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Kurzfassung

In der vorliegenden Arbeit ist der Antriebsschub eines Schlagflügelgeräts diskutiert, dass einen
Körper antreibt. Schuberzeugung in äußerer Strömung und Pumpen von Fluid durch einen
Kanal werden betrachtet. Sowohl vorgegebene Bewegung des Antriebs als auch Fluid-Struktur
Interaktion für eine vorgespannte Membran werden betrachtet.

Der Schwerpunkt liegt auf der Optimierung des Vortriebswirkungsgrads der Bewegung in
Form einer Pareto-Front für gegebenen Schub. Verschiedene Methoden werden verwendet um
die Strömung zu beschreiben: Potentialtheorie wird verwendet mit Chebyshev-Polynomen und
mit der Panel Methode. Die reibungsbehaftete Strömung wird numerisch gelöst mit einem selbst-
entwickelten Programm und mit einem kommerziellen Software-Paket.

Folgende neuartige Ergebnisse werden erhalten: Für einen mit kleinen Auslenkungen schla-
genden Tragflügel in äußerer Strömung wird die optimale Bewegung analytisch bestimmt. Eine
analytische Potentiallösung wird presentiert für die Kanalströmung über eine auftriebserzeugen-
de Oberfläche in allgemeiner Bewegung in der Nähe der Kanal-Mittelachse. Für die Flatterbe-
wegung mithilfe einer vorgespannten Membran werden die Membranparameter in einem weiten
Bereich variiert. Es stellt sich heraus dass der Antrieb mit einer flatternden Membran am effizi-
entesten ist wenn die Membran die Bewegung einer stromabwärts wandernden Welle nachahmt.
Für diese spezielle Bewegung wird für reibungsfreie und laminare Stömung gezeigt dass die
Vorgabe von periodischen Bedingungen in Strömungsrichtung die Erzeugung einer Schubkraft
verhindert.



Abstract

The present work discusses the propulsive output of a flapping device, used to propel a body.
Both thrust production in external flow and pumping fluid in a channel are considered. Pre-
scribed motions of the device as well as fluid-structure interaction for a prestrained membrane
are considered.

The focus is on an optimization of the motion’s propulsive efficiency as Pareto front for
given thrust. Different methods are used to describe the flow: Potential theory is treated with
Chebyshev polynomials and the panel method. Viscous flow is solved numerically with a self-
developed code and a commercial software package.

The following novel results are obtained: For a foil flapping with small deflections in given
external flow, the optimum motion is determined analytically. An analytical potential-flow
solution is presented for the channel flow over a lifting surface in general motion in the vicinity
of the channel’s centerline. For the flapping device that uses a prestrained membrane, the
membrane parameters are varied in a wide range. It turns out that the flapping-membrane
device is most efficient when the membrane imitates the motion of a downstream travelling
wave. For this specific motion, it is shown for both inviscid and laminar flow that enforcing
periodic conditions in streamwise direction prohibits the generation of thrust.
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(ũ, ṽ) velocity components in horizontal and vertical direction, respectively
u dimensionless velocity component in main flow direction
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Ũw flow velocity in the wake of an actuator disk propeller model
~̃v velocity vector
v dimensionless velocity component in vertical direction
w̃ body deflection
W (xi) primitive integral of the deflection
w(ζ) complex valued velocity perturbation
w1 dimensionless body deflection in first order
w1,max maximum value of the leading order deflection w1

wEnv envelope of flapping motion
(x, y) dimensionless coordinate directions
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Chapter 1

Introduction and Problem
Formulation

1.1 Motivation

The present work is motivated from a novel valveless and bladeless pump invented by Wilhelm
Zackl [120], the “Double Channel Membrane Pump“. This innovative concept of a pump has
a simple design: A compliant membrane is placed on the centerline of a rigid channel. The
membrane is clamped at the side walls to seal the upper against the lower half of the channel
and prestrained in streamwise and lateral direction. Water or slurry may be used as working
fluid. During operation of the pump, the membrane is excited at one end by periodic transverse
motion. Thus, the membrane interacts in coupled manner with the fluid. In doing so, a mean
flow evolves in the pump that is directed away from the excited end.

Zackl fabricated a see-through demonstration model that confirms operation conditions
where the deflection of the membrane performs a travelling wave pattern in the downstream
direction, as intended by the inventor 1. In addition, Zackl has executed measurements for a
pump of industrial scale and reported in detail the experimental results [120, 121].

In the present work, theoretical models for the pump are developed that take into account
the most significant aspects regarding optimal design and operation parameters. The results
may be used as a basis for future experiments and simulations.

1.2 Biomimetic propulsion

Due to its design and operational characteristics, the pump can be considered as bio-inspired
propulsion system. Biomimetics is a broad field where the mechanics and dynamics of biological
propulsion systems are examined. It includes the transport of fluid mass, momentum, and energy
in both stationary and mobile systems. Applications include aquatic locomotion, conversion of
fluid dynamic energy, and flow through compliant tubes.

1U.S. Patent No. 7.101159 B2 9/2006, EP 1438514 B1, W. Zackl
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When a technical invention is to be compared to existing biological systems, the foremost
task is the understanding of the underlying working principle.

1.2.1 Asymmetric excitation

An examination of the start-up procedure of the pump may help to elucidated the working
principle. In this regard, it is certainly of interest if the geometric asymmetry, evoked by the
excitation of the membrane at one end, is crucial for the net flow through the pump. [110] showed
for a plate in periodic plunging motion in an otherwise quiescent fluid, i. e. for a symmetric
configuration, that symmetry breaking occurs when a certain stability limit – dependent on
the ratio of plunging speed and fluid viscosity – is exceeded. Then, a thrust force is generated
that leads to mean forward motion of the plate. From this result, it can be concluded that the
geometrical asymmetry is not necessarily required to explain the pumping effect.

Nevertheless, the asymmetric configuration initiates the flow in a certain direction. In the
present work, a ”pitching plate pump“ is considered where the mean flow evolves as result of
the start-up phase. In the remaining part of the work, the discussion is restricted to problems
with given mean flow and a time-periodic flow superimposed to it.

Valveless pumping can be achieved on the basis of several different propulsion principles.
Pumping by downstream travelling waves, in particular, has analogy to two different propulsive
mechanism observed in nature: On one hand, the propulsion by downstream travelling waves is
frequently observed in physiological systems; On the other hand, many aquatic animals propel
themselves in form of rearward-propagating waves along their fins or body.

1.2.2 Valveless pumping

In living creatures, valveless transport in vessels is often realized by means of powered muscles
that propagate a wave along the wall of a circular tube. This mechanism, called peristaltic
pumping, can be found – for instance – in the esophageal and the gastrointestinal system. In
such a system, usually the viscous forces in the fluid are dominant. The propulsion mechanism
has a viscous origin and can be explained by lubrication theory [103]. Hose pumps are an
example where the peristaltic principle is used in an industrial application. Micro-robotic self-
propulsion or pumping in a highly viscous fluid by generating vibration-induced travelling waves
on an elastic membrane is described in [88]. Valveless flow transport can also evolve from non-
peristaltic contractions of the wall:

• In [1] a theory for a microfluidic pump is established that shows the occurrance of a net
flow when there is a phase-lag between two actuation spots along the channel.

• A different principle, called impedance pumping, has been discovered by Gerhart Liebau
in 1954. It makes use of different impedance coefficients (obtained by different geometrical
and/or mechanical properties) of flexible tubes attached left and right to a compression
point [31]. This principle is believed to support the heart in pumping the blood through
the cardiac system. [59] proposed a model based on the Liebau effect to describe the
circulation of blood in the early human foetus in spite of the lack of cardiac valves.
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• Yet another principle is used in a valveless diffuser pump, first published in [100]. Here,
different pressure loss coefficients in a nozzle and a diffuser enforce a mean flow.

Even though the listed propulsive principles are different to each other, they have in common
that the achieved flow speed and Reynolds number are relatively low. The prestrained-membrane
pump, however, operates at high Reynolds numbers [120], where the inertial forces in the fluid
are dominant. In this regime, the propulsion by downstream travelling waves may be likened to
the swimming of slender fish.

1.2.3 Swimming of slender fish

The propulsion of fish is classified in a well-established scheme of different modes, see the review
article [89]. Undulatory propulsion is observed in both median and/or paired fin propulsion
and in body and/or caudal fin movements. Non-pelagic rays generate thrust from backward
undulatory waves along their pectoral fins [22]. [19] showed that ratfish pass waves rearward
their pectorals that have uniform chordwise wave amplitude. The large pelagic dwellers, like
vertebrates (fish, sharks) and cetaceans (whales and dolphins), propel themselves in form of
lateral displacements propagating downstream along their surface that ends posterior in a large
displacement flapping motion of a high caudal fin, or fluke, of crescent shape. This type of
locomotion, called the thunniform mode (for its occurrance in the Scombridae) is interesting
because the thrust-producing and drag generating parts are separated [54]. The main part of
the propulsive thrust is produced by the streamlined, high aspect-ratio lunate tail. Sir James
Lighthill [53] was the first to apply 2-dim potential flow theory of a flapping slender wing on
lunate tail propulsion. Flapping wings produce both thrust and lift directly [114], but as the
wave number is not large, the side forces do not cancel out. According to [89], ”thunniform
mode is the most efficient locomotion mode evolved in the aquatic environment“.

It is well-known that flapping motions of large displacement are favourable in order to obtain
practical thrust levels [37]. However, in the present study the amplitude of the propulsive
mechanism is constraint due to the presence of channel walls and thus the small-amplitude linear
model is employed. Optimal motion is studied as to obtain maximum propulsive efficiency for
a given thrust. The Pareto curve is then used as ”benchmark” to which the results from the
coupled fluid-membrane model can be compared.

1.3 Literature overview of discussed aspects

With regard to the design and operation of the prestrained-membrane pump, the following five
different aspects are discussed in the present work:

I Propulsion by a flapping foil, optimum motion

II Chordwise flexibility, prescribed travelling wave

III Effect of channel walls

IV Effect of fluid viscosity
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V Fluid-structure interaction of membrane and flow

We refer to the review article on aerohydrodynamics of flapping-wing propulsors by Rozhdestven-
sky & Ryzhov [80] regarding the items I, II, and in part III (flying in ground effect).

1.3.1 Flapping foil in optimal motion

Flapping wing motion has been extensively studied in the literature. Comprehensive work has
been done in the context of wing flutter in the 1930ies. A model for circulatory potential flow
around a flapping foil in harmonic motion that takes into account the vortex wake, has been
developed by Theodorsen [104]. A comprehensible physical interpretation of this model is given
in [115]. The vortex wake significantly influences the lift force on the foil, even at a moderate
flapping frequency.

Theodorsen’s model has been used by Garrick [26] to calculate the thrust developed by the
airfoil, the power required to create the airfoil motion and the propulsive efficiency. Efficiency is
the portion of power exerted that goes into providing thrust. While by the vortex street, energy
is wasted into the wake, its presence is necessary if any thrust is to be produced at all.

The optimum propulsion of a two-dimensional flat plate wing in time-harmonic motion in
parallel flow is discussed by [53] and [119] using Theodorsen’s linear model. Both authors come
to the conclusion that the efficiency can be greatly improved when both plunging and pitching
modes are admitted. Lighthill introduced the “proportional feathering parameter“ [54] that
identifies the degree to which the foil pitch angle coincides with the slope of the trajectory
the foil traces out as it propels through the fluid at rest. Competing tendencies of increasing
efficiency and decreasing thrust exist as feathering is increased. [53] pointed out that the shape of
the rounded leading-edge is of particular importance, since much of the thrust from wing theory
is harvested from the fluid flow around the leading edge. In the comprehensive study [119], the
optimum shape problem is stated such that the energy loss is minimized under the condition of a
prescribed thrust coefficient (required to overcome viscous drag). One has to take into account,
though, that with linear theory the thrust coefficient scales with the square of the flapping
amplitude. As a result, the optimum shape problem for prescribed thrust predicts the amplitude
to be infinite. This problem is circumvented in [119] by introducing the “proportional-loading
parameter“, defined as the thrust coefficient divided by the square of the plunging amplitude.
An equivalent approach is obtained when for prescribed mean thrust a constraint is put on the
magnitude of the amplitude of the motion. We refer to [96] for a proof about the existence of
the optimum solution for the simple case of a rigid profile in pure plunging motion.

At larger flapping amplitudes, the linear model ceases to be valid. Somewhat surprisingly,
the model predicts the thrust force reasonably well for a foil flapping at large amplitude and
low frequency. A comparison to large-amplitude potential flow theory [37] and to Navier–
Stokes computations [108] shows that the agreement is good when the product of amplitude and
frequency is roughly below a constant. Note that the product of amplitude and frequency is
approximately equal to the Strouhal number. [107] emphasized that it is crucial to stay within a
certain range of Strouhal numbers in order to obtain optimal thrust. Extensive literature exists
regarding the thrust of a foil in pure plunging motion. Generally the thrust increases with the
plunging amplitude. Stall occurs at a certain amplitude, but the thrust continues to grow with
amplitude in the stalled regime, while the efficiency becomes very low.
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Considerably less literature exists about maximizing the efficiency. In [7], both thrust and
efficiency are reported for experiments of a foil in combined plunging and pitching motion.
From that, it is clear that thrust and efficiency are competing trends, i. e. thrust is low at high
efficiency. It would be certainly of interest, though, to determine a two-state optimum (or Pareto
frontier) of thrust and efficiency. This idea has not achieved much attention in the literature,
maybe on account of the large parameter space. A relevant study is [109], where a numerical
optimization (at fixed reduced frequency) from Navier–Stokes results (computed in parallel) is
pursued. In [78] experimental results (at fixed plunging amplitude) are plotted in the form of
propulsive efficiency against the thrust coefficient. It can be concluded from these numerical and
experimental results that the Pareto optimum is obtained when the ratio of flapping amplitude
to chord is of order one, as it is observed in fish that swim in thunniform mode, see Sec. 1.2.3.

In the present work, Theodorsen’s linear model for small-amplitude motion is employed to
find the optimal motion. In contrast to [119], the flapping amplitude in the course of motion
over the period is constraint such that the optimum motion touches its boundary one time per
period. To the author’s knowledge, an analytical relation between efficiency and thrust is given
for the first time.

1.3.2 Chordwise flexibility

It has been proposed quite a long time ago that chordwise flexibility can enhance the propulsive
efficiency. Wu [118] studied time-harmonic motion with arbitrary shape along the chord by
making use of the approach outlined in [86], and provided a general formulation for time-averaged
thrust, power and efficiency. In particular, progressive waves are studied and it is pointed
out that it is advantageous from the viewpoint of efficiency to have the waves propagating
downstream. A special case is the downstream propagating wave with uniform wave amplitude.
This rather simple shape of a travelling wavy surface is examined in detail in the present work,
with the aim to offer a reference for the prestrained-membrane solutions and to simplify the
study on the effect of fluid viscosity. It is noted by Wu [118] that when the wave velocity
becomes equal to the free-stream velocity, the wave form is frozen with respect to the fluid and
travels along a sinusoidal path fixed in space. Thus, no circulation is created in this case for
inviscid flow.

In Wu [119], the optimum shape of a flexible plate is analysed for the general case of infinite
degrees of freedom. It turns out that the exact optimum shape is not unique since it can be
determined only to a certain extent. Nevertheless, the efficiency can be further improved from
the rigid-plate value. Later on, Sparenberg et. al. [96] noted that no optimum thrust producing
swimming motion exists when only a constraint is put on the magnitude of the amplitude of the
motion.

Katz & Weihs [38] employed unsteady potential flow theory to study the effect of flexibility on
the aerodynamic characteristics of an airfoil that carries out a prescribed large-deflection motion
at the leading edge and allows passive chordwise bending. Propulsive efficiency is improved when
the airfoil is more flexible, but the loss in the thrust coefficient is considerable. Thus, the results
appear to fall short to the premise of the optimum shape problem in [119] to maximize efficiency
at a fixed thrust. Astonishingly, experimental evidence that chordwise flexibility is advantageous
with regard to the efficiency-thrust Pareto optimum is given only recently in [78]. A comparison
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of the measured results for a rigid and a flexible foil in combined pitching and plunging motion
shows that efficiency improves by up to 36% with a small decrease in thrust.

Finally, the effect of finite span shall be mentioned. In [15], a small-amplitude travelling wave
on a plate of finite span is considered. Unsteady three-dimensional potential flow is assumed
and solved numerically. Remarkably, it is found that the undulatory motion can reduce three-
dimensional effects in the flow and that the efficiency is only very weakly dependent on the
aspect ratio at values of 0.5, 1, and 8.

1.3.3 Effect of channel walls

The flapping motion in a channel is similar to the flapping motion subject to the ground effect
in the vicinity of one wall. The ground effect is an increase of the lift-to-drag ratio of a lifting
system at small relative distances from the underlying ground. The method of images [36]
is usually used to account for the boundary condition at the wall. Asymptotic theory can
usually be employed when the dimensionless ground clearance is large, see [80]. Basically,
there is no difference between a stationary and an oscillating foil with regard to the ground
effect. However, in the latter case the flapping frequency appears as an additional parameter.
In [34], the unsteady aerodynamic forces are addressed that act on an oscillating wing section
in weak ground effect. A new asymptotic solution is obtained where the ratio of flapping
frequency and inverse dimensionless distance is introduced as new independent parameter. [65]
used URANS to study the unsteady motion of a downward cambered heaving airfoil in ground
effect. In the stationary case, the flow stalls at a dimensionless clearance below 0.3. Nevertheless,
the downforce further increases and reaches its maximum at a relative clearance of 0.17. For
the heaving airfoil, however, at higher reduced frequencies inviscid effects overcome the large
separation and the motion becomes stable as the behaviour of the flow is mainly inviscid.

The confined flow in the channel can be treated by a repeated application of the mirror
reflections. Then, the complex potential of a source in midway of the channel walls can be given
explicitly, cf. [36]. [29] used the Green’s function for a point source at arbitrary position in
the infinite channel and applied the fast multipole method that makes use of the fact that the
velocity field induced by the point source decays exponentially along the length of the channel.
As for the ground effect, wall correction formulae can be used to account for distant wind tunnel
walls [36]. For a thin airfoil between wind tunnel walls, an integral equation occurs that can be
solved approximately with the method of Keldysh & Lavrentiev [39] by expanding the kernel
in a series of powers of the inverse dimensionless wall distance and invert the resulting integral
expressions consecutively with Söhngen’s inversion formula, see [36].

In the present work, we attempt to find a closed-form expression for the circulation caused by
a slender body in inviscid flow being confined to a channel of arbitrary width. To the author’s
best knowledge, this solution has not been reported in the literature. A possible application
can be the use as wall influence formula for measurements in wind tunnels or water tanks
for oscillating bodies that operate in the field in unbounded freestream (like wind turbines),
being more general than the usual correction formulae that account only for small perturbations
from the walls. Within the theory of singular integral equations the result can be seen as a
generalization of Söhngen’s result to a more general kernel.
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1.3.4 Drag reduction

The travelling wave-like wall deformation has been discussed in the context of drag reduction.
[32] emphasized that applying travelling waves of wall deformation in the viscosity dominated
regime (peristalsis) should be considered as pumping rather than drag reduction. In [32] drag
reduction is considered as an action for a given pumping such that the total power is reduced
to drive the same flux. A robotic swimmer/pump based on the downstream propagating wave
mechanism operating at a low Reynolds number is studied in [88]. Barrett et. al. [9] presented
experimental measurements of drag reduction for a fish-shaped robot in that it was demonstrated
that the power required in the self-propulsive travelling wave motion is less than the power needed
to tow the body straight and rigid at the same speed. Shen et. al. [91] used direct numerical
simulation to study the turbulent flow over a smooth wavy wall undergoing transverse motion in
the form of a streamwise travelling wave to gain physical insight to the understanding of fish-like
swimming mechanisms in terms of drag reduction. Similarly, the propulsive performance of a
fish-like travelling wavy wall was discussed by Lu & Yin [57] for the laminar case.

1.3.5 Fluid-structure interaction

The flow over a compliant membrane is a complex problem where the interaction between fluid
and membrane determines the nature of the aerodynamic characteristics of the membrane. The
investigation of this two-way coupled fluid-structure interaction presents a significant challenge
to both experimental and numerical fluid dynamicists. The membrane is displaced and bended
when a fluid load is applied. On the other hand, the membrane represents a kinematic boundary
to the flow and as its shape changes, the flow around the membrane changes too, altering
the forces on the membrane that again changes the displacements. As the inertial forces are
dominant in the pump, the theoretical approach is based on the theory of inviscid incompressible
flow around a slender profile [99].

The present problem has similarity to the flow over a flapping flag. [61] and [5] discussed the
instability of a flapping flag clamped at the leading edge. The effect of the rigidity from a pas-
sively bending slender profile is discussed in the literature for a bending airfoil in large-amplitude
prescribed leading edge motion [38], a flapping appendage with small-amplitude pitching motion
at the leading edge [4], and heaving motion at the leading edge [60]. In all the cited studies
the fluid is considered as incompressible and inviscid and the flow is solved with unsteady two-
dimensional potential theory. In [98] the potential flow is employed in a CFD solver as part of a
monolithic coupling strategy to obtain in every timestep a good prediction for the deformation
of a membrane.

The membrane pump differs in two aspects to a flapping flag: The membrane is clamped
at the sidewalls, resulting in a restoring force directed towards the undisturbed position. The
effect from the channel walls needs to be considered.

1.4 Organisation of work

In the following chapters of this thesis, the above outlined aspects are discussed with regard to
the modeling approach, the analytical and numerical implementation and the obtained results.
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The subsequent section contains the formulation of the problem. It gives an overview of the
used models and parameters and the dimensionless formulation of the problem. Chapter two
starts with an introduction of the theory of unsteady potential flow over a flapping surface in
oncoming flow. Based on that theory, afterwards the confining effect of channel walls on the
bound circulation is discussed. Influence coefficients are given in closed form. Furthermore, a
new panel method is delineated that accounts for the presence of the channel walls. The theory
constituted in chapter two is applied in chapter three to find the optimum propulsive motion
of a rigid flapping foil in oncoming flow. A novel relation between propulsive efficiency and
thrust is given. The result is compared with a chordwise flexible flapping foil and with a single
downstream propagating wave of uniform amplitude. The thrust generated by the downstream
travelling wave is then discussed in the limit of large wave numbers at a fixed phase speed. The
solution is compared to an infinitely extended wavy surface with periodic streamwise boundary
conditions. For the periodic setting, fluid viscosity is taken into account. The results for pressure
and velocity are compared to inviscid flow and turbulent flow. Furthermore, the dependence of
the wall forces on the phase speed is discussed. The 4th chapter deals with the fluid structure
interaction between the fluid and the membrane. Results for optimum design and operation are
presented for an excited membrane in unbounded potential flow. The double channel membrane
pump is studied at the end of the chapter. A comparison is given between inviscid flow in
unbounded domain, potential flow in the channel using the panel code, and the channel flow
solution obtained with a commercial CFD package. Summary and conclusions are given in
chapter five.

1.5 Problem formulation and model description

1.5.1 Valveless membrane pump

We investigate the working principle of a novel valveless membrane pump that has been invented
by Wilhelm Zackl 2. Zackl has experimentally tested various designs of the pump. The results
of his work are documented in [120]. There exist different variants of the valveless membrane
pump. A sketch of a typical design is shown in Fig. 1.1.
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Figure 1.1: Sketch of the valveless membrane pump

2U.S. Patent No. 7.101159 B2 9/2006, EP 1438514 B1, W. Zackl
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A membrane of flexible material is placed into a rigid channel or tube, dividing it into an
upper and lower portion. Clamping at the sidewalls of the channel allows to prestretch the
membrane in longitudinal and lateral direction. The channel of the pump is filled with a liquid
working medium. The excitation of the membrane is achieved with a small, rigid flap, attached
to the membrane’s leading edge LE. In a different pump design, upstream the membrane (at the
hinge of the flap), a rigid bridge wall is attached that divides the channel in a further section into
an upper and lower portion. The unsteady motion of flap and membrane leads to a mean flow
of the working medium (from left to right) with vortices leaving the membrane at the trailing
edge TE.

1.5.2 Models and methods: overview

A fluid of constant density ρ̃ is assumed. The problem is considered in the x̃-ỹ-plane as two-
dimensional, Fig. 1.1. Time-harmonic solutions are discussed. Potential flow theory and small
deflections are assumed throughout the work, except for Sec. 3.5 and Sec. 4.2 where the Navier–
Stokes equations are solved to discuss the effect of viscosity. The speed of the oncoming flow is
assumed as given Fig. 1.1, except for the case of a pitching plate pump in Sec. 4.2.2, where the
size of the mean flow is part of the solution. From the viewpoint of the fluid, the propulsive body
is considered as zero-thickness streamlined wing represented by its camber line. To describe the
deflection of the body, either a prescribed motion or a model for the motion of the membrane,
coupled to the fluid via the pressure difference across the membrane, are chosen. At first the
flow in unbounded domain is considered. Then the effect from the channel walls is taken into
account, see the sections 2.2, 2.3 and 4.2.

1.5.3 Potential theory for unsteady flow

If one assumes an ideal fluid (inviscid, constant density ρ̃) and the velocity vector field ~̃v to be
initially irrotational

∇× ~̃v = ~0 (1.1)

one can introduce a velocity potential Φ̃ such that

~̃v = ∇Φ̃ . (1.2)

Eqs. (1.1, 1.2) hold also for unsteady flow since for an ideal fluid the flow remains irrotational
for all times. The conservation of mass states that

ũx̃ + ṽỹ = 0 . (1.3)

Here ũ and ṽ denote the respective horizontal and vertical components of the velocity vector ~̃v
and the subscript denotes a partial derivative. From that, together with Eq. (1.2), follows the
Laplace equation

Φ̃x̃x̃ + Φ̃ỹỹ = 0 . (1.4)

The equation is the same as for steady flow as the time appears only as a parameter. The
pressure can be determined from the unsteady Bernoulli equation

Φ̃t̃ +
Φ̃2
x̃

2
+

Φ̃2
ỹ

2
= −p̃/ρ̃+ C̃(t̃) (1.5)
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where C̃(t̃) is an arbitrary function of time t̃ determined from the boundary conditions. Eqs. (1.4),
(1.5) are used for external flow and for the channel flow.

1.5.4 Asymptotic approach for small deflections

A parallel oncoming flow with uniform profile Ũ is assumed, Fig. 1.1. The assumption of small
deflections of the body

w̃(x̃, t̃) = ε w̃1(x̃, t̃) (1.6)

with ε � 1, where the index 1 denotes the first term in the expansion for small ε, allows the
perturbation ansatz of small-disturbance flow

Φ̃(x̃, ỹ, t̃) = Ũ x̃+ ε Ũ L̃ ϕ(x̃, ỹ, t̃) + · · · (1.7)

where the perturbation potential ϕ is scaled with the product of the oncoming flow speed and
the chord for convenience.

1.5.5 Boundary conditions

Assuming that the body has negligible thickness, the kinematic boundary condition on the body
surface ỹ = w̃(x̃, t̃), 0 ≤ x̃ ≤ L̃ reads

ṽ(x̃, w̃, t̃) = w̃t̃ + ũ w̃x̃ (1.8)

where w̃ is the deflection of the body from the channel axis. For small deflections Eq. (1.6), the
linearized version

ṽ1(x̃, 0, t̃) = w̃1,t̃ + Ũ w̃1,x̃ (1.9)

can be used. The kinematic boundary conditions at the channel walls are

ṽ
(
x̃,±h̃, t̃

)
= 0 for −∞ ≤ x̃ ≤ +∞ . (1.10)

We note that in Sec. 3.4.3, the assumption of small deflections is dismissed to discuss the effect
of geometric nonlinearity. Then, Eq. (1.8) is used instead of Eq. (1.9).

1.5.6 Viscous flow

In Sec. 3.5, viscous flow over a wavy surface is discussed. The assumption of irrotational flow
Eq. (1.1) is superseded by the stationary Navier–Stokes equations (cf. [21]) for a fluid with
constant density ρ̃

(ũ2)x̃ + (ũṽ)ỹ + p̃x̃/ρ̃ = ν̃ (ũx̃x̃ + ũỹỹ) , (1.11a)

(ũṽ)x̃ + (ṽ2)ỹ + p̃ỹ/ρ̃ = ν̃ (ṽx̃x̃ + ṽỹỹ) , (1.11b)

that are used together with the conservation of mass Eq. (1.3). In Eq. (1.11) ν̃ denotes the
constant kinematic viscosity of the fluid. The no-slip boundary condition at the wavy wall

ũ(x̃, w̃, t̃) = 0 (1.12)

is required in addition to Eq. (1.8).
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1.5.7 Membrane equation

Using Newton’s Law in ỹ-direction gives the following equation for the prestretched membrane

− (p̃U − p̃L) =
σ̃(x)

r̃(x)
+
σ̃(z)

r̃(z)
+ D̃M ρ̃M

∂2w̃

∂t̃2
. (1.13)

Here p̃U and p̃L are the pressure at the upper and lower surface of the membrane, respectively, see
Fig. 1.1. σ̃(x) and σ̃(z) denote the membrane tension in main flow direction and lateral direction,
respectively, and r̃(x) and r̃(z) denote the respective radii of membrane curvature. The last term
in Eq. (1.13) accounts for membrane inertia. Internal bending moments are neglected. In the
limit of small deflections, the membrane curvature in the x̃-ỹ-plane (in the symmetry plane z̃=0)
is approximately

1

r̃(x)
≈ −∂

2w̃

∂x̃2
. (1.14)

With the depth of the channel B̃, the curvature in lateral direction is (see Fig. 1.1, right)

r̃(z)2
=

(
B̃

2

)2

+
(
r̃(z) − w̃

)2
, (1.15)

and for w̃ � B̃/2 the curvature in the cross-section (ỹ-z̃-plane) can be approximated by

1

r(z)
≈ 8w̃

B̃2
. (1.16)

With the pressure difference across the body expressed as ∆p̃ = p̃U − p̃L, Eq. (1.13) reads

α̃M
∂2w̃

∂x̃2
− β̃M w̃ = ∆p̃+ D̃M ρ̃M

∂2w̃

∂t̃2
, (1.17)

with α̃M = σ̃(x), β̃M = 8σ̃(z)/B̃2. The boundary conditions for the membrane equation are

w̃LE = ÃLE sin(ω̃t̃),

(
∂w̃

∂x̃

)
TE

= 0 , (1.18)

where LE and TE denote the leading edge and trailing edge, respectively, and ω̃ is the excitation
angular frequency. Thus, a time-harmonic motion is expected to evolve and only time-harmonic
solutions are considered.

1.5.8 Design- and operating parameters

Tab. 1.1 lists the range of parameters for the pump investigated by Zackl [120].

11



Parameter Range of values Units

Length of membrane L̃ 0.20 m

Semi height of channel h̃ 0.018 m

Depth of channel B̃ 0.07 m

Hydraulic diameter of half-channel d̃h 0.0211 m

Cross section area of half-channel Ãh 8.056× 10−4 m2

Density of fluid ρ̃ 1000 kg/m3

Kinematic viscosity of fluid ν̃ 1.15× 10−6 m2/s

Membrane tension in main flow direction σ̃(x) 1240-9000 N/m

Membrane tension in lateral direction σ̃(z) 740-5000 N/m

Density of membrane ρ̃M 1260 kg/m3

Thickness of membrane D̃M 0.002-0.004 m

Mean flow velocity Ũ 0.5-4.2 m/s

Amplitude of excitation ÃLE 0.018 m

Excitation angular frequency ω̃ 55-315 rad/s

Table 1.1: Range of operating parameters, selected from [120] (design B/B2)

Typical values for the membrane tension in flow direction and lateral direction for design
B (cf. [121]) are σ̃(x) = 3120 N/m and σ̃(z) = 1620 N/m. In the design by Zackl the amplitude
of excitation ÃLE equals the semi height of the channel h̃. This is possible because in Zackl’s
design the channel is slightly wider at the LE.

1.5.9 Dimensionless formulation

Dimensionless numbers

The problem of an oscillating section in a channel has four fundamental length scales from which
three independent dimensionless ratios can be constructed. One is the ratio ε of the transversal
displacement to the chord, the other is the ratio h of the semi-channel width to the chord, and
the third is the distance the fluid travels during one oscillation period of the body, expressed by
the reduced frequency.

It is very important to emphasize that different dimensionless formulations are used in each
section, depending on the individual problem. Before these differences are discussed, the scaling
used consistently throughout the work shall be outlined:
The oncoming flow speed is used as reference speed Ũ and for the reference pressure ρ̃ Ũ2

u =
ũ

Ũ
, v =

ṽ

Ũ
, p =

p̃

ρ̃ Ũ2
.

The membrane parameters for streamwise strain, lateral strain and inertia in Eq. (1.13) are
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given in dimensionless form as

αM =
2σ̃(x)

ρ̃Ũ2L̃
, βM =

4σ̃(z)L̃

B̃2ρ̃Ũ2
, µM =

1

2

ρ̃M
ρ̃

(
ω̃L̃

Ũ

)2
D̃M

L̃
. (1.19)

The CFD results in Sec. 4.2.2 are presented in dimensional form. Regarding the dimensionless
formulations, the following three differences occur with respect to the reference length scale and
the reference time scale:

I Time-periodic motion of a body of finite length in unbounded domain. The semi-chord L̃/2
is used as reference length and the inverse of the angular frequency ω̃ to scale time. The
dimensionless coordinates, time, and reduced frequency are then

x =
x̃

L̃/2
, y =

ỹ

L̃/2
, τ = ω̃ t̃ , σ =

ω̃L̃

2Ũ
. (1.20)

This scaling is used in the sections 3.1, 3.3, 3.4, and 4.1. In particular for the downstream
travelling wave of prescribed shape in the sections 3.3 and 3.4, the downstream propagating
phase speed c̃ is used in the dimensionless phase speed and wavenumber as

c =
c̃

Ũ
, k =

ω̃ L̃

2 c̃
. (1.21)

II General or time-periodic motion of a body of finite length in a channel. The chord L̃
is used as reference length, and either L̃/Ũ (general) or 1/ω̃ (time-periodic) is used as
timescale. The Reynolds number is built with the hydraulic diameter d̃h. The dimensionless
coordinates, channel width, times, reduced frequency and Reynolds number are

x =
x̃

L̃
, y =

ỹ

L̃
, h =

h̃

L̃
, t =

t̃ Ũ

L̃
, τ = ω̃ t̃ , Ω =

ω̃L̃

Ũ
, Reh =

Ũ d̃h
ν̃

. (1.22)

This scaling is used in the sections 2.2 and 2.3.

III Time-periodic motion of a travelling wave of prescribed shape with amplitude Ã and infinite
streamwise extension. The wavelength λ̃ is used as reference length. The dimensionless
coordinates, wave steepness, phase speed, and Reynolds number are

x =
x̃

λ̃
, y =

ỹ

λ̃
, Aλ =

Ã

λ̃
, c =

c̃

Ũ
, Reλ =

Ũ λ̃

ν̃
. (1.23)

This scaling is used in Sec. 3.4.3 and Sec. 3.5.

In Sec. 2.1, the representation by Chebyshev polynomials I as well as the representation by
vortices II are outlined. With the given scaling, e. g. from Eq. (1.20), the equations for the motion
with small deflections Eq. (1.6), the boundary conditions Eqs. (1.9, 1.10) and the membrane
equation Eq. (1.13), respectively, are formulated dimensionless as:
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Motion

w(x, t) = εw1(x, t) . (1.24)

Boundary conditions

v1(x, 0, t) = w1,t + w1,x for xLE ≤ x ≤ xTE , (1.25)

v1 (x,±h, t) = 0 for −∞ ≤ x ≤ +∞ . (1.26)

Membrane equation

− µMw1,ττ + αMw1,xx − βMw1 = ∆p1 for xLE ≤ x ≤ xTE . (1.27)

1.5.10 Measurements by W. Zackl

The best results that have been achieved in the experiments (cf. [120]) in terms of flow velocity,
hydraulic power and pressure gain are shown in Tab. 1.2.

Outcome ω̃ in rad/s Ũ in m/s Pressure gain in Pa Reh

max. flow velocity 188 0.5 8600 77000

max. hydraulic power 251 2.4 30000 43000

max. pressure gain 314 4.2 57000 8500

Table 1.2: Results from the experiments in [120] (design B/B2).

The Reynolds number is calculated from Eq. (1.22) using the data given in Tab. 1.1. For the
case of max. hydraulic power in Tab. 1.2 the following values for the dimensionless parameters
reduced frequency Eq. (1.20), leading-edge amplitude, and membrane parameters Eq. (1.19) are
obtained

σ ≈ 10.7 , ÃLE/L̃ ≈ 0.09 , αM ≈ 5.7 , βM ≈ 48 , µM ≈ 4.3 .
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Chapter 2

2D-Potential Flow Theory

2.1 Unbounded domain

The unsteady potential flow theory has been used in the past to study the unsteady motion of a
thin airfoil [36], fluid-structure interaction problems in aeroelasticity [11], as well as swimming
of slender fish Sec. 1.2.3, and the flapping flag problem Sec. 1.3.5. Theodorsen [104] was the first
to present a complete mathematical description to the problem of wing flutter by employing
unsteady potential flow theory. He used a sheet of 2-dim. sources and sinks to describe the
non-circulatory part of the flow in an unbounded domain [11]. We note that the method is
somewhat different to the approach used by Schwarz [86] who applied a distribution of vortices
along the body and the wake, see [11]. In Theodorsen’s model, the wake of shed counter-vortices
continually moves away from the airfoil at free-stream velocity.

Sections 2.1.1–2.1.6 present the mathematical approach used by Schwarz [86]. However,
when a flexible structure is involved, it is more convenient to use a formulation in mapped
coordinates represented by Chebyshev polynomials. This method has been pursued by Küssner
[45] and will be outlined in Sec. 2.1.7 following the notation by Wu [118].

2.1.1 Pressure on the body

Assuming small deflections as defined in Sec. 1.5.4, Eq. (1.5) can be linearized and the dimen-
sionless perturbation pressure at the body can be expressed as

p1 = −(ϕt + ϕx) , (2.1)

where ϕ denotes the perturbation potential from Eq. (1.7). For a given motion, ϕ needs to
be chosen such that the boundary condition Eq. (1.25) is fulfilled. In unbounded domain, two
methods are common. These methods are the distribution of vortices (introduced originally by
L. Prandtl in spanwise direction) and the Chebyhsev expansion.
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2.1.2 Vortex distribution

A single vortex of strength Γ placed on the horizontal axis (at y = 0) generates the complex
flow potential

F (z) = −i Γ

2π
ln[z − ξ] (2.2)

(cf. [36], Eq. (6.17)). Following Schwarz [86], a chordwise distribution of vortices dΓ(ξ, t) =
γ(ξ, t)dξ is applied at the undisturbed position of the body, Fig. 2.1. A relation between the
derivative of the potential on the upper and lower side of the body surface, respectively, and the
distribution of vortices can be obtained with the help of the Sokhotski–Plemelj theorem (cf. [68],
p. 42)

ϕx(x, 0±, t) = ∓γ(x, t)

2
. (2.3)

The pressure difference across the body can then be derived from Eq. (2.1)

∆p1(x, t) =

(∫ x

0
γt(ξ, t)dξ + γ(x, t)

)
. (2.4)

2.1.3 Kutta condition

We require the Kutta condition at the trailing edge x = 1

∆pTE = 0 . (2.5)

The condition of vanishing pressure across the trailing edge is a generalization of the classical
Kutta condition for the steady case. The limits of validity of the unsteady Kutta condition are
discussed, for instance in Katz & Plotkin [36], Sec. 13.11. A discussion of the limits of the model
for a flapping foil is given later in Sec. 3.1.6. The circulation about the body is obtained by
integration of the vorticity along the chord as

Γ(t) =

∫ 1

0
γ(x, t)dx . (2.6)

Eq. (2.5) then reads with Eq. (2.4)

Γt(t) + γ(1, t) = 0 (2.7)

Thus, the vorticity shed from the trailing edge has a strength equal and opposite to the temporal
change of the bound circulation.

2.1.4 Wake vortices

In contrast to the steady case, in the unsteady case the vortex strength at the trailing edge
γ(1, t) cannot vanish. A comprehensible physical explanation of the mechanism of production of
wake vortices is given by Von Kármán & Sears [115]. When a starting airplane produces body
circulation in order to create a lifting force, it leaves behind a counter-rotating circulation at the
runway, Fig. 2.1 left. If the motion of the body is smooth in time, a small starting vortex will
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emerge from the trailing edge at any instant. The evolving sequence of discrete starting vortices
may then be smeared and the distribution of vortices on the body can thus be extended into
the wake, Fig. 2.1 right.

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
��������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
�������������������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

������
������
������
������

������
������
������
������

γ(x, t) γ(x, t)

0 01 1x xx(t) x(t)

Γw

γw(x, t)

Figure 2.1: Vortex shedding from the trailing edge: left: starting vortex; right: continuous
description for smooth motion.

The unsteady Kutta condition is related to the principle of conservation of total circulation.
Applying Kelvin’s theorem DΓT /Dt = 0 (cf. [36]) to the total circulation ΓT = Γ + Γw, one
obtains

d

dt

(∫ 1

0
γ(x, t)dx+

dΓw
dx

x(t)

)
= 0 (2.8)

or with the continuous distribution of wake vortices dΓw
dx = γw(1, t) and Eq. (2.6)

Γt(t) + γw(1, t)
dx(t)

dt
= 0 . (2.9)

A comparison to Eq. (2.7) shows that the condition of vanishing pressure across the trailing
edge corresponds to dx(t)/dt = U = 1 at the trailing edge and a continuous continuation of
the vortex distribution γ(1, t) = γw(1, t). As a consequence, we assume that in the wake the
fluid moves at approximately the free-stream speed and prescribe the transport of vortices in
the wake (omitting the subscript w in the notation) according to

γ(x, t) = γ(1, t− (x− 1)) for x ≥ 1 . (2.10)

We note that a generalization of the vortex method to channel flow is presented in Sec. 2.2.

2.1.5 Singular integral equation

The derivatives of the potential are related to the distribution of vortices by

ϕx(x, 0±, t) = ∓γ(x, t)

2
, (2.3 revisited)

ϕy(x, 0
±, t) = v1(x, 0, t) =

1

2π

(
−
∫ 1

0

γ(ξ, t)

x− ξ dξ +

∫ ∞
1

γ(ξ, t)

x− ξ dξ

)
. (2.11)
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Here −
∫

indicates that the Cauchy principal value has to be taken. This set of equations plays an
important role in aerodynamics, see for instance Bisplinghoff et. al. [11]. The explicit dependence
on the time t is omitted in the following notation. Eq. (2.11) is a singular integral equation with
a Cauchy kernel (cf. [68]) that we want to solve together with the kinematic boundary condition
Eq. (1.25) at the body 0 ≤ x ≤ 1. The task is to invert Eq. (2.11) such that the distribution
of vortices on the body γ(x) can be expressed explicitly for a given v1(x, 0). This approach has
been pursued by Schwarz [86] and it is outlined in detail in [11]. In the procedure the following
steps are applied: From Eq. (2.10), the distribution of vorticity in the wake is given by the
strength of the vorticity at the trailing edge. Schwarz assumes the strength of the wake vorticity
as interim given and applies an inversion formula found by Söhngen [95] to Eq. (2.11). From
the inversion, a free time-dependent function, physically related to the strength of circulation
around the body, is determined such that the vorticity at the trailing edge is constraint. Then,
the inversion yields

γ(x) =
1

π

√
1− x
x

(
2−
∫ 1

0

√
ξ

1− ξ
v1(ξ, 0)

ξ − x dξ +

∫ ∞
1

√
ξ

ξ − 1

γ(ξ)

ξ − xdξ

)
. (2.12)

The inversion of the Cauchy integral for the most general case (over the union of smooth arcs)
is given in [68]. The circulation about the body, Eq. (2.6), is obtained by exchanging the order
of integration

Γ = 2

∫ 1

0
v1(ξ, 0)

√
ξ

1− ξdξ +

∫ ∞
1

γ(ξ)

(√
ξ

ξ − 1
− 1

)
dξ . (2.13)

This result is already given in [115]. The wake model Eq. (2.10) is now inserted into Eq. (2.13).
Note that at this stage the circulation still depends on the vorticity at the trailing edge. The
circulation is fixed by applying the Kutta condition Eq. (2.7). From that γ(1, t) can be deter-
mined.

2.1.6 Time-harmonic motion

By employing the scaling II from Eq. (1.22) and assuming time-harmonic motion, we introduce
the reduced frequency (introduced first by Birnbaum)

Ω =
ω̃L̃

Ũ
(2.14)

and a new time scale τ = Ω t. Then, Eqs. (1.25, 2.7, 2.10) are recast to

v1(x, 0, τ) = Ωw1,τ + w1,x , (2.15)∫ 1

0
γτ (ξ, τ)dξ +

1

Ω
γ(1, τ) = 0 , (2.16)

γ(x, τ) = γ(1, τ − Ω(x− 1)) . (2.17)

The equations in this time scaling are used in Sec. 2.2.5 and Sec. 2.3.
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2.1.7 Representation by Chebyshev polynomials

So far, a distribution of vortices has been used to describe the potential flow. However, a second
approach, the representation by Chebyshev polynomials, is more suitable to describe chordwise
flexibility. Unfortunately, this approach cannot be extended easily to channel flows. It makes
use of an expansion proposed by Prandtl in his famous lifting-line theory for the load in spanwise
direction. Here, however, the expansion is used in streamwise direction. For a time-harmonic
motion with small deflections, Eq. (1.24) can be written as

w(x, τ) = εRe[w1 exp(iτ)] , (2.18)

where Re denotes the real part and i is the imaginary unit. It is convenient to define the
motion in terms of Fourier cosine series. Following [45] and [118], we apply the Glauert mapping
x = cos θ and write

w1 =
β0

2
+
∞∑
n=1

βn cos(nθ) (2.19)

in terms of the Fourier coefficients

βn =
2

π

∫ π

0
w1 cos(nθ)dθ . (2.20)

Note that with the mapping to θ the body ranges from x = −1 to x = 1. It is thus convenient to
use the semi-chord as reference length, see Eq. (1.20). Aiming at ε in Eq. (2.18) to express the
ratio of maximum deflection to the chord, we require the motion to have a maximum deflection
in the course of one period of w1,max = 2. By making use of the Prandtl acceleration potential
for the flow field (cf. [118] for details), one obtains for the pressure difference across the body
the expression

∆p1(θ, τ) = −Re

[(
a0 tan

θ

2
+ 2

∞∑
n=1

an sin(nθ)

)
exp(iτ)

]
, (2.21)

which satisfies already the generalized Kutta condition Eq. (2.5) at θ = 0. The coefficient a0

determines the strength of the singularity of the pressure difference at the leading edge θ = π.
It is important at this stage to establish the general relation between the parameters of motion
(the Fourier coefficients of the deflection, βn) and the parameters of the pressure (the Fourier
coefficients an). At first, from Eq. (2.19), the derivative of w1 with respect to x is expanded in
a cosine series (cf. [118]) as

∂w1

∂x
=
γ0

2
+
∞∑
n=1

γn cos(nθ) . (2.22)

By making use of well-known relations for trigonometric functions (cf. [2], 4.3.31), one obtains
the relation

γn−1 − γn+1 = 2nβn (2.23)
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and by induction

γ2n = 2
∞∑
m=n

(2m+ 1)β2m+1 , (2.24)

γ2n+1 = 2

∞∑
m=n

(2m+ 2)β2m+2 . (2.25)

for n = 0, 1, 2, . . .. Then, the lateral velocity perturbation

v1 = −Re

[(
λ0

2
+
∞∑
n=1

λn cos(nθ)

)
exp(iτ)

]
(2.26)

satisfies the kinematic boundary condition Eq. (1.25) when the relation

λn = − (γn + iσβn) (2.27)

for n = 0, 1, 2, . . . holds. Here σ denotes the reduced frequency from the dimensionless set in
Eq. (1.20). In addition, we differentiate Eq. (2.1) with respect to y and obtain the linearized
momentum equation in lateral direction at the body surface

− p1,y = v1,t + v1,x . (2.28)

Then, Eq. (2.28) together with Eq. (2.26) and Cauchy–Riemann equations for potential flow
(cf. [45]) lead to the following relations between the Fourier coefficients of the motion and the
pressure [118]

a0 = (λ0 + λ1)C(σ)− λ1 , (2.29)

an = λn +
iσ

2n
(λn−1 − λn+1) (2.30)

for n = 1, 2, . . .. In Eq. (2.29), Here C(σ) denotes the Theodorsen function that is described in
the Sec. 2.1.8. With Eqs. (2.23, 2.27), one can write Eq. (2.30) as

an = −γn − i2σβn −
σ2

2n
(βn+1 − βn−1) (2.31)

for n = 0, 1, 2, . . .. The Fourier terms cos(nθ) and sin(nθ) in w1 and ∆p1, respectively, can be
transformed back to the x-coordinate x = cos θ by making use of definitions of the Chebyshev
polynomials of the first kind Tn(x) and second kind Un(x) ([2], 22.3.15 and 22.3.16),

Tn(x) = cos(nθ) ,
√

1− x2 Un−1(x) = sin(nθ) , (2.32)

with the sum-representation

Tn(x) =

bn
2
c∑

k=0

n!

(2k)!(n− 2k)!
xn−2k

(
x2 − 1

)k
,

Un−1(x) =

bn
2
c∑

k=0

n!

(2k + 1)!(n− 2k − 1)!
xn−2k−1

(
x2 − 1

)k
.
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2.1.8 Theodorsen function

The Theodorsen function [104] is given by

C(σ) =
K1(iσ)

K0(iσ) +K1(iσ)
= F (σ) + iG(σ) . (2.33)

It is solely a function of the reduced frequency σ and can be expressed by the modified Bessel
functions of the second kind K0 and K1, respectively. Fig. 2.2 shows plots of C(σ).

0 0.5 1 1.5 2
Σ0

0.2

0.4

0.6

0.8

1
F, -G

F

-G

C
0.2 0.4 0.6 0.8 1

F

-0.2

-0.1

0

G

Figure 2.2: Theodorsen function. Left: Real- and imaginary part. Right: Complex polar plot.

Similar plots are given in the work by Garrick [26] and in classical textbooks [11], [36]. The
Theodorsen function is a transfer function relating sinusoidal inputs of reduced frequency σ to
their aerodynamic response. The instantaneous values of the lift force per unit span that acts
on the body is given from the difference of the surface pressure on the upper and lower side as

L̃(t̃) =

∫ x̃TE

x̃LE

∆p̃(x̃, t̃)dx̃ . (2.34)

Regarding the lift force caused by the circulatory portion of the flow, C(σ) accounts for the
change in magnitude and phase with changes in reduced frequency σ. Physically speaking, the
difference of C(σ) from the value one is a consequence of the wake vortices. When σ is small, the
so-called quasi steady-state assumption may be used, which neglects the influence of the wake
vortices on the flow in that C(σ) is replaced with the value one. In that case, the circulatory
portion of the lift force depends only on the instantaneous value of the circulation at the body.

2.1.9 Thrust, power and efficiency

The definitions made in this section for thrust, power and efficiency are used below to study
propulsion for a prescribed motion in Ch. 3 and for fluid structure interaction in Ch. 4. The
thrust force per unit span acting on the body surface in negative x-direction is given by

T̃ (t̃) = T̃p(t̃) + T̃s(t̃) (2.35)
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with the thrust per unit span from the difference of the surface pressure on the upper and lower
side

T̃p(t̃) = −
∫ x̃TE

x̃LE

∆p̃(x̃, t̃)
∂w̃

∂x̃
dx̃ (2.36)

and the contribution from nose suction

T̃s(t̃) = ε2
1

2
πρ̃Ũ2 L̃

2
A′0

2
, (2.37)

where A′0 is given by (cf. [118])

A′0 = a′0 cos τ − a′′0 sin τ . (2.38)

Here a′0 and a′′0 denote the real- and imaginary part of

a0 = a′0 + i a′′0 (2.39)

that is given by Eq. (2.29). The suction force T̃s(t̃) acts on the leading edge and is due to the
inverse square-root singularity of the pressure difference at the leading edge, cf. Eq. (2.21). T̃s(t̃)
is obtained in the limit of the contours’ radius of curvature tending to zero. An introductory
example for the need of inclusion of leading-edge suction is given in [36], Sec. 5.4. The power
required to drive the body is given by

P̃ (t̃) =

∫ x̃TE

x̃LE

∆p̃(x̃, t̃)
∂w̃

∂t̃
dx̃ . (2.40)

From the principle of conservation of energy, the kinetic energy imparted to the fluid [118] is
determined from the power input minus the time rate of work done by the thrust

Ẽ(t̃) = P̃ (t̃)− T̃ (t̃) Ũ . (2.41)

In dimensionless form, using ε2 π4 ρ̃Ũ
2L̃/2 as scale for the forces, we obtain

Tp(t) = − 4

π

∫ xTE

xLE

∆p1
∂w1

∂x
dx , (2.42)

Ts(t) = 2A′0
2
, (2.43)

P (t) =
4

π

∫ xTE

xLE

∆p1
∂w1

∂t
dx . (2.44)

The time-averaged values are defined as 1

Ts = Ts(t) , Tp = Tp(t) , T = Tp + Ts , P = P (t) , E = P − T . (2.45)

1The instantaneous values are indicated as functions of time t, while the symbols without the overbar denote
time-average values

22



The overbar denotes the time average over one flapping period. Since A′0 in Eq. (2.38) is a
time-harmonic signal, the time-average value of the leading-edge thrust becomes

Ts = 2A′0
2 = a′0

2
+ a′′0

2
. (2.46)

The hydrodynamic propulsive efficiency for producing average useful thrust is given as (denoting
U = 1 to identify the numerator as power)

η =
T U

P
=

1

1 + E/T
. (2.47)

2.2 Channel flow

In this section a novel analytical solution of the unsteady potential flow over a surface oscillating
about the centerline of a channel is presented. The results for the velocity field, vorticity
distribution and circulation on the surface are given.

Potential flow in a channel has been examined in the literature. Greengard [29] determines
the Green’s function of a single potential source at arbitrary position in a channel of infinite
extension. The method of images (cf. [36], Sec. 6.8) is repeatedly employed to fulfill the kinematic
boundary condition at the channel walls. It is emphasized that the velocity field induced by the
point source decays exponentially along the length of the channel. In the present problem we
assume the flapping surface to lie in the vicinity of the channel’s centerline.

As in unbounded domain (see Sec. 2.1.5 for details), jump conditions across the flapping
surface and wake are to be fulfilled. Following Schwarz [86], a distribution of vortices can be
used to describe the problem. The unsteady Kutta condition is used to constrain the vorticity at
the trailing edge. Altogether, the approach gives rise to a singular integral equation. However,
in contrast to the problem in unbounded domain, the integral kernel is not of Cauchy type and
thus Söhngen’s inversion formula cannot be applied.

For large channel width with respect to the chord, Keldysh & Lavrentiev [39] presented an
asymptotic approach (cf. [36], Sec. 7.5) that expands the kernel in terms of powers of the inverse
channel width and applies Söhngen inversion to the resultant Cauchy-type integral equations
term by term in consecutive order.

The aim in the present work is, however, to obtain a solution in closed form. An inversion
formula in a channel of any width has been given by the present author [67] for a somewhat dif-
ferent physical problem that is stationary and comprises a wake of prescribed constant strength
(cf. [85]). Complex function theory together with the repeated method of images has been used
to obtain the velocity field and, in using a representation by distributed vortices, a generalized
version of Söhngen’s formula. The present problem of a flapping surface is slightly more involved
as the strength of vorticity in the wake is not known a priori. Schwarz overcame this difficulty
by starting the inversion of the integral equation with the assumption of interim given strength
of wake vorticity (see Sec. 2.1.5). In the present work, we pursue a more direct approach. As in
[67], complex function theory with an appropriate auxiliary function is employed to obtain the
velocity field in the entire domain of the channel in closed form directly from the motion of the
body. The solution is then evaluated at the channel centerline to determine the distribution of
vorticity along the body surface. The size of bound circulation is fixed by the Kutta condition.
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A possible application of the results are wall correction formulae for measurements in wind
tunnels or water basins, where the measured lift and thrust forces on unsteadily moving surfaces
are to be corrected to imitate the original operation in freestream (as for wind turbines, etc.).

We note that the flow problem in the channel has a similarity to the flapping propulsion
close to a wall. According to the review article by Rozhdestvensky [80] “it is not possible to
obtain a closed-form solution of the corresponding integral equation in linear formulation for a
foil oscillating in inviscid flow at finite distance from an interface”. It is well known that the
lift force on the foil increases when the gap width becomes small (ground effect, cf. [36]). If the
channel width becomes too small, the assumptions of irrotational flow may no longer be valid
and viscous effects may become significant.

Interesting results have been obtained by Molina et. al. [65] by using URANS for a downwards
cambered heaving airfoil in ground effect. For the non-oscillating steady case, they reported
maximum downforce at a gap to chord ratio of 0.17 that is 71 percent greater than in freestream.
At ride height lower than that, force reduction caused by stall has been observed. For the heaving
foil, however, Molina et. al. [65] reported that at high flapping frequencies the force reduction
region in extreme ground effect disappears and the aerodynamic performance of the airfoil,
dominated by added mass effects, behaves like in inviscid flow.

We start with the description of a single potential vortex in the channel to demonstrate how
the channel wall boundary changes the kernel in the integral equation. Then, the novel inversion
method is presented.

2.2.1 Single vortex at the centerline and stack of vortices

In order to obtain a basic solution that fulfills the kinematic boundary conditions at the upper
and lower wall Eq. (1.26), we use the procedure of iterative imaging of a single vortex for
unbounded flow (cf. [36], Sec. 6.8). The complex potential F (z) = ϕ + iψ with z = x + iy is
introduced. In case of an infinite domain, the well-known fundamental solution for the potential
of a single vortex of strength Γ placed at z = ξ is given by Eq. (2.2). Fig. 2.3 shows a sketch of
a single vortex on the centerline of a channel.
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Figure 2.3: Single vortex of strength Γ at the centerline of a channel of semi-width h.

To satisfy the boundary conditions at the channel walls y = ±h the method of images is applied.
Then, for an infinite stack of clockwise vortices at y = 0, ±4h,±8h · · · and counterclockwise
vortices at y = ±2h,±6h · · · , the complex potential is

F (z) = −i Γ

2π
(ln[z − ξ]− ln[z − (ξ + i2h)]− ln[z − (ξ − i2h)]+

ln[z − (ξ − i4h)] + ln[z − (ξ + i4h)]− ln[z − (ξ + i6h)]− ln[z − (ξ − i6h)] + · · · ) . (2.48)

By adding and subtracting terms and skipping constants ln
[
(2h)2

]
, ln
[
(4h)2

]
, · · · we obtain

F (z) = −i Γ

2π

ln[z − ξ]− ln
∞∏
n=1

[
1 +

(
z − ξ
2nh

)2
]

+ ln

[ ∞∏
n=1

[
1 +

(
z − ξ
4nh

)2
]]2

 . (2.49)

Making use of
∏∞
n=1

[
1 + x2

n2

]
= 1

πx sinh(πx) from [2], 4.5.68, and by omitting constants, the

result for the complex potential of the vortex stack becomes

F (z) = −i Γ

2π
ln

sinh2(π z−ξ4h )

sinh(π z−ξ2h )
= −i Γ

2π
ln

∣∣∣∣tanh

(
π
z − ξ

4h

)∣∣∣∣ (2.50)

(compare to [36], Eq. (6.89)). With F (z) = ϕ+ iψ, the real part is

ϕ =
Γ

2π
arctan

sin
(
π y

2h

)
sinh

(
π x−ξ2h

) . (2.51)

2.2.2 Singular integral equation

We apply a distribution of vortex stacks Eq. (2.50) dΓ(ξ, t) = γ(ξ, t)dξ on the x-axis (at w = 0)
along the body and in the wake. Similarly to the problem in unbounded domain in Sec. 2.1.5,
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we obtain for the derivatives of the potential from Eq. (2.51)

ϕx(x, 0±, t) = lim
y→0±

1

2h

∫ ∞
0

γ(ξ, t)
cosh π(x−ξ)

2h sin πy
2h

cos πyh − cosh π(x−ξ)
h

dξ = ∓γ(x, t)

2
, (2.52)

ϕy(x, 0
±, t) =

1

4h
−
∫ ∞

0

γ(ξ, t)

sinh π(x−ξ)
2h

dξ , (2.53)

with

ϕx(x, 0+) =
[
u1(x, 0+)− 1

]
= −

[
u1(x, 0−)− 1

]
= −γ(x)

2
, (2.54)

ϕy(x, 0
±) = v1(x, 0) (2.55)

(with the dependence on time t being omitted in the notation). Note that the distribution
of vortex stacks fulfills the kinematic boundary condition at the channel walls Eq. (1.26). In
addition, the distribution of vortex strength on the centerline shall fulfill the kinematic boundary
condition at the body Eq. (1.25). This requires to solve the singular integral equation Eq. (2.53).
The inversion formula for the unbounded domain, as outlined in Sec. 2.1.5, can not be applied
to the channel flow problem.

If the channel width is large (compared to the chord), the presence of the channel walls
can be taken into account as higher order effect. According to [36], Keldysh & Lavrentiev [39]
performed a series expansion of the kernel function in Eq. (2.53) in powers of 1/h. To this end,
the representation

1

sinh ξ
=

1

ξ
−
∞∑
k=1

2 (22k−1 − 1)

(2k)!
B2k ξ

2k−1

can be used ([2], 4.5.65), where Bk is the Bernoulli number. Note that the first term on the rhs
equals the kernel in unbounded domain. The resultant Cauchy-type integral equations for each
term can then be solved consecutively by Söhngen’s inversion formula (cf. [36], Sec. 7.5).

In contrast to that approach, we attempt to solve the channel flow analytically and pursue
an approach that considers the flow field in the entire domain.

2.2.3 Solution of the flow field

Following the ideas from [8] as delineated in [84], we start with Cauchy’s integral formula

f(z) =
1

2πi

∮
f(ζ)

ζ − zdζ (2.56)

with z = x+ iy, ζ = ξ + iη and set for the analytic function

f(ζ) = w(ζ)h(ζ) , (2.57)

in where
w(ζ) = [u(ζ)− 1]− iv(ζ) (2.58)

is the complex valued velocity perturbation, and h(ζ) is an analytic auxiliary function which
will be specified below. In the notation of the respective velocity components u and v we have
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dropped the index 1 that indicates perturbation. The method of images is used to satisfy the
boundary condition at the channel walls Eq. (1.10). In doing so, the body and the wake region
are successively mirrored about the channel walls that are each a distance h apart from the
centerline, so that one obtains a successive sequence of (virtual) channels, see Fig. 2.4. On
each of the bodies and wake regions, the tangential component of the velocity is – in general –
discontinuous. Therefore the path of integration for the integral in Eq. (2.56) has to be cut and
passed around the bodies and wakes, as indicated in Fig. 2.4.
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Figure 2.4: Successively mirrored body and wake in the channel of semi-width h. Path of
integration to derive the potential-flow solution (dashed line).

If one presumes h(ζ) to be bounded at ζ → ∞, the path of integration at infinity does not
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contribute to the integral in Eq. (2.56), and it follows from Eqs. (2.56–2.58) that

w(z) =
1

2πih(z)

∫ ∞
0

(
f(ξ, 0+)− f(ξ, 0−)

ξ − z +
f(ξ, 2h+)− f(ξ, 2h−)

(ξ + i2h)− z +

f(ξ,−2h+)− f(ξ,−2h−)

(ξ − i2h)− z +
f(ξ, 4h+)− f(ξ, 4h−)

(ξ + i4h)− z +
f(ξ,−4h+)− f(ξ,−4h−)

(ξ − i4h)− z + · · ·
)

dξ .(2.59)

The velocity perturbation along the body and the wake in each of the virtual channels can be
expressed by the velocity perturbation in the physical channel

v(ξ, 2nh) = (−1)nv(ξ, 0) for −∞ < ξ < +∞ , (2.60)

u(ξ, 2nh±)− 1 = (−1)n
[
u(ξ, 0±)− 1

]
for ξ ≥ 0 , (2.61)

for n = −N, · · · ,−1, 0, 1, · · · , N . The alternating sign (−1)n and an infinite number of virtual
channels N →∞ are necessary to satisfy the boundary conditions at the walls, Eq. (1.10). We
require

h(ξ, 2nh−) = −h(ξ, 2nh+) for 0 ≤ ξ ≤ 1 , (2.62)

h(ξ, 2nh−) = h(ξ, 2nh+) for ξ > 1 , (2.63)

to achieve that the jump discontinuity f(ξ, 2nh+) − f(ξ, 2nh−) on the bodies 0 ≤ ξ ≤ 1 no
longer depends on the a priori unknown tangential velocity and that f(ξ, 2nh+) − f(ξ, 2nh−)
in the wake regions ξ > 1 no longer depends on the vertical velocity perturbation, respectively.
Thus, inserting Eqs. (2.60) to (2.63) into Eq. (2.57) gives

f(ξ, 2nh+)− f(ξ, 2nh−) = −2iv(ξ, 0)h(ξ, 2nh+) for 0 ≤ ξ ≤ 1 , (2.64)

f(ξ, 2nh+)− f(ξ, 2nh−) = 2
[
u(ξ, 0+)− 1

]
(−1)nh(ξ, 2nh+) for ξ > 1 . (2.65)

Hence, Eq. (2.59) may be written as

w(z) =
1

2πih(z)

{
−2i

∫ 1

0
v(ξ, 0)

(
h(ξ, 0+)

ξ − z − h(ξ, 2h+)

ξ + i2h− z −
h(ξ,−2h+)

ξ − i2h− z +
h(ξ, 4h+)

ξ + i4h− z +
h(ξ,−4h+)

ξ − i4h− z ∓ · · ·
)

dξ+

2

∫ ∞
1

[
u(ξ, 0+)− 1

](h(ξ, 0+)

ξ − z − h(ξ, 2h+)

ξ + i2h− z −
h(ξ,−2h+)

ξ − i2h− z ± · · ·
)

dξ

}
. (2.66)

We require that the entire flow field in each of the virtual channels is in principle the same as
in the physical channel, except that it is turned upside down in every other channel. Thus

h
(
ξ, 2nh+

)
= h

(
ξ, 0+

)
. (2.67)

As a consequence, h (ξ, 0+) can be factored out of the bracket in Eq. (2.66). For an infinite
number of virtual channels, the remaining expression inside the bracket can then be simplified
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according to

1

ξ − z +
∞∑
n=1

(−1)n
(

1

ξ + i2nh− z +
1

ξ − i2nh− z

)
=

1

ξ − z + 2 (ξ − z)
∞∑
n=1

(−1)n

(2nh)2 + (ξ − z)2
=

π

2h

1

sinh
[
π
2h(ξ − z)

] , (2.68)

where csch z =
1

z
+ 2 z

∞∑
k=1

(−1)k

π2k2 + z2
from [117] has been used for the last simplification. With

Eq. (2.67) and Eq. (2.68) we obtain

w(z) =
1

2πih(z)

{
−2i

∫ 1

0
v(ξ, 0)h(ξ, 0+)

π

2h

1

sinh
[
π
2h(ξ − z)

]dξ+
2

∫ ∞
1

[
u(ξ, 0+)− 1

]
h(ξ, 0+)

π

2h

1

sinh
[
π
2h(ξ − z)

]dξ} . (2.69)

An analytic auxiliary function that fulfills all the required conditions Eqs. (2.62, 2.63, 2.67) is

h(ζ) = ζ1/2(1− ζ)−1/2(ζ + i2h)1/2[1− (ζ + i2h)]−1/2(ζ − i2h)1/2[1− (ζ − i2h)]−1/2 · · · =√√√√√√√ ζ

1− ζ

∏∞
n=1

[
1 +

(
ζ

2nh

)2
]

∏∞
n=1

[
1 +

(
1−ζ
2nh

)2
] =

√
sinh

(
π
2hζ
)

sinh
[
π
2h(1− ζ)

] , (2.70)

where sinh z = z
∏∞
k=1

[
1 + z2

π2k2

]
from [2], 4.5.68 has been used for the last simplification.

Hence, inserting Eq. (2.70) and Eq. (2.58) into Eq. (2.69) gives the result for the components of
the complex velocity perturbation

[u(z)− 1]− iv(z) =
1

2h

√
sinh

[
π
2h(1− z)

]
sinh

(
π
2hz
) {

−
∫ 1

0
v(ξ, 0)

√
sinh

(
π
2hξ
)

sinh
[
π
2h(1− ξ)

] dξ

sinh
[
π
2h(ξ − z)

]+
∫ ∞

1

[
u(ξ, 0+)− 1

]√ sinh
(
π
2hξ
)

sinh
[
π
2h(ξ − 1)

] dξ

sinh
[
π
2h(ξ − z)

]} , (2.71)

where from Eq. (2.70)

h(ζ) =

√
sinh

(
π
2hζ
)

− sinh
[
π
2h(ζ − 1)

] = ±i
√

sinh
(
π
2hζ
)

sinh
[
π
2h(ζ − 1)

] for Im[ζ] ≷ 0 and Im[ζ] > 1 (2.72)

has been used for the second integral. With z = x + iy and y → 0 one immediately obtains
the velocity perturbation in the plane of the body. Taking the real part of Eq. (2.71) gives the
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distribution of the tangential velocity perturbation. With Eq. (2.54) one obtains at the body

γ(x) =
1

h

√
sinh

[
π
2h(1− x)

]
sinh

(
π
2hx
) {

−
∫ 1

0
v(ξ, 0)

√
sinh

(
π
2hξ
)

sinh
[
π
2h(1− ξ)

] dξ

sinh
[
π
2h(ξ − x)

]+
∫ ∞

1

γ(ξ)

2

√
sinh

(
π
2hξ
)

sinh
[
π
2h(ξ − 1)

] dξ

sinh
[
π
2h(ξ − x)

]} for 0 ≤ x ≤ 1 , (2.73)

where −
∫

denotes the Cauchy principal value. We thus have obtained an inversion formula to
Eq. (2.53), cf. [67, 99]. In the limit h → ∞ one obtains the solution in unbounded domain
Eq. (2.12).

2.2.4 Circulation

With the definition of the circulation around the body Eq. (2.6) we find by integration of
Eq. (2.73)

Γ(t) =
1

h

∫ 1

0

(√
sinh

[
π
2h(1− x)

]
sinh

(
π
2hx
) −

∫ 1

0
v(ξ, 0, t)

√
sinh

(
π
2hξ
)

sinh
[
π
2h(1− ξ)

] dξ

sinh
[
π
2h(ξ − x)

])dx+

1

2h

∫ 1

0

(√
sinh

[
π
2h(1− x)

]
sinh

(
π
2hx
) ∫ ∞

1
γ(ξ, t)

√
sinh

(
π
2hξ
)

sinh
[
π
2h(ξ − 1)

] dξ

sinh
[
π
2h(ξ − x)

])dx(2.74)

and with exchanged order of integration we obtain

Γ(t) = 2

∫ 1

0
v(ξ, 0, t)

√
sinh

(
π
2hξ
)

sinh
[
π
2h(1− ξ)

] I0 dξ +

∫ ∞
1

γ(ξ, t)

√
sinh

(
π
2hξ
)

sinh
[
π
2h(ξ − 1)

] (I0 − I1) dξ ,

(2.75)
with the integrals

I0 =
1

2h
−
∫ 1

0

√
sinh

[
π
2h(1− x)

]
sinh

(
π
2hx
) dx

sinh
[
π
2h(ξ − x)

] , (2.76a)

I1 = I0 −
1

2h

∫ 1

0

√
sinh

[
π
2h(1− x)

]
sinh

(
π
2hx
) dx

sinh
[
π
2h(ξ − x)

] (ξ ≥ 1) . (2.76b)

In order to solve I0 we perform a substitution for the variable y = π
b (x− 1

2) and for the parameter
η = π

b (ξ − 1
2), and subsequent to that the substitution s = sinh2 y. From this expression, the

primitive integral is solved with the help of the software package Mathematica. By evaluation of
the primitive integral in bounds, observing the principal value, and by making use of well-known
transformations for elliptic integrals (cf. [2, 74]), we obtain for the integral in Eq. (2.76a)

I0 =
2k

π

√
1− α2

α

[
K(k)−

(
1− α

k

)
Π(α2, k)

]
, (2.77)
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where K and Π are the complete elliptic integral of the first kind and the elliptic integral of the
third kind, respectively, and the parameters

α = tanh[π (ξ − 1/2) /(2h)], k = tanh[π/(4h)]

incorporate the dependence on the semi-channel width h. It is important to emphasize that
we denote the so-called modulus k in the parameter list of the elliptic integrals (following [74],
Ch. 19), instead of the historically older form where the parameter m = k2 is denoted (the form
used in [2], and by Mathematica). With I0 known, we determine the integral I1 from Eq. (2.76b)
and find (using again [74])

I1 =

√
sinh

[
π
2h(ξ − 1)

]
sinh

(
π
2hξ
) . (2.78)

With Eq. (2.78) the expression for the circulation Eq. (2.75) simplifies to (note that Im[I1] =
I1/i)

Γ(t) = 2i

∫ 1

0
v(ξ, 0, t)

I0

I1
dξ +

∫ ∞
1

γ(ξ, t)

(
I0

I1
− 1

)
dξ , (2.79)

where I0 and I1 are given by Eqs. (2.77, 2.78). Finally we have obtained a rather simple
representation of the instationary circulation around a zero-thickness body moving in the vicinity
of the centerline of an infinitely long channel. Note that in Eq. (2.79) only the ratio of the
integrals I0/I1 appears. In the following the expansions for both large and small channel width
are discussed.

Expansion for large channel width

In the limit of large channel width h→∞ one obtains from an expansion of Eqs. (2.77, 2.78)

lim
h→∞

I0 = 1 +
π2

64h2
(3− 4ξ) + · · · ,

lim
h→∞

I1 =

√
ξ − 1

ξ

(
1 +

π2

48h2
(1− 2ξ) + · · ·

)
and thus from Eq. (2.79)

lim
h→∞

Γ(t) = 2

∫ 1

0
v(ξ, 0, t)

√
ξ

1− ξ

(
1 + π2 5− 4ξ

192h2
+ · · ·

)
dξ +

∫ ∞
1

[√
ξ

ξ − 1

(
1 + π2 5− 4ξ

192h2
+ · · ·

)
− 1

]
γ(ξ, t) dξ . (2.80)

The leading terms resemble the result in unbounded domain Eq. (2.13). The perturbation term
that accounts for the presence of the channel walls is of order h−2, in accordance with the
corresponding stationary example outlined in [36], Sec. 7.5 (where the perturbation method by
Keldysh & Lavrentiev [39] has been used). One may observe that the perturbation caused by
distant channel walls is one order less than the perturbation of order h−1 caused by the weak
ground effect (cf. [36]).
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Expansion for small channel width

In the limit of small channel width h→ 0 follows

I1 ∼ exp

(
−πξ

4h

)√
2 sinh

π(ξ − 1)

2h
,

I0 ∼


ξ

h
exp

π(1− 2ξ)

4h
(0 ≤ ξ ≤ 1)

I1 +
1

h
exp

π(1− 2ξ)

4h
(ξ > 1)

and thus from Eq. (2.79)

Γ(t) ∼ 2

h

∫ 1

0
v(ξ, 0, t)

ξ√
1− exp π(ξ−1)

h

dξ +
1

h

∫ ∞
1

1√
exp π(ξ−1)

h − 1
γ(ξ, t) dξ . (2.81)

Regarding the size of the terms in orders of h, we have v = O (1) and thus the size of the body
integral can be estimated using the transformation s = ±π 1−ξ

h for ξ ≶ 1

2

h

∫ 1

0

ξ√
1− exp π(ξ−1)

h

dξ =
2

π

∫ π
h

0

1− h
πs√

1− exp(−s)
ds ∼ 1

h
+

4

π
ln 2 +

(
4

π2
ln2 2− 1

3

)
h+ · · · .

From the wake model Eq. (2.10) follows that |γ(ξ, t)| ≤ |γ(1, t)| for ξ > 1. Thus, an upper bound
for the wake integral in Eq. (2.81) reads

1

h

∫ ∞
1

1√
exp π(ξ−1)

h − 1
dξ =

1

π

∫ ∞
0

ds√
exp(s)− 1

= 1 .

As a consequence of the Kutta condition Eq. (2.7) γ(1, t) ∼ Γ(t). Then Eq. (2.81) gives

Γ(t) ∼ O
(
h−1

)
for h→ 0 . (2.82)

Hence, the forces on the body grow beyond bounds as the channel width is decreased. Certainly,
the applicability of two-dim. potential flow theory is limited when the channel width becomes
very small. The underlying assumptions that the viscous layers that form along the body and
the walls can be treated as a higher order effect and that the flow follows the contour of the
body, a condition required to produce high forces, may no longer be valid. Regarding both
limitations, interesting numerical results have been given by Molina et. al. [65] for a heaving
foil in extreme ground effect. Their results indicate that at high flapping frequencies, added
mass effects overcome large separation and viscous effects do not play a role in the aerodynamic
performance.

Fig. 2.5 plots the influence coefficients in Eq. (2.79) that describe to which amount the dis-
tribution of the streamwise vertical velocity component v and the wake vorticity γ, respectively,
contribute to the body circulation.
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Figure 2.5: Influence coefficients for the circulation around the body in Eq. (2.79) for different
semi-channel width h: (a) coefficient for vertical velocity on the body; (b) coefficient for vorticity
in the wake. (→0) indicates the use of the leading term of the expansion for small h.

The influence coefficient on the body i I0/I1 increases monotonically along ξ, while the
influence coefficient in the wake (I0/I1) − 1 decreases. Both coefficients are singular at the
trailing edge ξ = 1, illustrating that the size of the circulation is strongly affected by the
behaviour at this point. As i I0/I1 grows beyond bounds in the limit h → 0, the asymptotic
solution for small h is compared to the exact solution at a finite value of h = 0.1. A comparison
of the wake coefficients (I0/I1) − 1 for large channel width and small channel width shows the
transitionfrom an algebraic decay Eq. (2.80) to an exponential decay Eq. (2.81). Consequently,
the wake coefficient for smaller/larger h is larger/smaller near the trailing edge ξ = 1 and decays
stronger/weaker far downstream from the body ξ →∞.

2.2.5 Solution for time-harmonic motion

With the result for the circulation, it is straightforward to determine the strength of vorticity
at the trailing edge from the Kutta condition. Using the scaling II Eq. (1.22) for time-harmonic
motions and taking the derivative of Eq. (2.79) yields for Eq. (2.16)

2i

∫ 1

0
vτ (ξ, 0, τ)

I0

I1
dξ +

∫ ∞
1

(
I0

I1
− 1

)
γτ (ξ, τ)dξ +

1

Ω
γ(1, τ) = 0 , (2.83)

where Ω is the dimensionless frequency given in Eq. (2.14). With the ansatz

w1(ξ, τ) = wc(ξ) cos τ + ws(ξ) sin τ , (2.84a)

γ(ξ, τ) = γc(ξ) cos τ + γs(ξ) sin τ (2.84b)
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the vorticity distribution in the wake, Eq. (2.17), is given by γ(ξ, τ) = γc(1) cos(τ −Ω(ξ − 1)) +
γs(1) sin(τ − Ω(ξ − 1)). Inserting Eq. (2.84) into Eq. (2.83) we obtain

2i

∫ 1

0

(
− d

dξ
wc(ξ) sin τ +

d

dξ
ws(ξ) cos τ − Ω (wc(ξ) cos τ + ws(ξ) sin τ)

)
I0

I1
dξ −∫ ∞

1

(
I0

I1
− 1

)
sin(τ − Ω(ξ − 1))dξ γc(1) +

∫ ∞
1

(
I0

I1
− 1

)
cos(τ − Ω(ξ − 1))dξ γs(1) +

1

Ω
(γc(1) cos τ + γs(1) sin τ) = 0 . (2.85)

Comparing coefficients of cos τ and sin τ yields two linear equations for the unknowns γc(1) and
γs(1):

π

Ω
γs(1) + fc(1)− ac(1) γc(1)− as(1) γs(1) = 0 ,

−π
Ω
γc(1) + fs(1) + as(1) γc(1)− ac(1) γs(1) = 0 , (2.86)

with the abbreviations

ac(1) = π

∫ ∞
1

cos(Ω(ξ − 1))

(
I0

I1
− 1

)
dξ ,

as(1) = −π
∫ ∞

1
sin(Ω(ξ − 1))

(
I0

I1
− 1

)
dξ ,

fc(1) = −2πi

∫ 1

0

(
Ωws(ξ) +

d

dξ
w1,c(ξ)

)
I0

I1
dξ ,

fs(1) = −2πi

∫ 1

0

(
−Ωwc(ξ) +

d

dξ
w1,s(ξ)

)
I0

I1
dξ . (2.87)

I0 and I1 are given in Eq. (2.77) and Eq. (2.78), respectively.

Heaving motion

A simple time-harmonic heaving motion w1 = cos τ (0 ≤ ξ ≤ 1) is considered (wc = 1, ws = 0) in
order to study the effect of the channel width h and heaving frequency Ω on the vortex strength
distribution at the trailing edge ξ = 1. The results are obtained from Eq. (2.86) and are shown
in Fig. 2.6.
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Figure 2.6: Heaving motion w1 = cos τ : Vorticity at the trailing edge, normalized with the
dimensionless heaving frequency Ω = ω̃L̃/Ũ , as a function of the dimensionless semi-channel
width h = h̃/L̃ for different values of Ω. Left: cosine component; Right: sine component.

In Fig. 2.6 the trailing edge vorticity is normalized with the frequency Ω. The size of
the vortex strength at the trailing edge generally increases with increasing frequency. At low
frequency, γS(1) is significantly smaller than γC(1) as a consequence of the prescribed cosine
motion (quasi-steady response). At high frequencies γS(1) and γC(1) are of the same size. The
solutions are practically independent of h at very large values of the half-channel width h ≈ 10.
The increase of vorticity with decreasing channel width demonstrates the “wall-effect”. A double
logarithmic plot is used to examine if the solution obeys the h−1 behaviour at small values of
h according to Eq. (2.82). This seems to be the case as the curves resemble lines of constant
slope when the channel width is small (h < 0.2). The increase of the vortex strength due to the
channel effect starts at smaller/larger values of h when the heaving frequency is higher/lower.
The slope of the γC(1) curve at very low values of h seems to be independent of the frequency
when the frequency is below Ω ≈ 1, but the slope decreases at higher frequencies. Furthermore,
it is interesting to note that the vorticity γS(1) does not necessarily increase monotonically with
a decreasing channel width. For the low heaving frequencies (Ω ≤ 0.2) a minimum of γS(1)
occurs at intermediate values of h.

When a fluid structure interaction problem is considered, the benefit of the analytical ap-
proach is somewhat limited as the deflection w1 (that is required in Eq. (2.86) to determine
the trailing-edge values) is not known in advance. Aiming at coupling the flow solution to the
motion of a membrane (Sec. 1.5), a panel method is presented that solves the singular integral
equation in Sec. 2.2.2 and the membrane equation simultaneously.

2.3 Panel method: Membrane in channel flow

In this section a panel method is developed for the unsteady channel flow over a membrane.
In the panel method, singularity elements are distributed along the boundary surface (cf. [36]),
which is a logical extension of the analytical method presented in Sec. 2.2. We construct panel
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elements for the channel flow based on the singular integral equation Eq. (2.53) and a piecewise
linear distribution of the vorticity strength.

2.3.1 Equations

The equations from above for the unsteady channel flow over a membrane are summarized.
Scaling II is used in the panel code, see Sec. 1.5.9. Assuming a time-periodic motion and
inserting the kinematic condition Eq. (2.15) and the transport of wake vorticity Eq. (2.17) into
the integral equation for channel flow Eq. (2.53) yields

π

2h
−
∫ 1

0

γ(ξ, τ)

sinh
[
π
2h(x− ξ)

]dξ+
π

2h

∫ ∞
1

γ(1, τ − Ω(ξ − 1))

sinh
[
π
2h(x− ξ)

] dξ = 2π(Ωw1,τ (x, τ)+w1,x(x, τ)) (2.88)

for 0 ≤ x ≤ 1. The model for the vorticity in the wake reduces the size of the problem in that
the distribution of vorticity needs to be solved only on the body. The Kutta condition Eq. (2.16)∫ 1

0
γτ (ξ, τ) dξ +

1

Ω
γ(1, τ) = 0 (2.89)

completes the description of the flow model. The body motion is split into two parts where
either the deflection is given explicitly or the membrane equation Eq. (1.27) holds:

w1(x, τ) prescribed for 0 ≤ x ≤ xA , (2.90a)

−2µMw1,ττ (x, τ) +
αM
2
w1,xx(x, τ)− 2βMw1(x, τ) =

Ω

∫ x

0
γτ (ξ, τ) dξ + γ(x, τ) for xA < x ≤ 1 . (2.90b)

The trailing-edge condition in Eq. (1.18) reads

w1,x(1, τ) = 0 . (2.91)

2.3.2 Time-harmonic motion

With the ansatz for time-harmonic motion

w1(x, τ) = wc(x) cos τ + ws(x) sin τ , (2.84a revisited)

γ(x, τ) = γc(x) cos τ + γs(x) sin τ (2.84b revisited)

follows for Eq. (2.88) the system of the respective sine and cosine components

π

2h
−
∫ 1

0

γc(ξ)

sinh
[
π
2h(x− ξ)

]dξ︸ ︷︷ ︸
Ie(x)

− [Ic cos(Ω(1− x)) + Is sin(Ω(1− x))]
π

2hΩ
γc(1)+

[Is cos(Ω(1− x))− Ic sin(Ω(1− x))]
π

2hΩ
γs(1) = 2π

(
Ωws(x) +

d

dx
wc(x)

)
, (2.92a)
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π

2h
−
∫ 1

0

γs(ξ)

sinh
[
π
2h(x− ξ)

]dξ − [Is cos(Ω(1− x))− Ic sin(Ω(1− x))]
π

2hΩ
γc(1)−

[Ic cos(Ω(1− x)) + Is sin(Ω(1− x))]
π

2hΩ
γs(1) = 2π

(
−Ωwc(x) +

d

dx
ws(x)

)
, (2.92b)

with the abbreviations

Ic =

∫ ∞
Ω(1−x)

cos η dη

sinh
(

π
2hΩη

) , Is =

∫ ∞
Ω(1−x)

sin η dη

sinh
(

π
2hΩη

) , η = ω̃
ξ − x
Ũ

.

Ie(x) in Eq. (2.92a) is introduced for later use. The other equations are decomposed likewise.
The Kutta condition ∫ 1

0
γs(ξ)dξ +

1

Ω
γc(1) = 0 , (2.93a)∫ 1

0
γc(ξ)dξ −

1

Ω
γs(1) = 0 , (2.93b)

the membrane equation (grouping inertia and lateral strain)

Ω

∫ x

0
γs(ξ)dξ + γc(x) =

αM
2

d2

dx2
wc(x)− 2 (βM − µM ) wc(x) , (2.94a)

− Ω

∫ x

0
γc(ξ)dξ + γs(x) =

αM
2

d2

dx2
ws(x)− 2 (βM − µM ) ws(x) , (2.94b)

and finally the condition for the deflection at the trailing edge

d

dx
wc(1) = 0 , (2.95a)

d

dx
ws(1) = 0 . (2.95b)

2.3.3 Discretization

Piecewise linear distribution of vorticity

We want to solve the equations of the time-periodic problem numerically. To this end, the body
surface is divided into panels. A panel resides on the interval [xj , xj+1]. Nonuniformity in the
length of the panels ∆xj = xi+j − xj is allowed for in the composition of the discretization. On
each panel, the distribution of vorticity is assumed to have a given shape. In a first attempt,
a constant strength distribution has been employed on each panel (cf. [36], Sec. 10.2.3 for
unbounded domain). The discretization works fine if the motion of the body is prescribed
everywhere. However, when fluid structure interaction is considered (i. e. the deflection is part
of the solution), odd-even decoupling occurs in the numerical solution. For that reason, on each
of the n-panels, a linear interpolation function (cf. [36], Sec. 10.3.3) is used to discretize the
vortex distribution

γc(ξ) =
xj+1−ξ

∆xj
γc,j +

ξ−xj
∆xj

γc,j+1

γs(ξ) =
xj+1−ξ

∆xj
γs,j +

ξ−xj
∆xj

γs,j+1

 on xj ≤ ξ ≤ xj+1, for j = 0, . . . , n− 1 . (2.96)
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The piecewise linear distribution, as shown in Fig. 2.7, is uniquely described by its values at the
nodes

γc,j
γs,j

}
j = 0, . . . , n . (2.97)

γc

0

0

x1 x2 x3 xn−1 1

1

2
3

n−1

n

x

Figure 2.7: The chordwise distribution of vorticity (shown here for γc) is assumed to be linear
on each panel; panel nodes are shown as .

The approach is of second order accuracy with respect to the spacing ∆x. The following
distribution for the position of the panel nodes is used

xj =

(
j

n

)2(
3− 2 j

n

)
for j = 0, . . . , n . (2.98)

This distribution permits a better resolution at the LE and TE, see the example in Ap-
pendix A.1.

Circulation

From the discretization in Eq. (2.96), the circulation from the LE up to the panel node x = xi
is obtained by employing the trapezoidal rule∫ xi

0
γ(ξ)dξ =

1

2

i−1∑
j=0

(γj + γj+1) ∆xj . (2.99)

The discretized Kutta condition Eq. (2.93) thus reads

n−1∑
j=0

(γs,j + γs,j+1) ∆xj +
1

Ω
γc,n = 0 , (2.100a)

n−1∑
j=0

(γc,j + γc,j+1) ∆xj −
1

Ω
γs,n = 0 . (2.100b)
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Deflection

From the n panels, a number of m panels are chosen to be membrane panels, see Fig. 2.8.

0 1

x

xA

b.c.

baffle+flap membrane

prescribed w

kinematic eq.

membrane eq.

Figure 2.8: Details of the discretization (schematic, no. of panels n = 5, m = 3): Part with
prescribed motion from 0 ≤ x ≤ xA, part with membrane from xA < x ≤ 1; panel nodes and
panel midpoints ×;

The kinematic boundary condition is evaluated at the panel-midpoints

xm,i =
xi + xi+1

2
. (2.101)

On the part with prescribed motion (0 ≤ x ≤ xA), the deflection given in Eq. (2.90a) is assigned
directly to the right-hand side of Eq. (2.92)

ws(xm,i), wc(xm,i),
d

dx
ws(xm,i),

d

dx
wc(xm,i) . (2.102)

On the membrane (xA < x ≤ 1) the unknown deflections are positioned in the nodes of the
panels, denoted as wi = w(xi) for i = 0, . . . ,m − 1. For the kinematic condition, the midpoint
values are linearly interpolated as

w(xm,i) =
wi + wi+1

2
,

d

dx
w(xm,i) =

wi+1 − wi
∆xi

. (2.103)

The interpolation is second order accurate with respect to ∆x. The membrane equation Eq. (2.94)
is evaluated at the panel nodes. The second derivative is discretized to second order accuracy

d2

dx2
w(xi) =

2

∆xi(∆xi + ∆xi−1)∆xi−1

 ∆xi

−(∆xi + ∆xi−1)

∆xi−1


T  wi−1

wi

wi+1

 . (2.104)

The integrals in Eq. (2.94) are discretized as in Eq. (2.99). For the boundary condition at the
trailing edge Eq. (2.95) we obtain

wc,m−1 − wc,m−2 = 0, ws,m−1 − ws,m−2 = 0 . (2.105)
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Elements of the system matrix

The collocation point of each panel is placed on its midpoint given in Eq. (2.101), see Fig. 2.8.
Then, from inserting the linear vortex distribution Eq. (2.96) into Eq. (2.92a), we obtain for
Ie(xm,i) the expression

n−1∑
j=0

(
γc,j

1

∆xj

∫ xj+1

xj

xj+1 − ξ
sinh

[
π
2h(xm,i − ξ)

]dξ + γc,j+1
1

∆xj

∫ xj+1

xj

ξ − xj
sinh

[
π
2h(xm,i − ξ)

]dξ) (2.106)

for i = 0, . . . , n− 1. As the wall effect is taken into account, the panel weights (integrals) differ
from those in classical textbooks [36]. The integrals need to be evaluated so as to fill up the
system matrix. When the midpoint xm,i lies on the panel i = j, the Cauchy principal value has
to be taken for the integrals. To circumvent quadrature, we make use of the principal function

− π2

h

∫
b− ξ

sinh
[
π
2h(a+b

2 − ξ)
]dξ = 2h

(
Li2(z2)− 4 Li2(z)

)
+

π(a+ b− 2ξ) [ln (1− z)− ln (1 + z)]− π(a− b) ln tanh
[ π

8h
(a+ b− 2ξ)

]
(2.107)

with
z = exp

[
− π

4h
(a+ b− 2ξ)

]
.

Li2(z) denotes the polylogarithm function. Evaluation in bounds yields the required expressions

π

2h

1

∆xj

∫ xj+1

xj

xj+1 − ξ
sinh

[
π
2h(xm,i − ξ)

]dξ =

h

π∆xj

{
π2δij + sgn[xj+1 − xm,i]

∞∑
k=1

e−
π
h
|xj+1−xm,i|k − 4 e−

π
2h
|xj+1−xm,i|k

k2
−

sgn[xj − xm,i]
∞∑
k=1

e−
π
h
|xj−xm,i|k − 4 e−

π
2h
|xj−xm,i|k

k2

}
+ ln

∣∣∣∣tanh
π (xj − xm,i)

4h

∣∣∣∣ , (2.108)

π

2h

1

∆xj

∫ xj+1

xj

ξ − xj
sinh

[
π
2h(xm,i − ξ)

]dξ =

− h

π∆xj

{
π2δij + sgn[xj+1 − xm,i]

∞∑
k=1

e−
π
h
|xj+1−xm,i|k − 4 e−

π
2h
|xj+1−xm,i|k

k2
−

sgn[xj − xm,i]
∞∑
k=1

e−
π
h
|xj−xm,i|k − 4 e−

π
2h
|xj−xm,i|k

k2

}
− ln

∣∣∣∣tanh
π (xj+1 − xm,i)

4h

∣∣∣∣ , (2.109)

where δij is Kronecker-Delta and sgn is the sign function. Again, for i = j the principal value
is to be understood for the integral. The advantage of the representation of matrix entries by
infinite sums is their rapid convergence. For typical cases it suffices to truncate the sums at
k ≈ 25 to attain accuracy errors below 1 percent.
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In the limit of large channel width we obtain from the expansion for h→∞

lim
h→∞

π

2h

1

∆xj

∫ xj+1

xj

xj+1 − ξ
sinh

[
π
2h(xm,i − ξ)

]dξ =

1 +
xm,i − xj+1

∆xj
ln

∣∣∣∣xm,i − xj+1

xm,i − xj

∣∣∣∣+
∆xj (2xj + xj+1 − 3xm,i)

144

(π
h

)2
+ · · · , (2.110)

lim
h→∞

π

2h

1

∆xj

∫ xj+1

xj

ξ − xj
sinh

[
π
2h(xm,i − ξ)

]dξ =

− 1 +
xj − xm,i

∆xj
ln

∣∣∣∣xm,i − xj+1

xm,i − xj

∣∣∣∣+
∆xj (xj + 2xj+1 − 3xm,i)

144

(π
h

)2
+ · · · , (2.111)

(implying the case i = j). The leading terms agree with the result in unbounded domain (cf. [36],
Eq. (10.76)), while the correction term is of order O

(
h−2

)
as expected from the analytical result.

The above formulae for large h will be used in unbounded domain (without the h-correction)
to compare the results of the panel code to the method that uses an expansion into Chebyshev
polynomials in Sec. 4.1. With the elements of the system matrix given, the system of equations
can be set up.

System of equations

Fig. 2.9 shows the linear system (matrix, solution vector, and rhs) and depicts a typical fill-in
pattern of the system matrix and the rhs.

Γc,i

Γc,n

Γs,i

Γs,n

wc,i

wc,m-1

ws,i

ws,m-1

=

Figure 2.9: Structure of the matrix and the right hand side in the system of equations (schematic,
no. of panels n = 10, m = 6): Elements with non-zero entries (fill-in) are shown as ; Equations
are arranged in the order of Eqs. (2.92a), (2.93a), (2.92b), (2.93b), (2.94a), (2.95a), (2.94b),
(2.95b); The elements of the solution vector are {γc,i|γc,n|γs,i|γs,n|wc,i|wc,m−1|ws,i|ws,m−1} for
i = 0, . . . n− 1;
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Postprocessing

In order to evaluate the thrust force from surface pressure Eq. (2.42), we need the first derivative
of the deflection in the nodes. To obtain the first derivative with second order accuracy, three
cases are distinguished

dw(xi)

dx
=



− (2∆x0 + ∆x1)w0

∆x0(∆x0 + ∆x1)
+

(∆x0 + ∆x1)w1

∆x0∆x1
− ∆x0w2

∆x1(∆x0 + ∆x1)
(i = 0)

− ∆xi+1wi−1

∆xi(∆xi + ∆xi+1)
+

(∆xi+1 −∆xi)wi
∆xi∆xi+1

+
∆xiwi+1

∆xi+1(∆xi + ∆xi+1)

(i = 1, . . . , n− 1)

+0 (i = n)

The last line is introduced to comply with the boundary condition Eq. (2.95). To accurately eval-
uate the power, we introduce the primitive integral of the deflection. Applying the trapezoidal
rule as in Eq. (2.99), we obtain

W (xi) =

∫ xi

0
w(ξ)dξ =

1

2

i−1∑
j=0

(wj + wj+1) ∆xj .

To determine the suction force at the leading edge, the well-known asymptotic behaviour

γ(0) = lim
x→0

Kγ√
x

is used, see for instance Eq. (2.73). Since a linear distribution of γ is employed in the panel
code (see Fig. 2.7), the panel adjacent to the leading edge (the first panel) is not capable to
reproduce the behaviour at the singularity. Hence, the second panel (in streamwise direction) is
used to determine Kγ . Provided that the second panel is in close proximity to the leading edge
such that the asymptotic expression holds, one obtains∫ x2

x1

γ(x)dx ≈
∫ x2

x1

Kγ√
x

dx = 2Kγ (
√
x2 −

√
x1) .

On the other hand, the integral value can be expressed via the vorticity in the nodes 1 and 2
given as result of the panel code. With the linear interpolation Eq. (2.96), we have∫ x2

x1

γ(x)dx ≈ γ1 + γ2

2
∆x1 .

Equating then yields an approximation for the leading-edge coefficient

Kγ ≈
γ1 + γ2

4

(√
∆x0 +

√
∆x0 + ∆x1

)
.

The coefficients for thrust from pressure and power are given as in Eqs. (2.42, 2.44)

Tp(t) = − 8

π

∫ 1

0
∆p1(x, t)w1,x(x, t)dx ,
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P (t) =
8

π

∫ 1

0
∆p1(x, t)w1,t(x, t)dx .

(the difference by a factor of two arises from the different scaling of the reference length,
Sec. 1.5.9). The time-averaged values (see Eq. (2.45)) for the leading-edge thrust, thrust from
surface pressure and power, respectively, can be expressed as (cf. [66], Eqs. (4.24), (4.20), (4.21))

Ts = K2
γ,c +K2

γ,s , (2.112)

Tp = − 8

π

(
1

2

∫ 1

0

d

dx
ws(x) γs(x)dx− γs(1)

2
ws(1) +

Ω

2

∫ 1

0
ws(x) γc(x)dx+

1

2

∫ 1

0

d

dx
wc(x) γc(x)dx− γc(1)

2
wc(1)− Ω

2

∫ 1

0
wc(x) γs(x)dx

)
(2.113)

and

P =
4 Ω

π

(
−γc(1)Ws(1) +

∫ 1

0
ws(x) γc(x)dx− Ω

∫ 1

0
Ws(x) γs(x)dx

)
−

4 Ω

π

(
−γs(1)Wc(1) +

∫ 1

0
wc(x) γs(x)dx+ Ω

∫ 1

0
Wc(x) γc(x)dx

)
. (2.114)

The panel code has been applied to several test examples, see Appendix A. Results for a pre-
scribed motion in a channel (flapping foil and travelling wavy surface) are given in Ch. 3. A
comparison to CFD results for a coupled problem is shown in Ch. 4.
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Chapter 3

Propulsion

3.1 Flapping foil: potential flow in unbounded domain

3.1.1 Combined plunging and pitching motion

We use the classical model by Theodorsen [104] for a rigid two-dimensional flat plate wing in
unsteady potential flow described in Sec. 2.1. The solution for the thrust force is given by
Garrick [26]. The model has been used by Lighthill [53] to study lunate tail propulsion of fast
swimming fish. The model is based on the following assumptions:

• 2-dim potential flow with freestream velocity Ũ , density ρ̃,

• slender body of length L̃ with rounded LE and sharp TE,

• small deflections (ε� 1),

• time-harmonic motion.

The instantaneous forces of the linear model are compared to a CFD result for a flapping foil
with a NACA 0012 profile. The limits of the model assumptions with respect to the size of
the amplitude, applicability of the Kutta condition, the dynamic stall limit are discussed in
Sec. 3.1.6. In the time-harmonic motion Eq. (2.18), the complex valued amplitude function w1

for combined plunging and pitching motion is given as

w1 = H − iA(x−B) , (3.1)

where H, A, and B are the plunging amplitude, pitching angle amplitude, and reference point
for the pitching motion, respectively. A sketch of the situation is given in Fig. 3.1.
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Figure 3.1: Nomenclature for flapping airfoil: plunging amplitude H, max. pitching angle A,
reference point for pitching B.

The phase angle between plunging and pitching motion is chosen as 90◦. As pointed out by
Lighthill [54], a change in the phase difference can be achieved by giving H an imaginary part.
This is simply equal to a change in the position B. The size of H and A can be chosen arbitrarily
as the linear model allows to absorb a different scaling in the small parameter ε. However, we
choose the parameters of motion such that ε represents the maximum excursion of the foil with
respect to the chord. Thus, as in Sec. 2.1.7, we require w1,max = 2.

Lighthill [54] related the pitching and plunging amplitudes to each other by the so-called
feathering parameter, defined as

χ =
A

Hσ
. (3.2)

The feathering parameter identifies the degree to which the foil pitch angle coincides with the
slope of the path that the pitch axis traces out as the foil moves from right to left in the fluid
at rest. When χ = 0, the foil performs pure plunging motion. When χ = 1, the pitch angle
follows exactly the slope of the foil and, when B = 1/2, there is no thrust. Lighthill called this
case “perfect feathering”. We note that it is important to set the phase angle to 90◦ to make χ
a meaningful quantity.

Lighthill [54] proposed that the pitching-axis should fall in the range 1/2 ≤ B ≤ 1 (near by
or at the trailing edge) and feathering should be within the range 0.6 ≤ χ ≤ 0.8 in order to
obtain optimum flapping motion of the foil. The proposed values serve as a guidance for the
problem of optimal propulsion below and are used afterwards for comparison.

3.1.2 Forces for time-harmonic motion

The representation by Chebyshev polynomials outlined in Sec. 2.1.7 is used to obtain the ex-
pressions for the forces. For the flapping motion the sums in Eq. (2.19) and in the pressure
difference Eq. (2.21) are finite. The instantaneous value of the lift force is then obtained from
Eq. (2.34)

L̃(t̃) = εRe

[
πρ̃Ũ2 L̃

2
(a0 + a1) exp

(
iω̃t̃
)]

, (3.3)

(the lift force is denoted as time-dependent function L̃(t̃) to distinguish it from the chord L̃)
with the coefficients in Eqs. (2.29, 2.30) given as

a0 = Aσ +A(2B − 1)σF − 2(A−Hσ)G+ i [2(A−Hσ)F +A(2B − 1)σG] ,
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a1 = σ(−2A+Hσ) + iABσ2 ,

where F and G are defined in Eq. (2.33). The nose suction force Eq. (2.37) is then

T̃s(t̃) = ε2
1

2
πρ̃Ũ2 L̃

2

{
[Aσ +A(2B − 1)σF − 2(A−Hσ)G] cos

(
ω̃t̃
)
−

[2(A−Hσ)F +A(2B − 1)σG] sin
(
ω̃t̃
)}2

,

and the thrust force from the surface pressure Eq. (2.36)

T̃p(t) = ε2
1

2
πρ̃Ũ2 L̃

2
2A sin

(
ω̃t̃
) {

[−σ(A−Hσ) +A(2B − 1)σF − 2(A−Hσ)G] cos
(
ω̃t̃
)
−[

ABσ2 + 2(A−Hσ)F +A(2B − 1)σG
]

sin
(
ω̃t̃
)}

.

The total thrust from Eq. (2.35) is then

T̃ (t̃)

ε2 1
2πρ̃Ũ

2 L̃
2

= [Aσ −A(1− 2B)σF − 2(A−Hσ)G]2 cos2
(
ω̃t̃
)

+{
− 2 [A− 2(A−Hσ)F +A(1− 2B)σG] [A(1− 2B)σF + 2(A−Hσ)G] +

2Aσ [−(A−Hσ)(1 + 2F ) +A(1− 2B)σG]
}

cos
(
ω̃t̃
)

sin
(
ω̃t̃
)

+{
[2(A−Hσ)F −A(1− 2B)σG−A]2 −A2(1 + 2Bσ2)

}
sin2

(
ω̃t̃
)
. (3.4)

3.1.3 Dimensionless time-averaged thrust and energy

Time-averaged values over one period of the energy E imparted to the fluid and the thrust T
acting on the body as given in Eq. (2.45) are

E =
[
4A2 − 8AHσ +

(
A2(1− 2B)2 + 4H2

)
σ2
] (
F − F 2 −G2

)
, (3.5)

T = A2(1− 2B)σ2 −
(
4A2 − 4AHσ + 2A2(1− 2B)σ2

)
F+(

−2A2(1 + 2B)σ + 4AHσ2
)
G+[

4A2 − 8AHσ +
(
A2(1− 2B)2 + 4H2

)
σ2
] (
F 2 +G2

)
.

(3.6)

From E and T the propulsive efficiency can be calculated with Eq. (2.47). In the cases of “perfect
feathering” motion, χ = 1 and B = 1/2, there is no vorticity shed into the wake (non-circulatory
flow) and consequently E = T = 0. However, there are non-zero instantaneous thrust and lift
forces due to the added mass effect (cf. [11], Sec. 5.2).

3.1.4 Comparison of instantaneous forces to CFD results

A flapping NACA 0012 profile in free stream is investigated with the commercial software
Fluent R© 6.3.26 in order to compare the result to linear theory. It is of particular interest
to what extent the linear model can predict the instantaneous forces acting on a slender foil.
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In the CFD model, a moving mesh procedure is used to guarantee a boundary-fitted grid
at the foil. For the fluid the incompressible Euler equations are solved. The time-stepping
is continued until the flow solution is periodic in time. The following motion parameters are
chosen:

ε = 0.1 , H = 1.789 , A = 0.447 , B = 1 , σ = 0.314 .

The maximum excursion is reached at the leading edge. H and A are chosen such that w1,max =
2. Following Lighthill’s recommendation for the position of the pitch axis and the size of the
feathering parameter (Sec. 3.1.1), the axis is placed at the trailing edge B = 1 and feathering in
Eq. (3.2) amounts to χ = 0.796. The values given to the flapping amplitude ε and the reduced
frequency σ are relatively small. The results for the instantaneous lift L̃(t̃) and thrust T̃ (t̃) from
the linear model and the CFD simulation are shown in Fig. 3.2.
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Figure 3.2: Instantaneous forces on a flapping NACA 0012 foil as a function of time. Comparison
of the linear model to a CFD simulation. Left: Lift force; Right: Thrust force.

Lift and thrust of the linear model are given by Eq. (3.3) and Eq. (3.4), respectively. The
analytical and numerical results are in good agreement and it can be concluded that the linear
model predicts the forces (including nose-suction) quite well. It is interesting that a relatively
high grid resolution (200 cells along the chord, nonuniform spacing) is necessary to obtain the
thrust force accurately. This makes the CFD method costly and inappropriate for finding optimal
motions.

3.1.5 Comparison of linear and nonlinear model at large deflections

The linear model has several limitations. First and foremost, the linear model is confined to
motions with small deflections that are focused in the present work. Nevertheless, it is of interest
to check if reasonable results can be obtained at values of the expansion variable being not too
small. In doing so, the linear model is compared to an advanced potential flow model proposed
by Katz & Weihs [38] using potential flow theory that accounts for the nonlinear effect due to
large foil deflections and the free motion of the vortex wake. The thin foil moves along the
curved path of large amplitude in such a way that the disturbance in the flow and pressure field
caused by the foil’s motion remains small. [38] continuously varied the plunging amplitude H̃
at the leading edge and superimposed a pitching motion defined by a pitch axis at the leading
edge B = −1 and 90◦ phase shift, with a pitching amplitude chosen such that the effective angle
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of attack remains at a small value of 5◦ (a case where flow separation is unlikely to occur in
reality). Three different flapping frequencies are considered. The conversion to the notation in
the mentioned paper is given in Appendix B. It suffices to replicate Eq. (B.1) to provide the
parameters

σ =

{
π

40
,
2π

40
,
3π

40

}
, H = 2

H̃

L̃
, A = 2σ

H̃

L̃
− 5◦ , B = −1 . (3.7)

that are to be plugged into Eqs. (3.5), (3.6), (2.47). The obtained propulsive efficiency η and
the thrust coefficient given by cT = π

4T
1 are plotted in Fig. 3.3.
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Figure 3.3: Comparison of linear and nonlinear potential model of a plunging and pitching plate
in large amplitude motion. Left: propulsive efficiency; Right: thrust coefficient; (red, green,
blue) have σ =

{
π
40 ,

2π
40 ,

3π
40

}
, respectively. Nonlinear solutions reproduced from [38].

The curves for efficiency and thrust agree well even for H̃/L̃ = 5 as long as the flapping
frequency σ is small, while at higher σ the agreement is good as long as H̃/L̃ is below ≈ 1.
This result is surprising as the linear model does not account for large deflections and wake
dynamics. It can be concluded from Fig. 3.3 that the agreement between linear and nonlinear
potential flow theory is good when the product of frequency σ and maximal excursion ε does
not exceed a certain limit, say ε σ ≈ 0.24. The product is approximately equivalent to the
Strouhal number defined by the ratio of streamwise and lateral distance of the vortex centers
in the wake St ≈ 2 ε σ/π. Triantafyllou et. al. [107] emphasized the importance of the Strouhal
number for the dynamics in the wake. In agreement to the present comparison, Streitlien &
Triantafyllou [102] concluded from a comparison of a simulation for two-dimensional ideal flow,
a Kármán vortex street model, and linear theory that the linear model predicts thrust well for
all but the highest Strouhal numbers.

For the present example by Katz & Weihs, the linear theory significantly underestimates the
achievable thrust coefficient cT as H̃/L̃ increases. At first glance, the trend of cT with H̃/L̃
seems to contradict the inherent feature of the linear model that the thrust coefficient scales
with the square of the amplitude. However, in the present case the ratio of pitching to plunging
motion changes with the amplitude Eq. (3.7). As the effective angle of attack is held constant,

1cT is the thrust coefficient as defined in Katz & Weihs [38]
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the feathering parameter given in Eq. (3.2) increases with H̃/L̃, with the consequence that the
thrust coefficient cT degrades. The present comparison is restricted to motions that comply
with the assumptions required by potential flow theory. We discuss the limits of the potential
flow model in the next subsection.

3.1.6 Remarks to the limits of the potential flow model

It has been shown in the previous subsection that the linear model by Theodorsen can be applied
to motions with larger deflections when the product of deflection and frequency is kept below a
certain threshold. The inviscid model relies on the validity of the unsteady Kutta condition and
on the assumption of attached flow. The limits of the model assumptions have been investigated
quite well in the literature for pure plunging motion. Results from panel codes, CFD simulations
and experiments have been compared.

The applicability of the unsteady Kutta condition is discussed in [36], Sec. 13.11. Although
measurements show that the streamlines do not leave parallel to the trailing edge at σ > 0.6,
the pressure and lift distributions are not significantly affected even at higher frequencies. [37]
studied the vortex rollup of the wake behind a heaving airfoil and found good agreement between
experiment and an unsteady panel code for the case ε = 0.019, σ = 8.5789 (ε σ = 0.163). As
the shape of the wake is associated to the airfoil’s circulation that is fixed by the trailing edge
condition, the unsteady Kutta condition can still be used to calculate the lift. In agreement
to that, Navier–Stokes computations by [108] for an airfoil in pure plunging oscillation predict
attached flow at exactly the same value (ε σ = 0.16) and the onset of dynamic stall when
ε σ = 0.175 is exceeded. Only light flow separation occurs at ε σ = 0.24. Surprisingly, Jones
et. al. [35] reported for an airfoil plunging at small deflection ε = 0.04 and high frequency σ = 7.5
that the velocity profile in the wake derived from a panel code agrees well with experiments
(despite the high value ε σ = 0.30), while at ε σ ≥ 0.41 they observe a non-symmetric vortex
wake in the experiment (called dual-mode) that cannot be predicted with the panel code.

From the viewpoint of optimum motion, pure plunging is of minor significance because the
efficiency decreases rapidly when the frequency is increased so as to generate useful thrust. In
this regard, combined plunging and pitching motion is of more interest. When plunging and
pitching are combined appropriately such that the effective angle of attack is kept low, flow
separation may be suppressed at the levels of ε σ where separation is present in pure plunging
motion.

We conclude that we expect the linear model to apply for large deflection plunging motions
at correspondent low frequency ε σ ≤ 0.24, small angle pitching motions at all frequencies, and
appropriate combinations of both.

3.2 Optimal foil motion

In this section the optimum propulsive motion for a flapping foil is discussed on the basis of
the linear model. Linear theory is based on the assumptions of small foil deflections, but can
be reasonably applied at large foil excursion when the frequency is low, see the discussion in
Sec. 3.1.6.
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We attempt to find the optimum motion in terms of a Pareto front (cf. [97]) of maximum
propulsive efficiency for a given thrust. Most optimizations focus on finding motions that maxi-
mize the thrust coefficient. The thrust coefficient generally increases with the flapping amplitude
and can be raised further with increasing amplitude even when massive flow separation occurs.
However, the propulsive efficiency in the stalled regime is very low. On the other hand, when
only the efficiency is optimized, the resulting thrust becomes impractically small ([109], case 3).

The experimental results by Anderson et. al. [7] for combined plunging and pitching motion
clearly show that thrust and efficiency are competing trends. An optimization that includes both
thrust and efficiency has been undertaken by Tuncer & Kaya [109]. They conducted a numerical
optimization (at fixed reduced frequency σ = 0.5) of Navier–Stokes results for a flapping airfoil at
a Reynolds number based on chord of Rec = 104 and obtained a maximum propulsive efficiency
of η = 0.675 at a plunging amplitude based on the chord of H = 0.83. The results show that
the two-state optimization yields an optimal dimensionless flapping amplitude less than 1. The
maximum efficiency from the simulation is significantly lower than the measured value η = 0.87
by [7] for H = 0.75 at Rec = 4× 104. The discrepancy may have its cause in the fixed frequency
or in higher viscous drag due to lower Reynolds number. Apart from that, the exceptionally high
efficiency reported in [7] has not been confirmed in later experiments by the same group: [78]
and [79] reported for a flapping foil under equivalent conditions as in [7] a maximum measured
propulsive efficiency of η ≈ 0.667 and η = 0.715, respectively.

In [78] the experimental results are plotted in the form of propulsive efficiency against the
thrust coefficient. As can be seen from the equation of the efficiency Eq. (2.47), the problem of
finding motions with maximum efficiency for given thrust can be equivalently stated as done by
Wu [119] such that the energy loss is minimized under the side condition of prescribed thrust.
[119] introducing the so-called “proportional-loading parameter“ defined as the thrust coefficient
divided by the square of the plunging amplitude. However, under these conditions no limit is
given to the pitching amplitude and the resulting thrust coefficient depends on the initially
unknown plunging amplitude.

In the present optimization, the thrust coefficient is directly prescribed and the flapping
amplitude is constraint along the entire chord:

|w1(x, t)| ≤ w1,max for − 1 ≤ x ≤ 1 .

3.2.1 Optimization under constraints

We want to optimize the efficiency η as a function of the motion variables A, B, H, and σ under
the side conditions of given thrust (T ≥ 0) and restricted amplitude of motion w1,max. We start
with the optimization using the Lagrange multiplier method. Once the Lagrange optimization
problem is stated the procedure is straightforward. However, the expressions quickly become
quite longish. Thus, thereafter a more direct approach is presented that leads to the same
results, but allows to give the expressions in a somewhat compacter form. An expansion of the
results at large flapping frequency then motivates the search for a boundary optimum.
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Lagrange multiplier method

The optimization with a Lagrange function under constraints is a well-known procedure, cf. [41]
for an introduction. In the present optimization we minimize the energy E in Eq. (3.5) under
two side conditions. Then the Lagrange function reads

h = E + µ g1 + λ g2 , (3.8)

where µ and λ are the Lagrange multipliers and the side conditions are

g1 = T (A,B,H, σ)− T︸︷︷︸
given

= 0 , (3.9)

g2 = H2 +A2(1 +B)2 − 2
w1,max︸ ︷︷ ︸
given

= 0 . (3.10)

The first side condition prescribes the thrust T and the second condition limits the amplitude
of motion to w1,max. Note that as a consequence of considering Eq. (2.47) at a given thrust
T , requiring a minimum of E is equivalent to finding a maximum of η. The second condition
Eq. (3.10) is stated such that the maximum amplitude w1,max is reached at the leading edge.
We remark that for a rigid foil it suffices to fix the amplitude either at the LE or at the TE in
order to restrict the amplitude along the entire chord. However, following the recommendation
for optimum motion by Lighthill [54], the pivot point for pitching should be placed close to
the trailing edge. When the pitching axis is in the downstream half of the chord B ≥ 0, the
foil’s maximum deflection occurs at the LE. The present results have been checked against the
case where the amplitude is constraint at the TE and prove to be superior. From Eq. (3.8) the
optimum motion is obtained as solution of

∂h

∂A
= 0 ,

∂h

∂B
= 0 ,

∂h

∂H
= 0 ,

∂h

∂σ
= 0 , g2 = 0 , g1 = 0 , (3.11)

which have to be solved for the optimization variables A, B, H, σ and the Lagrange multipliers
µ and λ. The explicit form of the equations is given in Appendix C.1. A difficulty that appears
in finding a solution is that E and T in Eq. (3.8) and Eq. (3.9), respectively, depend nonlinearly
on σ, as Eq. (3.5) and Eq. (3.6) contain F and G that are related to Bessel functions of the
parameter σ. In the attempt of finding a solution, this problem is circumvented by using T as an
unknown instead of σ, which is now assumed as given. Then, the analysis leads to an algebraic
equation of order 6 for the pitching motion reference point B, Fig. 3.1. This straightforward,
but tedious procedure is outlined in Appendix C.1. Still, the expression for B is too prolate to
write it down. Fortunately, the same result can be obtained by using a more direct approach
that turns out to be easier. The equality of the result for B to that from Eq. (3.11) has been
checked with Mathematica by a symbolic comparison. The idea and the results of the direct
approach are given in the following.

Elimination method

The solution procedure is simplified by employing the so-called elimination method, cf. [41].
Details of the calculation are given in Appendix C.2. First, we write the expression for energy
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Eq. (3.5) and the respective side conditions Eqs. (3.9, 3.10) in explicit form as

E = E(A,B,H, σ) , (3.12)

T = T (A,B,H, σ) , (3.13)

w1,max = w1,max(A,B,H) . (3.14)

Then, in the elimination step, the conditions Eqs. (3.13, 3.14) are used together with Eq. (3.12)
to eliminate the optimization variables H and A. One obtains a given function f of the form
(Appendix C.2, Eq. (C.30))

f(B, σ,E;T ,w1,max) = 0 (3.15)

that we interpret as an implicit expression for the energy E, where the side conditions are
incorporated and represented by the given parameters T and w1,max. The optimization that
yields a minimum of E (equal to a maximum of η) is then stated as

∂f

∂B
= 0 ,

∂f

∂σ
= 0 . (3.16)

As in the Lagrange multiplier method, we write T = T (σ) and express all solutions as functions
of σ instead of T . The following closed-form results are obtained (see Appendix C.2)

T (σ;w1,max) = − L
K

[
1−

(
Q

Q′

(
K ′

K
− L′

L

))2
]
, (3.17)

E(σ;w1,max) = 4

[√
L/(KQ)

′

(1/Q)′

]2

, (3.18)

where the prime indicates a derivative with respect to σ, and the σ-dependent functions are

K = 2Gσ + 3σ2 − 2F (2 + 3σ2) + (F 2 +G2)(4 + 9σ2) , (3.19)

L = w2
1,max4σ2

[
σ2/4 + F + σG− (1 + σ2)(F − F 2 −G2)

]
, (3.20)

Q =
(4 + 9σ2)(F − F 2 −G2)

K
. (3.21)

F and G are given in Eq. (2.33). Energy E and thrust T are related by

E =
Q

K

(√
L+KT −

√
L
)2

. (3.22)

The location of the pitching axis B can be expressed via the auxiliary variables

S = w2
1,max4σ2 − E(σ;w1,max)/

(
F − F 2 −G2

)
, (3.23)

R = w2
1,max4σ2

(
F 2 +G2

)
− T (σ;w1,max) +

(
F

2
+ σ

G

2
− F 2 −G2

)
S , (3.24)
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D0 =

(
2 +

7

2
σ2

)
F − σ2

(
1− 3

2
σG

)
, (3.25)

D1 = 2σ2(1 + F ) + 2
(
2 + 3σ2

)
σG , (3.26)

N = R2
(
4 + 9σ2

)
(4σ)2 − 24σ2RSD1 + S2D1

2 , (3.27)

P = R2
(
4 + 9σ2

)
8σ2 − 24σ2RSD0 −RD1

[
(w1,max8σ)2 − 2S(4− 3σ2)

]
+ 2S2D0D1 (3.28)

as

B = B(σ;w1,max) = − P

2N
. (3.29)

B is only a function of σ, as E and T can be eliminated by inserting Eqs. (3.17, 3.18) into
Eqs. (3.23, (3.24). From the result for B, the pitching amplitude A, plunging amplitude H,
and the feathering parameter χ, respectively, can be determined. The pitching amplitude (Ap-
pendix C.2, Eq. (C.29)) reads

A = A(σ;w1,max) =

√
R

D0 +D1B
(3.30)

with R, D0, D1, and B from Eqs. (3.24–3.26, 3.29). The plunging amplitude follows from
Eq. (3.10)

H = H(σ;w1,max) =
√
w2

1,max −A2(1 +B)2

and the feathering parameter χ from Eq. (3.2). The efficiency is obtained by inserting Eqs. (3.17,
3.18) into Eq. (2.47). The results are equal to those obtained with the Lagrange multiplier
method and are shown in Sec. 3.2.2.

Thrust-free solution

From Eq. (3.22) it is evident that E = 0 at T = 0. Then, from Eq. (3.18)(
L

KQ

)′
= 0

which gives with Eq. (3.21)

(4 + 9σ2)′

4 + 9σ2
+

(F − F 2 −G2)′

F − F 2 −G2
=
L′

L

with L from Eq. (3.20). The solution for w1,max = 2 is

σ = 1.16882 , B = 1/2 , H = 0.990898 , A = 1.158182 , Ts = −Tp = (Aσ)2 = 1.8325 , (3.31)

with Ts from Eq. (2.46). It is interesting that the curve of optimum motions passes through
the thrust-free point T = 0 at a reduced frequency σ that is not small compared to one, as one
would expect from intuition in order to reduce the energy spent into the wake. In the contrary,
σ is of order one. Since B = 1/2 and T = 0, Eq. (3.6) enforces A = Hσ. Thus, the feathering
parameter χ in Eq. (3.2) is exactly one.
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Limit of large reduced frequency

The results for optimal motion from above are considered in the limit of large reduced frequency
σ. The details of the calculation are given in Appendix C.3. Setting w1,max = 2, an expansion
of Eqs. (3.17, 3.18) with respect to σ � 1 yields

T =
21229

12996
− 438544535

35557056σ2
+ · · · ,

E =
5041

12996
− 168306281

35557056σ2
+ · · · .

From this result, one can see that the optimization limits the attainable thrust to T opt = 21229
12996 .

The propulsive efficiency Eq. (2.47) is

η =
1

1 + E/T
=

299

370
+

2370511

3285600σ2
+ · · ·

The solution of Eq. (3.29) is

B =
1

2
+

3053

34656σ2
+ · · · (3.32)

and from that

A =
4

3
− 55835

77976σ2
+ · · · (3.33)

H =
223

114σ
+ · · · (3.34)

The feathering parameter Eq. (3.2) reads

χ =
152

223
+

10244006

8503659σ2
+ · · · (3.35)

Based on the present optimization, no optimum solution exists when the required thrust T
is above the threshold T opt. This result is surprising because the setup of the optimization
appears reasonable. On the other hand, irrespective of the optimization problem, an expansion
of Eq. (3.6) at large reduced frequencies σ – with A, H, and B kept constant – shows that
T ∼ σ2, i. e. the thrust T exceeds T opt when σ is sufficiently large. Consequently, a boundary
optimum must exist at a very high flapping frequency.

The boundary optimum

The solution of the above optimization problem reaches a finite thrust T = T opt as σ → ∞.
Nonetheless, Eq. (3.6) admits motions such that T → ∞ in the limit σ → ∞. Thus, in the
present case we attempt to find optima in the limit of infinite frequency that fulfill the require-
ments of T > T opt and max. amplitude w1,max. Although an expansion at infinite frequency is
problematic, following the discussion in Sec. 3.1.6, the results may still be applicable to large
frequency motions (σ ≈ 8) at small deflection (ε ≈ 0.03). The above optimization problem is
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altered such that we seek a minimum of the energy E as function of A, B, H at given fre-
quency σ →∞. The approach allows to find a closed-form expression that relates the maximum
attainable efficiency η to the thrust T . The Lagrange function h is adopted from Eq. (3.8) as

h = lim
σ→∞

E + µ
[

lim
σ→∞

T (A,B,H, σ)− T
]

+ λ
[
H2 +A2(1 +B)2 − w2

1,max

]
, (3.36)

with the Lagrange multipliers µ and λ. Since σ is given (as infinite), the condition ∂h/∂σ = 0
in Eq. (3.11) is dropped. Then

∂h

∂A
= 0 ,

∂h

∂B
= 0 ,

∂h

∂H
= 0 , g2 = 0 , lim

σ→∞
g1 = 0 , (3.37)

with g1 and g2 as in Eq. (3.9) and Eq. (3.10), respectively. These are 5 equations for the 5
unknowns A, B, H, µ and λ. For simplicity, we take w1,max = 2. Details of the solution
procedure are provided in Appendix C.4. The solution to Eq. (3.37) is

B =
1

2
+

3
(
−3− T + 3

√
1 + T

)
8

1

σ2
+ · · ·

A =
4

3
− −44− 9T + 60

√
1 + T

54

1

σ2
+ · · ·

H =
1 + 3

√
1 + T

3

1

σ
+ · · ·

Note that at T = T opt the results match Eqs. (3.32)–(3.34) . From Eq. (3.5)

E =
(√

1 + T − 1
)2

+ · · ·

and with Eq. (2.47) follows a relation between the efficiency and the thrust

η =
1

2
+

1

2
√

1 + T
+ · · · (3.38)

3.2.2 Results

The results for optimal propulsive motion from the previous sections for the amplitude constraint
at w1,max = 2 are displayed in the Figs. 3.4, 3.5 and 3.6.
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Figure 3.4: Result for optimal foil motion over the reduced frequency σ; left top: pivot point B,
right top: plunging amplitude H, left bottom: pitching amplitude A, right bottom: feathering
parameter χ; Blue lines: Optimal motion in the range T < T opt; Black, dashed lines: Asymptotic
lines for σ →∞ by Eqs. (3.32)–(3.35).

The location of the pitching axis falls in the range 1/2 ≤ B ≤ 1 proposed by Lighthill [54].
However, Lighthill suggested to position the axis closer to the trailing edge, while the present
results indicate that the axis should be placed a small distance downstream of the 3/4 chord
point (x = 0.5). At a flapping frequency of σ ≈ 1.17, the thrust force vanishes and the foil
moves through the fluid in a “perfect feathered” mode. The values for this motion are given
in Eq. (3.31). The farthermost downstream position of B is reached at σ ≈ 1.75. At higher
frequencies, the axis streamwise distance to the 3/4 chord point degrades with rising σ. With in-
creasing frequency σ, the plunging amplitude H decays while the pitching amplitude A increases.
Eqs. (3.33) and (3.34) show for σ →∞ that the pitching amplitude reaches the constant value
A = 4/3 while H asymptotically decays to zero with the inverse of σ. The feathering parameter
arrives at χ = 1 in the thrust-free case (see Sec. 3.1.1) and falls in the upper zone of the range
0.6 ≤ χ ≤ 0.8 proposed in [54], with the limiting value χ ≈ 0.68 at σ →∞.

Fig. 3.5 depicts the relation of flapping frequency to thrust and energy, respectively, in
optimum motion.
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Figure 3.5: Result for optimal foil motion over the reduced frequency σ; left: Thrust T right:
energy per period that is imparted to the wake E; Black, dashed lines: Asymptotic lines for
σ →∞.

Both thrust and energy vanish at the frequency σ ≈ 1.17. Thus optimal motion for low
thrust occurs at a finite flapping frequency. With the Lagrange optimization, thrust and energy
reach the constant value of T ≈ 1.63 and E ≈ 0.39 for σ →∞. When the thrust level is above
the value of T opt = 21229/12996, a closed-form relation between the efficiency η and the thrust
T can be given, see Fig. 3.6.
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Figure 3.6: η-T -Pareto of optimal foil motion.

Thus, the η-T envelope has two branches. It follows immediately from Eq. (3.38) that
η → 1/2 at T → ∞. Although the closed-form relation between efficiency and thrust is only
valid for T > T opt, it still gives a good approximation in the interval T = [0, T opt] and exactly
passes through the point η = 1 at T = 0. To the author’s knowledge this simple relation for
flapping foils is given here for the first time.

Although parts of the η-T envelope are derived from the unrealistic assumption of infinite
frequency, the curve can be utilized as ideal efficiency for optimum flapping wing propulsion that
can be compared to ideal curves of other means of propulsion like jet drive or screw propeller,
see Sec. 3.3.1.
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Remarks on optimal foil motion

The obtained optimal foil motion encounters some limitations:

• The leading edge suction force Ts has a large contribution to the total thrust and the
thrust from the surface pressure Tp counteracts Ts. The leading-edge suction can induce
flow separation at the nose of the foil. A tolerance should be determined if a certain thrust
level is reliable. However, such a limit depends on the specific shape of the surface and
cannot be obtained in the framework of potential flow theory.

• Due to the high frequencies high lateral forces may occur. There are two possibilities to
circumvent this problem:

- Flapping foil with vanishing lift force (discussed in what follows),

- Travelling body wave with counteracting lateral forces (fish-like motion, see Sec. 3.3.2).

Foil motion with vanishing lift force

It is of interest if there exist motions with vanishing lift force that produce a thrust. Follow-
ing [115], the lift force on a flapping foil can be decomposed into three parts: L̃1(t̃) denotes the
lift from the added mass being a part of the non-circulatory part of the flow; The circulatory
part of the lift is represented by the Theodorsen function C(σ) and can be split into L̃0(t̃) (that
is interlinked to the circulation on the body Γ) and L̃2(t̃) (containing the explicit dependence
on wake vorticity).

With non-circulatory time-periodic flow, neither thrust nor power can be generated in the
time average, see Sec. 3.1.3. However, the instantaneous thrust and lift force are generally non-
zero due to the added mass effect (cf [11], Sec. 5.2). With circulatory flow, in general T 6= 0,
P 6= 0. It is of interest to have a look at motions with T > 0 and P > 0, but L̃(t̃) = 0 for all t̃.
The solution for the flapping foil with vanishing lateral force (zero lift) at all instants in time is
obtained from Eq. (3.3) by setting a0 + a1 = 0. Then:

H = 2

1 +

(
σ3 + 5σ2G+ 6σ

(
F 2 +G2

)
σ2F + 4F 2 + (σ + 2G)2

)2
− 1

2

B =
2F 2 +G(σ + 2G)

4F 2 + (σ + 2G)2

A =
2σ
(
4F 2 + (σ + 2G)2

)√
(σ2F + 4F 2 + (σ + 2G)2)2 + σ2 (6F 2 + (σ + 2G)(σ + 3G))2

E =
16σ6

(
F − F 2 −G2

)
σ2 (1 + σ2 + 2F ) + (4 + 9σ2) (F 2 +G2) + 2σ (2 + 3σ2)G

T =
4σ4

(
σ2(1− 2F ) +

(
4 + σ2

) (
F 2 +G2

)
+ 4σG

)
σ2 (1 + σ2 + 2F ) + (4 + 9σ2) (F 2 +G2) + 2σ (2 + 3σ2)G]
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η = 1− σ2
(
F − F 2 −G2

)
4F 2 − σ2F + (σ + 2G)2

The relation between the efficiency and the thrust is shown in Fig. 3.7 and compared to the
optimum propulsion in Fig. 3.6.
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Figure 3.7: Comparison of zero lift with optimal foil motion

Comparison to propeller efficiency

The maximum efficiency of the flapping foil shall be compared to propeller efficiency by using
the well-known Rankine–Froude “actuator disk” theory. The ideal propeller efficiency is related
to the velocities by

ηp =
2

1 + Ũw
Ũ

where Ũ and Ũw are the velocities in the oncoming flow and wake, respectively. The mass flux

in the actuator disk is ˜̇mdisk = ρ̃ÃdiskŨdisk, with Ũdisk = ŨW+Ũ
2 . The propeller thrust is

T̃p = ˜̇mdisk(Ũw − Ũ) .

The thrust coefficient defined for the propeller cT p uses the swept area Ãdisk as reference. Then
(cf. [13], Ch. 9)

ηp =
2

1 +
√

1 + cT p
. (3.39)

The relation to the thrust coefficient with respect to the wetted surface cT p = cT /(2ε) gives

ηp =
2

1 +
√

1 + cT
2ε

.

It may be of interest under what condition which means of propulsion gives higher efficiency.
Equality of flapping foil efficiency Eq. (3.38) and propeller efficiency η = ηp is obtained (for ε
being not too large) at

cT
eq = 16 ε− 6

√
π ε3/2 + · · ·
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with η ≶ ηp for cT ≶ cT
eq. The thrust coefficient cT reached by flapping motion is usually lower

than cT
eq and thus the ideal propeller excels the efficiency of the flapping foil. A comparison

for larger deflection ε is shown in Fig. 3.10.

3.2.3 Propulsive performance for channel flow

In this section the panel code is employed to study the effect of the presence of channel walls
for the flapping foil motion. Solutions for the dependence of the trailing edge vorticity on the
channel width have been discussed for pure heaving motion in Sec. 2.2.5. In this section, the
effect of the channel width on the propulsive performance is discussed. A foil in combined
plunging- and pitching motion is considered and the channel width is varied in a large range to
study the effect from the presence of the channel walls. The flapping parameters are given as
follows:

H = 1.9343 , A = 0.338824 , B = 0.50054 , σ = 1 , h = 0.5, · · · , 10 .

The parameters are equal to those for unbounded domain in the test case Appendix A.2. The
cosine and sine components of the strength of vorticity at the trailing edge are shown in Fig. 3.8.
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Figure 3.8: Flapping foil: vorticity at the trailing edge as function of the semi-channel width h;
Blue points : panel-code with 15 panels, Red points : panel-code with 30 panels; black line:
result from analytical approach.

The analytical results are obtained from the system Eq. (2.86). A double logarithmic plot is
used. The result from the analytical approach and from the panel code with 15 and 30 panels
are in good agreement to each other. The size of the vorticity at the trailing edge increases
with decreasing channel width. However, the vorticity γC(1) does not vary monotonically with
the channel width and has a minimum at the semi-channel width of order one. This effect
is produced with both the analytical approach and the panel code. At the lowest considered
value of h = 0.5 (being not small compared to one), the increase in vorticity is not as strong
as predicted by the asymptotic estimate for h → 0. The results from the postprocessing of the
panel code for the forces, power, and efficiency are shown in Fig. 3.9.
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Figure 3.9: Flapping foil: Results for different semi-channel width h; Blue points : panel-code
with 15 panels, Red points : panel-code with 30 panels; leading-edge suction force Ts, Pressure
thrust Tp, power P , efficiency η.

The minimum at intermediate channel width that is observed in the trailing-edge vorticity
is not present in the forces. The results for the leading-edge force with 15 panels and 30 panels,
respectively, are still off by about 5 percent, while the difference for power P and pressure thrust
Tp is already as low as 0.2 percent.

At large semi-channel width h, the solution for unbounded domain in Appendix A.2 is
approached. From Tab. A.1, the exact result for the efficiency is η = 0.623 at infinite h. The
difference in η from the panel-code results is predominantly caused by the inaccurate prediction
of the leading-edge suction Ts. Thrust and power increase significantly when the channel width
is reduced, while the increase in efficiency is not so pronounced.
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3.3 Chordwise flexibility

3.3.1 Review of flexible foils

Swimming by downstream propagating waves has been identified by Wu [118] to be advanta-
geous with respect to propulsive efficiency. Undulatory propulsion is used by many species of
fish, see Sec. 1.2.3 for details. In comparison to a rigid foil, chordwise flexibility is required
to perform such motions. Katz & Weihs [38] performed simulations of an airfoil in prescribed
leading edge motion and showed that passive chordwise bending can enhance the propulsive
efficiency. However, the gain in efficiency is accompanied by a considerable reduction in the
generated thrust. From their results, one may draw the conclusion that chordwise flexibility is
disadvantageous in terms of the efficiency-thrust trade-off as it is discussed for rigid-foil flap-
ping in Sec. 3.1. However, recently experimental evidence has been given by Prempraneerach
et. al. [78] that chordwise flexibility is advantageous also with respect to the efficiency-thrust
optimum. Their results for rigid foil and flexible foil in combined pitching and plunging motion
are compared in Fig. 3.10.
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Figure 3.10: Performance measurements of a rigid and a flexible foil (reproduced from [78],
Fig. 16, explanation in the text); left: rigid foil; right: flexible foil; Blue curve: Present model
of optimum rigid foil motion (see above); Green curve: optimum propeller efficiency.

The measurements in [78] have been performed on a NACA 0014 foil at a heave to chord
ratio of ε = 0.75 and at a Reynolds number based on chord of Rec = 4 × 104. In the figures,
the experimental results are sorted by Strouhal number of St = 0.15, 0.2, 0.3, 0.4, 0.45 (results
from left to right) and on each curve, the maximum total angle of attack is varied αmax =
10◦, 15◦, 20◦, 25◦, 30◦. At low Strouhal number, η degrades with increasing αmax (no data point
is shown for St = 0.15, αmax = 30◦).

The maximum efficiency for the rigid foil is η ≈ 0.667. With the flexible foil, the efficiency
improves up to 91% with only a small decrease in thrust. The distinction between a rigid and
a flexible foil may explain the discrepancy to the maximum efficiency of η = 0.87 reported by
Anderson et. al. [7] for measurements under practically the same conditions.

The green line in Fig. 3.10 shows the ideal propeller efficiency Eq. (3.39) plotted also in the
original figure by [78]. For comparison, the Pareto for the rigid flapping foil from Fig. 3.6 is added
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to the plot as blue line. It must be stressed that the linear model does not cope with the effects
of nonlinear deflection, wake dynamics, flow separation and finite Reynolds number (viscous
drag) and is presumably quite inaccurate under the conditions given in Fig. 3.10. However, it is
interesting to observe that the experimental results for the rigid foil stay below the Pareto curve,
while the points for the flexible foil coincide with the Pareto for the rigid foil. At the measured
level of thrust, the ideal screw propeller seems to be slightly superior to an ideal flapping foil
propulsor.

It is evident from the results by Prempraneerach et. al. that chordwise flexibility can be
advantageous. This is certainly true also at small deflections. A device that resembles a down-
stream propagating wave (a travelling wavy surface) can be expected to be even more efficient
than a flexible foil. The solutions for a travelling wave with uniform wave amplitude are discussed
in the following section.

3.3.2 Travelling body wave of cosine shape

In this section, the progressive wave solution as studied by Wu [118] is outlined. The repre-
sentation by Chebyshev polynomials described in Sec. 2.1.7 allows closed-form solutions. The
thrust from the surface pressure is studied in detail and is compared below to the travelling wavy
surface at large wave number and with infinite streamwise extension in Sec. 3.4. The expressions
for kinetic energy, thrust, power, and efficiency are provided in a simple form. We consider an
undulating cosine wave with w1 defined as in Eq. (2.18) as

w1 = 2e−ikx , (3.40)

where k denotes the dimensionless wavenumber defined in Eq. (1.21). We apply the Jacobi–
Anger expansion (cf. [2], 9.1.44)

e−ikx = e−ik cos θ = J0(k) + 2
∞∑
n=1

(−i)nJn(k) cos(nθ) (−1 ≤ x ≤ 1) , (3.41)

where Jn(k) is the Bessel function of the first kind. The coefficients βn and γn of the cosine
expansion of w1 and ∂w1/∂x defined in Eq. (2.19) and Eq. (2.22) can be expressed as ([2], 9.1.21)

βn =
4

π

∫ π

0
e−ik cos θ cos(nθ)dθ = 4i−nJn(k) for n = 0, 1, 2, · · · (3.42)

and with [118], Eq. (68)

γn = 4i−(n+1)kJn(k) for n = 0, 1, 2, · · · (3.43)

The Fourier coefficients an for the pressure difference in Eq. (2.21) are then given by Eqs. (2.29),
(2.30) as

a0 = 4(σ − k) [J0(G− iF )− J1(F − 1 + iG)] , (3.44)

an = 4
(σ − k)2

k
i(−i)nJn(k) . (3.45)
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Regarding the higher order modes in Eq. (2.21), a different formulation is obtained by making
use of the integral definition (cf. [2], 9.1.21)

Jn(k) =
i−n

π

∫ π

0
eik cos θ̃ cos(nθ̃)dθ̃

Inserting Jn(k) into an gives

∞∑
n=1

an sin(nθ) = 4
(σ − k)2

k
i

∞∑
n=1

(−i)n (−i)n
π

∫ π

0
eik cos θ̃ cos(nθ̃)dθ̃ sin(nθ) =

4
(σ − k)2

k
i
1

π

∫ π

0
eik cos θ̃

∞∑
n=1

(−1)n cos(nθ̃) sin(nθ)dθ̃ ,

where integration and summation have been interchanged. Using well-known transformations
to exponential expressions ([2], 4.3.33 and 4.3.1) and the sum formula for geometric series, we
find

∞∑
n=1

(−1)n cos(nθ̃) sin(nθ) =
∞∑
n=1

(−1)n
sin[n(θ̃ + θ)]− sin[n(θ̃ − θ)]

2
=

i

4

(
1

1 + ei(θ̃−θ)
− 1

1 + e−i(θ̃−θ)
− 1

1 + ei(θ̃+θ)
+

1

1 + e−i(θ̃+θ)

)
= − sin θ

2(cos θ̃ + cos θ)

and thus, we obtain

∞∑
n=1

an sin(nθ) = −4
(σ − k)2

k
i
sin θ

2π
−
∫ π

0

eik cos θ̃

cos θ̃ + cos θ
dθ̃ ,

where the principal value has to be taken. Then, with ξ = cos θ̃, dξ/dθ̃ = −
√

1− ξ2, Eq. (2.21)
transforms the pressure into

∆p1(x, τ) = −Re

{[
a0

√
1− x2

1 + x
− 4

2(σ − k)2

k
i

√
1− x2

2π
−
∫ 1

−1

eikξ√
1− ξ2

dξ

ξ + x

]
eiτ

}
. (3.46)

Thrust from pressure

The contribution of the surface pressure to the thrust force shall be discussed here in detail.
Eq. (2.42) is used to calculate the pressure thrust. The deflection can be expressed as a function
of x from the prescribed motion Eq. (3.40), the Jacobi–Anger expansion Eq. (3.41), and the
definition of the Chebyshev polynomials Eq. (2.32) as

w1 = Re

[(
β0

2
+
∞∑
n=1

βnTn(x)

)
eiτ

]
.

Thus
∂w1

∂x
=

∞∑
n=1

Re[βn]nUn−1(x) cos τ −
∞∑
n=1

Im[βn]nUn−1(x) sin τ .
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On the other hand, we can use the definition

∂w1

∂x
= wx,c cos τ + wx,s sin τ .

When we compare both expressions and insert the Fourier coefficients βn from Eq. (3.42), we
obtain

wx,c = 4

∞∑
n=1

Jn(k) cos
nπ

2
nUn−1(x), wx,s = 4

∞∑
n=1

Jn(k) sin
nπ

2
nUn−1(x) . (3.47)

The difference pressure from Eq. (2.21) becomes with Eq. (2.32) and an from Eq. (3.45)

∆p1 = −Re

{[
a0

√
1− x2

1 + x
+ 8

(σ − k)2

k
i

∞∑
m=1

(−i)mJm(k)
√

1− x2Um−1(x)︸ ︷︷ ︸
S.T.

]
eiτ

}
. (3.48)

Then, by comparison to the definition

∆p = ∆pc cos τ + ∆ps sin τ

one obtains the cosine- and sine component of the difference pressure

∆pc = −
√

1− x2

[
a′0

1 + x
+ 8

(σ − k)2

k

∞∑
m=1

sin
mπ

2
Jm(k)Um−1(x)

]
,

∆ps =
√

1− x2

[
a′′0

1 + x
+ 8

(σ − k)2

k

∞∑
m=1

cos
mπ

2
Jm(k)Um−1(x)

]
,

where a′0 and a′′0 are defined by Eq. (2.39) and can be divide out from Eq. (3.44) as

a′0 = 4(σ − k) [GJ0(k)− (F − 1)J1(k)] , a′′0 = −4(σ − k) [FJ0(k) +GJ1(k)] . (3.49)

The thrust force Tp(t) due to surface pressure can be calculated from Eq. (2.42). Since both
∂w1/∂x and ∆p1 are harmonic, the time-averaged pressure thrust Tp in Eq. (2.45) can be
expressed as

Tp = − 4

2π

∫ 1

−1
(∆pcwx,c + ∆pswx,s) dx . (3.50)

A significant simplification can be attained if each of the sums in Tp is expanded. In ∆pcwx,c,
for instance, the product of the term in wx,c with index n with the term in ∆pc with index m
gives an expression

sin
nπ

2
cos

mπ

2
Un−1(x)Um−1(x) .

Performing the integration in Eq. (3.50) and making use of well-known orthogonality relations
of Chebyshev polynomial of second kind and trigonometric function, respectively, one obtains

sin
nπ

2
cos

mπ

2︸ ︷︷ ︸
0 if n=m

∫ 1

−1

√
1− x2Un−1(x)Um−1(x)dx︸ ︷︷ ︸

0 if n 6=m

= 0 .
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Thus, only the low order term in the pressure (with factor a0) contributes to thrust from pressure

Tp =
2

π

∫ 1

−1

√
1− x2

1 + x

(
a′0wx,c − a′′0 wx,s

)
dx . (3.51)

Before Tp is further simplified we want to emphasize that although the sum term S.T. in
Eq. (3.48) does not contribute to Tp, it may contribute significantly to the pressure. We antic-
ipate a result in Sec. 3.4.2, where the pressure at mid-chord is considered in the limit of high
wave numbers k →∞ and it turns out that the sum term S.T. in Eq. (3.48) becomes dominant
over the a0-term. The sums in Eq. (3.47) can be determined simply by virtue of the undulating
cosine wave motion Eq. (3.40) as

wx,c = −2k sin(kx), wx,s = 2k cos(kx) . (3.52)

Then, the integrals in Eq. (3.51) are readily identified as Bessel functions of the first kind (cf. [2])
and thus

Tp = 4k
[
a′0J1(k)− a′′0J0(k)

]
, (3.53)

or when Eq. (3.49) is inserted

Tp = 16k(σ − k)
(
J2

0F − J2
1F + J2

1 + 2J0J1G
)
. (3.54)

Results

The dimensionless time-averaged quantities defined as in Sec. 2.1.9 are (cf. [118])

E = 16
(
J2

0 + J2
1

)
(σ − k)2

(
F − F 2 −G2

)
, (3.55)

T = 16σ(σ − k)
((
J2

0 − J2
1

)
F + J2

1 + 2J0J1G
)
− E , (3.56)

P =
σ

k
Tp , (3.57)

η = 1−
(
J2

0 + J2
1

) (
F − F 2 −G2

) (
1− k

σ

)(
J2

0 − J2
1

)
F + J2

1 + 2J0J1G
. (3.58)

Note that for the prescribed travelling wavy surface of uniform amplitude holds ∂w1/∂t =
−c ∂w1/∂x, where c = σ/k is the dimensionless phase speed defined in Eq. (1.21). Then, it
follows immediately from Eqs. (2.42, 2.44) that P (t) = c Tp(t) and as a consequence of that
follows Eq. (3.57). Tp is given in Eq. (3.54). The results for different values of k and σ are
shown in Fig. 3.11.
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Figure 3.11: Results for travelling wavy surface: Energy imparted to the wake per period, E,
thrust force T , propulsive efficiency η, and η vs. T ; Blue lines: const. dimensionless wavenumber
k, red lines: const. dimensionless frequency σ, dashed line: best rigid foil (for comparison).

Note that every point in η-T has a unique representation by σ and k. An important solution
is E = T = 0, η = 1 for σ = k (c = 1). Thrust is generated T > 0 only when σ > k (c > 1).
Note that the efficiency tends to η = 1 when σ and k are increased. It can be assumed that the
potential flow model is no longer applicable when the frequency and/or wave number exceed
certain limits. However, the potential flow model may still be applicable for high frequencies
(up to σ ≈ 8) when the deflection is very small, see the discussion in Sec. 3.1.6. The case of
large frequency and wave number (with the phase speed c of order one) and infinite streamwise
extension are examined in Sec. 3.4. A limitation to the assumptions of potential flow theory
may be given from the occurrence of flow separation on the travelling wave due to high waviness
of the surface. However, the result for viscous flow in Sec. 3.5 shows that separation does not
occur in case of a downstream travelling wave.

For the travelling wave with zero wave number k = 0, one obtains from Eqs. (3.56, 3.58)

T = 16σ2
(
F 2 +G2

)
,

η =
(
F 2 +G2

)
/F .

This special case k = 0 is equals to the solution of a foil in pure plunging motion. The result
has been obtained first by Garrick [26].
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3.3.3 Comparison: Foil motion vs. travelling body wave

One may compare the results for a rigid foil in optimum flapping motion from Sec. 3.2.2 to the
travelling wave solution. In the right bottom plot in Fig. 3.11, the optimum foil motion is shown
as dashed line. The optimum motion of a rigid flapping foil is approximately as efficient as the
travelling wavy surface with k ≈ 0.5. Although the rigid foil does not offer chordwise curvature,
by its combined plunging and pitching motion it resembles features of a downstream travelling
wave.

3.3.4 Propulsive efficiency for channel flow

In this section, the effect of channel width on the propulsive efficiency for the travelling wavy
surface is examined with the help of the panel code. The forced motion travelling wavy surface
from Appendix A.3 for σ = 5, k = 3 with 15 panels is considered in the channel. The effect of
the channel width on the results for the travelling wavy surface is discussed. The results are
given in Figs. 3.12, 3.13.

à

à

à

à

à

à
à à à à à à à à à à à à à à à à à

0.1 0.2 0.5 1 2 5 10
h8.6

10.4

12.2

14.0
-ΓC H1L

à

à

à

à

à

à

à

à

à

à
à

à à à à à à à à à à à à

0.1 0.2 0.5 1 2 5 10
h1.2

2.6

4.0

5.4
ΓS H1L

Figure 3.12: Travelling wavy surface with panel code: vorticity at the trailing edge for different
values of the semi-channel width h (double-logarithmic plot, solution points connected by lines).

The behaviour is qualitatively equivalent to that in the flapping foil motion. While γC(1)
has switched sign, there is again a minimum at intermediate semi-channel width h, while the
minimum occurs at a lower value of h. From the double-logarithmic plot that includes also very
small values of the semi-channel width, the h−1 behaviour at h� 1 is evident.
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Figure 3.13: Travelling wavy surface with panel code: Thrust, power and efficiency for different
values of the semi-channel width h; left: Thrust T (blue points ) and power P (red points ),
right: efficiency η (logarithmic plot, solution points connected by lines).

The results for unbounded domain in Appendix A.3 are attained at large values of h. It is
interesting that a minimum of thrust and power occurs at h ≈ 0.5, corresponding to that in
γC(1). As for the flapping foil, thrust and power strongly increase at small h. However, in the
flapping foil motion, power and thrust are significantly increased already at h = 0.5 (compare
to Fig. 3.9). In a very narrow channel, the efficiency increases by less than 10 percent.

3.4 Limit of large wave numbers

We will now exclude the fluid structure interaction and the presence of the channel walls and
consider the simple downstream travelling wave with small deflections in the limit of large wave
number and large dimensionless flapping frequency (with respect to chord). The potential flow
model may still be applicable at high frequencies (up to σ ≈ 8) when the deflection remains
sufficiently small, see the discussion in Sec. 3.1.6. We will focus the discussion on the contribution
of chordwise elements to the thrust force. The surface pressure is considered in the mid-chord
limit. It turns out that its leading-order term is independent of effects from the body edges and
the wake. This results motivates us to extend the surface to infinity in streamwise direction and
to apply periodic boundary conditions. Viscous flow over a wavy surface of infinite extension has
been studied in the literature and a total thrust force has been reported under certain conditions.
The laminar case is revisited in Sec. 3.5.

3.4.1 Body of finite length

We consider the potential flow solution in the limit of infinite wave number k at a fixed dimen-
sionless phase velocity c > 0. Thus, from the definitions of σ, c and k in Eqs. (1.20), (1.21),
it follows that σ → ∞. From the closed-form solutions for the travelling wavy in Sec. 3.3.2,
the expressions in the limit can be readily obtained. In addition, it may be of interest how the
generation of the time-averaged pressure thrust Tp is distributed along the chord. The real- and
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imaginary part of the Theodorsen function Eq. (2.33) read in the limit σ →∞

F ∼ 1

2
, G ∼ − 1

8σ
(3.59)

and the Bessel functions are in the limit k →∞ (cf. [2], 9.2.1)

J0(k) ∼
√

2

πk
cos
(
k − π

4

)
, J1(k) ∼

√
2

πk
cos

(
k − 3π

4

)
. (3.60)

Inserting the expansions for F , G, J0(k) and J1(k) into Eqs. (3.55)–(3.58) and replacing σ = c k,
yields in the leading order with respect to k the following time-averaged quantities

E ∼ 8k

π
(c− 1)2 , T ∼ 8k

π
(c2 − 1) , P ∼ 16k

π
c(c− 1) , η ∼ 1

2
+

1

2c
.

Thus, the phase speed must exceed the freestream speed c > 1 to attain thrust. At c = 1
the thrust vanishes and the efficiency reaches η = 1. Both results hold also for any value of k
(compare to Sec. 3.3.2). Efficient propulsive motion is attained when c is not too large. The
produced thrust and required power scale linearly with the wave number. Thus, when a certain
thrust force is demanded from a motion with constraint amplitude, one can always increase k
(and thus the wriggling of the profile) and accordingly bring c closer to 1 in the attempt to
increase the efficiency η. This finding is in accord to the statement by Sparenberg et. al. [96]
that (in the realm of linear theory) no optimum thrust producing motion exists when only a
constraint is put on the amplitude of motion.

It may be of interest how T splits into its parts Ts and Tp and how each chordwise elements
contributes to the generation of Tp. The Fourier coefficient given in Eq. (3.44) reads in the limit
k →∞

a0 ∼ −
2(1 + i)(c− 1) eik√

π

√
k (3.61)

and with Eq. (2.39) the real- and imaginary parts from Eq. (3.49) are

a′0 ∼ −
2(c− 1)

√
k (cos k − sin k)√

π
, a′′0 ∼ −

2(c− 1)
√
k (cos k + sin k)√

π
. (3.62)

Then the dimensionless, time-averaged leading edge thrust Eq. (2.46) is

Ts ∼
8k

π
(c− 1)2 .

Regarding the generation of thrust by surface pressure, it is shown in Sec. 3.3.2 (for any value
of k) that only the a0-term in the pressure distribution contributes to time-averaged pressure
thrust. On the other hand, the results in the next section Sec. 3.4.2 for the pressure at the mid-
chord position unveil that the portion of pressure that does not contribute to thrust becomes
the leading pressure term with respect to large k. The chordwise contribution to the thrust from
pressure is obtained from the differential of Eq. (3.51) with Eqs. (3.52, 3.62) inserted

− 4

π
∆p1

∂w1

∂x
=

2

π

√
1− x2

1 + x

(
a′0wx,c − a′′0 wx,s

)
∼ 16

π
(c− 1)

k3/2

√
2π

√
1− x2

1 + x
sin
(
kx+ k +

π

4

)
.

(3.63)
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Integration along the chord from x = −1 to x = 1 then yields

Tp = − 4

π

∫ 1

−1
∆p1

∂w1

∂x
dx ∼ 16k

π
(c− 1) . (3.64)

This result can be obtained directly when we insert the expansions for F , G, J0(k) and J1(k),
Eqs. (3.59, 3.60), into Eq. (3.54). One may check that T = Ts +Tp. Also, P = c Tp holds for the
travelling wave at any phase speed, see Sec. 3.3.2. It can be seen from the examples depicted in
Fig. 3.15 that some sections along the chord generate favourable thrust, while others produce
drag. At phase speeds slightly above one, say c = 1.2, the efficiency is quite high η ≈ 0.9 and
the leading-edge suction is rather small compared to the pressure thrust Ts/Tp ≈ 0.1.
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Figure 3.14: Deflection w1 and pressure difference ∆p along the chord (at t = 0) for a phase
speed of c = 1.2 at different wave numbers; Left: k = 3, Right: k = 6.
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When k is large, the main portion of the thrust force due to surface pressure is produced in
a region in immediate vicinity to the leading edge, as illustrated in Fig. 3.15. Let the extension
∆xr of the leading-edge region be determined from the position where the accumulated pressure
thrust is equal to the overall pressure thrust Tp (see Fig. 3.15, right). We expect the length of
this region to be small when k is large. Thus, we can take the solution from Eq. (3.63) and
expand it in x about the leading edge. Integration in the interval of length ∆xr then yields

− 4

π

∫ −1+∆xr

−1
lim
x→−1

∆p1
∂w1

∂x
dx ∼ 8k

π
(c− 1)

1√
2π

√
k∆xr (4 + k∆xr) . (3.65)

The expression represents the contribution to the time-averaged pressure thrust from a small
region of length ∆xr in the vicinity of the LE at large k. The size of the LE-region in the limit
of large k is then determined by equating the expressions in Eq. (3.65) and Eq. (3.64) as

∆xr ∼
4

3

(
−2 + g1/3 + g−1/3

)
k−1 , with g =

16 + 27π + 3
√

3π (32 + 27π)

16
.

Consequently, the size of the LE-region where the net amount of pressure thrust Tp is produced
becomes small when k is increased. We note that the linear relation between Tp and k in
Eq. (3.64) that holds for large k is a good approximation even at not so large values for k of 3
and 6 (see Fig. 3.15, right).

3.4.2 Travelling pressure wave in the mid-chord limit

It has been shown in Sec. 3.3.2 that for a body of finite length, moving in prescribed cosine-shape
motion, only the first term in the Fourier series of the pressure (with factor a0) contributes to
Tp, see Eq. (3.53). From this result it may be concluded that the higher order terms in the
pressure are of less importance. However, evaluating the pressure at various positions x along
the chord for growing values of k, the a0-term seems to be not the leading term in the expansion
of the pressure difference. Indeed, in Eq. (3.46) the integral expression contributes largely to
∆p1 when k → ∞. As the surface waves are short compared to the chord when k is large, it
can be expected that far away from the LE and TE (in terms of number of waves) the effects
due to the edges will be small and the flow field will approach periodic conditions in streamwise
direction. The integral for the pressure difference across the wall in Eq. (3.46) is written in a
slightly different form with σ = c k as

∆p1(x, τ) = −Re

{[
a0

√
1− x2

1 + x
− 8k(c− 1)2i

√
1− x2

2π
e−ikx−

∫ 1

−1

eik(ξ+x)

ξ + x

dξ√
1− ξ2

]
eiτ

}
.

Let us consider the pressure difference in the vicinity of the mid-chord x = 0, i. e. at equal
distance from the LE and TE. We scale the streamwise coordinate component with the wave-
length, x̂ = kx/(2π), cf. scaling III in Eq. (1.23). When k is assumed large and c = O(1), we
have a0 ∼

√
k from Eq. (3.61) and we obtain for the pressure difference in the vicinity of the

mid-chord

∆p1(x̂, τ) ∼ −Re

{[
a0 − 8k(c− 1)2 i

2π
e−i2πx̂−

∫ 1

−1

eikξ

ξ

dξ√
1− ξ2

]
eiτ +O(1)

}
.
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With the help of Mathematica, the integral can be evaluated and expanded in the limit k →∞
as

1

i π
−
∫ 1

−1

eikξ

ξ

dξ√
1− ξ2

= k 1F2

(
1

2
; 1,

3

2
;−k

2

4

)
∼ 1 +

√
2

π
sin
(
k − π

4

) 1√
k

+O(k−1) ,

where 1F2 denotes the generalized hypergeometric function. Thus, we obtain for the pressure
difference in the mid-chord limit

∆p1(x̂, τ) ∼ −4k(c− 1)2 cos(2πx̂− τ) +O(
√
k) , (3.66)

where a0 scales with
√
k and is thus smaller than the contribution from the integral that scales

linearly with k. In the leading order with respect to k, the mid-chord pressure performs a
downstream travelling harmonic wave ∆p1 ∼ −2k(c − 1)2w1 that is in counter-phase with the
deflection w1(x̂, τ) = 2 cos(2πx̂−τ). It will be shown below that this result is in accord with the
result for an infinite travelling wave. A comparison of the exact result for the pressure difference
and the leading term of ∆p1 with respect to large k is shown in Fig. 3.14.

Contribution to pressure thrust

The expression for the pressure difference may be summarized as follows:

∆p1(x, τ) ∼ k∆p1,1 +
√
k
(

∆p
(a0)
1,2 + ∆p

(Σ)
1,2

)
.

Note that the first index denotes the leading term of the expansion at ε � 1, while the second

index indicates the terms in orders of the expansion at large dimensionless wavenumber k. ∆p
(a0)
1,2

denotes the contribution from the a0-term. There may also be a contribution ∆p
(Σ)
1,2 resulting

from the sum S.T. in Eq. (3.48). However, according to Eq. (3.53) only the a0-term contributes

to the time-averaged pressure thrust. Thus, neither ∆p1,1 nor ∆p
(Σ)
1,2 contribute to Tp. Tab. 3.1

depicts the solution path to derive the time-averaged pressure thrust Tp = − 4
π

∫ TE
LE ∆p1

∂w1
∂x dx,

and lists the magnitude of the corresponding expressions in powers of k.

Component ∆p1
∂w1
∂x ∆p1

∂w1
∂x

∫ TE
LE ∆p1

∂w1
∂x dx Tp

k∆p1,1 k k k2 k -√
k∆p

(a0)
1,2

√
k k k3/2 k3/2 k

Table 3.1: Contribution of pressure components (at large wavenumbers k) to the relevant
expressions of the time-averaged thrust Tp: Magnitude of each expression in powers of k.

While in the difference pressure ∆p1 and in ∆p1
∂w1
∂x the leading order term is due to ∆p1,1,

the chord-integrated expression
∫ TE
LE ∆p1

∂w1
∂x dx for the instantaneous thrust is dominated by

∆p
(a0)
1,2 and the time-averaged thrust Tp comes solely from ∆p

(a0)
1,2 . The leading-order pressure

term ∆p1,1 is in counter-phase to the deflection w1 and does not contribute to Tp.
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3.4.3 Periodic travelling wave as limit of the mid-chord problem

We consider a periodic travelling wave over an infinite surface. It is shown in this section that the
solution in the mid-chord limit, as given in Sec. 3.4.2, coincides with the solution of the periodic
setting. For an infinitely extended wavy surface Miles [62, 63] observed that the pressure is in
counter-phase to the deflection. Lerner [50] gave a representation of p in Fourier space and in
integral form. Indeed, it is shown in the following that the wavy surface becomes steady in a
frame of reference moving with the phase speed and the result in the moving frame is identical
to the classical asymptotic solution by Ackeret [3] for the inviscid flow over a stationary wavy
surface of small amplitude.

In a frame of reference moving downstream with the dimensionless phase speed c, periodic
boundary conditions can be assumed. The situation is sketched in Fig. 3.16.
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Figure 3.16: Wavy surface with infinite streamwise extension: periodic problem in the moving
frame of reference. The frame moves with the dimensionless phase speed c of the wall motion in
streamwise direction. Far-field boundary condition u = 1− c and periodic boundary conditions
in streamwise direction are assumed. The no-slip boundary condition at the wall and the total
wall force Fd are used only in the viscous flow case.

The no-slip condition at the wall and the total wall force Fd are used only in the viscous
flow case discussed in Sec. 3.5. For inviscid flow, the solution for the velocity and pressure
distribution at the wall is readily obtained when a distribution of vortices is employed and
extended to infinity. Using scaling III from Eq. (1.23) with the wavelength λ̃ as the reference
length, we obtain in equivalence to Eqs. (2.3, 2.11) the problem in the moving frame of reference

u1(x, 0+)− 1 = −γ(x)

2
, (3.67)

1

2π
−
∫ ∞
−∞

γ(ξ)

x− ξdξ = v1 = −(c− 1)w1,x , (3.68)
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where x denotes the streamwise coordinate in the moving frame and v1 is the vertical component
of the fluid velocity at the wall. For the given wall deflection

w1(x) = Aλ sin(2πx) (3.69)

the ansatz γ(x) = γS sin(2πx) yields

v1 = −2π(c− 1)Aλ cos(2πx) , (3.70)

γS
2π

[
− cos(2πx)

∫ ∞
−∞

sin(2πx̄)

x̄
dx̄︸ ︷︷ ︸

π

+ sin(2πx)−
∫ ∞
−∞

cos(2πx̄)

x̄
dx̄︸ ︷︷ ︸

0

]
= v1

(note that cos(2πx̄)/x̄ is an odd function) and consequently

γS = 4π(c− 1)Aλ .

The perturbation of the velocity component in streamwise direction is then obtained as

u1(x, 0+)− 1 = −γ(x)

2
= −2π(c− 1)Aλ sin(2πx) . (3.71)

The dimensionless perturbation pressure on the wall can then be obtained analogous to Eq. (2.4)
as

p1(x, 0+) = −2π(c− 1)2Aλ sin(2πx) . (3.72)

p1 denotes the difference to the freestream pressure. The same result is obtained when the
(steady) Bernoulli equation is applied in the moving frame of reference. Then, from symmetry
considerations of the pressure along the upper and lower surface ∆p1 = −4π(c − 1)2w1. The
pressure is minimal at the wave crest and maximal at the trough. The result for the infinitely
extended surface is equal to the leading-order difference pressure in the vicinity of the mid-chord
in Sec. 3.4.2. Thus, when periodicity is prescribed in streamwise direction, the effects that arise
from the edges (suction at the LE, vortex-shedding from the TE) are suppressed. Accordingly,
in the space-periodic setting, there is no force acting on the wall

Tp
Periodic = 0

at any phase speed c. The result is equivalent to the drag-free solution over a stationary wavy
surface by Ackeret [3]. The results Eqs. (3.69)-(3.72) may be summarized as follows:

w1 = Aλ sin(2πx) ,

u1 = 1− 2π(c− 1)Aλ sin(2πx) ,

v1 = −2π(c− 1)Aλ cos(2πx) ,

p1 = −2π(c− 1)2Aλ sin(2πx) .
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Nonlinear effect of deflection

We want to study the difference in the results between prescribing the kinematic boundary con-
dition at the undisturbed position of the wavy wall (linearized boundary condition) and at the
disturbed wall position. In the notation we drop the index 1 that indicates small perturbations.
The Laplace equation for the streamfunction is employed to solve the irrotational flow over a
wavy wall to investigate the effect of wave steepness on the solution. The problem is approx-
imated with the finite-volume method (FVM). An overview of commonly used discretization
approaches in fluid dynamics is given in Appendix D. In the FVM the equation in each cell is
formulated by means of a flux over each cell face (in 2-dim, cells are areas and faces are lines). A
co-located variable arrangement is chosen (the unknown streamfunction is assigned to each cell),
requiring the flux to be interpolated from the unknowns. The flux at a face is proportional to
the derivative of the streamfunction in direction normal to the face. Making use of the definition
of the streamfunction, this derivative is equal to the velocity component along the face’s path
vector. Thus, regarding the boundary conditions of the problem, the condition of a moving wall
(applied here at the top boundary) can be implemented easily in that the tangential speed of
the wall can be used directly to prescribe the flux. The situation is more delicate, however,
if a Dirichlet condition is required at the boundary, since for a diffusion equation, solved with
the FVM, the value of the unknown does not appear at the boundary. This situation occurs
– for instance – on the wavy wall at the bottom boundary, where the streamfunction needs
to be prescribed to ensure that the boundary resembles a streamline in the moving frame of
reference. On a Dirichlet boundary, the interpolation to determine the flux is modified insofar
as the value of the streamfunction at the boundary is affiliated to the unknowns (substituting
the streamfunction in the cell farthest from the boundary) in such a way that the flux fulfills
the b. c. to prescribed order of accuracy.

In particular, the diffusive flux with non-symmetric stencil (needed at or close to boundaries)
needs extrapolation from a chain of 5 cells to be 4th order accurate in grid spacing on orthogonal
grid and 9 cells to be 3rd order on arbitrary grid. The average over the Dirichlet value substitutes
the cell-average value from the cell in the chain being farthest from the boundary.

In Fig. 3.17, the numerical results are compared to the asymptotic solution from this section.
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Figure 3.17: Potential flow over infinitely extended wavy wall. Effect of prescribing the bound-
ary condition at the undisturbed (linear) and deflected (nonlinear) wall position. Solution of
horizontal and vertical velocity components u (in the stationary frame) and v, and pressure p
along the wavy wall; c = 1.2, Aλ = 1/(8π).

Isoline plots of the numerical inviscid solution in the domain are presented in Sec. 3.5.

3.5 Viscous effects (periodic case)

The results from Sec. 3.4 for potential flow over a downstream travelling wave at large wave
number show that the thrust force increases with the wave number and with the phase speed,
but the main portion of thrust is produced in a region close to the leading edge. The leading-
order pressure at mid-chord resembles the thrust-free downstream travelling pressure wave over
an undulating surface with infinite streamwise extension, cf. Sec. 3.4.3. Thus, with the inviscid
theory there is no thrust in the space-periodic case. In this section, the streamwise periodic
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travelling wave is considered as in Sec. 3.4.3, but now viscous effects are taken into account. The
Navier–Stokes equations Eq. (1.11) are solved together with the conservation of mass Eq. (1.3).
As in Sec. 3.4.3, the dimensionless formulation from Eq. (1.23) is used, where λ̃ is the wavelength
and Ã ist the amplitude of the travelling wave. ρ̃ Ũ2 is used as reference pressure.

3.5.1 Results in the literature

The case of viscous flow over a wavy surface with infinite streamwise extension has been consid-
ered in the literature. When viscosity of the fluid is taken into account, a dimensionless viscous
drag force

Ff = − 1

Reλ

∫ 1

0

(
2
∂u

∂x

∂w

∂x
− ∂u

∂y
− ∂v

∂x

)
dx (3.73)

(with Ff > 0) acts on the wall (Ff positive in x-direction). u and v are the velocity components
at the wavy wall and Reλ is the Reynolds number defined in Eq. (1.23). Then, the surface
pressure may alter such that it gives rise to a thrust force (−Fp), given as

Fp =

∫ 1

0
p
∂w

∂x
dx , (3.74)

where p is the fluid pressure along the upper surface of the wall. The total force is

Fd = Fp + Ff . (3.75)

In the literature, the total wall force has been reported to become a thrust (Fd < 0) for both
turbulent [91] and laminar [57] flow when c is sufficiently large. These results are reproduced in
Fig. 3.18.
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Figure 3.18: Dimensionless forces at the wall of an infinitely extended surface as a function of
the phase speed c at a wave amplitude Aλ = 1/(8π). Viscous force Ff , pressure force Fp, and
total force Fd = Fp +Ff ; Left: DNS results for turbulent flow at Reλ = 10170, reproduced from
Shen et. al. [91]; Right: laminar flow at Reλ = 2000, reproduced from Lu & Yin [57].

The pressure force is thrust Fp < 0 at phase speeds c & 1 and increases in size with increasing
c. The result is similar to inviscid travelling-wave swimming, where at large wave numbers the
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pressure thrust Tp scales with (c − 1), see Eq. (3.64). Indeed, in the aforementioned literature
[57], [91] the viscous flow over the surface of infinite extension has been related to the propulsive
performance of fish swimming. However, the cause of thrust production is fundamentally differ-
ent: In inviscid swimming of a body of finite length the vortex-shedding mechanism is crucial
to generate thrust; On the infinitely extended surface the incorporation of viscosity is the cause
for pressure thrust. Thus, in the inviscid limit the thrust vanishes, Sec. 3.4.3. In the viscous
case, one would expect that the total force is always drag. In the attempt to understand the
reported phenomenon of the total force being thrust Fd < 0 at large c, the laminar case from
[57] is reconsidered and the results are questioned. As in [57] the problem is considered in the
moving frame of reference, Fig. 3.16.

3.5.2 Discretization method

Discretization schemes for fluid flow can be distinguished in several ways. In this section,
the discretization method used for the self-developed solver of the Navier–Stokes equations is
briefly outlined. The references in this section point to literature where the used terms are
explained in detail and where similar approaches have been pursued. Differences of commonly
used approaches are discussed in detail in Appendix D. A verification of the present solver is
given in Appendix E.

The finite volume method (cf. [21]) is used to discretize the continuity and Navier–Stokes
equations Eqs. (1.3), (1.11). In the discretization and solution method, incompressibility is
enforced to machine precision. The domain is partitioned into a structured, nonuniform grid with
control volumes (or cells) of quadrilateral shape. The primitive variables (velocity components
and pressure) are used as unknowns. A colocated variable arrangement is chosen. This means
that the unknowns adhere to a certain cell, see [116], [75]. Cell average values are used for the
set of unknowns (cf. [43]). The spatial interpolation of the variables is performed in physical
space (cf. [46]). A polynomial ansatz is used for the interpolation (cf. [18]). The interpolation is
performed as so-called k-exact reconstruction (cf. [10], [73]) from a central discretization scheme
(cf. [55]). Eight cell-average values are employed in the reconstruction and the grid-dependent
coefficients are solved numerically at each face-center point. From this, the fluxes at each cell
boundary are expressed explicitly by the unknowns (cf. [24]). The non-linear expressions that
originate from the convection terms are treated with the method sketched in [75]. The overall
scheme is third-order accurate in space on arbitrary grid. The accuracy is of fourth-order on
any Cartesian (possibly non-orthogonal and non-uniform) grid.

On inlet boundaries, the flux is imposed, while on outlet boundaries the flux is extrapolated
by a third-order upwind reconstruction, (cf. [43], [58]). The numerical boundary conditions
have to be chosen with great care to avoid a singular system matrix. It is well known that
for non-penetrating boundary conditions (in a closed domain, or with periodic b. c. in one
direction and walls in the other direction), the conservation and telescopic properties that are
inherent to the finite volume method (due to unique fluxes between adjacent cells) result in
a set of discrete continuity equations that already fulfill the boundary conditions, giving rise
to a singular discrete divergence operator. This issue is circumvented (as usually) in that the
continuity equation in one control volume is replaced with a condition that sets the absolute
value of the pressure. Another challenge is the proper choice of pressure boundary conditions
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to avoid a singular discrete gradient operator in Eq. (1.11). Somewhat surprisingly, tests with
periodic pressure boundary conditions (on equidistant grid) unveil that the discrete gradient
operator has full rank only when the number of control volumes in direction of the periodicity
is odd.

The resulting algebraic system is arranged as linear system of equations. The matrix has
sparse fill-in and its elements partly depend on the solution. The linear system is solved with
a direct solver and the nonlinearity is iterated with a Newton–Raphson procedure. To display
the results, a so-called deconvolution (cf. [75]) is used that returns the point value in each node
from a fourth-order accurate interpolation of the average values from twelve surrounding cells.

3.5.3 Results

The present results for inviscid flow from Sec. 3.4.3 are compared to the DNS results by Shen
et. al. [91] for turbulent flow at Reλ = 10170, and to the present results for laminar flow at
Reλ = 2000. In all plots the phase speed is c = 1.2. The shape of the wave is given by
w = Aλ sin(2πx) with a wave amplitude of Aλ = 1/(8π). Fig. 3.19 shows an isoline plot for the
distribution of the pressure in the domain close to the wavy wall.
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Figure 3.19: Isolines of the pressure. Comparison of inviscid (top), turbulent Reλ = 10170 (mid)
and laminar Reλ = 2000 (bottom) solution for c = 1.2, Aλ = 1/(8π). The turbulent case is
copied from [91], dashed lines represent negative values and the isoline intervals is 0.005.
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The distribution of the pressure looks qualitatively very similar in the inviscid, turbulent
and laminar case, respectively. The pressure is minimum at the wave crest and maximum at the
trough in all cases. At decreasing Reynolds number, the pressure perturbations increase. This
result appears to be of importance when the fluid-structure interaction problem discussed above
is considered at a lower Reynolds number. A plot of the vertical velocity component v is given
in Fig. 3.20.
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Figure 3.20: Isolines of the flow velocity component in vertical direction. Comparison of inviscid
(top), turbulent (mid) and laminar (bottom) solution for c = 1.2, Aλ = 1/(8π). Reynolds
numbers Reλ as in Fig. 3.19. The turbulent case is copied from [91].

In all cases, the maximum of the vertical velocity component along the wall occur at a
position shifted slightly upstream from the point of steepest slope at x = 0.5, as can be seen
from the distribution of velocity along the wall in the inviscid case Fig. 3.17. The perturbation
of the vertical velocity component increases strongly from the inviscid to the turbulent case,
but the increase is significantly slowed when the Reynolds number is further decreased to the
laminar case. The streamlines in the moving frame of reference are shown in Fig. 3.21.
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Figure 3.21: Isolines of the streamfunction in the frame moving with the phase speed c. Compar-
ison of inviscid (top), turbulent (mid) and laminar (bottom) solution for c = 1.2, Aλ = 1/(8π).
Reynolds numbers Reλ as in Fig. 3.19. The turbulent case is copied from [91].

The streamlines look rather unspectacular. However, they indicate that for the downstream
travelling wave at a phase speed of c = 1.2 the flow is attached to the wavy wall at all considered
Reynolds numbers. An important implication of the result is that in the potential flow theory
for the downstream travelling wave in Sec. 3.4 the assumption of attached flow is applicable.
The elimination of flow separation at c = 1.2 is the reason why the pressure distribution in
Fig. 3.19 is almost completely symmetric. The solution of the streamlines, vertical velocity
component, and pressure look qualitatively very similar for inviscid and viscous flow. However,
the horizontal velocity component u is significantly different, see the comparison in Fig. 3.22.
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Figure 3.22: u in the stationary frame. Comparison of inviscid (left) and laminar (right) solution
at c = 1.2, Aλ = 1/(8π).

In the inviscid case, the fluid slips along the wavy wall, while in case of viscous flow u = 0
holds at the wall due to the no-slip condition Eq. (1.12). In the inviscid potential flow solution,
the vorticity is zero everywhere by definition Eq. (1.1). Isolines of the vorticity for the laminar
case in the vicinity of the wavy wall are shown in Fig. 3.23.
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Figure 3.23: Vorticity ω = ∂u/∂y − ∂v/∂x for the laminar solution at c = 1.2, Aλ = 1/(8π).

The vorticity is very high directly at the wall and reaches the maximum value in the wave
trough. The flow is almost irrotational at a small distance above the wall (isolines with ω = 0).

3.5.4 Comparison to literature for different phase speeds

From the above results for pressure and velocity field the viscous, pressure, and total force on
the wall can be obtained from Eqs. (3.73)-(3.75). For the laminar flow with Reynolds number
Reλ = 2000 over the wavy wall with amplitude Aλ = 1/(8π), the phase speed is varied in the
interval c = [1, 2] and the forces are evaluated in each case. The present results for the wall
forces in comparison to the results in the literature are shown in Fig. 3.24.
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Figure 3.24: Infinite wavy surface: Viscous force Ff , pressure force Fp, and total drag force Fd
for laminar flow as a function of the phase speed c; Reλ = 2000, Aλ = 1/(8π). Dashed lines:
Results reproduced from [57], Fig. 6a. Solid lines: Present results.

The present results confirm that the surface pressure gives rise to a thrust that counteracts
the viscous force. Furthermore, both viscous drag and pressure thrust increase in size with
increasing phase speed c. However, the present results reveal – in contrast to the results by Lu
& Yin [57] – that for laminar flow over a surface of infinite extension the total force at the wall
is always drag.
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Chapter 4

Fluid Structure Interaction

4.1 Membrane in unbounded flow

In this section the interaction of the membrane equation with the unbounded potential flow is
considered. The focus is on the optimum motion with regard to the efficiency-thrust trade-off.
The result from above for prescribed optimum propulsion of a flapping foil Sec. 3.2.2, and a
travelling wavy surface Sec. 3.3.2, are used for comparison to the membrane solutions. The
unsteady potential flow theory from Sec. 2.1 in the representation by Chebyshev polynomials is
used to describe the flow. Unsteady potential flow theory has been successfully employed in the
literature: [61] and [5] discussed the instability of a flapping flag clamped at the leading edge;
The propulsive performance of a flapping appendage has been studied by Alben [4] for small-
amplitude pitching motion at the leading edge and by Michelin & Smith [60] for heaving motion
at the leading edge. [4] reports that the optimal efficiency approaches 1 as rigidity becomes
small and decreases to 30–50% (depending on pitch frequency) as rigidity becomes large.

In the present work we use a monolithic approach to solve the interaction problem, see the
discussion in Sec. 4.2.3. A time-harmonic transverse motion is prescribed to the leading-edge
point. Results with and without membrane inertia and for a different boundary condition at
the trailing edge are presented.

4.1.1 Forced oscillation of the leading-edge point

The membrane equation

− µMw1,ττ + αMw1,xx − βMw1 = ∆p1 for xLE ≤ x ≤ xTE (1.27 revisited)

is used, with the leading and trailing edge placed at xLE = −1 and xTE = 1, respectively.
w1(x, t) is the deflection of the membrane in first order. The boundary conditions Eq. (1.18) are
written in dimensionless form as

w1(−1, τ) = ALE sin τ , (4.1)

w1,x(1, τ) = 0 . (4.2)
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4.1.2 Formulation of the coupled problem

From the transformation x = cos θ (see Sec. 2.1.7)

∂

∂x
=
∂θ

∂x

∂

∂θ
= − 1

sin θ

∂

∂θ
,

∂2

∂x2
=
∂θ

∂x

∂

∂θ

(
∂θ

∂x

∂

∂θ

)
= − cos θ

sin3 θ

∂

∂θ
+

1

sin2 θ

∂2

∂θ2
.

Then, with Eq. (2.18) one finds

w1,x = − 1

sin θ

∞∑
n=1

nβn [− sin(nθ)] exp(iτ) , (4.3)

w1,xx = − cos θ

sin3 θ

∞∑
n=1

nβn [− sin(nθ)] exp(iτ) +
1

sin2 θ

∞∑
n=1

n2βn [− cos(nθ)] exp(iτ) . (4.4)

Since time-harmonic motion is assumed, lateral pre-strain and inertia of the membrane can be
grouped in the term (βM − µM ). Eq. (1.27) becomes with Eq. (2.21)

αM

[
cos θ

sin3 θ

∞∑
n=1

nβn sin(nθ)− 1

sin2 θ

∞∑
n=1

n2βn cos(nθ)

]
−

(βM − µM )

[
1

2
β0 +

∞∑
n=1

βn cos(nθ)

]
= −a0 tan(θ/2) + 2

∞∑
n=1

an sin(nθ) . (4.5)

Observing tan(θ/2) = sin θ
1+cos θ , we multiply the equation by the factor (1 + cos θ) sin3 θ

αM (1 + cos θ) cos θ
∞∑
n=1

nβn sin(nθ)− α̃ sin θ (1 + cos θ)
∞∑
n=1

n2βn cos(nθ)−

(βM − µM ) sin3 θ (1 + cos θ)

[
β0

2
+
∞∑
n=1

βn cos(nθ)

]
=

−a0 sin4 θ + 2 sin3 θ (1 + cos θ)
∞∑
n=1

an sin(nθ) . (4.6)

Before the relation between coefficients of deflection and pressure can be applied, the membrane
equation requires some manipulation. In particular, Fourier half-range series are used to allow a
comparison of coefficients. Using well-known relations for trigonometric functions, the left-hand
side of the equation can be expressed solely by shifted sine terms, while the right-hand side can
be expression solely by shifted cosine terms. One obtains for the lhs

(1 + cos θ) cos θ sin(nθ) =
sin(nθ)

2
− sin(θ − nθ)

2
− sin(2θ − nθ)

4
+

sin(θ + nθ)

2
+

sin(2θ + nθ)

4
,

sin θ (1 + cos θ) cos(nθ) =
sin(θ − nθ)

2
+

sin(2θ − nθ)
4

+
sin(θ + nθ)

2
+

sin(2θ + nθ)

4
,
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sin3 θ (1 + cos θ) = 3
sin θ

4
+

sin(2θ)

4
− sin(3θ)

4
− sin(4θ)

8
,

sin3 θ (1 + cos θ) cos(nθ) = 3
sin(θ − nθ)

8
+

sin(2θ − nθ)
8

− sin(3θ − nθ)
8

− sin(4θ − nθ)
16

+

3
sin(θ + nθ)

8
+

sin(2θ + nθ)

8
− sin(3θ + nθ)

8
− sin(4θ + nθ)

16
,

and for the rhs

sin4 θ =
3

8
− cos(2θ)

2
+

cos(4θ)

8
,

sin3 θ (1 + cos θ) sin(nθ) = 3
cos(θ − nθ)

8
+

cos(2θ − nθ)
8

− cos(3θ − nθ)
8

− cos(4θ − nθ)
16

−

3
cos(θ + nθ)

8
− cos(2θ + nθ)

8
+

cos(3θ + nθ)

8
+

cos(4θ + nθ)

16
.
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The coupled equation Eq. (4.6) thus reads[
− (βM − µM )

(
3β0

8
+
β1

8
− β2

2
− 3β3

16
+
β4

8
+
β5

16

)
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(
β0

8
+
β1
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16
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8
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8
+
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8
+
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16
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+
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+
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8
+
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+
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+
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2
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2
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sin(4θ) +

∞∑
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{
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8
+
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8
+
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8
+
βn+4

16

]
+
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2
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n
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2
+
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2
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(
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4
+
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)
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sin(nθ) =

−
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3a0

8
+

3a1

4
+
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4
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4
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8

)
+

(
3a2

4
+
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4
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(
−a0

2
+

3a3

4
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(
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4
+
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4
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4
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8
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4
− a1

4

)
cos(3θ)+

(
a0

8
+

3a5

4
+
a6

4
− a7

4
− a8

8
− 3a3

4
− a2

4
+
a1

4

)
cos(4θ)+

∞∑
k=5

(
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8
+
ak−3

4
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4
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4
+

3ak+1

4
+
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4
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4
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8

)
cos(kθ)

}
(4.7)

The lhs is expressed solely in terms of sine functions, while the rhs consists solely of cosine
functions. To compare coefficients, odd and even trigonometric functions need to be matched.
Thus, we apply Fourier half-range series. There are two possibilities. In the first approach
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sin(nx) on x ∈ [0, π] is expressed in terms of Fourier half-range cosine series

sin(nx) =


4

π

∞∑
k=1

n

n2 − (2k − 1)2
cos [(2k − 1)x] when n is even

2

πn
+

4

π

∞∑
k=1

n

n2 − 4k2
cos(2kx) when n is odd

(4.8)

In this case, sin(nx) has a jump-free periodic extension. The second choice, replacing cosine
terms by sine terms, is not pursued to avoid the Gibbs phenomenon at the jumps that arise
from periodic continuation. We replace the sum in the lhs of Eq. (4.7) with Eq. (4.8)

∞∑
n=5

an sin(nθ) =
∞∑
n=3

a2n−1 sin [(2n− 1)θ] +
∞∑
n=3

a2n sin(2nθ) =

∞∑
n=3

a2n−1

[
2

π(2n− 1)
+

4

π

∞∑
k=1

2n− 1

(2n− 1)2 − 4k2
cos(2kθ)

]
+

∞∑
n=3

a2n
4

π

∞∑
k=1

2n

(2n)2 − (2k − 1)2
cos [(2k − 1)θ]

such that a comparison of coefficients for the terms cos(mθ) with m = 0, 1, 2, · · · can be con-
ducted. Then, by using Eqs. (2.29), (2.31), written in full form

a0 = −iσC(σ)β0 + [(1− C(σ))iσ − 2C(σ)]β1 +

2(1− C(σ))

∞∑
k=1

2kβ2k − 2C(σ)

∞∑
k=2

(2k − 1)β2k−1 (4.9)

an =



σ2

2n
βn−1 − i2σβn −

[
σ2

2n
+ 2(n+ 1)

]
βn+1 − 2

∞∑
k=n+3

2

2kβ2k when n is odd

σ2

2n
βn−1 − i2σβn −

[
σ2

2n
+ 2(n+ 1)

]
βn+1 − 2

∞∑
k=n+4

2

(2k − 1)β2k−1 when n is even

(4.10)
the membrane equation is expressed solely by coefficients of motion βn for each ”half-range
mode” m.

4.1.3 Boundary conditions

Using Eq. (2.18) and Eq. (4.3), the boundary conditions Eq. (4.1) at the leading edge θ = −π
and Eq. (4.2) at the trailing edge θ = 0 become

Re

[(
β0

2
+
∞∑
n=1

(−1)nβn

)
(cos τ + i sin τ)

]
= ALE sin τ , (4.11)

Re

[ ∞∑
n=1

nβn lim
θ→0

sin(nθ)

sin θ︸ ︷︷ ︸
n

(cos τ + i sin τ)

]
= 0 , (4.12)
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which can be grouped into

β0

2
+
∞∑
k=1

(−1)kβk = −iALE , (4.13)

∞∑
k=1

k2βk = 0 . (4.14)

4.1.4 Solution procedure

The above system is truncated at a certain wave number. The modes n in Eq. (4.7) are resolved
up to a maximum value nMax. The maximum number of half-range modes m is limited to
mMax = nMax − 2 and yields coefficient matrices for the lhs and for the rhs. Inclusion of the
two boundary conditions Eq. (4.13) gives a linear system with square matrices Amn and Bmn

Amnβ +Bmnβ = b (4.15)

that is solved for the solution vector β.

4.1.5 Postprocessing

From the solution βn, the pressure coefficients Eqs. (4.9, 4.10) and thus the thrust force T and the
efficiency η can be determined as in Sec. 2.1.9. In the postprocessing, the maximum deflection of
the membrane along the chord w1,max is determined. To allow a fair comparison of the generated
thrust between membrane motions with small and large deflection, the amplitude of motion (the
dimensionless leading-edge amplitude ALE = ÃLE/L̃) is rescaled in all the calculated results such
that w1,max = 2.

4.1.6 Results

The flapping frequency is limited to σ = 5. In the plots the efficiency η vs. the thrust force T
is shown. The results are compared to the optimum propulsion of a rigid foil shown in Fig. 3.6
and to the prescribed TWS motion moving at a frequency σ = 5 (and varying wavenumber
k) depicted in the right bottom plot of Fig. 3.11. The number of resolved modes is chosen
nMax = 100 in all examples. An example in Appendix A.4 shows that results with the present
method using only nMax = 20 modes agree very well with the results from the panel method.

Membrane without inertia terms

In the following the mass of the membrane is assumed to be negligible, i. e. µM = 0 in Eq. (1.27).
The results from all runs that generate positive thrust and have efficiency between 0.5 and 1 are
depicted in Fig. 4.1.
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Figure 4.1: Results of propulsive efficiency η vs. dimensionless thrust force T : Membrane model
without inertia term (blue points , maxima connected by blue line); Pareto curves for optimum
foil motion (red line) and travelling wavy surface (green line).

When the membrane parameters are tuned appropriately, the resulting thrust and efficiency
values reach the Pareto curve of the best foil motions. However, the massless membrane model
cannot outperform the rigid foil and does not arrive at the efficiency of a travelling wavy surface.
The input parameters and results for the combinations that give the best results are given in
Tab. 4.1.
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αM βM σ ALE T η

0.02 0. 0.5 1.98 0.0169 0.996
0.02 0. 1. 1.97 0.0433 0.979
0.05 0. 0.5 1.98 0.0485 0.986
0.07 0. 0.5 1.96 0.0523 0.98
0.09 0. 0.5 1.96 0.0738 0.974
0.08 0. 0.5 1.97 0.089 0.975
0.18 1.05 1.15 1.07 0.127 0.961
0.18 1.04 1.15 1.09 0.146 0.952
0.18 1.03 1.15 1.12 0.169 0.923
0.1 0. 1. 1.93 0.372 0.901

0.185 0. 1.5 1.7 0.757 0.85
0.187 0. 1.5 1.89 1.09 0.833
0.19 0. 1.5 1.98 1.25 0.801
0.1 0. 3. 2. 2.34 0.76
0.1 0. 4. 2. 4.04 0.734
0.1 0. 5. 2. 4.98 0.717
0.1 0.1 5. 2. 5.02 0.714
0.1 0.2 5. 2. 5.06 0.712
0.1 0.5 5. 2. 5.2 0.704
0.1 1. 5. 2. 5.46 0.691
0.2 1. 5. 2. 7.4 0.654
0.2 0.5 5. 2. 7.9 0.66
0.2 0.2 5. 2. 8.3 0.664
0.2 0.1 5. 2. 8.45 0.665
0.2 0. 5. 2. 8.6 0.666
0.5 0. 5. 2. 11.9 0.609
0.5 0.1 5. 2. 12.1 0.609
0.5 0.2 5. 2. 12.3 0.608
0.5 0.5 5. 2. 12.8 0.607
0.5 1. 5. 2. 13.8 0.605
1. 0. 5. 2. 20.3 0.576
1. 0.1 5. 2. 20.6 0.576
1. 0.2 5. 2. 20.9 0.576
1. 0.5 5. 2. 21.9 0.575
1. 1. 5. 2. 23.5 0.574
3. 0. 5. 1.7 29.2 0.54
5. 0. 5. 1.31 33.2 0.529
5. 0.1 5. 1.32 33.3 0.529
5. 0.2 5. 1.33 33.4 0.529
5. 0.5 5. 1.37 33.7 0.529
5. 1. 5. 1.44 34.3 0.528

Table 4.1: Best results for the membrane model that excludes inertia (µM = 0): Input param-
eters and output.
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Membrane with inertia terms

In the following the mass of the membrane is taken into account, i. e. µM > 0. The results are
shown in Fig. 4.2.
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Figure 4.2: Results of efficiency η vs. thrust force T : Membrane model with inertia term (points
); Pareto curves as indicated.

When inertia of the membrane is taken into account, combinations of parameters exist that
admit βM −µM < 0, i. e. that the inertia term of the membrane becomes larger in size than the
term for lateral pre-strain. Then, the membrane device can significantly outperform the best
foil motions. At low levels of thrust, the membrane device allows efficiencies that approach the
travelling wavy surface. The input parameters and results for the combinations that give the
best results are given in Tab. 4.2.
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αM βM − µM σ ALE T η

0.02 0. 0.5 1.98 0.0169 0.996
0.02 0. 1. 1.97 0.0433 0.979
0.05 0. 0.5 1.98 0.0485 0.986
0.07 0. 0.5 1.96 0.0523 0.98
0.09 0. 0.5 1.96 0.0738 0.974
0.08 0. 0.5 1.97 0.089 0.975
0.02 -0.1 2. 1.9 0.146 0.985
0.05 -0.2 2. 1.85 0.326 0.977
0.005 -0.1 5. 1.58 0.363 0.975
0.025 -0.1 2. 1.97 0.41 0.976
0.0125 -0.1 2. 2. 0.659 0.943
0.02 -0.5 5. 1.63 1.49 0.961
0.04 -1. 5. 1.54 1.64 0.944
0.01 -0.1 5. 2. 1.72 0.944
0.05 -1. 5. 1.79 2.75 0.899
0.08 -2. 5. 1.78 3.69 0.823
0.09 -2. 5. 1.93 4.7 0.796
0.1 -2. 5. 1.84 5.32 0.776
0.14 -2. 5. 1.94 6.83 0.727
0.2 -2. 5. 1.97 9.3 0.687
0.2 -0.5 5. 2. 9.41 0.672
0.2 -1. 5. 1.99 9.99 0.678
0.5 0. 5. 2. 11.9 0.609
0.5 0.1 5. 2. 12.1 0.609
0.5 0.2 5. 2. 12.3 0.608
0.5 0.5 5. 2. 12.8 0.607
0.5 1. 5. 2. 13.8 0.605
1. 0. 5. 2. 20.3 0.576
1. 0.1 5. 2. 20.6 0.576
1. 0.2 5. 2. 20.9 0.576
1. 0.5 5. 2. 21.9 0.575
1. 1. 5. 2. 23.5 0.574
3. 0. 5. 1.7 29.2 0.54
5. 0. 5. 1.31 33.2 0.529
5. 0.1 5. 1.32 33.3 0.529
5. 0.2 5. 1.33 33.4 0.529
5. 0.5 5. 1.37 33.7 0.529
5. 1. 5. 1.44 34.3 0.528

Table 4.2: Best results for the membrane model that includes inertia: Input parameters and
output.

The theoretical results in Tab. 4.2 show that inertia (i. e. βM −µM < 0) has a positive effect
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on the propulsive properties in the medium range of thrust T = 0.15, · · · , 10. The positive effect
is similar to the efficiency-enhancement observed in a foil with passive chordwise flexibility (see
Sec. 3.3.1).

Membrane with inertia and different B. C. at the trailing edge

The results in Fig. 4.2 show that the efficiency cannot be enhanced up to the efficiency of
the travelling wavy surface at higher levels of thrust by taking into account the mass of the
membrane (µM > 0). The boundary condition of zero inclination at the trailing edge that does
not allow a travelling wave solution Eq. (4.2). In order to study if higher efficiency is prohibited
by this boundary condition, the boundary condition at the TE is altered to allow an “outgoing
kinematic wave“ such that it follows from the linearized kinematic boundary condition on the
membrane Eq. (2.15) that

v(1, 0, τ) = Ω
∂w(1, τ)

∂τ
+
∂w(1, τ)

∂x
= 0 .

This boundary condition appears to be rather artificial. However, we show in the following that
it permits a membrane deflection of cosine shape at a certain choice of parameters.

It can be readily seen that the membrane equation Eq. (1.27) obeys the solution of a single
travelling wave (as discussed in Sec. 3.3.2) at a phase speed equal to the speed of oncoming flow
(c = 1, or σ = k) if the parameters are chosen such that

βM − µM = −αMσ2 , (4.16)

provided that we can set ∆p = 0 in Eq. (1.27). Indeed, the latter condition is fulfilled by a
single travelling wave motion when σ = k (see Eq. (3.46) with a0 from Eq. (3.44)). Thus, we
can conclude that the deflection of the membrane performs a single travelling wave with phase
speed c = 1 when the ratio of parameters is set to (βM − µM )/(−αMσ2) = 1. In this case,
T = 0 and η = 1 (see Sec. 3.3.2). Thrust is generated when βM − µM > −αMσ2. Thus, either
(βM − µM ), αM , or σ need to be increased with respect to Eq. (4.16). The following parameter
values are considered:

Parameter Range of values

σ 0.5, 1, 2, 5

βM − µM −10, · · · , 0
αM − (βM − µM ) /σ2, · · · , 10

Table 4.3: Range for the input parameters.

The results are displayed in Fig. 4.3.
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Figure 4.3: Results of efficiency η vs. thrust force T : Membrane model with inertia term and
travelling wave B. C. at the TE (colored points); Pareto curves as indicated. The color given to
each point indicates the value of the ratio (βM − µM )/(−αMσ2).

An analysis of the data points shows that optimum efficiency is achieved when the frequency
reaches the maximum value, i. e. σ = 5 (see Tab. 4.4), as it is the case for the Pareto front of the
travelling wave. The best solutions obtained for the coupled problem closely stick to the Pareto
curve of the cosine wave. The color given to each of the solution points in Fig. 4.3 indicates
the value of the ratio (βM −µM )/(−αMσ2). The highest efficiency is attained when the ratio is
chosen slightly below one, i. e. for solutions that evolve from the point where T = 0 and η = 1.
It may be of interest if there exists a correlation between the efficiency and the value of the
ratio (βM − µM ) /

(
−αMσ2

)
. In order to find out if the ratio is a crucial parameter for good

efficiency, the ratio is plotted in Fig. 4.4 with the efficiency given as color to each of the points.
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Figure 4.4: Ratio of membrane parameters vs. thrust force T for the solutions in Fig. 4.3. The
color given to each point indicates the value of the efficiency η.

The Pareto optimum of the ratio stays very close to one (a value of one obeys Eq. (4.16) with
the thrust-free solution T = 0) in the range of small and intermediate thrust, and falls to zero at
high thrust. The color of the points indicates the propulsive efficiency of the motion. The plot
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confirms that high efficiency is obtained only when the ratio (βM − µM ) /
(
−αMσ2

)
is chosen at

a value below one. From the results, a recommendation for the optimum design and operating
parameters can be derived. Dependent on the required thrust T , the ratio (βM − µM ) /

(
−αMσ2

)
can be depicted from Fig. 4.4. Then, αM , βM , µM , and σ can be tuned for an optimal setting.
The input parameters and results for the combinations that give the best results are depicted
in Tab. 4.4.

αM βM − µM σ ALE T η

0.0201 -0.5 5. 2. 0.0353 0.998
0.0045 -0.11 5. 1.99 0.0356 0.999
0.0043 -0.105 5. 2. 0.0398 0.998
0.402 -10. 5. 2. 0.0436 0.999
0.0046 -0.11 5. 1.98 0.0568 0.998
0.0033 -0.08 5. 1.99 0.065 0.998
0.0202 -0.5 5. 2. 0.0689 0.996
0.0044 -0.105 5. 1.99 0.0801 0.997
0.0203 -0.5 5. 2. 0.106 0.994
0.0045 -0.105 5. 1.98 0.107 0.996
0.0056 -0.13 5. 1.97 0.138 0.995
0.0031 -0.07 5. 1.91 0.162 0.997
0.0045 -0.1 5. 1.97 0.178 0.994
0.05 -1. 5. 1.98 0.201 0.994
0.41 -10. 5. 2. 0.213 0.993

0.0032 -0.07 5. 1.93 0.25 0.995
0.0056 -0.12 5. 1.95 0.277 0.991
0.0034 -0.07 5. 2. 0.319 0.988
0.0045 -0.09 5. 1.95 0.321 0.99
0.0033 -0.07 5. 1.98 0.327 0.992
0.21 -5. 5. 2. 0.392 0.989
0.42 -10. 5. 2. 0.417 0.986

0.0056 -0.11 5. 1.93 0.417 0.986
0.041 -1 5. 1.99 0.438 0.989
0.0056 -0.1 5. 1.92 0.558 0.982
0.13 -3. 5. 2. 0.593 0.986
0.042 -1 5. 2. 0.663 0.982
0.09 -2. 5. 2. 0.777 0.982
0.1 -2. 5. 2. 1.29 0.968
0.11 -2. 5. 2. 1.78 0.956
0.12 -2. 5. 2. 2.04 0.946
0.071 -1. 5. 2. 2.19 0.943
0.08 -1. 5. 2. 2.53 0.934

Table 4.4: Best results for the membrane model with inertia and adjusted trailing-edge boundary
condition: Input parameters and output (continued on next page).
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αM βM − µM σ ALE T η

0.09 -1. 5. 2. 2.84 0.924
0.1 -1. 5. 2. 2.91 0.916
0.2 -3. 5. 2. 2.91 0.921
0.16 -2. 5. 2. 2.98 0.912
0.063 -0.2 5. 2. 3.08 0.901
0.071 -0.2 5. 2. 3.31 0.898
0.18 -2. 5. 2. 3.54 0.9
0.1 -0.5 5. 2. 3.6 0.894
0.09 -0.2 5. 2. 3.71 0.887
0.09 -0.1 5. 2. 3.77 0.883
0.1 -0.2 5. 2. 3.98 0.881
0.25 -3. 5. 2. 3.98 0.891
0.1 -0.1 5. 2. 4.1 0.877
0.4 -5. 5. 1.97 4.2 0.874
0.1 0. 5. 2. 4.21 0.873
0.12 -0.2 5. 2. 4.38 0.871
0.12 -0.1 5. 2. 4.43 0.867
0.14 -0.2 5. 2. 4.77 0.861
0.14 -0.1 5. 2. 4.87 0.858
0.18 -0.2 5. 2. 5.27 0.845
0.18 -0.1 5. 2. 5.28 0.842
0.32 -2. 5. 2. 5.5 0.838
0.22 -0.2 5. 2. 5.79 0.83
0.22 -0.1 5. 2. 5.91 0.828
0.56 -5. 5. 1.96 5.99 0.825
0.32 -0.1 5. 2. 7.35 0.8
0.5 -2. 5. 2. 7.74 0.791
0.5 -1. 5. 1.93 8.31 0.777
0.5 -0.5 5. 1.93 8.51 0.77
0.5 -0.2 5. 1.93 8.6 0.765
0.5 -0.1 5. 1.94 8.62 0.764
0.5 0. 5. 1.94 8.64 0.763
0.5 0.1 5. 1.95 8.65 0.761
0.5 0.2 5. 1.95 8.66 0.76
0.5 0.5 5. 1.97 8.66 0.756
1. -2. 5. 1.72 9.47 0.721
1. -1. 5. 1.77 9.66 0.713
1. -0.5 5. 1.81 9.69 0.709
2. -2. 5. 2. 10.7 0.658
2. -1. 5. 2. 12.3 0.654

Table 4.4: Best results for the membrane model with inertia and adjusted trailing-edge boundary
condition: Input parameters and output (continued on next page).
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αM βM − µM σ ALE T η

2. -0.5 5. 2. 13.2 0.652
2. -0.2 5. 1.97 13.4 0.651
2. -0.1 5. 1.96 13.5 0.651
2. 0. 5. 1.95 13.5 0.65
2. 0.1 5. 1.94 13.6 0.65
2. 0.2 5. 1.93 13.6 0.65
2. 0.5 5. 1.89 13.7 0.648
10. -5. 5. 2. 15.6 0.579
10. -2. 5. 2. 17.9 0.576
10. -1. 5. 2. 18.9 0.575
10. -0.5 5. 2. 19.4 0.575
10. -0.1 5. 2. 19.8 0.574
10. -0.2 5. 2. 19.7 0.574
10. 0. 5. 2. 19.9 0.574
10. 0.1 5. 2. 20. 0.574
10. 0.2 5. 2. 20.2 0.574
10. 0.5 5. 2. 20.5 0.574

Table 4.4: Best results for the membrane model with inertia and adjusted trailing-edge boundary
condition: Input parameters and output.

A further increase in efficiency may be attained from an improved design at the trailing edge
(for instance, if the free end is replaced by prescribed motion). However, comparing Fig. 4.3
to Fig. 4.2 and Fig. 4.1, the present results show that proper tuning of membrane inertia is of
more importance.

4.2 Double channel membrane pump

4.2.1 Potential flow theory with the panel method

Solutions for the dependence of the trailing edge vorticity on the channel width have been
discussed for pure heaving foil motion in Sec. 2.2. The propulsive efficiency for the channel flow
of a flapping foil and of a prescribed travelling wave motion have been given in Sec. 3.2.3 and
Sec. 3.3.4, respectively. In this section, the results with the panel code for a flapping membrane
in channel flow from Sec. 2.3 are compared with the CFD results in Sec. 4.2.3.

4.2.2 CFD results

In this chapter the start-up phase of the pump, the obtained flow velocity and Reynolds number
from prescribed plate motion, and the coupling strategies for fluid-structure interaction are
discussed by employed the commercial CFD package Fluent R©. The results, although potentially
inaccurate due to coarse grid resolution, elucidate the principle features of the membrane pump.
Conclusions are drawn for the procedure in the subsequent chapters.
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Regarding the start-up phase of the pump it is outlined in Sec. 1.2.1 that the asymmetric
excitation of a motion (at one end of the channel) results in a mean flow through the channel.
However, in [110] it is shown that symmetric flapping in otherwise quiescent fluid can also result
in a mean motion in one direction due to instability. In the following, asymmetric excitation is
considered.

Pitching plate pump

T. Müllner 1 employed Fluent R© to investigate pumping of incompressible fluid through a channel
via a flat plate (with initial position at the centerline of the channel) that is pitching about one
of its endpoints in prescribed periodic motion. The model can be illustrated by replacing the
membrane in Fig. 1.1 by the flat plate, pitching about the LE with (ÃLE = 0) with TE
amplitude ÃTE . The problem has been treated as two-dimensional in the x̃-ỹ-plane. The user-
defined function (UDF) DEFINE GRID MOTION has been used to move the mesh congruently
with the plate. A so-called PRESSURE OUTLET boundary condition at both ends of the
channel, combined with the initial condition of quiescent fluid, guarantee that the occurrence
of mean flow is a direct consequence of the asymmetry arising from pitching motion. In the
long-term, a time-periodic mean channel flow evolves that is directed from the plate’s pitching
point downstream, i. e. the pitching plate acts as a pump. Two values for the deflection of the
pitching motion ÃTE are used. The results for the mean flow velocity Ũm are given in Tab. 4.5.

Amplitude Inviscid Laminar Turbulent (k − ε)
ÃTE = 0.010 m 0.374 m/s 0.378 m/s 0.418 m/s

ÃTE = 0.025 m 0.830 m/s 0.793 m/s 0.956 m/s

Table 4.5: Channel flow of incompressible fluid due to pitching motion of a flat plate: Results
for the mean channel velocity Ũm for different pitching amplitudes ÃTE and different models for
fluid viscosity; fluid: water (ρ̃ = 1000 kg/m3, ν̃ = 10−6 m2/s), plate chord L̃ = 0.1 m, channel
semi-height h̃ = 0.05 m, Angular frequency ω̃ = 20π rad/s (courtesy of T. Müllner 1).

Two important statements follow from the results. Firstly, the mean flow velocity Ũm in-
creases almost linearly (exponent ≈ 0.87) with the endpoint deflection ÃTE . The result illus-
trates that the linear relation Ũm ∼ ÃTE (valid for small ÃTE/h̃) adequately describes the
behaviour at amplitudes that are not small (here ÃTE/h̃ = 0.5). Secondly, the inclusion of
fluid viscosity – whether laminar or turbulent – affects the flow velocity only to a limited extent
(≤ 15 percent). These results support the present assumption that the effect of viscosity can be
neglected in a first approach.

It may be noted that the obtained Reynolds number is in good agreement with the mea-
surements for the membrane pump. When the solution for ÃTE = 0.010 m with laminar flow
is considered, the Reynolds number in Eq. (1.22), built with the hydraulic diameter d̃h = 2h̃,
amounts to Reh = 37800. This value is in good agreement to the measurements for the mem-
brane pump Tab. 1.2.

1Project “plate pump“, Vienna University of Technology, 2006, T. Müllner (personal communication)

100



Flexible membrane: explicit coupling

In the present work, a more elaborate version of the above example is performed by replacing
the pitching plate by a prestrained membrane, with the motion being coupled to the pressure
difference across the membrane Eq. (1.17). The pressure inlet at the left boundary is replaced by
a VELOCITY INLET with prescribed velocity Ũ in order to make the mean flow through the
pump independent from the solution, cf. Fig. 1.1. A PRESSURE OUTLET condition is chosen
at the channel outlet. The membrane has a forced oscillation of the LE point and a zero-slope
trailing edge deflection Eq. (1.18). The parameters are:

L̃ = 0.1 m , h̃ = 0.05 m , Ũ = 1 m/s , ρ̃ = 1000 kg/m3 ,

ω̃ = 20π rad/s , ÃLE = 0.001 m ,

α̃M = 28.735 N/m, β̃M = 114938 N/m3, D̃M = 0 m . (4.17)

Regarding the time discretization, explicit coupling of the motion has been employed. In doing so,
the fluid pressure from the last time step is plugged into the membrane equation to determine
the deflections of the membrane. The membrane positions are prescribed in the next time
step, where again the flow field is solved. The present method is classified in the literature as
partitioned approach, as the problem is split into the parts fluid and solid. Within this class, the
present strategy is usually described as weak coupling, as the exchange of information between
fluid and solid is done only once a time-step. It has been shown by Le Tallec & Mouro [48]
that this coupling strategy exhibits a severe limitation: to guarantee numerical stability of the
method, the size of the timestep needs to be larger than a certain threshold. The limit is
associated with the so-called ”artificial added mass” effect (cf. [64]). Usually, the limitation is
crucial for problems that have the following properties:

• incompressible fluid,

• the wall is very compliant, and

• the ratio of the specific weights of fluid and solid is close to one.

For example, the instability of explicitly coupled schemes is typically not observed in aerody-
namics, where the fluid density is well below the density of the solid body. For the present
problem, however, it seems that all the criteria are fulfilled. Membrane-water interaction, in
particular, is expected to yield an unstable explicit scheme.

To obtain an estimate for the stability limit of the explicit coupling procedure, convection
is neglected, and the membrane equation Eq. (1.17) is replaced by a simple spring model ∆p̃ =
−β̃M w̃. Then, the dimensionless ratio ρ̃h̃/(β̃M∆t2) is identified to be characteristic for the
stability of the method, where ρ̃ is the density of the fluid and ∆t is the time step size.

In the numerical investigation, performed with Fluent R© (taking the full model for flow and
membrane), the fluid density is varied for a given time step size to detect the stability limit. If
the density is chosen too high, pressure and deflection start to show strong oscillations in time
after several timesteps, revealing the numerically instability, Tab. 4.6.
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∆t no oscillations oscillations ρ̃h̃/(β̃M∆t2)

0.005 ρ̃ = 11.5 ρ̃ = 11.6 0.201
0.010 ρ̃ = 44.5 ρ̃ = 45.0 0.195
0.020 ρ̃ = 173 ρ̃ = 174 0.189

Table 4.6: Numerical test for the stability limit of an explicit coupling strategy: Timestep size
∆t, fluid density ρ̃, semi-channel width h̃, membrane stiffness βM , and characteristic dimension-
less stability parameter ρ̃h̃/(β̃M∆t2).

The result pinpoints that the method becomes unstable if the ratio ρ̃h̃/(β̃M∆t2) exceeds
a certain level, in accord with the result in [48]. From the result, it may be concluded that
stability is ensured when the time-step is chosen sufficiently large. While this is true regarding
initial stability, though, Mok [64] has shown that the approach of weak coupling also encounters
a stability problem (under the conditions listed above) in the long term. Indeed, it has been
proven by Förster [23] that (for fully recursive temporal discretization) the proposed method is
necessarily unstable, i. e. there exists no time-step that allows a stable scheme.

Flexible membrane: partitioned strong coupling

The setting is equal to Eq. (4.17), except that ÃLE = 0.01 m. The flow chart of the solution
procedure is represented in Fig. 4.5. The main feature of the partitioned approach with strong
coupling is that data between the membrane and the fluid is exchanged within a timestep. In
the present approach the deflection of the membrane at each chordwise position is split into
two parts: The first part w(ti) is a guess of the membrane deflection that is prescribed at the
beginning of the timestep (index i) via the grid motion; The second part serves as a correction
term that is obtained from the solution wj of the membrane equation and is prescribed as velocity
boundary condition vj to the fluid problem. For this purpose the DEFINE PROFILE-UDF is
used in Fluent R©. A very small value has to be given to the relaxation factor δ = 1.6× 10−3 in
order to obtain a stable scheme. In the “fluid”-loop it suffices to perform only one PISO step.
The surface pressure is read out and fed back into the iteration loop (index j). Despite of the
strong coupling, the residuals of the membrane equation decrease slowly (jMax = 3000). The
deflections are calculated at the end of the timestep and are used for the grid positions in the
subsequent timestep.
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i = 0

grid motion: w(ti)

j=0
∆pj(ti) = 2 ∆pi−1 −∆pi−2

membrane: solve wj ∝ ∆pj

vj ∝
∂[wj − w(ti)]

∂t
underrelax: vj = vj−1 + δ (vj − vj−1)

fluid: vj as b.c.

fluid: solve field eqs.

∆pj

j = jMax
no

yes

i = i+ 1

w(ti) ∝ w(ti−1) +
∫
vjMax dt

PISO loop

j = j + 1

Figure 4.5: Flow chart of the solution procedure with strong coupling: timestep index i, iteration
index j, relaxation factor δ.

The solution of the horizontal flow component is depicted in Fig. 4.6.
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Figure 4.6: Fluent R© simulation of a flexible membrane with flapping LE-point in a water-
filled channel: Streamwise velocity component for selected time instances t within one period T
(details are given in the text).
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The evolution of the membrane’s deflection over time is very similar to that of a flapping
foil. The flow pattern downstream of the moving membrane is an indication of the formation
of a vortex wake. As the motion is periodic in time, advancing in time by a half-period yields
results that are reflected about the channel’s centerline (compare in Fig. 4.6 for instance (a) and
(e)). The deflection of the membrane is shown in detail in Fig. 4.7.
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Figure 4.7: Fluent R© simulation of a flexible membrane with flapping LE-point in a water-filled
channel: Membrane deflection along the chord at different time instants t within one period T .

It should be mentioned that the grid has only twenty points along the chord. Thus, the LE
and TE region may not be sufficiently resolved and the quality of the results may need to be
improved. The reason for the coarse grid is the expensive coupling strategy. Nevertheless, the
deflection of the membrane performs a travelling wave pattern in direction of the mean channel
flow. To estimate the phase speed of the wave, one may consider the temporal travel of the
deflections’ zero-crossing chordwise position. The chord (L̃ = 0.1 m) is travelled through in a
time of 3/8× T ≈ 0.0375 s. The phase speed is thus c̃ ≈ 2.67 m/s.

4.2.3 Comparison of the CFD results to potential flow theory

For the membrane in the channel, the results from the panel code are compared to the CFD
results in Sec. 4.2.2. The CFD results from the fully coupled problem in Sec. 4.2.2 are compared
to the potential flow solution with the panel code. The membrane is excited at the leading edge
with dimensionless amplitude ALE . The following parameters are adopted from Sec. 4.2.2:

h = 0.5 , ALE = 0.1 , σ = 3.14 , αM = 0.575 , βM = 5.75 , µM = 0 . (4.18)

For additional comparison, the results in unbounded domain from the Chebyshev code in Sec. 4.1
are also provided. The panel-code uses 30 panels and the Chebyshev code resolves 20 modes.
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The results from Fluent R©, the Panel code, and the Chebyshev code (denoted as h→∞) for the
chordwise distribution of deflection and pressure difference across the membrane are shown in
Fig. 4.8.
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Figure 4.8: Deflection of membrane (a) and pressure difference across the membrane (b), along
the chord: Cosine- (in red) and sine- (in blue) component, respectively, envelope (in green);
Solid lines: Fluent R© result in the channel (for dimensionless semi-channel width h = 0.5),
dashed lines: potential flow theory in the channel (h = 0.5), dashed-dotted lines: potential flow
theory in infinite domain.

The Fluent R© results for the deflection are taken from Fig. 4.7: The cosine component wC
corresponds to t/T = 0/8 (in red) and the sine component wS corresponds to t/T = 2/8 (in
blue), respectively. Higher harmonics in the signal can be neglected (the form factor of the
TE-deflection is 1.112). As mentioned already in Sec. 4.2.2, the solution in Fluent R© is obtained
on a quite coarse grid of 20 equi-distant cells along the chord. Nevertheless, the results for the
deflection agree fairly well to each other. Each of the three solutions shows the pattern of a
downstream travelling wave, see Fig. 4.7. The sine and cosine component start at the prescribed
leading-edge values wS = 1 and wC = 0, respectively, and both components decrease to negative
values towards the trailing edge. The envelope decreases rapidly off the leading edge up to
x ≈ 0.2 and remains roughly at a constant value of wEnv ≈ 0.5 downstream from that point.
Regarding the sine and cosine components of the membrane deflection at the trailing edge x = 1,
the results from the panel code lie between those from CFD and those in unbounded domain.
From the results of the pressure it becomes apparent that the CFD solution does not obey
the Kutta condition of vanishing pressure difference at the TE (compare to [98]). Nonetheless,
the chordwise distribution of the pressure from Fluent R© and the panel code are substantially
similar, even in the downstream fifth of the chord. Each of the three solutions feature a cosine
pressure component ∆pC that is positive along the entire chord and a sine component ∆pS that
is negative at the leading edge and becomes positive in the downstream third of the chord. In
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both pressure components approximately two full chordwise waves are present. However, the
CFD solution is less “wavy” than the panel solution. Compared to the solution in unbounded
domain, both solutions in the channel exhibit a larger pressure difference.

Interpretation of the results

The following statements can be made for the results in this section. The Reynolds number
obtained with the flat plate in pitching motion agrees well with the measurements for the
membrane pump. The mean flow rate does not change significantly when the simulation is
performed with an inviscid fluid. The fluid viscosity is not crucial for the propulsive mechanism.
Accordingly, the unsteady potential flow theory gives good results. The CFD results in Fig. 4.6
indicate the occurrence of a vortex wake. Equivalently, the circulatory part of the flow has been
taken into account within the potential flow model. From the computational viewpoint, the
explicit coupling strategy is inapplicable to the problem of channel flow of incompressible fluid
over a compliant membrane. A strong coupling approach is necessary. Alternatively, in the
potential flow model a monolithic coupling strategy has been pursued.
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Chapter 5

Summary and Conclusions

5.1 Discussion of the inviscid model

A new valveless pump design that uses travelling waves passing along an excited prestrained
membrane as working principle has been studied with theoretical models. In contrast to other
membrane pumps, the present pump operates in the regime of high Reynolds numbers. Thus
peristalsis drops out as pumping principle, despite the similarity by the observed travelling
waves. In the contrary, two-dimensional CFD simulations for a channel pump with prescribed
pitching motion of a plate in inviscid, laminar, and turbulent flow show by comparison that the
mean flow differs by only 15%. Thus, it is supposed that the exclusion of fluid viscosity provides
a sufficiently accurate basis for a first theoretical approach. The problem is then stated such
to have prescribed mean flow through the pump and solutions are discussed with the aim to
optimize the Pareto of propulsive efficiency and propulsive force. The solution for the membrane
is compared to the optimum motion of a rigid foil in combined plunging and pitching motion.
The theoretical model confirms the appearance of a downstream travelling wavy surface (TWS)
of the membrane’s deflection intended by the inventor Wilhelm Zackl that is also observed in the
experiment. The TWS motion occurs frequently in nature and is strongly related to propulsion
of slender fish.

5.2 Flapping foil motion, chordwise flexibility and TWS

It is well-known that living fish use a vortex shedding mechanism as means of thrust production.
The thrust production is retained when the inviscid limit is approached. However, an appropriate
trailing edge condition is required to determine the amount of circulation. The unsteady Kutta
condition is used, as usual. The limits of the Kutta condition have been discussed.

Theodorsen’s linear model for amplitude-constraint flapping motion of a slender rigid foil
is used as basis for an optimization problem. Optimum flapping motions are determined. In
accordance to the literature, a combined plunging and pitching motion turns out to be superior
to that of a foil in pure plunging motion. The obtained optimum motion of the rigid flapping foil
resembles a downstream travelling wave. The relation between plunging and pitching changes
subject to the required thrust level. Surprisingly, the reduced frequency needs to be of order
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one when the thrust is very low. A simple analytical relation between the dimensionless thrust
T and the propulsive efficiency η is given for the first time.

It has been proposed for some time that chordwise flexibility can enhance efficiency. Theo-
retical results for the prescribed motion of a waving plate by Wu emphasize the high propulsive
efficiency of such fish-like motions. However, the theoretical findings of increased efficiency by
chordwise flexibility, compared to a rigid foil that operates at the same level of thrust, have
been confirmed experimentally only recently by Prempraneerach et. al. Clearly, from theory
and the observation in nature, it appears desirable to have a technical device that is capable to
propagate a downstream travelling wave along a slender profile. Nevertheless, it appears to be
difficult to design such a mechanism. The prestrained-membrane pump is a valuable candidate,
as it shows theoretically and experimentally how such a TWS mode can be realized.

5.3 FSI, TWS with prestrained membrane

The two-way FSI of the membrane equation with the oncoming inviscid flow is solved with a
monolithic approach by expansion in Chebyshev polynomials. For simplicity, only the leading
edge point is moved in transverse motion. Parameter combinations of frequency, prestrain,
and inertia are investigated in order to identify which combination leads to the optimum η-T
envelope.

When the inertia of the membrane is excluded, the best results are on the level with the
optimum flapping foil motions. As membrane inertia is taken into account, the results improve
significantly. An additional marginal improvement is achieved when the trailing edge condition
is altered to allow a downstream propagating wave. Although this model is rather theoretical,
it is of particular interest as it contains the solution where the membrane deflection performs
a single uniform downstream propagating wave at a phase speed equal to the speed of the
oncoming flow. In this case, the oncoming flow is not perturbed by the membrane’s motion,
adding up to a vanishing thrust force T = 0 and an efficiency of η = 1. The set of design- and
operating parameters that can perform this motion is easily determined.

Among the thrust-producing solutions, it turns out that the optimum η-T envelope is formed
by those sets of design- and operating parameters that lie in the vicinity of the set that passes
through the point (T, η) = (0, 1). For future work, it would be of interest if these sets can be
verified by experiments. Certainly, an improved theoretical model for the fluid flow and the
membrane equation would be desirable.

5.4 The effect of channel width to chord ratio

The effect of bounding the flow by channel walls is treated both analytically and with the
unsteady panel method, within the assumption of inviscid flow and small deflections. By making
use of the complex function theory, a novel closed-form solution is presented for the circulation
produced by a thin wall sheet executing small-amplitude motions in oncoming flow that is
confined by parallel channel walls being apart an arbitrary distance. The expansion of the result
for large channel width reproduces a wall correction formula used for instance for wind tunnel
measurements. For comparison of the results of any channel width, a panel code is developed
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with panels that account for the presence of the channel walls and feature second order accuracy
advisable for interaction problems. The results are in good agreement. The largest source of
error stems from the accurate prediction of the leading edge singularity. When the dimensionless
channel width is reduced to small values, thrust and power increase significantly, while the
efficiency increases slightly. The effect is similar to the well-known increase in the lift force of a
wing in extreme ground effect. However, the dependence on the channel width turns out to be
not necessarily monotonic. For instance, the extremum of the trailing edge vorticity is reached
at lower channel width when the flapping frequency is higher.

5.5 Relation to viscous flow over TWS of infinite extension

In the literature, the travelling wave mode has been associated with drag reduction. Barrett
et. al. have shown that in a self-propelled robotic fish that exhibits a TWS mode the viscous
drag can be reduced in comparison to the rigid hull towed through the water. To study the
mechanism in fish swimming, a simple configuration with viscous flow over a travelling wavy
wall with streamwise periodic boundary conditions has been proposed in the literature. Shen
et. al. have shown with direct numerical simulation that the viscous drag force is reduced by
restraining the separation with increasing phase speed of the downstream propagating wave. Lu
& Yin discussed the same configuration for laminar flow and came to the conclusion that the
total force acting on the wall can be thrust when the phase speed is large enough.

In the present work, a relation between the case of inviscid flow over a TWS of finite length
and viscous flow over a TWS of infinite streamwise extension is established. In order to interlink
the problems, the TWS over a surface of finite length is treated in the limit of large wave number,
with the phase speed kept at the same magnitude as the speed of the oncoming flow. The thrust
increases with the wave number, but it turns out that the main portion of thrust is produced in
the region close to the leading edge. On the other hand, the leading term of the pressure (with
respect to the wave number) in the mid-chord limit equals that of a wavy surface of infinite
streamwise extension, and does not contribute to the thrust. The simultaneously increasing
and vanishing thrust looks like a paradox. However, the vortex shedding mechanism on which
the thrust production of the waving surface of finite length is based on, is completely absorbed
in the perturbation term of the pressure. By enforcing periodic conditions to the pressure,
vortex shedding and thrust generation are prohibited as the contributions from the streamwise
harmonic wall pressure cancel each other out. At larger wave steepness, the inviscid solution is
no longer harmonic in streamwise direction, but still there is no thrust.

A finite volume solver for the Navier–Stokes equations is developed in order to study the
viscous flow over the downstream travelling wavy wall. When viscosity is taken into account,
the viscous force is always drag, and the wall pressure brings about thrust that balances the
viscous drag. The present results contradict the conclusion by Lu & Yin that the total force
can be thrust. Generally, the oscillations in velocity and pressure become stronger when the
Reynolds number is decreased.
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Appendix A

Verification of The Panel Code

In order to verify the implementation of the panel code described in Sec. 2.3 a steady channel
flow problem, a prescribed flapping foil motion in unbounded domain, a prescribed travelling
wavy surface, and coupling to a membrane equation are considered.

A.1 Steady channel flow

In this section a steady example with a prescribed velocity profile is considered (no coupling to
a membrane equation). The solution of the vorticity distribution is determined in closed form
and used as a reference. We prescribe the following profile for the vertical velocity component
along the body

v(x, 0) =
2h

π

√
sinh

( π
2h
x
)

sinh
[ π

2h
(1− x)

]
for 0 ≤ x ≤ 1 .

Note that in the steady case v(x, 0) is equal to the slope of the shape of the body. From
the stationary version of the Kutta condition Eq. (2.7) and the transport equation Eq. (2.10)
follows γ(x) = 0 at the trailing edge and in the wake x ≥ 1. Then, with Eq. (2.73) the vorticity
distribution is expressed in closed-form
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(0 ≤ x ≤ 1) .

In the panel code a stationary version of the discretized equations Eqs. (2.88, 2.89) is solved using
Eqs. (2.108, 2.109) on non-uniformly distributed panels Eq. (2.98). The kinematic boundary
condition wx = v(x, 0) is prescribed in Eq. (2.88). The membrane equation Eq. (2.90b) is
omitted. The result of the vorticity distribution γ(x) for a semi-channel width of h = 1 is shown
in Fig. A.1.
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Figure A.1: Test example for the panel code: Result of the distribution of vorticity for a steady
case with semi-channel width h = 1; Blue points : panel-code results with n = 10 panels; Black
line: analytical solution.

With the nonuniform distribution of the panel nodes a very good agreement is attained with
only n = 10 panels.

A.2 Flapping foil in unbounded domain

The propulsive performance of a prescribed flapping foil motion in unbounded domain is inves-
tigated. The panel weights for unbounded domain from Eqs. (2.110, (2.111) are used (without
the h−2-correction). The parameters of motion (see Fig. 3.1) are chosen as:

H = 1.9343 , A = 0.338824 , B = 0.50054 , σ = 1 .

In the panel code, 30 panels with the distribution from Eq. (2.98) are used. The results are
calculated from Eqs. (2.112–2.114). The forces in the exact flapping foil solution are given in
Sec. 3.1.2. The results are shown in Tab. A.1.

Output Panel code Exact

Ts 2.79267 2.96339
Tp 1.05095 1.05154
P 6.43895 6.44226
η 0.596934 0.623218

Table A.1: Comparison of the output from the panel code (n = 30 panels) to exact solution.

The results for Tp and P are very accurate. The leading edge force predicted by the panel
method is somewhat inaccurate (about 5 percent) although the grid is refined at the leading
edge and trailing edge. This error is propagated to the efficiency η.
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A.3 Travelling wavy surface in unbounded domain

The travelling wavy surface w(x, τ) = 2 cos(kx − τ) in unbounded domain as discussed in
Sec. 3.3.2 is considered for a frequency σ = 5 and a wavenumber k = 3. The panel weights for
unbounded domain Eqs. (2.110, 2.111) are used (the first two terms without the h−2-correction).
The result of the panel code is compared to the representation by Chebyshev polynomials out-
lined in Sec. 2.1.7. The representation by Chebyshev polynomials gives exact solutions (results
see Fig. 3.11). In the panel code, only 15 panels are used. The results for the particular case
are shown in Tab. A.2.

Output Panel code Exact

Ts 3.10981 3.19891
Tp 9.16391 9.16977
P 15.2597 15.2829
η 0.804322 0.809312

Table A.2: Comparison of the output from the panel code (n = 15 panels) to exact solution.

The exact results are obtained from Eqs. (3.56)-(3.58). In comparison, the results from the
panel code are very accurate.

A.4 Membrane without inertia in unbounded domain

We consider the problem from Sec. 4.1.6. The membrane equation Eq. (2.90b) is solved for the
following membrane parameters: σ = 1.5, αM = 0.19, βM = µM = 0. A forced motion is given
only to the leading edge point, i. e. the panel code is used without baffle and flap, xA = 0 (see
Fig. 2.8). The number of panels is n = 200. The results are compared to the representation
by Chebyshev polynomials presented in Sec. 4.1.2. The Chebyshev version is resolved up to
nMax = 20 modes. In postprocessing the leading-edge amplitude is rescaled as in Sec. 4.1 for
comparison reasons. The results are given in Tab. A.3.

Output Panel code Chebyshev

Ts 0.11548 0.11219
Tp 1.15457 1.15600
P 1.58112 1.58188
η 0.803256 0.801687

Table A.3: Comparison of the output from the panel code (n = 200 panels) to Chebyshev version
(nMax = 20).

The solution point is displayed in Fig. 4.1 and lies on the curve of best attained membrane
solutions (blue line). The results from the panel code and the Chebyshev method are practically
identical. In comparison to the simple forced TWS motion in Sec. A.3 a considerably higher
number of panels needs to be utilized in the coupled problem (n = 200 versus n = 15), while the
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Chebyshev version provides the same accuracy with only 20 modes being resolved. Nevertheless,
the Chebyshev version is not suitable to study the channel flow.

114



Appendix B

Conversion to The Notation by Katz
& Weihs For Large Deflection
Motion

In Sec. 3.1.5 the linearized model for small-amplitude motion of a rigid foil (method discussed
by Wu [118]) is employed for large amplitudes and is compared to the potential flow results
reported by Katz & Weihs [38] that account for the geometrical nonlinearity of large-deflection
motion and free motion of the vortex wake. The aim is to study the limit of validity of the linear
model. In the following the conversion among the two different notations is given.

With the notation given in [38], the relation for the path angle with linearization tan θ ≈ θ
is

θ(t) = −2
H

c
σ cos

(
Ω̃t
)
.

The effective angle of attack (inclination of foil with respect to the patch drawn by the foil) is
chosen as

α(t) = α1 + α0 sin
(

Ω̃t− ϕ
)

with α1 = 0 for the considered examples. Then the instantaneous pitch angle is

Pitchangle(t) = θ(t)− α(t) .

Ideally, θ and α are negative at t = 0. The motion consists of heaving and pitching such that

w(x, t) = H sin(Ω̃t) + (x− xp)
[
−2Hσ cos(Ω̃t)− α0 sin(Ω̃t− ϕ)

]
for 0 ≤ x ≤ 1

with the location of the pitching axis at xp. Inserting the phase difference ϕ = 1
2π

wKatz = HKatz sin(Ω̃t)− (xKatz − xKatzp )
[
2HKatzσ − α0

]
cos(Ω̃t) .

In contrast, the motion in the work of Wu [118] is given by

hWu = HWu cos(ω̃t) +AWu(xWu −B) sin(ω̃t) for − 1 ≤ xWu ≤ 1 .
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To compare with [118], the motion in Katz is shifted in time angle by π/2. Then, the transfor-

mation Ω̃t+ π
2 = ω̃t, xKatz = 1+xWu

2 yields

wKatz = HKatz cos(ω̃t) +
2HKatzσ − α0

2

(
xWu −B

)
sin(ω̃t)

and by comparison hWu = 2wKatz (factor 2 because hWu is non-dimensionalized with the half-
chord)

HWu = 2HKatz, AWu = 2HKatzσ − α0, B = 2xp − 1 .

[38], Fig. 3 consider the case of α0 = 5◦ (small value to avoid flow separation), phase angle
ϕ = 1

2π, and pitch axis placed at the leading edge xp = 0. The heaving amplitude is contin-
uously varied for three different flapping frequencies. Thus, in the present notation, the input
parameters for these cases are given as (taking ε = 1)

σ =

{
π

40
,
2π

40
,
3π

40

}
, H = 2

H̃

L̃
, A = 2σ

H̃

L̃
− 5◦ , B = −1 . (B.1)

The results are shown in Fig. 3.3.
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Appendix C

Optimal foil motion

In this appendix the calculations for the optimization under constraints from Sec. 3.2.1 are
described in detail.

C.1 Solution via Lagrange function

From the Lagrange multiplier method in Sec. 3.2.1, the 6 equations Eq. (3.11) for the 6 unknowns
A, B, H, σ, µ and λ are given in full form as:

λ 2A(1 +B)2 + (8A− 8Hσ + 2A(1− 2B)2σ2)(F − F 2 −G2) +

µ
[
2A(1− 2B)σ2 − (8A− 4Hσ + 4A(1− 2B)σ2)F + (−4A(1 + 2B)σ + 4Hσ2)G+

(8A− 8Hσ + 2A(1− 2B)2σ2)(F 2 +G2)
]

= 0 , (C.1)

λ 2A2(1 +B)− 4A2(1− 2B)σ2(F − F 2 −G2) +

µ
[
−2A2σ2 + 4A2σ2F − 4A2σG− 4A2(1− 2B)σ2(F 2 +G2)

]
= 0 , (C.2)

λ 2H + (−8Aσ + 8Hσ2)(F − F 2 −G2) +

µ
[
4AσF + 4Aσ2G+ (−8Aσ + 8Hσ2)(F 2 +G2)

]
= 0 , (C.3)

with ()′ = d
dσ () [

−8AH + 2(A2(1− 2B)2 + 4H2)σ
]

(F − F 2 −G2) +[
4A2 − 8AHσ + (A2(1− 2B)2 + 4H2)σ2

]
(F ′ − 2FF ′ − 2GG′) +

µ
{

2A2(1− 2B)σ − (−4AH + 4A2(1− 2B)σ)F + (−2A2(1 + 2B) + 8AHσ)G+[
−8AH + 2(A2(1− 2B)2 + 4H2)σ

]
(F 2 +G2)+[

4A2 − 8AHσ + (A2(1− 2B)2 + 4H2)σ2
]

(2FF ′ + 2GG′)−
(4A2 − 4AHσ + 2A2(1− 2B)σ2)F ′ + (−2A2(1 + 2B)σ + 4AHσ2)G′

}
= 0 , (C.4)

(1 +B)2A2 +H2 = w2
1,max , (C.5)
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T = A2(1− 2B)σ2 −
(
4A2 − 4AHσ + 2A2(1− 2B)σ2

)
F −(

2A2(1 + 2B)σ − 4AHσ2
)
G+[

4A2 − 8AHσ +
(
A2(1− 2B)2 + 4H2

)
σ2
] (
F 2 +G2

)
. (C.6)

µ and λ denote the Lagrange multipliers. F and G are the respective real- and imaginary part
of the Theodorsen function Eq. (2.33) and depend on the reduced frequency σ. The system
is solved in the following way: Eqs. (C.1, C.2) are solved for the Lagrange multipliers and
these are inserted into Eqs. (C.3, C.4). The resulting two equations are sufficient to determine
both the pitching motion reference point B and the ratio of pitching and plunging amplitudes
A/H as functions of σ. First, Eqs. (C.1, C.2) are considered as linear system for the Lagrange
multipliers. Its solution is

µ =
Nµ

Dµ
, (C.7)

λ =
Nλ

Dλ
, (C.8)

with the auxiliary expressions

Nµ = −
[
4Hσ +A(−4 + (−3 + 6B)σ2)

]
(F − F 2 −G2) , (C.9)

Dµ = A(−2 +B)σ2 − 2
[
Hσ +A(−2 + (−2 +B)σ2)

]
F +

2σ(AB −Hσ)G+
[
4Hσ +A(−4 + (−3 + 6B)σ2)

]
(F 2 +G2) , (C.10)

Nλ = σ
{
−σ
[
4Hσ +A(−4 + σ2(1− 2B)2)

]
+

2σ
[
2(1 + 2B)Hσ +A(−8B + σ2(1− 2B)2)

]
F+[

4Hσ(−2 + (−1 + 2B)σ2) +A(8 + (6− 8B(1 +B))σ2)
]
G
}

(F − F 2 −G2) , (C.11)

Dλ = (1 +B)Dµ . (C.12)

Then, inserting Eqs. (C.7, C.8) into Eqs. (C.3, C.4) yields

σ(4A2(−2 +B)(1 +B)σ + 4H2σ +AH(−4 + 9σ2)) +

2
[
2H2σ2 −AHσ(8 + 9σ2) +A2(1 +B)(4 + (5 + 2B)σ2)

]
F +

2
[
2H2σ(2 + 3σ2)−AH(4 + 3σ2) +A2(1 +B)σ(−4− 3σ2 +B(4 + 6σ2))

]
G = 0 (C.13)

{
A(−2 +B)σ2 − 2

[
Hσ +A(−2 + (−2 +B)σ2)

]
F + 2σ(AB −Hσ)G

}{
2(−4AH +A2(1− 2B)2σ + 4H2σ)(F − F 2 −G2)+[

−8AHσ + 4H2σ2 +A2(4 + σ2(1− 2B)2)
]

(F ′ − 2FF ′ − 2GG′)
}

+[
4Hσ +A(−4 + (−3 + 6B)σ2)

][
−8AHσ + 4H2σ2 +A2(4 + σ2(1− 2B)2)

]
((−F 2 +G2)F ′ − 2FGG′) +

2
{
A2(1− 2B)σ + 2A(H +A(−1 + 2B)σ)F −A(A+ 2AB − 4Hσ)G+

A
[
2Hσ +A(−2 + (−1 + 2B)σ2)

]
F ′ −Aσ(A+ 2AB − 2Hσ)G′

}[
−4Hσ +A(4 + 3(1− 2B)σ2)

]
(F − F 2 −G2) = 0 . (C.14)
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Together with the (unchanged) side conditions Eqs. (C.5, C.6) a system of 4 equations is obtained
that can be sorted in powers of A and H and may be sketched as

( )A2 + ( )AH + ( )H2 = 0 , (C.15)

( )A3 + ( )A2H + ( )AH2 + ( )H3 = 0 , (C.16)

( )A2 +H2 = w2
1,max , (C.5 revisited)

T = . . . , (C.6 revisited)

where the braces ( ) represent different (distinct) given functions of B and σ. For a given thrust
T , these 4 equations can be solved for the unknowns A, H, B and σ. Since F and G are related
to Bessel functions of the parameter σ, the problem is nonlinear and appears to call for a numeric
solution. However, in the attempt to circumvent this problem and to find an analytic solution,
the following trick is used: Instead of assuming T as given we assume the frequency σ as given.
This approach is motivated by the fact that we have an explicit expression for T . In case that we
can manage to solve Eqs. (C.15, C.16, C.5) for A, H and B (for various values of σ), the thrust
T can be easily determined in postprocessing from Eq. (C.6). Indeed, the various expressions
in braces ( ) are polynomials in B and thus we have a system of polynomial equations for A,
H and B. In particular, Eqs. (C.15, C.16) are sufficient to obtain a polynomial equation for B
as a function of σ. This equation can be derived in 3 steps that may be delineated as follows
(assuming H,A 6= 0):

Step 1: Multiply the first equation appropriately to eliminate A3 from the second equation:

Eq. (C.16)−A · Eq. (C.15)

H
⇒ ( )A2 + ( )AH + ( )H2 = 0 . (C.17)

Step 2: Subtract the first equation appropriately to eliminate H2 from the result of Step
1:

Eq. (C.17)− Eq. (C.15)

4σA
⇒ A/H = f(B, σ) . (C.18)

The results is an expression for the pitching-to-plunging ratio A/H. f(B, σ) is a given function
of B and σ and is polynomial in B.

Step 3: Factor out H2 from Eq. (C.15) and insert A/H from Eq. (C.18). This simplifica-
tion paves the way to a (rather tedious) equation for B only:

( )f2 + ( )f + ( ) = 0 . (C.19)

The result is a polynomial equation of order 6 in B (the coefficient for B7 is zero) and the
coefficients are nonlinear functions of σ. The roots of Eq. (C.19) are solved in closed form:

• B1 =
(

1
4
C1
C0
− 1
)−1

solution that gives the optimum η-T -envelope,
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• B2,3 not optimal,

• B4,5 = 1
2 gives T = 0,

• B6 = −1 violates the assumption B ≥ 0.

C1 and C0 are functions of σ. The solution B1 is equal to B(σ) in Appendix C.2, Eq. (C.57).

C.2 Direct approach with the elimination method

The idea of the elimination method in Sec. 3.2.1 is to eliminate two variables (H and A, steps
1 and 2) and in this way incorporate the two side conditions Eqs. (3.13, 3.14). This gives an
implicit expression Eq. (3.15) for the objective function E from which the conditions for the
optimum motion Eq. (3.16) are derived. The resulting equations are solved one after the other
(steps 3 and 4) to simplify the procedure.

Step 1

The side conditions are used to eliminate H. First, Eq. (3.5) is recast into

8AσH = 4A2 +
(
A2(1− 2B)2 + 4H2

)
σ2 − E

F − F 2 −G2
. (C.20)

Eq. (C.20) is squared and H2 is eliminated using Eq. (C.5). This gives(
w2

1,max −A2(1 +B)2
)

(8Aσ)2 =[
4A2 +

(
A2(1− 2B)2 + 4

(
w2

1,max −A2(1 +B)2
))
σ2 − E

F − F 2 −G2

]2

(C.21)

Secondly, the equation for the thrust Eq. (3.6) is recast into

H =
{
A2(1− 2B)σ2 −

(
4A2 + 2A2(1− 2B)σ2

)
F − 2A2(1 + 2B)σG+[

4A2 +
(
A2(1− 2B)2 + 4H2

)
σ2
] (
F 2 +G2

)
− T

}
/[

4Aσ(−F − σG+ 2F 2 + 2G2)
]
. (C.22)

Inserting Eq. (C.22) into H on the lhs of Eq. (C.20) and thereafter eliminating all H2 with
Eq. (C.5) yields (

−F
2
− σG

2
+ F 2 +G2

)
·{

4A2 +
[
A2(1− 2B)2 + 4

(
w2

1,max −A2(1 +B)2
)]
σ2 − E

F − F 2 −G2

}
=

A2(1− 2B)σ2 −
(
4A2 + 2A2(1− 2B)σ2

)
F − 2A2(1 + 2B)σG+{

4A2 +
[
A2(1− 2B)2 + 4

(
w2

1,max −A2(1 +B)2
)]
σ2
} (
F 2 +G2

)
− T (C.23)
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The thrust T and the maximum deflection w1,max are considered as given parameters. We can
now introduce the abbreviations

S = S(σ,E;w1,max) = w2
1,max4σ2 − E/

(
F − F 2 −G2

)
, (C.24)

R = R(σ,E;T ,w1,max) = w2
1,max4σ2

(
F 2 +G2

)
− T +

(
F

2
+ σ

G

2
− F 2 −G2

)
S , (C.25)

D0 = D0(σ) =

(
2 +

7

2
σ2

)
F − σ2

(
1− 3

2
σG

)
, (C.26)

D1 = D1(σ) = 2σ2(1 + F ) + 2
(
2 + 3σ2

)
σG (C.27)

to write Eq. (C.21) and Eq. (C.23) as

A4
(
4 + 9σ2

) (
4 + (1 + 4B)2σ2

)
−A2

[
(w1,max8σ)2 − 2

(
4− 3(1 + 4B)σ2

)
S
]

+ S2 = 0 , (C.28)

(D0 +D1B)A2 = R . (C.29)

Step 2

A is eliminated by inserting Eq. (C.29) into Eq. (C.28). This results in a quadratic equation for
B

f = f(B, σ,E;T ,w1,max) = NB2 + PB +Q = 0 (C.30)

with the abbreviations (sorted in powers of R)

N = N0 +N1R+N2R
2 , (C.31)

P = P0 + P1R+ P2R
2 , (C.32)

Q = Q0 +Q1R+Q2R
2 , (C.33)

and
N0 = S2D1

2, N1 = −24σ2SD1, N2 =
(
4 + 9σ2

)
(4σ)2 , (C.34)

P0 = 2S2D0D1, P1 = −24σ2SD0 −D1

[
(w1,max8σ)2 − 2S(4− 3σ2)

]
, P2 =

(
4 + 9σ2

)
8σ2 ,

(C.35)
Q0 = S2D0

2, Q1 = −D0

[
(w1,max8σ)2 − 2S(4− 3σ2)

]
, Q2 =

(
4 + 9σ2

) (
4 + σ2

)
. (C.36)

Step 3

The optimization problem can now be stated. Eq. (C.30) forms an implicit representation for
the energy E that depends on the variables B and σ and the given parameters T and w1,max.
Optimal motion is attained (cf. [41]) when

∂f

∂B
= 0 ,

∂f

∂σ
= 0 . (C.37)
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The first condition suffices to decouple B. As a result, a simpler optimization problem can be
stated. The first condition yields

B = B(σ,E;T ,w1,max) = − P

2N
(C.38)

and together with Eq. (C.30) P 2 = 4QN . From that it can be readily seen that

P0
2 − 4Q0N0 = 0, 2P0P1− 4(Q0N1 +Q1N0) = 0 . (C.39)

and consequently Eq. (C.30) can be reduced to a quadratic equation in R

P1
2 + 2P0P2 − 4(Q0N2 +Q1N1 +Q2N0) +

[2P1P2 − 4(Q1N2 +Q2N1)]R+
(
P2

2 − 4Q2N2

)
R2 = 0 . (C.40)

Furthermore, inserting S and R from Eqs. (C.24,C.25) results in a quadratic equation in E

K2

(
E

T (F − F 2 −G2)(4 + 9σ2)

)2

− 2

(
2
L

T
+K

)
E

T (F − F 2 −G2)(4 + 9σ2)
+ 1 = 0 (C.41)

with the σ-dependent functions

K = K(σ) = 2Gσ + 3σ2 − 2F (2 + 3σ2) + (F 2 +G2)(4 + 9σ2) , (C.42)

L = L(σ;w1,max) = w2
1,max4σ2

[
σ2/4 + F + σG− (1 + σ2)(F − F 2 −G2)

]
, (C.43)

Q = Q(σ) =
(4 + 9σ2)(F − F 2 −G2)

K
, (C.44)

M = M(σ) =
Q

K
. (C.45)

Note that Q is different to the expression in Eq. (C.30). The solution of the quadratic equation
is

E = E(σ;T ,w1,max) =
Q

K

(√
L+KT −(+)

√
L
)2

. (C.46)

where only the minus sign is used in what follows. Note that E = 0 at T = 0.

Step 4

Finally, the simplified optimization problem is solved. The energy in Eq. (C.46) has a minimum
when

dE

dσ
= 0 . (C.47)

With ()′ = d
dσ () this results in

M ′(
√
L+KT −

√
L) + 2M(

√
L+KT −

√
L)′ = 0 . (C.48)
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Performing the differentiation of the
√
L terms, multiplication with

√
L+KT , and sorting for√

L+KT gives(
M ′L+ML′

)
+
(
M ′K +MK ′

)
T =

(
M ′
√
L+ML′/

√
L
)√

L+KT . (C.49)

The solution is

T = T (σ;w1,max) =
(ML)′

(MK)′
(ML)′K/L− 2 (MK)′

(MK)′
. (C.50)

The result can now be used to rewind the proceduce. From Eq. (C.45) follows

(MK)′ = Q′ , (C.51)

(ML)′ =
L

K

[
Q′ −Q

(
K ′

K
− L′

L

)]
, (C.52)

(ML)′
K

L
− 2 (MK)′ = −

[
Q′ +Q

(
K ′

K
− L′

L

)]
. (C.53)

Thus

T = T (σ;w1,max) = − L
K

[
1−

(
Q

Q′

(
K ′

K
− L′

L

))2
]

(C.54)

and √
L
√
L+KT = +

(−)
KQ(L/K)′

Q′
, (C.55)

where only the plus sign is used. Inserting the result into Eq. (C.46) eliminates T

E = E(σ;w1,max) = 4

[√
L/(KQ)

′

(1/Q)′

]2

(C.56)

with K, L and Q defined in Eqs. (C.42–C.44). With the results, the motion variables can be
expressed solely as functions of σ. Eq. (C.54) and Eq. (C.56) are plugged into Eq. (C.24) and
Eq. (C.25) to achieve that S and R, respectively, depend only on σ. With D0 and D1 from
Eq. (C.26) and Eq. (C.27), respectively, N and P in Eq. (C.31) and Eq. (C.32), respectively, are
pure functions in σ as well. Then, the location of the pitching axis is obtained from Eq. (C.38)

B = B(σ) = −P/(2N) . (C.57)

Employing Mathematica, it has been proven (by symbolic comparison) that the solution is iden-
tical to the solution for B from the Lagrange multiplier method in Appendix C.1. The pitching
and plunging amplitude A and H, respectively, follow from Eq. (C.29) and Eq. (C.5).

123



C.3 Limit σ →∞
The following results are obtained for w1,max = 2 for an expansion in the limit σ → ∞. The
real and imaginary part of the Theodorsen function in Sec. 2.1.7 are

F (σ) =
1

2
+

1

16σ2
− 19

256σ4
+ · · · (C.58)

G(σ) = − 1

8σ
+

7

128σ3
+ · · · (C.59)

[note that there is a minor error in the second term of G in [119], Eq. (22)]
From Sec. 3.2.1, Eq. (3.19), Eq. (3.20) and Eq. (3.21)

K =
9

4
σ2 − 59

64
+ · · · (C.60)

L =
9

4
σ2 +

63

32
+ · · · (C.61)

Q = 1 +
19

24σ2
+ · · · (C.62)

Then with Eq. (3.17) and Eq. (3.18)

T =
21229

12996
− 438544535

35557056σ2
+ · · ·

E =
5041

12996
− 168306281

35557056σ2
+ · · ·

From this result, one can see that the optimization limits the thrust to T opt = 21229
12996 . The

propulsive efficiency is

η =
1

1 + E/T
=

299

370
+

2370511

3285600σ2
+ · · ·

From that with Eq. (C.24) and Eq. (C.25)

S = 16σ2 − 5041

3249
+ · · ·

R =
3

4
σ2 − 865

1444
+ · · ·

as well as Eq. (C.26) and Eq. (C.27)

D0 =
9

16
σ2 +

333

256
+ · · ·

D1 =
9

4
σ2 − 3

64
+ · · ·

follows from Eq. (C.31) and Eq. (C.32)

N = 144σ6 − 19976

361
σ4 +

2478076393

3127704
σ2 + · · ·
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P = −144σ6 +
10817

361
σ4 − 5242568801

6255408
σ2 + · · ·

the solution of Eq. (C.38)

B =
1

2
+

3053

34656σ2
+

347402743

1801557504σ4
+ · · · (C.63)

Once B is known, one obtains from Eq. (C.29)

A =
4

3
− 55835

77976σ2
+

43086749903

16214017536σ4
+ · · · (C.64)

and finally from Eq. (C.5)

H =
223

114σ
− 53427229

11852352σ3
+ · · · (C.65)

We note that the same result is obtained for B if the Lagrange multiplier method in Sec. 3.2.1
is used. In the limit σ →∞, one obtains

C0 = −263169

32768
σ4 − 727461

262144
σ2 +

105066315

8388608
+ · · ·

C1 = −789507

8192
σ4 − 180063

8192
σ2 +

371185173

2097152
+ · · ·

and with B =
(

1
4
C1
C0
− 1
)−1

one obtains the same result as Eq. (C.63). The feathering parameter

in Eq. (3.2) is To complete the results

λ =
5041

84360
− 1341396823

2372203200σ2
+ · · ·

µ = − 71

185
+

189561

136900σ2
+ · · ·

C.4 Boundary optimum

We attempt to find an optimum motion for the case T > T opt. The ansatz

B =
1

2
+
B2(T )

σ2
+ · · ·

A =
4

3
+
A2(T )

σ2
+ · · ·

H =
H1(T )

σ
+
H3(T )

σ3
+ · · ·

allows to match to the solution Eqs. (3.32)–(3.34) at T = T opt. Note that H2(T ) = 0 is a
consequence of the matching. Considering this composition of B, A and H in terms of σ and

125



Eqs. (C.58), (C.59) (only 2 terms in F and one term in G is needed), Eqs. (C.1)–(C.3), (C.5)–
(C.6) are expanded at σ → ∞ and all terms that are not of leading order in σ are skipped.
Then, the 5 equations Eq. (3.37) read

1

2
A(1− 2B)2(1 + µ)σ2 +

A(63 + 4B − 4B2)− 64Hσ

32
+

2A(1 +B)2λ+
A(−51 + 28B + 20B2)− 16Hσ

32
µ = 0 , (C.66)

A2(−1 + 2B)(1 + µ)σ2 +
A2(1− 2B)

16
+ 2A2(1 +B)λ+

A2(7 + 10B)

16
µ = 0 , (C.67)

− 2(A−Hσ) +

(
−A

2
+ 2Hσ

)
µ+

A−Hσ
8σ2

+
2Hσ

σ2
λ+
−3A+ 5Hσ

8σ2
µ = 0 , (C.68)

(1 +B)2A2 +H2 = w2
1,max , (C.69)

T =
A2(1− 2B)σ2

4
+
A2(−51 + 28B + 20B2)− 32AHσ + 64(Hσ)2

64
. (C.70)

From Eqs. (C.66, C.67), in leading terms of σ

µ =
A(61 + 6B)− 48A(−1 + 2B)σ2 − 64Hσ

16Hσ +A(65 + 6B) + 48A(−1 + 2B)σ2
, (C.71)

λ =
24
[
−A+Hσ + (−1 + 2B)(−2A+Hσ)σ2

]
(1 +B) [16Hσ +A(65 + 6B) + 48A(−1 + 2B)σ2]

. (C.72)

Plug λ and µ into Eq. (C.68)

24(Hσ)2(1− 24σ2) + 32A(Hσ + 48Hσσ2) +A2(−59 + 738σ2 + 288σ4)−[
168(Hσ)2 − 4AHσ(59 + 48σ2) +A2(65 + 606σ2 + 288σ4)

]
B −

6A(−1 + 16σ2)
[
2Hσ +A(−1 + 6σ2)

]
B2 = 0 . (C.73)

Inserting A = +
(−)

√
w2

1,max −H2/(1+B) from Eq. (C.69) into Eqs. (C.73, C.70) gives 2 equations

for B and H1(T ). Taking w1,max = 2, each equation solved for B yields

B =
1

2
+
−28 + 33H1(T )− 9H1(T )2

24

1

σ2
+ · · · ,

B =
1

2
±

√
8 + 6H1(T )− 9H1(T )2 + 9T

4

1

σ
+
−3 +H1(T )− 3H1(T )2 + 3T

8

1

σ2
+ · · · .

A comparison of coefficients in terms of σ yields

H1(T ) =
1 +

(−) 3
√

1 + T

3
.
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Only the solution with the plus sign matches Eq. (3.34) at T = T opt. Thus the results are

H =
1 + 3

√
1 + T

3

1

σ
+O

(
σ−3

)
,

B =
1

2
+

3
(
−3− T + 3

√
1 + T

)
8

1

σ2
+O

(
σ−3

)
,

A =
4

3
− −44− 9T + 60

√
1 + T

54

1

σ2
+O

(
σ−3

)
.

To complete, from Eq. (C.71) and Eq. (C.72)

µ =
13 + 3T − 13

√
1 + T

−3− 3T + 10
√

1 + T
+ · · · ,

λ =
26 + 16T − (26 + 3T )

√
1 + T

4
(
−3− 3T + 10

√
1 + T

) + · · · .

From Eq. (3.5)

E =
(√

1 + T − 1
)2

+ · · · .

This result is also obtained from Eq. (C.56) with Eqs. (C.60)–(C.62). From Eq. (2.47)

η =
1

2
+

1

2
√

1 + T
+ · · · .
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Appendix D

Comparison of Common
Discretization Schemes in Fluid
Dynamics

An overview of discretization schemes that are commonly used in fluid dynamics is given here
with the aim to classify the method described in Sec. 3.5.2 for the self-developed Navier–Stokes
solver.

D.1 FD-, FV- and FE-method

Finite difference (FD) methods approximate the derivatives in the differential equation by finite
differences. The unknowns are usually point-values, sometimes face-averages. In finite volume
(FV) methods the domain is subdivided into control volumes (CV) that are connected to each
other. Often simplices are used for the shape of the volumes. The differential equation is in-
tegrated over the cell and applying Gauß theorem the quantities can be expressed by fluxes at
the cell bound, where each flux is at that part of the cell bound that is connected to the other
cell. Similar methods are the finite integral method and FDTD used to solve the electromag-
netic (Maxwell) equations. A special property of the FV-method is the requirement that each
of this fluxes is unique, id est it is a property only of this part of the cell bound. This guar-
antees full-conservation of the states in a conservation equation (cf. [21], Sec. 7.1.3) due to the
telescopic sum property. The fluxes are then interpolated from the unknowns (in the unsteady
case, this is called the semi-discrete system of equations). In contrast, in Finite Element (FE)
Methods, an ansatz function for the spatial distribution of the unknowns is assumed for each
control-volume and it is therefore denoted as element. For the unknowns usually the cell node
values are used. Some of the quantities (like stresses in a solid) often have a discontinuity at the
cell bounds. The FE-method is a special case of the method of (mean) weighted residuals, where
the differential equation that contains the solution function is multiplied with a test-function
(or weight-function) and then integrated over the element. Integration by parts then allows to
state the problem in a weak formulation. The integrals are usually evaluated approximately
by quadrature. In Galerkin methods, for the test function the same ansatz is used as for the
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unknowns. The Petrov–Galerkin method can be used if the differential equation contains also
a first derivative (like a diffusion term). It is not possible to obtain a weak formulation when
the test function and the solution function lie in the same function space. In fluid dynamics, for
instance, an upwind formulation is used for the test function. The ansatz of the solution func-
tion is different and thus the matrix of the resulting linear system is asymmetric. Discontinuous
Galerkin methods (cf. [76]) combine the features of the FE- and FV-method. Unlike classical
(continuous) Galerkin methods, the trial function space is piecewise discontinuous. Other meth-
ods that use the advantages of both FE and FV are the spectral element method by Patera
(high-order elements) and the spectral finite volume method by Wang. A mesh-free FE method
is the finite cell method by Düster. In the following, the focus is on the finite volume method,
but other methods are also discussed.

D.2 Incompressible versus compressible flow

Incompressible flow problems can be solved by numerical methods designed for compressible
flow that fulfill the incompressibility condition only approximately. An asymptotic analysis
that addresses the singular limit problem at low Mach number is described in [42]. The main
issue is the treatment of the acoustic system. When it is solved explicitly, the CFL-condition
contains the speed of sound and the time step would be impractically small. An implicit scheme
would be expensive too. However, as the acoustic system contains only the long-wave dynamics,
it is sufficient to solve it on coarser grid and then the explicit method can be used with low
computational effort. In the present work the continuity equation for a fluid with constant
density is considered and within the discretized system the incompressibility condition is thus
exactly fulfilled.

D.3 Uniform versus nonuniform grid

Employing schemes that are derived and optimized for uniform (e. g. rectangular, equi-distant)
grids [24] on nonuniform grid can lead to several problems. One problem is the poorer accuracy
due to loss of order of the scheme. More severe problems are a non-converging (iterative) solution
procedure or a solution that shows oscillations. There are different attempts to overcome these
problems. To preserve accuracy on nonuniform grid, the positions of the cell bounds need to
enter the discretization scheme in a particular way. Naturally, this leads to an interpolation
of the cell boundary quantities where the coefficients (factors or weights) of the cell-averages
differ from those on uniform grid. As an example, the method in [18] can be interpreted as a
1-dim finite volume approach. A 1-dim finite volume method on nonuniform grid (for linear
wave equation) using a compact stencil was proposed by [24]. Often so-called compact methods
are used, see below in Appendix D.10. A compact finite difference method for the 1-dim case
(applied also to multi-dim. problems) is given by [25]. A 2-dim approach that uses a finite
volume compact scheme on physical space is given in [46]. A 2-dim finite difference method that
uses mapping is used by [113]. For a finite volume method that uses mapping, cf. [27].
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D.4 Point versus cell average values

The unknowns to be solved for – in primitive variable notation usually the states – may either be
point values (at cell nodes/vertices, cell centers, or face centers) or cell-average values, cf. [43].
Using cell-average values as unknowns gives more accurate solutions [82]. [82] demonstrates that
the point value at the center of a cell is a second-order accurate estimate to the value averaged
over the cell volume. The same relation holds between the center value on a cell face and the
averaged value along the face, cf. [55]. Thus, it is of no consequence for first- or second-order
accurate models whether variables represent point values or averages over some volume or area.
But it is of crucial importance for third- or higher order numerical methods to properly define
the discretized variable as either point values (as in [21]) or cell-center values as computational
nodes (in [55], [17]).

D.5 Staggered versus colocated grid

An explanation and comparison of staggered and colocated grids is given in [116]. The stag-
gered variable arrangement was developed by [30]. Applications can be found in [112], [77]. In a
staggered arrangement the respective velocity components are usually placed at different loca-
tions in the grid. This arrangement has the unfavorable property that the discretization scheme
for the spatial derivative changes with the coordinate direction. This is not the case with the
colocated variable arrangement, see [75], [46]. A comparison of a C-Grid (staggered grid) with
an A-grid (all quantities colocated) is given in [82]. The main advantage of the colocated grid
is that there are always as much equations as unknowns, independent of the subdivision of the
domain. However, it is well known that the solution in a colocated arrangement is more prone
to odd-even decoupling. An effective cure to this problem is given in [90]. A partially staggered
arrangement (staggering for the pressure) is discussed in [47]. Similarly, in a classical pressure-
correction approach the decoupling is avoided in that the cell-face velocity is corrected with a
pressure source term calculated on a staggered control volume [55].

D.6 Physical versus computational space

On distorted but structured grid, there exist two different approaches to derive a discretization
scheme: The discretization can be performed either in physical space or in a computational
space [25]. In the physical space the metrics of the grid need to be taken into account directly
and it appears to be difficult to find a discretization that gives a stable scheme with the desired
order [46]. To obtain the coefficients in a higher-order scheme one needs to invert a linear system
that contains the so-called image moments. In a more frequently used approach, the equations
are mapped into a computational space [17]. The advantage is a simpler choice of the grid in
the new space (say rectangular, equi-distant), allowing easier interpolation of the quantities.
However, there are also some drawbacks:

• To ensure the overall order of the scheme, the mapping function needs to be either given
analytically [113] or approximated very accurately by a large set of points, see [27]. Fur-
thermore, the mapping function must be smooth to achieve good accuracy, see [52].
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• The transformed equations include the metric terms [52]. Therefore, the terms become
more laborious. The evolution term becomes nonlinear and the couples that arise from
the nonlinear terms transform to difficult multi-products.

• The cell-average values used as unknowns in the mapped space have no meaning in physical
space. This requires a reconstruction of the solution to point values.

• To obtain the evolution term in unsteady problems, it is required to determine the evolution
of the Jacobi determinant (the cell volume) such that it obeys the Geometric Conservation
Law (GCL), cf. [113], [105], [51].

• In gas dynamics, using a Godunov-type method, the transformed Riemann problem [106]
may not be physically meaningful, see [52].

Although the method that uses mapping (or Jacobian transformation) is often employed with
success [113], [77], [69], [17], [27], according to [25] the approach in physical space (Fully Included
Metrics, FIM) is more accurate. Nevertheless, it is difficult to derive a scheme in physical space
and it seems that it is used by less authors [46], [70], [71], [93], [56].

D.7 PPM versus PPH

Usually a polynomial ansatz (a truncated Taylor series) is used to obtain an interpolation. A
fourth-order accurate polynomial is used in the Piecewise Polynomial Method (PPM) by [18].
The coefficients for the explicit scheme are determined on a 1-dim nonuniform grid. The flux at
the cell bound (the value at cell border) is expressed by the cell-average values. A hyperbolic
linear transport equation is solved. The high-order interpolation is used in regions where the
solution is smooth and is corrected near steep gradients, for instance at shocks in a gasdynamics.
A different approach, the Piecewise Polynomial Harmonic (PPH), is used in [6] where a harmonic
mean of second derivatives is used instead of the polynomial ansatz. The PPH method gives
fourth-order accuracy for smooth solutions. However, it is proposed to have better properties
where the solution is discontinuous.

D.8 Reconstruction versus ansatz

In the reconstruction approach, a truncated Taylor series (TTS) is employed that relates a set
of partial derivatives in a point to unknowns (for instance: cell-averages). When the system is
solved, the partial derivatives can be reconstructed. A k-exact least squares reconstruction (using
control volume moments) can be found in [72], [73]. For applications of the reconstruction, see
[112], [111]. In a unique reconstruction, the system matrix must be regular. In a least-squares
reconstruction, more cells than moments are provided [72]. Instead of the reconstruction, [55]
use a two-step procedure to obtain the fluxes: The surface integrals representing the fluxes
are first approximated by a number of point values of the flux, which are then expressed by
the unknowns by means of interpolation. In [43], a simple approach is proposed where an
ansatz directly couples the flux (or for a compact scheme, the weighted sum of fluxes) to the
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unknowns. This idea is also used in [75]. The idea makes use of the property that on simple
meshes (Cartesian grid, for instance) some conditions for the control volume moments (cf. [72])
are fulfilled concurrently. Hence, less coefficients than conditions are required to fulfill the order
of accuracy of the discretization scheme.

D.9 Central versus upwind schemes

In [55] several different schemes are reported: Central difference scheme (CDS), upwind scheme
(UDS), and a linear extrapolation using two upstream nodal values, the linear upwind scheme
(LUDS). It is well-known that central or symmetric schemes have better spectral properties and
are less diffusive, see [43], [75]. This property is particularly important in large eddy simulation
(LES), see [94]. However, asymmetric schemes (like the upwind-scheme) are often employed in
fluid dynamics to suppress oscillations, see [24], [87]. For a comparison of central and upwind
schemes, see [14] (compact schemes on nonuniform grid, treated in physical space). Their scheme
is generalized for the 1-dim case by [93].

D.10 Explicit versus compact discretization method

In an explicit method (often called Lagrange method, see [24]), the flux is explicitly expressed by
the a priori unknowns. In an explicit method, the fill-in of the system matrix is usually sparse.
In a compact method (also called Padé, Hermitian, or spline), an implicit relation between the
fluxes and the unknowns is established, see [87], [24], [75], [82]. [49] extensively studied 1-dim
compact finite difference schemes on nonuniform grid. A 1-dim compact finite volume scheme on
nonuniform grid is given in [24]. The compact method is more accurate and has better spectral
properties [43], [46]. Therefore, the method is sometimes grouped within the quasi-spectral
methods. However, the actual quasi spectral methods (like Chebyshev polynomial, wavelet
transformation) are closer related to the classical Fourier spectral method. When the compact
method is employed on rectangular grid, a tridiagonal system has to be solved in each direction
(x, y, z) with the Thomas algorithm. As a result, the fill-in of the system matrix is dense. To
reduce the computational effort, the system is usually solved with a Krylov subspace method,
see [75]. Although this step is computationally cheap on simple grids, it is more difficult to
employ a compact scheme for more complex (industrial) geometries. The usage on curvilinear
coordinates is sketched in [75]. For a discussion of boundary condition and stability issues we
refer to [43].

D.11 Nonlinear terms

The convection (or advection) term appearing in fluid dynamics is a nonlinear term, if expressed
in terms of primitive variables (in 2-dim the velocity components u, v). For a finite volume
method, the integral of the nonlinear flux along each part of a cell bound can be calculated
by a method proposed first by [75], consisting of a 2nd-order accurate product of linear fluxes
and a 4th-order correction. This idea has been used by several authors: [77], [17], [27]. The
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extension of this idea to fluxes over triple-products is sketched by the same authors [75]. These
multi-products appear in several different problems:

• Mapping to computational domain:
∫
u(x, y)dy becomes

∫
yηu(ξ, η)dη, [113], [17], [27].

• Compressible media: In gas dynamics, the convective flux terms are of the triple-product
form ρ u v, see [46].

• Mapping for compressible medium: Even quad product terms appear, see [113], [27].

D.12 Boundary conditions

If boundary conditions (BC) of the Dirichlet type exist, in Finite Volume methods the values at
the boundaries can be directly prescribed as fluxes, see [75]. In this regard the FV methods are
superior compared to Finite Difference methods that often require a downwind discretization
at inlet boundaries that tend to destabilize the system, cf. [43]. If the value at the boundary
is not known, extrapolation from internal unknowns or ghost cells [122] are used. For the
diffusive (or viscous) terms at boundaries on the right sided boundary the extrapolation scheme
changes signs compared to the scheme on the left sided boundary [58]. When extrapolation to
the boundary is used, usually each term in the equations (linear contributions from continuity,
pressure, diffusion; and nonlinear term from convection, etc.) is extrapolated independently from
the other terms. However, for a Finite Volume approach with colocated variable arrangement,
there exist problems where the driving force of the system does not enter the discretized problem
at all (problems like the lid-driven cavity with prescribed wall motion) when these extrapolations
are used. In these cases, an extrapolation to the boundary needs to be employed that couples
terms that represent different physical effects.

D.13 Avoiding a singular system

If the reconstruction or the ansatz (to directly relate fluxes and unknowns, see [43]) gives sym-
metric coefficients, there is a danger that the system of equations is singular (detA = 0). The
solution of Ax = 0 (eigenvector x to the eigenvalue λ = 0) is called the Kernel (shortly ker) or
Nullspace, see [42], [75], and per definition the size of the matrix A minus the rankA is equal
to the dimension of the Nullspace dim kerA. For the incompressible (ρ̃ = const) Navier–Stokes
equations, using a symmetric ansatz and colocated arrangement of the unknowns, different terms
in the equations can be the cause for a singular system matrix A. When the solution in the
Nullspace x is of oscillatory type, often odd-even decoupled solutions are observed (often called
checkerboards in 2-dim, see [90]) when an iterative equation solver is used. Maintaining a sym-
metric discretization scheme, a singular matrix A can only be prohibited by a proper choice of
boundary conditions:

• The set of discretized continuity equations (i. e., the discrete divergence operator D)
becomes singular if the unknowns are prescribed at all boundaries (Dirichlet BCs) and
hence do not depend on the unknowns. For these cases, if a finite volume approach is
employed, due to its conservation-preserving and telescopic sum properties [21], it can
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be shown easily that the sum of discretized continuity equations over all cells already
fulfills the boundary conditions. Therefore, the field equations together with the boundary
conditions result in a singular discrete divergent matrix dim kerD = 1. Note: A special
case of this consideration is the well-known non-penetration problem for closed systems,
where the mass-flux is zero at all faces at the boundary . This problem can be circumvented
by using extrapolation at at least one boundary.

• A similar behaviour is observed for the pressure terms (the discrete gradient operator G) in
the momentum equations when the pressure is prescribed at all boundaries of the domain.
Then, the system is also singular dim kerG = 1, see [116], [83]. When used together with
singular operator D for the continuity equations, the overall system even has dim kerA = 2.
Hence, it should be avoided to set the pressure at all boundaries.

• Finally, also the convective (or advective) terms in the momentum equations can decouple
if a FV-approach and a symmetric ansatz are used (see the checkerboard example in [116]).

D.14 Solvers

Alternating Direction Implicit (ADI), see [21], [92] is a Fractional Step Approach and Approx-
imate Factorization Technique (cf. [90] [40], [16], [77]) that can be easily used for 2nd-order
discretized Pressure Poisson Equation (PPE) on uniform grid. Another method is the Strongly
Implicit Procedure (SIP) method from [101], see the explanation in [21], also [55]. The nonlinear
coupled system is solved iteratively with a Newton–Raphson algorithm or a Newton-like method.
When a compact scheme is used (see D.10) the system is not sparse. Then a Krylov-subspace
method, for instance, is usually a better choice [75].

D.15 Deconvolution

Deconvolution is a post-processing procedure. In this context, deconvolution is understood as
reconstruction from the solution field, for example the reconstruction of point-values from cell-
average values. Examples for the deconvolution of a solution can be found in [75], [33], [122] and
for a finite-volume compact scheme on staggered grid in [77]. A different application is filtering
of non-physical oscillations [49].
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Appendix E

Verification of The Navier–Stokes
Solver

The Navier–Stokes solver described in Sec. 3.5.2 is verified with a Kovasznay flow on random
grid and a lid-driven cavity flow on uniform and random grid. The quality of the solution, order
of accuracy, and deconvolution from cell-average values to node values are examined.

E.1 Kovasznay flow

E.1.1 Analytical solution

The Kovasznay flow presented in [44] is an analytic solution of the steady, 2-dim Navier–Stokes
equations given by

u = 1− exp(λx) cos(2πy)

v =
λ

2π
exp(λx) sin(2πy)

p = −1

2
exp(2λx)

where λ = Re
2 −

√
Re2

4 + 4π2. In describes the laminar flow behind a two-dimensional grid shown
in Fig. E.1.
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Figure E.1: Streamlines of Kovasznay flow behind a two-dimensional grid; Re = 40.

It is often used to test discretization schemes, [92], [112]. The Reynolds number is built with
the undisturbed velocity (U = 1) and the vertical grid distance (L = 1) that is also used for the
size of the domain.

E.1.2 Solution on non-uniform grid

In the test, the domain spans the interval x = [1
2 ,

3
2 ], y = [−1

2 ,
1
2 ]. At the boundaries

u(0.5, y) = 1− 0.61763 cos(2πy), v(x,±0.5) = 0, p(1.5, y) = −0.027754 .

n is the number of cells in each direction. A non-uniform grid with random distortion of the
node positions is chosen to validate the convergence and accuracy of the numerical scheme. The
grid and the results are shown in Fig. E.2.
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Figure E.2: Kovasznay flow on non-uniform grid: Re = 40, grid with n = 64. (a) Random grid;
(b) Isolines of the pressure p; (c) Isolines of the streamfunction ψ; (d) Isolines of the vorticity ω.

The cell-average values are mapped to point values in the nodes via a deconvolution proce-
dure, before the isolines are plotted. The discrete (finite volume) form of the mass conservation
is used to obtain unique values for the streamfunction in the nodes. The streamfunction gives
a good impression of the (rather simple) flow field. Pressure and vorticity are more prone to
numerical errors than the velocity field. The pressure in a co-located arrangement should be
checked for “wiggles”. The accuracy of the vorticity is (at best) one order below the velocity
field, as it is derived from its spatial derivatives.
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E.2 Lid-driven cavity

The lid-driven cavity has been investigated extensively in the literature, see [28], [20], [12],
[81] [42], [83]. The size of the domain is L = 1. On the right, bottom and left boundary we
prescribe u = v = 0 and on the top boundary u(x, 1) = 1, v(x, 1) = 0.

E.2.1 Solution on uniform grid

A uniform, equi-distant grid is constructed. The results for the pressure and the streamfunction
for Re = 1000 are shown as isolines in Fig. E.3.
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Figure E.3: Lid-driven cavity on uniform grid: Re = 1000, grid with n = 256. Left: Isolines of
pressure p; Right: Isolines of the streamfunction ψ.

For comparison, the values for the isolines of the streamfunction and pressure are chosen
according to [12], Tables 7 and 8, respectively. The results are in very good agreement to those
in the literature [20], [12], [81], [42], [83]. Tabs. E.1 and E.2 show a comparison of the results
for the primary and secondary vortex, respectively.
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Reference Grid ψ ω x y

Present n=128 -0.118894 -2.06795 0.5308 0.5652
Present n=256 -0.118930 -2.06795 0.5308 0.5652
Ref. [12] 128 -0.118937 -2.06775 0.5308 0.5652
Ref. [12] 160 -0.118937 -2.06775 0.5308 0.5652
Ref. [20] 601 -0.118781 -2.06553 0.5300 0.5650
Ref. [20] Extrapol. -0.118942 -2.06721 – –
Ref. [81] 257 -0.118800 – 0.5325 0.5639
Ref. [28] 129 -0.117929 -2.04968 0.5313 0.5625

Table E.1: Intensity ω of the primary vortex, at Re = 1000; (x,y) refers to the center of the
primary vortex, i. e. the location of the maximum value of the streamfunction ψ.

Reference Grid ψ ω x y

Present n=128 0.00172965 1.10902 0.8640 0.1118
Present n=256 0.00172959 1.10915 0.8640 0.1118
Ref. [12] 128 0.00172972 1.10979 0.8640 0.1118
Ref. [12] 160 0.00172972 1.10979 0.8640 0.1118
Ref. [20] 601 0.00172810 1.11551 0.8633 0.1117
Ref. [20] Extrapol. – – – –
Ref. [81] 257 0.00172397 – 0.8658 0.1119
Ref. [28] 129 0.00175102 1.15464 0.8594 0.1094

Table E.2: Intensity ω of the secondary vortex (lower right corner), at Re = 1000; (x,y) refers to
the center of the secondary vortex, i. e. the location of the minimum value of the streamfunction
ψ.

Since no exact solution exists for this problem, the solution on the finest grid (n = 256) is
used as a reference solution for the error estimate. We define the error en on a grid with fineness
n in the Lp norm as

en = ||φ− φex||Lp =

[∑
N (φi − φexi )p

N

]1/p

,

where φi and φex refer to the numerical and exact values of a scalar field φ in the nodes and N
is the number of nodes. The spatial order of accuracy is then calculated from the error of two
contiguous grid sizes as

ln (en1/en2)

ln (n2/n1)
.

The order of accuracy on coarse grids is shown in Tab. E.3.

139



State Norm
n

8 → 16 → 32 → 64 → 128

u
L∞ 0.00 2.46 0.49 0.61
L2 0.55 2.42 2.82 2.37
L1 0.58 2.39 3.20 3.54

v
L∞ 0.33 2.36 0.61 0.77
L2 1.06 2.36 2.54 2.48
L1 1.30 2.28 2.80 3.51

p
L∞ 1.26 1.95 0.52 0.59
L2 1.65 1.93 2.89 3.07
L1 1.79 1.94 3.00 3.79

Table E.3: Order of accuracy of spatial discretization on uniform grid. Errors from the node
values (reconstructed from cell averages); horizontal and vertical velocity components u and v,
respectively. Pressure p.

Almost forth order accuracy is attained on fine grids in the L1 norm.

E.2.2 Solution on non-uniform grid

Random grids with different grid number are constructed as in Fig. E.2(a). On arbitrarily
distorted grids, the scheme is expected to attain order three. Fig. E.4 shows the solution for
streamfunction and vorticity for grids with n = 64 and n = 128, respectively.
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Figure E.4: Lid-driven cavity on non-uniform grid: Re = 1000. Left: Isolines of the streamfunc-
tion ψ (values as above); Right: Isolines of vorticity ω; Top row: grid with n = 64; Bottom row:
grid with n = 128.

Only small changes can be observed in the streamfunction (at the center, and the corners)
when the grid is refined. The isolines of vorticity become smoother. Again, the solution from
the finest uniform grid (Fig. E.3) is selected as reference solution for the error estimate. The
order of accuracy on coarse grids is shown in Tab. E.4.

141



State Norm
n

8 → 16 → 32 → 64 → 128

u
L∞ 0.25 2.23 0.36 0.66
L2 0.77 2.21 2.72 2.33
L1 0.81 2.18 3.13 3.16

v
L∞ 0.54 1.97 0.61 0.69
L2 1.29 2.10 2.52 2.44
L1 1.52 2.08 2.77 3.19

p
L∞ 1.41 1.87 0.18 0.46
L2 1.72 1.93 2.82 2.50
L1 1.85 1.94 2.96 3.05

Table E.4: Order of accuracy of spatial discretization on random grid. Errors from the node
values (reconstructed from cell averages); horizontal and vertical velocity components u and v,
respectively. Pressure p.

On coarse grid, the accuracy of the scheme is pretty much the same as for uniform grid in
Tab. E.3. The accuracy in the L1 norm is slightly above the expected order of three.
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[21] Ferziger, J. H., and Perić, M. Computational Methods for Fluid Dynamics, 3rd ed.
Springer, 2002.

[22] Fontanella, J. E., Fish, F. E., Barchi, E. I., Campbell-Malone, R., Nichols,
R. H., DiNenno, N. K., and Beneski, J. T. Two- and three-dimensional geometries
of batoids in relation to locomotor mode. Journal of Experimental Marine Biology and
Ecology 446 (2013), 273–281.

[23] Förster, C., Wall, W. A., and Ramm, E. Artificial added mass instabilities in
sequential staggered coupling of nonlinear structures and incompressible viscous flows.
Computer Methods in Applied Mechanics and Engineering 196, 7 (2007), 1278–1293.

[24] Gaitonde, D., and Shang, J. S. Optimized compact-difference-based finite-volume
schemes for linear wave phenomena. J. Comput. Phys. 138, 2 (Dec. 1997), 617–643.

[25] Gamet, L., Ducros, F., Nicoud, F., and Poinsot, T. Compact finite difference
schemes on non-uniform meshes. Application to direct numerical simulations of compress-
ible flows. Intl. J. Num. Meth. Fluids 29, 2 (1999), 159–191.

[26] Garrick, I. E. Propulsion of a flapping and oscillating airfoil. Tech. Rep. 567, N.A.C.A.,
Washington D. C., 1936.

144



[27] Ghadimi, M., and Farshchi, M. Fourth order compact finite volume scheme on nonuni-
form grids with multi-blocking. Comput & Fluids 56 (March 2012), 1–16.

[28] Ghia, U., Ghia, K. N., and Shin, C. T. High-Re solutions for incompressible flow using
the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 3 (1982), 387–
411.

[29] Greengard, L. Potential flow in channels. SIAM J. Sci. Comput. 11, 4 (July 1990),
603–620.

[30] Harlow, F. H., and Welch, J. Numerical calculation of time-dependent viscous in-
compressible flow of fluid with a free surface. Phys. Fluids 8, 12 (1965), 2182–2189.

[31] Hickerson, A. I., and Gharib, M. On the resonance of a pliant tube as a mechanism
for valveless pumping. J. Fluid Mech. 555 (2006), 141–148.

[32] Hœpffner, J., and Fukagata, K. Pumping or drag reduction? J. Fluid Mech. 635
(2009), 171–187.

[33] Iannelli, P., Denaro, F. M., and Stefano, G. D. An effective fourth order finite
volume method for DNS/LES on non-uniform grid. In Proceedings of the Third AFOSR
International Conference on DNS/LES (Arlington, USA, August 2001), Greyden Press
Columbus.

[34] Iosilevskii, G. Asymptotic theory of an oscillating wing section in weak ground effect.
European Journal of Mechanics - B/Fluids 27, 4 (2008), 477–490.

[35] Jones, K. D., Dohring, C. M., and Platzer, M. F. Wake structures behind plunging
airfoils: A comparison of numerical and experimental results. AIAA paper 96-0078, 34th
Aerospace Sciences Meeting and Exhibit, 1996.

[36] Katz, J., and Plotkin, A. Low-Speed Aerodynamics, 2nd ed. Cambridge University
Press, 2001.

[37] Katz, J., and Weihs, D. Behavior of vortex wakes from oscillating airfoils. J. Aircraft
15, 12 (1978), 861–863.

[38] Katz, J., and Weihs, D. Hydrodynamic propulsion by large amplitude oscillation of an
airfoil with chordwise flexibility. J. Fluid Mech. 88 (1978), 485–497.

[39] Keldysh, M. V., and Lavrentiev, M. On the motion of a wing under the surface of
a heavy liquid. In Proceedings of the Conference on the Theory of Wave Drag (Moscow,
1937), pp. 31–64. (original in Russian).

[40] Kim, J., and Moin, P. Application of a fractional-step method to incompressible Navier-
Stokes equations. J. Comput. Phys. 59, 2 (1985), 308–323.

[41] Kirk, D. E. Optimal Control Theory: An Introduction. Dover Publications, 2004.

145



[42] Klein, R., Botta, N., Schneider, T., Munz, C. D., Roller, S., Meister, A.,
Hoffmann, L., and Sonar, T. Asymptotic adaptive methods for multi-scale problems
in fluid mechanics. Journal of Engineering Mathematics 39, 1 (2001), 261–343.
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[67] Müllner, M., and Schneider, W. Laminar mixed convection on a horizontal plate of
finite length in a channel of finite width. Heat and Mass Transfer 46, 10 (2010), 1097–1110.

[68] Muskhelishvili, N. I. Singular integral equations, 2nd ed. Dover, 1992.

[69] Nikitin, N. Finite-difference method for incompressible Navier–Stokes equations in arbi-
trary orthogonal curvilinear coordinates. J. Comput. Phys. 217, 2 (2006), 759–781.

[70] Nybelen, L. Temporal DNS of vortex bursting and assessment. Fundamental Research
on Aircraft Wake Phenomena, 2005–2008.
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