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Introduction

In this thesis it will be shown that many well known geometric and analytic inequalities,
namely the

Brunn-Minkowski inequality,

Prèkopa-Leindler inequality,

Minkowski inequality for mixed volumes,

Brascamp-Lieb inequality and the reverse Brascamp-Lieb inequality,

Gagliardo-Nirenberg-Sobolev inequality

can be proven in a similar way using one tool:

The Brenier map. This is a map from Rn to Rn derived from a convex potential
pushing forward one probability measure to another. It was shown by Brenier that
such a map exists always if the pair of measures satisfies some rather weak regularity
conditions.

The questions that led to the discovery of this map however, are not of the kind that
we are going to present here. Its origin lies in fact in a question by Gaspard Monge in
1781. He asked for the shortest way to displace an amount of soil from one place of the
Euclidean space to a heap of soil at another place.

A modern reformulation of this question known as Monge’s optimal transport prob-
lem can be stated as follows:
Given two probability measures µ and ν, find a map T pushing forward µ to ν that
minimises the integral ∫

c(x, T (x))dµ(x)

for some cost function c.

It turns out that the most simple case is the one where c is the square of the Euclidean
distance: In this case there is always a minimising map and it is the Brenier map.

In this thesis optimal transport will mostly be seen as a vehicle to construct the Brenier
map. We will not care that this monotone map minimises the cost of transportation but
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will rather make use of its analytic properties.

This work is structured as follows: In the first part, i.e. the Chapters 1 and 2, we will
introduce some basic notions about optimal transport and develop the main tools we
will need later.

In the second part we will give short introductions to the diverse geometric and analytic
inequalities we want to discuss, and we will give proofs for them that are related to
optimal transport.

To be more precise, Chapter 1 will introduce some basic notions about convex analysis
that we will need in later chapters.

Chapter 2 will detail Monge’s optimal transport problem and introduce a relaxed version
of it, called Kantorovich’s optimal transport problem. Limiting ourselves to the case of a
quadratic cost function we will sketch the proof of the Knott-Smith optimality criterion
and obtain Brenier’s theorem as a corollary.

For absolutely continuous measures we will deduce that the very useful Monge-Ampère
equation, a partial differential equation, linking the densities of these measures and the
Brenier map, holds almost everywhere.

This introduction will mostly follow Cedric Villani [17][especially Chapters 2 and 4].

In Chapter 3 we consider the Brunn-Minkowski inequality and its functional version, the
Prèkopa-Leindler inequality. We will give two direct proofs (from McCann [13], Barthe
[3] and Ball [2] respectively) using optimal transport for each inequality. This chapter
will also introduce the notions of McCann interpolation and displacement convexity.

In Chapter 4 we will further study the Minkowski sum of convex bodies, introducing the
notion of mixed volumes and giving a proof of the Minkowski inequality, using a method
introduced by S. Alesker, S. Dar and V. Milman [1].

In Chapter 5 the Brascamp-Lieb inequalities and their duals, the reverse Brascamp-Lieb
inequalities, will be considered and proved via the Brenier map. This was originally done
by Barthe [4]. A classification of optimisers by S. I. Valdimarsson [16] will be stated for
the Brascamp-Lieb inequalities.

In Chapter 6 it will be shown how optimal transport does not only allow us to proof
certain Sobolev inequalities, but also to obtain a classification of all their optimisers in
a rather simple way. These proofs closely follow an article by D. Cordero-Erausquin, B.
Nazaret and C. Villani [7].
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1 Background

In this first chapter we will introduce some results, which, although they are not directly
linked to optimal transportation, will be important for later proofs.

First we will state the well known arithmetic/geometric mean inequality and some con-
sequences of it for determinants of symmetric nonnegative matrices. These results can
also be found in [17][pages 156-157]. Nonnegativity of a symmetric matrix M here means
that all eigenvalues of M are greater or equal than zero or equivalently that xTAx ≥ 0
for all x ∈ Rn.

Theorem 1.1. The arithmetic/geometric mean inequality

(i) Let (xi)1≤i≤n and (ti)1≤i≤n be nonnegative real numbers satisfying
n∑
i=1

ti = 1.

Then (with the convention that 00 = 1),

n∑
i=1

ti · xi ≥
n∏
i=1

xtii .

(ii) Let A and B be two nonnegative symmetric n× n matrices and t ∈ [0, 1]. Then,

det(t ·A+ (1− t) ·B)
1
n ≥ t · det(A)

1
n + (1− t) · (det(B))

1
n

and det(t ·A+ (1− t) ·B) ≥ (det(A))t(det(B))1−t.

(iii) Let S be a symmetric matrix with all its eigenvalues less or equal than 1. Then
the function

t 7→ det(In − tS)
1
n

is concave for t ∈ [0, 1].

Remark 1.1. In the proof of Theorem 1.1 some well known facts about symmetric non-
negative matrices will be needed:

Let A and B be symmetric nonnegative matrices. Then the following statements hold:

(i) There exists a symmetric nonnegative matrix
√

(A) with A =
√

(A)
2
.
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(ii) The matrix ABA is itself symmetric nonnegative.

Proof. As A is symmetric it can be diagonalised by an orthogonal matrix O and a
diagonal matrix D with nonnegative entries:

A = OTDO = OT
√

(D)O ·OT
√

(D)O,

where
√
D =

√
(diag(t1, ..., tn)) = diag(

√
(t1), ...,

√
(tn)). Defining

√
(A) as OT

√
(D)O

finishes the proof of the first part.

Obviously ABA is symmetric as (ABA)T = ATBTAT = ABA. To prove nonnegativity
it suffices to show that xTABAx = (Ax)TB(Ax) ≥ 0 for all x ∈ Rn. This is obvious as
B is nonnegative.

Proof of the arithmetic/geometric mean inequality. (i) is a simple consequence of the
concavity of the logarithm.

To prove (ii) it will be sufficient to prove

(det(A+B))
1
n ≥ (detA)

1
n + (detB)

1
n

because of the n-homogeneity of the determinant.
As a first step we will prove this for regular matrices A. As A is symmetric nonnegative
it has an invertible symmetric nonnegative squareroot

√
(A).

By multiplying the inequality with det(
√

(A))−
1
n from both sides we obtain

(det(In +D))
1
n ≥ (det In)

1
n + (detD)

1
n (1.1)

with D =
√

(A)
−1 ·B ·

√
(A)
−1

. By Remark 1.1, D is symmetric nonnegative itself. As D
can be written as diag(t1, ..., tn) with ti > 0 with respect to an appropriate orthonormal
base, we can write (1.1) as(

n∏
i=1

(1 + ti)

) 1
n

≥ 1 +

(
n∏
i=1

ti

) 1
n

.

It follows from (i) that

1 =
1

n

∑ 1

1 + ti
+

1

n

∑ ti
1 + ti

≥
(∏ 1

1 + ti

) 1
n

+

(∏ ti
1 + ti

) 1
n

.

Multiplying this by (
∏

(1 + ti))
1
n finishes the proof for regular A.

If A is a not invertible, we can approximate it by regular matrices. Since det is contin-
uous, (ii) holds.
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The proof of (iii) is done by the following simple calculation using (ii):

det(In − λt1S − (1− λ)t2S)
1
n = det(λ(In − t1S) + (1− λ)(In − t2S))

1
n

≥ λ det(In − t1S)
1
n + (1− λ) det(In − t2S)

1
n .

Here the nonnegativity of In−tiS is a consequence of the assumption that all eigenvalues
of S are less than 1.

1.1 Lebesgue Density Theorem

In this section we will introduce derivatives of measures and proof a useful density
theorem by Lebesgue. This proof can be found in [15][Chapter 8].

To define the notion of a derivative of a measure we will introduce substantial families
of open sets:

Definition 1.1. A collection Ξ of open sets in Rn will be called a substantial family if
it satisfies the following conditions:

(i) There is some positive constant C < ∞ such that for all X ∈ Ξ there exists an
open ball B containing X with voln[B] < C voln[X].

(ii) For every ball B ⊂ Rn there is an X ∈ Ξ with X ⊂ B.

The first condition means essentially that sets that are small in volume also have to be
small in diameter. The second condition guarantees that there are enough sets.
The collections of all balls or all cubes are simple examples of substantial families.

Now we can define the derivative of a measure:

Definition 1.2. Let µ be a Borel measure on Rn. For every r > 0 and x ∈ Rn define

∆r(x) = inf

{
µ[X]

voln[X]
: x ∈ X ⊂ B(x, r), X ∈ Ξ

}
,

∆̄r(x) = sup

{
µ[X]

voln[X]
: x ∈ X ⊂ B(x, r), X ∈ Ξ

}
,

where Ξ is a given substantial family, and define the lower and upper derivative of µ by

(Dµ)(x) = lim
r→0

∆r(x) and (D̄µ)(x) = lim
r→0

∆̄r(x)

respectively.

We say that µ is differentiable at a point x ∈ Rn if the lower is equal to the upper
derivative and than we define its derivative as

(Dµ)(x) = (Dµ)(x) = (D̄µ)(x).
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Now our aim in this section is to prove the following theorem:

Theorem 1.2. Let µ = fdx + σ be a Borel measure on Rn, where fdx is the absolute
continuous and σ the singular part of µ. We assume further that µ is locally finite,
meaning that for every x ∈ Rn there is an open neighborhood Nx of x with µ[Nx] <∞.

Then µ is differentiable almost everywhere and the equation

f(x) = (Dµ)(x),

where (Dµ) is defined with respect to some substantial family Ξ, holds for almost all x.

The points satisfying this are called Lebesgue points of µ (or f).

For the proof we will need some lemmata. We begin with a covering lemma for substan-
tial families:

Lemma 1.3. Let Ξ be a substantial family in Rn and let Φ be a finite subcollection of Ξ.
Then there exists a subcollection Φ′ of Φ consisting of pairwise disjoint sets satisfying

voln

[⋃
Φ
]
≤ C · 3n · voln

[⋃
Φ′
]
.

Here C is the constant from the definition of substantial families.

Proof. We order the elements X1, X2, X3, ..., Xk of the collection Φ by their diameter in
decreasing order.
Let i1 = 1, let i2 be the smallest integer such that Xi2 is disjoint from Xi1 and then let
generally im be the smallest index such that Xim is disjoint from all Xip with 1 ≤ p < m.
Do this as long as it is possible to find such indices and let Φ′ = {Xi1 , Xi2 , ...}.

By definition, each Xip lies in some ball Bp satisfying

voln[Bp] < C voln[Xip ].

Now we observe that for each Xk there is some index ip ≤ k such that Xip intersects
Xk. As the diameter of Xk is smaller as that of Xip by our construction, Xk has to be
included in the ball 3Bp.
Thus we can calculate

voln

[⋃
Φ
]
≤ voln

[⋃
3Bp

]
≤ 3n · voln

[⋃
Bp

]
≤ C · 3n · voln

[⋃
Φ′
]

which completes the proof.

Lemma 1.4. If µ is a Borel measure, then D̄µ is measurable.
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Proof. We consider the functions ∆̄r as defined in Definition 1.2. As D̄µ is defined as a
limit of such functions it will be sufficient to show that these are measurable.

To do this we will prove that the sets {x : ∆̄(x)r > α} are measurable for all C > 0. If α
is such a number and x is some point with ∆̄r(x) > α, then there exists an X ∈ Ξ such
that x ∈ X ⊂ B where B is some ball with radius r and µ[X] > α voln[X]. It follows
that ∆̄r(y) > α for all y ∈ X and so {x : ∆̄(x)r > α} can be written as a union of open
sets and is as such open and therefore measurable itself.

Lemma 1.5. Let Ξ be a substantial family. Let µ be a positive Borel measure which is
finite on compact sets. Let A be a measurable set with µ[A] = 0. Then (Dµ)(x) = 0 for
almost all x ∈ A.

Proof. Let P be the set of all x for which (D̄µ)(x) > 0. By Lemma 1.4, P is measurable
and so is A ∩ P . So it is sufficient to show that voln[A ∩ P ] = 0.

We assume that this is false. Then there is a constant α > 0 and a Borel set Xα ⊂ A∩P
with voln[Xα] > 0 and (D̄µ)(x) > α. By the regularity of the volume we see that Xα

contains a compact subset K with voln[K] > 0.
Fix δ > 0. For each x ∈ K there is a set S ∈ Ξ such that diam(S) < δ and µ[S] >
α voln[S]. Since K is compact, there is a finite subcollection of these sets S covering K
and, by Lemma 1.3, there is a subcollection {S1, S2, ..., Sk} with the following properties:

1. All the Si are pairwise disjoint.

2. µ[Si] > α voln[Si].

3.
k∑
i=1

voln[Si] ≥ C−1 · 3−n · voln[K].

Let Kδ be the set of all points whose distance from K is less than δ. As Si ⊂ Kδ for all
i, we can calculate

µ [Kδ] ≥ µ

[
k⋃
i=1

Si

]
=

k∑
i=1

µ[Si] > α

k∑
i=1

voln[Si] ≥ α · C−1 · 3−n · voln[K]. (1.2)

Taking δ to be 1
m for n ≥ 1 we obtain µ[K] = lim

m→∞
K 1

m
as K is the intersection of the

decreasing sequence {K1,K 1
2
,K 1

3
, ...} and µ[K1] is finite.

Therefore, (1.2) implies that

0 = µ[A] ≥ µ[K] ≥ α · C−1 · 3−n · voln[K] > 0.

This contradiction shows that (D̄µ)(x) ≤ 0 almost everywhere and, as µ was positive,
(D̄µ)(x) = 0 almost everywhere, finishing the proof.
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Lemma 1.6. If µ is a singular Borel measure then (Dµ)(x) = 0 almost everywhere.

Proof. Without loss of generality we can assume that µ is positive. Since µ ⊥ voln there
is a Borel set A such that µ[A] = 0 and voln[Ac] = 0. Applying Lemma 1.5 finishes the
proof.

Now we are in a position to prove Lebesgue’s density theorem.

Proof of Theorem 1.2. By Lemma 6.7 and the Lebesgue decomposition theorem we need
only consider absolutely continuous measures µ. By the Radon-Nikodym theorem there
is a density f ∈ L1 with

µ[E] =

∫
E

f(x)dx

for all measurable sets E. It is therefore sufficient to prove that the equality

(Dµ)(x) = f(x)

holds almost everywhere. Let r be a rational number and define sets A and B by

A = {x : f(x) < r} and B = {x : f(x) ≥ r}.

Let λ[E] =
∫

E∩B
(f(x)− r)dx for all Borel sets E. For every E ∈ Ξ we obtain

µ[E]− r voln[E] =

∫
E

(f(x)− r)dx ≤ λ[E]

or, calculating the upper derivatives of both sides of these inequalities,

(D̄µ)(x)− r ≤ (D̄λ)(x).

Since (Dλ)(x) = 0 almost everywhere on A, we can conclude (using Lemma 1.5) that

(D̄µ)(x) ≤ r

almost everywhere.
Therefore, if Er = {x : f(x) < r < (D̄µ)(x)}, we have shown that Er is a null set. Since
{x : f(x) < (D̄µ)(x)} =

⋃
r∈Q

Er we obtain

f(x) ≥ (D̄µ)(x)

almost everywhere.
On the other hand, if we replace µ with −µ we can in the same way obtain that f(x) ≤
(Dµ)(x) almost everywhere. Combining these results finishes the proof.
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1.2 Some Facts About Convex Functions

In this section we will state without proof some results about convex functions, most of
them concerning (twice) differentiability of convex functions. These results can be found
in [14].

Convex Functions

Definition 1.3. A convex function φ on Rn is a function φ : Rn → R satisfying

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y)

for all x, y ∈ Rn and t ∈ [0, 1]. If ψ : Rn → R is a function, such that

ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y)

for all x, y ∈ Rn and t ∈ [0, 1], then it is called concave.

A convex function φ is automatically continuous and locally Lipschitz. Therefore, by
Rademacher’s theorem, its gradient ∇φ exists almost everywhere.

In order to deal with nondifferentiable points one defines the subdifferential ∂φ : Rn →
P(Rn) = {X ⊂ Rn} of a convex function φ by

y ∈ ∂φ(x) :⇔ φ(z) ≥ φ(x) + y · (z − x) ∀z ∈ Rn .

If φ is differentiable in x, the subdifferential coincides with the gradient, ∂φ(x) =
{∇φ(x)}.

Legendre Duality

Definition 1.4. For a convex function φ one defines its convex conjugate function, or
Legendre transformation φ∗ by

φ∗(y) = sup
x∈Rn

x · y − φ(x).

Obviously, for all x, y ∈ Rn,
x · y ≤ φ(x) + φ∗(y). (1.3)

If φ is lower semicontinuous then φ∗ is also lower semicontinuous and φ∗∗ = φ. (Legendre
duality).
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Theorem 1.7. Convex conjugate functions give us a characterisation of subdifferentials:

y ∈ ∂φ(x)⇔ x ∈ ∂φ∗(y).

Proof. The subgradient inequality φ(z) ≥ φ(x) + y · (z − x), which defines y ∈ ∂φ(x),
can be rewritten as

x · y − φ(x) ≥ z · y − φ(z) ∀z ∈ Rn .

Taking the supremum in z we get

x · y − φ(x) ≥ φ∗(y) and thus by (1.3), x · y − φ(x) = φ∗(y).

Using the Legendere duality this is the same as x · y − φ∗(y) = φ∗∗(x) and therefore we
obtain

x · y − φ∗(y) ≥ x · z − φ∗(z) ∀z ∈ Rn,

which can be rewritten as x ∈ ∂φ∗(y).

Second Differentiability

A convex function is twice differentiable almost everywhere in the interior of its domain.
This fact is known as Alexandrov’s theorem.

If x0 is a point where φ is twice differentiable then D2
A(φ(x0)) is invertible if and only if

φ∗ is twice differentiable in ∇φ(x0) and the following formula holds

D2
Aφ
∗(∇φ(x)) = (D2

Aφ(x))−1.

The second derivative D2
Aφ of the convex function φ can be interpreted as a rate of

volume distortion. More precisely:

Theorem 1.8. Let φ be a convex function which is twice differentiable at xo. Then

lim
r→0

voln[∂φ(Br(x0))]

voln[Br(x0)]
= detD2

Aφ(x0).

If D2
Aφ(x0) is invertible, then there is a sequence rk → 0 and there exist sequences of

balls (Bk)k∈N and (B′k)k∈N and a fixed constant C > 0 with

Bk ⊂ ∂φ(Brk) ⊂ B′k and
voln(Bk)

voln(B′k)
> C > 0.
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2 Optimal Transport

2.1 Monge’s Optimal Transportation Problem

This introduction to Monge’s problem will mostly follow [17].

Assume that we are given some goods we want to redistribute in a certain way. For
example we may have a pile of sand which we want to use to fill a hole.

Obviously such a process is not going to change the mass of our goods. Without loss of
generality we will normalize this mass to 1.

We shall model both the original configuration and the distribution we want to achieve
with probability measures on Rn. For any measurable subset A of Rn, µ[A] will give a
measure of how much of our goods is located in A, while ν[A] will measure the amount
that shall be in A.

For any given instance of this problem there may be many ways to achieve such a
redistribution. Each of these needs some effort, which will be modeled using a measurable
cost function c.

The question is now the following:

How to realize the redistribution with minimal effort.

In more technical terms, given two probability measures µ and ν and a measurable cost
function c : Rn×Rn → R we want to minimize

I[T ] =

∫
X

c(x, T (x))dµ

over all T : Rn → Rn with ν = T#µ, where T#µ denotes the push-forward measure
defined by T#µ[X] = µ[T−1(X)].

This question can be ill-posed as there may be no maps T satisfying ν = T#µ.
Consider for example the case that µ is a Dirac measure, while ν is not.

On the other hand, even if such maps T do exist, there may not be a unique minimizer
for I[T ], as shown by the following example.
Let µ = 1

2(δ1 + δ2) and ν = 1
2(δ2 + δ3) where δa denotes the Dirac measure concentrated
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in a.
Obviously, there are two T satisfying the conditions of our problem.

T1(x) =

{
2 x = 1,
3 x = 2,

T2(x) =

{
3 x = 1,
2 x = 2.

Let the cost function c be defined by c(x, y) = |x− y|. Then a simple calculation shows
that I[T1] = I[T2] = 1.

In the following we will only consider measures µ and ν that do not give measure to small
sets, where “small sets” shall be sets with Hausdorff measure zero, and the quadratic
cost function c(x, y) = |x− y|2.

As we will see in the following sections, these assumptions will guarantee the existence
of a unique solution to Monge’s problem.

2.2 Kantorovich’s Reformulation of Monge’s Problem

As mentioned before, Monge’s problem may not always have a solution, for example
there may not even be a map T with ∇T#µ = ν.

Therefore we will loosen the restrictions on solutions of our optimal transport problem:
We will allow mass from a point x ∈ Supp(µ) to be split up while being transported to
Supp(ν).

To achieve this a way of transportation will now be modelled by a probability measure
π, a so called admissible transference plan, on the product space Rn×Rn. Informally,
π(x, y) measures the amount of mass that is transported from x to y. Obviously for this
to make sense, the mass taken from a location x must coincide with µ(x) and the mass
transported to a location y must coincide with ν(y).

More precisely:

Definition 2.1. Given two probability measures µ and ν on Rn an admissible trans-
ference plan is a probability measure on Rn×Rn satisfying

π[A× Rn] = µ[A] and π[Rn×B] = ν[B]

for all measurable subsets A and B.
Let Π(µ, ν) be the set of all such probability measures.

The set Π(µ, ν) is always nonempty since it contains at least the product measure µ×ν.

Given two probability measures µ and ν and a measurable cost function c, Kantorovich’s
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optimal transportation problem is now to minimize

I[π] =

∫
Rn×Rn

c(x, y)dπ(x, y)

for π ∈ Π(µ, ν).

Remark 2.1. Let T be a map pushing µ forward to ν. If we define π = (Id×T )#µ,
then π is an admissible transference plan as

π[A× Rn] = µ[(Id×T )−1(A× Rn)] = µ[A]

and
π[Rn×B] = µ[(Id×T )−1(Rn×B)] = µ[T−1(B)] = T#µ[B] = ν[B].

Using the push-forward formula we can also calculate

I[T ] =

∫
Rn

c(x, T (x))dµ(x) =

∫
Rn

[c ◦ (Id×T )](x)dµ(x) =

∫
Rn×Rn

c(x, y)d(Id×T )#µ = I[π].

Thus, Kantorovich’s problem is indeed a relaxed version of Monge’s problem.

For this more general problem a solution always exists in the case of the quadratic cost
function. To prove this we will need Prokhorov’s theorem:

Theorem 2.1. Prokhorov Let (X, T ) be a topological space and let M be a set of
probability measures defined on the Borel σ-algebra of X. Then the following statements
are equivalent:

1. M is tight, that means for every ε > 0 there is a compact set K such that π[X\K] <
ε for all π ∈M .

2. M is sequentially compact in the space of probability measures equipped with the
topology of weak convergence.

A proof of this theorem can be found in [8][Chapter 8].

Theorem 2.2. For c = |x− y|2 the Kantorovich optimal transportation problem admits
a minimizer.

Proof. As a first step we will show that Π(µ, ν) is sequentially compact. Let ε > 0 be
given, and let K,L ⊂ Rn be such that

µ[Rn \K] < ε and µ[Rn \L] < ε.

Then

π[(Rn×Rn)\(K×L)] ≤ π[Rn×(Rn \L)]+π[(Rn \K)×Rn] = ν[Rn \L]+µ[Rn \K] < 2ε.
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So Π(µ, ν) is tight and therefore sequentially compact.

Let (πk)k∈N be a minimizing sequence and let π be a cluster point of this sequence. Then
π is also an element of Π(µ, ν). We write the cost function c = |x−y|2 as the supremum
of a nondecreasing sequence of continuous bounded functions cl. Then we obtain, using
the monotone convergence theorem,∫

|x− y|2dπ(x, y) = lim
l→∞

∫
cl(x, y)dπ(x, y)

≤ lim
l→∞

lim sup
k→∞

∫
cl(x, y)dπk(x, y)

≤ lim sup
k→∞

∫
|x− y|2dπk(x, y) = inf

p∈Π(µ,ν)
I[p].

So π is a minimizer.

2.3 The Brenier Map

As we have seen above there is always a solution to Kantorovich’s optimal transportation
problem for a quadratic cost function.
In this section our aim will be to show that such a solution π has to have a special kind
of structure, namely its support has to be included in the graph of the subdifferential of
a convex function φ on Rn.
As such a convex function is in fact differentiable outside a small set, we will in fact
be able to show that such a solution is also a solution in the stronger sense of Monge’s
transportation problem if the measure µ does not give mass to such sets.

The tool we will use to connect optimal transport with convexity is the notion of cyclical
monotonicity:

Definition 2.2. Cyclical monotonicity. A subset Γ ⊂ Rn×Rn is cyclically mono-
tone if it satisfies the following condition: For all m ∈ N and for all (x1, y1), ..., (xm, ym) ∈
Γ,

m∑
i=1

|xi − yi|2 ≤
m∑
i=1

|xi − yi−1|2,

where y0 = ym.

In the following we will prove that the support of an optimal transference plan has to be
cyclically monotone and that a cyclically monotone set has to be included in the graph
of the subdifferential of a convex function.

Theorem 2.3. Let µ and ν be two probability measures on Rn and let π ∈ Π(µ, ν) be
optimal in the Kantorovich problem of mass transference between µ and ν with quadratic
cost function c(x, y) = |x− y|2. Then the support of π is cyclically monotone.
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Sketch of proof. Let π be optimal. Assume that the support of π is not cyclically mono-
tone, that is, there are points (x1, y1), ..., (xm, ym) in the support of π with

m∑
i=1

|xi − yi|2 >
m∑
i=1

|xi − yi−1|2.

Consider balls Bi centered at (xi, yi) respectively, each carrying a small mass ε of the
measure π. Let the translated balls B̃i be defined by Bi+(0, yi−1−yi). Define a measure
π̃ in the following way:

π̃[X] = π[X]−
∑

π[(X ∩Bi)] +
∑

π[(X ∩ B̃i)− (0, yi−1 − yi)].

This means we shifted the mass carried by the Bi along the second axis.
Let µ̃ and ν̃ be the marginals of π̃. Obviously µ̃ is equal to µ as there was no change
concerning the first axis. ν̃ on the other hand is approximately equal to ν, because the
measure removed at each yi by the removal of the measure carried by Bi is compensated
by the measure of Bi+1. On the other hand calculating∫

Rn×Rn

|x− y|2d(π̃ − π) = −
m∑
i=1

∫
Bi

|x− y|2dπ +

m∑
i=1

∫
Bi

|x− (y − yi + yi−1)|2dπ

≈ −
m∑
i=1

∫
Bi

|xi − yi|2dπ +
m∑
i=1

∫
Bi

|xi − (yi − yi + yi−1)|2dπ

= ε

(
−

m∑
i=1

|xi − yi|2i+

m∑
i=1

|xi − yi−1|2
)
< 0

shows that π̃ is in fact a better transference plan than π, which we assumed to be
optimal.
Of course this proof is not rigorous, because π̃ is only nearly a member of Π[µ, ν].

Theorem 2.4. Rockafellar’s theorem A nonempty subset Γ ⊂ Rn×Rn is cyclically
monotone if and only if it is included in the (graph of the) subdifferential of a proper
convex lower semicontinuous function φ on Rn. Maximal cyclically monotone subsets
with respect to inclusion are exactly the subdifferentials of such functions.

Proof. Let φ be a convex function and let (xi, yi) ∈ Graph(∇φ) for 1 ≤ i ≤ m, where
m ∈ N. By definition, this means that

φ(z) ≥ φ(xi) + yi · (z − xi)

for all z ∈ Rn, and therefore

φ(x2) ≥ φ(x1) + y1 · (x2 − x1)

φ(x3) ≥ φ(x2) + y2 · (x3 − x2)

...

φ(x1) ≥ φ(xm) + ym · (x1 − xm).
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Summing up these inequalities, we find that∑
φ(xi) ≥

∑
φ(xi) +

∑
yi · (xi+1 − xi)

with the convention that xm+1 = x1. This is of course equivalent to

0 ≥ 2
∑

yi · xi+1 − 2
∑

yi · xi = −
(∑

xi+1 · xi+1 − 2
∑

yi · xi+1 +
∑

yi · yi
)

+
(∑

xi · xi − 2
∑

yi · xi +
∑

yi · yi
)

= −
m∑
i=1

|xi − yi−1|2 +

m∑
i=1

|xi − yi|2,

and so Graph(∇φ) and all of its subsets are cyclically monotone.

Now let Γ ∈ Rn×Rn be cyclically monotone and let (x0, y0) ∈ Γ. Define a function φ
by

φ(x) = sup{ym · (x− xm) + ym−1 · (xm − xm−1) + ...+ y0 · (x1 − x0)

: m ∈ N and (xi, yi) ∈ Γ}.

As a supremum of affine functions, φ is a convex function. Also, φ(x0) ≤ 0 by cyclical
monotonicity and so, φ is proper.

Now we only have to prove that γ is indeed included in the subdifferential Graph(∂φ):
For (x, y) ∈ Γ we have to check that

φ(z) ≥ φ(x) + y · (z − x)

for all z ∈ Rn. It suffices to check that

φ(z) ≥ α+ y · (z − x) (2.1)

for all α < φ(x). If α < φ(x), then there exist m and (xi, yi) such that

α ≤ ym · (x− xm) + ym−1 · (xm − xm−1) + ...+ y0 · (x1 − x0)

or equivalently

α+ y · (z − x) ≤ y · (z − x) + ym · (x− xm) + ym−1 · (xm − xm−1) + ...+ y0 · (x1 − x0).

By setting x = xm+1 and y = ym+1 and applying the definition of φ, we obtain (2.1).

Combining these two last results we get as a corollary the Knott-Smith optimality
criterion: If π ∈ Π(µ, ν) is optimal, then there exists a convex function φ such that

Supp(π) ⊂ Graph(∂φ)

or equivalently:
y ∈ ∂φ(x) for π-almost all (x, y)

Finally we can now prove Brenier’s theorem:
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Theorem 2.5. Let µ and ν be probability measures and consider the optimal transporta-
tion problem with the quadratic cost function c(x, y) = |x− y|2. If µ does not give mass
to small sets, then there is an optimal π given by

π = (Id×∇φ)#µ,

where ∇φ is the gradient of a convex function which pushes µ forward to ν: ∇φ#µ = ν.

We shall refer to this mapping ∇φ as the Brenier map pushing µ forward to ν.

Proof. We already know that an optimal π exists and that its support is included in
the graph of the subdifferential of a function φ, or in other words that y ∈ ∂φ(x) for
π-almost all (x, y). Outside of a Lebesgue null set this means that y = ∇φ(x) and as µ
does not give mass to such a set this equation holds µ-almost everywhere and as such
also π almost everywhere.

2.4 The Monge-Ampère Equation

Let µ and ν be two probability measures with densities f and g. As we know from the
last section there exists a convex function φ with ∇φ#µ = ν. This means that we can
use the push-forward formula to obtain∫

ζ(y)g(y)dy =

∫
ζ(∇φ(x))f(x)dx.

for all bounded continuous functions ζ.

From now on we will assume that ∇φ is a differentiable function that is also one-to-one.
Then we can use the change of variable formula to obtain∫

ζ(y)g(y)dy =

∫
ζ(∇φ(x))g(∇φ(x)) detD2(φ(x))dx.

Combining the last two equations we get∫
ζ(∇φ(x))f(x)dx =

∫
ζ(∇φ(x))g(∇φ(x)) detD2(φ(x))dx.

Since ζ was arbitrary, we obtain the Monge-Ampère equation

f(x) = g(∇φ(x)) detD2(φ(x))dx

This formulation of measure transportation will be very useful for the geometric appli-
cations in the remaining chapters.

Our goal in this section is to obtain this equation without assuming smoothness of the
transportation map ∇φ.
Before stating the main result we need one more definition:
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Definition 2.3. Hessian measure The Hessian measure associated with φ, denoted by
detH D

2φ, is defined by

detHD
2φ[E] = voln[∂φ(E)] = voln [{∂φ(x)|x ∈ E}]

for any Borel measurable set E ⊂ Rn.

Theorem 2.6. The Monge-Ampère equation Let µ and ν be absolutely continuous
measures with densities f and g respectively, and let φ be a convex function with ∇φ#µ =
ν.
Let detD2

Aφ be the determinant of the Hessian of φ in the Aleksandrov sense, i.e. defined
almost everywhere, and let detD2

Aφdx denote the measure with density detD2
Aφ.

Let M be the set of points where D2
A is defined and invertible.

Then the following statements hold:

(i) M is of full measure for µ and ∂φ(M) is of full measure for ν.

(ii) The measure with density detD2
A(φ) is the absolute continuous part of the Hes-

sian measure detH D
2(φ). It is concentrated on M and satisfies the push-forward

formula
∇φ#[detD2

Aφdx] = χ∂φ(M)dx.

(iii) For almost all x ∈ Rn the Monge-Ampère equation

detD2
Aφ(x)g(∇φ(x)) = f(x) (2.2)

holds.

(iv) For all nonnegative measurable functions U on R+ with U(0) = 0,∫
Rn

U(g(y))dy =

∫
Rn

U

(
f(x)

detD2
Aφ(x)

)
detD2

Aφ(x)dx. (2.3)

The main tool in the proof of this theorem will be the density theorem of Lebesgue.

The next result will allow us to identify the absolute continuous part of the Hessian
measure detH D2φ(x).

Theorem 2.7. Let φ be a convex function. Let detH D
2φ(x) denote the Hessian measure

associated with φ and let detD2
Aφ(x) denote the determinant of the Hessian.

Then detD2
Aφ(x)dx is the absolute continuous part of detH D

2φ(x) and detH D
2φ(x) is

locally finite.

Proof. It is a consequence of the convexity of φ that for any compact set K,

detHD
2φ[K] = voln[∂φ(K)] <∞,
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and, therefore, the Hessian measure is locally finite and we may apply Lebesgue’s density
theorem. Applying Theorem 1.8 we obtain

lim
r→0

detHD
2φ[Br(x)]

voln[Br(x)]
= lim

r→0

voln[∂φ(Br(x))]

voln[Br(x)]
= detD2

Aφ(x)

for almost all x. An application of Lebesgue’s density theorem finishes the proof.

Another tool in the proof will be the following lemma, which expresses the push-forward
measure ∇φ#µ in terms of the subdifferential ∂φ.

Lemma 2.8. Let φ be a convex function and let µ and ν = ∇φ#µ be absolutely contin-
uous probability measures. Denote by f and g the respective densities of µ and ν. Then
for all Borel sets A ⊂ Rn,

∇φ#µ[A] = µ[∂φ∗(A)] and

∫
∂φ(A)

g(y)dy =

∫
A

f(x)dx. (2.4)

Proof. Since ∇φ#µ[A] = µ[(∇φ)−1(A)] by the definition of the push-forward, the first
equation is equivalent to µ[(∇φ)−1(A)] = µ[∂φ∗(A)].
Its a general property of convex functions that x ∈ ∂φ∗(y) is equivalent to y ∈ ∂φ(x) (=
{∇φ(x)} if ∇φ(x) exists). Therefore x ∈ (∇φ)−1(y)⇒ ∇φ(x) = y ⇒ x ∈ ∂φ∗(y) and so
(∇φ)−1(A) ⊂ ∂φ∗(A).
It will suffice to prove that the difference

Z = [∂φ∗(A)]− [(∇φ)−1(A)]

is a set with zero Lebesgue measure, because then,

µ[∂φ∗(A)] = µ[(∇φ)−1(A)] + µ[Z] = µ[(∇φ)−1(A)]

as µ[Z] = 0 because µ is absolutely continuous.

Let x ∈ ∂φ∗(A). Obviously there is a y ∈ A with x ∈ ∂φ∗(y) or equivalently y ∈ ∂φ(x).
If x is a differentiability point of φ then ∂φ(x) = {∇φ(x)} and so y = ∇φ(x). Therefore
x ∈ (∇φ)−1(y) ⊂ (∇φ)−1(A).
Hence Z is included in the set of points where φ is not differentiable. As this set has
zero Lebesgue measure, Z has zero Lebesgue measure and the proof of the first equation
is complete.

To prove the second equation, recall that µ = ∇φ∗#ν. Therefore, by applying the first
equation on φ∗ instead of φ and using the push-forward formula∫

A

1dµ =

∫
∇(φ∗)−1(A)

1dν =

∫
∂φ(A)

1dν,

finishing the proof of the second equation as f and g are the densities of µ and ν.
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With these tools at hand we can finally give the proof of the Monge-Ampère equation.

Proof of Theorem 2.6 . Recall from Section 1.2 that D2
Aφ(x) is invertible if and only if

D2
Aφ
∗(y := ∇φ(x)) is defined.

This implies that if D2
Aφ(x) is not invertible, then x is included in ∂φ∗(y), where y is

included in the set of points where D2
Aφ
∗ does not exist. We denote this set by C. By

Alexandrov’s theorem C has zero Lebesgue measure.

Using Lemma 2.8 we see that

µ[M c] ≤ µ[∂φ∗(C)] = ∇φ#µ[C] = ν[C] = 0

as we assumed that ν is absolutely continuous.

Obviously this means that µ[M ] = 1 and ν[∂φ(M)] = ∇φ∗#ν[M ] = µ[M ] = 1 by
another application of Lemma 2.8. This finishes the proof of (i).

The first part of (ii) has already been proven in Theorem 2.7. As detD2
Aφ(x) is zero

outside of M it is clear that detD2
Aφ(x)dx is concentrated on M .

To complete the proof of (ii) we will show first that ∇φ#(detD2
Aφ(x)dx) is absolutely

continuous. Consider a subset A of ∂φ(M) with zero Lebesgue measure. Then

∇φ#(detD2
Aφ(x)dx)[A] = detD2

Aφ(x)dx[(∇φ)−1(A)]

≤ detHD
2φ(x)dx[(∇φ)−1(A)] = voln[∂φ((∇φ)−1(A)]

= voln[∇φ((∇φ)−1(A)] = voln[A] = 0.

To finish the proof of (ii) we have to show that the density of ∇φ#(detD2
Aφ(x)dx) is

equal to one almost everywhere on ∂φ(M). To do this we use Lebesgue’s density theorem
again:
Let y ∈ ∂φ(M). Then there is an x ∈M with ∇φ(x) = y. Recall from Section 1.2 that

lim
r→0

voln[∂φ∗(Br(y))]

voln[Br(y)]
= detD2

Aφ
∗(y) = detD2

Aφ
∗(∇φ(x)) =

1

detD2
Aφ(x)

.

Using the second part of Theorem 1.8 we see that there is a sequence rk → 0 such that
we can apply Lebesgue’s density theorem on the measure detD2

Aφ(x)dx and the sets
Ck = ∂φ∗(Br(y)). Doing this,

lim
k→∞

detD2
Aφ(x)dx[∂φ∗(Br(y))]

voln[∂φ∗(Br(y))]
= detD2

Aφ(x).

Multiplying these two limits and using Lemma 2.8 again, we find

lim
k→∞

detD2
Aφ(x)dx[∂φ∗(Br(y))]

voln[Br(y)]
= lim

k→∞

∇φ#(detD2
Aφ(x)dx)[Br(y)]

voln[Br(y)]
= 1.
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Using Lebesgue’s density theorem finishes the proof.

Let A ⊂ Rn be a Borel set. Using (ii) and the push-forward formula, we obtain∫
∂φ(A)

g(y)dy =

∫
∂φ(M)

χ∂φ(A)(y)g(y)dy =

∫
M

χ∂φ(A)(∇φ(x))g(∇φ(x)) detD2
Aφ(x)dx.

For the integrand to be non zero, ∇φ(x) has to be an element of ∂φ(A). This means
there is a y ∈ A with y ∈ ∂φ∗(∇φ(x)). As x is an element of M , the second derivative
D2
Aφ(x) is invertible, and so φ∗ is actually twice differentiable at ∇φ(x) and therefore

y ∈ ∂φ∗(∇φ(x)) = {∇φ∗(∇φ(x))} = {x}.

So we find that x = y and x ∈ A. If, on the other hand, we assume that x ∈ A, then
clearly

{∇φ(x)} = ∂φ(x) ⊂ ∂φ(A).

Thus, we see that x ∈ A and ∇φ(x) ∈ ∂φ(A) are equivalent and, therefore, we can write∫
∂φ(A)

g(y)dy =

∫
M

χA(x)g(∇φ(x)) detD2
Aφ(x)dx.

Using the fact that detD2
Aφ(x)dx is concentrated on M we deduce∫

∂φ(A)

g(y)dy =

∫
A

g(∇φ(x)) detD2
Aφ(x)dx.

By Lemma 2.8 part (ii), we find that∫
A

f(x)dx =

∫
A

g(∇φ(x)) detD2
Aφ(x)dx.

Since A is an arbitrary measurable set, this concludes the proof of (iii).

From (ii) we know that∫
∂φ(M)

U(g(y))dy =

∫
M

U(g(∇φ(x)) detD2
Aφ(x)dx

and by (iii) we can write

g(∇φ(x)) =
f(x)

detD2
Aφ(x)

for almost all x ∈M . Combining these two statements we find that∫
∂φ(M)

U(g(y))dy =

∫
M

U

(
f(x)

detD2
Aφ(x)

)
detD2

Aφ(x)dx.
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Since detD2
Aφ(x)dx is concentrated on M , we can extend the integral on the right–hand

side to Rn. Since ν = g(x)dx is concentrated on ∂φ(M), we know that g(z) = 0 for
almost all z ∈ (∂φ(M))c. Therefore U(g(z)) = 0 almost everywhere outside of ∂φ(M)
and we can also extend the left–hand side integral.
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3 The Brunn-Minkowski and
Prèkopa-Leindler Inequality

3.1 The Brunn-Minkowski Inequality

Let A and B be subsets of Rn. Then the Minkowski sum A + B is defined as the
set {a+ b|a ∈ A, b ∈ B}. The Brunn-Minkowski inequality gives a lower bound for the
volume of the Minkowski sum of two sets.

Theorem 3.1. The Brunn-Minkowski Inequality Let A and B be non-empty com-
pact sets in Rn. Then the following inequality holds

voln[(1− t) ·A+ t ·B]
1
n ≥ (1− t) · voln[A]

1
n + t · voln[B]

1
n

for all t ∈ [0, 1].

Remark 3.1. The compactness of A and B implies that A+B is also a compact set and
therefore a Borel set.

An eloborate introduction to this topic is given in [10].

First we will give an equivalent, dimension free formulation of the Brunn-Minkowski
inequality. Although this inequality is formally weaker than the Brunn-Minkowski in-
equality for fixed A,B and t, it is equivalent to Theorem 3.1 if it holds for all A,B and
t.

Theorem 3.2. The Multiplicative Version of the Brunn-Minkowski Inequality
Let A and B be non-empty compact Sets in Rn. Then the following inequality holds

voln[(1− t) ·A+ t ·B] ≥ voln[A]1−t · voln[B]t (3.1)

for all t ∈ [0, 1].

Lemma 3.3. The Brunn-Minkowski inequality holds if and only if Theorem 3.2 holds.

Proof of Lemma 3.3. We can show that the Brunn-Minkowski inequality implies its mul-
tiplicative form by a simple application of the arithmetic/geometric mean inequality:

voln[(1− t) ·A+ t ·B]
1
n ≥ (1− t) · voln[A]

1
n + t · voln[B]

1
n ≥ voln[A]

1−t
n · voln[B]

t
n
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which is obviously equivalent to inequality (3.1)

To proof the other implication let A′ = voln[A]−
1
n ·A and B′ = voln[B]−

1
n ·B. Then by

(3.1)
voln[(1− t)A′ + tB′] ≥ voln[A′]1−t voln[B′]t = 1 (3.2)

for every t ∈ [0, 1] as the volume of A′ and B′ is 1. Let t ∈ [0, 1] and let

t′ =
t · voln[B]

1
n

(1− t) · voln[A]
1
n + t · voln[B]

1
n

.

Then we get

(1− t′) ·A′ + t′ ·B′ = (1− t) ·A+ t ·B
(1− t) · voln[A]

1
n + t · voln[B]

1
n

.

If we take the volume of both sides of this equation and use (3.2) we see that

1 ≤ voln

(
(1− t) ·A+ t ·B

(1− t) · voln[A]
1
n + t · voln[B]

1
n

) 1
n

and finally the n-homogeneity of the n-dimensional volume implies the Brunn-Minkowski
inequality.

An important implication of the Brunn-Minkowski inequality is the isoperimetric in-
equality.

Theorem 3.4. Let X be a compact set and let Bn denote the n-dimensional unit Ball.
Then (

voln-1[∂X]

voln-1[∂Bn]

) 1
n−1

≥
(

voln[X]

voln[Bn]

) 1
n

.

In other words, among all compact sets the sphere has the highest volume to surface area
ratio.

Proof. Let Bε denote a Ball with radius ε > 0 centered at 0. Then we can calculate

voln-1[∂X] = lim inf
ε→0

voln[X +Bε]− voln[X]

ε
. (3.3)

Applying the Brunn-Minkowski inequality with Y = Bn we find

voln[X +Bε]
1
n − voln[X]

1
n ≥ voln[Bε]

1
n = ε voln[Bn]

1
n . (3.4)

Dividing this by ε and passing to the lim inf on the left hand side we obtain

voln[Bn]
1
n ≤ lim inf

ε→0

voln[X +Bε]
1
n − voln[X]

1
n

ε

= lim
ε→0

voln[X +Bε]
1
n − voln[X]

1
n

voln[X +Bε]− voln[X]
· lim inf

ε→0

voln[X +Bε]− voln[X]

ε
.
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Using now the fact that the left factor is a differential quotient and (3.3) we further get

voln[Bn]
1
n ≤ 1

n
voln[X]

1
n
−1 voln-1[∂X].

With voln[Bn] = 1
n voln-1[∂Bn] we finally see that

voln[Bn]
1
n
−1 voln-1[∂Bn] ≤ voln[X]

1
n
−1 voln-1[∂X].

thus finishing the proof.

There are many known proofs of the Brunn-Minkowski inequality. In the following
sections we will give two proofs using optimal transport, the first one can be found in
[2], the second one in [17][Chapter 5].

3.1.1 A First Proof Using Optimal Transport

Using the Brenier map we can give a first proof of the Brunn-Minkowski inequality. It
is noteworthy that the proof does not depend on the optimality of the Brenier map in
the sense of the Monge-Kantorovich problem, but only on its analytic properties.

A first proof of the Brunn-Minkowski inequality. Without loss of generality we may as-
sume that both A and B have finite non-zero measure. Let µ and ν be the uniform
probability measures on A and B, respectively. Let T be the Brenier map transporting
µ to ν and let Tt be the map given by

x 7→ (1− t)x+ tT (x).

This map transports the measure µ to a probability measure supported on (1− t)A+ tB.
Let ft be the density of this measure.

If we could prove that ft is bounded from above almost everywhere, say by a constant
C, than C · voln((1− t)A+ tB) would have to be greater or equal than 1 because ft is a
probability measure. Of course we can also write this as

voln((1− t)A+ tB) ≥ 1

C
. (3.5)

In particular, to prove the multiplicative version of the Brunn-Minkowski inequality it
is now sufficient to show that we can choose C to be 1

voln(A)1−t voln(B)t
.

By Theorem 2.6, the densities 1
voln(A) ,

1
voln(B) , ft satisfy the Monge-Ampère equations

1

voln(A)
= ft(Tt(x)) · det(T ′t(x)), (3.6)

1

voln(A)
=

1

voln(B)
· det(T ′(x)) (3.7)
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almost everywhere.

Using these, the inequality (3.5) with C = 1
voln(A)1−t voln(B)t

will follow from

det(T ′t(x)) ≥
(
vol(B)

vol(A)

)t
= (det(T ′(x))t

which, simply by the definition of ft, is equivalent to

det((1− t)I + tT ′(x)) ≥ (det(T ′(x))t. (3.8)

As T ′(x) is the Hessian of a convex function by Brenier’s Theorem 2.5, and therefore
symmetric and nonnegative, it is a diagonal matrix with respect to an appropriate or-
thonormal basis, say diag(t1, t2, ..., tn) with ti > 0. Therefore we can rewrite the last
inequality as

n∏
i=1

(1− t+ t · ti) ≥
n∏
i=1

tti.

But this follows directly from the arithmetic/geometric mean inequality, because we can
obtain 1− t+ t · ti ≥ tti for each ti.

3.1.2 A Second Proof by Displacement Convexity

Displacement Convexity

Our formulation of the Monge problem depends only on the starting and the end point
of the transportation process. One can also take the whole history of the transportation
process into account:
To each point x ∈ Rn we will associate a trajectory (Ttx) for t ∈ [0, 1] and a correspond-
ing cost C(Ttx). This leads to the following time dependent reformulation of Monge’s
problem:

Time Dependent Version of Monge’s Problem

We want to minimize

I∗[Tt] =

∫
X

C(Ttx)dµ,

where T0 = Id and T1#µ = ν.

As we considered only the quadratic cost function c(x, y) = |x − y|2 in the original

formulation, we will only consider the quadratic cost C(Ttx) =
1∫
0

|Ṫtx|2dt in this problem.
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These two problems are then equivalent in the sense that a solution Tt for the time
dependent problem gives rise to a solution T of the original problem T , via T = T1.

Proof. Jensen’s inequality implies that

C(Ttx) =

1∫
0

|Ṫtx|2dt ≥

∣∣∣∣∣∣
1∫

0

Ṫtxdt

∣∣∣∣∣∣
2

= |T0(x)− T1(x)|2 = |x− T1(x)|2 = c(x, T1(x))

and for Tt(x) = tx+ (1− t)y we get C(Tt(x)) =
1∫
0

|x− y|2dx = c(x, y).

Therefore an optimizer Tt of the time dependent problem has to be of the form t Id +(1−
t)T for some T with T#µ = ν and for such an optimizer I∗[Tt] = I[T ] holds.

Assume that T1 = T is not an optimizer of the original problem. This would imply
the existence of a map T ′ with I∗[Id +(1 − t)T ′] = I[T ′] < I[T ] = I[Tt]. As Tt was an
optimizer this is a contradiction.

These arguments together with the existence of the Brenier map imply that McCann’s
interpolation as defined below is the solution of our time dependent problem.

Definition 3.1. McCann’s Interpolation Let µ and ν be two probability measures
that do not give mass to small sets. Let ∇φ be the transportation map with ∇φ#µ = ν.
Define

ρt = [µ, ν]t = ((1− t) Id +t∇φ)#µ.

This family of probability measures interpolates between µ and ν and [µ, ν]0 = µ and
[µ, ν]1 = ν.
If F is a functional on the space of probability measures P then we can study its behavior
on [µ, ν]t as t varies in [0, 1]. Is, for example, F ([µ, ν]t) convex as a function of t?

Definition 3.2. A functional F on P is called displacement convex if for all ρ0, ρ1 in
P, t→ F (ρt) is convex on [0, 1] where ρt = [ρ0, ρ1].

The following Lemma will show the displacement convexity of a class of functionals.

Lemma 3.5. Let U(ρ) =
∫
Rn

U(ρ(x))dx for U measurable R+ → R ∪ {+∞}. Let Ψ be

defined by Ψ : r 7→ rn · U(r−n).

Then U is displacement convex if U(0) = 0 and Ψ is convex nonincreasing on (0,+∞).

Before we give the proof of this lemma, we will prove a result about the convexity of
composite functions.
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Lemma 3.6. Let f be concave function and let g be a convex nonincreasing function.
Then g ◦ f is also convex.

Proof. As f is concave the following inequality holds for all λ ∈ [0, 1]:

f(λx+ (1− λy)) ≥ λf(x) + (1− λf(y)).

Using that g is nonincreasing and convex we obtain that

g(f(λx+ (1− λy))) ≤ g(λf(x) + (1− λf(y))) ≤ λg(f(x)) + (1− λg(f(y)))

which completes the proof.

Proof of Lemma 3.5. Let µ and ν be probability densities. We consider the interpolant
ρt = [µ, ν] = [(1− t) Id +t∇φ]#µ.

As a consequence of 2.6(iv), we can write

U(ρt) =

∫
Rn

U

(
ρ(x)

det(In − t(In −D2
Aφ(x)))

)
det(In − t(In −D2

Aφ(x)))dx.

The integrand can be written as a composition of the two following maps.

t 7→ r = det(In − tS)
1
n

r 7→ rn · U(r−nρ(x))

where S = In −D2
Aφ.

As the first mapping is concave by Theorem 1.1(iii) and the second nonincreasing convex
by our assumptions, their composition is – by Lemma (3.6) – convex and so U(ρ) is
displacement convex.

Remark 3.2. In the following proof of the Brunn-Minkowski Inequality we will use the
following functional

U(ρ) = −
∫
Rn

ρ(x)1− 1
ndx.

This is of course a special case of the functionals we were looking at in Lemma 3.5 with
U(r) = −r1− 1

n . It is therefore displacement convex as Ψ(r) = rn · −r−n(1− 1
n

) = −r is
obviously convex and nonincreasing.

Another property of this functional which we will use in the proof is the following:
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Let µ be the uniform probability measure on X. Then

U(µ) = −
∫
Rn

µ1− 1
ndx = −

∫
X

1/ voln(X)1−1/ndx = − voln(X)
1
n .

Proof of the Brunn-Minkowski inequality. Let µ = ρ0 and ν = ρ1 be the uniform prob-
ability measures on A and B, respectively. Then the interpolant ρt = [µ, ν]t has its
support included in the set (1− t)A+ tB for all t ∈ [0, 1].

Let λ ∈ (0, 1) and let St be the support of the interpolant ρt. Obviously,
χSt

voln(St)
is the

density of a probability measure. Therefore, using Jensen’s inequality:

U(ρt) =

∫
St

U(ρt)dx = voln(St)

∫
St

U(ρt)
dx

voln(St)
≥ voln(St)U

(
1

voln(St)

∫
St

ρtdx

)
≥ voln(St)U

(
1

voln(St)

)
= − voln(St)

1
n .

As St is a subset of (1− t)A+ tB, the inequality − voln(St)
1
n ≥ − voln((1− t)A+ tB)

1
n

holds.

Finally the displacement convexity of U and Remark 3.2 imply that

− voln(St)
1
n ≤ U(ρt) ≤ (1− t) · U(ρ0) + t · U(ρ1) = −(1− t) · voln(A)

1
n − t · voln(B)

1
n .

If we put the last two statements together we finally get

voln((1− t)A+ tB)
1
n ≥ (1− t) · voln(A)

1
n + t · voln(B)

1
n .

3.2 The Prèkopa-Leindler Inequality

Another important inequality, functional in nature, that can be proved using the tools
optimal transport provides, is the Prèkopa-Leindler inequality. As shown below, it can
be seen as a more flexible variant of the Brunn-Minkowski inequality.

Theorem 3.7. Let f ,g, and h be nonnegative integrable functions on Rn and let t ∈
[0, 1]. Assume that for all x, y ∈ Rn,

h((1− t)x+ ty) ≥ f(x)1−t · g(y)t. (3.9)

Then the Prèkopa-Leindler inequality holds:∫
Rn
hdx ≥

(∫
Rn
fdx

)1−t
·
(∫

Rn
gdx

)t
. (3.10)
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Remark 3.3. Of course, given f ,g one can choose

h(z) = sup
z=(1−t)x+ty

f(x)1−tg(y)t

to fullfill the assumption (3.9).

Remark 3.4. The Prèkopa-Leindler inequality is a functional version of the Brunn-
Minkowski inequality. In fact, we can regain the Brunn-Minkowski inequality if we
use the Prèkopa-Leindler inequality for the characteristic functions of A and B.

Proof. Let f and g be the characteristic functions of A and B, respectively. Let h be
the characteristic function of (1− t) ·A+ t ·B.
Since f and g are characteristic functions, the right hand side of inequality (3.9) only
takes two values, zero and one.
If it is equal to zero the inequality obviously holds.

On the other hand, if both f(x) and g(y) are equal to one, in other words if x ∈ A and
y ∈ B, then, clearly, (1 − t)x + ty is an element of their Minkowski sum, and therefore
the left hand side of (3.9) is also equal to one.

Therefore we can use the Prèkopa-Leindler inequality to obtain

voln[(1− t) ·A+ t ·B] ≥ voln[A]1−t · voln[B]t

which is exaxtly the multiplicative Brunn-Minkowski inequality.

There are many classical proofs of the Prèkopa-Leindler inequality, in the following, two
proofs using optimal transport will be given. The first one can be found in [13], the
second one in [3].

First proof of the Prèkopa-Leindler inequality. Without loss of generality we may as-
sume that

∫
f =

∫
g = 1 and then proof that

∫
h ≥ 1.

Let µ and ν be the probability measures with densities f and g, respectively. We consider
the displacement interpolants ρt = [µ, ν]t. Since

∫
ρt = 1, it will be sufficient to show

that ρt ≤ h almost everywhere for all t ∈ [0, 1].

Let φ be a convex function with ∇φ#µ = ν. Then ρt = [(1− t) · Id +t · ∇φ] #µ and,
with Theorem 2.6, the Monge-Ampère equation

f(x) = ρt((1− t)x+ t∇φ(x)) det((1− t)In + tD2
Aφ(x)) (3.11)

holds almost everywhere.
As a special case of (3.11), f(x) = g(∇φ(x)) det(D2

Aφ(x)). Since f is the density of µ,
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it is obviously positive µ-almost everywhere and therefore µ-almost everywhere we can
write

det(D2
Aφ(x)) =

f(x)

g(∇φ(x))
.

When we consider the Jacobi determinant in equation (3.11), we see, using the arith-
metic/geometric inequality, that

det((1−t)In+tD2
Aφ(x))

1
n ≥ (1−t)(det In)

1
n +t(det(D2

Aφ))
1
n = (1−t)+t·

(
f(x)

g(∇φ(x))

) 1
n

.

Using equation (3.11) again, we see that

ρt((1− t)x+ t∇φ(x)) =
f(x)

det((1− t)In + tD2
Aφ(x))

≤ f(x)(
(1− t) + t ·

(
f(x)

g(∇φ(x))

) 1
n

)n
=

[
(1− t)f(x)−

1
n + t · g(∇φ(x))−

1
n

]n
= f(x)1−t · g(∇φ(x))t

for µ-almost all x.
As both sides are equal to zero for all x with f(x) = 0 this inequality in fact holds even
for λ-almost all x.
Since we assumed that h((1 − t)x + ty) ≥ f(x)1−t · g(y)t for all x, y, the inequality
ρt((1− t)x+ t∇φ(x)) ≤ h((1− t)x+ t∇φ(x)) obviously holds almost everywhere.

As the displacement interpolants ρt are supported in [(1− t)x+ t∇φ(x)] (Rn), we have
finally shown that ρt ≤ h almost everywhere.

Now we will look at yet another proof of this inequality. The main difference is the
following: While we were interpolating between the measures defined by f and g in the
first proof, we will now introduce a third (arbitrary) measure and interpolate between
this new measure, and the two measures defined by f and g.

Second proof of the Prèkopa-Leindler inequality. Without loss of generality we may as-
sume that

∫
f =

∫
g = 1 and then proof that

∫
h ≥ 1.

Let µ and ν be the probabibity measures with densities f and g, respectively.
Let p be the uniform probability measure on the unit cube [0, 1]n and let φ1 and φ2 be
the respective Brenier maps transporting p to µ and ν.
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Define φ = (1− t)φ1 + tφ2. Then∫
Rn
h ≥

∫
∇φ([0,1]n)

h =

∫
[0,1]n

h(∇φ(x)) det(D2
Aφ(x))dx

=

∫
[0,1]n

h((1− t)∇φ1(x) + t∇φ2(x)) det((1− t)D2
Aφ1(x) + tD2

Aφ2(x))dx

≥
∫

[0,1]n
h((1− t)∇φ1(x) + t∇φ2(x)) det(D2

Aφ1(x))1−t det(D2
Aφ2(x))tdx

≥
∫

[0,1]n
f(∇φ1(x))1−t det(D2

Aφ1(x))1−tg(∇φ2(x))t det(D2
Aφ2(x))tdx.

Since the following two Monge-Ampère equations hold

f(∇φ1(x)) det(D2
Aφ1(x)) = 1, g(∇φ2(x)) det(D2

Aφ2(x)) = 1,

we finally see that ∫
Rn
h ≥

∫
[0,1]n

1dx = 1.
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4 The Minkowski Inequality

In this chapter we will further study the volume voln[K + λT ] for convex bodies K and
T . More precisely, we will show how optimal transport can be used to describe the
linear combination K + λT in a different way, using a diffeomorphism which was first
introduced by S. Alesker, S. Dar and V. Milman in [1].
We will then use this method to introduce the notion of mixed volumes, and to give a
proof, also originally found in [1], for the famous Minkowski inequality, which gives a
lower bound for these mixed volumes.

4.1 The Alesker-Dar-Milman Diffeomorphism

When studying the Minkowski sum, the following question arises: Which geometrical
and topological properties of X and Y are inherited by their sum X + Y ?
Simple examples show, that, in fact, this question is very complicated. For example, the
sum of two simply connected sets is not necessarily simply connected. (Consider in R2

the unit ball and the broken annulus {(x, y) ∈ R2 |9 < x2 + y2 < 10, y < 0 or |x| > 1
4}.

While both are clearly simply connected, their Minkowski sum is not.)
The following theorem by S. Alesker et al [1] shows that, when X and Y are bounded,
convex and open, such problems are avoided, and X + Y is in fact diffeomorph to both
X and Y .
More precisely, the following statement holds:

Theorem 4.1 (Alesker-Dar-Milman theorem). Let K and T be open convex bounded
subsets of Rn of volume 1. Then there exists a C1-diffeomorphism Ψ, preserving the
Lebesgue measure, such that

{x+ λΨ(x)|x ∈ K} = K + λT

holds for any λ > 0.

Before the proof we state – without proof – two results which will be needed.

The first result, by Cafarelli, shows that for a certain class of measures µ and ν the
Brenier map ∇φ transporting µ to ν is in fact not only differentiable allmost everywhere,
but a C1-smooth function. This and other regularity results can be found in [5] and [6].
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Theorem 4.2 (Cafarrelli’s regularity theorem for optimal transportation). Let Y be a
bounded convex open set. Let f and g be locally Hölder continuous probability densities
defined on Rn and Y , respectively. Assume that

1. f is locally bounded and bounded away from zero on compact sets, i.e. there are
constants cr and Cr with

0 < cr ≤ f(x) ≤ Cr for |x| < r

for each r > 0.

2. g is bounded.

Let φ be the unique Brenier solution of the Monge-Ampère equation

detD2φ(x) =
f(x)

g(∇φ(x))
.

Then φ is C2-smooth.

The second tool we will need in the proof is the following result about the images of
smooth convex functions, a proof for which can be found in [11].

Theorem 4.3. Let f, g : Rn → R be C2-smooth convex functions with strictly positive
Hessian. Then the following statements hold:

1. The image of ∇f is open and convex.

2. (∇f +∇g) (Rn) = ∇f(Rn) +∇g(Rn).

Proof of Theorem (4.1). Let ρ be the standard Gaussian measure and denote by µ and ν
the uniform probability measures on K and T , respectively. Consider the Brenier maps

∇φ1 : Rn → K, transporting ρ to µ, and

∇φ2 : Rn → T , transporting ρ to ν.

Note that these are C1-smooth by Theorem 4.2. By Theorem 4.3

(∇φ1 + λ∇φ2) (Rn) = K + λT.

Setting Ψ = ∇φ2 ◦ (∇φ1)−1 finishes the proof.

4.2 Mixed Volumes

A classical result of convex geometry states that the volume of a linear combination
of convex bodies – in the sense of the Minkowski sum– is in fact a polynomial in the
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coefficients of the linear combination. These coefficients are called mixed volumes. We
will prove this fact using the above method. A more elementary proof as well as much
more about this topic can be found in [12].

Theorem 4.4 (Minkowski’s theorem on mixed volumes). Let K1, ...,Km be convex bodies
and let λ1, ..., λm be nonnegative real numbers. Then there are coefficients V (Ki1 , ...,Kim),
1 ≤ i1, ..., im ≤ m, symmetric in their arguments, such that

voln

[
m∑
i=1

λiKi

]
=

m∑
i1,...,id=1

V (Ki1 , ...,Kim)λi1 ...λin .

Proof. Let µi be the uniform probability measure on Ki and let ρ denote the standard
Gaussian measure. Consider the Brenier maps φi : Rn → Ki, transporting ρ to µi.
By Theorem 4.2 and Theorem 4.3 we obtain(

m∑
i=1

λi∇φi

)
(Rn) =

m∑
i=1

λiKi,

and using the change of variable formula we find:

voln

[
m∑
i=1

λiKi

]
=

∫
Rn

1 det

(
m∑
i=1

λiD
2φi

)
d voln .

Obviously this determinant is a polynomial in the λi and, by the linearity of the integral,
so is the left hand side.

Using again methods similiar to those above, we will prove Minkowski’s inequality.

Theorem 4.5 (Minkowski’s inequality). Let K1 and K2 be compact convex bodies and
let Vk(K1,K2) denote the mixed volume of K1 taken k times and K2 taken n− k times.
Then the inequality

Vk(K1,K2) ≥ voln[K1]
k
n · voln[K2]

k−n
n (4.1)

holds.

Before giving the proof we need a lemma concerning simultaneous diagonalisation of
symmetric positive matrices:

Lemma 4.6. Let N and M be symmetric positive matrices. Then there exists a matrix
T with determinant 1 such that T TMT and T TNT are diagonal matrices.

Proof. Let QTQ be the Cholesky decomposition of N−1. Then QMQT is a symmetric
matrix and can therefore be diagonalised using an orthogonal matrix O. Hence we can
calculate
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1. (QTO)TM(QTO) = OTQMQTO = D for some diagonal matrix D.

2. (QTO)TN(QTO) = (QTO)T (QTQ)−1(QTO) = OT (QQ−1)(Q−TQT )O = In.

Hence, setting T = 1
n
√

det(QTO)
QTO completes the proof.

Proof of Theorem 4.5. By homogeneity we can normalise the volumes of K1 and K2 to
1. Let µ and ν be the uniform probability measures on K1 and K2 respectively, and let
ρ denote both the standard Gaussian measure on Rn and its density.
Consider the Brenier maps ∇φ1, transporting ρ to µ, and ∇φ2, transporting ρ to ν. By
(4.2) these maps are C1-smooth, and, by Theorem 4.3

(λ1∇φ1 + λ2∇φ2) (Rn) = λ1K1 + λ2K2

holds.

Minkowski’s theorem on mixed volumes implies that

voln[λ1K1 + λ2K2] =
n∑
i=0

(
n

i

)
λi1λ

n−i
2 Vk(K1,K2) (4.2)

and on the other hand, using the change of variable formula,

voln [λ1K1 + λ2K2] =

∫
Rn

1 det
(
λ1D

2φ1 + λ2D
2φ2

)
d voln (4.3)

holds. Hence, to calculate the mixed volumes Vk(K1,K2) it is sufficient to determine the
coefficient of λk1λ

n−k
2 in the polynomial (4.3). Applying Lemma 4.6 to the integrand, we

find that

det
(
λ1D

2φ1 + λ2D
2φ
)

= det (λ1A+ λ2B) =
n∏
i=1

(λ1ai + λ2bi)

for two diagonal matrices A = diag(a1, ..., an) and B = diag(b1, ...bn). Expanding the
last term we obtain

n∏
i=1

(λ1ai + λ2bi) =
n∑
i=0

 ∑
I⊂{1,...,n}
|I|=i

∏
j∈I

aj

∏
j∈Ic

bj


λi1λ

n−i
2 .

Therefore, we can estimate the relevant coefficient using the arithmetic-geometric in-
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equality

(
n

k

)(
n

k

)−1 ∑
I⊂{1,...,n}
|I|=k

∏
j∈I

aj

∏
j∈Ic

bj

 ≥ (n
k

) ∏
I⊂{1,...,n}
|I|=k

∏
j∈I

aj

∏
j∈Ic

bj

(nk)
−1

(4.4)

=

(
n

k

)
 n∏
j=1

aj

(n−1
k−1)

 n∏
j=1

bj

(n−1
k )


(nk)
−1

=

(
n

k

) n∏
j=1

aj

 k
n
 n∏
j=1

bj

n−k
n

(4.5)

=

(
n

k

)
det(A)

k
n det(B)

n−k
n . (4.6)

Using (4.2) and (4.3), we find that

Vk(K1,K2) ≥
∫
Rn

det
(
D2φ1

)
· det

(
D2φ2

)
d voln,

and using the Monge-Ampère equations for ∇φ1 and ∇φ2, i.e. D2φi = ρ for i = 1, 2, we
obtain ∫

Rn

det
(
D2φ1

)
· det

(
D2φ2

)
d voln =

∫
Rn

ρd voln = 1,

completing the proof.

Remark 4.1. Analyzing this proof further, it is also possible to settle the equality cases
of the Minkowski inequality: Equality in (4.4) implies that∏

j∈I
aj

∏
j∈Ic

bj


amounts to the same value for any index set I with |I| = k. Equivalently, a1/b1 = aj/bj
for all indices j (Consider two index sets I ′ ∪ 1 and I ′ ∪ j, where |I ′| = k − 1 and I ′

contains neither 1 nor j.), in other words A is a positive multiple of B. Hence, ∇φ1 is a
positive multiple of ∇φ2 and therefore K1 and K2 have to be positive homothetic.

Remark 4.2. Using a similar argument it is also possible to obtain a more general result,
namely some of the famous Aleksandrov-Fenchel inequalities for mixed volumes. More
precisely, it is possible to proof the following statement: Let K1, ...,Kn be convex bodies.
Then the following inequality holds:

V (K1, ...,Kn) ≥

(
n∏
i=1

voln[Ki]

) 1
n

.

This proof can be found in [1].
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5 Brascamp-Lieb Inequalities

5.1 The Brascamp-Lieb Inequalities and the Reverse
Brascamp-Lieb Inequalities

In this section the multidimensional Brascamp-Lieb inequalities and their duals, the
reverse Brascamp-Lieb inequalities, are proved. This proof we present, using optimal
transport, is extracted from an article by Barthe [4].
It will be shown that optimal constants in these inequalities can be calculated by con-
sidering centered Gaussian functions, that is functions of the form γ(x) = exp(−xTAx),
where A is a positive symmetric matrix.

Theorem 5.1. Let N and (ni)1≤i≤m be integers satisfying ni ≤ N and let (ci)1≤i≤m be
positive real numbers such that

m∑
i=1

cini = N.

Let Bi : RN → Rni be surjective linear mappings such that⋂
i

kerBi = {0}.

For integrable nonnegative functions fi define the two functions

I(f1, f2, ..., fm) =

∫
RN

∏
i

f cii (Bix)dx,

J(f1, f2, ..., fm) =

∫
RN

sup

{∏
i

f cii (xi) : x =
∑

ciB
T
i (xi)

}
dx.

Then the optimal constants E and F in the inequalities

I(f1, f2, ..., fm) ≤ E
∏
i

(∫
Rni

fi

)ci
and J(f1, f2, ..., fm) ≥ F

∏
i

(∫
Rni

fi

)ci
(5.1)
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can be computed by considering only centered Gaussian functions, that is:

E = sup

I(γ1, ..., γm)∏
i

(
∫
Rni γi)

ci
: γi centered Gaussian on Rni

 ,

F = inf

J(γ1, ..., γm)∏
i

(
∫
Rni γi)

ci
: γi centered Gaussian on Rni

 .

Moreover, E and F are given by E = 1√
D

and F =
√
D, where D is defined by

D = inf

{
det(

∑
i ciB

T
i AiBi)∏

i(detAi)ci
: Ai positive n-dimensional symmetric matrix

}
.

The inequalities in (5.1) are called the Brascamp-Lieb and the reverse Brascamp-Lieb
inequalities, respectively.

Before we start with the proof, two special cases of these inequalities are given in the
next two remarks.

Remark 5.1. Young’s Inequality Let m = 3 and N = 2n and n1 = n2 = n3 = n and
let c1 = 1

p , c2 = 1
q and c3 = 1

r′ = 2− 1
p −

1
q in the Brascamp-Lieb inequality. Then with

B1(x, y) = x,B2(x, y) = x− y and B3(x, y) = y we find Young’s inequality∫
Rn×Rn

f(x)
1
p g(x−y)

1
q h(y)

1
r′ dxdy ≤ E

(∫
Rn
f(x)dx

) 1
p
(∫

Rn
g(x)dx

) 1
q
(∫

Rn
h(x)dx

) 1
r′

.

Remark 5.2. Prèkopa Leindler Inequality The Prèkopa-Leindler inequality is a spe-
cial case of the reverse Brascamp-Lieb inequality for m = 2, n1 = n2 = N,B1 = B2 = In
and c1 + c2 = 1. Indeed

D = inf
det(c1A1 + c2A2)

(detA1)c1(detA2)c2
= 1

as the numerator is always greater or equal the denominator by the arithmetic-geometric
inequality.
So the reverse Brascamp-Lieb inequality becomes∫

Rn

[
sup

z=c1x+c2y
f c1gc2

]
dz ≥

(∫
Rn
f

)c1 (∫
Rn
g

)c2
.

In the proof of Theorem 5.1 the following short lemma about gaussian integrals is needed:

Lemma 5.2. Let M be a positive symmetric n-dimensional matrix. Then∫
Rn

exp(−xTMx)dx =

√
πn

detM
.
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Proof. Recall that a positive symmetric matrix M has a positive symmetric square root√
M . Therefore, with the change of variable formula,∫
Rn

exp(−xTMx)dx =

∫
Rn

exp(−(
√
Mx)T (

√
Mx))dx =

√
1

detM

∫
Rn

exp(−yT y)dy

=

√
1

detM

n∏
i=1

∞∫
−∞

e−y
2
i dyi =

√
πn

detM
.

Proof of Theorem 3.1. We set

Eg = sup

I(γ1, ..., γm)∏
i

(
∫
Rni γi)

ci
: γi centered Gaussian on Rni

 ,

Fg = inf

J(γ1, ..., γm)∏
i

(
∫
Rni γi)

ci
: γi centered Gaussian on Rni

 .

As a first step we will prove that Eg = 1√
D

and Fg =
√
D. For positive definite ni-

dimensional matrices Ai we define the quadratic form Q on Rn by

Q(y) = yT

(
m∑
i=1

ciB
T
i AiBi

)
y.

We also introduce a function R on RN by

R(x) = inf

{
m∑
i=1

cix
T
i A
−1
i xi : x =

m∑
i=1

ciB
T
i xi, xi ∈ Rni

}
.

The first step is to show that R is the dual quadratic Form Q∗ of Q, that is, the quadratic
form defined by Q∗(x) = sup

{
|x · y|2 : Q(y) ≤ 1

}
.

Indeed, with x =
m∑
i=1

ciB
T
i xi ,we find that

|x · y|2 =

∣∣∣∣∣
m∑
i=1

(ciB
T
i xi)

T y

∣∣∣∣∣
2

=

∣∣∣∣∣
m∑
i=1

√
cix

T
i

√
Ai
−1√

AiBi
√
ciy

∣∣∣∣∣
2

=

∣∣∣∣∣
m∑
i=1

(√
ci
√
Ai
−1
xi

)
·
(√

ci
√
AiBiy

)∣∣∣∣∣
2

≤

(
m∑
i=1

|
√
ci
√
Ai
−1
xi|2

)(
m∑
i=1

|
√
ci
√
AiBiy|2

)

=

(
m∑
i=1

cix
T
i A
−1
i xi

)(
m∑
i=1

ciy
TBT

i AiBiy

)
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using the Cauchy-Schwarz inequality. Taking the infimum over all decompositions of x

of the form x =
m∑
i=1

ciB
T
i xi we get

|x · y|2 ≤ R(x)Q(y)

and so Q∗(x) ≤ R(x).

On the other hand, if y =
(∑

ciB
T
i AiBi

)−1
x, then clearly xi = AiBiy constitute such

a decomposition of x. With these we easily find equality in the calculations above, and
so |x · y|2 ≥ R(x)Q(y) holds also. It follows that R = Q∗.

Calculating I(γ(A1), .., γ(Am)) and J(γ(A−1
1 ), .., γ(A−1

m )) ,where γ(Ai)(x) = exp(−xTAix)
with a positive symmetric matrix Ai we get, using Lemma 5.2,

I(γ(A1), .., γ(Am)) =

∫
RN

∏
i

γ(Ai)
ci(Bix)dx

=

∫
RN

exp

[
−xT

(∑
i

ciB
T
i AiBi

)
x

]
dx =

√
πN

detQ

and

J(γ(A−1
1 ), .., γ(A−1

m )) =

∫
RN

sup

{∏
i

γ(Ai)
−ci(xi) : x =

∑
ciB

T
i xi

}
dx

=

∫
RN

sup

{
exp

(
−
∑
i

cix
T
i A
−1
i xi

)
: x =

∑
ciB

T
i xi

}
dx

=

∫
RN

exp(−R(x))dx =

√
πN

detR
.

In particular,

Eg = sup

√∏m
i=1(detAi)ci

detQ
=

1√
D
,

Fg = inf

√∏m
i=1(detAi)−ci

detR
=

√
detQ∏m

i=1(detAi)ci
=
√
D

by another application of Lemma 5.2 and using the fact that detQ∗ detQ = 1.

By now, we know that
√
D = Fg ≥ F and that DE ≥ DEg =

√
D. So if we knew that

F ≥ DE the proof would be finished, as we would have
√
D = F = DE =

√
D.

So, in fact, it will be sufficient to prove that for all nonnegative integrable functions fi
and gi with

∫
fi =

∫
gi = 1,

I(g1, ..., gm) ≤ 1

D
· J(f1, ..., fm)
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because taking the infimum over the gi and the supremum over the fi will yield that
F ≥ DE.

Without loss of generality we assume that D > 0. Let µi be the probability measures
with densities fi and let νi be those with densities gi. Let φi be the Brenier map
transporting µi to νi.
Then for almost all x the following Monge-Ampère equations hold

fi(x) = det(D2
Aφ(x))gi(∇φ(x)). (5.2)

We define a function Θ : RN → RN by

Θ(y) =
m∑
i=1

ciB
T
i (∇φ(Biy)).

Its differential
∑m

i=1 ciB
T
i D

2
A(Biy)Bi is obviously symmetric and nonnegative, but in

fact even positive on

S = {y ∈ RN : fi(B
−1
i (y)) > 0 for all i ∈ {1, ...,m}}

by the following argument.
On S, obviously, detD2

A(Biy))ci is non zero by the Monge-Ampère equation (5.2). Thus
using the definition of D we find

det
m∑
i=1

ciB
T
i D

2
A(Biy)Bi ≥

∏
i

(detD2
A(Biy))ci > 0.

So, in particular Θ is injective.

Now we can finally calculate

I(f1, ..., fm) =

∫
RN

m∏
i=1

f cii (Biy)dy =

∫
S

m∏
i=1

f cii (Biy)dy

=

∫
S

m∏
i=1

[
det(D2

Aφ(Biy))gi(∇φ(Biy))
]ci dy

≤ 1

D

∫
S

(
m∏
i=1

[gi(∇φ(Biy))]ci

)(
det

m∑
i=1

ciB
T
i D

2
A(Biy)Bi

)
dy

≤ 1

D

∫
S

sup
Θ(y)=

∑
ciBT

i xi

(
m∏
i=1

gi(xi)
ci

)
det(DΘ(y))dy

≤ 1

D

∫
Rn

sup
x=

∑
ciBT

i xi

(
m∏
i=1

gi(xi)
ci

)
dx =

1

D
· J(g1, ..., gm)

which completes the proof.
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5.2 Optimisers for the Brascamp-Lieb Inequality

The goal of this section is to describe functions for which there is equality in∫
RN

∏
i

f cii (Bix)dx ≤ E
∏
i

(∫
Rni

fi

)ci
.

The statements made in this section will not be proven. Originally these results, along
with proofs, can be found in [16].

Obviously such optimizers will depend on the tuples (Bi, ci). (For a given Brascamp-
Lieb inequality we will refer to the vector (Bi, ci) as its Brascamp-Lieb datum.) In fact
there are such tuples were no extremisers exist. To answer the question which data are
extremisable we will need the following definitions.

Definition 5.1. A Brascamp-Lieb datum is geometric if BiB
T
i = IdRni for each i and

m∑
i=1

ciB
T
i Bi = IdRN .

Definition 5.2. We say that two Brascamp-Lieb data (Bi, ci) and (B′i, ci) are equivalent
if there are invertible matrices C and Cj such that B′j = C−1

j BjC for all j.

With these definitions we can state

Theorem 5.3. Every extremisable Brascamp-Lieb datum is equivalent to a geometric
datum.

To be able to state the results on the form of optimizers some knowledge about the
structure of the Bsascamp-Lieb inequality is needed.
In the following discussion we shall assume that cj > 0 for all j and concentrate on the
case of geometric data. We can then generalize our findings using Theorem 5.3.

We will begin by defining some decompositions of the Euclidean space:

Definition 5.3. A subspace V of RN is said to be critical for (Bi, ci) if V is neither {0}
nor RN and

dimV =
∑
i

ci dim(BiV ).

It is possible to get a so called maximal critical decomposition, where we write RN as a
sum of pairwise orthogonal spaces, each of which is critical and has no critical subspaces.

Definition 5.4. A subspace V of RN is said to be independent if it is not {0} and can
be written as

V =

m⋂
i=1

[Rni ]α,
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where [Rni ]α is either Rni or [Rni ]⊥. An independent decomposition of RN is a decom-
position of the form

RN = Kind ⊕Kdep =

(
k0⊕
k=0

Kk

)
⊕Kdep,

where Kk are independent subspaces of RN and Kdep is the orthogonal complement of
their sum.

With these definitions we can state the main theorem of this section:

Theorem 5.4. Let (Bi, ci) be a geometric Brascamp-Lieb datum and let

(
k0⊕
k=0

Kk

)
⊕Kdep

be the independent decomposition of RN . Then the tuple (fi) is an extremiser if and only
if there are

(i) integrable functions uk : Kk → R for k = 1, ..., k0,

(ii) a critical decomposition Kk0+1 ⊕ ...⊕Kk1 of Kdep,

(iii) positive constants αi for i = 1, ...,m and βk for k = k0 + 1, ..., k1

(iv) and an element b from Kdep such that almost everywhere

fi(x) = αi

k0∏
k=1

uk(Pi,kB
T
i x)

k1∏
k=k0+1

e−βk(Pi,kB
T
i x)·(Pi,k(BT

i x+b)),

where Pi,k is the orthogonal projection from RN to Rni ∩Kk.

For example we can use this to characterize cases of equality in Hölder’s inequality.

Remark 5.3. Hölder’s inequality. Let m = 2 and N = n1 = n2 = n and let c1 = 1
p

and c2 = 1− 1
p = 1

q in the Brascamp-Lieb inequality. Then with B1 = B2 = 1, we find

∫
Rn
f

1
p

1 (x)f
1
q

2 (x)dx ≤ E
(∫

Rn
f1(x)dx

) 1
p
(∫

Rn
f2(x)dx

) 1
q

.

Obviously ((Id, 1
p), (Id, 1

q )) is of geometric type and the independent decomposition is
very simple:

Rn = Kind.

Therefore we find that f1 = α1u and f2 = α2u almost everywhere for some integrable u
and positive constants c1 and c2. By then it is obvious that E = 1.

Using Theorem 5.3 we get the following corollary:
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Corollary 5.5. Let (Bi, ci) be an extremisable Brascamp-Lieb datum. Let (B′i, ci) be the

geometric datum equivalent to (Bi, ci) and let M and Si be such that B′i = S
1
2
i BiM

1
2 .

Furthermore let

(
k0⊕
k=0

Kk

)
⊕ Kdep be the independent decomposition of RN . Then the

tuple (fi) is an extremiser if and only if there are

(i) integrable functions uk : Kk → R for k = 1, ..., k0,

(ii) a critical decomposition Kk0+1 ⊕ ...⊕Kk1 of Kdep,

(iii) positive constants αi for i = 1, ...,m and βk for k = k0 + 1, ..., k1

(iv) and an element b from Kdep such almost everywhere

fi(x) = αi

k0∏
k=1

uk(Pi,kB
′T
i S

1
2
i x),

k1∏
k=k0+1

e−βk(Pi,kB
′T
i S

1
2
i x)·(Pi,k(B′Ti S

1
2
i x+b))

where Pi,k is the orthogonal projection from RN to Rni ∩Kk.

47



6 Sobolev Inequalities

Dealing with partial differential equations one often finds that Sobolev spaces are the
right setting to work in. One of the main results concerning these spaces are Sobolev
embeddings and inequalities. An introduction to this theory can be found in [9][Chapter
5].

In this chapter we will consider only a certain kind of Sobolev inequality, the Gagliardo-
Nirenberg-Sobolev inequality:

||f ||Lp? ≤ Sn(p)||∇f ||Lp , (6.1)

where 1 ≤ p < n and p? = np
n−p .

Using optimal transport, we will be able to explicitly state optimal values for the con-
stants Sn(p) and functions hp for which equality holds in this inequality. This aproach
is originally due to D. Cordero-Erausquin, B. Nazaret, and C. Villani and can be found
in [7].

6.1 Sobolev Spaces

In this section some basic definitions and results concerning Sobolev spaces will be
recalled. For Sobolev spaces to be a suitable setting for partial differential equations,
they have to contain quite non-smooth functions.
In fact they comprise of functions that only have derivatives in a weak sense.

Definition 6.1. (Weak partial derivatives) Suppose f and g are locally integrable
functions on Rn . We say that g is the weak partial derivative of f with respect to xi if∫

f
∂ζ

∂xi
dx = −

∫
gζdx

for all test functions ζ ∈ C∞c (Rn).

If we are given a locally integrable function f and there exists such a function g that
satifies the formula above, f is said to have a weak partial derivative with respect to xi.
If there is no such g then f does not.

∇f is defined accordingly.
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This definition is of course motivated by the integration by parts formula.

Definition 6.2. The Sobolev space

W 1,p(Rn)

consists of all locally integrable functions f for which all weak partial derivatives exist
and both ||f ||p and ||∇f ||p are finite.

As for Lp spaces we will identify functions in W 1,p which are equal almost everywhere.

With the norm ||f ||W 1,p = ||f ||p + ||∇f ||p these Sobolev spaces are Banach spaces and
W 1,p(Rn) ∩ C∞c (Rn) is a dense subset of W 1,p(Rn).

In a very similar way we define the homogeneous Sobolev space

Ẇ 1,p(Rn)

as the set of all locally integrable functions f for which all weak partial derivatives exist
and both ||f ||p∗ and ||∇f ||p are finite where p∗ = np

n−p .

6.2 Sobolev Inequalities

As already mentioned in the introduction we will only consider the Sobolev spaces
W 1,p(Rn) for p ∈ [1, n). For such p we define its Sobolev conjugate by p∗ = np

n−p .

For notational reasons we will separate the case p = 1 from the rest. Let us start with
p > 1.

Theorem 6.1. Let p ∈ (1, n) and let q = p
p−1 be the dual exponent. Define the function

hp by

hp(x) =
1

(σp + |x|q)
n−p
p

,

where σp is chosen such that ||hp||Lp? = 1.

Whenever f, g ∈ Lp?(Rn) are two functions satisfying ||f ||Lp? = ||g||Lp? , and if ∇f ∈
Lp(Rn), then ∫

|g(x)|p?(1− 1
n

)dx(∫
|x|q|g(x)|p?

) 1
q

≤ p(n− 1)

n(n− p)
||∇f ||Lp (6.2)

with equality if f = g = hp.

Before the proof we state a corollary:

49



Corollary 6.2. The following statement is an immediate consequence of Theorem 6.1.

Let f and hp be defined as in Theorem 6.1. If f 6= 0 then the Sharp Sobolev
inequality

||∇f ||Lp

||f ||Lp?
≥ ||∇hp||Lp

holds.

Proof of Theorem 6.1. As |∇|f || = |∇f | holds almost everywhere, it obviously follows
that ||∇f ||Lp = ||∇|f |||Lp and therefore we only need to consider nonnegative functions
f . Moreover, by homogeneity, we can without loss of generality assume that ||f ||Lp? =
||g||Lp? = 1.

Because of the density of smooth functions with compact support in Sobolev spaces, we
need only consider such functions f and g.

Let F and G be the two probability densities

F (x) = fp
?
, G(x) = gp

?
,

and let µ and ν be the corresponding probability measures.

Consider the Brenier map ∇φ transporting µ to ν. Then the Monge-Ampére equality
holds

F (x) = G(∇φ(x)) detD2
Aφ(x)

for µ-almost all x. Using the arithmetic/geometric mean inequality and the fact that
the determinant of a matrix is the product of its eigenvalues and its trace their sum, we
get

G−
1
n (∇φ(x)) = F−

1
n (x)(detD2

Aφ(x))
1
n ≤ F−

1
n (x)

∆Aφ(x)

n
.

By integrating both sides with respect to µ, we further obtain∫
G−

1
n (∇φ(x))F (x)dx ≤

∫
F 1− 1

n (x)
∆Aφ(x)

n
dx.

Since
∫
G−

1
n (∇φ(x))F (x)dx =

∫
G−

1
n (x)G(x)dx by the definition of the pushforward

measure we find that ∫
G1− 1

n (x)dx ≤
∫
F 1− 1

n (x)
∆Aφ(x)

n
dx. (6.3)

Considering the right hand side of this inequality, and using the fact that ∆Aφ is bounded
from above by the distributional Laplacian ∆D′φ we can write

1

n

∫
F 1− 1

n ∆Aφ ≤
1

n

∫
F 1− 1

n ∆D′φ = − 1

n

∫
∇(F 1− 1

n ) · ∇φ. (6.4)
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Putting together (6.3) and (6.4) and the definitions of F and G, we get∫
gp

?(1− 1
n

) ≤ − 1

n

∫
∇(fp

?(1− 1
n

)) · ∇φ = − 1

n

∫
∇(f

p(n−1)
n−p ) · ∇φ

= − p(n− 1)

n(n− p)

∫
f

n(p−1)
n−p ∇f · ∇φ = − p(n− 1)

n(n− p)

∫
fp

?/q∇f · ∇φ.

Using Hölder’s inequality on the last integral, we obtain

−
∫
fp

?/q∇f · ∇φ ≤ ||∇f ||Lp · ||fp?/q∇φ||Lq = ||∇f ||Lp

(∫
fp

? |∇φ|q
) 1

q

. (6.5)

Again by the definition of the pushforward measure we obtain∫
fp

? |∇φ|q =

∫
|∇φ|qdµ =

∫
|x|qdν =

∫
|x|qgp?(x)dx.

Combining the last three results, we see that∫
gp

?(1− 1
n

) ≤ p(n− 1)

n(n− p)
||∇f ||Lp

(∫
|x|qgp?dx

) 1
q

which completes the proof of inequality (6.2).

To show the equality in (6.2) for f = g = hp we only have to verify equality in the
inequalities (6.3), (6.4), and (6.5):

If f = g, then obviously the measures µ and ν are equal, and therefore ∇φ is the identity
map, and so we have equality in (6.3) as ∆φ = n.
Equality in (6.4) follows from integration by parts.
Finally, as there is equality in Hölders inequality ||f · g||L1 ≤ ||f ||Lp · ||g||Lq if fp is
proportional to gq almost everywhere, we only have to show that there is a c ∈ R

with (∇hp(x))p = c ·
(
xhp(x)

p?

q

)q
for almost all x. This is easily done by an explicit

calculation.

For p = 1 a very similar statement can be proved:

Theorem 6.3. If f 6= 0 is a smooth compactly supported function, then

||∇f ||L1

||f ||Ln/(n−1)

≥ n voln[Bn]
1
n .

This inequality extends to functions with bounded variation, with equality if f = h1 where
h1, is defined by

h1 =
χBn(x)

voln[Bn]
n−1
n

.
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This variant for p = 1 can be proved in a way that is very similar, but will depend on
the coarea formula for the equality case h1. Before starting with the proof we will state
this important formula.

Theorem 6.4. Let u : Rn → R be Lipschitz continuous and assume that for almost all
r ∈ R the level set

{x ∈ Rn : u(x) = r}

is a smooth hypersurface. Suppose also that f : Rn → R is continuous and integrable.
Then ∫

Rn
f |∇u|dx =

∞∫
−∞

(∫
{u=r}

fd voln-1

)
dr.

Proof of the Sobolev inequality for p = 1. Without loss of generality we will only con-
sider nonnegative functions f with ||f ||Ln/(n−1) = 1.
Introduce the two probability densities

F (x) = fn/(n−1), G(x) = h
n/(n−1)
1 =

χBn(x)

voln[Bn]
,

and let µ and ν be the corresponding probability measures.
As in the proof for p > 1 we obtain

G−
1
n (∇φ(x)) = F−

1
n (x)(detD2

Aφ(x))
1
n ≤ F−

1
n (x)

∆Aφ(x)

n
,

where ∇φ is the Brenier map transporting µ to ν, and again by integration and appli-
cation of the push-forward formula we find∫

G1− 1
n ≤ 1

n

∫
F 1− 1

n ∆Aφ.

Using the definitions of F and G and the integration by parts formula (justified as in
the last proof) we arrive at

voln[Bn]
1
n ≤ 1

n

∫
f∆Aφ ≤ −

1

n

∫
∇f · ∇φ.

As h1 is supported in Bn we see that |∇φ(x)| ≤ 1 for almost all x in the support of f .
Therefore −∇f(x) · ∇φ(x) ≤ |∇f(x)||∇φ(x)| ≤ |∇f(x)| and thus

n voln[Bn]
1
n ≤

∫
|∇f(x)|dx = ||∇f ||L1 . (6.6)

Using the coarea formula we get

||∇f ||L1 =

∞∫
0

voln-1[{x : f(x) = r}]dr.
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Thus, approximating h1 with smooth functions, we find

n voln[Bn]
1
n ≤ voln-1[∂Bn] · voln[Bn]

n
n−1 .

But n voln[Bn] is of course equal to voln-1[∂Bn] and inequality (6.6) has to be sharp.

Theorem 6.5. A function f ∈ Ẇ 1,p is optimal in the Sobolev inequality

||∇f ||Lp

||f ||Lp∗
≥ ||∇hp||Lp

if and only if there exist C ∈ R, λ 6= 0 and x0 ∈ Rn such that

f(x) = Chp(λ(x− x0)),

where hp is defined as in Theorem 6.1.

To prove this theorem we will consider the proof of Theorem 6.1. In this proof we
assumed that f and g were smooth functions with compact support, because we were
then able to extend our results with a density argument.
Thus we were able to simply apply the integration by parts formula in inequality (6.4).
But this kind of reasoning will not be sufficient to proof the characterization of equality
cases.

Therefore our first step will be to generalise the proof to all admissible functions f and
g without assuming smoothness or compact support.

Lemma 6.6. Let f ∈ Ẇ 1,p(Rn) and g ∈ Lp
∗
(Rn) be two nonnegative functions such

that ||f ||Lp∗ = ||g||Lp∗ = 1 and
∫
gp
∗
(y)|y|qdy < ∞. Let ∇φ denote the Brenier map

pushing the measure with density fp
∗

forward to the measure with density gp
∗
. Then

fp
∗/q∇φ ∈ Lq(Rn) and

1

n

∫
fp
∗(1− 1

n
)∆Aφ ≤ −

1

n

∫
∇(fp

∗(1− 1
n

)) · ∇φ.

Sketch of proof. We have
∫
|fp∗/q∇φ|q =

∫
gp
∗
(y)|y|qdy and so fp

∗/q∇φ ∈ Lq(Rn).

Let Ω be the convex set, where φ <∞. Without loss of generality we assume that 0 ∈ Ω.
For ε > 0 we define the function fε by

fε(x) = min

[
f

(
x

1− ε

)
, f(x)χ(εx)

]
,

where χ : Rn → [0, 1] is a smooth function mapping all x with |x| < 1
2 to 1 and all x

with |x| ≥ 1 to 0. The support of fε is compact and contained in Ω since Ω is convex.

Both functions on the right-hand side of the definition of fε are bounded in Ẇ 1,p(Rn),
uniformly in ε. This is obvious for the first one, as it is just a dilation of f . For the
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second one this can be seen by using the product rule for differentiation and then using
the following calculation based on Hölders inequality:∫

Rn
fp(x)|∇[χ(εx)]|pdx = εp

∫
Rn
fp(x)|∇χ(εx)|pdx

≤
(∫

Rn
[fp(x)]

n
n−p

)n−p
n
(∫

Rn
[εp|∇χ(εx)|p]

n
p

) p
n

≤
(∫

Rn
fp
∗
(x)

)n−p
n
(∫

Rn
|∇χ(x)|n

) p
n

.

Using the identity min(f, g) = f+g
2 −

|f−g|
2 , we therefore find that fε lies in Ẇ 1,p(Rn)

and ||∇f ||Lp is bounded as ε→ 0.

We now fix ε > 0. Let Ωε be a bounded open set whose closure is contained in Ω and
which contains the support of fε. Let f δε be a sequence of smooth nonnegative functions
with compact support satisfying Supp(f δε ) ⊂ Ωε and f δε → fε in Ẇ 1,p(Rn).

Then we can calculate

1

n

∫
(f δε )p

∗(1− 1
n

)∆Aφ ≤
1

n

∫
(f δε )p

∗(1− 1
n

)∆D′φ = − 1

n

∫
∇((f δε )p

∗(1− 1
n

)) · ∇φ.

With some care one can now use the Lemma of Fatou to show that this inequality
remains true as δ → 0 and ε→ 0.

Proof of Theorem 6.5. Without loss of generality we may assume that f is nonnegative
as |f | will be also optimal for all optimal functions f and then the conclusion of our
theorem will force f to be either |f | or −|f |.

Our goal is to prove that∇φ is a dilation-translation map, that is, it satisfies the equation
∇φ = λ(Id−x0) with some positive λ and x0 ∈ Rn. To do this we will trace back the
equality cases in the proof of Theorem 6.1.

Let Ω be the convex set, where φ <∞ and let us first show that f is not only nonnegative
but that there is a positive constant αK for each compact subset K of Ω such that
f(x) ≥ αK > 0 for almost all x ∈ K.

In order to do this, we will consider the use of Hölders inequality in

−
∫
fp

?/q∇f · ∇φ ≤ ||∇f ||Lp · ||fp?/q∇φ||Lq .

For equality to hold it is necessary here that for some positive constant k, |∇f |p =
kfp

? |∇φ|q for almost every x ∈ Ω. Define functions fm by fm(x) = max(f(x), 1
m). Then

∇fm = ∇fχ{x:f(x)>1/m} and so ∇fm ∈ Lp. Thus

|∇fm|p ≤ |∇f |p = kfp
? |∇φ|q ≤ kfp?m |∇φ|q.
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As a consequence

|∇(f−p/(n−p)m )|p =

(
p

n− p

)p
f
−np
n−p
m |∇fm|p ≤ k

(
p

n− p

)p
f
−np
n−p
m fp

?

m |∇φ|q.

Since |∇φ| is locally bounded on Ω, it follows that the functions f
−p/(n−p)
m are uniformly

in m locally Lipschitz and so locally bounded on Ω. So f is locally bounded away from
0 on Ω.

As a second step we prove that D2
D′φ is absolutely continuous. Since this is a nonnegative

matrix valued measure, it will be enough to proof that ∆D′φ is absolutely continuous,
as the only nonnegative matrix with trace zero is the zero matrix.
Let ∆sφ be the singular part of ∆D′φ. Since we assume that there is equality in

1

n

∫
F 1− 1

n ∆Aφ ≤
1

n

∫
F 1− 1

n ∆D′φ

and ∆D′φ = ∆sφ+ ∆Aφ, we see that∫
f

p(n−1)
n−p ∆sφ = 0.

From the proof of (6.6) we deduce that

lim
ε→0

lim
δ→0

∫
(f δε )

p(n−1)
n−p ∆sφ = 0, (6.7)

where f δε is defined as in the proof above. Without loss of generality we assume that
0 ∈ Ω. Let K be an arbitrary convex compact subset of Ω with 0 in its interior. If we
choose ε and δ small enough, we can find a positive constant α such that

f δε ≥ αχK

using the first part of the proof. As a consequence we see that∫
(f δε )

p(n−1)
n−p ∆sφ ≥

∫
K
α

p(n−1)
n−p ∆sφ = α

p(n−1)
n−p ∆sφ[K].

Combining this with (6.7) we find that ∆sφ[K] = 0 and as K was arbitrary this means
that the singular part of ∆D′φ vanishes and so D2

D′φ is absolutely continuous.

Now we can finally prove that ∇φ is indeed a dilation-translation map. In order to do
this we consider the last inequality we used in the proof of Theorem 6.1. For equality to
hold in

F−
1
n (x)(detD2

Aφ(x))
1
n ≤ F−

1
n (x)

∆Aφ(x)

n
.

for almost all x ∈ Ω, all the eigenvalues of D2
A = D2

D′ have to be the same for almost all
x ∈ Ω. This obviously means that D2

A is a multiple of the identity almost everywhere in
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Ω.
To prove that its actually a multiple of the identity we consider a regularizing kernel κ
supported on a small ball Bε. As D2

A(φ ∗κ) = D2
Aφ ∗κ we find that the smooth function

D2
A(φ ∗ κ) is proportional to the identity matrix on {x ∈ Ω : d(x, ∂Ω)}. By making κ go

to a dirac mass, we see that D2
A(φ) is a multiple of the identity on the whole of Ω and

so ∇φ and has to be of the form λ(Id−x0).
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