen for this study and their reported effects. 

Factor Reported effect Reference 

stirring speed and stirrer 

type 

decreased µ above tip speed 

1 m∙s
-1

 (µ calculated for the 

whole cultivation period) 

Platas Barradas 

et al [22] 

insulin 
insulin increases viable cell 

density  

Birch and 

Rachel [24] 

inoculation strategy 

culture duration of N-1 

inoculum not critical for 

production bioreactor 

performance 

A-Mab case 

study [3] 

 

Stirring speed 

In order to investigate the effect of shear forces on cell growth, cultivations with different 

stirring conditions were conducted (Table 2). First, stirring rates were varied in a range based 

on values reported in the literature for bioreactors with similar geometry [22]. Afterwards, the 

effect of stirrer type was assessed to represent both axial (Pitch blade) and radial (Rushton) 

type impellers. 

 

Table 2. Parameter set for investigating the effect of stirring rate on cell growth.  

 Parameters 

Impeller type 
Stirring 

speed [rpm] 

Tip speed 

[m/s] 
ID 

Pitch blade 

50 0.14 P50 

125 0.34 P125 

200 0.54 P200 

Rushton 
125

 
0.33 R125  

200 0.52 R200 

 

Although final VCD values were similar at the different stirring speed setpoints in all three 

cultivations conducted with Pitch blade impeller (P50, P125 and P200), a difference was 

observed between the time progressions of the different VCD curves (Figure 3A). Integral of 

Viable Cell Density (IVCD) values were calculated and plotted over time to allow a better 

comparison of cell growth (Figure 3B). A lower IVCD profile in the P200 cultivation 

indicated that cell growth might be inhibited at this stirring speed. In order to verify the effect 
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with a radial type impeller, Rushton impellers were used and two cultivations at 125 rpm and 

200 rpm stirring speed were performed (R125 and R200, subsequently). Whereas the IVCD 

profile in the R125 experiment was very similar compared to the P125 run (Figure 3C), a 

decrease in IVCD was observed at the higher stirring speed (R200) also this time. Although 

the comparison of IVCD values revealed that high stirring speed inhibits cell growth in the 

investigated CHO system, it is not possible to acquire information on the temporal progress of 

this effect directly from IVCD profiles. 

 

Figure 3. Cell growth in cultivations conducted with different stirring strategies. (A) VCD values in the 

three cultivations performed with Pitch blade impeller. Error bars indicate the standard variation calculated from 

parallel VCD measurements. (B) IVCD values in the three cultivations performed with Pitch blade impeller. 

(C) IVCD values in cultivations performed at 125 rpm and 200 rpm stirring speed with both impeller types. 

(D) Specific growth rates calculated for 72 hour time periods. 

 

Such information on the temporal progress can be identified from specific growth rates, 

revealing differences in growth kinetics throughout the cultivations. However, when 

calculating µ values for time periods (dt in equations 2 and 3) of 24 hours, the low signal-to-

noise ratio and reproducibility rendered the evaluation of the dataset difficult. Specific growth 

rate is very sensitive to measurement errors. Although Barradas et al successfully used the 

maximal specific growth rate (µmax) as a single value to compare mixing parameters of 

different lab scale bioreactors in temporally non-resolved fashion [22], another study 

demonstrated the challenges of using µ with temporal resolution to investigate the effect of 

stirrer type on culture performance [23]. By increasing the time period for the calculation of µ 

to 72 hours in our study, the signal-to-noise ratio for the specific growth rate was increased 

and the cell growth kinetic was resolved into three subsequent phases (Figure 3D). The size of 
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the time period was selected in accordance with the chronology of processing events such as 

the addition of bolus feeds. Another possibility is to select time window size by trial and error 

in order to achieve a pre-defined signal-to-noise ratio value. 

The temporal resolution of growth kinetics revealed that high stirring speed has a negative 

effect only on µmax at the beginning of the growth phase. In the second phase of the 

cultivations, similar µ values were observed in all bioreactors. Interestingly, specific growth 

rates even turned out to be lower in the “125 rpm” bioreactors in the last phase of the 

experiment, probably due to faster growth initially and the onset of nutrient limitations in the 

late phase of these cultivations. 

In order to investigate the statistical significance of the observed effect of high stirring speed 

on µmax, a two-way ANOVA was performed. The independent variables were impeller type 

(Pitch blade or Rushton) and stirring speed (125 rpm or 200 rpm), whereas the dependent 

variable was the specific growth rate calculated for 72 hour periods. As no replicate datasets 

were available for the four combinations of the independent variables, the statistical test was 

only able to assess the individual effect of the two factors, but not their interactions, due to 

lack of residual degrees of freedom for the ANOVA approach. A multivariate design which 

would have enabled to investigate factor interactions on the output variable, would have 

required conducting more experiments. 

 

Table 3. 2-way ANOVA assessing the effect of impeller type and stirring speed on specific growth rate in 

the first three days of the cultivation. Significance level α= 0.1. 

 
Impeller 

type 

Stirring 

speed 

F-value 11.86 518.83 

p-value 0.179 0.028 

 

The two-way ANOVA confirmed the inhibitory effect of high stirring speed on µmax in the 

first three days of the cultivation (Table 3). Additionally, the statistical test confirmed that 

impeller type has no effect on cell growth in the investigated range of stirring speed. The 

effect of stirring speed was not significant in the later phase of the cultivation (ANOVA not 

shown) indicating that this parameter is not critical in the stationary phase. 

Although concentration profiles or cumulative values of VCD already revealed the inhibitory 

effect of high stirring speed on cell growth, the characteristics of cell growth could be 

investigated more in detail by investigating specific growth rates. By optimizing the time 
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window for specific rate calculations, the temporal resolution of growth kinetics was possible. 

The results suggest that high stirring speed has a significant effect on µmax in the early 

growth phase but it does not impair cell growth in the later phases of the cultivation, probably 

since other limitations such as nutrient depletion are more dominant. From a QbD point of 

view, stirrer speed is a key process parameter in the early growth phase of the investigated 

process with a significant effect on cell growth. 

 

Insulin content of basal medium 

Insulin is known as a growth factor for mammalian cells and is included in most chemically 

defined basal media [24,25]. Insulin was also reported to affect glucose uptake rates in CHO 

cells [26]. In order to test the effect of insulin addition in the basal medium on cell growth 

kinetics and metabolism, three cultivations differing in basal medium insulin content were 

conducted (Table 4). The variability in the initial VCDs was caused by the variations in the 

volume of the transferred inoculum. 

 

Table 4. Parameter set for investigating the effect of insulin addition in basal medium. The last dataset in 

the table was derived from a culture initiated with the same cultivation conditions as the “w/o Ins” experiment 

(same parameters in the first three days). 

Insulin 
initial VCD 

[cells*ml
-1

] 
ID 

- 4.9 * 10
5 

w/oIns, 4.9·10
5
 

+ 5.7 * 10
5
 +Ins, 5.7·10

5
 

+ 4.3 * 10
5
 +Ins, 4.3·10

5
 

- 4.3 * 10
5
 w/oIns, 4.3·10

5
 

 

Different VCD profiles were observed in the two “+Ins” cultivations (Figure 4A). The reason 

for these differences was the variability in the initial VCD. Consequently, when using 

concentrations from the experimental datasets, the statistical evaluation of the effect of basal 

medium insulin content was not feasible. However, the calculation of specific rates enabled 

the comparison of culture physiology in the three experiments (Figure 4B). 
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Figure 4. Effect of insulin addition in basal medium on cell growth and metabolism. (A) VCD values. Error 

bars indicate the calculated standard error of the triplicate VCD measurements. (B) Specific growth rates. 

(C) Specific glucose uptake rates. (D) Specific lactate production rates. Arrows indicate the time point when the 

feeding regime was initiated. 

 

Higher specific growth rates were observed in the first days of the “+Ins “cultivations. On day 

3, a bolus feed containing insulin was added to all cultivations. After this event, cell growth 

recovered in the “w/oIns” cultivation as indicated by an increase in specific growth rate and 

followed a similar pattern as in the “+Ins “ runs. Based on these findings, culture physiology 

was resolved into two phases (batch and fed-batch phase) and the effect of basal medium 

insulin content on culture physiology was investigated in the batch phase. 

An average of the specific growth rate was calculated for the batch period (day 1-3) in order 

to assess the statistical significance of the observed difference. An ANOVA was conducted 

(F=10.1; p=0.19) and as p-values were higher as the chosen threshold level of 0.1, the 

difference was not accepted as significant. In order to increase the degree of freedom of the 

analysis, data from the first three days of another cultivation without insulin in the basal 

medium (“w/oIns, 4.3·10
5
”) was added to the statistical analysis. ANOVA was conducted 

again for the extended dataset, and the difference in µ (p=0.04) was found to be significant 

(Figure 5A). Accordingly, the dataset of a fourth experiment had to be involved in the 

ANOVA in order to decrease the probability of false negative decisions. However, even more 

additional experiments would have been necessary to show this effect based on concentration 

profiles as the effect of insulin was masked by the variability in initial VCD. The use of 
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variables with condensed information content (specific growth rate) reduced the problem into 

an univariate question by neutralizing the effect of the variation in the initial conditions. 

Basal medium insulin content also affected glucose uptake in the batch phase of the 

cultivations, as indicated by the higher qGlc values in the “+Ins” experiments (Figure 4C). In 

accordance with this, higher qLac values indicated a faster overflow metabolism in these 

cultivations (Figure 4D). Both effects were confirmed to be significant by the statistical 

analysis of average specific rates (Figure 5B and 5C). As the effect of basal medium insulin 

content was proven to be statistically significant on µ, qGlc and qLac, the parameter was 

designated to be critical for the control of cell growth and overflow metabolism. 

 

Inoculation strategy 

This experiment aimed to investigate the effect of the physiological status of the inoculum 

and the inoculation procedure on culture performance in the production bioreactor. Therefore, 

bioreactors were inoculated with two different strategies on two different days from the same 

N-1 shake flask culture (Table 5). 

 

Table 5. Parameter set for investigating the effect of inoculation strategy on culture performance. 

Inoculation 

procedure 

N-1 culture 

duration [day] 

initial VCD 

[cells*ml
-1

] 
ID 

N-1 broth 

centrifuged and 

resuspended 

4 4.8 · 10
5
 C4 

6 4.6 · 10
5
 C6 

Direct transfer 

from shake flask 

4 5.0 · 10
5
 D4 

6 4.9 · 10
5
 D6 

 

Process parameters and metabolite concentrations were monitored in the N-1 shake flask in 

order to gain information on the physiological status of the inoculum. Glutamine was depleted 

on day 4 and a metabolic shift was observed after this time point.  The cells started to take up 

lactate and ammonium as indicated by decreasing concentrations of these metabolites. The pH 

of the cultivation broth started to increase and the pCO2 value decreased after day 4. 

However, the viable cell density increased further and reached a value of 8·10
6
 cells/ml on 

day 6. The measured parameters suggested a different physiological status on day 4 and day 6 

in the N-1 culture. 

Furthermore, two different inoculation procedures were compared, which represent standard 

techniques in small scale (cells centrifuged and re-suspended in fresh medium, marked 
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with “C”) and lab- as well as production scale (direct transfer in bioreactor, marked 

with “D”). A difference was expected to occur due to the medium change and consequently 

the removal of toxic metabolites such as lactate or ammonium. 

 

Figure 6. Effect of N-1 culture duration (4 or 6) and inoculation procedure (C or D) on cell culture 

performance. (A) VCD values. (B) Specific growth rates. (C) Specific glucose uptake rates. (D) Specific lactate 

production rates. (E) Specific glutamine uptake rates. (F) Specific alanine production rates. 

 

Slower cell growth was observed in the bioreactors inoculated from the six day old N-1 

culture (Figure 6A). The difference was reflected in the calculated specific growth rates in the 

first three days of the cultivation as well; however, the further temporal progression of µ 

showed that cell growth recovered in the C6 and D6 cultures after day 3, as indicated by 

similar µ values as in the C4 and D4 bioreactors (Figure 6B). 

Very interesting differences were observed in the metabolic behavior of the cultures when 

specific metabolic rates with temporal resolution were plotted against process time 

(Figure 6C-F). Based on physiological events detected on the plots, the cultivations were 

divided in four phases: day 1, day 2-3, day 4-6, day 7. Two-way ANOVA was conducted to 
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investigate the effect of both N-1 culture duration and inoculation procedure on culture 

physiology in each phase (Table 6). 

 

Table 6. 2-way ANOVA assessing the effect of N-1 culture duration and inoculation procedure on specific 

rates in different phases of the production culture. p-values in bold are smaller than the 0.1 threshold and 

indicate statistically significant effects. 

 day 1 day 2-3 day 4-6 day 7 

Factor 

 

Response 

Day 

(4 or 6) 

Procedu

re 

(C or D) 

Day 

(4 or 6) 

Procedu

re 

(C or D) 

Day 

(4 or 6) 

Procedu

re 

(C or D) 

Day 

(4 or 6) 

Procedu

re 

(C or D) 

qGlc 0.28 0.38 0.49 0.41 0.37 0.99 0.08 0.50 

qLac 0.26 0.06 0.43 0.72 0.26 0.70 0.03 0.34 

qGln 0.12 0.45 0.18 0.67 0.06 0.63 0.10 0.50 

qAla 0.03 0.01 0.07 0.64 0.04 0.69 0.17 0.47 

 

N-1 culture duration had a significant effect only on alanine production rates, as higher qAla 

values were observed in the C6 and D6 reactors. This difference prolonged over the entire 

experiment (Figure 6F) and was confirmed to be significant until day 6 by the statistical 

analysis (Table 6). Interestingly, specific glutamine uptake rates were lower on the first day in 

the C6 and D6 reactors compared to those bioreactors inoculated from the 4 day old N-1 

culture (Figure 6E). However, this difference was not shown to be significant by the statistical 

analysis (p=0.12). This may be a type II error (false negative), probably due to the higher 

standard deviation of the glutamine concentration measurement and the subsequent 

propagation of the error in the calculated specific rates. Another issue may be the low sample 

number (no replicate experiments conducted). Specific glutamine uptake rates recovered in 

the C6 and D6 cultivations after day 1 and remained higher as the values observed in C4 and 

D4 reactors throughout the experiment (effect shown to be significant in the day 4-6 phase). 

The correlation between high glutamine uptake rates and high alanine production is in 

accordance with published models of CHO metabolism [27,28]. 

Another significant difference was the production of the overflow metabolites lactate and 

alanine according to the inoculation procedure. In those cultivations inoculated after a 

medium change from the shake flask N-1 culture (C4 and C6) to the bioreactor, significantly 

higher qLac and qAla values were observed in the first day of the experiment. The values 

recovered until day 2 (Figure 6D and 6F) decreasing to levels observed in the directly 

inoculated cultivations. A fast production of overflow metabolites in the first day can be a 
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result of the lack of inhibition effects these metabolites exert on the enzymatic reactions 

which produce them [29]. However, concentrations of lactate and alanine were low in the 

directly inoculated cultivations as well (3 mM and 1.3 mM in average, respectively). Another 

possible reason of the accelerated overflow metabolism in the C4 and C6 cultures might be 

the total absence of extracellular signaling molecules after medium change leading to an 

environmentally induced increase in metabolic activity [30]. 

Specific lactate production rate increased to very high values in the D6 culture between day 2 

and 3, but the reason for this phenomenon is unknown. However, the observed qLac profile is 

in accordance with the higher glucose uptake rate in days 2 and 3 (Figure 6C and 6D), 

indicating that lactate overproduction was the result of a high glycolytic flux. As no repetition 

of the experiments was performed, the ANOVA model could not show factor interactions and 

thus did not indicate the observed lactate overflow in the D6 experiment as significant. 

Furthermore, the statistical test indicated significant effect of N-1 culture duration on qGlc 

and qLac values in the very last phase of the cultivation. This phenomenon is a consequence 

of the higher viable cell densities reached in the C4 and D4 cultivations leading to nutrient 

limitations and a subsequent decrease in glycolytic flux and overflow metabolism in these 

bioreactors (Figure 6C and 6D).  

The results highlight the importance of selecting time periods for the detection of 

physiological changes based on specific rates. First, specific rates with the highest possible 

temporal resolution have to be analyzed to determine physiological events. Based on these 

observations, physiological phases can be defined and subsequently, specific rates can be 

calculated for these phases. Thereafter, statistical analysis can be performed to assess the 

significance of the observed effects. This workflow is applicable as a general tool for 

information extraction from univariate cell culture experiments (Figure 7). A careful 

consideration of the acceptable risk for false positives or false negatives, allows for the 

reduction of the number of experiments to investigate a previously imposed hypothesis. 

Furthermore, the use of physiological variables with condensed information content facilitates 

the generation of process understanding in the context of Quality by Design. 
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Figure 7. The proposed workflow to quantify physiological variables and to perform statistical tests for 

enhanced process understanding. 

 

Conclusions 

The recent study discussed different aspects of cell culture process development by 

investigating the effect of selected process parameters on cell growth and metabolite 

formation. The datasets of uni- and bivariate experiments were evaluated along Quality by 

Design principles in order to facilitate data exploitation. Accordingly, the cornerstones of the 

reported approach are:  

Calculate specific rates

X

dt

dS

qs 
X

dt

dX



Gain temporal resolution

Define physiological phases

Formulate hypothesis

Apply statistical test

qLac,w/oIns < qLac,+Ins 
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 Use of physiological variables to extract information from a small number of 

experiments 

 Temporal resolution of specific rates to understand the effect of the investigated 

process parameters on cell physiology 

 Application of statistical tools to verify hypothesis 

Based on these principles, the following workflow was proposed for the evaluation of cell 

culture experiments: 

First, prime variable datasets have to be transformed into specific rates which contain 

condensed physiological information. These variables are not influenced by the effect of 

variations in initial experiment conditions such as cell density or broth volume. Thus, an 

important benefit of using specific rates is the scalable information content independent of 

initial conditions which enabled a reduction in the number redundant experiments in this 

study. The next step of the evaluation is to calculate physiological variables for finite time 

periods. The temporal resolution of specific rates enabled to identify novel characteristics of 

the effect of the investigated process parameters on cell physiology. The last step is to verify 

the formulated hypotheses with statistical tests. A statistical analysis estimates the probability 

of a false decision based on the existing dataset. Based on this probability one can decide if 

the level of risk is acceptable or if further experiments are needed to decrease the risk of a 

possible false decision in process development. Accordingly, statistical tests supported 

decision making in this study and helped to keep the number of experiments needed to prove 

a research hypothesis down. 

The above discussed workflow does not contain entirely novel tools, but interprets existing 

tools of process development in the context of the QbD paradigm. By implementing this 

workflow, novel insights into the effect of the selected process parameters on cell physiology 

have been gained. Based on this enhanced knowledge, sophisticated physiological control 

strategies can be developed in the future to control cell growth or metabolic overflow. These 

strategies can be used subsequently to drive robust processes with optimal growth and 

metabolic profiles, leading to a reduction in out-of-specification production batches. A major 

challenge in the implementation of physiological control strategies is the acceptance of 

specific rates as Critical Process Parameters (CPPs) from the side of the regulatory bodies. In 

order to facilitate this paradigm change and to involve physiological variables in regulatory 

filings, similar workflows as the one demonstrated in this contribution are needed. 
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Symbols 

IVCD = integral of viable cell density (cells · day · ml
-1

) 

qs = specific substrate uptake rate (mmol · cell
-1

 · day
-1

) 

S = total amount of substrate in the cultivation broth (mmol) 

t = time (day) 

VCD = viable cell density (cells · ml
-1

) 

X = total amount of cells in the cultivation broth (cells) 

µ = specific growth rate (day
-1

) 
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A growing body of knowledge is available on the cellular regulation of overflow metabo-
lism in mammalian hosts of recombinant protein production. However, to develop strategies
to control the regulation of overflow metabolism in cell culture processes, the effect of pro-
cess parameters on metabolism has to be well understood. In this study, we investigated the
effect of pH and temperature shift timing on lactate metabolism in a fed-batch Chinese ham-
ster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic
switch to lactate consumption was controlled in a broad range by the proper timing of pH
and temperature shifts. To extract process knowledge from the large experimental dataset,
we proposed a novel methodological concept and demonstrated its usefulness with the analy-
sis of lactate metabolism. Time-resolved metabolic flux analysis and PLS-R VIP were com-
bined to assess the correlation of lactate metabolism and the activity of the major
intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the
decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days
of the cultivation. These metabolic interactions were visualized on simple mechanistic plots
to facilitate the interpretation of the results. Taken together, the combination of knowledge-
based mechanistic modeling and data-driven multivariate analysis delivered valuable
insights into the metabolic control of lactate production and has proven to be a powerful
tool for the analysis of large metabolic datasets. VC 2015 American Institute of Chemical
Engineers Biotechnol. Prog., 000:000–000, 2015
Keywords: mammalian cell culture, lactate metabolism, metabolic flux analysis, PLS-R, mul-
tivariate experimental design

Introduction

In the last decades, significant efforts have been made to

increase the productivity and robustness of cell culture proc-

esses, enabling the accumulation of an extensive knowledge

on interactions between process control features, cell physi-

ology and product formation.1 Thereby, the investigation of

cell metabolism has become a key method in bioprocess

characterization and optimization.2 Metabolomic analysis is

essential to identify shifts in cell physiology typically occur-

ring during industrial fed-batch cultivations and to adapt pro-

cess control to the metabolic phenotype. Moreover, a
thorough understanding of interactions between process con-
trol strategies and cell metabolism can be used to steer cell
physiology towards a high producing phenotype.

Mammalian cell metabolism experiences different phases
during fed-batch cultivation. The extensive cell growth in
the first phase of fed-batch Chinese hamster ovary (CHO)
processes is characterized by a high glycolytic flux and high
lactate production rate. In this phase, NADH generated by
the elevated glycolytic flux is re-oxidized to NAD via con-
version of pyruvate to lactate.3 At the end of the growth
phase, the glycolytic activity is suppressed, followed by a
subsequent decrease in the lactate production rate. At low
glycolytic fluxes, CHO cells are able to switch from lactate
production to uptake by converting the substance back to
pyruvate.

Additional Supporting Information may be found in the online ver-
sion of this article.

Correspondence concerning this article should be addressed to C. Her-
wig at christoph.herwig@tuwien.ac.at
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The onset of lactate consumption was shown to be
dependent on various initial parameters such as cell line or
culture medium composition.4–6 Moreover, process parame-
ters such as cultivation pH and temperature have been dem-
onstrated to influence lactate metabolism.7 A linear
correlation of specific lactate production rate and the setpoint
of pH and temperature has been observed in batch cultiva-
tions,8 and the metabolic switch to lactate uptake has been
shown to be dependent on pH setpoint.9,10 However, as pH
and temperature do not only influence overflow metabolism,
but also cell growth and productivity,11,12 a biphasic strategy
is often applied where the parameters are first controlled at a
setpoint which favors extensive cell growth and then shifted
to a lower setpoint where overflow metabolism is down
regulated. Whereas most publications investigate the effect
of the setpoint of pH and temperature shifts, the timing of
these process events can be also critical to optimize their
effect on lactate metabolism and cell growth. Although
Nolan et al. considered timing as an important factor, they
only investigated the effect of temperature shift timing.13

Yoon et al conducted a simultaneous shift in temperature
and pH at various time points of a fed-batch cultivation,
however the authors focused on the effect of the parameter
shifts on cell growth but not on metabolism.14 As to our
knowledge, a multivariate experimental design investigating
the effect of pH and temperature shift timing on overflow
metabolism has not been published in the scientific
literature.

The metabolic control of lactate production on a cellular
level has been frequently investigated, mostly focusing on
the effect of glycolytic activity.3 However, lactate metabo-
lism has been recently reported to be influenced by numer-
ous metabolic pathways beside glycolysis, such as
tricarboxylic acid (TCA) cycle activity,15 or the uptake of
several amino acids.16 Accordingly, a systematic investiga-
tion of cell metabolism is necessary to understand the effect
of the experimental factors on the regulation of lactate
metabolism. Recent studies demonstrated that stoichiometric
metabolic models such as flux balance analysis17,18 or meta-
bolic flux analysis19,20 are powerful tools to gain insight into
mechanistic links between intracellular fluxes and lactate
metabolism. However, metabolic models result in large data-
sets, the interpretation of which necessitates advanced evalu-
ation tools. Wahrheit et al. recently demonstrated how the
combination of MFA, linear regression, and heat maps can
be used to identify the effect of experimental factors such as
glutamine concentration on intracellular fluxes.21 Although
PLS-R and heat maps have been successfully used for
knowledge extraction from large bioprocess development
datasets,22 the combination of multivariate data analysis
methods with metabolic flux analysis has not been reported
in the literature to our knowledge.

In this study, a Design of Experiments approach was used
to gain process knowledge on the control of overflow metab-
olism. Temperature and pH shift timing were defined as
experimental factors and their multivariate effects on cell
growth, metabolism, and product formation were investi-
gated. To support knowledge extraction from the experimen-
tal dataset, metabolic flux analysis was applied and the links
between lactate metabolism and major intracellular fluxes
were assessed by PLS-R. The applied methodology triggered
process understanding by combining the benefits of statistical
experimental design, multivariate data analysis, and the
investigation of metabolic fluxes on a cellular level.

Materials and Methods

Cell line and preculture

A CHO-K1 cell line producing an IgG1 monoclonal anti-

body was cultivated in disposable shake flasks before inocu-

lating the bioreactors. Stocks were revived in commercially

available basal medium (ActiCHO P, GE Healthcare, Little

Chalfont, UK), supplemented with 8 mM L-Gln (Life Tech-

nologies, Carlsbad, CA) and 5 mg/l Insulin (GE Healthcare,

Little Chalfont, UK). The cells were sub-cultured every 3–4

days with a seeding density of 0.3�106 cells/mL and were

grown in shake flasks of different scales. The shake flasks

were incubated at 378C with humidified air containing 5%

CO2 at 100 rpm orbital shaking.

Bioreactor cultivations

Fed-batch cultivations were performed in bioreactors with

1 liter maximal working volume (Sartorius AG, G€ottingen,

Germany). The targeted seeding cell density was 0.5�106

cells/mL. The bioreactors were equipped with on-line pH,

temperature and pO2 probes and the process parameters were

controlled by a Biostat BPlus Twin DCU (Sartorius AG,

G€ottingen, Germany). Stirring speed was set to 125 rpm, ini-

tial cultivation temperature was 378C, initial pH setpoint was

7.2 and the dissolved oxygen rate was maintained at 40% of

air saturation by air–oxygen mixture sparging. The pH value

was controlled in the range of 6 0.02 of the current setpoint

by automatic addition of 10% H3PO4 solution or 0.5 M

Na2CO3 solution. To reduce foaming, FoamAway (Life

Technologies, Carlsbad, CA) was added. The shifting of

temperature and pH was performed at timepoints according

to the experimental design. The setpoints after the shift were

338C and 6.90 for temperature and pH respectively and the

shifts were performed by the change of the controller set-

point directly to the shifted parameter value. Both pH and

temperature were adjusted to the new setpoint within a few

minutes by the controller. The basal medium was the same

as the one used for the preculture (vide supra). Feeding was

initiated on the third cultivation day by adding feed medium

every second day. The actual feed volume was determined

as 15% of the current broth volume. The feed medium was a

proprietary medium.

Measurements

Real-Time Measurements. The bioreactors were placed

on balances (Mettler Toledo, Zurich, Switzerland) to deter-

mine broth volume gravimetrically. At the end of the cultiva-

tions, the broth volume was measured volumetrically and the

error of the gravimetric determination was verified to be less

than 5% in all experiments. Feed medium and glucose stock

solution volumes were also determined gravimetrically with

balances (Mettler Toledo, Zurich, Switzerland). The balance

signals as well as on-line measured process parameters (pH,

pO2 and temperature) were collected by the Biostat BPlus

DCUs and processed in a Citect SCADA system (Schneider

Electric, Rueil-Malmaison, France) via local area network

connection.

At-Line and Off-Line Measurements. At-line samples

were taken every 24 hours or more frequently to measure

several process variables. pH measurement for in situ pH

meter re-calibration was performed with a S47 SevenMulti

pH meter (Mettler Toledo, Zurich, Switzerland). Viable cell
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density as well as viability was determined in triplicates by
Countess automated cell counter (Life Technologies, Carls-
bad, CA). Samples were centrifuged at 3000 rpm for 10
minutes (Rotanta 460 R, Hettich Zentrifugen, Kirchlengern,
Germany) and cell-free supernatants were stored at 2208C
until further analysis. Glucose, lactate, glutamine, glutamate
and ammonium concentrations were determined in duplicates
by enzymatic assays (Cedex BioHT, Roche Diagnostics,
Mannheim, Germany). Amino acid concentrations were
determined by NMR (Bruker 500 MHz Avance III, Bruker
Biospin, Rheinstetten, GE). The concentrations were deter-
mined with this method with a standard error lower than 5%
as determined by measuring duplicates of three selected sam-
ples (data not shown).

Calculation of physiological variables

Specific rates were calculated in MS Excel (Microsoft
Corporation, Redmond, WA) from the measured prime
variables by using the equations shown as Supporting
Information.

The time window of specific rate calculation was deter-
mined to be 12 hours or 24 hours. The goal was to define a
time window value which is low enough to gain a sufficient
temporal resolution of cell growth and metabolism, and high
enough to minimize the effect of error propagation from
prime measurement errors.

To assess the correlation between metabolic fluxes, yields
were calculated using two different calculation methods. A
cumulative yield (YCS1/CS2) was used for the statistical analy-
sis to assess the effect of the experimental factors on the
ratio of metabolic fluxes. The other yield variable (YqS1/qS2)
was calculated by using specific rates to gain a temporal
resolution of the changes in the mechanistic relation of meta-
bolic fluxes.

Oxygen uptake rate (OUR) was determined with the sta-
tionary liquid phase method as described in the literature.23

The effect of temperature on the Henry coefficient was con-
sidered, and kLa was determined as a function of broth vol-
ume and aeration rate for the accurate calculation of OUR.

Statistical analysis and evaluation

The experimental design was developed and evaluated
using the design of experiments software MODDE (Ume-
trics, Sweden). The design resulted in 11 experiments, which
were conducted in three successive cultivation campaigns.
The three center point runs were performed in different cam-
paigns. For the evaluation, the factors were orthogonally
scaled and centered before fitting the model with multivari-
ate linear regression (MLR). To improve model precision,
non-significant model terms were excluded (backward elimi-
nation) until the maximum Q2 was achieved.

To investigate the relationship between specific lactate
production rate (qLac) and other metabolic fluxes, a PLS-R
model was developed where qLac was defined as the pre-
dicted variable (Y) and other 67 intra- and extracellular rates
were defined as explanatory variables (X). 8 PLS-R models
were developed for the eight time points between nine sam-
pling events where the specific rates were calculated (Sup-
porting Information Figure 4). The data of all conducted
experiments (11, according to the DoE design) was involved
in the respective PLS-R model. The lack of fit estimates for
the eight PLS-R models were: 0,74; 0,74; 0,78; 0,80; 0,87;

0,87; 0,85; 0,93. This value expresses the explained variance
for X, where 1 corresponds to 100% explained variance. An
objective criterion does not exist for the lack of fit estimate,
however, the values for the eight PLS-R models were found
to be appropriate for the purposes of the models, namely the
identification of correlations between qLac and other intra-
and extracellular fluxes. For improved model interpretation,
the variable importance in projection (VIP) method was
applied for the PLS-R analysis.24 Finally, k-means cluster
analysis was performed to detect groups of fluxes showing a
similar relationship to qLac.

Time resolved stoichiometric metabolic flux analysis

Stoichiometric metabolic flux analysis was applied to esti-
mate intracellular metabolic flux distributions of the CHO
cell line over the course of the cultivation. A metabolic net-
work of the central carbon metabolism of CHO cells was
applied based on published works.21,25 The network com-
prised glycolysis, pentose phosphate pathway (PPP), the
TCA cycle and amino acid metabolism. Compartmentation
was neglected and anaplerotic fluxes were lumped into one
reaction allowing carbon exchange between phosphoenolpyr-
uvate (PEP) and oxaloacetate. PPP activity was directly con-
strained by the amount of precursors and NADPH necessary
for biomass formation.17,20 Biomass composition of CHO
cells was taken from literature21,26 and an additional flux
was introduced into the network to take the anabolic demand
for antibody formation into account. Unbalanced pools of
MTHF and NH1

4 were introduced to allow transfer of C1
units and account for the loss of volatile NH3 over the
course of the cultivation as described before.21 Balancing of
redox cofactors was introduced for NADH and regeneration
of excess NADH was taking place via respiration. Specific
rates of uptake and production of metabolites at sampling
time points were used as model inputs as well as well as
specific OUR, which was calculated based on the determined
OUR (vide supra) and could be subsequently used as a con-
straint for the activity of the respiratory chain.

The resulting stoichiometric matrix S encompassed 41
metabolites with 40 unknown and 29 known fluxes and
could therefore be solved by the least squares method:

vc 5 2inv Scð Þ � Sm � vm (1)

where vc and vm are the arrays of intracellular (calculated)
and extracellular (measured) fluxes and Sc and Sm the res-
pective corresponding stoichiometric matrices (Supporting
Information Table 1 and SII). As additional constraint, irre-
versibility of certain reactions were introduced (Supporting
Information Table 1). Briefly, reactions of PEP-kinase and
pyruvate dehydrogenase, the decarboxylating reaction of the
PPP and lumped amino acid degradation fluxes were consid-
ered irreversible. The matrix of unknown fluxes vc was over-
determined with 41 linear independent equations and 40
unknown variables (fluxes), which allowed detection of gross
measurement errors via data reconciliation as described
before.27,28 For a matrix of this size, an h-value above 42.6
was considered critical.

Redox variable R

The redox variable R was introduced by Nolan et al.13 and
describes the ratio between cytosolic NADH production to mito-
chondrial NAD1 regeneration via oxidative phosphorylation:
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R5

P
qNADH;cyt

qNAD1;mit

(2)

With
P

qNADH,cyt as the sum of all NADH producing

fluxes in the cytosol and qNAD1,mit as the flux of oxidative

phosphorylation taking place in the mitochondria.

An R value above 1 indicates an insufficient capacity of

the respiratory chain, causing NAD1 regeneration via fer-

mentative pathways (lactate production). A value below 1

indicates complete regeneration of redox equivalents via the

respiratory chain.

Results and Discussion

The goal of the study was to investigate the effect of pH

and temperature shift timing on lactate metabolism in a fed-

batch CHO process. To support the sound statistical analysis

of the results as well as to identify possible interaction

effects of the two experimental factors, a DoE experimental

design was developed and executed.

The experimental design

The factor levels were defined based on typical timepoints

for the shift of pH and temperature in fed-batch CHO proc-

esses.14 The experimental design was planned with two

quantitative factors at three discrete levels (Figure 1). The

factor values were defined by calculating the number of days

the culture run in the non-shifted condition.

An irregular design was chosen due to the expected low

cell densities in the low-low corner of the experimental

design. An important diagnostic parameter for irregular

designs is the condition number, which is a measure for the

quality of design and can be used to detect design problems,

such as lack of orthogonality of the runs in the design. If the

condition number is too high, the design matrix is called ill-

conditioned and small errors in the estimation of the coeffi-

cients of the linear algebra problem will result in a large

error in the prediction of the response. The calculated condi-

tion number was lower than 12 for each model (the threshold
value suggested by the guidelines issued by Umetrics for
their Design of Experiments software MODDE), a highest
value of 9.7 for those models where all interaction and quad-
ratic terms were involved. Accordingly, the design was
found to be appropriate for the experiment scope.

To investigate the quality of the experimental dataset, we
visualized center point variability of the measured (Figures
2A,B) and the calculated physiological variables (Figures
2C,D). Moreover, the relation of the center point error to the
variability observed across the entire experimental design
was assessed by investigating whether the “reproducibility”
value calculated by the statistical software is above the rec-
ommended threshold of 0.5 (constrain true for each of the
models, data not shown).

DoE evaluation

First, IVCD was defined as a response variable to identify
the effect of the experimental factors on cell growth (for
IVCD curves see Supporting Information Figure 1A). IVCD
was affected by the timing of temperature shift, as indicated
by the significant linear and quadratic terms of the model
(Table 1). However, pH shift did not affect cell growth,
which is also indicated on Figure 2A, where the two experi-
ments with only pH shift (,,pH3T9” and ,,pH1T9”, red col-
ors) show very similar VCD profiles to the control run
(“pH9T9”, empty squares). Literature data on the effect of
pH on cell growth in cell culture processes suggest that a
shift to pH 6.9 affects specific growth rate only to a small
extent, and the effect is much more pronounced at pH
6.8.12,29,30 Considering this information and the cell line-
dependent physiological response on process parameters, the
absent effect of the shift to pH 6.9 on cell growth in our
experimental system is not contradictory to literature data.

To investigate how the experimental parameters affected
lactate metabolism, various physiological variables were
defined as responses in the statistical evaluation (Table 1).
Cumulative lactate production was divided with the integral
of viable cell count (CLac/IVC) to investigate lactate metabo-
lism with a cell count independent variable. pH shift timing
had a significant positive effect on CLac/IVC, indicating that
a shift in pH at an early cultivation timepoint decreased the
specific lactate production rate of the cells and triggered the
switch to lactate uptake. Interestingly, the timing of tempera-
ture shift had a significant negative effect on lactate produc-
tion, probably as a consequence of low cell densities and
high nutrient availability in cultivations with an early tem-
perature shift. Accordingly, the cultivation where the temper-
ature shift was performed already on day three (“pH9T3”)
showed higher lactate production rates as the control cultiva-
tion without temperature shift (“pH9T9”) in the last four
days of the process (Figure 2C). The process time where the
specific lactate uptake rate (calculated for 12 hour periods)
fell below 0 was also defined as a response variable (day@
qLac< 0). For this response variable, the fitted model showed
only a significant effect of pH, both for the linear and quad-
ratic terms (Figure 3A). Interestingly, the interaction term of
temperature and pH was also significant indicating that tem-
perature shift induces the metabolic shift to lactate uptake
when pH shift is also conducted during the cultivation. The
curvature of the contour level lines in the low-low corner of
the response contour plot indicates this interaction effect
(Figure 3B).

Figure 1. The experimental design.

The center point was performed three times in the three differ-
ent cultivation campaigns. The experiments are marked with
the same colors as on the figures below.
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The prediction plots confirm this interaction effect when
the two factors are set to different values (Figure 4). If the
pH shift factor is set to 9 (which means no pH shift is per-
formed during the cultivation), an early temperature shift
delays the metabolic shift to lactate uptake. This is in
accordance with the observation that in the “pH9T3” cultiva-
tion the cells produced lactate until the end of the run and
did not shift to lactate uptake (Figure 2C). However, if the
pH shift is conducted on the third day of the cultivation
(center point experiment, (days at pH 7.2] 5 3), the model
indicates that an early temperature shift triggers the meta-
bolic shift to lactate uptake. This result is confirmed by Fig-

ure 2D where the center point runs (“pH3T5”, black color)

show the metabolic shift immediately after the temperature
shift on the fifth cultivation day, whereas those runs where

only pH shift was conducted (“pH3T9” and “pH1T9”, red
colors) start to take up lactate one day later. The earliest
metabolic shift to lactate uptake was observed at day four in

the experiments “pH2T4” and pH3T3”. Taken together, the
shift from lactate production to lactate uptake can be con-

trolled in a broad time window (between day four up to the
end of the cultivation) with the help of the two experimental

factors. Moreover, an interaction effect of pH and tempera-
ture shifts on the metabolic switch to lactate uptake has been

identified.

Combining metabolic flux analysis and PLS-R

To gain a deeper understanding of the physiological
responses on the experimental factors, mechanistic and data-
driven approaches were combined in the evaluation of the

experimental dataset. First, time-resolved metabolic flux
analysis was performed to estimate intracellular fluxes based

on stoichiometric assumptions for each sampling point.
Thereafter, a PLS-R model was developed where qLac was

defined as the predicted variable to identify correlations
between metabolic fluxes and lactate metabolism.

The time-resolved metabolic flux analysis enabled to ana-
lyze the distribution of intracellular fluxes as a function of

process time. Accordingly, the effect of the process

Table 1. Normalized Model Coefficients for the Analysis of the

Effect of the Experimental Factors on Cell Growth and Lactate

Metabolism

IVCD
CLac/
IVC

CGlc/
IVC YCLac/CGlc

day@
qLac< 0

R2 0.86 0.96 0.86 0.96 0.98
Q2 0.69 0.85 0.73 0.91 0.94
Days at pH 7.2 0.28 0.98 1.16 0.79 0.95

Days at 378C 1.25 20.47 – 20.77 0.14
pH*pH – 0.30 – 0.38 0.66

temp*temp 21.48 0.60 – 0.78 –
pH*temp – – – 0.47 20.47

Bold characters indicate significant terms. Terms marked with dash
were not included in the model. day@qLac< 0 indicates the cultivation
time where the cells shift to lactate uptake

Figure 2. VCD and lactate concentration profiles, specific lactate uptake rates and the ratio of lactate and glucose uptake rates in the
11 experimental points.

Black circles represent the average value of the three center point runs (,,pH3T5”); error bars indicate the calculated standard deviations.
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parameter shifts on the activity of metabolic pathways could
be analyzed with time resolution. Signal noise in the model
input variables (known specific rates) or false stoichiometric
assumptions can lead to high residual error in the model.
The statistical test value h can be used as a quantitative mea-
sure for the goodness of the model. The h-value was calcu-
lated for each time point in the cultivations and was checked
to be below the threshold value 42.6, which was defined
based on number of known fluxes (Supporting Information
Figure 1B). The estimated fluxes of the main intracellular
pathways are visualized on flux maps for four selected
experiments (Supporting Information Figures 2 and 3). In

accordance with the significant positive effect of pH shift
timing on glucose uptake (CGlc/IVC, Table 1), the MFA
revealed a sudden decrease in glycolytic activity after the
pH shift. In contrast, the experimental factors did not have a
direct effect on TCA cycle activity, as indicated by the simi-
lar pattern of the TCA cycle fluxes up to day six in all culti-
vations. However, in the last three cultivation days, the
experiments with pH shift showed lower TCA activities as
the control cultivation.

The known extracellular fluxes and the estimated intracel-

lular fluxes were used as explanatory variables in PLS-R
models with qLac as predicted variable. At eight timepoints

Figure 3. The effect of temperature and pH shift timing on the timepoint of the metabolic shift to lactate uptake.

(A) Coefficient plot with linear, quadratic and interaction terms. (B) Response contour plot. The value of the response indicates the process time
[day] when the model predicts the onset of lactate uptake. The area marked with grey is the region where no experiments have been conducted.

Figure 4. Prediction plots for the effect of the two factors on the onset of lactate uptake.

Confidence level 5 95%. (A) [days at 378C] 5 9 (B) [days at pH 7.2] 5 9 (C) [days at 378C]55, center point level (D) [days at pH 7.2] 5 3, center
point level.
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(the time periods between the nine sampling events) eight

PLS-R models were executed. Four principal components

were used to explain the variability in the dataset. To facili-

tate the interpretation of the data-driven PLS-R analysis, the

variable importance values (VIP) of the explanatory varia-

bles were analyzed. A VIP below one hints to variables

which are not relevant for the prediction of the response,

whereas a VIP above one indicates significant correlation

with qLac.
24 Finally, k-means cluster analysis was performed

and the calculated VIPs were clustered in four clusters on

the variable dimension. The results of this data-driven analy-

sis approach are visualized with the help of heat maps on

Figure 5.

The first cluster showed high VIP scores in the first four

days of the cultivation, indicating a correlation between the

fluxes of the cluster and qLac in this process phase. Thereby,

the two metabolites with the highest VIP scores were pyru-

vate and succinate, both of which can be used by the cells to

fuel the TCA cycle when the glycolytic flux decreases, for

example as a consequence of a pH shift. Accordingly, the

uptake rate of pyruvate and succinate was found to be higher

in the cultivations where pH shift was performed compared

to the control run (data not shown). The average VIP score

of the second cluster increased continuously during the culti-

vation, and showed a value above one in the last three days.

This cluster included mainly the fluxes of the TCA cycle

reactions, both upstream (pdh, cisac) and downstream

(succdh, fum, maldh) from a-ketoglutarate. These fluxes,

together with the respiratory activity of the cells, showed a

high correlation to qLac in the last four days of the cultiva-

tion. As the cells switched from lactate production to lactate

uptake in this cultivation phase in almost all cultivations, the

correlation of TCA cycle activity and lactate metabolism

suggested a connectivity between lactate uptake rate and the

fueling of the TCA cycle reactions through the pyruvate

dehydrogenase (pdh) flux. The majority of the variables were
represented in the third cluster, which showed an average
VIP value lower than one, indicating a low correlation to
lactate metabolism. Most of the amino acids were clustered
in this group of variables, indicating that the metabolic
switch to lactate uptake is not coupled to changes in the
uptake rate of amino acids in the investigated system. This
is in accordance with the observation that the majority of
amino acids are only used for anabolic reactions and do not
contribute to catabolic processes.15 The fourth cluster
included the glycolytic fluxes, which showed high correlation
with lactate metabolism almost over the entire cultivation.
The highest VIP scores were observed between day four and
six, where qLac decreased to very low values or the cells
switched to lactate uptake as a result of the shifts in the pro-
cess parameters (Figure 2C). This observation indicated that
the decrease in lactate production and the shift to lactate
uptake is connected to the decrease in the glycolytic flux, in
accordance with literature reports.3,15,31 Taken together, the
PLS-R VIP analysis revealed two main cultivation phases
with respect to lactate metabolism (Figure 5B). In the first
phase, lactate is produced and the specific lactate production
rate correlates with the glycolytic flux. In the second phase,
after the metabolic shift to lactate uptake, qLac correlates
with TCA cycle activity.

The connection of lactate metabolism, glycolysis,
and TCA activity

The PLS-R analysis revealed a high connectivity between
lactate metabolism and glycolysis in the first phase of the
cultivation. In accordance with this, the DoE analysis
revealed a significant effect of pH shift timing both on spe-
cific glucose uptake rate and specific lactate production
(Table 1). These findings are also in accordance with the
mechanism of glycolytic regulation in CHO cells proposed

Figure 5. PLS-R model of qLac coupled with cluster analysis.

(A) Color plots representing the VIP values of the metabolite fluxes (columns) determined by PLS-R analysis in the eight process time periods
(rows). The four plots represent the four clusters determined based on the analysis of the VIP values. The colors represent the values of the VIP
scores. VIP> 1 indicates significant correlation with qLac. (B) Average VIP values of the four clusters.
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by Wahrheit et al: the acidification of the cytosol results in a
decreased glycolytic rate and a decrease of the lactate pro-
duction rate.15 However, the impact of the factor “days of
shifted pH” was also significant on the calculated YCLac/CGlc

yield (Table 1), indicating that pH shift affected the two
fluxes to a different extent. This was also confirmed by the
analysis of the temporally resolved YqLac/qGlc yield, which
revealed that pH shift had a distinct negative effect on the
ratio of lactate production and glucose uptake (Figure 6A).
In contrast, the shift of temperature did not have an obvious
effect on YqLac/qGlc. An early temperature shift did not affect

the value of YqLac/qGlc (compare experiments “pH9T9” and
“pH9T3” after day3 on Figure 6A). Although a later temper-
ature shift decreased the YqLac /qGlc yield in runs with and
without pH shift as well (see cultivations “pH9T5” and
“pH3T5” on Figure 6A after day five), the effect was more
enhanced in those runs with pH shift. Accordingly, in the
center point experiments the cells showed a shift to lactate
uptake immediately after the temperature shift.

However, the YqLac/qGlc value plotted against qGlc showed
the same pattern in all cultivations (Figure 6B). Thus, the
mechanistic correlation between specific glucose uptake rate

Figure 6. Analysis of lactate metabolism.

(A) Temporally resolved YqLac/qGlc variable plotted against process time. Black circles represent the average value of the three center point runs;
error bars indicate the calculated standard deviations. (B) The YqLac/qGlc variable as a function of the specific glucose uptake rate. (C) Pyruvate dehy-
drogenase flux. (D) a-ketoglutarate dehydrogenase flux. (E) The pyruvate dehydrogenase flux plotted against specific lactate uptake rate in the last
three days of the cultivations. (F) Relationship between the redox ratio and the specific lactate uptake rate.
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and the YqLac/qGlc variable was not affected by the shifts in

pH and temperature. This observation supported the hypothe-

sis generated based on the results of the PLS-R VIP analysis,

namely that the experimental factors exerted their effect on

lactate metabolism by influencing the glycolytic flux. This

finding is in accordance with recent contributions on the reg-

ulation of glycolytic enzymes3 and the connection between

the regulation of glycolytic flux and lactate metabolism.15

The PLS-R analysis did not indicate a correlation of qLac

and the TCA cycle fluxes in the first cultivation phase. The

lack of correlation between the metabolic switch to lactate

uptake and TCA activity indicates that the experimental fac-

tors affected lactate metabolism through mechanisms acting

upstream from pyruvate on the glycolytic flux. A similar

observation was reported for CHO cells by Martinez et al in

a batch system; however the onset of lactate uptake was trig-

gered by the exhaustion of glucose in a batch cultivation in

their study.18 Accordingly, independent of which mechanism

triggers the decrease in the glycolytic flux, the metabolic

switch to lactate consumption is rather provoked by the

changes in the speed of glycolysis as in TCA cycle activity.

Interestingly, the PLS-R analysis indicated a high correla-

tion between lactate metabolism and the flux of the TCA

cycle reactions in the second phase of the cultivation (Figure

5, cluster 3). In this phase (the last three days of the pro-

cess), only the cultivations without pH shift showed lactate

production. These cultures also showed a higher TCA activ-

ity in the second process phase, indicating that lactate pro-

duction is coupled to a higher TCA flux in this phase

(Figures 6C,D). More interestingly, in the physiological state

of lactate uptake, the lactate uptake rate seemed to correlate

with the pdh flux, suggesting that the cells convert lactate

back to pyruvate to fuel the TCA cycle subsequently through

this flux (Figure 6E). In accordance with this, Mulukutla

et al reported a slight increase in TCA activity after the met-

abolic shift to lactate consumption in the fed-batch cultiva-

tion of NSO cells.3 Figure 6E summarizes the findings on

the correlation of lactate metabolism and TCA cycle activity

in the second cultivation phase. In the case of lactate produc-

tion, a high TCA activity can be observed, which is inde-

pendent of the lactate production rate (right side, positive

qLac values). In contrast, the pdh flux and subsequently TCA

cycle activity is correlated to qLac in the cultures which

show lactate uptake (left side, negative qLac values). From

these findings, we can hypothesize that the cells try to main-

tain a constant level of TCA cycle activity. The excess of

pyruvate from the glycolysis is converted to lactate in the

first phase of the cultivation. In contrast, in the second

phase, lactate is used as additional carbon source to fuel the

TCA cycle to maintain a certain activity of this pathway.15

According to studies investigating the cellular control of

lactate metabolism, the most important trigger of the switch to

lactate uptake is the intracellular redox environment, which is

vastly influenced by the ratio of glycolytic flux and TCA cycle

activity.13,32 Nolan et al.13 introduced the redox variable R to

describe the ratio between cytosolic and mitochondrial NADH

production/consumption. If the amount of NADH produced in

the cytosol is lower than the amount consumed by the mito-

chondrial electron transport chain, the cells start to convert the

accumulated lactate back to pyruvate. To prove this hypothe-

sis, the redox ratio (R, see Equation (2)) was plotted against

specific lactate uptake rate (Figure 6F). The observed correla-

tion suggested that lactate metabolism is directly linked to the

redox status of the cells in our system and that this relationship
is independent of the shifts in pH and temperature. In case of a
high glycolytic flux, the redox balance is high and the excess
of NADH produced in the glycolytic reactions must be oxi-
dized to NAD via lactate production. When glycolysis is down
regulated as a consequence of pH shift,33 the redox balance
decreases. Finally, as R gets lower than one the cells switch to
lactate uptake to fuel the TCA cycle. This is in accordance
with a recent work of Ivarsson et al, where the authors also
suggested that the effect of pH on lactate metabolism is guided
by redox balancing and the regulation of glycolysis in hybrid-
oma cells.17

Taken together, the correlation between the glycolytic
flux, TCA cycle activity and lactate metabolism indicated by
the PLS-R analysis could be verified by investigating the
mechanistic relationship of the metabolic pathways in the
different cultivation phases.

Product formation

To investigate the effect of the experimental factors on
product formation, relative final mAb titer was defined as a
response variable in the DoE analysis. Whereas the timing
of pH shift did not have a significant term in the model, the
factor “days at 378C” had a significant positive effect on
product concentration. However, this effect was probably a
consequence of the lower cell densities in the cultivations
with an early temperature shift. To test this hypothesis, spe-
cific product formation (P/IVC) was also defined as a
response variable. The statistical analysis revealed a negative
linear effect of the factor “days at 378C” on specific produc-
tivity, indicating that an early temperature shift increases the
specific productivity calculated on the whole cultivation
period. The prediction plot (Figure 7A,B) visualizes the dis-
cussed effects, indicating that the optimum of the experiment
space in terms of final product titer is close to the chosen
center point setpoints ([days at 378C]55). Although one can
increase the specific productivity with an earlier temperature
shift even further, the negative effect of temperature shift on
IVC would lead to a decrease in final titer. This effect is
confirmed by Figure 7C, where the highest titer is observed
in the center point runs.

The analysis of specific productivity with a temporal reso-
lution showed similar qp values in the first cultivation phase
(Figure 7D), indicating that the parameter shifts (performed
between the first and the fifth day of the cultivations) did not
have a sudden effect on specific productivity. However, on
the last day, significant differences in specific productivity
were observed. Whereas the runs with an early temperature
shift (see experiment “pH9T3” and “pH3T3”) maintained a
high qp until the end of the cultivation, those cultivations
without temperature shift showed a steep decline in qp on
the last day. As revealed by the metabolic analysis, this phe-
nomenon is a consequence of the depletion of essential
amino acids occurring at the high cell densities observed in
these runs. Taken together, in contrast to other scientific
papers which hypothesized a direct effect of temperature
shift on specific productivity,34,35 our findings suggest that
the positive correlation between an early temperature shift
and specific productivity is an indirect consequence of over-
coming nutrient limitations which have a detrimental effect
on the rate of product formation. This hypothesis is in
accordance with a recent study of Vergara et al who demon-
strated that an increase of specific productivity at low
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temperatures might be a result of indirect effects coupled to

other physiological features such as specific growth rate.36

The PLS-R analysis revealed a significant correlation

between lactate metabolism and specific productivity only on

the last day of the process (Figure 5, cluster 2). This correla-

tion suggests that the nutrient limitation which affected spe-

cific productivity on the last process day might have had an

effect on lactate metabolism as well. However, the lack of

correlation between lactate metabolism and specific produc-

tivity in the first eight days of the cultivation suggests that

the shift to lactate uptake does not trigger an increase in

product formation.

Conclusions

The goal of the recent study was to investigate the con-

trollability of the metabolic shift to lactate uptake by process

parameter shifting. The time points of pH and temperature

shift were defined as experimental factors and a DoE was

conducted to assess their effect on lactate metabolism.

Whereas the timing of pH shift had a significant impact on

the onset of lactate consumption, the effect of temperature

shift was only significant when pH shift was also conducted.

Identifying this interaction effect was one of the benefits of

the DoE approach. Based on these results, a control strategy

which targets an early metabolic shift to lactate consumption

has to execute a shift in both temperature and pH setpoints.

With this contribution we present a novel methodology

coupling time-resolved metabolic flux analysis, PLS-R and

mechanistic analysis. First, MFA and PLS-R were used to

detect correlations between lactate metabolism and the activ-

ity of the major intracellular pathways. Thereafter, specific

rates and yields were plotted against each other to visualize

these correlations on simple mechanistic plots. The PLS-R

combined with VIP revealed two cultivation phases. In the

first phase, lactate metabolism showed a high connectivity to

the glycolytic pathway suggesting that the physiological

switch to lactate uptake is triggered by the decrease in the

glycolytic flux. The mechanistic relationship between qGlc

and the YLac/Glc yield showed the same profile in all experi-

ments, confirming the strong link between glycolytic activity

and the metabolic switch to lactate consumption. The second

cultivation phase was characterized by lactate uptake in

almost all points of the experimental design. The PLS-R VIP

analysis revealed that lactate metabolism was more con-

nected to TCA activity as to the glycolytic flux in this phase.

Accordingly, the mechanistic analysis showed a correlation

between lactate uptake rate and the pyruvate dehydrogenase

flux fueling the TCA cycle.

The combination of metabolic flux analysis and PLS-R

proved to be a successful tool to link a knowledge-based

Figure 7. Effect of the experimental factors on relative final product titer and specific productivity.

(A, B) Prediction plot of the effect of temperature shift timing on relative final product titer and P/IVC. The setpoint of [days at pH 7.2] was set to
9 in both cases. Confidence level 5 95%. (C) Relative titer plotted against process time. Black circles represent the average value of the three center
point runs; error bars indicate the calculated standard deviations. (D) Relative specific productivity plotted against process time.

10 Biotechnol. Prog., 2015, Vol. 00, No. 00



mechanistic approach to data-driven analysis. Moreover, the

verification of the detected metabolic links on simple mecha-

nistic plots helped to generate process knowledge on the

effect of the experimental factors on lactate metabolism. The

presented toolset can be used in the future to facilitate

knowledge extraction from large metabolic datasets and to

detect mechanistic correlations between metabolic fluxes.

Moreover, it can be also applied to define which metabolites

should be monitored in different process phases to detect

and characterize physiological events. For example, in our

cultivation system, the measurement of glucose uptake and

specific oxygen consumption would be sufficient to charac-

terize lactate metabolism throughout the whole cultivation

period. This knowledge can be then used to understand the

effect of process parameters on cell physiology and to imple-

ment sophisticated control strategies targeting physiological

effects such as the switch to lactate uptake or the mainte-

nance of high TCA cycle activity.

Notation

CHO = Chinese hamster ovary

DoE = Design of experiments

MLR = Multivariate linear regression

OUR = Oxygen uptake rate

PEP = Phosphoenolpyruvate

PPP = Pentose phosphate pathway

TCA = Tricarboxylic acid

VIP = Variable importance in projection
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Abstract Apoptosis is a common type of cell death in

biopharmaceutical cell culture processes which causes

decrease in viable cell density and product yield. The

progression of apoptosis has been reported to influence the

dielectric properties of mammalian cells; however, the on-

line detection of these effects has been rarely described.

This study provides a comprehensive analysis of the on-

line detectability of dielectric changes upon apoptosis

induction in an industrial fed-batch process of CHO cells

expressing a recombinant monoclonal antibody. Using

capacitance signals, measured at 25 frequencies, the impact

of apoptosis on the dielectric spectra was investigated in

eight bioreactor cultivations in which various process

conditions were combined with two different apoptosis

induction strategies (camptothecin treatment and glucose

starvation). To differentiate the apoptosis-related informa-

tion from the cell concentration-associated variance in the

multivariate capacitance datasets, principal component

analysis (PCA) was used. A second principal component,

explaining an explicit proportion ([20 %) of the variance,

was identified to be related to dielectric changes induced by

apoptosis. Furthermore, the analysis of caspase-3 and -7

activation and DNA fragmentation showed that the detec-

ted dielectric change occurred in the early phase of apop-

tosis. The presented results verify that apoptosis has a

considerable impact on the dielectric features of CHO cells

and it can be monitored on-line with the introduced tool-set

combining capacitance measurement with multivariate data

analysis.

Keywords Dielectric spectroscopy � Apoptosis �
Mammalian cell culture � CHO � Multivariate data analysis

Introduction

In biopharmaceutical cell culture processes, both the yield

as well as the quality of the product is strongly dependent

on the viability of the cells. Mammalian cells are sensitive

to changes in their environment which can lead to unde-

sired responses such as cell death during the production

process. Basically, there are two major forms of cell death:

necrosis and apoptosis. Necrosis is generally induced by

external stress factors causing cell swelling, ATP deple-

tion, DNA hydrolysis and karyolysis followed by the rup-

ture of the cellular membrane which leads to the release of

the complete cell content into the extracellular space [1, 2].

In contrast, apoptosis is a strictly regulated cellular process

in which cells ‘‘commit suicide’’. The proapoptotic signals

activate a cascade of caspases, the central regulators of

apoptosis, the initiator and subsequently the effector cas-

pases which in turn proteolytically cleave a wide range of

cellular substrates leading to cell death [3]. Typical mor-

phological changes are cell shrinkage, increase of the

cytoplasma density, nuclear condensation, depolarization

of the mitochondric membrane, increase of cytosolic Ca2?

content, and blebbing of the plasma membrane, the place of

the formation of apoptotic bodies which are membrane

surrounded particles containing degraded cell organelles

and cytoplasma [4–6]. In apoptotic cells, the nuclear DNA

is also degraded; it is cleaved in the internucleosomal
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region resulting in n 9 180–200 bp fragments (DNA lad-

der) [7, 8]. The apoptotic events are consecutive in time;

one of the earliest events is the exposition of phos-

phatidylserine on the cell surface, followed by blebbing,

and finally by DNA fragmentation in the late phase of the

process. Although apoptosis is associated with intense

membrane re-arrangement; the membrane loses its integ-

rity only in the late phase [9, 10].

Apoptosis was reported to be the major cause of cell

death in CHO cells cultured in bioreactors [11, 12]. It can

be induced by numerous factors such as depletion of sub-

strates, pH alteration, hypo-, and hyperoxia, mechanical,

shear and hydrodynamic stress, toxic ammonium concen-

tration or viral infections [10, 13–15]. Since the product

yield of a bioprocess strongly depends on its duration and

the cell concentration, a decrease in the viable cell density

by apoptosis during the production phase can easily reduce

the final yield. Furthermore, apoptosis can also influence

the quality attributes of the product (e.g. glycosylation

pattern) [16]. Accordingly, postponing the onset of apop-

tosis in cell culture processes can be a key tool to maintain

high volumetric productivity, or the targeted product

quality. To achieve this, the detection of apoptosis should

occur as early as possible. A prompt monitoring of the

early events of apoptosis may contribute to recognize

certain cultivation variables or their shifts which can

induce apoptosis. In process development, these parameters

or variables should be adjusted to avoid the induction of

apoptotic events in the culture.

The apoptosis detection techniques greatly vary in the

capability of which apoptotic phase is monitored. The fact

that apoptosis is a cascade of molecular events in the cells

raises the question which stage of apoptosis can be con-

sidered as death. Apoptosis is thought to be a reversible

process; however, its detailed cellular switch control is still

under investigation [17, 18]. In cell culture processes, a

very critical point would be to determine the phase when

apoptosis turns irreversible. There are two factors which

hinder the detection of apoptosis before this critical time

point. First, most of the methods used in daily laboratory

routine (e.g. trypan blue exclusion) indicate apoptosis only

in its late phase after the irreversible switch. Second, these

techniques are performed at-line or off-line demanding

extra sample collection to be taken from the bioreactors.

The low sampling frequency (once or twice per day) and

the resulting low temporal resolution gained with at-line or

off-line methods in cell culture experiments is the second

factor which hampers a precise apoptosis detection in time.

This suggests that the development of a method for the on-

line detection of apoptosis is a potential key task in cell

culture development. Such a method could be subsequently

applied to facilitate the development of novel processing

strategies which postpone the onset of apoptosis in cell

culture processes. Moreover, in accordance with the pro-

cess analytical technology (PAT) initiative, the availability

of on-line information about an apoptotic progress during

cell cultivation could further enhance the sensitivity of

multivariate process models towards physiological changes

and thus enable the implementation of adaptive control

strategies in the future. In order to achieve this goal, a

method needs to be developed, which (1) applies a mea-

surement technique which is compatible with the strict

regulatory requirements of pharmaceutical production (e.g.

GMP) and (2) transforms the measured signal into physi-

ological information with tools which can be easily inte-

grated into on-line process models (e.g. multivariate

analysis methods).

On-line monitoring of cell cultures with dielectric

spectroscopy (DEP) is a widespread method for measuring

viable cell concentration [19]. This technique is based on

capacity measurement using alternating current. In elec-

trical terms, cells behave as small spherical capacitors

surrounded by a poorly conducting lipid membrane [20]. In

contrast, the inside of the cells (cytoplasma) is conducting

and so is the environment of the cells (medium). In elec-

trical field, cell membranes become polarized through

charge separation and the capacitance of this electrical

double layer can be measured between the electrodes

placed in the cell culture. Increasing the frequency of the

applied alternating current, the measured capacitance of the

cell suspension drops, since the charge carrier particles of

the cytoplasma has less time to reach, and thus to polarize,

the membrane. This frequency-dependent phenomenon is

called beta dispersion which occurs in a range of

0.5–3 MHz in most cell types [21]. At high frequencies, the

measured capacitance (C?), deriving mostly from the

dipole moment of water molecules, is negligible. The dif-

ference between the capacity plateaus belonging to the

high- and low-frequency regions is called DC, while the

frequency where the capacitance curve has its inflexion

point is the critical frequency (fC). For prediction of the

biomass, the measurement is usually reduced on the

determination of DC, because neither C? nor fC is con-

sidered to be influenced by the change of cell concentration

as long as cells remain in a physiological steady state [22].

The dielectric features of the cells are determined by

three major components: extracellular space (medium),

intracellular matrix (cytoplasm), and the cell membrane.

During apoptosis these major components, both the mem-

brane, as well as the intracellular matrix, undergo remark-

able structural and chemical changes suggesting alterations

also in the measured dielectric features of the cells. Changes

in the membrane and cytoplasm are the exposition of

phosphatidylserine on the cell surface, formation of apop-

tosomes, blebbing, shrinkage of the cells, nuclear conden-

sation, mitochondrial membrane permeability changes and
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Ca2? release. Accordingly, DEP measurements of human

K562 cells after the induction of apoptosis with stau-

rosporin showed an increase of cytoplasm conductivity,

which might be explained by the reduction of cell radius

(shrinkage) followed by the concentration of ionic material

(ions, proteins, DNA, etc.) into the cytoplasm [23]. Similar

dielectric changes were detected in apoptotic CHO cells by

DEP measurement, suggesting that apoptosis has a strong

impact on the dielectric properties of CHO cells [24].

Here, in our experiments, we intended to investigate the

detectability of apoptosis-associated dielectric changes by

on-line dielectric spectroscopy. Therefore, we induced

apoptosis in an industrial cell culture process expressing a

monoclonal antibody and investigated the changes in the

dielectric properties of the culture with on-line capacitance

spectroscopy. In order to provide a comprehensive analysis

of the detected phenomenon, different apoptosis induction

methods were applied at different cultivation phases.

Moreover, the observed dielectric responses were verified

using different process conditions such as altered temper-

ature or two production cell lines. Parallel to the on-line

determined dielectric changes, the progress of apoptosis

was monitored in high time resolution collecting at-line

samples which were then analyzed with conventional

methods such as trypan blue exclusion and caspase activity

measurement. Finally, as an ultimate novelty of this study,

principal component analysis was performed for the

detection of apoptosis-related changes in the capacitance

spectrum.

Materials and methods

Cell line and preculture

Suspension cultures of two CHO-K1 derived cell lines

expressing the same IgG1 monoclonal antibody were

maintained in chemically defined and serum-free growth

medium (ActiCHO P, GE Healthcare, Little Chalfont, UK)

supplemented with 8 mM L-glutamine (Life Technologies,

Carlsbad, CA) and 5 mg/l insulin (GE Healthcare, Little

Chalfont, UK). Cells were cultured in disposable shake

flasks using 110 rpm orbital agitation at 37 �C in humidi-

fied 8 % CO2 incubator. Passages were carried out in every

3–4 days with an initial cell density of 0.3 9 106 cells/ml.

Bioreactor operation

Cells were cultivated in autoclavable 1 l glass culture

vessels of BIOSTAT� B plus Laboratory benchtop system

(Sartorius AG, Göttingen, Germany). The initial cell con-

centration was of 0.5 9 106 cell/ml in the bioreactors.

Addition of a proprietary feed medium (5 % of the current

broth volume) was started 72 h after the inoculation and it

was repeated on every second day thereafter. The set point

of temperature, pH, and DO were monitored on-line with

in situ sensors. Data were managed and recorded in

supervisory control and data acquisition (SCADA) system

(CitectSCADA Version v7.10, Schneider Electric SA,

France). The pH was controlled by the addition of 10 %

H3PO4 or 0.5 M Na2CO3 solution, while the DO was

controlled by sparging of air/oxygen mixture. Stirring

speed was set to 125 rpm. Foaming was reduced by the

addition of antifoam (FoamAway, Life Technologies,

Carlsbad, CA).

At-line and off-line measurements

Depending on the measurement, at-line samples were

collected daily or more frequently as indicated later. The

following measurements were carried out: determination of

glucose concentration (Cedex BioHT, Roche Diagnostics,

Mannheim, Germany), pH measurement for the in situ re-

calibration of the on-line pH probe (S47 SevenMulti pH

meter, Mettler Toledo, Zurich, Switzerland). Cell density

and viability was determined with Countess automated cell

counter (Invitrogen, Carlsbad, CA) using trypan blue stain

(Life Technologies, Eugene, OR).

Camptothecin (CPT) treatment

Cells were treated with 70 lM CPT (Sigma Aldrich, St.

Louis, MO) by using a stock solution prepared in DMSO.

In the (mock) control cultivations, only DMSO was added

to the culture parallel to the CPT induction.

Detection of apoptosis

The activity of effector caspases (caspase-3 and -7) was

measured with a glow-type luciferase-based assay (Cas-

pase-Glo 3/7 Assay, Promega GMBH, Germany) following

the manufacturer’s instructions. Briefly, the reactions were

carried out directly in cell culture medium and immediately

after sample collection using a 96-well plate format. In

each reaction, 50 ll cell suspension containing 1.5 9 104

cells (total cell number) was mixed with 50 ll reagent and
incubated for 1 h at constant room temperature. The

luminescent signal was measured with Synergy 2 multi

plate reader (BioTek, Winooski, VT).

Apoptosis-induced DNA fragmentation was detected in

a modified version of the method described by Hermann

et al. [25]. Briefly, 5 9 106 cells were washed with phos-

phate based saline buffer (PBS) and lysed in 100 ll lysis
buffer (0.2 % Triton X 100, 20 mM EDTA, 50 mM Tris–

HCl pH 7.5) at room temperature for 2 min. After cen-

trifugation (Hettich Micro 22, Hettich, Tuttlingen,

Bioprocess Biosyst Eng (2015) 38:2427–2437 2429
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Germany), the lysate was incubated with RNaseA for

30 min at 37 �C followed by Proteinase K digestion for 2 h

at 56 �C in the presence of 1 % sodium dodecyl sulfate.

After the DNA precipitation with ethanol (2.5 9 volumes)

and 3 M sodium acetate (0.1 9 volume), the DNA was

washed with 70 % ethanol, air-dried and finally resus-

pended in water. DNA was analyzed with agarose (1 %)

gel electrophoresis using GelRed (Biotium, Hayward, CA)

labeling.

Dielectric spectroscopy and Cole–Cole model fitting

Capacitance of the cultures was measured with Biomass

Monitor 220 (Aber Instruments, Aberystwyth, UK) using

12 mm annular sensors at 25 frequencies (100, 120, 160,

190, 240, 300, 370, 470, 580, 720, 900, 1120, 1400, 1740,

2170, 2700, 3360, 4190, 5220, 6500, 8100, 10090, 12560,

15650, 19490 Hz). Scans were carried out every 8 min and

the collected data were processed with AberScan Beta 4.2

software (Aber Instruments, Aberystwyth, UK).

The AberScan software was used to fit a Cole–Cole

model on the collected dielectric spectra. The fitting

algorithm was described in details by Dabros et al. [26].

The parameters (DC and fC) of the fitted model were cal-

culated by the software.

Statistical analysis

The capacitance datasets were structured in MS Excel

(Microsoft Corporation, Redmond, WA). The datasets

were treated by unit variance scaling and mean centering,

and principal component analysis (PCA) was performed

subsequently in SIMCA software (Umetrics, Umeå, Swe-

den). The number of principle components in the multi-

variate model was adjusted to achieve maximum Q2 values.

Results

For the investigation of apoptosis-induced changes in the

dielectric properties of CHO cells, CHO-K1 derived cells

constitutively expressing the heavy and the light chains of

an IgG type monoclonal antibody were cultivated in 1 l

bioreactors. Apoptosis was induced with two different

methods. Moreover, to gain process- and cell line-inde-

pendent knowledge, apoptosis was induced in different

cultures. In the first set of experiments (CPT1 and CPT2),

cell line A was cultivated at different temperatures and

apoptosis was induced by camptothecin addition in the

early growth phase. In contrast, in the second set of

experiments (GLC1 and GLC2), apoptosis was induced by

glucose deprivation in the stationary phase of the cultiva-

tions using two different cell lines. The settings used in the

four experiments are summarized in Table 1.

Induction of apoptosis by camptothecin addition

In order to avoid the formation of apoptotic cell popula-

tions—which is caused by nutrient depletion, aging etc.,

typically happening in the late phase of batch or fed-batch

cultivations—apoptosis was induced early, 3 days (at a cell

density of 2.5–3 9 106 cell/ml) after inoculation. At this

time, the viability was still close to 100 % and intense cell

proliferation occurred in all the cultivations. The induction

was carried out by using camptothecin, an irreversible

DNA topoisomerase I inhibitor [27], which is a well-

established apoptosis inducing agent [28–30]. Two inde-

pendent experiments (CPT1 and CPT2) were performed by

running two parallel cultures with and without induction

(CPT? and CPT-, respectively). The cultivation parame-

ters differed only in the cultivation temperature. The non-

induced cultures served as control runs.

Cells showed extensive proliferation in all four culti-

vations until the time point of induction (Fig. 1a). The

difference in growth rate between the CPT1 and CPT2

cultivations was the consequence of the different cultiva-

tion temperature. Accordingly, at the time point of induc-

tion, a higher cell density was observed in the CPT1

cultivations compared to the CPT2 runs. The addition of

CPT had a rapid inhibitory effect on cell proliferation, as

indicated by stagnating VCD values and a steep decline in

viability in the post-induction phase of both CPT-induced

cultivations. However, continuous cell growth was

observed in the non-induced control cultures, while the

Table 1 Summary of the experimental settings in the eight cultivations

Experiment ID Apoptosis induction Runs in the experiment Cell line Physiological phase

at induction

Cultivation

temperaturea

Apoptosis induced Control

CPT1 Camptothecin CPT1? CPT1- A Growth phase Standard

CPT2 Camptothecin CPT2? CPT2- A Growth phase Altered

GLC1 Glucose deprivation GLC1dep GLC1ctrl A Stationary phase Standard

GLC2 Glucose deprivation GLC2dep GLC2ctrl B Stationary phase Standard

a Standard cultivation temperature: 37 �C
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viability remained above 95 % (Fig. 1b). In the CPT-in-

duced cultures, cell death was detected with trypan blue

exclusion method 30–45 h after induction. This was indi-

cated by a clear drop in viability (ca. 10 %), which further

decreased until the end of the cultivation. This result was in

a good correspondence with the fact that the cell membrane

of apoptotic cells remains intact until the late phase of

apoptosis. Using light microscopy, membrane blubbing

was also observed nearly parallel with the appearance of

trypan blue positivity (data not shown).

In order to verify the CPT-induced apoptosis in the

cultivations, the enzymatic activities of the effector cas-

pase-3 and -7 were measured using a luciferase-based

assay. In apoptotic cells, caspase-3 and -7 are specifically

activated early during apoptosis [3]. As shown in Fig. 2,

clear evidence for caspase activation was found in the

CPT-treated cultures. This occurred much earlier than the

viability drop detected with Trypan blue exclusion. In

apoptotic cells, the nuclear DNA is fragmented as a late

event showing a well-described pattern of DNA ladder in

the analysis of the DNA isolated from apoptotic cells. DNA

was isolated from the cells at different time points after the

CPT induction and analyzed with agarose gel elec-

trophoresis. In the isolates from the induced culture, but not

from the control runs, DNA fragmentation was detected

revealing the progression of apoptosis (Fig. 1 in the elec-

tronic supplementary material).

Dielectric spectra were collected during the cultivations

by simultaneous measurement of capacitance at 25 differ-

ent frequency values in every 8 min. Principal component

analysis was performed in order to reduce the dimension-

ality of the collected datasets. The observations were the

measurement time points, and the measurement frequen-

cies were defined as variables. Two separate PCA models

were fitted on the CPT1 and CPT2 datasets. Both models

required only two principal components (PC1 and PC2) to

Fig. 1 Cell growth and viability in the CPT1 and CPT2 experiments. a Viable cell density, b viability determined with trypan blue exclusion.

CPT-induced (?) and non-induced (-) cultures are shown

Fig. 2 Caspase activity measurements in the CPT1 and CPT2 exper-

iments. The relative caspase activity was calculated by dividing the

activity value measured in the CPT-induced cultivation with the activity

value measured in the respective control run. The time window marked

with black box in (a) is shown with higher resolution in (b). CPT-
induced (?) and non-induced (-) cultures are shown
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explain more than 99 % (R2[ 99 %) of the variability in

the capacitance datasets.

The t[1] in the induced and non-induced cultures dis-

played a very similar development until the induction of

apoptosis in all four cultivations (Fig. 3a). The t[1] value

seemed to be continuously increasing in time; however,

after the addition of camptothecin in the apoptosis-induced

cultivations the t[1] trajectory showed a plateau followed

by a decline phase. The trajectory of t[1] was very similar

to the cell growth profiles suggesting that the increase in

t[1], which also explained the major part of variations in

the dielectric spectra, is associated with cell (biomass)

growth. The linear correlation between t[1] values and the

off-line measured VCD values confirmed this hypothesis

(Fig. 3b).

The second principal component explained comparable

ratio of the variance (24 % in CPT1 and 16 % in CPT2)

and showed similar trajectories in the two experiments

(Fig. 3c). The t[2] values displayed similar constant values

until CPT treatment in all the cultivations. After apoptosis

induction, the trajectories were shown to be segregating;

t[2] started increasing in the cultures with induced

apoptotic progression, while it remained nearly constant in

the non-induced control cultures. Clear difference between

the trajectories could be seen ca. 20 h after apoptosis

induction. Accordingly, the increase in t[2] seemed to be

related to the onset of apoptosis. It is also notable that t[2]

changed only after apoptosis induction, while t[1] was

already continuously increasing before induction. This also

supported our implication that t[2] represented a type of

variation in the dielectric spectra which can be in associ-

ation with apoptotic events induced in the cultures. How-

ever, the change in t[2] could not be attributed to changes

in a distinct region of the beta dispersion curve, as indi-

cated by the significant loading values of almost all 25

measurement frequencies (Fig. 2 in the electronic supple-

mentary material).

Induction of apoptosis by glucose deprivation

In the second part of the study, apoptosis was induced by

glucose deprivation in the stationary phase of fed-batch

cultivations. Beside the cell line used in the previously

discussed CPT runs, another CHO–K1 derived cell line

Fig. 3 Principal component analysis of the dielectric spectra in the

CPT1 and CPT2 experiments. a The score values of the first principal

components; R2
PC1;CPT1 = 0.76; R2

PC1;CPT2 = 0.84, b VCD values were

plotted against the value of the first principal component at the time

point of sampling events. Linear regression was performed on the

CPT1 and CPT2 datasets separately. c The score values of the second

principal components; R2
PC2;CPT1 = 0.24; R2

PC2;CPT2 = 0.16. CPT-

induced (?) and non-induced (-) cultures are shown
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was used. In order to demonstrate reproducibility, two

independent experiments (GLC1 and GLC2) were carried

out with the two different cell lines. In both experiments

two parallel bioreactors were run (Table 1). First, after

13 days of cultivation, glucose feeding was terminated in

one bioreactor (GLC1dep and GLC2dep, respectively), while

the glucose feeding was maintained in the parallel culti-

vations (GLC1ctrl and GLC2ctrl, respectively) serving as

controls. The deprivation of glucose lasted less than 2 days

and the time point of glucose depletion was defined as zero

process time (Figs. 4, 5, 6, 7). In both experiments, the

glucose-depleted cultures (GLC1dep and GLC2dep) were

run until the viability drastically dropped; after reaching a

viability of 30–40 %, the reactors were terminated. At the

same time the viability was still close to 100 % in the

control runs (GLC1ctrl and GLC2ctrl).

Afterwards, to reproduce the phenomena observed dur-

ing the previously described glucose termination, the glu-

cose feeding was terminated in the remaining GLC1ctrl and

GLC2ctrl control runs (Fig. 4b, c). This enabled to gain

further verifications of our observations. Therefore, in all,

we generated four replicas of glucose deprivation.

In the cultivations, the drop in VCD (Fig. 4a) and in cell

viability (Fig. 4b) was detected at approximately 50 h after

glucose deprivation. However, a rapid increase in the DO

signal (Fig. 4d) indicated a decrease in the respiratory

activity of the cells shortly after the deprivation of glucose.

Interestingly, the increase in the DO curves showed a

distinct profile with a local minimum approximately

20–30 h after the depletion of glucose in all four cultiva-

tions. After this short phase of increased oxygen uptake,

the DO values converged to 100 % indicating the standstill

of cell respiration. These observations suggested a very

similar and reproducible physiological response on glucose

deprivation in all the cultures showing no differences in the

two investigated cell lines.

The induction of apoptosis was verified by the mea-

surement of caspase activity after glucose depletion. Sim-

ilar to the CPT induction, in all four GLC-depleted

cultivations, the glucose deprivation resulted in a five- to

Fig. 4 Cell growth, viability, glucose concentration, and dissolved

oxygen in the GLC1 and GLC2 experiments. In both experiments two

parallel reactors were run. Glucose deprivation was first initiated in

the runs GLC1dep and GLC2dep while the control runs (GLC1ctrl and

GLC2ctrl) were continued with glucose feeding. After termination of

the glucose-depleted cultures, glucose starvation was also initiated in

the control runs. The time point of glucose depletion in the GLC1dep

and GLC2dep cultivations was defined as zero process time (dotted

line, CGlc = 0). Arrows indicate the time point of glucose deprivation

in the GLC1ctrl (solid arrow) and GLC2ctrl (dashed arrow) cultiva-

tions. a Viable cell density, b viability determined with trypan blue

exclusion, c off-line determined glucose concentration, d on-line

measured dissolved oxygen signals
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tenfold increase in caspase-3 and -7 activities. (The relative

increase was determined 48 h after glucose deprivation as

discussed previously). In order to investigate the swiftness

of apoptosis induction after glucose deprivation, the

kinetics of caspase activity increase was estimated by

measuring the activities at several time points in the GLC2

experiment. Compared to the control (GLC2ctrl), a signifi-

cantly higher caspase activity was observed 14 h after

glucose depletion in the GLC2dep cultivation (Fig. 5). This

indicated that the induction of this early intracellular

apoptotic process happened between 7 and 14 h after the

onset of glucose starvation in our experimental system.

In order to investigate whether the apoptosis-induced

changes in the dielectric properties of the cells were similar

to the behavior observed in the camptothecin-induced

cultivations, PCA was performed using the on-line col-

lected dielectric spectra. The second principal component

captured a very similar ratio of variance in the two models

(21 and 22 % in the GLC1 and GLC2 model, respectively).

These values were also comparable to the R2
CP2 values

observed in the CPT experiments (24 and 16 %). More-

over, the loading plot of the second principal component

showed also very comparable profiles in the CPT and GLC

experiments (Fig. 2 in the electronic supplementary mate-

rial) indicating similar changes in the dielectric spectra

after apoptosis induction in the two different experimental

strategies.

The t[2] values showed only small changes until the

time point of glucose depletion; however, an increase in

t[2] occurred already short (\10 h) after the exhaustion of

glucose in both GLC1 and GLC2 experiments (Fig. 6).

Accordingly, the changes in the dielectric properties fol-

lowed similar kinetics in both cell lines after glucose

deprivation. Interestingly, this response was faster than the

t[2] increase in the CPT experiments after camptothecin

induction.

Analysis of apoptosis-induced changes

in the parameters of the Cole–Cole model

Beside multivariate data analysis, Cole–Cole modeling is

also frequently applied to exploit physiological information

from capacitance spectra. A Cole–Cole model was fitted on

the capacitance datasets in order to investigate the response

of the model parameters on the induction of apoptosis. Two

major parameters of the model, DC and critical frequency

(fC) were calculated and plotted against time (Fig. 7).

The DC values showed very similar profiles to the t[1]

curves in the CPT experiments (Fig. 7a), confirming that

the major variability in the dielectric spectra is related to

the changes in the height of the beta dispersion curve as a

result of cell growth or cell death. Similarly, the DC pro-

files in the pre-induction phase of the GLC experiments

correlated with the kinetics of cell growth (Fig. 7c).

However, in contrast to the moderate response on apoptosis

induction in the CPT experiments, DC showed a rapid

decline short after the depletion of glucose in the GLC

Fig. 5 Increase in caspase-3 and -7 activities after glucose depletion

in the GLC2 experiment. Two parallel cultures were run. Apoptosis

was induced by glucose deprivation in the GLC2dep culture while

glucose feeding was continued in GLC2crtl run

Fig. 6 Multivariate analysis of the capacitance spectra collected

during the GLC1 and GLC2 experiments. The score values of the

second principal components were plotted against process time;

R2
PC2;GLC1 = 0.21; R2

PC2;GLC2 = 0.22. The time point of glucose

depletion was defined as zero process time (dotted line, CGlc = 0).

Arrows indicate the time point of glucose deprivation in the GLC1ctrl

(solid arrow) and GLC2ctrl (dashed arrow) cultivations
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experiments. This difference in the DC response might

have been a consequence of the different physiological

status of the cells at the time point of apoptosis induction or

the consequence of the different induction strategy.

The fC values showed similar profiles in the pre-induc-

tion period of the CPT experiments (Fig. 7b). Compared to

the CPT2- control run, the fC value showed an increase

around 20 h after camptothecin induction in both CPT1?

and CPT2? runs. However, the fC curve in the CPT1-

cultivation showed an offset compared to the curve of the

CPT1? very shortly after CPT induction. Consequently,

the fC increase in the CPT-induced cultures as compared to

the respective control fC trajectories could not deliver an

accurate estimation of the time point when the apoptosis-

induced dielectric changes appeared. Accordingly, in con-

trast to the t[2] curves (Fig. 3c), the fC trajectories could

not be used as a palpable marker of apoptosis-induced

changes in the dielectric properties of the cells after CPT

induction. In the GLC experiments, the value of fC
remained nearly constant in the 14 day pre-induction per-

iod (Fig. 7d), showing a similar trajectory to the t[2] values

of the PCA model. After glucose deprivation, fC increased

rapidly to very high levels, suggesting major alterations in

the shape of the b-dispersion curve as a result of glucose

starvation.

Discussion

In industrial processes, CHO cells undergo physiological

changes, the detection of which is essential to gain process

knowledge and maximize viable cell density and product

yield. The changing dielectric properties of CHO cells in

different physiological phases has been reported by Can-

nizaro et al. [31], who could assign major changes in the

shape of the on-line measured dielectric spectrum to pro-

cess events in a perfusion process. On-line capacitance

screening has been successfully used to monitor dielectric

changes in the decline phase in batch [32] and fed-batch

[33] CHO processes; however, apoptosis as a cause of the

detected changes was not investigated in these studies.

Apoptosis-induced changes in the dielectric properties of

CHO cells have been previously described with the help of

at-line DEP measurements [23, 24]. In this study, on-line

Fig. 7 Cole-Cole model parameters of the capacitance spectra

collected during the CPT and GLC experiments. a DC values in the

four CPT cultivations, b critical frequency values in the four CPT

cultivations, c DC values in the four GLC cultivations, d critical

frequency values in the four GLC cultivations. The time point of CPT

induction and glucose depletion was defined as zero process time

(dotted lines, CPT induction, and CGlc = 0). Arrows indicate the time

point of glucose deprivation in the GLC1ctrl (solid arrow) and

GLC2ctrl (dashed arrow) cultivations
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measured capacitance spectra were used to investigate how

apoptosis affects the dielectric properties of CHO cells in

an industrial fed-batch process. Capacitance was measured

on-line at 25 frequencies. An experimental design was

executed comprising eight cultivations, where:

– control cultivations were performed,

– apoptosis was induced in different process phases with

two different induction strategies,

– two different cell lines were used.

This experimental strategy allowed us to identify the

dielectric changes which are related to apoptotic events

independent of other, cell concentration or process-asso-

ciated changes. Principal component analysis was per-

formed to extract the relevant physiological information

from the multivariate capacitance spectral datasets. More

than 99 % of the variability in the capacitance spectrum

could be captured by two principal components in all

experiments. The first principal component captured the

variability related to cell density as indicated by the linear

relationship between t[1] values and the at-line measured

VCD. We identified a second principal component

explaining an explicit proportion (*20 %) of the variance

which appeared after the induction of apoptosis. The sim-

ilar R2
PC2 values in all PCA models suggested that the effect

of apoptosis on the capacitance spectrum was similar in

both induction strategies. Therefore, we suggest that t[2] is

associated with the apoptosis-induced dielectric changes in

our experimental system.

The changes in the t[2] could not be linked to a distinct

region of the capacitance spectra, suggesting that apoptotic

events influence the shape of the whole spectrum. Downey

et al. reported changes in the shape of the beta dispersion

curve in the decline phase of a fed-batch CHO cultivation

[34] which were probably caused by similar cell death-

related processes as in our study. In our study, the shift in

the fC of the Cole–Cole model after the induction of

apoptosis further confirmed the hypothesis that the shape of

the capacitance spectrum is vastly affected by apoptosis-

induced dielectric changes. In accordance with this, the

increase of the fC has been recently shown to associate with

the increase of the number of apoptotic cells at the end of

an adherent Vero cell culture process [35]. Our compara-

tive analysis revealed similarities between the progression

of fC and t[2] curves. However, t[2] showed a more distinct

response after the induction of apoptosis. Moreover, t[2]

can be calculated by standard PCA algorithms which are

generally integrated in commercially available data

acquisition and process control softwares. The application

of multivariate data analysis for the detection of apoptosis-

related changes in cell culture processes has been demon-

strated recently; intact cell mass spectrometry datasets

were successfully differentiated by PCA [36]. Similarly,

principal component analysis in our study has been proven

to be an easy-to-use and powerful tool to detect the

apoptosis-related changes in the capacitance spectral

datasets.

The response of CHO cells on glucose starvation could

be analyzed in a timely resolved manner. The cellular

pathways of the regulation of apoptosis and glycolytic

activity share many regulator molecules [37, 38] suggest-

ing that the fast response in the dielectric properties on

glucose depletion observed in our study is linked to

apoptotic processes. Although the induction of apoptosis in

glucose starvation has been previously reported [15, 24,

39], a timely resolved analysis of the changes in the res-

piratory activity and dielectric properties of the cells is

novel. Two molecular markers of apoptosis were investi-

gated to timely allocate the onset of the dielectric changes

with respect to the cellular progression of apoptosis. We

showed that both camptothecin treatment and glucose

deprivation were followed by caspase-3 and -7 activation

considered as early events in the progression of apoptosis.

Also apoptotic DNA fragmentation, a late apoptotic event,

was analyzed in the CPT experiments. Although we cannot

gain deep insight into the molecular mechanism causing

the observed changes, our results let us suggest that the

dielectric change characterized by the increase in t[2] of

the PCA model occurred in the early phase of apoptosis

prior to the loss of cell membrane integrity detected with

trypan blue exclusion.

As a future perspective, the combined analysis of bio-

logical apoptotic markers and on-line capacitance moni-

toring can be used to investigate the activation of apoptotic

processes with time resolution after shifts in process

parameters or the onset of nutrient limitations.

Based on the presented results, we propose that the

combination of dielectric spectroscopy and PCA can be a

powerful tool for the monitoring of apoptotic events in

industrial processes. Using similar PCA models, capaci-

tance spectra could be integrated into hierarchical process

models, where the capacitance dataset is represented by a

single variable (the score value of the apoptosis-related

principal component) beside many other on-line measured

signals. The proposed methodology could be used in the

future to augment the sensitivity of multivariate process

models towards physiological changes in cell culture

processes.
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assistance in cell cultivation and the bioanalytical group at Gedeon

Richter Plc. for their assistance in the analytical measurements.

2436 Bioprocess Biosyst Eng (2015) 38:2427–2437

123



References

1. Edinger AL, Thompson CB (2004) Death by design: apoptosis,

necrosis and autophagy. Curr Opin Cell Biol 16:663–669. doi:10.

1016/j.ceb.2004.09.011

2. Kanduc D, Mittelman A, Serpico R et al (2002) Cell death:

apoptosis versus necrosis (review). Int J Oncol 21:165–170

3. Kurokawa M, Kornbluth S (2009) Caspases and kinases in a

death grip. Cell 138:838–854. doi:10.1016/j.cell.2009.08.021
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Abstract 

The integration of physiological knowledge into process control strategies is a cornerstone for 

the improvement of biopharmaceutical cell culture technologies. The present contribution 

investigates the applicability of specific productivity as a physiological control parameter in a 

cell culture process producing a monoclonal antibody (mAb) in CHO cells.  

In order to characterize cell physiology, the on-line oxygen uptake rate (OUR) was monitored 

and the time-resolved specific productivity was calculated as physiological parameters. This 

characterization enabled to identify the tight link between the deprivation of tyrosine and the 

decrease in cell respiration and in specific productivity. Subsequently this link was used to 

control specific productivity by applying different feeding profiles. The maintenance of 

specific productivity at various levels enabled to identify a correlation between the rate of 

product formation and the relative abundance of high mannose glycoforms. An increase in 

high mannose content was shown as a result of high specific productivity. Furthermore, the 

high mannose content as a function of cultivation pH and specific productivity was 

investigated in a Design of Experiment approach.  

This study demonstrated how physiological parameters could be used to understand 

interactions between process parameters, cell physiology and product quality attributes. 

 

Introduction 

The amount of biopharmaceutical products expressed in mammalian cell lines has been 

constantly increasing in the last decade (Walsh 2014). Parallel to the success of mammalian 

expression systems, the scientific understanding of complex interactions between process 

parameters and product quality attributes in cell culture processes has been also expanding. 

This knowledge has become especially critical in biosimilar development, where critical 

quality attributes (CQAs) have to be steered in a tight range defined by the original product 

(McCamish and Woollett 2011). The swift scientific progress enabled to identify the 

production cells’ physiological attributes which ultimately determine the interactions between 

process input parameters and product quality (Carinhas et al. 2012; Dickson 2014). The 

successful integration of physiological knowledge into process control tools and their 

applicability to adjust product quality attributes have been recently reviewed (Zalai et al. 

2015a). 

A frequently investigated physiological parameter of recombinant cell culture processes is 

specific productivity (qP), which quantifies the rate of protein expression per cell and time 
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unit. Product titer, a variable frequently defined as a key performance indicator, is affected by 

specific productivity to a great extent. Accordingly, the maximization of qP is an important 

target of bioprocess development (Kou et al. 2011; Schaub et al. 2012; Templeton et al. 

2013). Moreover, as specific productivity delivers time-resolved information on the kinetics 

of recombinant protein synthesis, it can be used to investigate the interactions between 

processing events, product formation and changes in post-translational modifications (Sou et 

al. 2015). Accordingly, qP is a key parameter to understand links between cell physiology and 

product quality. An important basis of this knowledge should be the mechanistic 

understanding of interactions between the rate of product formation and the progress of post-

translational modifications. 

To investigate mechanistic interactions between specific productivity and product quality, 

strategies to control qP at multiple constant levels are required. As to our knowledge, 

approaches reported in the scientific literature exclusively targeted maximal qP and did not 

aim to control this physiological parameter at different levels. The reported approaches either 

used genetic engineering to enhance protein expression (Kober et al. 2013; Seth et al. 2007; 

Xiao et al. 2014) or applied process control strategies such as cell cycle arrest (Du et al. 2015) 

or medium development (Kang et al. 2012; Sellick et al. 2011) to increase product titer. The 

latter strategy is based on the recognition that a limitation of key nutrients (e.g. amino acids) 

leads to a decrease in specific productivity, which can be restored by the supplementation of 

these substances (Lu et al. 2013; Read et al. 2013; Sellick et al. 2011). However, these results 

also suggest that a targeted limitation and the subsequent continuous feeding of the limiting 

amino acids can be used to control specific productivity in fed-batch processes. The addition 

of nutrients in limiting amounts has been already applied in cell culture processes to adjust 

another physiological parameter, specific growth rate. Aehle et al added glutamine by using a 

simple open-loop control and successfully controlled the specific growth rate of the cells at 

four different levels (Aehle et al. 2011a). The same authors also developed a closed-loop 

control based on oxygen uptake rate (OUR) to control specific growth rate at a constant level 

for a long time period (Aehle et al. 2012). These studies already demonstrated the 

controllability of physiological parameters in cell culture processes. However, the control of 

specific productivity at multiple levels has not been reported previously in the literature to our 

knowledge.  

In this case study, we demonstrate the use of specific productivity as a control parameter in a 

fed-batch CHO process. The oxygen uptake rate was used to monitor the metabolic activity of 

the culture and to detect the onset of nutrient limitations. Based on this on-line signal, a 
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feeding strategy was developed to obtain different qP profiles. The control of qP y at different 

levels allowed investigating interactions between the rate of product formation and post-

translational modifications such as product glycosylation. 

 

Materials and Methods 

Cell line and preculture 

Suspension cultures of two CHO-K1 derived cell lines (referred to as cell line A and B) 

expressing the same IgG1 monoclonal antibody were maintained in shake flasks before 

inoculating the bioreactors. Stocks were revived in commercially available basal medium 

(ActiCHO P, GE Healthcare, UK), supplemented with 8 mM L-Gln and 5 mg/l Insulin. The 

cells were sub-cultured every 3–4 days with a seeding density of 0.3·10
6
 cells/ml and were 

grown in shake flasks of different scales. The shake flasks were incubated at 37 °C with 

humidified air containing 5% CO2 and agitated at 100 rpm orbital shaking. 

Bioreactor cultivations 

Fed-batch cultivations were performed in bioreactors with 1 l maximal working volume 

(Sartorius AG, Germany). The targeted seeding cell density was 0.5·106 cells/ml. 

Temperature, pH and pO2 were controlled by a Biostat BPlus Twin DCU (Sartorius AG, 

Germany). Stirring speed was set to 125 rpm, initial cultivation temperature was 37 °C, initial 

pH setpoint was 7.2 and the dissolved oxygen rate was maintained at 40% of air saturation by 

air–oxygen mixture sparging. The pH value was controlled at the current setpoint ±0.02 by 

automatic addition of 10% H3PO4 solution or 0.5 M Na2CO3 solution. The shifting of pH 

and temperature was performed on cultivation day 3 and 5, respectively. Temperature was 

shifted to 33 °C and pH was shifted to pH 6.9. In the DoE experiments, pH was shifted to the 

pre-defined setpoint according to the experimental design (see Figure 6a). The basal medium 

was the same as the one used for the shake flask preculture cultivations (vide supra). 

Feeding strategy 

The feed medium was a proprietary medium. Bolus feeding was initiated on the 3
rd

 cultivation 

day by adding a pre-defined amount of feed medium to the culture broth at a high feeding 

rate. Continuous feeding was carried out by applying Watson Marlow 120U and 101U/R 

pumps (Watson Marlow, UK) and PharmMed BPT pump tubings (Saint-Gobain Performance 

Plastics, France). The supplementary feed was a proprietary feed medium containing high 

concentration of essential amino acids dissolved at alkaline pH. Each pump and tubing 

combination was tested at several pump speed setpoints to obtain pump speed – feeding rate 

calibrations. These calibrations were subsequently used during the experiments to adjust 
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feeding rates to the pre-defined setpoints. Feeding rates were also determined gravimetrically 

during the experiments and pump speed was adjusted when required. 

Measurements 

Real-time measurements 

The bioreactors and feed mediums were placed on balances (Mettler Toledo, Switzerland) to 

determine broth and liquid volumes gravimetrically. The balance signals as well as on-line 

measured process parameters (pH, pO2 and temperature) were collected by the Biostat BPlus 

DCUs and processed in a Citect SCADA system (Schneider Electric, Rueil-Malmaison, 

France) via local area network connection. Capacitance of the cultures was measured with 

Biomass Monitor 220 (Aber Instruments, Aberystwyth, UK) using 12 mm annular sensors. 

Oxygen uptake rate was determined with the stationary liquid phase method as described in 

the literature (Ruffieux et al. 1998). The temperature-dependence of the Henry coefficient was 

considered (0.974 and 0.905, at 37 °C and 33 °C respectively). The value of kLa was 

determined as a function of broth volume and aeration rate (kLa(V, aer)) in a preliminary DoE 

experiment using the same cultivation medium as for cell cultivation. An equation was 

determined based on the results of the preliminary experiment and was used to estimate 

kLa(V, aer)  on-line. 

At-line and off-line measurements 

At-line samples were taken every 24 hours or more frequently in order to measure several 

process variables. pH measurement for in situ pH meter re-calibration was performed with a 

S47 SevenMulti pH meter (Mettler Toledo, Switzerland). Viable cell density as well as 

viability was determined in triplicates by Countess automated cell counter (Life Technologies, 

CA). Samples were centrifuged at 1000 g for 10 minutes and cell-free supernatants were 

stored at -20 °C until further analysis. Metabolite concentrations were determined in 

duplicates by enzymatic assays (Cedex BioHT, Roche Diagnostics, Germany). Spent broth 

analysis to determine amino acid concentrations was performed by HPLC using OPA and 

FMOC in-needle derivatization and an Agilent ZORBAX Eclipse AAA HPLC column. 

Product titer was measured by affinity chromatography using a POROS Protein A column 

(Thermo Fisher Scientific, MA) and applying gradient elution. 

Determination of product glycosylation 

Cultivation samples were centrifuged at 1000 g for 10 minutes (Rotanta 460 R, Hettich 

Zentrifugen, Germany) and the supernatant was purified using Protein A affinity 

chromatography. Enzymatic digestions were performed using trypsin, according to the 

protocol described before (Ozohanics et al. 2012; Turiák et al. 2011). UPLC-MS analysis of 
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the antibody digest was performed on a Nexera UPLC (Shimadzu Corporation) coupled to a 

high resolution micrOTOF-Q II mass spectrometer (Bruker Corporation). Chromatographic 

conditions were the following: reversed-phase column (Aeris Peptide 1.7 µm XB-C18 

particles, Phenomenex Inc., USA), gradient elution (Solvent A: 0.1 v/v% formic acid in 

water; solvent B: 0.1 v/v% formic acid in 10% water and 90% acetonitrile mixture; flow 

rate: 225 µL/min flow rate,  column temperature: 30 °C). Mass spectrometric conditions: 

positive electrospray ionization mode (capillary voltage: 4.5 kV; dry gas flow 

rate: 12.0 L/min; dry temperature: 200 °C; end plate offset: 500 V), scans acquired in the 

140-2000 m/z range. 

 

Results 

The first goal of the study was to gain real-time information on cell physiology by monitoring 

the oxygen uptake of the culture on-line and to link this physiological information to the rate 

of product formation. The ultimate goal was then to develop a control strategy including 

specific productivity as a parameter and to investigate interactions between specific 

productivity and the glycosylation pattern of the recombinant product. 

 

On-line detection of the dynamics of cell physiology during switches between nutrient 

limitation and excess 

A typical fed-batch cell culture process was performed with cell line A, using bolus feed 

additions every second day. OUR was monitored on-line in order to gain information on the 

respiratory activity of the cells (Fig. 1). On the 5
th

 cultivation day, a temperature shift was 

performed leading to a decrease in the oxygen uptake of the culture. Another steep decrease in 

OUR was observed after the 7
th

 cultivation day, which could not be related to any processing 

events. Spent broth analysis revealed that the decrease in the respiratory activity was linked to 

the exhaustion of tyrosine in the cultivation broth. The concentration of all other amino acids 

remained above the limit of detection of the measurement method during the whole 

cultivation (concentrations of two other aromatic amino acids which also frequently show 

deprivation in cell culture processes due to their low solubility in cultivation media are shown 

in Figure 1). After the addition of the bolus feed (which contained tyrosine) on the 9
th

 

cultivation day, the respiratory activity of the cells recovered and OUR showed an increase 

for several hours. However, as tyrosine was depleted again, similar to the previously 

described events, OUR showed repeatedly a decline and remained on a low level until the 

next feeding event. 
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Fig. 1 Physiological response on the switch between nutrient limitation and nutrient excess. The 

concentration of tyrosine (black diamonds) and the concentration of two aromatic amino acids, phenylalanine 

and tryptophan (grey diamonds) are represented. The on-line determined oxygen uptake rate (OUR, blue), the 

product titer (empty black circles) and the specific productivity (empty red circles) is also demonstrated. Black 

dashed lines indicate the timepoint of the addition of the last two bolus feeds. 

 

Whereas the investigation of product titer did not indicate variations in product formation 

during the switch between nutrient limitation and excess, the analysis of qP revealed a steep 

decrease in the rate of product formation in the nutrient limited phases (Fig. 1). However, 

similar to OUR, qP recovered after the feeding events. Taken together, the exhaustion of 

tyrosine led to a decrease in the oxygen uptake (OUR) as well as in the productivity (qP) of 

the culture. The main benefit of OUR monitoring was the real-time detection of the changes 

in cell physiology. 

 

Implementation of a feeding strategy to increase qP based on real-time physiological 

information 

Based on the above discussed observations, an experiment was designed where a 

supplementary feed containing tyrosine (and other essential amino acids) was added to the 

cultivation in order to overcome nutrient limitations. The supplementary feed was initiated 

after observing the first decrease of the OUR signal and it was terminated at the next bolus 

feeding event (Figure 2). Control cultivations were performed for both cell lines to obtain a 

similar physiological profile as shown in the previous experiment. 

Interestingly, the first decrease in OUR was observed one day earlier in the cultivations with 

cell line B (day 7) compared to the cell line A cultures (day 8). Spent broth analysis (data not 

shown) revealed that this phenomenon was a consequence of the earlier exhaustion of 

tyrosine, probably due to the higher substrate uptake rates of cell line B. However, the on-line 

monitoring of OUR enabled to detect the earlier onset of nutrient limitations and to maintain a 
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high specific productivity by starting the supplementary feed one day earlier as in the cell line 

A cultivation.  

After the bolus feeding events, the OUR of the control cultivation (“ctrl”) with cell line A was 

monitored and when the decline in OUR was detected, the supplementary feed of the 

supplemented cultivations (“suppl”) was started again for both cell lines. This strategy 

allowed to avoid nutrient limitation in the supplemented cultivation of cell line A from the 

first start of the supplementary feed until the end of the cultivation (data not shown). 

However, a decrease in OUR was observed in the supplemented cultivation of cell line B after 

the 11
th

 cultivation day, suggesting the exhaustion of a further substance which was not added 

with the supplementary feed. The spent broth analysis revealed the exhaustion of leucine in 

this cultivation, which was indeed not added to the supplementary feed. The next step of 

process development would be to subsequently adjust the composition of the supplementary 

feed to the metabolic requirements of cell line B. 

 

Fig. 2 Physiological response on nutrient limitation and on the addition of a supplementary feed. The 

feeding rate of the daily bolus addition of the standard feed medium is shown in grey. Black lines indicate the 

feeding rate of the supplementary feed, started after the detection of the decrease in OUR of the control 

cultivation. a Cell line A b Cell line B 
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The time-resolved analysis of qP revealed that product formation rate followed the pattern of 

the OUR signals (Fig. 2). In the control cultivations, both cell lines showed high variations in 

qP, in accordance with the changes in OUR. In contrast, the supplemented cultures of both cell 

line A and B showed a high and nearly constant qP after the initiation of the supplementary 

feeding. Thus, the real-time adjusted feeding strategy enabled us to generate different qP 

patterns with two different cell lines in a single experiment. The detected differences in cell 

respiration as well as in qP suggested that the cells experienced a very different physiological 

status in the “ctrl” and in the “suppl” cultivations. Whereas the “ctrl” cultivations showed 

repeatedly physiological changes in nutrient limitation and excess, the addition of a 

supplementary feed maintained amino acid concentrations and a stable physiological status in 

the “suppl” cultivations. 

Beside OUR monitoring, capacitance measurement, another on-line tool, was also performed 

to investigate changes in the dielectric properties of the cells during the cultivations. The 

capacitance signals measured at 580 kHz (C580) frequency showed a linear correlation to the 

at-line measured VCD values for both cell lines in the growth phase of the cultivations 

(Fig. 3 a and b). The linear correlation between the capacitance signal measured at one 

frequency and cell density indicated a constant physiological status in this process phase. 

Interestingly, the capacitance signal showed a similar pattern to OUR in the control 

cultivations, indicating major changes in the dielectric properties of the cells as a response on 

the repeated switches between nutrient limitation and excess. 
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Fig. 3 Cell growth, lactate metabolism and respiration in the supplementary feeding experiments. a VCD 

and on-line measured capacitance for cell line A b VCD and on-line measured capacitance for cell line B 

c Specific lactate uptake rate d Specific oxygen consumption rate. Symbols are used the same way as in Fig. 3c 

 

In order to gain insight into cell metabolism, specific lactate production rate and specific 

oxygen uptake rate (qO2) were calculated. Both cell lines switched to lactate uptake after the 

temperature shift performed on the 5
th

 cultivation day (Fig. 3c). Interestingly, cell line B 

showed an oscillation in lactate metabolism in accordance with the phases of nutrient excess 

and limitation. Whereas the cells produced lactate after bolus feeding events, they switched to 

lactate consumption after nutrient exhaustion. Cell line A showed a different pattern 

indicating that the effect of nutrient limitation on lactate metabolism may be cell line 

dependent. The calculated qO2 values showed an oscillation in the respiratory activity of the 

cells (Fig. 3d), in accordance with the OUR pattern. Interestingly, the qO2 values of the two 

cell lines differed in a great extent, indicating differences in the metabolic activity of the two 

cell lines (vide supra). 

Specific productivity was plotted against qO2 in order to investigate the link between 

respiratory activity and product formation (Fig. 4a). A linear relationship was observed, 



Manuscript 6 

 

verifying the tight physiological link between cell respiration and the rate of product 

formation in our system of interest. 

 

Fig. 4 The link between respiratory activity, product formation and product quality in the supplementary 

feeding experiments. a Specific productivity plotted against specific oxygen uptake rate b Relative abundance 

of M5 high mannose glycoform. The values were normalized by dividing with the value determined in first 

measurement point for cell line A 

 

Product glycosylation – which is an N-linked biantennary oligosaccharide structure in the Fc 

region of the antibody – was analyzed at several time points of the cultivations. The seven 

most abundant glycoforms were investiagted: an afucosylated high mannose glycoform 

containing five mannose residues (M5), and further six glycoforms labelled according to the 

number of galactose in the core structure (G0, G1 and G2); each of them occurred in both 

fucosylated and non-fucosylated forms. The relative abundance of the glycoforms was 

calculated in order to investigate their distribution as a function of process time. Beside the 

cell line-dependent difference, a process-dependent difference was also observed in the 

glycosylation patterns. Generally, the relative abundance of high mannose (Fig. 4b) and other 

afucosylated glycoforms (G0, G1 and G2 on Fig. S1) was higher in the supplemented 

experiments. Both cell lines showed an increasing M5 pattern with very similar values until 

the 10
th

 cultivation day in the respective control and supplemented cultivations (Fig. 4b). 

However, the relative abundance of M5 high mannose glycoform was higher in both 

supplemented experiments, suggesting that the differences in qP-patterns led to differences in 

product quality. The successful adjustment of qP enabled to identify a link between specific 

productivity and high mannose content. In order to investigate this link further, another 

experiment was conducted with cell line A, where qP was controlled at two different levels 

(vide infra). 
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Application of dynamic feed profiles to adjust qP to different levels 

In this experiment, feed media were added continuously to two independent cultivations 

performed with cell line A. The dynamic feed ramps were initiated on the 8
th

 cultivation day 

based on previous observations (vide supra) to avoid any nutrient limitations. In order to 

achieve a high qP, both standard and supplementary feed media were added to the cultivation 

broth in experiment “HI”. While, in experiment “LO”, only the standard feed medium was 

used at a lower feeding rate to obtain a lower qP value. Moreover, the feeding rate was 

reduced on the 11
th

 cultivation day in the “LO” cultivation in order to trigger a decrease in qP 

in the last two cultivation days (Fig. 5a). We found that both the on-line determined OUR and 

the calculated qP were higher in experiment “HI”, indicating that the proposed strategy to 

control qP by adjusting the feeding rate was successful. Moreover, both OUR and qP 

immediately followed the dynamic change in the feeding rate in experiment “LO” on the 11
th

 

cultivation day, suggesting a strong link between feeding rate, the respiratory activity and 

product formation in the nutrient-limited environment; the correlation of the latter two 

physiological features is also proven by the linear correlation of qO2 and qP on Fig. 5b. 

 

Fig. 5 Cell physiology, product formation and product quality in the dynamic feeding experiments 

conducted with cell line A. a Feeding rates, oxygen uptake rate and specific productivity (qP) in the “LO” and 

“HI” experiments. Grey dashed line indicates the feed profile of the “LO” experiment. Grey and black 
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continuous lines indicate the feed profile of the “HI” experiment. b Specific productivity plotted against specific 

oxygen uptake rate c Relative abundance of M5 high mannose glycoform. The values were normalized by 

dividing the measured glycoform abundance with the value determined in the first measurement point of the 

bolus-fed experiment (Fig. 4b) 

 

The relative M5 value plotted as a function of process time showed a distinct response on the 

level of specific productivity (Fig. 5c). When the productivity of the two cultivations diverged 

to a great extent from each other, the relative M5 values increased in experiment “HI” 

reaching much higher values than in experiment “LO”. The relative abundance of G0F 

glycoform showed the opposite trend and the distribution of all other glycoforms remained 

very similar in both cultivations (Fig. S2). These results suggest that the abundance of high 

mannose glycoforms is higher when qP is increased. The major achievement of this 

experiment was the adjustment of qP on two constant levels, which enabled to identify its 

effect on high mannose levels independent of any other process parameters. 

 

Application of qP as a physiological factor in a multivariate experimental design 

The benefits of using physiological parameters as experimental factors in DoE designs have 

already been demonstrated in microbial process development (Wechselberger et al. 2012). As 

a proof of concept for cell culture processes, a DoE approach involving specific productivity 

as an experimental factor was conducted in our study (Fig. 6a). Specific productivity was 

controlled at three levels (“high”, “center point” and “low”) in the last three cultivation days 

by applying different pre-defined continuous feeding profiles (Fig. S3a). The second 

experimental factor was chosen to be the pH shift setpoint, as pH was shown to effect mAb 

glycosylation (Jedrzejewski et al. 2013). The center point value of the pH-shift setpoints 

was 7.05. 

We found that the experimental factors did not affect VCD (Fig. 6b), thus the implementation 

of a cell density-dependent feeding rate was not necessary. The cultivations showed a similar 

qP-profile until the 8
th

 cultivation day (Fig. 6c). After the initiation of the continuous feed 

profiles, the specific productivity curves diverged from each other. The two “qP high” 

cultivations showed a high specific productivity, as expected, until the end of the experiment. 

In the center point experiments, qP started to decrease after the 8
th

 cultivation day and then 

remained on a constant level in the last three days of the experiments. The highly similar qP 

profile of the three center point experiments proved the reproducibility of the control strategy 

(Fig. S3b). Interestingly, the specific productivity in the “qP low” experiments showed a 

pH-dependent behavior. Whereas qP started to decrease immediately after the initiation of the 
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continuous feeding in the “w/o pH-shift, qP low” cultivation, specific productivity remained 

high until the 10
th

 cultivation day in the “pH-shift, qP low” run and decreased to a low level 

only in the last three days of the experiment. The reason behind the later decrease of product 

formation rate is the lower metabolic activity in pH-shifted conditions and a subsequently 

later onset of nutrient limitation in the “pH-shift, qP low” cultivation. Indeed, the spent broth 

analysis verified that tyrosine exhausted on the 9
th

 cultivation day in the cultivation without 

pH-shift and only on the 11
th

 cultivation day in the “pH-shift, qP low” cultivation. However, 

qP decreased to similar values in both “qP low” runs, enabling the use of specific productivity 

as a DoE factor independent of pH in the last three days of the cultivations. 

The relationship of respiratory activity and specific productivity also showed a pH-dependent 

pattern (Fig. 6d). Although the values of qO2 and qP followed a linear correlation in all runs, 

the cultivations without pH-shift formed a different cluster on the qO2- qP plot from those 

where pH-shift was performed. This suggested that the respiratory activity of the cells is 

dependent on pH. This was also confirmed by the OUR and qO2 profiles (Fig. 6e and f), where 

the values of the pH-shifted cultivations run lower between the timepoint of the pH shift 

(3
rd

 cultivation day) and the initiation of the continuous feeds (8
th

 cultivation day). Nutrient 

availability also affected the respiratory activity of the cells. Whereas qO2 increased in the 

“qP high” cultivations after the 8
th

 cultivation day, the “qP low” cultivations, in which the 

feeding rate was low, showed a decline in qO2 after the initiation of the continuous feed 

profile. However, the relationship between qO2 and qP was only affected by pH shift, and 

retained its linear nature at the different qP levels of the DoE experiment. 
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Fig. 6 The Design of Experiment approach conducted with cell line A. a The DoE design with specific 

productivity as an experimental factor b Specific productivity as a function of process time c VCD curves 

d Specific productivity plotted against specific oxygen uptake rate after day 7 (The values of the three center 

point runs are shown with empty blue circles) e Oxygen uptake rate f Specific oxygen uptake rate 

 

In order to investigate the effect of the experimental factors on cell metabolism, the YLac/Glc 

variable was investigated (Fig. 7a). Similar to previous observations with the same cell line 

(Zalai et al. 2015b), the shift in pH to 6.9 on the 3
rd

 cultivation day immediately affected the 

ratio of lactate and glucose uptake rates. Interestingly, the metabolic shift to lactate 

consumption was also dependent on the feeding rate in the cultivations without pH shift. 
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Whereas the cells did not switch to lactate uptake in the cultivation with a high feeding rate, 

lactate consumption was observed after the 8
th

 cultivation day in the “w/o pH-shift, qP low”. 

Osmolality has been shown to affect high mannose content in cell culture processes 

(Shi and Goudar 2014). In this study, osmolality profiles clustered according to the setpoint of 

the pH-shift, however did not show a response on the qP setpoint (Fig. 7b). Thus, the effect of 

qP on high mannose content was not a consequence of interactions with osmolality effects. 

 

Fig. 7 Lactate metabolism and osmolality in the DoE experiments. a The ratio of lactate production and 

glucose uptake rates b Off-line determined osmolality values 

 

High mannose content was determined in the DoE cultivations in order to investigate the 

effect of the experimental factors on the accumulation of this pre-mature glycoform. The 

center point runs showed very similar high mannose profiles during the whole cultivation 

period (Fig. 8a). Whereas the two cultivations without pH shift showed a same profile as the 

center point runs, the cultivations with a pH shift to 6.9 showed elevated relative M5 values 

already on the 10
th

 day of the cultivation. However, the high mannose of these cultivations 

diverged in the last day of the experiment, according to the qP setpoint. The relative M5 

values in the two cultivations with pH shift were comparable to the values observed in the 

“HI” and “LO” experiments (Fig. 8b), verifying our previous observations that the increase of 

qP leads to the accumulation of pre-mature glycoforms. However, the high mannose content 

remained low in the “w/o pH-shift, qP high” cultivation, indicating that the phenomenon is 

pH-dependent. Taken together, the DoE experimental design enabled the identification of an 

interaction effect between pH and qP, which lead to elevated high mannose levels in the 

“pH-shift, qP high” experimental point. 
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Fig. 8 Product formation and product quality in the DoE experiments. a The relative abundance of M5 high 

mannose glycoform as a function of process time b The relative abundance of M5 high mannose glycoform as a 

function of process time in the DoE as well as in the dynamic feeding experiments c Average qP values 

calculated from the specific productivity values in the last three days of the cultivations d Final high mannose 

content. The values were normalized by dividing with the value determined in first measurement point of the 

bolus-fed experiment (Fig. 4b). 

 

In order to involve qP as an experimental factor in the statistical evaluation of the DoE data, 

average specific productivity in the last three cultivation days was calculated (Fig. 8c). The 

values in the “qP low” and the center point runs showed only a small difference, leading to an 

asymmetric design. Consequently, the fitted mathematical model showed a low Q
2
 value 

(0.52) as an indicator of the poor prediction capability. However, the statistical analysis 

identified the interaction term of pH and qP as a significant model coefficient to explain 

relationship between the experimental factors and final high mannose content (Fig. 8d). This 

result verified the above discussed pH-dependence of the effect of qP on high mannose 

content.  
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Discussion 

Changes in cell physiology during switches between nutrient limitation and excess 

In this study, the investigation of OUR and qP enabled the identification of major changes in 

cell physiology during a fed-batch CHO cell culture process. Spent broth analysis revealed 

that the cause of the decrease in the metabolic activity of the cells (indicated by OUR) and 

productivity (qP) was the depletion of tyrosine. After the addition of tyrosine with a bolus feed 

both physiological parameters recovered. These results suggest that cell metabolism shows a 

very prompt response on the depletion and subsequently on the addition of the essential amino 

acid tyrosine, as indicated by the steep increase in OUR after the feeding events. Although the 

exact time point of the onset of tyrosine limitation could not be determined, it can be 

hypothesized that the steep decrease in OUR happened shortly after the limitation. Ansorge et 

al. reported a similar OUR pattern in a fed-batch CHO cultivation, however, the authors could 

not detect the depletion of amino acids with the available analytical device and thus only 

hypothesized that the observed decrease in OUR is a consequence of nutrient limitation 

(Ansorge et al. 2010). 

Interestingly, the capacitance of the culture, which was also monitored on-line, showed a 

similar response to OUR on the switches between nutrient limitation and excess. This 

observation is again in accordance with the results of Ansorge et al, who suggested that the 

observed phenomenon can be a consequence of the change in multiple physiological attributes 

influencing dielectric properties, such as cell size or intracellular conductivity (Ansorge et al. 

2010). The changes in dielectric properties upon apoptosis induction have been recently 

demonstrated for the same cell line (Zalai et al. 2015c), showing that capacitance 

spectroscopy can be used to detect major changes in cell physiology. The exact reason for the 

observed variations in C580 in the recent study remains to be elucidated, however, it 

demonstrates the applicability of capacitance measurement to detect physiological changes in 

cell culture processes. 

The change in the metabolic activity of the cells upon nutrient limitation was also verified by 

the qLac profile of cell line B in the experiments with bolus feeds (Fig. 3c). The cells produced 

lactate after each bolus feeding event and switched to lactate consumption when tyrosine was 

depleted. This observation is in accordance with literature data suggesting that the decrease of 

lactate production rate is a consequence of amino acid limitation (Read et al. 2013). 

Interestingly, cell line A did not show a similar fast response on bolus feeding events and 

remained in a metabolic status characterized by lactate uptake from the 5
th

 cultivation day 
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until the end of the cultivation (Fig. 3c). This constant metabolic status was probably a 

consequence of cultivation pH which was shifted to 6.9, and might have restricted metabolic 

fluxes to a higher extent as in cell line B. The observation that cell line A produced lactate 

throughout the cultivation where pH was controlled at 7.2 and a high feeding rate was 

maintained (Fig. 7a) supported this hypothesis further. 

The kinetics of product formation was assessed by calculating qP with a high time resolution. 

In accordance with several papers reporting an increase in product titer after the 

supplementation of limiting amino acids (Feeney et al. 2013; Read et al. 2013; Yu et al. 

2011), we observed an increase in qP after the supplementation of tyrosine (Fig. 2). However, 

these publications calculated qP for either the whole cultivation period or for time windows of 

several days, and did not deliver an understanding how exactly specific productivity is 

affected by nutrient limitation. A qP calculated with a low resolution (> 24 hours) would not 

indicate the dynamic changes in productivity upon nutrient depletion in our study. By 

calculating qP for sufficiently short time periods (12 hours) and by monitoring other 

physiological variables on-line (OUR and capacitance), we were able to show a distinct 

response of cell physiology on nutrient limitation and feeding events. 

 

Control strategy to adjust specific productivity 

The swift response of OUR on tyrosine depletion suggested that OUR can be used to detect 

nutrient limitations and to implement control strategies which respond to the limitation by the 

addition of the limiting substrate. Accordingly, we implemented a feeding strategy based on 

the real-time monitoring of OUR to supplement tyrosine. As the investigation of 

physiological variables with high time resolution revealed a similar response of OUR and qp 

on nutrient limitation and excess, we expected that maintaining the oxygen uptake of the 

culture at a high level will result in high productivity. Indeed, the dynamic OUR-based 

feeding strategy enabled us to keep specific productivity at a constant high level throughout 

the cultivation (Fig. 2). OUR has been already used as an input signal for feeding strategies 

targeting constant cell growth or metabolism (Aehle et al. 2011b; Zhou et al. 1997). 

Moreover, OUR has been used as an input signal to control the addition of amino acids in 

mammalian perfusion processes (Aehle et al. 2012; Feng et al. 2006). However, to our 

knowledge, approaches to adjust qp based on OUR have not been reported previously in the 

literature. The applicability of the presented control strategy was verified with two different 

cell lines. In the cell line B cultivation, nutrient limitation occurred one day earlier as in the 

cell line A cultivation, as indicated by the on-line OUR signal. However, the real-time 
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adjusted feeding strategy enabled to respond on this difference and maintain a high qp for cell 

line B, as well. This result demonstrated that a control strategy, which considers real-time 

physiological information, can be beneficial to respond on cell line-dependent differences 

during cell culture process development. Furthermore, our results support that the monitoring 

of OUR in cell culture process is a key PAT method, which can be used to implement 

sophisticated control strategies (Kroll et al. 2014). 

The basis of the qp-control strategy was the tight link between qO2 and qP in our experimental 

system. The linear correlation of the two variables was verified in the experiments with bolus 

as well as with continuous feeding (Fig. 4a and Fig. 5b). As the respiratory activity correlates 

to TCA flux in mammalian cells (Nargund et al. 2015; Zagari et al. 2013), a similar linear 

correlation of qP and TCA cycle activity can be assumed, which has been previously observed 

in a fed-batch CHO cultivation (Templeton et al. 2013). However, the qO2-qP relationship 

showed a different pattern in the two different cell lines, showing a steeper linear correlation 

in cell line A and further confirming the metabolic differences between the two cell lines 

(Fig. 4a). Although clone-to-clone differences in qO2 have been reported to correlate with 

clonal variations in productivity (Ghorbaniaghdam et al. 2014), in our study the higher qO2 of 

cell line B was not coupled to a higher qP. The results of the DoE cultivations revealed 

changes in qO2 at different pH setpoints. Accordingly, the pH-dependence of qO2 and substrate 

uptake rates has to be considered when OUR-based feeding strategies are set up. 

 

The effect of specific productivity on the abundance of high mannose glycoforms 

The qp-control strategy enabled to investigate the effect of product formation rate on 

glycosylation, one of the most critical quality attributes of monoclonal antibodies. 

Glycosylation, a form of protein post-translational modification, is a result of a complex 

cellular process which occurs intracellularly, enclosed in the compartments of the 

endoplasmic reticulum and the Golgi apparatus. The formation of protein-linked glycan 

structures is catalyzed by enzymes of the glycosylation pathway, however, this consecutive 

enzymatic process is not always fully accomplished resulting in a heterogenic mixture of 

various glycoforms. High-mannose glycans are generated early in the glycosylation pathway; 

the reason why these glycoforms are considered to be pre-mature structures. Increasing qP, 

which was achieved by supplemented feeding in this study led presumably to an elevated 

protein flux towards the glycosylation machinery. The increasing accumulation of high 

mannose forms, which was shown to be associated with the elevated qP (Fig. 5c), may be the 

cause of putative bottlenecks in the later phase of the glycosylation pathway. Taking the high 
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complexity of protein glycosylation into account, the nature of these bottlenecks can be very 

diverse including the activation and the transport of substrates through cellular and 

intracellular membrane barriers or the expression level and the activity of glycosylation 

enzymes. For example, the identification of a bottleneck in protein translocation could help to 

overcome intracellular protein aggregation and enable to increase the productivity of the cells 

by overexpressing the enzyme responsible for protein translocation (Le Fourn et al. 2014). In 

a good accordance with our results, increased qP has been reported to result in the 

accumulation of pre-matured oligosaccharides in mild hypothermic culture conditions (Sou et 

al. 2015); furthermore, high specific productivity was also discussed in the association with 

the increase of non-fully processed high-mannosylated glycans (Hossler 2012; Umaña and 

Bailey 1997). Our results together with the above cited considerations, allow to suggest that 

the rate of protein production may affect the output of post-translational modification. 

Interestingly, the increase of high-mannosylated glycoforms was observed only in the 

cultivations with pH-shift. The DoE experiments revealed that the phenomenon did not occur 

at high pH setpoint, as indicated by the high mannose profiles were similar in the experiments 

conducted at pH setpoint 7.2. As extracellular pH influences the intracellular pH (L'Allemain 

et al. 1984), the activity of the enzymes responsible for protein glycosylation might change as 

a result of the pH-shift (Hossler et al. 2009; Rivinoja et al. 2009). Accordingly, the high pH 

setpoint in the DoE experiments could lead to sufficient enzyme activities in the Golgi 

resolving the bottleneck of the glycosylation machinery. However, in order to elucidate the 

exact mechanism behind the observed phenomenon, a more comprehensive physiological 

characterization (e.g. proteomic and transcriptomic measurements) would be required.The qP-

control strategy presented in this study was based on the addition of the essential amino acid 

tyrosine at limiting levels to influence the rate of product formation. Tyrosine has been 

reported to be replaced by the structurally similar phenylalanine during protein translation, 

leading to tyrosine misincorporation and an increase in the abundance of sequence variants in 

tyrosine limitation (Feeney et al. 2013). These results together with ours suggest that the 

effect of control strategies based on nutrient limitation has to be thoroughly investigated 

targeting all Critical Quality Attributes, for example post-translational modifications as well 

as the primary sequence of the produced monoclonal antibody. 

The recent case study demonstrated the control of qP in a fed-batch CHO process expressing a 

monoclonal antibody. The novel control strategy enabled the investigation of links between 

the rate of product formation and the glycosylation pattern. The increased abundance of high 

mannose glycoforms at high qP suggest that the output of post-translational modifications is 
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dependent on the rate of product formation. Moreover, by involving specific productivity as 

an experimental factor in a DoE design, we could show that this phenomenon is dependent on 

cultivation pH. Our results demonstrate that the application of PAT tools, physiological 

characterization and multivariate experimental designs can facilitate the understanding of 

complex interactions between process input and output parameters. Such knowledge will 

contribute to the development of sophisticated control strategies to control product quality 

attributes in a tight pre-defined range, which is especially relevant in biosimilar process 

development. 
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Supplementary material 

 

Fig. S1 The relative abundance of the major glycoforms in the bolus-fed experiments with supplementary feed 

(Fig. 4b). The values were normalized by dividing with the value determined in first measurement point for the 

respective glycoform for cell line A 
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Fig. S2 The relative abundance of the major glycoforms in the dynamic feeding experiments conducted with cell 

line A (see Fig. 5). The values were normalized by dividing with the value determined in first measurement point 

of the bolus-fed experiment for the respective glycoform in the bolus-fed experiments (Fig. S1) 
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Fig. S3 a Feeding profiles in the DoE experiments. The supplementary feed was added exclusively in the 

“qP high” cultivations. In the center point cultivations, the feeding rate was decreased on the 11
th

 cultivation day 

based on previous observations showing an increase in qP at a similar constant feeding rate. b Specific 

productivity profiles in the DoE experiments. Center point cultivations are represented with dashed blue lines 
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Summary and Outlook 

Within this thesis, the implementation of Quality by Design tools in biosimilar development is 

demonstrated. The main objective was to investigate the benefits of focusing on cell 

physiology to target enhanced process understanding. Accordingly, the manuscripts included 

in this thesis can be summed up in a two-dimensional logical structure (Figure 5). 

 
Figure 5. The localization of manuscripts in the two dimensional logical matrix of the thesis. Theoretical 

manuscripts for concept development are marked with light blue boxes. Manuscripts reporting experimental 

results are marked with dark blue boxes. Citations in square brackets refer to the manuscripts included in the 

thesis. 

The first (horizontal) dimension indicates the variety of Quality by Design tools which were 

used in the studies in order to gain enhanced process understanding. The second (vertical) 

dimension indicates the two knowledge groups (see Introduction – Process design to target 

CQAs), which were used to achieve a sound scientific understanding of CPP-CQA 

interactions. According to this second dimensionality, the thesis can be considered as a 

methodological case study which investigates the applicability of the physiological approach 

in the development of cell culture processes. 
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Achievements 

In this thesis, a methodological workflow is presented which triggered the generation of 

enhanced process understanding in a fed-batch CHO process producing a biosimilar 

monoclonal antibody. Based on this knowledge, a novel control strategy was applied to adjust 

the glycosylation pattern of the product [6]. Accordingly, the presented workflow enables to 

address a major challenge of biosimilar process development, namely the control of CQAs in 

the production technology. 

 

Figure 6. Summary of the four steps towards enhanced process understanding and product quality 

control. The four steps are shown on the arc of the circle. The achievements are summarized in the center. 

In order to achieve the targeted process knowledge, the four essential steps presented in 

Figure 6 were necessary. Here, these four steps and the achievements in the manuscripts 

included in the thesis are summarized. 

1. First, a structured risk-assessment approach enabled to focus on product quality from 

the very beginning of process development [1]. A novel risk assessment tool tailored for 

early-stage biosimilar development was developed in order to define critical process 

parameters with a risk-based approach. Thereby, cell physiology was identified to have a 

major effect on the relationship of CPPs and CQAs. This finding suggested that enhanced 
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process understanding can be achieved by investigating the effect of cell physiology on 

CPP-CQA links. 

2. The second essential step was the identification and subsequently the quantification of 

physiological variables to gain enhanced process understanding. The thesis focuses 

mainly on the investigation of cell physiology on the level of metabolism. Although a 

sound understanding of cell physiology requires the assessment of additional 

physiological levels such as transcriptome or proteome [2], cell metabolism has been 

proven to be a good indicator of physiological changes throughout the investigated fed-

batch cell culture process [3,4,6]. In order to identify the most important metabolites, 

advanced data evaluation tools such as mechanistic models and multivariate data analysis 

tools were applied [4]. The ability to reduce the number of metabolites to be measured for 

the monitoring of cell physiology offers a clear economic benefit for the industry as it 

reduces measurement costs as well as data evaluation efforts in routine bioprocess 

development. As demonstrated in this thesis, the quantification of lactate metabolism [4] 

or oxygen uptake [6] can be used to assess important physiological features associated 

with targeted phenotypes (e.g. reduced overflow metabolism or high productivity).  

3. The third essential step was the development of strategies to control physiological 

variables in order to investigate their effect on CQAs. The basis of the physiological 

control strategies was the understanding of interactions between CPPs and cell 

physiology (referred to as control knowledge in the introduction). In [4], an important 

physiological feature of CHO cells, namely the metabolic switch to lactate uptake is 

controlled by shifting process parameters such as cultivation pH and temperature. 

Moreover, the control of specific productivity with dynamic feeding profiles in a 

nutrient-limited environment is presented in [6]. This novel control strategy enabled to 

identify a link between the rate of product formation and product glycosylation, and 

subsequently to adjust glycan heterogeneity. Accordingly, a physiological control 

strategy is successfully applied to understand cell physiology-CQA links (referred to as 

scalable knowledge in the introduction) in this thesis. 

4. The novel physiological control strategy is based on a PAT approach monitoring OUR 

on-line. Moreover, as an ultimate novelty, specific productivity was involved as an 

experimental factor in a DoE design and an interaction effect of specific productivity and 

pH-shift on product glycosylation could be identified. Accordingly, the fourth essential 

step was the involvement of physiological variables in standard QbD tools such as 

PAT, multivariate experiment designs and multivariate data analysis, which enables to 



Summary and Outlook 

XXI 
 

exploit the full benefit of the physiological approach to gain enhanced process 

understanding and to control product quality. 

Evaluation 

The proposed steps of the physiological approach presented in this thesis enable to achieve 

enhanced process understanding. As discussed above, this knowledge is essential for the 

development of a novel physiological control strategy. However, some of the tools used in 

this project might not be essential or could be simplified in order to reduce development time 

and cost in the future. 

For example, DoE designs have to be carefully selected or can be even replaced by univariate 

experiments in order to keep the number of experiments low [3]. Therefore, risk-based 

approaches could be used to select the most critical parameters for multivariate designs and 

identify those which have to be investigated with univariate experimentation. 

Moreover, the targeted extent of process understanding should be considered by the selection 

of DoE designs. Whereas a simple screening (e.g. factorial) design is sufficient to identify 

interaction effects of different process parameters, an optimization (e.g. central composite) 

design is appropriate to develop a control strategy. Accordingly, conducting a screening 

design in [4] and an optimization design in [6] would have been more appropriate with 

respect to the overall goal of the case study. 

Another strategy to speed up process development is the use of dynamic ramps in process 

parameters to obtain multiple levels of the experimental factors within a single experiment 

(Zalai et al. 2012). However, the applicability of dynamic strategies can be constrained by 

time- or memory effects, which are especially present in fed-batch cell culture processes. In 

[6], a dynamic feeding strategy was successfully applied to adjust specific productivity to 

multiple levels within a single cultivation; however, the effect of specific productivity on the 

investigated CQA was clearly process time-dependent. 

The methodological novelty presented in this thesis is the integration of physiological 

knowledge into cell culture process development to achieve enhanced process understanding. 

The anticipated benefit of the presented workflow over conventional QbD approaches is 

twofold. On the one hand, physiological variables provide scale- and technology independent 

information about the production technology. Thus, the presented workflow can be 

considered as a platform development tool since it could be applied for diverse cell culture 

processes. For example, the on-line monitoring and control of physiological variables could 

be applied in continuous processes in order to keep the cells at an optimal physiological status 
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for a very long time period. On the other hand, the use of scale-independent control variables 

such as specific productivity is expected to accelerate process transfer and scale-up and 

ultimately leads to predictable performance in production scale. 

Impact and applicability 

The growing importance of biotechnological processes in pharmaceutical production triggers 

an increasing demand to better understand and control these complex technologies. The 

considerable effort of the biopharmaceutical industry to achieve enhanced process 

understanding is reflected by the steep increase in the number of scientific contributions in 

this field. As discussed in the introduction of this thesis, process understanding is especially 

relevant in biosimilar development, where tight CQA specifications necessitate the 

development of advanced control strategies. On the one hand, it has been already realized that 

the key to process understanding is to understand how the recombinant cells, which express 

the product, behave in the production technology. On the other hand, the swift scientific 

revolution in systems biology has enabled the high-throughput measurement of numerous 

physiological variables in a fast and easy way. Taken together, both the market need as well 

as the necessary measurement technology is available to gain insight into the physiological 

status of the cells. However, despite of the availability of a vast amount of physiological data, 

the integration of this valuable data into process development remains a challenging task. The 

transformation of physiological data to process understanding and control knowledge requires 

structured approaches. 

The anticipated benefit of implementing the methodology presented in this thesis is exactly to 

fill this gap, namely to provide a conceptual platform for the generation and application of 

physiological knowledge in cell culture process development. Two necessary knowledge 

groups are identified: the understanding of CPP-cell physiology (control knowledge) and cell 

physiology-CQA (scalable knowledge) interactions (Figure 3). Targeting any of these two 

knowledge groups will enable scientists and development engineers to facilitate information 

extraction from bioprocess datasets.  
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Figure 7. The applicability of the four essential steps of the thesis in bioprocess development activities. 

It is expected that the four essential steps presented within this thesis to use physiological 

knowledge can be transferred and applied to facilitate bioprocess development activities 

(Figure 7). Here, possible applications of these four steps are discussed. 

1. Risk management is routinely used in the pharmaceutical industry to focus on the 

ultimate goal of product development, which is product safety and efficacy. However, the 

risk management tool has to be carefully selected to effectively support process 

development. As demonstrated in [1], tailored risk assessment tools can be used to 

address the unique characteristics of different product classes or different stages of 

process development. 

2. As discussed above, measurement techniques already exist to create physiological data, 

for example to determine intra- and extracellular metabolite concentrations. However, 

due to the high number of metabolites involved in mammalian cell metabolism, 

approaches are needed to extract physiological knowledge from these large datasets. 

Therefore, mechanistic and data-driven approaches can be combined, as presented in [4] 

(metabolic flux analysis combined with PLS-R VIP), to convert data into knowledge. 

Moreover, based on the derived physiological knowledge, a few benchmark components 

or fluxes can be selected which can be used to characterize and monitor cell physiology 

during the process. Similar advanced data evaluation tools can be applied in many 

different areas of bioprocess development to extract knowledge from large experimental 

datasets. 
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3. It is expected that enhanced process understanding will facilitate the transfer and 

regulatory filing of biopharmaceutical processes. Novel control strategies will enable to 

increase process robustness and facilitate site-to-site process transfer. Moreover, the 

involvement of scale-independent physiological parameters as control variables into 

regulatory filings will enable to reduce activities related to scalability issues. However, 

process development engineers will have to deliver robust physiological control strategies 

to exploit the above mentioned benefits. Workflows similar to the one presented in this 

thesis can be used to achieve the required knowledge. 

4. The need to understand and monitor biopharmaceutical processes has triggered the 

development of several PAT concepts. However, conventional PAT approaches mainly 

use spectroscopic data and multivariate data analysis to predict process performance 

indicators or metabolite concentrations; hence, do not contribute to the understanding of 

CPP-CQA interactions on a physiological level. In this thesis, PAT tools are demonstrated 

which detect physiological changes such as the onset of apoptotic events [5] or the 

decrease in oxygen uptake rate [6]. Similar PAT tools will facilitate the detection of shifts 

in cell physiology and enable the development of adaptive control strategies in the future 

which respond real-time to physiological events. 

Moreover, the use of physiological variables as response variables or as experimental 

factors in DoE exercises and statistical evaluation (as demonstrated in this thesis in [4] 

and [6], respectively) will support the generation of enhanced process understanding. 

Taken together, the implementation of the four steps demonstrated in this thesis is expected to 

facilitate the sound understanding of CPP-CQA interactions. The anticipated benefit of using 

the here proposed workflow is the development of control strategies which enable to run 

robust processes and to precisely target CQA ranges. This is especially relevant for biosimilar 

processes, in order to meet strict product quality specifications. Moreover, novel CQA control 

strategies are also essential for biobetters, a type of biopharmaceutical products, the clinical 

effect of which is enhanced by the targeted modification of CQAs.  

The workflow presented in this thesis is also expected to generate platform knowledge for 

biopharmaceutical processes, which can be transferred to similar processes (e.g. similar 

expression systems or the same cultivation media). Although many physiological features 

show high variability in different host cells, understanding fundamental links between process 

parameters, cell physiology and product quality will ultimately facilitate biopharmaceutical 

process development. 
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Beside the above discussed aspects of the transferability of the presented approaches and 

knowledge, the applicability has been continuously assessed and verified in the 

pharmaceutical company where the work was conducted. 
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