
InjectionCop
A Pluggable Type Checker for Inferencing Custom

Type Qualifiers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael Racz, BSc
Matrikelnummer 0627659

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof.Dr. Wolfgang Kastner
Mitwirkung: Dr. Christian Platzer

Wien, 07.09.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





InjectionCop
A Pluggable Type Checker for Inferencing Custom

Type Qualifiers

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Michael Racz, BSc
Registration Number 0627659

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof.Dr. Wolfgang Kastner
Assistance: Dr. Christian Platzer

Vienna, 07.09.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Michael Racz, BSc
Untere Umfahrungsstraße 44, 2432 Schwadorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Danksagung

Die erste Erwähnung gebührt meinen Eltern Karin und Alois Racz. Sie haben mich in jeder
Phase meines Lebens voll und ganz unterstützt, und mir den Zugang zu Bildung, insbeson-
dere meinem Studium, ermöglicht. Dieses uneingeschränkte Engagement, dieser Wille zur
Förderung ist nicht selbstverständlich. Danke!

Ich möchte mich auch beim Team um re-motion, allen voran Michael Ketting und Stefan
Wenig, für die Gelegenheit einen Beitrag an einem Open Source Framework zu leisten und den
Zugang zu Know-how im Bereich der industriellen Software Entwicklung bedanken.

Besonderer Dank geht an Christian Platzer und das gesamte Seclab. Für die Betreuung dieser
Arbeit, aber auch für Praktika, Vorlesungen und Erlebnissen wie der Teilnahme am UCSB iCTF.
Es wurde mir wertvolles Wissen vermittelt und das Interesse für Security geweckt.

iii





Abstract

The importance of security in the field of software development cannot be emphasized enough.
Already known vulnerabilities like all kinds of injections are still very common. InjectionCop
is a framework that helps to address cross cutting security concerns by adding custom type
qualifiers to the type system of C#. Type qualifiers can be used to boost the expressiveness of
the source code and define security requirements that are executable. Furthermore, requirements
that are not met indicate vulnerabilities and are detected by static analysis of the assembly.
InjectionCop is targeted to support and improve the development process by reducing the risk
to introduce programming errors that affect security.

v





Kurzfassung

Die Relevanz von Security auf dem Gebiet der Software Entwicklung kann nicht genug hervor-
gehoben werden. Bereits bekannte Sicherheitslücken, wie zum Beispiel Injections, sind immer
noch weit verbreitet. InjectionCop ist ein Framework um Security-relevante Anforderungen,
die nicht nicht einem spezifischem Modul, sondern über das ganze System verteilt sind, zu be-
handeln. Um das zu bewerkstelligen, wird das Typsystem von C# um das Konzept des Custom
Type Qualifiers erweitert. Type Qualifier können genutzt werden, um die Ausdrucksstärke von
Quellcode zu verstärken und ausführbare Security-Anforderungen zu definieren. Anfoderungen,
die nicht erfüllt werden, entsprechen Sicherheitslücken und werden über statische Code Analyse
ermittelt. InjectionCop zielt darauf ab, den Entwicklungsprozess zu unterstützen und zu verbes-
sern, indem das Risiko reduziert wird, einen Programmierfehler zu begehen der die Sicherheit
des Systems beeinflusst.

vii





Contents

List of Figures xi

Listings xiii

1 Introduction 1
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Expected result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work 5
2.1 Static and dynamic code analysis . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Formal methods for specification and verification . . . . . . . . . . . . . . . . 6
2.3 Pluggable type checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Custom type qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 JQual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 FxCop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 InjectionCop’s fields of application 11
3.1 Injections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Immutable objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Additional type meta data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Encrypted data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 InjectionCop 17
4.1 High level design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Generating custom annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Annotation usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 XML interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Build process integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Implementation 55
5.1 Object model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Performance 69

7 Summary and future work 75

Bibliography 79

x



List of Figures

4.1 Handling of type qualifiers in C . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Handling of type qualifiers in CQual . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Handling of type qualifiers in InjectionCop . . . . . . . . . . . . . . . . . . . . . 19
4.4 Deduction of two sequential assignments . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Resolution of a method call that is the source of an assignment . . . . . . . . . . . 28
4.6 Resolution of nested method calls . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Resolution of a branching statement . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 Resolution of a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Resolution of a loop that causes a mismatch when the body is executed . . . . . . . 36
4.10 Resolution of a loop that causes a mismatch in the second iteration . . . . . . . . . 38
4.11 Code analysis view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Sample class with highlighted basic blocks . . . . . . . . . . . . . . . . . . . . . . 56
5.2 CIL instructions of the sample class with highlighted basic blocks . . . . . . . . . 56
5.3 Method graph of a branch and loop statement . . . . . . . . . . . . . . . . . . . . 57
5.4 Tree view and graph representation of method “IfSample” . . . . . . . . . . . . . 58
5.5 InjectionCop’s components and artifacts . . . . . . . . . . . . . . . . . . . . . . 59
5.6 InjectionCop’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.7 Method graph of an if statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.8 Traversal of an if statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.9 Method graph of a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.10 Traversal of a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Depiction of a method with high performance impact on analysis . . . . . . . . . . 70
6.2 Results of the performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Type qualifier mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi





Listings

3.1 Annotations to prevent XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Annotations to enforce thread safety . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Domain specific meta data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Annotations to handle encryption . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Definition of a sink in XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Definition of a source in XML . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 const problematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Implicit cast to const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Sample that is translated into pseudo code . . . . . . . . . . . . . . . . . . . . 20
4.4 Pseudo code of the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 If statement with returns in every option . . . . . . . . . . . . . . . . . . . . . 21
4.6 Method call in an assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Nested method calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 Discarded method call return value . . . . . . . . . . . . . . . . . . . . . . . . 27
4.9 Valid branching statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.10 Correct return type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.11 Return type may not match . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.12 Mismatch after second iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.13 Possible types of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.14 Evaluation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.15 Annotating delegates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.16 Out parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.17 Custom type qualifier definition by inheritance . . . . . . . . . . . . . . . . . . 41
4.18 Example covering method annotations entirely . . . . . . . . . . . . . . . . . 42
4.19 Safe and unsafe usage of fields . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.20 Annotating a property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.21 Annotating a constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.22 Annotated interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.23 Implementation of AnnotatedInterface . . . . . . . . . . . . . . . . . . 46
4.24 Mismatching implementation of AnnotatedInterface . . . . . . . . . . . 46
4.25 Annotated base class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.26 Extension of AnnotatedBaseClass . . . . . . . . . . . . . . . . . . . . . 48
4.27 Annotating functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii



4.28 Handling literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.29 Custom type qualifier definition file . . . . . . . . . . . . . . . . . . . . . . . 50
4.30 Starting InjectionCopfrom console . . . . . . . . . . . . . . . . . . . . . . . 51
4.31 Output of an analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.32 Configuration file of a rule set . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.33 “SuppressMessage” attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1 InjectionCop meta data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Handling of different kinds of statements . . . . . . . . . . . . . . . . . . . . . 61
5.3 Symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Method with a single basic block . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Method with multiple basic blocks . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Handling of multiple basic blocks . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Handling of method calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8 If statement skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.9 Sample of an ambiguous variable . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.10 Loop skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1 Attribute to define the Sanitized type qualifier . . . . . . . . . . . . . . . . 75
7.2 Consumer class of sanitized data . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Producer class of sanitized data . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Usages of Renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiv



CHAPTER 1
Introduction

This section gives an overview of the thesis by defining the problem domain InjectionCop is
designed for. Additionally, the expected result and the methodology are outlined. The section
concludes with a discussion of the relevance to the curriculum.

1.1 Problem

Nowadays, most modern applications are web-based, which reinforces importance of security
requirements. With the rise of agile development techniques, leading to requirements chang-
ing and evolving throughout the development process, it is essential to address non-functional
requirements comprehensively. There are means of testing non-functional requirements, but cor-
relation with corresponding types and methods in production code is difficult. Furthermore, it
is essential to extend types and methods so that violations of non-functional requirements are
recognized by the type system at compile time.

Security related issues, like all kinds of injections, sending encrypted data only, or tracking
immutable objects for ensuring thread safety, can be mapped to an instance of the source sink-
problem. In this context, the source sink problem refers to denoting those parts of the code
that provide untrusted data, like user input, as well as denoting sinks that demand trusted data
to operate securely. Tools like the open source framework re-motion [62], which includes an
object relational mapper and web controls, need to assemble SQL statements and validate user
input with exactly this kind of problem. An algorithm addressing this problem has to deal with
the complex task to ensure that validation is done on every possible path from any source to any
sink and untrusted data is not injected between data-validation and data-processing. Tracking
and verifying the data-validation process guarantees that only trusted data is processed. Modern
programming languages provide a powerful type system and feature adding meta information
to code constructs by annotations, but a mechanism using these features to target the source
sink-problem is still missing.

1



1.2 Expected result

The outcome of this work should be a pluggable type checker called InjectionCop, extending
the type system of C#, and enforcing its expressiveness by addressing the source-sink problem.
InjectionCop should be mature enough to be utilized in a productive environment. The goal is
to introduce custom type qualifiers to the re-motion open source framework and address cross
cutting security concerns reliably in the development process. The framework should provide
basic annotations that should be easy to extend and customize for defining type qualifiers which
specify sources and sinks according to the problem domain. Type qualifiers are monomorphic,
and therefore straight forward to use without extensive declaration but still expressive enough
for most problem instances. The core module of the framework is an analyzer engine which
is capable of inspecting an assembly and identifying source-sink violations. Additionally, the
framework should be standalone and integrate into the build process and integrated development
environment seamlessly. Another important feature is an XML interface for integrating third
party libraries conveniently.

The essence of this master’s thesis is building upon existing frameworks and rationale from
the field, reducing complexity where possible and reasonable, but also adding features that are
crucial for feasibility in an advanced software engineering process. The benefit of InjectionCop
is an inference engine that improves a developer’s means of dealing with aspects that are non-
functional and is easier to use than existing solutions.

1.3 Methodology

The pluggable type checker is implemented as a custom FxCop rule which is basically a dynamic
link library containing code for analyzing assemblies by means of static code analysis. FxCop
provides facilities for integrating this rule into Visual Studio as well as executing analysis via
command-line. Furthermore, these front ends bring along a handy GUI and open several possi-
bilities for applying the analysis during the build process. The rule performs static code analysis
and static annotation checking on intermediate language code. By analyzing an object model of
the assemblies code, which is built by FxCop, a problem specific graph representation is gener-
ated. The resulting graph is an instance of the source-sink problem that is analyzed by the core
engine. The core engine’s task is to identify possibilities of untrusted data consumed by a sink.
Therefore, an algorithm for solving the problem instance has to be defined and implemented.
The result of the analysis is a collection of problem objects referencing the corresponding parts
of the source code. Depending on the front end, the collection is presented in a tab of Visual
Studio or written to an XML output file. For defining and qualifying sources and sinks, a sepa-
rate dynamic link library containing basic annotations has to be created. To enable third party
library integration, an XML interface is designed and implemented. The interface complements
InjectionCop annotations and adds type qualifiers to code that is not modifiable. The XML
qualification file can be tested for correctness with the help of an XML Schema file.

To enforce high code quality, and to handle the complexity of user input that is inherent
when analyzing assemblies, the software is developed in a test-driven way. To gain information
regarding suitability in practice a performance test is performed on the core algorithm. [27, 36,

2



50]

1.4 Structure of the thesis

The thesis begins with a discussion of related work. Static and dynamic code analysis whith an
emphasis on security, formal methods that are applied in a security problem domain, and relevant
theory of type systems are covered. Furthermore, related tools and frameworks are introduced
and evaluated. Specific fields of application are outlined by highlighting use cases where Injec-
tionCop is a perfect fit. Based on this foundation, design decisions and details of the verification
engine, which is based on formal methods of the analysis engine, are explained. Another im-
portant aspect is the actual usage of InjectionCop. This includes annotations in source code,
as well as integration into the build process and the development environment. An overview of
the architecture and the overall analyis process provides a big picture of all components that are
involved when InjectionCop is used. Additionally, some selected implementation details are
presented to give insights about used design patterns. The thesis concludes with a performance
anlysis, potential issues that were identified and future work.

3





CHAPTER 2
Related work

This chapter covers a discussion about detecting malicious code by means of code analysis.
Methodologies of different approaches that are applicable for InjectionCop are emphasized.
Furthermore, the significance of formal methods in malware- and code-analysis, as well as the-
oretical foundations for extending a type system are addressed. The chapter concludes with an
evaluation of frameworks enabling the extension of a type system and frameworks implementing
an extension of a type system.

2.1 Static and dynamic code analysis

Advanced static code analysis operates on a control flow graph (CFG). Each vertex of the graph
is a basic block, which is a sequence of instructions that is executed entirely if the first instruction
is executed. Since a basic block cannot contain jump instructions, the edges of the graph model
code jumps between basic blocks. A CFG is a suitable data structure to analyze programs and
derive possible execution paths by following paths in the graph. CFGs are also heavily used in
the field of compiler construction and compiler optimization to tackle problems like dead code
elimination and various loop optimizations [18].

Static code analysis has some advantages compared to dynamic analysis. Obviously, it is not
necessary to execute potentially malicious code, there is no need to set up an analysis environ-
ment. Furthermore, the analyzed program cannot detect and bypass the virtual environment to
remain undetected. Another advantage of static analysis is that the code coverage is 100 percent,
because the analyzed execution paths are independent from the input and the runtime behavior
of the program [45].

Based on the CFG, taint analysis can be applied by defining sources of potentially harmful
input and sinks, for example vulnerable system calls. By traversing the graph vulnerabilities
can be detected when sources and sinks are connected [45]. This approach is prone to produce
false positives, which is one of the major problems of static code analysis when the outcome
is not filtered. Picking up this idea, algorithms that perform a more fine grained analysis have
been proposed. Instead of just seeking for library functions, the focus is on behavior. Patterns of

5



vulnerable functions like strcpy are defined and detected in the assembly to identify possible
buffer overflows [61].

The effectiveness of this approach, and static analysis approaches in general, is affected by
the quality of the graph. Several techniques for obfuscating the control flow of binaries have
been proposed [4, 59], which distort the CFG and evade detection by malware scanners.

Another graph related approach is a data flow graph (DFG), where initial values of variables
and transitions of values by instructions or assignments are modeled. The graph is used to de-
tect malicious variable values that are passed system calls or other attack vectors. Also hybrid
approaches using CFGs and DFGs were proposed [65]. In a security related context, the genera-
tion of the control flow is often based on parsing binaries [68]. Many generators of this kind rely
on well known disassembler-tools like IDA Pro [34], CodeSurfer [13] or textitObjDump [56] to
build the graph.

To circumvent issues introduced by an obfuscated graph, many researchers focused on dy-
namic code analysis. Contrary to static analysis, which is a white box approach, a black box
approach like dynamic code analysis is harder to bypass with this kind of obfuscation. Dynamic
analysis is not immune to obfuscation, since, virtualization is not equivalent to transparency.
Many ways to detect a virtual machine have been discovered [9] which also target virtual ma-
chine managers (VMM) that are specifically designed for security, like Malware Analysis Virtual
Machine Manager (MAVMM) [5], provide foundation to circumvent dynamic analysis.

In dynamic analysis, information is gathered by analyzing actually executed code paths and
data that is passed to vulnerable sinks like system calls, files or network sockets. Usually, the
program is run on a virtual machine to provide an isolated environment and utilize virtual ma-
chine introspection [3, 33, 40, 46].

2.2 Formal methods for specification and verification

In theory, many problems are solved, but implementing these algorithms is still a challenge.
Providing a theoretic approach does not necessarily induce proper tools and frameworks that
are applicable in a software development process. Furthermore, designing and implementing
frameworks that utilize these algorithms reveal new problems.

To define the behavior of malicious code, approaches based on formal methods evolved.
Behavior and patterns of malicious software can be modeled with a tailored logic, where a set
of malicious machine instructions is defined by logical formulas [2, 37]. With the help of model
checking [22], which is a technique to check if a given specification can be derived from a
model, executables represented by a CFG can be scanned for those patterns. A benefit of a
formal specification of malicious code snippets is precision and readability, because specifying
low level code in an algorithm is hard to achieve. Also other formal approaches, for example
an approach based on inference on a tree automata [26], which is a state machine working on
tree structures, have been discovered [16]. Like other static approaches, also techniques using
formal methods suffer from code obfuscation [66].

Considering theory and performance of prototypes in an artificial environment, using formal
methods in context of static code analysis seems to be a promising approach. Prototypes involv-
ing model checking and algorithm improvements [38] lack practical applicability due to limited

6



support of the x86 instruction set or missing support of procedure calls.
The already discussed approaches are based on analyzing binaries, which is a drawback since

binaries are difficult to analyze and tools that work on higher level languages can provide features
relying on language characteristics. Code optimization can bias the result, or even introduce new
security flaws that cannot be revealed by analyzing source- or intermediate language code. The
following sample is taken from [7] and illustrates the issue.

memset(password, ’\0’, len);
free(password);

The snippet is taken from a security module, where a password is stored in clear text in a buffer
pointed to by password. Before the buffer is released, and returned to the heap, memset [49]
is used to fill the buffer with null values to prevent leakage of sensitive information. From a
compiler point of view, the call of memset has no effect on the algorithm and may be removed.

Also prototypes that operate on intermediate language (IL) [42] are promising but not tested
for practicability. These prototypes’ focus is on further challenges of static code analysis like
virtualization obfuscation, where the payload is byte code that is executed by an inline interpreter
[41].

2.3 Pluggable type checkers

Pluggable type checkers extend the built-in type system of a language by custom modules that
implement features the type system does not provide to reduce bugs or enrich the language.
Tools for Java like JustAdd [25], or the Checker Framework [12], which is easier to use, exist
to create pluggable type checkers. With the help of the Checker Framework modules that check
for passed null values or verify that a class is immutable [71] have been implemented. Also
more sophisticated language extensions like Mixins, which is a mechanism to inject code mod-
ules into classes [17], can be added with the help of pluggable type checkers [58]. Theory of
pluggable type checking and custom type qualifiers is sophisticated, but we are decades away
from adopting it in practice [57].

2.4 Custom type qualifiers

Type qualifiers are used to add semantics to a type and foster expresiveness of a type declara-
tion. A well known example of a built-in type qualifier in C is const, which indicates that a
variable cannot be altered after initialization. Custom type qualifiers extend this concept and in-
troduce type qualifiers that are defined by the developer. Theory of type qualifiers was introduced
in [39] and initially applied on C, which resulted in the framework CQual [15]. Effectiveness
of the framework was shown by detecting format string vulnerabilities [70], and practicability
was enhanced by implementing a plug-in to visualize type qualifier inference [19] for the devel-
opment environment Eclipse [24]. Furthermore, the concept was adopted to Java to implement
the framework JQual [31]. Applications of the framework include a check for pure methods,
which are methods without side effects [32]. Additionally, theory of type qualifiers was also
applied on C++ [69]. The discussed frameworks for popular languages indicate that the concept

7



of custom type qualifiers has attracted interest and is powerful enough to have high impact on
the development process. Most of these frameworks suffer from a limited feature set or a weak
type system of the target language, which is not an indicator for a poor language, since choosing
language features carefully is a fundamental facet of language design. C# is a modern language
with a rich feature set and a good candidate for the implementation of InjectionCop.

2.5 JQual

JQual is built upon CQual and analyzes source code written in Java 1.4 and prior. It is discussed
in greater detail because Java and C# are popular general purpose languages and have many
features in common.

Using JQual is quite cumbersome. A programmer has to create a file, containing the de-
scription of a lattice, to specify relations between qualifiers. A lattice is a partial order where for
each pair of elements x and y, the least upper bound and greatest lower bound of x and y both
always exist [43]. A lattice is a type system theoretical and mathematical background theory of
a type system of an object oriented language. The problem with lattice file is that type system
internals are exposed, and for the developer the lattice is usually hidden and irrelevant. The
average developer is not even aware of the lattice, therefore, defining a lattice is unintuitive and
confusing.

Denoting sources and sinks can be done on various positions in the code via annotations.
As annotations are introduced in Java 1.5, and therefore not available when JQual was im-
plemented, comment-based annotations are used. Furthermore, targets for JQual annotations
include local variables and return values, where annotating the latter is not even possible with
annotations provided by Java 1.7, which indicates they are not powerful enough to express JQual
syntax. Comment-based syntax is error prone and is coupled with quite a number of additional
problems. It is isolated from the type system, inconvenient in context of IDE integration, and
only available in source code. Another drawback of JQual is that integrating third party libraries
is solely possible by adding corresponding source code, or generating stubs and annotating them
properly. This restriction narrows use cases for JQual, since any modern application and most
security related modules depend on third party libraries.

2.6 FxCop

FxCop [29] is a powerful tool for static code analysis developed by Microsoft. It is shipped with
Visual Studio [51] and bundled with a default set of rules, which are modules that run static
code analysis on a given assembly and report any problems found during the analysis. These
default rule sets cover code smells, which are shortcomings in code that indicate poor design [1],
regarding aspects like architecture, performance, or naming. Besides the predefined default
rules, there is also an FxCop SDK which adds the possibility to define custom rules, which is a
well suited interface and plug-in mechanism for integrating custom static code analysis modules.
FxCop has several characteristics making it a good fit for developing a pluggable type checker,
as well as an engine dealing with type qualifiers. These characteristics include

8



• analyzing managed code assemblies

• working on Common Intermediate Language (CIL) code

• generating an object model of assembly

• easy integration into software development cycle

The first item seems to be more like a restriction than a benefit. FxCop can handle assemblies
that are managed, in other words they run in a Common Language Runtime virtual machine.
This includes assemblies written in C#, Visual Basic as well as managed C++. The benefit of
this design decision shows when looking at the other characteristics mentioned.

The Common Language Infrastructure (CLI) is an environment defined by Microsoft to exe-
cute code on a computing platform. A software component in CLI is an assembly, consisting of
Common Intermediate Language (CIL) code and meta data. CLI is designed to support multiple
languages, C# and Visual Basic are compiled to CIL. A benefit of the intermediate language is
that not every feature of a higher language needs to have an equivalent in CIL [23].

Since CIL code is analyzed, a simplified but consistent model of an assembly is generated
where entities and connectors are equal and language independent. Additional languages would
change the model in a way that language dependent modules need to be added, which enforces
complexity of a system that already is highly complex by nature. The simplification has an
effect on the generated model, since mapping source code to CIL code is not bijective. This
affects obvious aspects, like the formatting of the source code, but also code changing aspects,
like compiler optimizations. Also, information that would be beneficial for user output, like
names of local variables, are lost in CIL code. By taking a closer look at the consequences of
the simplification, it becomes apparent that only modules that target and analyze source code
would be affected in a negative way. When dealing with semantics, those simplifications be-
come beneficial because code details that are not crucial for the control flow are excluded. It is
much more effective to analyze a code model reduced to code blocks and jumps, than having a
model containing constructs for each type of conditionals and loops. Another implication when
working on CIL code with FxCop is that code modifications are not possible. Therefore, means
of automatic problem resolution cannot be implemented. Instead the user himself has to change
the source code to handle issues identified by the static code analysis module. Again, this disad-
vantage hardly influences analyzing semantics since resolving semantic issues is automatically
very difficult and error prone.

FxCop parses the CIL code of the assembly and builds an object model that is very complex.
The model is convenient to analyze, and information about the assembly can be accessed quickly,
but the high level of detail can be hindering when analyzing for a specific semantic issue.

FxCop is also very good at integrating into the development process. There are several front
ends including a standalone GUI, but FxCop is also an inherent part of Visual Studio. Addition-
ally, FxCop can be used via command-line. Therefore, static code analysis can be started from
a build- or powershell script [67] conveniently. Depending on the front end, the output can be
displayed in a GUI element that references corresponding parts of the code visually, printed on
the console or written to an XML file.

9





CHAPTER 3
InjectionCop’s fields of application

While the focus of the last chapter was setting the scene and outlining requirements for a useful
static code analysis framework, this chapter is about use cases and specific applications of Injec-
tionCop. By exposing problems and solutions, required features, usage and syntax are shown
at a greater level of detail. Also, the benefits of using InjectionCop as a extension of the type
system are illustrated.

3.1 Injections

When developing web based software, security-driven requirements often involve cross cutting
concerns. Code relating to such requirements hardly correlates to specific modules and is spread
all around the code base. This characteristic can complicate testing, because unit and inte-
gration tests concentrate on modules and interaction of modules. Additionally, since practices
that facilitate writing tests before business logic is written like test-driven development [8] and
behavior-driven development [54] are very popular nowadays, especially in combination with
agile principles, design and architecture are also affected. Again, this is because those require-
ments cannot be put into a module that is part of design and architecture.

So there is a need to annotate the code that correlates with a given requirement. Code
injections are omnipresent concerns in security and require proper handling. Considering Cross-
Site Scripting (XXS), which is an attack where malicious code is injected into web applications
[14], it comes down to sanitizing user input before it can do any harm. From a code perspective,
the developer can identify type qualifier receivers, which indicate that any passed data that is
not properly processed and verified, violates the requirement not to allow Cross-Site Scripting.
On the other hand, code that does exactly that kind of processing can also be identified and
therefore annotated to be a valid qualifier provider. This is illustrated by Listing 3.1. The
method Render generates html out of parameter data. Only sanitized data can be passed
to Render, which is defined by the attribute Sanitized. The producer of sanitzed data is
method Sanitize, which is specified by the attributes FragmentGenerator to introduce
producer and Sanitized to express the qualified type of the return value.

11



Listing 3.1: Annotations to prevent XSS
class XSS
{

public void Render ([Sanitized] string data, HtmlTextWriter writer)
{
writer.Write(data);

}

[FragmentGenerator]
[return: Sanitized]
public string Sanitize(string tainted)
{
return "sanitized";

}
}

Note that these methods are contained in the same class to provide a compact example. The
class violates the Single Responsibility Principle, which states that a class should have exactly
one reason to change [47, Chapter 8], and should definitely be decomposed. The design would
be better when the class is separated into modules for rendering and sanitizing. The class re-
garding rendering covers the part of preventing XSS, which is convenient, since writing data to
an HtmlTextWriter is very likely to be distributed and may occur multiple times. The benefit of
the annotation is that it extends the interface, hence, every caller is obliged to pass sanitized data
to prevent XSS.

3.2 Immutable objects

InjectionCop is not just another mechanism for sanitizing methods that competes with Aspect
Oriented Programming (AOP), which is also a programming paradigm that deals with cross
cutting concerns [30]. Depending on context there are much more use cases for this tool that
cannot be handled by AOP. Immutable objects, which are objects that do not change the internal
state after initialization, are not directly related to security, but increase code quality and are
often part of secure coding guidelines [28]. Listing 3.2 shows classes and type qualifiers to
enforce thread safety. The setup is similar to the setup shown in the preceding chapter but deals
with another issue.

Listing 3.2: Annotations to enforce thread safety
class ThreadSafety
{

public static void NeedsImmutableToBeThreadSafe(
[Immutable] ParameterType parameter) {}

}

class ParameterType
{

public readonly int readonlyField = 0;

[return: Immutable]
public ParameterType() { }

12



}

class Main
{

public void main()
{
ThreadSafety.NeedsImmutableToBeThreadSafe(new ParameterType());

}
}

Again, there is a source and a sink producing and demanding thread safe objects. Addition-
ally, the class Main represents an occurrence of code relating to the cross cutting concern of
thread safety, which is spread all over the code base. The class simply connects a provider
with a receiver and does not care about the interface that holds the thread safety requirements
as long as there is no concurrency issue introduced, because detecting any possible violation is
InjectionCop’s task.

This example also shows another distinction to aspect oriented programming. In AOP, it is
defined when an aspect has to be considered. With this approach the “when” is left unspecified.
All that is relevant, is that at the time of making a call to the interface the according parameters
are matching.

3.3 Additional type meta data

Another use case is providing additional information to existing types (Listing 3.3). It can be
very useful to add units or domain specific meta data to objects.

Listing 3.3: Domain specific meta data
class CustomTypeQualifiers
{

public void Calculate([Millimeter] int distance) { }
public void TransferMoney([IBAN] string iban, [BIC] string bic) { }

}

It could be argued that such issues can be handled by the type system too, but there are situa-
tions where this is not practicable. A type, wrapping a distance in millimeter, could easily be
implemented, but at the same time cancels support for built-in arithmetic operations. Defining a
class Millimeter would result in defining lots of operator overloads that redefine functional-
ity already provided by the programming language. A different situation exposes in the second
method of the sample. “IBAN” and “BIC” should definitely be modeled in the domain, and there
is also hardly any implementation work to do for handling all necessary uses of the type. In this
case, type annotations can be useful when leaving the domain e.g. rendering html containing a
string representation of bank data or using third party libraries. Especially when sensitive data,
like bank accounting data, is processed any additional security mechanism is appreciated.

Another noteworthy aspect is that separating type qualification from type definition can re-
duce complexity of inheritance hierarchies, which enforces better architecture. The method-
ology of adding annotations can be superior when dealing with, and extending, existing code.
Often, it is a lot easier and reasonable to add annotations to existing code than introducing new

13



types. Tests do not break because types can be left unchanged. Existing interfaces and types can
be extended with annotations rather than changing code to comply with newly introduced types,
which would very likely lead to problems when integrating modules.

3.4 Encrypted data

Encryption is one of the principal concepts in security, again InjectionCop can promote this
concern. By now, all discussed use cases were targeted on the respective application’s code
base, but since almost every application relies on third party libraries it is essential to have
proper support of dependencies. Encryption is a good fit for pointing this out which is shown in
Listing 3.4.

Listing 3.4: Annotations to handle encryption
class Outstream
{

public void EncryptAndSend(
[Tainted] byte[] data,
Socket socket,
ThirdPartyLibrary.Encryptor encryptor)

{
data = encryptor.Encrypt(data);
socket.Send(data);

}
}

There is a method getting some data contained in a byte array that is marked as tainted by an
annotation. The data has to be encrypted by using a third party encryptor class, and sent to a
given socket afterwards. The goal is to model the requirement that only encrypted data is sent
over the network. There is a need for a mechanism that describes interfaces of libraries where
the source code is not available, and cannot be annotated. XML is a good fit for defining such
structures. It can easily describe an existing method and add type qualifier information needed to
solve the issue. Beginning with the assembly name, for which the XML definition is targeted, one
can define child elements for types, as well as methods and their parameters to handle overloads.
The definition shown in Listing 3.5 contains XML that models the need of the Send method of
the Socket type to have a parameter that is Encrypted.

Listing 3.5: Definition of a sink in XML
<Assembly name="ProjectName">

<Type name="System.Net.Sockets.Socket">
<Method name="Send">
<Parameter type="System.Byte[]" fragmentType="Encrypted" />

</Method>
</Type>

</Assembly>

The counterpart is the third party library doing the encryption work and returning a byte array
that is qualified to be Encrypted (Listing 3.6).

14



Listing 3.6: Definition of a source in XML
<Assembly name="ProjectName">

<Type name="ThirdPartyLibrary.Encryptor">
<Method name="Encrypt"

returnFragmentType="Encrypted"
fragmentGenerator="">
<Parameter type="System.Byte[]"/>

</Method>
</Type>

</Assembly>

In this use case, no interface of the project’s code base was qualified, and the need for integrating
third party libraries in a convenient way becomes obvious. Tools lacking this kind of feature
cannot handle large parts of an application’s source code. Additionally, they cannot handle
important use cases and requirements and reduce applicability immensely.

15





CHAPTER 4
InjectionCop

InjectionCop is a lightweight pluggable type checker capable of type inference for custom type
qualifiers. Usage of the framework is straight forward and easy to learn. This chapter covers
principle concepts of defining custom type qualifiers by defining attributes, denoting qualifier
providers and receivers by adding those attributes to the business logic and integrating third
party libraries by defining annotations via an XML interface. Finally, a short guideline for using
InjectionCop by integrating into Visual Studio or using command-line tools is given.

4.1 High level design decisions

Features of C/C++, Java and languages of the .NET Framework differ significantly. This di-
versity of language characteristics facilitate a design of the framework that is different to the
discussed custom type qualifier frameworks. The design decisions outlined in this section cope
with polymorphism and functionals.

Custom type qualifier sub typing

InjectionCop features a monomorphic type system, which means that every value and variable
can be interpreted to be of one and only one type. Deciding whether the type system of Injec-
tionCop is monomorphic, or polymorphic, where every value and variable can be interpreted to
be of multiple types [10], was taken carefully. CQual needs to be polymorphic because of the
way type qualifiers are handled in C/C++, this issue is shown in Listing 4.1.

Listing 4.1: const problematic
int *foo(int *parameter) { return parameter; }
const int* cfoo(const int *parameter) { return parameter; }

void main(int argc, char **argv)
{

int *i;

17



const int *ci;

ci = (const int*) foo((int*) ci);
i = (int*) cfoo((const int*) i);

}

The first two lines of this listing define functions where the body is exactly the same. Method
foo expects and returns a pointer to an integer, which is defined by the type int*. The signature
of method cfoo is similar, it expects and returns a pointer to a constant integer, which is defined
by the type const int *. From a software engineering point of view, code duplication should be
eliminated. Applying this refactoring by removing cfoo introduces new problems, which is
shown by the call of foo in the body of the main function. Calling foo with a const parameter
requires removing the type qualifier by an explicit cast. Furthermore, assigning the return value
of foo to a const pointer needs manual adding of the type qualifier by an explicit cast. In this
case, the whole point of using a const pointer is undermined, because the dereferenced value can
be modified in the body of foo. Doing the refactoring the other way, by removing foo leads to
similar cast problems, which is shown by the call of cfoo in the body of main. Obviously, both
refactorings bypass the type system. As a consequence, C/C++ programmers either don’t use
const, or cast function results to non const. This problem arises because C/C++ lacks const
polymorphism, so that const introduces a new type. In other words, the type qualifier changes
the signature of the function. The lattice in Figure 4.1 illustrates this taxonomy since int and
const int are on the same level without any subtype relation. CQual solves this issue by

{>}

{. . . } {int} {const int}

{⊥}

Figure 4.1: Handling of type qualifiers in C

adding const polymorphism τ � const τ for all types τ to the type system of C/C++, the
adapted lattice is shown in Figure 4.2. Adding this subtype relation enables removing function

{>}

{const int}

{. . . } {. . . }{int}

{⊥}

Figure 4.2: Handling of type qualifiers in CQual

18



foo. An effect of this type system modification is an increase of complexity, since a simple form
of inheritance is introduced. In C this language extension is easily understandable, C++ already
supports inheritance and using these two mechanisms in parallel may introduce taxonomies
which are hardly understandable.

In C# the situation is different because the type system does not allow const qualifiers on
parameters. Instead, constants are inlined at compile time. Additionally, also volatile, which is
the only other C# qualifier, cannot be defined on a parameter. This is an opportunity to create a
type qualifier framework that is not related to the type hierarchy constructed by native language
inheritance mechanisms. Furthermore, eliminating coupling of type qualifiers and types enables
the construction of a monomorphic type qualifier engine without the need to modify the type
system of the programming language. But having monomorpic type qualifiers is not the ultimate
goal, since an implicit cast as shown in Listing 4.2, is common in most popular programming
languages and convenient to use.

Listing 4.2: Implicit cast to const
const int i = 3;

Enabling this syntactic shortcut is possible by adding the artificial subtype ⊥ to all user defined
custom type qualifiers. To highlight purpose and special use of this construct the type is called
“literal”. Since defining a custom type qualifier for a parameter type is not mandatory, an im-
plicit super type “Empty”, representing an unset qualifier, is introduced. The empty qualifier
guarantees that any custom type qualifier can be passed when no type qualifier is specified in the
interface, literals enable assigning constant values to any type qualifier.

Combining all design decisions captured in this section leads to a schematic depiction of
the type qualifier taxonomy (Figure 4.3). To reduce complexity, subtype relations between user
defined custom type qualifiers are prevented, but for convenience literals can be assigned to any
custom type qualifier.

{Empty}

{B}{. . . }{A} {C}

{Literal}

Figure 4.3: Handling of type qualifiers in InjectionCop

Functionals

Another difference between CQual, JQual and InjectionCop is handling of functionals. Since
support for functionals was introduced in Java 8, there is no need for this feature in JQual.
C/C++ handles functionals by function pointers, which can be annotated like any other type.
The type system can easily be bypassed with the help of type casts. C# features delegates,
lambda functions and anonymous methods, which are basically type safe function pointers.

19



Since functionals are very well supported, they can be extended with custom type qualifiers
very conveniently.

4.2 Verification

Hoare Calculus is the foundation of the verification engine. This section shows how analyzing a
program on statement level can be automated. Core tasks of the engine are tracking custom type
qualifiers of symbols, finding start and end states and resolving control structures.

Code abstraction

Since the pluggable type checker is isolated from the type system an abstract representation of
code, tailored for verifying type safety of custom type qualifiers, is used for simplification. The
code shown in Listing 4.3 is translated to pseudo code covering only types and instructions for
type manipulation, which is shown in Listing 4.4.

Listing 4.3: Sample that is translated into pseudo code
[return: T]
public int Foo([T] int p)
{

A q;
q = new A();
int b = 3;
b++;

if(1=1)
Foo2(q);
return p;

else
return 3;

}

Listing 4.4: Pseudo code of the sample
T Foo(T p)
{

q = Empty
b = Literal

if(...)
Foo2(q);
return1 = p;

else
return2 = 3;

}

Access modifiers, as well as types, are omitted because there is no need to consider them in
the verification algorithm. Return statements are converted to variables with a postfix index to
handle each terminating execution path of a method separately during verification. Assignments
may change the custom type qualifier of a variable. For simple cases, like the use of literals

20



or a constructor, the new custom type qualifier can be inserted. More complex situations, such
as method calls, require proper analysis to deduce the correct type qualifier. Conditional logic
of branching code elements and loops can be dropped. Special cases regarding code with com-
mands, using or manipulating custom type qualifiers in the condition, can easily be refactored
by introducing an expression before the particular statement that stores the result of the con-
dition evaluation. Also other expressions that do not affect type qualifier inferencing can be
ignored. That includes all code constructs except flow control structures, assignments, returns
and method calls. Flow control expressions introduce code branches that have to be resolved
separately, assignments represent propagation of qualifier types. Method calls require compar-
ing actual types of parameters with the custom type qualifier, defined in the method signature.
How these three situations are handled is part of the subsequent verification chapter. T is part of
the method signature and represents a custom type qualifier, the signature is used to deduce pre-
and post-conditions.

Hoare Calculus

Having a pseudo code representation of a problem instance is the starting point for a static
code analysis that verifies correct usage of type qualifiers. This is achieved by applying Hoare
Calculus [6]. The reasoning system includes all rules that are needed for verification. The rules
are explained by examples in the following sections. Deduction is based on Hoare Triples.

{P}C{Q}

P is a set of preconditions, Q is a set of postconditions. C is a program segment represented by
a sequence of instructions of an imperative language.

Pre- and postconditions

When working with Hoare logic, one of the challenging parts is finding suitable pre-, postcon-
ditions and loop invariants. Loop invariants express the change of state that is caused by a loop,
a detailed explanation is given later. To enable automation of inference, conditions have to be
expressed using predicate logic. The predicates are crucial for manual proving, and even more
important in an automated verification process, when adjustment of predicates by human inter-
vention is not possible. When using InjectionCop pre- and postconditions on method level are
defined by the user when the method signature is extended by custom type qualifier annotations.
The conditions derived from user input are sufficient to perform verification, since loop invari-
ants and further verification steps are deduced by the framework. Based on predicates given by
the user, InjectionCop derives additional predicates on demand to perform verification. Listing
4.5 is a code snippet that is used to illustrate how pre- and postconditions are identified.

Listing 4.5: If statement with returns in every option
T Foo(T p, Empty q)
{

if(...)
return1 = p;

else

21



return2 = 3;
}

Parsing Foo results in the following Hoare Logic expression containing all pre- and postcondi-
tions that can be derived.

. . .
{p = T, q = Empty, Foo = T}if . . . {return1 = T, return2 = T}

The first two preconditions are determined by iterating method parameters and assigning the cor-
responding type defined in the signature. Those preconditions can be expected to hold, because
the framework assures that the method is only called with parameter values having the same
custom type qualifier as defined in the method signature. The third precondition models that any
call of Foo returns a result of the type T. Again, the framework is capable of verifying that the
method returns the correct custom type qualifier. Variables, that are part of a postcondition, are
found by parsing the method body and seeking for assignment statements where the target is a
return variable. After collecting these variables, the required return type, which is also defined
in the method signature, is assigned to each of them. The resulting expression is the starting
point of the analysis, the next step is breaking down statements of the method body to check for
inconsistencies which indicate a type qualifier mismatch.

Deriving all possible predicates is the standard behavior of the framework, because it is
not possible to determine which predicates are needed in advance. Furthermore, and higher
complexity would be introduced for a minor optimization of the deduction. In contrast, some
predicates of manual proofs in this work are omitted to enhance readability.

Assignments

As mentioned in previous sections, assignments are a vehicle for changing and passing qualifier
types of variables. This behavior is covered by the assignment rule of the Hoare Calculus.

{P [E/x]}x = E{P}

P [E/x] is an expression where in predicate P all free occurrences of x are replaced by E. The
following examples are some deductions that cover use cases which emerge frequently in the
problem domain. When assigning a constant to a variable, the postcondition x = 3 can be seen
easily, deriving the precondition by replacing x by the source expression results in 3 = 3.

{3 = 3}x = 3{x = 3}

It is crucial to apply this rule backwards, which means starting from the postcondition to infer
the precondition. This approach may seem counter intuitive, but otherwise some bogus predi-
cates could be deduced by a precondition that introduces a contradiction, which is shown in the
following incorrect deduction.

{x = 1}x = 3{3 = 1}

Also an assignment from one variable to another follows this pattern.

{y = y}x = y{x = y}

22



Additionally, the example in this section features rule of composition which is used to resolve
sequential application of instructions.

{P}S{Q} {Q}T{R}
{P}S;T{R}

Commands S and T are split up and a mid-condition Q is introduced. Q has to be constructed
in order to prove that the initial postcondition R holds. Applying this rule is straight forward,
which can be seen in the following example.

. . .
{x = 2}x = x+ 1{x = 3}

. . .
{x = 3}x = 2 ∗ x{x = 6}

{x = 2}x = x+ 1;x = 2 ∗ x{x = 6}

This sample is just used for illustration. As indicated by the dots, the inference is incomplete.
To complete the deduction tree, applying the assignment rule would be required.

Whenever logical reasoning is needed during verification, the logical consequence rule is
applied.

P1 ⇒ P2, {P2}S{Q2}, Q2 ⇒ Q1

{P1}S{Q1}

The rule allows to strengthen the precondition or weaken the postcondition. Whenever this rule
is applied in the samples of subsequent sections, it marks those parts of the proof that have to
be handled by the verification engine. The following example shows a simple application of
assignments that are executed sequentially. All previously mentioned rules are covered. The
starting point is method Foo.

T Foo(T p)
{

q = p;
return1 = q;

}

Evaluating the problem instance by parsing the method signature implies some predicates form-
ing pre- and postconditions, which are the starting point of the verification.

. . .
{p = T}q = p; return1 = q; {return1 = T}

Starting from this basis, the goal is to decompose the method down to instruction level by ap-
plying Hoare Calculus. The result is shown in Figure 4.4. The first step is splitting the sequence
of assignments with the help of the sequence rule, which is indicated by the (sc) label of the in-
duction. On the left branch of the resulting tree, the logical consequence rule is applied, which
is indicated by the (lc) label, to prepare a proper precondition for resolving the assignment state-
ment. The left part of the premise, marked with (1), is the entry point where the framework has
to prove that the implication is correct.

(1) ≡ {p = T} ⇒ {p = T, p = p} ≡ >

23



The implication is trivially true since simply the statement p = p is added, which is obviously
always true. The middle part of the premise is just an application of the assignment rule. The
instruction models passing the type of variable p to variable q. The last part of the premise is an
implication that holds because of transitivity.

(2) ≡ {p = T, p = q} ⇒ {q = T} ≡ >

The second assignment follows the same pattern with other variables, which is seen in the fol-
lowing equations.

(3) ≡ {q = T} ⇒ {q = T, q = q} ≡ >

(4) ≡ {return1 = q, q = T} ⇒ {return1 = T} ≡ >

Resolving the deduction tree seen in this section required finding suitable predicates to prove that
the postcondition holds. Finding these predicates followed patterns, like introducing tautologies
or building transitive closure, which can be automated. Furthermore, much of the example was
about tracking types of variables where well-established techniques from the field of compiler
generation can help.

24



(1)

{p = T} ⇒ {p = T, p = p}
(as)

{p = T, p = p}[p/q]q = p{p = T, q = p}
(2)

{p = T, q = p} ⇒ {q = T}
{p = T}q = p{q = T} (lc)

α

{p = T}q = p; return1 = q; {return1 = T} (sc)

(3)

{q = T} ⇒ {q = T, q = q}
(as)

{q = T, q = q}return1 = q{return1 = q, q = T}
(4)

{return1 = q, q = T} ⇒ {return1 = T}
α : {q = T}return1 = q{return1 = T} (lc)

Figure 4.4: Deduction of two sequential assignments

25



Method call analysis

Akin to return statements, method calls introduce further possibilities of type qualifier mis-
matches. Each method call needs verification to ensure that custom type qualifiers of parameter
values and the qualifiers defined in the method signature match. Therefore, the framework has
to handle parameter values from variables, as well as return types of nested method calls. Ad-
ditionally, when a method call is the source of an assignment, the custom type qualifier of the
target variable may be modified. The code snippet shown in Listing 4.6 covers the latter scenario
of a method call in an assignment.

Listing 4.6: Method call in an assignment
S Foo (T p) {...}

S MethodCallInAssignment (T p)
{

return1 = Foo(p);
}

The essential piece of code is the body of method MethodCallInAssignment. The body
of the callee Foo is undefined since only the signature is required for analysis. For deduction, a
mathematical function is used that models parameter checks and the return type of Foo.

Foo(x) =

{
S x = T

abort otherwise

The framework can utilize the semantics of this function simply by comparing types and static
code analysis of the custom type qualifiers of the method signature for the return type and the
parameters. The evaluation of method MethodCallInAssignment is shown in Figure 4.5.
The deduction is very similar to the deductions seen in the previous chapter, the only difference
is that Foo is used in the logical reasoning part of the (lc) rule.

(1) ≡ {p = T} ⇒ {Foo(p) = S, Foo(p) = Foo(p)} ≡ >

The equation holds because Foo is called with a parameter value that matches the signature,
which is ensured since the premise contains statement p = T .

Figure 4.6 shows a deduction of a code snippet containing nested method calls (Listing 4.7).

Listing 4.7: Nested method calls
S Foo (T p) {...}

S NestedMethodCalls (T p)
{

return1 = Foo(Foo(p));
}

In this sample, logical reasoning is more complex because function composition has to be re-
solved correctly. The equation

(1) ≡ {p = T} ⇒ {Foo(Foo(p)) = abort, Foo(Foo(p)) = Foo(Foo(p))} ≡ >

26



holds because
p = T ⇒ Foo(p) = S ⇒ Foo(Foo(p)) = abort

This leads to a return value mismatch that is recognized at the end of the deduction because the
postcondition can not be resolved.

{return1 = abort} 6⇒ {return1 = S}

In the previous example, a parameter mismatch is identified, because the returned value of abort
is propagated throughout the deduction, and a contradiction is encountered when the return value
is verified. This approach does not work when the return value of the method call is discarded.
In practice, both cases are simplified by aborting inferencing as soon as the parameter mismatch
is found. In the manual proof a new placeholder variable and a postcondition is introduced to
cover this scenario.

Listing 4.8: Discarded method call return value
S Foo (T p) {...}

S DiscardedMethodCallReturnValue (T p)
{

methodReturn1 = Foo(p);
}

Method DiscardedMethodCallReturnValue (Listing 4.8) is mapped to the following
incomplete deduction tree.

. . .
{p = T}methodReturn1 = Foo(p){methodReturn1 6= abort}

By adding a placeholder variable “methodReturn1” and the postcondition methodReturn1 6=
abort, the error can not slip through the verification engine, and the mismatch is identified
correctly.

Another noteworthy aspect of methods are overloads. When looking at the samples covered
in this chapter, it is easy to create method overloads that have the same type qualifier signature.
In the implementation this is not a problem, because the type system assures that the correct
signature is used and referenced in the object model of the method.

27



(1)

{p = T} ⇒ {Foo(p) = S, Foo(p) = Foo(p)} β {return1 = Foo(p), Foo(p) = S} ⇒ {return1 = S}
{p = T}return1 = Foo(p){return1 = S} (lc)

(as)

β : {Foo(p) = S, Foo(p) = Foo(p)}[Foo(p)/return1]return1 = Foo(p){return1 = Foo(p), Foo2(p) = S}

Figure 4.5: Resolution of a method call that is the source of an assignment

(1)

{p = T} ⇒ {Foo(Foo(p)) = abort, Foo(Foo(p)) = Foo(Foo(p))} =: α β γ

{p = T}return1 = Foo(Foo(p)){return1 = S} (lc)

(as)

β : α[Foo(Foo(p))/return1]return1 = Foo(Foo(p))γ

γ := {return1 = Foo(Foo(p)), Foo(Foo(p)) = abort} ⇒ {return1 = abort}

Figure 4.6: Resolution of nested method calls

28



Branching statements

Branching statements are among the core concepts of any language. Only if statements are
covered in this chapter, since switch statements or conditional operator can be mapped to
equivalent code using only if statements. When looking at Intermediate Language, all men-
tioned manifestations are language features to enhance convenience for the programmer and are
ultimately converted to a branch instruction. This instruction checks an intermediate variable
that holds the result of the expression of the condition and jumps according to the value. This
also implies that instructions of the condition, that could affect inferencing of custom type qual-
ifiers, are not distinguishable from instructions that are executed right before the if statement
and handled by the framework automatically. Therefore, the conditional statement is of the form
x == true which is a statement that is irrelevant for inference of custom type qualifiers.

Certainly, the conditional rule contains the condition. The rule resolves an if statement by
setting up a branch for each code path.

{B ∧ P}S{Q}, {¬B ∧ P}T{Q}
{P}if B then S else T endif{Q}

For the consequent, which is the path that is executed when the conditional statement holds, the
precondition is the union of the precondition defined in the conclusion and the conditional of
the if statement. For the alternative, which is the path that is executed when the conditional
statement does not hold, the precondition is the union of the precondition defined in the conclu-
sion and the negated conditional expression of the if statement. Since the postcondition has to
hold for the consequent and the alternative, both branches acquire the postcondition from the
consequence.

Listing 4.9: Valid branching statement
public T Foo(T p, S q)
{

if(...)
x = p;

else
x = q;

return1 = x;
}

Listing 4.9 contains a sample where the consequent of an if statement is unproblematic, while
the alternative raises an error. The conditional rule resolves this code snippet correctly (Figure
4.7). Evaluation of assignments is handled as described in the preceding chapters. A noteworthy
difference is given by an application of the if rule, which introduces two branches in the infer-
ence tree that need to fulfill the same postcondition. The precondition of the consequent contains
a placeholderB representing the conditional. As already mentioned, the conditional is irrelevant
for inferencing custom type qualifiers, so the predicate is removed by the following application
of the logical consequence rule. Accordingly, the precondition of the alternative contains 6 B
which is also removed.

Another aspect of the deduction is that in order to determine the postcondition of the if
statement, the branch containing the assignment of the return value is evaluated first. When the

29



verification is executed manually, this approach seems to be natural, but this is a step that is
hard to automate. When the analysis of the method follows a top down approach, the impact
on the performance needs to be considered since the remainder of the if statement is evaluated
multiple times. Nested branching statements would boost this issue even more. A more detailed
treatment of this aspect is given in Chapter 6, complexity analysis.

30



α
{p = T, q = S}if B then x = p else x = q endif ; {x = T}

β

{x = T}return1 = x{return1 = T}
{p = T, q = S}if B then x = p else x = q endif ; return1 = x{return1 = T} (sc)

α :

γ

{B, p = T, q = S}x = p{x = T}
δ

{p = T, q = S}x = q{x = T}
{p = T, q = S}if B then x = p else x = q endif ; {x = T} (if)

γ :

{B, p = T, q = S} ⇒ {p = T, p = p} {p = T, p = p}[p/x]x = p{p = T, x = p} {p = T, x = p} ⇒ {x = T}
{B, p = T, q = S}x = p{x = T} (lc)

δ :

{B, p = T, q = S} ⇒ {q = S, q = q} {q = S, q = q}[q/x]x = q{q = S, x = q} {q = S, x = q} 6⇒ {q = T}
{B, p = T, q = S}x = q{x = T} (lc)

β :

{x = T} ⇒ {x = T, x = x} {x = T, x = x}[x/return1]return1 = x{x = T, return1 = x} {x = T, return1 = x} ⇒ {return1 = T}
{x = T}return1 = x{return1 = T} (lc)

Figure 4.7: Resolution of a branching statement

31



Loops

Loops are the most complex expressions the framework has to deal with. Complexity is mainly
introduced by repetitions of code blocks and optional execution of the body. In this subsec-
tion, three cases are examined in detail, to illustrate core aspects of loop handling. Although
complexity is high, already known approaches can also be applied for loops.

Hoare calculus provides a rule that handles each of the cases properly.

{I ∧B}S{I}
{I}while B do S done{¬B ∧ I}

I represents an invariant which is a state that holds before, during, and after the loop. The invari-
ant is the core aspect of the rule, because its predicates express the semantics of the loop. There
is no generic approach to obtain the invariant, since the invariant is problem-specific and hard
to identify in most cases. This chapter illustrates how the invariant is defined in an automated
way, tailored for the problem domain. Just as if rule, this rule includes branch condition B. In
general, B is often used in combination with the invariant for deriving the final result of the
loop. In the problem domain of custom type qualifiers, the condition is not used, since it cannot
change a qualifier type.

All samples in this chapter use helper method Foo, which requires a parameter of type T
and returns type S.

S Foo(T p) {...}

The behavior of the method is defined by the following function.

Foo(x) =

{
S x = T

abort otherwise

The first sample illustrates a case where the framework can assure type qualifier correctness
(Listing 4.10).

Listing 4.10: Correct return type
S CorrectReturnType(T p, S q)
{

x = q

while(...)
x = Foo(p);

return1 = x;
}

The matching return type S is assigned to the return variable x. After the assignment, the
body of the loop is executed either multiple times or not at all. Both cases leave x in a cor-
rect state. If the loop body is not executed, x keeps the value it had before. Otherwise,
the type of x is set to the return type of Foo which is also a correct return type of method
CorrectReturnType. The inference tree of this method is shown in Figure 4.8. In this sam-
ple, the invariant I := {p = T, x = S} expresses that the loop cannot alter the value of x, and

32



therefore the values of x before and after the loop are equivalent. The essential part of the infer-
ence tree starts at β, where the while rule is applied and invariant I is introduced. Furthermore,
in the subsequent application of the lc rule, the part x = S of the invariant is dropped at
derivation γ. Afterwards, the assignment statement restores the expression and enables deriving
the invariant for the postcondition of the while rule. This behavior simulates resetting the
value of x by a method call, which is the body of the loop in the pseudo code.

33



{p = T, q = S, x = Empty} ⇒ {p = T, q = S, q = q}
(as)

{p = T, q = S, q = q}[q/x]x = q{p = T, q = S, x = q} α

{p = T, q = S, x = Empty}x = q{p = T, x = S} (lc)
β

{p = T, q = S, x = Empty}x = q, while . . . ; return1 = x; {return1 = S} (sc)

α : {p = T, q = S, x = q} ⇒ {p = T, x = S}

β :

γ
(as)

{p = T, Foo(p) = S, Foo(p) = Foo(p)}[Foo(p)/x]x = Foo2(p){p = T, Foo(p) = S, x = Foo(p)} δ

{B, p = T, x = S}x = Foo2(p){p = T, x = S} (lc)

{I} := {p = T, x = S}while . . . do x = Foo(p) done{¬B, p = T, x = S} (while)
ε

{p = T, x = S}while . . . do x = Foo(p) done; return1 = x{return1 = S} (sc)

γ : {p = T, x = S} ⇒ {p = T, Foo(p) = S, Foo(p) = Foo(p)}

δ : {p = T, Foo(p) = S, x = Foo(p)} ⇒ {p = T, x = S}

ε :

{p = T, x = S} ⇒ {x = S, x = x}
(as)

{x = S, x = x}[x/return1]return1 = x{x = S, return1 = x} ψ

{p = T, x = S}return1 = x{return1 = S}

ψ : {x = S, return1 = x} ⇒ {return1 = S}

Figure 4.8: Resolution of a loop

34



The second sample illustrates a scenario where the framework cannot guarantee that the
return type of the method is the correct return type S (Listing 4.11). If the loop body is not
executed, x is not set and does not match the required return type.

Listing 4.11: Return type may not match
S LoopMayChangeReturnType(T p)
{

while(...)
x = Foo(p);

return1 = x;
}

At the top of Figure 4.9, it can be seen that the inference tree basically consists of three branches.
These branches cope with the invariant, the actual loop and comparing the state after the loop
with the target state. As mentioned before, the invariant has to express the state before, during
and after the loop. In this case, the predicates model that the type qualifier of x may change.
Implication α builds the invariant by weakening the precondition by adding x = Empty 6⇔
x = S to express the only two possible custom type qualifiers for x. The predicate x = Empty
holds, if the body is not executed, the second part x = S holds if the loop body is executed at
least once. This is crucial for branch β where x = S is needed in the state after the assignment,
to derive the invariant which is part of the postcondition of the while rule.

To build the invariant in an automated way, the framework would have to compare changes of
variables by memorizing the symbol table before the loop and track all possible assignments in
any path inside the loop. It would be wrong behavior if the framework reported a problem right
after identifying a custom type qualifier mismatch since the variable involved in the mismatch
may not be used again. Therefore, variables in a mismatch state must be marked as an ambiguous
type, and the problem is raised when the next occurrence is encountered. This behavior is
illustrated in branch γ, where the desired custom type qualifier of the return value cannot be
derived, because the ambiguity of variable x is propagated to A2 which is the state after the
assignment. Alternatively, the code block could be inferred multiple times with all possible type
qualifier constellations. The result would be the same since one inference tree would lead to a
type qualifier mismatch.

35



α

β

{I}while . . . dox = Foo(p) done{¬B ∧ I}
γ

{¬B ∧ I}return1 = x{return1 = S}
{p = T, x = Empty}while . . . do x = Foo(p) done; return1 = x{return1 = S} (sc, lc)

α : {p = T, x = Empty} ⇒ {p = T, x = Empty, x = Empty 6⇔ x = S} (4.1)

⇒ {p = T, x = Empty 6⇔ x = S} =: {I} (4.2)

β :

{I} ⇒ {p = T, x = Empty 6⇔ x = S, Foo(p) = Foo(p), Foo(p) = S} =: {A1[Foo2(p)/x]}
(as)

{A1[Foo2(p)/x]}x = Foo2(p){A1} δ

{I ∧B}x = Foo(p); {I} (lc)

{I}while . . . do x = Foo(p) done{¬B ∧ I} (while)

δ : {A1} = {p = T, x = Empty 6⇔ x = S, x = Foo(p), Foo(p) = S} ⇒ {p = T, x = Empty 6⇔ x = S, x = S} (4.3)

⇒ {p = T, x = Empty 6⇔ x = S} = {I} (4.4)

γ :

{¬B ∧ I} ⇒ {x = Empty 6⇔ x = S, x = x} =: {A2[x/return1]}
(as)

{A2[x/return1]}return1 = x{A2} {A2} 6⇒ {return1 = S}
{¬B ∧ I}return1 = x{return1 = S} (lc)

{A2} = {x = Empty 6⇔ x = S, return1 = x} 6⇒ {return1 = S}

Figure 4.9: Resolution of a loop that causes a mismatch when the body is executed

36



Loops also introduce some tricky situations that are hard to grasp. In the sample shown in
Listing 4.12, a type qualifier mismatch would occur after the second iteration of the loop.

Listing 4.12: Mismatch after second iteration
void ParameterMismatch(T p, S q)
{

while(...)
{
Foo(p);
p = q;

}
}

Since it is not possible to evaluate the number of iterations, the framework has to raise a type
qualifier mismatch. This is a good showcase of the limits of static code analysis. Also, com-
mercial and widespread tools like Resharper [63] do not perform a detailed condition analysis.
Again, the invariant is formed by adding an antivalence p = T 6⇔ p = S to the state be-
fore the loop to express the ambiguity of p. Furthermore, the invariant lacks an assignment for
placeholder variable mr. Variable mr is an auxiliary variable that is used to detect parameter
mismatches, which is necessary since the return value is discarded in the sample code snippet.
The absence of mr in the invariant expresses that the custom type qualifier value for mr cannot
be derived because the type qualifier of parameter p is ambiguous. This can be seen in implica-
tion γ, where possible assignments are derived, but discarded afterwards to satisfy the invariant.
Ambiguity of p and mr are handled differently because the impact is different. The framework
would have to mark p as ambiguous and keep the state to be able to detect potential type qualifier
mismatches when the variable is used as the value of a qualified parameter. On the other side
tracking mr is not necessary, because it is definitely not used, and a mismatch can be raised as
soon as it is detected that method Foo is called with an ambiguous parameter.

37



{p = T, q = S} ⇒ {p = T 6⇔ p = S, q = S} =: I

α
{I ∧B}mr = Foo(p){I}

β

{I}p = q; {I}
{I ∧B}mr = Foo(p); p = q; {I} (sc)

{I}while . . . do mr = Foo(p); p = q done{¬B ∧ I} (while)

{p = T, q = S}while . . . do mr = Foo(p); p = q done{mr 6= abort} (lc)

α :

{I ∧B} ⇒ {p = T 6⇔ p = S, q = S, Foo(p) = Foo(p)} =: {A1[Foo(p)/mr]}
(as)

{A1[Foo(p)/mr]}mr = Foo(p){A1} γ

{I ∧B}mr = Foo(p){I}

γ : {A1} = {p = T 6⇔ p = S, q = S,mr = Foo(p)} ⇒ {p = T 6⇔ p = S, q = S,mr = Foo(T ) 6⇔ mr = Foo(S)} (4.5)

⇔ {p = T 6⇔ p = S, q = S,mr = S 6⇔ mr = abort} (4.6)

⇒ {p = T 6⇔ p = S, q = S} = {I} (4.7)

β :

{I} ⇒ {p = T 6⇔ p = S, q = S, q = q} =: {A2[q/p]} {A2[q/p]}p = q{A2} δ

{I}p = q; {I} (lc)

δ : {A2} = {p = T 6⇔ p = S, q = S, q = p} ⇒ {p = T 6⇔ p = S, q = S} = {I}

{I} = {p = T 6⇔ p = S, q = S} 6⇒ {mr 6= abort}

Figure 4.10: Resolution of a loop that causes a mismatch in the second iteration

38



Further aspects of verification

Previous chapters covered handling of control structures that are supported by most program-
ming languages. Since C# is very feature rich, some supported language features deserve a
closer look. Since the core architecture is not affected by these features, the topics in the section
are covered briefly.

Aliasing

Aliasing occurs when two variables refer to the same data location. If this is the case for x and
y the following deduction is wrong because a modification of x modifies y too.

{y = 0}x := 1{y = 0}

In C#, variables in code can either have value types, such as built in types or structs, or reference
types, such as objects (Listing 4.13).

Listing 4.13: Possible types of variables
void Foo()
{

int i = 3;
var x = new Object();

}

Both categories cannot introduce aliasing since variables always refer to distinct memory loca-
tions. This does not hold for parameters, which is shown in Listing 4.14.

Listing 4.14: Evaluation strategies
void Foo(int a, int b, object c, object d, ref int e, ref int f)
{
}

The first four parameters act like variables. Parameters a and b have a value type and are evalu-
ated by a call-by-value strategy. Parameters c and d have a reference type and refer to different
memory locations that are allocated when the method is called, they follow a call-by-sharing
evaluation strategy. The last two parameters are evaluated in a call-by-reference evaluation
strategy. When the method is called, no memory is allocated for parameters e and f . Instead,
a pointer to the memory location of the parameter values at the callee is used. Aliasing occurs
if the same variable is passed as parameter e and f , which is a case that cannot be handled.
Therefore, ref parameters are not supported by the framework. Aliasing can also be introduced
by using pointers. Code using pointers is called unsafe code in C# terminology and also not sup-
ported by the framework. In practice, these restrictions don’t impact usability since they relate
to features that are rarely used.

Type qualifier vectors

Continuing analysis of parameters reveals scenarios where a single type qualifier is not expres-
sive enough (Listing 4.15).

39



Listing 4.15: Annotating delegates
delegate [S] QualifiedFunction ([T] object a)

void Foo(QualifiedFunction f)
{
}

In this case, the parameter f is a functional that takes an object as parameter and returns an
object. According to C# notation this is handled by introducing a custom type qualifier vector
containing the types of the signature. The first element of the vector represents the return value
and is followed by the parameter qualifiers. Hence, the precondition of the deduction tree would
contain f = (S, T ). Introducing vectors has little effect on the algorithms and approaches
covered so far, because the framework only uses equality of type qualifiers which can be easily
extended to support vectors.

Out parameters

Out parameters can be defined in C# to return multiple values without being forced to create a
container object (Listing 4.16.

Listing 4.16: Out parameters
void Foo(out int a, out int b)
{
}

There is no special treatment needed for type qualifier verification, because out parameters can
be handled like ordinary return values. Every occurrence of a return implies additional checks
for the return values.

Fields

A custom type qualifier can also be defined on a field to ensure that only values of a specific
qualifier are assigned. For deduction, a predicate expressing the constant value of the field can
be added to the precondition. Assignments of fields need to be handled like method calls, since
the semantics is the same as calling a method without parameters. Therefore, a mismatch can be
detected immediately and no further analysis is required.

Implications on implementation

It was shown that a tool handling custom type qualifiers can be implemented with methods of
formal verification and compiler construction. Hoare Calculus can be used analyze an assembly
and handle all control sturctures of C# to follow all execution paths. Also inconsistencies can
be found, which are revealed type qualifier mismatches. The verification can be automated by
means of static code analysis and the help of a symbol table to track qualifier types of variables.
The correct call of methods can be checked by analyzing method signatures and comparing
specific custom type qualifiers of parameters with the actual type of the variable that is passed
and stored in the symbol table.

40



4.3 Generating custom annotations

The first step to utilize custom type inference is defining custom type qualifiers. To achieve
this, InjectionCop provides various possibilities. The fastest way is using the pre defined
FragmentAttribute contained in “InjectionCopAnnotations.dll” where the custom type
can be specified by a string parameter.

public void Foo ([Fragment("CustomType")] object qualifiedParameter)

This approach can be useful when the framework is used sparsely, or in a strongly restricted
scope, like in a test class. On the other hand, this approach is not very robust, since typos
can unintentionally introduce new type qualifiers, and unfortunate refactoring can break type
inference. Additionally, literals are not part of the type system and therefore not expressive from
a programming language theoretic point of view. The following improvement addresses this
issue by moving the string literal to a class capable of managing custom type qualifier literals.

public void Foo (
[Fragment(TypeQualifiers.CustomType)] object qualifiedParameter)

This code snippet comes along with an obvious drawback: verbosity. Many characters are waste
because the identifiers Fragment and TypeQualifiers are non descriptive. The more
elegant way is inheriting from the built in attributes to implement attributes that are recognized
by the type system. Those attributes are tailored for a specific context and verbosity can be
minimized without losing expressiveness.

public void Foo ([CustomType] object qualifiedParameter)

Defining such attributes is quite simple and depicted in Listing 4.17. User-defined attributes
have to be in namespace InjectionCop.Attributes and an extension of the attribute
InjectionCop.FragmentAttribute has to be defined. Additionally, an overload of the
default constructor has to be implemented, that passes a string representation of the custom type
qualifier to the base class. This is the preferred approach for defining custom type qualifiers and
the best fit in most scenarios.

Listing 4.17: Custom type qualifier definition by inheritance
namespace InjectionCop.Attributes
{

[AttributeUsage(AttributeTargets.Parameter
| AttributeTargets.ReturnValue
| AttributeTargets.Field
| AttributeTargets.Property
| AttributeTargets.Constructor)]

public class CustomTypeAttribute : FragmentAttribute
{
public CustomTypeAttribute() : base("CustomType") { }

}
}

41



4.4 Annotation usage

By using proper annotations, custom type qualifiers can be defined. Those annotations are recog-
nized by the inference engine, which performs static code analysis to reveal possible violations.
This section covers all possible positions in the source code where custom type qualifier an-
notations can be added, as well as some framework design decisions concerning inheritance of
custom type qualifiers and handling of literals by InjectionCop.

Annotating methods

As illustrated in the last section, custom type qualifiers can be added as parameter attributes
to facilitate expressiveness of methods. Listing 4.18 shows all possible scenarios where cus-
tom type attributes can be placed. The parameter of method Foo contains an attribute declar-
ing the constraint that on every call of Foo the first parameter must be an object of qualifier
type CustomType. This constraint is violated in method UnsafeFooCall, since it calls
EmptyTypeGenerator, which is not a declared source of CustomType qualifier. The
return type of EmptyTypeGenerator is of the default type, the empty qualifier type, be-
cause it does not have any qualifier annotations. Another feature of InjectionCopis annotating
return values, which is used in UnsafeFooReturn. The concept is similar to the support
of parameter qualification, and the implied constraint is violated because the return type of
EmptyTypeGenerator does not match.

At this point, the question of how to generate custom type qualifier sources to be able to
perform safe method calls and safe return statements according to the sample annotations arises.
This is where the attribute FragmentGenerator comes into play, which is shown in method
CustomTypeGenerator. The attribute represents the developers commitment that the cor-
responding method always returns a matching custom type qualifier, and therefore, the inference
engine does not need to check the return value. It is essential to use this annotation carefully,
since it can break validity of inference. Generator methods should be of high quality, well tested,
and reviewed to maximize confidence in the result of the static code analysis.

After setting up a matching generator, giving samples of safe method calls and safe returns
is an easy task. Methods SafeFooCall and SafeFooreturn utilize CustomGenerator
to provide samples of safe custom type qualifier usage.

Listing 4.18: Example covering method annotations entirely
class AnnotatingMethods
{

public void Foo([Fragment("CustomType")] object parameter) { }

public void UnsafeFooCall()
{
// unsafe: calling Foo with empty type qualifier
Foo(EmptyTypeGenerator());

}

[return: CustomType]
public object UnsafeFooReturn()
{

42



// unsafe: returning empty type qualifier
return EmptyTypeGenerator();

}

public object EmptyTypeGenerator()
{
return new object();

}

[FragmentGenerator]
[return: CustomType]
public object CustomTypeGenerator()
{
return new object();

}

public void SafeFooCall()
{
Foo(CustomTypeGenerator());

}

[return: CustomType]
public object SafeFooReturn()
{
return CustomTypeGenerator();

}
}

Annotating fields

When methods are annotated, there is always a clear and obvious distinction between type quali-
fier providers and receivers that is given by the FragmentGenerator attribute. Fields have a
different semantic meaning since an analogical differentiation would introduce irrational behav-
ior. Having a field defined as source-only would enable the developer to assign any type qualifier
resulting in an obscure conversion to the field’s type. This is an InjectionCop anti pattern, be-
cause it breaks the principle of highlighting and declaring code capable of generating qualified
data clearly. Turning the scenario around, a field defined as receiving-only would lead to a field
where only objects of the specific qualified type can be assigned but inferencing would discard
this information when the field is used. Therefore, forcing the developer to assign a certain type
automatically turns the corresponding field into a source, too.

Listing 4.19 illustrates the previously described behavior. Field customTypeField is
qualified as CustomType. Extending behavior of type qualifiers consistently according to han-
dling methods, member Unsafe assigns an object of the empty type which raises a warning. A
safe assignment and a safe call with a qualified field parameter is demonstrated in method Safe.
Safeness of the assignment is assured by properly annotated CustomTypeGenerator, safe-
ness of the call to Foo is ascertained by the attribute of customField.

Listing 4.19: Safe and unsafe usage of fields
class AnnotatingFields

43



{
[CustomType] private object customTypeField;

public void Unsafe()
{
// unsafe: assigning empty type qualifier
customTypeField = new object();

}

public void Safe()
{
customTypeField = CustomTypeGenerator();
Foo(customTypeField);

}

public void Foo([CustomType] object parameter) { }

[FragmentGenerator]
[return: CustomType]
public object CustomTypeGenerator()
{
return new object();

}
}

Annotating properties

In cases where properties are used like fields, which is illustrated in Listing 4.20 by the prop-
erty CustomTypeProperty, the developer would expect InjectionCop to behave as if the
property was a field. Of course, this is the way InjectionCop interprets those properties. Tak-
ing these considerations a step further, additional code in the property body could break validity.
The getter of ComplexCustomTypeProperty causes a warning, since an object holding the
empty type qualifier is returned. Also assigning a mismatching qualifier type raises a warning
which is shown in method Foo.

From a developers’ point of view, this behavior may be too restrictive. Since a getter
could include instructions causing the property’s type qualifier to be obsolete, and also the
setter could do some sanitizing work without the need of passing a value of a specific qual-
ifier type, it would be desirable to annotate getters and setters according to their semantics.
Currently, InjectionCop does not support this feature but implementation is planned, further
details can be found in the Chapter Future work 7.

Listing 4.20: Annotating a property
class AnnotatingProperties
{

[CustomType]
public object CustomTypeProperty { get; set; }

[CustomType]
public object ComplexCustomTypeProperty

44



{
get
{

// unsafe: returning empty type qualifier
return new object();

}
set { }

}

public void Foo()
{
// unsafe: assigning empty type qualifier
ComplexCustomTypeProperty = new object();

}
}

Annotating constructors

For convenience, InjectionCop provides the feature of annotating constructors to assign a cus-
tom type qualifier to a generated object. The advantage of this approach is that initialization
and qualification of an object is possible without encapsulation in a class that is in charge of the
initialization of the object. This prevents extensive utilization of creational patterns, for example
factory pattern [60] where initialization is done by a factory class, or builder pattern [21] where
a class is used to collect meta data before the object is created. Annotating a constructor with
a type qualifier attribute, as shown in Listing 4.21, is semantically equivalent to qualifying a
method’s return value and adding FragmentGenerator attribute. This syntax inconsistency
is a disadvantage that is introduced by the language definition of C#. Annotating the return
value of a constructor is not possible, because from a language theoretical point of view, there is
no return value. Adding FragmentGenerator attribute to the constructor is syntactic sugar
because there is no additional semantic meaning present.

Listing 4.21: Annotating a constructor
class AnnotatingConstructors
{

[CustomType]
public AnnotatingConstructors
([CustomType] object parameter) { }

}

Annotating interfaces

There is no difference between annotating an interface and a class, as shown in Listing 4.22,
which contains the interface that is used for illustrating behavior of InjectionCop when inter-
faces are inherited.

Listing 4.22: Annotated interface
interface AnnotatedInterface
{

45



[return: CustomType]
object Foo([CustomType] object parameter);

[FragmentGenerator]
[return: CustomType]
object CustomTypeGenerator();

}

A class implementing the interface, as depicted in Listing 4.23, automatically inherits the inter-
face’s annotations. This design decision was taken because type qualifiers are heavily related
to interfaces. Intentions for defining custom type qualifiers are very similar to intentions for
defining an interface. The difference is that the interface or contract defined by type qualifiers
is incorporated into an existing type and no distinct artifact is created. From this point of view,
a type that does not adhere to declared custom type qualifiers of an interface does not fully im-
plement the interface, and a warning must be raised by InjectionCop. For better readability and
maintainability, matching attributes can be added to classes, which are treated as syntactic sugar
and ignored by the inference engine. Method UnsafeFooCalls in Listing 4.23 demonstrates
this behavior by calling Foo with an unsafe parameter, once with a caller of the interface’s type
and once with a caller of the implementation’s type.

Listing 4.23: Implementation of AnnotatedInterface
class Implementation : AnnotatedInterface
{

public object Foo(object parameter)
{
return new object();

}

public object CustomTypeGenerator()
{
return new object();

}

public void UnsafeFooCalls()
{
Implementation implementation = new Implementation();
implementation.Foo(new object()); // raises warning
AnnotatedInterface interfaceRef = implementation;
interfaceRef.Foo(new object()); // raises warning

}
}

Since it is syntactically correct to place attributes on the implementation of an interface, Injec-
tionCop provides a mechanism that detects mismatches of custom type qualifiers. Listing 4.24
contains a sample, where method Foo is annotated in contradiction to the implemented interface.
In this case, a warning is raised notifying the developer that the attribute of the implementation’s
method is ignored and the interface’s annotations are used for inference.

Listing 4.24: Mismatching implementation of AnnotatedInterface
class QualifierMismatch : AnnotatedInterface

46



{
public object Foo([Fragment("MismatchingType")] object parameter)
{
return new object();

}

public object CustomTypeGenerator()
{
return new object();

}
}

Inheritance

The behavior of InjectionCop when dealing with inheritance is closely related to behavior when
implementing interfaces. However, there are differences between handling dynamic and static
binding. Listing 4.25 shows a base class, containing methods that are used for explaining treat-
ment by InjectionCop in context of inheritance.

Listing 4.25: Annotated base class
class AnnotatedBaseClass
{

[return: CustomType]
public object StaticBinding([CustomType] object parameter)
{
return DynamicBinding();

}

[return: CustomType]
public virtual object DynamicBinding()
{
return CustomTypeGenerator();

}

[FragmentGenerator]
[return: CustomType]
public virtual object CustomTypeGenerator()
{
return new object();

}
}

A class extending AnnotatedBaseClass is depicted in Listing 4.26. StaticBinding is
a method that is statically bound and defines other custom type qualifiers than the base class.
This is a completely legitimate use case, because the decision of using either the method defined
in the base class or the method defined in the extension of the base class is explicitly stated in
the source code. When using static binding, the developer chooses to explicitly define which
implementation of the method to use. This behavior is illustrated in method SomeCalls.

Dynamic binding consequently pursues design decisions for handling interfaces. Changing
custom type qualifiers of dynamically bound methods would encourage bad design. Dynamic

47



binding is used in situations where a method with a well-defined prototype, that is constant
across the class hierarchy, should execute a method body dependent on the object instance.
Since qualifiers are part of the method prototype, a change in the prototype contradicts the
intended usage of a virtual method. Following this principle, definition of the overridden method
DynamicBinding in class Inherited, which introduces an annotation mismatch, raises a
warning.

Listing 4.26: Extension of AnnotatedBaseClass
class Inherited : AnnotatedBaseClass
{

public new object StaticBinding([Fragment("OtherType")]object parameter)
{
return new object(); // no warning

}

// warning: type qualifier mismatch
[return: Fragment("OtherType")]
public override object DynamicBinding()
{
return new object();

}

void SomeCalls()
{
// warning
StaticBinding(CustomTypeGenerator());
// no warning
base.StaticBinding(CustomTypeGenerator());

}
}

Annotating functionals

C# provides various means for defining functionals, namely delegates, anonymous methods and
lambda expressions. Since functionals are first class citizens, it is essential to provide features
for adding custom type qualifiers to type definitions of functionals. Listing 4.27 demonstrates
annotating a delegate, which is similar to annotating a method, as well as usage of functionals.

The first statement of method Calls is default behavior, which was already explained in
previous sections. A warning is raised because the parameter object is not qualified properly.
The method body becomes more interesting when the same method is assigned to a variable
of a delegate type. In this case, the method’s qualifiers are obsolete and matching is based on
the delegate’s type qualifiers. This is demonstrated by the following calls which raise warnings
related to the delegate type. This behavior requires explanation, since, at first glance this de-
sign decision is in contradiction to previous decisions where custom type qualifier mismatches
trigger a warning. Comparing this use case with handling of interfaces, the difference is that
a class explicitly declares to implement an interface, while there is no possibility to define that
a method implements a delegate type. This is not a weakness of C#, delegates are simply
not intended for this kind of usage. Additionally, this would be a pointless language feature

48



since interfaces are the obvious approach to handle this. Type qualifier mismatches are ruled out
when an anonymous method or lambda expressions is assigned to a delegate variable, because
C# forbids adding attributes to them.

The section about anonymous method behavior of method Call demonstrates the ability of
InjectionCop to detect type qualifier mismatches of delegate types on return values. A warning
is raised, because the delegate type declares to return an object qualified as CustomType,
but the assigned anonymous method returns the empty type. The following lambda expression
satisfies this constraint since it is an implementation of the identity function.

Listing 4.27: Annotating functionals
class AnnotatingFunctionals
{

[return: CustomType]
public delegate object AnnotatedDelegate([CustomType] object parameter);

public object Identity([Fragment("OtherType")] object parameter)
{
return parameter;

}

public void Calls()
{
// warning: parameter qualifier type mismatch
Identity(new object());

AnnotatedDelegate annotatedDelegate;
// method assignment behavior
annotatedDelegate = Identity;
// no warning: parameter matches delegate’s qualifier type
annotatedDelegate(CustomTypeGenerator());
// warning: parameter qualifier type mismatch
annotatedDelegate(new object());

// anonymous method behavior
// warning: return type mismatch
annotatedDelegate = delegate(object parameter)
{

return new object();
};

// lambda expression behavior
annotatedDelegate = x => x;

}

[FragmentGenerator]
[return: CustomType]
public object CustomTypeGenerator()
{
return new object();

}
}

49



Literals

For reasons of convenience, InjectionCop treats literals as a superior type matching with any
custom type qualifier (Listing 4.28). This is a natural assumption because literals always denote
a source and forcing the developer to implement a fragment generator wrapper method that
returns a literal to introduce an appropriate custom type qualifier would result in producing
“boiler plate” code.

Listing 4.28: Handling literals
class HandlingOfLiterals
{

[return: CustomType]
public string Foo([CustomType] int? parameter)
{
return "no warning raised";

}

public void NoWarningsRaised()
{
Foo(3);
Foo(null);

}
}

4.5 XML interface

As elaborated in Section 3.4, it is of great importance to define custom type qualifier interfaces at
the system’s borders. This is achieved by an XML interface that is capable of setting Injection-
Cop annotations. Listing 4.29 shows an example XML file, covering all annotations provided.
Although this mechanism is intended for qualifying third party libraries, it can also be used for
setting attributes of your own code base. This can result in obscure conflicts that are hard to
identify. Since it is better style to define attributes, mainly because they are recognized by the
type system, in case of a conflict, the attributes set in the source code overrule the XML settings.
To avoid this confusing scenario, it is highly recommended to use XML definitions for third party
libraries only.

Listing 4.29: Custom type qualifier definition file
<?xml version="1.0" encoding="utf-8" ?>
<Blacklist xmlns="http://injectioncop.codeplex.com/">

<Assembly name="InjectionCopDemo">
<Type name="TypeName">
<Method name="Foo" returnFragmentType="CustomType" >
<Parameter type="System.Object"

fragmentType="CustomType"
fragmentGenerator=""/>
</Method>

</Type>
</Assembly>

</Blacklist>

50



Custom type qualifier definition files are identified by the extension “.injectioncop” and there
are several possibilities where an XML qualifier definition file can be located. When custom
type qualifiers are resolved, and no attributes are defined in source code, the first location that is
scanned for an XML definition file is the assembly directory of InjectionCop. If no definition
file is present, or the existing file does not contain a definition for the required entry, Injec-
tionCop starts a search in the directory containing the assembly the type is defined in. Again,
this can produce conflicts when multiple type qualifier definition files are present in one direc-
tory. Evaluation order of these files is not specified, and it is highly recommended not to spread
definitions across multiple files in one directory.

4.6 Build process integration

For reasons of applicability, it is fundamental to integrate InjectionCop into build and develop-
ment process neatly. For this purpose, the framework can be launched via command line, and
configured to run within Visual Studio which provides a GUI.

Command line tool - FxCopCmd.exe

Starting static code analysis from shell is pretty simple which is shown in Listing 4.30.

Listing 4.30: Starting InjectionCopfrom console
$ cd ’C:\Program Files (x86)\Microsoft Visual Studio 11.0\Team Tools \

\Static Analysis Tools\FxCop’

$ .\FxCopCmd.exe /file:C:\InjectionCopDemo.dll \
/rule:C:\InjectionCop.dll /console

FxCopCmx.exe is the tool to use, and it is shipped with Visual Studio. Launching the analysis
requires parameters “/file” which specifies the assembly to analyze, and “/rule” to state the rule
base to use for analysis. Additionally, “/console” is given for activating console output. After
firing the command, all warnings identified by InjectionCop are printed.An exemplary part of
the output is shown in Listing 4.31.

Listing 4.31: Output of an analysis
...\AnnotatingInterfaces.cs(40,1) : warning : IC0001 : \
InjectionCop.Analysis : Expected fragment of type ’CustomType’ \
but got ’Empty’.

...\AnnotatingInterfaces.cs(47,1) : warning : IC0003 : \
InjectionCop.Usage : Expected fragment of type ’CustomType’ \
from implemented interface method, but got ’MismatchingType’.

The first warning corresponds to the code snippet for demonstrating implementation of an anno-
tated interface (Listing 4.23), particularly the second warning of method UnsafeFooCalls.
The format is straight forward and lists the affected file and line number, the “Action” which is
set to warning, the id of the rule which is “IC0001”, the category “InjectionCop.Analysis” and a
customized output message for more detailed context information.

51



The second warning is related to the sample illustrating the fault of implementing an inter-
face with mismatching custom type qualifiers (Listing 4.24). Some noteworthy differences are
the different rule id and category to distinguish problems identified by analysis and wrong usage
of InjectionCop.

Visual Studio integration

Visual Studio provides all interfaces needed for extending static code analysis by adding plug-
gable type checkers. The setup requires just a few steps and starts with defining a rule set for the
project, which is just an XML file with “.ruleset” extension. An example rule set is given Listing
4.32.

Listing 4.32: Configuration file of a rule set
<?xml version="1.0" encoding="utf-8"?>
<RuleSet Name="New Rule Set" Description=" " ToolsVersion="11.0">

<RuleHintPaths>
<Path>C:\InjectionCop.dll</Path>

</RuleHintPaths>
<Rules AnalyzerId="Microsoft.Analyzers.ManagedCodeAnalysis"
RuleNamespace="Microsoft.Rules.Managed">
<Rule Id="IC0001" Action="Warning" />
<Rule Id="IC0002" Action="Warning" />
<Rule Id="IC0003" Action="Warning" />
<Rule Id="IC0004" Action="Warning" />

</Rules>
</RuleSet>

Most elements are self-explanatory. An assembly containing FxCop rules that should be consid-
ered, can be configured using the “RuleHintPaths” element, which in this example contains the
path to the InjectionCop dll. To have fine grained control on which rules to activate, the “Rules”
element represents a white list of rules, identified by id, that are executed during analysis pro-
cess.

The next step is configuring the project to use the previously defined rule set. Those settings
are located on the “Code Analysis” tab of the project properties where a rule set can be selected.
Additionally, there is the handy option to enable code analysis on build which is recommended
for taking full advantage of InjectionCop. This is all configuration work that needs to be done
to integrate InjectionCop into Visual Studio and the project to analyze.

When a new build of the project is initiated, InjectionCop analyzes the code base and
displays warnings on the code analysis view. Source context is resolved and affected code is
highlighted. Figure 4.11 shows those features by displaying the same warnings as discussed in
subsection about “FxCopCmd.exe” 4.6. For handling false positives, any entry from the code
analysis problem list can be suppressed separately. This can be achieved by the “Actions” button
that is part of the corresponding problem list element. This is just a shortcut for automatically
generating a “SuppressMessage” attribute which is shown in Listing 4.33.

Listing 4.33: “SuppressMessage” attribute
[System.Diagnostics.CodeAnalysis.SuppressMessage("InjectionCop.Analysis",
\ "IC0001:TypeParser", MessageId = "IC0001")]

52



Figure 4.11: Code analysis view

Depending on practicability, those attributes can be added to source code or a separate suppress
messages file.

53





CHAPTER 5
Implementation

Applying the methodology outlined in previous chapters to analyze an executable involves work-
ing with code in different formats. The section begins with the life cycle of an analysis artifact,
starting from source code that is compiled to an executable, whose CIL instructions are converted
to an object model that is used by the framework. Another segment deals with algorithmic foun-
dation of key elements of verification. The chapter concludes with performance analysis and
findings that emerged in the process of gathering data.

5.1 Object model

To understand the algorithm behind InjectionCop, it is necessary to take a closer look at the
object model generated by FxCop. This model is mapped to a custom model representing an
instance of the source and sink problem, which is tailored for the core algorithm. As indicated
in Chapter 2.6, a model of the assembly is generated where executable members like methods
or constructors are transformed to statements, blocks and jumps. To gain deeper understanding
of these very abstract entities, several illustrations of some sample methods will be discussed.
The purpose of the class in Figure 5.1 is providing the sample methods used to demonstrate
mapping of source code, especially control structures, to the FxCop object model. The focus is
on the method IfStatement, which is separated into three areas, recognizable by different
colors. Each area represents a basic block. To gain better understanding of the basic blocks, es-
pecially the green block that seems to be empty in the source code, the corresponding CIL code
is examined (Figure 5.2). The blue block contains all commands that evaluate the if conditional,
it consists of load instructions, comparisons and a branch instruction. In this case, the branch
instruction jumps past the if-statement if the condition is not satisfied. The red block embodies
the true branch of the if condition, where a literal is loaded and an output function is called. A
look at the green block, which seemed to be non existing due to its absence of statements in the
source code, reveals that a return instruction is added by the compiler. Comparing the CIL code
with the tree view of the object model generated by FxCop (Figure 5.4), indicates correlation of
the sequence of instructions and the object graph. The method body aggregates a collection of

55



Figure 5.1: Sample class with highlighted basic blocks

Figure 5.2: CIL instructions of the sample class with highlighted basic blocks

56



pre-branch

case 1 case 2 case n

post-branch

pre-loop

body

condition

post-loop

Figure 5.3: Method graph of a branch and loop statement

blocks where each block aggregates a collection of statements. The statement objects group sev-
eral CIL instructions which leads to a more handy code model. Assignments, methods, branches
and many more statement types, are wrapped by objects that reference each other according to
semantics of the code. This implies that all branch statements within a basic block reference
the appropriate succeeding block. Considering sequential execution of CIL commands, a block
without a branch statement at the end introduces a transition to the subsequent block. Following
these rules of edge definition, a graph as depicted in Figure 5.4 can be constructed. This graph
represents the control flow of the method and is perfectly suitable for analyzing semantics. An-
other advantage of the graph generated from CIL code is that all control structures in the source
code are mapped to graphs following general patterns for branch and loop statements (Figure
5.3). If statements, as well as switch statements or ternary if operators are mapped to an object
model containing several branches as depicted on the left graph. All kinds of loops result in a
graph that is similar to the right one.

The tree view shown in Figure 5.4 of the sample class gives insight into the objects acting
as containers that form the model of the given code. It also shows complexity of the object
model, since, there are loads of objects aggregating collections of subordinate objects starting
from module level leading to types, members, blocks and statements. Additionally, there are
collections for attributes, references to base classes of declaring members and lots of other details
that are useful for code analysis.

Summarizing these observations, FxCop generates an object model by parsing CIL code.
This object model can be mapped to a custom graph, tailored for static code analysis, of the
control flow of any method. The graph consists of sub graphs following two specific patterns.
It may contain circles if the corresponding method contains a loop, and the graph may branch
when the methods includes a conditional.

5.2 Architecture

High requirements are put on the architecture because an executable is a very complex input to
process. Starting from a program, FxCop generates the object model that is used for analysis.
Building the object model is accomplished with the help of CCI [11]. CCI is provided by Mi-

57



pre-if

true-branch

post-if

Figure 5.4: Tree view and graph representation of method “IfSample”

crosoft Research and stands for “Common Compiler Infrastructure”. It is a powerful collection
of libraries and APIs, targeted to be used by compilers or similar tools. The object model is
the foundation of the analysis and embodies different abstraction levels like types, methods and
statements of the executable.

Analysis process

An illustration of all components and artifacts of the analysis process is shown in Figure 5.5. An
analysis can be started from any of the FxCop launchers mentioned in the chapter about build

58



InjectionCop.dll

FxCop

InjectionCop

2. FxCop converts input dll to object model, passes it 
to InjectionCop and receives problem instances

3. Problems are 
mapped to xml 
representation 
and returned

1. Custom rule and 
executable to analyze is 

passed to FxCop

Engine + 
metadata

Input.dll

Figure 5.5: InjectionCop’s components and artifacts

process integration (Section 4.6). In the diagram, FxCopCmd.exe is used to pass the Injection-
Cop dynamic link library and the input dll containing the executable to analyze. The dll is a
FxCop custom rule that contains the engine, as well as a meta data XML file. The records of a
meta data instance are self explanatory. A sample is shown in Listing 5.1.

Listing 5.1: InjectionCop meta data
<?xml version="1.0" encoding="utf-8" ?>
<Rules FriendlyName="InjectionCop">

<Rule TypeName="TypeParser" Category="InjectionCop.Analysis" CheckId="IC0001">
<Name>Check for Fragment Violations</Name>
<Description>See injectincop.codeplex.com for quick introduction</Description>
<Url>injectioncop.codeplex.com</Url>
<Resolution>Expected fragment of type ’{0}’ but got ’{1}’.</Resolution>
<MessageLevel Certainty="95">Warning</MessageLevel>
<FixCategories>NonBreaking</FixCategories>

59



<Email />
<Owner />

</Rule>
</Rules>

The data structure covers information that is used for selecting and displaying rules before the
analysis, like “Name” or “CheckID”, but also for representing and interpreting the output of
an analysis. “FixCategories” and “Resolution” are examples for values that support further
processing of the result of the analysis. The next step is converting the input dll to an object
model that is passed to the custom rule. During analysis, a custom rule can report issues by
adding objects to a collection of type “Problem” that is provided by FxCop. An instance of
Problem is basically a container holding a resolution generated from rule meta data, the id of
the rule that is violated and a source context. Source context is a convenient way to identify
the position of the violation in the code that can be interpreted by Visual Studio automatically.
When the analysis is finished, FxCop processes all problems raised by the rule and generates an
output XML file that is returned to the launcher of the analysis.

InjectionCop modules

FxCop provides several extension points on different levels of detail that can be utilized by cus-
tom rules. This is realized by a base class following visitor pattern, which introduces a mech-
anism to add virtual functions to a set of classes without changing them [21], whose overloads
of visit methods take parameters of an object model type from FxCop. These visitors enable
analysis starting from whole types down to specific statements of an executable. For simple
code analysis engines, examining specific statements may be sufficient. For example, easy tasks
like verifying that a specific method from an external library is not used, can be accomplished
by checking method calls only. In other problem domains, analyzing on method level may be
adequate. However, implementing a custom type qualifier engine by examining statements or
methods isolated is inconvenient. Analyzing deterministically, which is not guaranteed when
using visitors provided by FxCop, by parsing types starting with fields and continuing with
methods simplifies processing of relations between fields and methods. Nonetheless, introduc-
ing different levels of abstraction is an excellent way to handle high complexity of input. The
architecture of InjectionCop features layers for analysis on type, method and statement level
(Figure 5.6). The input object model is passed to the type parsing module of the top layer which
is capable of collecting information about fields and handing off analysis of methods to the next
layer. The method parsing layer generates a graph representation of a method with the help of a
block parsing layer at the bottom. Any of those layers can detect problems that are returned to
FxCop by a problem pipe module.

5.3 Algorithm

The chapter about verification (Section 4.2) dealt with the core concepts of the algorithm by an-
alyzing deduction trees. This section focuses more on the implementation by discussing pseudo
code of crucial code parts. In this section, modules for walking through the inference tree,
analyzing method signatures and modules for applying Hoare rules are addressed.

60



BlockParsing

MethodParsing

TypeParsing ProblemPipe

Object Model Problems

Figure 5.6: InjectionCop’s architecture

Parsing the inference tree

As seen in deduction trees, when a method is analyzed, the verification engine has to walk
through each statement and maintain the current state of the variables. Depending on the type of
the current statement respective actions have to be enforced. These actions are hook points for
other modules covered in this section.

Analysis is implemented in the Inspect method. A method is represented by an ordered
set of code blocks, which are analyzed separately. The entry point for this inspection per code
block is given by the first method which takes the block as a parameter. Similar to methods,
each block is an ordered set of statements. Each statement of the block is passed to an overload
of the Inspect method where a distinction of different statement types is performed. For
simplification, only assignments and method calls are considered in the outline of the algorithm
(Listing 5.2).

Listing 5.2: Handling of different kinds of statements
void Inspect (Block block)
{

foreach(statement in block)
Inspect(statement);

}

void Inspect (Statement statement)
{

if(statement is AssignmentStatement)
Inspect ((AssignmentStatement) statement)

else if (statement is MethodCall)
Inspect ((MethodCall) statement)

else if
...

}

61



The Inspect method on statement basis is the controller that provides core hook points. These
hook points are used by statement handlers that have to cover a wide range of types. Besides
assignments and method calls these types include

• Branch

• Switch

• Return

• Indexer

Although there a plenty of handlers covering special cases only the most important ones are
addressed here.

Representation of states

The current state in the inference phase is encapsulated in an instance of a SymbolTable
(Listing 5.3). The current type qualifier of any symbol of the state is stored in a dictionary.
The key of the map is the symbol name, the value is an instance of Fragment that represents
the custom type qualifier. Symbol names include identifier for all possible data sources like
variables, fields or parameters. These names are generated by the compiler so that no name
clashes can occur.

Listing 5.3: Symbol table
public class SymbolTable : ISymbolTable
{

private Dictionary<string, Fragment> _safenessMap;

public Fragment InferFragmentType (Expression expression)
{
if (expression is Literal){...}
else if (expression is Local){...}
else if (expression is Parameter){...}
...

}

private Fragment InferMethodCallReturnFragmentType (MethodCall methodCall){...}
public bool IsAssignableTo(string symbolName, Fragment fragmentType){...}
public Fragment[] InferParameterFragmentTypes (Method method){...}
public void MakeUnsafe (string symbolName){...}
public void MakeSafe (string symbolName, Fragment fragmentType){...}
private Fragment Lookup (string name){}
...

}

Besides the dictionary for tracking the state of the inference, the symbol table contains many
helper methods. Most of them deal with inferring a custom type qualifier for a certain code con-
struct. These methods provide inferring expressions, which is similar to the inspect method, as
well extracting the return type of a method call or qualifiers of parameters. Methods MakeSafe

62



and MakeUnsafe act like setters and enable the caller to define a custom type qualifier for a
specific symbol. Lookup is a getter method that returns the current fragment for a given sym-
bol, IsAssignableTo implements logic to check if a certain symbol can be assigned to a
target that requires a specific custom type qualifier. Implementation details of these methods are
omitted because the code is straight forward and not relevant to get the idea of the algorithm.
The usage of the helpers can be seen in the following pseudo code snippets.

Generating pre- and postconditions

After initial analysis of the input executable by the type parsing layer, conditions are extracted
from the signature of a method in the method parsing layer. Generating pre- and postcondition
is not a very complex problem that can be solved by reflection and iterating over parameter
and return value annotations. Extraction is a phase that has to happen before building of the
method graph because postconditions are needed by the block parsing layer below. The block
parsing layer needs to know about return values because type qualifier mismatches on block level
are added to the problem pipe immediately. When pre- and postconditions are determined, the
method graph is built and the framework can continue with examining type qualifier mismatches
between code blocks. In order to achieve this, the initial state consisting of preconditions holding
the types of the input parameters and the types of fields is passed to a graph analyzer engine.

Parsing a block

Before relations between code blocks are analyzed, each code block is parsed independently.
Any problems that can be identified by solely stepping through the commands of the block are
raised immediately. In the sample shown in Listing 5.4, both method calls are analyzed by the
block parser. There is no context needed to check the second call. Therefore, the framework
recognizes that the qualifier of variable k is T and the call is correct.

Listing 5.4: Method with a single basic block
[return: T]
int NeedsT([T] int i) {...}

void Inspect (int j)
{

int k = NeedsT(j);
NeedsT(k);

}

Transitions from one block to another are enforced by branching and looping statements, as well
as the beginning of a method. This is an artificial transition from the initial state to the first
command of the method. To be able to analyze transitions, meta data has to be generated for
the block. In this case, it is necessary to add a precondition to the block that expresses that the
symbol j demands the qualifier type T . Additionally, symbol k has a qualifier of type T after
the block is executed, which is expressed by a postcondition of the block. When transitions are
analyzed, the framework has to match preconditions with the current state, which implies raising
a problem because parameter j is not qualified. If j would be of qualifier type T , the framework

63



could continue analysis by merging the postconditions with the current state. In this sample,
qualifier type T would be assigned to symbol k in the symbol table.

Assignments

As already mentioned, an isolated examination of expressions or blocks is not sufficient to rec-
ognize all type qualifier mismatches. When an assignment is analyzed, two cases have to be
considered. If the custom type qualifier of the source can be derived, for example when the
source of the assignment is the return value of a method call or a variable with a known type, the
symbol table is adjusted accordingly. This is the easy case that can be handled without analyzing
a different basic block. When the source of the assignment is defined outside the current block,
a mechanism to express this dependency is needed. The problem is shown in Listing 5.5.

Listing 5.5: Method with multiple basic blocks
[return: T]
int ReturnsT() {...}

[return: T]
int Foo ()
{

var x = ReturnsT();
var y = 0;
var z = ReturnsT();

if(...)
{
y = z;
x = y;

}

return x;
}

The block containing the body of the if statement changes the state of variable x, but the type
cannot be derived by solely parsing the block. A history is needed that memorizes sources
of variable assignments. The pseudo code in Listing 5.6 handles both cases mentioned in this
section and sets the assignment history.

Listing 5.6: Handling of multiple basic blocks
void Inspect (AssignmentStatement assignment)
{

if ("assignment source and targets are variables"
&& "source not assigned inside current block")

{
AssignmentHistory.Add(new Assignment(assignment.Source, assignment.Target);

}
else
{
DeriveType (assignment);

}

64



Inspect (assignment.Source);
}

When the method is parsed, two history entries expressing that the type qualifier of x is defined
by y and that the type qualifier of y if defined by z are added. The history is implemented as a
stack, so the transitivity of the assignments can be resolved by the order of the entries.The call
of the inspect method at the last line of the pseudo code also shows the recursive character of
the inspect infrastructure since the source expression of the assignment is also inspected.

Resolving method calls

Resolving a method call is a scenario similar to assignment statements. When an operand of a
method call is defined outside the current block, this information needs to be accessible to the
method parsing layer. Again, the history is used when a method call is analyzed in the respective
overload of Inspect (Listing 5.7). The method compares operand types with types defined in
the method signature. Matching is realized in MatchOperand where a precondition is added
when the operand is defined outside of the current block. The check is performed by querying
the stack of the history. If the type of the operand is defined inside the block, matching can be
done on the fly without the need for creating a precondition.

Listing 5.7: Handling of method calls
void Inspect (MethodCall methodCall)
{

for (int i = 0; i < methodCall.Operands.Length; i++)
MatchOperand(methodcall.Operand[i], methodCall.ParameterType[i])

foreach(operand in methodCall.Operands)
Inspect (operand);

}

void MatchOperand (Operand operand, TypeQualifier parameterType)
{

if("operand is not set inside the block")
AddPreCondition(operand);

else
MatchTypes(operand, parameterType);

}

The difference to handling assignments is that a precondition must be added, because in case
of a type qualifier mismatch a problem needs to be raised. This is not the case for assignments
since they are harmless until the variable is used. Once more, the recursion of the inspection is
kept alive by passing each operand to the Inspect method.

Analyzing conditionals

In Hoare logic, each if statement splits the deduction tree into two paths. The paths ensure
separate handling of the cases of the statement and cover the consequent and the alternative. To

65



pre-if

consequent alternative

post-if

Figure 5.7: Method graph of an if statement

simulate this, the framework has to set up branches according to branching statements of the
input code and follow each branch. Listing 5.8 shows a basic code skeleton of an if statement.

Listing 5.8: If statement skeleton
void Foo ()
{

... // pre if
if(...)
... // consequent

else
... // alternative

... // post if
}

The graph representing the method is shown in Figure 5.7. Each element of the graph represents
a basic block containing a collection of successors. Generation of the graph is challenging,
hence it is encapsulated in a separate block parsing layer. To generate the graph, resolution
of basic block references is performed by InjectionCop with the help of statement handlers
for branch and switch instructions. These are the only two types of instructions that reference
successors. Basic blocks are generated by FxCop and identified by a unique key which is also
used to define a reference to another basic block. Branching of the tree is evaluated by following
two paths for the consequent and the alternative (Figure 5.8). The state before branching {S1}
is cached and and used for the traversal of the sub trees for the consequent and the alternative.
As already mentioned, there are two sub trees covering the instructions for the consequent and
the alternative.

Analyzing loops

One of the core aspects identified in the chapter about verification was generating an invariant
that describes the semantics of a loop. In the problem domain of InjectionCop, this comes
down to identifying variables with ambiguous types that are introduced by the loop and usage of
these variables. An example of a ambiguous variable is given in Listing 5.9.

Listing 5.9: Sample of an ambiguous variable
void Foo ()

66



pre-if

consequent alternative

post-if post-if

{P}

{S1} {S1}

{S2} {S3}

Figure 5.8: Traversal of an if statement

condition

body

post-while

Figure 5.9: Method graph of a loop

{
x = T1
while(...)
x = T2

... // x = T1 or x = T2 => x is ambiguous
}

If variable x is of type T1 before the loop and the type of x is changed to T2 in the body of
the loop, the type of x is ambiguous after the loop because it depends on whether the body is
executed or not. Furthermore, the ambiguity of x does not necessarily introduce a type qualifier
mismatch, because x may not be used any more.

The basic skeleton of a loop is given in Listing 5.10, the corresponding graph is shown in
Figure 5.9.

Listing 5.10: Loop skeleton
void Foo ()
{

while(...)
... // body

... // post while
}

To derive the ambiguities that define the invariant, some paths in the graph must be checked
for type qualifier mismatches. For each set of conditions that holds before node condition a
path to post-while and a path to body must be evaluated, which covers optional execution of the

67



condition

Post-while body

condition

{P}

{S1} {S1}

{S2}

bodyPost-while

{S3}
{S3}

Figure 5.10: Traversal of a loop

body. These sets of conditions that hold before the loop are defined by the ingoing edges of
node condition. The sources of the ingoing edges are the block before the loop and the node
body, which cover the states of the initial execution of the loop and the state representing further
iterations. Deriving the invariant entirely before the analysis continues with the basic block after
the loop is not hard for the given sample, but challenging in case of nested loops.

To overcome this issue, the approach of InjectionCop is mapping the graph to an equivalent
tree (Figure 5.10). The initial state of the traversal is {P}, which contains the conditions that
hold before the loop, node condition is evaluated which results in state {S1}. The subsequent
paths handle possible results of the condition. The left path evaluates the case when the body is
not executed at all, the right path evaluates the first execution of the body. At this point of the
analysis, evaluation of the conditions that hold before the loop is finished and evaluation of cases
where the body is executed at least once is started. {S2} is the state that contains the conditions
that hold after the body is executed the first time. Continuing from this state, the same options as
for the initial state {P} are evaluated again. This time, the left path evaluates the transition from
the body to the blocks after the loop, the right path evaluates multiple sequential executions of
the body.

68



CHAPTER 6
Performance

To gain information about applicability of the framework, performance statistics are presented.
During creation of the statistics, weaknesses of the implementation could be identified that are
discussed in this section.

Performance analysis

To evaluate the performance of the proposed approach, the well-known open source libraries
Nunit [55], log4net [44], RhinoMocks [64], NHibernate [53] were parsed. Additionally, mscor-
lib, which stands for Common Object Runtime and is the core library of a .NET language, was
also parsed. The sizes of the assemblies are between 71 kB and 4444 kB to examine the impact
of the file size on the analysis. In some cases, the framework performed worse than anticipated.
Figure 6.1 shows a corner case were runtime of the analysis took very long. What strikes the eye
is that the method is bloated with control structures and logical expressions. As observed in the
previous chapter, conditionals split an execution path into multiple sub paths that are analyzed
seperately. This implies that a sequence of conditionals can broaden the tree of execution paths
exponentially. The method in the sample contains many conditionals that are not obvious. Log-
ical operators with short-circuit evaluation, which are && and || in C#, introduce conditionals,
because evaluation stops as soon as the result is clear. There are enough logical operators in
the sample to increase the number of execution paths to a level where performance impact is
observable.

After mitigating performance issues, runtime statistics were gathered (Figure 6.2). The tests
were run on a Parallels Desktop 8 virtual machine with 4 GB RAM and 4 cores assigned, the
physical processor was a Intel Core i7 with 2.6 GHz. Analysis was performed on Windows 8 with
FxCop 11.0 which is shipped with Visual Studio 2012. FxCop was configured to utilize 4 threads.
The first column of the table holds the name of the assembly, the following columns cover file
size and the number of methods of the assembly, which is an indicator of the complexity of
the analysis. The remaining columns state duration of compilation and analysis, as well as
the relation of compilation duration and analysis duration. The durations were determined by

69



public string GetValidIdentifier (string str)
{

if (...)
...

else
...

for (...)
{
if (...)
...

char c = str[i];
bool isValid = false;

if (StringArray != null)
{
string replaceString = (string) StringArray[c];
if (replaceString != null)
isValid = true;

}

if (isValid
|| (allowLanguageSpecificLetters

&& char.IsLetter (c))
|| (! allowLanguageSpecificLetters

&& allowEnglishLetters
&& ((c >= ’a’ && c <= ’z’)

|| (c >= ’A’ && c <= ’Z’)))
|| (allowDigits

&& char.IsDigit (c))
|| (allowAdditionalCharacters != null
&& allowAdditionalCharacters.IndexOf (c) >= 0))

{
sValid = true;

}
...

}
return sb.ToString();

}

Figure 6.1: Depiction of a method with high performance impact on analysis

70



assembly size (kB) #methods compilation (sec) analysis (sec) percentage
nunit.framework.dll 144 1458 0.438 1.001 229%
log4net.dll 296 2183 0.799 1.245 156%
Rhino.Mocks.dll 311 2437 0.359 1.400 389%
NHibernate.dll 3260 21463 5.340 11.476 229%
mscorlib.dll* 4444 21485 - 2.850 -

Figure 6.2: Results of the performance analysis

calculating the arithmetic mean of the measurements after 10 runs, calculation of the percentage
is based on these mean values. The time of compilation covers a rebuild in Debug mode. This
is reasonable because Debug mode enables FxCop to provide source code locations and symbol
names to increase the quality of the output of the analysis [20]. mscorlib.dll is marked with an
asterisk because source code is not available, and compilation duration could not be determined.
Nonetheless, the analysis results attract attention. Although mscorlib.dll is more than 1 MB
bigger than NHibernate.dll the number of methods is almost identical. This is probably an effect
of a focus on performance, and application of optimization techniques like method inlining and
reducing method calls by using long methods. But what strikes the eye is that the analysis of
mscorlib.dll is significantly faster than the analysis of NHibernate.dll, which could be caused
by the absence of referenced assemblies. Besides the number of referenced assemblies, also
the number of methods impact performance. Durations of the open source frameworks show
that the duration increases according to the number of methods. The relation of compilation
duration and analysis duration does not correlate to any other number, but shows that analysis
takes longer than compilation. It is noteworthy that the analysis is performed on a code base
without custom type qualifiers. This means that InjectionCop generates the graph of a method,
but can cancel evaluation because there are no qualified types in the signature. A worst case
analysis, where the source code was changed so that every method is analyzed, showed that
the duration of the analysis of log4net.dll can reach 15 seconds, analysis of Nhibernate.dll was
stopped after some minutes. On the other hand, analyzing all methods of Rhino.Mocks.dll was
just 0.3 seconds slower than analyzing no method. When looking at the field of application in the
re-motion framework, it can be assumed that using the InjectionCop will not lead to extensive
usage of custom type qualifiers. Instead, the annotations are very specific and spread around
the modules handling security, which is expected to mitigate the performance issue. Since the
performance impact is potentially high and a quick build is preferred during development, using
the framework all the time may be inconvenient. Nonetheless, temporarily activating static code
analysis is definitely an acceptable way to go. An alternative use case for the framework is
integration into the build process on a build server where duration is less important. Static code
analysis fits well into common build server duties like running tests, packaging or generating
code metrics.

71



Complexity analysis

The section covering algorithms showed that branches and circles in the method graph are re-
solved by following multiple paths. The effect of this evaluation strategy is that code blocks
are evaluated multiple times. Sequencing and nesting of control structures has the potential to
provoke runtime problems. Foo is a method with two if statements in the body.

void Foo ()
{

... // pre if
if(...) // first if
...

else
...

if(...) // second if
...

else
...

}

To evaluate the method, the following paths are analyzed.

1. condition

1. consequent 1. alternative

2. condition

2. consequent 2. alternative

2. condition

2. consequent 2. alternative

For any possible path introduced by the first if statement, all possible paths introduced by the
following if statement are resolved. The complexity grows exponentially depending on the de-
gree of nesting. According to this observation, loops imply even more paths to analyze. As a
consequence, the complexity of the analysis of a method is determined by the complexity of the
input methods.

In practice, this problem should hardly emerge, since short methods with a low degree of
nesting are considered good programming style and are preferred in high quality code [48].
Nonetheless, this issue has to be addressed, because the framework should not rely on guidelines
and in scenarios of performance optimization or legacy code such methods may appear.

Performance improvements

This section sketches an algorithm to bypass performance issues introduced by an exploding
number of paths in the method graph. The order of analyzing blocks must be changed to avoid
the problem, top down evaluation is discarded and the graph has to be simplified. To achieve

72



this, the nodes forming the second if statement are interpreted as an independent tree that is
analyzed first. The algorithm needs to generate all necessary preconditions that an initial state
for the sub tree has to fulfill. The collection of the preconditions is used to build an artificial
block that acts as a placeholder for the if statement. Afterwards, the tree has to be traversed to
replace all occurrences of the sub tree by its placeholder. The following figure shows the graph
after transformation.

1. condition

1. consequent 1. alternative

Artificial node 
wrapping 2. if

Artificial node 
wrapping 2. if

In this approach, also simplification of sequences of blocks and loops need to be considered and
the graph has to be simplified until analysis can be performed in reasonable time.

73





CHAPTER 7
Summary and future work

InjectionCop supports developers on addressing security requirements. To illustrate integration
of the tool into the development process, measures to prevent cross-site scripting are shown.
The scenario is a web application that has to process user input, to render html that is returned to
user. The application is developed in ASP.NET MVC, which is a framework following the model
view controller pattern [52].

The first step to utilize InjectionCop is, referencing InjectionCop.dll. This enables defining
the custom type qualifier Sanitized (Listing 7.1) to express the cross cutting concern of
preventing XSS.

Listing 7.1: Attribute to define the Sanitized type qualifier
[AttributeUsage(AttributeTargets.Parameter

| AttributeTargets.ReturnValue
| AttributeTargets.Field
| AttributeTargets.Property
| AttributeTargets.Constructor)]

public class SanitizedAttribute : FragmentAttribute
{

public SanitizedAttribute() : base("Sanitized") { }
}

The type qualifier can be used to specify a consumer of sanitized data. In this sample, the
consumer is the Render method (Listing 7.2), which is not fully implemented because the
actual code in not relevant for illustration. The purpose of the method is wrapping the user input
into html that is part of the response.

Listing 7.2: Consumer class of sanitized data
public class Renderer
{

public Output Render([Sanitized] string data)
{

// wrap input data into html that included in the response
return new Output { Data = data };

75



}
}

The counterpart of the consumer is the producer. The producer is method Sanitize (Listing
7.3), which ensures XSS prevention by encoding passed data. The custom type qualifier, the pro-
ducer is capable of is defined by annotating the return value with the attribute Sanitized. Ad-
ditionally the attribute FragmentAttribute is set on the method to mark a producer method
and turn off verification. If FragmentAttribute would be missing, the verification engine
would detect a type qualifier mismatch because method HtmlEncode returns an unqualified
string but method Sanitize is obliged to return a string of the qualified type Sanitized.

Listing 7.3: Producer class of sanitized data
public class Sanitizer
{

[FragmentGenerator]
[return: Sanitized]
public string Sanitize (string input)
{
return System.Web.HttpUtility.HtmlEncode(input);

}
}

Listing 7.4 shows handlers of http requests that demonstrate secure and insecure usage of the
method Render. Method Secure sanitizes correctly and does not provoke a type qualifier
mismatch. On the other hand, method Insecure passes input data directly to the renderer,
which is detected by InjectionCop.

Listing 7.4: Usages of Renderer
[HttpPost]
public ActionResult Secure(Input input)
{

var sanitizer = new Sanitizer();
var renderer = new Renderer();
var sanitizedData = sanitizer.Sanitize(input.Data);
var output = renderer.Render(sanitizedData);

return View("OutputView", output);
}

[HttpPost]
public ActionResult Insecure(Input input)
{

var renderer = new Renderer();
var output = renderer.Render(input.Data);

return View("OutputView", output);
}

Enabling Visual Studio, as described in Section 4.6, would result in warning that references the
location in the source code where the mismatch was detected (Figure 7.1).

76



Figure 7.1: Type qualifier mismatch

InjectionCop [35] is a tool that introduces custom type qualifiers to C#. Custom type quali-
fiers enable tackling of cross cutting security concerns in the development process. These secu-
rity relevant concerns include all kinds of injections like SQL injection and input validation in
general. The core engine is reliable and based on Hoare Calculus, which was shown by deduc-
ing type qualifiers in scenarios covering all relevant language constructs. The implementation
is based FxCop, which is an engine for static analysis of .NET languages, and can be integrated
into the build process without any problems. Statistics regarding performance were gathered
by analyzing some well known open source frameworks. Potential performance issues were
identified, examined and an improvement of the algorithm was proposed.

In the future, InjectionCop will be integrated into the re-motion framework to cope with
cross cutting security concerns. Application in a productive environment will give insights into
the demand of performance improvements that will be addressed if necessary.

77





Bibliography

[1] Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1999.

[2] J. Kinder A. Holzer and H. Veith. Using verification technology to specify and detect
malware. In Proceedings of the 11th International Conference on Computer Aided Systems
Theory, EUROCAST’07, pages 497–504, Berlin, Heidelberg, 2007. Springer-Verlag.

[3] C. Kruegel A. Moser and E. Kirda. Exploring multiple execution paths for malware anal-
ysis. In Security and Privacy, 2007. SP ’07. IEEE Symposium on, pages 231–245, May
2007.

[4] C. Kruegel A. Moser and E. Kirda. Limits of static analysis for malware detection. In
Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual,
pages 421–430, Dec 2007.

[5] J. HeeDong A. Godiyal S. T. King AM. Nguyen, N. Schear and H.D. Nguyen. Mavmm:
Lightweight and purpose built vmm for malware analysis. In Computer Security Applica-
tions Conference, 2009. ACSAC ’09. Annual, pages 441–450, Dec 2009.

[6] K. R. Apt. Ten years of hoare’s logic: A survey&mdash;part i. ACM Trans. Program.
Lang. Syst., 3(4):431–483, October 1981.

[7] G. Balakrishnan and T. Reps. Wysinwyx: What you see is not what you execute. ACM
Trans. Program. Lang. Syst., 32(6):23:1–23:84, August 2010.

[8] K. Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[9] M. Huntley C. Thompson and C. Link. Virtualization detection: New strategies and their
effectiveness.

[10] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv., 17(4):471–523, December 1985.

[11] Microsoft Research CCI. http://research.microsoft.com/en-us/
projects/cci/. Accessed: 2014-09-07.

79

http://research.microsoft.com/en-us/projects/cci/
http://research.microsoft.com/en-us/projects/cci/


[12] Checker Framework, Computer Science and Engineering at University of Washing-
ton. http://types.cs.washington.edu/checker-framework/. Accessed:
2014-09-07.

[13] CodeSurfer, GrammaTech. http://www.grammatech.com/research/
technologies/codesurfer. Accessed: 2014-09-07.

[14] S. Cook. A web developer’s guide to cross-site scripting. Technical report, SANS Institute,
2003.

[15] CQual, J. S. Foster. http://www.cs.umd.edu/~jfoster/cqual/. Accessed:
2014-09-07.

[16] D. Reynaud D. Babić and D. Song. Recognizing malicious software behaviors with tree
automata inference. Form. Methods Syst. Des., 41(1):107–128, August 2012.

[17] C. Techaubol D. Duggan. Modular mixin-based inheritance for application frameworks.
In Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’01, pages 223–240, New York, NY,
USA, 2001. ACM.

[18] S. L. Graham D. F. Bacon and O. J. Sharp. Compiler transformations for high-performance
computing. ACM Comput. Surv., 26(4):345–420, December 1994.

[19] J. S. Foster D. Greenfieldboyce. Visualizing type qualifier inference with eclipse. In Pro-
ceedings of the 2004 OOPSLA Workshop on Eclipse Technology eXchange, eclipse ’04,
pages 57–61, New York, NY, USA, 2004. ACM.

[20] Debug and MSDN Release Configurations. http://msdn.microsoft.com/
en-us/library/wx0123s5.aspx. Accessed: 2014-09-07.

[21] R. Johnson E. Gamma, R. Helm and J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[22] E. A. Emerson E. M. Clarke and J. Sifakis. Model checking: Algorithmic verification and
debugging. Commun. ACM, 52(11):74–84, November 2009.

[23] R. Wa E. Meijer and J. Gough. Technical overview of the common language runtime, 2000.

[24] Eclipse, Eclipse Foundation. https://www.eclipse.org. Accessed: 2014-09-07.

[25] T. Ekman and G. Hedin. The jastadd system - modular extensible compiler construction.
Sci. Comput. Program., 69(1-3):14–26, December 2007.

[26] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs.
In Foundations of Computer Science, 1988., 29th Annual Symposium on, pages 328–337,
Oct 1988.

80

http://types.cs.washington.edu/checker-framework/
http://www.grammatech.com/research/technologies/codesurfer
http://www.grammatech.com/research/technologies/codesurfer
http://www.cs.umd.edu/~jfoster/cqual/
http://msdn.microsoft.com/en-us/library/wx0123s5.aspx
http://msdn.microsoft.com/en-us/library/wx0123s5.aspx
https://www.eclipse.org


[27] M. Fähndrich. Static verification for code contracts. In Proceedings of the 17th inter-
national conference on Static analysis, SAS’10, pages 2–5, Berlin, Heidelberg, 2010.
Springer-Verlag.

[28] Secure Coding Guidelines for Java SE. http://www.oracle.com/technetwork/
java/seccodeguide-139067.html. Accessed: 2014-09-28.

[29] FxCop, Microsoft. http://msdn.microsoft.com/en-us/library/
bb429476(v=vs.80).aspx. Accessed: 2014-09-07.

[30] A. Mendhekar C. Maeda C. Lopes J. Loingtier G. Kiczales, J. Lamping and J. Irwin.
Aspect-oriented programming. In S. Matsuoka M. Akşit, editor, ECOOP’97 — Object-
Oriented Programming, volume 1241 of Lecture Notes in Computer Science, pages 220–
242. Springer Berlin Heidelberg, 1997.

[31] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for java. In Proceedings of
the 22nd annual ACM SIGPLAN conference on Object-oriented programming systems and
applications, OOPSLA ’07, pages 321–336, New York, NY, USA, 2007. ACM.

[32] W. Dietl H. Wei, A. Milanova and M. D. Ernst. ReIm & ReImInfer: Checking and infer-
ence of reference immutability and method purity. In Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA 2012), pages 879–896, Tucson, AZ, USA,
October 23-25, 2012.

[33] M. Egele C. Kruegel H. Yin, D. Song and E. Kirda. Panorama: Capturing system-wide
information flow for malware detection and analysis. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS ’07, pages 116–127, New
York, NY, USA, 2007. ACM.

[34] IdaPro, Hex-Rays. https://www.hex-rays.com/products/ida/. Accessed:
2014-09-07.

[35] InjectionCop. http://injectioncop.codeplex.com. Accessed: 2014-09-07.

[36] K. Leino M. Rustan P. Müller J. Hatcliff, G. T. Leavens and M. Parkinson. Behavioral
interface specification languages. ACM Comput. Surv., 44(3):16:1–16:58, June 2012.

[37] C. Schallhart J. Kinder, S. Katzenbeisser and H. Veith. Detecting malicious code by model
checking. In Proceedings of the Second International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, DIMVA’05, pages 174–187, Berlin,
Heidelberg, 2005. Springer-Verlag.

[38] C. Schallhart J. Kinder, S. Katzenbeisser and H. Veith. Proactive detection of computer
worms using model checking. Dependable and Secure Computing, IEEE Transactions on,
7(4):424–438, Oct 2010.

81

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
https://www.hex-rays.com/products/ida/
http://injectioncop.codeplex.com


[39] M. Fähndrich J. S. Foster and A. Aiken. A theory of type qualifiers. In Proceedings of the
ACM SIGPLAN 1999 conference on Programming language design and implementation,
PLDI ’99, pages 192–203, New York, NY, USA, 1999. ACM.

[40] U. Kargen and N. Shahmehri. Inputtracer: A data-flow analysis tool for manual program
comprehension of x86 binaries. In Source Code Analysis and Manipulation (SCAM), 2012
IEEE 12th International Working Conference on, pages 138–143, Sept 2012.

[41] J. Kinder. Towards static analysis of virtualization-obfuscated binaries. In Proceedings
of the 2012 19th Working Conference on Reverse Engineering, WCRE ’12, pages 61–70,
Washington, DC, USA, 2012. IEEE Computer Society.

[42] J. Kinder and H. Veith. Precise static analysis of untrusted driver binaries. In Formal
Methods in Computer-Aided Design (FMCAD), 2010, pages 43–50, Oct 2010.

[43] Lattice, Wolfram Math World. http://mathworld.wolfram.com/Lattice.
html. Accessed: 2014-09-07.

[44] Apache Software Foundation log4net. http://logging.apache.org/log4net/.
Accessed: 2014-09-07.

[45] G. Banks M. Cova, V. Felmetsger and G. Vigna. Static detection of vulnerabilities in
x86 executables. In Computer Security Applications Conference, 2006. ACSAC ’06. 22nd
Annual, pages 269–278, Dec 2006.

[46] E. Kirda M. Egele, T. Scholte and C. Kruegel. A survey on automated dynamic malware-
analysis techniques and tools. ACM Comput. Surv., 44(2):6:1–6:42, March 2008.

[47] R. C. Martin. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2003.

[48] R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1 edition, 2008.

[49] Memset, Linux MAN Pages. http://linux.die.net/man/3/memset. Accessed:
2014-09-07.

[50] B. Meyer. Applying “design by contract“. Computer, 25(10):40–51, October 1992.

[51] Microsoft Visual Studio, Microsoft. http://www.visualstudio.com. Accessed:
2014-09-07.

[52] ASP.NET MVC. http://www.asp.net/mvc. Accessed: 2014-09-28.

[53] NHibernate. http://nhforge.org. Accessed: 2014-09-07.

[54] D. North. Introducing bdd. Better Software magazine, 2006.

[55] NUnit.org NUnit. http://www.nunit.org. Accessed: 2014-09-07.

82

http://mathworld.wolfram.com/Lattice.html
http://mathworld.wolfram.com/Lattice.html
http://logging.apache.org/log4net/
http://linux.die.net/man/3/memset
http://www.visualstudio.com
http://www.asp.net/mvc
http://nhforge.org
http://www.nunit.org


[56] ObjDump, Linux MAN Pages. http://linux.die.net/man/1/objdump. Ac-
cessed: 2014-09-07.

[57] Oracle Open World: Build Your Own Type System for Fun and Profit.
https://checker-framework.googlecode.com/hg-history/
7c7413415ae92310c74039943f2a2efab8c537d5/demos/
2012-JavaOne/FunAndProfit.pdf. Accessed: 2014-09-07.

[58] A. Biboudis P. Gerakios and Y. Smaragdakis. Reified type parameters using java annota-
tions. In Proceedings of the 12th International Conference on Generative Programming:
Concepts &#38; Experiences, GPCE ’13, pages 61–64, New York, NY, USA, 2013. ACM.

[59] S. Sezer P. O’Kane and K. McLaughlin. Obfuscation: The hidden malware. Security
Privacy, IEEE, 9(5):41–47, Sept 2011.

[60] Factory Pattern. http://www.oodesign.com/factory-pattern.html. Ac-
cessed: 2014-09-07.

[61] S. Rawat and L. Mounier. Finding buffer overflow inducing loops in binary executables. In
Software Security and Reliability (SERE), 2012 IEEE Sixth International Conference on,
pages 177–186, June 2012.

[62] re motion. https://www.re-motion.org/web/. Accessed: 2014-09-07.

[63] JetBrains Resharper. http://www.jetbrains.com/resharper/. Accessed:
2014-09-07.

[64] Hibernating Rhinos LTD RhinoMocks. http://www.hibernatingrhinos.com/
oss/rhino-mocks. Accessed: 2014-09-07.

[65] A. Chaturvedi S. Bhatkar and R. Sekar. Dataflow anomaly detection. In Security and
Privacy, 2006 IEEE Symposium on, pages 15 pp.–62, May 2006.

[66] P. Kieseberg M. Huber M. Leithner M. Mulazzani S. Schrittwieser, S. Katzenbeisser and
E. Weippl. Covert computation: Hiding code in code for obfuscation purposes. In Proceed-
ings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, pages 529–534, New York, NY, USA, 2013. ACM.

[67] H. Schwichtenberg. Windows Scripting: automatisierte Systemadministration mit dem
Windows Script Host und der Windows PowerShell. Pearson Deutschland GmbH, 2010.

[68] M. M. Seeger. Using control-flow techniques in a security context: A survey on common
prototypes and their common weakness. In Network Computing and Information Security
(NCIS), 2011 International Conference on, volume 2, pages 133–137, May 2011.

[69] Y. Solodkyy and J.Järvi. Extending type systems in a library: Type-safe xml processing in
c++. Sci. Comput. Program., 76(4):290–306, April 2011.

83

http://linux.die.net/man/1/objdump
https://checker-framework.googlecode.com/hg-history/7c7413415ae92310c74039943f2a2efab8c537d5/demos/2012-JavaOne/FunAndProfit.pdf
https://checker-framework.googlecode.com/hg-history/7c7413415ae92310c74039943f2a2efab8c537d5/demos/2012-JavaOne/FunAndProfit.pdf
https://checker-framework.googlecode.com/hg-history/7c7413415ae92310c74039943f2a2efab8c537d5/demos/2012-JavaOne/FunAndProfit.pdf
http://www.oodesign.com/factory-pattern.html
https://www.re-motion.org/web/
http://www.jetbrains.com/resharper/
http://www.hibernatingrhinos.com/oss/rhino-mocks
http://www.hibernatingrhinos.com/oss/rhino-mocks


[70] J. S. Foster U. Shankar, K. Talwar and D. Wagner. Detecting format string vulnerabilities
with type qualifiers. In Proceedings of the 10th Conference on USENIX Security Sympo-
sium - Volume 10, SSYM’01, Berkeley, CA, USA, 2001. USENIX Association.

[71] M. D. Ernst K. Muşlu W. Dietl, S. Dietzel and T. Schiller. Building and using pluggable
type-checkers. In ICSE’11, Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA, May 25–27, 2011.

84


	List of Figures
	Listings
	Introduction
	Problem
	Expected result
	Methodology
	Structure of the thesis
	Related work
	Static and dynamic code analysis
	Formal methods for specification and verification
	Pluggable type checkers
	Custom type qualifiers
	JQual
	FxCop
	InjectionCop's fields of application
	Injections
	Immutable objects
	Additional type meta data
	Encrypted data
	InjectionCop
	High level design decisions
	Verification
	Generating custom annotations
	Annotation usage
	XML interface
	Build process integration

	Implementation
	Object model
	Architecture
	Algorithm

	Performance
	Summary and future work
	Bibliography

















