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Kurzfassung

Stromabnehmer moderner Hochgeschwindigkeitszüge stellen im Moment den limitie-
renden Faktor im Bestreben nach Erreichen immer höherer Geschwindigkeiten dar.
Ihre Aufgabe ist es, den permanenten Kontakt zwischen Zug und der stromführenden
Oberleitung zu gewährleisten, dabei jedoch die entstandene Kontaktraft so gering wie
möglich zu halten, da dies sonst zu starken und schnellen Abnutzungserscheinungen
an allen involvierten Bauteilen führen kann. Aus diesen Gründen kommt der Pan-
tographenentwicklung in jüngerer Vegangenheit eine immer stärker werdende Rolle
zu.
Ziel dieser Arbeit ist die Herleitung eines Pantographenmodells mit physikalisch in-
terpretierbaren Parametern. Dies ermöglich einerseits Variantenstudien und trägt
andererseits zur besseren Interpretierbarkeit des Modells bei. Darüberhinaus war die
Anbindung an den bereits vorhandenen Pantographenprüfstand und die Messdaten-
erfassung ebenfalls Teil dieser Arbeit. Außerdem wurden Videoaufzeichnunge von den
Prüfstandsläufen aufgenommen, aus denen anschließende Positionsinformationen von
verschiedenen Pantographenteilen extrahiert wurde. Die Messdaten wurden anschlie-
ßend zur Parameteridentifikation herangezogen, und das erhaltene (nichtlineare) Mo-
dell linearisiert und mit anderen, in der Literatur gebräuchlichen Modellstrukturen
verglichen.
Abschließend wurde das Thema Design of Experiment besprochen, das dazu dient,
die einzelnen Modellparameter mit möglichst geringer Unsicherheit zu schätzen.



iii

Abstract

Pantographs are the connecting element between the train and the current-carrying
contact wire and are so far the limiting factor in the attempt of reaching higher speeds
in the railway industry. Their task is to establish a reliable permanent connection
between the train and the contact wire while keeping the needed contact force as
low as possible to minimise the wear of each element. Hence, scientific research has
increasingly focused on pantographs in the last years.
The aim of this work is to obtain a model of a pantograph with physical interpretable
parameters. This approach allows to study the influence of each parameter on the
performance of the pantograph and furthermore leads to interpretable model states.
Additionally, the testbed connection as well as the measurement data acquisition was
also part of this work. Moreover, video recordings of each test run were made from
which the position of different pantograph parts could be extracted. The so obtained
measurement data was then used in the parameter estimation process. The obtained
nonlinear model was linearised and compared to other model structures appearing
in the literature.
Finally, the topic of Design of Experiment is introduced, allowing to estimate the
model parameters as accurately as possible.
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Chapter 1

Introduction

Pantographs are the overhead systems mounted on electrical trains which should
guarantee a permanent contact between the train and the current-carrying contact
wire. In former times, electrical trains stood in competition with several other types
of driving systems but nowadays steam locomotives as well as trains powered by
internal combustion engines have nearly vanished, while the average driving speed of
high-speed trains has increased dramatically. This led to new problems and demands
on the train and the attached pantograph.
At high speeds (above 250 km/h), even small disturbances in the overhead line or
even the normal irregularities caused by the droppers hanging from the messenger
wire holding the contact wire can have a significant impact on the pantograph and
may lead to contact loss which should be avoided. Figure 1.1 schematically depicts
the pantograph/catenary interaction.
The loss of contact of the pantograph not only causes a drop in electrical power
provided to drive the train, it also poses a great problem in means of wear on the
contact wire and the pantograph, as the resulting effects (‘electric arc’) are analogous
to arc welding [3]. While the design of the pantograph already partly incorporates
the harsh environment in which the parts are operating, and therefore permits a
relatively easy replacement of the carbon collector strips, the repair of the catenary
system requires much more effort. Since this means a complete opening of circuit,
the route is completely out of order for the maintenance time.
One approach to avoid this undesired loss of contact would be to increase the force

Figure 1.1: System of the catenary/pantograph interaction, taken from [1]
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with which the collector-carrying pan-head is pressed against the contact wire by rais-
ing the pressure inside the pneumatic actuator at the bottom of the pantograph that
generates the uplift force. This, of course, would guarantee a better contact in most
cases but, in turn, leads to a greater mechanical wear due to increased friction and
also to larger displacements of the catenary. In addition, the dynamics of the panto-
graph/catenary interaction are altered by an unintended high force pressing against
the contact wire. Furthermore, there are standardised nominal forces depending on
the speed of the train. Some manufacturers circumvent this by appropriately placing
wings on the pantograph, automatically increasing the uplift force at higher speeds
by aerodynamic effects. This approach needs special empirical adjustment for every
single pantograph during test drives and cannot be easily accomplished in the pro-
duction halls. Furthermore, the whole pantograph and especially the wing foils are
exposed to environmental influences like hitting objects and icing, which may lead
to altered dynamics and unintended behaviour.
Since the international trend in high-speed rail traffic goes towards increasing speeds,
these problems become more pressing. The limiting factors on speed are geometrical
and topological conditions, the drag (proportional to the square of the velocity), as
well as noise and the already described problems of maintaining a steady contact
between the pantograph and the contact wire. One approach to reduce the influence
of the latter are actively controlled pantographs. However, some barriers have to
be taken for them to work. High currents flow through the pantograph in order to
power the engines and the on-board equipment. However, this high-current environ-
ment is not suitable for microcontrollers and other electronic devices like actuators
and sensors that are needed for a high-performance active control of pantographs.
Furthermore, the power source for these devices, if not directly driven by the train
supply current, is critical because there is no connection for such devices planned or
possible on common trains.
One solution would be to use the pneumatic actuator at the bottom of the pantograph
as an actuator for active control [4]. However, its bandwidth is strongly limited and
the time delays introduced by this approach are significant as the logic can only be
implemented at the front of the wagon where the compressed air supplying device
is attached. Additionally, there is a delay in the response of the bellow to a change
in the height of the pan-head through a change in the contact wire level as well. A
different approach is to utilise the incident air arising at high speed travel as a power
source to actively control the angle of attack of attached airfoils [5].
Furthermore, in order to control the pantograph, a mathematical model of the pan-
tograph is needed. While some papers on concepts of placing additional actuator
devices to dynamically control the pantograph were already published in the early
nineties [6] , the underlying models are widely made up of lumped parameter models
of a translational mass/spring/damper-system.
Although some attempts to scientifically investigate the behaviour of the pantograph
and its interaction with a contact wire were already made in the 1960s, the modelling
approach has only slowly changed over the years. For example, in 1966 Gilbert and
Davies [7] already investigated a pantograph’s motion on a nearly uniform overhead
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line by modelling it as a simple two-mass system where the first mass is only sup-
ported to the frame by a damper but no spring. The same pantograph model was
used five years later by Ockendon and Tayler [8] to investigate the dynamics of the
pantograph/wire interaction while considering the changing stiffness of the system
by the placement of droppers. A more sophisticated pantograph modelling approach
was finally taken in [9], where a nonlinear pantograph model was derived and anal-
ysed. However, as will be shown later in Chapter 2, not even the kinematics of the
pantograph are described satisfactorily by this model.
In the past, pantograph models mainly appeared in the literature when investigating
the pantograph/catenary interaction and while the latter was described by increas-
ingly involved coupled PDEs, the pantograph models are often still represented as
translational linear systems consisting of springs, masses and dampers [10, 11, 12].
Sometimes, the pantograph’s head is connected on a rotary joint to the linkage
[13, 14, 15], in order to represent the rotation that the two pan-heads can undergo
when, for example, the contact wire changes its height. However, in the last few
years the dynamics of the pantograph have been investigated in more detail. For
example, even a 9 degree of freedom model is described in [16], but it is still made up
of translational oscillators. Later, multi-body models based on the real physics were
proposed [17]. There, the pantograph-catenary interaction was investigated and a
framework for using two different solvers (one for the catenary with finite difference
models and one for the pantograph with variable time step size) with appropriate
coupling was introduced. A multibody model created in SIMPACK and analyzed
by a finite element method was described in [16]. In [18], a multibody model of the
pantograph was used to investigate the influence of the aerodynamical forces on the
pantograph during high-speed travel. In [19], the nonlinear behaviour of a special
current collector suspension (the collector-head on top of the arrangement of rods)
made out of two springs that introduce nonlinearities because of their special align-
ment was investigated. A more detailed overview over different pantograph models
can be found in [20].
In this work an interpretable, physically based pantograph model is derived. Before
that a connection to the already existing pantograph testbed is established and test
runs are made. The unknown parameters of the model are then estimated and the
resulting model is compared to generic model structures. The main contributions of
this work can be summarised as:
Pantograph modelling : A modular, physically based multibody model of a pan-

tograph is formulated, which captures the relevant physical effects as accurate
as possible while keeping the complexity at a reasonably low level. With the
derived model, parameter studies should be possible, which a priori rules out
black-box models. The designated application of the resulting model lies in the
development of pantographs in the coupled pantograph/catenary simulation
environment. The results of the modelling process are described in Chapter 2.

Testbed connection : A reliable testbed connection for data acquisition is estab-
lished and an easy-to-use testbed interface is developed that allows to control
the actuators.
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Measurement signal synchronization : Coloured labels were attached to the pan-
tograph and video recordings of the test runs were made. Position information
of the labels were extracted and had to be synchronised correctly to the other
measurements having a much higher sampling rate. The methodology of ob-
taining sensor data and joining the measurements obtained from the testbed
and the position information extracted from video recordings is described in
Chapter 3.

Physical parameter estimation : Because only information on the length of the
different pantograph parts is available and no reliable data about masses and
spring constants could be retrieved, identification runs had to be made to esti-
mate these model parameters, which is described in Chapter 4.

Model evaluation and comparison : The developed model that is based on physical
principles is compared to various other model structures that can be found in
the literature, whose parameters are estimated for the studied pantograph as
well. In Chapter 4, all model structures are compared in terms of quality (fit)
and physical interpretability.

Outlook to design-of-experiment methods : The basic design-of-experiment (DoE)
methods are outlined that are necessary to generate optimal measurement plans
for the identification tasks. The goal is to obtain as much information as possi-
ble from a future or even ongoing experiment. Examples of model-based DoE
methods for simple model structures are shown, and the future application for
the pantograph model is sketched.



Chapter 2

Modelling

The typical layout of a standard pantograph of the company Siemens (formerly
MELECS) is depicted in Figure 2.1. This layout served as the basis of the mod-
elling process. The heaviest part is the frame on which the lower arm (both made
of steel) is attached. The slim thrust rod is only tension loaded and has therefore
much smaller dimensions. Although the upper arm is the largest component, its
mass is about the same as the lower arm’s mass because it is made out of aluminium.
The two ends of the upper arm are connected by the cross bar. The pan heads are
mounted on top of the cross bar via torsional springs. The raising torque is applied
by a pneumatic actuator between the frame and the lower arm. This pneumatic ac-
tuator can be driven with up to 10 bar that are provided at the front of each train the
pantograph is mounted on. Due to the long distance and the inertia of the pneumatic
system, the actual actuator bandwidth is strongly limited and imposes an upper limit
on the possible control dynamics. This could be circumvented by placing additional
actuators (and sensors) closer to the pan heads that try to maintain contact with the
catenary wire and additionally reduce the force needed. However, so far only ideas
and early, conceptual prototypes exist [21, 22, 4]. In practice, the small scale and
high frequency disturbances are rejected or absorbed passively via the collector head
suspension only.

2.1 Kinematics
In this section the kinematic equations of the pantograph are derived. First, only the
static connection between the various elements is described, before the derivations
of these quantities with respect to time are introduced. This finally enables the
derivation of the equations of motion.

2.1.1 Angular Formulation
Only the small-scale motion of the pantograph is done by the torsion spring on top of
the upper arm, while large displacements are accomplished through the arrangement
of the rods. To describe their kinematics, the substituted mechanical system depicted
in Figure 2.2 is investigated. The dimensions of the individual parts of the test
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lower arm
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Figure 2.1: Pantograph
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Figure 2.2: The four bar substitute linkage for the arrangement of rods. Di-
mensions in Table 2.1
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quantity length in m
l1 1.600
l2 0.314
l3 1.182
l4 1.910
c 0.720
d 0.150

Table 2.1: Dimensions of the test pantograph

pantograph can be found in Table 2.1.
First, the geometric relations are formulated by summing up the horizontal and
vertical lengths to two equations:

l1 cos(ϕ1) + l2 cos(ϕ2) = c+ l3 cos(ϕ3), (2.1)
l2 sin(ϕ2) + l3 sin(ϕ3) = d+ l1 sin(ϕ1). (2.2)

Then, by rearranging by putting the terms with l3 and ϕ3 on one side, squaring both
equations and eventually adding them, one gets after some simplifications:

l23 cos2(ϕ2) + sin2(ϕ2)︸ ︷︷ ︸
=1

=l21 + l22 + c2 + d2 + 2dl1 sinϕ1 − 2cl1 cosϕ1+

2l2(l1 cosϕ1 − c) cosϕ2 − 2l2(l1 sinϕ1 + d) sinϕ2

This finally leads to the following equation:

k1(ϕ1) sin(ϕ2) + k2(ϕ1) cos(ϕ2) + k3(ϕ1) = 0, (2.3)

where ki are functions of the arbitrarily chosen independent variable ϕ1:

k1(ϕ1) = −2l2(l1 sinϕ1 + d), (2.4)
k2(ϕ1) = 2l2(l1 cosϕ1 − c), (2.5)
k3(ϕ1) = l21 + l22 − l23 + c2 + d2 + 2dl1 sinϕ1 − 2cl1 cosϕ1. (2.6)

Equation (2.3) is sometimes referred to as Freudenstein Equation and can be analyt-
ically solved in closed form by defining:

t = tan ϕ2

2 (2.7)

from which directly follows:

cosϕ2 = 1− t2
1 + t2

(2.8)

sinϕ2 = 2t
1 + t2

. (2.9)
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ϕ1

ϕ2

ϕ3

l1

l3

l 2

c

d

ϕ2 − α

k
c

x

y

l4

Figure 2.3: The four bar linkage from Figure 2.2 with an additional degree
of freedom and an attached bar with the length l4.

By substituting in (2.3) the following quadratic equation is derived:

t2(k3 − k2) + t(2k1) + (k2 + k3) = 0 (2.10)

which eventually gives a solution for ϕ2(ϕ1):

ϕ2(ϕ1) = 2 arctan
−k1 ±

√
k2

1 + k2
2 − k2

3

k3 − k2
. (2.11)

By using this result, as well as equations (2.1) and (2.2), ϕ3(ϕ1, ϕ2) can be calculated,
where ϕ2 could be eliminated by using equation (2.11):

ϕ3(ϕ1, ϕ2) = arctan l1 sinϕ1 − l2 sinϕ2 + d

l1 cosϕ1 + l2 cosϕ2 − c
. (2.12)

Attaching another bar with the length l4 in a fixed angle α to the second bar, as
shown in Figure 2.3, the position of the cross bar can be described by the knowledge
of just one angle if all bars are considered rigid:

xcrossbar = −l1 cos(ϕ1) + l4 cos(ϕ2 − α), (2.13)
ycrossbar = l1 sin(ϕ1) + l4 sin(ϕ2 − α). (2.14)

The trajectory that the cross bar undergoes with varying ϕ1 is depicted in Figure
2.4. It is in perfect agreement with the CAD-data provided by the manufacturer.
As can be seen, the horizontal position of the cross bar is varying dependent on the
angle ϕ1 and indicates the strong nonlinearities inside the system.
It turns out that the arrangement of rods shows flexible behaviour, which is probably
due to the light weight construction of the bars and elasticities and imperfections of
the hinges and bushings. It is assumed that those effects can be modelled by linear
springs. Mainly the upper arm shows some flexible beam behaviour and the other
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Figure 2.4: Trajectory of the cross bar when ϕ1 is varied

parts are not perfectly rigid either. To accommodate for that, the coupling rod l3
is modelled in a concentrated-parameter fashion by adding a spring/damper system
at its end. The variation of length is described by the term δ which is added to the
nominal length l3 of the rod and is depicted in Figure 2.3. The equations derived so
far remain valid if l3 is replaced by l3 + δ. Thus, a second degree of freedom is now
introduced to the system which approximately captures the rod’s flexibilities.
Other approaches, to consider for the nonlinearities inside the pantograph are for
example imperfect joints [23].

2.1.2 Velocity Formulation
Starting point are again the equations (2.1) and (2.2), but this time their derivatives
with respect to time are computed and l3 is substituted by l3+δ. This time-dependent
δ term introduces an additional degree of freedom and this leads to:

−l1 sin(ϕ1)ϕ̇1 − l2 sin(ϕ2)ϕ̇2 = −(l3 + δ) sin(ϕ3)ϕ̇3 + δ̇ cos(ϕ3), (2.15)
l2 cos(ϕ2)ϕ̇2 + (l3 + δ) cos(ϕ3)ϕ̇3 + δ̇ sin(ϕ3) = l1 cos(ϕ1)ϕ̇1. (2.16)

Solving this for ϕ̇2 and ϕ̇3 under the assumptions that ϕ1 and δ are the two degrees
of freedom (independent variables) yields the angular velocities

ϕ̇2 = l1 sin(ϕ3 − ϕ1)
l2 sin(ϕ2 + ϕ3)︸ ︷︷ ︸

S2(ϕ1,ϕ2,ϕ3)

ϕ̇1 + −1
l2 sin(ϕ2 + ϕ3)︸ ︷︷ ︸

D2(ϕ2,ϕ3)

δ̇, (2.17)

ϕ̇3 = l1 sin(ϕ1 + ϕ2)
(l3 + δ) sin(ϕ2 + ϕ3)︸ ︷︷ ︸

S3(ϕ1,ϕ2,ϕ3,δ)

ϕ̇1 + 1
(l3 + δ) tan(ϕ2 + ϕ3)︸ ︷︷ ︸

D3(ϕ2,ϕ3,δ)

δ̇. (2.18)
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Figure 2.5: Substituted mechanical system of the collector-head (pan-heads
and torsion springs) which is mounted on the cross bar

By noting that

ϕ̇2,3 = ∂ϕ2,3

∂ϕ1

dϕ1

dt + ∂ϕ2,3

∂δ

dδ
dt (2.19)

it is clear that S2,3 and D2,3 are the partial derivatives of ϕ2,3 with respect to the two
degrees of freedom ϕ1 and δ, respectively.

2.2 Collector-Head
Before the equations of motion are derived, the model is completed by describing the
collector-head consisting of the pan-heads and sophisticated torsion springs on top
of the arrangement of rods. Here, a suitable initial model structure is a simple one
degree of freedom oscillator. This is justified by the translational motion and the
symmetric suspension of the torsional springs. The direct identification of this stage
supports this structural choice as outlined in Chapter 4. Therefore, the transfer
function is derived for the system involving the three signals: pan-head-position,
cross-bar-position and force acting on the pan-head mass. The subsystem describing
the collector-head is depicted in Figure 2.5 and analysing it in the Laplace domain
finally yields:

Ycb(s)− Yh(s) = ∆Y (s) =
1
m

s2 + c
m
s+ k

m

F1(s) + s2

s2 + c
m
s+ k

m

Y2(s) (2.20)

The position difference ∆Y between the cross-bar and the pan-heads is extracted
from the video recordings that were made from the test-runs and will be described
in Chapter 3.3 in more detail. The force acting on the pantograph is measured by
a force sensor placed on the linear motor. From these data the parameters of the
collector-head can be estimated, as described in Chapter 4.

2.3 Equations of Motion
As can be seen from Figure 2.1, the centers of gravity of the individual rods are
not located at their half-length due to their non-uniform cross-sections and tapered
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Figure 2.6: The main pantograph model used

shape. Especially the upper arm narrows towards the end. Therefore, the centroidal
distances s1 − s4 (see Figure 2.6) are considered in the modelling process for each
bar and can as well be estimated later by treating them as variables and thus adding
additional four parameters to the estimation problem.
The final pantograph model for which the equations of motion are derived is depicted
in Figure 2.6. The centroidal distances are measured from the angle’s reference
hinges, and the mass moments of inertia are calculated for rods with negligible radius:

Icenter = ml2

12 . (2.21)

The velocity of each part’s center of mass is calculated by taking their position
equations (the lower arm’s hinge is taken as the coordinate’s system center) and
deriving it with respect to time, taking in account (2.17) and (2.18), which express
the velocities of the dependent angles.
The total kinetic energy T and potentiel energy V of the system can now be defined
as:

T = 1
2

4∑
i=1

(
Iiϕ̇

2
i +miv

2
i

)
+ 1

2mcξ̇
2,

V = 1
2

4∑
i=1

(
migysi(ϕ1, δ)

)
+ 1

2mcgξ + 1
2kδδ

2 + 1
2kc(ξ − ycb(ϕ1, δ))2,

(2.22)

where ysi are the vertical positions of the center of mass of each rod, ξ is the position
of the pantograph head, the subscript c denotes the quantity as belonging to the
collector-head and ycb denotes the relative height of the crossbar. The angles ϕ2,3 as
well as their derivations are dependent on the degrees of freedom ϕ1 and δ.
To derive the equations of motion this quantities have to be plugged into the Euler-
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Lagrange-equations [24]:

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+ ∂R

∂q̇i
= Qi (2.23)

to finally obtain the equations of motion. The Lagrangian Function L is defined
as the difference between the kinetic and potential energy: L = T − V , Qi are the
generalised forces and R denotes to Rayleigh’s dissipation function which is defined
as [25]:

R = 1
2
∑
i

ciq̇
2
i = 1

2
(
c1ϕ̇

2
1 + c2ϕ̇

2
2 + cδ δ̇

2 + cc(ξ̇ − ẏcb)2
)
. (2.24)

It captures the velocity-dependent damping in the system. The generalised coordi-
nates qi are ϕ1, δ and ξ.
The cumbersome task of finally deriving the equations of motion is carried out by a
Maple script.

2.4 Linearisation
The equations of motion derived in Section 2.3 have the following form:

d
d tx(t) = f(x(t),u(t)),

y(t) = g(x(t),u(t)),
(2.25)

, wehre the state vector x ∈ R6×1, the output vector y ∈ R2×1 and the inputs
u ∈ R2×1 are:

x(t) =
[
ϕ1, ϕ̇1, δ, δ̇, ξ, ξ̇

]T
,

y(t) = [ycb, ξ]T ,
u(t) = [F, M ]T ,

(2.26)

However, f(x(t),u(t)) comprises many nonlinear terms which are of excessive size
and computationally expensive to evaluate.
Since the behaviour of the Pantograph should be investigated close to its operation
point, and linear systems are much better understood than nonlinear ones, a lineari-
sation is carried out. Therefore, an equilibrium point has to be defined in whose
neighbourhood the error introduced by utilising a linear model should be small. To
allow for as much flexibility as possible, no fixed values were used and the linearisation
point was generically defined as:

x0 = [ϕ10, 0, δ0, 0, ξ0, 0]T ,
u0 = [M0, F0] .

(2.27)
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Figure 2.7: Illustration of the state space system (2.29) as a block diagram.

Expanding equation (2.25) into a Taylor series, defining ∆ as the deviation from the
equilibrium point and aborting after the linear terms leads to:

d
d t∆x(t) = ∂f

∂x
|x=x0,u=u0 ·∆x(t) + ∂f

∂u
|x=x0,u=u0 ·∆u(t) +O(∆x2,∆u2),

d
d t∆y(t) = ∂g

∂x
|x=x0,u=u0 ·∆x(t) + ∂g

∂u
|x=x0,u=u0 ·∆u(t) +O(∆x2,∆u2),

(2.28)

which is finally the linearised version of the equations of motion for the pantograph
and the system can be written in the standard state-space form of a continuous
time-invariant system [26]:

ẋ = Ax +Bu, (2.29)
y = Cx +Du, (2.30)

where the state vector x, the input vector u and the output vector y where already
defined in (2.26). The matrix A ∈ R6×6 is called state or system matrix , B ∈ R6×2

is called input matrix, C ∈ R6×2 is the output matrix, and D ∈ R2×2 is called
feedthrough matrix. A block diagram representation of the state-space system can
be found in Figure 2.7.

2.5 Extensions to the Model
As will be shown in Chapter 4, the model depicted in Figure 2.6 has some major
drawbacks and therefore some minor extensions to the model will be made. The
carbon contacts are now explicitly included in the modelling process. The carbon
contacts are the physical contact between the pantograph and the contact wire. They
are often represented by a spring with an assumed stiffness of 50 000 N/m. This is
also in agreement with certain norms (e.g. [27]) that define the quality of a catenary
model. There, the pantograph is simply modelled as a two- or three-degree-of-freedom
oscillator and the link between the pantograph and the wire is described as a spring.
The same approach also appears in the literature, e.g. [6, 28, 29]. Figure 2.8 visualises
the aforementioned model.
To obtain the corresponding equations of motion, only few adaptions had to be made
to the Maple script used in Section 2.3. The potential energy V given in (2.22) of
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Figure 2.8: An extended pantograph model where the carbon contact is mod-
elled as a spring

the standard pantograph model had to be expanded by a term incorporating the new
spring:

T̃ = T(2.22) + 1
2kph (ξ − η)2 . (2.31)

Additionally, the force F acting on the pan-head was set to zero, and except for these
minor modifications the Maple-script could be reused.
Another possibility to modify the original model is to leave the force actuation on
the top unmodified and let a spring at the bottom of the pantograph create the
angle-dependent uplift force [30]. The drawback of this approach is that the pressure
inside the bellow is not an input to the model anymore.

2.6 Simple Model Structures
Many papers [3, 22, 31], as well as some norms [27], propose to model the whole
pantograph as a simple two- or three-mass-oscillator. The two-mass-oscillator is
depicted in Figure 2.9, and its state-space representation is:

x =
[
x1 ẋ1 x2 ẋ2

]T
, u =

[
u1 u2

]T
, (2.32)

ẋ =


0 1 0 0

− (k1+k2)
m1

− (c1+c2)
m1

k2
m1

c2
m1

0 0 0 1
k2
m2

c2
m2

− k2
m2
− c2
m2

x +


0 0
0 p

m1
0 0
− kE
m2

0

u, (2.33)

y =
(
0 0 kE 0

)
x +

(
−kE 0

)
u. (2.34)
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Figure 2.9: Two-mass-oscillator

The three-mass oscillator has an additional mass before the position excitation u1 and
thus three additional parameters (m3,k3,c3). It has the same state-space dimension
as the physical model derived in this chapter. Both oscillators will be compared to a
black-box model of dimension two and three in Chapter 4.

2.7 Friction
Since friction occurs in every mechanical system, its influence on the pantograph’s
dynamics should also be briefly investigated here. The use of lubricant leads to a
decrease in friction, but dependent on the actual configuration of the bearings, its
effect may still be considerable. Additionally, some nonlinear effects may occur in the
pantograph’s dynamics that are not necessarily linked to friction but are still better
described with the same approaches and thus lead to a better model.
The friction force under investigation that is responsible for a significant amount
of friction phenomena in classical mechanical systems is called Coulomb’s friction.
Static and dynamic friction are subsumed under this term which can occur at the
same time or alternating (stick-slip). Usually, the force needed to set an object
in motion is higher than the one needed to keep it moving. The effect of viscous
friction would in its most simple form be considered velocity-proportional and can be
combined with Coulomb’s friction. Figure 2.10a shows the combination of Coulomb
and an additional nonlinear velocity-dependent viscous friction, as well as the effect
of stiction.
For the sake of simplicity and to reduce the number of additional degrees of freedom
in the identification process, both coefficients of Coulomb friction are assumed to be
equal and viscous friction is neglected. This yields a friction model in the form of a
scaled signum function in a plot where the abscissa represents velocity. Figure 2.10b



2.7 Friction 16

ẋ
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Figure 2.10: Two friction models

visualises the friction model used:

Ff =
{

0 if v = 0
F̂f · sgn(v) if v 6= 0 (2.35)

The simplified friction terms are added to the two-degree-of-freedom oscillator (for
both masses) and thus increases the number of variables by two. Instead of the
unsteady signum function in equation (2.35), the smoothed term F̂f tanh (kv) is
often used instead which, for large k, is a good approximation of the signum function,
however with a bounded derivative.
The equations of motion for the two-mass-oscillator including Coulomb friction are:

x =
[
x1 ẋ1 x2 ẋ2

]T
, u =

[
u1 u2

]T
, (2.36)

ẋ =


0 1 0 0

− (k1+k2)
m1

− (c1+c2)
m1

k2
m1

c2
m1

0 0 0 1
k2
m2

c2
m2

− k2
m2
− c2
m2

x +


0 0
0 p

m1
0 0
− kE
m2

0

u +


0

−Ff 1(x1)
0

−Ff 2(x2)

 , (2.37)

y =
(
0 0 −kE 0

)
x +

(
kE 0

)
u. (2.38)

Note that in (2.38) Ff 1(x1) and Ff 2(x2) comprises nonlinear terms in ẋ1 and ẋ2,
respectively and therefore render the system nonlinear, leading to a system of the
form:

ẋ = f(x,u). (2.39)



Chapter 3

Test Bed and Measurement
Interface

The main part of the test bed in which pantographs can be analysed is made up
of a six-axis industrial robot that is augmented by a linear motor to allow for fast
uniaxial dynamics. With this configuration, great travelling distances are possible
due to the robot, while enabling high-bandwidth motion on a small scale of about
30 cm with the linear motor. A schematic drawing of the whole test bed is shown in
Figure 3.1
Unfortunately, the available robot control unit is not capable of accepting exter-
nal position demand inputs but needs predefined trajectories to change its position.
Therefore, for the test runs just the linear motor was used to actuate the pantograph
from above. The aluminium bar should imitate the contact region of the catenary’s
contact wire and is mounted on the linear motor via a six-axis force and momentum
sensor. It is connected to a measurement amplifier (mounted on top of the robot)
where its values can be accessed. The linear motor can be accessed via a control unit
via different protocols or the manufacturer’s software installed on the operating com-
puter. Two laser distance sensors were available for position measurements. Both
were installed to measure the cross-bar’s position to reduce the influence of mea-
surement noise. The pantograph is lifted by a pneumatically driven actuator where
the supply pressure is delivered by a 10 bar compressed air reservoir to produce the
same conditions as on a real train. The pneumatic hoses are running over a panel
with a simple PI-controller that adjusts the pressure inside the bellow to a constant
reference. However, for the test runs a controllable valve was installed so that the
pressure is freely controllable by applying an analogue voltage.
For the test runs used to acquire measurement data, the operating computer was not
used. Instead, all actors and sensors were wired to the real-time platform dSPACE
MicroAutoBox II (MABX). The choice was especially advantageous because the sen-
sors operated in the range 0 to 10 V which could directly be fed into the MABX.
Additionally, different parts of the pantograph were marked with coloured adhesive
labels and the test runs were recorded by a camcorder capable of capturing 50 full
frames per second. Thus, a 50 Hz position measurement of several pantograph parts
could be extracted as described in Chapter 3.3.
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Figure 3.1: Schematic drawing of the pantograph testbed, taken from [2]

3 Forces, 3 Torques
2 Positions
2 Pressures
LinMot Pos.
Valve Voltage

MABX

LinMot Pos. Demand

Valve Pressure Demand

LED Sync Signal

Figure 3.2: Signals processed by the MicroAutoBox II (left: Sensors, right:
actuators)

3.1 MicroAutoBox II Interface
The dSPACE MicroAutoBox II (MABX) was originally built as a vehicle-compatible
rapid prototyping system and therefore offers a rather compact and robust design.
For this work it was used for data acquisition and generating actuator input values,
as well as implementing a PI controller for applying specific bellow pressure val-
ues (described more in detail later in this section). The program was implemented
in MATLAB/Simulink and was automatically compiled, linked and stored on the
MABX. The user interface to visualise and modify certain values, such as measure-
ments or actuator output data, was built using the dSPACE ControlDesk software.
Figure 3.3 shows a screenshot of the final ControlDesk implementation used. As can
be seen, various settings can be changed on the fly and different output signals with
a variety of options can be selected. For both the linear motor and the pneumatic
bellow the following signals with the given parameters were available:

constant A constant value is sent every sampling instant. This value also acts as an
offset and is added to every signal specified below
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Figure 3.3: Screenshot of the developed ControlDesk GUI

sine (frequency, amplitude) sine wave with adjustable frequency and amplitude

chirp (start and stop frequency, duration, amplitude) frequency sweep from ad-
justable start and end frequencies to generate broadband signals.

APRBS (standard deviation, minimum and maximum holding time) A piecewise
constant, random signal (APRBS, Amplitude-modulated Pseudo Random Bi-
nary Signal) with varying holding times and the size of the step determined by
a zero-mean normal distribution with given standard deviation [32].

ramps (repetitions, height, gradient) freely configurable ramp signal

steps (count, height, holding time) freely configurable step sequence

For the linear motor, an additional input sequence was created from a numerical
simulation (see [33] for details) of the catenary system of a train drive at 300 km/h
that captures the distance between to support wire poles (assumed to be 60 m).
The sequence is therefore 0.72 s long and periodic. Its visualisation is shown in
Figure 3.4. Buttons for starting and stopping the data capturing process and also for
generating the selected output signals were realised via the built-in trigger functions
of ControlDesk.
Large steps in the linear motor position demand signal should be avoided so as not to
impose too much stress on the pantograph because they often lead to loss of contact
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Figure 3.4: Contact wire deflection (two periods from a simulation) of a sim-
ulated catenary/pantograph interaction (train speed 300 km/h,
passive pantograph).
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Figure 3.5: Illustration of the signal processing before the position demand
command is sent to the linear motor.

and therefore pan-head wear. Besides, the linear motor software quits with an error
message when the position error is too large. To avoid this situation a reference signal
low-pass filter can be activated. Additionally, the dynamic part of the output signal
(i.e. before the offset is added) is multiplied by a low-pass-filtered variable called
dynamic values which can be switched between zero (just constant output) and one
(selected output is unmodified). This is helpful if, for example, the frequency of a sine
signal is altered, which would normally cause a jump in the output if the dynamic
values variable is set to 1. By temporarily setting it to zero, the dynamic part is softly
driven to zero as well, because the signal is being multiplied by a low pass filtered
step function. Now, unsteady behaviour in output signals is of no consequence and
the settings can therefore be changed safely. Turning the normal low-pass-filter on
and off would lead to steps because of the discontinuous changes in signal phase lag.
The whole process of processing the output signal to the linear motor is illustrated
in Figure 3.5.
The linear motor was addressed via the CAN-Bus with an effective sampling rate
of 250 Hz. Every second message had to be a synchronisation sequence. Since the
normal position demand command was only usable for up to approximately 50 Hz,
a mode called Position–Stream was used. With this command the linear motor’s
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Figure 3.6: Logics used to limit the maximum position error per sample for
the linear motor

internal high-level controller is ignored and only position errors between the demand
and the current position of up to 30 mm are allowed before the linear motor control
drive quits with an error message and has to be restarted. To circumvent this, the
logics depicted in Figure 3.6 was used to limit the position error per sample to a
maximum of 5 mm.
Since the pneumatic bellow has very limited dynamics and approximately acts as a
first-order low-pass element, no sophisticated output signal conditioning is necessary.
For setting a given pressure an adjustable valve that had a 10 bar input and was able
to provide 0 bar to 7.5 bar at the output depending on a control voltage in the range
0 V to 24 V was used. Alternatively — as first suggested by the manufacturer — a
24 V PWM signal can be used. This was first tried by connecting the voltage drive
pin of the MABX to 24 V and using a digital output with a PWM signal. However,
it turned out that the valve attempts to draw actuation power from this signal but
the MABX was not able to provide sufficient current to drive the valve. The chosen
solution was to use an external power supply unit with a controllable output voltage
to drive the valve. After surveying the input/output behaviour, a nonlinearity and a
deviation between the load and the open loop voltage was observed. Unfortunately,
because of a ground loop due to the required circuit wiring, it was not possible to
measure the output voltage of the power supply unit with the MABX on a voltage
divider. The chosen workaround was to control the bellow pressure with a simple PI
Controller. This can be seen as an outer feedback loop since the valve voltage input
directly affects the pressure. Again, the user can enable or disable the controller and
tune its parameters from inside ControlDesk.
The third output signal is a pseudorandom binary sequence (i.e. a sequence that can
only take values 0 and 1, but each time with different, random hold periods). It
is used to drive an LED needed to synchronise the MABX measurements with the
video recordings. This is described more in detail in Section 3.2.

3.2 Video Position Measurement and
Synchronisation

The pantograph is equipped with coloured labels, and a FullHD camera, capable of
recording 50 full images per seconds with an adjustable shutter time, was positioned
in front of the pantograph to capture the collector-head including the pan-heads in
the full area of operation of the linear motor. The shutter time is chosen with 2 ms
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to match the sampling time of the MABX which, in turn, made the video a little
darker because the incoming light was reduced. This allows to determine precisely
whether the LED has been activated or not in a particular “fine” sampling interval
(for each frame).
After the test runs, the video recordings were postprocessed on a PC were the marker
positions were extracted and the pixels position were converted to millimeters. With
this procedure, the relative position of the given parts is available, but in order to
reconstruct their absolute positions, their distance from the ground or a hinge on
the pantograph’s frame was measured at the test bed and utilised as offset to yield
absolute positions.
For synchronizing the 500 Hz measurements and the 50 Hz camera recordings a pseu-
dorandom binary sequence (holding time between 5 ms and 30 ms) was used as one of
the MABX digital outputs to light up an LED that was also recorded by the camera.
So parts of the same synchronisation signal (cropped at the beginning and the end
since the recording and the MABX data capturing were not started at exactly the
same time) were available at two different sampling intervals. The lower sampled
camera signal of course is missing some bit flippings due to the short holding time of
the LED bitstream. Assuming no bit errors in the camera recording’s extracted LED
sequence, one out of 10 samples of the MABX output sequence is available (sampling
rate is ten times higher). If the cross-correlation between the downsampled MABX
bit stream and the camera LED sequence is built, one gets a result similar to Figure
3.8a. A single peak is obtained, meaning that both signal are shifted by 1237 coarse
sample instants. However, it is possible to get a more accurate information in the
fine time grid.
A short example of a pseudorandom binary sequence is shown in Figure 3.7. There, it
is also shown that at least for short signals, it is not possible to exactly reconstruct at
which time instant (of the faster sampled signal) the video recording was started. In
this figure, the measurement process was started at t = 0 s and t = 0.01 s, respectively,
and both variants lead to exactly the same bit stream with respect to the slower
sampled signal.
In order to accurately synchronise the two measurements at first the autocorrelation
of the camera measurement is built to obtain a possible maximum value for the
(normalised) cross-correlation that is going to be built and quantify the level of it
from 0 (no (linear) dependency at all) to 1 (perfect linear fit). Now the MABX
LED signal is downsampled ten times, where each time the starting bit is shifted
by one. Next, for each of these resampled signals the cross-correlation to the LED
signal extracted from the video recordings is built. A possible outcome of one cross-
correlation function call is shown in Figure 3.8a, where artificially 10 % of the bits
were flipped to demonstrate the method’s robustness. For each of the ten cross-
correlation function one single peaks exist, but its value varies. This is demonstrated
in Figure 3.8b were the value of the peak is plotted for each of the ten downsampled
MABX LED sequences. The optimal time shift on the MABX time base can then
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Figure 3.7: An extract of the LED synchronisation signal sent by the MABX
(blue) and two slower sampled camera measurements (green and
red) starting at slightly different instants of time that lead to
exactly the same sequence

be calculated with:

tshift = lags× Tscamera
TsMABX

+ i− 1, (3.1)

where i is the number between 1 and 10 for which the cross-correlation function
yielded a maximum. The fraction results to 10 in this case (number of finer sam-
ples per coarse sample) and lags means the number of lags in the coarse time grid
(1237, obtained from the left subfigure) that led to the optimum value for the cross-
correlation function and the substraction of 1 is necessary because MATLAB indices
start with 1.
Afterwards the longer signal is cropped so both — the camera position extraction
and all the MABX measurements — have exactly the same size (i. e. samples). To
warrant that no information is lost, the signals extracted from the camera recordings
are upsampled.
The application of the whole process of data capturing, video post processing and
synchronisation is described in Chapter 3.3.
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Figure 3.8: Results of the correlation analysis. The value of 1 (perfect cor-
relation) was not reached because 10 % of the camera bits were
artificially flipped. The left plot shows the result of the cross-
correleation between the downsampled MABX LED sequence
and the camera recording.
The right plot shows that it does matter which of the ten first
fine data points is the starting sample of the downsampling.
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3.3 Extracting Position Measurement from
Camera Recording

At first the only position measurements available at the test bed were two laser
sensors. However, their output signal was heavily corrupted by noise. Beside that,
the positioning of the sensors turned out to be rather complicated because of the
horizontal movement depicted in Figure 2.4 on page 9 of the collector-head during
a height change and only the cross bar’s position was measureable with arguable
effort. However, the lasers were adjusted to measure the position of the airfoils
attached to the crossbar, also introducing a small (but probably negligible) error
that was accepted in favour of the easy positioning.
In order to receive more location information — especially about the pan-heads and
the cross bar — labeled markers were attached to different parts of the pantograph
and the test runs were recorded by a Full HD recorder with 50 frames per second
and a shutter time of 2 ms, matching the MABX sampling frequency of 500 Hz for
reliable detection of the synchronisation LED’s status.

3.3.1 Conversion Process
For processing the video files in MATLAB, an extension called VideoUtils1 was used.
It allows to read, write and modify every single frame of the recording as a 1920 ×
1080× 3 double array. So every pixel’s color information is easily accessible for each
frame.
The marker detection, which is based on a proof of concept done by Alexander
Schirrer, is based on blob detection and some a priori effort is required to define the
approximate location and color of each marker.
For this task a setup routine was created and the chosen settings were checked with
early and later measurements to account for day light changes. First, for every marker
the area in which it is expected to lie had to be selected. This procedure is depicted
in Figure 3.9.
Then, an area inside the colored marker had to be selected, and the average color
content of the read, green and blue contributions inside this region is calculated.
This is because the specific color gradients inside the marker may change depending
on the illumination. Also, it is very unlikely that two pixels have exactly the same
color.
Next, a threshold value has to be specified that is comparable to a tolerance value
with which the color calculated should be met in the image procession. Setting it
to a low value will result in a generous detection barrier, but would lead to a more
noisy signal and most likely to false detections, too. E.g. a darker region might then
be mistaken as dark green causing the marker’s position to jump. The higher the
threshold value, the more precisely the color values have to match each other in order
to define the pixels as belonging to the marker. This may lead to no positive results
at all.

1http://sourceforge.net/projects/videoutils/

http://sourceforge.net/projects/videoutils/
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Figure 3.9: Setting up a region inside which the marker is expected to remain

For each marker, the following steps have to be repeated to detect its position, where
all steps are repeated for each frame of the video and of each pixel the color contents
(red, green, blue) have to be available:

1. Subtract the red, green and blue values of the marker color from each pixel;

2. create a gray-scale picture by taking the norm of the red, green and blue con-
tribution value and subtracting the result from 1;

3. maximise the saturation, so that areas with the marker color should stay white
(saturation 1) and all others are darkened as much as possible;

4. check each saturation value against the user-defined threshold value. If it is
larger, set it to 1, otherwise to 0. The result is a binary image;

5. use the built-in MATLAB function imopen to morphologically open an image
and automatically remove all white areas that are smaller than a disk with a
radius of 2 pixels. This filters out smaller disturbances coming, for example,
from measurement noise or objects behind the window which was partly on the
recording area;

6. compute the center of the remaining white pixels and store it as the marker’s
position.

Figure 3.10 shows each of these steps for the pre-defined area for one green marker
attached to the pan-heads. The darker region below the pan-heads is the cross bar.
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1 2 3 4 5

Figure 3.10: Steps of the marker detection process
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Unfortunately, for the second test runs no spot lights were available. This imposed
a problem on extraction of some marker’s position, as they were occasionally in the
shadow of parts of the pantograph. For example the yellow marker attached at
the center of the pan-head was skipped for the position extraction since its coloring
changed too much between the upper and lower linear motor’s position.
As can be seen in Figure 3.9, a white screen, however appearing grey in the picture,
was positioned behind the pantograph to increase the contrast between the marker,
respectively the pantograph and the background. The synchronisation LED was
attached on this screen so that its position remained unchanged during the test runs
and it was not covered by the pantograph. For the detection of the LED’s status only
the pixels around the diode were checked. If the maximum of the red contribution
of one pixel exceeded 0.7 (of a maximum of 1) then the LED was assumed to shine.
After processing the whole video, the marker’s positions were available in pixel co-
ordinates in Full HD resolution. A factor for converting them to mm was obtained
by holding an object with a known length right beside each marker and calculating
the ration between the objects length and its pixel representation in the video.
Then, as already described in section 3.2, the autocorrelation between the camera’s
LED extraction and the decimated (here only every 10th value was used) MABX
LED output signal was built, were the decimation started at different positions to
get the optimal shift value. Then the upsampled video position measurement and the
MABX recordings can be synchronised and the longer one appropriately cropped so
they conform to each other. Afterwards they are stored in one mat-file to represent
one measurement that can be used for the parameter estimation process.

3.3.2 Comparison of Different Sensors
In this section, the available position signals are compared. For the first test runs
no position feedback from the linear drive was available and the laser sensors were
positioned vertically under the airfoils. These sensors were not used anymore for
the second part of the test runs, but a CAN-Interface to the linear drive was avail-
able instead. This has the advantage of digital data transmission and eliminates
transmission noise.
In Figure 3.11 the two position signals obtained from the laser sensors are shown,
as well as the extraction from the camera recordings of the pan-head’s position.
Although the signal from the two laser sensors appears very noisy it is possible
to see its conformity with the video extraction. If the laser sensor signal is sent
through a low-pass filter, the result is also usable for estimating the parameters of
the pantograph model.
In Figure 3.12 the position signal of the linear motor’s slider received from the linear
motor’s control unit via the CAN-Bus is displayed together with the extraction of
the slider’s position from the camera recordings. The latter signal is more overlaid
with noise but in general the agreement between both signals is good.
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Figure 3.11: Extracted measurement of the cross-bar position and the signals
of the two laser sensors.
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Figure 3.12: Linear motor’s slider position received via CAN-bus (gray) and
the extracted position signal from the video recordings (black).



Chapter 4

Identification Process

This chapter describes the process of estimating the unknown parameters in the equa-
tion of motion (2.28). For this purpose, two test runs were made on the pantograph
test bed. The recordings from the MABX are synchronised to the position extracted
from the video recordings (with the procedure described in Chapter 3). The prepared
data sets are suitable for a reliable parameter identification process.
First, basic theory on parameter identification and the possible (mathematical) ap-
proaches are given before the actual process is described. Initial data investigations
are discussed. Finally, the obtained models are validated and their quality is quan-
tified and discussed.

4.1 Theoretical Background
During the parameter estimation process the model structure is assumed to stay
constant. For each model structure described in Chapter 2, one of the identification
processes described in this section is carried out. The aim of model identification
here is to obtain valid (i.e. well-performing and physically plausible) values for the
unknown pantograph parameters in the model.
The actual structure of the model (e.g. linear or nonlinear, number of states, . . . )
does not matter for the presented identification method as long as the model’s in-
put/output dynamics matches the identification data obtained from the measure-
ments.
Mathematically, the model is given in the following generic form:

y = f(u,θ) (4.1)

where θ denotes the vector of unknown parameters that are going to be estimated,
u is the input into the model and y is the model output. All quantities are vectors
and the general MIMO (Multiple Input Multiple Output) case is considered. It is
assumed that a sufficiently long series of measurements is available with equidistant
time sampling. For compact notation, a measurement sequence is collected into one
vector

ZN =
[
yT(1),uT(1),yT(2),uT(2), . . . ,yT(N),uT(N)

]T
,
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also called training data, which is used for the identification process. A different
measurement sequence is then used for model validation. Mathematically speaking,
a mapping from the data set ZN to a set of all possible model parameters DM is
sought [34]:

ZN → θ̂ ∈ DM,
and this mapping is called a parameter estimation method.
The goal of the identification is to minimise a user-defined error function ε by finding
an optimal parameter estimate θ̂. In the literature (as well as in this case) the
prediction error method is often used, which means that a norm (usually the quadratic
norm) of the prediction error vector

ε(tn,θ) = y(tn)− ŷ(tn|θ) (4.2)

is to be minimised. Some extensions to this approach exist, including prefiltering ε
with a chosen filter L, introducing frequency weighting, or considering other norms
than the quadratic norm to improve robustness against bad data or outliers.
If the quadratic norm is used on the error function ε, the following cost function is
obtained:

VN(θ,ZN) = 1
N

N∑
n=1

1
2ε

2(tn,θ) (4.3)

which is to be minimied with respect to the model parameters θ. There are N
measurements available for the identification process and each value is treated equally
(the infinity norm for example would only consider the largest value). The formal
optimisation criterion to retrieve the optimal parameter vector θ̂ is the solution of
the nonlinear least-squares problem (4.3):

θ̂ = arg min
θ

VN(θ,ZN). (4.4)

Additionally, inequality constraints such as limitations of parameter values, output
amplitudes, as well as their rate of change can be incorporated into the optimisation
problem.

4.1.1 Gradient-Based optimisation
Because of the complexity and the nonlinearity of the problem at hand, there is no
obvious way to obtain the optimal solution in closed form, so iterative schemes are
applied instead. The idea is to start at a chosen initial parameter vector θ̂(0), obtained
for example by an educated guess or by randomisation and iteratively improve the
solution:

θ̂
(i+1) = θ̂

(i) + µ(i)f (i). (4.5)
One way to do so is by using so-called gradient methods. These widely adopted
optimisation routines are usually based on evaluating the linearisation of (4.3) in the
neighbourhood of the current guess θ̂(i) [34]:

VN(θ,ZN) ≈ VN(θ̂(i)
,ZN) +

[
θ − θ̂(i)

]T ∂VN(θ,ZN)
∂θ

|
θ=θ̂(i) . (4.6)
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The gradient of the cost function in (4.6) points into the direction of the steepest slope
of the cost function with respect to the parameter vector θ. The search direction f
in (4.5) is thus taken as the negative gradient:

f (i) = −∂VN(θ,ZN)
∂θ

|
θ=θ̂(i) , (4.7)

leading to the gradient-descent method and, with an appropriately chosen step size
µ(i), a reduction of the cost function in each step is possible. This is carried out until
a local minimum is reached. This result can also be written in terms of a perturbation
h of the current parameter guess θ̂(i):

hgradient-descent = µ
∂VN(θ,ZN)

∂θ
(y− ŷ) . (4.8)

In the gradient-based optimisation methods the derivation of the model output has
to be computed for each parameter direction in every iteration process either numer-
ically or, if possible, analytically. This is especially time-consuming for higher-order
models. A major drawback of all gradient-based optimisation algorithms is that they
only converge towards a local optimum near the current parameter guess. In addi-
tion, several extensions to this procedure exist to improve their performance. One
is to iteratively adapt the step size µ(i) to higher values if the cost function is only
slightly changing in the neighbourhood of the current guess. Another possibility is to
take the second-order approximation of the cost function equation (4.3) (the Hessian)
as the basis of the process.

Gauss-Newton Algorithm

A well-performing second-order method is the Gauss-Newton algorithm. Its efficiency
for many problems stems from its second-order of convergence, and from the fact that
the Hessian matrix is approximated efficiently. Here, only a short derivation of the
method will be given because it will be shown later that it is a special case of the
Levenberg-Marquardt algorithm that will be discussed in the next Section.
The output of the model ŷ using a perturbed parameter vector is approximately:

ŷ(θ̂ + h) ≈ ŷ(θ̂) + ∂ŷ(θ̂ + h)
∂θ̂

h = ŷ + Jh, (4.9)

where h denotes the perturbation of the parameter vector, ŷ is from now on the
output of the model with the current parameter guess and the Jacobian (gradient of
the model output with respect to the parameter vector) is now written as J. The
perturbed model output of (4.9) can now be substituted into the definition of the
cost function (4.3) and leads to:

VN(θ + h,ZN) ≈ yTy + ŷTŷ− 2yTŷ− 2 (y− ŷ)T Jh + hTJTJh. (4.10)

The derivative of the obtained cost function with respect to h is set to zero

∂VN(θ + h,ZN)
∂h

≈ −2 (y− ŷ)T J + 2hTJTJ != 0 (4.11)
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and this leads to a current optimal perturbation h:(
JTJ

)
hGauss-Newton = JT (y− ŷ) (4.12)

A comparison of (4.8) and (4.12) already shows that the Gauss-Newton method
is related to the basic gradient-based optimisation algorithm described in the last
Section. The main advantage of the Gauss-Newton method is its very fast local
convergence [35]. On the other hand, the method converges slowly or sometimes not
at all if the initial guess is far away from a minimum.

Levenberg–Marquardt Algorithm

Beside the incorporation of higher-order terms in (4.6) there are other possibilities to
improve the first-order gradient-based optimisation algorithms described above. One
of these approaches is called Levenberg–Marquardt algorithm, also known as damped
least-squares.
Levenberg [36] suggested that an additional damping term should be added to (4.12),
leading to: (

JTJ + λI
)

hLevenberg = JT (y− ŷ) , (4.13)
where I is the identity matrix, λ is a non-negative damping factor which is being
adjusted in each iteration of the algorithm. If λ is large (as usually initialised) (4.13)
resembles the gradient-descent method (4.8). On the other hand, if the method
slowly converges to a solution, λ is reduced and thus the Gauss-Newton method is
obtained, leading to rapid local convergence.
Marquardt [37] suggested the following extension to (4.13):(

JTJ + λdiag
(
JTJ

))
hLM = JT (y− ŷ) , (4.14)

called the Levenberg–Marquardt algorithm. Here, diag(JTJ) creates a diagonal ma-
trix consisting of the diagonal elements of JTJ. This way the estimated local cur-
vature information of the cost function is incorporated in the optimisation process.
With this addition even in the case of small gradients fast convergence is possible.
Loosely speaking, with the Levenberg–Marquardt algorithm a large reduction of the
cost function within one iteration is only possible if the perturbation hLM of the
current parameter vector is not too large. This is done because the approximations
of the cost function in the Gauss-Newton algorithm are only valid within a small
neighbourhood of the current parameter guess θ̂. This method combines the robust-
ness properties of the gradient-descent method (4.8) with the fast local convergence
of the Gauss-Newton algorithm (4.12).
In this work the Levenberg–Marquardt algorithm is used to solve a system of non-
linear equations of the form: F(x) = 0, as will be described later.

4.1.2 Genetic Algorithm
The second optimisation method tested and finally used are the so-called genetic
algorithms. They belong to the class of evolutionary algorithms that are based
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on the evolution of the solution candidates by a methodology inspired by natural
evolutionary processes. Their great advantage is that no derivatives of the cost
function have to be calculated. Thus, they can be used on non-smooth problems
with several local optima.
At the start of the optimisation process a set of solution candidates is created and
initialised with random parameters that stay inside a predefined range. At each
iteration step, the cost function for each individual is evaluated and the population
is altered in various ways:
Crossover children Two or more individuals are combined to form a new one by

mixing the solution’s genome (here, the parameter vectors) in a randomised
fashion.

Mutation children One or more parameters of the individual are altered randomly

Elite children have the best fitness level (lowest cost function) in the current gener-
ation and therefore remain unchanged

Additionally other steps may be added like eliminating individuals with a large cost
function and creating new ones. Beside the mentioned basic approach, highly so-
phisticated methods have been developed to improve the optimisation process, for
example, to prevent the population to gather around only one local optimum. The
algorithm is stopped when the maximum number of generations is reached or the
change in the fitness functions drops below a predefined tolerance value and a (local)
minimum is found.

4.1.3 Methodology – Implementation of the Parameter
Estimation

The genetic algorithm was chosen because of the time needed to evaluate the deriva-
tion of the cost function and the possibility of several local optima in the problem
space. For the parameter estimation process the MATLAB built-in genetic algorithm
was used in a constrained multi-objective setup (fit on the cross bar’s position and
the contact force). Constraints were put on each of the parameters to confine them to
“reasonable” ranges (e.g. neither negative nor unrealistically large masses). Because
of the large dimension of the estimation problem (more than 10 degrees of freedom),
the genetic algorithm was used with a large population size of 1000 individuals. For
each individual in every generation the following steps were done:

1. The equilibrium position of the nonlinear equations of motion for the given pa-
rameter set (including the measured steady state pressure p0 and the measured
steady state force F0 are found by using the fsolve command in MATLAB,
which itself is using the Levenberg-Marquardt algorithm. The result is the
equilibrium position: x0 (e. g. [δ0, ξ0, η0]T).

2. The linearisation of the nonlinear equations of motion is then done around
the aforementioned point x0. For the linearisation m-files were created using
Maple, so no numerical approximations of the derivatives had to be computed.
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3. Use the input data of the measurement run to simulate the linear model

4. Calculate the fit of the linear model to the measurement data:

fit(%) = 100 ·
(

1− ‖y− ŷ‖
‖y−mean(y)‖

)

and return these values when the objective function is evaluated in the process
of optimisation. The sequence y denotes the measured data while ŷ is the
model’s output.

The iterations were stopped when the maximum number of generations was reached
or the average Pareto spread was too low (all individuals converged towards one
point). To monitor the status of the time-demanding optimisation process after
each finished generation, a Pareto front is displayed. This plot shows the dominat-
ing individuals of the population in the two optimisation criteria. An individual is
Pareto-optimal if a decrease in one objective function is only possible if the other
one increases. The solution of the optimisation process is a set approximating the
Pareto front of quasi-Pareto-optimal solutions from which the user has to choose an
appropriate one. The main advantage of this kind of result representation is that
it is not necessary to tune weighting parameters a priori to make different measures
or units comparable. Instead, the genetic algorithm tries to minimise both objective
functions. An example of such Pareto front approximation is depicted in Figure 4.7.

4.2 Measurement Data
Since no information of the occurring frequencies (and their contribution to the over-
all dynamics) at the test bed was available, a rather high sampling frequency was
chosen initially to make sure to capture all relevant physical effects well beyond the
Nyquist frequency, which is half the sampling frequency. To verify that there are no
aliasing effects in the measurements, two data acquisition runs with different sam-
pling frequencies that are mutually prime were made. If relevant contributions in
the frequency domain differ in both runs, either (analog) low-pass anti-aliasing fil-
ters have to be applied or the sampling frequency has to be increased. As Figure
4.1 shows this is not necessary due to the good agreement of the spectrograms of
both measurement runs. Both signals show the force measurement with a constant
valve input to the pneumatic actuator, while the linear motor follows a sine wave at
1 Hz. Remarkable are the surprisingly high frequency contents of the signals that are
assumed to be caused by resonance behaviour of the testbed arrangement (a robot
with a rather large overhang). Additionally, it later turned out that oscillations in
the force signal are introduced by the placement of the force sensor between the slider
of the linear motor and an aluminum bar.
The sampling frequency was then chosen to be 500 Hz and as a first step the recorded
data were examined. The relevant signals were plotted separately and checked for
outliers, as well as trends and non-stationarities [38]. Then the data recorded by the
MicroAutoBox were resampled to 50 Hz, so that they had the same time basis as data
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Figure 4.1: Spectrum of the force signal with two different sampling frequen-
cies when the linear motor is excited with a 1 Hz sine.

extracted from the video recordings. Then, all data sets were low-pass filtered with
a stop-band frequency of 20 Hz to focus on the relevant dynamics and also reduce
the effect of measurement noise, as the Nyquist frequency of the video recordings is
only 25 Hz. However, when the dynamics of the coupled system of the pantograph
and catenary is under investigation, [39] suggest the frequencies beyond 30 Hz may
be relevant as well.
The data sequence for the estimation process was either taken from a run with
APRBS input signals (for both, the pressure and the linear motor position), or a
combination of APRBS and ramp signals. Examples of both signals can be found in
Figures 4.2 and 4.3. There, the influences of the inputs on the outputs can already
be seen. Especially in the first figure, the force (although already filtered with a
cut-off frequency of 20 Hz) appears very noisy or at least heavily oscillating with
very high amplitudes. This is no original pantograph behaviour, but was artificially
introduced by the force sensor in combination with the aluminium rack. As can be
seen for example in Figure 3.9 on page 26 at the end of the linear motor’s slider the
force sensor is attached, followed by the aluminium beam with a weight of about
1.5 kg that eventually is in contact with the pantograph. This installation leads to
the monitoring of the inertia force of the aluminium bar and therefore introduces
unwanted dynamic contributions in the force measurement signal when the system is
excited. A validation for that statement can be found in Figure 4.3, where both inputs
(displacement and pressure) are ramp sequences with different durations. After the
linear motor is at rest (after 60 s) a smooth force signal can be observed. Prior to
that, even though the velocities and accelerations are small, additional contributions
to the force signal can be seen. Additionally, some tests with a mounted acceleration
sensor were made which confirmed the interpretation.
In the following sections the results of the estimation process of the different models
described in Chapter 2 are discussed. Before that, on the basis of the camera record-
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Figure 4.2: Recorded values for two distinct APRBS input sequences (linear
motor’s position and pressure)
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motor is moving and although already low-pass filtered, the os-
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ings and the force signal, the pan head is analysed in more detail and a transfer
function is estimated from the available data.

4.3 Collector-Head
The collector-head plays an important role in the pantograph dynamics since it is
responsible for maintaining the contact in a high dynamics movement and has to
quickly react to small disturbances. To ensure sufficient contact quality, regulations
require a velocity-dependent mean contact force. At higher speeds, a loss of contact
is even worse and so the contact force is increased at higher velocities. The two
main strategies to increase the pantograph contact force are either to increase the
bellow pressure with increasing velocities, which at least needs basic feed-forward
control functionality, or to mount spoilers on the pantograph that lift the pantograph
upwards with higher wind speeds.
The collector-head of the pantograph under test consists of four torsional springs that
are located inside two tubes mounted on the cross bar as can be seen in Figure 2.1 on
page 6. The design choice of placing the tubes under the cross bar with the center of
rotation of the hinge directly above the cross bar leads to advantageous properties,
especially in high-speed operation. Although the four suspensions springs of the two
pan-heads are nominally independent of each other, a significant coupling could be
observed when only one of them is actuated.
As a first test to examine the collector-head dynamics the transfer function between
the cross bar and the pan-heads positions was estimated using a PT2 element. The
result is shown in Figure 4.4. Because the position data was extracted from video
recordings at 50 Hz, only information up to half of this frequency is available. How-
ever, because of the conversion process described in Chapter 3.3 the measurements
are only reliable for frequencies up to 10 Hz. Below that, the transfer function from
the position of the cross bar to the pan-head’s position can very well be described by
a PT2 element and the resonance frequency lies at 3 Hz. A high resonant peak at that
frequency was also observed for the force measurement during a 1 Hz sine motion of
the linear motor, shown in Figure 4.1. This indicates that significant nonlinearities
are present.
When comparing only the two position signals of the cross-bar and the pan-heads,
it is very likely that dynamics of the robot, the aluminium beam (the contact-wire
imitation), or the arrangement of rods are mapped into one or both position mea-
surements. To get a more accurate description of the collector-head’s behaviour, a
more thorough system analysis is made based on the model depicted in Figure 2.5
and the corresponding transfer function is formulated. It takes the force F1 acting
on the pan-heads by the contact wire into account:

Ycb(s)− Yh(s) = ∆Y (s) =
1
m

s2 + c
m
s+ k

m

F1(s) + s2

s2 + c
m
s+ k

m

Y2(s). (4.15)

The resulting transfer functions are visualised in Figure 4.5 and can be used to
identify the model parameters: mass, damping, and stiffness of the collector-head
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Figure 4.4: Measured position (gray) and estimated (black) transfer function
from the cross-bars position to the pan-heads position.

when modelling it as a one-degree-of-freedom system.
When the influence of the cross bar position is neglected and only the transfer func-
tion from the force to the difference of the two positions is analysed, the fit is much
better, as can be seen in Figure 4.6:

Ycb(s)− Yh(s) = ∆Y (s) =
1
m

s2 + c
m
s+ k

m

F1(s). (4.16)

The identified parameters of the PT2-elements depicted in Figure 4.5 and 4.6 are
shown in the table below.

Parameter Model (4.15) Model (4.16)
m (kg) 9.7 13.3
c (N s/m) 97.2 24.1
k (N/m) 9589.5 13142.0

As will be shown in the next section, when the parameters of the whole pantograph’s
model are identified, the values of these parameters do vary, but still stay within a
comparable range.
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Figure 4.5: Measured (gray) and estimated (black) transfer functions from
the cross-bars position and the force to the pan-heads relative
position.
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Figure 4.6: Measured (gray) and estimated (black) transfer functions from
the force F1 to ∆Y = ycb − yh.
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4.4 Nonlinear Pantograph Model with Force
Excitation

The first nonlinear gray-box pantograph model used considered a torque acting at
the bottom and a vertical contact force at the pan-heads as inputs and is depicted
in Figure 2.6 on page 11. Since the identification process using the whole nonlinear
model was too time-consuming to be used, the nonlinear equations of motion were
linearised around their equilibrium position for every set of parameters obtained
during the run of the genetic algorithm. This way, the nonlinear equations of motion
had to be processed only once, namely at the start of the simulation to obtain x0
and not in every time step of the simulation of the differential equation.
However, the model turned out to be unstable around its equilibrium position, as a
constant input moment leads to an unbounded rise or lowering of the pantograph.
This was the case for both the nonlinear as well as the linearised equations of motion.
Ad-hoc attempts to obtain a useful model have been tried, such as overriding the
position of the pan-heads during the simulation with the measured values. However,
this was not successful, so a different model structure, outlined in Section 4.5, had
to be used.

4.5 Nonlinear Pantograph Model with
Displacement Excitation

This model was already introduced in Section 2.5 and is depicted in Figure 2.8 on
page 14. It eliminates the drawbacks of the previous nonlinear model. The agreement
of the model output with the measurements is also good, and the Pareto front of the
identification process according to Section 4.1 is shown in Figure 4.7.
The two axes show the estimation error (fit in %) of the cross-bar position and the
contact force. Every marker in the plot represents one parameter set (also called
‘individual’ in the genetic algorithm) and each is approximately Pareto-efficient in
the sense that a benefit in one direction leads to deterioration of the other cost
function. The optimisation was carried out with a total of 13 parameters and an
exemplary solution is shown in Table 4.1.

masses kg damping N s/m stiffness N/m
m1 22.1 c1 277.7 k 1399423
m2 4.5 c2 329.4 kc 21073
m3 6.7 c3 1082.8 kph 11931
m4 21.1 cc 65.8
mc 6.0

Table 4.1: Selected solution of the estimation process

The remaining parameter was the factor to obtain the input moment given the bellow
pressure and was estimated with 260.0 N m/bar. The masses m1 to m4 correspond to
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Figure 4.7: Pareto front of the identification process to the nonlinear panto-
graph model

the masses of each rod defined in Figure 2.8, c1 is the damping of ϕ̇1, c2 that of δ̇ and
c3 that of ϕ̇2. The parameter k denotes the stiffness of the third rod and kph is the
stiffness of the carbon pan-heads. All values with the subscript c are the parameters
of the collector-heads.
The estimation process was done with the measurement data depicted in Figure 4.2
which consisted of uncorrelated step signals for the linear motor’s position and for
the desired bellow pressure. To validate the obtained model, it was tested with the
input signals that were used for obtaining the data in Figure 4.3 and the result of
the validation process is shown in Figure 4.8. The force signal from the nonlinear
model (light gray) already follows the measurement signal (black) well, but some of
the oscillations are exaggerated. The linearised version of the nonlinear model (dark
gray) shows an even better behaviour. This is most probably due to the fact that the
parameter estimation was done using a linearised version of the equations of motion
using the current parameter set. Finally it should be mentioned that the oscillations
were even worse when the input signal was more dynamic (like steps).
While remaining stable and being in good agreement with the measured data, this
model also has a drawback. Since one of its inputs is a displacement and the spring
representing the carbon contacts is stiff, the pantograph closely follows the motion
of the contact wire. Theoretically, it would therefore be possible that the modelled
pantograph is pulled upwards by the contact wire if the bellow pressure is too low
to push the pantograph upwards. One way to circumvent this behaviour is to force
the stiffness of the carbon contacts to a lower value, either by imposing constraints
in the optimisation process or by setting it to a fixed value.
In the next test, the carbon contact stiffness is set to 50 000 N/m as given in the norm
EN 50318 [27]. This led to a small change in the estimated parameters although they
stayed in a comparable range. Typically, less than 10 % change in the parameter
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Figure 4.9: Eigenvalues of the linearised system when each of the parameters
is multiplied by 0.9 (circles) and 1.1 (crosses), respectively

values occurred. The largest difference was at the stiffness of the carbon contact that
increased from 10 458 N/m to 50 000 N/m. Both fits (cross-bar position and contact
force) decreased but stayed in a plausible range too. The fit on the force calculated
to 30.1 % on the training data and 82.4 % on the validation data.
Changing the problem to a single-objective optimisation problem and only minimising
the force error led only to a very small improvement.
Figure 4.9 shows the eigenvalues of the linearised model when each parameter is
sequentially multiplied by 0.9 (black) and 1.1 (gray), respectively. The position of
the eigenvalues is rather robust to changes in the parameters and the overall dynamics
is not significantly influenced by the parameter variation. A variation of the mass
mc of the collector-head as well as the stiffness kph of the topmost spring have the
strongest influence on the model dynamics.
All results presented in this section were obtained by using the linearised version of
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Figure 4.10: Force signal measured (black, thin) and the model output of the
harmonic oscillators: 2-mass-model: gray, 3-mass-model: black,
thick

the nonlinear equations of motion because computation times for the fully nonlinear
model are too long to enable an optimisation on the whole nonlinear system.

4.6 Harmonic Oscillators
The linear three and two degrees of freedom models are often used in the literature
and consist of three respectively two masses with springs and dampers between the
masses and the inertial system. The input to the model could be either a force
or a displacement if an additional spring is placed on the top mass, as was done
here. A visualisation as well as the equation of motion wer already given in Section
2.6 on page 14. The parameters of these models have only very limited physical
meaning on the real pantograph but it is easily usable in simulations and parameter
estimation because of its linearity. The parameter estimation process was done with
the step sequence from Figure 4.3 and is computed quickly because no treatment of
the nonlinear equations of motion of the pantograph is necessary. The input from
the pneumatic actuator was modelled as a force acting on the first mass. Again,
the force was assumed to be proportional to the pressure inside the bellow. The
factor mapping pressure to force was modelled as an additional degree of freedom
in the estimation process. The output of the models obtained is depicted in Figure
4.10, where a part of the force sequence is plotted. The three-mass oscillator gives
significantly better results than the two-degree-of-freedom model.

4.7 Harmonic Oscillators with Friction
In this model the two-mass and three-mass structure from the previous section is
taken but extended with two nonlinear Coulomb friction terms, already described
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in Section 2.6 and 2.7 on page 14. This step is justified by the visible stick-slip
effect when the height of the pantograph is slowly changed. Additionally, as already
discussed, the pneumatic actuator’s valve itself often exhibits such effect as well.
The performance increase with having friction terms in addition to the damping c1
and c2 for the two-mass structure only gave a slightly better fit on the force signal,
however, the result on the validation data was much better than when using the
linear two-mass oscillator. On the other hand, the linear three-mass oscillator has
only one more parameter and fits much better even without an additional friction
model.
If friction is added to the three-mass structure the fit on the training data surpris-
ingly decreases to 13.0 %. One explanation is that a different parameter estimation
algorithm has been utilised due to the nonlinear system model. However, the fit on
the validation data is far better with 83.7 % which may be an indication that there is
indeed significant Coloumb friction present in the pantograph, which becomes evident
in slow, large scale motion sequences.

4.8 Summary
In this chapter the parameters of different model structures have been estimated and
validated on measurement data. In principle, two different excitations are possible:
force and position excitation. The problem becomes ill-posed when the force is taken
as an input in combination with the chosen pneumatic actuator model in the sense
that a rigid body mode is introduced that renders the system unstable. Hence, the
position input was considered here. However, the derived models can be changed
to the force input form by removing the contact spring and adding an input force
instead.
Additionally, state space black box models with a dimension of 4 and 6 were esti-
mated. The following table lists the results of model structures under investigation:

Model Structure DOF Fit APRBS (%) Fit ramps (%)
Physical Model (linearised) 13 44.7 84.0
Black Box (6 states) 36 35.9 69
Black Box (4 states) 16 45.8 63.1
3-mass-oscillator w. friction 14 13.0 83.7
3-mass-oscillator 11 15.1 76.8
2-mass-oscillator w. friction 10 11.4 21.1
2-mass-oscillator 8 10.6 −76

In the third column the fit on the training data (the ARBS signal from Figure 4.3) is
shown and in the fourth column the same parameter set was used on the validation
data from Figure 4.2. The following observations can be made:

• The physical gray-box model (with 13 free variables) and a state space dimen-
sion of 6 performs very well on both data sets and its states are interpretable
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in terms of physical meanings.

• The six-state black-box model with a total of 36 free variables performs worse
than the four-state black-box model on the training data (probably due to
convergence to a local optimum). However, on the validation data the more
complex model outperforms the simpler one.

• The computational time needed to identify the parameters of the grey-box
models is several hours, while the parameters for the black box models were
obtained in several seconds. These times were taken on a modern office PC
(Intel i7).

• The poor performance of the harmonic oscillator on the training data is due to
the spurious oscillations in the force signal that are not fitted at all.

• The two-mass-oscillator fails completely on the validation data, while the three-
mass-oscillator gives very good results.

• Considering friction slightly improves the result, but adds two (or three) un-
known parameters. Additionally the advantages of having a linear model are
lost.



Chapter 5

Design of Experiment — DoE

5.1 Introduction
The foregoing chapter dealt with extracting a model from already available mea-
surement data after the test runs were completed. The topic Design of Experiment
(DoE), however, deals with the problem of how to obtain the maximum amount of
information out of an upcoming or even ongoing experiment. The output of this
process can be, for example, the optimal sampling time, the optimal sensor and ac-
tuator locations, or the optimal input signals. If more than one objective is under
consideration, a joint design problem is necessary because these objectives are often
interrelated [40]. Since there are always constraints in practical situations such as
limited actuators, finite measurement time and maximum sampling rate, these have
to be incorporated in the design of experiment task as well.
If it is possible to run the design process during an active experiment to, for example,
obtain the next input value(s) depending on the current estimated model parameters,
this is called online DoE. The advantage is that in every iteration step the actual
optimal input is applied to the system depending on the newest parameter vector.
So, on-the-fly, the inputs can be chosen in a way that the current variances of the
parameter estimates are minimised.

5.2 Theory
The core of the DoE is the quantfication of the (novel) information content of the
given experiment. One suitable quantity for this purpose is the variance of the
estimated variables: a smaller variance means high certainty of the parameter. A
lower bound for the parameter covariance, which is reached by an efficient estimator,
is the “Cramer-Rao” lower bound:

cov θ̂ = M−1, (5.1)
where M is the Fisher information matrix :

M = Ey|θ


(
∂ log p(y|θ)

∂θ

)(
∂ log p(y|θ)

∂θ

)T
 . (5.2)
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Again, θ denotes the parameter vector, y the model output (respectively the vector
of all measurements starting at zero time) and p is the probability density function
of the sample. From the Cramer-Rao lower bound follows that a value related to M
is a good representation of the information content of the experiment. Assuming an
efficient estimator which reaches this bound, by maximising the Fisher information
matrix the accuracy of the parameter estimation is increased. Introducing a scalar
function φ, a cost function J is to be minimised:

J = Eθ [φ(M)] (5.3)

In the literature different functions operating on the Fisher information matrix exist,
from which the most important ones are:

A-Optimality Here, the trace of the inverse of the Fisher matrix is minimised, which
results in minimising the average variance of the estimated variables

D-Optimality Here, the determinant of the Fisher information matrix is maximised.

E-Optimality This criterion maximises the smallest eigenvalue of the Fisher infor-
mation matrix.

The shape of Equation (5.2) is rather unsuitable for practical use since it involves
an expectation over a matrix containing the product of two probability density func-
tions. Assuming additive noise ε that is independent and Gaussian distributed with
N (0, σ2) and that the chosen model structure represents the system’s behaviour, the
measured output can be written as the sum of the model’s output and noise:

y(t) = ym(t, θ̂) + ε(t). (5.4)

the noise then takes the following probability density function, from which the log
likelihood can be computed:

p(y|θ) = 1√
2πσ2

exp−
(y(t)−ym(t,θ̂))2

2σ2 ,

log p(y|θ) = −N2 log
(
2πσ2

)
︸ ︷︷ ︸
independent of θ

−
N∑
k=1

((y(tk)− ym(tk,θ))2

2σ2 ,

where N different measurements (for example time steps in dynamical systems) are
assumed and the partial derivation with respect to θ gives:

∂ log p(y|θ)
∂θ

=
N∑
k=1

y(tk)− ym(tk,θ)
σ2

∂ym(tk,θ)
∂θ

. (5.5)

Plugging this result in the definition of the Fisher information matrix (5.2) and noting
that all cross terms in the product of the sum vanish because of the expectation of
the mutually independent noise:

E
[(
y(tk)− ym(tk,θ)

)(
y(tj)− ym(tj,θ)

)]
= σ2δkj,
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where δij denotes the Kronecker delta function, a much more practical form of the
Fisher information matrix is derived:

M(θ) =
N∑
k=1

{ 1
σ2
∂ym(tk,θ)

∂θ

(
∂ym(tk,θ)

∂θ

)T }
. (5.6)

With this representation of the Fisher information matrix, the derivation of the model
output has to be built with respect to each parameter and then divided by the noise
variance. One can already see that by reducing the noise variance the information
of the experiment is increased. Also, high values of the output’s sensitivity on the
parameters (∂ym

∂θ
) increase the information content.

5.3 Example: Slope and Intercept of a Line
Assume that there is a line (y = f(x) = kx + d) drawn and the task is to estimate
the slope k and the intercept d with just two measurements. Let the line lie in
the interval [−1, 1] and independent and identically distributed measurement noise
N (0, σ2) is present because of reading errors and a coarse scale. The model consists
of just two parameters: y = kx + d and N = 2 (two measurements: y1 = kx1 + d
and y2 = kx2 + d). The partial derivative of the model output with respect to the
parameters is:

∂ym(tk,θ)
∂θ

=
[
xk 1

]
.

The Fisher information matrix according to Equation (5.6) then computes to:

M =
(
x2

1
σ2 + x2

2
σ2

x1
σ2 + x2

σ2
x1
σ2 + x2

σ2
1
σ2 + 1

σ2

)
= 1
σ2

(
x2

1 + x2
2 x1 + x2

x1 + x2 2

)

Using the most common D-Optimality criterion the determinant of M has to be
maximised:

det(M) = (x1 − x2)2

σ4 .

As expected, it is best to put the two measurement positions as far away as possible
to maximise the information to be gathered and minimise the impact of measurement
noise. Figure 5.1 visualises the result with placing the measurements (red dots) as
far away from each other as possible.
Additional insight on the experiment can be obtained when the inverse of the infor-
mation matrix is analysed, which is possible analytically with low effort for the case
of two measurements. Equation (5.1) states that the inverse equals the covariance of
the parameter estimation when an efficient estimator is used:

M−1 = σ2

(x1 − x2)2

(
2 −(x1 + x2)

−(x1 + x2) x2
1 + x2

2

)
.

By choosing x1 = −x2 it is possible to eliminate any covariance between the estimate
of the slope and the intercept. This was automatically done by the optimisation
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Figure 5.1: Result of the DoE for obtaining the slope and intercept of a line
with two measurements (red dots).

problem because it also maximised the determinant of the Fisher matrix. In fact,
for this simple example all of the optimality criteria listed in the beginning of this
chapter lead to the same result. If three measurements are available, their position is
not as intuitive any more. In fact, it is best to place the third measurement to either
−1 or +1, even though a non-zero covariance between the two parameters is then
introduced. If this is not desired, the third measurement has to be set to x3 = 0.
Although quite simple, this example gives the mathematical justification for the
intuitive way of obtaining the two parameters of a line and also sketches the principal
process of carrying out a design of experiment. Moreover, although theoretically only
valid for efficient estimators, some information about the variance of the parameter
estimation can be derived.
For problems that are linear in their parameters and thus can be formulated as
y = Rθ + ε, it actually can be shown (see e.g. [41]) that the Fisher Information
Matrix takes the following form:

M(θ) = RTΣ−1R,

where the diagonal matrix Σ contains the noise variance of each measurement. As-
suming the same noise process for each measurement, the equation can be simplified
further and thus the originally cumbersome task of deriving the Fisher information
matrix reduces to a matrix multiplication.

5.4 Example: Dynamical System
In the last section, a DoE for a static system is derived where the measurements
were taken on arbitrarily chosen positions. In a causal dynamic system the mea-
surements are in chronological order and are dependent on previous input values.
Here, the oscillator depicted in Figure 5.2 is under investigation, where the force
F is the input, the position y is the output and the three parameters m, c, k are
to be estimated. Often actuators are limited in their dynamic performance or their
amplitude is constrained. For example, the pneumatic actuator found at the bottom
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Figure 5.2: One degree of freedom oscillator

of the pantograph has a large time constant and thus only slowly reacts to pressure
changes. Additionally, its operating range is limited in both directions. Therefore,
input constraints are imposed in this example that limit the amplitude, as well as
the rate of change of F (= u):

|∆u| ≤ ∆umax, (5.7)
|u| ≤ umax. (5.8)

The optimisation problem for maximising the determinant of the Fisher matrix (5.6)
is thus formulated as:

maximise
∆u

det (M(∆u))

subject to |∆ui| ≤ ∆umax, i = 1, . . . , N,∣∣∣∣∣
i∑

k=1
∆uk

∣∣∣∣∣ ≤ umax, i = 1, . . . , N.
(5.9)

The optimisation result is now the increment of the control input and not the control
input itself. This way it is possible to consider constraints on the rate more eas-
ily. The optimisation problem can be brought into the linear inequality constraint
notation of the form A∆u ≤ b.
At first, an offline DoE is designed and afterwards its results are compared to the
output of an online DoE which incorporates a recursive least squares algorithm as
well.
The continuous-time transfer function of the system shown in Figure 5.2 is easily
obtained and reads as follows:

G(s) =
1
m

s2 + c
m
s+ k

m

.

For the use in a digital system a discrete time version of the transfer function is
obtained via a zero-order-hold element:

H(z) =
(
1− z−1

)
Z
{
L−1

(1
s
G(s)

)}
, (5.10)

resulting in a discrete-time transfer function of the form:

H(z) = b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2 , (5.11)
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where the parameters θ = [a1, a2, b1, b2] are (strongly nonlinear) functions of m, c, k,
as well as the sampling time Ts. The system equation for each time step k therefore
is:

y(k) = b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2u(k) + ε(k) = H(z)u(k) + ε(k) = ym(k) + ε(k), (5.12)

where ε denotes the measurement noise which is assumed i.i.d. and Gaussian with a
known standard deviation σ.
The next step to obtain the Fisher information matrix is the derivation of the model
output with respect to each parameter. The process is exemplified for the parameter
a2:

∂ym(k)
∂a2

= − b1z
−1 + b2z

−2

(1 + a1z−1 + a2z−2)2 z
−2u(k)

= − b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2u(k)︸ ︷︷ ︸
ym(k)

z−2

1 + a1z−1 + a2z−2
b1z
−1 + b2z

−2

b1z−1 + b2z−2
u(k)
u(k)

= − ym(k − 1)2

b1u(k − 1) + b2u(k − 2)

The process for the other derivations is similar and the whole sensitivity vector v
then reads:

v = ∂ym(k)
∂θ

=
[
−ym(k)ym(k−1)

b1u(k−1)+b2u(k−2) ,
−ym(k−1)2

b1u(k−1)+b2u(k−2) ,

ym(k−1)u(k)
b1u(k−1)+b2u(k−2) ,

ym(k−2)u(k)
b1u(k−1)+b2u(k−2)

]T
. (5.13)

The goal of optimal DoE is to find a sequence of input values u(1), u(2), . . ., u(N)
that maximises the Fisher information matrix:

M(θ) = 1
σ2

N∑
k=1

∂y(k)
∂θ

(
∂ym(k)
∂θ

)T

. (5.14)

For the DoE process a state vector is defined

x =
[
x1 x2 x3

]T
=
[
ym(k) ym(k − 1) ym(k − 2)

]T
, (5.15)

with which all the values in equation (5.13) can be calculated since the input values
u(k) are known. The update equation is as follows:

x(k + 1) =
[
−a1x1(k)− a2x2(k) + b1u(k) + b2u(k − 1), x1(k), x2(k)

]T
. (5.16)

The offline-DoE algorithm for obtaining an optimal input sequence is then as follows:
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1. Calculate θ = [a1, a2, b1, b2]T from the best possible guess for the parameters
m, c, k.

2. Specify the sampling time Ts, as well as the end time from which the number
of samples N can be calculated.

3. Start the optimisation algorithm (e.g. genetic algorithm), where in each itera-
tion (and for each individual) the following steps are traversed in the objective
function: Initialise the Fisher matrix M with a 4× 4 zero matrix and the state
vector x (5.15) with zero. Then repeat the following steps inside a loop N -times
(until the end time is reached):
a) Update the state vector according to equation (5.16)
b) Calculate the parameter sensitivity vector v according to (5.13)
c) Update the Fisher information matrix M : M = M + vvTσ−2

Then return the scalar cost function (5.3) (depending on the chosen optimality
criterion) on M to the optimisation algorithm

4. The result of the optimisation is the optimal input sequence that should be
applied to the system

For the online-DoE a few modifications to the above procedure have to be made:
At every time step the genetic algorithm is started with a shorter horizon and the
state vector is not initialised zero but with the past values. Then the first element of
the obtained optimised input sequence is taken as the next input to the real system.
Additionally, a recursive least squares algorithm is running in parallel to obtain a
current guess for the model parameters θ from which the physical parameters m, c
and k can be calculated by solving a system of nonlinear equations.
Both variants were tested in a simulation with the following setting:

[m, c, k]Treal = [1 kg, 2 N s/m, 20 N/m]T, (5.17)
[m, c, k]Tinit = [2 kg, 10 N s/m, 25 N/m]T, (5.18)

Ts = 0.1 s (5.19)
Tend = 30 s (5.20)

∆umax = 0.25 N (5.21)
umax = 1.5 N (5.22)
σ2 = 1× 10−10 m2, (5.23)

The parameter vector θ consists of the four parameters [a1, a2, b1, b2], see (5.11):

θreal =
[
−1.6405, 0.8187, 0.0046, 0.0043

]T
(5.24)

θinit =
[
−1.5092, 0.6065, 0.0021, 0.0018

]T
. (5.25)

Figure 5.3–5.5 each show the input sequence and the resulting output for the three
test cases. At first, a superposition of two harmonic waves that does not violate



5.4 Example: Dynamical System 54

0 5 10 15 20 25 30−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

fo
rc
e
(N

)

0 5 10 15 20 25 30−60

−40

−20

0

20

40

60

po
sit

io
n
(m

m
)

Figure 5.3: Input (force, dashed) and corresponding system response (posi-
tion, gray) obtained with the sine wave force signal.

the input constraints is tested, denoted with sine. The input signal (dashed), as
well as the resulting system output (solid) are visualised in Figure 5.3. This sine
superposition was also used as the start input sequence for the online- and offline
DoE optimisation. For the online DoE in each time step the parameter estimation is
updated and therefore the DoE in each sample is started with the currently optimal
parameter guess. To reduce the computation time the number of degrees of freedom
for the optimisation problem is set to 20, i.e. only the next 20 input values are
optimised.
The following parameter vectors θ̂, as well as the corresponding P -matrices from the
recursive-least-squares algorithm (that are proportional to the covariance matrices)
were obtained,

θ̂sine =


−1.5986
0.8049
0.0109
−0.0011

 , Psine =


293.1 −17.3 −19.4 33.4
−17.3 286.0 −34.0 47.3
−19.4 −34.0 6.7 −9.4
33.3 47.3 −9.4 13.4

 , (5.26)

θ̂offline =


−1.6233
0.8060
0.0056
0.0034

 , Poffline =


27.00 −19.64 −0.44 0.92
−19.64 17.59 −0.15 −0.06
−0.44 −0.15 0.15 −0.17
0.92 −0.06 −0.17 0.22

 , (5.27)

θ̂online =


−1.6372
0.8152
0.0027
0.0060

 , Ponline =


22.00 −16.69 −0.32 0.71
−16.69 15.00 −0.05 −0.16
−0.32 −0.05 0.1 −0.12
0.71 −0.16 −0.12 0.15

 , (5.28)

where the positive influence of the DoE is clearly visible. The parameters were
estimated more accurately and the covariances could be reduced by approximately
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Figure 5.4: Input (force, dashed) and corresponding system response (posi-
tion, gray) obtained with the force signal from the offline DoE.
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Figure 5.5: Input (force, dashed) and corresponding system response (posi-
tion, gray) obtained with the force signal from the online DoE.
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one magnitude. Since the shown P -Matrices are proportional to the covariance of the
estimates (and thus inversely proportional to the Fisher information matrix in the
case of an efficient estimator), one can clearly see that the parameters were estimated
more accurately. Additionally, the online DoE was able to improve the result of the
offline DoE because the starting guess for the parameters was not very close to the
real values.
Additionally, with the obtained input/output data a time-domain parameter estima-
tion process was started using the built-in MATLAB greyest command to identify
the parameters of a gray-box model, which confirms the results from the recursive
least squares procedure (see Table 5.1). The obtained input sequences show superior
performance in the continuous-time estimation as well.

real init sine var offline var online var
m 1.0 2 0.90 0.087 0.90 0.018 0.91 0.019
c 2.0 10 1.81 0.118 1.71 0.043 1.85 0.049
k 20.0 25 20.14 0.123 20.08 0.187 20.05 0.25

Table 5.1: Result of the gray-box estimation in MATLAB. Shown are the
estimated values as well as their variances (var).

5.5 Application to Pantograph Testbed
The principles of the Design of Experiments can be applied to pantograph test runs
as well. To do so, the same approach as in the last example can be taken. One of the
system structures described in Chapter 2 has to be chosen and its representation has
to be transferred into a discrete-time transfer function. It is also possible to design
an experiment whose goal is the discrimination between different model structures
[42]. Then the next input point is set to maximise the difference between the output
of both models, so the choice between the two (or more) structures is eased. Let us
assume that just one model structure is selected and the parameters of the discrete-
time transfer function are to be estimated with as much accuracy as possible. For the
offline DoE the size of the parameter vector does not really matter since the whole
sequence is computed before going to the test stand. In the online-DoE however, the
numbers of parameter should be kept as small as possible in order to accelerate the
optimisation process.
Additionally, there are significant constraints on the absolute input values as well as
on the rate of change present on the pantograph testbed. The linear motor — though
capable of high dynamic movements — is not able to closely follow step inputs. Much
more limiting is the slow dynamic response of the pneumatic actuator that needs to
be taken into account in the design of experiment process.
Here, only discrete-time transfer functions were investigated because of the discrete
nature of the underlying control unit. Moreover, the application of the pantograph
model lies most likely in a discrete-time setup as well. If the parameters are estimated
accurately in the Z-domain, the conversion to continuous time (physical) parameters
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should be accurate too. Additionally, the discrete signal obtained from discrete-
time DoE can be used in a continuous-time parameter estimation problem, as was
demonstrated at the end of the last section. Moreover, the theory for discrete-time
DoE is well established, but if a continuous-time approach is sought, the procedure
is more cumbersome, see for example Ref. [43]. The input signal derived is then
represented in its frequency components.



Chapter 6

Summary/Outlook

In this work a pantograph model based on physical principles was derived and its
parameters were estimated. This was done with measurement data obtained from
a full-size high-speed train pantograph current-collector in a test bed setup. Data
acquisition and testbed interface development were also part of this work. To obtain
more information from the different parts of the pantograph, coloured labels were at-
tached to the unit under test, and their position information was retrieved afterwards
from recordings made with a video camera. The available information was then used
to obtain the parameters of the gray-box-model and validated against other measure-
ment data. The derived model structure was compared to other models found in the
literature, such as a two- or three-mass-oscillator. Finally, a black-box-model was
derived to evaluate and compare structured versus generic modelling approaches.
The derived pantograph model is capable of exactly reproducing the kinematics of
the real pantograph. The apparent flexibilities of the system were modelled into one
artificial state that describes the length variation of one of the rods. The collector
head dynamics are sufficiently well approximated by a one-mass oscillator, and the
resulting full pantograph model has six degrees of freedom. Because of the unknown
relationship between the bellow pressure and the applied torque it was assumed that
there exists a linear connection between these two quantities. With the help of a
future pneumatic actuactor test bed, the torque that lifts the pantograph upwards
can be modelled more accurately. Because of this torque input at the bottom, a
force excitation at the pan-heads leads to an unstable system and thus the position
of the catenary was defined as the other input to the model. Alternatively, with
the developed modelling framework the model structure can be easily altered to,
for example, an angle-dependent uplift force (spring) and a force excitation by the
catenary.
The testbed connection was successfully realised via a real-time dSPACE platform,
and a flexible user interface was developed. Different excitation signals can be de-
ployed on the linear motor (setting the emulated catenary’s position) and the bellow.
The same dSPACE platform is also responsible for data acquisition. Additionally,
video recordings from the test runs were made and position information of differ-
ent pantograph parts were extracted. The measurements were available at different
sampling rates and had to be synchronised accurately. To do so, a synchronization
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sequence was captured by both measurement systems.
Afterwards, parameters of different model structures were estimated and the out-
put of the obtained models were compared. Although the testbed setup was ill-
conditioned due to an oscillating mass between the pantograph and the force sensor,
as well as a not perfectly rigid robot that both introduced unwanted oscillations in
the force measurement signal, the derived model could describe the system dynamics
well and was superior to the other models.
In the last chapter a method called design of experiment (DoE) was described and its
application demonstrated on two examples that enables one to retrieve the maximum
information out of an experiment by optimising the input sequence for future test
runs. Since one of the examples treated a dynamical system, the adoption to the
pantograph case is straightforward.
Future work could for example consist of additional measurement runs because the
testbed was modified recently, and the influence of the oscillating mass leading to
a deteriorated force signal was greatly reduced. If a more accurate model of the
pantograph is needed, more test runs with different operating conditions (height,
pressure, force) can be done and a set of local linear model trees (LOLIMOT) can
be derived. This leads to a numerically efficient system representation that is valid
over a large operating range and expected to significantly shorten computation time.
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