
Structural Analysis of
Cut-Elimination

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Simon Peter Wolfsteiner
Matrikelnummer 0705422

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr.phil. Alexander Leitsch

Wien, 17.04.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Simon Peter Wolfsteiner
Stift-Schlägler-Siedlung 6a, 4150 Rohrbach

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit—einschließlich Tabellen, Karten und Abbildungen—, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

The characteristic excellence of mathematics is only to
be found where the reasoning is rigidly logical: the
rules of logic are to mathematics what those of
structure are to architecture.

— BERTRAND RUSSELL

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my advisor Professor
Alexander Leitsch for providing me with this interesting topic. Not only did he spend a
vast amount of time on proofreading and discussing my work but he also has the ability
to point one—with great patience—in the right direction if one gets stuck on a problem.

Furthermore, I am very grateful to Stefan Hetzl who made an important observation
in Chapter 66 regarding term normal forms—without his observation the results of this
thesis would not be as general as they are now. I am also very thankful for the opportunity
to join his research group after completion of the master’s program.

Special thanks go to my colleagues Gerald Berger, Patrick Hohenecker, Benjamin Kiesl,
Anela Lolic, Janos Tapolczai and Manuel Wiesinger with whom I attended the majority
of lectures during the course of my studies.

Although, during the course of this thesis, I did not have that much time for activities
outside the scientific realm, I would like to thank my friends for their understanding and
for helping me to take my mind off things from time to time.

Last but not least, I would like to thank my family Sonja Santana-Caraballo, Markus,
Fabia, Monika and Leopold Wolfsteiner for continuously supporting me in every possible
way and always believing in me.

I dedicate this thesis to my mother Monika and my late father Leopold Wolfsteiner,
who sadly passed away right before I entered the Computational Intelligence program.

iii

Abstract

Proof theory—a branch of mathematical logic—is concerned with analyzing properties of
proofs mathematically by treating them as formal objects. Gerhard Gentzen proved one
of the major results of proof theory—the cut-elimination theorem—which states that the
so-called cut-rule can be eliminated from formal proof systems in the style of the original
sequent calculus LK. An important consequence of the cut-elimination theorem is that
a cut-free proof only uses subformulas of the formulas already present in the statement
to be proved (i.e. they have the so-called subformula property). In the realm of concrete
mathematical proofs, the elimination of cuts corresponds to the omission of lemmas.

Gentzen’s cut-elimination method is reductive in the sense that it performs local
proof rewriting steps on small parts of a proof. The method CERES (cut-elimination
by resolution) constitutes an alternative cut-elimination approach that—as opposed to
reductive methods—takes the global structure of a proof into account by analyzing all
cuts simultaneously. Roughly speaking, CERES extracts an unsatisfiable set of clauses
that encodes the structure of a proof containing cuts. A resolution refutation of this set
of clauses then serves as a skeleton for a proof containing at most atomic cuts.

Due to a result by Baaz and Leitsch it is known that CERES simulates reductive cut-
elimination methods up to the elimination of non-atomic cuts. In this thesis, we prove a
new simulation result in order to positively answer the question whether the simulation
also includes the elimination of atomic cuts. To this end, we define a specific indexed
resolution method (similar to the method of atomic cut-linkage for swapped clause sets by
Bruno Woltzenlogel Paleo) and prove its completeness—using a new resolution method
for clause terms—with respect to special characteristic clause sets obtained by CERES.

The obtained result can play a crucial role in the completeness proof of CERES for
intuitionistic logic and provide a partial answer to the conjecture posed by Giselle Reis
whether CERES in conjunction with indexed resolution and the method of joining pro-
jections yields an intuitionistic proof.

v

Kurzfassung

Die Beweistheorie – ein Teilgebiet der mathematischen Logik – betrachtet Beweise als for-
male Objekte und untersucht deren Eigenschaften mit Hilfe mathematischer Methoden.
Der Schnitteliminationssatz – einer der wichtigsten Sätze der Beweistheorie – welcher
von Gerhard Gentzen bewiesen wurde, besagt, dass die sogenannte Schnittregel ohne
Weiteres aus einem formalen Beweissystem in der Art des Sequentialkalküls LK entfernt
werden kann. Eine wichtige Eigenschaft schnittfreier Beweise ist die Tatsache, dass solche
Beweise nur Teilformeln jener Formeln enthalten, welche bereits im zu beweisenden Satz
enthalten sind (d. h. sie besitzen die sogenannte Teilformel-Eigenschaft). Betrachtet man
konkrete mathematische Beweise, so entspricht die Schnittelimination dem Entfernen
von Hilfssätzen (Lemmata) aus solchen Beweisen.

Bei der Gentzenschen Schnitteliminationsmethode handelt es sich um eine reduktive
Methode, da sie lokale Beweistransformationen an einem kleinen Teil des gesamten Be-
weises durchführt. Die CERES-Methode (cut-elimination by resolution) stellt hingegen
einen alternativen Ansatz dar, indem sie – im Gegensatz zu reduktiven Methoden – durch
die gleichzeitige Analyse aller Schnitte die globale Struktur eines Beweises berücksichtigt.
Grob gesagt extrahiert CERES eine widerlegbare Klauselmenge, welche die Struktur eines
Beweises mit Schnitten repräsentiert. Eine Resolutionswiderlegung ebendieser Klausel-
menge dient in weiterer Folge als Skelett für einen Beweis, welcher höchstens atomare
Schnitte enthält.

Baaz und Leitsch konnten zeigen, dass die CERES-Methode die reduktiven Ansätze
bis zu jenem Punkt simulieren kann, an dem nur noch atomare Schnitte im Beweis vor-
handen sind. In der vorliegenden Arbeit wird ein neues Simulationsresultat bewiesen,
welches die bisherige Simulation auf die Elimination atomarer Schnitte ausweitet. Zu
diesem Zweck wird eine spezielle indizierte Resolutionsmethode definiert (ähnlich der
von Bruno Woltzenlogel Paleo eingeführten “atomic cut-linkage”-Methode für sogenann-
te “swapped clause sets”) und ihre Vollständigkeit – unter Zuhilfenahme einer neuen
Klauselterm-Resolutionsmethode – für eine gewisse Klasse von charakteristischen Klau-
selmengen (welche durch Anwendung der CERES-Methode erhalten wurden) bewiesen.

Das erzielte Hauptresultat könnte eine wichtige Rolle im Beweis der Vollständigkeit
der CERES-Methode für intuitionistische Logik einnehmen. Weiters kann damit eine
Teilantwort auf die von Giselle Reis ausgesprochene Vermutung gegeben werden, ob
CERES in Verbindung mit indizierter Resolution und einer weiteren Methode namens
“joining projections” einen intuitionistischen Beweis liefert.

vii

Contents

1 Introduction1 Introduction 1
1.1 Structure of the Thesis1.1 Structure of the Thesis . 3

2 Preliminaries2 Preliminaries 5
2.1 First-order Logic2.1 First-order Logic . 5
2.2 Sequent Calculus2.2 Sequent Calculus . 12
2.3 Resolution Calculus2.3 Resolution Calculus . 21

3 The Problem of Cut-Elimination3 The Problem of Cut-Elimination 27
3.1 Motivation3.1 Motivation . 27
3.2 Cut-Elimination Theorem & Consequences3.2 Cut-Elimination Theorem & Consequences 28
3.3 Reductive Cut-Elimination3.3 Reductive Cut-Elimination . 30

4 Cut-Elimination by Resolution4 Cut-Elimination by Resolution 45
4.1 Motivation & Overview4.1 Motivation & Overview . 45
4.2 Clause Terms4.2 Clause Terms . 47
4.3 The Method CERES4.3 The Method CERES . 54

5 Complexity Analysis of CERES5 Complexity Analysis of CERES 63
5.1 Canonic Resolution Refutations5.1 Canonic Resolution Refutations . 63
5.2 Characteristic Terms and Cut-Reduction5.2 Characteristic Terms and Cut-Reduction 66
5.3 Speed-up Results5.3 Speed-up Results . 67

6 A More General Analysis of Characteristic Clause Sets and Cut-Elimination6 A More General Analysis of Characteristic Clause Sets and Cut-Elimination 73
6.1 Term Resolution6.1 Term Resolution . 73
6.2 Indexed Resolution6.2 Indexed Resolution . 83
6.3 Completeness and All That6.3 Completeness and All That . 105

7 Conclusion7 Conclusion 121
7.1 Applications7.1 Applications . 123
7.2 Possible Future Work7.2 Possible Future Work . 123

BibliographyBibliography 125

ix

CHAPTER 1
Introduction

In mathematics, it is of utmost importance to demonstrate that mathematical statements
are valid by means of proof, i.e. a chain of reasoning starting from assumed statements
or a priori truths following strict logical rules that eventually lead to a particular conclu-
sion [3333].

Proof theory—a branch of mathematical logic—treats proofs as formal, mathematical
objects and investigates their properties and structure by mathematical means [4747].
The advent of proof theory can be traced back to Hilbert’s attempt—known as Hilbert’s
Program—to formalize mathematics in axiomatic systems and to prove their consistency
by finitary means [4747,5252].

In 1931, Hilbert’s original endeavour was, however, shattered by Gödel’s celebrated in-
completeness theorems [2525]. Roughly speaking, Gödel’s first incompleteness theorem states
that in any sufficiently strong formal system of arithmetic (that is also consistent), there
are true propositions, which are not provable within this system [1313,2525,2828]. Moreover,
the second incompleteness theorem shows that the proposition stating the consistency
of a sufficiently strong formal system of arithmetic is not provable within this system,
provided that the system is indeed consistent [2525,2828,4747].

In his seminal papers Untersuchungen über das logische Schließen I+II, Gentzen intro-
duced the sequent calculi LK and LJ for classical and intuitionistic logic, respectively [2121].
Amongst others, sequent calculi contain the so-called cut-rule, which allows the use of
lemmas (i.e. intermediary statements) in proofs. The main result of the paper was the
“Hauptsatz” (or cut-elimination theorem), which basically states that any theorem of first-
order logic can be proved without detours, i.e. without the use of instances of the cut-
rule [4747]. Cut-free proofs have the so-called subformula property, i.e. all formulas used
in the proof are (instances of) subformulas of the statement to be proved [99, 3535]. The
subformula property is of great importance, as it implies the consistency of both LK and
LJ. Indeed, if there would be a proof of the empty sequent (roughly speaking, a false state-
ment without subformulas), it would be provable without using the cut-rule at all—this,
however, is impossible by the subformula property [4747].

1

The method of cut-elimination is by no means restricted to proof theory in an abstract
sense (e.g. consistency proofs), but it can actually be applied to concrete mathematical
proofs. A famous example of such an application is Girard’s analysis (see [2424]) of Fürsten-
berg and Weiss’ topological proof [1919] of van der Waerden’s theorem [4949] on partitions.
It turned out that van der Waerden’s original elementary proof was the result of applying
cut-elimination to the proof of Fürstenberg and Weiss [3535].

Inspired by the idea of fully automating cut-elimination on concrete mathematical
proofs in order to obtain new interesting elementary proofs, Baaz and Leitsch introduced
a new cut-elimination method based on resolution called CERES11 (cut-elimination by
resolution) [77, 3535]. The method CERES takes the global structure of an LK-proof into
account, whereas reductive methods (e.g. Gentzen’s method) only operate on small parts
of an LK-proof. CERES roughly works as follows: extract the characteristic clause set,
which is an unsatisfiable set of clauses encoding the structure of a proof that contains
cuts. With the help of a first-order theorem prover, obtain a resolution refutation γ of the
characteristic clause set, which will then serve as a skeleton for a proof ψ containing at
most atomic cuts. The resolution refutation γ is then transformed into ψ by replacing its
leaves by so-called projections (i.e. cut-free parts of the original proof) [1010,3535].

In [99], it was shown that the characteristic clause set of an ACNF (atomic cut normal
form, i.e. a proof containing at most atomic cuts) under CERES always subsumes the
characteristic clause set of an ACNF under reductive methods. This means the character-
istic clause sets obtained from proofs after reductive cut-elimination are redundant w.r.t.
the one obtained from the original proof. In other words, CERES simulates reductive
methods up to the elimination of non-atomic cuts.

A natural question that arises in this context is whether CERES still simulates reduc-
tive methods if we eliminate the atomic cuts from the ACNF as well. This thesis serves
as a recipe towards answering the question positively. The main ingredients are the reso-
lution refinement of indexed resolution (cf. the method of atomic cut-linkage for swapped
clause sets by Bruno Woltzenlogel Paleo [5151]) and a new method called term resolution.

Starting from a proof with atom indexing (i.e. each atomic subformula of each cut-
formula has a different index), we consider a corresponding ACNF under reductive
methods in which all atomic cuts have been shifted to the top (= ACNFtop). As a conse-
quence, the resulting characteristic clause set contains indexed clauses of a specific form.
Then we show—with term resolution as an auxiliary means—that indexed resolution is
complete w.r.t. clause sets in this specific form. Furthermore, we show that eliminating
atomic cuts by reductive methods from a proof in ACNFtop amounts to a specific form
of indexed resolution on the corresponding characteristic clause sets. Finally, it will turn
out that the characteristic clause set of the original proof still subsumes the one of the
proof obtained after reductive elimination of atomic cuts.

Subsequently, our main result can play a crucial role in the completeness proof of the
CERES method for intuitionistic logic. In particular, the result provides a partial answer
to the conjecture posed by Giselle Reis (see [4040]) whether CERES in conjunction with

1An implementation of CERES is available at http://www.logic.at/ceres/http://www.logic.at/ceres/.

2

http://www.logic.at/ceres/

indexed resolution and the method of joining projections indeed yields an intuitionistic
proof.

1.1 S T R U C T U R E O F T H E T H E S I S

After this introductory chapter—in an attempt to make this thesis as self-contained as pos-
sible and to fix notation and terminology—we present the basic notions and definitions
in Chapter 22.

In Chapter 33, we give a general overview on the problem of cut-elimination and its
most important consequences. The chapter is then concluded with the definition of a
proof rewriting system for cut-elimination based on Gentzen’s constructive proof of the
cut-elimination theorem.

Chapter 44 serves the purpose to introduce the cut-elimination method CERES (cut-
elimination by resolution) and to prove some of its most important properties.

We will take a closer look at the computational complexity of the method CERES
in Chapter 55. By comparing CERES and reductive methods, it will turn out that the
former can simulate the latter. As a consequence, CERES has a nonelementary speed-up
over reductive methods.

Chapter 66 is devoted to the proof of our main result, namely that CERES still simulates
reductive methods if we include the elimination of atomic cuts. This is done by defining a
new method that performs some sort of resolution on the syntax of clause terms. With the
help of this method, we will show that the resolution refinement of indexed resolution
is complete w.r.t. a certain class of clause sets and that each atomic cut-elimination step
can be simulated by indexed resolution on the corresponding characteristic clause sets.

This thesis is then concluded in Chapter 77 by summarizing the main results of the
thesis, presenting its most important applications and giving an outlook on possible future
work.

3

CHAPTER 2
Preliminaries

We assume that the reader is familiar with the basic concepts of classical first-order logic.
Nevertheless—to fix notation and terminology—the following chapter will give a short
overview on the logical notions that will be used throughout this thesis. In Section 2.12.1,
we will introduce the syntax and semantics of classical first-order logic, followed by our
formulation of the sequent calculus LK in Section 2.22.2. Finally, in Section 2.32.3, we will
introduce the resolution calculus, which will be needed in order to define the method
CERES.

2.1 F I R S T- O R D E R L O G I C

Syntax

Definition 2.1.12.1.1 is based on [3434].

Definition 2.1.1 (Language). The language L of classical first-order logic consists of
the following elements:

• a countably infinite set of individual variables V ,

• a countably infinite set of constant symbols CS,

• a countably infinite set of function symbols FS =
⋃∞
i=1 FSi, where all sets FSi, for

i ≥ 1, are countably infinite (FSi is the set of i-ary function symbols),

• a countably infinite set of predicate symbols PS =
⋃∞
i=1 PSi, where all sets PSi,

for i ≥ 1, are countably infinite (PSi is the set of i-ary predicate symbols),

• the logical connectives ∧, ∨, ¬ and→,

• the quantifiers ∀,∃,

• > (verum) and ⊥ (falsum).

5

4

In the following (unless stated otherwise), we will use the following notational conven-
tions [3434]:

• Variables: x, y, z, u, v, w, x1, y1, . . .

• Constant symbols: a, b, c, d, e, a1, b1, . . .

• Function symbols: f, g, h, f1, g1, . . .

• Predicate symbols: P,Q,R, P1, Q1, . . .

The following definition of terms is taken from [3434, Definition 2.1.1].

Definition 2.1.2 (Term). The set of terms T is inductively defined as follows:

(i) V ⊆ T (variables are terms),

(ii) CS ⊆ T (constant symbols are terms),

(iii) If t1, . . . , tn ∈ T and f ∈ FSn with n ≥ 1, then f(t1, . . . , tn) ∈ T.

(iv) No other objects are terms.

4

Statements like in point (iv) “No other objects are ...” will henceforth be omitted and will
be considered as included in the concept “definition” [3434].

The following definitions are based on [3434]:
If t = f(t1, . . . , tn), for an f ∈ FSn and terms t1, . . . , tn, then t is called a functional

term; the terms ti are called the arguments of t. Variables and constant symbols have no
arguments.

The occurrence of terms can be defined inductively: A term s occurs in a term t if
either s = t or s occurs in an argument of t.

The set of all variables occurring in a term t is denoted by V (t). A term twith V (t) = ∅
is called a ground term.

Definition 2.1.32.1.3 is based on [3434, Definition 2.1.3].

Definition 2.1.3 (Formula). The set of first-order logic formulas PL is inductively de-
fined as follows:

(i) If P ∈ PSn, where n ≥ 1 and t1, . . . , tn ∈ T, then P (t1, . . . , tn) ∈ PL,

(ii) > ∈ PL and ⊥ ∈ PL,

(iii) If A ∈ PL, then ¬A ∈ PL,

(iv) If A,B ∈ PL, then A ∧B ∈ PL,

(v) If A,B ∈ PL, then A ∨B ∈ PL,

6

(vi) If A,B ∈ PL, then A→ B ∈ PL,

(vii) If A ∈ PL and x ∈ V , then (∀x)A ∈ PL,

(viii) If A ∈ PL and x ∈ V , then (∃x)A ∈ PL.

4

We follow [3434] by defining:
Formulas obtained by (i) are called atomic formulas or atoms, and the t1, . . . , tn are

called the arguments of P (t1, . . . , tn). Let A be a formula such that A = A1�A2, A = ¬B,
or A = (Qx)B, for � ∈ {∧,∨,→}, x ∈ V and Q ∈ {∀,∃}. Then A1, A2 and B are called
immediate subformulas of A.

A formula A occurs in a formula B, if either A = B or A occurs in an immediate
subformula of B. A is called a subformula of B if A occurs in B. In (vii) and (viii) A and
all terms occurring in A as well as all its subformulas are said to be in the scope of (∀x)
and (∃x), respectively.

Let s be a term and A be an atomic formula. Then s occurs in A, if s occurs in an
argument of A. If A is an arbitrary formula, then s occurs in A if it occurs in some
subformula of A.

Example 2.1.4 (cf. [3434], Example 2.1.1). Let f ∈ FS1 and x, y ∈ V , then f(x), f(y) ∈
T. If P ∈ PS2, then P (x, y) and P (f(x), y) are atomic formulas. Thus, (P (x, y) ∨
P (f(x), y)) ∈ PL and ((∀x)(∀y)(P (x, y) ∨ P (f(x), y))) ∈ PL. 4

Definition 2.1.52.1.5 is taken from [3434, Definition 2.1.4].

Definition 2.1.5 (Free and Bounded Occurrences of Variables). Let A be an atomic
formula and x be a variable occurring in A, then x occurs free in A. If x occurs free in A
and B is of the form A�C, C �A, ¬A, or (Qy)A (for � ∈ {∧,∨,→}, y 6= x,Q ∈ {∀, ∃}),
then x occurs free in B.

x occurs bounded in A if there exists a subformula of A of the form (Qx)B such that
x occurs in B. 4

A formula without free variables is called closed or a sentence. If a formula does not
contain bounded variables, it is called open [3434].

Example 2.1.6 (cf. [3434], Example 2.1.2). Let A = P (x)→ (∃x)(∀y)R(x, y) be a formula.
Then x occurs both free and bounded in A; y only occurs bounded in A. x occurs free in
the subformula (∀y)R(x, y). The subformula (∃x)(∀y)R(x, y) is a sentence whereas the
subformula R(x, y) is open. 4

The following definition is taken from [3434]:

Definition 2.1.7 (Universal Closure). If A is an open formula containing the free vari-
ables x1, . . . , xn, then (∀x1), . . . , (∀xn)A is called the universal closure of A. 4

The universal closure is not unique, as the order of the variables is not fixed. However,
all closures are semantically equivalent [3434].

7

Definition 2.1.82.1.8 is based on [99, Definition 2.1].

Definition 2.1.8 (Position). We inductively define positions within terms as follows:

(i) If t ∈ V or t ∈ CS, then 0 is a position in t and t.0 = t.

(ii) Let t = f(t1, . . . , tn), where f ∈ FSn and t1, . . . , tn ∈ T. Then 0 is a position in t
and t.0 = t. Let µ : (0, k1, . . . , kl) be a position in a tj (for 1 ≤ j ≤ n) and tj .µ = s,
then ν : (0, j, k1, . . . , kl) is a position in t and t.ν = s.

4

The following is taken from [99]:
Positions serve the purpose to locate subterms in a term and to perform replacements

on subterms. A subterm s of t is just a term with t.ν = s, for some position ν in t. Let
t.ν = s, then t[r]ν is the term t after replacement of s on position ν by r; in particular
t[r]ν .ν = r. Let P be a set of positions in t, then t[r]P is defined from t by replacing all
t.ν with ν ∈ P by r.

Positions within formulas can be defined in the same way (e.g. consider all formulas
as terms).

Remark. Considering the syntax tree of a term, positions can be viewed as paths in the
tree to the occurrence of the respective subterms.

Example 2.1.9 (cf. [1010], Example 3.1.2). Let t = f(g(x), h(x, y), c) be a term. Then

t.0 = t,
t.(0, 1) = g(x),
t.(0, 2) = h(x, y),
t.(0, 3) = c,

t.(0, 1, 1) = x,
t.(0, 2, 1) = x,
t.(0, 2, 2) = y,

t[g1(d)](0,2,1) = f(g(x), h(g1(d), y), c).

4

Definition 2.1.102.1.10 is based on [3434, Definition 2.1.10] and [99].

Definition 2.1.10 (Substitution). A substitution is a mapping σ of type V → T such
that σ(v) 6= v for only finitely many v ∈ V .

If σ is a substitution, then the set {v | v ∈ V, σ(v) 6= v} is called the domain of σ
(notation: dom(σ)).

The set {σ(v) | v ∈ dom(σ)} is called the range of σ (notation: rg(σ)).
If σ is a substitution with σ(xi) = ti, for xi 6= ti (1 ≤ i ≤ n) and σ(v) = v, for

v 6∈ {x1, . . . , xn}, then we denote σ by {x1 ← t1, . . . , xn ← tn}. Substitutions are written
in postfix notation, i.e. we write Fσ instead of σ(F). 4

Substitutions can be extended to terms, atoms and formulas in a homomorphic way [1010].

8

Definition 2.1.11 ([1010], Definition 3.1.4). A substitution σ is called more general than
a substitution ϑ (denoted by σ ≤s ϑ) if there exists a substitution µ such that ϑ = σµ. 4

Example 2.1.12 ([1010], Example 3.1.3). Let ϑ = {x ← a, y ← a} and σ = {x ← y}.
Then σµ = ϑ, for µ = {y ← a}, and thus σ ≤s ϑ. Note that for the identical substitution
we get ∅ ≤s τ , for all substitutions τ . 4

Let F ∈ T or F ∈ PL. Then we write F (x) to indicate (potential) free occurrences of
the variable x in F . Let t be an arbitrary term, then F (x/t) stands for F [t]P , where
P = {ν | F.ν = x} [99].

Definition 2.1.132.1.13 is taken from [99, Definition 2.2].

Definition 2.1.13 (Complexity of Formulas). If F ∈ PL, then the complexity comp(F)
is the number of logical symbols occurring in F . Formally we define:

• comp(F) = 0 if F is an atomic formula,

• comp(F) = 1 + comp(A) if F is of the form ¬A or (Qx)A, for Q ∈ {∀,∃}, x ∈ V ,

• comp(F) = 1 + comp(A) + comp(B) if F is of the form A�B, for � ∈ {∧,∨,→}.

4

Example 2.1.14. Let A = P (x)→ (∃x)(∀y)R(x, y). Then comp(A) = 1 + comp(P (x)) +
comp((∃x)(∀y)R(x, y)) = 1 + 0 + (1 + comp((∀y)R(x, y))) = 2 + (1 + comp(R(x, y))) =
3 + 0 = 3. 4

Semantics

Having laid down the syntax of first-order logic, we are now able to define its semantics.
The semantical key concept is that of an interpretation [3434, Definition 2.1.6].

Definition 2.1.15 (Interpretation). An interpretation of a formula F ∈ PL is a triple
M = (D,Φ, I) having the following properties:

(i) D is a nonempty set, called the domain ofM.

(ii) Φ is a mapping defined on CS(F) ∪ FS(F) ∪ PS(F) such that

(a) Φ(c) ∈ D, for c ∈ CS(F).

(b) Φ(f) : Dn → D, for f ∈ FSn(F).

(c) Φ(P) ⊆ Dn, for P ∈ PSn(F) (i.e. Φ(P) is an n-ary predicate over D).

(iii) I : V → D; I is called the environment or variable assignment.

4

InterpretationsM are the basis for the interpretation functions uM for terms and vM for
formulas [3434].

9

The following definition is based on [3434].

Definition 2.1.16. Let F ∈ PL and M be an interpretation of F , then we define the
interpretation function uM : T (F)→ D by

uM(x) = I(x) for x ∈ V ,
uM(c) = Φ(c) for c ∈ CS(F) and

uM(f(t1, . . . , tn)) = Φ(f)(uM(t1), . . . , uM(tn)) for f(t1, . . . , tn) ∈ T (F),

where T (F) denotes the set of terms occurring in F . 4

In order to define an interpretation function for quantified formulas, we require the
concept of variable-equivalence of interpretations [3434].

Definition 2.1.172.1.17 is based on [3434, Definition 2.1.7]

Definition 2.1.17 (Equivalence of Interpretations). Two interpretations M and M′
of a formula F are called equivalent modulo x1, . . . , xk if there are D,Φ, I, J such that
M = (D,Φ, I), M′ = (D,Φ, J) and I(v) = J(v) for v ∈ V \ {x1, . . . , xk} (i.e. I and
J differ at most on some of the xi). If M is equivalent to M’ modulo x, we write
M∼xM′. 4

Equivalent interpretations have the same domain, and they interpret constant, func-
tion and predicate symbols in the same way, but they may differ on a finite set of vari-
ables [3434].

Now, we are ready to define the evaluation of formulas in PL(F) via an interpretation
M, where PL(F) denotes the set of formulas over the language of F [3434].

Definition 2.1.18 (cf. [1313,3434]). Let F ∈ PL andM = (D,Φ, I) be an interpretation of
F .

vM : PL(F) → {true, false} is defined inductively over the structure of formulas in
PL(F):

(i) If A is an atomic formula in PL(F) and A = P (t1, . . . , tn), then vM(A) = true if
and only if (uM(t1), . . . , uM(tn)) ∈ Φ(P).

(ii) vM(>) = true and vM(⊥) = false.

(iii) vM(¬A) = true iff vM(A) = false

(iv) vM(A ∧B) = true iff vM(A) = true and vM(B) = true.

(v) vM(A ∨B) = true iff vM(A) = true or vM(B) = true.

(vi) vM(A→ B) = true iff vM(A) = false or vM(B) = true.

(vii) vM((∀x)A) = true iff for allM′ such thatM∼xM′ we have vM′(A) = true.

(viii) vM((∃x)A) = true iff for someM′ such thatM∼xM′ we have vM′(A) = true.

where A,B ∈ PL(F). 4

10

An interpretationM of A verifies A if vM(A) = true; if vM(A) = false, then we say that
M falsifies A [3434].

The definition of a model is based on [3434, Definition 2.1.8].

Definition 2.1.19 (Model). Let A be a formula containing the free variables x1, . . . , xn
and M be an interpretation of A. Then M is called a model of A if all M’ that are
equivalent toM modulo x1, . . . , xn verify A. If A is closed, thenM is a model of A iff
M verifies A.

We denote thatM is a model of A byM |= A. 4

Example 2.1.20 (cf. [3434], Example 2.1.4). Let F = (∀x)(P (x, a) → Q(x, f(a))) be a
formula in PL. Furthermore, letM = (N,Φ, I) be an interpretation such that N is the
set of natural numbers, I(x) = 7 and Φ is defined as follows:

Φ(a) = 0,

Φ(f)(n) = n+ 1, for all n ∈ N,
Φ(P) = ≤,
Φ(Q) = < .

We defineM∗x = {M′ | M ∼xM} and compute vM(F):

vM(F) = true iff

for allM′ ∈M∗x : vM′(P (x, a)→ Q(x, f(a))) = true.

iff

for allM′ ∈M∗x : vM′(P (x, a)) = false or vM′(Q(x, f(a))) = true.

iff

for all J ∼x I : J(x) > uM′(a) or J(x) < uM′(f(a)).

iff

for all k ∈ N : k > 0 or k < 0 + 1.

Because for k > 0 the left-hand side and for k = 0 the right-hand side (as 0 < 1) of the
“or” holds, we get thatM is indeed a model of F , i.e.M |= F . 4

Definition 2.1.212.1.21 is an extension of [3434, Definition 2.1.9] also containing the definition
of unsatisfiability.

Definition 2.1.21 ((Un)satisfiability and Validity). Let F,G ∈ PL be arbitrary. Then

• F is called satisfiable if F has a model.

• F is called unsatisfiable if F is not satisfiable.

11

• F is called valid if every interpretation of F is a model of F .

• F and G are logically equivalent (denoted by F ≡ G) if F and G have exactly the
same models.

• F and G are called satisfiability-equivalent (short: sat-equivalent) if
F is satisfiable iff G is satisfiable; we write F ≡sat G.

4

Note that with respect to ≡sat there are only two equivalence classes, namely the satisfi-
able and the unsatisfiable formulas [3434].

Now that we have defined the syntax and semantics of classical first-order logic, we
are in the position to introduce a formal proof system.

2.2 S E Q U E N T C A L C U L U S

The term sequent calculus refers to a formal proof system in the style of Gentzen’s original
sequent calculi LK (logistischer klassischer Kalkül) and LJ (logistischer intuitionistischer
Kalkül) for classical first-order and intuitionistic logic, respectively [4848]. Gentzen’s mo-
tivation for the definition of his sequent calculi was the fact that they allowed him to
investigate properties of the calculi of natural deduction in an easier and more elegant
way. One of the most important results of this investigation was the so-called “Hauptsatz”
(or cut-elimination theorem) [2121].

Sequent calculi consist of sets of axioms and inference rules that are applied to so-
called sequents. We will define such a sequent calculus for classical first-order logic in
the following section.

The definition of sequents is based on [1010, Definition 3.1.7] and [99, Definition 2.3].

Definition 2.2.1 (Sequent). Let Γ and ∆ be finite (possibly empty) multisets of PL-
formulas. Then the expression S = Γ ` ∆ is called a sequent. Γ is called the antecedent
of S and ∆ the consequent of S. ` is called the empty sequent. 4

Two sequents Γ1 ` ∆1 and Γ2 ` ∆2 are considered equal if Γ1 = Γ2 and ∆1 = ∆2 [99].
Multiset union within sequents is denoted by comma: if S = Γ ` ∆, where Γ is the

multiset union of Γ1,Γ2 and ∆ is the multiset union of ∆1,∆2, then we write S = Γ1,Γ2 `
∆1,∆2. If A ∈ PL, then An denotes the multiset containing A n times. For instance, we
may write ` A3 for ` A,A,A [99].

Definition 2.2.22.2.2 is based on [1010, Definition 3.1.8].

Definition 2.2.2 (Semantics of Sequents). Let S = A1, . . . , An ` B1, . . . , Bm be a
sequent. Then the semantics of S can be expressed by the corresponding PL-formula

F (S) =

n∧
i=1

Ai →
m∨
j=1

Bj .

12

LetM be an interpretation. ThenM is an interpretation of S ifM is an interpretation of
F (S). If n = 0 (i.e. the antecedent of S is empty), we assign > to

∧n
i=1Ai; if m = 0 (i.e.

the consequent of S is empty), we assign ⊥ to
∨m
j=1Bj . Thus, the formula corresponding

to the empty sequent ` is given by > → ⊥, which is equivalent to ⊥.
We say that S is true inM if F (S) is true inM. S is called valid if F (S) is valid. 4

Example 2.2.3 (cf. [1010], Example 3.1.5). Let S = Q(a), (∀x)(¬Q(x) ∨ Q(f(x))) `
Q(f(a)) be a sequent. The corresponding formula is given by

F (S) : (Q(a) ∧ (∀x)(¬Q(x) ∨Q(f(x))))→ Q(f(a)).

Since F (S) is a valid formula, S is a valid sequent. 4

The following definition is taken from [1010, Definition 3.1.9].

Definition 2.2.4 (Atomic Sequent). A sequentA1, . . . , An ` B1, . . . , Bm is called atomic
if the Ai, Bj are atomic formulas. 4

Definition 2.2.52.2.5 and Definition 2.2.62.2.6 are based on [99, Definition 2.4] and [99, Definition
2.5], respectively.

Definition 2.2.5 (Composition of Sequents). Let S = Γ ` ∆ and S′ = Π ` Λ. We
define the composition of S and S′ by S ◦ S′, where S ◦ S′ = Γ,Π ` ∆,Λ. 4

Definition 2.2.6 (Subsequent). Let S, S′ be sequents. We say that S′ is a subsequent of
S, denoted by S′ v S, if there exists a sequent S′′ with S′ ◦ S′′ = S. 4

By definition of the semantics of sequents, every sequent is implied by all of its subse-
quents. The empty sequent (which stands for ⊥) implies every sequent [1010].

Example 2.2.7 (cf. [1010], Example 3.1.6). Let S be defined as in Example 2.2.32.2.3. Then
S′ = (∀x)(¬Q(x) ∨ Q(f(x))) ` is a subsequent of S. S′′ has to be defined as Q(a) `
Q(f(a)). Then

S′ ◦ S′′ = (∀x)(¬Q(x) ∨Q(f(x))), Q(a) ` Q(f(a))

which is equal to S by the definition of sequents via multisets. 4

Definition 2.2.8 ([1010], Definition 3.1.14). Substitution can be extended to sequents
in an obvious way. If S = A1, . . . , An ` B1, . . . , Bm and σ is a substitution, then

Sσ = A1σ, . . . , Anσ ` B1σ, . . . , Bmσ.

4

The Calculus LK

The notion of an axiom set is defined analogous to [1010, Definition 3.2.1].

13

Definition 2.2.9 (Axiom Set). A (possibly infinite) set A of sequents is called an axiom
set if it is closed under substitution, i.e. for all S ∈ A, and for all substitutions σ, we have
Sσ ∈ A. If A consists of atomic sequents only, we speak about an atomic axiom set. 4

Remark. The closure under substitution is required for proof transformations, in partic-
ular for cut-elimination [1010].

We follow [1010, Definition 3.2.2] when defining the standard axiom set:

Definition 2.2.10 (Standard Axiom Set). Let AT be the smallest axiom set containing
all sequents of the form A ` A, for arbitrary atomic formulas A. AT is called the standard
axiom set. 4

Definition 2.2.112.2.11 is based on [4747, Definition 2.1].

Definition 2.2.11 (Inference Rule). An inference rule is an expression of the form

S1

S
or S1 S2 ,

S

where S1, S2 and S are sequents. S1 and S2 are called the upper sequents (or premises),
and S is called the lower sequent (or conclusion) of the inference rule. Rules with a single
premise are called unary; those with two premises are called binary. 4

Intuitively, this means that whenever S1 (S1 and S2) is (are) asserted, we can infer S
from it (from them) [4747].

The following definition of the sequent calculus LK is based on [99, Definition 2.6]
and [1010, Definition 3.2.3].

Definition 2.2.12 (LK). Basically, we use Gentzen’s version of LK (as introduced in [2121])
adapted to the multiset structure for sequents. For simplification, we do not include im-
plication: as we consider classical logic only, there exists a polynomial cut-homomorphic
transformation translating arbitrary LK-proofs into proofs in negation normal form
(see [66]). Due to the definition of sequents via multisets, we do not need the exchange
rules.

In the rules of LK we always label the auxiliary formulas (i.e. the formulas in the
premis(es) used for the inference) and the principal (i.e. the inferred) formula using
different symbols. Thus, in our definition, ∧-introduction to the right takes the form

Γ ` A+,∆ Γ ` ∆, B+

∧r.
Γ ` A ∧B∗,∆

We usually avoid markings by putting the auxiliary formulas at the leftmost position in
the antecedent of sequents and in the rightmost position in the consequent of sequents.
The principal formula is mostly identifiable by the context. Thus, the above rule will be
written as

Γ ` ∆, A Γ ` ∆, B ∧r.
Γ ` ∆, A ∧B

14

The logical rules of LK are the following:

• ∧-introduction:

A,Γ ` ∆ ∧l1A ∧B,Γ ` ∆

B,Γ ` ∆ ∧l2A ∧B,Γ ` ∆

Γ ` ∆, A Γ ` ∆, B ∧r
Γ ` ∆, A ∧B

• ∨-introduction:

A,Γ ` ∆ B,Γ ` ∆ ∨l
A ∨B,Γ ` ∆

Γ ` ∆, A ∨r1Γ ` ∆, A ∨B
Γ ` ∆, B ∨r2Γ ` ∆, A ∨B

• ¬-introduction:

Γ ` ∆, A ¬l¬A,Γ ` ∆

A,Γ ` ∆ ¬r
Γ ` ∆,¬A

• ∀-introduction:

A(x/t)Γ ` ∆
∀l

(∀x)A(x),Γ ` ∆

Γ ` ∆, A(x/y)
∀r

Γ ` ∆, (∀x)A(x)

where t is an arbitrary term containing only free variables, and y in ∀r is a free
variable which may not occur in Γ,∆. y is called an eigenvariable.

• ∃-introduction:

A(x/y),Γ ` ∆
∃l

(∃x)A(x),Γ ` ∆

Γ ` ∆, A(x/t)
∃r

Γ ` ∆, (∃x)A(x)

where t is an arbitrary term containing only free variables, and y in ∃l is a free
variable which may not occur in Γ,∆. y is called an eigenvariable.

The structural rules of LK are the following:

• weakening (A is an arbitrary formula):

Γ ` ∆ wr
Γ ` ∆, A

Γ ` ∆ wl
A,Γ ` ∆

• contraction (A is an arbitrary formula):

A,A,Γ ` ∆
cl

A,Γ ` ∆

Γ ` ∆, A,A
cr

Γ ` ∆, A

• Let us assume that the formula A occurs both in ∆ and Π, then the cut-rule is
defined as follows:

Γ ` ∆ Π ` Λ cut(A)
Γ,Π∗ ` ∆∗,Λ

where ∆∗ and Π∗ are ∆ and Π after deletion of at least one occurrence of A. A is
the auxiliary formula of cut(A) and it is also called the cut-formula. If A does not
occur in Π∗,∆∗, then the cut is called a mix.

15

4

Definition 2.2.13 ([1010], Definition 3.2.4). Let

S1 S2 ξ
S

be a binary inference rule of LK, and let S′, S′1, S
′
2 be instantiations of the schema variables

in S, S1, S2. Then (S′1, S
′
2, S
′) is called an instance of ξ. The instance of a unary rule is

defined analogously. 4

Example 2.2.14 ([1010], Example 3.2.1). Consider the rule

Γ ` ∆, A+ Γ ` ∆, B+

∧r.
Γ ` ∆, (A ∧B)∗

Then

(∀x)P (x), (∀x)Q(x) ` P (a)+ (∀x)P (x), (∀x)Q(x) ` Q(b)+

∧r
(∀x)P (x), (∀x)Q(x) ` (P (a) ∧Q(b))∗

is an instance of ∧r. 4

The following definition is taken from [99, Definition 2.7].

Definition 2.2.15 (LK-derivation). We define an LK-derivation as a finite directed tree,
where the nodes are occurrences of sequents and the edges are defined according to the
inference rule applications in LK (they are directed from the root to the leaves). The root
is the occurrence of the end-sequent. The leaves must be occurrences of atomic sequents
of the form A ` A, i.e. elements of the standard axiom set AT .

Let A be the set of sequents occurring at the leaves of an LK-derivation ψ and S
be the sequent occurring at the root (i.e. the end-sequent). Then we say that ψ is an
LK-derivation of S from A (notation A `LK S). Note that, in general, complete cut-
elimination is only possible in LK-derivations, where the leaves are axioms.

We write

(ψ)

S

to express that ψ is a derivation with end-sequent S. 4

We follow [1010, Definition 3.2.9] for the definition of paths:

Definition 2.2.16 (Path). Let π : µ1, . . . , µn be a sequence of nodes in an LK-derivation
ψ such that for all i ∈ {1, . . . , n − 1}, (µi, µi+1) is an edge in ψ. Then π is called a path
from µ1 to µn in ψ of length n− 1 (denoted by lp(π) = n− 1). If n = 1 and π = µ1, then
π is called a trivial path. π is called a branch if µ1 is the root of ψ and µn is a leaf in ψ.
We use the terms predecessor and successor contrary to the direction of edges in the tree:
if there exists a path from µ1 to µ2, then µ2 is called a predecessor of µ1. The successor

16

relation is defined in an analogous way, e.g. every initial sequent is a predecessor of the
end-sequent. 4

Definition 2.2.172.2.17 is taken from [99, Definition 2.8].

Definition 2.2.17 (Subderivation). A position ν in an LK-derivation is defined in the
same way as for terms (formally, we may consider a derivation as a term). Here the
positions can be identified with the nodes in the derivation tree. If there exists a position
ν with ϕ.ν = ψ (where ν is a node in ϕ), then we call ψ a subderivation of ϕ. In the same
way, we write ϕ[ρ]ν for the deduction ϕ after the replacement of ϕ.ν by ρ at the position
ν in ϕ. The sequent occurring at the position ν is denoted by S(ν). 4

Example 2.2.18 (cf. [1010]). Let ϕ be the LK-derivation

ν1 : P (a) ` P (a)
∀l

ν2 : (∀x)P (x) ` P (a)

ν3 : P (a) ` P (a)
∃r

ν4 : P (a) ` (∃x)P (x)
cut(P (a)).

ν5 : (∀x)P (x) ` (∃x)P (x)

The νi denote the nodes in ϕ. The leaf nodes (or initial sequents) are ν1 and ν3. ν5 denotes
the end-sequent. In practice, the representation of nodes is omitted when writing down
LK-proofs.

ν5, ν4, ν3 is a path (and also a branch) in ϕ. ν3 is predecessor of ν5, but ν3 is not a
predecessor of ν2.

ϕ.ν2 is the subderivation

ν1 : P (a) ` P (a)
∀l.

ν2 : (∀x)P (x) ` P (a)

Let ρ be the LK-derivation

ν6 : P (a) ` P (a), P (a)
∀l.

ν7 : (∀x)P (x) ` P (a), P (a)
cr

ν8 : (∀x)P (x) ` P (a)

Then ϕ[ρ]ν2 is the LK-derivation

ν6 : P (a) ` P (a), P (a)
∀l.

ν7 : (∀x)P (x) ` P (a), P (a)
cr

ν8 : (∀x)P (x) ` P (a)

ν3 : P (a) ` P (a)
∃r

ν4 : P (a) ` (∃x)P (x)
cut(P (a)).

ν5 : (∀x)P (x) ` (∃x)P (x)

Moreover, ϕ[ρ]ν2 is an LK-derivation from the axiom set

A = {P (a) ` P (a), P (a);P (a) ` P (a)}.

4

17

The following two definitions correspond to [1010, Definition 3.2.11] and [1010, Definition
3.2.12], respectively.

Definition 2.2.19 (Depth). Let ϕ be an LK-derivation and ν be a node in ϕ. Then the
depth of ν (denoted by depth(ν)) is defined as the maximal length of a path from ν to a
leaf of ϕ.ν. The depth of any leaf in ϕ is 0. 4

Definition 2.2.20 (Regularity). An LK-derivation ϕ is called regular if

• all eigenvariables of quantifier introductions ∀r and ∃l are mutually different.

• If an eigenvariable y occurs as an eigenvariable in a proof node ν, then y occurs
only above ν in the proof tree.

4

There exists a straightforward transformation from LK-derivations into regular ones: just
rename the eigenvariables in different subderivations (for details we refer to [4747]) [99].

Remark. From now on, we assume, without mentioning the fact explicitly, that all con-
sidered LK-derivations are regular.

The following notions are taken from [99]:
The formulas in sequents on the branch of a deduction tree are connected by a so-

called ancestor relation. Indeed, if A occurs in a sequent S and A is marked as principal
formula of a, let us say binary, inference on the sequents S1, S2, then the auxiliary for-
mulas in S1, S2 are immediate ancestors of A (in S). If A occurs in S1 and it is not an
auxiliary formula of an inference, then A occurs also in S; in this case, A in S1 is also an
immediate ancestor of A in S. The case of unary rules is analogous. General ancestors
are defined via the reflexive and transitive closure of the relation.

Let ν be a node in ϕ, and let S′ be a subsequent of S(µ), for a successor µ of ν. Then
we write S(ν, (S′, µ)) for the subsequent S consisting of formulas which are ancestors of
formulas in S′ (at µ). Let Ω be a set of (S′, µ) with S′ v S(µ), for a successor µ of ν, then
S(ν,Ω) is the composition of all S(ν, ω), for ω ∈ Ω. S(ν,Ω) is just the subsequent of S
consisting of ancestors of some of the formulas in some successors µ.

If Ω consists just of the cut-formulas of cuts which occur “below” ν, then S(ν,Ω) is the
subsequent consisting of all formulas which are ancestors of a cut. These subsequents are
crucial for the definition of the characteristic clause set and thus for the method CERES
(see Chapter 44).

Definition 2.2.21 ([99], Definition 2.10). The length of a proof ω is defined as the
number of nodes in ω, and it is denoted by l(ω). 4

Example 2.2.22 (cf. [1010], Example 3.2.9). Let ϕ be the LK-derivation from Example
2.2.182.2.18, and let α and β be the left and right occurrence of the cut formula in ϕ, respec-
tively.

Let Ω = {α, β}, then we have

18

S(ν1,Ω) = ` P (a),
S(ν3,Ω) = P (a) `.

ϕ has length l(ϕ) = 5. 4

Definition 2.2.232.2.23 constitutes an adaptation of [99, Definition 2.11].

Definition 2.2.23 (Cut/Mix Derivation). Let ψ be an LK-derivation of the form

(ψ1)

Γ1 ` ∆1, A

(ψ2)

A,Γ2 ` ∆2 cut(A).
Γ1,Γ2 ` ∆1,∆2

Then ψ is called a cut-derivation. If the cut is a mix, we speak about a mix-derivation. Let
ψ be a mix-derivation. Then we define the grade of ψ (denoted by grade(ψ)) as comp(A);
the left-rank of ψ (denoted by rankl(ψ)) is the maximal number of nodes in a branch in
ψ1 such that A occurs in the consequent of a predecessor of Γ1 ` ∆1. If A is “produced” in
the last inference of ψ1, then the left-rank of ψ is 1. The right-rank (denoted by rankr(ψ))
is defined in an analogous way. The rank of ψ is the sum of left-rank and right-rank, i.e.
rank(ψ) = rankl(ψ) + rankr(ψ). 4

Example 2.2.24 (cf. [1010]). Let ψ be the LK-derivation

ν1 : P (a) ` P (a)
∀l

ν2 : (∀x)P (x) ` P (a)

ν3 : P (a) ` P (a)
∃r

ν4 : P (a) ` (∃x)P (x)
cut(P (a))

ν5 : (∀x)P (x) ` (∃x)P (x)
wr.

ν6 : (∀x)P (x) ` (∃x)P (x), Q(b)

Then the only cut-derivation in ψ is ϕ:

ν1 : P (a) ` P (a)
∀l

ν2 : (∀x)P (x) ` P (a)

ν3 : P (a) ` P (a)
∃r

ν4 : P (a) ` (∃x)P (x)
cut(P (a)).

ν5 : (∀x)P (x) ` (∃x)P (x)

The grade of ϕ is 0, as the cut-formula P (a) is atomic.
Moreover, rankl(ϕ) = 2, rankr(ϕ) = 2 and rank(ϕ) = rankl(ϕ) + rankr(ϕ) = 4.

4

We use an adapted version of [1010, Definition 6.4.3], since our formulation of LK is based
on sequents defined via multisets of formulas.

Definition 2.2.25 (Context Product). Let C be a sequent and ϕ be an LK-derivation
such that no free variable in C occurs as eigenvariable in ϕ. We define the left context
product C ? ϕ of C and ϕ (which gives a proof of C ◦ S′) inductively:

• If ϕ consists only of the root node ν and S(ν) = S′, then C ? ϕ is a proof consisting
only of a node µ such that S(µ) = C ◦ S′.

19

• Assume that ϕ is of the form

(ϕ′)

S′′ ξ,
S′

where ξ is a unary rule. Assume also that the LK-derivation C ? ϕ′ of C ◦ S′′ is
already defined. Then we define C ? ϕ as

(C ? ϕ′)

C ◦ S′′ ξ.
C ◦ S′

C?ϕ is also well-defined for the rules ∀r and ∃l, as C does not contain free variables,
which are eigenvariables in ϕ.

• Assume that ϕ is of the form

(ϕ1)

S1

(ϕ2)

S2 ξ,
S′

where C ? ϕ1 is a proof of C ◦ S1 and C ? ϕ2 is a proof of C ◦ S2. Then we define
the proof C ? ϕ as

(C ? ϕ1)

C ◦ S1

(C ? ϕ2)

C ◦ S2 ξ.
S′′

s∗
C ◦ S′

Note that if ξ is the cut-rule, restoring the context after application of ξ might
require weakening; otherwise s∗ stands for applications of contractions.

The right context product ϕ ? C is defined analogously. 4

Example 2.2.26 (cf. [1010], Example 6.4.2). Let ϕ be the proof

R(a) ` R(a)
wr

R(a) ` Q(a), R(a) ¬l¬R(a), R(a) ` Q(a)

Q(a) ` Q(a) Q(a) ` Q(a)
cut(Q(a))

Q(a) ` Q(a)
wl

Q(a), R(a) ` Q(a) ∨l¬R(a) ∨Q(a), R(a) ` Q(a)
∀l

(∀x)(¬R(x) ∨Q(x)), R(a) ` Q(a)

and C = P (y) ` Q(y). Then the context product C ? ϕ is:

20

P (y), R(a) ` Q(y), R(a)
wr

P (y), R(a) ` Q(y), Q(a), R(a) ¬l
P (y),¬R(a), R(a) ` Q(y), Q(a)

(ϕ1)

P (y), Q(a) ` Q(y), Q(y), Q(a)
cr

P (y), Q(a) ` Q(y), Q(a)
wl

P (y), Q(a), R(a) ` Q(y), Q(a) ∨l
P (y),¬R(a) ∨Q(a), R(a) ` Q(y), Q(a)

∀l
P (y), (∀x)(¬R(x) ∨Q(x)), R(a) ` Q(y), Q(a)

where ϕ1 is

P (y), Q(a) ` Q(y), Q(a) P (y), Q(a) ` Q(y), Q(a)
cut(Q(a))

P (y), P (y), Q(a) ` Q(y), Q(y), Q(a)
cl

P (y), Q(a) ` Q(y), Q(y), Q(a)

4

2.3 R E S O L U T I O N C A L C U L U S

In 1965, the resolution calculus was introduced by Robinson in his seminal paper “A
Machine-Oriented Logic Based on the Resolution Principle” [4242] and represented an im-
provement of the works of Gilmore [2323] as well as that of Davis and Putnam [1616]. As
opposed to traditional, “human-oriented” calculi, like LK, the “machine-oriented” reso-
lution calculus was specifically designed as a theoretical basis to be used in automated
theorem proving11. Robinson’s principle lead to enormous improvements in performance
over prior methods [3434]. The resolution calculus is a so-called refutation calculus, i.e.
the goal is not to prove that a statement is a theorem, but rather to refute it.

Our formulation of the resolution calculus is based on sets of specific sequents (called
clauses) and uses most general unification as well as the rules of resolution, contraction
and weakening.

We follow [99, Definition 2.12] by defining:

Definition 2.3.1 (Clause). A clause is an atomic sequent, i.e. a sequent of the form
Γ ` ∆, where Γ and ∆ are multisets of atomic formulas. 4

Remark. Clauses are usually defined as disjunctions of literals. A literal is either an atom
or a negated atom.

Definition 2.3.22.3.2 is taken from [1010, Definition 3.3.1].

Definition 2.3.2 ((Most General) Unifier). Let A be a nonempty set of atoms and σ
be a substitution. σ is called a unifier of A if the set Aσ contains only one element. σ is
called a most general unifier (abbreviated as m.g.u.) of A if σ is a unifier of A and, for all
unifiers τ of A, it holds that σ ≤s τ . 4

1A research field concerned with algorithmic methods for proving theorems (of e.g. classical first-order
logic) [2020].

21

Example 2.3.3 ([1010], Example 3.3.1). Let A = {P (x, f(y)), P (x, f(x)), P (x′, y′)} and

σ = {y ← x, x′ ← x, y′ ← f(x)},
σt = {x← t, y ← t, x′ ← t, y′ ← f(t)}.

All substitutions σ, σt are unifiers of A. Moreover, we see that the unifier σ plays an
exceptional role. Indeed,

σ{x← t} = σt, i.e. σ ≤s σt.

It is easy to verify that for all unifying substitutions ϑ (including those with dom(ϑ) \
V (A) 6= ∅) we obtain σ ≤s ϑ. σ is more general than all other unifiers of A, i.e. it is
indeed “most” general. However, σ is not the only most general unifier; for the unifier
λ = {y ← x′, x← x′, y′ ← f(x′)}, we get

λ ≤s σ, σ ≤s λ and λ ≤s ϑ, for all unifiers ϑ of A.

4

The following theorem corresponds to [3434, Theorem 2.6.1]:

Theorem 2.3.4 (Unification Theorem). There exists a decision procedure UAL for the
unifiability of two terms. In particular, the following two properties hold:

(i) If {t1, t2} is not unifiable, then UAL stops with failure.

(ii) If {t1, t2} is unifiable, then UAL stops and ϑ (the final substitution constructed by
UAL) is a most general unifier of {t1, t2}.

PROOF. See the proof of Theorem 2.6.1 in [3434]. �

The definitions of resolvents and p-resolvents are based on [99, Definition 2.13] and [99,
Definition 2.14], respectively.

Definition 2.3.5 (Resolvent). Let C and D be clauses of the form

C = Γ ` ∆, A1, . . . , Am,
D = B1, . . . , Bn,Π ` Λ

such that C and D are variable-disjoint, n,m ≥ 1, and let σ be a most general unifier of
{A1, . . . , Am, B1, . . . , Bn}. Then the clause

Γσ,Πσ ` ∆σ,Λσ

is called a resolvent of C and D. The resolution rule can thus be represented as follows:

Γ ` ∆, A1, . . . , Am B1, . . . , Bn,Π ` Λ
R.

Γσ,Πσ ` ∆σ,Λσ

4

22

Definition 2.3.6 (P-resolvent). Let C = Γ ` ∆, Am and D = An,Π ` Λ be clauses22

with n,m ≥ 1. Then the clause
Γ,Π ` ∆,Λ

is called a p-resolvent of C and D. 4

Remark. Note that the p-resolution rule is nothing else than atomic cut [99].

The following definition is based on [3434, Definition 2.6.5].

Definition 2.3.7 (Permutation Substitution). A substitution σ is called a permutation
(substitution) if σ is injective and rg(σ) ⊆ V . A permutation σ is called a renaming of a
clause C if the set of variables occurring in C and rg(σ) are disjoint. 4

We follow [1010, Definition 3.3.12] by defining:

Definition 2.3.8 (Variant). Let C be a clause, and let π be a permutation substitution
(i.e. π is a binary function V → V). Then Cπ is called a variant of C. 4

The following definition is based on [1010, Definition 3.3.8].

Definition 2.3.9 (Contraction Normalization). Let C = Γ ` ∆ be a clause. A contrac-
tion normalization of C is a clause D obtained from C by omitting multiple occurrences
of atoms in Γ and ∆. 4

Definition 2.3.102.3.10 is taken from [1010, Definition 3.3.9].

Definition 2.3.10 (Factor). Let C = Γ ` ∆ be a clause and D be a nonempty sub-
clause of Γ ` or of ` ∆, and let σ be an m.g.u.of the atoms of D. Then a contraction
normalization of Cσ is called a factor of C. 4

Our notion of resolution deduction is based on [99, Definition 2.15] and [1010, Definition
3.3.13].

Definition 2.3.11 (Resolution Deduction). A deduction tree having clauses as leaves
and resolution, contraction and weakening as rules is called a resolution deduction. If,
instead of resolution, we have p-resolution as (the only binary) rule, then we call the
deduction a p-resolution deduction. Let γ be a p-resolution deduction in which all clauses
are variable-free. Then we call γ a ground resolution deduction. Let C be a set of clauses. If
all leaves in γ are variants of clauses in C and D is the clause at the root of the deduction
tree, then γ is called a resolution deduction of D from C. If D = `, then γ is called a
resolution refutation of C. 4

Remark. A p-resolution deduction γ is an LK-deduction with atomic sequents and struc-
tural rules only, i.e. the only rules in γ are cut, contraction and weakening [99].

Definition 2.3.122.3.12 is taken from [1010, Definition 3.3.14].

2Note that, here, Am and An are not indexed clauses (see Chapter 66); m,n just denote the number of
occurrences of A in the respective clause.

23

Definition 2.3.12 (Ground Projection). Let γ′ be a ground resolution deduction which
is an instance of a resolution deduction γ. Then γ′ is called a ground projection of γ. 4

Example 2.3.13 ([1010], Example 3.3.7). Let

C = {` P (x), P (a); P (y) ` P (f(y)); P (f(f(a))) `}.

Then the following derivation γ is a resolution refutation of C:

` P (x), P (a) P (y) ` P (f(y))
R` P (f(a)) P (z) ` P (f(z))

R` P (f(f(a))) P (f(f(a))) `
R`

The following instance γ′ of γ

` P (a), P (a) P (a) ` P (f(a))
R` P (f(a)) P (f(a)) ` P (f(f(a)))

R` P (f(f(a))) P (f(f(a))) `
R`

is a ground resolution refutation of C and a ground projection of γ. 4

Definition 2.3.14 (cf. [99]). Let Γ be a multiset of atomic formulas, then set(Γ) denotes
the set of atomic formulas occurring in Γ. Moreover, let C = Γ ` ∆ be a sequent, then
set(C) = set(Γ) ∪ set(∆). 4

Subsumption is defined as in [99, Definition 2.16].

Definition 2.3.15 (Subsumption). Let C = Γ ` ∆ and D = Π ` Λ be clauses. Then C
subsumes D (denoted by C ≤ss D) if there exists a substitution θ such that

set(Γ)θ ⊆ set(Π) and
set(∆)θ ⊆ set(Λ).

We extend the relation ≤ss to sets of clauses C,D in the following way: C ≤ss D if for all
D ∈ D, there exists a C ∈ C such that C ≤ss D. 4

The subsumption relation can also be extended to resolution deductions [99].

Definition 2.3.16 ([99], Definition 2.17). Let γ and δ be resolution deductions. We
define γ ≤ss δ by induction on the number of nodes in δ:

If δ consists of a single node labelled with a clause D, then γ ≤ss δ if γ consists of a
single node labelled with C and C ≤ss D.

Let δ be

24

(δ1)

D1

(δ2)

D2 R,
D

and γ1 be a deduction of C1 with γ1 ≤ss δ1, γ2 be a deduction of C2 with γ2 ≤ss δ2. Then
we distinguish the following cases:

if C1 ≤ss D, then γ1 ≤ss δ.
if C2 ≤ss D, then γ2 ≤ss δ.

Otherwise, let C be a resolvent of C1 and C2 and let γ =

(γ1)

C1

(γ2)

C2
R.

C

Then γ ≤ss δ. It can be shown that—in the second case—such a resolvent C of C1 and C2

with the above property actually exists (for a proof we refer to [3434, Lemma 4.2.1]). 4

Proposition 2.3.17 ([99], Proposition 2.1). Let C,D be sets of clauses with C ≤ss D, and
let δ be a resolution deduction from D. Then there exists a resolution deduction γ from C
such that γ ≤ss δ.

PROOF. By Lemma 4.2.1 in [3434], and by Definition 2.3.162.3.16. �

Theorem 2.3.18 (Completeness of Resolution Deduction). If C is an unsatisfiable set
of clauses, then there exists a resolution refutation of C.

PROOF. By Theorem 2.7.2 in [3434]. �

25

CHAPTER 3
The Problem of Cut-Elimination

The following chapter is intended to give an overview on the general problem of (reduc-
tive) cut-elimination as introduced by Gentzen in his seminal papers “Untersuchungen
über das logische Schließen I + II” [2121]. Particularly, in Section 4.14.1, we will outline why
cut-elimination is such an important method for both mathematical logic and computer
science. In Section 4.24.2, we will consider cut-elimination and some of its most important
consequences in a more formal way. This chapter is then concluded in Section 4.34.3, by
defining a rewriting system for cut-elimination based on rules obtained from Gentzen’s
original proof of the cut-elimination theorem.

3.1 M O T I V AT I O N

Cut-elimination was introduced by Gerhard Gentzen as a constructive method for proving
the so-called “Hauptsatz” (or cut-elimination theorem) for both LK and LJ [1010, 2121].
Basically, it states that any theorem of first-order logic can be proved without detours, i.e.
without the use of cuts [4747].

Generally speaking, cut-elimination is concerned with the elimination of all cuts
from proofs in order to obtain a cut-free proof of the same statement. Since cuts corre-
spond to the use of lemmas (i.e. intermediary statements) in mathematical proofs, the
cut-elimination theorem implies that any statement can be proved without the use of
lemmas [99].

Moreover, cut-free proofs are analytic in the sense that all formulas used in the proof
are (instances of) subformulas of the end-sequent (i.e. they have the so-called subformula
property) [99,3535]. The subformula property is just one of many important consequences
of the cut-elimination theorem. One of the most important ones is the consistency of
both LK and LJ. Indeed, if there would be a proof of the empty sequent, then it would
be provable without a cut, which is impossible by the subformula property of cut-free
proofs [4747].

27

In Gentzen’s “sharpened Hauptsatz” (or midsequent theorem) it was shown that in
a cut-free proof of a sequent containing only formulas in prenex form, there exists a so-
called midsequent, which splits the proof into an upper part, containing the propositional
inferences and into a lower part, containing the quantifier inferences [2121,4747]. This allows
the extraction of Herbrand sequents11.

Furthermore, the cut-elimination theorem can be used to prove Craig’s interpolation
theorem [1515] via Maehara’s lemma [1010,4747], which gives a method to construct an inter-
polant of A → B from a cut-free proof of A → B, where A and B are formulas [4747].
Craig’s interpolation theorem can also be used to prove Beth’s definability theorem, which
states that implicit definitions can be converted into explicit ones [1010,4747].

Cut-elimination can also be used as a method of proof mining in the sense that hidden
mathematical information can be extracted by eliminating lemmas from proofs [3535].

Another approach for proof mining, the extraction of functionals from proofs, is based
on Gödel’s dialectica interpretation [2626], and it allows the construction of programs from
proofs (see [1111,1212]) [3535]. Moreover, functional interpretation can also be used to extract
Herbrand disjunctions from proofs [2222]. Originally, Gödel’s method was motivated by
Hilbert’s program22 [22], in particular by the desire to show the consistency of number
theory [2626].

As demonstrated by Girard in [2424], cut-elimination can actually be applied to “real”
proofs in current mathematics. By applying cut-elimination to Fürstenberg and Weiss’
topological proof [1919] of van der Waerden’s theorem33 [4949] and thus eliminating all
lemmas used in the proof, Girard was able to obtain van der Waerden’s original proof as
a result.

The logic programming paradigm represents a more practical application of cut-
elimination, as the computation of logic programs is based on a search for cut-free
proofs [3737].

Gentzen’s “Hauptsatz” also plays an important role in automated theorem proving
based on backward reasoning in sound and complete calculi without cuts. This is due to
the fact that omitting the cut-rule rules out the possibility of infinite branching factors in
the search tree, as there are infinitely many possible cut-formulas [1717].

Other types of calculi frequently used in automated deduction are so-called tableau
methods. In these types of calculi, an equivalent form of the cut-elimination theorem does
also hold [1818,4444].

3.2 C U T- E L I M I N AT I O N T H E O R E M & C O N S E Q U E N C E S

We have already mentioned that Gentzen’s “Hauptsatz” has many important conse-
quences within mathematical logic. In this section we will formulate the cut-elimination

1Herbrand sequents are generalizations of Herbrand disjunctions (see [2727]) for the sequent calculus
LK [3030].

2For more information on Hilbert’s program, we refer the reader to [5252].
3Given a partition N = C1, . . . , Ck of the integers, one of the sets Ci contains arbitrarily long arithmetic

progressions [2424].

28

theorem and some of its consequences in a more formal way.

Theorem 3.2.1 ([2121], Gentzen 1934). If a sequent is LK-provable, then it is LK-provable
without a cut.

PROOF. We will only give a general outline of the proof; for the full proof we refer
to [2121, 4747]. Let ϕ be an LK-proof. The proof is then by double induction on grade(ϕ)
and rank(ϕ), where the uppermost cut (in fact, a mix) is eliminated by permuting the
cut upwards (and thus reducing the rank) until no longer possible (i.e. the cut occurs
immediately below the inferences that introduced its cut-formula in both premises); then
the grade of the cut-formula A is reduced by replacing this cut by cuts, where the cut-
formulas are subformulas of A. Cuts having axioms as premises can then be eliminated
completely. Iterating this procedure eventually yields a cut-free proof of the same end-
sequent. �

The following corollary corresponds to the above mentioned subformula property.

Corollary 3.2.2 ([4747], Theorem 6.3). In a cut-free proof in LK (or LJ) all the formulas
which occur in it are subformulas of the formulas in the end-sequent.

PROOF. By mathematical induction on the number of inferences in the cut-free proof. �

Corollary 3.2.33.2.3 corresponds to Theorem 6.2 in [4747].

Corollary 3.2.3 (Consistency). LK and LJ are consistent.

PROOF. Suppose ` were provable in LK (or LJ). Then, by Theorem 3.2.13.2.1, it would be
provable in LK (or LJ) without a cut. But this is impossible by the subformula property
of cut-free proofs. �

The following result is a formulation of Gentzen’s midsequent theorem.

Theorem 3.2.4 ([4747], Theorem 6.4). Let S be a sequent which consists of prenex formulas
only and is provable in LK. Then there is a cut-free proof of S which contains a sequent
(called a midsequent), say S′, which satisfies the following:

(i) S′ is quantifier-free.

(ii) Every inference above S′ is either structural or propositional.

(iii) Every inference below S′ is either structural or a quantifier inference.

PROOF. See [4747]. �

Now, we will state Craig’s interpolation theorem; for the full proof based on cut-elimination
we refer to [4747].

Theorem 3.2.5 ([4747], Theorem 6.6). Let A and B be two formulas such that A→ B is
LK-provable. If A and B have at least one predicate symbol in common, then there exists
a formula C, called an interpolant of A → B, such that C contains only those constants,

29

predicate symbols and free variables that occur in both A and B, and such A → C and
C → B are LK-provable. If A and B have no predicate symbol in common, then either A `
or ` B is LK-provable.

3.3 R E D U C T I V E C U T- E L I M I N AT I O N

From the method described in Theorem 3.2.13.2.1 one can extract an algorithm that actually
transforms a proof of a sequent containing cuts into a cut-free proof of the same sequent.
These transformation steps can be used to define a proof rewriting system whose normal
forms are cut-free proofs [99]. We will describe such a rewriting system (or reduction
system) in more detail in the following section.

Closely related to Gentzen’s procedure is a method due to Schütte [4343] and Tait [4646]
which eliminates the uppermost cut in a proof whose cut-formula has maximal complexity,
i.e. if the cut-formula of the uppermost cut is A, then comp(B) ≤ comp(A), for all other
cut-formulas B in the proof [99]. We will refer to both of these methods as reductive
cut-elimination methods in the following; they even share a common rule base when
interpreted as proof rewriting systems [1010,4141].

We will now give the definitions needed in order to formulate a reduction system for
cut-elimination. For a detailed discussion of reduction systems we refer to [33].

The following definition is based on [99,4141].

Definition 3.3.1 (Cut-Reduction System). Let Ψ be the set of all LK-derivations. Then
the pair R = 〈Ψ, >R〉 is called a cut-reduction system, where >R ⊆ Ψ × Ψ is a binary
relation over LK-derivations. If ϕ,ψ ∈ Ψ, then ϕ >R ψ if and only if ϕ reduces to ψ
according to the cut-reduction rules (without cut-elimination over axioms) specified
in Definition 3.3.93.3.9. Similarly, we define Rax by including all reduction rules from Defini-
tion 3.3.93.3.9. 4

Definition 3.3.2 (cf. [99], Definition 3.1). Let > ⊆ Ψ × Ψ. We say that > is based on
R = 〈Ψ, >R〉 if > ⊆ >R and write ψ > χ for (ψ, χ) ∈ >. Analogous for Rax. 4

Definition 3.3.3 (cf. [99], Definition 3.2). Let ψ, χ ∈ Ψ with ψ >R χ, and let ϕ ∈ Ψ
such that ϕ.ν = ψ, for a node ν in ϕ. Then we define ϕ >R ϕ[χ]ν (i.e. >R is closed under
contexts). Analogous for Rax. 4

Remark. The reduction relation defined by Gentzen’s proof is a subrelation of R [99].

Definition 3.3.43.3.4 is taken from [99, Definition 3.3].

Definition 3.3.4 (Gentzen Reduction). We define ψ >G χ if ψ >R χ and ψ is a cut-
derivation with a single non-atomic cut only, which is the last inference. >G is extended
like >R: ϕ >G ϕ′ if ϕ′ = ϕ[χ]ν and ϕ.ν >G χ. 4

We follow [99, Definition 3.4] by defining:

Definition 3.3.5 (Tait Reduction). We define ϕ >T ϕ′ if the following conditions are
fulfilled:

30

(i) There exists a node ν in ϕ such that ϕ.ν is a cut-derivation with a maximal
cut-formula (i.e. if the cut-formula of the last cut in ϕ.ν is A, then comp(B) ≤
comp(A), for all other cut-formulas B in ϕ).

(ii) ϕ′.ν is strict, i.e. for all other cut-formulas B in ϕ′.ν, we have comp(B) < comp(A).

(iii) ϕ′ = ϕ[χ]ν , for an LK-derivation χ with ϕ.ν >R χ.

4

Remark. For the sake of convenience, we will refer to the reduction based on the Schütte-
Tait method simply as Tait reduction in the following.

Definition 3.3.6. Let > be a cut-reduction relation based onR. Then we define ψ >top χ
if ψ >R χ and ψ is a cut-derivation with a single cut only (either atomic or non-atomic),
which is the last inference. >top is extended like >: ϕ >top ϕ′ if ϕ′ = ϕ[χ]ν and ϕ.ν >top

χ. 4

Clearly, both>G,>Gtop and>T ,>T top are based onR. The end-products of cut-reductions
are LK-derivations with atomic cuts only. These derivations are our normal forms [99].

The definition of an atomic cut normal form corresponds to [99, Definition 3.5].

Definition 3.3.7 (ACNF). Let > be a cut-reduction relation based on R. Then an LK-
derivation ψ is in atomic cut normal form (ACNF) w.r.t. > if there exists no χ such that
ψ > χ.

Let >∗ be the reflexive and transitive closure of >. We say that ψ is an ACNF of ϕ if
ψ is in ACNF and ϕ >∗ ψ. Any method which transforms LK-proofs into ACNFs is called
an AC-normalization. 4

For >R, >G and >T , all normal forms are LK-proofs without non-atomic cuts [99].

Remark. Let ψ be an LK-derivation of a sequent S from a set of sequents A and ψ be in
ACNF. If the set A is closed under cut, then there exists also a cut-free derivation of S
from A [99].

Definition 3.3.8 (ACNFtop). Let> be one of>Rtop ,>Gtop or>T top . Then an LK-derivation
ψ is in ACNFtop w.r.t. > if there exists no χ such that ψ > χ.

Let >∗ be the reflexive and transitive closure of >. We say that ψ is an ACNFtop of ϕ
if ψ is in ACNFtop and ϕ >∗ ψ. Any method which transforms LK-proofs into ACNFtops
is called an ACtop-normalization. 4

Remark. In LK-derivations ψ in ACNFtop, all cuts occurring in ψ are atomic cuts that
occur at the top of ψ.

Furthermore, note that since >R, >G and >T are subrelations of >Rtop , >Gtop and
>T top , respectively, any LK-derivation in ACNFtop is also in ACNF.

31

Cut-Reduction Rules

In the following, we will define the cut-reduction rules, which can be divided into cut-
elimination, grade-reduction and rank-reduction rules. Cut-elimination rules transform
a given proof ψ into a proof ψ′ in such a way that ψ′ is the result of eliminating the
uppermost cut from ψ. Grade reductions serve the purpose to replace a cut with non-
atomic cut-formulas by new cuts whose cut-formulas are subformulas of the non-atomic
cut-formula. Rank reductions, on the other hand, are used to permute cuts over unary or
binary rules upwards in the proof.

The following definition is based on the ones given in [99,4040,5151].

Definition 3.3.9 (Cut-reduction Rules). In the following we indicate via the symbol
⇓ that the proof ψ above ⇓ can be transformed into the proof ψ′ below ⇓ according to
the respective cut-reduction rules, i.e. ψ >Rax ψ

′. Furthermore, ρ, σ, ρ1, σ1, . . . , ρ
′, σ′, . . .

denote subderivations of ψ and ψ′.

Cut-elimination rules:

Over axioms:

A ` A
(σ)

A,Γ ` ∆
cut(A)

A,Γ ` ∆

⇓

(σ)

A,Γ ` ∆

(ρ)

Γ ` ∆, A A ` A
cut(A)

Γ ` ∆, A

⇓

(ρ)

Γ ` ∆, A

Over weakening:
(ρ′)

Γ ` ∆ wr
Γ ` ∆, A

(σ)

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ

⇓

(ρ′)

Γ ` ∆ w∗r , w
∗
lΓ,Π ` ∆,Λ

(ρ)

Γ ` ∆, A

(σ′)

Π ` Λ wl
A,Π ` Λ

cut(A)
Γ,Π ` ∆,Λ

⇓

(σ′)

Π ` Λ w∗r , w
∗
lΓ,Π ` ∆,Λ

Grade-reduction rules:

If the cut-formula has ¬ as top-level connective:

32

(ρ′)

A,Γ ` ∆ ¬r
Γ ` ∆,¬A

(σ′)

Π ` Λ, A ¬l¬A,Π ` Λ
cut(¬A)

Γ,Π ` ∆,Λ

⇓

(σ′)

Π ` Λ, A

(ρ′)

A,Γ ` ∆
cut(A)

Γ,Π ` ∆,Λ

If the cut-formula has ∧ as top-level connective:

(ρ1)

Γ ` ∆, A1

(ρ2)

Γ ` ∆, A2 ∧r
Γ ` ∆, A1 ∧A2

(σ′)

Ai,Π ` Λ ∧liA1 ∧A2,Π ` Λ
cut(A1 ∧A2)

Γ,Π ` ∆,Λ

⇓

(ρ1)

Γ ` ∆, A1

(ρ2)

Γ ` ∆, A2

(σ′)

Ai,Π ` Λ
wl

A1, A2,Π ` Λ
cut(A2)

A1,Γ,Π ` ∆,Λ
cut(A1)

Γ,Γ,Π ` ∆,∆,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

If the cut-formula has ∨ as top-level connective:

(ρ)

Γ ` ∆, Ai ∨riΓ ` ∆, A1 ∨A2

(σ1)

A1,Π ` Λ

(σ2)

A2,Π ` Λ ∨l
A1 ∨A2,Π ` Λ

cut(A1 ∨A2)
Γ,Π ` ∆,Λ

⇓

(ρ)

Γ ` ∆, Ai wr
Γ ` ∆, A1, A2

(σ2)

A2,Π ` Λ
cut(A2)

Γ,Π ` ∆,Λ, A1

(σ1)

A1,Π ` Λ
cut(A1)

Γ,Π,Π ` ∆,Λ,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

33

If the cut-formula has ∃ as top-level connective:

(ρ′)

Γ ` ∆, A(x/t)
∃r

Γ ` ∆, (∃x)A(x)

(σ′(x/y))

A(x/y),Π ` Λ
∃l

(∃x)A(x),Π ` Λ
cut((∃x)A)

Γ,Π ` ∆,Λ

⇓

(ρ′)

Γ ` ∆, A(x/t)

(σ′(x/t))

A(x/t),Π ` Λ
cut(A(x/t))

Γ,Π ` ∆,Λ

If the cut-formula has ∀ as top-level connective:

(ρ′(x/y))

Γ ` ∆, A(x/y)
∀r

Γ ` ∆, (∀x)A(x)

(σ′)

A(x/t),Π ` Λ
∀l

(∀x)A(x),Π ` Λ
cut((∀x)A)

Γ,Π ` ∆,Λ

⇓

(ρ′(x/t))

Γ ` ∆, A(x/t)

(σ′)

A(x/t),Π ` Λ
cut(A(x/t))

Γ,Π ` ∆,Λ

Rank-reduction rules:

Over a unary rule ξ:

(ρ′)

Γ′ ` ∆′, A
ξ

Γ ` ∆, A

(σ)

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ

⇓

(ρ′)

Γ′ ` ∆′, A

(σ)

A,Π ` Λ
cut(A)

Γ′,Π ` ∆′,Λ
ξ

Γ,Π ` ∆,Λ

(ρ)

Γ ` ∆, A

(σ′)

A,Π′ ` Λ′
ξ

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ

⇓

(ρ)

Γ ` ∆, A

(σ′)

A,Π′ ` Λ′
cut(A)

Γ,Π′ ` ∆,Λ′
ξ

Γ,Π ` ∆,Λ

34

Over a binary rule ξ:

(ρ1)

Γ1 ` ∆1, A

(ρ2)

Γ2 ` ∆2 ξ
Γ ` ∆, A

(σ)

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ

⇓

(ρ1)

Γ1 ` ∆1, A

(σ)

A,Π ` Λ
cut(A)

Γ1,Π ` ∆1,Λ

(ρ2)

Γ2 ` ∆2 w∗rΓ2 ` ∆2, A

(σ′)

A,Π ` Λ
cut(A)

Γ2,Π ` ∆2,Λ ξ
Γ,Π,Π ` ∆,Λ,Λ

c∗l , c
∗
r

Γ,Π ` ∆,Λ

(ρ1)

Γ1 ` ∆1

(ρ2)

Γ2 ` ∆2, A ξ
Γ ` ∆, A

(σ)

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ

⇓

(ρ1)

Γ1 ` ∆1 w∗rΓ1 ` ∆1, A

(σ)

A,Π ` Λ
cut(A)

Γ1,Π ` ∆1,Λ

(ρ2)

Γ2 ` ∆2, A

(σ′)

A,Π ` Λ
cut(A)

Γ2,Π ` ∆2,Λ ξ
Γ,Π,Π ` ∆,Λ,Λ

c∗l , c
∗
r

Γ,Π ` ∆,Λ

where in the above two reductions σ′ is obtained from σ by renaming the eigen-
variables in such a way that the regularity of ψ′ is ensured. Moreover, in these
particular cases, w∗r stands for at most one application of wr.

(ρ)

Γ ` ∆, A

(σ1)

A,Π1 ` Λ1

(σ2)

Π2 ` Λ2 ξ
A,Π ` Λ

cut(A)
Γ,Π ` ∆,Λ

35

⇓

(ρ)

Γ ` ∆, A

(σ1)

A,Π1 ` Λ1 cut(A)
Γ,Π1 ` ∆,Λ1

(ρ′)

Γ ` ∆, A

(σ2)

Π2 ` Λ2 w∗lA,Π2 ` Λ2 cut(A)
Γ,Π2 ` ∆,Λ2 ξ

Γ,Γ,Π ` ∆,∆,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

(ρ)

Γ ` ∆, A

(σ1)

Π1 ` Λ1

(σ2)

A,Π2 ` Λ2 ξ
A,Π ` Λ

cut(A)
Γ,Π ` ∆,Λ

⇓

(ρ)

Γ ` ∆, A

(σ1)

Π1 ` Λ1 w∗lA,Π1 ` Λ1 cut(A)
Γ,Π1 ` ∆,Λ1

(ρ′)

Γ ` ∆, A

(σ2)

A,Π2 ` Λ2 cut(A)
Γ,Π2 ` ∆,Λ2 ξ

Γ,Γ,Π ` ∆,∆,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

where in the above two reductions ρ′ is obtained from ρ by renaming the eigen-
variables in such a way that the regularity of ψ′ is ensured. Moreover, in these
particular cases, w∗l stands for at most one application of wl.

Over contraction rules:

Contraction right cr:

(ρ′)

Γ ` ∆, A,A
cr

Γ ` ∆, A

(σ)

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ

⇓

36

(ρ′)

Γ ` ∆, A,A

(σ)

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ, A

(σ′)

A,Π ` Λ
cut(A)

Γ,Π,Π ` ∆,Λ,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

where σ′ is obtained from σ by renaming the eigenvariables in such a way that the
regularity of ψ′ is ensured.

Contraction left cl:

(ρ)

Γ ` ∆, A

(σ′)

A,A,Π ` Λ
cl

A,Π ` Λ
cut(A)

Γ,Π ` ∆,Λ

⇓

(ρ′)

Γ ` ∆, A

(ρ)

Γ ` ∆, A

(σ′)

A,A,Π ` Λ
cut(A)

A,Γ,Π ` ∆,Λ
cut(A)

Γ,Γ,Π ` ∆,∆,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

where ρ′ is obtained from ρ by renaming the eigenvariables in such a way that the
regularity of ψ′ is ensured.

4

Example 3.3.10. Let ϕ be the derivation (where u, v are free variables and a, b constant
symbols)

(ϕ1)

P (a) ∨Q(b) ` (∃y)(P (y) ∨Q(y))

(ϕ2)

(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ` (∃z)Q(z)
cut,

P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

where ϕ1 is the LK-derivation:

P (a) ` P (a) ∨r1
P (a) ` (P (a) ∨Q(a))

∃r
P (a) ` (∃y)(P (y) ∨Q(y))

Q(b) ` Q(b) ∨r2
Q(b) ` (P (b) ∨Q(b))

∃r
Q(b) ` (∃y)(P (y) ∨Q(y)) ∨l

P (a) ∨Q(b) ` (∃y)(P (y) ∨Q(y))︸ ︷︷ ︸
S1

37

and ϕ2 is the LK-derivation:

P (u) ` P (u) ¬l
P (u),¬P (u) `

wr
P (u),¬P (u) ` Q(u)

Q(u) ` Q(u)
wl

Q(u),¬P (u) ` Q(u) ∨l
((P (u) ∨Q(u)),¬P (u) ` Q(u)

∃r
((P (u) ∨Q(u)),¬P (u) ` (∃z)Q(z)

∀l
((P (u) ∨Q(u)), (∀x)¬P (x) ` (∃z)Q(z)

∃l
(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ` (∃z)Q(z)︸ ︷︷ ︸

S2

In the following, we will indicate via the colour purple, which inference rules and cuts
are the target of the cut-reduction rules.

For ϕ, we obtain the following cut-reduction sequence:

P (a) ` P (a) ∨r1
P (a) ` (P (a) ∨Q(a))

∃r
P (a) ` (∃y)(P (y) ∨Q(y))

Q(b) ` Q(b) ∨r2
Q(b) ` (P (b) ∨Q(b))

∃r
Q(b) ` (∃y)(P (y) ∨Q(y)) ∨l

P (a) ∨Q(b) ` (∃y)(P (y) ∨Q(y))

(ϕ2)

S2
cut

P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

rank-reduction over ∨l
⇓

(ϕ′1)

P (a), (∀x)¬P (x) ` (∃z)Q(z)

(ϕ′2)

Q(b), (∀x)¬P (x) ` (∃z)Q(z) ∨l
P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

where ϕ′1 is the LK-derivation:

P (a) ` P (a) ∨r1
P (a) ` P (a) ∨Q(a)

∃r
P (a) ` (∃y)(P (y) ∨Q(y))

P (u) ` P (u) ¬l
P (u),¬P (u) `

wr
P (u),¬P (u) ` Q(u)

Q(u) ` Q(u)
wl

Q(u),¬P (u) ` Q(u) ∨l
P (u) ∨Q(u),¬P (u) ` Q(u)

∃r
P (u) ∨Q(u),¬P (u) ` (∃z)Q(z)

∀l
P (u) ∨Q(u), (∀x)¬P (x) ` (∃z)Q(z)

∃l
(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ` (∃z)Q(z)

cut
P (a), (∀x)¬P (x) ` (∃z)Q(z)

and ϕ′2 is the LK-derivation:

38

Q(b) ` Q(b) ∨r2
Q(b) ` P (b) ∨Q(b)

∃r
Q(b) ` (∃y)(P (y) ∨Q(y))

(ϕ′′2)

S2
cut,

Q(b), (∀x)¬P (x) ` (∃z)Q(z)

where ϕ′′2 is the LK-derivation obtained form ϕ2 by replacing the eigenvariable u by the
eigenvariable v.

We will eliminate the cut occurring in ϕ′1 first:

P (a) ` P (a) ∨r1
P (a) ` P (a) ∨Q(a)

∃r
P (a) ` (∃y)(P (y) ∨Q(y))

P (u) ` P (u) ¬l
P (u),¬P (u) `

wr
P (u),¬P (u) ` Q(u)

Q(u) ` Q(u)
wl

Q(u),¬P (u) ` Q(u) ∨l
P (u) ∨Q(u),¬P (u) ` Q(u)

∃r
P (u) ∨Q(u),¬P (u) ` (∃z)Q(z)

∀l
P (u) ∨Q(u), (∀x)¬P (x) ` (∃z)Q(z)

∃l
(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ` (∃z)Q(z)

cut
P (a), (∀x)¬P (x) ` (∃z)Q(z)

grade-reduction of (∃y)(P (y) ∨Q(y))
⇓

P (a) ` P (a) ∨r1
P (a) ` P (a) ∨Q(a)

P (a) ` P (a) ¬l
P (a),¬P (a) `

wr
P (a),¬P (a) ` Q(a)

Q(a) ` Q(a)
wl

Q(a),¬P (a) ` Q(a) ∨l
P (a) ∨Q(a),¬P (a) ` Q(a)

∃r
P (a) ∨Q(a),¬P (a) ` (∃z)Q(z)

∀l
P (a) ∨Q(a), (∀x)¬P (x) ` (∃z)Q(z)

cut
P (a), (∀x)¬P (x) ` (∃z)Q(z)

rank-reduction over ∀l
⇓

P (a) ` P (a) ∨r1
P (a) ` P (a) ∨Q(a)

P (a) ` P (a) ¬l
P (a),¬P (a) `

wr
P (a),¬P (a) ` Q(a)

Q(a) ` Q(a)
wl

Q(a),¬P (a) ` Q(a) ∨l
P (a) ∨Q(a),¬P (a) ` Q(a)

∃r
P (a) ∨Q(a),¬P (a) ` (∃z)Q(z)

cut
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

rank-reduction over ∃r
⇓

39

P (a) ` P (a) ∨r1
P (a) ` P (a) ∨Q(a)

P (a) ` P (a) ¬l
P (a),¬P (a) `

wr
P (a),¬P (a) ` Q(a)

Q(a) ` Q(a)
wl

Q(a),¬P (a) ` Q(a) ∨l
P (a) ∨Q(a),¬P (a) ` Q(a)

cut
P (a),¬P (a) ` Q(a)

∃r
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

grade-reduction of P (a) ∨Q(a)
⇓

P (a) ` P (a)
wr

P (a) ` P (a), Q(a)

Q(a) ` Q(a)
wl

Q(a),¬P (a) ` Q(a)
cut

P (a),¬P (a) ` P (a), Q(a)

P (a) ` P (a) ¬l
P (a),¬P (a) `

wr
P (a),¬P (a) ` Q(a)

cut
P (a),¬P (a),¬P (a) ` Q(a), Q(a)

cl
P (a),¬P (a) ` Q(a), Q(a)

cr
P (a),¬P (a) ` Q(a)

∃r
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

cut-elimination over wr
⇓

P (a) ` P (a)
wr

P (a) ` P (a), Q(a)
wl

P (a),¬P (a) ` P (a), Q(a)

P (a) ` P (a) ¬l
P (a),¬P (a) `

wr
P (a),¬P (a) ` Q(a)

cut
P (a),¬P (a),¬P (a) ` Q(a), Q(a)

cl
P (a),¬P (a) ` Q(a), Q(a)

cr
P (a),¬P (a) ` Q(a)

∃r
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

rank-reduction over wr
⇓

40

P (a) ` P (a)
wr

P (a) ` P (a), Q(a)
wl

P (a),¬P (a) ` P (a), Q(a)

P (a) ` P (a) ¬l
P (a),¬P (a) `

cut
P (a),¬P (a),¬P (a) ` Q(a)

wr
P (a),¬P (a),¬P (a) ` Q(a), Q(a)

cl
P (a),¬P (a) ` Q(a), Q(a)

cr
P (a),¬P (a) ` Q(a)

∃r
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

rank-reduction over ¬l
⇓

P (a) ` P (a)
wr

P (a) ` P (a), Q(a)
wl

P (a),¬P (a) ` P (a), Q(a) P (a) ` P (a)
cut

P (a),¬P (a) ` P (a), Q(a) ¬l
P (a),¬P (a),¬P (a) ` Q(a)

wr
P (a),¬P (a),¬P (a) ` Q(a), Q(a)

cl
P (a),¬P (a) ` Q(a), Q(a)

cr
P (a),¬P (a) ` Q(a)

∃r
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

cut-elimination over axioms
⇓

P (a) ` P (a)
wr

P (a) ` P (a), Q(a)
wl

P (a),¬P (a) ` P (a), Q(a) ¬l
P (a),¬P (a),¬P (a) ` Q(a)

wr
P (a),¬P (a),¬P (a) ` Q(a), Q(a)

cl
P (a),¬P (a) ` Q(a), Q(a)

cr
P (a),¬P (a) ` Q(a)

∃r
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

Next, we will eliminate the cut occurring in ϕ′2:

41

Q(b) ` Q(b) ∨r2
Q(b) ` P (b) ∨Q(b)

∃r
Q(b) ` (∃y)(P (y) ∨Q(y))

P (v) ` P (v) ¬l
P (v),¬P (v) `

wr
P (v),¬P (v) ` Q(v)

Q(v) ` Q(v)
wl

Q(v),¬P (v) ` Q(v) ∨l
((P (v) ∨Q(v)),¬P (v) ` Q(v)

∃r
((P (v) ∨Q(v)),¬P (v) ` (∃z)Q(z)

∀l
((P (v) ∨Q(v)), (∀x)¬P (x) ` (∃z)Q(z)

∃l
(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ` (∃z)Q(z)

cut
Q(b), (∀x)¬P (x) ` (∃z)Q(z)

applying the the same intermediate reduction steps as for ϕ′1
⇓∗

Q(b) ` Q(b)
wr

Q(b) ` P (b), Q(b)

Q(b) ` Q(b)
wl

Q(b),¬P (b) ` Q(b)
cut

Q(b),¬P (b) ` P (b), Q(b)

P (b) ` P (b) ¬l
P (b),¬P (b) `

wr
P (b),¬P (b) ` Q(b)

cut
Q(b),¬P (b),¬P (b) ` Q(b), Q(b)

cl
Q(b),¬P (b) ` Q(b), Q(b)

cr
Q(b),¬P (b) ` Q(b)

∃r
Q(b),¬P (b) ` (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ` (∃z)Q(z)

rank-reduction over wl
⇓

Q(b) ` Q(b)
wr

Q(b) ` P (b), Q(b) Q(b) ` Q(b)
cut

Q(b) ` P (b), Q(b)
wl

Q(b),¬P (b) ` P (b), Q(b)

P (b) ` P (b) ¬l
P (b),¬P (b) `

wr
P (b),¬P (b) ` Q(b)

cut
Q(b),¬P (b),¬P (b) ` Q(b), Q(b)

cl
Q(b),¬P (b) ` Q(b), Q(b)

cr
Q(b),¬P (b) ` Q(b)

∃r
Q(b),¬P (b) ` (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ` (∃z)Q(z)

cut-elimination over axioms
⇓

42

Q(b) ` Q(b)
wr

Q(b) ` P (b), Q(b)
wl

Q(b),¬P (b) ` P (b), Q(b)

P (b) ` P (b) ¬l
P (b),¬P (b) `

wr
P (b),¬P (b) ` Q(b)

cut
Q(b),¬P (b),¬P (b) ` Q(b), Q(b)

cl
Q(b),¬P (b) ` Q(b), Q(b)

cr
Q(b),¬P (b) ` Q(b)

∃r
Q(b),¬P (b) ` (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ` (∃z)Q(z)

applying the the same intermediate reduction steps as for ϕ′1
⇓∗

Q(b) ` Q(b)
wr

Q(b) ` P (b), Q(b)
wl

Q(b),¬P (b) ` P (b), Q(b) ¬l
Q(b),¬P (b),¬P (b) ` Q(b)

wr
Q(b),¬P (b),¬P (b) ` Q(b), Q(b)

cl
Q(b),¬P (b) ` Q(b), Q(b)

cr
Q(b),¬P (b) ` Q(b)

∃r
Q(b),¬P (b) ` (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ` (∃z)Q(z)

Finally, we obtain the following cut-free LK-proof ϕ′ with the same end-sequent as ϕ:

P (a) ` P (a)
wr

P (a) ` P (a), Q(a)
wl

P (a),¬P (a) ` P (a), Q(a) ¬l
P (a),¬P (a),¬P (a) ` Q(a)

wr
P (a),¬P (a),¬P (a) ` Q(a), Q(a)

cl
P (a),¬P (a) ` Q(a), Q(a)

cr
P (a),¬P (a) ` Q(a)

∃r
P (a),¬P (a) ` (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ` (∃z)Q(z)

Q(b) ` Q(b)
wr

Q(b) ` P (b), Q(b)
wl

Q(b),¬P (b) ` P (b), Q(b) ¬l
Q(b),¬P (b),¬P (b) ` Q(b)

wr
Q(b),¬P (b),¬P (b) ` Q(b), Q(b)

cl
Q(b),¬P (b) ` Q(b), Q(b)

cr
Q(b),¬P (b) ` Q(b)

∃r
Q(b),¬P (b) ` (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ` (∃z)Q(z) ∨l

P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

4

43

CHAPTER 4
Cut-Elimination by Resolution

In this chapter, we will introduce the cut-elimination method CERES (cut-elimination
by resolution), which takes a different approach than reductive methods in additionally
using the resolution principle. Section 4.14.1 outlines the motivation for the development
of CERES and presents the main steps of the procedure. In Section 4.24.2, we will define
clause terms and prove some of their most important properties. Finally, in Section 4.34.3,
we will formally define the method CERES and state some of its most crucial properties.

4.1 M O T I V AT I O N & O V E R V I E W

In Chapter 33, we have seen how reductive cut-elimination methods work, namely, by
eliminating cuts by a stepwise reduction of the complexity of the cut-formula. More
precisely, these methods always identify the top-level connective of the cut-formula and
either eliminate it directly (grade reduction) or indirectly (rank reduction) [1010]. Reduc-
tive methods are local in the sense that they focus on a small part of the whole proof
only, namely, on the derivation corresponding to the introduction of the top-level con-
nective of the cut-formula [1010, 3535]. The major drawback of these methods is that they
do not take the general structure of the proof into account. Thus, reductive methods
have a bad computational behaviour, as many types of redundancies in proofs remain
undetected [1010].

Baaz and Leitsch introduced the method CERES [77], which, as opposed to reductive
methods, analyzes the global structure of an LK-proof ϕ (i.e. all cut-derivations in ϕ are
analyzed simultaneously) [1010,4040]. The most important part of CERES is the characteristic
clause set—extracted from an LK-proof—which depends on the interplay between binary
rules that produce ancestors of cut-formulas and those that do not [1010].

In [99,1010], it was shown that CERES can achieve a nonelementary speed-up over re-
ductive methods. Furthermore, in [99], it was shown that there always exists a resolution
refutation γ of the characteristic clause set CL(ϕ) (obtained by CERES), which subsumes
the canonic resolution refutation RES(ψ), where ψ is an LK-deduction in ACNF obtained

45

from ϕ by reductive methods. A consequence of the fact that the number of nodes in
RES(ψ) is at most exponential in the number of nodes in ψ is that CERES yields a deduc-
tion χ in ACNF that is exponentially bounded by reductive methods [99]. In Chapter 55,
we will take a closer look at the complexity of CERES.

Moreover, CERES may also be used to prove negative results about cut-elimination,
e.g. that a certain cut-free proof is not obtainable by a given one. For instance, let ψ be
an ACNF of a proof ϕ such that CL(ψ) is not subsumed by CL(ϕ), then ψ cannot be
obtained by any sequence of cut-reduction rules using reductive methods [1010].

CERES was originally developed for classical logic, but—in the meantime—it has also
been successfully extended to finitely valued logics [88], Gödel logic [44] and, more recently,
to higher-order logic [2929,5050] as well as to subclasses of intuitionistic logic [3636,4040].

We will now describe the main steps of the method CERES in the following:

Let ϕ be an LK-derivation with end-sequent S. Then the method CERES consists of
the following steps [4040, Chapter 3]:

(1) Skolemization of ϕ.
The method requires that the end-sequent contains no occurrence of ∀ on the
right and ∃ on the left (due to the eigenvariable conditions of the corresponding
inference rules). In order to achieve this, ϕ needs to be skolemized, i.e. eigenvari-
ables need to be replaced by so-called Skolem terms. After AC-normalization, the
final derivation is transformed into a derivation of the original (unskolemized)
end-sequent [99].

(2) Construction of the characteristic clause set CL(ϕ).
Each instance of the cut-rule introduces two copies of a (potentially) new formula
(in the bottom-up interpretation) into ϕ. These two formulas are then gradually
decomposed into their atomic subformulas. Some of these atoms may end up in
initial sequents of the form C = Ci ◦C ′i, where Ci denotes the part of C consisting
of atomic cut-ancestors, and C ′i denotes the part of C consisting of ancestors of
formulas occurring in the end-sequent. Starting from initial sequents, a set of
clauses CL(ϕ), consisting solely of clauses composed of the Ci, is then constructed
in a particular way according to the structure of ϕ [4040].

(3) Computation of a projection ϕ(Ci) for each Ci ∈ CL(ϕ).
Due to the fact that each Ci ∈ CL(ϕ) is a subsequent of some initial sequent in ϕ,
one can obtain a cut-free derivation of a sequent S◦Ci, where S is the end-sequent
of ϕ, for each Ci ∈ CL(ϕ). This is achieved by skipping all inferences that operate
on cut-ancestors and possibly introducing some additional weakenings in order
to obtain all formulas of S. As a consequence, the atoms of Ci remain unchanged
throughout ϕ. The projection ϕ(Ci) of Ci is then given by the derivation of the
sequent S ◦ Ci [99,4040].

(4) Construction of a resolution refutation γ of CL(ϕ).
One can show that the characteristic clause set CL(ϕ) is always unsatisfiable [1010].

46

This means that there always exists a resolution refutation γ of CL(ϕ) by the
completeness of the resolution calculus [3434,4242]. More precisely, such a refutation
corresponds to a derivation of the empty sequent ` from the clauses in CL(ϕ). By
applying a ground projection to γ, a ground resolution refutation γ′ of CL(ϕ) is
obtained [99].

(5) Merging the projections ϕ(Ci) and the ground resolution refutation γ′.
The last step of CERES consists of bringing the projections ϕ(Ci) and the ground
resolution refutation γ′ of CL(ϕ) together. This is done by applying the ground
substitution σ (which defines the ground projection γ′) to each projection ϕ(Ci)
and placing ϕ(Ci)σ immediately above the initial sequents in γ′ that correspond
to the same Ci ∈ CL(ϕ). After merging the projections and γ′, we obtain an LK-
derivation of S that contains only atomic cuts, as the resolution steps in γ′ can be
considered as atomic cuts in LK. Note that some contractions might be necessary
in order to obtain an LK-derivation of S [99,4040].

4.2 C L A U S E T E R M S

The information present in the axioms refuted by the cuts will be represented by a set of
clauses. Every proof ϕ with cuts can be transformed into a proof ϕ′ of the empty sequent
by skipping inferences going into the end-sequent. The axioms of this refutation ϕ′ can
be compactly represented by clause terms [1010].

The following definition is based on [1010, Definition 6.3.1].

Definition 4.2.1 (Clause Term). Clause terms are {⊕,⊗}-terms over clause sets.
More formally:

• (Finite) sets of clauses are clause terms.

• If X and Y are clause terms, then X ⊕ Y is a clause term.

• If X and Y are clause terms, then X ⊗ Y is a clause term.

4

Definition 4.2.24.2.2 is taken from [1010, Definition 6.3.2].

Definition 4.2.2 (Semantics of Clause Terms). We define a mapping | · | from clause
terms to sets of clauses in the following way:

|C| = C for a set of clauses C,
|X ⊕ Y | = |X| ∪ |Y |,
|X ⊗ Y | = |X| × |Y |,

where C × D = {C ◦D | C ∈ C, D ∈ D}. 4

We follow [1010] in defining:

47

Two clause terms X and Y are said to be equivalent if the corresponding sets of
clauses are equal, i.e. X ∼ Y iff |X| = |Y |.

Clause terms are binary trees whose nodes are finite sets of clauses (instead of con-
stants or variables). Therefore, term occurrences are defined in the same way as for
ordinary terms. When speaking about occurrences in clause terms, we only consider
nodes in this term tree, but not occurrences inside the leaves, i.e. within the sets of
clauses on the leaves. In contrast, we consider the internal structure of leaves in the
concept of substitution:

Definition 4.2.3 ([1010], Definition 6.3.3). Let θ be a substitution. We define the appli-
cation of θ to clause terms as follows:

Xθ = Cθ if X = C for a set of clauses C,
(X ⊕ Y)θ = Xθ ⊕ Y θ,
(X ⊗ Y)θ = Xθ ⊗ Y θ.

4

Example 4.2.4. Let X be the following clause term:

({` P (a)} ⊗ {` Q(b)})⊕ ({P (u) `} ⊕ {Q(u) `}).

Then X can be represented in tree form (the numbers on the edges indicate the path
from the root to each node in the tree, i.e. the position of each subterm):

⊕

⊕

{Q(u) `}{P (u) `}

1 2
⊗

{` Q(b)}{` P (a)}

1 2

1 2

Consider, for instance, the following positions in X:

X.0 = X,

X.(0, 1) = {` P (a)} ⊗ {` Q(b)},
X.(0, 2) = {P (u) `} ⊕ {Q(u) `},

X.(0, 1, 1) = {` P (a)},
X.(0, 1, 2) = {` Q(b)},
X.(0, 2, 1) = {P (u) `},
X.(0, 2, 2) = {Q(u) `}.

4

There are five binary relations on clause terms, which will play an important role in the
subsequent parts of this thesis:

48

Definition 4.2.5 (cf. [99], Definition 4.4). Let X and Y be clause terms. We define

X ⊆ Y iff |X| ⊆ |Y |,
X v Y iff for all C ∈ |Y | there exists a D ∈ |X| such that D v C,
X ≤i Y iff there exist clause terms X1, X2 and a renaming substitution ϑ s.t.

(X1 ⊕X2) ⊆ X and |(X1 ⊕X2)⊕X2ϑ| = |Y |,
X ≤s Y iff there exists a substitution θ such that Xθ = Y 11,
X ≤ss Y iff |X| ≤ss |Y |.

4

Remark. If Y ⊆ X, then X v Y . Indeed, assume that |Y | ⊆ |X| (i.e. every clause in |Y |
is also a clause in |X|); then, for every C ∈ |Y |, there exists a D ∈ |X| (namely C itself)
such that D v C [1010].

The operators ⊕ and ⊗ are compatible with the relations ⊆ and v. This is formally
proved in the following lemmas [99]:

Lemma 4.2.6 ([99], Lemma 4.1). Let X,Y, Z be clause terms and X ⊆ Y . Then

(i) X ⊕ Z ⊆ Y ⊕ Z,

(ii) Z ⊕X ⊆ Z ⊕ Y ,

(iii) X ⊗ Z ⊆ Y ⊗ Z,

(iv) Z ⊗X ⊆ Z ⊗ Y .

PROOF. (ii)(ii) follows from (i)(i) because⊕ is commutative, i.e. X⊕Z ∼ Z⊕X. The cases (iii)(iii)
and (iv)(iv) are analogous. Thus, we only prove (i)(i) and (iii)(iii).

(i) |X ⊕ Z| = |X| ∪ |Z| ⊆ |Y | ∪ |Z| = |Y ⊕ Z|.

(iii) Let C ∈ |X ⊗ Z|. Then there exist clauses D,E with D ∈ |X|, E ∈ |Z| and
C = D ◦ E. Clearly, D is also in |Y | and thus C ∈ |Y ⊗ Z|.

�

Lemma 4.2.7 ([99], Lemma 4.2). Let X,Y, Z be clause terms and X v Y . Then

(i) X ⊕ Z v Y ⊕ Z,

(ii) Z ⊕X v Z ⊕ Y ,

(iii) X ⊗ Z v Y ⊗ Z,

(iv) Z ⊗X v Z ⊗ Y .

PROOF. (i)(i) and (ii)(ii) are trivial, (iii)(iii) and (iv)(iv) are analogous. Thus, we only prove (iv)(iv): Let
C ∈ |Z⊗Y |. Then C ∈ |Z|×|Y | and there existD ∈ |Z| and E ∈ |Y | such that C = D◦E.

1Note that ≤s is defined directly on the syntax of clause terms and not on the semantics [99].

49

By definition of v, there exists an E′ ∈ |X| with E′ v E. This implies D ◦ E′ ∈ |Z ⊗X|
and D ◦ E′ v D ◦ E. So, Z ⊗X v Z ⊗ Y . �

Lemma 4.2.8. Let X,Y, Z be clause terms and X ≤i Y . Then

(i) X ⊕ Z ≤i Y ⊕ Z,

(ii) Z ⊕X ≤i Z ⊕ Y ,

PROOF. (ii)(ii) follows from (i)(i) because ⊕ is commutative, i.e. X ⊕ Z ∼ Z ⊕X. Thus, we
only prove (i)(i):

AssumeX ≤i Y , i.e. there are clause termsX1, X2 and a renaming substitution ϑ such
that (X1⊕X2) ⊆ X and |(X1⊕X2)⊕X2ϑ| = |Y |. Then, clearly, (X1⊕X2)⊕Z ⊆ X⊕Z.
By associativity and commutativity of ⊕, we get

(X1 ⊕X2)⊕ Z ∼ (X1 ⊕ Z)⊕X2.

Therefore, |((X1 ⊕ Z)⊕X2)⊕X2ϑ| = |Y ⊕ Z|, i.e. X ⊕ Z ≤i Y ⊕ Z. �

The original proof of the following (unpublished) lemma is due to Alexander Leitsch:

Lemma 4.2.9. Let X ≤i Y via a renaming substitution ϑ such that the variables in the
domain and range of ϑ do not occur in Z. Then X ⊗ Z ≤i Y ⊗ Z via ϑ.

PROOF. Assume X ≤i Y via a renaming substitution ϑ such that the variables in the
domain and range of ϑ do not occur in Z. Then there are clause terms X1, X2 such that
(X1 ⊕X2) ⊆ X and |(X1 ⊕X2)⊕X2ϑ| = |Y |. Observe that (X1 ⊕X2)⊗Z ⊆ X ⊗Z and

(X1 ⊕X2)⊗ Z ∼ (X1 ⊗ Z)⊕ (X2 ⊗ Z),

((X1 ⊕X2)⊕X2ϑ)⊗ Z ∼ (X1 ⊗ Z)⊕ (X2 ⊗ Z)⊕ (X2ϑ⊗ Z).

But, by the restrictions on ϑ w.r.t. Z, we have (X2 ⊗ Z)ϑ = (X2ϑ⊗ Z), i.e.

|(X1 ⊗ Z)⊕ (X2 ⊗ Z)⊕ (X2 ⊗ Z)ϑ| = |Y ⊗ Z|.

Therefore, X ⊗ Z ≤i Y ⊗ Z via ϑ. �

Remark. In general, X ≤i Y does not imply X ⊗ Z ≤i Y ⊗ Z, i.e. ≤i is not compatible
with ⊗ for arbitrary substitutions such that X ≤i Y . Consider, for instance, the terms

X = {` Q(y)} ⊕ {` P (x)},
Y = {` Q(y)} ⊕ {` P (x)} ⊕ {` P (v)},
Z = {R(x) `}.

Then we get

X ⊗ Z ∼ {R(x) ` Q(y)} ⊕ {R(x) ` P (x)},
Y ⊗ Z ∼ {R(x) ` Q(y)} ⊕ {R(x) ` P (x)} ⊕ {R(x) ` P (v)}.

50

Let ϑ = {x← v}, then, clearly, X ≤i Y because {` P (x)}ϑ = {` P (v)}. Thus,

|{` Q(y)} ⊕ {` P (x)} ⊕ {` P (x)}ϑ| = |{` Q(y)} ⊕ {` P (x)} ⊕ {` P (v)}| = |Y |.

But
|{R(x) ` Q(y)} ⊕ {R(x) ` P (x)} ⊕ {R(x) ` P (x)}ϑ| 6= |Y ⊗ Z|

because {R(x) ` P (x)}ϑ = {R(v) ` P (v)} 6= {R(x) ` P (v)}. Hence, X ⊗ Z 6≤i Y ⊗ Z.
Note that this problem occurs for all substitutions ϑ, where variables in the domain or
the range of ϑ also occur in Z.

Definition 4.2.10. We define X � Y if at least one of the following relations hold:

• Y ⊆ X,

• X v Y ,

• X ≤i Y .

4

We are now able to show that replacing subterms in a clause term preserves the relations
⊆ and v (cf. [99]).

Lemma 4.2.11 ([99], Lemma 4.3). Let λ be a position in a clause term X, and Y . X.λ,
for . ∈ {⊆,v}. Then X[Y]λ . X.

PROOF. We proceed by induction on the term-complexity n (i.e. the number of nodes) of
X.

BASE CASE: n = 1. Then X is a set of clauses and λ is the top position, i.e. X.λ = X.
Consequently, X[Y]λ = Y and thus X[Y]λ . X.

INDUCTION HYPOTHESIS (IH): The claim holds for all clause terms X with term-
complexity k ≤ n.

INDUCTION STEP: Let X be X1 � X2, for � ∈ {⊕,⊗}. If λ is the top position in X,
then the lemma trivially holds. Thus, we may assume that λ is a position in X1 or in X2.
We consider the case that λ is in X1 (the other one is completely symmetric): then there
exists a position µ in X1 such that X.λ = X1.µ. Since Y . X1.µ, we get by (IH) that
X1[Y]µ . X1. By Lemmas 4.2.64.2.6 and 4.2.74.2.7 we obtain

X1[Y]µ �X2 . X1 �X2.

But
X1[Y]µ �X2 = (X1 �X2)[Y]λ = X[Y]λ,

and therefore X[Y]λ . X. �

51

Lemma 4.2.12. Let λ be an occurrence in a clause term X and X.λ . Y , for . ∈ {⊆,v}.
Then X . X[Y]λ.

PROOF. We proceed by induction on the term-complexity n (i.e. the number of nodes) of
X.

BASE CASE: n = 1. Then X is a set of clauses and λ is the top position, i.e. X.λ = X.
Consequently, X[Y]λ = Y , and thus X ⊆ Y and X v Y .

INDUCTION HYPOTHESIS (IH): The claim holds for all clause terms X with term-
complexity k ≤ n.

INDUCTION STEP: Let X be X1 � X2, for � ∈ {⊕,⊗}. If λ is the top position in X,
then the lemma trivially holds. Thus, we may assume that λ is a position in X1 or in X2.
We consider the case that λ is in X1 (the other one is completely symmetric): then there
exists a position µ in X1 such that X.λ = X1.µ. Since X1.µ . Y , we get by (IH) that
X1 . X1[Y]µ. By Lemmas 4.2.64.2.6 and 4.2.74.2.7 we obtain

X1 �X2 . X1[Y]µ �X2.

But
X1[Y]µ �X2 = (X1 �X2)[Y]λ = X[Y]λ.

and therefore, X . X[Y]λ. �

The replacement of subterms in a clause term preserves the relation ≤i only in specific
cases:

Lemma 4.2.13. Let λ be an occurrence in a clause term X = X1�X2, for � ∈ {⊕,⊗} and
X.λ ≤i Y (if X = X1 ⊗X2, then we assume X.λ ≤i Y via a renaming substitution ϑ such
that the variables in the domain and range of ϑ do not occur in X2). Then X ≤i X[Y]λ.

PROOF. We proceed by induction on the term-complexity n (i.e. the number of nodes) of
X.

BASE CASE: n = 1. Then X is a set of clauses and λ is the top position, i.e. X.λ = X.
Consequently, X[Y]λ = Y and thus X ≤i Y .

INDUCTION HYPOTHESIS (IH): The claim holds for all clause terms X with term-
complexity k ≤ n.

INDUCTION STEP: Let X be X1 � X2, for � ∈ {⊕,⊗}. If λ is the top position in X,
then the lemma trivially holds. Thus, we may assume that λ is a position in X1 or in X2.
We consider the case that λ is in X1 (the other one is completely symmetric): then there
exists a position µ in X1 such that X.λ = X1.µ. Since X1.µ ≤i Y , we get by (IH) that
X1 ≤i X1[Y]µ. By assumption we have X2ϑ = X2 (if X = X1 ⊗X2), thus Lemmas 4.2.84.2.8

52

and 4.2.94.2.9 yield
X1 �X2 ≤i X1[Y]µ �X2.

But
X1[Y]µ �X2 = (X1 �X2)[Y]λ = X[Y]λ.

and therefore, X ≤i X[Y]λ. �

The relations � and ≤s together define a relation �:

Definition 4.2.14 (cf. [99], Definition 4.5). Let X and Y be two clause terms. We define
X � Y if (at least) one of the following properties is fulfilled:

(i) X � Y , or

(ii) X ≤s Y .

4

The following remark is due to Alexander Leitsch:

Remark. In general Y ≤s Z does not imply X[Y]λ ≤ss X[Z]λ, i.e. ≤s is not compatible
with ⊕ and ⊗ for subsumption. Consider, for instance, the terms

Y = {` P (x)}, Z = {` P (f(x))} and

X = {` Q(x)} ⊗ {` R(x)}, X.λ = {` Q(x)}.

Clearly, Y ≤s Z. By replacement and evaluation, we obtain

|X[Y]λ| = {` P (x), R(x)}, |X[Z]λ| = {` P (f(x)), R(x)}.

Obviously, X[Y]λ 6≤ss X[Z]λ.

The transitive closure �∗ of � can be considered as a weak form of subsumption [99]:

Proposition 4.2.15 (cf. [99], Proposition 4.1). Let X and Y be clause terms such that
X �∗ Y . Then X ≤ss Y .

PROOF. As the relation ≤ss is reflexive and transitive (see [3434, Proposition 4.2.1]), it
suffices to show that � is a sub-relation of ≤ss.

(i) Assume Y ⊆ X. Then X ≤ss Y is trivial.

(ii) Assume X v Y , i.e. for all C ∈ |Y | there exists a D ∈ |X| with D v C. But then
also D ≤ss C. The definition of ≤ss for sets finally yields X ≤ss Y .

(iii) Assume X ≤i Y , i.e. there are clause terms X1, X2 and a renaming substitution ϑ
such that X1 ⊕X2 ⊆ X and |(X1 ⊕X2)⊕X2ϑ| = |Y |. By semantics of ⊕, we get
|X1 ⊕X2| ∪ |X2ϑ| = |Y | and |X1 ⊕X2| = |X1| ∪ |X2| ⊆ |X|.

Now, let C ∈ |Y | be arbitrary. We distinguish the following cases:

53

(a) If C ∈ |X1 ⊕X2|, then C ∈ |X| and C ≤ss C by reflexivity22 of ≤ss.
(b) If C 6∈ |X1 ⊕X2|, then, since |X1 ⊕X2| ∪ |X2ϑ| = |Y |, C ∈ |X2ϑ|. But this

means that there is some C ′ ∈ |X2| ⊆ |X| such that C ′ϑ = C and thus
C ′ ≤ss C.

Therefore, in both cases, X ≤ss Y .

(iv) Assume X ≤s Y . Then X ≤ss Y is trivial.

�

4.3 T H E M E T H O D C E R E S

The following two definitions correspond to [1010, Definition 3.1.15] and [1010, Definition
3.1.16].

Definition 4.3.1 (Polarity). Let λ be an occurrence of a formula A in B.

• If A = B, then λ is a positive occurrence in B.

• If B = (C � D) or B = (Qx)C, for � ∈ {∧,∨}, Q ∈ {∀, ∃} and λ is a positive
(negative) occurrence of A in C (or in D, respectively), then the corresponding
occurrence λ′ of A in B is positive (negative).

• If B = ¬C and λ is a positive (negative) occurrence of A in C, then the correspond-
ing occurrence λ′ of A in B is negative (positive).

If there exists a positive (negative) occurrence of a formula A in B, we say that A is of
positive (negative) polarity in B. 4

Definition 4.3.2 (Strong and Weak Quantifierss). If (∀x) occurs positively (negatively)
in B, then (∀x) is called a strong (weak) quantifier.

If (∃x) occurs positively (negatively) in B, then (∃x) is called a weak (strong) quanti-
fier. 4

We define skolemization as in [1010, Definition 6.2.1]:

Definition 4.3.3 (Skolemization). The function sk maps closed formulas into closed
formulas; it is defined in the following way:

sk(F) = F if F does not contain strong quantifiers.

Otherwise, assume that (Qy) is the first strong quantifier in F (in a tree ordering), which
is in the scope of the weak quantifiers (Q1x1), . . . , (Qnxn) (appearing in this order). Let
f be an n-ary function symbol not occurring in F (f is a constant symbol for n = 0).
Then sk(F) is inductively defined as

sk(F) = sk(F(Qy){y ← f(x1, . . . , xn)}),
2For reflexivity, it suffices to choose the empty substitution.

54

where F(Qy) is F after omission of (Qy). We call sk(F) the (structural) Skolemization of
F . 4

In model theory and automated deduction the definition of Skolemization is mostly
dual to Definition 4.3.34.3.3, i.e. in the case of prenex forms, the existential quantifiers are
eliminated instead of the universal ones. We call this kind of Skolemization refutational
Skolemization [1010]. The dual kind of Skolemization (elimination of universal quantifiers)
is frequently called “Herbrandization” [3232]. The Skolemization of sequents, defined be-
low, yields a more general framework, covering both concepts [1010].

The following definition constitutes a modification of [1010, Definition 6.2.2].

Definition 4.3.4 (Skolemization of Sequents). Let S = A1, . . . , An ` B1, . . . , Bm be a
sequent consisting of closed formulas only and

sk(¬(A1 ∧ . . . ∧An) ∨ (B1 ∨ . . . ∨Bm)) = ¬(A′1 ∧ . . . ∧A′n) ∨ (B′1 ∨ . . . ∨B′m).

Then the sequent
S′ = A′1, . . . , A

′
n ` B′1, . . . , B′m

is called the Skolemization of S. 4

Example 4.3.5 ([1010], Example 6.2.1). Let S = (∀x)(∃y)P (x, y) ` (∀x)(∃y)P (x, y) be
a sequent. Then the Skolemization of S is S′ = (∀x)P (x, f(x)) ` (∃y)P (c, y), for a
unary function symbol f and a constant symbol c. Note that the Skolemization of the
left-hand side of the sequent corresponds to the refutational Skolemization concept of
formulas. 4

By a skolemized proof, we mean a proof of the skolemized end-sequent. Also proofs
with cuts can be skolemized, but the cut-formulas themselves cannot. Only the strong
quantifiers, which are ancestors of the end-sequent, are eliminated [1010].

We restrict AC-normalizations (and ACtop-normalizations) to derivations with skolem-
ized end-sequents (cf. [99]). It is always possible to construct derivations of skolemized
end-sequents from the original ones without increase of length (see [55,66,1010]).

After AC-normalization (or ACtop-normalization) the derivation can be transformed
into a derivation of the original (unskolemized) sequent (cf. [99]).

Definition 4.3.6 ([99], Definition 5.1). Let SK be the set of all LK-derivations with
skolemized end-sequents. SK∅ is the set of all cut-free proofs in SK, and, for all i ≥ 0, SKi
is the subset of SK containing all derivations with cut-formulas of complexity ≤ i. 4

The aim of CERES is to transform a proof in SK into a proof in SK0. As already mentioned
in the overview, the first step consists of the definition of a clause term corresponding to
the subderivations of an LK-proof ending in a cut. In particular, we focus on derivations
of the cut-formulas themselves, i.e. on the derivation of formulas having no successors
in the end-sequent [99].

Definition 4.3.74.3.7 is based on [99, Definition 5.2] and [1010, Definition 6.4.1].

55

Definition 4.3.7 (Characteristic Term). Let ϕ be an LK-derivation of S, and let Ω be
the set of all occurrences of cut-formulas in ϕ. We define the characteristic (clause) term
Θ(ϕ) inductively as follows:

Let ν be the occurrence of an initial sequent S′ in ϕ. Moreover, let S′′ be the subsequent
of S′ consisting of all atoms, which are ancestors of an occurrence in Ω, i.e. S′′ = S(ν,Ω).
Then Θ(ϕ)/ν = {S′′}.

Let us assume that the clause terms Θ(ϕ)/ν are already constructed for all sequent
occurrences ν in ϕ with depth(ν) ≤ k. Now, let ν be an occurrence with depth(ν) = k+ 1.
We distinguish the following cases:

(a) ν is the conclusion of µ, i.e. a unary rule applied to µ gives ν. Here, we simply
define Θ(ϕ)/ν = Θ(ϕ)/µ.

(b) ν is the conclusion of µ1 and µ2, i.e. a binary rule ξ applied to µ1 and µ2 gives ν.

(b1) The auxiliary formulas of ξ are ancestors of Ω, i.e. the formulas occur in
S(µ1,Ω) and S(µ2,Ω), respectively. Then Θ(ϕ)/ν = Θ(ϕ)/µ1 ⊕Θ(ϕ)/µ2.

(b2) The auxiliary formulas of ξ are not ancestors of Ω. In this case, we define
Θ(ϕ)/ν = Θ(ϕ)/µ1 ⊗Θ(ϕ)/µ2.

Note that, in a binary inference, either both auxiliary formulas are ancestors of Ω or none
of them.

Finally, the characteristic term Θ(ϕ) is defined as Θ(ϕ)/ν, where ν is the occurrence
of the end-sequent. 4

Remark. If ϕ is a cut-free proof, then there are no occurrences of cut-formulas in ϕ, and
thus |Θ(ϕ)| = {`} [99].

The definition of a characteristic clause set is taken from [99].

Definition 4.3.8 (Characteristic Clause Set). Let ϕ be an LK-derivation and Θ(ϕ) be
the characteristic term of ϕ. Then CL(ϕ), for CL(ϕ) = |Θ(ϕ)|, is called the characteristic
clause set of ϕ. 4

Example 4.3.9 (cf. [3535], Example 4). The structure of the following example is based
on [99, Example 5.1]. Let ϕ be the derivation (for u a free variable, a, b constant symbols)

(ϕ1)

P (a) ∨Q(b) ` (∃y)(P (y) ∨Q(y))∗
(ϕ2)

(∃y)(P (y) ∨Q(y))∗, (∀x)¬P (x) ` (∃z)Q(z)
cut

P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

where ϕ1 is the LK-derivation:

56

P (a) ` P (a)∗ ∨r1
P (a) ` (P (a) ∨Q(a))∗

∃r
P (a) ` (∃y)(P (y) ∨Q(y))∗

Q(b) ` Q(b)∗ ∨r2
Q(b) ` (P (b) ∨Q(b))∗

∃r
Q(b) ` (∃y)(P (y) ∨Q(y))∗ ∨l

P (a) ∨Q(b) ` (∃y)(P (y) ∨Q(y))∗

and ϕ2 is the LK-derivation:

P (u)∗ ` P (u) ¬l
P (u)∗,¬P (u) `

wr
P (u)∗,¬P (u) ` Q(u)

Q(u)∗ ` Q(u)
wl

Q(u)∗,¬P (u) ` Q(u) ∨l
(P (u) ∨Q(u))∗,¬P (u) ` Q(u)

∃r
(P (u) ∨Q(u))∗,¬P (u) ` (∃z)Q(z)

∀l
(P (u) ∨Q(u))∗, (∀x)¬P (x) ` (∃z)Q(z)

∃l
(∃y)(P (y) ∨Q(y))∗, (∀x)¬P (x) ` (∃z)Q(z)

Let Ω be the set of the two occurrences of the cut-formula in ϕ. The ancestors of Ω are
labelled with ∗. We compute the characteristic clause term Θ(ϕ):

From the ∗-labels in ϕ, we first get the clause terms corresponding to the initial sequents:

X1 = {` P (a)}, X2 = {` Q(b)}, X3 = {P (u) `} and X4 = {Q(u) `}.

As unary inferences do not change the clause term, the first (= uppermost) binary infer-
ence that we consider in ϕ1 is ∨l. Since the auxiliary formulas of this inference are not
ancestors of Ω (the auxiliary formulas are not labelled with ∗), we obtain the term

Y1 = X1 ⊗X2 = {` P (a)} ⊗ {` Q(b)}.

Furthermore, since ∨l is the last inference in ϕ1, we get

Θ(ϕ)/ν1 = Y1,

where ν1 is the position of the end-sequent of ϕ1 in ϕ.
Since X3 and X4 are not changed by the unary inferences above ∨l in ϕ2 (i.e. the

uppermost binary inference in ϕ2) and the auxiliary formulas of ∨l are ancestors of Ω
(they are labelled with ∗), we have to apply ⊕ to X3 and X4:

Y2 = X3 ⊕X4 = {P (u) `} ⊕ {Q(u) `}.

As all inferences below ∨l are unary, the clause term remains unchanged. Consequently,
if ν2 is the position of the end-sequent of ϕ2 in ϕ, then the corresponding clause term is

Θ(ϕ)/ν2 = Y2.

The last inference in ϕ is a cut, and since the auxiliary formulas of the cut-rule are always
ancestors of Ω, we have to apply ⊕ to Y1 and Y2. This eventually gives the characteristic
clause term of ϕ:

Θ(ϕ) = Θ(ϕ)/ν = Y1 ⊕ Y2 = ({` P (a)} ⊗ {` Q(b)})⊕ ({P (u) `} ⊕ {Q(u) `}),

57

where ν is the position of the end-sequent of ϕ.
The corresponding characteristic clause set is the given by

CL(ϕ) = |Θ(ϕ)| = {` P (a), Q(b); P (u) `; Q(u) `}.

4

It is easy to see that—in the above example—the characteristic clause set CL(ϕ) is
unsatisfiable. The following proposition shows that this is not a coincidence, but a general
property of characteristic clause sets constructed in this way [99]:

Proposition 4.3.10. Let ϕ ∈ SK be an LK-derivation. Then CL(ϕ) is unsatisfiable.

PROOF. In [77,1010]. �

We follow [99]:
Let ϕ ∈ SK be a deduction of S = Γ ` ∆ and CL(ϕ) be the characteristic clause

set of ϕ. Then CL(ϕ) is unsatisfiable, and, by Theorem 2.3.182.3.18, there exists a resolution
refutation γ of CL(ϕ). By applying a ground projection to γ, we obtain a ground reso-
lution refutation γ′ of CL(ϕ); by our definition of resolution, γ′ is also an AC-deduction
of ` from (ground instances of) CL(ϕ). This deduction γ′ may serve as a skeleton of an
AC-deduction ψ of Γ ` ∆ itself. The construction of ψ from γ′ is based on so-called pro-
jections replacing ϕ by cut-free deductions ϕ(C) of P ,Γ ` ∆, Q, for clauses C = P ` Q
in CL(ψ). We merely give an informal description of the projections, for details we refer
to [77, 1010]. Roughly speaking, the projections of the proof ϕ are obtained by skipping
all inferences leading to a cut. As a “residue”, we obtain a characteristic clause in the
end-sequent. Thus, a projection is a cut-free derivation of the end-sequent S + some
atomic formulas in S. For the application of projections, it is vital to have a skolemized
end-sequent, as otherwise eigenvariable conditions could be violated.

Definition 4.3.11 ([99], Definition 5.4). A sequent P ′ ` Q′ is called a contraction variant
of P ` Q if set(P ′) = set(P) and set(Q′) = set(Q) (i.e. the sequents would be equal if
they were defined via sets instead of multisets). 4

Lemma 4.3.12 ([99], Lemma 5.1). Let ϕ ∈ SK be a deduction of a sequent S = Γ ` ∆.
Furthermore, let C = P ` Q be a clause in CL(ϕ). Then there exists a deduction ϕ(C)

of P ′,Γ ` ∆, Q
′ such that P ′ ` Q′ is a contraction variant of P ` Q, ϕ(C) ∈ SK∅ and

l(ϕ(C)) ≤ l(ϕ).

PROOF. In [77]. �

In the following example, we will illustrate how the projection ϕ(C) is constructed.

Example 4.3.13 (cf. [3535], Example 4). The structure of the following example is based
on [99, Example 5.2]. Let ϕ be the LK-proof of the sequent

S = P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

58

as defined in Example 4.3.94.3.9. We have already seen that

CL(ϕ) = {` P (a), Q(b);︸ ︷︷ ︸
C1

P (u) `;︸ ︷︷ ︸
C2

Q(u) `︸ ︷︷ ︸
C3

}.

Now, we are able to define ϕ(C1), the “projection” of ϕ to C1:
The problem can be reduced to a projection in ϕ1 because the last inference in ϕ is a

cut and
|Θ(ϕ)/ν1| = {` P (a), Q(b)} = C1.

By skipping all inferences in ϕ1 leading to cut-formulas, we obtain the deduction

P (a) ` P (a)
wr

P (a) ` P (a), Q(b)

Q(b) ` Q(b)
wr

Q(b) ` P (a), Q(b) ∨l
P (a) ∨Q(b) ` P (a), Q(b)

In order to obtain the end-sequent S, we only need additional weakenings, thus ϕ(C1) =

P (a) ` P (a)
wr

P (a) ` P (a), Q(b)

Q(b) ` Q(b)
wr

Q(b) ` P (a), Q(b) ∨l
P (a) ∨Q(b) ` P (a), Q(b)

wl, wr
P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z), P (a), Q(b)

For C2, we obtain the projection ϕ(C2):

P (u) ` P (u) ¬l
P (u),¬P (u) `

wr
P (u),¬P (u) ` Q(u)

∃r
P (u),¬P (u) ` (∃z)Q(z)

∀l
P (u), (∀x)(¬P (x)) ` (∃z)Q(z)

wl
P (u), P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

Similarly, we obtain the projection ϕ(C3):

Q(u) ` Q(u)
wl

Q(u),¬P (u) ` Q(u)
∃r

Q(u),¬P (u) ` (∃z)Q(z)
∀l

Q(u), (∀x)(¬P (x)) ` (∃z)Q(z)
wl

Q(u), P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

4

59

In the projections, only inferences on non-ancestors of cut-formulas are performed; if the
auxiliary formulas of a binary inference are ancestors of a cut-formula, then we have to
apply weakening in order to obtain the required formulas from the other premise [99].

Let ϕ ∈ SK be a proof of S, and let γ be a resolution refutation of the (unsatisfiable)
set of clauses CL(ϕ). Then γ can be transformed into a deduction ϕ(γ) of S such that
ϕ(γ) ∈ SK0. Moreover, ϕ(γ) is a proof containing only atomic cuts, i.e. an AC-normal
form of ϕ. We construct ϕ(γ) from γ simply by replacing the resolution steps by the corre-
sponding proof projections. The construction of ϕ(γ) is the essential part of the method
CERES (the final elimination of atomic cuts is inessential). The resolution refutation γ
can be considered as the characteristic part of ϕ(γ) representing the essential result of
AC-normalization. Below, we give an example of the construction of ϕ(γ) (for details, we
refer to [77,1010]) [99].

Example 4.3.14. We follow the structure of [99, Example 5.3]. Let ϕ be the LK-proof of
the sequent

S = P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

as defined in Examples 4.3.94.3.9 and 4.3.134.3.13. Then

CL(ϕ) = {` P (a), Q(b);︸ ︷︷ ︸
C1

P (u) `;︸ ︷︷ ︸
C2

Q(u) `︸ ︷︷ ︸
C3

}.

First, we define a resolution refutation γ of CL(ϕ):

` P (a), Q(b) P (u) `
R` Q(b) Q(v) `

R.`

Note that we have renamed the variable u to v in Q(u) in order to obtain that P and Q
are variable-disjoint.

The corresponding ground resolution refutation γ′ is then given by:

` P (a), Q(b) P (a) `
R` Q(b) Q(b) `

R.`

The ground substitution defining the ground projection is

σ = {u← a, v ← b}.

Now, let χ1 = ϕ(C1)σ, χ2 = ϕ(C2)σ and χ3 = ϕ(C3)σ. Moreover, let us denote
P (a) ∨Q(b) by B, (∀x)(¬P (x)) by C and (∃z)(Q(z)) by D.

Then ϕ(γ′) is of the form

60

(χ1)

B,C ` D,P (a), Q(b)

(χ2)

P (a), B,C ` D
cut(P (a))

B,B,C,C ` D,D,Q(b)

(χ3)

Q(b), B,C ` D
cut(Q(b)).

B,B,B,C,C,C ` D,D,D
c∗l , c

∗
r

B,C ` D

4

61

CHAPTER 5
Complexity Analysis of CERES

This chapter is concerned with analyzing the computational complexity of the method
CERES and with an asymptotic comparison of reductive methods and CERES. Section 5.15.1
introduces the concept of a canonic resolution refutation as a means for comparing
normal forms under reductive methods and under CERES. In Section 5.25.2, we will show
that reductive methods (based on R) are redundant w.r.t. CERES, as the characteristic
clause set of an ACNF under reductive methods is subsumed by the one of the original
proof. We conclude the chapter in Section 5.35.3, where the asymptotic comparison of
reductive methods and CERES will show that the latter has a nonelementary speed-up
over the former, but not the other way round.

5.1 C A N O N I C R E S O L U T I O N R E F U TAT I O N S

In this section, we define the notion of a canonic resolution refutation. If ψ is a deduction
in AC-normal form, then there exists a “canonic” resolution refutation RES(ψ) of the set
of clauses CL(ψ). RES(ψ) is “the” resolution proof corresponding to ψ. Indeed, as ψ is a
deduction with atomic cuts only, the part of ψ ending in the cut-formulas is nothing else
than a p-resolution refutation. For the construction of RES(ψ) we need some technical
definitions [99]:

Definition 5.1.1 ([99], Definition 5.5). Let γ be a p-resolution deduction of a clause C
from a set of clauses C, and let D be a clause. We define a p-resolution deduction γ(D)
of D ◦ C from {D} × C in the following way:

(i) Construct a deduction γ′ by replacing all initial clauses S in γ by D ◦ S, and leave
the inference nodes unchanged.

(ii) Apply contractions and weakenings to the end-clause of γ′ (if necessary) in order
to obtain a deduction γ(D) of D ◦ C from {D} × C.

63

4

Remark. Contractions may become necessary, as the occurrence of D in clauses may
be multiplied by resolutions γ′. Weakenings are required if atoms in D are cut out by
resolutions in γ′ [99].

Example 5.1.2 (cf. [1010], Example 6.7.1). Let γ =

P (a) ` R(x) R(x) ` Q(x)
R

P (a) ` Q(x)

and D = R(x) ` S(x). Then γ(D) =

R(x), P (a) ` S(x), R(x) R(x), R(x) ` S(x), Q(x)
R

R(x), P (a), R(x) ` S(x), S(x), Q(x)
cl

R(x), P (a) ` S(x), S(x), Q(x)
cr

R(x), P (a) ` S(x), Q(x)

4

Definition 5.1.3 ([99], Definition 5.6). Let γ be a p-resolution deduction of C from C,
and let δ be a p-resolution deduction of D from D. We define a p-resolution deduction
γ � δ of C ◦D from C × D in the following way:

(i) Construct a deduction η by replacing all initial clauses S in γ by the deductions
δ(S) of D ◦ S, and leave the inference nodes in γ unchanged.

(ii) Apply contractions and weakenings to the end-clause of η (if needed) in order to
obtain the deduction γ � δ of D ◦ C.

4

Remark. γ � δ is indeed a p-resolution deduction from C × D, as the initial clauses are
of the form S ◦ S′, for S ∈ C and S′ ∈ D [99].

If ψ is in ACNF, then there exists something like a canonic resolution refutation of CL(ψ).
The definition of this refutation follows the steps of the definition of the characteristic
clause term [99].

Definition 5.1.4 (cf. [99], Definition 5.7). Let ψ be an LK-derivation in ACNF, Ω be
the set of occurrences of the (atomic) cut-formulas in ψ and C = CL(ψ). For the sake
of convenience, we write Cν for the set of clauses |Θ(ψ)/ν| defined by the characteristic
terms as in Definition 4.3.74.3.7. Clearly, C = Cν0 , for the root node ν0 in ψ.

We proceed by induction and define a p-resolution deduction γν for every deduction
node ν in ψ such that γν is a deduction of S(ν,Ω) from Cν .

If ν is a leaf in ψ, then we define γν as S(ν,Ω). By definition of C, we have Cν = S(ν,Ω).
Clearly, γν is a p-resolution deduction of S(ν,Ω) from Cν .

64

(1) Let γµ be already defined for a node µ in ψ such that γµ is a p-resolution deduction
of S(µ,Ω) from Cµ. Moreover, let ξ be a unary inference in ψ with premise µ and
conclusion ν. We distinguish two cases:

(1a) The auxiliary formulas of ξ are in S(µ,Ω).
Then ξ is a weakening or a contraction11, and we define γν =

(γµ)

S(µ,Ω)
ξ

S(ν,Ω).

(1b) The auxiliary formulas of ξ are not in S(µ,Ω).
Then we define γν = γµ.

In both cases γν is a p-resolution deduction of S(ν,Ω) from Cµ. But by definition
of the characteristic clause term, we have Cν = Cµ.

(2) Assume that γµi are p-resolution deductions of S(µi,Ω) from Cµi , for i = 1, 2. Let
ν be an inference node in ψ with premises µ1, µ2 and the corresponding binary
rule ξ. Again, we distinguish two cases:

(2a) The auxiliary formulas of ξ are in S(µ1,Ω) and S(µ2,Ω).
Then ξ must be a cut (there are no other binary inferences leading to Ω than
atomic cuts), and we define γν =

(γµ1)

S(µ1,Ω)

(γµ2)

S(µ2,Ω)
cut.

S(ν,Ω)

By definition γν is a p-resolution deduction of S(ν,Ω) from Cµ1 ∪ Cµ2 . Fur-
thermore, we have Cν = Cµ1 ∪ Cµ2 , by definition of the characteristic clause
term, and therefore, γν is a p-resolution deduction of S(ν,Ω) from Cν .

(2b) The auxiliary formulas of ξ are not in S(µ1,Ω) and S(µ2,Ω).
In this case, we define

γν = γµ1 � γµ2 .

By definition of �, the deduction γν is a p-resolution deduction of S(µ1,Ω) ◦
S(µ2,Ω) from Cµ1 ×Cµ2 . But S(ν,Ω) = S(µ1,Ω) ◦S(µ2,Ω) and, by definition
of the characteristic clause term, Cν = Cµ1 × Cµ2 .

Finally, we define RES(ψ) = γν0 , where ν0 is the root node in ψ. 4

Remark. The root node does not contain any ancestors of cut-occurrences Ω, this means
S(ν0,Ω) = ` and γν0 , as defined above, is also a refutation of CL(ψ) [99].

1This is due to the fact that ψ only contains atomic cuts, i.e. all ancestors of cuts must be atomic as well.

65

For an AC-deduction ψ, the number of nodes in RES(ψ) may be exponential in the number
of nodes in ψ. But, in general, resolution refutations of CL(ψ) are of nonelementary
length (see Section 5.35.3). Thus, the proofs RES(ψ) for AC-deductions ψ can be considered
as “small” [99].

Proposition 5.1.5 ([99], Proposition 5.2). Let ψ be an LK-derivation in ACNF. Then

l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ).

PROOF. By induction on the definition of the γν in Definition 5.1.45.1.4 and [77, Proposition
4.2]. For the full proof see [99]. �

5.2 C H A R A C T E R I S T I C T E R M S A N D C U T- R E D U C T I O N

In this section, we show that a cut-reduction step on a derivation (based on the set R)
corresponds to a reduction step w.r.t. � on the corresponding clause term [99]. It will turn
out that the characteristic clause set CL(ϕ′) of an ACNF ϕ′ of a proof ϕ is subsumed by
the original characteristic clause set CL(ϕ). In this sense, reductive methods based on R
are redundant w.r.t. the results of the method CERES [1010].

Lemma 5.2.1 ([99], Lemma 6.1). Let ϕ,ϕ′ be LK-derivations with ϕ >R ϕ′, for a cut-
reduction relation >R based on R. Then Θ(ϕ) � Θ(ϕ′).

PROOF. Analogous to the proof of Lemma 6.2.196.2.19, but without atom indexing. For the
full proof see also [99]. �

Theorem 5.2.2 ([99], Theorem 6.1). Let ϕ be an LK-deduction and ψ an ACNF of ϕ
under a cut-reduction relation >R based on R. Then Θ(ϕ) ≤ss Θ(ψ).

PROOF. Suppose ϕ >∗R ψ. Then by Lemma 5.2.15.2.1 we get Θ(ϕ) �∗ Θ(ψ). By Proposi-
tion 4.2.154.2.15 we obtain Θ(ϕ) ≤ss Θ(ψ). �

Theorem 5.2.3 ([99], Theorem 6.2). Let ϕ be an LK-derivation and ψ be an ACNF of ϕ
under a cut-reduction relation >R based on R. Then there exists a resolution refutation γ
of CL(ϕ) such that γ ≤ss RES(ψ).

PROOF. Suppose ϕ >∗R ψ. Then by Theorem 5.2.25.2.2 we have Θ(ϕ) ≤ss Θ(ψ), and therefore
CL(ϕ) ≤ss CL(ψ). By Definition 5.1.45.1.4, RES(ψ) is a resolution refutation of CL(ψ). Thus,
by Proposition 2.3.172.3.17, there exists a resolution refutation γ of CL(ϕ) such that γ ≤ss
RES(ψ). �

Corollary 5.2.4 ([99], Corollary 6.1). Let ϕ be an LK-derivation and ψ be an ACNF of ϕ
under a cut-reduction relation >R based on R. Then there exists a resolution refutation γ
of CL(ϕ) such that

l(γ) ≤ l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ).

PROOF. By Theorem 5.2.35.2.3, there exists a resolution refutation γ with γ ≤ss RES(ψ). Thus,
by definition of subsumption of proofs (see Definition 2.3.162.3.16), we have l(γ) ≤ l(RES(ψ)).
Finally, the result follows from Proposition 5.1.55.1.5. �

66

Corollary 5.2.5 (cf. [99], Corollary 6.2). Let ϕ be an LK-derivation and ψ be an ACNF of
ϕ under a cut-reduction relation >R based on R. Then there exists an ACNF χ of ϕ under
CERES and a k ∈ N such that

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ) + k.

PROOF. If γ is a resolution refutation of CL(ϕ), then an ACNF χ of ϕ can be obtained
by CERES using projection. As the LK-derivations in the projections are not longer than
ϕ itself, we get l(χ) ≤ l(ϕ) ∗ l(γ) + k (the term “+k” comes from the number of final
contractions c∗l , c

∗
r). Then the inequality follows from Corollary 5.2.45.2.4. �

Corollary 5.2.6 (cf. [99], Corollary 6.3). Let ϕ be an LK-derivation and ψ be an ACNF
of ϕ under Gentzen’s or Tait’s method. Then there exists an ACNF χ of ϕ under CERES and
a k ∈ N such that

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ) + k.

PROOF. Follows from the fact that both Gentzen’s and Tait’s method are based on R. �

In the next section, we will see that CERES can achieve a nonelementary speed-up over
reductive methods. Corollary 5.2.65.2.6 tells us that the computational expense of CERES is
exponentially (and thus elementarily) bounded by that of Gentzen’s or Tait’s method. As
a consequence, CERES is never “much slower” than the traditional methods, but there
are sequences of derivations where it is substantially faster [99].

It can also be shown that Theorems 5.2.25.2.2 and 5.2.35.2.3 do not hold in general, i.e. not
all cut-reduction methods based on a set of rules yield characteristic terms which are
subsumed by the characteristic term of the original proof [99,1010].

5.3 S P E E D - U P R E S U L T S

This section serves the purpose to compare reductive methods and CERES from a com-
putational point of view. More specifically, we will show that CERES NE22-improves
both Gentzen and Tait reductions. Moreover, we will also show that no reductive cut-
elimination method (based on R) NE-improves CERES. In this sense, CERES is uni-
formly better than >G and >T [1010]. For the comparison in an asymptotic sense, we will
use the notion of nonelementary improvement, which is a natural measure for compar-
ing cut-elimination methods, as the complexity of cut-elimination itself is nonelemen-
tary [3535,3838,4545].

Definition 5.3.1 ([3535], Definition 8). Let N2 → N be the following function:

e(0,m) = m,

e(n+ 1,m) = 2e(n,m).

2NE is an abbreviation for nonelementarily.

67

A function f : Nk → Nm, for k,m ≥ 1, is called elementary if there exists an n ∈ N and a
Turing machine33 T computing f such that the computing time of T on input (l1, . . . , lk)
is less than or equal to e(n, normmax(l1, . . . , lk)), where normmax denotes the maximum
norm on Nk (see [1414]).

The function s : N→ N is defined as s(n) = e(n, 1), for n ∈ N.
A function, which is not elementary, is called nonelementary. 4

Remark. The notion of elementary function is robust under the use of different models
of Turing machines. In fact, it does not matter whether we consider machines with just
one tape or with several ones, or machines with unary or k-ary alphabets, for k > 1 [3535].

Note that the functions e and s are nonelementary. In general, any function f which
grows “too fast”, i.e. for which there exists no number k such that

f(n) ≤ e(k, n),

is nonelementary [3535].

Definition 5.3.2 ([3535], Definition 9). Let ζ : (xn)n∈N and η : (yn)n∈N be two sequences
of natural numbers. We say that ζ is elementary in η if there exists a number k s.t. for all
n ∈ N : xn ≤ e(k, yn); otherwise ζ is called nonelementary in η. 4

For complexity analysis, we use the following two measures [3535]:

• the symbolic complexity || · || (i.e. the number of symbol occurrences) and

• l(ψ) (see Definition 2.2.212.2.21).

Statman [4545] and Orevkov [3838] have independently shown that the complexity of
cut-elimination is nonelementary by giving proof sequences that encode the principle of
iterated exponentiation [3535,3939].

The following theorem, due to Statman and Orevkov, is formulated as in [3535].

Theorem 5.3.3 (Statman, Orevkov). There exists a sequence Sn of sequents with the
following properties:

• There is a constant a such that for every n there exists an LK-proof ϕn of Sn with
||ϕn|| ≤ 2a∗n.

• For every n, let c(n) = min{||ψ|| | ψ is a cut-free proof of Sn}.
Then (cn)n∈N is nonelementary in (||ϕn||)n∈N.

PROOF. In [4545] and [3838]. �

The following definition gives a basis for comparing reductive cut-elimination methods
and CERES. Thereby, reductive cut-elimination is described as a sequence of proofs θ
obtained via a proof-reduction relation>x based onR, starting with a proof ϕ and ending

3For a detailed discussion of Turing machines we refer the reader to [11,3131].

68

in a proof ϕ′ with at most atomic cuts. Such a sequence θ is called an >x-cut-elimination
sequence on ϕ [3535].

The following definition is based on [3535, Definition 10] and [1010, Definition 6.10.1].

Definition 5.3.4. Let >x be a proof-reduction relation based on R. We say that CERES
NE-improves >x if there exists a sequence of proofs (ϕn)n∈N s.t.

• there exists a sequence of resolution refutations (γn)n∈N of the sequence of the
corresponding characteristic clause sets (CL(ϕn))n∈N s.t. (l(γn))n∈N is elementary
in (||ϕn||)n∈N.

• For every n, let g(n) = min{||θ|| | θ is a >x -cut-elimination sequence on ϕn}.
Then (g(n))n∈N is nonelementary in (||ϕn||)n∈N.

Similarly, we define that >x NE-improves CERES if there exists a sequence of proofs
(ϕn)n∈N such that

• there exists a sequence of >x-cut-elimination sequences (θn)n∈N on (ϕn)n∈N such
that (||θn||)n∈N is elementary in (||ϕn||)n∈N.

• For every n, let h(n) = min{l(γ) | γ is a resolution refutation of CL(ϕn)}.
Then (h(n))n∈N is nonelementary in (||ϕn||)n∈N.

4

Remark. Comparing the size of the resolution refutations in CERES with the total size of
cut-elimination sequences is justified by the fact that the resolution refutations of charac-
teristic clause sets are the main source of complexity in CERES (for details see [1010]); in
fact, the computation time of a sequence of CERES normal forms grows nonelementarily
in the size of the input proofs iff this holds for the computation of the resolution refuta-
tions. So, for this asymptotic comparison, the computation of the characteristic clause sets
and the projections do not matter. Also, mathematically, the core of the CERES-method is
the resolution refutation of the characteristic clause set [3535]. Furthermore, it may seem a
bit odd that, in the above definition, for CERES we use the length l and for the reductive
methods the symbolic complexity || · ||. This, however, is justified by [1010, Proposition
6.5.3], which states that it does not matter whether we use l(γn) or ||ϕ∗n|| for CERES
normal forms ϕ∗n based on γn for measuring the asymptotic complexity [1010].

Theorem 5.3.5 (cf. [3535], Theorem 4). CERES NE-improves >G.

PROOF. We give a modified version of the proof given in [3535] (which itself is a modified
version of the one given in [1010]). Let (ψn)n∈N be a sequence of proofs for ψn =

A ` A∗ wl
A,∆n ` A∗

(γn)

∆n ` D∗n wl
A,∆n ` D∗n ∧r

A,∆n ` (A ∧Dn)∗
A∗ ` A ∧l1

(A ∧Dn)∗ ` A
cut(A ∧Dn),

A,∆n ` A

69

where formulas marked with ∗ are ancestors of a cut-formula and γn is Statman’s worst-
case sequence admitting only nonelementary cut-elimination (no matter which method
is applied); for details concerning the definition of γn see [1010]. In Gentzen’s method,
we always select an uppermost cut. As all cuts in γn are above the cut with A ∧ Dn as
cut-formula, Gentzen’s method eliminates all the cuts in γn before eliminating the cut
with cut-formula A ∧ Dn; thus it constructs a cut-free proof of ∆n ` Dn, which is of
nonelementary size in ||γn|| and also in ||ψn||.

The application of CERES to ψn yields the following characteristic clause set:

CL(ψn) = {` A} ∪ CL(γn) ∪ {A `}
= {` A; A `} ∪ CL(γn).

As a consequence, every CL(ψn) has the resolution refutation ρ =

` A A ` R,`

which is of constant length, and, by defining ρn = ρ for all n, we get ||ρn|| = 5. Trivially,
(||ρn||)n∈N is elementary in (||ψn||)n∈N. Since l(ρn) = 3, we have l(ρn) ≤ ||ρn|| for all n,
and thus it follows that (l(ρn))n∈N is also elementary in (||ψn||)n∈N. �

Theorem 5.3.6 ([1010], Theorem 6.10.2). CERES NE-improves >T .

PROOF. In [1010]. �

The following theorem shows that a nonelementary speed-up in the other direction is
impossible—for every method based on R [3535]:

Theorem 5.3.7 ([1010], Theorem 6.10.3). No reductive method based on R NE-improves
CERES; in particular >R does not NE-improve CERES.

PROOF. Towards contradiction assume that >x is a reduction relation based on R which
NE-improves CERES. By Definitions 5.3.25.3.2 and 5.3.45.3.4, there exists a sequence of proofs
(ϕn)n∈N such that there exists k ∈ N and a sequence of >x-normal forms (ϕ∗n)n∈N with

(i) ||ϕ∗n|| ≤ e(k, ||ϕn||) and

(ii) for all k there exists an m such that for all n ≥ m we have h(n) > e(k, ||ϕn||),
where h(n) = min{l(γ) | γ is a resolution refutation of CL(ϕn)}.

By Corollary 5.2.45.2.4, we know that there exists a sequence (ρn)n∈N of resolution refutations
ρn of CL(ϕn) such that

l(ρn) ≤ g(l(ϕ∗n)), for g = λn.n ∗ 22∗n.

But l(ϕ∗n) ≤ ||ϕ∗n||, and therefore, by (i)(i),

l(ρn) ≤ g(e(k, ||ϕn||)).

70

As
n ∗ 22∗n ≤ e(3, n) and e(3, e(k, n)) ≤ e(k + 3, n),

we have that
l(ρn) ≤ e(k + 3, ||ϕn||) for all n,

which contradicts (ii)(ii). �

71

CHAPTER 6
A More General Analysis of

Characteristic Clause Sets and
Cut-Elimination

In this chapter, we prove our main result, namely that CERES still simulates reductive cut-
elimination methods if we also eliminate atomic cuts from proofs in atomic cut normal
form. To this end, we will first introduce the method of term resolution in Section 6.16.1,
which will serve as an auxiliary means in the completeness proof of indexed resolution
w.r.t. clause sets obtained from clause terms in a special normal form. After proving
some important properties of term resolution, we will define the resolution refinement
of indexed resolution and prove some of its most important properties in Section 6.26.2.
The final section of this chapter is then devoted to proving the completeness of both
term and indexed resolution w.r.t. certain normal forms. Moreover, we will use these
completeness results in order to show that each atomic cut-elimination step by reductive
methods on a proof in ACNFtop

ai corresponds to some specific indexed resolution steps
on the corresponding characteristic clause sets. Finally, we will use this fact in order to
show that we can always obtain an indexed clause set from the characteristic clause set
of the original proof by indexed resolution, which subsumes the characteristic clause set
of the proof after atomic cut-elimination by reductive methods.

6.1 TERM RESOLUTION

In this section, we will introduce a new method for removing atoms A from clause terms
of the form X1 ⊕X2 such that A occurs in the consequent of some clause in a subterm
of X1 and in the antecedent of some clause in a subterm of X2 (or vice versa). We will
call this method term resolution, even though it is not a resolution method in the classical
sense (since it operates on clause terms and not directly on clauses). Nevertheless, we

73

decided to call it term resolution simply because—for clause terms in a special normal
form—each term resolution deduction of a clause term Y from a clause term X (which
operates on the syntactic level of clause terms) corresponds to a specific resolution deduc-
tion from the clause set |X| of X. Such a resolution deduction only resolves upon clauses
that contain atoms, which have been eliminated from X in order to obtain Y . This way,
one can obtain a clause set that corresponds to |Y |. In this sense—for a certain class of
clause terms—term resolution on the syntax of clause terms corresponds to a special case
of resolution (called indexed resolution, see Section 6.26.2) on the semantics of clause terms.
In Section 6.36.3, it will turn out that term resolution is complete w.r.t. the above mentioned
normal forms, i.e. if the clause set of a clause term (in normal form) is unsatisfiable, then
there exists a term resolution deduction of the clause term {`}. However, term resolu-
tion on arbitrary clause terms is not complete, but this is not needed for our purposes,
namely to use term resolution as an auxiliary means to prove the completeness of in-
dexed resolution w.r.t. indexed clause sets extracted from proofs in a special normal form.

The following two rules of term factoring w.r.t. ` are needed in order to get rid of
superfluous subterms that might be the result of applications of the rule Rt of term
resolution (see Definition 6.1.36.1.3).

Definition 6.1.1 (Term factoring w.r.t. `). Let X be a clause term such that there exists
a position λ in X with X.λ = {`} � B or X.λ = A � {`}, where A and B are clause
terms and � ∈ {⊕,⊗}.

Furthermore, let λ1 and λ2 be positions in X such that X.λ1 = A or X.λ1 = B and
X.λ2 = {`}, respectively. Then we define the following rules of term factoring w.r.t. `:

X ft⊗
X[X.λ1]λ

X ft⊕
X[X.λ2]λ

4

Remark. The intention behind the definitions of ft⊗ and ft⊕ is that it indeed holds that
|{`}⊗B| = B (or |A⊗{`}| = A), by semantics of ⊗. Moreover, for {`}⊕B (or A⊕{`}),
we get |{`} ⊕ B| = {`} ∪ B (|A ⊕ {`}| = A ∪ {`}), by semantics of ⊕, i.e. ` occurs in
the corresponding characteristic clause set. But this means that the characteristic clause
set is unsatisfiable. Therefore, replacing both {`} ⊕B and A⊕ {`} by {`} is justified.

In order to be able to replace specific subterms on the syntactic level, which coincide
semantically, we introduce the rules of equivalent replacement w.r.t. ⊗:

Definition 6.1.2 (Equivalent replacement w.r.t.⊗). Let X,Y be clause terms s.t. there
exist positions λ1 and λ2 in X and Y , respectively, with X.λ1 = {Γ ` ∆} ⊗ {Π ` Λ} and
Y.λ2 = {Γ,Π ` ∆,Λ}, where Γ,∆,Π and Λ are (possibly empty) multisets of atoms (pos-
sibly containing some indexed atoms). Then we define the following rules of equivalent
replacement w.r.t. ⊗:

X ert−⊗X[{Γ,Π ` ∆,Λ}]λ1
Y ert+⊗Y [{Γ ` ∆} ⊗ {Π ` Λ}]λ2

4

74

Remark. The soundness of ert+⊗ and ert−⊗ follows from the fact that

|{Γ ` ∆} ⊗ {Π ` Λ}| = {Γ ` ∆ ◦Π ` Λ} = {Γ,Π ` ∆,Λ} = |{Γ,Π ` ∆,Λ}|,

by semantics of⊗ and the definition of ◦. In particular, the rules of equivalent replacement
w.r.t. ⊗ are needed in order to obtain the characteristic clause term by term resolution
that would result from the extraction from the proof after atomic cut-elimination.

More formally, eliminating an atomic cut (with cut-formula Ai) from a proof in
ACNFtop

ai (containing so-called chains of atomic cuts, see Section 6.36.3) amounts to re-
placing the subterm {Al ` Ai} ⊗ {Ai ` Aj} by {Al ` Aj} (where the indexed atoms Al

or Aj might be omitted) in the corresponding characteristic clause terms. Without the
rules of equivalent replacement w.r.t. ⊗, term resolution would yield {Al `} ⊗ {` Aj}.
Despite the semantic equivalence of the two results, term resolution would produce a
syntactically different clause term than the actual characteristic clause term of the proof
after atomic cut-elimination.

The rule Rt of term resolution is the core part of the term resolution principle:

Definition 6.1.3 (Term resolution). Let X be a clause term such that there is a position
λ in X with X.λ = X1⊕X2, where X1 and X2 are clause terms. We define the following
rule of term resolution:

X Rt
X[X1[{Γ ` ∆}]λ1 ⊗X2[{Π ` Λ}]λ2]λ

which is only applicable if there are positions λ1 and λ2 in X1 and X2, respectively, s.t.

X1.λ1 = {Γ ` ∆, A} and X2.λ2 = {A,Π ` Λ}

or
X1.λ1 = {A,Γ ` ∆} and X2.λ2 = {Π ` Λ, A},

for some (possibly indexed11) atom A and (possibly empty) multisets of atoms Γ,∆,Π,Λ
(possibly containing some indexed atoms). 4

Remark. For clause terms in TACNF (see Definition 6.1.66.1.6), the following rule

X R′tX[X1[{Γ ` ∆}]λ1 ⊕X2[{Π ` Λ}]λ2]λ

is sound, but this does not hold in general, as the following example demonstrates:
Let X = {A ` B} ⊕ {B ` A}. Then |X| = {A ` B;B ` A} is clearly satisfiable. But

applying R′t to X yields:

{A ` B} ⊕ {B ` A}
R′t,{A `} ⊕ {` A}

1See Definition 6.2.16.2.1.

75

where Γ = Λ = A, X.λ = X, X1.λ1 = {A ` B} and X2.λ2 = {B ` A}.
But |{A `} ⊕ {` A}| = {A `;` A} is unsatisfiable, as it is equivalent to ¬A ∧ A, by

semantics of sequents and clause sets. On the other hand, |{A `} ⊗ {` A}| = {A ` A} is
clearly satisfiable (and in this case even valid).

Definition 6.1.4 (Term Resolution Deduction). A deduction tree having clause terms
as leaves and term resolution (Rt), term factoring w.r.t. ` (ft⊗, ft⊕) and equivalent
replacement w.r.t. ⊗ (ert−⊗, ert

+
⊗) as rules is called a term resolution deduction.

Let γ be a term resolution deduction where X is the clause term at the leaf-node of γ.
If Y is the clause term at the root of the deduction tree, then γ is called a term resolution
deduction of Y from X. If Y = {`}, then γ is called a term resolution refutation of X. 4

Remark. Note that since all rules in a term resolution deduction are unary, each deduc-
tion tree has exactly one leaf-node.

To illustrate how term resolution works, we will give a concrete example of a term
resolution refutation:

Example 6.1.5. Let X be the following clause term

[{` A1} ⊕ ({` B2} ⊕ ({B2 `} ⊗ {A1 `}))]⊗ ({` C3} ⊕ {C3 `}),

where A1, B2 and C3 are indexed atoms.
First, consider the term tree of X:

⊗

⊕

{C3 `}{` C3}

1 2
⊕

⊕

⊗

{A1 `}{B2 `}

1 2
{` B2}

1 2
{` A1}

1 2

1 2

Then, we apply Rt to X in order to resolve upon B2:

[{` A1} ⊕ ({` B2} ⊕ ({B2 `} ⊗ {A1 `}))]⊗ ({` C3} ⊕ {C3 `})
Rt,

X[{` B2}[{`}]0 ⊗ ({B2 `} ⊗ {A1 `})[{`}](0,1)](0,1,2)︸ ︷︷ ︸
X′

where

X.(0, 1, 2) = {` B2} ⊕ ({B2 `} ⊗ {A1 `}),
{` B2}.0 = {` B2},

({B2 `} ⊗ {A1 `}).(0, 1) = {B2 `}.

76

Consequently, X ′ = [({` A1} ⊕ ({`} ⊗ ({`} ⊗ {A1 `}))]⊗ ({` C3} ⊕ {C3 `}).

Term tree of X ′:

⊗

⊕

{C3 `}{` C3}

1 2
⊕

⊗

⊗

{A1 `}{`}

1 2
{`}

1 2
{` A1}

1 2

1 2

In order to simplify the clause term X ′, we apply term factoring w.r.t. `:

[({` A1} ⊕ ({`} ⊗ ({`} ⊗ {A1 `}))]⊗ ({` C3} ⊕ {C3 `})
ft⊗,

X ′[X ′.(0, 1, 2, 2)](0,1,2)︸ ︷︷ ︸
X′′

where X ′.(0, 1, 2) = {`} ⊗ ({`} ⊗ {A1 `}) and X ′.(0, 1, 2, 2) = {`} ⊗ {A1 `}.
As a consequence, X ′′ = [{` A1} ⊕ ({`} ⊗ {A1 `})]⊗ ({` C3} ⊕ {C3 `}).

Term tree of X ′′:

⊗

⊕

{C3 `}{` C3}

1 2
⊕

⊗

{A1 `}{`}

1 2
{` A1}

1 2

1 2

An analogous application of ft⊗ to X ′′ yields:

X ′′′ = ({` A1} ⊕ {A1 `})⊗ ({` C3} ⊕ {C3 `}).

Term tree of X ′′′:

⊗

⊕

{C3 `}{` C3}

1 2
⊕

{A1 `}{` A1}

1 2

1 2

77

Now, we can apply Rt to X ′′′:

({` A1} ⊕ {A1 `})⊗ ({` C3} ⊕ {C3 `})
Rt,

X ′′′[{` A1}[{`}]0 ⊗ {A1 `}[{`}]0](0,1)︸ ︷︷ ︸
Y

where X ′′′.(0, 1) = {` A1} ⊕ {A1 `}, {` A1}.0 = {` A1} and {A1 `}.0 = {A1 `}. Thus,
Y = ({`} ⊗ {`})⊗ ({` C3} ⊕ {C3 `}).

Term tree of Y :

⊗

⊕

{C3 `}{` C3}

1 2
⊗

{`}{`}

1 2

1 2

An application of ft⊗ to Y yields

({`} ⊗ {`})⊗ ({` C3} ⊕ {C3 `})
ft⊗,

Y [Y.(0, 1, 1)](0,1)︸ ︷︷ ︸
Y ′

where Y.(0, 1) = {`} ⊗ {`} and Y.(0, 1, 1) = {`}.
Consequently, Y ′ = {`} ⊗ ({` C3} ⊕ {C3 `}).

Term tree of Y ′:

⊗

⊕

{C3 `}{` C3}

1 2
{`}

1 2

An analogous application of ft⊗ to Y ′ yields:

Y ′′ = {` C3} ⊕ {C3 `}.

Term tree of Y ′′:

⊕

{C3 `}{` C3}

1 2

78

Next, we can resolve upon C3:

{` C3} ⊕ {C3 `}
Rt

Y ′′[{` C3}[{`}]0 ⊗ {C3 `}[{`}]0]0︸ ︷︷ ︸
Z

where Y ′′.0 = Y ′′, {` C3}.0 = {` C3} and {C3 `}.0 = {C3 `}.
As a consequence, Z = {`} ⊗ {`}.

Term tree of Z:

⊗

{`}{`}

1 2

Finally, an application of ft⊗ to Z yields

{`} ⊗ {`}
ft⊗

Z[Z.(0, 1)]0︸ ︷︷ ︸
Z′

where Z.0 = {`} ⊗ {`} and Z.(0, 1) = {`}. Thus, Z ′ = {`}, i.e. there exists a term
resolution refutation γ of X, which can be represented more compactly as follows:

[{` A1} ⊕ ({` B2} ⊕ ({B2 `} ⊗ {A1 `}))]⊗ ({` C3} ⊕ {C3 `})
Rt

[({` A1} ⊕ ({`} ⊗ ({`} ⊗ {A1 `}))]⊗ ({` C3} ⊕ {C3 `})
ft⊗

[{` A1} ⊕ ({`} ⊗ {A1 `})]⊗ ({` C3} ⊕ {C3 `})
ft⊗

({` A1} ⊕ {A1 `})⊗ ({` C3} ⊕ {C3 `})
Rt

({`} ⊗ {`})⊗ ({` C3} ⊕ {C3 `})
ft⊗{`} ⊗ ({` C3} ⊕ {C3 `})

ft⊗{` C3} ⊕ {C3 `}
Rt{`} ⊗ {`}

ft⊗{`}

4

The following definitions of normal forms for clause terms will be useful for the proofs
in Section 6.36.3.

Definition 6.1.6 (TACNF). We say that a clause term X is in TACNF (top atomic cut
normal form) if X = {`} or

X = ({` A1} ⊕ {A1 `})⊗ . . .⊗ ({` Ak} ⊕ {Ak `}),

where Ai is an atomic formula, for 1 ≤ i ≤ k. 4

79

Definition 6.1.7 (TACNFai). We say that a clause term X is in TACNFai if X = {`}, or

X = ({` A1
1} ⊕ {A1

1 `})⊗ . . .⊗ ({` Akk} ⊕ {Akk `}),

where Aii is an indexed atomic formula, for 1 ≤ i ≤ k. 4

Remark. Note that, in general, characteristic clause terms extracted from proofs ϕ in
ACNFtop

ai (see Definition 6.2.126.2.12) may contain subterms of the form {` Aji}⊕{A
j
i `} with

i 6= j. But this is no real problem, as we can reassign the numbers i in such a way that
the respective characteristic clause term conforms with Definition 6.1.76.1.7.

Definition 6.1.8 (TACNFext). We say that a clause term X is in TACNFext (extended
top atomic cut normal form) if X is in TACNF or

X = {` A} ⊕ {A ` A} ⊕ . . .⊕ {A ` A} ⊕ {A `},

where A is an arbitrary atomic formula.
If X and Y are in TACNFext, then X ⊗ Y is in TACNFext. 4

Definition 6.1.9 (TACNFext
ai). We say that a clause term X is in TACNFext

ai if X is in
TACNFai or

X = {` A1} ⊕ {A1 ` A2} ⊕ {A2 ` A3} ⊕ . . .⊕ {Ak−1 ` Ak} ⊕ {Ak `},

where Ai is an indexed atomic formula, for 1 ≤ i ≤ k.
If X and Y are in TACNFext

ai , then X ⊗ Y is in TACNFext
ai . 4

Remark. Note that, if k = 1 in Definition 6.1.96.1.9, then we have X = {` A1} ⊕ {A1 `}, i.e.
X is in TACNFai. Thus, the definition of TACNFext

ai includes clause terms in TACNFai im-
plicitly, but nevertheless, for the sake of convenience, we still keep the separate definition
of TACNFai.

Moreover, in all of the above four versions of the top atomic cut normal form, paren-
theses in a clause term can be set in any possible way. As a consequence, the application
of the resolution rule depends on the way parentheses are set in a clause term. For
instance, consider the two different settings of parentheses in the clause term X:

X = ({` A1} ⊕ {A1 ` A2})⊕ ({A2 ` A3} ⊕ . . .⊕ {Ak−1 ` Ak})⊕ {Ak `},
X = {` A1} ⊕ ({A1 ` A2} ⊕ {A2 ` A3})⊕ . . .⊕ ({Ak−1 ` Ak} ⊕ {Ak `}).

This is especially important for clause terms in TACNFext or TACNFext
ai .

The relation X `rest Y serves the purpose to compactly represent term resolution deduc-
tions of Y from X, where Y was obtained from X by eliminating at most one subterm
of the form {` A} ⊕ {A `} from X. Note that A might be an indexed atom.

Definition 6.1.10 (`rest). Let X and Y be two clause terms in TACNF (or TACNFai).
Then we write X `rest Y if X = Y or the subterm {` A} ⊕ {A `} of X (where A is a
(possibly indexed) atom) was resolved by a term resolution deduction from X in order
to obtain Y . If A is an indexed atom, then we require that both occurrences of A in the
indexed clauses ` A and A ` have the same index. 4

80

Similarly, X `reste Y is used to compactly represent term resolution deductions of Y from
X, where Y was obtained from X by replacing a subterm {Al ` Ai} ⊕ {Ai ` Aj} in X
by {Al ` Aj}.

Definition 6.1.11 (`reste). LetX and Y be two clause terms in TACNFext
ai (orTACNFext).

Then we write X `reste Y if X = Y or the subterm {Al ` Ai} ⊕ {Ai ` Aj} in X was
replaced by {Al ` Aj} (where Ai, Aj and Al are indexed atoms; Al orAj may be missing)
by a term resolution deduction from X in order to obtain Y .
For terms in TACNFext, we simply omit the indices in the above definition. 4

Definition 6.1.12 (`resta). LetX and Y be two clause terms in TACNFext
ai (orTACNFext).

Then we write X `resta Y if X `rest Y or X `reste Y holds. 4

The following two lemmas show that we can always obtain a clause term Y in TACNFai

from a clause term X in TACNFext
ai by a term resolution deduction on X that uses a finite

number of intermediary `reste-steps.

Lemma 6.1.13. Let X be a clause term in TACNFext
ai of the following form:

{` A1} ⊕ {A1 ` A2} ⊕ {A2 ` A3} ⊕ . . .⊕ {Ak−1 ` Ak} ⊕ {Ak `},

where Ai is an indexed atomic formula, for 1 ≤ i ≤ k. Then there exists a clause term Xk−1

in TACNFai such that X `reste X1 `reste . . . `reste Xk−1, where Xi is obtained from Xi−1 by
replacing the subterm {Al ` Ai} ⊕ {Ai ` Aj} by {Al ` Aj}, for 1 ≤ i, j, l ≤ k.

PROOF. Let X be a clause term in TACNFext
ai . We proceed by induction on the number n

of distinct indexed atoms in X.

BASE CASE: n = 0. Then X = {`}, i.e. X `reste X, and since X is already in TACNFai

we are done.

INDUCTION HYPOTHESIS (IH): Assume the claim holds for all clause terms X in
TACNFext

ai containing k distinct indexed atoms, for 0 ≤ k ≤ n.

INDUCTION STEP: Suppose w.l.o.g. that X is a clause term in TACNFext
ai containing

n+ 1 distinct indexed atoms, i.e.

X = {` A1} ⊕ (
⊕

1≤i≤n
{Ai ` Ai+1})⊕ {An+1 `}.

Furthermore, assume w.l.o.g. that X1 is the clause term in TACNFext
ai obtained from X

by replacing the subterm
{Aj−1 ` Aj} ⊕ {Aj ` Aj+1}

in X by {Aj−1 ` Aj+1}, for some j with 1 ≤ j ≤ n. The clause term X1 can be obtained
from X by term resolution as follows:

81

Let X.λ = {Aj−1 ` Aj} ⊕ {Aj ` Aj+1} and

{Aj−1 ` Aj}.λ1 = {Aj−1 ` Aj},
{Aj ` Aj+1}.λ2 = {Aj ` Aj+1}.

Then we get

X Rt,
X[{Aj−1 ` Aj}[{Aj−1 `}]λ1 ⊗ {Aj ` Aj+1}[{` Aj+1}]λ2]λ︸ ︷︷ ︸

X′

where X ′.λ = {Aj−1 `} ⊗ {` Aj+1}. An application of ert−⊗ to X ′ yields X1 with X1.λ =
{Aj−1 ` Aj+1}. As a consequence, X `reste X1 and since X1 contains fewer distinct
indexed atoms than X, we get, by (IH), that X1 `reste X2 `reste . . . `reste Xn, where Xn is
in TACNFai. Putting things together, we obtain X `reste X1 `reste . . . `reste Xn. �

Proposition 6.1.14. Let X be a clause term in TACNFext
ai . Then there exists a clause term

Xk−1 in TACNFai such that X `reste X1 `reste . . . `reste Xk−1, where Xi is obtained from
Xi−1 by replacing the subterm {Al ` Ai} ⊕ {Ai ` Aj} by {Al ` Aj}, for 1 ≤ i, j, l ≤ k.

PROOF. We proceed by induction on the structure of X.

BASE CASE:

• If X is in TACNFai, we trivially have X `reste X.

• X = {` A1} ⊕ (
⊕

1≤i<k{Ai ` Ai+1}) ⊕ {Ak `}. Then there exists a clause term
Xk−1 in TACNFai such that X `reste X1 `reste . . . `reste Xk−1, by Lemma 6.1.136.1.13.

INDUCTION STEP: Suppose X = X ′ ⊗X ′′ is a clause term in TACNFext
ai . Then, by (IH),

there exist clause terms X ′l , X
′′
m in TACNFai such that X ′ `reste X ′1 `reste . . . `reste X ′l and

X ′′ `reste X ′′1 `reste . . . `reste X ′′m, with l +m = k − 1. This means there are corresponding
term resolution deductions δ1 of X ′l from X ′ and δ2 of X ′′m from X ′′ of a specific form.
Since X ′ ⊗X ′′ is in TACNFext

ai , we can combine δ1 and δ2 to a term resolution deduction
δ of X ′l ⊗X ′′m from X as follows:

X ′ ⊗X ′′
(δ1 ⊗X ′′)
X ′l ⊗X ′′

(X ′l ⊗ δ2)

X ′l ⊗X ′′m

where δ1⊗X ′′ is an abbreviation for extending each node in the deduction tree of δ1 with
“⊗X ′′” (and similarly for X ′l ⊗ δ2). Note that the positions in the clause terms used in the
deduction δ have to be adapted, since the structure of the corresponding term trees has
changed.

82

Clearly,X ′l⊗X ′′m is in TACNFai, as bothX ′l andX ′′m are in TACNFai. As a consequence,
X `reste X ′1 ⊗ X ′′ `reste . . . `reste X ′l ⊗ X ′′ `reste X ′l ⊗ X ′′1 `reste . . . `reste X ′l ⊗ X ′′m, with
l +m = k − 1. �

6.2 INDEXED RESOLUTION

Term resolution, as stated in the previous section, is just an auxiliary means for proving
the completeness (w.r.t. a specific normal form) of a resolution refinement22 called indexed
resolution. This section is thus devoted to introducing the indexed resolution principle
and proving some important properties w.r.t. proofs having an atom indexing. What we
call indexed resolution is basically a modified version of the resolution refinement of
atomic cut-linkage as defined in [5151]. Indexed resolution admits only resolving upon
indexed atoms that coincide when omitting the indices and whose assigned indices are
exactly the same. To use this method in conjunction with CERES, we have to assign
indices to the atoms occurring in the cut-formulas of LK-proofs. As a consequence, the
characteristic clause sets extracted from proofs with atom indexing will be composed
of indexed atoms only. Moreover, it will turn out that the cut-reduction rules in Rax

preserve the fact that in all cuts in a proof, both auxiliary formulas have exactly the
same atom indexing. Since the characteristic clause set of a proof with atom indexing
contains now additional information in the form of indices, the resulting ACNFai will
be based on resolution refutations that only resolve upon atoms with the same index.
This way, not only the search space for resolution refutations of the characteristic clause
set reduces but also the difference between normal forms under CERES and reductive
methods will be minimized [4040, 5151]. Another important property of proofs with atom
indexing is the fact that each cut-reduction step under >R corresponds to a reduction
step w.r.t. � on the corresponding clause term. The completeness result (w.r.t. a special
normal form) for indexed resolution (see Theorems 6.3.146.3.14 and 6.3.166.3.16) will also be a
key result towards answering the conjecture posed by Reis in [4040] whether CERES for
intuitionistic logic, using indexed resolution and joining projections (for details see [4040]),
applied to a skolemized LJ-proof with cuts yields an intuitionistic proof.

Definition 6.2.1 (Indexed Formula). Let F ∈ PL and i ∈ N, then the pair (F, i) is
called an indexed formula. If F is an atomic formula, then we call (F, i) an indexed atomic
formula (or indexed atom). We denote an indexed formula (F, i) by F i. 4

Definition 6.2.2. Let σ be a substitution and (F, i) an indexed formula. We define the
application of σ to indexed formulas as follows: (F, i)σ = (Fσ, i). 4

Definition 6.2.36.2.3 is based on [4040, Definition 34].

Definition 6.2.3 (Atom Indexing). Let ϕ be an LK-proof containing k cuts and Fk be
the cut-formula of the k-th cut. Then we assign to each atomic subformula of Fk an

2Intuitively, a resolution refinement can be seen as a subset of the set of all resolution deductions. In
fact, the actual definition has to fulfil some specific properties, but for our purposes it suffices to consider
refinements as restricted forms of resolution [3434].

83

index i ≥ 1 such that no two atomic subformulas of Fk get assigned the same index.
Moreover, all atomic cut-ancestors of Fk will get the same index as the corresponding
atomic subformula of Fk. All other atomic subformulas of formulas that are not cut-
formulas get assigned the index 0.

Furthermore, there is no index j ≥ 1 such that Aj is an atomic subformula of both Fk
and Fl, where k 6= l (i.e. atomic subformulas occurring in different cuts must not have
the same index). 4

Remark. A consequence of the above definition is that both auxiliary occurrences of the
cut-formula in a cut have exactly the same indexing.

Example 6.2.4. Let ϕ be the proof of Example 4.3.94.3.9, then the application of atom index-
ing to ϕ yields:

(ϕ1)

P (a) ∨Q(b) ` (∃y)(P (y)1 ∨Q(y)2)

(ϕ2)

(∃y)(P (y)1 ∨Q(y)2), (∀x)¬P (x) ` (∃z)Q(z)
cut

P (a) ∨Q(b), (∀x)(¬P (x)) ` (∃z)Q(z)

where ϕ1 is the LK-derivation:

P (a) ` P (a)1

∨r1
P (a) ` (P (a)1 ∨Q(a)2)

∃r
P (a) ` (∃y)(P (y)1 ∨Q(y)2)

Q(b) ` Q(b)2

∨r2
Q(b) ` (P (b)1 ∨Q(b)2)

∃r
Q(b) ` (∃y)(P (y)1 ∨Q(y)2) ∨l

P (a) ∨Q(b) ` (∃y)(P (y)1 ∨Q(y)2)

and ϕ2 is the LK-derivation:

P (u)1 ` P (u) ¬l
P (u)1,¬P (u) `

wr
P (u)1,¬P (u) ` Q(u)

Q(u)2 ` Q(u)
wl

Q(u)2,¬P (u) ` Q(u) ∨l
((P (u)1 ∨Q(u)2),¬P (u) ` Q(u)

∃r
((P (u)1 ∨Q(u)2),¬P (u) ` (∃z)Q(z)

∀l
((P (u)2 ∨Q(u)1), (∀x)¬P (x) ` (∃z)Q(z)

∃l
(∃y)(P (y)1 ∨Q(y)2), (∀x)¬P (x) ` (∃z)Q(z)

4

In order to have a means to denote that two formulas (that are composed of indexed
atoms only) coincide (i.e. they have the same structure and their corresponding indexed
atoms have the same indices), we will define the relation l as follows:

Definition 6.2.5. Let F and G be formulas composed of indexed atoms only. Then we
define F l G inductively as follows:

84

• Ai l Bj (for atoms A and B) iff A = B and i = j.

• ¬F1 l ¬G1 iff F1 l G1.

• F1 � F2 l G1 �G2 (for � ∈ {∧,∨}) iff F1 l G1 and F2 l G2.

• (Qx)F1 l (Qx)G1 (for Q ∈ {∀,∃} and x ∈ V) iff F1 l G1.

4

Definition 6.2.6 (Indexed Clause). Let S = Γ ` ∆ be a clause, where Γ,∆ are (possibly
empty) multisets of atoms such that Γ ∪∆ contains at least one indexed atom (provided
that Γ ∪∆ 6= ∅). Then we call S an indexed clause. We also define that ` is an indexed
clause. 4

Remark. The notion of subsequent is applicable to indexed clauses without further
ado. Moreover, with the above definition of substitution applied to indexed formulas,
substitution applied to indexed clauses works in the same way as for ordinary clauses.

Now, we extend the concept of subsumption to indexed clauses. We just need to adapt Def-
inition 2.3.142.3.14 to indexed clauses in order to use Definition 2.3.152.3.15 also for (sets of) in-
dexed clauses:

Definition 6.2.7. Let Γ be a multiset of indexed atomic formulas (possibly containing
some atoms without indices—those are assumed to have index 0), then set(Γ) denotes
the set of indexed and index-free atomic formulas occurring in Γ. If C = Γ ` ∆ is an
indexed clause, then we define setant(C) = set(Γ) and setcons(C) = set(∆). 4

Remark. Note that we can treat atoms without indices as indexed atoms by implicitly
assuming that they have index 0.

Thus, the definitions of ⊆,v,≤i,≤s,≤ss,� and � for clause terms can be used as defined
in Definitions 4.2.54.2.5, 4.2.104.2.10 and 4.2.144.2.14, respectively, for clause terms built from sets of
indexed clauses. As a consequence, Lemmas 4.2.64.2.6–4.2.134.2.13 and Proposition 4.2.154.2.15 also
hold for clause terms containing sets of indexed clauses.

Definition 6.2.8 (Indexed Resolution). Let C and D be indexed clauses of the form

C = Γ ` ∆, Aj1, . . . , A
j
m,

D = Bj
1, . . . , B

j
n,Π ` Λ

such that C and D are variable-disjoint, n,m ≥ 1, and σ be a most general unifier of
{Aj1, . . . , A

j
m, B

j
1, . . . , B

j
n}. Then the clause

Γσ,Πσ ` ∆σ,Λσ

is called an indexed resolvent of C and D.
The indexed resolution rule can thus be represented as follows:

Γ ` ∆, Aj1, . . . , A
j
m Bj

1, . . . , B
j
n,Π ` Λ

Ri.Γσ,Πσ ` ∆σ,Λσ

85

4

Remark. By definition, substitution applied to indexed formulas does not change the
index, thus, only a set of indexed atoms in which all indexed atoms have the same index
is actually unifiable. Note that indexed resolution, as opposed to general resolution, is a
restricted form of resolution that only allows to resolve upon atoms that have the same
index. For instance, the clauses ` A1 and A2 ` cannot be resolved using indexed resolu-
tion, although—when omitting the indices—they can be resolved using the unrestricted
form of general resolution.

Definition 6.2.9 (Indexed Resolution Deduction). An indexed resolution deduction is
defined analogous to a general resolution deduction; we only replace the rules of resolu-
tion and contraction by the rules of indexed resolution and indexed contraction, respec-
tively. Indexed contractions are defined analogous to contractions, but atoms can only be
contracted if they have the same index. 4

The next step is to extend the indexed subsumption relation to indexed resolution deduc-
tions. We thus define, analogously to Definition 2.3.162.3.16:

Definition 6.2.10. Let γ and δ be indexed resolution deductions. We define γ ≤ss δ by
induction on the number of nodes in δ:

If δ consists of a single node labelled with an indexed clause D, then γ ≤ss δ if γ
consists of a single node labelled with an indexed clause C and C ≤ss D.

Let δ be

(δ1)

D1

(δ2)

D2 Ri,D

and γ1 be an indexed resolution deduction of C1 with γ1 ≤ss δ1, γ2 be an indexed
resolution deduction of C2 with γ2 ≤ss δ2. Then we distinguish the following cases:

if C1 ≤ss D, then γ1 ≤ss δ.
if C2 ≤ss D, then γ2 ≤ss δ.

Otherwise, let C be a resolvent of C1 and C2, and let γ =

(γ1)

C1

(γ2)

C2 Ri.C

Then γ ≤ss δ. The existence of such an indexed resolvent C of C1 and C2 having the
above property follows from Lemma 6.2.246.2.24. 4

Definition 6.2.11 (ACNFai). We say that an LK-proof ϕ is in ACNFai if ϕ is in ACNF
and ϕ has an atom indexing. 4

86

Definition 6.2.12 (ACNFtop
ai). We say that an LK-proof ϕ is in ACNFtop

ai if ϕ is in
ACNFtop and ϕ has an atom indexing. 4

Definition 6.2.13 (`resi). Let C be a set of indexed clauses such that some clauses in C
contain an indexed atom Ai. Furthermore, let D be an indexed clause such that Ai does
not occur in D. Moreover, let

Ci = {C | Ai ∈ set(C), C ∈ C}.

Then we define C `resi D if D ∈ C or there exists an indexed resolution deduction γ of D
from Ci such that all applications of Ri resolve upon Ai.

We extend `resi to sets of indexed clauses as follows: Let C,D be sets of indexed
clauses such that some clauses in C contain an indexed atom Ai, but no clause in D
contains Ai. Then we write C `resi D if for all indexed clauses D ∈ D, it holds that
C `resi D.

4

Remark. The intention behind Definition 6.2.136.2.13 is to have a means to speak about the
effect of term resolution w.r.t. TACNFai and TACNFext

ai (which operates on the syntactic
level of clause terms) on the semantic level. For instance, if we have X `resta Y such
that Y was obtained from X by a term resolution deduction resolving upon the subterm
{` Ai} ⊕ {Ai `} or by replacing the subterm {Al ` Ai} ⊕ {Ai ` Aj} in X by {Al ` Aj}.
Then all indexed clauses C in |Y | can be obtained by an indexed resolution deduction
of C from |X|, where in each indexed resolution step, Ai is the indexed atom resolved
upon33.

We illustrate the relation between `resta and `resi in the following example:

Example 6.2.14. Let

X = [({` B2} ⊕ {B2 `})⊗ ({` A1} ⊕ ({A1 ` A4} ⊕ {A4 `}))]⊗ ({` C3} ⊕ {C3 `}),
Y = [({` B2} ⊕ {B2 `})⊗ ({` A1} ⊕ {A1 `})]⊗ ({` C3} ⊕ {C3 `}) and

Z = ({` A1} ⊕ {A1 `})⊗ ({` C3} ⊕ {C3 `}).

Clearly,X is in TACNFext
ai and Y as well as Z are in TACNFai, and it holds thatX `reste Y

and Y `rest Z, i.e. there are term resolution deductions of Y from X and of Z from Y , by
replacing the subterm {A1 ` A4}⊕{A4 `} by {A1 `} and by resolving upon the subterm
{` B2} ⊕ {B2 `}, respectively. We can even combine the two deductions to a single one,
i.e. X `reste Y `rest Z:

3Recall that, by definition of TACNFai and semantics of clause terms, all indexed clauses in |X| contain
Ai.

87

[({` B2} ⊕ {B2 `})⊗ ({` A1} ⊕ ({A1 ` A4} ⊕ {A4 `}))]⊗ ({` C3} ⊕ {C3 `})
Rt

[({` B2} ⊕ {B2 `})⊗ ({` A1} ⊕ {A1 `} ⊗ {`})]⊗ ({` C3} ⊕ {C3 `})
ft⊗

[({` B2} ⊕ {B2 `})⊗ ({` A1} ⊕ {A1 `})]⊗ ({` C3} ⊕ {C3 `})
Rt

[({`} ⊗ {`})⊗ ({` A1} ⊕ {A1 `})]⊗ ({` C3} ⊕ {C3 `})
ft⊗

[{`} ⊗ ({` A1} ⊕ {A1 `})]⊗ ({` C3} ⊕ {C3 `})
ft⊗.

({` A1} ⊕ {A1 `})⊗ ({` C3} ⊕ {C3 `})

By semantics of clause terms we have

|X| = {` A1, B2, C3; A1 ` B2, C3, A4; A4 ` B2, C3; B2 ` A1, C3; A1, B2 ` C3, A4}
∪ {B2, A4 ` C3; C3 ` A1, B2; A1, C3 ` B2, A4; C3, A4 ` B2; B2, C3 ` A1}
∪ {A1, B2, C3 ` A4; B2, C3, A4 `},

|Y | = {` A1, B2, C3; A1 ` B2, C3; B2 ` A1, C3; C3 ` A1, B2}
∪ {A1, B2 ` C3; A1, C3 ` B2; B2, C3 ` A1; A1, B2, C3 `} and

|Z| = {` A1, C3; A1 ` C3; C3 ` A1; A1, C3 `}.

Then for each indexed clause in |Y |, there exists an indexed resolution deduction from
|X| such that we only resolve upon A4:

A1 ` B2, C3, A4 A4 ` B2, C3

Ri
A1 ` B2, B2, C3, C3

cr
A1 ` B2, C3, C3

cr
A1 ` B2, C3

A1, B2 ` C3, A4 B2, A4 ` C3

Ri
A1, B2, B2 ` C3, C3

cl
A1, B2 ` C3, C3

cr
A1, B2 ` C3

A1, C3 ` B2, A4 C3, A4 ` B2

Ri
A1, C3, C3 ` B2, B2

cr
A1, C3, C3 ` B2

cl
A1, C3 ` B2

A1, B2, C3 ` A4 B2, C3, A4 `
Ri

A1, B2, B2, C3, C3 `
cl

A1, B2, C3, C3 `
cl

A1, B2, C3 `
The remaining indexed clauses in |Y | are already contained in |X|, thus they have a
trivial indexed resolution deduction. Furthermore, we have

|X|4 = {C | A4 ∈ set(C), C ∈ |X|}
= {A1 ` B2, C3, A4; A4 ` B2, C3; A1, B2 ` C3, A4; B2, A4 ` C3}
∪ {A1, C3 ` B2, A4; C3, A4 ` B2; A1, B2, C3 ` A4; B2, C3, A4 `}.

Consequently, |X| `res4 D for all indexed clauses D ∈ |Y |, i.e. |X| `res4 |Y |.

Moreover, for each indexed clause in |Z|, there exists an indexed resolution deduction
from |Y | such that we only resolve upon B2:

88

` A1, B2, C3 B2 ` A1, C3

Ri` A1, A1, C3, C3
cr

` A1, C3, C3
cr

` A1, C3

A1 ` B2, C3 A1, B2 ` C3

Ri
A1, A1 ` C3, C3

cl
A1 ` C3, C3

cr
A1 ` C3

C3 ` A1, B2 B2, C3 ` A1

Ri
C3, C3 ` A1, A1

cr
C3, C3 ` A1

cl
C3 ` A1

A1, C3 ` B2 A1, B2, C3 `
Ri

A1, A1, C3, C3 `
cl

A1, C3, C3 `
cl

A1, C3 `
Since all indexed clauses in |Y | contain B2, we have

|Y |2 = {C | B2 ∈ set(C), C ∈ |Y |} = |Y |.

Consequently, |Y | `res2 D for all indexed clauses D ∈ |Z|, i.e. |Y | `res2 |Z|. Putting things
together, we have X `resta Y `resta Z and |X| `res4 |Y | `res2 |Z|. 4

Lemma 6.2.156.2.15 and Proposition 6.2.166.2.16 show that there is indeed a correspondence
between `resi on the semantical and `reste on the syntactical level of clause terms in
TACNFext

ai (cf. Lemma 6.1.136.1.13 and Proposition 6.1.146.1.14).

Lemma 6.2.15. Let X be a clause term in TACNFext
ai of the following form:

{` A1} ⊕ {A1 ` A2} ⊕ {A2 ` A3} ⊕ . . .⊕ {Ak−1 ` Ak} ⊕ {Ak `},

where Ai is an indexed atomic formula, for 1 ≤ i ≤ k. Then there exists a clause term Xk−1

in TACNFai such that |X| `resi |X1| `resi . . . `resi |Xk−1|, where Xi is obtained from Xi−1

by replacing the subterm {Al ` Ai} ⊕ {Ai ` Aj} in Xi−1 by {Al ` Aj}, for 1 ≤ i, j, l ≤ k.

PROOF. Let X be a clause term in TACNFext
ai . We proceed by induction on the number n

of indexed clauses in |X|.

BASE CASE: n = 1. Then we have |X| = {`}. Trivially, X `resi X, and since X is
already in TACNFai we are done.

INDUCTION HYPOTHESIS (IH): Assume the claim holds for all |X| containing k in-
dexed clauses with 1 ≤ k ≤ n, where X is a clause term in TACNFext

ai .

INDUCTION STEP: Suppose w.l.o.g. that |X| is a clause term in TACNFext
ai containing

n+ 1 indexed clauses, where

X = {` A1} ⊕ (
⊕

1≤i≤n
{Ai ` Ai+1})⊕ {An+1 `}.

Furthermore, assume w.l.o.g. that X1 is the clause term in TACNFext
ai obtained from X

by replacing the subterm
{Aj−1 ` Aj} ⊕ {Aj ` Aj+1}

89

in X by {Aj−1 ` Aj+1}, for some j with 1 ≤ j ≤ n.
Clearly, {Aj−1 ` Aj ; Aj ` Aj+1} ⊆ |X|, but neither Aj−1 ` Aj ∈ |X1| nor Aj `

Aj+1 ∈ |X1|. Furthermore, observe that, by semantics of clause terms, |X1| \ {Aj−1 `
Aj+1} ⊆ |X|, i.e. Aj−1 ` Aj+1 6∈ |X|. Thus, it suffices to show that |X| `resi Aj−1 ` Aj+1

in order to show that |X| `resi |X1|. We can obtain an indexed resolution deduction of
Aj−1 ` Aj+1 from |X| as follows:

Aj−1 ` Aj Aj ` Aj+1
Ri.

Aj−1 ` Aj+1

Hence, |X| `resi |X1| and since |X1| contains fewer indexed clauses than |X|, we can
apply the (IH) and obtain |X1| `resi |X2| `resi . . . `resi |Xn|, where Xn is a clause term in
TACNFai. Putting things together, we get |X| `resi |X1| `resi . . . `resi |Xn|. �

Proposition 6.2.16. Let X be a clause term in TACNFext
ai . Then there exists a term Xk−1

in TACNFai such that |X| `resi |X1| `resi . . . `resi |Xk−1|, where Xi is obtained from Xi−1

by replacing the subterm {Al ` Ai} ⊕ {Ai ` Aj} in Xi−1 by {Al ` Aj}, for 1 ≤ i, j, l ≤ k.

PROOF. We proceed by induction on the structure of X.

BASE CASE:

• X is in TACNFai, we trivially have |X| `resi |X|.

• X = {` A1} ⊕ (
⊕

1≤i<k({Ai `} ⊗ {` Ai+1})⊕ {Ak `}. Then there exists a clause
term Xk−1 in TACNFai s.t. |X| `resi |X1| `resi . . . `resi |Xk−1|, by Lemma 6.2.156.2.15.

INDUCTION STEP: Suppose X = X ′ ⊗X ′′ is a clause term in TACNFext
ai . Then, by (IH),

there exist clause terms X ′l , X
′
m in TACNFai s.t. |X ′| `resi |X ′1| `resi . . . `resi |X ′l | and

|X ′′| `resi |X ′′1 | `resi . . . `resi |X ′′m| with l+m = k− 1. This means there are corresponding
indexed resolution deductions δpi of each Spi ∈ |X ′i| from |X ′i−1| and δqj of each Sqj ∈ |X ′′j |
from |X ′′j−1| of a specific form, where X ′0 = X ′ and X ′′0 = X ′′. Since X ′ ⊗ X ′′ is in
TACNFext

ai , we can obtain an indexed resolution deduction of each clause Spi ◦ S
q
j ∈

|X ′i ⊗X ′′j | from |X ′i−1 ⊗X ′′j | (or from |X ′i ⊗X ′′j−1|) by taking the context products of δpi
with Sqj , i.e. Sqj ? δ

p
i (or Spi ? δ

q
j). Note that in each `resn-step on |X ′i ⊗X ′′j |, only |X ′i| or

|X ′′j | can change, as we only resolve upon a single indexed atom with a fixed index n;
moreover, we assume that Sqj and δpi as well as Spi and δqj are both variable-disjoint.

Therefore, |X| `resi |X ′1 ⊗ X ′′| `resi . . . `resi |X ′l ⊗ X ′′| `resi |X ′l ⊗ X ′′1 | `resi . . . `resi
|X ′l⊗X ′′m|, whereX ′l⊗X ′′m is clearly in TACNFai, as bothX ′l andX ′′m are in TACNFai. �

Remark. Note that whenever we write some sequence of the form

|X| `resi |X1| `resi . . . `resi |Xk−1|,

we do not mean that in each step we resolve upon the same index i; this is just a matter
of convenience in order to indicate that some `resi-step has been carried out, where the
indexed atom resolved upon may have an arbitrary index occurring in the respective
clause term.

90

The proof of Proposition 6.2.176.2.17 is inspired by the proof of Theorem 6.3 in [5151].

Proposition 6.2.17 (Preservation of Cut-Indices under >Rax). Let ϕ be an LK-proof
with atom indexing containing at least one cut, and let ϕ∗ be an LK-proof s.t. ϕ >∗Rax

ϕ∗.
Then for all cuts with auxiliary formulas Fl and Fr occurring in ϕ∗ it holds that Fl l Fr.

PROOF. We proceed by induction on the number n of reduction steps

ϕ >Rax ϕ
1 >Rax . . . >Rax ϕ

n = ϕ∗.

BASE CASE: n = 0. Then ϕ = ϕ0. Trivially, Fl l Fr by Definition 6.2.36.2.3 for all cuts with
auxiliary formulas Fl and Fr occurring in ϕ.

INDUCTION HYPOTHESIS (IH): The claim holds for all LK-proofs ϕ with atom indexing
containing at least one cut such that ϕ >Rax ϕ

k, for k ≤ n.

INDUCTION STEP: Suppose ϕ >Rax ϕ
1 >Rax . . . >Rax ϕ

n >Rax ϕ
n+1. We distinguish

cases according to the cut-reduction rule used in the reduction step ϕn >Rax ϕ
n+1. In all

cases, it suffices to analyze the effect of the corresponding reduction rule on the upper-
most cut in ϕn. This is so because each cut-reduction rule only modifies one cut at a time,
all other cuts in the proof remain unchanged (and thus Fl l Fr for all cuts that are not
modified).

Cut-elimination rules:

Over axioms: it might hold that i 6= j or that Aj is an atom without index.

Aj ` Ai
(σ)

Ai,Γ ` ∆
cut(Ai)

Aj ,Γ ` ∆

⇓

(σ′)

Aj ,Γ ` ∆

(ρ)

Γ ` ∆, Ai Ai ` Aj
cut(Ai)

Γ ` ∆, Aj

⇓

(ρ′)

Γ ` ∆, Aj

Note that we have to replaceAi in σ and ρ byAj in order to obtain the end-sequents
Aj ,Γ ` ∆ and Γ ` ∆, Aj , respectively. But this causes no problems, as there are no
cuts in σ and ρ. We denote the result of replacing Ai in σ and ρ by Aj by σ′ and ρ′,
respectively.

Over weakening:

91

(ρ′)

Γ ` ∆ wr
Γ ` ∆, Fl

(σ)

Fr,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ′)

Γ ` ∆ w∗r , w
∗
lΓ,Π ` ∆,Λ

(ρ)

Γ ` ∆, Fl

(σ′)

Π ` Λ wl
Fr,Π ` Λ

cut(F)
Γ,Π ` ∆,Λ

⇓

(σ′)

Π ` Λ w∗r , w
∗
lΓ,Π ` ∆,Λ

Since in the above four cases a cut is eliminated from ϕn, all other cuts in ϕn (that
also occur in ϕn+1) remain unchanged. Therefore, by (IH), Fl l Fr for all cuts in
ϕn+1 with auxiliary formulas Fl and Fr.

Grade-reduction rules:

If the cut-formula has ¬ as top-level connective:

(ρ′)

Fl,Γ ` ∆ ¬r
Γ ` ∆,¬Fl

(σ′)

Π ` Λ, Fr ¬l¬Fr,Π ` Λ
cut(¬F)

Γ,Π ` ∆,Λ

⇓

(σ′)

Π ` Λ, Fr

(ρ′)

Fl,Γ ` ∆
cut(F)

Γ,Π ` ∆,Λ

By (IH), we know that ¬Fl l ¬Fr, and thus, by definition of l, we must have
Fl l Fr. Therefore, Fl l Fr for all cuts in ϕn+1 with auxiliary formulas Fl and Fr.

If the cut-formula has ∧ as top-level connective:

(ρ1)

Γ ` ∆, Fl1

(ρ2)

Γ ` ∆, Fl2 ∧r
Γ ` ∆, Fl1 ∧ Fl2

(σ′)

Fri ,Π ` Λ ∧liFr1 ∧ Fr2 ,Π ` Λ
cut(F1 ∧ F2)

Γ,Π ` ∆,Λ

⇓

92

(ρ1)

Γ ` ∆, Fl1

(ρ2)

Γ ` ∆, Fl2

(σ′)

Fri ,Π ` Λ
wl

Fr1 , Fr2 ,Π ` Λ
cut(F2)

Fr1 ,Γ,Π ` ∆,Λ
cut(F1)

Γ,Γ,Π ` ∆,∆,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

By (IH), Fl1 ∧Fl2 l Fr1 ∧Fr2 , and thus, by definition of l, we must have Fl1 l Fr1
and Fl2 l Fr2 . Therefore, Fl l Fr for all cuts in ϕn+1 with auxiliary formulas Fl
and Fr.

If the cut-formula has ∨ as top-level connective: symmetric to the case of ∧.

If the cut-formula has ∀ as top-level connective:

(ρ′(x/y))

Γ ` ∆, Fl(x/y)
∀r

Γ ` ∆, (∀x)Fl(x)

(σ′)

Fr(x/t),Π ` Λ
∀l

(∀x)Fr(x),Π ` Λ
cut((∀x)F)

Γ,Π ` ∆,Λ

⇓

(ρ′(x/t))

Γ ` ∆, Fl(x/t)

(σ′)

Fr(x/t),Π ` Λ
cut(F (x/t))

Γ,Π ` ∆,Λ

By (IH), (∀x)Fl(x) l (∀x)Fr(x), and thus, by definition ofl, we must have Fl(x) l
Fr(x). Hence, replacing x by t at the same positions in both Fl and Fr results
in Fl(x/t) l Fr(x/t), as the indices of all atoms remain unchanged. Therefore,
Fl l Fr for all cuts in ϕn+1 with auxiliary formulas Fl and Fr.

If the cut-formula has ∃ as top-level connective: symmetric to the case of ∀.

Rank-reduction rules:

Over a unary rule ξ:

93

(ρ′)

Γ′ ` ∆′, Fl ξ
Γ ` ∆, Fl

(σ)

Fr,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ′)

Γ′ ` ∆′, Fl

(σ)

Fr,Π ` Λ
cut(F)

Γ′,Π ` ∆′,Λ
ξ

Γ,Π ` ∆,Λ

(ρ)

Γ ` ∆, Fl

(σ′)

Fr,Π
′ ` Λ′

ξ
Fr,Π ` Λ

cut(F)
Γ,Π ` ∆,Λ

⇓

(ρ)

Γ ` ∆, Fl

(σ′)

Fr,Π
′ ` Λ′

cut(F)
Γ,Π′ ` ∆,Λ′

ξ
Γ,Π ` ∆,Λ

In both cases, by (IH), Fl l Fr, and since the transformation only shifted the
cut upwards, the cut-formula (and thus the auxiliary formulas Fl and Fr) did not
change, we still have Fl l Fr. Therefore, Fl l Fr for all cuts in ϕn+1 with auxiliary
formulas Fl and Fr.

Over a binary rule ξ:

(ρ1)

Γ1 ` ∆1, Fl

(ρ2)

Γ2 ` ∆2 ξ
Γ ` ∆, Fl

(σ)

Fr,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ1)

Γ1 ` ∆1, Fl

(σ)

Fr,Π ` Λ
cut(F)

Γ1,Π ` ∆1,Λ

(ρ2)

Γ2 ` ∆2 w∗rΓ2 ` ∆2, Fl

(σ′)

Fr,Π ` Λ
cut(F)

Γ2,Π ` ∆2,Λ ξ
Γ,Π,Π ` ∆,Λ,Λ

c∗l , c
∗
r

Γ,Π ` ∆,Λ

where σ′ is the regularized version of σ. Note that regularization has no effect on
indices, thus the regularization causes no problems w.r.t. l.
In both cases, by (IH), Fl l Fr, and since the transformation only shifted the
cut upwards, the cut-formula (and thus the auxiliary formulas Fl and Fr) did not
change, we still have Fl l Fr. Therefore, Fl l Fr for all cuts in ϕn+1 with auxiliary
formulas Fl and Fr. The argument for the other binary cases is analogous.

94

Over contraction rules:

Contraction right cr:

(ρ′)

Γ ` ∆, Fl, Fl cr
Γ ` ∆, Fl

(σ)

Fr,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ′)

Γ ` ∆, Fl, Fl

(σ)

Fr,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ, Fl

(σ′)

Fr,Π ` Λ
cut(F)

Γ,Π,Π ` ∆,Λ,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

where σ′ is the regularized version of σ. Note that regularization has no effect on
indices, thus the regularization causes no problems w.r.t. l.
By (IH), Fl l Fr, and since the cut and thus the cut-formula together with the
indices are duplicated in ϕn+1, we have for both cuts on F in ϕn+1 that Fl l Fr
holds. Therefore, Fl l Fr for all cuts in ϕn+1 with auxiliary formulas Fl and Fr.

Contraction left cl: analogous to contraction right.

�

Corollary 6.2.18 (Preservation of Cut-Indices under>Rtop). Let ϕ be an LK-proof with
atom indexing containing at least one cut, and let ϕ∗ be an LK-proof such that ϕ >∗Rtop ϕ∗.
Then for all cuts with auxiliary formulas Fl and Fr occurring in ϕ∗ it holds that Fl l Fr.

PROOF. Follows immediately from the fact that >Rtop ⊆ >Rax . �

Next, we show that Lemma 5.2.15.2.1 also holds for LK-proofs with atom indexing:

Lemma 6.2.19. Let ϕ,ϕ′ be LK-proofs with atom indexing such that ϕ >R ϕ′ for a cut-
reduction relation >R based on R. Then Θ(ϕ) � Θ(ϕ′).

PROOF. The proof is basically a modified version of the proof of Lemma 6.1 in [99].
We construct a proof by cases on the definition of >R. To this end, we consider

subderivations ψ of ϕ of the form

(ρ,X)

Γ ` ∆, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

95

whereX = Θ(ϕ)/λ, for the position λ corresponding to the deduction ρ and Y = Θ(ϕ)/µ,
for the position µ corresponding to the deduction σ. By ν we denote the position of ψ in
ϕ. That means we do not only indicate the subderivations ending in the cut but also the
corresponding clause terms. Note that by definition of the characteristic clause term, we
have Θ(ϕ)/ν = X ⊕ Y .

If ψ >R χ, then, by definition of the reduction relation >R, we get ϕ = ϕ[ψ]ν >R
ϕ[χ]ν . For the remaining part of the proof, we denote ϕ[χ]ν by ϕ′. Our aim is to prove
that Θ(ϕ) � Θ(ϕ′). By Proposition 6.2.176.2.17, for all cuts with auxiliary formulas Fl and Fr
the indices of the atoms of Fl and Fr coincide, i.e. Fl l Fr.
In the following, we represent that ψ >R χ by ⇓, where ψ occurs above and χ below ⇓.

Cut-elimination rules:

Since >R contains no cut-elimination rules over axioms, we only have to con-
sider the ones over weakening.

Over weakening:

(ρ′, X)

Γ ` ∆ wr
Γ ` ∆, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ′, X)

Γ ` ∆ w∗r , w
∗
lΓ,Π ` ∆,Λ

Therefore, also ϕ[ψ]ν >R ϕ[χ]ν , i.e. ϕ >R ϕ′. But Θ(ϕ′)/ν = X and Θ(ϕ)/ν =
X ⊕ Y . Clearly, X ⊕ Y �X, as |X| ⊆ |X ⊕ Y | = |X| ∪ |Y |, and, by Lemma 4.2.114.2.11,
Θ(ϕ) � Θ(ϕ′).

The other weakening case is symmetric to the one above.

Grade-reduction rules:

If the cut-formula has ¬ as top-level connective, i.e. F = ¬G:

(ρ′, X)

G,Γ ` ∆ ¬r
Γ ` ∆,¬G

(σ′, Y)

Π ` Λ, G ¬l¬G,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

96

⇓

(σ′, Y)

Π ` Λ, G

(ρ′, X)

G,Γ ` ∆
cut(G)

Γ,Π ` ∆,Λ

In this case we have

Θ(ϕ)/ν = X ⊕ Y,
Θ(ϕ′)/ν = Y ⊕X.

Clearly, X ⊕ Y � Y ⊕X (we even have X ⊕ Y ∼ Y ⊕X) and, by Lemma 4.2.114.2.11,
we obtain Θ(ϕ) � Θ(ϕ′).

If the cut-formula has ∧ as top-level connective, i.e. F = F1 ∧ F2:

(ρ1, X1)

Γ ` ∆, F1

(ρ2, X2)

Γ ` ∆, F2 ∧r
Γ ` ∆, F1 ∧ F2

(σ′, Y)

Fi,Π ` Λ ∧liF1 ∧ F2,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ1, X1)

Γ ` ∆, F1

(ρ2, X2)

Γ ` ∆, F2

(σ′, Y)

Fi,Π ` Λ
wl

F1, F2,Π ` Λ
cut(F2)

F1,Γ,Π ` ∆,Λ
cut(F1)

Γ,Γ,Π ` ∆,∆,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

In this case we have

Θ(ϕ)/ν = (X1 ⊕X2)⊕ Y,
Θ(ϕ′)/ν = X1 ⊕ (X2 ⊕ Y).

Clearly, (X1 ⊕ X2) ⊕ Y ∼ X1 ⊕ (X2 ⊕ Y), by elementary properties of ∪. Thus,
Θ(ϕ)/ν � Θ(ϕ′)/ν and, by Lemma 4.2.114.2.11, we obtain Θ(ϕ) � Θ(ϕ′).

If the cut-formula has ∨ as top-level connective, i.e. F = F1 ∨ F2: symmetric to ∧.

If the cut-formula has ∀ as top-level connective, i.e. F = (∀x)G:

97

(ρ′(x/y), X(x/y))

Γ ` ∆, G(x/y)
∀r

Γ ` ∆, (∀x)G(x)

(σ′, Y)

G(x/t),Π ` Λ
∀l

(∀x)G(x),Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ′(x/t), X(x/t))

Γ ` ∆, G(x/t)

(σ′, Y)

G(x/t),Π ` Λ
cut(G(x/t))

Γ,Π ` ∆,Λ

In this case we have

Θ(ϕ)/ν = X(x/y)⊕ Y,
Θ(ϕ′)/ν = X(x/t)⊕ Y.

By assumption, ϕ is regular and so the variable y only occurs in the subderivation
ρ. Therefore, Θ(ϕ′)/ν = (X(x/y) ⊕ Y){y ← t}, and even Θ(ϕ′) = Θ(ϕ){y ← t}.
But this means Θ(ϕ) ≤s Θ(ϕ′), and therefore Θ(ϕ) � Θ(ϕ′).

If the cut-formula has ∃ as top-level connective, i.e. F = (∃x)G: symmetric to ∀.

Rank-reduction rules:

Over a unary rule ξ:

(ρ′, X)

Γ′ ` ∆′, F
ξ

Γ ` ∆, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ′, X)

Γ′ ` ∆′, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ′,Π ` ∆′,Λ
ξ

Γ,Π ` ∆,Λ

98

In this case we have

Θ(ϕ)/ν = X ⊕ Y,
Θ(ϕ′)/ν = X ⊕ Y.

Since Θ(ϕ)/ν = Θ(ϕ′)/ν, we also have Θ(ϕ) = Θ(ϕ′), and thus Θ(ϕ) � Θ(ϕ′).

Analogous for the other unary case.

Over a binary rule ξ:

(ρ1, X1)

Γ1 ` ∆1, F

(ρ2, X2)

Γ2 ` ∆2 ξ
Γ ` ∆, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ1, X1)

Γ1 ` ∆1, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ1,Π ` ∆1,Λ

(ρ2, X2)

Γ2 ` ∆2 w∗rΓ2 ` ∆2, F

(σ′, Y ′)

F,Π ` Λ
cut(F)

Γ2,Π ` ∆2,Λ ξ
Γ,Π,Π ` ∆,Λ,Λ

c∗l , c
∗
r

Γ,Π ` ∆,Λ

where σ′ and Y ′ are obtained by regularization from σ and Y , respectively. Now,
we have to distinguish two cases:

(i) The principal formula of ξ is an ancestor of another cut in ϕ:
In this case we have

Θ(ϕ)/ν = (X1 ⊕X2)⊕ Y,
Θ(ϕ′)/ν = (X1 ⊕ Y)⊕ (X2 ⊕ Y ′).

Clearly, (X1 ⊕X2)⊕ Y ∼ (X1 ⊕ Y)⊕ (X2 ⊕ Y), and thus, it follows that

(X1 ⊕ Y)⊕ (X2 ⊕ Y) ⊆ (X1 ⊕X2)⊕ Y.

Let ϑ be the renaming substitution that only maps the eigenvariables of Y
to the eigenvariables of Y ′, i.e. Y ϑ = Y ′. By the regularity of ϕ and ϕ′, it
holds that the eigenvariables of Y and Y ′ do neither occur in X1 nor in X2.
As a consequence, X1ϑ = X1 and X2ϑ = X2, and thus,

(X2 ⊕ Y)ϑ = (X2ϑ⊕ Y ϑ) = (X2 ⊕ Y ′).

99

But this means

|(X1 ⊕ Y)⊕ (X2 ⊕ Y)⊕ (X2 ⊕ Y)ϑ| = |(X1 ⊕ Y)⊕ (X2 ⊕ Y)⊕ (X2 ⊕ Y ′)|.

Furthermore, by elementary properties of ∪, we have

|(X1 ⊕ Y)⊕ (X2 ⊕ Y)⊕ (X2 ⊕ Y ′)| = |(X1 ⊕ Y)⊕ (X2 ⊕ Y ′)| = |Θ(ϕ′)/ν|.

Therefore, Θ(ϕ)/ν ≤i Θ(ϕ′)/ν and, by Lemma 4.2.134.2.13, Θ(ϕ) ≤i Θ(ϕ′), i.e.
we have Θ(ϕ) � Θ(ϕ′).

(ii) The principal formula of ξ is not an ancestor of a cut in ϕ:
In this case we have

Θ(ϕ)/ν = (X1 ⊗X2)⊕ Y,
Θ(ϕ′)/ν = (X1 ⊕ Y)⊗ (X2 ⊕ Y).

By elementary properties of ∪ and ×, we obtain

(X1 ⊗X2)⊕ Y v (X1 ⊕ Y)⊗ (X2 ⊕ Y).

This means Θ(ϕ)/ν v Θ(ϕ′)/ν and, by Lemma 4.2.124.2.12, we get Θ(ϕ) v Θ(ϕ′).
Therefore, also Θ(ϕ) � Θ(ϕ′).

The other binary cases are analogous/symmetric.

Over contraction rules:

Contraction right cr:

(ρ′, X)

Γ ` ∆, F, F
cr

Γ ` ∆, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ

⇓

(ρ′, X)

Γ ` ∆, F, F

(σ, Y)

F,Π ` Λ
cut(F)

Γ,Π ` ∆,Λ, F

(σ′, Y ′)

F,Π ` Λ
cut(F)

Γ,Π,Π ` ∆,Λ,Λ
c∗l , c

∗
r

Γ,Π ` ∆,Λ

100

where σ′ and Y ′ are obtained by regularization from σ and Y , respectively. In this
case we have

Θ(ϕ)/ν = X ⊕ Y,
Θ(ϕ′)/ν = (X ⊕ Y)⊕ Y ′.

Let ϑ be the renaming substitution that only maps the eigenvariables of Y to the
eigenvariables of Y ′, i.e. Y ϑ = Y ′. Clearly, X ⊕ Y ⊆ X ⊕ Y , and thus

|(X ⊕ Y)⊕ Y ϑ| = |(X ⊕ Y)⊕ Y ′| = |Θ(ϕ′)/ν|.

Therefore, Θ(ϕ)/ν ≤i Θ(ϕ′)/ν and, by Lemma 4.2.134.2.13, Θ(ϕ) ≤i Θ(ϕ′), i.e. we have
Θ(ϕ) � Θ(ϕ′).

Contraction left cl: analogous to contraction right.

�

Corollary 6.2.20. Let ϕ,ϕ′ be LK-proofs with atom indexing such that ϕ >Rtop ϕ′ for a
cut-reduction relation >Rtop based on R. Then Θ(ϕ) � Θ(ϕ′).

PROOF. Holds by Corollary 6.2.186.2.18 and the fact that >Rtop is based on R. �

Theorem 6.2.216.2.21 shows that the characteristic clause set CL(ψ) of an ACNFtop
ai of an LK-

proof ϕ with atom indexing is subsumed by the original characteristic clause set CL(ϕ).
As a consequence, reductive methods are still redundant w.r.t. the results of CERES if we
consider indexed proofs up to the point where all atomic cuts are shifted to the top, i.e.
only non-atomic cuts have been eliminated.

Theorem 6.2.21. Let ϕ be an LK-proof with atom indexing and ψ be an ACNFtop
ai of ϕ

under a cut-reduction relation >Rtop based on R. Then Θ(ϕ) ≤ss Θ(ψ).

PROOF. Suppose ϕ >∗Rtop ψ. Then by Corollary 6.2.206.2.20 we get Θ(ϕ) �∗ Θ(ψ). By Proposi-
tion 4.2.154.2.15 we obtain Θ(ϕ) ≤ss Θ(ψ). �

The following result constitutes the indexed version of [3434, Proposition 4.2.1].

Proposition 6.2.22. ≤ss for indexed clauses fulfills the following properties:

(i) Reflexivity,

(ii) Transitivity,

(iii) If C ≤ss D, then C ≤ss Dϑ for all substitutions ϑ.

PROOF.

(i) Just take the empty substitution.

101

(ii) If

setant(C)ϑ ⊆ setant(D) and setcons(C)ϑ ⊆ setcons(D) as well as

setant(D)η ⊆ setant(E) and setcons(D)η ⊆ setcons(E).

Then also setant(C)ϑη ⊆ setant(E) and setcons(C)ϑη ⊆ setcons(E).

(iii) If setant(C)ϑ ⊆ setant(D) and setcons(C)ϑ ⊆ setcons(D).
Then also setant(C)ϑη ⊆ setant(Dη) and setcons(C)ϑη ⊆ setcons(Dη).

�

Lemma 6.2.23. Let C and D be indexed clauses with C ≤ss D, and let D′ be an arbitrary
factor of D. Then C ≤ss D′.

PROOF. Let C = Γ ` ∆ and D = Π ` Λ be arbitrary indexed clauses such that C ≤ss D,
i.e. there exists a substitution ϑ such that set(Γ)ϑ ⊆ set(Π) and set(∆)ϑ ⊆ set(Λ).

Furthermore, let D′ be an arbitrary factor of D, i.e. there exists an m.g.u. σ of some
nonempty subset Π′ ⊆ Π or Λ′ ⊆ Λ and D′ is a contraction normalization of Dσ.

We distinguish two cases:

(i) σ is an m.g.u. of Π′.

This means Π′σ = {Bi} for some indexed atom Bi. Assume Π′ = {Bi
1, . . . , B

i
n},

for indexed atoms Bi
k with 1 ≤ k ≤ n (the Bi

k are only unifiable if they have the
same index). Furthermore, assume w.l.o.g. that the arguments of the elements in
Π′ are pairwise distinct. Then

D′ = Bi,Πσ \ {Bi} ` Λσ.

Since C ≤ss D, we know that

set(Γ)ϑ ⊆ set({Bi
1, . . . , B

i
n}) ∪ set((Π \ {Bi

1, . . . , B
i
n}) and

set(∆)ϑ ⊆ set(Λ).

Let P j ∈ set(Γ) be arbitrary, then P jϑ ∈ set({Bi
1, . . . , B

i
n})∪set((Π\{Bi

1, . . . , B
i
n}).

Again, we distinguish cases:

(a) P jϑ ∈ set({Bi
1, . . . , B

i
n}).

In this case, there is some Bi
k with 1 ≤ k ≤ n such that P jϑ = Bi

k (since
set({Bi

1, . . . , B
i
n}) = {Bi

1, . . . , B
i
n}), i.e. Pϑ = Bk and i = j. Moreover, since

{Bi
1, . . . , B

i
n}σ = {Bi}, it follows that P jϑσ = Bi

kσ = Bi, where Pϑσ = B
and i = j. Hence, we have that P jϑσ ∈ set({Bi} ∪Πσ \ {Bi}).
Therefore, set(Γ)ϑσ ⊆ set({Bi} ∪ (Πσ \ {Bi})), and since Λ in D′ coincides
with Λ in D, we have set(∆)ϑσ ⊆ set(Λ)σ. Putting things together, we obtain
C ≤ss D′.

102

(b) P jϑ 6∈ set({Bi
1, . . . , B

i
n}).

In this case, we must have P jϑ ∈ set((Π \ {Bi
1, . . . , B

i
n})). But then it holds

that P jϑσ ∈ set((Π \ {Bi
1, . . . , B

i
n}))σ = set(Πσ \ {Bi}).

Therefore, set(Γ)ϑσ ⊆ set({Bi} ∪ (Πσ \ {Bi})), and since Λ in D’ coincides
with Λ in D, we have set(∆)ϑσ ⊆ set(Λ)σ. Putting things together, we obtain
C ≤ss D′.

(ii) σ is an m.g.u. of Λ′. Analogous to (i).

�

We now prove [3434, Lemma 4.2.1] for indexed resolution.

Lemma 6.2.24. Let C1, D1, C2 and D2 be indexed clauses such that C1 ≤ss D1 and C2 ≤ss
D2. Furthermore, let D be an indexed resolvent of D1 and D2. Then one of the following
properties holds:

(a) C1 ≤ss D, or

(b) C2 ≤ss D, or

(c) there exists an indexed resolvent C of C1 and C2 such that C ≤ss D.

PROOF. Let C1, D1, C2 and D2 be indexed clauses such that C1 ≤ss D1 and C2 ≤ss D2,
and let D be an indexed resolvent of D1 and D2. Since D is an indexed resolvent of
D1 and D2, there exist (variable-disjoint variants of) factors D′1 = Γ1 ` ∆1,M

i and
D′2 = N i,Γ2 ` ∆2 of D1 and D2 (or D′1 = M i,Γ1 ` ∆1 and D′2 = Γ2 ` ∆2, N

i),
respectively, such that {M i, N i} is unifiable by some m.g.u. σ. Thus,

D = Γ1σ,Γ2σ ` ∆1σ,∆2σ.

By assumption C1 ≤ss D1 and C2 ≤ss D2, and since D′1 and D′2 are factors of D1 and D2,
respectively, we obtain by Lemma 6.2.236.2.23:

C1 ≤ss Γ1 ` ∆1,M
i and C2 ≤ss N i,Γ2 ` ∆2. (∗)

From (∗)(∗) and the definition of ≤ss, we know that there must be a substitution ϑ1 such
that

setant(C1)ϑ1 ⊆ set(Γ1) and setcons(C1)ϑ1 ⊆ set(∆1 ∪ {M i}).
Similarly, there is a substitution ϑ2 such that

setant(C2)ϑ2 ⊆ set({N i} ∪ Γ2) and setcons(C2)ϑ2 ⊆ set(∆2).

We distinguish cases:

(i) M i 6∈ setcons(C1)ϑ1 or N i 6∈ setant(C2)ϑ2. Suppose M i 6∈ setcons(C1)ϑ1. Then
setcons(C1)ϑ1 ⊆ set(∆1), and thus, since setant(C1)ϑ1 ⊆ set(Γ1), we get that
C1 ≤ss Γ1 ` ∆1. Moreover, we have

Γ1 ` ∆1 ≤ss Γ1σ ` ∆1σ ≤ss Γ1σ,Γ2σ ` ∆1σ,∆2σ = D.

103

By transitivity of ≤ss, we get C1 ≤ss D, and thus property (a)(a) holds.

For N i 6∈ setant(C2)ϑ2, a completely analogous argument yields C2 ≤ss Γ2 ` ∆2

and C2 ≤ss D, i.e. property (b)(b) holds.

(ii) M i ∈ setcons(C1)ϑ1 and N i ∈ setant(C2)ϑ2. Let L1 = {Li1, . . . , Lim} be the set of
all indexed atoms Li in setcons(C1) with Liϑ1 = M i.

Similarly, we define L2 for C2 and ϑ2. Then ϑ1 and ϑ2 are unifiers of L1 and
L2, respectively. By the unification theorem (Theorem 2.3.42.3.4), there exist m.g.u.’s
λ1 and λ2 of L1 and L2, respectively. Applying contraction normalization to the
clauses C1λ1 and C2λ2 yields the factors

Γ′1 ` ∆′1, R
i and Si,Γ′2 ` ∆′2

fulfilling the following properties: Ri ≤s M i and Si ≤s N i as well as

Γ′1 ` ∆′1 ≤ss Γ1 ` ∆1 and Γ′2 ` ∆′2 ≤ss Γ2 ` ∆2.

We even know thatRi ≤s M i and Γ′1 ` ∆′1 ≤ss Γ1 ` ∆1 via a common substitution
(the same holds for Si ≤s N i and Γ′2 ` ∆′2 ≤ss Γ2 ` ∆2).

So, let η1, η2 be defined as follows:

λ1η1 = ϑ1 and λ2η2 = ϑ2.

By definition of the indexed resolvent D, σ is an m.g.u. of {M i, N i}.

Let η = η1∪η2 (note that such a definition is possible, as Γ1 ` ∆1,M
i andN i,Γ2 `

∆2 are variable-disjoint). By Riη = M i and Siη = N i, the set {Ri, Si} is unifiable
by the substitution ησ. Moreover, by the unification theorem (Theorem 2.3.42.3.4),
there exists an m.g.u. τ of {Ri, Si}.

Since τ is an m.g.u., there must be a substitution ρ such that τρ = ησ.

We thus obtain
Riτρ = M iσ and Siτρ = N iσ,

and

set(Γ′1)τρ ⊆ set(Γ1)σ and set(∆′1)τρ ⊆ set(∆1)σ
set(Γ′2)τρ ⊆ set(Γ2)σ and set(∆′2)τρ ⊆ set(∆2)σ.

But the clause
C = Γ′1τ,Γ

′
2τ ` ∆′1τ,∆

′
2τ

is an indexed resolvent of C1 and C2, and

set(Γ′1 ∪ Γ′2)τρ ⊆ set(Γ1 ∪ Γ2)σ and set(∆′1 ∪∆′2)τρ ⊆ set(∆1 ∪∆2)σ.

But this means that C ≤ss D, and thus property (c)(c) holds.

104

�

The following result, which is an indexed version of Proposition 2.3.172.3.17, will be important
for proving Theorem 6.3.156.3.15.

Proposition 6.2.25. Let C,D be sets of indexed clauses with C ≤ss D, and let δ be an
indexed resolution deduction from D. Then there exists an indexed resolution deduction γ
from C such that γ ≤ss δ.

PROOF. By Definition 6.2.106.2.10 and Lemma 6.2.246.2.24. �

6.3 COMPLETENESS AND ALL THAT

Finally, we will use the methods and results from the previous sections in order to show
that CERES indeed simulates reductive cut-elimination methods if we eliminate atomic
cuts too. To this end, we will first show that term resolution applied to characteristic
clause terms extracted from a proof in ACNFtop

ai is complete. This is done by showing that,
from such a clause term, we can always obtain a sequence of `resta-steps that eventually
leads to the clause term {`}. Subsequently, this completeness result will help us to show
that indexed resolution on characteristic clause sets obtained from a proof in ACNFtop

ai is
also complete. As in the case of term resolution, this is done by showing that, from such
a clause set, we can always obtain a sequence of `resi-steps that eventually leads to the
clause set {`}.

We will then combine these results with Proposition 6.2.256.2.25 in order to obtain that we
can derive each characteristic clause set of a proof in ACNFtop

ai after reductive elimination
of an atomic cut by a sequence of `resi-steps from the characteristic clause set of the
original proof, i.e. the proof before any reductive cut-elimination step had been applied.

The previous results can then be used to show that each atomic cut-elimination
step (by reductive methods), on a proof in ACNFtop

ai , corresponds to a `resi-step on the
characteristic clause sets of the corresponding proofs. Moreover, it will follow that the
characteristic clause set obtained from a proof in ACNFtop

ai is always refutable by indexed
resolution. This section is then concluded by showing that we can always obtain an
indexed clause set from the characteristic clause set of the original proof by indexed
resolution, which subsumes the characteristic clause set of the proof after reductive elim-
ination of an atomic cut. In other words, CERES simulates reductive cut-elimination
methods up to the elimination of atomic cuts.

The following results show that proofs in specific normal forms yield characteristic clause
terms in different term normal forms.

Lemma 6.3.1. Let ϕ be a chain of atomic cuts with atom indexing, i.e. an LK-proof in
ACNFtop

ai consisting only of atomic cuts. Then Θ(ϕ) is TACNFext
ai .

PROOF. We proceed by induction on the number n of atomic cuts in ϕ.

105

BASE CASE: n = 1. Then ϕ is of the form

A ` A1 A1 ` A cut(A1)
A ` A

where A1 is some indexed atom.
Clearly, Θ(ϕ) = {` A1} ⊕ {A1 `} is in TACNFext

ai .

INDUCTION HYPOTHESIS (IH): Assume the claim holds for all chains of atomic cuts ϕ
with atom indexing containing k atomic cuts, for 1 ≤ k ≤ n.

INDUCTION STEP: Suppose ρ1 and ρ2 are chains of atomic cuts with atom indexing
and end-sequents A ` Al+1 and Al+1 ` A, respectively. Furthermore, suppose ρ1 and ρ2

contain l and m atomic cuts, respectively, such that l+m = n. Then, by (IH), both Θ(ρ1)
and Θ(ρ2) are in TACNFext

ai . Assume w.l.o.g. that we have

Θ(ρ1) = {` A1} ⊕ {A1 ` A2} ⊕ . . .⊕ {Al−1 ` Al} ⊕ {Al `} and

Θ(ρ2) = {` Al+2} ⊕ {Al+2 ` Al+3} ⊕ . . .⊕ {Am−1 ` Am} ⊕ {Am `}.

Let us now construct a proof ϕ from ρ1 and ρ2 as follows:

(ρ1)

A ` Al+1

(ρ2)

Al+1 ` A
cut(Al+1)

A ` A

such that Al+1 occurs both in ρ1 and ρ2 at the appropriate positions. Clearly, ϕ is a chain
of atomic cuts with atom indexing containing n+ 1 atomic cuts, and, since Al+1 is now
a cut-ancestor, the characteristic clause terms of ρ1 and ρ2 change as follows:

Θ(ρ1) = {` A1} ⊕ {A1 ` A2} ⊕ . . .⊕ {Al−1 ` Al} ⊕ {Al ` Al+1}, and

Θ(ρ2) = {Al+1 ` Al+2} ⊕ {Al+2 ` Al+3} ⊕ . . .⊕ {Am−1 ` Am} ⊕ {Am `}.

The characteristic clause term Θ(ϕ) = Θ(ρ1)⊕Θ(ρ2) is clearly in TACNFext
ai . �

Remark. By a chain of atomic cuts, we mean a situation like the following:

(σ1)

A ` A3

(σ2)

A3 ` A2

A ` A2

(σ3)

A2 ` A1

A ` A1

(ρ1)

A1 ` A4

(ρ2)

A4 ` A
A1 ` A

A ` A
where σ1, . . . , σ3 and ρ1, ρ2 are subderivations which consist of atomic cuts on some
indexed atoms Ak.

Proposition 6.3.2. Let ψ be an LK-proof in ACNFtop
ai containing k instances of binary

inferences. Then Θ(ψ) is in TACNFext
ai .

106

PROOF. Let ψ be an arbitrary LK-proof in ACNFtop
ai . We proceed by induction on the

number n of instances of binary inferences in ψ.

BASE CASE: n = 0. Then ψ does not contain cuts, thus Θ(ψ) = {`} is trivially in
TACNFext

ai .

INDUCTION HYPOTHESIS (IH): Assume the claim holds for all LK-proofs ψ in ACNFtop
ai

containing k instances of binary inferences, for 1 ≤ k ≤ n.

INDUCTION STEP: Suppose ψ is an LK-proof in ACNFtop
ai containing n + 1 instances

of binary inferences. Then ψ is of the following form:

(ρ1)

S1

(ρ2)

S2 ξ
S′

some unary inferences
S

where ρ1 and ρ2 are subderivations of ψ with end-sequents S1 and S2, respectively. Fur-
thermore, ξ is the lowermost instance of a binary inference in ψ; this means all inferences
below ξ are unary.

Since ψ is in ACNFtop
ai , so are ρ1 and ρ2. Neither ρ1 nor ρ2 contain ξ, thus, the numbers

of instances of binary inferences k1 and k2 in ρ1 and ρ2, respectively, are strictly less than
n+ 1. Hence, we can apply the (IH) to both ρ1 and ρ2, and obtain that both Θ(ρ1) and
Θ(ρ2) are in TACNFext

ai .
We have to distinguish the following cases:

(i) ξ is a binary inference different from the cut-rule. Then ξ does not operate on cut-
ancestors, as all cuts appear above ξ in ψ. As a consequence, Θ(ψ) = Θ(ρ1)⊗Θ(ρ2).
Hence, by definition of TACNFext

ai , Θ(ψ) is in TACNFext
ai .

(ii) ξ is a cut. As all cuts have been shifted to the top, there can only be cuts above ξ
that operate on the same atomic formula. Consequently, the subproof of ψ rooted
in S′ must be a chain of atomic cuts.

Observe that Θ(ψ) = Θ(ρ1) ⊕ Θ(ρ2), as all inferences below ξ are unary. Fi-
nally, Lemma 6.3.16.3.1 yields that Θ(ψ) is in TACNFext

ai , as the subproof of ψ rooted
in S′ is a chain of atomic cuts.

�

Corollary 6.3.3. Let ψ be an LK-proof in ACNFtop containing k instances of binary infer-
ences. Then Θ(ψ) is in TACNFext.

PROOF. The proof is essentially that of Proposition 6.3.26.3.2; the only difference is that we
consider atoms instead of indexed atoms. �

107

Proposition 6.3.4. Let ψ be an LK-proof in ACNFtop (without chains of atomic cuts)
containing k instances of binary inferences (different from the atomic cut-rule). Then the
number l of atomic cuts in ψ is l = k + 1 (provided that ψ contains at least one atomic cut)
and Θ(ψ) is in TACNF.

PROOF. Let ψ be an arbitrary LK-proof in ACNFtop. We proceed by induction on the
number n of instances of binary inferences (different from the atomic cut-rule) in ψ.

BASE CASE: n = 0. Then ψ either consists of a single atomic cut only or all inferences
below the only atomic cut in ψ are unary. We distinguish cases:

(i) Let ψ consist of a single atomic cut only, i.e. ψ is of the form

A ` A A ` A cut(A)
A ` A

where A is some atomic formula.

Clearly, l = n + 1 = 0 + 1 = 1 and Θ(ψ) = {` A} ⊕ {A `}, by definition of
characteristic clause terms.

(ii) Let ψ be of the form

A ` A A ` A cut(A)
A ` A

some unary inferences
S

where A is some atomic formula and S is the end-sequent of ψ.

Clearly, l = n + 1 = 0 + 1 = 1 and, since unary inference rules do not change
the characteristic clause term defined for the subderivations above them, we get
Θ(ψ) = {` A} ⊕ {A `}, by definition of characteristic clause terms.

INDUCTION HYPOTHESIS (IH): Assume the claim holds for all LK-proofs ψ in ACNFtop

containing k instances of binary inferences (different from the atomic cut-rule), for
1 ≤ k ≤ n.

INDUCTION STEP: Suppose ψ is an LK-proof in ACNFtop containing n + 1 instances
of binary inferences (different from the atomic cut-rule). Then ψ is of the following form:

(ρ1)

S1

(ρ2)

S2 ξ
S′

some unary inferences
S

108

where ρ1 and ρ2 are subderivations of ψ with end-sequents S1 and S2, respectively. Fur-
thermore, ξ is the lowermost instance of a binary inference in ψ; this means all inferences
below ξ are unary.

Since ψ is in ACNFtop, so are ρ1 and ρ2. Neither ρ1 nor ρ2 contain ξ, thus, the numbers
of instances of binary inferences k1 and k2 in ρ1 and ρ2, respectively, are strictly less than
n+ 1. Hence, we can apply the (IH) to both ρ1 and ρ2, and obtain that l1 = k1 + 1 and
l2 = k2 + 1, where l1 and l2 are the numbers of atomic cuts in ρ1 and ρ2, respectively.
Moreover, the (IH) also yields that both Θ(ρ1) and Θ(ρ2) are in TACNF.

Since the number of instances of binary inferences in ψ is n+ 1, we get that n+ 1 =
k1 + k2 + 1. As all atomic cuts of ψ exclusively occur in ρ1 and ρ2, the number l of atomic
cuts in ψ is given by

l = l1 + l2 = (k1 + 1) + (k2 + 1) = (k1 + k2 + 1) + 1 = (n+ 1) + 1 = n+ 2.

Moreover, assume w.l.o.g. that

Θ(ρ1) = ({` A1} ⊕ {A1 `})⊗ . . .⊗ ({` Al1} ⊕ {Al1 `})

and
Θ(ρ2) = ({` Al1+1} ⊕ {Al1+1 `})⊗ . . .⊗ ({` Al} ⊕ {Al `}).

Due to the fact that ξ occurs below all cuts in ψ, none of the auxiliary formulas of ξ is an
ancestor of some formula in Ω. Therefore, by definition of Θ(ψ), it follows that

Θ(ψ) = Θ(ρ1)⊗Θ(ρ2)

= ({` A1} ⊕ {A1 `})⊗ . . .⊗ ({` Al} ⊕ {Al `}),

i.e. Θ(ψ) is in TACNF. �

Corollary 6.3.5. Let ψ be an LK-proof in ACNFtop
ai (without chains of atomic cuts) contain-

ing k instances of binary inferences (different from the atomic cut-rule). Then the number l
of atomic cuts in ψ is l = k + 1 (given that ψ contains at least one atomic cut) and Θ(ψ) is
in TACNFai.

PROOF. Due to Proposition 6.2.176.2.17, the proof is essentially that of Proposition 6.3.46.3.4; the
only difference is that we consider indexed atoms instead of atoms. �

Remark. If ψ is just `, then Θ(ψ) is trivially in TACNF (or TACNFai), but l = k+1 does
not hold in this case, as 0 6= 0 + 1. For this reason, we require that ψ in Proposition 6.3.46.3.4
and Corollary 6.3.56.3.5 contains at least one atomic cut.

We now show that if a clause term in TACNF (or TACNFai) can be obtained from
another clause term in the same normal form by removing a single subterm of the form
{` Ai} ⊕ {Ai `}, then the former clause term can be obtained from the latter by term
resolution via a single `rest-step.

109

Lemma 6.3.6. Let ϕ be an LK-proof and ψ be the LK-proof in ACNFtop (without chains
of atomic cuts) containing k atomic cuts such that ϕ >∗Rtop ψ and Θ(ψ) is in TACNF.
Furthermore, let ψ1 be obtained from ψ by eliminating a single atomic cut by reductive
methods, i.e. ψ >Rax ψ1. Then Θ(ψ) `rest Θ(ψ1).

PROOF. Assume that ψ1 was obtained from ψ by eliminating the atomic cut containing
the atom Aj by reductive methods, for some j with 1 ≤ j ≤ k. Thus, both ψ and ψ1 are
in ACNFtop; this means, by Proposition 6.3.46.3.4, that both Θ(ψ) and Θ(ψ1) are in TACNF.
Therefore we have

Θ(ψ) =
⊗

1≤i≤k
({` Ai} ⊕ {Ai `}),

and
Θ(ψ1) =

⊗
1≤i≤k,i6=j

({` Ai} ⊕ {Ai `}).

W.l.o.g. assume that the term trees of Θ(ψ) and Θ(ψ1) are the following:

⊗

⊗

⊕

{Aj+1 `}{` Aj+1}

⊕

{Aj `}{` Aj}

(a) Term tree of Θ(ψ)

⊗

⊕

{Aj+1 `}{` Aj+1}

(b) Term tree of Θ(ψ1)

Application of term resolution on Θ(ψ):

Θ(ψ)
Rt

Θ(ψ)[{` Aj}[{`}]0 ⊗ {Aj `}[{`}]0]λ︸ ︷︷ ︸
Θ(ψ)′

where

Θ(ψ).λ = {` Aj} ⊕ {Aj `},
{` Aj}.0 = {` Aj} and

{Aj `}.0 = {Aj `}.

Furthermore,

Θ(ψ)′ = ({` A1} ⊕ {A1 `})⊗ . . .⊗ ({`} ⊗ {`})⊗ . . .⊗ ({` Ak} ⊕ {Ak `}).

See Figure 6.26.2 for the term tree of Θ(ψ)′.

110

⊗

⊗

⊕

{Aj+1 `}{` Aj+1}

⊗

{`}{`}

Figure 6.2: Term tree of Θ(ψ)′

Application of term factoring on Θ(ψ)′:

Θ(ψ)′
ft⊗

Θ(ψ)′[Θ(ψ)′.λ2]λ︸ ︷︷ ︸
Θ(ψ)′′

where

Θ(ψ)′.λ = {`} ⊗ {`} and

Θ(ψ)′.λ2 = {`}.

Term factoring yields the term

Θ(ψ)′′ = ({` A1} ⊕ {A1 `})⊗ . . .⊗ {`} ⊗ . . .⊗ ({` Ak} ⊕ {Ak `}).

Term tree of Θ(ψ)′′:

⊗

⊗

⊕

{Aj+1 `}{` Aj+1}

{`}

Figure 6.3: Term tree of Θ(ψ)′′

Application of term factoring on Θ(ψ)′′:

Θ(ψ)′′
ft⊗

Θ(ψ)′′[Θ(ψ)′′.λ′′]λ′︸ ︷︷ ︸
Θ(ψ)′′′

111

where

Θ(ψ)′′.λ′ = {`} ⊗ ({` Aj+1} ⊕ {Aj+1 `}) and

Θ(ψ)′′.λ′′ = ({` Aj+1} ⊕ {Aj+1 `}).

Thus, we finally obtain that

Θ(ψ)′′′ = ({` A1} ⊕ {A1 `}) ⊗ . . . ⊗ ({` Aj−1} ⊕ {Aj−1 `}) ⊗ ({` Aj+1} ⊕ {Aj+1 `
})⊗ . . .⊗ ({` Ak} ⊕ {Ak `}).

Term tree of Θ(ψ)′′′:

⊗

⊕

{Aj+1 `}{` Aj+1}

Figure 6.4: Term tree of Θ(ψ)′′′.

Since the term tree of Θ(ψ)′′′ coincides with the term tree of Θ(ψ1), we obtain that
Θ(ψ)′′′ = Θ(ψ1) and thus, Θ(ψ) `rest Θ(ψ1). �

The following corollary states that Lemma 6.3.66.3.6 also holds for LK-proofs with atom
indexing.

Corollary 6.3.7. Let ϕ be an LK-proof with atom indexing and ψ be the LK-proof in
ACNFtop

ai (without chains of atomic cuts) containing k atomic cuts such that ϕ >∗Rtop ψ.
Furthermore, let ψ1 be obtained from ψ by eliminating a single atomic cut by reductive
methods, i.e. ψ >Rax ψ1. Then Θ(ψ) `rest Θ(ψ1).

PROOF. Due to Proposition 6.2.176.2.17, the proof is essentially that of Lemma 6.3.66.3.6; the only
difference is that we consider indexed atoms instead of atoms. �

In the following proposition, we will show that we can always reduce a characteristic
clause term of a proof in ACNFtop

ai (containing chains of atomic cuts) to the characteristic
clause term of a proof after elimination of these chains of atomic cuts using the relation
`reste .

Proposition 6.3.8. Let ϕ be an LK-proof and ψ be an LK-proof in ACNFtop
ai such that

ϕ >∗Rtop ψ. Then

Θ(ψ) `reste Θ(ψ1) `reste . . . `reste Θ(ψk−1) `reste Θ(ψk),

where Θ(ψk) is in TACNFai, but Θ(ψk−1) is not and ψi is the LK-proof in ACNFtop
ai obtained

from ψ after eliminating i cuts by reductive methods (i.e. ψ >iRax
ψi).

112

PROOF. Let ϕ be an LK-proof and ψ be an LK-proof in ACNFtop
ai such that ϕ >∗Rtop

ψ. By Proposition 6.3.26.3.2, Θ(ψ) is in TACNFext
ai . Moreover, let ψk be an ACNFtop

ai with
ψ >kRax

ψk such that Θ(ψk−1) is not in TACNFai, but Θ(ψk) is. By definition of `reste
and Proposition 6.1.146.1.14, we get Θ(ψ) `reste Θ(ψ1) `reste . . . `reste Θ(ψk), since each atomic
cut-elimination step corresponds to replacing a subterm of the form {Al ` Ai} ⊕ {Ai `
Aj} by {Al ` Aj}, where Ai is the atomic cut-formula of the eliminated cut and the
indexed atoms Aj or Al might not occur in the above subterms. �

The following theorem shows that we can always perform a stepwise refutation of a
characteristic clause term extracted from a proof in ACNFtop (without chains of atomic
cuts) using term resolution via the relation `rest .

Theorem 6.3.9 (Completeness of Term Resolution Deduction w.r.t. TACNF). Let ϕ be
an LK-proof and ψ be the LK-proof in ACNFtop (without chains of atomic cuts) containing
k atomic cuts such that ϕ >∗Rtop ψ. Then

Θ(ψ) `rest Θ(ψ1) `rest . . . `rest Θ(ψk) = {`},

where ψi is the LK-proof obtained from ψ after eliminating i cuts by reductive methods, i.e.
ψ >iRax

ψi.

PROOF. Let ϕ be an LK-proof and ψ be the LK-proof in ACNFtop containing k atomic
cuts obtained from ϕ by reductive methods.

We proceed by induction on the number n of subterms of the form {` Ai} ⊕ {Ai `}
occurring in Θ(ψ), for 1 ≤ i ≤ n.

BASE CASE: n = 0. Then we have ψ = ϕ, i.e. ϕ (and thus ψ) is cut-free. By defini-
tion of characteristic clause terms, it follows that Θ(ψ) = {`}. Hence, Θ(ψ) `rest {`}.

INDUCTION HYPOTHESIS (IH): Assume the claim holds for all Θ(ψ) in TACNF con-
taining k subterms of the form {` Ai} ⊕ {Ai `} for 1 ≤ i ≤ k ≤ n.

INDUCTION STEP: Suppose ψ is an LK-proof in ACNFtop without chains of atomic
cuts containing n + 1 atomic cuts. Then, by Proposition 6.3.46.3.4, Θ(ψ) is a characteristic
clause term in TACNF containing n + 1 subterms of the form {` Ai} ⊕ {Ai `}, for
1 ≤ i ≤ n+ 1.

Furthermore, suppose ψ1 is the LK-proof obtained from ψ by eliminating the atomic
cut containing some atom Aj , for 1 ≤ j ≤ n+1. Since ψ is in ACNFtop, so is ψ1, and thus,
again by Proposition 6.3.46.3.4, Θ(ψ1) is in TACNF. We denote Θ(ψ1) as C1 in the following.

Since both Θ(ψ) and C1 are in TACNF, we can apply Lemma 6.3.66.3.6. Consequently,
we have that Θ(ψ) `rest C1. Moreover, since ψ1 contains fewer atomic cuts than ψ, it
follows that C1 = Θ(ψ1) contains fewer subterms of the form {` Ai}⊕{Ai `} than Θ(ψ).
Therefore, we can apply the (IH) to C1, and obtain that C1 `rest . . . `rest Θ(ψn+1) = {`}.

Putting things together, we get Θ(ψ) `rest Θ(ψ1) `rest . . . `rest Θ(ψn+1) = {`}. �

Theorem 6.3.96.3.9 also holds for LK-proofs with atom indexing:

113

Corollary 6.3.10. Let ϕ be an LK-proof with atom indexing and ψ be the LK-proof in
ACNFtop

ai (without chains of atomic cuts) containing k atomic cuts such that ϕ >∗Rtop ψ.
Then

Θ(ψ) `rest Θ(ψ1) `rest . . . `rest Θ(ψk) = {`},

where ψi is the LK-proof obtained from ψ after eliminating i cuts by reductive methods, i.e.
ψ >iRax

ψi.

PROOF. Due to Proposition 6.2.176.2.17, the proof is essentially that of Theorem 6.3.96.3.9; the
only difference is that we consider indexed atoms instead of atoms. �

Theorem 6.3.116.3.11 tells us that we can also perform a stepwise refutation of a characteristic
clause term extracted from an arbitrary LK-proof in ACNFtop

ai using term resolution via
the relation `resta .

Theorem 6.3.11 (Completeness of Term Resolution Deduction w.r.t. TACNFext
ai). Let

ϕ be an LK-proof with atom indexing and ψ be the LK-proof in ACNFtop
ai containing k

atomic cuts such that ϕ >∗Rtop ψ. Then

Θ(ψ) `resta Θ(ψ1) `resta . . . `resta Θ(ψk) = {`},

where ψi is the LK-proof obtained from ψ after eliminating i cuts by reductive methods, i.e.
ψ >iRax

ψi.

PROOF. By Proposition 6.3.86.3.8, Corollary 6.3.106.3.10 and the definition of `resta . �

The following lemma shows that we can always perform a stepwise refutation of a
characteristic clause set extracted from a proof in ACNFtop

ai (without chains of atomic
cuts) using indexed resolution via the relation `resi .

Lemma 6.3.12. Let ϕ be an LK-proof with atom indexing and ψ be the LK-proof in
ACNFtop

ai (without chains of atomic cuts) containing k atomic cuts such that ϕ >∗Rtop ψ.
Furthermore, let ψ1 be obtained from ψ by eliminating a single atomic cut by reductive
methods, i.e. ψ >Rax ψ1. Then there exists an indexed resolution refutation of CL(ψ) with

CL(ψ) `resi CL(ψ1) `resi . . . `resi {`}.

PROOF. Let ϕ be an LK-proof with atom indexing, and let ψ be the LK-proof in ACNFtop
ai

containing k atomic cuts obtained from ϕ by reductive methods. Furthermore, let ψ1 be
obtained from ψ by eliminating a single atomic cut by reductive methods. Then, by Corol-
lary 6.3.56.3.5, both Θ(ψ) and Θ(ψ1) are in TACNFai. In the following we let C1 = Θ(ψ1).
We proceed by induction on the number n of indexed clauses in CL(ψ).

BASE CASE: n = 1. Then we have CL(ψ) = {`}44, and thus trivially CL(ψ) `resi {`}.

4Since Θ(ψ) is in TACNF, the only possibility in which CL(ψ) contains one indexed clause, is that it
only contains `.

114

INDUCTION HYPOTHESIS (IH): Assume the claim holds for all CL(ψ) containing k
indexed clauses with 1 ≤ k ≤ n, where Θ(ψ) is in TACNFai.

INDUCTION STEP: Suppose CL(ψ) is a clause set containing n + 1 indexed clauses,
where Θ(ψ) is in TACNFai. Furthermore, suppose ψ′ was obtained from ψ by eliminating
the atomic cut with cut-formula Ajj , for 1 ≤ j ≤ n+ 1. Then we have that Θ(ψ) `rest C1,

by Corollary 6.3.76.3.7, where the subterm {` Ajj} ⊕ {A
j
j `} was resolved in order to obtain

C1 from Θ(ψ). By Definitions 6.1.36.1.3 and 6.1.76.1.7, it follows that

Θ(ψ) =
⊗

1≤i≤n+1

({` Aii} ⊕ {Aii `}),

and
C1 =

⊗
1≤i≤n+1,i 6=j

({` Aii} ⊕ {Aii `}).

Since C1 is in TACNFai and⊗ is commutative for (indexed) clauses defined via multisets,
there is a characteristic clause term Θ(ψ)′ = C1 ⊗ ({` Ajj} ⊕ {A

j
j `}) s.t. Θ(ψ) ∼ Θ(ψ)′,

i.e. CL(ψ) = |Θ(ψ)′|.
Therefore, we have that |Θ(ψ)′| = |C1| × {` Ajj ;A

j
j `}. As a consequence, |C1|

contains k ≤ n indexed clauses; thus, we can apply the (IH) to |C1| and obtain an
indexed resolution refutation δ of |C1| of the following form (w.l.o.g.):

S1 S′1 Sl S′l

S S′

`
Ri

Ri Ri
. . .

Figure 6.5: Indexed resolution refutation δ of |C1|.

where S1, S
′
1, . . . , Sl, S

′
l are all the indexed clauses in |C1|, and 2 ∗ l = k, i.e. if |C1|

contains more than one element, then there is always a pair (Sm, S
′
m) with 1 ≤ m ≤ l

that can be resolved using indexed resolution. This means each leaf of δ corresponds to
an indexed clause in |C1|.

Moreover, since Θ(ψ), C1 are in TACNFai, by semantics of clause terms, it follows that
CL(ψ) contains all possible indexed clauses of the form Γ ` ∆ with Γ,∆ ⊆ {A1

1, . . . , A
n+1
n+1}

such that Γ ∩∆ = ∅, for 1 ≤ j ≤ n+ 1.
Hence, |C1| contains all possible indexed clauses of the form Γ \ {Ajj} ` ∆ \ {Ajj},

where Γ,∆ are defined as for the indexed clauses in CL(ψ). Consequently, for each
indexed clause S ∈ |C1|, there are two indexed clauses S ◦ ` Ajj and Ajj ` ◦ S in CL(ψ).
Thus, we can construct an indexed resolution refutation γ of CL(ψ) by extending δ as
shown in Figure 6.66.6.

115

S
1

S
′1

S
l

S
′l

S
S
′

`
R
i

R
i

R
i

...
S

1 ◦
S

1
c ∗r ,c ∗l

S
1
◦
`
A
jj

A
jj `
◦
S

1
R
i

S
′1 ◦

S
′1
c ∗r ,c ∗l

S
′1
◦
`
A
jj

A
jj `
◦
S
′1
R
i

S
l ◦
S
l
c ∗r ,c ∗l

S
l ◦
`
A
jj

A
jj `
◦
S
l
R
i

S
′l ◦
S
′l
c ∗r ,c ∗l

S
′l ◦
`
A
jj

A
jj `
◦
S
′l
R
i

Figure
6.6:Indexed

resolution
refutation

γ
of

C
L

(ψ
).

116

Furthermore, as shown in Figure 6.66.6, the leaves of γ correspond to the elements of
CL(ψ). Therefore, there exists a resolution deduction of each sequent S1, S

′
1, . . . , Sl, S

′
l

of |C1| from CL(ψ) that resolves solely upon Ajj . Hence, we also have CL(ψ) `resi |C1|.
Putting things together, we have CL(ψ) `resi CL(ψ1) `resi . . . `resi {`}.

�

Proposition 6.3.13. Let ϕ be an LK-proof with atom indexing and ψ be an LK-proof in
ACNFtop

ai such that ϕ >∗Rtop ψ. Then

CL(ψ) `resi CL(ψ1) `resi . . . `resi CL(ψk−1) `resi CL(ψk),

where Θ(ψk) is in TACNFai, but Θ(ψk−1) is not and ψi is the LK-proof in ACNFtop
ai obtained

from ψ after eliminating i cuts by reductive methods (i.e. ψ >iRax
ψi).

PROOF. Let ϕ be an LK-proof and ψ be an LK-proof in ACNFtop
ai such that ϕ >∗Rtop

ψ. By Proposition 6.3.26.3.2, Θ(ψ) is in TACNFext
ai . Moreover, let ψk be an ACNFtop

ai with
ψ >kRax

ψk such that Θ(ψk−1) is not in TACNFai, but Θ(ψk) is. By definition of `resi
and Proposition 6.2.166.2.16, we get CL(ψ) `resi CL(ψ1) `resi . . . `resi CL(ψk), since each
atomic cut-elimination step corresponds to replacing a subterm of the form {Al ` Ai} ⊕
{Ai ` Aj} by {Al ` Aj}, where Ai is the atomic cut-formula of the eliminated cut and
the indexed atoms Aj or Al might not occur in the above subterms. �

Theorem 6.3.146.3.14 tells us that we can also perform a stepwise refutation of a characteristic
clause set extracted from an arbitrary LK-proof in ACNFtop

ai using indexed resolution via
the relation `resi .

Theorem 6.3.14. Let ϕ be an LK-proof with atom indexing and ψ be the LK-proof in
ACNFtop

ai containing k atomic cuts such that ϕ >∗Rtop ψ. Then

CL(ψ) `resi CL(ψ1) `resi . . . `resi CL(ψk) = {`},

where ψi is the LK-proof in ACNFtop
ai obtained from ψ after eliminating i cuts by reductive

methods (i.e. ψ >iRax
ψi).

PROOF. By Proposition 6.3.136.3.13 and Lemma 6.3.126.3.12. �

Theorem 6.3.15. Let ϕ be an LK-proof with atom indexing, and let ψ be the LK-proof in
ACNFtop

ai containing k atomic cuts such that ϕ >∗Rtop ψ. Then

CL(ψ) `resi CL(ψ1) `resi . . . `resi CL(ψk) = {`} and

CL(ϕ) `resi D
1 `resi . . . `resi D

k = {`}

such that Di ≤ss CL(ψi), for 1 ≤ i ≤ k, where ψi is the LK-proof obtained from ψ after
eliminating i cuts by reductive methods (i.e. ψ >iRax

ψi), and Di is a set of clauses obtained
from Di−1 by indexed resolution (i.e. Di−1 `resi Di), where D0 = CL(ϕ).

117

PROOF. Let ϕ be an LK-proof with atom indexing, and let ψ be the LK-proof in ACNFtop
ai

containing k atomic cuts obtained from ϕ by reductive methods.
Since ψ is in ACNFtop

ai , Θ(ψ) is in TACNFext
ai , by Proposition 6.3.26.3.2. Moreover, by The-

orem 6.3.116.3.11, it follows that

Θ(ψ) `resta Θ(ψ1) `resta . . . `resta Θ(ψk) = {`},

where ψi is the LK-proof obtained from ψ after eliminating i atomic cuts by reductive
methods (i.e. ψ >iRax

ψi).
Furthermore, Theorem 6.3.146.3.14 yields

CL(ψ) `resi CL(ψ1) `resi . . . `resi CL(ψk) = {`}.

Since ϕ >∗Rtop ψ and ψ is in ACNFtop
ai , we can apply Theorem 6.2.216.2.21 and obtain that

Θ(ϕ) ≤ss Θ(ψ), i.e. CL(ϕ) ≤ss CL(ψ) by definition of ≤ss and CL.
Moreover, since CL(ϕ) ≤ss CL(ψ) and CL(ψ) `resi CL(ψ1) `resi . . . `resi CL(ψk) = {`},
there are indexed resolution deductions δij from CL(ψi−1) for each clause Sij ∈ CL(ψi),
where ψ0 = ψ for 1 ≤ i ≤ k and 1 ≤ j ≤ size(CL(ψi))(here size(CL(ψi)) denotes the
number of elements in CL(ψi)).

Thus, by repeatedly applying Proposition 6.2.256.2.25, there are indexed resolution de-
ductions γij from Di−1 s.t. γij ≤ss δij , for 1 ≤ i ≤ k and 1 ≤ j ≤ size(CL(ψi)), where
D0 = CL(ϕ) and Di =

{S′ij | γij res. ded. of S′ij from Di−1, δij res. ded. of Sij from CL(ψi−1) s.t. γij ≤ss δij}.

As a consequence, Di ≤ss CL(ψi) for 1 ≤ i ≤ k. �

We will now show that indexed resolution is complete w.r.t. to characteristic clause sets
obtained from an LK-proof ϕ with atom indexing, i.e. that there always exists an indexed
resolution refutation of an unsatisfiable characteristic clause set CL(ϕ).

Theorem 6.3.16. Let ϕ be an LK-proof with atom indexing and CL(ϕ) the indexed charac-
teristic clause set of ϕ. Then there exists an indexed resolution refutation of CL(ϕ).

PROOF. Let ϕ be an LK-proof with atom indexing and CL(ϕ) the indexed characteristic
clause set of ϕ. Furthermore, let ψ be an ACNFtop

ai of ϕ containing k atomic cuts such
that ϕ >∗Rtop ψ. By Theorem 6.3.156.3.15, we obtain

CL(ϕ) `resi D
1 `resi . . . `resi D

k = {`} (*)

such that Di is a set of indexed clauses with Di−1 `resi−1 Di, where D0 = CL(ϕ).
By definition of `resi , each indexed clause Sij ∈ Di \ Di−1 can only be obtained from

clauses Sil ◦ ` Ai−1
i−1 and Ai−1

i−1 ` ◦ Sim in Di−1, where the contraction normalization
of Sil ◦ Sim equals Sij and Ai−1

i−1 is the atom resolved upon in Di−1 `resi−1 Di. If on the
other hand, Sij ∈ Di ∩ Di−1, then we trivially have that Di−1 `resi−1 S

i
j . By combining all

applications of Ri and contractions (in the correct form: Dk is the root and all clauses in
CL(ϕ) are axioms) used in the sequence (**), we obtain an indexed resolution retutation
of CL(ϕ). �

118

Theorem 6.3.176.3.17 shows that each atomic cut-elimination step (on a proof in ACNFtop
ai)

corresponds to a `resi-step on the corresponding characteristic clause terms. In other
words, indexed resolution on characteristic clause sets (obtained from characteristic
clause terms in TACNFext

ai) derives the characteristic clause set after the elimination of
atomic cuts by reductive methods.

Theorem 6.3.17. Let ϕ and ϕ′ be LK-proofs in ACNFtop
ai with ϕ >Rax ϕ

′. Then CL(ϕ) `resi
CL(ϕ′).

PROOF. Immediate consequence of Theorem 6.3.146.3.14. �

Finally, Theorem 6.3.186.3.18 shows that we can always obtain a clause set D from the char-
acteristic clause set of an arbitrary skolemized LK-proof ϕ by indexed resolution such
that D subsumes the characteristic clause set of an ACNFtop

ai of ϕ after each atomic cut-
elimination step. In other words, indexed resolution on the original characteristic clause
set of ϕ can simulate the elimination of atomic cuts by reductive methods.

Theorem 6.3.18. Let ϕ be an arbitrary skolemized LK-proof and ψ be an ACNFtop
ai of ϕ. If

ψ >Rax ψ
′, then there exists a clause set D such that CL(ϕ) `resi D and D ≤ss CL(ψ′).

PROOF. Let ϕ be an arbitrary skolemized LK-proof and ψ be an ACNFtop
ai of ϕ (in fact, an

ACNFtop
ai of the result of applying atom indexing to ϕ), i.e. ϕ >∗Rtop ψ. W.l.o.g. assume

that ψ contains k atomic cuts. Then, by Theorem 6.3.156.3.15, we get

CL(ψ) `resi CL(ψ1) `resi . . . `resi CL(ψk) = {`} and

CL(ϕ) `resi D
1 `resi . . . `resi D

k = {`}

such that Di ≤ss CL(ψi), for 1 ≤ i ≤ k, where ψi is the LK-proof obtained from ψ
after eliminating i cuts by reductive methods (i.e. ψ >iRax

ψi), and Di is a set of clauses
obtained from Di−1 by indexed resolution (i.e. Di−1 `resi Di), where D0 = CL(ϕ).

Thus, in particular, CL(ϕ) `resi D1 and D1 ≤ss CL(ψ1). But since we have ψ >Rax ψ
1,

setting D = D1 and ψ′ = ψ1 yields

CL(ϕ) `resi D and D ≤ss CL(ψ′).

�

Remark. Note that Theorem 6.3.186.3.18 actually tells us that indexed resolution on the origi-
nal characteristic clause set can only simulate the elimination of atomic cuts by reductive
methods if a specific order in which the atomic cuts are eliminated is maintained. This
follows from the fact that we first reduce a clause term in TACNFext

ai to a clause term
in TACNFai. The general simulation should, however, be obtainable by extending the
proofs of Proposition 6.1.146.1.14 and Proposition 6.2.166.2.16 in such a way that the `reste- and
`resi-steps, respectively, eventually arrive at {`}.

119

CHAPTER 7
Conclusion

This thesis was set out to answer the question whether the method CERES is able to
simulate reductive cut-elimination methods a là Gentzen. Building on a previously estab-
lished result by Baaz and Leitsch [99] (i.e. that CERES simulates reductive methods up
to the elimination of non-atomic cuts), the goal was, more precisely, to show that the
characteristic clause set after reductive elimination of atomic cuts can be obtained by a
restricted form of resolution, namely indexed resolution, from the characteristic clause set
of the original proof (i.e. before any form of cut-elimination). Since this approach relies
on the unsatisfiability of indexed characteristic clause sets, answering the above question
also involves proving the completeness of indexed resolution w.r.t. ordinary characteristic
clause sets.

In Chapter 66, we presented and established the vast majority of methods and results
needed in order to answer the above question positively. The method of term resolution,
introduced in Section 6.16.1, operates on the syntax of clause terms and its intended use
is the elimination of atoms A from a clause term of the form X1 ⊕X2 such that A has
complementary positions inX1 andX2. As a first result towards proving the completeness
of term resolution w.r.t. clause terms in TACNFext

ai , we have shown that we can always
obtain a clause term in TACNFai from a clause term in TACNFext

ai using term resolution
via the `reste-relation.

Our formulation of indexed resolution w.r.t. ordinary characteristic clause sets was
defined in Section 6.26.2 (and has similarities to the complete resolution refinement of
atomic cut-linkage as introduced by Bruno Woltzenlogel Paleo for a different notion of
characteristic clause sets called swapped clause sets [5151]). After defining the notion of
a proof with atom indexing (i.e. a proof whose atomic subformulas of all cut-formulas
have been assigned a unique index), we have shown that applying the proof rewriting
rules defined in Chapter 33 preserves the fact that the atomic subformulas of the auxiliary
formulas of each cut in an indexed proof have exactly the same indices. Furthermore, we
have shown that a proof rewriting step on proofs with atom indexing corresponds to a
specific class of transformation steps on the corresponding characteristic clause terms.

121

This result was then used to show that the characteristic clause term of an ACNFtop
ai

(i.e. a proof with atom indexing in which all cuts are atomic and appear at the top)
of an indexed proof is subsumed by the characteristic clause term thereof. As in the
case of term resolution, towards proving the completeness of indexed resolution w.r.t.
clause sets obtained from clause terms in TACNFext

ai , we have shown that we can always
obtain a clause set of a term in TACNFai from a clause set of a term in TACNFext

ai using
indexed resolution via the `resi-relation. We have also seen that the relations `resta and
`resi have a specific correspondence on the syntactical and semantical level of clause
terms, respectively. In particular, if we obtain a clause term Y from a clause term X using
the `resta-relation, then we can obtain |Y | from |X| using the `resi-relation. Section 6.26.2
was then concluded by showing that if a set of indexed clauses subsumes another set
of indexed clauses, then there always exists an indexed resolution deduction from the
former that subsumes an indexed resolution deduction from the latter.

As a first step in Section 6.36.3, we have shown that a proof ϕ in ACNFtop
ai either

yields a clause term in TACNFext
ai or in TACNFai depending on the fact whether ϕ

contains so-called chains of atomic cuts or not. Subsequently, this fact was then used to
prove the completeness of both term and indexed resolution w.r.t. characteristic clause
terms and sets obtained from a proof in ACNFtop

ai . In the case of term resolution, this
was done by showing that each atomic cut-elimination step corresponds to a specific
`resta-step on the corresponding characteristic clause terms, where term resolution only
operates on subterms X1 ⊕ X2 in which the atomic cut-formula of the eliminated cut
occurs both in a clause in X1 and in X2, but in complementary positions. The first
part of the completeness-proof for indexed resolution has taken a similar approach w.r.t.
the `resi-relation. Particularly, we used the information provided by the corresponding
`resta-sequence, which gives us insight into the structural changes that come with the
elimination of an atomic cut from a proof in ACNFtop

ai . On the term-level this amounts to
cutting out or replacing a subterm containing the cut-formula of the eliminated cut. Since
these structural changes are always of a specific form, the semantical changes can be
obtained by `resi-steps in which the corresponding indexed resolution deductions always
have a specific shape. More precisely, each application of the rule Ri in a single `resi-step
is restricted to a fixed indexed atom, namely to the one corresponding to the atomic cut-
formula of the eliminated cut. As a consequence, we have seen that eliminating a single
atomic cut by reductive methods (from a proof in ACNFtop

ai) corresponds to a `resi-step on
the corresponding characteristic clause sets. The final part of the completeness-proof was
the fact that we can always obtain an indexed clause set from the characteristic clause set
of the proof ϕ before applying any kind of reductive cut-elimination via the `resi-relation,
which subsumes the characteristic clause set of an ACNFtop

ai of ϕ after eliminating an
atomic cut by reductive methods. We have also seen that, by iterating the elimination
of atomic cuts, we will eventually end up with a cut-free proof, i.e. the corresponding
`resi-steps will lead to the clause set {`}. Finally, these `resi-steps have been combined to
a single resolution refutation of the characteristic clause set of the original proof. Since
the characteristic clause set of the original proof equals the characteristic clause set of a
CERES normal form of this proof, this means that CERES in conjunction with indexed

122

resolution can actually simulate the elimination of atomic cuts by reductive methods.
Thus, CERES (for classical first-order logic) applied to proofs with atom indexing is
complete.

However, it should be noted that the obtained result is not fully general in the sense
that CERES simulates arbitrary orders of cut-elimination steps, as the simulation result
depends on the order in which the atomic cuts have been eliminated. This is due to the
fact that we first transform a TACNFext

ai into a TACNFai.

7.1 A P P L I C AT I O N S

We have already mentioned that the results obtained in this thesis are not only important
in order to reduce the search space for resolution refutations of characteristic clause sets
obtained by CERES but they do also have important implications regarding CERES for
intuitionistic logic. In particular, the completeness of a specific CERES-variant for intu-
itionistic logic relies on the fact that indexed resolution is complete w.r.t. characteristic
clause sets obtained from intuitionistic proofs with atom indexing. Since each LJ-proof is
also an LK-proof [4747], the completeness of indexed resolution w.r.t. clause sets obtained
from an LK-proof with atom indexing also includes the case that we consider proofs in
LJ. As a consequence, this thesis provides a partial answer to the following conjecture
posed by Reis [4040, Conjecture 1]:

Conjecture. Let ϕ be a skolemized LJ-proof with cuts. Then the computation of the fol-
lowing steps yields an intuitionistic proof:

• Compute the atom indexing of ϕ.

• Extract the characteristic clause set CL(ϕ).

• Find a resolution refutation γ of CL(ϕ) using indexed resolution.

• Compute the projections.

• Join the projections (see [4040, Definition 32]) using γ to guide the joining order.

Our result provides a positive answer to the step coloured in green, i.e. whether it is
always possible to find an indexed resolution refutation of the characteristic clause set
obtained from an LJ-proof with atom indexing. However, the step coloured in red is still
open, i.e. the final step towards proving the completeness of CERES for intuitionistic logic
consists of showing that the indexed resolution refutation of the characteristic clause set
guides the joining of the projections in a way that the result is an intuitionistic proof [4040].

7.2 P O S S I B L E F U T U R E W O R K

Apart from answering the remaining parts of the conjecture and thus to prove the com-
pleteness of CERES for intuitionistic logic, there are still a few other future research
possibilities that are more directly linked to the results obtained in this thesis.

123

Since we now know that CERES can simulate reductive cut-elimination methods up
to the elimination of atomic cuts, an obvious question that arises in this context is:

How does atomic cut-elimination effect the complexity of the CERES-method?

One has to keep in mind, however, that this does not only include investigating the
expense of the indexed resolution steps, but also the preprocessing step in the form of
computing the atom indexing of the input-proof on the one hand and the additional
cut-reduction steps that are needed in order to shift the atomic cuts to the top on the
other hand. In particular, this knowledge would be useful in order to compare CERES
and reductive methods complexity-wise in a more general setting.

On a more practical level, the CERES-implementation could be extended to include
atomic cut-elimination based on the theoretical basis obtained in this thesis. This could
prove very useful, as the search space for resolution refutations—when using indexed
resolution—is strongly reduced.

Since the method of term resolution is still more or less in the early stages of its
development, there is probably still some potential to extend or modify the method in
order to explore whether there are more general classes of clause terms for which term
resolution is complete.

Due to the fact that our simulation result only covers the case that the reductive
elimination of atomic cuts was done according to a specific order, it would definitely be
desired to prove the results in such a way that the simulation covers an arbitrary order
in which the cuts have been eliminated.

124

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[2] Jeremy Avigad and Solomon Feferman. Chapter V – Gödel’s Functional (“Dialec-
tica”) Interpretation. Studies in Logic and the Foundations of Mathematics, 137:337–
405, 1998.

[3] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, first edition, 1998.

[4] Matthias Baaz, Agata Ciabattoni, and Christian G. Fermüller. Cut-Elimination for
First-Order Gödel Logic by Hyperclause Resolution. In Logic for Programming,
Artificial Intelligence, and Reasoning, pages 451–466. Springer, 2008.

[5] Matthias Baaz and Alexander Leitsch. On Skolemization and Proof Complexity.
Fundamenta Informaticae, 20(4):353–379, 1994.

[6] Matthias Baaz and Alexander Leitsch. Cut Normal Forms and Proof Complexity.
Annals of Pure and Applied Logic, 97(1):127–177, 1999.

[7] Matthias Baaz and Alexander Leitsch. Cut-Elimination and Redundancy-
Elimination by Resolution. Journal of Symbolic Computation, 29(2):149–177, 2000.

[8] Matthias Baaz and Alexander Leitsch. Ceres in Many-valued Logics. In Logic for
Programming, Artificial Intelligence, and Reasoning, pages 1–20. Springer, 2005.

[9] Matthias Baaz and Alexander Leitsch. Towards a Clausal Analysis of Cut-
Elimination. Journal of Symbolic Computation, 41(3-4):381–410, 2006.

[10] Matthias Baaz and Alexander Leitsch. Methods of Cut-Elimination, volume 34.
Springer, 2011.

[11] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Pro-
gram Extraction from Normalization Proofs. Studia Logica, 82(1):25–49, 2006.

[12] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined Program
Extraction from Classical Proofs. Annals of Pure and Applied Logic, 114(1):3–25,
2002.

125

[13] George Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic.
Cambridge University Press, fifth edition, 2007.

[14] Walter S. Brainerd and Lawrence H. Landweber. Theory of Computation. 1974.

[15] William Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating Model
Theory and Proof Theory. The Journal of Symbolic Logic, 22(03):269–285, 1957.

[16] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM (JACM), 7(3):201–215, 1960.

[17] Elmar Eder. The Cut Rule in Theorem Proving. In Intellectics and Computational
Logic, pages 101–123. Springer, 2000.

[18] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.

[19] Hillel Fürstenberg and Benji Weiss. Topological Dynamics and Combinatorial Num-
ber Theory. Journal d’Analyse Mathématique, 34(1):61–85, 1978.

[20] Jean H. Gallier. Logic For Computer Science: Foundations of Automatic Theorem
Proving. Harper & Row Publishers, Inc., 1985.

[21] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210,405–431, 1934-35.

[22] Philipp Gerhardy and Ulrich Kohlenbach. Extracting Herbrand Disjunctions by
Functional Interpretation. Archive for Mathematical Logic, 44(5):633–644, 2005.

[23] Paul C. Gilmore. A Proof Method for Quantification Theory: Its Justification and
Realization. IBM Journal of Research and Development, 4(1):28–35, 1960.

[24] Jean-Yves Girard. Proof Theory and Logical Complexity, volume 1. Bibliopolis, Napoli,
1987.

[25] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[26] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica, 12(3-4):280–287, 1958.

[27] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD thesis, Uni-
versity of Paris, 1930.

[28] Stefan Hetzl. Characteristic Clause Sets and Proof Transformations. PhD thesis,
Vienna University of Technology, 2007.

[29] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Ceres in Higher-Order Logic.
Annals of Pure and Applied Logic, 162(12):1001–1034, 2011.

126

[30] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo. Her-
brand Sequent Extraction. In Intelligent Computer Mathematics, pages 462–477.
Springer, 2008.

[31] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. ACM SIGACT News, 32(1):60–65, 2001.

[32] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics, 2008.

[33] Steven G. Krantz. The History and Concept of Mathematical Proof. Accessed via
http://www.math.wustl.edu/%7Esk/eolss.pdf (15 March 2015), 2007.

[34] Alexander Leitsch. The Resolution Calculus. Springer-Verlag New York, Inc., 1997.

[35] Alexander Leitsch. On Proof Mining by Cut-Elimination. Invited talk, July 18, All
about Proofs, Proofs for all (APPA), Vienna Summer of Logic, Vienna, Austria, 2014.

[36] Alexander Leitsch, Giselle Reis, and Bruno Woltzenlogel Paleo. Towards Ceres
in Intuitionistic Logic. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[37] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, 2012.

[38] Vladimir P. Orevkov. Lower Bounds for Increasing Complexity of Derivations after
Cut Elimination. Journal of Soviet Mathematics, 20(4):2337–2350, 1982.

[39] Pavel Pudlák. The Lengths of Proofs. In Samuel R. Buss, editor, Handbook of Proof
Theory, pages 547–637. Elsevier, 1998.

[40] Giselle Reis. Cut-Elimination by Resolution in Intuitionistic Logic. PhD thesis, Vienna
University of Technology, 2014.

[41] Clemens Richter. Proof Transformation by Resolution. PhD thesis, Vienna University
of Technology, 2006.

[42] John A. Robinson. A Machine-Oriented Logic based on the Resolution Principle.
Journal of the ACM (JACM), 12(1):23–41, 1965.

[43] Kurt Schütte. Beweistheorie, volume 103. Springer, Berlin, 1960.

[44] Raymond M. Smullyan. First-Order Logic. Courier Dover Publications, 1995.

[45] Richard Statman. Lower Bounds on Herbrand’s Theorem. Proceedings of the Ameri-
can Mathematical Society, pages 104–107, 1979.

[46] William W. Tait. Normal Derivability in Classical Logic. In The Syntax and Semantics
of Infinitary Languages, pages 204–236. Springer, 1968.

127

[47] Gaisi Takeuti. Proof Theory. Courier Dover Publications, 2013.

[48] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Number 43.
Cambridge University Press, 2000.

[49] Bartel L. Van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Archiv
Wiskunde, 15(2):212–216, 1927.

[50] Daniel Weller. CERES in Higher-Order Logic. PhD thesis, Vienna University of
Technology, 2010.

[51] Bruno Woltzenlogel Paleo. A General Analysis of Cut-Elimination by CERes. PhD
thesis, Vienna University of Technology, 2009.

[52] Richard Zach. Hilbert’s Program Then and Now. Philosophy of Logic. Handbook of
the Philosophy of Science, 5:411–447, 2006.

128

	Introduction
	Structure of the Thesis

	Preliminaries
	First-order Logic
	Sequent Calculus
	Resolution Calculus

	The Problem of Cut-Elimination
	Motivation
	Cut-Elimination Theorem & Consequences
	Reductive Cut-Elimination

	Cut-Elimination by Resolution
	Motivation & Overview
	Clause Terms
	The Method CERES

	Complexity Analysis of CERES
	Canonic Resolution Refutations
	Characteristic Terms and Cut-Reduction
	Speed-up Results

	A More General Analysis of Characteristic Clause Sets and Cut-Elimination
	Term Resolution
	Indexed Resolution
	Completeness and All That

	Conclusion
	Applications
	Possible Future Work

	Bibliography

