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Abstract

The purpose of this thesis is to evaluate the performance of a macro-

finance model equipped with Epstein-Zin utility, learning and disasters.

The observed high price of risk in the United States economy is successfully

explained, but the variances of the financial variables generated by the

model are unrealistically low.
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1 Introduction

”I do not know which makes a man more conservative - to know

nothing but the present, or nothing but the past.”

-John Maynard Keynes (1926)

The purpose of my work is to merge the rare disaster and learning literature in

order to evaluate their performance in explaining the financial movements of the

United States economy. In one type of learning regime, the agent never forgets the

disaster that had just happened, while the other type of learning allows the agent

to almost completely erase it from her memory. The main focus then is on the

extent the model can explain the premium or price of investing in risky financial

assets. Traditionally, macro finance models predict a low premium while in the

data a large price of risk is observed, therefore an extremely cautious behaviour

must be explained. It is shown that the model presented here can partially do

that without any unjustified deviation from the standard framework. The con-

tent is organised as follows : section 2 summarizes the learning and rare disaster

literature while the theoretical framework and the computer implementation is

discussed in section 3. The data description and the calibration is done in sec-

tion 4, the performance of the model is shown in section 5 and in section 6 I

conclude.
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2 Literature Review

Explaining the large equity premium, that is, the difference between the risk

free and the risky return has been a central issue in the macro finance literature,

since Mehra and Prescott (1985). The standard Capital Asset Pricing Model

(CAPM) fails to account for the premium for any reasonable parameter values.

That is, assuming normal innovations, with zero mean and σ2 variance to the

dividend growth rate generates an equity premium of γσ2 where γ is the risk

aversion parameter. Given the value for σ2 is empirically around 0.00125 while

the equity premium is 0.06 , the risk aversion γ should be around 48. There are

at least three reasons why this value for γ is unreasonable : first, it would imply

a very high risk free rate, second, micro studies suggest a maximum value of 3,

see Barsky et al. (1997). Finally, such a value is grossly inconsistent with growth

theory implying an extremely low growth rate, because if the utility function is

of constant relative risk aversion (CRRA) type, γ also controls the inverse of the

elasticity of intertemporal substitution1.

There are various other asset pricing facts that are expected to be matched by

a macro finance model. Although the equity premium is ”large” it is also declining

over time, while the price to dividend ratio is volatile and non-stationary as shown

by Blanchard (1993),Jagannathan et al. (2000) and Fama and French (2002). In

addition, the low volatility and return of the risk free asset and the high volatility

of the risky return is also present in the data Barsky and De Long (1993). None of

these facts can be explained by the standard CAPM with rational expectations,

CRRA preferences, complete and frictionless asset markets as summarized by

Kocherlakota (1996) and Mehra and Prescott (2003).

The first direction to modify the standard model is to use other utility func-

tions then that of CRRA type. Epstein-Zin preferences, as shown by Epstein

and Zin (1989) and Weil (1989), allow to separate risk aversion and intertempo-

ral elasticity of substitution, therefore expanding the set of reasonable parameter

values. Higher risk aversion is possible while the low inverse intertemporal elas-

1In the case of the Ramsey–Cass–Koopmans growth model, the balanced growth equals
1
γ (r(t)− ρ) where r(t) is the return on capital and ρ is the depreciation
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ticity of substitution allows for a lower risk free rate. The main usefulness of

such preferences is in a setup where the consumption growth process is modelled

as non stationary, as demonstrated by Bansal and Yaron (2004), justifying the

choice in this paper of modeling consumption growth as a Markov process and

taking the utility function as an EZW type.

The other direction is to increase the variance of the dividend growth rate.

Since Rietz (1988) the rare disaster literature argues that there are catastrophic

events that because of their infrequent realizations, do not affect significantly

the mean of the growth rates,but are so dangerous to the agents in the economy

that precautionary savings increase greatly, even for a moderately risk averse

consumer. A critique of this approach is that such disasters - the mild scenario

of Rietz (1988) consists of a one year drop of 30 % in consumption - are not

observed in the data of the United States. The counter-argument of Barro and

Ursúa (2008) is that the US has been lucky as these rare events did not realize

while other countries were more unfortunate - nevertheless the US consumers fear

that what happened to Argentina might happen to them too. In addition, as data

might be missing or unreliable during disasters, such as wars and revolutions, the

variance of the growth rate for the economies in the world are underestimated

by this survivorship-bias. In this spirit Nakamura et al. (2013) estimates the size

of the disasters using the new panel dataset of Barro and Ursúa and finds that

γ = 3 can already explain a large portion of the equity premium.

Apart from the direct effect, an increase in the probability of a rare disaster

alone could induce a recession. Shocks to the probability of the disaster indi-

rectly explain various asset pricing facts as shown by Gourio (2012) and Gabaix

(2012) where the standard framework is enriched with production and inflation,

respectively. Barro and Ursúa (2012) is a survey of the rare disaster literature.

In these models, to justify the exogenous shocks to the probability of the disaster

an additional explanation is required — learning.

To understand why and how probabilities vary, one should think of subjective

probabilities where the exact probability of an event is not known but is learnt

about - along the transition when one learns about the probability, the estimate

might fluctuate around the true value. As shown by Timmermann (1993) intro-
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ducing Bayesian updating2 to asset pricing models can help explaining a number

of puzzles - but not the equity premium - given risk neutrality and normality of

the stochastic dividend growth rate. Cecchetti et al. (2000) considers a Hidden

Markov Model with two states as the generating process for consumption growth

where the parameters of the transition matrix are not known. The learning is

not optimal, the initial distorted prior persists. Bayesian learning in the same

setup is implemented by Cogley and Sargent (2008) - with an exogenously given

pessimistic prior the model can generate not only the high price of risk, but

also it’s decreasing rate. Here the same setup is extended to more states and

a more general utility function, as Epstein-Zin is used instead of CRRA. More-

over it becomes possible to directly compare the implications of learning with

a fixed-window -where the number of observations used to estimate the model

parameters are constant in the spirit of Cecchetti et al. (2000) - with Bayesian

updating. The main motivation of doing so is that switching between these

learning regimes could possibly explain the oscillation between periods of non-

stationary and stationary prices of risk. Learning about rare disasters is difficult

therefore convergence to the rational expectations equilibrium is slow, justifying

an ”extreme” distortion of the prior transition matrix. Intuitively, suppose that

the economies in the world are governed by the same Markov process but this is

only known by the representative consumer, not by the econometricians of the

US who use only US data to estimate consumption growth. Then having the

data generating transition matrix as a prior for the consumer might seem as an

extremely distorted prior from the viewpoint of the US econometricians. The

interesting question is then to what extent such a model could possibly recreate

the financial movements when the actual realizations of the states are ”fed” in

to it? It is shown in section 5 that the model is able to match a large fraction

of the observed price of risk without assuming a large, exogenous deviation from

rational expectations. The setup by Cogley et al. (2012) with a 3 state process

where one type of consumer learns about the 3rd, disaster state, is merging the

disaster literature and learning to an extent, but the distortion of beliefs is still

2Least squares learning is used, but in the case that the parameters are constant and the
process is Gaussian, these are equivalent
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exogenous - although much less substantial than the distortion in Cogley and

Sargent (2008) because uncertainty is present for the rare event only.

Although not modeled here — as the existence of a representative consumer

is assumed — the wealth implications in an economy where the parameters of the

model are unknown are discussed by Blume and Easley (2006). With complete

markets the trader with ”worse” learning process will eventually ”die out” as their

wealth will converge to zero. It is important to note that in a learning economy the

subjective price of risk - the naive Sharpe Ratio - is not the one observed directly

in the data, which implicitly assumes rational expectations when dealing with the

future. Therefore Cogley and Sargent (2008), based on Hansen and Jagannathan

(1991), construct a measure for the market price of risk in a learning economy

that reconciles with rational expectations thereby referred to as the ”price of

risk”.
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3 Model Setup

Following Mehra and Prescott (1985) I study an endowment economy popu-

lated by an infinitely lived representative agent, endowed with preferences that

are representable by a non-time-separable utility function Ut given in the following

recursive form at time t:

Ut = ((1− β)C1−θ
t + β(Est(U

1−γ
t+1 ))

1−θ
1−γ )

1
1−θ

as defined by Epstein and Zin (1989) and Weil (1989) (thereby referred to as

EZW preferences). Ct is consumption in period t, β is the subjective discount

factor, γ is the coefficient of relative risk aversion and θ is the inverse of the

intertemporal elasticity of substitution3. As a special case, if θ = γ then the

utility function becomes separable and of constant relative risk aversion (CRRA)

type. The expectation operator Est is the subjective expectation conditioned on

the information set available to the consumer on date t. The dividend is assumed

to follow an exogenous, stochastic process and is nonstorable - that is, there is no

investment or government in the model so consumption equals dividend. Asset

markets are complete and the only asset which is in non-zero supply is the stock of

the Lucas (1978) tree. In this economy, the existence of the no-trade competitive

equilibrium will be assumed which rules out both some stochastic processes for

the dividend growth and learning algorithms as discussed by Weitzman (2007).

3.1 Subjective Euler Equation

To derive the subjective Euler equation characterizing the competitive equi-

librium, the consumer has to solve the following maximization problem (given

recursively as a Bellman problem):

max
Ct,ht+1

Ut(ht) = ((1− β)C1−θ
t + β(Est(U

1−γ
t+1 ))

1−θ
1−γ )

1
1−θ

3for θ = 1 the above formula is incorrect, but as in all specifications it is different than 1 ,
the correct formula for that case is skipped
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st:

Ct + Ptht+1 = Dtht + Ptht

where Dt is the dividend, ht is the number of shares owned by the consumer

(overall number of shares are normalized to 1) Pt is the price of shares at date t.

Note that for simplicity all other assets - which in principle could exist as markets

are complete - are suppressed from the budget constraint as once a stochastic

discount factor is determined it can be used to price them. The derivations

provided here closely follow Epstein and Zin (1991).

Theorem 1. The stochastic discount factor defined as : mt,t+1 = ∂Ut/∂Ct+1

∂Ut/∂Ct
is

given by

mt,t+1 = β(
Ct+1

Ct
)−θ(

Ut+1

Est(U
1−γ
t+1 )

1
1−γ

)θ−γ (1)

Proof provided in Appendix A

Implementing Theorem 1 directly has a disadvantage: it increases the number

of variables compared to the CRRA stochastic discount factor with the utility

levels. Nevertheless if for example there is labor in the utility function, as in a

Dynamic Stochastic General Equilibrium model then the above expression is the

only useful formula (see Uhlig (2010)). Here however, as the model abstracts from

labor, it becomes possible to derive a more intuitive expression for the stochastic

discount factor.

Definition 1. The present discounted value of consumption - which equals the

discounted overall income,referred as wealth, Wt in equilibrium - can be written

recursively as:

Wt = Ct + Est(mt,t+1Wt+1)

Theorem 2.

Wt =
Ut

(1− β)C−θt (Ut)θ

Proof provided in Appendix A

Definition 2. Return on stocks is given by:

Rw,t+1 =
Wt+1

Wt − Ct

10



Theorem 3.

Rw,t+1 =
{
β
(Ct+1

Ct

)−θ(Est(U1−γ
t+1

) 1
1−γ

Ut+1

)1−θ
}−1

and therefore

mt,t+1 = β
1−γ
1−θ (

Ct+1

Ct
)−θ

1−γ
1−θR

θ−γ
1−θ
w,t+1

Proof provided in Appendix A

Theorem 3 results in the subjective Euler equation:

β
1−γ
1−θEst [(

Ct+1

Ct
)−θ

1−γ
1−θR

θ−γ
1−θ
w,t+1Rt+1] = 1 (2)

where Rt+1 is the return of any one period asset.

3.2 Stochastic process

Equation 2 in general does not allow one to have a closed form solution of the

model, even in the special case of time separable utility. However, by choosing the

stochastic process for Ct+1

Ct
wisely, the solution can attain closed form or can be

reasonably approximated by a closed form. The most common way is to assume

lognormal innovations to consumption. There are two important reasons why I

refrain from that path - both are connected to learning. First, in the case of even

the slightest structural uncertainty as shown by Weitzman (2007), the posterior

distribution of the discount factor can yield an infinite equity premium - that

is, the competitive equilibrium does not exist. Therefore a model with such a

stochastic process is not robust to deviations from rational expectations and can

be seen as a knife-edge case. In addition, there are only two parameters to learn

about and they are often conflicting when a positive shock occurs, resulting in an

acyclic equity premium. In a more general setting, Barro and Ursúa (2012) show

that a twisted lognormal distribution, with fatter tails approximately results in

an equity premium:

re − rf = γσ2 + pb(1− b)−γ

11



where re is the log return on equity, rf is the log risk free return, p is the proba-

bility of the disaster and b is the ”growth” in the disaster state. If one does not

know the true σ, the variance of the normal innovations, then the equity premium

is increasing for both large positive and negative shocks as they both increase the

perceived variance. In case the probability or the size of the disaster is unknown

then the equity premium easily becomes +∞ because of the previous, robustness

problem.

That is why I choose a different path and specify the stochastic process as:

Ct+1

Ct
= ut (3)

where the term ut is assumed to follow a multi state, first order, ergodic, irre-

ducible Markov process, the transition probabilities are given by the rows of Π

and ut ∈ {λ1, λ2, . . . λN} ∀ t.

3.3 Learning

Assumption 1. λ1,λ2,. . . λN and all parameters apart from the elements of Π

are known by the consumer.

Assumption 1 seems reasonable if the agents in the economy are sure about to

clustering of states — for example good or bad — and if there is uncertainty about

the growth rate in a given state than it can be easily modeled by increasing the

number of states in the perceived process by nesting the true model and avoiding

the robustness problem of the normal distribution.

Before specifying the learning structure it is useful to derive the closed form

solutions for the key asset prices and returns in case we also know the ”true” Π.

Theorem 4. Suppose that Π is known by the agent. In this case, the time in-

dependent, rational expectations equilibrium price to dividend ratio in state i,

denoted by wi, is given by

wi = β ·
( n∑
j=1

Πijλ
1−γ
j · (1 + wj)

1−γ
1−θ

) 1−θ
1−γ

(4)

12



∀ i ∈ {1, 2 . . . N}.

Proof provided in Appendix A

Notice that the implicit equation for the price to dividend ratio is linear in w if

and only if γ = θ, the CRRA time separable special case of the EZW preferences.

In general, Equation 4 can only be solved for numerically as a fixed point problem

transformed into root-finding. Once wi has been solved ∀ i, the asset returns can

be determined. It is crucial to understand the assumption in Theorem 6 about

the time independence of the price to dividend ratios. It does not say that the

price to dividend ratio per se is independent of time - it only says that the price

to dividend ratios for all possible states are independent of time so that the

stacked w is time independent. It is shown in Theorem 5 that this type of time

independence assumption is implied by the no-bubbles condition.

Corollary 1. Suppose that w ∈ RN is known. Then the following holds:

EstRw,t+1 =
n∑
j=1

Πijλj ·
1 + wj
wi

and the one period risk free rate Rf,t

Rf,t =
{
β

1−γ
1−θ ·

( n∑
j=1

Πi,jλ
−γ
j ·

(1 + wj
wi

) θ−γ
1−θ
)}−1

.

However the ”true” Π is unknown. In the first place, assume Bayesian up-

dating for the consumer. Let the prior distribution of the elements of Π given

by:

(Πi,1, . . .Πi,N−1|n0
i,1 . . . n

0
i,N) ∼ Dir(N − 1, n0

i,1 . . . n
0
i,N)

where n0
i,j is the prior knowledge of the transition from i to j. The notation

is justified by the fact that the Dirichlet distribution has a probability density

function defined on the N − 1 dimensional open simplex, so that Πi,N = 1 −∑N−1
j=1 Πi,j. The beta distribution is a special case for N = 2. The Dirichlet

distributed random vectors are assumed to be independent ∀i ∈ {1, 2 . . . N}.

Then, as for given i the realization of states is:

13



(ni,1, . . . ni,N) ∼Multinomial(N,Πi,1, . . .Πi,N)

where ni,j denotes the number of observed transitions from i to j. As the Dirichlet

is the conjugate prior of the Multinomial distribution, the posterior distribution

is also Dirichlet:

Πi,1, . . .Πi,N−1 ∼ Dir(N − 1, n0
i,1 + ni,1, . . . n

0
i,N + ni,N)

This relationship yields a simple updating rule and this is precisely why such a

prior distribution is chosen. Suppose the consumer was at state i in period 0

and in the next period, the state indexed by j is observed, then her estimate Π̂

becomes:

Π̂i,j =
n0
i,j + 1

1 +
∑N

k=1(n
0
i,k)

∀ l ∈ {1 . . . j − 1, j + 1, . . . N}

Π̂i,l =
n0
i,l

1 +
∑N

k=1(n
0
i,k)

and Π̂l,k = Π0l,k , ∀ l ∈ {1 . . . j−1, j+1, . . . N} and ∀ k ∈ {1 . . . j−1, j, j+1, . . . N}

where Π0 is the prior transition matrix given the histories n0
i,j.

Using the posterior distribution of the transition probabilities, updated on the

information available up to date t, lead to the evaluation of the Euler Equation 2

to obtain the price to dividend ratio w:

β
1−γ
1−θEst [(

Ct+1

Ct
)1−γ(1 + wt+1)

1−γ
1−θ ] = w

1−γ
1−θ
t . (5)

14



3.4 Learning under CRRA utility and an upper bound for

EZW

Assume first that θ = γ. As shown before:

wt = Est
[
m̂t,t+1(1 + wt+1)

]
where m̂t,t+1 = β(Ct+1

Ct
)1−γ.

Theorem 5. After iterating forward, using the law of iterated expectations and

imposing the no-bubbles condition:

wt = Est
∞∑
j=1

j∏
s=1

m̂t+s−1,t+s.

Proof:

First, the law of iterated expectations with Bayesian updating holds, see for

example appendix B by Cogley and Sargent (2008). Then iterating forward:

wt = Est
[
m̂t,t+1(1 + wt+1)

]
= Est

[
m̂t,t+1(1 + Est+1

[
m̂t+1,t+2(1 + wt+2)

]
)
]

= Est
[
m̂t,t+1 + m̂t,t+1Est+1

[
m̂t+1,t+2(1 + wt+2)

]]
= Est

[
m̂t,t+1 + m̂t,t+1m̂t+1,t+2 + m̂t,t+1m̂t+1,t+2wt+2

]
= Est

∞∑
j=1

j∏
s=1

m̂t+s−1,t+s + Est
∞∏
j=1

m̂t+j−1,t+jwt+j.

Imposing the no-bubbles condition that:

∞∏
j=1

m̂t+j−1,t+jwt+j = 0

yields the result.

�
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Notice that in case of rational expectations and CRRA preferences the time inde-

pendence assumption of the price to dividend ratios is implied by the no-bubbles

condition in Theorem 4.

Theorem 6. Let us denote the rational expectations solution to Equation 4 for

any Π matrix by w∗(Π). Then:

wt =

∫
w∗(Π)f(Π|history)dΠ (6)

where f() is the joint probability density function, a product of Dirichlet

probability densities (the posterior of Π).

Proof: In appendix C by Cogley and Sargent (2008) in case of risk neutrality and

two states this has already been proved and this proof is based on it. Invoking

Theorem 5:

wt = Est
∞∑
j=1

j∏
s=1

m̂t+s−1,t+s

and expressing the subjective expectation as a sum yields:

wt =
∞∑
j=1

Kj∑
k=1

m̂k,jP(gjt = k|history).

where gjt is a bijection, mapping from {1, 2 . . . N}j to {1, 2 . . . Kj}, ordering

to each realization of states from period t until t+ j a natural number, Kj = N j,

and m̂k,j =
∏j

s=1 m̂t+s−1,t+s given that (gjt )
−1(k) realized.

The predictive probabilities can be expressed as:

P(gjt = k|history) =

∫
P(gjt = k|history,Π)f(Π|history)dΠ.

Therefore:

wt =

∫ { ∞∑
j=1

Kj∑
k=1

m̂k,jP(gjt = k|history,Π)
}
f(Π|history)dΠ.

16



Notice the term in brackets is equivalent to the rational expectations solution for

a known Π matrix due to the Markov property and the updating rule:

wt =

∫
w∗(Π)f(Π|history)dΠ.

�

For EZW preferences, by transforming Equation 5 the following holds:

Est [m̂t,t+1(1 + wt+1)
1−γ
1−θ ] = w

1−γ
1−θ
t . (7)

Assumption 2. : γ and θ are both greater than one or both smaller. In addition,

θ ≤ γ.

Theorem 7. With Assumption 2 an upper bound for the price to dividend ratio

exists for EZW preferences:

wEZWt ≤ wCRRAt ,

where the CRRA parameter equals γ

Proof: First, consider rational expectations. Using the inequality that (1+x)α ≤

1 + xα for α ∈ (0, 1) and 0 ≤ x , the no-bubbles condition as in Theorem 5 and

first order stochastic dominance:

wEZWt = Est [m̂t,t+1(1 + wt+1)
1−γ
1−θ ]

≤ Est [m̂t,t+1(1 + w
1−γ
1−θ
t+1 )]

= Est [m̂t,t+1 + m̂t,t+1Est+1[m̂t+1,t+2(1 + wt+2)
1−γ
1−θ ]]

≤ Est
∞∑
j=1

j∏
s=1

m̂t+s−1,t+s + Est
∞∏
j=1

m̂t+j−1,t+j(1 + wt+j)
1−γ
1−θ

≤ Est
∞∑
j=1

j∏
s=1

m̂t+s−1,t+s + Est
∞∏
j=1

m̂t+j−1,t+j(1 + wt+j)

= wCRRAt .
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By invoking the last step in the proof of Theorem 6 it is also apparent, by first

order stochastic dominance, that the inequality holds under Bayesian updating

too.

�

Theorem 7 implies that the price dividend ratio for EZW preferences is bounded.

Therefore if there is a unique fix-point to Equation 4 then it will be a solution

only if it is smaller than the corresponding price to dividend ratio for CRRA.

Intuitively it is also apparent from the proof that if θ does not differ a lot from

γ and the variation in the stochastic discount factor is not substantial - because

the variance of the stochastic process is small - then the solution is close to the

CRRA solution. From the proof of Theorem 6 it can also be seen that there is no

obvious way to derive a closed form for wEZWt under Bayesian updating, hence

an additional assumption is required.

Assumption 3. The representative consumer is unaware of the fact that she is

reestimating the transition probabilities each period. That is, she thinks that her

current estimate of the transition matrix will be true from now on forever.

Assumption 3 is equivalent to the assumption that the probability density

function in Equation 6 is no longer a density but a single mass point. It can be

thought that this approximates what a true Bayesian would do relatively well

if the pdf is ”centered” around the current estimate of the transition matrix.

Assumption 3 is necessary to decrease the computational burden as otherwise at

each time point a numerical integration of the product Dirichlet densities would

be required. Moreover, for general EZW preferences each evaluation of the price

to dividend ratio requires a non-linear root-finding which is sensitive to starting

values. It is shown in section 5 that for CRRA preferences, Assumption 3 seems

not to be a bad approximation compared to what a true Bayesian would do.

3.5 Implementation in MATLAB

The formula for the price of a one period ahead risk-free discount coupon

given that the current state is characterized by λi, using Matlab notation can be
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written as:

pf = β
1−γ
1−θ · Π(i, :) ·Diag(λ.−γ) · (1N + w).

θ−γ
1−θ /(w(i))

θ−γ
1−θ

where Diag() denotes the linear transformation RN → RN×N , such that the

diagonal elements of the matrix in the range are the elements of the vector from

the domain and all off-diagonal elements are 0. 1N denotes the N dimensional

vector where all components are equal to 1. w ∈ RN is the price to dividend

ratio. The operation ”.” denotes element by element operation. Therefore the

return on the one year risk free asset is given by rf = 1
pf
− 1. Return on equity

is given by:

re = Π(i, :)Diag(λ) · (w + 1N) · 1

w(i)
− 1,

and w solves the nonlinear system:

0N = β
1−γ
1−θ · Π ·Diag(λ.1−γ) · (1N + w).

1−γ
1−θ − w

1−γ
1−θ . (8)

The solution is obtained by applying the Trust-region Dogleg algorithm developed

by Powell (1968). The timing is the following:

For period t:

• Realization of the dividend growth rate

• Based on the realization, the consumer updates the histories and her esti-

mate Π̂

• Expectations and consumption decisions are formed and the assets are

priced until the no-trade equilibrium is reached (rootfinding)
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4 Calibration and Data Description

In this section the parameters of the model are determined. The transition

probabilities and growth rates of the Markov process are estimated while the

utility parameters β, γ and θ are calibrated to match certain features of financial

markets in the US economy.

4.1 Consumption Data Description

The dataset used for the estimation of the consumption process is assembled

by Barro and Ursúa (2008). It includes yearly data of GDP and consumption

levels for 42 countries4 including the biggest economies, starting from 1790 to

2009. Viewed as an unbalanced panel, it has an additional property that if GDP

is missing then consumption is missing too. The dataset contains the major dis-

asters in consumption in the 19th and the 20th century which were missing from

previous data leading to a survivorship-bias in consumption growth. As data is

likely to be missing during crises, omitting missing observations from estimat-

ing a consumption process will lead to a bias both about the mean and about

the variance. The long panel structure is essential to counter the argument that

the US had not experienced disasters, which would render the disaster literature

unfounded. First, the US did experience disastrous events prior to 1871 - the

starting date of reliable financial data - for example the civil war with a yearly

drop of 4% in consumption for five years, which most certainly affected the agents

beliefs about the US economy. Second the US might have been just lucky avoiding

disaster realizations - nevertheless agents could have considered the US similar

to countries which were not so lucky. Argentina, which was similar to the US

in many economic features in the beginning of the 20th century has experienced

various economic disasters. Of course, if one could observe the realizations of

consumption growth for the US for thousands of years it would be possible to

estimate the consumption generating process relatively well. As this is not pos-

sible, the assumption that the countries experienced different realizations of the

same stochastic process increases the number of relevant observations sufficiently.

4The list of countries is provided in Appendix B
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It is possible to fill in the missing observations for consumption by estimating the

following model:

∆ logCit = ∆ log Yitβ + ξt + ηi + uit

Table 1: Regressing consumption on GDP

Parameter Point estimate Standard Error t-value

β 0.595284 0.013408 44.399

Summary R2 Adjusted R2 Number of observations

Values 0.29647 0.28137 4929

Note: Only the coefficient for the GDP is shown.

Table 2: Consumption Summary Statistics

Statistics Consumption Growth Rates

Number of observations 6079

Mean 0.0204

Median 0.0197

Standard deviation 0.0661

Min -0.4272

Max 0.6276

Note: The consumption series obtained after forecast-
ing whenever it was missing but GDP was not.

where C and Y is the level of consumption and income, respectively, ξt is a

constant time effect, ηi is a constant individual —country specific — effect and

uit is an iid normal process uncorrelated with the exogenous variables. Where

GDP is available, but consumption is not, this model is used to conditionally

forecast it. Estimation is performed by the within estimator, results are shown

in Table 1. In order not to decrease the relative standard deviation of the con-

sumption growth rates, the estimated error terms are added randomly to the

conditionally forecasted values of consumption. After dealing with missing ob-

servation the consumption growth rates with 6079 observations are obtained. In

Table 2 the properties of this series are summarized. The obtained series are then

used to estimate a first order, multi state Markov process.
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4.2 Estimation of the Consumption Process

Estimating a Markov process is usually done in a Hidden Markov Model

(HMM) framework. Assume that the DGP for consumption is:

Cit
Ci,t−1

− 1 = λSt + uit

where λSt is the growth rate5 depending on the current state St = {1, 2, ...N}. St
is unobservable and follows an ergodic, irreducible Markov process with transition

matrix Π. uit is assumed to be iid normal. It is important to note that such a

model is justified by the observed non stationarity in the consumption data. The

standard maximum likelihood approach developed by Hamilton (1989) produces

statistically insignificant coefficients as the number of states increase6. Also, the

unobserved state assumption is in conflict with the model setup where agents are

assumed to be able to determine the state they are in. Therefore an alternative

estimator is constructed.

Let b1, b2, . . . , bN−1 be an initial guess. Then a growth rate is assumed to be

a realization of state k ∈ {2, ...N − 1} if

bk−1 <
Cit
Ci,t−1

− 1 ≤ bk

and if Cit
Ci,t−1

− 1 ≤ b1 then a realization of state 1 occurred, else it is a realization

of state N . The coefficients λSt are calculated as the averages of the realizations

in their respective states. The next step is to estimate by maximum likelihood

the transition matrix on these realization of states as if they were truly observed.

Then calculate the stationary distribution of this estimated Markov process and

the moments of the stationary distribution. As there are N − 1 free variables (b1,

b2, . . . , bN−1 ), the procedure requires the first N−1 moments of the sample to be

equal to the moments of the stationary distribution estimated - implemented as

a simple root-finding problem where the dimensionality of the problem increases

only linearly with the number of states, not exponentially as in the HMM frame-

5Note the slight change in the definition of growth which is used with Markov process as in
Rietz (1988) - it only makes a difference for extreme rates

6The estimation is not included in the appendix due to length issues.
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work. Therefore it is much faster (the maximum likelihood step is relatively fast

for observable states), especially suited for estimating several state processes and

it is exactly how agents would estimate a Markov process given that they observe

the state. The estimated transition matrix, growth rates, stationary distribution

and duration times for the 5 state process are reported in Table 3. Notice that

the worst state is a 16 % drop in consumption per year, happening on average

in 3 % of the observations - quite often, but it is in line with the findings of

(Nakamura et al., 2013). Moreover, observe that from the worst state there is

almost 10 % chance of a transition to the state with the highest growth rate and

it is also probable that the disaster will continue with 16 % chance. There is an

intuitive reason for letting N = 5. As the number of states increases it is easier

to observe variation in the states in the 20th century US history. However, there

are N(N − 1) parameters to learn about and for a large N the estimating agent

would have a difficult job to do. Results would not differ a lot if a process with

N = 4 or N = 6 has been estimated.

Table 3: Estimated Markov chain with five states

Π0 matrix To state 1 To state 2 To state 3 To state 4 To state 5

From state 1 0.065 0.272 0.261 0.294 0.109

From state 2 0.017 0.298 0.39 0.253 0.043

From state 3 0.006 0.099 0.656 0.221 0.018

From state 4 0.02 0.155 0.468 0.316 0.042

From state 5 0.097 0.175 0.248 0.32 0.160

Growth rates 27 % 9.78 % 2.68 % -3.26 % -16.1 %

Duration times 1.07 1.42 2.9 1.46 1.19

Stationary distr. 0.015 0.148 0.549 0.254 0.034

Note: The transition probability matrix, growth rates, duration times (in years)
and the stationary distribution is shown, respectively.

4.3 Financial data description

The financial data is obtained from the webpage8 of Aswath Damodaran and

is summarized in Table 4. First, it is important to notice that the standard

8http : /pages.stern.nyu.edu/adamodar/New Home Page/datafile/histretSP.html
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Table 4: Financial data summary in the US, 1928-2009

Variable Mean Standard deviation Corr with consumption

Sharpe ratio (from 1928)7 0.56 - -

Sharpe ratio (from 1955) 0.245 0.0222 43 %

Equity premium 7.53 % 0.21 10.9 %

Risk-free rate 1.46 % 0.043 -44.7 %

Price to dividend ratio 31.07 16.15 14.4 %

Note: The risk-free rate is measured as the yearly return on the 3-month Treasury
Bill, the risky return and the price to dividend ratio are the market return and the in-
verse dividend to price ratio of S&P500. The Sharpe ratio is calculated from 1955 to
allow for a conditioning period for the variance and the mean of the equity premium.

deviation of the equity premium is high, rendering the estimate for the average

equity premium unreliable. Therefore the Sharpe ratio should be considered as

the reliable variable for measuring the price of risk as it is discussed by Hansen

and Jagannathan (1991). Second, the correlation with consumption growth with

any of the variables is not high and is usually the opposite of what is reported in

the literature - price to dividend ratio,the risk premium and the Sharpe Ratio are

usually reported to be strongly countercyclical, see Jagannathan et al. (2000).

It can also be that consumption growth is not the correct measure of cycles.

Therefore evaluating the correlation with the consumption growth aspect of the

model should be taken with a grain of salt.

4.4 Baseline Calibration of utility parameters and the pri-

ors

Table 5: Baseline calibration

β θ γ fixed-window Simulation period T0 Prior

0.985 2 3 30 years 1928-2009 30 years Π0

Note: Apart from the utility parameters, in case of the fixed-window
learning, the length of the memory is specified. The agent must ob-
serve a number of years prior to the starting of the simulation (T0),
but the prior distribution is nonetheless assumed to be the DGP one.

The baseline calibration of the utility parameters are presented in Table 5.

This calibration targets are presented in Table 6. With a higher discount factor

β, the risk free rate would be lower. There are two reasons not to increase it.
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Table 6: Baseline calibration targets

Variable Steady State Value

risk-free rate 4.62%

risk-free rate - normalized consumption 1.52%

Price to dividend ratio 32.67

Note: The growth rate of consumption equals the average con-
sumption growth observed in the US data from 1928, a value
of 1.51%.

First, the price to dividend ratio w is increasing with β. Moreover, as positive

shocks occur, the estimated growth rate can become infinite - the likelihood of

that event depends on β and the highest possible growth rate λN . θ is picked

such that the price to dividend ratio in steady state approximately equals the

one observed. The risk aversion parameter γ is high, but not exorbitant. It is set

higher than θ to demonstrate the effects of Epstein-Zin utility, while keeping in

mind Assumption 2. The higher the value of γ the higher the equity premium and

thus the Sharpe Ratio will be. Note however that the Sharpe Ratio generated by

a learning economy is not directly comparable to the Sharpe ratio in the data.

Cogley and Sargent (2008) based on, Hansen and Jagannathan (1991) construct

the correct measure of the price of risk. First, the per period Sharpe ratio depends

on the state while the one observed in the data is ”smoothed” out — therefore

a transformation that eliminates this type of non-stationarity is required. More

importantly, the probabilities should be corrected with the objective probabilities

because the data is assembled that way. The formula is given in Matlab notation:

PRRE(t) =
π0 · (Π0. · (Π./Π0).

2) ·m.2 − (π0 · ((Π0. · (Π./Π0)) ·m).2)1/2

π0 · (Π0. · (Π./(Π0))) ·m

where π denotes the stationary distribution of the Markov process characterized

by Π transition matrix, the index 0 denotes the objective, true parameters and m

is the per-period stochastic discount factor. The prior distribution in the baseline

calibration equals to the objective transition matrix Π0 as if coming from 30 years
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of observations. More formally, the prior ∀i is distributed as:

Π(i, :) ∼ Dir(4, 30Π0(i, :)).

The fixed-window parameter fixedw refers to the scenario when the representa-

tive agent at time t forgets the transition from t− fixedw − 1 to t− fixedw. If

fixedw is smaller than the number of conditioning periods than the initial prior

persists - creating a similar model to that of Cecchetti et al. (2000).

4.5 Alternative Calibration

Table 7: Alternative calibration

β θ γ fixed-window Simulation period T0 Prior

0.985 0.25 0.25 8 if T0 = 10 ,10 otherwise 1928-1999 10, 30 50 or 70 years Distorted

Note: In this specification T0 varies across simulations and the distorted prior distribution and the fixed
window with it.

Table 8: Alternative calibration targets

Variable Steady State Value

risk-free rate 1.91%

risk-free rate - normalized consumption 1.52%

Price to dividend ratio 260.1

Note: The growth rate of consumption equals the average con-
sumption growth observed in the US data from 1928, a value
of 1.51%.

In order to compare results with Cogley and Sargent (2008)9 , their calibration

of the utility function and stochastic process is also used - see Table 7 and Table 9

and the steady state targets in Table 8. The reason for not using this calibration

only, is that the 2 state specification does not generate enough ”volatility” - that

is, if one wants to evaluate the model’s performance on the ”true” history of the

US. In addition, their model performs well only with an exogenous distortion

of the prior, which is hard to justify. Moreover, in steady state, apart from

generating an implausibly high price to dividend ratio - after all, the baseline

9more precisely, with the working paper version of it, as in the published one the agent is
assumed to be risk neutral
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Table 9: Markov chain with two states

Π0 matrix To state 1 To state 2

From state 1 0.978 0.022

From state 2 0.485 0.515

Growth rates 2.251 % -6.785 %

Duration time 45.45 2.06

Stationary distr. 0.9566 0.0434

Note: The transition matrix, growth rates,
duration time (in years) and stationary dis-
tribution of the 2 state process reproduced
from Cecchetti et al. (2000) on the US data
only with HMM, without standard errors.

calibration generates too high risk free rate - this undermines numerical precision

as it is a key variable determining all the others in case of EZW preferences.

The prior distributions are constructed in such a way that they are statistically

indistinguishable from the true process but are pessimistic. Indistinguishable in

terms of the Bayesian factor, as discussed by Kass and Raftery (1995):

B =
L(history|Π0)

L(history|Πworst−case)
.

Table 10: Distorted priors

ΠT0=10 ΠT0=30 ΠT0=50 ΠT0=70

To 1 To 2 To 1 To 2 To 1 To 2 To 1 To 2

From 1 0,775 0.225 0.886 0.114 0.914 0.086 0.926 0.074
From 2 0.068 0.932 0.142 0.858 0.183 0.817 0.21 0.79

Note: The transition matrix for the distorted priors — depending on T0.

If 2 logB < 10 then the decision maker cannot differentiate significantly be-

tween the worst case and the ”true” DGP. By distorting the priors to the maxi-

mum amount — which depends on the length of the observed history T0 — the

transition matrices are obtained (see Table 10) and then with these transition

matrices the prior distributions are constructed as:

Π(i, i) ∼ beta(T0ΠT0(i, :)),

27



where ∀ T0 ∈ {10, 30, 50, 70} and i = 1, 2. Although it is true, that they are ”sta-

tistically” indistinguishable, it is important to note that these priors correspond

to extreme disasters - if one calculates how these priors could arise from the data,

then, for example in the T0 = 10 case, 8 realizations of disasters are needed - no

countries ever experienced such an implausible event. Therefore distorting the

priors in some sense is equivalent to a rare disaster event, ultimately making the

alternative and the baseline calibration comparable, because although the base-

line calibration assumes the correct prior, it can generate rare disaster realizations

along the simulations, a starting point for the alternative calibration.
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5 Results

5.1 The effects of disasters

Table 11: No-disaster summary

Variable Mean Std deviation Cyclicality

Sharpe ratio 0.0140 0.0003 -8.62 %

Equity premium 0.25 % 0.0333 -0.2 %

Risk-free rate 5.07 % 0.0146 100 %

Price to dividend ratio 30.1662 0.2577 -100 %

Note: The summary statistics of the simulated financial series
when the stochastic process is taken as in Table 17. Cyclicality
is measured as correlation with consumption.

Table 12: Disaster summary

Variable Mean Std deviation Cyclicality

Sharpe ratio 0.0442 0.0003 -1.61 %

Equity premium 0.68 % 0.0576 -2.94 %

Risk-free rate 4.38 % 0.0109 79.15 %

Price to dividend ratio 32.2678 0.1838 -80.3 %

Note: The summary statistics of the simulated financial series
when the stochastic process is taken as in Table 3 .

First the difference between the disaster and the standard, rational expecta-

tions solution with CRRA (θ = γ = 2) utility is demonstrated. The parameters

are as in the baseline calibration (see Table 5). The summary statistics of 2000

simulations are presented in Table 11 and in Table 12. For the no disaster sim-

ulation a two state Markov consumption process is estimated, where both of the

growth rates are positive10. The no disaster model performs extremely poorly.

The equity premium and therefore the price of risk is a small fraction of what

is observed in the data in Table 4 - a known failure of the standard model. The

mean of the risk free rate and the price to dividend ratio was calibrated. The

standard deviation of the price to dividend ratio is low - with iid shocks it would

be zero (recall Equation 8) - and as the risky return and the risk premium is

depending on the price to dividend ratio, their variation is also low. The corre-

lation of the risk-free rate with consumption is the opposite of what is observed

10see Table 17 in Appendix C

29



- this weakness of the Lucas tree model comes from the lack of production. If

there was a storage technology - capital - and consumption would come from

production, then the interest rate would determine consumption, not the other

way around. That is, an increase in the interest rate would increase the growth

rate of consumption which, if the substitution effect dominates, would lead to a

decrease in current consumption.

With disasters, that is, when the five state process in Table 3 is used11, the

model performs better in all variables. The key mechanism of how disasters

generate higher risk premium is that a possible consumption drop increases the

(expected) marginal utility and so the stochastic discount factor in Equation 1.

This implies that the demand for the risky asset would go down unless it’s ex-

pected return goes up. Intuitively, the agents demand compensation for the event

that the dividends are poor and they are left without anything to consume - as

they are equipped with risk averse utility, these events are considered way worse

than a comparable increase in the dividends - a bonanza - is considered to be

good. Correlation with consumption became less substantial as the probability

of reaching the disaster state is non-monotonic - in the best state there is very high

probability that it will end badly for the consumer (see Table 3). The disaster cal-

ibration clearly improved the performance of the model and this was done only by

allowing for more states - the estimation was performed on the same dataset and

the first moment of the stationary distribution is also the same in both Markov

specifications due to the estimation method. However, even the model with the

disasters generates statistics that are not much closer to the reality.

5.2 Epstein-Zin preferences and Bayesian or fixed-window

learning

The alternative calibration summarized in Table 7, is used to demonstrate the

effects of introducing Epstein-Zin preferences and learning - it is chosen because

then the results become directly comparable with Cogley and Sargent (2008).

First consider the rational expectation solution summarized in Table 13, where

11It does not make much difference if lets say the 3 state process is used as it does have a
bad state - it just makes the point clearer to stick to the baseline calibration
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Table 13: Rational Expectation summary

CRRA Epstein-Zin

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.008 0.0014 -2.2 % 0.0084 0.0013 -3.4 %
Equity premium 0.01 % 0.0281 0.37 % 0.05 % 0.0281 -2.4 %

Risk-free rate 1.98 % 0.0026 100 % 1.94 % 0.0029 100 %
P-D ratio 764.72 30.78 37.7 % 770.69 33.1867 35.8 %

Note: The summary statistics of the simulated financial series when the stochastic process is
taken as in Table 9 and rational expectations is assumed.

Table 14: T0 = 30 summary

CRRA Epstein-Zin

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.2940 0.1255 -27.6 % 0.3414 0.1351 -28.6 %
Equity premium 1.37 % 0.0549 -44 % 1.66 % 0.0565 -45.1 %

Risk-free rate 1.82 % 0.0042 98.95 % 1.67 % 0.0047 98.1 %
P-D ratio 99.41 32.5159 33.5 % 88.19 27.8974 34.2 %

CRRA,fixed-window EZW,fixed-window

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.4138 0.1253 -41.3 % 0.4283 0.1337 -42.9 %
Equity premium 0.9 % 0.0337 -26.3 % 1.03 % 0.0343 -27.7 %

Risk-free rate 1.81 % 0.0030 94.36 % 1.76 % 0.0034 92.74 %
P-D ratio 158.38 47.546 41.3 % 151.22 45.6902 41.1 %

Note: The summary statistics of the simulated financial series when the stochastic process is
taken as in Table 9 and Bayesian updating (first row) or fixed-window learning (second row)
is assumed with priors as in Table 10 for T0 = 30.

the average statistics of 1000 simulations are shown. Introducing Epstein-Zin

improves the performance of the model, but it is still not getting much closer

to the data. While increasing risk aversion parameter to γ = 0.75 increases the

risk premium, because θ remains the same, the risk-free return and the price

to dividend ratio also remains the same. The intuition is that while a higher

price of risk is demanded, the risk free rate and how much consumption an asset

should provide is ultimately pinned down by the consumer’s willingness to trade

consumption between periods - the intertemporal elasticity of substitution. This

argument is only true if the perceived difference between the risk free asset and

the risky asset is not substantial in terms of possible consumption loss, because

risk aversion does enter Equation 8.

To examine the effects of Bayesian learning consider the T0 = 30 case in

Table 14 where the average statistics of a 1000 simulations for 70 periods are
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Figure 1: Unconditional Sharpe Ratio with θ = 0.25

shown with the corresponding prior transition matrix in Table 1012. Bayesian

learning is optimal, after a time the learning economy would converge to a rational

expectations economy, but with this prior there is a sizeable difference between the

two economies in the beginning of the simulation period. Overall, the pessimistic

prior and learning generate a huge improvement in the model. The mean Sharpe

Ratio is now comparable to what is actually observed. As the agent overestimates

the probability and the duration of the bad state, they are demanding very high

expected return from the risky asset. The key point here is that the variance of

the equity premium is not increasing as much as the mean of the equity premium

12All other cases are summarized in Table 18, Table 19 and in Table 20 in Appendix C.
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Figure 2: Unconditional Sharpe Ratio with fixed-window and θ = 0.25

as both economies (the learning and the rational expectations one) are ultimately

driven by the same shocks and therefore the increase in variance is due only to the

persistence of a pessimistic bias about the economy. The price to dividend ratio

is lower in the learning economy as the agents dislike the large perceived riskiness

of the risky asset. Also, as the perceived risk is much larger for the consumer in

the learning economy, the difference in the price to dividend ratio between the

CRRA and the Epstein-Zin utility is greater than in the rational expectations

economy -after all, risk aversion is only interesting if there is risk involved.

Fixed-window learning - when transitions that happened a certain time ago

are forgotten - affects the model mechanics in two ways. Forgetfulness is not
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Figure 3: Price to dividend ratio with θ = 0.25

complete - some initial realizations of the bad state are never forgotten, but the

extreme pessimism that was present in the beginning of the simulation declines to

an extent. Also, the pessimism is lost faster than in the Bayesian learning because

not only the consumer obtains ”good” signs as new realizations occur but in

addition forgets the bad realizations. Therefore on the one hand, the systematic

bias of the economy is not that substantial - hence the decrease in the relative

deviation of the variables13. With complete forgetfulness, the equity premium on

average would quickly decline to the rational expectation value. On the other

hand though, as the initial prior persists to an extent even in the second half of

13That is, the standard deviation divided by the mean.
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Figure 4: Price to dividend ratio with fixed-window and θ = 0.25

the simulation period as opposed to the Bayesian learning, the equity premium

on average decreases less than it’s variance, increasing the Sharpe Ratio greatly.

As the agents demand a lower premium, the price to dividend ratio increases

while the difference between the CRRA and EZW utility decreases.

To directly compare results with Cogley and Sargent (2008) the figures 1-6

show the average of 1000 simulations for each point in time for the different priors.

First it is important to see in Figure 1 that Assumption 3 is not restrictive at

least in the case of CRRA utility as the graphs look exactly the same as in Cogley

and Sargent (2008). As discussed before, increasing the risk aversion parameter

γ while holding θ constant, increases the price of risk (the Sharpe Ratio) as
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Figure 5: Realized equity risk premium with θ = 0.25

more premium is demanded by the agents for a unit of additional risk. The

price to dividend ratio decreases as shown on Figure 3 - the consumer demands

more dividend for the same price because of increased risk aversion. Higher T0 -

the initial number of periods conditioning on - decreases the maximum possible

distortion in the prior14 making the agent less and less pessimistic, so that the

initial price of risk decreases. It also affects the shift of the variables with higher γ

- increasing T0 decreases the shift in the Sharpe Ratio and in the price to dividend

14see Table 10
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Figure 6: Realized equity risk premium with fixed-window and θ = 0.25

ratio as the perceived risk decreases15. The realized (ex post) risk premium is

positive on average, making ex post arbitrage possible16 as can be seen in Figure 5

The effects of introducing fixed-window learning can be seen in Figure 2,

Figure 4, and Figure 6. Note that the size of the fixed-window is depending on

T0. As mentioned in section 2, regime changes of fixed-window with Bayesian

learning could be an explanation to the stationary, non-stationary switches of

the variables, so that the speed of convergence to rational expectations can vary.

That is, when there is a disaster one tends to remember it forever (Bayesian

15Note the different scaling of the axis though
16as discussed in Timmermann (1993)
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learning), while when business is as usual then not importance is assigned to an

individual observation so it might as well be forgotten (fixed window).

5.3 Testing the preferred calibration

Table 15: Historical simulation summary

Variable Mean Std deviation Cyclicality Corr with data

Sharpe ratio 0.2638 0.0293 7.2 % -14.3%

Equity premium 0.3 % 0.0232 -9.5 % 52.1%

Risk-free rate 4.99 % 0.0127 81.6 % -31.8%

Price to dividend ratio 31.5 3.0434 -22.4 % -18.6%

Note: The summary statistics of the financial series when the stochastic process
is taken as in Table 3, the calibration as in Table 5 and the historical realizations
are fed to the model. The last column is the correlation between the observed
and the simulated.

After a clear understanding of each component in the model separately, the

baseline calibration is implemented in order to evaluate the overall performance

of learning and disaster models. If the learning economy experiences the same

shocks as the US economy did, starting from 1928, it can be seen on Figure 7

and in Table 15 that overall, the learning economy performs poorly - there is

not nearly enough variation in the variables to explain the financial properties of

the US. Nevertheless, it performs better than any previous model lacking either

Epstein-Zin utility, fixed-window or disaster estimation. The main success of the

model is that the mean and the standard deviation of the Sharpe ratio is now

comparable to the one observed - even though the prior transition matrix was

the data generating one, not exogenously distorted as before.

There are two main reasons for the failure in reproducing the other observed

financial statistics. The lack of variation in consumption data might not reflect

the true variance in the marginal utility - it might be just a problem that con-

sumption is badly measured or is a bad proxy of marginal utility as discussed by

Campbell (1993). Connected to this, it is also possible that the return on wealth

is not the same as the return on the market portfolio, altering the risk premium

that is needed to be ”matched”. Second, as discussed above, production17 would

17with a non AK production technology, as there is equivalence between an AK and a Lucas
tree economy
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be really essential to change the correlation structure of the financial variables

(importantly, the risk free rate) with consumption.
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6 Conclusion

In this paper, a Lucas (1978) tree model with learning, disasters and Epstein-

Zin utility has been applied in order to match the high observed price of risk.

The representative consumer learns about the exogenous consumption growth

process either by Bayesian or fixed-window updating. The method of updating

ultimately determines whether the equilibrium converges to the rational expec-

tations equilibrium or not. The exogenous process is assumed to be a Markov

chain with at least one disaster state, in which consumption declines significantly

inducing the agent to demand a high return from the risky return. Epstein-Zin

utility allows a departure from the CRRA case so that the parameter controlling

risk aversion is no longer need to also control the intertemporal elasticity of sub-

stitution. These extensions of the standard framework usually appear separately

in the literature as discussed in section 2. The behavior of a model equipped

with learning and Epstein-Zin utility is analyzed in section 3 while a calibration

of the utility parameters and the estimation of the Markov process on a disaster

dataset is presented in section 4.

The results in section 5 indicate that merging all these components greatly

improve the performance of a Lucas tree model. Epstein-Zin utility enables one

to match the steady state value of the price to dividend ratio which also improves

the numerical precision during the simulations. In addition, compared to the

CRRA case, it is possible to analyze an increase in risk aversion only, keeping the

elasticity of intertemporal substitution constant. Disasters justify the deviation

from the rational expectations by shattering beliefs while learning preserves this

distance from the objective truth — overall accounting for the large perceived

risk.

Although the observed averages of the financial variables are met when the

historical realizations of consumption growth are fed into the model, the volatil-

ities and the correlation with consumption are not. A future research direction

could be to solve these problems by finding a better proxy than consumption for

marginal utility and by introducing production.
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A Appendix

Proof of Theorem 1:

Taking derivatives of the unconstrained objective function:

∂Ut
∂Ct

= (1− β)C−θt (Ut)
θ (9)

∂Ut
∂Ct+1

= (1− β)C−θt+1(Ut+1)
θ−γEst(U

1−γ
t+1 )

1
1−γ−1βEst(U

1−γ
t+1 )

−θ
1−γU θ

t (10)

Dividing Equation 10 with Equation 9 yields the result. �

Proof of Theorem 2:

Guess and verify

Wt = Ct + Est(mt,t+1Wt+1)

= Ct + Est
(
β
(Ct+1

Ct

)−θ( Ut+1

Est(U
1−γ
t+1

) 1
1−γ

)θ−γ
Ut+1

(1− β)C−θt+1(Ut+1)θ

)
= Ct + Est

(
β
(Ct+1

Ct

)−θ
U1−γ
t+1 (Est(Ut+1)

1−γ)
γ−θ
1−γ

1

(1− β)C−θt+1

)

Ut

(1− β)C−θt (Ut)θ
(1− β)C−θt (Est(Ut+1)

1−γ)
θ−γ
1−γ

?
= (1− β)C1−θ

t (Est(Ut+1)
1−γ)

θ−γ
1−γ + βEst(U

1−γ
t+1 )

U1−θ
t (Est(Ut+1)

1−γ)
θ−γ
1−γ

?
= (1− β)C1−θ

t (Est(Ut+1)
1−γ)

θ−γ
1−γ + βEst(U

1−γ
t+1 )

U1−θ
t

?
= (1− β)C1−θ

t + (Est(Ut+1)
1−γ)

1−θ
1−γ

which holds. This confirms the guess. �
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Proof of Theorem 3:

Rw,t+1 =
Ut+1

(1− β)C−θt+1(Ut+1)θ
1

Ut
(1−β)C−θ

t Uθt
− Ct

=
Ut+1

(1− β)C−θt+1(Ut+1)θ
(1− β)C−θt U θ

t

Ut − (1− β)C1−θ
t U θ

t

=
Ut+1

(1− β)C−θt+1(Ut+1)θ
(1− β)C−θt U θ

t

βU θ
t (Est(Ut+1)1−γ)

1−θ
1−γ

=
{
β
(Ct+1

Ct

)−θ(Est(U1−γ
t+1

) 1
1−γ

Ut+1

)1−θ
}−1

Substituting back to Equation 1 yields

mt,t+1 = β(
Ct+1

Ct
)−θ
( Ut+1

Est(U
1−γ
t+1 )

1
1−γ

)θ−γ
= β(

Ct+1

Ct
)−θ
( R−1w,t+1

β(Ct+1

Ct
)−θ

) θ−γ
θ−1

= β
1−γ
1−θ (

ct+1

Ct
)−θ

1−γ
1−θR

θ−γ
1−θ
w,t+1

�

Proof of Theorem 4: Using Equation 2 for the stock return gives:

β
1−γ
1−θEst

[
(
Ct+1

Ct
)−θ

1−γ
1−θR

1−γ
1−θ
w,t+1

]
= 1. (11)

Asset returns for stocks can be written as:

Rw,t+1 =
Pt+1 + Ct+1

Pt
=
Ct+1

Ct

1 + wt+1

wt
. (12)

Plugging Equation 12 back into Equation 11 yields:

β
1−γ
1−θEst

[
(
Ct+1

Ct
)1−γ

(1 + wt+1

wt

) 1−γ
1−θ
]

= 1. (13)

Suppose that from state i a transition to state j will occur in period t+ 1. Then

the expectation operator in Equation 13 can be written using Equation 3 as:
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1 = β
1−γ
1−θ ·

( n∑
j=1

Πijλ
1−γ
j ·

(1 + wj
wi

) 1−γ
1−θ
)
.

Reordering this expression gives the result.

�

B Appendix

Argentina Australia Austria Belgium Brazil Canada Chile
China Colombia Denmark Egypt Finland France Germany
Greece Iceland India Indonesia Italy Japan Korea
Mexico Malaysia Netherlands N.Z. Norway Peru Philippines

Portugal Russia S. Africa Singapore Spain Sri Lanka Sweden
Switzerland Taiwan Turkey U.K. Uruguay U.S.A. Venezuela

Table 16: List of countries included for the estimation of the consumption process

C Appendix

Table 17: No-disaster Markov chain

Π0 matrix To state 1 To state 2

From state 1 0.317 0.683

From state 2 0.131 0.869

Growth rates 11.57 % 0.113 %

Duration time 1.46 7.62

Stationary distr. 0.161 0.839

Note: The transition matrix, growth rates,
duration time (in years) and stationary dis-
tribution of the 2 state process estimated
on the disaster dataset — with two states
only, negative growth is not possible thus it
is referred to as the no-disaster calibration.
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Table 18: T0 = 10 summary

CRRA Epstein-Zin

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.2820 0.2576 -35.5 % 0.3262 0.2710 -36.3 %
Equity premium 1.12 % 0.0619 -46.5 % 1.37 % 0.0643 -46.9 %

Risk-free rate 1.85 % 0.0045 97.3 % 1.7 % 0.0050 95.7 %
P-D ratio 227.91 158.6209 30.3 % 199.08 136.8826 30.6 %

CRRA,fixed-window EZW,fixed-window

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.7290 0.4254 -71.1 % 0.8332 0.4152 -72.2 %
Equity premium 3.11 % 0.0519 -36.8 % 3.67 % 0.0511 -34.7 %

Risk-free rate 1.68 % 0.0044 96.9 % 1.32 % 0.0037 97.9 %
P-D ratio 33.73 4.3164 86.4 % 31.50 3.8376 85.4 %

Note: The summary statistics of the simulated financial series when the stochastic process is
taken as in Table 9 and Bayesian updating (first row) or fixed-window learning (second row)
is assumed with priors as in Table 10 for T0 = 10.

Table 19: T0 = 50 summary

CRRA Epstein-Zin

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.2642 0.0781 -26.5 % 0.3061 0.0841 -27.8 %
Equity premium 1.21 % 0.0508 -41.7 % 1.47 % 0.0525 -43.22 %

Risk-free rate 1.83 % 0.0040 99.5 % 1.7 % 0.0045 99.1 %
P-D ratio 104.29 25.5976 37.3 % 93.12 22.1637 38.25 %

CRRA,fixed-window EZW,fixed-window

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.3335 0.0714 -41.3 % 0.3518 0.0765 -43.7 %
Equity premium 0.9 % 0.0343 -28.8 % 1 % 0.0351 -30.6 %

Risk-free rate 1.83 % 0.0031 98.3 % 1.8 % 0.0036 97.7 %
P-D ratio 144.67 30.8452 46.8 % 136.12 29.3167 46.6 %

Note: The summary statistics of the simulated financial series when the stochastic process is
taken as in Table 9 and Bayesian updating (first row) or fixed-window learning (second row)
is assumed with priors as in Table 10 for T0 = 50.
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Table 20: T0 = 70 summary

CRRA Epstein-Zin

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.2434 0.0562 -26.2 % 0.2811 0.0604 -27.7 %
Equity premium 1.08 % 0.0480 -39.8 % 1.32 % 0.0497 -41.6 %

Risk-free rate 1.84 % 0.0039 99.7 % 1.72 % 0.0045 99.5 %
P-D ratio 111.74 22.0567 40.7 % 100.14 19.2585 41.76 %

CRRA,fixed-window EZW,fixed-window

Mean Std. dev. Cyclicality Mean Std. dev. Cyclicality

Sharpe ratio 0.2887 0.0489 -41.68 % 0.3065 0.0527 -44.33 %
Equity premium 0.8 % 0.0337 -28.1 % 0.9 % 0.0346 -30.1 %

Risk-free rate 1.85 % 0.0031 98.84 % 1.78 % 0.0036 98.5 %
P-D ratio 154.68 27.9229 48.8 % 144.94 26.5856 48.55 %

Note: The summary statistics of the simulated financial series when the stochastic process is
taken as in Table 9 and Bayesian updating (first row) or fixed-window learning (second row)
is assumed with priors as in Table 10 for T0 = 70.
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Figure 7: US baseline calibration with the true history
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