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Abstract

Integrating building automation systems (BASs) into the Internet is becoming increasingly im-
portant due to the upcoming Internet of Things (IoT) paradigm. Nonetheless, a lot of different
standards and technologies in the building automation (BA) sector have to be kept in mind.
An automated process needs to be defined in order to enable an efficient and common way of
integrating BA networks into the IoT. Gateway technologies, like Open Building Information
Exchange (oBIX), offering Web services (WSs) can be used as interfaces between BASs and
remote building management systems (BMSs). Model-Driven Engineering (MDE) provides a
model-centric solution to establish an automated integration process by defining appropriate
modeling languages and transformations.

In this underlying thesis, OMG’s MDE initiative, Model-Driven Architecture (MDA), is
utilized to introduce two modeling languages as metamodels. According to a four-layer archi-
tecture, these metamodels conform to the Meta Object Facility (MOF), their common meta-
metamodel. A metamodel provides concepts to create models that represent snapshots of sys-
tems. The BAS metamodel is used to define platform independent models (PIMs). In this case,
the BA network is mapped to abstract, technology independent models. On the other hand, the
oBIX metamodel defines platform specific models (PSMs). The taken approach uses oBIX as
target technology for the integration of BASs.

The transformation process, which comprises three phases, is specified based on the devel-
oped modeling languages. First, the BAS is mapped to a PIM. This step is either done manually
or automatically by means of available engineering data. The actual MDA workflow starts with
the existence of a PIM. Afterwards, the PIM is converted to a PSM via a model-to-model (M2M)
transformation, and finally, a model-to-text (M2T) transformation generates executable source
code for the target platform on the basis of the PSM.

Additionally, a proof of concept implementation, which is based on the Eclipse IDE and the
oBIX integration middleware IoTSyS, is presented. The Eclipse Modeling Framework (EMF)
and other MDA extensions for Eclipse (OCL Tools, Xpand, QVT Operational) are used for the
realization. The different parts of the model-driven approach (models, metamodels, transforma-
tions) are separated into various Eclipse projects to form a modular structure, and the imple-
mented concepts are evaluated by a case study. An experimental KNX network is integrated into
an oBIX gateway implementation to show the functionality of the proof of concept implementa-
tion. Modeling of the BAS with the help of configuration data of the Engineering Tool Software
4 (ETS4) is discussed, as well. The functional capability of the developed, model-driven ap-
proach is pointed out in the evaluation.
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Kurzfassung

Die Integration von Building Automation Systems (BASs) in das Internet wird durch das auf-
strebende Konzept des Internet of Things (IoT) immer wichtiger. Es gibt jedoch eine Vielzahl
von Standards und Technologien im Building Automation (BA) Sektor, die berücksichtigt wer-
den müssen. Ein automatisierter Prozess muss definiert werden, um eine effiziente Möglichkeit
zur Integration von BA-Netzwerken in das IoT zu schaffen. Gateway-Technologien wie Open
Building Information Exchange (oBIX) stellen Web Services (WSs) als Schnittstelle zwischen
BASs und Building Management Systems (BMSs) zur Verfügung. Model-Driven Engineering
(MDE) bietet einen Modell-zentrischen Ansatz zur Erstellung eines automatisierten Integrati-
onsprozesses auf Basis von Modellierungssprachen und Transformationen.

In dieser Arbeit wird Model-Driven Architecture (MDA), eine MDE-Initiative der OMG,
eingesetzt, um zwei Modellierungssprachen in Form von Metamodellen zu entwickeln. Entspre-
chend einer Vier-Schichten-Architektur sind diese Metamodelle konform mit dem gemeinsamen
Meta-Metamodell Meta Object Facility (MOF). Ein Metamodell stellt Konzepte zur Erstellung
von Modellen zur Verfügung, die wiederum Ausschnitte von Systemen repräsentieren. Das BAS
Metamodell wird zur Definition von Platform Independent Models (PIMs) verwendet. Hiermit
wird das BA-Netzwerk auf abstrakte, technologieunabhängige Modelle abgebildet. Das oBIX
Metamodell definiert hingegen Platform Specific Models (PSMs). Der zugrundeliegende Ansatz
verwendet oBIX als Zieltechnologie für die Integration von BASs.

Der Transformationsprozess, bestehend aus drei Phasen, baut auf den entwickelten Model-
lierungssprachen auf. Zunächst wird das BAS auf ein PIM abgebildet, wobei dieser Schritt ent-
weder manuell oder automatisch durchgeführt werden kann. Der eigentliche MDA-Workflow
startet mit dem Vorliegen eines PIM. Anschließend wird das PIM durch eine Model-to-Model
(M2M) Transformation in ein PSM konvertiert. Zuletzt erzeugt eine Model-to-Text (M2T) Trans-
formation aus dem PSM den ausführbaren Quellcode für die Zielplattform.

Zusätzlich wird eine Proof of Concept Implementierung vorgestellt, die auf der Entwick-
lungsumgebung Eclipse und der oBIX Integrations-Middleware IoTSyS basiert. Das Eclipse
Modeling Framework (EMF) und andere MDA-Erweiterungen für Eclipse (OCL Tools, Xpand,
QVT Operational) werden zur Realisierung verwendet. Die verschiedenen Teile des Modell-
getriebenen Ansatzes (Modelle, Metamodelle, Transformationen) werden in mehrere Eclipse-
Projekte aufgeteilt, um eine modulare Struktur zu erzeugen, und die implementierten Konzepte
werden in einer Fallstudie evaluiert. Um die Funktionsweise der Proof of Concept Implementie-
rung zu veranschaulichen, wird ein experimentelles KNX-Netzwerk in ein oBIX-Gateway inte-
griert. Zusätzlich wird das Modellieren des BAS mit den Daten der Engineering Tool Software
4 (ETS4) behandelt. Die Evaluierung verdeutlicht die Funktionsfähigkeit des Ansatzes.
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CHAPTER 1
Introduction

1.1 Motivation

The term Internet of Things (IoT) is gaining more and more attention and a lot of research is
being done on this field. When reading this general term, a visionary might think about a world
where cars, houses, phones are active participants integrated into the information network to
simplify our everyday life [28]. Technologies like radio-frequency identification (RFID) were
launched to pioneer the realization of this vision [40]. Recently developed devices already pro-
vide the required interfaces for their use in the future Internet. Furthermore, another important
topic is the integration of already existing systems into the seminal concept of the IoT.

Building automation systems (BASs) are such systems which are mostly capsuled and are
poorly accessible via standardized interfaces. Corresponding to the three levels of BASs [33],
the devices and datapoints on the field level and the control tasks on the automation level usually
communicate only with other devices in their network and with appropriate applications on the
management level. Additionally, there exist a lot of different technologies like KNX [36], BAC-
net [5] or LonWorks [41] which make interoperability more difficult. Application developers
and system integrators must be aware of the particular physical characteristics and the commu-
nication protocols of the assembled technologies [65]. Abstract and technology independent
applications on the management level will only be possible, if a universal interface is provided.

A present-day building management system (BMS) is not solely limited to local execution,
but needs to offer remote access more frequently. Therefore, the necessity and relevance of inte-
grating BASs into the IoT increases steadily. Local building automation (BA) networks should
be accessible from the outside via gateways to manage, monitor and control the underlying com-
ponents. While the advantages of BA technologies, e.g. KNX, on the two lower levels of BASs
(field level and automation level) should be kept, the management level should be extended by
further functionality. There are a lot of use cases where standardized access would be beneficial.
Possible scenarios could be remote control of buildings or energy analysis. Highly specialized
management software, e.g. for the optimization of energy saving, could be linked easily with
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different control networks behind a well-defined interface. Cost efficiency and saving of devel-
opment time are only two aspects of such a concept.

Nowadays, the development of complex systems is more frequently done in a model-driven
way. This approach separates the abstract functionality and the concrete implementation [35].
The Model-Driven Engineering (MDE) approach can be used to specify a common methodol-
ogy relating to the mapping and integration of BASs into a model-oriented environment. This
methodology will offer an independent construction of BASs and their automated transformation
into particular technologies.

The field of interest is tightly related to computer and software engineering. First, the in-
creasing significance of BASs, with their physical characteristics and low-level communication
protocols on the field level and accordingly the BMSs at the management level, is an integral
part of computer engineering. Second, the model-driven approach and the interfacing of BASs
are settled in the field of software engineering. Finally, the integration of BASs into the IoT
in the form of a transformation workflow can be seen as a combination of both computer and
software engineering.

1.2 Problem statement

Since more than twenty years many different standards for BASs have been developed by various
associations, organisations and companies. At present, the key players in the sector of home and
building automation are KNX [36], BACnet [5] and LonWorks [41]. These standards differ
in many aspects and each of them has several advantages and disadvantages depending on their
field of application. Some technologies use twisted pair as communication medium, while others
send and receive their data via an ordinary power line or utilize wireless protocols. Furthermore,
these BAS standards vary in their topology structure, the addressing scheme or the software for
engineering of the network. On the whole, there is often more than one possible technology for
a certain area of application [65].

If two or more different BAS technologies are used, the BMS will have to deal with vari-
ous communication protocols and other technology specific issues. The development of such a
system might not only be very expensive but also time-consuming, and the resulting BMS can
only be used with the current setting or limited variations of it. Therefore, the given technolo-
gies cannot be simply replaced by others. Another problem is their interoperability within one
and the same application. Although technology-specific interfaces and gateways exist, there is
still the disadvantage of dependence on vendors and technologies [21]. Hence, an interface is
needed, which permits the management of BAS in a technology independent way. This inter-
face has to provide an abstract view of the underlying network to enable technology independent
software development. Consequently, more complex and powerful applications can be imple-
mented. Due to the upcoming IoT, the interface should also provide standardized access to the
BAS via the Internet. For example, the integration of BASs could be done by Web services
(WSs) where again different technologies could be used. Open Building Information Exchange
(oBIX), OPC Unified Architecture (OPC UA) and Web Services for Building Automation and
Control Networks (BACnet/WS) are available and standardized ways to realize such an abstract
interface [32]. The WS gateway communicates with the different BASs via the particular pro-
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tocol, and its services can be accessed by standardized Web protocols like Hypertext Transfer
Protocol (HTTP) or Constrained Application Protocol (CoAP).

In terms of implementing such an interface, the different automation technologies have to
be mapped into a common model. A standardized and unique representation of BASs is needed
in order to offer an independent and abstract access point for monitoring or control. Therefore,
the multifaceted structures and schemes need to be analyzed and tailored to fit into this general
model. Afterwards, the network representation in the common model can be transformed into
one or more appropriate, technology specific mappings which provide the described interface.

Current research findings already provide some integration approaches for BASs, but a re-
alization of an automated mapping from the network structure to basic WSs is still missing
(cf. [22, 34, 48]). The available mappings are either implemented manually or they are focused
on high-level services. On the one hand, a holistic workflow from the BA network to the in-
terface technology is needed. This is necessary to gain access to the various BASs and provide
their interoperability. On the other hand, such a workflow has to be verifiable and expandable to
enable for further development. Hence, a suitable, model-driven approach is required to offer a
universal way of integrating BASs into the IoT.

The concept of MDE might be a method of resolution for such an approach, since it com-
bines both domain specific languages (DSLs) and transformation engines for these modeling
languages [60]. Model-Driven Architecture (MDA), the MDE initiative of the Object Manage-
ment Group (OMG), realizes this concept by supporting a four-layer modeling stack with one
single and unique meta-metamodel on top. The underlying metamodels, which define the spe-
cific modeling languages, are expressed in terms of this meta-metamodel, and therefore trans-
formations between their conforming models are supported [8]. Automatic validation and an
adequate tool support are further advantages of this process. Thus, the addressed workflow from
the initial modeling of the BA network to the code generation for the integration technology can
be implemented using the MDA approach.

In Figure 1.1, a brief overview illustrates the model-driven workflow and the involved com-
ponents. First, the network is generally represented by a platform independent model (PIM).
Subsequently, this model is transformed into a platform specific model (PSM). Finally, program
code is generated which is executed on a WS gateway. The modeling itself and the model trans-
formations are part of the MDA approach. The WS gateway provides access to the network
and interacts with remote clients by the use of various standardized exchange protocols and
information encodings.

To sum up, based on the mentioned problem statement two hypotheses can be assembled,
which are examined throughout this thesis.

Hypothesis 1 By the use of a common meta-metamodel, modeling languages or rather meta-
models can be derived to support transformations and interoperability among models of various
technologies and standards.

Hypothesis 2 It is possible to build a fully automated transformation process for building au-
tomation systems relating to a seamless and transparent integration into a BAS technology in-
dependent interface.
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Figure 1.1: Overview of the model-driven approach

1.3 Aim of the thesis

The overall aim of the thesis is to present an approach for a seamless and automated model-based
integration of traditional BAS into the IoT whereby this main goal can be divided into several
subordinated objectives.
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One of the outcomes of the thesis is the definition of a workflow to map a BAS in a given
technology to a gateway technology, so that the system can be accessed via a standardized in-
terface. The workflow consists of a couple of steps. First, there is the transformation from
the actual network to an independent model. Second, the transformation from the abstract and
independent network representation to a representation that refers to a specific WS gateway tech-
nology is shown. Finally, the last workflow step is concerned with the generation of executable
code from this representation.

Additionally, a model-driven approach on top of the transformation workflow is described.
The aim is to realize a universal way of integration which is independent from the implementa-
tion. The dependencies and interactions between the levels in the modeling stack and between
the models within one level are stated. Moreover, the development and structure of the appro-
priate modeling languages or rather metamodels are pointed out.

A proof of concept implementation demonstrates the functionality of the above-named work-
flow and the model-driven approach. The realization of the individual components like meta-
models or transformation patterns is specified. In addition, the deployment of the proof of con-
cept implementation is demonstrated.

In the context of this master’s thesis, a KNX network is used as BAS in a case study. This
network is integrated into an oBIX gateway to provide access to the network via the Internet.
A sample project passes through the workflow. The generated code is tested on an instance of
an oBIX gateway implementation. Furthermore, a mapping of the most common KNX specific
elements like datapoint types to the oBIX gateway is discussed.

Finally, the thesis contains an overview of information technology (IT)-friendly solutions
and research projects to integrate BASs into the IoT as well as an overview of MDE approaches.
The related work in this field of interest is examined and compared to the results of the thesis.

1.4 Methodology

Relevant literature in the field of MDE and WSs-based interfaces is studied to illustrate the con-
cept of these areas. Based on this research, a model-based approach is designed in accordance to
the MDE standard MDA of the OMG [51]. Thereby, the initial step is to outline the metamodels
for the PIM and the PSM, i.e. the oBIX object model. The metamodel for the platform indepen-
dent level has to be derived from schemes of existing BAS technologies. The greatest common
divisor has to be found and must be expanded by other relevant model elements in order to cover
the BAS specifications. Afterwards, the MDE tools are used to prepare the model-to-model
(M2M) and the model-to-text (M2T) transformations. The combination of these metamodels
and the corresponding transformations lay down the searched workflow for integration of BASs
into the IoT.

The proof of concept implementation and its evaluation are based on a KNX installation and
an already existing implementation of an oBIX gateway that is able to communicate with the
connected network via Calimero [13]. The gateway’s Web interface is accessible via standard
Internet protocols like HTTP or CoAP. At the beginning of the integration workflow, the Engi-
neering Tool Software 4 (ETS4) is used to export the engineering data of the network as multiple
Extensible Markup Language (XML) files. These XML files conform to a KNX XML Schema
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and are converted into an independent model according to the previously constructed metamodel
by a mapping with Extensible Stylesheet Language Transformation (XSLT). Henceforward, the
network representation is transformed into a PSM. In this thesis, oBIX is chosen as platform
specific target technology. Finally, the oBIX model of the KNX network is transformed into
Java source code. The implementation contains the necessary information of network structure,
datapoints and devices. The source code is executed by an instance of the previously mentioned
oBIX gateway where the required libraries for the generated source code can be found. The mod-
els, metamodels and transformations are created with various modeling tools of Eclipse [18].

In addition, the theoretical, model-based approach and the presented workflow implemen-
tation are reflected in terms of open topics, problems and constraints. Available related work
is linked with the outcomes of this thesis to offer a coherent view with respect to the field of
interest. Thus, the advantages of the elaborated approach are presented and the differences to
existing research are illustrated.

1.5 Structure of the thesis

This section serves as guidline for the structure of this thesis. In Chapter 2, the state of the
art concerning MDE is presented. After a short overview, the most popular initiatives of MDE
are discussed, its main principles are explained in detail and standards and implementations are
described. Furthermore, this chapter deals with Web services-based interfaces.

The main part of this thesis starts in Chapter 3, which shows the model architecture with the
modeling stack, the description of the meta-metamodel and the specified metamodels. Chap-
ter 4 contains the transformation process including a workflow description as well as the model
transformation and the code generation.

Consecutively, Chapter 5 deals with the proof of concept implementation where a BAS net-
work model is integrated into a WS gateway. First, the configuration of the used environment
is presented, and the software development environment as well as the oBIX gateway imple-
mentation are described. In the next part, the implementation with its metamodels, models and
transformation patterns is explained. Finally, the workflow sequence from the model creation
to the execution of the generated source code in the oBIX gateway is specified textually and
graphically. The source code of the implementation is available online [45].

In Chapter 6, the presented approach is critically reflected and compared to alternative con-
cepts. While a case study demonstrates the functionality of the presented model-based approach
by integrating a KNX network into an oBIX gateway, also open topics are discussed in this part
of the thesis.

Finally, the thesis is concluded with a summary and an outlook (Chapter 7).
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CHAPTER 2
State of the art

The underlying chapter comprises the theoretical background and the basic principles neces-
sary for the development of the contemplated approach. As the thesis is concerned with the
integration of BASs into an independent interface based on a model-driven approach, the first
section examines Model-Driven Engineering (MDE) with an overview of underlying principles,
available initiatives, defined standards and actual tools and implementations. Afterwards, some
Web services-based interfaces are discussed whereby the main focus is on the Open Building
Information Exchange (oBIX)1 standard.

2.1 Model-Driven Engineering

The software development methodology called MDE relies on the utilization of models instead
of traditional code-centric object-oriented technologies [64]. The basic ideas behind this concept
are discussed in the following subsections.

2.1.1 Overview

In the past, the statement “Everything is an object” [9, p.171] has been the predominant principle
in developing object-oriented technologies. Within these technologies, classes and instances of
these classes (i.e. the objects) are the main elements. In addition, classes can inherit from other
classes [26]. MDE, on the other hand, can be seen as a shift towards a model-centric view
where the basic principle is “Everything is a model” [9, p.171]. In this approach, models are the
main concept as they head the whole development process [30]. They represent a (real) system,
and conform to a metamodel [26]. In [8] and [9], Bézivin illustrates this relation as shown in
Figure 2.1. An advantage of MDE is the way of handling the increasing complexity of system
development. The abstraction level is raised with the introduction of models [64].

1OASIS has changed the notation from oBIX to OBIX in newer versions of the standard.
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MetamodelModelSystem Represented by  Conforms to

Figure 2.1: Basic notions in MDE [8, 9]

In the past, various efforts relating to hoist the abstraction level in software development
have been realized. Examples are Computer-Aided Software Engineering (CASE) or object-
oriented programming languages like Java or C#. However, platform complexity is still rising
which is the result of e.g. the appearance of new platforms and changes in existing ones. Thus,
MDE technologies are developed to address this complexity issue [60].

2.1.2 Initiatives

Two well-known initiatives, motivated by the MDE approach, exist. Both constitute applicable
methods based on the MDE principles. First, the Model-Driven Architecture (MDA) approach
is presented before an overview on the Eclipse Modeling Framework (EMF) is given.

2.1.2.1 Model-Driven Architecture

The Object Management Group (OMG) launched the MDA initiative by the end of 2000. One
of its purposes is the shift from code orientation to model orientation in software development.
The platform dependent implementations should be separated from the abstract business logic.
OMG’s Unified Modeling Language (UML) has driven the evolution of this approach. The con-
cept of metamodels, which provide modeling languages for the particular models, is expanded by
meta-metamodels. Thus, the independent development and evolution of non-compatible meta-
models is avoided. MDA defines a four-layer architecture. On top, the meta-metamodel (1),
which conforms to itself, defines the language for building metamodels (metamodeling lan-
guage). One level lower, metamodels (2) are located that are used by the subjacent models (3)
to create snapshots of the observed system (4). These systems are on the lowest level of the
architecture. More precisely, MDA has a 3+1 architecture because the three upper levels can be
defined as modeling world while the bottom level forms the real world [8].

Another basic concept of MDA is the model transformation which originates from the
homonymous MDE principle (see Section 2.1.3). The first task in the MDA process is the
definition of a computation independent model (CIM). This model describes the system on an
abstract level [35]. Subsequently, a platform independent model (PIM) is created which repre-
sents the developed system and its functionality. PIMs are independent of any technical detail
of the target platform. M2M transformations produce a platform specific model (PSM) on the
basis of the PIM. Finally, a M2T transformation generates code for a target platform from the
PSM [7]. In this context, a platform can be a closed software component or technology with a
clearly defined interface. The platform provides necessary services, but its implementation does
not need to be known [35]. Figure 2.2 illustrates the transformation process. The idea of hav-
ing PIMs and PSMs has an important advantage. Only one PIM containing the abstract system
representation is needed to generate descriptions in the form of PSMs for various successive
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Figure 2.2: MDA process [7]

target platforms (vertical one-to-many model transformation) [44]. Specific metamodels for the
modeling of PIMs and PSMs conform to one distinct meta-metamodel [8]. Hence, the system
can be deployed more easily on more than one platform. If there are changes or new platform
technologies emerge, the underlying abstract system model does not need to be changed [43].

It should be noted that MDA is more than a simple code generation methodology due to
the formalization in modeling software architectures and platforms [56]. MDA combines var-
ious standards like Object Constraint Language (OCL), Meta Object Facility (MOF) or XML
Metadata Interchange (XMI) [23].

2.1.2.2 Eclipse Modeling Framework

The EMF offers a framework for modeling and code generation which runs on the open source
project Eclipse. It is part of the Eclipse Modeling Project and represents another initiative of
the MDE concept. Similar to MDA, the basis is a metamodeling language in the form of a
meta-metamodel called Ecore. This meta-metamodel is included in the core EMF. Individual
modeling languages can be defined based on Ecore in order to enable for the creation of domain
specific models. Finally, Java classes can be derived from these models. For this purpose, EMF
offers generator components. In addition, modeling editors can be created based on the de-
fined metamodels to enable the formation of models [63]. Moreover, further projects have been
introduced to expand the model-driven functionality of Eclipse. These additional projects are
partially based on EMF [12]. The Ecore meta-metamodel and some tools and implementations
of the Eclipse Modeling Project will be presented in Section 2.1.5.

2.1.3 Principles

According to Brambilla et al. [12], the MDE intention can be expressed with the following equa-
tion: models + transformations = software. Therefore, the models and corresponding transfor-
mations can be identified as the main elements of model-driven approaches. Section 2.1.3.1
addresses the problem of metamodeling to define modeling languages. Transformation method-
ology is discussed in Section 2.1.3.2 (M2M transformation) and Section 2.1.3.3 (M2T transfor-
mation).

2.1.3.1 Metamodeling

In MDE, models are not only used for documentation purposes but also as formalized compo-
nents for computer-based development [9]. In this context, metamodels form a concept for the
definition of modeling languages. They describe the available language constructs for the cre-
ation of models [12]. Metamodels are not necessarily specified in a standardized way, but can

9



also be written in a natural language (e.g. English). Nonetheless, computer-aided processing of
models (e.g. validity checks and transformations) assumes a formalized definition of metamod-
els [26].

Regarding the syntax of a modeling language, it can be distinguished between the abstract
syntax and the concrete syntax. An abstract syntax is based on the metamodel of the language
and specifies the underlying elements and constructs. On the other hand, the concrete syntax
defines the appearance and the notation of the models. This is determined in less formal descrip-
tions and illustrations [56].

The outcome of metamodeling are modeling languages which allow the definition of con-
crete models. These representations of a system of interest have to comply with the rules speci-
fied in the metamodel. In general, two types of modeling languages exist. While domain specific
languages (DSLs) are used to create models for a certain domain, general-purpose modeling lan-
guages (GPLs) are not limited to a specific domain, but can be used for any purpose. The most
popular example for a GPL is the UML [12].

The layered modeling architecture has already been mentioned in Section 2.1.2.1. Typi-
cally, the systems are mapped to models which conform to a modeling language or rather to
a metamodel. On top, a model for describing metamodels is defined which is called meta-
metamodel. Although further layers are possible, these four layers are usually sufficient. As the
meta-metamodel is defined by itself, the entire architecture is closed. By means of the meta-
modeling principle, the DSLs of an MDE approach can be developed to provide a basis for the
creation of models and their subsequent transformations [12].

2.1.3.2 Model-to-model transformation

During an MDE development process, model transformations are used to generate new models
or executable program code [30]. Brambilla et al. define some operations that are implemented
as model transformations [12]. Thus, models can be merged, aligned, refactored, refined or
translated. The transformations can be classified into model-to-model (M2M) transformations
and model-to-text (M2T) transformations [15]. Although this section focuses on M2M transfor-
mations, the following paragraphs state the common characteristics of both types.

In general, a transformation converts input model(s) into output model(s) by executing spec-
ified transformation rules. Input models are called source models while output models are called
target models [26]. A transformation rule is made up of a left hand side (LHS) and a right
hand side (RHS). While the LHS represents the source model, the RHS corresponds to the target
model. Each side of a rule is composed of variables (e.g. elements from the source model), pat-
terns (e.g. model fragments) and logic (e.g. OCL queries) [15]. Admittedly, transformations are
defined based on metamodels of the input and output model. However, they apply models con-
forming to these metamodels. The transformation itself conforms to its own metamodel which
defines the transformation language. Therefore, it is a kind of model, too [12].

There are some possible classifications of model transformations. First, they can differ in
their directionality. While bidirectional transformations can be used to run the transformation
in both directions, unidirectional transformations execute the transformation definition in one
direction only [15]. Another characteristic is the number of input and output models. There
are 1-to-1 transformations with one source model and one target model. A transformation of
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one source model into multiple target models is called a 1-to-N transformation. The other way
around, they are called N-to-1 transformations. An M-to-N transformation is the most univer-
sal case where multiple input models are converted to multiple output models [26]. If a more
abstract model is transformed into a more specific model, the process is called vertical trans-
formation. On the contrary, transformations performed between models of the same abstraction
level are known as horizontal [61]. Finally, the transformation languages can either be declar-
ative or imperative. Declarative languages define relationships between source and target ele-
ments. While the execution order is not set in declarative transformation definitions, imperative
languages specify an explicit execution plan [26].

In M2M transformations, both the input and the output are models and not any kind of text
or code. Such transformations are used to generate intermediate models during the evolution
of a PIM to the final program code. Therefore, the abstraction gap between PIM and code is
shrinking, which enables for the easier optimization and maintenance of the transformations.
There exist some approaches for M2M transformations. The direct-manipulation approach pro-
vides an application programming interface (API) for manipulating models (e.g. Jamda). The
relational approaches are based on mathematical relations. Constraints are used to specify the
relations between source element types and target element types. An example for such trans-
formations is Query/View/Transformation (QVT). Graph-transformation-based approaches use
typed, labeled and attributed graphs to define the transformation (e.g. VIATRA). OptimalJ is
an example for structure-driven approaches which consist of two phases. First, the hierarchical
structure of the output model is created, and afterwards the attributes are set. Finally, also com-
binations of these four approaches exist (hybrid approaches). An example for this category is
ATLAS Transformation Language (ATL) [15].

2.1.3.3 Model-to-text transformation

The aim of M2T transformations is the generation of documentation and other text documents
as well as the generation of executable source code. This corresponds with the overall goal of
MDE to establish a running system on the basis of a platform independent application model.
Whereas compilers generate machine code out of source code, the code generation in MDE is
the transformation of a model into source code [12].

For M2T transformations three questions have to be answered. First, it has to be determined
how much code can be generated (full or partial generation). Second, the kind of source code
must be specified. APIs or high-level programming languages should be extensively used. Third,
a procedure for generating code is required, i.e. the transformation language ranging from DSLs
to GPLs needs to be defined [12].

Two approaches for M2T transformations exist. The visitor-based approach runs through
the model representation by means of a so called visitor mechanism. In the meantime, the final
code is written to a text stream. The second approach called template-based, which is used in
this thesis, combines target text and meta code. While target text is written directly into the
output file, the meta code enables access to the data of the source model [15].

In the next sections, concrete standards and implementations of these principles and previ-
ously mentioned initiatives are discussed.
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2.1.4 Standards

The OMG combines a set of standards within the scope of MDA. The following subsections
present standards for metamodeling, M2M transformations and M2T transformations.

2.1.4.1 Meta Object Facility

According to OMG’s MOF 2.0 Core Specification, this standard enables “the development and
interoperability of model and metadata driven systems” [52, p.5]. In MDA, MOF is one of
the central technologies as it defines the concepts of metamodels, PIMs and their mapping to
platforms. The standard consists of the two meta-metamodels Essential MOF (EMOF) and
Complete MOF (CMOF). While EMOF is used to specify simple metamodels by means of
simple concepts, CMOF is more complicated but also more expressive [52]. The composition
of MOF respectively EMOF is discussed in Section 3.2.

MOF enables the definition of modeling languages. Thus, the meta-metamodel represents
a metamodeling language [12], while the meta-metamodel itself is defined by using its own
language concepts [26]. In the four-layer architecture of MDA, the metamodels on the second
highest layer are defined by the MOF language. Both semantics and structure are determined in
the MOF standard. All in all, an advantage of this common framework is the interchangeability
between models or metamodels conforming to MOF. Furthermore, the systematic integration of
metamodels and models is simplified [57].

2.1.4.2 MOF Query/View/Transformation

Another standard of the MDA initiative is Query/View/Transformation (QVT) which is pub-
lished by OMG, as well. The architecture of this model transformation standard consists of
three DSLs. First, the Relations language defines relationships between models. QVT Rela-
tions is based on the Core language which is as powerful but smaller. While both Relations
and Core are declarative languages, Operational Mappings is imperative [54]. Transformations
written in this language are unidirectional, and their syntax is comparable to other imperative
languages [6]. Hence, QVT constitutes a hybrid language which is limited to M2M transforma-
tions [26].

Besides these languages, QVT offers an additional, useful feature: Black Box Implementa-
tions. They enable the possibility to link the transformation with implementations and libraries
written in other languages. In the transformation definition, the signatures of the operations are
sufficient [54]. Therefore, the implementation can be seen as a black box. The expressiveness
of other programming languages can be utilized to implement e.g. complex algorithms [6].

2.1.4.3 MOF Model to Text Transformation Language

M2T transformations are standardized by the OMG in the MOF Model to Text Transformation
Language (Mof2Text). In general, the standard describes how a model can be transformed into
text. Examples for generated text representations are deployment specifications, reports or doc-
umentations as well as source code. Mof2Text follows the template-based approach of M2T
transformations [53].
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The construction of templates is introduced in the specification. Besides target text, the
templates contain meta code which is a kind of placeholder for model information. Values in
the source model can be accessed via expressions and queries. Furthermore, transformations
can be organized as modules. A special part of a template is the file block which defines the
final location of the generated text. Here, the most important parameter is a Uniform Resource
Identifier (URI) representing the name of the output file. Further information regarding this
standard can be found in the corresponding specification [53].

2.1.5 Tools and implementations

In this subsection, some available tools and implementations of the previously mentioned stan-
dards are listed. The focus lies on technologies that are used throughout this thesis. Descriptions
are kept concisely to give a rough overview. More details can be found in the underlying litera-
ture and in the following chapters.

Ecore is the meta-metamodel of the EMF, and therefore provides a metamodeling language for
specifying modeling languages. This language is a main difference between EMF and
MDA where MOF is defined as meta-metamodel on the topmost level of the modeling
architecture [26]. Ecore arises from MOF and is similar to the slim structure of EMOF. A
kernel of four classes is supported by additional language concepts [63]. The Ecore kernel
is examined in Section 3.2.2.

QVT Operational (QVTO) is part of the Eclipse Modeling Project. Instead of implementing
the full QVT standard, QVTO enables for the definition of transformations in the Opera-
tional Mappings language [17]. The transformations are allowed to contain concepts like
loops and conditions as QVTO is an imperative language [26]. This Eclipse component is
used for the M2M transformation in the model-driven approach of this thesis.

ATLAS Transformation Language (ATL) is another technology for M2M transformations.
The transformation definition is a model conforming to the MOF-based ATL metamodel.
In contrast to QVTO, this language is both declarative and imperative. As a hybrid
approach, it is useful in cases where neither a pure declarative nor an imperative solu-
tion is constructive. In addition, ATL transformations generate write-only target models
from read-only source models. Due to their unidirectionality, two transformations will be
needed for a bidirectional mapping [31].

Xpand is one of the components of openArchitectureWare (oAW), which are now part of the
Eclipse Modeling Project [18, 55]. The template-based technology is used to transform
models into text (e.g. source code, documentation). For this purpose, the Eclipse compo-
nent provides an editor for the creation of templates. In this thesis, Xpand has been se-
lected as M2T transformation language. Samples of Xpand transformations can be found
in Section 4.4 as well as online [45].

Acceleo is an alternative implementation of the Mof2Text standard. Its aim is to generate source
code for various platforms based on models. Besides Xpand, it is also part of the M2T
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category within the Eclipse Modeling Project [18]. As this technology is not used in this
present thesis, further details are omitted.

2.1.6 Relation to ontology development

An ontology can be described as a methodology to represent and organize knowledge. In addi-
tion, ontologies provide the possibility to generate new information by reasoning on the available
data. In the context of the Semantic Web, ontologies play a major role. Examples for ontology
description languages are the Resource Description Framework Schema (RDF Schema) and the
Web Ontology Language (OWL). There are some advantages when using ontologies for the rep-
resentation of heterogeneous BASs. First, the BA networks can be configured in a central repos-
itory. Second, the machine-readable representation of the ontology can be used as access point
by associated systems. Third, the reasoning enables the automatic generation of configuration
data for gateways, which integrate the various BASs. New BA technologies can be incorporated
into a network of existing BASs by implementing just one mapping for the ontology [58].

Besides MDA, ontology development is also a modeling approach. Both have some features
and characteristics in common. Thus, it is possible to combine these approaches. Gašević et
al. present a mapping from OWL to MDA which is depicted in Figure 2.3 [26]. The possibility
to model ontologies within the MDA concept is shown. On the one hand, there is the RDF
Schema modeling space as part of the Semantic Web technical space. On the other hand, there
is the MOF modeling space in the MDA technical space. MOF represents the topmost layer
in the MDA architecture. Beneath this meta-metamodel, a metamodel for ontologies called
Ontology Definition Metamodel (ODM) has to be built. Based on OWL, it contains the general
ontology concepts. In addition, an ontology UML profile is created to enable UML notation for
the definition of ontologies. Mappings between the UML profile and the ODM are introduced.
In the Semantic Web space, the top layer of the architecture is formed by the RDF Schema.
The ontology definition language OWL is subjacent on the same layer as the MDA metamodel
ODM. Horizontal mappings in both directions between OWL and ODM must be implemented.
These introduce a bridge between the MOF and the RDF Schema metamodeling concepts.

Admittedly, the ontology concept seems quite similar to the MDA approach. BASs can be
integrated seamlessly and the reasoning mechanism can be used effectively [58]. However, the
approach in this thesis is based on the model-driven approach or rather MDA because of some
advantages [26]:

• New ontology languages can be integrated easily by implementing a pair of transforma-
tions between the Ontology Definition Metamodel (ODM) and the particular technology.
Otherwise, two transformations per existing ontology language have to be created. If the
ontology concept is included in an MDA approach, the development is more flexible. Ad-
ditional technologies can be integrated in both the ontology and the MDA space more
easily. Modeling and representing of data is more abstract than direct modeling in an
ontology language.

• Ontologies can be validated regarding the ODM in the MDA approach. This is important
when transforming models between different modeling or ontology languages.
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Figure 2.3: Bridging RDF Schema and MOF [26]

• ODM can be used as central metamodel for the representation of ontologies. In combina-
tion with the BAS metamodel introduced in the following chapter, this forms a common
base for further processing and development.

2.2 Web services-based interfaces

As the idea of an Internet of Things (IoT) is on the edge of becoming reality, technologies for
integrating heterogeneous BASs have to be found. Thus, Web services (WSs)-based interfaces
could be a possible solution. After a short overview about these interfaces and the IoT paradigm,
this section explains some concrete technologies in this field of application.

2.2.1 Overview

The concept of IoT claims the establishment of interconnections and interactions of things like
sensors, actuators or mobile phones. The underlying aim is to combine these objects in order to
implement enhanced functionality. Their cooperation can be used to realize common objectives.
However, the accompanying security risks should not be disregarded when integrating things of
everyday life in a pervasive network [4].

The IoT is the intersection of three visions. First, the Things oriented view targets (mostly)
low-level communication devices. Second, Internet oriented visions include concepts for a net-
work oriented view of the IoT. And last but not least, the Semantic oriented perspective covers

15



the issues of a unique addressing scheme for the integrated objects as well as the reasonable rep-
resentation of information. A lot of possible scenarios and application domains for the IoT exist,
e.g. transportation and logistics (assisted driving, augmented maps), healthcare (data collection,
identification) or smart environments (comfortable homes) [4].

Middleware approaches are needed for the integration of legacy systems and the develop-
ment of high-level services [4]. Here, protocols on the basis of WSs are on the rise. The choice
is between WSs according to the Representational State Transfer (REST) paradigm (see Sec-
tion 2.2.2.3) or Simple Object Access Protocol (SOAP) services [32]. Such WS technologies
for the integration of BASs are Open Building Information Exchange (oBIX), BACnet/WS, De-
vices Profile for Web Services (DPWS) and OPC Unified Architecture (OPC UA), which are
examined in the following sections.

2.2.2 Open Building Information Exchange

The oBIX standard has been published by the Organization for the Advancement of Structured
Information Standards (OASIS). In order to avoid the use of low-level protocols while integrat-
ing embedded systems, this standard provides an IT-friendly interface using standard technolo-
gies. In the following subsections, key elements of the oBIX architecture are presented, while
additional information can be found in the oBIX specification [49].

2.2.2.1 Object model

In the oBIX technology, the concise object model defines the structure of objects which can be
instantiated. According to [49], Figure 2.4 shows the class diagram of this object model. The
base class is Obj containing all common properties (e.g. name, writable, href). Derived
objects for integers, strings, floating-point numbers or even lists and operations exist below this
root object. Any complex, compound object can be created with this small set of basic objects.
The attribute obj in Obj is an association which enables the creation of object hierarchies.
Thus, each object can contain other objects. For example, an instance of the class Int can
contain a String object and a Real object. Details about the various derived types and their
attributes can be found in the oBIX specification [49].

Objects are identified via their namewithin a composite object. On the other hand, an object
is referenced via its unique URI when making a request over the network. The URI is set in the
href attribute of Obj [48]. Data types of the attributes are based on XML types [66].

2.2.2.2 Contracts

A key concept in oBIX is the definition of contracts which introduce inheritance. Contracts
are used as templates to specify oBIX types and their semantic interpretation [32]. Since every
oBIX element is an object, also contracts are (composite) objects. If an object is inherited from
a contract, the subobjects are inherited as well. Similar to multiple inheritance in programming
languages, references to multiple contracts are possible. Hence, contracts bear analogy to Java
interfaces [48].
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+display : string
+displayName : string
+href : anyURI
+icon : anyURI
+is : contract
+name : NMTOKEN
+null : boolean
+obj : Obj[0..*]
+status : status = ok
+writable : boolean = false

Obj

+max : int
+min : Int
+of : contract = obix:obj

List

+in : contract = obix:Nil
+out : contract = obix:Nil

Op

+in : contract = obix:Nil
+of : contract = obix:obj

Feed

Ref

Err

+val : anyURI

Uri

+disabled
+fault
+down
+unackedAlarm
+alarm
+unacked
+overridden
+ok

«enumeration»
status

+max : dateTime
+min : dateTime
+tz : string
+val : dateTime

AbsTime

+max : duration
+min : duration
+val : duration = PTOS

RelTime

+max : time
+min : time
+val : time

Time

+max : date
+min : date
+val : date

Date

+range : anyURI
+val : NMTOKEN

Enum

+max : string
+min : string
+val : string = ""

Str

+max : double
+min : double
+precision : int
+unit : anyURI
+val : double = 0

Real

+max : int
+min : int
+unit : anyURI
+val : int = 0

Int

+range : anyURI
+val : boolean = false

Bool

Figure 2.4: oBIX object model [49]

Contracts offer a machine readable format which can be processed automatically by clients.
In addition, the flexibility and the simplicity are advantages of this concept. It can be distin-
guished between explicit and implicit contracts. While the explicit contract specifies the object
structure, the implicit contract is focused on the semantics. In general, objects are derived from
contracts by setting the value of the is attribute to the URI of the contract. The type of a List
object is set in the of attribute, and the input and output parameters of an Op object are specified
in its in and out attribute. Moreover, lists of contracts can be assigned where the contracts are
separated by a blank. The default values of the subobjects of the contract are inherited unless the
instantiated object defines a child object with the same name. Then, the attributes are overridden
by the new values. Furthermore, the oBIX specification introduces a core contract library (e.g.
unit, range) [49].
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2.2.2.3 REST paradigm

REST is an architectural style for WSs. The key characteristic is its resource orientation. A small
set of operations is available to access resources. This approach is comparable to the concept
of the World Wide Web (WWW) [48]. A resource, which is an oBIX object, is accessed via its
specified URI. Mainly, three operations (verbs) are used to work with all oBIX resources. While
a read request is applicable to any object, write is only for writable objects. The former is the
counterpart to the HTTP GET whereas the latter is mapped to HTTP PUT. Operations can be
executed by an invoke request similar to HTTP POST. In addition, there exists a fourth REST
verb called delete [49].

2.2.3 BACnet/WS

BACnet/WS is an amendment to the BACnet standard published by the American Society of
Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) [2]. The aim is the specifi-
cation of a WS interface and an appropriate model to integrate BASs in enterprise BMSs. The
interface is designed in accordance to the service-oriented architecture (SOA) principle. BA
technology independent services for managing data use XML in connection with SOAP based
on HTTP. The available services can be grouped in reading and writing services [34].

The main element of the BACnet/WS data model is the node. Nodes can build hierarchical
structures, and contain attributes. Attributes are categorized in primitive, enumerated and array
attributes. The paths for identifying nodes and attributes consist of a node part and an attribute
part. Nodes are linked by references. Here, loops and self referencing is forbidden. In fact, the
data model is simple but not extensible [34].

2.2.4 Devices Profile for Web Services

Another SOA protocol especially for embedded devices is the DPWS. As successor of Universal
Plug and Play (UPnP), it is independent of BA technologies, as well. Various protocols are
utilized by this profile. Examples are HTTP, XML or SOAP [62]. Windows Vista and Windows
7 already include DPWS [14].

The DPWS middleware provides WSs for the integrated devices and their hosted services
which enable access to the device’s functionality. In addition to the hosted services, DPWS
specifies some core protocols. For the dynamic discovery of devices, the WS-Discovery is es-
tablished. WS-Addressing is used to pack address information into the SOAP header of the
messages. Services for metadata exchange provide WS metadata e.g. in the form of XML
Schema definitions (WS-MetadataExchange). By means of the WS-Eventing services, devices
can subscribe for receiving event notification messages from other devices. Additionally, DPWS
defines WS-Policy and WS-Security to specify WS policies, and guarantee a secure message ex-
change [14, 62].

2.2.5 OPC Unified Architecture

The predecessor of OPC UA, OLE for Process Control (OPC), was published in the 1990s by
the OPC Foundation. Admittedly, the interoperability between different technologies in BASs
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was simplified. Vendors implement drivers to interact with the OPC API. The API of OPC was
based on Microsoft Component Object Model (COM) or Distributed COM (DCOM). However,
the dependency on this proprietary technologies and the resulting commitment with Microsoft
Windows were restrictions. Hence, OPC UA has been published to replace OPC. Now, a SOA
in the form of WSs is used as data transport technology to reach platform independence [22].
The loose connectivity in SOA offers an expanded applicability. Standard WS tools can be used
to access an OPC UA server. Security and reliability are also part of OPC UA [27].

The available server objects are located in the so called address space which standardizes
the representation of objects. This address space can be constructed by means of OPC UA in-
formation models [27]. In contrast to OPC, OPC UA enables the modeling of semantics besides
the representation of process data. Application specific information models can be created on
the same base model. Complex data can be interpreted by clients via the semantics contained
in the information models. Vendor specific extensions of the base information model are also
possible [22].

SOA provides a set of services for the interaction of servers and clients. The OPC UA
specification groups the services in profiles which are implemented by the server [27]. The
service definition is independent of any platform or protocol. Examples for available service
sets are the Discovery service set or the View service set. Attributes of nodes are accessed via
services from the Attribute service set including the Read and Write service [22].
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CHAPTER 3
Model architecture

This chapter contains the structure of the MDA approach including the concept of the different
modeling layers as well as the composition and utilization of the developed metamodels.

3.1 Modeling stack

An appropriate hierarchy of levels, a so called modeling stack, has to be defined when initiating
an MDE implementation. In its standards, the OMG refers to a four-layer modeling infrastruc-
ture [3, 8]. Nonetheless, the number of used stack levels is not fixed and always depends on the
intended use [52]. Although any number of layers can be handled, the model-driven approach
in this thesis comprises of a standard, four-layer modeling architecture which is illustrated in
Figure 3.1. Compared to some other representations of the OMG metamodel architecture, the
numeration starts with 0 on the lowest level, and increments bottom up.

The language for defining metamodels is located in level M3, on top of the stack. This
common language, encoded in the form of a meta-metamodel, enables an interoperability of the
underlying metamodels. As we already know from Section 2.1, the meta-metamodel is defined
by itself. Therefore, this hierarchy is closed and no level exists above M3. Level M2 contains
all necessary metamodels for the establishment of BASs. These metamodels are described in
detail in the upcoming Sections 3.3 and 3.4. In general, metamodels are defined in terms of the
overlying meta-metamodel and are introduced to determine DSLs, which describe a particular
domain of interest. The models can be found on level M1 in the modeling stack. Each model
conforms to one of the defined metamodels on level M2. Thus, they can be validated with regard
to syntactical correctness and compliance with specified semantical constraints [8].

Instances of the models respectively the modeled parts of the real world are located in the
lowest level, M0. The BAS and the execution of generated program code belong to this level
whereas the representation of a system, e.g. a BAS model, forms a part of level M1 [10].

The BAS in layer M0 is predefined as well as the meta-metamodel on layer M3 that defines
a kind of meta language. The intermediary levels have to be elaborated. All metamodels con-
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Figure 3.1: Modeling stack [8]

form to one unique meta-metamodel, and all models of one modeling language conform to the
corresponding metamodel.

3.2 Meta-metamodel

As already noted, the meta-metamodel defines a meta language which is used to specify mod-
eling languages. In OMG’s MDA, this meta-metamodel on level M3 of the predefined model-
ing stack is specified by the Meta Object Facility (MOF) standard [52]. This section gives an
overview of the composition and the usage of this framework. Thereby, the focus is on the Es-
sential MOF (EMOF) which is only a subset of the MOF 2.0 standard. Additionally, MOF 2.0
defines the Complete MOF (CMOF). In this thesis, the Ecore meta-metamodel of the EMF is
used as implementation of MOF [63].

Ecore and EMOF are sufficient for the underlying model-driven approach as all elements of
the MOF standard necessary to build the metamodels and transformations for BASs are included.
Moreover, no notable implementation of CMOF exists which provides such a wide-ranging tool
chain as the Eclipse Modeling Project.

3.2.1 Composition

According to [52], EMOF comprises simple concepts to build simple metamodels. First, the
core classes of EMOF are illustrated in Figure 3.2 in order to start pointing out the principles of
this meta-metamodel. These core classes and the subsequent figures are taken from the EMOF
part of the MOF 2.0 specification [52]. Available modeling elements for the definition of the
meta language are classes, properties and operations to describe the classes, and associations
between the classes including inheritance and containment. The core set of classes enables
for the modeling of domain specific classes (Class) that contain properties (Property) and
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Type

Class

+isAbstract : Boolean = false

Property

+isID : Boolean
+isReadOnly : Boolean = false
+isComposite : Boolean = false
+isDerived : Boolean = false
+default : String

Operation

+superClass 0..*

+class

0..1

+ownedAttribute

0..*

MultiplicityElement

MultiplicityElement
+class0..1

+ownedOperation

0..*

1

+opposite 0..1

Parameter

Type

MultiplicityElement

+operation

1

+ownedParameter

0..*

0..*

+raisedException

0..*

Figure 3.2: EMOF core classes [52]

operations (Operation). The classes can exist in an inheritance hierarchy modeled by the
superClass association. Operations contain parameters (Parameter) and raise exceptions
which are of the abstract type Type. In the subsequent figures, other EMOF structures are
pointed out.

Relations between classes are modeled by means of properties. Each property has an at-
tribute type derived from its superclasses MultiplicityElement and TypedElement
in which the referenced type can be specified (see Figure 3.4). In contrast, CMOF defines a
separate class for associations [52].

Figure 3.3 shows the composition of types and data types. EMOF defines four primitive data
types (Integer, Boolean, String, UnlimitedNatural). Moreover, it supports the
creation of custom enumerations (Enumeration and EnumerationLiteral) and further
primitive types (PrimitiveType).

The topmost superclass in EMOF is the class Element which is depicted in Figure 3.4.
Class Object is inherited from it and defines some fundamental operations. Named elements
(NamedElement) are derived from Object and pass their properties (e.g. name) on to a
set of subclasses (e.g. types, typed elements and enumeration literals). In addition, Figure 3.4
also introduces the multiplicity element (MultiplicityElement), which is the superclass
of parameters, operations and properties. Therewith, the lower and upper bounds of an object’s
multiplicity can be modeled.
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Figure 3.3: EMOF data types [52]

Element

+getMetaClass() : Class
+container() : Object
+equals(in element : Element) : Boolean
+get(in property : Property) : Element
+set(in property : Property, in element : Element)
+isSet(in property : Property) : Boolean
+unset()

Object

NamedElement

+name : String

MultiplicityElement

+isOrdered : Boolean = false
+isUnique : Boolean = true
+lower : Integer
+upper : UnlimitedNatural

TypedElement

Type

*

+type 0..1

Figure 3.4: EMOF types [52]

Finally, all subclasses of the class Type (e.g. classes, data types, enumerations) can be
capsuled in nested packages, and each package (Package) is a subclass of NamedElement.
The corresponding class diagram can be found in Figure 3.5.

3.2.2 Implementation and application

The introduction of a meta-metamodel is beneficial. One of these benefits is outlined in Hy-
pothesis 1 (see Chapter 1). If all metamodels in an MDA project conform to one unique meta-
metamodel, these metamodels can be seen as instances of one and the same meta language.
Therefore, elements and concepts in each metamodel are expressed in terms of the superor-
dinated meta-metamodel. Admittedly, it is not compulsory to establish modeling languages
derived from a common meta-metamodel. It is also possible to create transformations between
instances (models) of almost independent languages. However, comparability of these meta-
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+name : String

+uri : String

Package Type

+package

0..1

+ownedType

0..*
+nestingPackage

0..1

+nestedPackage 0..*

Figure 3.5: EMOF packages [52]

models and homogeneous handling are definitely advantages of implementing an appropriate
modeling stack with one meta-metamodel. And these properties can be achieved by already
available standards unified in OMG’s MDA initiative.

The EMF for Java provides a native implementation of the EMOF meta-metamodel called
Ecore. By using this framework, it is possible to create custom metamodels for the definition
of DSLs. Based on these language specifications, it is possible to generate models representing
snapshots of the real world. However, a mapping from MOF to EMF is needed [16]. The
kernel of the Ecore meta-metamodel with its four main elements is presented in the following
itemization [63]:

• EClass is the EMF equivalent to MOF’s Class. Classes can contain multiple attributes
and references. They support inheritance by the relation eSuperTypes. The value of
the attribute name is the unique identifier of a class.

• EAttribute represents attributes which are components of classes. An attribute has a
type and an identifying name.

• EDataType can be used to define types which are linked with primitive Java data types
or Java classes (complex data types).

• EReference enables for the modeling of associations between available classes. A class
can have multiple references and each reference has a referenced type which is a class
again. For bidirectional associations, a second reference has to be established, since one
reference navigates only in one direction. A reference can also be defined as containment
(strong association).

The Ecore kernel is depicted in Figure 3.6. It should be noted that this figure visual-
izes only the core of EMF’s meta-metamodel. Besides the four kernel elements, Ecore cov-
ers packages (EPackage), enumerations (EEnum and EEnumLiteral), operations with pa-
rameters (EOperation and EParameter) and some abstract classes like named elements
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Figure 3.6: Ecore kernel [63]

Ecore data type Java class or primitive type
EBoolean boolean
EChar char
EDouble double
EFloat float
EInt int
EByteObject java.lang.Byte
EBigDecimal java.math.BigDecimal
EBigInteger java.math.BigInteger
EDate java.util.Date
EJavaObject java.lang.Object
EString java.lang.String

Table 3.1: Ecore data type mapping [63]

(ENamedElement) or typed elements (ETypedElement) in addition [63]. Only a subset of
the available elements is used for modeling the metamodels in this thesis. As EMF is a Java
framework, the Ecore data types have to be mapped to corresponding Java types. Table 3.1 lists
the mapping of the most important data types.

To sum up, the structure of the MDA meta-metamodeling standard MOF or rather its subset
EMOF, and how this standard is implemented by the EMF and its meta-metamodel Ecore has
been described in detail. As already mentioned, this meta-metamodel can be used as the lan-
guage description to define languages for a specific domain in the form of metamodels. Just as a
UML class diagram, which represents an instance of the UML language description, metamod-
els use the aforesaid elements of meta-metamodels to create e.g. classes, operations, attributes
or associations between classes. In the subsequent sections, the developed metamodels for the
integration workflow of BASs are outlined in detail.
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3.3 Metamodel for building automation systems

In the underlying, model-driven approach, the metamodel for BASs defines a language for PIMs
in terms of OMG’s MDA. As we know from Section 2.1.2.1, the PIM represents a snapshot of
a system in an abstract, technology independent way. The following subsections document the
development process of the BAS metamodel, its final structure and the possibilities to create
models based on this metamodel.

3.3.1 Construction of the modeling language

The first step to build a metamodel for BASs is to establish the structure, the features and the
dynamic properties of such a system. In a BA network, various sensors and actuators are linked
in a specific topology. These links are realized via diverse media types, such as twisted pair,
power line or radio frequency. Such a kind of network contains a set of devices that send and
receive data over a wired or a wireless link. On the other hand, devices consist of one or multiple
input/output (I/O) points, e.g. a temperature value or binary value of a light switch. These I/O
points, the so called datapoints, are the basis for providing the behavioral aspects of devices.
They are linked to other datapoints via a virtual connection based on the physical links between
the devices. The semantical interpretation of exchanged messages is supported by a set of meta-
data. Data types, encodings of status values, units or the scaling of numeric values are examples
of semantics in BASs.

Figure 3.7 illustrates a sample BA network with a few actuators and sensors. The solid line
represents the physical link, while the sum of all links, devices and routing devices is the entire
topology. The dotted lines visualize the virtual links between datapoints of the devices. On top
of the network’s field and automation level, a BMS manages and monitors the system.

Based on these physical connections, the network can be examined by different views. Vary-
ing classifications of the devices and datapoints result in four distinct views. Depending on the
intended use, a network can be categorized in terms of

• the topology structure,

• the related domains,

• the actual location in a building or building part and

• the functionality of the devices and their datapoints.

Besides this static structure and the various views, a BAS is characterized by its dynamic
message exchange. Devices send and receive data by the use of a predefined communication
protocol. As the dynamic portion of a BAS technology is not as necessary as the physical com-
position for modeling such a system, it is omitted in this thesis. If the network is finally modeled
and a generated code is running on a gateway server, the data exchange and the communication
protocol will come to the fore again. Then, the gateway must be able to communicate with the
connected network, but the user (machine or human) behind the interface is only faced with the
datapoints, devices and their different views. Therefore, the consideration of dynamic behavior
is out of focus.

27



Temperature sensor

Switching actuator

HVAC controller

Humidity sensor
Switching actuator

Switch panel

Building management system

Light on/off

Temperature values

Backbone

Management level

Automation level

Field level

Figure 3.7: Sample automation network

Although the constructed metamodel for BASs (BAS metamodel) should be as general and
abstract as possible to enable the mapping of lots of different BAS technologies and standards,
the construction of this metamodel is inspired by the KNX technology. However, the expressive-
ness and universality of the defined modeling language should not be restricted. This approach
combines the concept of KNX with general and abstract considerations about the fundamental
structure of BA networks.

Since it is known, what has to be modeled, it has to be decided, how a metamodel for this
model can be defined. The metamodel must include the network with all its relevant information
in addition to the concepts for modeling metadata (e.g. types and units).

3.3.1.1 Network structure

The network itself is the root element of the entire model. Therefore, it is also the main class
in the metamodel. The network comprises a list of devices and each device contains several
datapoints. In terms of generalization, these two lists of devices and of datapoints are included
separately. Thus, the metamodeling concept enables the modeling of datapoints in a system
representation without providing information about the hosting devices. The link between a
device and its datapoints is realized by a reference from a device to a datapoint. Although the
definition of devices is universally applicable, the more generalized term entity is used from now
on. Entity is a more abstract denomination than device.

After adapting the metamodel to integrate entities and corresponding datapoints within a
network, the actual topology can be modeled. In KNX, the top element of the topology is a

28



backbone line which can contain up to 15 areas of which each one can be composed of one main
line and up to 15 lines. The lines can include 255 devices besides the coupler [37]. Thus, the
topology is hierarchically structured. This hierarchy of areas, lines and devices is generalized in
this approach. The topology structure consists of areas. Each area can consist of subareas in a
recursive manner. Hence, all possible, tree based and bus based structures can be modeled due
to this notion. Entities can be linked with every area on every hierarchy level of the topology. In
comparison to KNX, there are no limitations regarding the number of areas or linked entities in
the BAS metamodel.

With respect to the used functionality in management level applications, the network and
its components can be seen in different ways. One possibility is the categorization in domains.
Again, domains can construct a hierarchy of subdomains and each domain (e.g. a lighting do-
main) can contain a list of references to already existing entities. Thus, it is possible to combine
entities within a domain which belong together in terms of a common field of application. An-
other type of categorization is the separation into buildings and building parts. Thereby, the
entities (e.g. devices) can be organized by linking them with elements of an actual building
structure. Each (building) part has a type for characterization (e.g. building, floor, room). The
construction of buildings is the same as the construction of domains. A building part can contain
subparts, and these subparts can have subordinated parts.

All these views are focused on devices respectively entities, but the functionality in a BAS
is based on datapoints and their message exchange for reading and writing values of sensors and
actuators. Thus, the last view, which comes in mind when thinking of BA networks, is based on
the functional behavior. Similar to the other views, there exists one main structuring element,
the group, which can be used to form a hierarchical structure of multiple levels of groups. The
difference to the previous views is that groups contain a list of datapoints and not a list of
entities. An example is the group of lights and light switches in a room. It covers the particular
datapoints of lighting while other groups may contain the datapoints for heating, ventilation and
air conditioning (HVAC).

To sum up, these views in combination with the list of entities and the list of datapoints are
sufficient to support a wide range of management activities to control a particular network.

As the elements of a network contain textual descriptions, names of vendors or other texts,
a redundancy and possible inconsistency can arise. To avoid the multiple storage of the same
text, the metamodel should provide classes for storing texts only once in a set of references.
Afterwards, other elements (e.g. entities) can refer to these texts. By means of multilingual
applications, the modeling of translations is also required. A translation belongs to a single ele-
ment (e.g. naming of a datapoint) and is specified by a language (e.g. German, English). KNX
supports multilingual texts for datapoints, devices and some metadata like units and enumeration
literals. The BAS metamodel provides the modeling of translations not only for these elements,
but for a lot of other elements (e.g. areas, parts, groups) as well.

3.3.1.2 Metadata modeling

Besides the definition of modeling elements for the BA network, the metamodel has to support
the modeling of (data) types. These types are used to link raw data of the datapoints’ message
exchange with an appropriate semantic interpretation. A datapoint is supposed to have exactly
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one type. Otherwise, it might lead to inconsistent interpretations. Two approaches for the defi-
nition of a type concept in the metamodel exist. An inheritance hierarchy can be introduced to
create even more specialized types derived from general ones. However, this approach limits the
possibility to expand the available range of types. Hence, it has to be thought of another solution
that enables for more flexibility. Therefore, a type can be defined as a container of individual
properties like an integer value, a date or a binary value. Thus, any complex data type can be
created on the model level without changing the metamodel as long as the type contains only
the available properties. The expressiveness of this concept is further examined in Section 3.3.2.
Another advantage of this second, more flexible approach is the definition of complex param-
eters as input and output types of operations. Otherwise, these parameters would be limited to
the metamodel types, as well.

Some of the type properties like an integer or real value need a unit. The raw value of
a datapoint is useless without a unit. Otherwise, it is not known whether this value is e.g.
a temperature in K or a distance in m. Therefore, units have to be defined in the modeling
language of BASs. They contain an offset value, a scaling and a dimension (e.g. m2).

The meta-metamodel already enables the definition of enumerations on the metamodel layer,
but this definition will not be available in the models on level M1. Thus, classes for enumerations
have to be created in the metamodel corresponding to them in the meta-metamodel.

3.3.2 Metamodel composition

The previously mentioned considerations result in a metamodel which is presented in detail
in this section. The metamodel is designed to model BASs independent from a specific BAS
technology and a subsequent integration technology. The complete metamodel is illustrated in
Figure 3.8. The whole set of classes can be roughly grouped in a few main parts.

The figure shows a flat inheritance hierarchy with the class element as superclass. The
attributes id, name and description are needed in many classes throughout the model.
Therefore, these attributes are merged in an abstract superclass. Derived classes can be iden-
tified by the attribute id. For multilingual support the class element refers to the class
translation. Thus, a translation text for the attributes name and description can be
stored for different languages.

One of the derived classes of element is unit with the additional attributes symbol,
offset and scale. Modeled units are a form of metadata to provide semantic information
for some type properties. Each unit is expressed in terms of the International System of Units
(SI) to enable conversions between various units. The seven SI units are integer attributes of
the class dimension whereby the values of these integers represent the exponents of the SI
units in this particular BAS unit. A current scalar value in a given unit can be normalized by the
equation xnormal = xcurrent ∗ scale + offset [49]. Additionally, a unit can contain translations
since it is an ordinary element.

The diagram defines a few enumerations which can be used as attribute types in the meta-
model. Additionally, it provides classes for designing custom enumerations. The former are
listed on the right hand side of the figure. Translations need the enumeration enumLanguage,
which specifies the supported languages, and enumTranslation, which defines the trans-
lated attribute of an element. The others are discussed later on in this section. On the other
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Figure 3.8: BAS metamodel
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hand, custom enumerations (enumeration) contain a list of literals (literal), and each
literal has an integer value which links the textual description with a machine readable value.
In addition, an OCL invariant is introduced to enforce nonambiguous literal values. Listing 3.1
shows this invariant in lines 4 and 5.

1 c l a s s e n u m e r a t i o n ex tends e l e m e n t
2 {
3 property l i t e r a l : l i t e r a l [ ∗ ] { ordered composes } ;
4 i n v a r i a n t u n i q u e _ l i t e r a l s :
5 s e l f . l i t e r a l −>f o r A l l ( e1 , e2 | ( e1 <> e2 ) i m p l i e s ( e1 . v a l u e <> e2 . v a l u e ) ) ;
6 }

Listing 3.1: OCL invariant for enumeration literals

In the upper left corner of the diagram the classes for defining data types are located. The
class type has an association to itself which enables the creation of type hierarchies. The OCL
invariant in Listing 3.2 prevents a type from self-referencing. As many other classes in this
metamodel, a type is derived from the class element. It is a container for various properties,
so that any complex data type can be designed by this language construct. Property is an
abstract class with a name and has many subclasses representing various concrete property
types. This set of special properties is approved by the KNX datapoint types. Any datapoint
type of the KNX specification can be mapped to this concept. It would be also possible to use
an enumeration attribute in the class property to define the type of the property. But this would
not allow individual attributes in particular properties, e.g. the attribute length in the property
class text. A special case is the property class operation which can contain references to
input and output parameters (in and out). Besides a few simple property classes, there exists
the class encoding which contains a reference to an enumeration. Based on this, data types
can be linked with enumerations, e.g. to specify the semantics of a status byte or the meaning of
a binary value (e.g. literal on corresponds with binary value true). Last but not least, the classes
integer and numeric define a permitted range via the attributes min and max, and they
refer to the class unit.

1 c l a s s t y p e ex tends e l e m e n t
2 {
3 property p a r e n t : t y p e [ ? ] ;
4 property property : property [ ∗ ] { ordered composes } ;
5 i n v a r i a n t s e l f _ p a r e n t :
6 s e l f . p a r e n t <> s e l f ;
7 }

Listing 3.2: OCL invariant for type hierarchy

The key elements of the BAS metamodel are the network itself, datapoints, entities and
the other views. Initially, the root element of every BAS is represented by the class network.
Again, a network is inherited from element. Additionally, it provides the attribute standard
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of the type enumStandard to define the BAS technology of the current network. The network
refers to further BAS classes. First, the class datapoints contains a list of datapoints due
to an association to the class datapoint. This is the main entry point for functionality of
a BA network. Each datapoint refers to a type and is inherited from the class element. The
following enumeration lists the attributes of a datapoint. The given flags are mostly derived from
the KNX communication flags [25], but can be applied to other particular technologies or to a
more general BA network.

• Priority states the communication priority with the available values low, high and
alert which are defined in enumPriority.

• Communication is used as the main flag for activating or deactivating the communica-
tion to and from the observed datapoint. All following flags, including this one, are of the
type enumEnabled, and thus they allow the values enabled and disabled.

• Writable enables for changing of datapoint values by receiving appropriate messages.

• Readable, on the other hand, allows reading of datapoint values.

• Transmittable is used to permit the datapoint to send messages on the communica-
tion medium.

• Updatable will be set (i.e. enabled), if the datapoint has to react to responses on read
requests of other communication partners.

Furthermore, the network contains a list of all integrated entities accessible via the class
entities which is a container of instances of the class entity. The specific information
for entities is located within this class (e.g. orderNumber) or is linked by associations (e.g.
manufacturer). Each entity can relate to a number of datapoints. In addition to the list of
datapoints and entities, the network includes four other views. First, the view domains com-
prises of a hierarchy of domains and subdomains realized by the class domain and a contain-
ment association to itself. Besides this hierarchical structuring into various areas of application
(e.g. HVAC, lighting), every domain on every level of this tree can contain one or more in-
stances (instanceDomain) which refer to an entity. Second, the building view is hosted in
the class building and its subordinated class part. Similarly to the domains view, hierarchi-
cal structures can be composed of parts and each part can have instances referring to an entity
(instancePart). This view represents the location of the entities (e.g. devices) within a
building. Building parts are characterized by the attribute type which allows values from the
enumeration enumPart (e.g. building, floor, room). Third, the network topology is illustrated
by the view topology. As it can be seen in the metamodel figure, a tree structure can be com-
posed by means of the class area. A necessary property of an area is its physical subaddress
(address) relating to its integration in the topology hierarchy. The class instanceArea
embodies the instances of areas which contain an address and are linked to entities. Fourth,
the categorization of the network in functional terms is covered by the view functional.
The structuring element is the group, but unlike the other three views, instances of groups
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(instanceGroup) refer to a datapoint and not to entities. In order to provide functional ac-
cess to the network already at the group level, a reference to a datapoint (function) has to
be embedded in a group. In addition, the attribute connector of type enumConnector de-
scribes the type of participation of a datapoint in a group, i.e. it is a sink of the group (receive)
or a source (send).

Besides these already mentioned views and lists, the network comprises the references.
This class contains a list of reference. Thus, textual information can be stored consistently
and free of redundancy. Other classes can have links to a reference like the manufacturer infor-
mation of an entity.

To avoid restrictions to the design process of a BA network, this metamodel refrains from
creating additional OCL constraints. Therefore, a high level of abstract and universal modeling
is provided.

3.3.3 Model creation

The BAS metamodel on layer M2 of OMG’s modeling stack defines the modeling language
for the creation of BAS models on the next lower level. This section shows a few examples
how the BAS metamodel can be used to build different models in order to map an entire BA
network. Before a network can be successfully modeled, the relevant meta information has
to be constructed. A real network needs elements like units, data types, parameter types or
enumerations. Appropriate units and enumerations support the implementation of complex and
extensive types.

First, Listing 3.3 illustrates an XMI serialized model of a BAS unit which is also used in
the implementation and evaluation part of this thesis. This textual representation facilitates a
standardized information exchange while graphical visualizations offer a much easier interface
for editing such models. Units are multilingual elements that contain an optional dimension
expressed in SI units. The stated example shows a unit for degree Celsius values with the SI
unit Kelvin and an offset value of −273.15 refering to the basic unit. Moreover, the unit has
a German translation for the attribute name. The translation tag does not show an attribute
for the language and the translated attribute because de_DE and name are the default values of
their particular enumeration. Thus, the default value of an enumeration is the topmost literal.
The namespace reference http://auto.tuwien.ac.at/bas links the model to the BAS
metamodel.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 < b a s : u n i t x m l n s : b a s =" h t t p : / / a u t o . t uwi en . ac . a t / bas " i d =" c e l s i u s "

name=" t e m p e r a t u r e ( ◦C ) " d e s c r i p t i o n =" " symbol="◦C" o f f s e t =" −273.15 ">
3 < t r a n s l a t i o n v a l u e =" Tempera tu r ( ◦C ) " / >
4 <dimension K=" 1 " / >
5 < / b a s : u n i t >

Listing 3.3: BAS unit model

Second, an example of an enumeration is examined in Listing 3.4. It is important to distin-
guish between an enumeration of the metamodel and an enumeration on the model layer which
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is based on the metamodel’s class enumeration. This example describes the possible types
of a building part, i.e. each literal represents a permitted characteristic. Alongside, every literal
has a unique integer value given in the correspondent attribute.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 <bas:enumerat ion x m l n s : b a s =" h t t p : / / a u t o . t uwi en . ac . a t / bas " i d =" p a r t "

name=" P a r t ">
3 < l i t e r a l i d =" b u i l d i n g " name=" B u i l d i n g " v a l u e =" 0 " / >
4 < l i t e r a l i d =" b u i l d i n g p a r t " name=" B u i l d i n g P a r t " v a l u e =" 1 " / >
5 < l i t e r a l i d =" f l o o r " name=" F l o o r " v a l u e =" 2 " / >
6 < l i t e r a l i d =" s t a i r w a y " name=" S t a i r w a y " v a l u e =" 3 " / >
7 < l i t e r a l i d =" room " name="Room" v a l u e =" 4 " / >
8 < l i t e r a l i d =" c o r r i d o r " name=" C o r r i d o r " v a l u e =" 5 " / >
9 < l i t e r a l i d =" d i s t r i b u t i o n b o a r d " name=" D i s t r i b u t i o n Board " v a l u e =" 6 " / >

10 < / bas:enumerat ion >

Listing 3.4: BAS enumeration model

Third, Listing 3.5 shows a data type example. Here, the KNX datapoint type DPST-9-1 for
temperature values is modeled in terms of the BAS metamodel. As outlined in the previous
section, data types are hierarchically organized, and therefore this example type has the KNX
parent type DPT-9 which is located in a separate model in the file dpt_9.bas. As the type
is used for temperature values, only one property of the type numeric is needed to cover the
necessary functionality. The already presented Celsius unit is linked with this property via the
attribute unit. Additionally, the range of the value and a proper name can be modeled.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 < b a s : t y p e x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "

x m l n s : b a s =" h t t p : / / a u t o . t uwi en . ac . a t / bas " i d ="DPST−9−1" name=" Value Temp"
p a r e n t =" dp t_9 . bas #DPT−9">

3 < property x s i : t y p e =" b a s : n u m e r i c " name=" v a l u e " min=" −273.0 " max=" 670760 .0 "
u n i t =" . . / . . / l i b r a r y / u n i t / c e l s i u s . bas # c e l s i u s " / >

4 < / b a s : t y p e >

Listing 3.5: BAS type model

Finally, a network can be built using the evaluated metamodel and the introduced models for
meta information. Figure 3.9 visualizes the BA network Office with its child nodes for the views,
the list of entities and the list of datapoints. The functional view is exemplarily expanded to show
the feasible construction of groups and subgroups. Entity instances can be seen as leaves of the
group Light on/off. Subsequently, Listing 3.6 gives an excerpt of the network model, showing
an entity with two associated datapoints (datapoints) as XMI serialization.

All in all, the metamodel allows the construction of a huge set of models including libraries
for meta information or various networks of BASs.
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Figure 3.9: BAS network model

1 < e n t i t y i d ="P−0341−0_DI−11" name=" Tempera tu r e Se ns o r N 258/02 "
d e s c r i p t i o n =" P r o d u c t i n f o − s e e f i l e : 2581 a b 0 2 _ t p i _ e . pdf "
orderNumber=" 5WG1 258−1AB02" m a n u f a c t u r e r =" #M−0001 "
d a t a p o i n t s =" #5F7E_O−0_R−2 #5F7E_O−1_R−3">

2 < t r a n s l a t i o n l a n g u a g e =" de_DE " a t t r i b u t e =" name " v a l u e ="
T e m p e r a t u r s e n s o r N 258 /02 " / >

3 < t r a n s l a t i o n l a n g u a g e =" de_DE " a t t r i b u t e =" d e s c r i p t i o n " v a l u e ="
P r o d u k t i n f o − s i e h e D a t e i : 1258 a b 0 2 _ t p i . pdf " / >

4 < / e n t i t y >

Listing 3.6: BAS entity model

3.4 Metamodel for oBIX

The concept of MDA introduces a PSM besides the PIM. In this thesis, oBIX is used as target
technology for the integration of BASs. Therefore, the metamodel for the platform specific
language is designed in accordance with the oBIX concept. The subsequent section describes
the modifications of to the oBIX object model in order to achieve the requirements of the already
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introduced BAS metamodel. Similar to the metamodel for the PIMs, the correct use of the oBIX
metamodel is examined in Section 3.4.2.

3.4.1 Adoption of the oBIX object model

In Section 2.2.2 the oBIX standard and its underlying object model launched by the OASIS
were introduced. The approach of this thesis is based on the Committee Specification Draft
02 of oBIX version 1.1 from December 2013 [49] which is shipped with an XML Schema as
machine readable documentation. While integrating this object model in the MDA scheme, a
few changes have to be made. For instance, the standard XML data types used for specifying the
attributes of the various classes are not applicable anymore. The following itemization describes
each implemented modification of the original object model:

Additional attributes for the class Obj have to be created. These attributes are readable,
transmittable and updatable which correspond to the flags of a datapoint in the
BAS metamodel together with the already existing flag writable. If these attributes do
not exist in the intermediate platform specific metamodel, information will be lost on the
model layer between the PIM and the final program code. Although it is possible to add
these extra flags as child objects of type Bool, they are attached as attributes to be in line
with the flag writable.

Renaming is necessary for the attribute href in Obj, as the validation mechanism of the EMF
tools is not able to distinguish between the XML attribute and the homonymous attribute
of the oBIX object model. Attempts to add an explicit namespace information indicating
the particular attribute have failed, and thus it is indispensable to rename href. Therefore,
the name uri is chosen.

Data types in XML are not the same as in the used MDA tool chain. Hence, these types have to
be mapped to available simple or complex data types. For instance, the type duration
has to be replaced by the custom type EDuration. More details relating to these data
type changes are extensively discussed in Chapter 5.

Naming of classes is slightly modified. AbsTime and RelTime are written in camel case,
but the used oBIX gateway implementation needs Abstime and Reltime as notation.
However, this is just a marginal change and does not influence the functionality of the
MDA approach in any case.

Missing attributes are the result of some inconsistency in the oBIX specification. While the
class diagram and the XML Schema omit the attribute tz for the time zone in Time
and Date, the textual description and former versions of the specification mention this
attribute. Similarly, the attribute of in class Ref, which specifies the type of the objects
contained in a referenced list, have been lost in this specification. In order to provide a
complete metamodel, these attributes are integrated in the oBIX metamodel.
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Besides these adaptions the object model is directly transferred to a metamodel conforming
to the MOF meta-metamodel. The result is shown in Figure 3.10. As it can be observed, the
similarity to the object model from Section 2.2.2.1 is obvious.

The overall superclass Obj defines a set of attributes for its identification and additional
description. The attribute name in combination with uri is used to allocate an object inside
a set of oBIX objects. Additionally, the contract respectively the list of contracts is stated in
the attribute is (see Section 2.2.2.2). Human readable descriptions are given in the attributes
display and displayName corresponding to the attributes name and description of
the BAS metamodel. The meaning and use of further attributes can be found in the oBIX speci-
fication [49]. Last but not least, the class Obj has a containment association back to itself which
enables the creation of a hierarchy of objects.

All other classes are derived from this superclass, and thus inherit its properties. Alongside
the previously listed modifications, no further changes are made to these subclasses. Their
descriptions can be found in the oBIX specification, as well. In the upper left corner of the
oBIX metamodel, the enumeration status with all possible status values is modeled. This
enumeration is implemented in accordance with the underlying object model. Right next to it,
six custom data types are introduced to cover the XML data types from the original object model.
As a matter of fact, simple data types from the MDA implementation’s tool chain can be used
instead, but custom types provide more flexibility for additional functionality or restrictions. For
example, the type EUri is the counterpart of XML’s anyURI to store a URI. In most cases,
a simple character string would be fine. However, with the custom type, it is possible to check
the correctness of a given URI or to guarantee the uniqueness of such an identifier. Similar
considerations are the reasons for the remaining types.

Whereas the BAS metamodel is specifically tailored for BASs to model BA networks, the
oBIX metamodel defines a very general modeling language. While the former has separate
classes for the different views, entities and datapoints, the latter combines them into a small
set of common classes. The focus of the oBIX object model respectively its metamodel lies
on the uniform integration of heterogeneous information in a gateway technology to provide
easy access to the resources. As the name already says, a PSM conforming to an appropriate
metamodel focuses on the final target technology.

3.4.2 Metamodel utilization

Within this section, the creation of models based on the oBIX metamodel with the main focus on
BA networks is discussed. There are multiple ways of modeling the same information in oBIX.
It is the designer’s decision which object structure is the most suitable for a certain purpose.
In this thesis, the structure of the PIMs based on the BAS metamodel is retained as much as
possible. Therefore, the PSMs can be generated much easier. The following listings give brief
clippings in XMI of an oBIX model which has been generated from a PIM.

First, the root of a BA network is shown in Listing 3.7. It corresponds to the class network
of the BAS metamodel and contains the same information as its platform independent coun-
terpart. Due to the limitations of oBIX, attributes become separate objects (e.g. standard).
Likewise, associations and containments cannot be modeled directly, but need the concept of
oBIX references. Such a reference of the type Ref is the link to the list of entities (entities).
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Figure 3.10: oBIX metamodel
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By following the relative or absolute URI of a reference (attribute uri), the actual object can be
addressed.

1 <Obj u r i =" / n e t w o r k s / o f f i c e " d isp layName =" O f f i c e " i s =" bas :Ne twork "
name="P−0341 ">

2 <Obj x s i : t y p e =" obix:Enum " u r i =" s t a n d a r d " name=" s t a n d a r d "
r a n g e =" / enums / s t a n d a r d " v a l =" knx " / >

3 <Obj x s i : t y p e =" o b i x : R e f " u r i =" d a t a p o i n t s " i s =" b a s : D a t a p o i n t s "
name=" d a t a p o i n t s " / >

4 <Obj x s i : t y p e =" o b i x : R e f " u r i =" e n t i t i e s " i s =" b a s : E n t i t i e s " name=" e n t i t i e s " / >
5 <Obj x s i : t y p e =" o b i x : R e f " u r i =" f u n c t i o n a l " i s =" b a s : F u n c t i o n a l "

name=" f u n c t i o n a l " / >
6 <Obj x s i : t y p e =" o b i x : R e f " u r i =" t o p o l o g y " i s =" b a s : T o p o l o g y " name=" t o p o l o g y " / >
7 <Obj x s i : t y p e =" o b i x : R e f " u r i =" b u i l d i n g " i s =" b a s : B u i l d i n g " name=" b u i l d i n g " / >
8 <Obj x s i : t y p e =" o b i x : R e f " u r i =" domains " i s =" bas :Domains " name=" domains " / >
9 < / Obj>

Listing 3.7: oBIX network model

Second, Listing 3.8 illustrates a model of an entity. Here, the entity is a temperature sen-
sor with two child objects of type Str defining the manufacturer name and the order number.
Moreover, the entity contains a list of datapoint references indicated by the list’s of attribute
(obix:ref bas:Datapoint). These references are of type Ref and point at real datapoint objects
which reside under the given URI.

1 <Obj u r i =" / n e t w o r k s / o f f i c e / e n t i t i e s / t e m p e r a t u r e _ s e n s o r _ n _ 2 5 8 _ 0 2 / 1 "
disp layName =" Tempera tu r e S en so r N 258 /02 " i s =" b a s : E n t i t y "
name="P−0341−0_DI−11">

2 <Obj x s i : t y p e =" o b i x : S t r " u r i =" m a n u f a c t u r e r " name=" m a n u f a c t u r e r "
v a l =" Siemens " / >

3 <Obj x s i : t y p e =" o b i x : S t r " u r i =" orderNumber " name=" orderNumber "
v a l =" 5WG1 258−1AB02" / >

4 <Obj x s i : t y p e =" o b i x : L i s t " u r i =" d a t a p o i n t s " name=" d a t a p o i n t s "
o f =" o b i x : r e f b a s : D a t a p o i n t ">

5 <Obj x s i : t y p e =" o b i x : R e f " d isp layName =" Tempera tu re , Channel A"
u r i =" / n e t w o r k s / o f f i c e / d a t a p o i n t s / t e m p e r a t u r e _ c h a n n e l _ a / 1 " i s ="
b a s : D a t a p o i n t " name="P−0341−0_DI−11_M−0001_A−9814−01−5F7E_O−0_R−2" / >

6 <Obj x s i : t y p e =" o b i x : R e f " d isp layName =" Tempera tu re , Channel B"
u r i =" / n e t w o r k s / o f f i c e / d a t a p o i n t s / t e m p e r a t u r e _ c h a n n e l _ b / 1 " i s ="
b a s : D a t a p o i n t " name="P−0341−0_DI−11_M−0001_A−9814−01−5F7E_O−1_R−3" / >

7 < / Obj>
8 < / Obj>

Listing 3.8: oBIX entity model

Finally, the modeling of a datapoint is examined in Listing 3.9. As already known, datapoints
host the device functionality of a BAS. In the PIM, a datapoint has a type which is linked to the
datapoint by a reference. On the contrary, the oBIX model includes the properties of the type as
child objects directly in the datapoint object (value, encoding). The is attribute shows a
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list of contracts representing the inheritance hierarchy of this particular datapoint. At this point,
it should be noted that the contract prefix bas has nothing in common with the namespace of
the BAS metamodel, but should clarify the type of the object as an element of BASs.

1 <Obj u r i =" / n e t w o r k s / o f f i c e / d a t a p o i n t s / s w i t c h _ c h a n n e l _ a / 1 " d i s p l a y ="On / Off "
d isp layName =" Switch , Channel A" i s =" bas:DPST−1−1 bas:DPT−1 b a s : D a t a p o i n t "

name="P−0341−0_DI−3_M−0001_A−9803−03−3F77_O−3_R−4" w r i t a b l e =" t r u e "
t r a n s m i t t a b l e =" t r u e " u p d a t a b l e =" t r u e ">

2 <Obj x s i : t y p e =" o b i x : B o o l " u r i =" v a l u e " name=" v a l u e " n u l l =" t r u e " / >
3 <Obj x s i : t y p e =" obix:Enum " u r i =" e n c o d i n g " r a n g e =" / e n c o d i n g s / o n o f f "

name=" e n c o d i n g " n u l l =" t r u e " / >
4 < / Obj>

Listing 3.9: oBIX datapoint model
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CHAPTER 4
Transformation process

The following chapter deals with the horizontal interaction of the individual models on the sec-
ond lowest layer of the modeling stack, M1 (see Section 3.1). In short, it describes the process
from modeling of the BAS to the final generation of executable program code.

4.1 Workflow description

While the previous chapter outlines the static aspects of MDE, the following sections discuss the
dynamic issues, i.e. the workflow steps between the particular MDA models and metamodels.
The approach considers three distinguishable phases:

1. The network modeling represents the stage of mapping the BAS to a machine readable
model. Whether this step is executed automatically by using data from a BAS engineering
tool, or the system integrator builds the model by hand, does not matter. The important
thing is the resulting BAS model.

2. The model transformation translates the PIM into a PSM. In contrast to the network
modeling, this step is realized by the support of MDA mechanisms.

3. The step code generation converts the PSM into executable program code. Again, the
generation is not done manually. Instead, the available MDA tools are utilized for imple-
mentation and execution.

These three steps are highlighted in Figure 4.1 which depicts a cutout of the overview from
the introduction (see Chapter 1). Admittedly, it would be possible to develop a transformation
in one step. For instance, the data from the BAS engineering tool are transformed directly into
source code. However, this will amongst others dramatically limit transparency, extensibility and
reusability. Section 2.1 already pointed out the advantages of a model-driven approach. More-
over, it has already been outlined why a separation between PIM and PSM is highly preferable.
Therefore, a transformation process conforming to the MDA initiative is chosen.
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Figure 4.1: Transformation workflow

Each process step describes a set of rules and operations to convert input into desired output.
The workflow is located in layer M1 of the modeling stack. Transformations are performed in
horizontal direction between models written in different modeling languages. Due to the taken
approach, intermediary results exist before the final program code is generated. These inter-
mediaries are both output of the previous transformation and input for the subsequent process
step. Thus, the workflow represents a chain of single steps from the initial BA network to the
executable source code. Except for network modeling, the other workflow steps can be realized
in accordance with the MDA concept. As soon as the BAS exists as PIM, it can be automatically
processed until it is finally integrated into a WS gateway. The network modeling depends on the
available BAS engineering tool and the preferences of the system designer.

All in all, the developed MDA approach substantiates Hypothesis 2 (see Chapter 1), as it
can be read in detail in the following sections. The BAS as the workflow’s input is transformed
stepwise. Finally, the network is integrated into a WS gateway. The theoretical concepts in this
chapter are supplemented by an implementation in Chapter 5.
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4.2 Network modeling

The initial position can be described as a combination of various sensors, actuators and other
components that form a BAS. In most cases, access to the system is considerably restricted,
hence it is only possible to manage the network with special (proprietary) software tools. Based
on this existing, local network, the overall objective of this thesis is to enable remote access via
an interfacing technology. The BAS services should be available via a general interface, and
modeling of the network is the first step to integrate it into a model-driven approach for further
processing. In short, the BAS is the input of this step while its representation as model is the
desired output. The transformation can be realized either by manual modeling or by a tool based,
automatic generation. Both approaches are discussed in the following two subsections.

4.2.1 Manual approach

The whole MDA process is based on DSLs and the overlying meta-metamodel. For manual
modeling of the network, the starting point is the BAS metamodel. The instances of this meta-
model, the PIMs, are technology independent representations of the real BAS. A designer’s task
is the constitution of the network topology and all its connected devices in the form of such a
PIM. In this case, this is done manually. Therefore, the designer uses a visual editor or a text edi-
tor to create the model objects. This way of network modeling is chosen, if no machine readable
data of the underlying network are available.

Within the limits of the metamodel, the designer has a lot of options for mapping the BA
network. The focus of the successive BMS largely influences which elements of the actual
network are represented in the model. For instance, if a remote BMS does not need information
about the partitioning of the building in different parts, recording of the building view in the PIM
will not be required. On the other hand, if the BMS provides a service for measuring the energy
consumption of a particular domain (e.g. lighting), the relevant view should be implemented.
In Section 3.3.3, it was already outlined how modeling by means of the BAS metamodel can be
achieved.

4.2.2 Automatic approach

Besides manual implementation of a PIM, an automatic approach via a computer-based trans-
formation can be chosen. In this case, machine readable information about the network structure
and its components needs to be available. One way of receiving relevant information is the uti-
lization of data from a BAS engineering tool. If this software offers an export interface, network
information can be extracted and processed.

For example, KNX systems can be constructed by means of the Engineering Tool Software 4
(ETS4) [19]. This application exports the BAS data as XML files that conform to a given XML
Schema. As already pointed out, this thesis relies on a KNX network to evaluate the developed
model-driven approach (see Chapter 6). In this context, an automatic transformation script for
network modeling has been built based on the BAS metamodel and the KNX XML Schema.
Available information is mapped to a model conforming to the BAS metamodel by the use of
XSLT.
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Figure 4.2: Model transformation from BAS to oBIX

It seems that only automatic realization of the network modeling is consistent with Hypoth-
esis 2 which speaks about a fully automated transformation process. However, this first step is
only the initial activity while the actual MDA approach starts more or less with the existence of
a PIM. Thus, manual modeling of the network does not refute the stated hypothesis.

4.3 Model transformation

The second step in the integration workflow is the transformation from the PIM to the PSM. In
terms of MDA this is also called M2M transformation [7]. As already outlined (see Section 3.3),
the PIM is the model conforming to the BAS metamodel. On the other hand, the PSM is the
model conforming to the oBIX metamodel. According to Jouault et al. [30], Figure 4.2 visu-
alizes the involved process components. In the figure, these are embedded in the well-known
modeling stack, whereas the transformation and its metamodel are located between the source
(BAS models and metamodel) and the target (oBIX models and metamodel). The execution on
layer M0 has a BAS model as input. The transformation rules of layer M1, which conform to the
transformation metamodel, modify the input data and create an output model. In this workflow,
the output model represents a BA network in terms of the oBIX modeling language.
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The aim of this process step is the translation of information from a platform independent
representation into a technology specific syntax for further processing. MDA enables the op-
portunity to change the target platform by simply replacing the transformation’s output model.
For instance, OPC UA can be chosen. Therefore, the transformation must generate an OPC UA
model of the BA network. These changes will not affect the original PIM due to the separation
of the workflow into distinct phases. In summary, this M2M transformation creates platform
specific objects of the underlying BAS by means of appropriate transformation rules.

The following subsections outline the addressed transformation in detail. First, the devel-
oped conversions are discussed in a general way (transformation rules) relating to the M2 layer
of the modeling stack that contains the metamodels. Each visualization shows a cutout of the
BAS metamodel on the left hand side and the corresponding part of the oBIX metamodel on
the right hand side. Second, the concrete transformation of a BAS model into an oBIX model
(transformation execution) is presented. The execution utilizes models on the M1 layer of the
stack as input and output whereby the focus is on the actual BA network parts. Therefore, the
transformation of library models (e.g. data types, units) and other meta information is mostly
omitted in the next two subsections.

4.3.1 Mapping of metamodels

In this section, various rules for converting a BAS model to an oBIX model are shown in terms
of the metamodels’ language concepts. These rules are aggregated in the item Transformation
in Figure 4.2. In order to understand the first diagram, a few basic rules for translating elements
from the BAS metamodel (source metamodel) to the oBIX metamodel (target metamodel) need
to be established:

• Attributes of a class in the source metamodel are converted into child objects of the par-
ticular object in the target metamodel, if no adequate attributes in the target class exist.

• Containment associations are often resolved as a list of child objects. The subordinated
objects can be either encapsulated in an intermediate List object or added directly to the
parent object. Nonetheless, exceptions to this rule exist which are discussed later on.

• Standard associations in the source metamodel usually become Ref objects in oBIX. In
some cases, containments are resolved as references, as well. Due to a better structure of
the overall model, the subsidiary objects are located in separate oBIX objects. They are
linked to the original parent object by an oBIX reference object.

• Abstract source classes are not directly mapped to target classes. The attributes of such
abstract classes are included during transformation of the derived classes that are not ab-
stract.

The first visualization of a transformation rule can be observed in Figure 4.3. The left hand
side displays a set of classes of the BAS metamodel as the source of the transformation while
the right hand side illustrates the needed classes of the oBIX metamodel as the target of the
transformation. Here, the transformation of element and translation is displayed. As
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-display : EString
-displayName : EString
-uri : EUri
-icon : EUri
-is : EContract
-name : EString
-null : EBoolean
-status : enumStatus
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-readable : EBoolean
-transmittable : EBoolean
-updatable : EBoolean

Obj

1
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-name : EString
-description : EString
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0..*

-language : enumLanguage
-attribute : enumTranslation
-value : EString

translation

1

0..*

-min : EInt
-max : EInt
-val : EString

Str

Figure 4.3: Mapping of element and translation

element is an abstract class, it is not transformed into an oBIX object. However, its attributes
are needed while transforming the derived classes (e.g. datapoints). The dotted arcs demon-
strate which part of the source metamodel becomes which part of the target metamodel. Thus,
the value of the attribute id is mapped to the attribute name of Obj. Likewise, name and
description are converted to displayName and display. A special case is the oBIX
attribute uri. In dependence of the source class, this attribute is composed of id, name or both
attributes. The class translation becomes an Obj with three child objects of type Str due
to its three attributes. Generally, child objects are linked via the containment association of Obj
to the parental object. At this point it has to be noted, that the value of attribute is comes from
the particular source class and is not considered explicitly in the shown figures. For instance, the
source class translation leads to the contract bas:Translation in the is attribute.

Translations are one of the exceptions (cf. basic rule for containment associations above)
as they are not linked with the superordinated element in the oBIX model. Hence, they are
integrated completely autonomously. Subsequent transformation steps use the translation’s value
of the name attribute to establish a link between an object and its translations.

Figure 4.4 represents the mapping of the BAS’ main element, the network, and the as-
sociations to the network’s various views. A network is converted to an Obj. The attributes
display, displayName and name are filled by the attributes of element as network is
derived from element. The attribute standard becomes an Enum object in oBIX at which
the attribute range will refer to an enumeration corresponding to the enumeration of the BAS
metamodel (enumStandard). All associated views are added to the network object as Ref
objects. The class references is not included in the transformation, and therefore it is omit-
ted in the figure. The uri attributes of the Ref objects refer to the actual view objects in the
oBIX model. Consequently, a network has seven child elements, i.e. a Ref for each view and
an additional Enum to store the technology of the BA network. The Ref objects cannot be en-
capsulated in one single list because they refer to different types (contracts), and an integration
into separate lists is not necessary as the associations are only of cardinality 1:0..1. If a view
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Figure 4.4: Mapping of network

does not exist in the network model, it will not be generated during the transformation.
One of the mentioned views is the plain list of available datapoints. Within the oBIX object

of the network, the class datapoints is mapped to the class Ref. In addition, the list of data-
points exists as a separate oBIX object in the form of a List object. The of attribute’s value is
set to obix:ref bas:Datapoint because this list contains references to datapoints. Figure 4.5 illus-
trates this mapping. Similarly, the transformation of the entities list uses the same pattern.
Entities become a List object containing one Ref object per entity. Thus, this transformation
part is not displayed separately.

The views building, topology, domains and functional possess a very similar structure. Espe-
cially, the three former concepts differ only in the naming of classes and some attributes within
these classes. In contrast, the functional view does not refer to entities on the instance level, but
links the groups and instances with datapoints. Figure 4.6 displays the considerations taken into
account when transforming the functional view to its oBIX equivalent.

First, the classes functional, group and instanceGroup are mapped to the standard
class Obj. Then, the two containment associations to create a tree structure of groups and
subgroups as well as the containment association for the instances are transformed to child
objects of type List. In addition, a group gets a child object for the attribute address which
is mapped to Int. Likewise, connector becomes an Enum with a URI (range) to the oBIX
equivalent of the enumeration enumConnector. Both a group and a group’s instances refer
to a datapoint. These associations are mapped by means of a Ref object. The datapoints are
located somewhere else in the model, but the references provide a link to them. The remaining
views are not illustrated as the mapping is similar. Links to the entities are also realized by a
Ref object. Moreover, the fundamental structure, i.e. a hierarchy of different levels of building
parts, areas or domains with instances on each level, is unchanged.

Generally, entities are containers for datapoints. If a container is physically existent, it will
be usually a device with an order number and a manufacturer. In Figure 4.7, the mapping of
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Figure 4.5: Mapping of datapoints view

such an entity to oBIX classes is visualized. First, the entity class becomes an Obj. Next,
the attribute orderNumber and the manufacturer name, which is stored in an instance of the
class reference (accessible via the association manufacturer), are converted to the class
Str. The references are used as redundancy-free storage for repeatedly occurring texts. Instead
of being directly transformed to a specific platform technology, the particular texts are inserted
when resolving an association to such a reference during the mapping process. Hence, the PSM
is not necessarily free of redundancy regarding text values. Finally, a Ref object is created for
each referenced datapoint. The set of references is integrated into a List.

Mapping of a datapoint is one of the most relevant parts in this context. The behavior of
a device is defined by its datapoints. Therefore, a comprehensive yet simple representation for
a datapoint in the PSM has to be found. The transformation rules applied in this thesis are
depicted in Figure 4.8. As summarized in Section 3.3, a datapoint in the BAS metamodel has
one unique type. Initially the class datapoint is converted into an Obj. The values of the
flags writable, readable, transmittable and updatable of the enumeration type
enumEnabled are converted into the corresponding boolean attributes of the class Obj. In
the context of this thesis, the attributes priority and communication are not used in the
oBIX model although they can provide beneficial information for other applications.

Now, the properties of the assigned type must be added to this oBIX datapoint object. The
abstract class property has an attribute name which becomes the name of the datapoint’s
child object. The types of these objects are defined by the respective property class. For in-
stance, an operation is mapped to the Op class in which the input and output parameters are
derived from the associations in and out. The oBIX equivalent for the class bool is the class
Bool. Encoding is mapped to Enum in which the range is determined by the associated
enumeration. While integers are converted to Int, floating-point numbers (numeric)
become an instance of class Real. The attribute unit of these classes is set to the referenced
unit. As the other property classes are not used within this thesis, they are omitted in the figure.
However, Table 4.1 summarizes the mapping of all property classes.
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Figure 4.6: Mapping of functional view

4.3.2 Mapping of models

The general transformation rules of the metamodel classes in the previous subsection can be
applied to any BAS model on the M1 layer of the modeling stack. Input models are instances
of the BAS metamodel. They represent a real BA network and are expressed in terms of the
modeling language defined by the metamodel. The output of this transformation is an instance
of the oBIX metamodel. General and platform independent information of the BAS model is
converted into platform specific terminology of oBIX. The transformation of a concrete model
is located in Execution of layer M0 (see Figure 4.2) in which the transformation model (i.e. the
rules) is executed.

Similar to the last subsection, the focus is on the transformation of a BA network (e.g. data-
points, views) and not necessarily on its meta information (e.g. types, units). For simplification,
only a few examples are given to demonstrate the application of the transformation rules. The
examples are visualized similarly to the previous ones of Section 4.3.1. However, the upper half
of the examples shows pieces of a BAS model whereas the lower half of the diagrams illustrates
the resulting oBIX elements as output of the transformation execution. Thus, the horizontal line
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Figure 4.7: Mapping of entity

can be seen as execution engine between input and output model.
First, the transformation of a network is examined. The example network Office is used for

this purpose as it represents a small KNX network. The evaluation in Chapter 6 discusses this
KNX network in detail because it is also part of the thesis’ proof of concept implementation.
The various conversion steps can be seen in Figure 4.9.

In the BAS modeling language, a network is an instance of the class network and has at
most seven child elements. The class network is mapped to the class Obj. Thus, the net-
work instance becomes an oBIX Obj. The child elements are converted into subordinated Ref
elements, but the element references is not converted into the oBIX model. Each Ref ob-
ject points to the instance of the particular view or list, e.g. the reference entities refers
to the actual list of entities. The table of properties, which is connected with the network in-
stance by the blue arrow, lists all available attributes of the Office network. While the attributes
description, name and id are inherited from the class element, the property standard
is defined in the class network. Attributes of BAS classes with corresponding attributes in the
oBIX counterpart are mapped directly. For instance, the value Office of name is transferred
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Figure 4.8: Mapping of datapoint
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BAS metamodel (source) oBIX metamodel (target)
bool Bool
date Date
datetime Abstime
duration Reltime
encoding Enum
integer Int
numeric Real
operation Op
text Str
time Time

Table 4.1: Mapping of type properties

to the attribute displayName. This can be seen in the property table of the oBIX network
object. In contrast, the attribute standard has not any appropriate oBIX attribute for a direct
conversion. Therefore, a new object of type Enum has to be created as a child of the network
object. This enumeration object gets the same name as the attribute in the BAS modeling lan-
guage. The value of the network’s attribute is transferred to the attribute val of the Enum object.
Additionally, the range is set to a separate oBIX object which defines the allowed values of
the enumeration. The generated URI is set relatively to the parental network object. A relative
URI is indicated by the missing leading slash. The value bas:Network has been set as a suitable
contract in the is attribute for the class network. For unique identification and discovery, the
URI value (attribute uri) is generated from the network name and the location of all network
objects within an oBIX gateway. Writable is set to false in all created objects. Writable data-
points and their properties are the only objects where writable can be set to true. For a better
readability, some attributes (e.g. readable, icon) are left out in the tables of oBIX object
properties. This is true for both Figures 4.9 and 4.10.

Transforming a datapoint from the PIM into the PSM is more complex and comprises a
greater set of resulting objects containing translations, references in the datapoints view and the
datapoint object with its type properties. All the involved input and output objects and their
interconnection are visualized in Figure 4.10.

In the upper left corner, an instance of the class datapoint describing a channel of a
switching actuator is illustrated. Each datapoint has a set of attributes listed in the property table
at the top of the figure. Their mapping has already been described. The attribute type is linked
to the KNX datapoint type Switch which contains a boolean flag (value) and an encoding
(encoding) for the semantic interpretation of this flag. The subordinated elements of the
datapoint are translations of its name and its description in multiple languages. As an example,
the first translation is shown by the property table just below the datapoint instance. The oBIX
translations of multilingual elements (e.g. datapoint, entity, area) are encapsulated in a list. Each
translation in this list has a unique number and three child elements of type Str. These Str
objects contain the language, the translated attribute and the translation text corresponding to the
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Figure 4.9: Mapping of example network

translation in the BAS model. The results are located on the left hand side of the figure.
Besides the translation objects, the transformation of a datapoint leads to an oBIX object

of type Ref in the list of datapoints which is again referenced by a Ref object in the network
object. The datapoint reference obtains its attribute values from the source datapoint. Again,
the URI is relative as the actual datapoint is located in the same branch of the oBIX gateway’s
object tree. The real datapoint is created by transforming the source datapoint into an instance
of the class Obj. The attribute values are procured from the source properties, e.g. the name
Switch, Channel A becomes the displayName. Here, the URI is absolute to enable for direct
addressing of this object in the gateway. The is attribute contains the full list of superordinated
contracts. For adoption of the datapoint functionality, the type properties from the BAS model
are attached as distinct oBIX objects within the datapoint object.

4.4 Code generation

The last step in the transformation process is the generation of executable program code. This
concluding element in the transformation chain is called M2T transformation [7], and is not only
limited to code but also includes the generation of documentation or test cases. Within the work-
flow cycle, code generation is the third phase after modeling the network by creating a PIM and
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Figure 4.10: Mapping of example datapoint
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converting this PIM into a PSM by means of an M2M transformation. While network modeling
and the PIM are independent of the subsequent integration technology, the PSM determines the
target platform. Last but not least, the code generation assigns the final implementation of the
used platform. In this thesis, a Java implementation of the oBIX standard is used for the proof of
concept implementation. Hence, this last workflow step generates Java source code by analyzing
the information given in the PSM. More details on the used Java implementation can be found
in Chapter 5.

The input for code generation is the PSM. Although it conforms to a modeling language
which is already aligned with a concrete platform, it is still quite independent regarding the actual
implementation of the platform. Thus, the oBIX metamodel provides a language for creating
platform specific but implementation independent models. In MDA, descriptions of the platform
concepts, i.e. its parts and services, are called platform models [51]. During code generation, the
information of the BAS stored in the PSM is transformed into an executable program considering
the oBIX platform model. The source code is the output of the code generation which can
be simply integrated in the target framework. For the underlying work, a separate Java file is
generated and integrated into the oBIX gateway implementation. If the gateway contains all
necessary libraries and packages, no further modifications will have to be made in this output
file. All in all, the code generation completes the model-driven workflow to integrate a BAS into
a WS gateway technology.

Czarnecki and Helsen present two approaches for M2T transformations [15]. Throughout
this thesis, the template-based approach is used to transform models into code. Here, the trans-
formation engine, which executes the transformation, needs two input parameters [12]:

• The first parameter, the source model, contains the necessary information for the under-
lying BAS to provide a complete integration of the system. According to the chain of
transformation steps, the input for code generation is the output of the model transforma-
tion which is the PSM.

• The second parameter is a template which is a raw version of the final source code. It
predominantly consists of the target text with additional meta code to access data of the
source model [15]. For this purpose, the metamodel of the PSM must be linked with the
template. Thus, the transformation engine knows the structure of the source model.

The input parameters and the resulting output can be seen in Figure 4.11 which briefly shows
the procedure of code generation in the form of an MDA M2T transformation [12]. The meta
code in the template is replaced by information from the source model during the execution,
while the target text is directly transferred to the output code. Similar to the other models (PIM,
PSM), the generated code resides on layer M1 of the modeling stack. Thus, it is a model con-
forming to a Java metamodel. The corresponding M0 element is the execution of the generated
program code. In the following paragraphs, the general concept of transforming models into
code is discussed. Section 5.2.4 presents the implemented template in more detail.

The aim of code generation is the nondissipative transformation of information from the
oBIX model into Java source code. Therefore, each object in the PSM is traversed and converted
into a set of Java commands. Within this thesis, each BA network model becomes a single
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Execution

Source model

…
Int obj1 = new Int();

obj1.setName(“address“);
obj1.set(35);
obj1.setUri(new Uri(“address“);
...

Output

…
Int obj1 = new Int();

obj1.setName(“«this.name»“);
obj1.set(«this.address»);
obj1.setUri(new Uri(“address“);
...

Template

Meta code

Target text

Figure 4.11: Code generation procedure

Java class which contains all the relevant code to instantiate a representation of the BAS in
an oBIX gateway. The necessary oBIX classes (e.g. Obj, Enum, Int) are imported from a
library implementation, the so called oBIX toolkit [50]. Beginning with the network object of
the model, the elements are scanned top down. For this purpose, a template definition for an
oBIX Obj is created within the transformation template. This definition contains all target text
and meta code to instantiate a single oBIX object which is either of type Obj or of any other
derived type. A recursive call of this definition enables the traversation of the whole model.
This way, child elements can be easily added to their particular parent objects. According to the
model element type, the corresponding Java implementation of this oBIX class is utilized. For
instance, the address of type Int becomes an instance of the homonymous class contained in
the oBIX toolkit. This generic procedure triggers a nearly straightforward set of generated Java
instructions embedded in a single class.

In the lower half of Figure 4.9, the root element of a BA network has been shown with respect
to the oBIX metamodel. Listing 4.1 shows the program code which is generated during the
transformation of these oBIX elements in the last step of the transformation workflow. Irrelevant
lines are omitted in this example. The aim of this listing is to enforce a better understanding of
the resulting code and its structure.
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1 / / create generic object
2 Obj _13912462018330 = new Obj ( ) ;
3

4 / / init object
5 _13912462018330 . setName ( "P−0341 " ) ;
6 _13912462018330 . se tDisp layName ( " O f f i c e " ) ;
7 _13912462018330 . s e t I s ( new C o n t r a c t ( " bas : Network " ) ) ;
8

9 / / add existing translations
10 i f ( t r a n s l a t i o n s . c o n t a i n s K e y ( "P−0341 " ) )
11 {
12 f o r ( A r r a y L i s t < S t r i n g > e n t r y : t r a n s l a t i o n s . g e t ( "P−0341 " ) )
13 {
14 _13912462018330 . a d d T r a n s l a t i o n ( e n t r y . g e t ( 0 ) , e n t r y . g e t ( 1 ) , e n t r y . g e t ( 2 ) ) ;
15 }
16 }
17 . . .
18

19 / / add as hidden object to object broker
20 o b j e c t B r o k e r . addObj ( _13912462018330 , t rue ) ;
21

22 / / create generic object
23 Enum _13912462018411 = new Enum ( ) ;
24

25 / / init object
26 _13912462018411 . setName ( " s t a n d a r d " ) ;
27 . . .
28

29 / / set value
30 _13912462018411 . s e t ( " knx " ) ;
31 _13912462018411 . s e t R a n g e ( new Uri ( " / enums / s t a n d a r d " ) ) ;
32

33 / / add to parent (containment)
34 _13912462018330 . add ( _13912462018411 ) ;
35

36 / / create generic object
37 Ref _13912462018412 = new Ref ( ) ;
38

39 / / init object
40 _13912462018412 . setName ( " d a t a p o i n t s " ) ;
41 . . .
42

43 / / add to parent (containment)
44 _13912462018330 . add ( _13912462018412 ) ;

Listing 4.1: Example of generated source code

The first four instructions result from the execution of the template snippet given in List-
ing 4.2. Herein, an Obj is created and initialized. The attribute values are taken from the source
model (i.e. the PSM) by resolving the meta code given in the template. The command in line
20 (see Listing 4.1) adds the new object to the so called object broker which contains a set of
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all registered oBIX objects. Subsequently, the Enum object for the definition of the BAS’s tech-
nology is created. This instance is added to the parental network object in line 34. The example
concludes with the implementation of the reference to the datapoints list.

1 / / c r e a t e g e n e r i c o b j e c t
2 « t h i s . metaType . name . s p l i t ( " : " ) . g e t ( 2 ) » «name» = new « t h i s . metaType . name . s p l i t

( " : " ) . g e t ( 2 ) » ( ) ;
3

4 / / i n i t o b j e c t
5 «name» . setName ( " « t h i s . name» " ) ;
6 «IF t h i s . d i sp layName != n u l l »
7 «name» . se tDisp layName ( " « t h i s . d i sp layName » " ) ;
8 «ENDIF»
9 «IF t h i s . d i s p l a y != n u l l »

10 «name» . s e t D i s p l a y ( " « t h i s . d i s p l a y » " ) ;
11 «ENDIF»
12 «IF t h i s . i s != n u l l »
13 «name» . s e t I s ( new C o n t r a c t ( " « t h i s . i s . t o S t r i n g ( ) » " ) ) ;
14 «ENDIF»

Listing 4.2: M2T template snippet

Finally, there are exceptions from the almost generic instantiation of oBIX classes. First, the
translations are stored in a separate Java map at the beginning of the code generation. They are
not added to the set of objects, but they add multilingual texts to the created objects (cf. lines
10–16 in Figure 4.1). Second, datapoints are not implemented by generic oBIX objects. As it is
necessary that the datapoints can interact with the underlying BAS, they have to be implemented
separately in individual classes. The functionality of sending and receiving messages within the
BAS technology is integrated in these classes. During code generation, these datapoint classes
are instantiated instead of building up the datapoint in terms of standard oBIX objects.
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CHAPTER 5
Implementation

In addition to the general and mostly theoretical considerations given in the previous chapters,
the following sections discuss the implementation of a model-driven approach for the integration
of BASs into a Web services-based technology. Besides the environment configuration and the
realization of the approach, the overall deployment is presented in this chapter.

5.1 Configuration

It is necessary to prepare an appropriate development basis before starting the implementation
of metamodels and transformations within this MDA approach. The target technology is a gate-
way server which implements the OASIS Open Building Information Exchange standard in the
version 1.1. This server is realized as a Java application although the programming language is
not determined in the oBIX standard.

As a result, a sufficient development environment has to be chosen. Admittedly, the preced-
ing MDA workflow from modeling the BA network to the code generation does not need to be
implemented with Java tools. It is sufficient, if the final program code fits to the Java implemen-
tation of the oBIX gateway. However, the use of already available Java projects and tools coming
with the MDA initiative is recommended. This way, cuts between the development technology
and the runtime technology are circumvented, i.e. Java can be used to generate source code of
the same programming language that runs on a Java platform. Hence, Java can be seen as solid
basis for all development and deployment activities undertaken in this implementation process.

The utilized tools and projects are described in the next two subsections. At first, the in-
stalled development environment is examined. Furthermore, the setting of the environment and
its associated components that are required for this model-driven approach is presented. It is not
only about the types of components, but also about how these components are configured. Sec-
ond, the gateway implementation is surveyed. As already mentioned, an oBIX implementation
is running on a Java platform. In this context, its functionality is discussed. On the one hand,
the interaction with the BA network and on the other hand with the remote users.
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5.1.1 Development environment

Initially, an adequate development environment has to be selected before implementation is
started. It is better to establish as few different tools as possible in order to avoid numerous
tool changes while implementing the model-driven approach and the constitutive transformation
process. Additionally, it is essential to consider that such a development environment is faced
with a lot of different requirements:

Metamodeling establishes the basis for the MDA approach. The development environment
must support the creation of domain specific modeling languages as metamodels. These
metamodels need to conform to a unique meta-metamodel.

Modeling is the subsequent process of creating a representation of a real system by means of the
defined modeling languages. Tools should provide intuitive editors for building models
that conform to metamodels.

Validation of the models against the requirements of the metamodels is inevitable. Not only
a syntactical inspection has to check the grammatically correct usage of the metamodel’s
language concepts, but also the compliance of semantic contraints needs to be verified in
this task.

Coding of additional Java libraries and standalone auxiliary applications is mandatory to install
the postulated, fully automatic workflow.

Model transformation between models of different abstraction levels and languages is an es-
sential part of the MDA initiative.

Code generation is the final part of a model-driven workflow. Thus, an adequate tool support
is necessary to fulfil this requirement.

Execution of the implemented transformations or applications must be feasible within the de-
velopment environment. Hence, the environment should not only provide various editors,
but also facilitates an appropriate execution framework.

Based on these requirements, the integrated development environment (IDE) Eclipse has
been chosen as the best alternative due to its extensible plug-in system [1]. It is possible to
combine all previously mentioned tasks in this Java development environment by using a set of
additional packages and plug-ins. The general basis is formed by the latest stable Eclipse release
4.3.1 (Kepler SR1). The Eclipse Foundation offers different package solutions besides the plain
standard version of their IDE. In this work, the solution Eclipse Modeling Tools containing a set
of tools of the Eclipse Modeling Project is used [18].

In the following paragraphs, the used plug-ins are presented. Figure 5.1 visualizes these
components on top of the underlying plain development environment. The Eclipse Modeling
Tools solution already includes some of the packages while others have to be installed separately.
This can be done by using the native software installer of the Eclipse platform. Another way is
to download and integrate these packages with the included installer for modeling components.
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Figure 5.1: Development environment and components

The latter lists all relevant extensions for modeling, transformation or code generation grouped
in different categories (e.g. Concrete Syntax Development or Runtime and Tools).

Although Eclipse has been intended as Java IDE, its focus is now on establishing an open
development platform to administer different kinds of software and applications [1]. For the
realization of the just introduced requirements, five components are used on top of the generic
Eclipse environment.

First of all, the Java Development Kit (JDK) in the version 1.7.0_25 is integrated in order
to enable the development of standard Java applications. Consequently, it is possible to create
individual library packages which are used in the subsequent MDA specific tools. It is not
necessary to install additional extensions for the activation of Java development within Eclipse.
The installed JDK is simply linked with the downloaded Eclipse version.

The next component is the EMF. The core of this package contains the meta-metamodel
Ecore which conforms to the MOF standard. As mentioned in previous chapters (see Chapter 3),
Ecore is used to describe specific metamodels and modeling languages. Furthermore, EMF
consists of classes enabling for building editors of the developed models. For this purpose, it
comprises a code generation facility [63]. As the Eclipse Modeling Tools solution is used in this
thesis, the EMF is included anyway. Hence, a manual installation can be omitted. At startup, the
services of EMF can be utilized immediately.

Building metamodels and models is not only restricted to the syntactical level, but also
evokes the need of introducing constraints in terms of semantic aspects. Thus, the OCL Tools
extension for Eclipse is installed in the development platform. Therefore, constraints like in-
variants or conditions can be added to the elements of the implemented metamodels and their
models. The validation mechanism of EMF checks both the semantical and the syntactical cor-
rectness. In special editors, the metamodels are supplemented by the OCL fragments. The
package is sufficient to cover the required range of OCL constructs.

In addition to the metamodeling and modeling, MDE approaches comprise M2M and M2T
transformations. While the former are used to translate a PIM into a PSM, the latter define code
generations based on PSMs. In this context, a set of Eclipse extensions can be integrated which
implement these MDE principles. The M2M transformations are implemented with the package
QVT Operational which conforms to the homonymous OMG standard. On the other hand, the
generation of executable program code during the M2T transformation is done by means of

63



Figure 5.2: Xpand properties

another Eclipse plug-in. This is called Xpand which was initially developed by oAW and is now
part of the Eclipse Modeling Project [18, 55]. Xpand supports template-based transformations
and enables the generation of different kinds of output (e.g. source code, documentation, test
cases).

After the installation of the plug-ins, including Java, EMF, OCL Tools and QVT Operational,
most of these operate directly without modifying any configuration properties. Xpand, on the
other hand, needs an adjustment of its settings. Figure 5.2 shows the Xpand properties window
of Eclipse. As mentioned earlier, the oBIX metamodel defines the language for the source model
of the code generation in this thesis and uses custom types for some class attributes which exist
in separate Java classes. Without selecting JavaBeans metamodel besides EMF metamodels
as activated metamodel contributor, the Xpand template is not able to address these particular
attributes, and compiling errors will occur.

Eclipse organizes the individual user projects in so called workspaces. The actual list of
projects and their assignment to different workspaces is subject of Section 5.2. However, it
has to be noted already in advance that this implementation uses two workspaces since some
projects provide their services (e.g. generated model editors) only at runtime to constitutive
projects. Thus, the former and the latter are integrated in different workspaces considering their
dependencies. Details are explained later on.

In summary, the presented extensions in combination with the Eclipse IDE allow the devel-
opment of a model-driven approach according to the MDA initiative to model BASs and finally
integrate them into an interfacing technology.
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5.1.2 Gateway implementation

The gateway represents the interface between the BA network and remote applications that man-
age the network from the outside. Therefore, the BAS has to be integrated into such a gateway
server. On the one hand, the implementation of the MDA workflow by the prepared development
environment leads to a runnable program code which is able to produce an image of the BAS
in the integration technology. On the other hand, a suitable implementation of a gateway must
be selected to finally execute the generated code and offer services to manage the BA network
behind the interface.

In this work, a research implementation of the oBIX standard is used which has been devel-
oped by the Automation Systems Group1 at Vienna University of Technology. This integration
middleware for the IoT is entitled IoTSyS. A gateway concept and a communication stack offer
appropriate interfaces for embedded devices and smart objects like BASs. IoTSyS consists of a
number of separate applications and projects which work together in an Open Services Gateway
initiative (OSGi) environment. The following listing itemizes some of these subprojects [29]:

IoTSyS-Gateway is the oBIX server that provides WS endpoints for REST and SOAP. It uses
HTTP and CoAP protocol for communication.

IoTSyS-oBIX is a modified version of the already introduced oBIX toolkit [50]. Amongst
others, the implementations of the oBIX classes are located in this project.

IoTSyS-Common accomodates common interfaces and classes used in other IoTSyS projects.

IoTSyS-Calimero is a library wrapper for the Calimero framework [13, 42].

IoTSyS-KNX contains the implementations for connecting KNX networks with the gateway.
For example, the network instantiations or the KNX datapoint implementations are part
of this project. The proof of concept implementation of the underlying thesis is mainly
concerned with this software bundle.

IoTSyS-BACnet4J is a library wrapper for BACnet4J similar to IoTSyS-Calimero.

IoTSyS-BACnet comprises all implementations for integrating networks of the Building Au-
tomation and Control Networks (BACnet) standard.

Figure 5.3 shows a UML package diagram containing the listed components and their de-
pendencies. Due to all these projects, the gateway implementation offers the needed interface to
realize the targeted approach. It provides interaction with both the BASs and the remote BMSs.
In terms of a preferably simple interface, the REST paradigm offers a suitably small set of op-
erations which is intended in the oBIX standard. Section 2.2.2.3 has already pointed out the key
features and constraints of REST.

The HTTP interface of the oBIX gateway implementation provides three RESTful services
for interacting with an integrated BAS. These operations are GET, PUT and POST. GET is used
to retrieve information from the server. Such a call contains the requested URI to discover the

1https://www.auto.tuwien.ac.at
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Figure 5.3: IoTSyS packages

information within the server objects. The result depends on the addressed object. According
to the convention, the GET method should not take any action besides retrieval of information.
Together with POST and PUT, GET is an idempotent method. The side-effects are always the
same, irrespective of the number of identical requests. PUT is used to store the enclosed entity
under the given URI. In contrast, the enclosed entity of a POST method request is defined as a
new subordinate of the addressed resource [24]. By means of these simple methods, the gateway
offers a basic yet powerful interface. The developers of BMSs do not need to pay attention to
special protocols or complex function calls.

The gateway implementation is supported by the oBIX toolkit library. This package is avail-
able as Java implementation which is another reason for the focus on Java in the development
environment. Although the oBIX standard can be developed for any programming language or
any platform, an available and approved implementation eliminates the necessary effort for a
new development.

As the proof of concept implementation deals with a KNX network as BAS, this paragraph
takes a closer look at the KNX specific projects of the IoTSyS platform. One project (IoTSyS-
Calimero) contains the Calimero library for Java to communicate with KNX devices. It is possi-
ble to read and write messages using the information exchange protocol of KNX. An interface on
a higher abstraction level is provided to conceal the complex implementation details. The second
KNX project (IoTSyS-KNX) uses this library and supports the integration of KNX components
or even entire networks into the oBIX gateway. Implementations of KNX specific datapoints
are part of this project. For instance, the binary datapoint DPST-1-1 can be found in the set of
classes. The member functions realize the communication with the actual datapoint and prepare
data for further processing inside the gateway. These classes are derived from more common
interfaces and super classes. Listing 5.1 shows the writeObject method of the mentioned
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datapoint implementation. Here, line 11 indicates the Calimero function call to write a message
on the KNX bus.

1 p u b l i c vo id w r i t e O b j e c t ( Obj o b j )
2 {
3 i f ( t h i s . v a l u e ( ) . i s W r i t a b l e ( ) )
4 {
5 super . w r i t e O b j e c t ( o b j ) ;
6

7 t h i s . v a l u e ( ) . s e t N u l l ( f a l s e ) ;
8 t h i s . e n c o d i n g ( ) . s e t N u l l ( f a l s e ) ;
9

10 / / now write this.value to the KNX bus
11 c o n n e c t o r . w r i t e ( groupAddress , t h i s . v a l u e ( ) . g e t ( ) ) ;
12 }
13 }

Listing 5.1: KNX DPST-1-1 implementation snippet

Besides the datapoint implementations, IoTSyS-KNX contains the so called device loaders
for KNX. These classes are used to integrate KNX devices within the oBIX server. Which one
of the various device loaders is executed, is defined via configuration files in the gateway. Pub-
lic methods, which are inherited from a common device loader interface, initialize the desired
components by instantiating appropriate oBIX objects. Furthermore, the connection to the BA
network is established in this context. However, these device loaders are not restricted to KNX
as other technologies like BACnet also use the device loader interface for integration. The code
generation of this model-driven approach produces such a device loader class which can be
immediately linked with the gateway.

In summary, the presented Java implementation of an oBIX gateway offers all necessary
services for the proof of concept implementation. The additional libraries (e.g. Calimero, oBIX
toolkit) are also available in Java. Thus, the overall development platform can be exclusively
based on Java. The next section shows the implementation of the model-driven approach on the
basis of the determined environment. Afterwards, details about the evaluation of this implemen-
tation are discussed in Chapter 6.

5.2 Realization

The overall, model-driven approach is separated into a set of single projects that are presented
in this section. As already mentioned, the selected development environment, the Eclipse IDE,
uses workspaces to include user-defined projects. In this approach, two different workspaces are
created:

• First, one workspace contains those projects (e.g. libraries) which have no dependencies
to other developed projects. If a project does not need the registration of other components
during runtime, this project will be included in this workspace, too. Henceforward, the
workspace in question will be called development workspace.
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mde.modeling.metamodel

mde.modeling.metamodel.edit
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mde.transformation.model2model.util
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Figure 5.4: Workspace projects

• Second, all projects with runtime dependencies to earlier developed components are inte-
grated into another workflow. For instance, the models need the registration of the super-
ordinated metamodels to enable their creation and validation which is done by executing
the metamodels as Eclipse application. From now on, this workspace will be called run-
time workspace.

Before the individual projects are discussed in detail, they are summed up in the following
listing for a better overview. For this purpose, Figure 5.4 supports the itemization by showing
the dependencies between the different components. An arrow symbolizes a dependency rela-
tionship in which the project next to the arrowhead is dependent on the other project. Although
the dependencies are sometimes transitive, the figure explicitly specifies all direct and indirect
connections between the implemented components. The naming of the projects is similar to
namespaces in order to simplify the project categorization. The common prefix mde stands for
the pooling of all components in one single MDE or rather MDA implementation. Furthermore,
there exists a branch for the modeling projects (modeling). On the other hand, there is also a
branch for the transformations (transformation). Finally, the name concludes with the unique
project name and an optional suffix util for the libraries. The membership to one of the two
workspaces is also indicated in the subsequent list:
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mde.modeling.metamodel contains the metamodels for BASs (modeling language definition
for PIMs) and oBIX (modeling language definition for PSMs). The EMF and OCL Tools
packages support the development process of these metamodels. Additionally, this project
uses the classes of the metamodel library (mde.modeling.metamodel.util). It exports the
generated metamodel specific source code for subordinated projects. The component is
part of the development workspace.

mde.modeling.metamodel.edit is generated into the development workspace in order to pro-
vide a model editor in combination with mde.modeling.metamodel.editor.

mde.modeling.metamodel.editor consists of the remaining editor classes. These are also gen-
erated by mde.modeling.metamodel and are part of the development workspace. In both
editor projects, no manual changes have to be made. Therefore, they are mostly omitted
in the subsequent discussion of the realization details.

mde.modeling.metamodel.util is the library for the metamodel project and also for the trans-
formation projects. It consists of a set of Java classes representing the custom types of the
oBIX metamodel. Similar to the other metamodel projects, this component is located in
the development workspace.

mde.modeling.model is based on the metamodel project and the generated editors. Thus, this
component is found in the runtime workspace. It is a plain Eclipse project without any
special features. PIMs and PSMs are the only elements within this project.

mde.transformation.model2model is the second project of the runtime workspace. As the
name already suggests, it contains the model transformation from the PIM to the PSM.
The project is dependent on the metamodel project, the metamodel library project and the
model-to-model library (mde.transformation.model2model.util).

mde.transformation.model2model.util consists of a utility library with some special functions
to support the model transformation, e.g. instantiation of custom oBIX types. The devel-
opment workspace houses this project. The only dependency is the metamodel library
with the actual implementation of the custom types.

mde.transformation.model2text is the last project in the MDA workflow. It comprises the
template for the code generation. The oBIX metamodel definition and the custom types
of the metamodel library are imported, yet this project is not integrated in the runtime
workspace. Instead, it is part of the development workspace as only the metamodel file
and no registration within the Eclipse environment is needed.

The next subsections are concerned with the detailed implementation of these projects re-
spectively the four main components of the model-driven approach, i.e. metamodels, models,
model transformation and code generation. The focus lies on the constructed files and their
integration into the development environment.
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Figure 5.5: Metamodel project structure

5.2.1 Metamodels

The metamodels form the basis for further development of MDA transformations. The project
mde.modeling.metamodel combines both the BAS metamodel and the oBIX metamodel. In
Eclipse, an empty EMF project has been created. Within this project, two Ecore diagrams have
been attached. Figure 5.5 shows the structure of the Eclipse project with all relevant folders and
files. The .ecore files contain the serialized metamodel information while the .ecorediag file is
used to store the graphical appearance. Both are generated by applying an Ecore diagram.

In general, unimportant files (e.g. build.properties, plugin.properties or plugin.xml) have
been removed from the subsequent project structure figures in order to increase clarity.

There are two ways of building EMF metamodels. On the one hand, an Ecore model can be
edited directly with a common text editor or a generic model editor. On the other hand, an Ecore
diagram enables the possibility to design the model in a graphical way. The changes are trans-
ferred to the Ecore model. A tool palette in this graphical editor contains all the Ecore elements
which have already been mentioned in Section 3.2.2. Although the chosen modeling method
is irrelevant, the graphical editor gives a better overview of the model during the development
process. In Figure 5.6, this editor can be seen. Elements are created by drag and drop from the
palette to the worksheet. Properties are edited via the corresponding view which is located in the
lower part of the figure. The actual elements of the metamodels have already been discussed in
detail in Chapter 3. Thus, the focus of this section is only on using the development environment
to create the desired files.

The semantic constraints in the form of OCL invariants are created with a special editor that
is provided by the OCL Tools extension. It is called OCLinEcore Editor and displays the content
of the Ecore file in OCL syntax. At first, the constraints are inserted in the correct position. While
saving the file, the OCL constructs are converted to Ecore annotations. Therefore, the constraints
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Figure 5.6: Ecore diagram editor

can also be edited in the graphical editor or the XML serialization of the Ecore model.

Once the metamodels are completed, Java classes can be generated to provide editors for
these metamodels. For that purpose, EMF generator models are created by the Eclipse file
wizard. The files with the suffix .genmodel belong to an Ecore model, and enable for the
generation of model code, edit code, editor code and test code. Model code is created in
the src folder of the metamodel project itself. The package is named in accordance to the
Ecore model settings by default. Hence, the packages in this approach are called bas and
obix. Each element in the metamodel becomes an interface. Additionally, implementation
classes for the interfaces and some other classes are generated. The option to generate edit
code spawns a new project mde.modeling.metamodel.edit. Likewise, the editor code is created
in mde.modeling.metamodel.editor. The source code packages of these projects are automati-
cally added to the exported packages in the runtime configurations of their manifest files. These
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three components are needed to create models conforming to the metamodels. It has to be noted
that the metamodel project and the two editor projects are Eclipse plug-ins. To offer their ser-
vices, an Eclipse application is instantiated which launches all the necessary plug-ins. Then,
the new workspace (runtime workspace) can use the (generic) editors to build BAS and oBIX
models (see Section 5.2.2). If there are changes in the metamodels, the generator model can be
easily reloaded.

1 p u b l i c c l a s s DateTime
2 {
3 p r i v a t e j a v a . u t i l . Date d a t e ;
4

5 p u b l i c DateTime ( S t r i n g v a l u e ) throws E x c e p t i o n
6 {
7 . . .
8

9 SimpleDateFormat f = new SimpleDateFormat ( " yyyy−MM−dd ’T ’ hh :mm: s s . SSSz " ) ;
10 d a t e = f . p a r s e ( v a l u e ) ;
11

12 . . .
13 }
14

15 @Override
16 p u b l i c S t r i n g t o S t r i n g ( )
17 {
18 . . .
19

20 re turn new SimpleDateFormat ( " yyyy−MM−dd ’T ’ hh :mm: s s . SSSz " ) . f o r m a t ( d a t e ) ;
21 }
22 }

Listing 5.2: oBIX DateTime type snippet

Due to the fact that the oBIX metamodel uses custom data types, implementations of these
types are necessary. A separate project has been created to encapsulate these class files in terms
of a more modular composition. Thus, the Java project mde.modeling.metamodel.util consists
of six Java classes aggregated in the package obix.type which is exported in the manifest file.
The structure of the Eclipse project is shown in Figure 5.7. The implementations have a similar
construction. First, there exists only one constructor with a character string as input. This string
represents the text inserted in the corresponding field of the IDE’s properties view. Second, the
method toString is overridden to return the internal value of the object. Hence, this value
can be displayed in the properties view again. Exemplarily, Listing 5.2 shows the oBIX type
DateTime. Here, the input value is parsed to a variable of the Java type Date regarding the
correct date format. The toString method returns a formatted string of the stored date value.
As the other types differ only in details, they are not listed in this section, but they are available
online [45].

The library is included in the dependencies list of the metamodel project. The expressiveness
of Java can be used to process the input and output values since the custom types are realized as
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Figure 5.7: Metamodel library project structure

common classes. For instance, the class Contract represents the list of contracts in an oBIX
object. But this textual sequence is split and stored in a Java collection for further processing.
A method for checking the correctness of inserted URIs may be a possible extension of the type
Uri, but such additional functionality is not focused in this thesis.

5.2.2 Models

After execution of the Eclipse application to enable the usage of metamodel editors, the general
Eclipse project mde.modeling.model has been created in the runtime workspace. It contains both
BAS models and oBIX models. Figure 5.8 shows the folder structure and the integrated network
models of the Eclipse project.

While the BAS models are created with one of the two approaches for network modeling
(see Section 4.2), the oBIX models are the result of MDA model transformations. In addition to
the BA network models conforming to the BAS metamodel, the project comprises two model li-
braries for this metamodel. Both libraries are used by the BA networks as they provide necessary
meta information:

• A general library consists of a set of enumerations and units. In principle, these models can
be used in all types of BA network models because they are independent of any technology
specific issues. For instance, the unit celsius is part of this library.

• A library for KNX has been developed in addition. Basically, libraries for any technol-
ogy or any vendor will be possible, if a corresponding network is modeled with the BAS
modeling language. In this thesis, a KNX network is part of the proof of concept im-
plementation. Therefore, the necessary KNX datapoint types, parameters and encodings
have been created in this library.
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Figure 5.8: Model project structure

The EMF Model Creation Wizard for BAS models or oBIX models can be used to create
new instances of the available metamodel elements. First, the root object of the model has to
be chosen. For instance, a unit should be modeled as PIM. Then, the unit object of the BAS
metamodel becomes the root model object. Next, the model can be designed according to the
requirements as long as it is within the scope of the modeling language. The generic model
editor is already limited to the permitted actions (e.g. the set of allowed child nodes or the range
of an attribute value).

Models can also be created and modified with individual editors or standard text editors.
In such cases, a subsequent validation with respect to syntactical and semantical correctness is
necessary. For this reason, the model editors offer a method to check the accordance with the
underlying metamodel. During this validation process, all references to models in other files
(e.g. units, enumerations) are resolved, and the external models are inspected, as well. Errors in
linked models lead to an error in the entire validation process. The syntactical compliance refers
to the accurate usage of the modeling language concepts which are defined in the metamodels.
In addition, OCL constraints are tested in the semantical part of the examination. In case of an
error, the editor gives notice of the reason respectively the location of the problem.

5.2.3 Model transformation

This section is concerned with the realization of the M2M transformation from a PIM to a PSM.
As stated above, the implementation of the model transformation is split in two distinct projects.
On the one hand, there is the actual transformation project mde.transformation.model2model
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Figure 5.9: Model transformation project structure

containing the transformation file with the mapping rules. On the other hand, the transforma-
tion needs a special library with supporting functions which is located in the utility project
mde.transformation.model2model.util.

Figure 5.9 shows the structure of the model transformation project. It has been created as
an Operational QVT Project in the thesis’ runtime workspace. The transformation rules are
contained in the file transform.qvto which represents an Operational QVT Transformation. A
separate Java class Transformation has been developed to enable the execution of this transfor-
mation without any additional Eclipse run configuration. Thus, a standalone execution of the
model transformation is feasible. As known from the realization overview, the project is also
dependent on the metamodels and the metamodel library with the implementation of the custom
oBIX types. Moreover, the package mde.transformation.knx consists of an XSLT stylesheet to
transform the KNX network data from the ETS4 to a PIM conforming to the BAS metamodel.
This is discussed in more detail in Chapter 6.

1 import m2m. q v t . oml . ExampleJavaLib ;
2

3 modeltype Bas uses ’ h t t p : / / a u t o . t uw ie n . ac . a t / bas ’ ;
4 modeltype Obix uses ’ h t t p : / / a u t o . t uw ie n . ac . a t / ob ix ’ ;
5

6 t r a n s f o r m a t i o n t r a n s f o r m ( in bas : Bas , out Obix ) ;
7

8 main ( )
9 {

10 bas . r o o t O b j e c t s ( ) [ bas : : ne twork ] . map n e t w o r k 2 o b i x ( ) ;
11 }

Listing 5.3: QVT header

All transformation rules for converting a BAS model into an oBIX model are grouped in
mapping definitions (mappings). The .qvto file has to import the source metamodel and the
target metamodel. In line 1 of Listing 5.3, the import statement for the transformation library is
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shown before the metamodel types are defined. The transformation is called transform, and it
has one input parameter and one output parameter as can be seen in line 6. The function main
is the root entry point for the transformation. There, the mapping for all the source model’s root
objects of type network is started. Admittedly, there are a lot of possible root objects (e.g. unit,
type, enumeration) not only due to the BAS model libraries. However, the transformation of this
thesis covers only the translation of BA networks to demonstrate the model-driven workflow for
the integration of BASs into a gateway implementation.

1 mapping bas : : ne twork : : n e t w o r k 2 o b i x ( ) : Obj
2 {
3 name := " o b j e c t s " ;
4

5 var c u r r e n t N e t w o r k : Obj := o b j e c t Obj
6 {
7 name := s e l f . i d ;
8 d i s p l a y := s e l f . d e s c r i p t i o n ;
9 disp layName := s e l f . name ;

10 i s := c r e a t e C o n t r a c t ( " bas : Network " ) ;
11 u r i := c r e a t e U r i ( " / n e t w o r k s / " + g e t U r i ( s e l f . name ) ) ;
12 } ;
13

14 var v i e w D a t a p o i n t s := s e l f . d a t a p o i n t s . map d a t a p o i n t s 2 o b i x ( c u r r e n t N e t w o r k .
u r i ) ;

15 var v i e w E n t i t i e s := s e l f . e n t i t i e s . map e n t i t i e s 2 o b i x ( c u r r e n t N e t w o r k . u r i ) ;
16 var v i e w F u n c t i o n a l := s e l f . f u n c t i o n a l . map f u n c t i o n a l 2 o b i x ( c u r r e n t N e t w o r k .

u r i ) ;
17 var viewTopology := s e l f . t o p o l o g y . map t o p o l o g y 2 o b i x ( c u r r e n t N e t w o r k . u r i ) ;
18 var v i e w B u i l d i n g := s e l f . b u i l d i n g . map b u i l d i n g 2 o b i x ( c u r r e n t N e t w o r k . u r i ) ;
19 var viewDomains := s e l f . domains . map domains2ob ix ( c u r r e n t N e t w o r k . u r i ) ;
20

21 var t r a n s l a t i o n s : _ L i s t := o b j e c t _ L i s t
22 {
23 name := " t r a n s l a t i o n s " ;
24 u r i := c r e a t e U r i ( " / t r a n s l a t i o n s " ) ;
25 of := c r e a t e C o n t r a c t ( " ob ix : L i s t " ) ;
26 } ;
27

28 r e s u l t . Obj := r e s u l t . Obj−>un ion ( s e l f . d a t a p o i n t s . d a t a p o i n t . map
d a t a p o i n t 2 o b i x ( v i e w D a t a p o i n t s . u r i )−>a s S e t ( ) ) ;

29 r e s u l t . Obj := r e s u l t . Obj−>un ion ( s e l f . e n t i t i e s . e n t i t y . map
e n t i t y 2 o b i x ( v i e w E n t i t i e s . u r i , v i e w D a t a p o i n t s . u r i )−>a s S e t ( ) ) ;

30 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , viewDomains ) ;
31 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , v i e w B u i l d i n g ) ;
32 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , v iewTopology ) ;
33 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , v i e w F u n c t i o n a l ) ;
34 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , v i e w E n t i t i e s ) ;
35 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , v i e w D a t a p o i n t s ) ;
36 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , t r a n s l a t i o n s ) ;
37 r e s u l t . Obj := r e s u l t . Obj−> i n s e r t A t ( 1 , c u r r e n t N e t w o r k ) ;
38 }

Listing 5.4: QVT network mapping
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Figure 5.10: Model transformation library project structure

The target oBIX model does not have a single root node, but consists of several autonomous
elements. For instance, while the network object solely contains reference objects for its views,
the actual view objects exist independently of this parental network object. Thus, an artificial
root element has to be generated to enable the integration of all independent objects (e.g. views,
datapoints, entities, translations) in one single oBIX model. This is done in the mapping of the
network element which is shown in Listing 5.4. The mapping takes a BAS network object and
returns an oBIX Obj. This return value becomes the artificial root node with the simple name
objects. Subsequently, all directly subordinated elements are constituted as variables either by
calling other mapping definitions (e.g. views) or by creating a completely new object (e.g.
network, translations). The listing shows these statements in the lines 5 to 26. The keyword self
provides access to the input element of the current mapping while result addresses the return
value.

All generated objects are added to the list of child objects of the result by inserting them
in the collection result.Obj. Furthermore, the datapoints and entities are also added to this
catalog which is listed in lines 28 and 29. The result is a model with the root node objects and a
large set of child elements containing the network object itself, the views for building, topology,
domains and functional, the individual datapoints and entities and three list objects consisting of
datapoints, entities and translations. As the transformation rules have been discussed earlier in
Chapter 4, they are not explained in this section. The other mappings in this transformation file
implement the theoretical and abstract rules from Section 4.3. While this clipping omits lots of
mappings and statements, the entire QVT file can be found online [45].

The Java class for a standalone execution of the model transformation (Transformation)
offers two more advantages besides the execution without any Eclipse configuration. At first,
the link to the upstream library can be managed with a small set of Java code lines. Thus, it is
easily extensible for other libraries. In addition, the metamodels, the input model and the output
model can be specified in just a few statements. Second, the adding of the XML Schema location
in the header of the oBIX output model can be enabled by this form of transformation call. This
is necessary for the subsequent code generation where a reference to the oBIX metamodel in the
template’s source model is needed for processing the meta code. Therefore, a standalone model
transformation is obviously the best choice for this proof of concept implementation.

Next, the library for the transformation is examined. Again, Figure 5.10 shows the project
structure with the library file UtilitiesLibrary.java. The project has been built as Black-box
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Library Definition which is an Operational QVT example offered by the Eclipse QVT package.
Although it is possible to create the library as an empty project, the example project already
includes all necessary plug-in configurations and dependencies. No additional configuration is
required. The predefined custom oBIX types form a prerequisite of the library project. The
utility class itself is exported as extension in the plug-in settings of the project. For the sake of
simplicity, the default settings of the extension point as well as the package denomination were
kept. The utility class can be divided in a few main parts:

• The management of URIs is realized by means of a few methods. If two or more elements
(e.g. datapoints) get the same transformed oBIX URI, these URIs are consecutively num-
bered to provide uniqueness. The library stores the generated URIs in a hashmap and
returns a unique string to the calling transformation. Moreover, the passed back URI is
free of special characters like blanks or German mutated vowels.

• Two methods simulate an incremental counter to enumerate elements during the transfor-
mation process. One function resets the counter, and the other one increments the returned
value with each call.

• For each custom type of the metamodel library (e.g. DateTime), a method which creates
and initializes an object of this type exists. Finally, the result is returned to the transfor-
mation.

• A logging method enables the output of messages in the console window of the Eclipse
IDE during the execution of the standalone transformation.

1 p u b l i c C o n t r a c t c r e a t e C o n t r a c t ( C o n t r a c t c o n t r a c t , S t r i n g v a l u e )
2 {
3 i f ( c o n t r a c t == n u l l )
4 c o n t r a c t = new C o n t r a c t ( ) ;
5

6 c o n t r a c t . a d d C o n t r a c t ( v a l u e ) ;
7

8 re turn c o n t r a c t ;
9 }

Listing 5.5: Model transformation utility function

The extension is loaded and linked within the standalone transformation class before the ac-
tual transformation is invoked. Hence, the model transformation rules have access to the various
library methods. Consequently, this enables more powerful solutions for the MDA workflow
step. Only the signature of the utility functions is known within the QVT context. This is the
reason, why it is called a black box library. For instance, the function createContract is
called in line 10 of Listing 5.4. The resulting object is assigned to the is attribute of the network
object. In the end, Listing 5.5 shows the implementation of this createContract method.
The Contract object is only created, if the input parameter is empty. Otherwise, the existing
contract is expanded by the second input parameter to form a list of contracts. The entire library
file is listed online [45].
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Figure 5.11: Code generation project structure

5.2.4 Code generation

The last building block of this model-driven approach is the generation of executable program
code. In MDA, this step is called M2T transformation. Xpand is used as underlying tech-
nology to realize this transformation. The implementation is located in the Eclipse project
mde.transformation.model2text which has been created as default Xpand project with the Eclipse
project wizard. Additionally, the option Generate a sample EMF based Xpand project has been
activated. Thus, the created project is sufficiently configured for the needs of the implemented
code generator. Xpand is part of the family of languages launched by the former oAW [55]. The
other languages (Xtend, Check) can also be embedded into this Xpand project.

Within the source folder of the project, the generated files are partitioned into three subfold-
ers. The folder metamodel contains a Check file and an Xtend extension file by default. As these
languages are not used within this thesis, the files have been emptied. The third file in this folder
is a link to the oBIX metamodel. Therefore, the metamodel can be imported in the template file
which is located in the template folder besides another empty Xtend file. Finally, the subfolder
workflow consists of a Modeling Workflow Engine (MWE) script for the execution of the code
generation. There the source model and the location of the output are specified. Moreover, the
metamodel is loaded and the generation is started in the script. In addition, a prior check of the
model correctness is arranged. If the Check file is not empty, the specified constraints in this file
will be used to inspect the source model. The final project structure is illustrated in Figure 5.11.

As already pointed out, the aim of the M2T transformation is the generation of a Java class
which contains all statements to integrate a BA network into the oBIX gateway implementation
IoTSyS. This class is encapsuled in a homonymous Java file that is stored in the connector’s
namespace folder of the IoTSyS-KNX project by the MWE script. On top of the transformation
template, the oBIX metamodel is imported. Next, the standard library for unique identifiers is
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linked with the template to enable the creation of unique Java names for the instantiated oBIX
objects.

1 «IMPORT ob ix »
2 «EXTENSION org : : e c l i p s e : : x t e n d : : u t i l : : s t d l i b : : u i d »
3

4 «DEFINE main FOR Obj»
5 «FILE " KNXDeviceLoaderETSImplGenerated . j a v a " TO_SRC»
6

7 package a t . ac . t u wi en . a u t o . i o t s y s . ga teway . c o n n e c t o r s . knx ;
8

9 . . .
10

11 p u b l i c c l a s s KNXDeviceLoaderETSImplGenerated implemen t s Dev iceLoader
12 {
13 @Override
14 p u b l i c A r r a y L i s t < Connec tor > i n i t D e v i c e s ( O b j e c t B r o k e r o b j e c t B r o k e r )
15 {
16 KNXConnector knxConnec to r =new KNXConnector ( " 1 9 2 . 1 6 8 . 1 . 1 0 2 " , 3 6 7 1 , " a u t o " ) ;
17 t h i s . c o n n e c t ( knxConnec to r ) ;
18 t h i s . i n i t N e t w o r k ( knxConnector , o b j e c t B r o k e r ) ;
19

20 . . .
21 }
22

23 . . .
24

25 p r i v a t e vo id i n i t N e t w o r k ( KNXConnector knxConnector , O b j e c t B r o k e r
o b j e c t B r o k e r )

26 {
27 . . .
28

29 HashMap< S t r i n g , I n t e g e r > g r o u p A d d r e s s e s = new HashMap< S t r i n g , I n t e g e r > ( ) ;
30 i n i t A d d r e s s e s ( g r o u p A d d r e s s e s ) ;
31

32 HashMap< S t r i n g , A r r a y L i s t < A r r a y L i s t < S t r i n g >>> t r a n s l a t i o n s = new HashMap<
S t r i n g , A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;

33 i n i t T r a n s l a t i o n s ( t r a n s l a t i o n s ) ;
34

35 «EXPAND o b j ( n u l l , n u l l ) FOREACH Obj»
36

37 . . .
38 }
39 }
40

41 «ENDFILE»
42 «ENDDEFINE»

Listing 5.6: Xpand main template definition

Listing 5.6 starts with these two commands and continues with the main template definition
(main) in line 4. This template definition is specified for any oBIX Obj. Thus, it is entered
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when reaching the previously introduced root object objects while scanning the source model.
First, the template definition main specifies the name of the output file. Subsequently, the target
text with the Java package definition, various imports (omitted) and the actual Java class are
listed. This class implements the interface DeviceLoader which offers three methods. The
gateway implementation uses this interface for the integration of single devices or entire net-
works into the middleware. The most relevant method is initDevices in which the private
method initNetwork is invoked. Prior to that, a connection to the KNX network is estab-
lished. No matter if the connection is sucessfully initialized, initNetwork first scans the
source model for all used group addresses. These addresses are stored in a hashmap to reuse
them in the subsequent creation of datapoint objects. Likewise, the translations are filtered and
stored. Afterwards, the template definition obj is invoked. Again, this definition is specified
for the oBIX class Obj and all its derived classes. Thus, obj is called for every child object of
the current root model element. The meta code is separated from the target text by the special
characters « and ». Irrelevant target text and meta code as well as the comments, which would
be marked by REM and ENDREM, are omitted in the listings of this section. The full code can be
found online [45].

1 «DEFINE o b j ( S t r i n g r o o t , S t r i n g add ) FOR Obj»
2 «IF ! t h i s . u r i . t o S t r i n g ( ) . c o n t a i n s ( " / t r a n s l a t i o n s " ) »
3 «LET " _ " + c rea t eUID ( ) AS name»
4

5 . . .
6

7 « t h i s . metaType . name . s p l i t ( " : " ) . g e t ( 2 ) » «name» = new « t h i s . metaType . name .
s p l i t ( " : " ) . g e t ( 2 ) » ( ) ;

8

9 . . .
10

11 «IF ! t h i s . i s . t o S t r i n g ( ) . c o n t a i n s ( " bas : DPST " ) && ! t h i s . i s . t o S t r i n g ( ) .
c o n t a i n s ( " bas : DPT " ) »

12 «EXPAND o b j ( name , add ) FOREACH Obj»
13 «ENDIF»
14

15 «ENDLET»
16 «ENDIF»
17 «ENDDEFINE»

Listing 5.7: Xpand template definition

The code for instantiation of the actual network with all views, datapoints and entities is
generated in the template definition obj. Listing 5.7 is a cutout of this part of transformation.
The condition in line 2 excludes the translation objects. They do not become separate objects,
but the texts are included in other multilingual elements during transformation. The command
LET determines a block where a created unique identifier can be addressed by the variable
name. The value is generated by calling the function createUID provided by the imported
standard library. Line 7 shows the declaration of an oBIX object where its type is set based
on the interpretation of the given meta code. The new object gets the generated identifier as
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its name. After the Java keyword new written in target text, the call of the default constructor
is inserted. In the end, the template definition is recursively called, i.e. also the child objects
are processed the same way. The datapoints represent an exception as their childs are already
included in the instantiated datapoint implementations (see Section 4.4).

The library project is dependent on the metamodel library to gain access to those attributes
with a custom oBIX type. All in all, the M2T transformation is designed to convert an oBIX
model (source model) containing a BA network and its components into an executable Java
class that can be easily integrated in the oBIX gateway implementation. This is the last step
of the seamless and transparent integration workflow stated in Hypothesis 2. The next chapter
uses this implementation to evaluate the realized, model-driven approach. Without taking too
many details in advance, the evaluation is based on a small KNX network with a few devices
and datapoints. This network runs through the transformation workflow, and finally, its oBIX
representation is tested by some use cases and sample requests.

5.3 Deployment

After the implementation of the metamodels and the transformations, the model-driven process
is ready for execution. First, the BA network is mapped to MDA models and passed through the
workflow before the source code is generated. This sequence can be found in Subsection 5.3.1.
Afterwards, this code is executed in the oBIX gateway which is described in Subsection 5.3.2.

5.3.1 Workflow sequence

Reconsidering the three steps of the transformation workflow (see Chapter 4), the sequence of
workflow phases during runtime can be specified the following way. In each step, the focus
lies predominantly on the execution of the previously introduced files and projects within the
development environment. Figure 5.12 illustrates the deployment sequence as a supplement to
the list.

• Before any transformation can be executed, the BA network has to be modeled as a PIM
conforming to the BAS metamodel. The step is called network modeling. For this purpose,
the BAS metamodel and its editor plug-in are executed as an Eclipse application. In the
resulting environment (runtime workspace), the models can be created and designed in
accordance with the requirements of the desired interface. The generated BAS model
editor supports this workflow phase regarding design and validation. Previous chapters
and sections have already pointed out the different methods of creating and modifying
the network model. However, the provided model editor is the most comfortable way.
Regardless of the selected network modeling approach, the result is a file containing a
PIM which represents a real BAS. In addition, the necessary library models containing
the meta information of the network are laid down in this step.

• Next, the modeled network has to be transformed from a PIM to a PSM. In MDA, this is
done by means of the M2M transformation or model transformation. In this thesis, the
QVT based model transformation is invoked by executing the main function of the Java
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Figure 5.12: Deployment sequence

class Transformation. Before the conversion from the input PIM to the output PSM can
take place, some static variables in the class have to be modified. First, both metamodels
are set by the string variables bas and obix. Moreover, the distinct input model and
the location of the output model have to be specified in the strings input and output.
The invoked transform.qvto (qvto) also needs the plug-in extension of the M2M library
(plugin). The current settings can be found in Listing 5.8. Finally, the class is executed
as default Java application. If log messages or debug messages are contained within the
transformation, they will be listed in the console view of Eclipse. Both the input model
and the output model are located in the model project of the runtime workspace. The
model transformation uses relative paths to address them.

1 p u b l i c s t a t i c f i n a l S t r i n g bas =" . . / mde . mode l ing . metamodel / model / bas . e c o r e " ;
2 p u b l i c s t a t i c f i n a l S t r i n g ob ix =" . . / mde . mode l ing . metamodel / model / ob ix . e c o r e " ;
3 p u b l i c s t a t i c f i n a l S t r i n g i n p u t =" . . / mde . mode l ing . model / bas / o f f i c e . bas " ;
4 p u b l i c s t a t i c f i n a l S t r i n g o u t p u t =" . . / mde . mode l ing . model / ob ix / o f f i c e . ob ix " ;
5 p u b l i c s t a t i c f i n a l S t r i n g qv to =" t r a n s f o r m s / t r a n s f o r m . qv to " ;
6 p u b l i c s t a t i c f i n a l S t r i n g p l u g i n =" . . / mde . t r a n s f o r m a t i o n . model2model . u t i l /

p l u g i n . xml " ;

Listing 5.8: Model transformation settings

• The last process step before the final program code is available, is the code generation or
rather M2T transformation. Similar to the setting of the variables in the standalone model

83



transformation class, the necessary configuration in this phase is limited to the MWE
script generator.mwe. The source model is specified in the property tag with the name
model. The destination of the output is given in the outlet tag with the name TO_SRC. In
this work, the path points to the KNX connectors folder of the IoTSyS-KNX project. Thus,
the generated Java class can be directly executed in the gateway without any additional
copying and linking. If the source metamodel changes as well, a link to the new one has
to be established in the metamodel folder of the M2T project. The MWE script is run in
Eclipse. No further configuration is needed as long as the metamodel is correctly imported
in the template file. The runtime environment produces some logging information in the
console view of Eclipse. Listing 5.9 shows the most important lines of this output.

1 WorkflowEngine − r u n n i n g workflow : D : / mde . t r a n s f o r m a t i o n . model 2 t e x t / s r c /
workf low / g e n e r a t o r . mwe

2 S t a n d a l o n e S e t u p − R e g i s t e r i n g p l a t f o r m u r i ’D : \ ’
3 CompositeComponent − Reader : Loading model from p l a t f o r m : / r e s o u r c e / mde .

model ing . model / ob ix / o f f i c e . ob ix
4 CompositeComponent − D i r e c t o r y C l e a n e r : c l e a n i n g d i r e c t o r y ’ s r c−gen ’
5 CompositeComponent − CheckComponent : s l o t model check f i l e ( s ) : metamodel : :

Checks
6 CompositeComponent − G e n e r a t o r : g e n e r a t i n g ’ t e m p l a t e : : Templa te : : main FOR

model ’ => [TO_SRC : . . / i o t s y s −knx / s r c / a t / ac / t uw ie n / a u t o / i o t s y s / ga teway /
c o n n e c t o r s / knx , s r c−gen ]

7 G e n e r a t o r − W r i t t e n 1 f i l e s t o o u t l e t TO_SRC ( . . / i o t s y s −knx / s r c / a t / ac
/ t uw ie n / a u t o / i o t s y s / ga teway / c o n n e c t o r s / knx )

8 WorkflowEngine − workflow comple t ed i n 2236ms !

Listing 5.9: Console output of M2T transformation

5.3.2 Code execution

Afterwards, the generated source code as output of the MDA workflow is executed in the oBIX
server. Thus, the configuration of the gateway has to be modified. As the generated class, which
is derived from the device loader interface, has already been placed in the KNX project, only the
devices.xml of the gateway project must be customized. It is sufficient to register the namespace
of the new class as an additional device loader in the XML configuration. Next, the gateway can
be run by executing the class IoTSySGateway of the gateway project (IoTSyS-Gateway). During
the initialization process, the installed device loaders of the various integrated technologies are
invoked. As a result, the oBIX objects listed in the generated file are instantiated and can be
further managed via the HTTP or CoAP interface of the oBIX server. The way of accessing the
objects, or reading and writing of KNX datapoints is subject of the case study in Chapter 6.
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CHAPTER 6
Evaluation

The proof of concept implementation of the elaborated model-driven approach is evaluated as
part of a case study. Thus, the hypotheses of Chapter 1 can be confirmed by means of an
experimental KNX setup. It is demonstrated that the MDA approach can be applied to map
BASs and finally integrate them into gateway technologies. Additionally, this chapter deals with
related work in the field of interest and identifies open issues.

6.1 Case study

The aim of this evaluation is to demonstrate both the functional capability and the functionality
of the developed model-driven approach. For this purpose, a case study is arranged. A sample
KNX network is used as BAS, and the previously introduced integration middleware IoTSyS is
established as gateway for accessing the BA network via a common interface. First, the general
KNX engineering methodology is briefly considered. Afterwards, this common knowledge is
applied to explain the experimental setup of the observed network. Before the integrated BAS
is evaluated focusing on access scenarios via HTTP and CoAP, the mapping process from the
available, technology specific data to the oBIX objects is discussed. The conversion of KNX
engineering data into the model-driven approach is explained in general while some aspects are
examined in detail.

The evaluated case study makes no claim to be complete, but aims to depict one possible
application. Instead of KNX, any other BA technology can be used under the presumption
that the technology’s networks are able to be mapped to models that conform to the introduced
BAS metamodel. In the end, the section mentions some use cases where such an MDE based
procedure and a universal interface result in the reduction of development time and an increase
of reusability during the implementation of subsequent BMSs. Hence, the advantages of such
a standardized approach compared to an individual solution should be clear after reading this
chapter.
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6.1.1 Engineering of KNX

Based on the overview image stated in Chapter 1, the general components can be replaced by
components of the actual proof of concept implementation. Figure 6.1 shows this revised illus-
tration. The former generic BAS becomes a concrete KNX network engineered by the ETS4.
The chosen automatic approach for network modeling uses an XSLT stylesheet which is based
on the ETS4 export data. The network modeling step is examined in the following sections.
Communication with the network is established by KNX frames that are exchanged between a
KNXnet/IP router and the oBIX WS gateway. This integration server includes the KNX network
representation. Further parts of this overview remain unchanged.

Regarding the KNX engineering process, the technology supports two possibilities for the
configuration of devices and their bindings. While the Easy Mode (E-Mode) allows limited
modifications of device parameters and links, complex building management functions can be
implemented with the System Mode (S-Mode). In the latter, the ETS4 is used for planning
and configuration of the network [39]. In the underlying case study, the use of the S-Mode
is assumed. Subsequently listed points have to be taken into account while configuring a BA
network based on the KNX technology. Following steps can be processed repeatedly:

1. Initially, the network has to be planned. The intention of the network and the needed
physical devices are existent. Based on this, the devices are preliminarily integrated in the
ETS4. Each KNX device has an order number for its identification in the manufacturer
specific catalog. This number is used to locate the device as well as for its integration
into the network. Imported devices contain all available datapoints and parameters. The
device list of the ETS4 is the basis for further engineering.

2. Next, physical addresses have to be assigned to the devices. Prior to this, the KNX topol-
ogy with its areas and lines is created. Afterwards, each device gets a tripartite address
consisting of the area’s address, the line’s address and the individual device address. The
address configuration is downloaded to the devices via the ETS4 programming function.

3. Then, the parameters of the devices must be set. For instance, the function of a push button
or the threshold value of a CO2 sensor can be determined in this phase of the process.
The ETS4 lists the configurable adjustments per device in the device view. There, the
settings are organized in various subgroups to offer a simplified view. Again, changes are
downloaded to the devices.

4. Now, the network components are configured, but still no relationship between these ele-
ments exists. The various datapoints respectively function blocks of the devices have to be
linked to build the desired distributed applications within the BA network. This is done by
using the KNX grouping concept. Associated elements (e.g. datapoints for a push button
and a light switching actuator) are combined in individual groups to enable the interwork-
ing of these components. In ETS4, datapoints are often called communication objects.
Additionally, further views (e.g. building) are initialized in this step. However, these are
not downloaded to the devices, but remain in the engineering software. They only provide
additional information for monitoring purposes.

86



 Model-Driven Architecture 

 Network access 

Model transformation Code generation

Platform independent model

Model-to-model transformation 
(QVT)

Model-to-text transformation 
(Xpand)

Platform specific model

 WS gateway 

KNX network 
representation

KNX frames

 Network modeling  

Network engineering

KNX network

KNXnet/IP router

Devices

Automatic approach
(XSLT)

ETS4

Project Export

 Remote access 

WAN

Client

Client

Client Information encodings

Message exchange protocols (e.g. CoAP, HTTP)

 Service provider 

Figure 6.1: KNX specific overview

5. After downloading the configured application programs to the particular devices, the set-
tings are taken over, and the network is ready for operation.

The ETS4, released by the KNX Association, is the platform for engineering KNX net-
works [19]. Different views in the user interface support the design of the network structure.
Figure 6.2 shows a screenshot of the ETS4 user interface. In the upper half, the device view can
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Figure 6.2: ETS4 user interface

be observed where devices and their datapoints can be managed and configured. In the lower
half, group addresses can be initialized and modified. The catalogs of available devices that
can be engineered are imported from manufacturer websites or other sources. In this thesis, the
export function of ETS4 is utilized. Here, the entire project and its relevant meta information
are packed in an archive file containing a set of XML files. This archive is the basis for further
network modeling.

6.1.2 Experimental setup

The case study is based on a small KNX network. This experimental setup is embedded into
a portable suitcase, and consists of some devices to test basic building automation scenarios.
Figure 6.3 shows the utilized testbed. The BA network can be accessed via a Universal Serial
Bus (USB) interface of Siemens (order number 5WG1 148-1AB11) and a KNXnet/IP router of
Weinzierl Engineering (order number KNX IP Router 750). Internally, the devices are connected
via twisted pair (TP). Additionally, the suitcase possesses a direct power supply. The built in
devices are listed in Table 6.1. While devices like power supply and IP router are omitted, only
sensors and actuators are mentioned.
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Address Device Manufacturer Order number
8.0.1 Shutter switch Siemens 5WG1 522-1AB02
8.0.2 Universal dimmer Siemens 5WG1 527-1AB01
8.0.3 Switching actuator Siemens 5WG1 567-1AB01
8.0.4 Temperature sensor Siemens 5WG1 258-1AB02
8.0.5 Push button 2-fold Siemens 5WG1 211-2AB_1
8.0.7 CO2, humidity, temperature sensor Schneider Electric MTN6005-0001
8.0.8 Push button 4-fold Siemens 5WG1 245-2AB_1

Table 6.1: KNX devices

The network is named Office, and it is engineered in an ETS4 project. The devices are
imported by using integrated manufacturer catalogs. In these catalogs, each device can be found
via its order number (see Table 6.1). The physical addresses are assigned in accordance to
the second step of the general KNX engineering process (see Section 6.1.1). All devices are
integrated in the main line of the network which is part of the area with address 8.

Next, the devices are divided into groups of domains. Thus, the shutter switch is linked with
the domain shading. Both the dimming actuator and the switching actuator as well as the push
buttons are integrated into the domain lighting. The temperature sensor and the combined CO2,
humidity and temperature sensor are part of the HVAC domain. For completeness, the building
view is also initialized, but all devices are added to the same building part.

In this experimental setup, the main part of the network configuration is the instantiation of
KNX groups. Datapoints of the devices are linked within these groups to introduce functional
behavior. A threepart addressing scheme for the individual groups is chosen. One distinct main
group with address 1 contains the five middle groups Light (1/0), Temperature (1/1), Sun Blind
(1/2), Other (1/3) and Buttons (1/4). Below these middle groups, the actual groups are inserted.
The following list explains the most important groups. Furthermore, these groups are shown in
Figure 6.4. The image illustrates the network topology with the devices and their addresses. In
addition, the groups are visualized by dashed lines between the devices. The groups for the CO2

threshold values and the switches of the 4-fold push button are omitted in this list and in the
figure.

1/0/0 Light on/off links channel A of the switching actuator with the center right button of the
4-fold push button. The function of the button is set to On/Off.

1/0/1 The group Light dimming establishes a connection between the brighter/darker dimming
datapoint of the dimming actuator and the outer right button of the 4-fold push button.
Here, the button’s function is set to Dimming, On/Off.

1/0/2 Light on/off dimmer enables switching on and switching off of the dimming actuator. The
same push button as in the previous group is used.

1/0/3 Light status gives information about the 8-bit value of the dimming actuator. Requests on
this group address return the actual value of the dimming brightness.
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Figure 6.3: KNX testbed

1/1/0 – 1/1/3 The groups Temperature 1–4 contain the temperature channels A to D from the
temperature sensor. Each group includes one of these channels.

1/3/1 The CO2 value of the corresponding sensor is provided in group CO2. No other datapoints
are part of this group.

1/3/2 Likewise, Relative humidity includes the sensor’s datapoint for the relative humidity value.

Besides the KNX network, the oBIX gateway has to be configured. The file devices.xml in
the IoTSyS-Gateway project has to be modified. A new node of type device-loader is needed in
this XML settings to enable the execution of the generated program code during server startup.
Listing 6.1 states this additional configuration entry. As already mentioned, the gateway is
executed as Java application on a local computer. At runtime, the WS interface is accessible via
the HTTP port 8080 or the CoAP port 5683.

1 < dev ice−l o a d e r > a t . ac . t uw ien . a u t o . i o t s y s . ga teway . c o n n e c t o r s . knx .
KNXDeviceLoaderETSImplGenerated< / dev i ce−l o a d e r >

Listing 6.1: oBIX gateway configuration
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8.0.1 Shutter switch 8.0.5 Push button 2-fold

8 Area
8.0 Main line

8.0.2 Universal dimmer 8.0.4 Temperature sensor

8.0.7 CO2, humidity, temperature sensor

8.0.8 Push button 4-fold

8.0.3 Switching actuator

1/1/0 Temperature 1

1/1/1 Temperature 2

1/1/2 Temperature 3

1/1/3 Temperature 4
1/0/0 Light on/off

1/0/1 Light dimming

1/0/2 Light on/off dimmer

1/0/3 Light status

1/3/1 CO2

1/3/2 Relative humidity

Figure 6.4: KNX evaluation network

The last part of the experimental setup is the connection between the KNX network and
the oBIX gateway. As the network contains a KNXnet/IP router, this connection can be set up
easily by using the Internet Protocol (IP). In contrast, the configuration of the devices is done by
downloading the ETS4 settings via the network’s USB interface.

6.1.3 Mapping

Before the model-driven approach can be evaluated, a procedure for mapping KNX networks
to the MDA approach respectively to oBIX has to be defined. The preceding chapters pointed
out the concepts of KNX networks and their connection to this model-driven approach. In this
context, the conversion of KNX datapoints to oBIX objects is focused while the mapping of
other network parts (e.g. topology structure, building view, list of devices) is straightforward to
a certain degree.

The KNX specification defines a large set of datapoint types for a wide ranging field of
applications. The types differ in their format (e.g. bit length), the unit (e.g. meter, kilogram),
the allowed range of values (e.g. 0 to 127) and the encoding (e.g. false means open, true means
closed) [38]. Within the scope of this thesis is the mapping of these types from KNX to oBIX.
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DPT_ID Format DPT_Name

Value Encoding Range Unit Operations

1.001 B1 DPT_Switch

1.002 B1 DPT_Bool

1.003 B1 DPT_Enable

2.001 B2 DPT_Switch_Control bool (control, value)

enumerations:

control (control, no control)

value: see DPT-1

3.007 B1U3 DPT_Control_Dimming increase, decrease

3.008 B1U3 DPT_Control_Blinds up, down

4.001 A8 DPT_Char_ASCII ASCII encoded 1-1

4.002 A8 DPT_Char_8859_1 8859-1 encoded 1-1

5.001 U8 DPT_Scaling 0-100 %

5.003 U8 DPT_Angle 0-360 °

6.001 V8 DPT_Percent_V8 int two's complement notation -128-127 %

7.001 U16 DPT_Value_2_Ucount int pulses

7.002 U16 DPT_TimePeriodMsec reltime ms

9.001 F16 DPT_Value_Temp -273-670760 °C

9.002 F16 DPT_Value_Tempd K

9.003 F16 DPT_Value_Tempa K/h

9.004 F16 DPT_Value_Lux Lux

9.005 F16 DPT_Value_Wsp m/s

9.006 F16 DPT_Value_Pres Pa

9.007 F16 DPT_Value_Humidity %

9.008 F16 DPT_Value_AirQuality ppm

9.010 F16 DPT_Value_Time1 s

9.011 F16 DPT_Value_Time2 ms

Implementation note

enumeration

str

%

bool

parameter: int (step code) binary encoded

binary encoded

-100-100

real

binary encoded

float value

-670760-670760

0-670760

-670760-670760

real

0-65535

Figure 6.5: KNX datapoint mapping

Figure 6.5 provides an excerpt of this mapping in the form of a spreadsheet. The dark green
colored fields indicate those datapoint types that occur in the experimental KNX network. For
instance, the datapoint type 1.001 becomes an oBIX Bool element with an additional enumer-
ation for the encoding of the binary value (DPT_Switch). The datapoint type 9.001 represents a
16-bit floating-point number which is mapped to a Real object with degree Celsius as unit and
an accepted range of values of -273 to 670760 (DPT_Value_Temp). A special case is datapoint
type 3.007 which is implemented by means of two operations for increasing and decreasing the
brightness value (DPT_Control_Dimming). The operations take an Int object as input param-
eter representing the relative change in value.

Table 6.2 lists all configured datapoints of the KNX sample network. The datapoints are
grouped per device. It should be noted that devices with not even one engineered datapoint are
left out in this table. In the rightmost column, the KNX datapoint type is given. The implemen-
tation details of these types have already been discussed in the preceding paragraph or can be
seen in Figure 6.5.
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Device Datapoint Datapoint type

Universal dimmer
Switch, status 1.001
Dimming 3.007
Status 5.001

Switching actuator Switch, channel A 1.001

Temperature sensor

Temperature, channel A 9.001
Temperature, channel B 9.001
Temperature, channel C 9.001
Temperature, channel D 9.001

CO2, humidity, temperature sensor

CO2 value 9.008
Rel. humidity value 5.001
Threshold 1 CO2 1.001
Threshold 2 CO2 1.001
Threshold 3 CO2 1.001

Push button 4-fold
Switch centre right 1.001
Dimming on / off outer right 1.001
Dimming outer right 3.007

Table 6.2: KNX datapoints

6.1.4 Evaluation

The evaluation of the developed, model-driven approach starts with the export of the KNX net-
work’s engineering data from the ETS4. The output of this export procedure is an archive file
containing several files and folders. The aim is to transform this exported information into a
model conforming to the BAS metamodel. Thus, this model will represent the PIM. As known
from the transformation process, this step is called network modeling. Here, the automatic ap-
proach is chosen by implementing an XSLT stylesheet which results in the desired model file
during execution.

First, the structure of the export archive is explained. Therefore, Figure 6.6 visualizes the
particular components of this archive. Files that are not relevant for this modeling step are
omitted in the description and the corresponding figure. In the root folder, the master file
(knx_master.xml), which contains meta information about manufacturers, datapoint types and
media types, is located. The project files are contained in a separate folder named according to
the unique project identifier (P-0341). Within this project folder, the file Project.xml contains
the name of the KNX project (i.e. the network name). The other network specific information is
listed in the second file of this folder (0.xml). The used devices, their topology, the categorization
into building parts, the group addresses, and so on are included in this kind of main file.

In addition, the archive contains folders for each manufacturer, if devices of this manufac-
turer are part of the KNX network. In this case, devices of two manufacturers are assembled in
the network (Siemens, Schneider Electric). The folders are named after the unique manufacturer
identifiers which are listed in the master file. Each folder contains a file called Hardware.xml
that specifies the names, descriptions and order numbers of the installed devices. In the resulting
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Meta information

knx_master.xml

Project

Project.xml 0.xml

Manufacturer Siemens

Manufacturer Schneider Electric

/M-0001

/P-0341 /M-0064

Hardware.xml

Hardware.xml

M-0001_A-6102-01-A218.xml ...

M-0064_A-FF21-11-DDFC-O0048.xml

/

Figure 6.6: ETS4 export structure

PIM, this information is mapped to the attributes of an entity. Moreover, the manufacturer folder
comprises one XML file per application program. Datapoints and parameters are specified in
such a file. The parameters are excluded from mapping to the PIM as they are not part of the
defined BAS modeling language. However, the datapoint information is used to create the data-
point elements in the BAS model. All files in the export archive contain multilingual texts that
are transformed into translations of the BAS model.

Based on the main file of the project (0.xml), an XSLT stylesheet is executed. If required,
the other files are linked within this transformation. The result of the network modeling phase
is a model which conforms to the BAS metamodel. The other steps of the transformation work-
flow (model transformation, code generation) have been discussed in an earlier chapter (see
Chapter 4). Hence, they are skipped and a generated, executable source code is assumed as this
evaluation is more focused on the funtionality of the running system than on the step by step
execution of the transformation process. The generated code instantiates the network including
all its components in order to create an abstract representation of the BAS in the oBIX gateway.

During the initialization process of the gateway, the generated device loader class is exe-
cuted. Finally, all oBIX objects, which are necessary to manage the BA network, have been
instantiated in the gateway. The IoTSyS implementation provides a so called lobby where the
available top level elements are listed. The HTTP call to get the lobby as well as the received
response are shown in Listing 6.2. The lobby offers an entry point to additional meta objects
like enumerations (/enums), units (/units), parameters (/parameters) and encodings
(/encodings). These metadata are not part of the generated source code, but are instantiated
before the gateway executes the configured device loaders.

One of the entries in the oBIX lobby refers to the KNX evaluation network which can be
accessed via the server absolute URI /networks/office. Listing 3.7 shows the resulting
object that is returned in response to calling this URI. The subobjects of the network conform to
the descriptions and definitions of Section 3.4, as well.
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1 GET h t t p : / / l o c a l h o s t : 8 0 8 0 / ob ix
2

3 −− r e s p o n s e −−
4 200 OK
5 Conten t−Type: t e x t / xml
6 D a t e : Wed , 2 Apr 2014 20 : 0 1 : 4 4 GMT
7 Conten t−L e n g t h : 406
8

9 < o b j h r e f =" ob ix / ">
10 < r e f name=" a b o u t " h r e f =" ob ix / a b o u t " / >
11 < r e f name=" enums " h r e f =" enums " / >
12 < r e f name=" u n i t s " h r e f =" u n i t s " / >
13 < r e f name=" p a r a m e t e r s " h r e f =" p a r a m e t e r s " / >
14 < r e f name=" e n c o d i n g s " h r e f =" e n c o d i n g s " / >
15 < r e f h r e f =" w a t c h S e r v i c e " i s =" o b i x : W a t c h S e r v i c e " / >
16 < r e f h r e f =" a l a r m s " i s =" o b i x : A l a r m S u b j e c t " / >
17 < r e f name="P−0341 " h r e f =" n e t w o r k s / o f f i c e " i s =" bas :Ne twork "

disp layName =" O f f i c e " / >
18 < / o b j >

Listing 6.2: Requesting oBIX lobby

Next, some exemplary HTTP calls are examined to demonstrate the functionality of the gen-
erated source code, which is the result of the model-driven approach. First, a simple GET of
a KNX datapoint is performed. Then, requests via POST and PUT are discussed. These three
methods constitute the main part of the REST interface offered by the oBIX gateway. Although
the examples are not able to cover all possible scenarios, they should illustrate the correct inte-
gration of the BAS model into the WS interface to manage the underlying BA network. As a
result, Hypothesis 1 and 2 can be seen as confirmed.

1 GET h t t p : / / l o c a l h o s t : 8 0 8 0 / n e t w o r k s / o f f i c e / d a t a p o i n t s / s w i t c h _ c h a n n e l _ a / 1 /
2

3 −− r e s p o n s e −−
4 200 OK
5 Conten t−Type: t e x t / xml
6 D a t e : F r i , 21 Mar 2014 10 : 0 5 : 4 7 GMT
7 Conten t−L e n g t h : 393
8

9 <obj name="P−0341−0_DI−3_M−0001_A−9803−03−3F77_O−3_R−4" h r e f =" / n e t w o r k s /
o f f i c e / d a t a p o i n t s / s w i t c h _ c h a n n e l _ a / 1 / " i s =" knx:DPST−1−1 knx:DPT−1
k n x : D a t a p o i n t " d i s p l a y ="On / Off " d isp layName =" Switch , Channel A">

10 < bool name=" v a l u e " h r e f =" v a l u e " v a l =" f a l s e " n u l l =" t r u e " w r i t a b l e =" t r u e " / >
11 <enum name=" e n c o d i n g " h r e f =" e n c o d i n g " v a l =" o f f " n u l l =" t r u e " w r i t a b l e =" t r u e "

r a n g e =" / e n c o d i n g s / o n o f f " / >
12 < / obj >

Listing 6.3: Reading a datapoint

A GET call via HTTP needs the URI of the targeted object. Additionally, parameters like the
desired language can be added to the method call. In this example, the switch channel datapoint
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(switch_channel_a) of the switching actuator will be read. As it was already stated earlier,
the list of datapoints is a subobject of the network object and contains all available datapoints.
The required object can be found by browsing this tree of oBIX objects, if the actual URI is not
known. After sending the GET call, the answer of the server contains the relevant oBIX object.

The request and the entire response are shown in Listing 6.3. Herein, the content is returned
as plain XML data, but the IoTSyS gateway offers a set of other encodings like JavaScript Ob-
ject Notation (JSON) or Efficient XML Interchange (EXI) as well. As stated in Section 3.4.1,
renaming the oBIX attribute href to uri is necessary due to naming conflicts in the XMI seri-
alization of the PSM. In the oBIX gateway implementation, this attribute is labeled href again.
The requested datapoint is of KNX type DPST-1-1. Therefore, it possesses a Bool property and
an Enum property for the encoding of the binary value. In this example, the attribute null was
set to true for both properties as the gateway has not captured the actual value of the underlying
datapoint since system startup.

Next, an HTTP PUT call is performed with the intention to change the binary value of the
same datapoint. If an oBIX object is specified as writable, it can be modified. Otherwise, a
write attempt will achieve no result. In the sample network, the switching actuator is connected
with a bulb. By setting the property value to true, the light will be switched on. In contrast
to GET, PUT additionally sends the altered oBIX object in the content of the call. This content
object replaces the outdated server object. The modified object is returned in the HTTP response.
Listing 6.4 shows the raw transaction of this PUT call.

1 PUT h t t p : / / l o c a l h o s t : 8 0 8 0 / n e t w o r k s / o f f i c e / d a t a p o i n t s / s w i t c h _ c h a n n e l _ a / 1 / v a l u e
2 a c c e p t−l a n g u a g e : en
3 Conten t−Type: t e x t / xml
4 < bool name=" v a l u e " v a l =" t r u e " n u l l =" t r u e " w r i t a b l e =" t r u e " h r e f =" / n e t w o r k s /

o f f i c e / d a t a p o i n t s / s w i t c h _ c h a n n e l _ a / 1 / v a l u e / " / >
5

6 −− r e s p o n s e −−
7 200 OK
8 Conten t−Type: t e x t / xml
9 D a t e : F r i , 21 Mar 2014 12 : 2 0 : 1 9 GMT

10 Conten t−L e n g t h : 62
11

12 < bool name=" v a l u e " h r e f =" v a l u e / " v a l =" t r u e " w r i t a b l e =" t r u e " / >

Listing 6.4: Modifying a datapoint

Not the whole datapoint object, but only the binary property is modified in this example. The
server receives the new object and updates the existing one. Here, the new value is written to the
KNX bus, as well. Consequently, the bulb is switched on. In order to check communication, the
traffic on the KNX bus can be monitored by means of the ETS4.

Finally, a POST method is called to increase the value of the dimming actuator. The content
of this call contains an oBIX object. In this case, the object is only a parameter for the invoked
oBIX operation that is located behind the targeted URI. Listing 6.5 shows the HTTP transac-
tion including the parameter object. The dimming value is incremented by 25 percent, and an
appropriate message is sent to the actuator via the KNX bus while the operation is executed. In
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the end, the content of the response comprises the operation’s output object, if specified. For a
better overview, unnecessary line breaks have been removed in the listings of this section.

1 POST h t t p : / / l o c a l h o s t : 8 0 8 0 / n e t w o r k s / o f f i c e / d a t a p o i n t s / dimming / 1 / i n c r e a s e
2 a c c e p t−l a n g u a g e : de
3 Conten t−Type: t e x t / xml
4 <obj i s =" knx:ParameterDimming ">
5 < i n t name=" v a l u e " v a l =" 25 " u n i t =" / u n i t s / p e r c e n t " / >
6 < / obj >
7

8 −− r e s p o n s e −−
9 200 OK

10 Conten t−Type: t e x t / xml
11 D a t e : F r i , 21 Mar 2014 12 : 2 6 : 3 8 GMT
12 Conten t−L e n g t h : 33
13

14 <obj i s =" o b i x : N i l " n u l l =" t r u e " / >

Listing 6.5: Invoking an operation

Besides HTTP, the CoAP can be used to interact with the oBIX gateway. One valuable
feature of this protocol is the observation of individual URIs with respect to changes. When dat-
apoints (e.g. the channel of a temperature sensor) send update information in periodic intervals
over the KNX bus, the oBIX gateway recognizes these messages and informs registered CoAP
clients. These clients do not need to poll the required data.

Here, the first use case can be derived. The observation can be helpful for a BMS observing
the compliance of various threshold values in a building. CoAP minimizes the data traffic be-
tween the remote management software and the oBIX server. The software developer knows the
simple interface and the protocols for communicating with this interface, but additional knowl-
edge of the underlying BAS technology is not required.

Another example is the increased involvement of smartphones and other mobile devices as
remote control for smart buildings. Any assembled BA technology can be seamlessly integrated
in Web gateways. Thus, the mobile applications can be decoupled from proprietary software,
and fully customized tools can be developed.

Independent of its technology (e.g. oBIX), a remote BMS is not limited to one distinct
gateway. In fact, many BASs in different buildings can be combined in a large BMS even if the
networks are integrated in different gateway servers. The monitoring and managing procedures
of devices and datapoints in these networks are still the same. The developer simply has to know
how a distinct element can be addressed.

All in all, the slight Web interface in combination with the univeral model-driven approach
offers a powerful way for integrating BASs into the Internet in order to enable remote access via
fully customizable BMSs.
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6.2 Related work

This section covers already existing work related to the topics of this thesis. Approaches for
integrating BASs into Web technologies are taken into account. Moreover, possible model-based
and model-driven processes for this field of application are examined.

First, some integration approaches are discussed that do not use model-driven principles,
but focus on the theoretical mapping concepts from BAS technologies to Web technologies.
Neugschwandtner et al. report about the possibilities of integrating KNX into oBIX [48]. They
identified Web services as key elements to enable interoperability between BASs, and oBIX with
its clear REST interface is chosen as target platform. On this basis, another approach to access
KNX via BACnet/WS is developed [34]. The singularities of BACnet/WS are pointed out and
are compared with other related technologies (OPC UA, oBIX). Mapping options for a KNX
integration are supplemented by a sketch of a proof of concept implementation. The integration
of KNX into OPC UA by means of the ETS4 network data is subject of the research work of
Fernbach et al. [22]. Besides the theoretical mapping, this work addresses a concrete implemen-
tation demonstrating the approach. Although these articles show the fundamental principles for
mapping BAS technologies to Web technologies, they solely use manual mappings. Nonethe-
less, basic considerations of these approaches have inspired the evolution of the model-driven
approach in this thesis.

The European Telecommunications Standards Institute (ETSI) has published standards con-
cerning machine-to-machine communication. One of these is ETSI TR 102 966 [20] which
addresses the interoperability of ETSI machine-to-machine architecture and various network
technologies like ZigBee or KNX. The standard contains the principles for mapping a BA net-
work to the ETSI concept. Besides a general part, the report comprises mapping examples for
oBIX. For instance, KNX datapoint type mappings and the network representation are exam-
ined. Herein, oBIX operations are used to enable the creation and modification of the network
and its components during runtime.

Wang et al. show a middleware based on WSs for the integration of BASs [65]. Two main
issues are discussed in this paper. First, the linkage of heterogeneous BASs is addressed. Second,
the connection between these BASs and the Internet is brought up. In the local area network
(LAN), the OPC technology is used as communication interface while remote BMSs located
on a separate Web server utilize WS protocols like the SOAP to access BA components. BA
technologies supporting OPC can be connected with the middleware’s OPC interface. Therefore,
the middleware bridges the gap between the local BA networks and the Internet.

In contrast, the literature also offers related work that is focused on model-driven approaches
in the field of BASs. Muñoz et al. describe such a model-driven method [46]. Their MDA
approach is used to build models that are automatically transformed into the final system. The
three main components are a modeling language called PervML, an implementation framework
based on OSGi and a transformation engine for the generation of Java code. While system
analysts model the requirements in the form of PervML models, the system architect concretizes
these abstract models by defining devices and systems. Technology specific knowledge is only
required during the development of device drivers by OSGi developers. These drivers are linked
with the generated code to form an executable application. Thereby, the approach is mainly
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independent of technology specific issues. Nonetheless, Sánchez et al. argue that the abstract
notation for the modeling of requirements is not that easy for BA experts [59].

Nain et al. present a middleware for BA built by an MDA approach [47]. This middleware
called EnTiMid provides several service access models respectively personalities, and hence it
is called schizophrenic. SOAP, UPnP and DPWS are examples for possible personalities. The
architecture consists of three layers. On the lowest level, the communication with the physical
devices is handled. The middleware EnTiMid is located in the middle layer, and on top high-level
services are published to access the devices by means of standard protocols. The MDE approach
is used to generate various personalities. Thus, an EnTiMid model representing the underlying
sensors and actuators is mapped to one of the high-level service access models. Moreover,
actual services are generated from abstract service descriptions. The complexity of different
communication protocols on the physical layer is hidden by this layered middleware.

Yu et al. present another service-oriented and model-driven approach [67]. On the basis of
the service-oriented computing (SOC) paradigm, a metamodel is developed to model services
and service descriptions. A PIM, which conforms to this metamodel, represents the specific do-
main model. Model transformations are used to convert this PIM into two different models. One
constists of the service elements (service composition model) while the other model includes the
application specifications (application model). Both are still platform independent representa-
tions. The executable application is generated as PSM from the application model. In summary,
this approach targets the modeling of complex business logic as opposed to the model-driven
integration of BASs into a slim and common interface. Two years before, Bourcier et al. have
dealt with the development of service-oriented gateways in order to control BA networks, as
well [11].

All presented, model-driven approaches have the main focus regarding high-level services
and business logic running on a middleware platform in common. The programming of the phys-
ical devices is still a task of experts. However, Sánchez et al. show an approach for generating
code to program devices automatically [59]. Hence, no specific knowledge of the BA technol-
ogy is needed. A DSL helps developers with low experience in the field of creating BASs to
model such systems. Afterwards, transformations generate executable program code. As an ex-
ample, the authors present the generation of a VBScript that is executed in the Engineering Tool
Software (ETS) to configure a KNX network. The metamodel of this MDE approach includes
the concept of a requirements catalog. Thus, modeled requirements can be reused in successive
modeling processes. The requirements catalog is connected with a set of DSL fragments that
form the resulting application model. Finally, the mentionend transformations generate code for
specific BA platforms (e.g. ETS). Similar to the other presented approaches, the target technol-
ogy can be easily exchanged without modifying the abstract application model. Hence, solely
the platform specific code generation has to be developed.

This thesis is mainly concerned with the integration of already engineered BASs. The aim
is to provide simple services for managing the network. Therefore, constructive high-level ser-
vices are shifted to subsequent BMSs which are not in the focus of this approach. Likewise, the
generation of network configuration code as stated by Sánchez et al. [59] has not been contem-
plated. The model-driven approach targets the precise mapping of the physical BA network and
the automatic transformation of this representation to integrate the system into a WS gateway.
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6.3 Open topics

In this section, some notes on disregarded and open topics are collected. The scope of the thesis
is to develop a universal, model-driven approach for the integration of BASs. The principles of
such an approach are presented, but the implementation makes no claim to be complete. The
possibility to realize such an approach conforming to the MDA initiative has been shown taking
the hypotheses introduced in Chapter 1 into account. Nonetheless, some open topics need to be
mentioned at this point.

First, the BAS metamodel has been developed partly on the basis of KNX. Moreover, the
case study uses only a KNX network to test the implementation of the model architecture and
the transformation workflow. Hence, it is necessary to evaluate whether the approach is in
conformity with other technologies like BACnet or LonWorks. On the one hand, the suitability
of the already implemented concepts must be reconsidered. Particularly, the datapoint modeling
is strongly influenced by the KNX approach. On the other hand, additional modeling elements
have to be specified that are inspired by other BAS technologies. For example, new views may
need to be introduced. The aim is to enable the model-driven integration approach for a wide
range of BASs.

Second, alternative WSs-based technologies can be supported by the transformation work-
flow. This way, system engineers are not restricted to oBIX, but are able to generate code for
various platforms to integrate the modeled BA networks. Possible solutions can be BACnet/WS
or OPC UA (see Section 2.2). For this purpose, additional modeling languages in the form of
metamodels have to be defined. Moreover, the model transformation from the PIM to these PSM
needs to be implemented. This extension will increase the range of applicable target platforms,
and will result in an increased suitability of the entire model-driven approach.

Last but not least, this implementation is more focused on the transformation of BA networks
than on the mapping of metadata. Although the metamodels provide modeling concepts for meta
information and some library models have been developed as PIMs, the model transformation
and the subsequent code generation are not concerned with these libraries. With respect to a
preferably complete implementation, meta information should be included in all steps of the
transformation workflow.

Section 7.2 describes continuative issues regarding this field of application and beyond.
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CHAPTER 7
Conclusion

7.1 Summary

With this thesis, an approach to integrate BASs into the IoT has been presented. Therefore,
model-driven methodology and BAS technology independent interfaces have been used to real-
ize the intended concepts. The most important aspects of this approach are summed up in the
following paragraphs.

First, an appropriate architecture for the model-driven approach is introduced. OMG’s MDA
with its meta-metamodel MOF offers the required framework. Within the conventional four-
layer architecture of MDA, two modeling languages are defined. Each of these modeling lan-
guages is specified by means of a metamodel which conforms to the MOF meta-metamodel.
Thus, the meta-metamodel can be seen as metamodeling language for the definition of par-
ticular modeling languages. The metamodels determine the available language concepts for
the creation of models that represent (real) systems. On the one hand, the BAS metamodel is
used to generate models of BA networks in a technology and platform independent way. These
models are called PIMs. On the other hand, the oBIX metamodel enables for the definition of
models according to the oBIX technology that is chosen as target platform. Due to their rela-
tionship to a specific technology, these models are called PSMs. While PIMs provide a rather
abstract perspective on the BA network and its components, the PSMs are expressed in terms
of the underlying technology. The advantage of the layered MDA architecture and its common
meta-metamodel is the interoperability among the models of different modeling languages.

Next, transformations are established with the aim to realize an automated workflow from
a BA network model to the final source code executed in the Web interface technology. Three
steps are identified in this transformation process. Foremost, the network has to be modeled
either manually or automatically (network modeling). As soon as the network is available in
the form of a PIM, the actual MDA workflow starts. An M2M transformation from the PIM
to the PSM is established to map the abstract information to oBIX conform constructs (model
transformation). In the last step, the program code is generated based on the PSM by means of
a template-oriented M2T transformation approach (code generation).
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These theoretical considerations become the corner stones of a proof of concept implementa-
tion. The realization of the model-driven approach uses the MDA implementations and packages
of the Eclipse IDE. The entire implementation is split into two Eclipse workspaces containing
various projects to provide a modular structure. Each step of the transformation process is seen
as a separate project. Similarly, the metamodels and the models are combined in individual
projects. In addition, libraries exist to support the transformations and metamodels. The EMF
is used to create the mentioned metamodels as well as the associated model editors. Semantic
constraints are integrated into the metamodels via the Eclipse OCL Tools, and the M2M trans-
formation is realized by means of the QVT Operational extension. In order to generate source
code, the Xpand package is utilized. As Java dominates the whole development process, the
Java based IoTSyS integration middleware is chosen as oBIX implementation. Hence, the final
source code can be executed directly on this target platform.

The evaluation of the proof of concept implementation consists of a case study based on an
experimental KNX network. This network contains several devices like a temperature sensor,
push buttons, a switching actuator or a dimming actuator. The components and their interwork-
ing are engineered in the ETS4. An export of the engineering data is used for further processing.
Initially, the KNX information is mapped to the BAS metamodel by generating a PIM. After
running the MDA transformations, the source code representing the KNX network is executed
within the IoTSyS gateway. Sample interactions with the oBIX implementation illustrate the
functional capability of the implementation and the entire model-driven approach.

7.2 Future work

The presented approach offers a basis for further development with respect to a seamless and
complete integration of BASs into the upcoming IoT. Open topics mentioned in Section 6.3
already give an overview of possible short-term adaptions of the taken approach. Additionally,
this section points out some long-term issues.

One open topic is the validation of the BAS model with other BA technologies. Further-
more, the support of multiple target platforms in addition to oBIX and the code generation for
all network elements and libraries need to be resolved. These measures will enhance the appli-
cability of the model-driven approach. Hence, it will be possible to map the most common BA
technologies to a set of WSs-based integration technologies.

Currently, the workflow is unidirectional, and the entry point is the already engineered BAS.
After some transformation steps, the final source code is generated. A possible modification
could be the definition of a bidirectional transformation process. Given the source code or the
corresponding PSM that represents a BAS by means of a specific technology, the PIM should be
generated via MDA transformations. Finally, the aim is to produce network configuration data
on the basis of the PIM.

The long term goal behind this work is that the abstract model of a BA network becomes the
most important element in the integration workflow. Both the generation of network configura-
tion data and the gateway source code are part of subsequent process steps. The workflow from
the BA network to the source code and vice versa becomes a BAS model-centric process. Thus,
no technology dependency will remain at all. A network integrator only relies on the abstract
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network representation. Both target technologies, in the network’s field level and in the IoT
interface, can be easily replaced without any changes to structure and semantics of the modeled
network.

In addition, the ability of ontologies to create new knowledge by reasoning should be taken
into account. In Section 2.1.6, an approach for integrating ontologies into the MDA concept has
been presented. The ontology models can be used as intermediaries between the current PIM
and PSM in order to influence the transformation definitions. New knowledge can be generated
based on collected information to modify the transformation definitions. Thus, they can be
customized to fit to the changed needs of the BA technologies respectively the remote users
behind the IoT interface.

An overall integration methodology for both legacy systems and new BASs is able to vastly
reduce the necessary development time. Otherwise, the engineering of the BA network as well
as the integration of this network into a gateway technology has to be done either manually or
by various incompatible tools. Further research on efficiency and economy of time will support
this assumption.
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