DIPLOMARBEIT

On a uniqueness theorem for the Fokker-Planck equation

Ausgeführt am
Institut für Wirtschaftsmathematik
der Technischen Universität Wien

unter der Anleitung von
Privatdoz. Dipl.-Ing. Dr.techn. Stefan Gerhold
durch
Joel Gotsch, BSc
Gaswerkstraße 2
2000 Stockerau

TECHNISCHE UNIVERSITÄT WIEN

Institute of Mathematical Methods in Economics

Faculty of Mathematics and Geoinformation

On a uniqueness theorem for the Fokker-Planck equation

Diploma Thesis

Joel Gotsch

0825654

Vienna, April 2014

Statutory declaration

Joel Gotsch, BSc
Gaswerkstrasse 2
2000 Stockerau

I declare that I have authored this thesis independently, that I have not used other than the declared sources / resources and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

Vienna, May 2014

Abstract

This thesis aims to prove a uniqueness theorem for the one dimensional driftless Fokker-Planck partial differential equation, i.e.

$$
\frac{\partial p(\mathrm{~d} x, t)}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}(p(\mathrm{~d} x, t) a(x, t))=0 \quad \text { in } \mathcal{D}^{\prime}(U)
$$

where $a(x, t)$ is a positive Borel function and for each $t \geq 0 p(\mathrm{~d} x, t)$ denotes a measure on either \mathbb{R} or \mathbb{R}_{+}, depending on U. We study two cases: $U=$ $\mathbb{R}_{+} \times \mathbb{R}_{+}$and $U=\mathbb{R} \times \mathbb{R}_{+}$. The latter case has been examined by M. Pierre, see [3, page 223]. We will replicate the proof which is given there but in more detail in section 5 .
However, the main result of this thesis is the case $U=\mathbb{R}_{+} \times \mathbb{R}_{+}$, which is examined in section 4. Unfortunately, the straightforward adaptation of the proof was not successful. This case is of theoretical importance (see e.g. [2]). An additional assumption for the diffusion term $a(x, t)$ should fix this problem, a heuristical proof is shown (see Lemma (4.7) point 5).

Contents

1 Introduction 6
2 Notation und definitions 8
3 The case with existing density function 16
4 The general version 27
5 The general version with $U=\mathbb{R} \times \mathbb{R}_{+}$ 51
6 Acknowledgement 66
Literature 67
A Appendix 68

1 Introduction

The Fokker-Planck Equation is a partial differential equation of a family of probability measures $p(\mathrm{~d} x, t)_{t \in \mathbb{R}_{+}}$. It is also known as the Kolmogorov Forward Equation. It is well known, that the probability density $f(x, t)$ of an Ito diffusion X_{t} satisfies the Fokker-Planck Equation. Hence the importance of the herein discussed equation to financial mathematics. In its general, d-dimensional case the Fokker Planck Equation reads as follows:

$$
\frac{\partial}{\partial t} p(\mathbf{x}, t)=\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left[b_{i}(\mathbf{x}) p(\mathbf{x}, t)\right]+\sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left[a_{i j}(\mathbf{x}) p(\mathbf{x}, t)\right]
$$

Were \mathbf{x} is a d-dimensional vector, the function vector \mathbf{b} is called the drift and a is called diffusion.
In this thesis we will only discuss the driftless (i.e. $b=0$), one dimensional case (one x -dimension and time). But also want to consider distributions which do not admit density functions. Therefor we write $p(\mathrm{~d} x, t)$ instead of $p(x, t)$. This leads to

$$
\frac{\partial p(\mathrm{~d} x, t)}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}(p(\mathrm{~d} x, t) a(x, t))
$$

Here, $p(\mathrm{~d} x, t)$ must be seen as a distribution and therefore this equation has to be interpreted in the distributional sence. I.e for some $U \subseteq \mathbb{R}^{2}$ and for any $\phi \in \mathcal{D}(U)$ the following equation must hold:

$$
\iint_{U} \frac{\partial p(\mathrm{~d} x, t)}{\partial t} \mathrm{~d} t+\iint_{U} \frac{\partial^{2}}{\partial x^{2}}(p(\mathrm{~d} x, t) a(x, t)) \mathrm{d} t=0 .
$$

We will discuss the cases $U=\mathbb{R}_{+} \times \mathbb{R}_{+}$and $U=\mathbb{R} \times \mathbb{R}_{+}$. The latter case has been examined by M. Pierre, see [3, page 223]. We will replicate the proof which is given there but in more detail in section 5 .
However, the main result of this thesis is the case $U=\mathbb{R}_{+} \times \mathbb{R}_{+}$, which is examined in section 4. Unfortunately, the straightforward adaptation of the proof was not successful. This case is of theoretical importance (see e.g. [2]). An additional assumption for the diffusion term $a(x, t)$ should fix this problem, a heuristical proof is shown (see Lemma (4.7) point 5).
We haven't discussed the properties of $a(x, t)$ yet. We will require $a(x, t)>0$ with some boundedness condition, see theorem (3.2). These two conditions are sufficient to proof the case $U=\mathbb{R} \times \mathbb{R}_{+}$. For the case $U=\mathbb{R}_{+} \times \mathbb{R}_{+}$ however, we need the third condition from theorem (3.2) which states that $a(x, t)$ and $a_{x}(x, t)$ vanish at $x=0$ for all $t>0$, see remark (3.1).

The last distinction we make in this thesis is the boundary condition for p at $t=0$. In section 3 we will consider the case that $p(x, 0)=f(x)$ for a density function f. In sections 4 and 5 we consider the general case with $p(\mathrm{~d} x, 0)=\mu(\mathrm{d} x)$.

2 Notation und definitions

Definition 2.1. Let $I \subseteq \mathbb{R}$. Then we denote by $\chi_{I}(x): \mathbb{R} \rightarrow\{0,1\}$ the characteristic function, i.e.

$$
\chi_{I}(x):= \begin{cases}1, & \text { if } x \in I \\ 0, & \text { else }\end{cases}
$$

Definition 2.2. Let $\Omega \subset \mathbb{R}^{n}$ be an open set (with respect to euclidian topology). By $C^{\infty}(\Omega)$ we denote the space of smooth functions $f: \Omega \rightarrow \mathbb{R}$ (e.g, they have derivatives of all orders). $\mathcal{D}(\Omega)=C_{K}^{\infty}(\Omega)=\left\{f \in C^{\infty}(\Omega)\right.$: $\operatorname{supp}(f)$ is compact in $\Omega\}$ we denote the class of smooth functions with compact (with respect to euclidian topology) support in Ω.
As usual $\mathbb{R}_{+}:=(0, \infty), \mathbb{N}:=\{1,2,3, \ldots\}, \mathbb{N}_{0}:=\{0,1,2, \ldots\}$
We will denote the class of continuous and bounded (with respect to euclidian topology) functions $f: \mathbb{R}^{d} \mapsto \mathbb{R}$ by $C_{b}\left(\mathbb{R}^{d}\right)$ and the subclass $f: \mathbb{R}^{d} \mapsto \mathbb{R}_{+}$ with compact support by $C_{K}^{+}\left(\mathbb{R}^{d}\right)$.
We write a function $f: \Omega \rightarrow \mathbb{R}$ is in $\mathcal{L}^{1}(\Omega)$ iff $\int_{\Omega}|f(x)| \mathrm{d} \lambda(x)<\infty(\lambda$ denotes the Lebesgue measure of $\left.\mathbb{R}^{n}\right)$. Similarly we denote by $\mathcal{L}^{2}(\Omega)$ the space of functions which are squareintegrable, i.e $\int_{\Omega}(f(x))^{2} \mathrm{~d} \lambda(x)<\infty$.
We denote the space of locally integrable functions f by $\mathcal{L}_{l o c}^{1}(\Omega)$, i.e $\forall K \subseteq$ Ω, K compact: $\int_{K}|f(x)| \mathrm{d} \lambda(x)<\infty$

Definition 2.3. We now consider the space $\mathcal{M}_{d}=\mathcal{M}_{d}\left(\mathbb{R}^{d}\right)$ of locally finite measures on \mathbb{R}^{d}. On \mathcal{M}_{d} we may introduce the vague topology, generated by the mappings $\pi_{f}: \mu \mapsto \mu f:=\int f \mathrm{~d} \mu, f \in C_{K}^{+}\left(\mathbb{R}^{d}\right)$ (the initial topology with respect to these mappings). We see that a family of measures $\mu_{n} \in \mathcal{M}_{d}$ converges vaguely to $\mu \in \mathcal{M}_{d}$ iff $\mu_{n} f \rightarrow \mu f \forall f \in C_{K}^{+}\left(\mathbb{R}^{d}\right)$.
Similarly we introduce the weak topology as the initial topology generated by $\pi_{f}: \mu \mapsto \mu f=\int f \mathrm{~d} \mu, f \in C_{b}\left(\mathbb{R}^{d}\right)$. Therefore a family of measures $\mu_{n} \in \mathcal{M}_{d}$ converges weakly to $\mu \in \mathcal{M}_{d}$ iff $\mu_{n} f \rightarrow \mu f \forall f \in C_{b}\left(\mathbb{R}^{d}\right)$

Remark 2.4. An equivalent definition for vague convergence is to use the class of continuous functions $f: \mathbb{R}^{d} \mapsto \mathbb{R}$ with compact support.
Clearly, weak convergence implies vague convergence.
We will later introduce a family of functions $(p(x, t), t \geq 0)$ where for each $t \geq 0, x \rightarrow p(x, t)$ is a density function on \mathbb{R}^{+}. Weak convergence of $t \rightarrow$ $p(x, t)$ means that

$$
\begin{array}{r}
\forall t \in \mathbb{R}, \forall \phi \in C_{b}(\mathbb{R}) \text { and } t_{n} \rightarrow t: \\
\int_{\mathbb{R}} \phi(x) p\left(x, t_{n}\right) \mathrm{d} x \rightarrow \int_{\mathbb{R}} \phi(x) p(x, t) \mathrm{d} x
\end{array}
$$

Similarly, for a family of probability measures $(p(\mathrm{~d} x, t), t \geq 0)$ is weakly continuous, iff

$$
\begin{array}{r}
\forall t \in \mathbb{R}, \forall \phi \in C_{b}(\mathbb{R}) \text { and } t_{n} \rightarrow t: \\
\int_{\mathbb{R}} \phi(x) p\left(\mathrm{~d} x, t_{n}\right) \rightarrow \int_{\mathbb{R}} \phi(x) p(\mathrm{~d} x, t)
\end{array}
$$

Remark 2.5. There are many equivalent statements to weak convergence, which are summarized in the portmanteau theorem.

Theorem 2.6 (portmanteu theorem). Let \mathcal{B} be the Borel- σ-Algebra on \mathbb{R}. Let X, X_{1}, X_{2}, \ldots be random variables with associated measures $\mu, \mu_{1}, \mu_{2}, \ldots$ and cumulative distribution functions F, F_{1}, F_{2}, \ldots. Then, the following statements are equivalent:

- $\left(X_{n}\right)_{n \in \mathbb{N}} /\left(\mu_{n}\right)_{n \in \mathbb{N}}$ converges weakly to X / μ.
- $F_{n}(x) \rightarrow F(x) \quad \forall x: F(x)=F_{-}(x)$
- $\lim _{n \rightarrow \infty} \int f(x) \mathrm{d} \mu_{n}(x)=\int f(x) \mathrm{d} \mu(x) \quad$ for all bounded f, which are μ-a.s. continuous
- $\lim _{n \rightarrow \infty} \int f(x) \mathrm{d} \mu_{n}(x)=\int f(x) \mathrm{d} \mu(x) \quad$ for all bounded f, which twice differentiable and f^{\prime} and $f^{\prime \prime}$ are uniformly continuous
- $\mu(O) \leq \liminf _{n \in \mathbb{N}} \mu_{n}(O)$ for all open sets O in the Euclidean topology on \mathbb{R}.
- $\mu(C) \geq \underset{n \in \mathbb{N}}{\limsup } \mu_{n}(C)$ for all closed sets C in the Euclidean topology on \mathbb{R}.
- $\mu(A) \leq \lim _{n} \mu_{n}(A)$ for all sets A in the Euclidean topology on \mathbb{R} with $\mu(\partial A)=0$.

See [6, page 297] for details and proof.
Definition 2.7. We define what convergence for a sequence of functions in $\mathcal{D}(\Omega)$ means.
Let $\Phi_{n} \in \mathcal{D}(\Omega)$ be a sequence of test functions. Then $\Phi_{n} \rightarrow 0$ iff:

1. $\exists K \subseteq \Omega, K$ compact such that $\forall n \in \mathbb{N}: \operatorname{supp}\left(\Phi_{n}\right) \subseteq K$ and
2. For all $n \in \mathbb{N}$ and multiindices $\alpha \in \mathbb{N}_{0}^{n}: \lim _{n \rightarrow \infty} \sup _{x \in \Omega}\left\{\left|D^{\alpha} \Phi_{n}(x)\right|\right\}=$ 0.

We write $\Phi_{n} \rightarrow \Phi$ iff $\left|\Phi-\Phi_{n}\right| \rightarrow 0$.
We may also introduce a norm on $\mathcal{D}(\Omega)$:
For $k \in \mathbb{N}_{0}, \Phi \in \mathcal{D}(\Omega)$ and $K \subseteq \Omega$ with K compact, let

$$
\|\Phi\|_{C^{k}(K)}=\sum_{|\alpha| \leq k} \sup _{x \in K}\left\{\left|D^{\alpha}(\Phi)\right|\right\}
$$

Definition 2.8. We can now define distributions. A distribution is a linear functional $u: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ which is continuous with respect to the convergence of distributions, i.e. $\forall \Phi_{n} \rightarrow 0$ in $\mathcal{D}(\Omega): u\left(\Phi_{n}\right) \rightarrow 0$ in \mathbb{R} (with respect to the Euclidean Topology). We may also wright $\left\langle u_{f}, \phi\right\rangle$ for $u_{f}(\phi)$.

Lemma 2.9. A linear functional $u: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ is a distribution iff

$$
\begin{aligned}
& \forall K \subseteq \Omega, K \text { compact : } \exists C>0, k \in \mathbb{N}_{0} \text { such that: } \\
& \forall \phi \in \mathcal{D}(\Omega):|u(\phi)| \leq C\|\phi\|_{C^{k}(K)}
\end{aligned}
$$

Proof : See [4, Lemma 2.4, page 20]
Definition 2.10. We define now what convergence in $\mathcal{D}^{\prime}(\Omega)$ means. A sequence of distributions $u_{n} \in \mathcal{D}^{\prime}(\Omega)$ converge to $u \in \mathcal{D}^{\prime}(\Omega)$ iff for all $\phi \in$ $\mathcal{D}(\Omega):\left\langle u_{n}, \phi\right\rangle \rightarrow\langle u, \phi\rangle$ in \mathbb{R}.
Lemma 2.11. Let still $\Omega \subseteq \mathbb{R}^{n}$ be an open set and $\alpha \in \mathbb{N}_{0}^{n}$ be a muldiindex. Any distribution u has partial derivatives of any order. It holds for $\phi \in \mathcal{D}(\Omega)$:

$$
\left\langle D^{\alpha} u, \phi\right\rangle=(-1)^{|\alpha|}\left\langle u, D^{\alpha} \phi\right\rangle
$$

PROOF : See [4, page 23].
Lemma 2.12. We remind, that we defined $\mathcal{L}_{l o c}^{1}(\Omega)$ with $\forall K \subseteq \Omega, K$ compact: $\int_{K}|f(x)| \mathrm{d} \lambda(x)<\infty$. An equivalent definition is that $\forall \phi \in \mathcal{D}(\Omega)$: $\int_{K} \phi(x) f(x) \mathrm{d} \lambda(x)<\infty$.
PROOF: See Appendix.
Remark 2.13. We can identify every function $f \in \mathcal{L}_{\text {loc }}^{1}(\Omega)$ with a distribution $u_{f} \in \mathcal{D}(\Omega)$ by $u_{f}: \mathcal{D}(\Omega) \rightarrow \mathbb{R}: \phi \rightarrow \int_{\Omega} \phi(x) f(x) \mathrm{d} \lambda(x)$. u_{f} is indeed a distribution since $\forall \phi: \operatorname{supp}(\phi) \subseteq K \subseteq \Omega$ where K is compact. We have by definition $\int_{K}|f(x)| \mathrm{d} \lambda(x)=C_{K}<\infty$. Therefore,

$$
\begin{aligned}
u_{f}(\phi) & =\int_{\Omega} f(x) \phi(x) \mathrm{d} \lambda(x) \leq \int_{\Omega}|f(x)| \sup _{x \in \Omega}\{\phi(x)\} \mathrm{d} \lambda(x)= \\
& =C_{K}\|\phi\|_{C^{0}(K)}
\end{aligned}
$$

Lemma (2.9) shows now, that u_{f} is a distribution.
For simplicity we will often identify f with the distribution u_{f} and write $f \mathrm{~d} x$ or „in $\mathcal{D}^{\prime}(\Omega)$ " to indicate this. Distributions which can be written in this manner are called regular distributions.

Lemma 2.14. Let as usual $\Omega \subseteq \mathbb{R}^{n}$ be an open set. Then $\mathcal{L}^{2}(\Omega) \subseteq \mathcal{L}_{\text {loc }}^{1}(\Omega)$.
PROOF : Let $f \in \mathcal{L}^{2}(\Omega)$ and $K \subseteq \Omega$ be compact. We have to show, that $\int_{K}|f(x)| \mathrm{d} \lambda(x)<\infty$. We note, that $\chi_{K} \in \mathcal{L}^{2}(\Omega)$ since $\left\|\chi_{K}\right\|_{2}^{2}=\lambda(K)$. Therefore follows from Cauchy Schwarz Inequality (see [6, page 217]) that

$$
\int_{K}|f(x)| \mathrm{d} \lambda(x)=\int_{\Omega}|f(x)| \chi_{K}(x) \mathrm{d} \lambda(x) \leq\left\|\chi_{K}\right\|_{2}\|f\|_{2}<\infty
$$

Lemma 2.15. In the following, we will construct functions with the help of $h(x):=e^{-\frac{1}{x}}$ to approximate the characteristic function $\chi_{(0, t)}(x)$ by smooth functions. With their help we can approximate the integration of a function in the distributional sence over an interval $(0, t)$. We will show:

1. $h\left(0_{+}\right)=0$.
2. $h^{(n)}(x)=\frac{p_{n}(x)}{x^{2^{n}}} e^{-\frac{1}{x}}$, where $p_{n}(x)$ is a polynomial with

$$
\operatorname{deg}\left(p_{n}\right) \leq 2^{n}-n-1 .
$$

3. $\forall n \in \mathbb{N}: \lim _{x \rightarrow 0^{+}} \frac{1}{x^{n}} h(x)=0$.
4. $h^{(n)}\left(0_{+}\right)=0 \forall n \in \mathbb{N}$.

PROOF :

1. Let $0<\epsilon<1$. Then

$$
e^{-\frac{1}{x}} \leq \epsilon \Leftrightarrow-\frac{1}{x} \leq \ln (\epsilon) \Leftrightarrow x \leq-\frac{1}{\ln (\epsilon)}=: \delta(\epsilon)
$$

2. We show this by induction on n. It is true for $n=1$ since

$$
g^{\prime}(x)=\frac{1}{x^{2}} e^{-\frac{1}{x}} .
$$

Induction step $n \rightarrow n+1$:

$$
\begin{aligned}
& g^{(n+1)}(x)=\left(\frac{p_{n}(x)}{x^{2^{n}}} e^{-\frac{1}{x}}\right)^{\prime}= \\
& =\left(\frac{p_{n}(x)^{\prime} x^{2^{n}}-p_{n}(x) 2^{n} x^{2^{n}-1}}{\left(x^{2^{n}}\right)^{2}}+\frac{p_{n}(x)}{x^{2^{n}}} \frac{1}{x^{2}}\right) e^{-\frac{1}{x}}= \\
& =\left(\frac{p_{n}(x)^{\prime} x^{2^{n}}-p_{n}(x) 2^{n} x^{2^{n}-1}+p_{n}(x) x^{2^{n}-2}}{\left(x^{2^{n}}\right)^{2}}\right) e^{-\frac{1}{x}}= \\
& =\left(\frac{p_{n}(x)^{\prime} x^{2^{n}}-p_{n}(x) 2^{n} x^{2^{n}-1}+p_{n}(x) x^{2^{n}-2}}{\left(x^{2^{n+1}}\right)}\right) e^{-\frac{1}{x}}
\end{aligned}
$$

We see, that p_{n+1} is recursively defined by

$$
p_{n+1}(x):=p_{n}(x)^{\prime} x^{2^{n}}-p_{n}(x) 2^{n} x^{2^{n}-1}+p_{n}(x) x^{2^{n}-2}
$$

Now we show, that $\operatorname{deg}\left(p_{n+1}\right) \leq 2^{n+1}-n-2$. Since
$\operatorname{deg}\left(p_{n+1}\right) \leq \max \left\{\operatorname{deg}\left(p_{n}(x)^{\prime} x^{2^{n}}\right) ; \operatorname{deg}\left(p_{n}(x) 2^{n} x^{2^{n}-1}\right) ; \operatorname{deg}\left(p_{n}(x) x^{2^{n}-2}\right)\right\}$,
we only have to show, that these 3 polynomials have degree $\leq 2^{n+1}-$ $n-2$.

$$
\begin{aligned}
& \operatorname{deg}\left(p_{n}(x)^{\prime} x^{2^{n}}\right) \leq \operatorname{deg}\left(p_{n}(x)^{\prime}\right)+\operatorname{deg}\left(x^{2^{n}}\right) \leq 2^{n}-n-1-1+2^{n}= \\
& =2^{n+1}-n-2 \\
& \operatorname{deg}\left(p_{n}(x) 2^{n} x^{2^{n}-1}\right) \leq \operatorname{deg}\left(p_{n}(x)\right)+\operatorname{deg}\left(x^{2^{n}-1}\right) \leq 2^{n}-n-1+2^{n}-1= \\
& =2^{n+1}-n-2 \\
& \operatorname{deg}\left(p_{n}(x) x^{2^{n}-2}\right) \leq \operatorname{deg}\left(p_{n}(x)\right)+\operatorname{deg}\left(x^{2^{n}-2}\right) \leq 2^{n}-n-1+2^{n}-2= \\
& =2^{n+1}-n-3<2^{n+1}-n-2
\end{aligned}
$$

3. We substitute $y=\frac{1}{x}$.

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x^{n}} h(x)=\lim _{y \rightarrow \infty} \frac{y^{n}}{e^{y}} \quad \mathrm{n} \text { times } \xrightarrow{\mathrm{L}^{\prime} \text { Hospital }} \lim _{y \rightarrow \infty} \frac{n!}{e^{y}}=0
$$

4. Follows immediately from 2 and 3.

Lemma 2.16. The function

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x):= \begin{cases}e^{-\frac{1}{x}}, & \text { if } x>0 \\ 0, & \text { if } x \leq 0\end{cases}
$$

is smooth. With its help we define the function $\psi(x): \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\psi(x):=\frac{g(x-1) g(2-x)}{\int_{\mathbb{R}} g(x-1) g(2-x) \mathrm{d} x}
$$

Then, $\psi(x)$ is smooth, $\int_{\mathbb{R}} \psi(x) \mathrm{d} x=1$ and $\operatorname{supp}(\psi) \subseteq[1,2]$.
Now we can define the desired functions $f_{t, n}(x)$ which approximate the characteristic function $\chi_{(0, t)}(x)$.

$$
\begin{equation*}
\text { for } n \in \mathbb{N} \text { : we define: } f_{t, n}(x):=\int_{n(x-t)+2}^{n x} \psi(u) \mathrm{d} u \tag{2.1}
\end{equation*}
$$

We will show, that

1. $f_{t, n} \in \mathcal{D}\left(\mathbb{R}_{+}\right)$with $\operatorname{supp}\left(f_{t, n}(x)\right) \subseteq\left[\frac{1}{n}, t\right]$
2. $\lim _{n \rightarrow \infty} f_{t, n}(x)=\chi_{(0, t)}(x)$ pointwise.
3. $\forall n \in \mathbb{N}, t \geq 0: f_{t, n}(x) \leq \chi_{[0, t]}(x)$.
4. $f_{t, n}^{\prime}(x)=n(\psi(n x)-\psi(n x-n t+2))$.

PROOF : The smothness of g follows immediately from Lemma 2.15.
We begin with showing the properties of ψ.
Since $\operatorname{supp}(g(x-1)) \subseteq[1, \infty)$ and $\operatorname{supp}(g(2-x)) \subseteq(-\infty, 2]$, it follows easily, that $\operatorname{supp}(g(x-1) g(2-x)) \subseteq[1,2]$.
$g(x-1)$ and $g(2-x)$ are bounded on $[1,2]$, therefore $g(x-1) g(2-x)$ is bounded on $[1,2]$. This ensures the existence of $\int_{\mathbb{R}} g(x-1) g(2-x) \mathrm{d} x$.
As a composition of smooth functions, ψ is smooth. Furthermore,

$$
\int_{\mathbb{R}} \psi(u) \mathrm{d} u=\int_{\mathbb{R}} \frac{g(u-1) g(2-u)}{\int_{\mathbb{R}} g(x-1) g(2-x) \mathrm{d} x} \mathrm{~d} u=\frac{\int_{\mathbb{R}} g(u-1) g(2-u) \mathrm{d} u}{\int_{\mathbb{R}} g(x-1) g(2-x) \mathrm{d} x}=1 .
$$

Now, we show the properties of $f_{t, n}$.

1. To show: $f_{t, n} \in \mathcal{D}\left(\mathbb{R}_{+}\right)$

We notice that $\operatorname{supp}(\psi) \subseteq[1,2]$ and $f_{t, n}(x)=0$ if $n(x-t)+2 \geq 2$, which is equivalent to $x \geq t$. Similarly for the upper bound $f_{t, n}(x)=0$
if $n x \leq 1$ which is equivalent to $x \leq \frac{1}{n}$. Therefore, $\operatorname{supp}\left(f_{t, n}(x)\right) \subseteq\left[\frac{1}{n}, t\right]$. Since $\psi(x) \geq 0$ and $\psi \in \mathcal{D}\left(\mathbb{R}_{+}\right)$,

$$
\begin{aligned}
f_{t, n}^{(i)}(x)= & \left(\int_{n(x-t)+2}^{n x} \psi(u) \mathrm{d} u\right)^{(i)}= \\
=|y=u-n x|= & \left(\int_{2-n t}^{0} \psi(y+n x) \mathrm{d} y\right)^{(i)}= \\
& \left(\int_{2-n t}^{0} \frac{\partial^{i} \psi(y+n x)}{\partial x^{i}} \mathrm{~d} y\right)
\end{aligned}
$$

which shows that $f_{t, n} \in C_{K}^{\infty}\left(\mathbb{R}_{+}\right)$.
2. To show: $\lim _{n \rightarrow \infty} f_{t, n}(x)=\chi_{(0, t)}(x)$ pointwise.

After the last point, it is left to show, that $\lim _{n \rightarrow \infty} f_{t, n}(x)=1$ for $x \in(0, t)$.
Let $x \in(0, t)$ and $n>\max \left\{\frac{1}{t-x}, \frac{2}{x}\right\}$. Then $n(x-t)+2 \leq 1$ and $n x \geq 2$. Therefor

$$
f_{t, n}(x)=\int_{n(x-t)+2}^{n x} \psi(u) \mathrm{d} u=\int_{1}^{2} \psi(u) \mathrm{d} u=1
$$

3. To show: $\forall n \in \mathbb{N}, t \geq 0: f_{t, n}(x) \leq \chi_{[0, t]}(x)$.

After the first point, it is left to show, that $f_{t, n}(x) \leq 1$. Which is easy to see, since $\psi(x) \geq 0$:

$$
f_{t, n}(x)=\int_{n(x-t)+2}^{n x-1} \psi(u) \mathrm{d} u \leq \int_{\mathbb{R}} \psi(u) \mathrm{d} u=1
$$

4. To show: $f_{t, n}^{\prime}(x)=n(\psi(n x)-\psi(n x-n t+2))$.

We substiute $y=n x$ and get

$$
\begin{array}{r}
f_{t, n}^{\prime}(x)=\frac{\partial \int_{n(x-t)+2}^{n x} \psi(u) \mathrm{d} u}{\partial x}=n \frac{\partial \int_{y-n t+2}^{y} \psi(u) \mathrm{d} u}{\partial y}= \\
=n(\psi(y)-\psi(y-n t+2))=n(\psi(n x)-\psi(n x-n t+2))
\end{array}
$$

Definition 2.17. We define convolution of a distribution u with a test function ψ by

$$
\langle u * \psi, \phi\rangle:=\langle u,(R \psi) * \phi\rangle
$$

Where $R: \psi(x) \rightarrow \psi(-x)$.
It holds $u * \psi=\psi * u$ and for $\alpha \in \mathbb{N}_{0}^{n}$:

$$
D^{\alpha}(u * \psi)=\left(D^{\alpha} u\right) * \psi=u *\left(D^{\alpha} \psi\right)
$$

Therefore, the convolution has partial derivatives of the order of the sum of the convolved functions orders. Especially if one of the functions is smooth, the convolution is smooth. See [4, p. 24]
Lemma 2.18. We can also use the function g to construct for each $n \in \mathbb{N}$ a smooth function k_{n} with $\operatorname{supp}\left(k_{n}\right) \subseteq\left[-\frac{1}{n}, \frac{1}{n}\right]$ and $\int_{\mathbb{R}} k_{n}(x) \mathrm{d} x=1$. The sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ is called a regularizing sequence due to its property that for each $f \in \mathcal{L}^{1}(\mathbb{R})$ holds

$$
\lim _{n \rightarrow \infty}\left\|f-f * k_{n}\right\|_{1}=0
$$

and as mentioned in the definition above, the convolution $f * k_{n}$ has derivatives of all orders since k_{n} has them.

Proof : See [5, p. 25-28]
Lemma 2.19. The functions k_{n} from Lemma (2.18) also approximate in the distributional sense, i.e for $u \in \mathcal{D}^{\prime}(\mathbb{R})$ holds $\lim _{n \rightarrow \infty} u * k_{n}=u$ in $\mathcal{D}^{\prime}(\mathbb{R})$.
PROOF : We have to show, that for all $\phi \in \mathcal{D}(\mathbb{R}):\left\langle u * k_{n}, \phi\right\rangle \rightarrow\langle u, \phi\rangle$ in \mathbb{R}. It follows from definition (2.17) that $\left\langle u * k_{n}, \phi\right\rangle=\left\langle u, \phi *\left(R k_{n}\right)\right\rangle$. Since k_{n} are symmetrical $R k_{n}=k_{n}$ pointwise. Since u is per definition continuous with respect to convergence in $\mathcal{D}(\mathbb{R})$ we have to show, $\phi * k_{n} \rightarrow \phi$ in $\mathcal{D}(\mathbb{R})$ for all ϕ in $\mathcal{D}(\mathbb{R})$.
We fix $\phi \in \mathcal{D}(\mathbb{R})$ and $\alpha \in \mathbb{N}_{0}^{n}$. Let $\psi=D^{\alpha} \phi$. Then

$$
\psi * k_{n}(x)=\int_{\mathbb{R}} \psi(y) k_{n}(x-y) \mathrm{d} y=\int_{\left[x-\frac{1}{n}, x+\frac{1}{n}\right]} \psi(y) k_{n}(x-y) \mathrm{d} y
$$

Let $\epsilon>0$ and n such that $|\psi(y)-\psi(x)| \leq \epsilon \quad \forall y \in\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$. Then

$$
\int_{\left[x-\frac{1}{n}, x+\frac{1}{n}\right]} \psi(y) k_{n}(x-y) \mathrm{d} y \leq \int_{\left[x-\frac{1}{n}, x+\frac{1}{n}\right]}(\psi(x)+\epsilon) k_{n}(x-y) \mathrm{d} y=\psi(x)+\epsilon
$$

Analogously we get $\psi * k_{n}(x) \geq \psi(x)-\epsilon$. Therefore $\lim _{n \rightarrow \infty}\left\|\psi-\psi * k_{n}\right\|_{\infty}=$ 0 , which concludes the proof.

3 The case with existing density function

Remark 3.1. Compared with the case $U=R \times R_{+}$(see section 5), we need an additional assumption for $a(x, t)$, which is a boundary condition (see point 3 of the following theorem). But still, the proof is not straightforward adaptable and we will only present a heuristic argument to show that this condition is sufficient to ensure $\frac{\partial P}{\partial x}(0, t)=0$ (see Lemma (3.6) point 3). See also remark 3.7.

Theorem 3.2. Let $U:=\mathbb{R}_{+} \times \mathbb{R}_{+}$and $a: U \rightarrow \mathbb{R}_{+}$be a Borel function satisfying the following hypothesis:
$\forall 0<t<T$ and $R>0: \exists \epsilon(t, T, R)>0, m(T, R)>0$ such that:

- $\forall(x, s) \in(0, R] \times[t, T]: a(x, s) \geq \epsilon(t, T, R)$ and
- $\forall(x, s) \in(0, R] \times(0, T]: a(x, s) \leq m(T, R)$
- $\forall t \in \mathbb{R}_{+}: x \rightarrow a(x, t)$ is differentiable at $x=0$ and $a(0, t)=a^{\prime}(0, t)=0$

Let μ be a probability measure on \mathbb{R}_{+}with density function $f(x)$ and $\int_{\mathbb{R}_{+}}|x| f(x) \mathrm{d} x<\infty$. Then, there exists at most one family of probability measures with density functions $(p(x, t), t \geq 0)$ such that:
(FP 1) $t \geq 0 \rightarrow p(x, t)$ is weakly continuous, see Remark 2.4.
(FP 2) $p(0, x)=f(x)$ and

$$
\begin{equation*}
\iint_{U} \frac{\partial \phi(x, t)}{\partial t} p(x, t) \mathrm{d} t \mathrm{~d} x+\iint_{U} \frac{\partial^{2} \phi(x, t)}{\partial x^{2}} a(x, t) p(x, t) \mathrm{d} t \mathrm{~d} x=0 \quad \forall \phi \in \mathcal{D}(U) \tag{3.2}
\end{equation*}
$$

PROOF : We note, that equation (3.2) is the integral representation of the following statement:

$$
\frac{\partial p(x, t)}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}(p(x, t) a(x, t))=0 \quad \text { in } \mathcal{D}^{\prime}(U)
$$

We will split the proof into several parts.

Lemma 3.3. Let a probability measure μ with density function f and $p(x, t)$ be as in Theorem 3.2. Then holds $\forall t \geq 0, \phi \in \mathcal{D}\left(\mathbb{R}_{+}\right)$:

$$
\int_{\mathbb{R}_{+}} \phi(x) p(x, t) \mathrm{d} x=\int_{\mathbb{R}_{+}} \phi(x) f(x) \mathrm{d} x+\int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(x, s) \mathrm{d} s \mathrm{~d} x
$$

Remark 3.4. We will use the fact, that $\forall \alpha(x), \phi(x) \in \mathcal{D}\left(\mathbb{R}_{+}\right)$holds, that $\alpha(x) \dot{\phi}(t) \in \mathcal{D}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)$. Note that this lemma reads as $\int_{(0, t)} \frac{\partial^{2} a(x, s) p(x, s)}{\partial x^{2}} \mathrm{~d} s=$ $p(x, t)-f(x)$ in $\mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)$.
Proof : For $t \geq 0$ fixed, we define $\alpha_{n}(x):=f_{t, n}(x)$ for $n \in \mathbb{N}: n \geq \frac{2}{t}$ by equation (2.1). From (FP 2) we know, that $\forall \phi \in \mathcal{D}\left(\mathbb{R}_{+}\right)$:

$$
\iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s+\iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \alpha_{n}(s) a(x, s) p(x, s) \mathrm{d} x \mathrm{~d} s=0
$$

Now we take $\lim _{n \rightarrow \infty}$ for both integrals individually. First we treat the second integral. In Lemma (2.16) we showed alle necessary requirements for dominated convergence. Therefore,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \alpha_{n}(s) a(x, s) p(x, s) \mathrm{d} x \mathrm{~d} s= \\
& \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \lim _{n \rightarrow \infty} \alpha_{n}(s) a(x, s) p(x, s) \mathrm{d} x \mathrm{~d} s= \\
& \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \chi_{(0, t)}(s) a(x, s) p(x, s) \mathrm{d} x \mathrm{~d} s= \\
& \int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(x, s) \mathrm{d} x \mathrm{~d} s
\end{aligned}
$$

Now, we examine the first integral.

$$
\begin{aligned}
& \iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s= \\
& \iint_{U} n(\psi(n s)-\psi(n s-n t+2)) \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s= \\
& \iint_{U} n \psi(n s) \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s-\iint_{U} n \psi(n s-n t+2) \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s
\end{aligned}
$$

And again, we have to treat both integrals individually by substituting:

$$
\begin{aligned}
& \iint_{U} n \psi(n s) \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s=|u=n s|= \\
& \iint_{U} \psi(u) \phi(x) p\left(x, \frac{u}{n}\right) \mathrm{d} x \mathrm{~d} u
\end{aligned}
$$

and

$$
\begin{aligned}
& \iint_{U} n \psi(n s-n t+2) \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s=|u=n s-n t+2|= \\
& \iint_{\tilde{U}} \psi(u) \phi(x) p\left(x, t+\frac{u-2}{n}\right) \mathrm{d} x \mathrm{~d} u
\end{aligned}
$$

Where $\tilde{U}=(2-n t, \infty) \times \mathbb{R}_{+}$. Since we required $n \geq \frac{2}{t}$ and $\operatorname{supp}(\psi) \subseteq[1,2]$, we deduce

$$
\begin{aligned}
& \iint_{\tilde{U}} \psi(u) \phi(x) p\left(x, t+\frac{u-2}{n}\right) \mathrm{d} x \mathrm{~d} u= \\
& \iint_{U} \psi(u) \phi(x) p\left(x, t+\frac{u-2}{n}\right) \mathrm{d} x \mathrm{~d} u
\end{aligned}
$$

By (FP 1), these integrals converge for $n \rightarrow \infty$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s= \\
& \lim _{n \rightarrow \infty}\left(\iint_{U} \psi(u) \phi(x) p\left(x, \frac{u}{n}\right) \mathrm{d} x \mathrm{~d} u-\iint_{U} \psi(u) \phi(x) p\left(x, t+\frac{u-2}{n}\right) \mathrm{d} x \mathrm{~d} u\right)= \\
& \iint_{U} \psi(u) \phi(x) p(x, 0) \mathrm{d} x \mathrm{~d} u-\iint_{U} \psi(u) \phi(x) p(x, t) \mathrm{d} x \mathrm{~d} u=\text { now using Fubini } \\
& \iint_{U} \psi(u) \mathrm{d} u \phi(x) p(x, 0) \mathrm{d} x-\iint_{U} \psi(u) \mathrm{d} u \phi(x) p(x, t) \mathrm{d} x= \\
& \int_{\mathbb{R}_{+}} \phi(x) p(x, 0) \mathrm{d} x-\int_{\mathbb{R}_{+}} \phi(x) p(x, t) \mathrm{d} x
\end{aligned}
$$

Therefore, by using (FP 2) in the last step, we get

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(x, s) \mathrm{d} x \mathrm{~d} s+ \\
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \alpha_{n}(s) a(x, s) p(x, s) \mathrm{d} x \mathrm{~d} s=0 \\
\Leftrightarrow & \int_{\mathbb{R}_{+}} \phi(x) p(x, 0) \mathrm{d} x-\int_{\mathbb{R}_{+}} \phi(x) p(x, t) \mathrm{d} x+ \\
& \int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(x, s) \mathrm{d} x \mathrm{~d} s=0 \\
\Leftrightarrow & \int_{\mathbb{R}_{+}} \phi(x) p(x, t) \mathrm{d} x=\int_{\mathbb{R}_{+}} \phi(x) f(x) \mathrm{d} x+\int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(x, s) \mathrm{d} s \mathrm{~d} x
\end{aligned}
$$

which concludes the proof.

Definition 3.5. For a family of probability densities $p(x, t), t \geq 0$ and a Borel function $a(x, t)$ which satisfy the conditions in Theorem 3.2, we define the function $P(x, t): U \rightarrow \mathbb{R}_{+}$by

$$
P(x, t):=\int_{(0, t)} a(x, s) p(x, s) \mathrm{d} s
$$

Lemma 3.6. Let $P(x, t)$ denote a function as defined in Definition 3.5. Then holds:

1. $\frac{\partial^{2} P(x, t)}{\partial x^{2}}=p(x, t)-f(x)$.
2. $\frac{\partial P}{\partial x}(x, t)-\frac{\partial P}{\partial x}(0, t)=\int_{(x, \infty)}(f(u)-p(u, t)) \mathrm{d} u=\int_{(0, x)}(p(u, t)-f(u)) \mathrm{d} u$.
3. $\frac{\partial P}{\partial x}(0, t)=0$.
4. $x \rightarrow P(x, t)$ is Lipschitz continuous with Lipschitz constant 1 .
5. P is continuous on U and increasing with respect to t.
6. $\forall t \in \mathbb{R}_{+}: P(0, t)<\infty$.
7. $\forall(x, t) \in U: 0 \leq P(x, t) \leq P(0, t)+\int_{\mathbb{R}_{+}} y f(y) \mathrm{d} y<\infty$.

PROOF :

1. See remark 3.4.
2. Integrating 1, we obtain

$$
\frac{\partial P}{\partial x}(v, t)-\frac{\partial P}{\partial x}(0, t)=\int_{(0, v)}(p(u, t)-f(u)) \mathrm{d} u
$$

3. To show: $\frac{\partial P}{\partial x}(0, t)=0$.

The technicalities remain to show. Here is an heuristic argument, that the third condition for a, i.e. for all $t \geq 0 x \rightarrow a(x, t)$ is differentiable and $a^{\prime}(0, t)=a(0, t)=0$ is sufficient to conclude this. For that we split $p(x, t)$ in an absolutely continuous density $f_{a}^{t}(x)$ and a density as stepfunction $f_{T}^{t}(x)=\sum_{i \in I_{T}} \chi_{\left[x_{i}, \infty\right)}(x) p_{i}$. Then

$$
\begin{aligned}
& \frac{\partial P}{\partial x}(x, t)=\frac{\partial}{\partial x}\left(\int_{(0, t)} a(x, s) p(x, s) \mathrm{d} s\right)= \\
= & \frac{\partial}{\partial x} \int_{(0, t)} a(x, s)\left(f_{a}^{s}(x)+f_{T}^{s}(x)\right) \mathrm{d} s= \\
= & \int_{(0, t)} a^{\prime}(x, s)\left(f_{a}^{s}(x)+f_{T}^{s}(x)\right) \mathrm{d} s+ \\
& \int_{(0, t)} a(x, s)\left(f_{a}^{s}(x)^{\prime}+\sum_{i \in I_{T}} \chi_{\left\{x_{i}\right\}}(x) p_{i}\right) \mathrm{d} s
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\partial P}{\partial x}(0, t)=\frac{\partial}{\partial x}\left(\int_{(0, t)} a(0, s) p(0, s) \mathrm{d} s\right)= \\
= & \int_{(0, t)} a^{\prime}(0, s)\left(f_{a}^{s}(0)+f_{T}^{s}(0)\right) \mathrm{d} s+ \\
& \int_{(0, t)} a(0, s)\left(f_{a}^{s}(0)^{\prime}+\sum_{i \in I_{T}} \chi_{\left\{x_{i}\right\}}(0) p_{i}\right) \mathrm{d} s= \\
= & 0
\end{aligned}
$$

4. This follows from last two points, since

$$
\begin{aligned}
& \left|\frac{\partial P}{\partial x}(x, t)\right|= \\
& \left|\int_{(0, x)}(p(u, t)-f(u)) \mathrm{d} u\right| \leq \\
& \leq 1
\end{aligned}
$$

5. The fact, that P is increasing with respect to t is easy to see, since $a \geq 0$ and $p \geq 0$.
According to the previous step, $x \rightarrow P(x, t)$ is differentiable for all $t \geq 0$ and therefore continuous.
We show, that $t \rightarrow P(x, t)$ is continuous for all $x \geq 0$. In fact, it has a right derivative:

$$
\frac{\partial P}{\partial t}(x, t)=p(x, t)-f(x)
$$

Therefore for $\epsilon>0$ there exists $\delta>0$ such that

$$
|P(x, t)-P(x, s)| \leq \frac{\epsilon}{2} \quad \forall s \in(t-\delta, t+\delta)
$$

and with point 4 we deduce that for $\delta_{1}:=\min \left\{\frac{\epsilon}{2}, \delta\right\}$ and for all $s \in$ $(t-\delta, t+\delta), y \in\left(x-\delta_{1}, x+\delta_{1}\right)$ holds

$$
|P(x, s)-P(y, s)| \leq \min \left\{\frac{\epsilon}{2}, \delta\right\} \leq \frac{\epsilon}{2}
$$

Therefore $\forall(y, s) \in\left(x-\delta_{1}, x+\delta_{1}\right) \times(t-\delta, t+\delta)$.

$$
|P(y, s)-P(x, t)| \leq|P(y, s)-P(y, t)|+|P(y, t)-P(x, t)| \leq \epsilon
$$

6. This follows simply from the fact, that $P(x, t)$ is continuous.
7. $0 \leq P(x, t)$ is trivial. We show the other inequality by using the pre-
vious result.

$$
\begin{aligned}
& P(x, t)=P(0, t)+\int_{(0, x)} \frac{\partial P}{\partial x}(u, t) \mathrm{d} u= \\
& =P(0, t)+\int_{(0, x)} \int_{(u, \infty)}(f(w)-p(w, t)) \mathrm{d} w \mathrm{~d} u= \\
& =P(0, t)+\int_{(0, \infty)} \int_{(0, \infty)} \chi_{(u, \infty)}(w) \chi_{(0, x)}(u)(f(w)-p(w, t)) \mathrm{d} w \mathrm{~d} u= \\
& =P(0, t)+\int_{(0, \infty)} \int_{(0, \infty)} \chi_{(0, w)}(u) \chi_{(0, x)}(u)(f(w)-p(w, t)) \mathrm{d} u \mathrm{~d} w= \\
& =P(0, t)+\int_{(0, \infty)} \int_{(0, \infty)} \chi_{(0, w \wedge x)}(u)(f(w)-p(w, t)) \mathrm{d} u \mathrm{~d} w= \\
& =P(0, t)+\int_{(0, \infty)}(w \wedge x)(f(w)-p(w, t)) \mathrm{d} u \mathrm{~d} w \leq \\
& \leq P(0, t)+\int_{(0, \infty)} w f(w) \mathrm{d} w
\end{aligned}
$$

From the previous step, we know that $P(0, t)<\infty$. Since $\int_{\mathbb{R}_{+}}|x| f(x) \mathrm{d} x<\infty$ is a requirement for f, we can conclude that the last expression is $<\infty$.

Remark 3.7. We will use the knowledge of Lemma (3.6) point (3) only later in the proof to illustrate where exactly the third condition for $a(x, t)$ is needed, i.e. $\forall t \in \mathbb{R}_{+}: x \rightarrow a(x, t)$ is differentiable at $x=0$ and $a(0, t)=a^{\prime}(0, t)=0$. PROOF : of Theorem 3.2
Assume $p(x, t)$ and $\hat{p}(x, t)$ are two solutions of formula 3.2. We define

$$
\begin{aligned}
& q(x, t):=p(x, t)-\hat{p}(x, t) \\
& \hat{P}(x, t):=\int_{(0, t)} a(x, s) \hat{p}(x, s) \mathrm{d} s \\
& Q(x, t):=P(x, t)-\hat{P}(x, t)=\int_{(0, t)} a(x, s) q(x, s) \mathrm{d} s
\end{aligned}
$$

From the linearity of the integral and Lemma 3.6 follows, that

1. $\frac{\partial^{2} Q}{\partial x^{2}}(x, t)=q(x, t)$.
2. $\frac{\partial Q}{\partial x}(x, t)-\frac{\partial Q}{\partial x}(0, t)=-\int_{(x, \infty)} q(u, t) \mathrm{d} u=\int_{(0, x)}(q(u, t)) \mathrm{d} u$.
3. $\forall t \in \mathbb{R}_{+}: Q(0, t)<\infty$.
4. $\frac{\partial Q}{\partial t}(x, t)=a(x, t) q(x, t)$
5. $\forall(x, t) \in U: Q(x, t) \leq Q(0, t)+2 \int_{\mathbb{R}_{+}} y f(y) \mathrm{d} y<\infty$.

We want to show now, that $\int_{\mathbb{R}_{+}} \int_{\mathbb{R}_{+}} a(x, t) q^{2}(x, t) \mathrm{d} x \mathrm{~d} t=0$ from which we then conclude, that $q(x, t)=0$ a.s.
We examine the integral $\int_{\left(t_{1}, t_{2}\right)} \int_{\left(\frac{1}{R}, R\right)} a(x, t) q^{2}(x, t) \mathrm{d} x \mathrm{~d} t$ and then let $t_{1} \rightarrow 0$, $t_{2} \rightarrow \infty, R \rightarrow \infty$.
We will use the notation $Q_{x}(y, s):=\frac{\partial Q(x, t)}{\partial x}(y, s)$ and similarly
$Q_{t}(y, s):=\frac{\partial Q(x, t)}{\partial t}(y, s), Q_{x x}(y, s):=\frac{\partial^{2} Q(x, t)}{\partial x^{2}}(y, s)$ as well as
$Q_{x t}(y, s):=\frac{\partial^{2} Q(x, t)}{\partial t \partial x}(y, s)$. By the just listed facts and integration by parts we see that

$$
\begin{aligned}
& \int_{\left(t_{1}, t_{2}\right)} \int_{\left(\frac{1}{R}, R\right)} a(x, t) q^{2}(x, t) \mathrm{d} x \mathrm{~d} t= \\
& =\int_{\left(t_{1}, t_{2}\right)} \int_{\left(\frac{1}{R}, R\right)} Q_{x x}(x, t) Q_{t}(x, t) \mathrm{d} x \mathrm{~d} t= \\
& =\int_{\left(t_{1}, t_{2}\right)}\left(\left[\left(Q_{x}(x, t)-Q_{x}(0, t)\right) Q_{t}(x, t)\right]_{\frac{1}{R}}^{R}-\right. \\
& \left.\int_{\left(\frac{1}{R}, R\right)}\left(Q_{x}(x, t)-Q_{x}(0, t)\right) Q_{x t}(x, t) \mathrm{d} x\right) \mathrm{d} t=
\end{aligned}
$$

Now we use Lemma (3.6) point (3). It shows that $Q_{x}(0, t)=0$ and therefore $Q_{x t}(0, t)=0$

$$
\begin{aligned}
& =\int_{\left(t_{1}, t_{2}\right)}\left(\left[\left(Q_{x}(x, t)-Q_{x}(0, t)\right) Q_{t}(x, t)\right]_{\frac{1}{R}}^{R}-\right. \\
& \left.\int_{\left(\frac{1}{R}, R\right)}\left(Q_{x}(x, t)-Q_{x}(0, t)\right)\left(Q_{x t}(x, t)-Q_{x t}(0, t)\right) \mathrm{d} x\right) \mathrm{d} t= \\
& =\int_{\left(t_{1}, t_{2}\right)}\left(\left[\left(Q_{x}(x, t)-Q_{x}(0, t)\right) Q_{t}(x, t)\right]_{\frac{1}{R}}^{R}-\right. \\
& \frac{1}{2} \frac{\partial \int_{\left(\frac{1}{R}, R\right)}}{}\left(Q_{x}(x, t)-Q_{x}(0, t)\right)^{2} \mathrm{~d} x \\
& \partial t
\end{aligned} \mathrm{~d} t=-1 .
$$

$$
\begin{aligned}
& =\int_{\left(t_{1}, t_{2}\right)}\left[\left(Q_{x}(x, t)-Q_{x}(0, t)\right) Q_{t}(x, t)\right]_{\frac{1}{R}}^{R} \mathrm{~d} t- \\
& \frac{1}{2} \int_{\left(\frac{1}{R}, R\right)}\left(\left(Q_{x}\left(x, t_{2}\right)-Q_{x}\left(0, t_{2}\right)\right)^{2}-\left(Q_{x}\left(x, t_{1}\right)-Q_{x}\left(0, t_{1}\right)\right)^{2}\right) \mathrm{d} x= \\
& =\int_{\left(t_{1}, t_{2}\right)}\left(\left(Q_{x}(R, t)-Q_{x}(0, t)\right) Q_{t}(R, t)-\left(Q_{x}\left(\frac{1}{R}, t\right)-Q_{x}(0, t)\right) Q_{t}\left(\frac{1}{R}, t\right)\right) \mathrm{d} t- \\
& \frac{1}{2} \int_{\left(\frac{1}{R}, R\right)}\left(\left(Q_{x}\left(x, t_{2}\right)-Q_{x}\left(0, t_{2}\right)\right)^{2}-\left(Q_{x}\left(x, t_{1}\right)-Q_{x}\left(0, t_{1}\right)^{2}\right) \mathrm{d} x=\right. \\
& =\int_{\left(t_{1}, t_{2}\right)}\left(\left(-\int_{(R, \infty)} q(u, t) \mathrm{d} u\right) a(R, t) q(R, t)-\left(\int_{\left(0, \frac{1}{R}\right)} q(u, t) \mathrm{d} u\right) a\left(\frac{1}{R}, t\right) q\left(\frac{1}{R}, t\right)\right) \mathrm{d} t- \\
& \frac{1}{2} \int_{\left(\frac{1}{R}, R\right)}\left(\left(\int_{(0, x)} q\left(u, t_{2}\right) \mathrm{d} u\right)^{2}-\left(\int_{(0, x)} q\left(u, t_{1}\right) \mathrm{d} u\right)^{2}\right) \mathrm{d} x
\end{aligned}
$$

Since $t \geq 0 \rightarrow p(x, t)$ is weakly continuous, $t \geq 0 \rightarrow q(x, t)$ is also weakly continuous. Therefore,

$$
\begin{aligned}
& \lim _{t_{1} \rightarrow 0}\left(\int_{(0, x)} q\left(u, t_{1}\right) \mathrm{d} u\right)^{2}=\left(\int_{(0, x)} q(u, 0) \mathrm{d} u\right)^{2}= \\
= & \left(\int_{(0, x)}(f(u)-f(u)) \mathrm{d} u\right)^{2}=0
\end{aligned}
$$

We now estimate the first integral:

$$
\begin{aligned}
& \int_{\left(t_{1}, t_{2}\right)}\left(\left(_{(R, \infty)} q(u, t) \mathrm{d} u\right) a(R, t) q(R, t)\right) \mathrm{d} t \leq \\
\leq & \int_{\left(t_{1}, t_{2}\right)}\left(\sup \left\{\int_{(R, \infty)}|q(u, t)| \mathrm{d} u, t \in\left(0, t_{2}\right)\right\} a(R, t)|q(R, t)|\right) \mathrm{d} t \leq \\
\leq & \sup \left\{\int_{(R, \infty)}|q(u, t)| \mathrm{d} u, t \in\left(0, t_{2}\right)\right\} \int_{\left(0, t_{2}\right)}(a(R, t)|q(R, t)|) \mathrm{d} t \leq \\
\leq & \sup \left\{\int_{(R, \infty)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u, t \in\left[0, t_{2}\right]\right\} \\
& \left.\int_{\left(0, t_{2}\right)}(a(R, t) p(R, t)) \mathrm{d} t+\int_{\left(0, t_{2}\right)}(a(R, t) \hat{p}(R, t)) \mathrm{d} t\right) \leq \\
\leq & \sup \left\{\int_{(R, \infty)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u, t \in\left[0, t_{2}\right]\right\}(C+\hat{C})
\end{aligned}
$$

Since $\forall R_{2}>R_{1}$:

$$
\begin{aligned}
& \int_{\left(R_{2}, \infty\right)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u \leq \\
& \leq \int_{\left(R_{1}, \infty\right)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u \text { and }\left[0, t_{2}\right] \text { is compact, }
\end{aligned}
$$

We can use Dinis Lemma (A.1) and get

$$
\lim _{R \rightarrow \infty} \sup \left\{\int_{(R, \infty)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u, t \in\left[0, t_{2}\right]\right\}=0
$$

By the same arguments, we obtain

$$
\begin{aligned}
& \int_{\left(t_{1}, t_{2}\right)}\left(\left(\int_{\left(0, \frac{1}{R}\right)} q(u, t) \mathrm{d} u\right) a\left(\frac{1}{R}, t\right) q\left(\frac{1}{R}, t\right)\right) \mathrm{d} t \\
\leq & \sup \left\{\int_{\left(0, \frac{1}{R}\right)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u, t \in\left[0, t_{2}\right]\right\}(C+\hat{C})
\end{aligned}
$$

Now $\forall R_{2}>R_{1}$:

$$
\begin{aligned}
& \quad \int_{\left(0, \frac{1}{R_{2}}\right)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u \leq \\
& \leq \int_{\left(0, \frac{1}{R_{1}}\right)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u
\end{aligned}
$$

Now using Dinis Lemma one more time:

$$
\lim _{R \rightarrow \infty} \sup \left\{\int_{\left(0, \frac{1}{R}\right)}(p(u, t)+\hat{p}(u, t)) \mathrm{d} u, t \in\left[0, t_{2}\right]\right\}=0
$$

We have

$$
\begin{aligned}
0 & \leq \lim _{R \rightarrow \infty} \lim _{t_{1} \rightarrow 0} \int_{\left(t_{1}, t_{2}\right)} \int_{\left(\frac{1}{R}, R\right)} a(x, t) q^{2}(x, t) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \lim _{R \rightarrow \infty} \lim _{t_{1} \rightarrow 0}-\frac{1}{2} \int_{\left(\frac{1}{R}, R\right)}\left(\left(\int_{(0, x)} q\left(u, t_{2}\right) \mathrm{d} u\right)^{2}\right) \mathrm{d} x \leq 0
\end{aligned}
$$

Therefore,

$$
\int_{\mathbb{R}_{+}+\mathbb{R}_{+}} \int a(x, t) q^{2}(x, t) \mathrm{d} x \mathrm{~d} t=0 .
$$

4 The general version

Remark 4.1. We now generalize the proof for $\mu(\mathrm{d} x)$ which do not necessarily have a density. The steps of the proof are similar, as the reader will observe. As in the case with existing density function, compared with the case $U=$ $R \times R_{+}$(see section 5), we need an additional assumption for $a(x, t)$ (the same as in the previous case, see point 3 of the following theorem). Again we will only present a heuristic argument to show that this condition is sufficient to ensure $\frac{\partial P}{\partial x}(0, t)=0$ (see Lemma (4.7) point 5).

Theorem 4.2. Let $U:=\mathbb{R}_{+} \times \mathbb{R}_{+}$and $a: U \rightarrow \mathbb{R}_{+}$be a Borel function satisfying the following hypothesis:
$\forall 0<t<T$ and $R>0: \exists \epsilon(t, T, R)>0, m(T, R)>0$ such that:

- $\forall(x, s) \in(0, R] \times[t, T]: a(x, s) \geq \epsilon(t, T, R)$ and
- $\forall(x, s) \in(0, R] \times(0, T]: a(x, s) \leq m(T, R)$
- $\forall t \in \mathbb{R}_{+}: x \rightarrow a(x, t)$ is differentiable at $x=0$ and $a(0, t)=a^{\prime}(0, t)=0$

Let μ be a probability measure on \mathbb{R}_{+}and $\int_{\mathbb{R}_{+}}|x| \mathrm{d} \mu(x)<\infty$. Then, there exists at most one family of probability measures $(p(\mathrm{~d} x, t), t \geq 0)$ such that:
(FP 1) $t \geq 0 \rightarrow p(\mathrm{~d} x, t)$ is weakly continuous, see Remark 2.4.
(FP 2) $p(0, \mathrm{~d} x)=\mu(\mathrm{d} x)$ and

$$
\begin{equation*}
\iint_{U} \frac{\partial \phi(x, t)}{\partial t} p(\mathrm{~d} x, t) \mathrm{d} t+\iint_{U} \frac{\partial^{2} \phi(x, t)}{\partial x^{2}} a(x, t) p(\mathrm{~d} x, t) \mathrm{d} t=0 \quad \forall \phi \in \mathcal{D}(U) \tag{4.3}
\end{equation*}
$$

Proof : We note, that equation (4.3) is the integral representation of the following statement:

$$
\frac{\partial p(\mathrm{~d} x, t)}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}(p(\mathrm{~d} x, t) a(x, t))=0 \quad \text { in } \mathcal{D}^{\prime}(U)
$$

We will split the proof into several parts.

Lemma 4.3. First, we prove some properties of the function

$$
M(x):=-\int_{\mathbb{R}_{+}}(u \wedge x) \mu(\mathrm{d} u)=-\left(\int_{0, x]} u \mu(\mathrm{~d} u)+\int_{(x, \infty)} x \mu(\mathrm{~d} u)\right)
$$

which we will need later on. It holds,

1. $M(x)$ is Lipschitz continuous.
2. $M(x)$ is a.s. differentiable and its right derivative is given by

$$
M^{\prime}(x)=-\int_{(x, \infty)} \mu(\mathrm{d} u)=\int_{(0, x]}(u) \mu(\mathrm{d} u)-1 .
$$

3. $M^{\prime}(x)$ is monotonically increasing.
4. $M(x)$ is convex.
5. $\frac{\partial^{2} M(x)}{\partial x^{2}}=\mu(\mathrm{d} x) \quad$ in $\mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)$

PROOF :

1. To show: $M(x)$ is Lipschitz continuous
$\forall y>x>0$:

$$
\begin{aligned}
& |M(y)-M(x)|=\left|-\left(\int_{(x, y]} u \mu(\mathrm{~d} u)+\int_{(y, \infty)} y \mu(\mathrm{~d} u)-\int_{(x, \infty)} x \mu(\mathrm{~d} u)\right)\right|= \\
= & \left|\int_{(x, y]} u \mu(\mathrm{~d} u)-\int_{(x, y]} x \mu(\mathrm{~d} u)+(y-x) \int_{(y, \infty)} \mu(\mathrm{d} u)\right| \leq \\
\leq & \left|\int_{(x, y]}(y-x) \mu(\mathrm{d} u)+(y-x) \int_{(y, \infty)} x \mu(\mathrm{~d} u)\right| \leq \\
\leq & (y-x) \int_{(x, \infty)} \mu(\mathrm{d} u) \leq y-x
\end{aligned}
$$

2. The a.s. differentiability is provided by the Lipschitz continuity, see [1, Theorem 6, page 282]. We calculate the right derivative:

$$
\begin{aligned}
\frac{\partial}{\partial_{+} x} M(x) & =-\frac{\partial}{\partial_{+} x}\left(\int_{\mathbb{R}_{+}}(u \wedge x) \mu(\mathrm{d} u)\right)= \\
& =-\int_{\mathbb{R}_{+}} \frac{\partial}{\partial_{+} x}(u \wedge x) \mu(\mathrm{d} u)=-\int_{\mathbb{R}_{+}} \chi_{(0, u)}(x) \mu(\mathrm{d} u)= \\
& =-\int_{\mathbb{R}_{+}} \chi_{(x, \infty)}(u) \mu(\mathrm{d} u)=-\int_{(x, \infty)}(u) \mu(\mathrm{d} u)=\int_{(0, x]}(u) \mu(\mathrm{d} u)-1
\end{aligned}
$$

3. Follows immediately from $\frac{\partial}{\partial+x} M(x)=\int_{(0, x]}(u) \mu(\mathrm{d} u)-1$ a.s. .
4. Follows immediately from the first and last point.
5. Let $f \in \mathcal{D}\left(\mathbb{R}_{+}\right)$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}} f(x) \frac{\partial^{2} M(x)}{\partial x^{2}} \mathrm{~d} x= \\
= & \int_{\mathbb{R}_{+}} f(x) \frac{\partial}{\partial x}\left(\int_{0, x]}(u) \mu(\mathrm{d} u)-1\right) \mathrm{d} x= \\
= & \int_{\mathbb{R}_{+}} f(x) \frac{\partial}{\partial x} \mu((0, x]) \mathrm{d} x= \\
= & \int_{\mathbb{R}_{+}} f(x) \mu(\mathrm{d} x)
\end{aligned}
$$

Lemma 4.4. Let a probability measure μ and $p(\mathrm{~d} x, t)$ be as in Theorem 4.2. Then holds $\forall t \geq 0, \phi \in \mathcal{D}\left(\mathbb{R}_{+}\right)$:

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \phi(x) p(\mathrm{~d} x, t)=\int_{\mathbb{R}_{+}} \phi(x) \mu(\mathrm{d} x)+\int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s \tag{4.4}
\end{equation*}
$$

Remark 4.5. Note that this lemma reads as $\int_{(0, t)} \frac{\partial^{2} a(x, s) p(\mathrm{~d} x, s)}{\partial x^{2}} \mathrm{~d} s=p(\mathrm{~d} x, t)-$ $\mu(\mathrm{d} x)$ in $\mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)$. We will later introduce (analogue to the case with density) the measure $P(\mathrm{~d} x, t):=\int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s$. Therefore, this Lemma also reads as
$\frac{\partial^{2} P(\mathrm{~d} x, t)}{\partial x^{2}} \mathrm{~d} s=p(\mathrm{~d} x, t)-\mu(\mathrm{d} x)$ in $\mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)$.
This proof works analogue to the case with density function.
Proof : For $t \geq 0$ fixed, we define $\alpha_{n}(x):=f_{t, n}(x)$ for $n \in \mathbb{N}: n>2 / t$ by equation (2.1). From (FP 2) we know, that $\forall \phi \in \mathcal{D}\left(\mathbb{R}_{+}\right)$:

$$
\iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s+\iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \alpha_{n}(s) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s=0
$$

Now we take $\lim _{n \rightarrow \infty}$ for both integrals individually. First we treat the second integral. In Lemma (2.16) we showed alle necessary requirements for dominated convergence. Therefore,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \alpha_{n}(s) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \lim _{n \rightarrow \infty} \alpha_{n}(s) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \chi_{(0, t)}(s) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s
\end{aligned}
$$

Now, we examine the first integral.

$$
\begin{aligned}
& \iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \iint_{U} n(\psi(n s)-\psi(n s-n t+2)) \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \iint_{U} n \psi(n s) \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s-\iint_{U} n \psi(n s-n t+2) \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s
\end{aligned}
$$

And again, we have to treat both integrals individually by substituting:

$$
\begin{aligned}
& \iint_{U} n \psi(n s) \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s=|u=n s|= \\
& \iint_{U} \psi(u) \phi(x) p\left(\mathrm{~d} x, \frac{u}{n}\right) \mathrm{d} u
\end{aligned}
$$

and

$$
\begin{aligned}
& \iint_{U} n \psi(n s-n t+2) \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s=|u=n s-n t+2|= \\
& \iint_{\tilde{U}} \psi(u) \phi(x) p\left(\mathrm{~d} x, t+\frac{u-2}{n}\right) \mathrm{d} u
\end{aligned}
$$

Where $\tilde{U}=(2-n t, \infty) \times \mathbb{R}_{+}$. Since we required $n \geq \frac{2}{t}$ and $\operatorname{supp}(\psi) \subseteq[1,2]$, we deduce

$$
\begin{aligned}
& \iint_{\tilde{U}} \psi(u) \phi(x) p\left(\mathrm{~d} x, t+\frac{u-2}{n}\right) \mathrm{d} u= \\
& \iint_{U} \psi(u) \phi(x) p\left(\mathrm{~d} x, t+\frac{u-2}{n}\right) \mathrm{d} u
\end{aligned}
$$

By (FP 1), these integrals converge for $n \rightarrow \infty$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \lim _{n \rightarrow \infty}\left(\iint_{U} \psi(u) \phi(x) p\left(\mathrm{~d} x, \frac{u}{n}\right) \mathrm{d} u-\iint_{U} \psi(u) \phi(x) p\left(\mathrm{~d} x, t+\frac{u-2}{n}\right) \mathrm{d} u\right)= \\
& \iint_{U} \psi(u) \phi(x) p(\mathrm{~d} x, 0) \mathrm{d} u-\iint_{U} \psi(u) \phi(x) p(\mathrm{~d} x, t) \mathrm{d} u=\text { now using Fubini } \\
& \iint_{U} \psi(u) \mathrm{d} u \phi(x) p(\mathrm{~d} x, 0)-\iint_{U} \psi(u) \mathrm{d} u \phi(x) p(\mathrm{~d} x, t)= \\
& \int_{\mathbb{R}_{+}} \phi(x) p(\mathrm{~d} x, 0)-\int_{\mathbb{R}_{+}} \phi(x) p(\mathrm{~d} x, t)
\end{aligned}
$$

Therefore, by using (FP 2) in the last step, we get

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial \alpha_{n}(s)}{\partial s} \phi(x) p(\mathrm{~d} x, s) \mathrm{d} s+ \\
& \lim _{n \rightarrow \infty} \iint_{U} \frac{\partial^{2} \phi(x)}{\partial x^{2}} \alpha_{n}(s) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s=0 \\
\Leftrightarrow & \int_{\mathbb{R}_{+}} \phi(x) p(\mathrm{~d} x, 0)-\int_{\mathbb{R}_{+}} \phi(x) p(\mathrm{~d} x, t)+ \\
& \int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s=0 \\
\Leftrightarrow & \int_{\mathbb{R}_{+}} \phi(x) p(\mathrm{~d} x, t)=\int_{\mathbb{R}_{+}} \phi(x) \mu(\mathrm{d} x)+\int_{\mathbb{R}_{+}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s
\end{aligned}
$$

which concludes the proof.

Definition 4.6. For a family of probability measures $p(\mathrm{~d} x, t), t \geq 0$ and a Borel function $a(x, t)$ which satisfy the conditions in Theorem 4.2, we define the positive measure $P(\mathrm{~d} x, t)$ by

$$
P(\mathrm{~d} x, t):=\int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s .
$$

Lemma 4.7. Let $P(\mathrm{~d} x, t)$ denote a measure as defined in Definition 4.6. Then holds:

1. $(P(\mathrm{~d} x, t), t \geq 0)$ is an increasing family of positive measures.
2. $t \rightarrow P(\mathrm{~d} x, t)$ is vaguely continuous and $P(\mathrm{~d} x, 0)=0$.
3. $\frac{\partial^{2} P(\mathrm{~d} x, t)}{\partial x^{2}}=p(\mathrm{~d} x, t)-\mu(\mathrm{d} x) \quad$ in $\mathcal{D}^{\prime}(U)$.
4. $\forall t \geq 0, P(\mathrm{~d} x, t)$ admits a density with respect to the Lebesgue measure, which we will denote by $P(x, t)$.
5. $\frac{\partial P}{\partial x}(0, t)=0$.
6. The function $x \rightarrow P(x, t)$ admits a right derivative denoted by $\frac{\partial P}{\partial x}(x, t)$:

$$
\begin{equation*}
\frac{\partial P}{\partial x}(x, t)=\int_{[x, \infty)}(\mu(\mathrm{d} u)-p(\mathrm{~d} u, t))=\int_{(0, x)}(p(\mathrm{~d} u, t)-\mu(\mathrm{d} u)) . \tag{4.5}
\end{equation*}
$$

7. $\forall t \in \mathbb{R}_{+}: x \rightarrow P(x, t)$ is Lipschitz continuous with Lipschitz constant 1.
8. $\forall x \in \mathbb{R}_{+}: t \rightarrow P(x, t)$ is continuous.
9. $P(x, t)$ is continuous on U.
10. $\forall t \in \mathbb{R}_{+}: P(0, t)<\infty$.
11. $P(x, t)=-\int_{(0, \infty)}(u \wedge x) p(\mathrm{~d} u, t)+\int_{(0, \infty)}(u \wedge x) \mu(\mathrm{d} u)+P(t, 0)$.
12. $\forall(x, t) \in U: 0 \leq P(x, t) \leq P(0, t)+\int_{\mathbb{R}_{+}} y \mu(\mathrm{~d} y)<\infty$.
13. $\frac{\partial P}{\partial t}(x, t) \mathrm{d} x=a(x, t) p(\mathrm{~d} x, t)$

PROOF :

1. This follows easily since $a(x, t) \geq 0$.
2. $P(\mathrm{~d} x, 0)=\int_{(0,0)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s=0$.

To show the vague continuity, we fix $f \in C_{K}^{+}\left(\mathbb{R}_{+}\right)$. Then there exists $R>0$ with $\operatorname{supp}(f) \subseteq[0, R]$. We will show, that $\lim _{t \rightarrow T} \int_{\mathbb{R}_{+}} f(x) P(\mathrm{~d} x, t)=$ $\int_{\mathbb{R}_{+}} f(x) P(\mathrm{~d} x, T)$. Also, from weak convergence of $p(\mathrm{~d} x, t)$, we know, that for all $\epsilon>0, T \geq 0: \exists \delta>0$:

$$
\begin{align*}
& \forall t \in[T-\delta, T+\delta]:\left|\int_{\mathbb{R}_{+}} f(x) p(\mathrm{~d} x, t)-\int_{\mathbb{R}_{+}} f(x) p(\mathrm{~d} x, T)\right| \leq \frac{\epsilon}{m(T, R)} \\
\Leftrightarrow & \sup _{t \in[T-\delta, T+\delta]}\left\{\left|\int_{\mathbb{R}_{+}} f(x) p(\mathrm{~d} x, t)-\int_{\mathbb{R}_{+}} f(x) p(\mathrm{~d} x, T)\right|\right\} \leq \frac{\epsilon}{m(T, R)} \tag{4.6}
\end{align*}
$$

Let $\epsilon>0$ and $t \in[T-\delta, T+\delta]$, then

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}} f(x) P(\mathrm{~d} x, t)=\int_{\mathbb{R}_{+}} f(x) \int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s= \\
= & \int_{(0, T)} \int_{\mathbb{R}_{+}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s-\int_{[t, T)} \int_{\mathbb{R}_{+}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s
\end{aligned}
$$

Now, we estimate the second integral:

$$
\begin{aligned}
& \int_{[t, T)} \int_{\mathbb{R}_{+}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s \leq \text { using Fubini for positive terms } \\
\leq & \int_{[t, T)} \sup _{t \in[T-\delta, T+\delta]}\left\{\int_{\mathbb{R}_{+}} f(x) m(T, R) p(\mathrm{~d} x, s)\right\} \mathrm{d} s \leq \text { using eq. (4.6) } \\
\leq & \int_{[t, T)} \epsilon \mathrm{d} s=(T-t) \epsilon
\end{aligned}
$$

Putting all together we get:

$$
\begin{aligned}
& \lim _{t \rightarrow T} \int_{\mathbb{R}_{+}} f(x) P(\mathrm{~d} x, t)= \\
& \lim _{t \rightarrow T} \int_{(0, T)} \int_{\mathbb{R}_{+}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s- \\
& \lim _{t \rightarrow T} \int_{[t, T)} \int_{\mathbb{R}_{+}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \quad \int_{(0, T)} \int_{\mathbb{R}_{+}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s-\lim _{t \rightarrow T}(T-t) \epsilon= \\
& \quad \int_{\mathbb{R}_{+}} f(x) P(\mathrm{~d} x, T)
\end{aligned}
$$

3. See remark (4.5).
4. To show: $\forall t \geq 0, P(\mathrm{~d} x, t)$ admits a continuous density with respect to the Lebesgue measure.
We will show this (for each t) by representing $P(\mathrm{~d} x, t)$ as the difference of two convex measures $N(\mathrm{~d} x)-M(x) \mathrm{d} x$. We know from Lemma (4.3), that $\frac{\partial^{2} M(x)}{\partial x^{2}}=\mu(\mathrm{d} x) \quad \in \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)$. We use the last point to conclude that

$$
\begin{aligned}
& \frac{\partial^{2} P(\mathrm{~d} x, t)}{\partial x^{2}}=p(\mathrm{~d} x, t)-\mu(\mathrm{d} x) \\
& \Rightarrow \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right) \\
& \Rightarrow \frac{\partial^{2} P(\mathrm{~d} x, t)+M(x)}{\partial x^{2}}=p(\mathrm{~d} x, t) \\
& \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)
\end{aligned}
$$

Therefore, the Measure $N(\mathrm{~d} x):=P(\mathrm{~d} x, t)+M(x)$ is a.s. twice differentiable with $\frac{\partial^{2} N(\mathrm{~d} x)}{\partial x^{2}}=p(\mathrm{~d} x, t)$ in $\mathcal{D}^{\prime}(U)$. Furthermore, this shows that $N(x)$ is convex (see [7, p. 54]). Since $N(\mathrm{~d} x)$ and $M(x)$ have densities with respect to the Lebesgue Measure, $P(\mathrm{~d} x, t)=N(\mathrm{~d} x)-M(x)$ also has a density function.
5. To show: $\frac{\partial P}{\partial x}(0, t)=0$.

As in the case with density function, the technicalities remain to show. Here is a similar heuristic argument, that the third condition for a, i.e. for all $t \geq 0: x \rightarrow a(x, t)$ is differentiable and $a^{\prime}(0, t)=a(0, t)=0$ is sufficient to conclude this. For that we split $p(\mathrm{~d} x, t)$ in an absolutely continuous density $f_{a}^{t}(x)$, a density as stepfunction $f_{T}^{t}(x)=$
$\sum_{i \in I_{T}} \chi_{\left[x_{i}, \infty\right)}(x) p_{i}$ and a point measure $\mu_{t}((0, x])=\sum_{i \in I_{m}} p_{t, i} \chi_{\left(-\infty, x_{i}\right]}(x)$. Then

$$
\begin{aligned}
& \frac{\partial P}{\partial x}(x, t)=\frac{\partial}{\partial x}\left(\int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s\right)= \\
= & \frac{\partial}{\partial x} \int_{(0, t)} a(x, s)\left(f_{a}^{s}(x)+f_{T}^{s}(x)+\mu_{s}(\mathrm{~d} x)\right) \mathrm{d} s= \\
= & \frac{\partial}{\partial x} \int_{(0, t)} a(x, s)\left(f_{a}^{s}(x)+f_{T}^{s}(x)+\sum_{i \in I_{m}} \chi_{\left\{x_{i}\right\}}(x) p_{t, i}\right) \mathrm{d} s= \\
= & \int_{(0, t)} a^{\prime}(x, s)\left(f_{a}^{s}(x)+f_{T}^{s}(x)+\sum_{i \in I_{m}} \chi_{\left\{x_{i}\right\}}(x) p_{t, i}\right) \mathrm{d} s+ \\
& \int_{(0, t)} a(x, s)\left(f_{a}^{s}(x)^{\prime}+\sum_{i \in I_{T}} \chi_{\left\{x_{i}\right\}}(x) p_{i}\right)-\int_{(0, t)} \sum_{i \in I_{m}} \chi_{\left\{x_{i}\right\}}(x) a^{\prime}(x, s) p_{t, i} \mathrm{~d} s
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\partial P}{\partial x}(0, t)= \\
= & \frac{\partial}{\partial x}\left(\int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s\right)= \\
= & a^{\prime}(0, t) \\
& \int_{(0, t)} a(0, s)\left(f_{a}^{s}(0)+f_{T}^{s}(0)+\sum_{i \in I_{m}} \chi_{\left\{x_{i}\right\}}(0) a(0, s) p_{t, i}\right) \mathrm{d} s+ \\
= & 0
\end{aligned}
$$

6. Point 3 also holds for $P(x, t)$ from point 4 . By integrating we obtain the right derivative:

$$
\begin{aligned}
& \frac{\partial P}{\partial x}(x, t)-\frac{\partial P}{\partial x}(0, t)=\int_{(0, x)}(p(\mathrm{~d} u, t)-\mu(\mathrm{d} u))= \\
= & p((0, x), t)-\mu((0, x))
\end{aligned}
$$

With point 5 we deduce

$$
\frac{\partial P}{\partial x}(x, t)=p((0, x), t)-\mu((0, x))
$$

7. To show: $\forall t \in \mathbb{R}_{+}: x \rightarrow P(x, t)$ is Lipschitz continuous with Lipschitz constant 1.
This follows from last point, since the right derivative satisfies

$$
\left|\frac{\partial P}{\partial x}(x, t)\right|=|p((0, x), t)-\mu((0, x))| \leq 1
$$

8. To show: $\forall x \in \mathbb{R}_{+}: t \rightarrow P(x, t)$ is continuous.

Let $x \in \mathbb{R}_{+}$and suppose there is a discontuinity at t, i.e.

$$
\exists\left(t_{n}\right)_{n \in \mathbb{N}} \rightarrow t:\left|P\left(x, t_{n}\right)-P(x, t)\right| \geq 6 \epsilon .
$$

Without loss of generality, let $\left(t_{n}\right)_{n \in \mathbb{N}}$ be monotonically decreasing (since $t \rightarrow P(x, t)$ is monotonically increasing $\left(t_{n}\right)_{n \in \mathbb{N}}$ could be chosen either monotonically increasing or decreasing). Then we have

$$
P\left(x, t_{n}\right)-P(x, t) \geq 6 \epsilon
$$

We deduce, that for $\epsilon>0$, there is some $N(\epsilon)$ such that

$$
\forall n \geq N(\epsilon): P\left(x, t_{n}\right)-P(x, t) \geq 5 \epsilon
$$

From point 7 we know that $\forall s \in(x-2 \epsilon, x+2 \epsilon)$:

$$
\left|P\left(x, t_{n}\right)-P\left(s, t_{n}\right)\right| \leq 2 \epsilon \text { and }|P(x, t)-P(s, t)| \leq 2 \epsilon
$$

Therefore, $\forall s \in(x-2 \epsilon, x+2 \epsilon)$:

$$
\begin{aligned}
& \left|P(s, t)-P\left(s, t_{n}\right)\right|= \\
= & \left|P(s, t)-P(x, t)+P(x, t)-P\left(x, t_{n}\right)+P\left(x, t_{n}\right)-P\left(s, t_{n}\right)\right| \geq \\
\geq & \left|P(x, t)-P\left(x, t_{n}\right)\right|-\left|P(s, t)-P(x, t)+P\left(x, t_{n}\right)-P\left(s, t_{n}\right)\right| \geq \\
\geq & \left|P(x, t)-P\left(x, t_{n}\right)\right|-|P(s, t)-P(x, t)|-\left|P\left(x, t_{n}\right)-P\left(s, t_{n}\right)\right| \geq \\
\geq & 5 \epsilon-2 \epsilon-2 \epsilon=\epsilon
\end{aligned}
$$

We can now define a function $f_{x}(s) \in C_{K}^{+}\left(\mathbb{R}_{+}\right)$which is 1 in $(x-\epsilon, x+\epsilon)$ and 0 in $\mathbb{R}_{+} \backslash(x-2 \epsilon, x+2 \epsilon)$ by

$$
f_{x}(s):= \begin{cases}0, & \text { if }|s-x|>2 \epsilon \\ \frac{1}{\epsilon} s-\frac{1}{\epsilon}(x-2 \epsilon), & \text { if } s \in[x-2 \epsilon, x-\epsilon) \\ -\frac{1}{\epsilon} s+\frac{1}{\epsilon}(x+2 \epsilon), & \text { if } s \in[x+\epsilon, x+2 \epsilon] \\ 2 & \text { if } s \in(x-\epsilon, x+\epsilon)\end{cases}
$$

Then for all $n \geq N(\epsilon)$:

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}} f_{x}(s)\left(P\left(s, t_{n}\right)-P(s, t)\right) \mathrm{d} s= \\
= & \int_{(x-2 \epsilon, x+2 \epsilon)} f_{x}(s)\left(P\left(s, t_{n}\right)-P(s, t)\right) \mathrm{d} s \geq \\
\geq & \int_{(x-\epsilon, x+\epsilon)}\left(P\left(s, t_{n}\right)-P(s, t)\right) \mathrm{d} s \geq \int_{(x-\epsilon, x+\epsilon)} \epsilon \mathrm{d} s= \\
= & 2 \epsilon \epsilon
\end{aligned}
$$

Which contradicts point 2.
9. According to points 7 and 8 it holds, that for $\epsilon>0$ there exists $\delta>0$ such that

$$
|P(x, t)-P(x, s)| \leq \frac{\epsilon}{2} \quad \forall s \in(t-\delta, t+\delta)
$$

and for $\delta_{1}:=\min \left\{\frac{\epsilon}{2}, \delta\right\}$ holds for all $s \in(t-\delta, t+\delta), y \in\left(x-\delta_{1}, x+\delta_{1}\right)$

$$
|P(x, s)-P(y, s)| \leq \min \left\{\frac{\epsilon}{2}, \delta\right\} \leq \frac{\epsilon}{2}
$$

Therefore $\forall(y, s) \in\left(x-\delta_{1}, x+\delta_{1}\right) \times(t-\delta, t+\delta)$.

$$
|P(y, s)-P(x, t)| \leq|P(y, s)-P(y, t)|+|P(y, t)-P(x, t)| \leq \epsilon
$$

10. This follows simply from the fact, that $P(x, t)$ is continuous.
11. To show: $P(x, t)=-\int_{(0, \infty)}(u \wedge x) p(\mathrm{~d} u, t)+\int_{(0, \infty)}(u \wedge x) \mu(\mathrm{d} u)+P(t, 0)$

By integrating equation (4.5) we get:

$$
\begin{aligned}
P(x, t)-P(0, t) & =\int_{(0, x)} \frac{\partial P}{\partial x}(u, t) \mathrm{d} u= \\
& =\int_{(0, x)} \int_{[u, \infty)}(\mu(\mathrm{d} v)-p(\mathrm{~d} v, t) \mathrm{d} u= \\
& =\int_{(0, \infty)} \chi_{(0, x)}(u) \int_{(0, \infty)} \chi_{[u, \infty)}(v)(\mu(\mathrm{d} v)-p(\mathrm{~d} v, t)) \mathrm{d} u= \\
& =\int_{(0, \infty)} \int_{(0, \infty)} \chi_{(0, x)}(u) \chi_{[u, \infty)}(v) \mathrm{d} u(\mu(\mathrm{~d} v)-p(\mathrm{~d} v, t))= \\
& =\int_{(0, \infty)} \int_{(0, \infty)} \chi_{(0, x)}(u) \chi_{(0, v)}(u) \mathrm{d} u(\mu(\mathrm{~d} v)-p(\mathrm{~d} v, t))= \\
& =\int_{(0, \infty)} \int_{(0, \infty)} \chi_{(0, x \wedge v)}(u) \mathrm{d} u(\mu(\mathrm{~d} v)-p(\mathrm{~d} v, t))= \\
& =\int_{(0, \infty)}(x \wedge v)(\mu(\mathrm{d} v)-p(\mathrm{~d} v, t))
\end{aligned}
$$

12. $0 \leq P(x, t)$ is trivial. We show the other inequality:

$$
\begin{aligned}
P(x, t) & =P(0, t)+\int_{(0, \infty)}(x \wedge v)(\mu(\mathrm{d} v)-p(\mathrm{~d} v, t)) \leq \\
& \leq P(0, t)+\int_{(0, \infty)}(x \wedge v) \mu(\mathrm{d} v) \leq \\
& \leq P(0, t)+\int_{(0, \infty)} v \mu(\mathrm{~d} v)<\infty
\end{aligned}
$$

Were we used the assumption for μ from theorem (4.2) and point 9 .
13. To show: $\frac{\partial P}{\partial t}(x, t) \mathrm{d} x=a(x, t) p(\mathrm{~d} x, t)$

This follows immediately from the definition of $P(x, t)$.

Lemma 4.8. There exists $p \in L_{\text {loc }}^{2}(U)$ such that for almost every $t \geq 0$:

$$
\begin{equation*}
p(\mathrm{~d} x, t)=p(x, t) \mathrm{d} x \tag{4.7}
\end{equation*}
$$

Proof : We fix $\alpha, \zeta \in \mathcal{D}\left(\mathbb{R}_{+}\right)$and assume $\alpha \geq 0$ and $\zeta \geq 0$. There exist $0<t_{1}<t_{2}$ and $R>0$ such that $\operatorname{supp}(\alpha) \subseteq\left[t_{1}, t_{2}\right]$ and $\operatorname{supp}(\zeta) \subseteq\left[\frac{1}{R}, R\right]$. We set:

$$
\epsilon:=\epsilon\left(t_{1}, t_{2}, R\right) \quad \text { and } \quad m:=m\left(t_{2}, R\right)
$$

from the first two assumptions for $a(x, t)$. We define the function

$$
\begin{equation*}
\tilde{P}(x, t):=\zeta(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right) \tag{4.8}
\end{equation*}
$$

Then, by integrating by parts, we obtain

$$
\begin{aligned}
& \tilde{P}(x, t) \mathrm{d} x= \\
= & \zeta(x)(\alpha(t) P(x, t)-(\alpha(t) P(x, t)-\alpha(0) P(x, 0)- \\
& \left.\left.\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} s\right)\right) \mathrm{d} x= \\
= & \zeta(x)\left(\alpha(t) P(x, t)-\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} s\right)\right) \mathrm{d} x= \\
= & \zeta(x)\left(\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} x \mathrm{~d} s\right)=
\end{aligned}
$$

Now using Lemma (4.7) point 13 we obtain

$$
\begin{align*}
& =\zeta(x)\left(\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} x \mathrm{~d} s\right)= \\
=\tilde{P}(x, t) \mathrm{d} x & =\zeta(x) \int_{(0, t)} \alpha(s) a(x, s) p(\mathrm{~d} x, s) \tag{4.9}
\end{align*}
$$

Differentiating equation (4.9) with respect to t, we obtain

$$
\begin{equation*}
\frac{\partial \tilde{P}}{\partial t}(x, t)=\zeta(x) \alpha(t) a(x, t) p(\mathrm{~d} x, t) \quad \text { in } \mathcal{D}^{\prime}(U) \tag{4.10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\partial \tilde{P}}{\partial t}(x, t) \leq \zeta(x) \alpha(t) m p(\mathrm{~d} x, t) \quad \text { in } \mathcal{D}^{\prime}(U) \tag{4.11}
\end{equation*}
$$

Differentiating equation (4.8) twice with respect to x, we get in $\mathcal{D}^{\prime}(U)$

$$
\begin{aligned}
& \frac{\partial \tilde{P}}{\partial x}(x, t)= \\
= & \zeta^{\prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)
\end{aligned}
$$

and therefore in $\mathcal{D}^{\prime}(U)$

$$
\begin{aligned}
& \frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)= \\
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t) \frac{\partial^{2} P}{\partial x^{2}}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial^{2} P}{\partial x^{2}}(x, s) \mathrm{d} s\right)=
\end{aligned}
$$

using Lemma (4.7) point 3

$$
\begin{aligned}
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t)-\mu(\mathrm{d} x))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)-\mu(\mathrm{d} x)) \mathrm{d} s\right)=
\end{aligned}
$$

With expanding the last term we get

$$
\begin{align*}
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(-\mu(\mathrm{d} x))+\int_{(0, t)} \alpha^{\prime}(s)(\mu(\mathrm{d} x)) \mathrm{d} s\right)= \\
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)) \mathrm{d} s\right)+ \\
& \zeta(x)(\alpha(t)(-\mu(\mathrm{d} x))+\alpha(t)(\mu(\mathrm{d} x)) \mathrm{d} s)= \\
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)) \mathrm{d} s\right)= \\
\frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)= & \zeta(x) \alpha(t) p(\mathrm{~d} x, t)-\zeta(x) \int_{(0, t)} \alpha^{\prime}(s) p(\mathrm{~d} x, s) \mathrm{d} s+\phi(x, t) \tag{4.12}\\
&
\end{align*}
$$

With

$$
\begin{aligned}
\phi(x, t)= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)
\end{aligned}
$$

We show now that ϕ is in $\mathcal{L}^{\infty}(U)$.
Since α and ζ are in $\mathcal{D}\left(\mathbb{R}_{+}\right)$there exists $C_{\alpha}, C_{\alpha}^{\prime}, C_{\zeta}, C_{\zeta}^{\prime}, C_{\zeta}^{\prime \prime}>0$ such that $\alpha(t) \leq C_{\alpha}, \alpha^{\prime}(t) \leq C_{\alpha}^{\prime}, \zeta(x) \leq C_{\zeta}, \zeta^{\prime}(x) \leq C_{\zeta}^{\prime}, \zeta^{\prime \prime}(x) \leq C_{\zeta}^{\prime \prime}$. Since $P(x, t)$ is continuous (see lemma (4.7) point 9), There exists some C_{P} with $P(x, t) \leq$ C_{P} for all $(x, t) \in[0, R] \times\left[t_{1}, t_{2}\right]$. From lemma (4.7) point 7 we know, that $\frac{\partial P}{\partial x}(x, t) \leq 1$. Therefore,

$$
|\phi(x, t)| \leq C_{\zeta}^{\prime \prime}\left(C_{\alpha} C_{P}+t_{2} C_{\alpha}^{\prime} C_{P}\right)+2 C_{\zeta}^{\prime}\left(C_{\alpha}+t_{2} C_{\alpha}^{\prime}\right)=: C_{\phi}<\infty
$$

Furthermore we have

$$
\begin{align*}
& \zeta(x) \int_{(0, t)}\left|\alpha^{\prime}(s)\right| p(\mathrm{~d} x, s) \mathrm{d} s \leq \frac{C_{\alpha}^{\prime}}{\epsilon} \zeta(x) \int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s \leq \\
\leq & \frac{C_{\alpha}^{\prime}}{\epsilon} \zeta(x) P(x, t) \leq \frac{C_{\alpha}^{\prime}}{\epsilon} C_{\zeta} C_{P}<\infty \tag{4.13}
\end{align*}
$$

Which shows that equation (4.12) can be written as

$$
\frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)=\zeta(x) \alpha(t) p(\mathrm{~d} x, t)-\frac{1}{m} \Phi(x, t)
$$

with $\Phi \in \mathcal{L}^{\infty}(U)$. And Therefore,

$$
\begin{equation*}
\zeta(x) \alpha(t) p(\mathrm{~d} x, t)=\frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)+\frac{1}{m} \Phi(x, t) \tag{4.14}
\end{equation*}
$$

From equations (4.11) and (4.14) we deduce

$$
\begin{equation*}
\frac{\partial \tilde{P}}{\partial t}(x, t) \leq \zeta(x) \alpha(t) m p(\mathrm{~d} x, t)=m \frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)+\Phi(x, t) \tag{4.15}
\end{equation*}
$$

In the following we want to define the convolution for \tilde{P} with a functions of a regularizing sequence $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ (See Lemma (2.18)). Thatfor we extend the function \tilde{P} from U to $\mathbb{R} \times \mathbb{R}_{+}$with $\tilde{P}(x, t)=0 \forall x \leq 0$. Without loss of
generality let $\operatorname{supp}(\phi) \subseteq\left[-\frac{1}{n}, \frac{1}{n}\right]$.
We define

$$
\tilde{P}_{n}(x, t):=\tilde{P}(x, t) * \phi_{n}(x)=\int_{\mathbb{R}} \tilde{P}(y, t) \phi_{n}(x-y) \mathrm{d} y
$$

As mentioned in Definition (2.17) we know, that

$$
\frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t)=\frac{\partial^{2} \tilde{P}}{\partial x^{2}} * \phi_{n}(x, t)
$$

and similarly with equation (4.10)

$$
\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)=\frac{\partial \tilde{P}}{\partial t} * \phi_{n}(x, t)=\alpha(t) a(x, t) \zeta(x) p(\mathrm{~d} x, t) * \phi_{n}(x, t)
$$

We note, that $\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)$ is differentiable with respect to x. Now equation (4.15) also holds for the on $\mathbb{R} \times \mathbb{R}_{+}$continued and in x convoluted \tilde{P}_{n} (with $\left.\Phi_{n}:=\Phi * \phi_{n}\right)$:

$$
\begin{equation*}
\frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \leq m \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t)+\Phi_{n}(x, t) \tag{4.16}
\end{equation*}
$$

From [5, p. 26-27] we know, that

$$
\begin{equation*}
\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial t}\right) \subseteq \operatorname{supp}\left(\phi_{n}\right)+\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial t}\right)=\left[\frac{1}{R}-\frac{1}{n}, R+\frac{1}{n}\right] \times\left[t_{1}, t_{2}\right] \tag{4.17}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial x}\right) \subseteq \operatorname{supp}\left(\phi_{n}\right)+\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial x}\right)=\left[\frac{1}{R}-\frac{1}{n}, R+\frac{1}{n}\right] \times\left[t_{1}, \infty\right) \tag{4.18}
\end{equation*}
$$

We note from [5, p. 23, Fakta 13.3.11-3] that

$$
\begin{equation*}
\left\|\Phi_{n}\right\|_{\infty} \leq\|\Phi\|_{\infty}\left\|\phi_{n}\right\|_{1}=\|\Phi\|_{\infty} \tag{4.19}
\end{equation*}
$$

and therefore $\Phi_{n} \in \mathcal{L}^{\infty}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$. As a little reminder we note the general inequality

$$
\begin{equation*}
a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right) \tag{4.20}
\end{equation*}
$$

which is easily proved with the Ansatz $(a-b)^{2} \geq 0$.
We want to show, that $\frac{\partial \tilde{P_{n}}}{\partial t}$ is bounded in $\mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$by a Constant C independent of n. We use equation (4.17) in the first step:

$$
\begin{align*}
& \quad \iint_{\mathbb{R} \times \mathbb{R}_{+}}\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x= \\
& =\iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \mathrm{d} t \mathrm{~d} x \leq \text { using eq }(4 \\
& \leq m \iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t) \mathrm{d} t \mathrm{~d} x+ \\
& \iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \Phi_{n}(x, t) \mathrm{d} t \mathrm{~d} x \tag{4.21}
\end{align*}
$$

We examine the first term. First we use Fubini's Theorem [6, p. 163] to switch integrating order, then partial integration (which is why we convoluted ; to get the necessary smoothness):

$$
\begin{aligned}
& m \iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t) \mathrm{d} t \mathrm{~d} x= \\
= & m \iint_{\left[t_{1}, t_{2}\right] \times[-1, R+1]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t) \mathrm{d} x \mathrm{~d} t= \\
= & m \int_{\left[t_{1}, t_{2}\right]}\left(\left.\frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t)\right|_{x=-1} ^{R+1}-\int_{[-1, R+1]} \frac{\partial^{2} \tilde{P}_{n}}{\partial t \partial x}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t) \mathrm{d} x\right) \mathrm{d} t=
\end{aligned}
$$

using equation (4.17)

$$
=-m \int_{\left[t_{1}, t_{2}\right]} \int_{[-1, R+1]} \frac{\partial^{2} \tilde{P}_{n}}{\partial t \partial x}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t) \mathrm{d} x \mathrm{~d} t=
$$

using Fubini's Theorem again

$$
\begin{aligned}
& =-m \int_{[-1, R+1]} \int_{\left[t_{1}, t_{2}\right]} \frac{\partial^{2} \tilde{P}_{n}}{\partial t \partial x}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t) \mathrm{d} t \mathrm{~d} x= \\
& =-m \int_{[-1, R+1]} \int_{\left[t_{1}, t_{2}\right]} \frac{\partial}{\partial t}\left(\frac{\partial \tilde{P}_{n}}{\partial x}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x= \\
& =-m \int_{[-1, R+1]}\left(\left(\frac{\partial \tilde{P}_{n}}{\partial x}\left(x, t_{2}\right)\right)^{2}-\left(\frac{\partial \tilde{P}_{n}}{\partial x}\left(x, t_{1}\right)\right)^{2}\right) \mathrm{d} x=
\end{aligned}
$$

using equation (4.18)

$$
=-m \int_{[-1, R+1]}\left(\frac{\partial \tilde{P}_{n}}{\partial x}\left(x, t_{2}\right)\right)^{2} \mathrm{~d} x \leq 0
$$

Therefor

$$
\begin{gathered}
4.21 \leq \iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \Phi_{n}(x, t) \mathrm{d} t \mathrm{~d} x \\
\quad \text { using equation }(4.20) \\
\iint_{\mathbb{R} \times \mathbb{R}_{+}}\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x \leq \frac{1}{2} \iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]}\left(\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2}+\Phi_{n}(x, t)^{2}\right) \mathrm{d} t \mathrm{~d} x
\end{gathered}
$$

Which shows that

$$
\begin{aligned}
& \quad \iint_{\mathbb{R} \times \mathbb{R}_{+}}\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x \leq 2 \quad \iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]} \Phi_{n}(x, t)^{2} \mathrm{~d} t \mathrm{~d} x \leq \\
& \leq 2 \iint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]}\left\|\Phi_{n}(x, t)\right\|_{\infty}^{2} \mathrm{~d} t \mathrm{~d} x= \\
& \text { using equation (4.19) } \\
& =2 \iiint_{[-1, R+1] \times\left[t_{1}, t_{2}\right]}\|\Phi(x, t)\|_{\infty}^{2} \mathrm{~d} t \mathrm{~d} x= \\
& =2\left(t_{2}-t_{1}\right)(R-2)\|\Phi(x, t)\|_{\infty}^{2}=: C<\infty
\end{aligned}
$$

From [1, p. 639, Theorem 3] we know, that since $\frac{\partial \tilde{P}_{n}}{\partial t}$ is bounded in $\mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$ there exists $u \in \mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$and a subsequence $I \subseteq \mathbb{N}$ with

$$
\lim _{i \rightarrow \infty} \int_{\left(\mathbb{R} \times \mathbb{R}_{+}\right)} f(x, t)\left(\frac{\partial \tilde{P}_{i}}{\partial t}(x, t)-u(x, t)\right) \mathrm{d} t \mathrm{~d} x=0 \text { for all } f \in \mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)
$$

On the other hand we know from Lemma (2.19), that $\frac{\partial \tilde{P}_{n}}{\partial t} \rightarrow \frac{\partial \tilde{P}}{\partial t}$ in $\mathcal{D}^{\prime}(\mathbb{R} \times$ $\left.\mathbb{R}_{+}\right)$. Since the limit is unique in distributional sense, $u=\frac{\partial \tilde{P}}{\partial t} \in \mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$.

PROOF: of Theorem 4.2
This proof works analogously to the proof in the case with density function. Suppose $\hat{p}(\mathrm{~d} x, t)$ is another solution satisfying (FP 1) and (FP 2). We set

$$
\hat{P}(x, t) \mathrm{d} x=\int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s
$$

and $q=p-\hat{p}$ and $Q=P-\hat{P}=\int_{(0, t)} a(x, s) q(\mathrm{~d} x, s) \mathrm{d} s$. The linearity of the differential operator and Lemma 4.7 show that

$$
\begin{align*}
& \frac{\partial Q}{\partial t}(x, t) \mathrm{d} x=a(x, t) q(\mathrm{~d} x, t) \quad \text { in } \mathcal{D}^{\prime}(U) \tag{4.22}\\
& \frac{\partial Q}{\partial x}(x, t) \mathrm{d} x=\int_{(0, x)} q(\mathrm{~d} x, t)=q((0, x), t) \quad \text { in } \mathcal{D}^{\prime}(U) \tag{4.23}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} Q}{\partial x^{2}}(x, t) \mathrm{d} x=q(\mathrm{~d} x, t) \quad \text { in } \mathcal{D}^{\prime}(U) \tag{4.24}
\end{equation*}
$$

Therefor

$$
\frac{\partial Q}{\partial t}(x, t)-a(x, t) \frac{\partial^{2} Q}{\partial x^{2}}(x, t)=0 \quad \text { in } \mathcal{D}^{\prime}(U)
$$

By Lemma (4.8) $q \in \mathcal{L}_{\text {loc }}^{2}$. Therefore, for $0<t_{1}<t_{2}$ and $R>0$ and $V=$ $\left[t_{1}, t_{2}\right] \times\left[\frac{1}{R}, R\right]$ holds

$$
\iint_{V} a(x, t) q(x, t)^{2} \mathrm{~d} x \mathrm{~d} t=\iint_{V} \frac{\partial Q}{\partial t}(x, t) \frac{\partial^{2} Q}{\partial x^{2}}(x, t) \mathrm{d} x \mathrm{~d} t
$$

Let ϕ_{n} again be a regularizing sequence as in proof of Lemma (4.8). We also extend $Q(x, t)$ on $\mathbb{R} \times \mathbb{R}_{+}$with $Q(x, t)=0$ for $x \leq 0$. Similarly with a and q. We set $Q_{n}=Q * \phi_{n}$. By equation (4.24) and Definition (2.17) we have

$$
\begin{aligned}
\left(\iint_{V} a q q \mathrm{~d} x \mathrm{~d} t\right) * \phi_{n} * \phi_{n} & =\left(\iint_{V} \frac{\partial Q}{\partial t}(x, t) \frac{\partial^{2} Q}{\partial x^{2}}(x, t) \mathrm{d} x \mathrm{~d} t\right) * \phi_{n} * \phi_{n} \\
\iint_{V}\left(a q * \phi_{n}(x, t)\right)\left(q * \phi_{n}(x, t)\right) \mathrm{d} x \mathrm{~d} t & =\iint_{V} \frac{\partial Q_{n}}{\partial t}(x, t) \frac{\partial^{2} Q_{n}}{\partial x^{2}}(x, t) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

By integration by parts we get

$$
\begin{aligned}
& \iint_{V} \frac{\partial Q_{n}}{\partial t}(x, t) \frac{\partial^{2} Q_{n}}{\partial x^{2}}(x, t) \mathrm{d} x \mathrm{~d} t= \\
= & \int_{\left[t_{1}, t_{2}\right]}\left(\left.\frac{\partial Q_{n}}{\partial t}(x, t) \frac{\partial Q_{n}}{\partial x}(x, t)\right|_{x=\frac{1}{R}} ^{R}-\int_{\left[\frac{1}{R}, R\right]} \frac{\partial^{2} Q_{n}}{\partial t \partial x}(x, t) \frac{\partial Q_{n}}{\partial x}(x, t) \mathrm{d} x\right) \mathrm{d} t= \\
= & \int_{\left[t_{1}, t_{2}\right]}\left(\left.\frac{\partial Q_{n}}{\partial t}(x, t) \frac{\partial Q_{n}}{\partial x}(x, t)\right|_{x=\frac{1}{R}} ^{R}-\frac{1}{2} \frac{\partial}{\partial t} \int_{\left[\frac{1}{R}, R\right]}\left(\frac{\partial Q_{n}}{\partial x}(x, t)\right)^{2} \mathrm{~d} x\right) \mathrm{d} t \leq
\end{aligned}
$$

with equation (4.22)

$$
\leq\left.\int_{\left[t_{1}, t_{2}\right]}(a q) * \phi_{n}(x, t) \frac{\partial Q_{n}}{\partial x}(x, t)\right|_{x=\frac{1}{R}} ^{R} \mathrm{~d} t+\frac{1}{2} \int_{\left[\frac{1}{R}, R\right]}\left(\frac{\partial Q_{n}}{\partial x}\left(x, t_{1}\right)\right)^{2} \mathrm{~d} x
$$

We estimate $\left|\frac{\partial Q_{n}}{\partial x}(R, t)\right|$:

$$
\begin{aligned}
& \left|\frac{\partial Q_{n}}{\partial x}(R, t)\right|=\left|\int_{\left[R-\frac{1}{n}, R+\frac{1}{n}\right]} \frac{\partial Q}{\partial x}(y, t) \phi_{n}(R-y) \mathrm{d} y\right| \leq \\
& \leq \sup _{y \in\left[R-\frac{1}{n}, R+\frac{1}{n}\right]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\} \int_{\left[R-\frac{1}{n}, R+\frac{1}{n}\right]} \phi_{n}(R-y) \mathrm{d} y= \\
& \sup _{y \in\left[R-\frac{1}{n}, R+\frac{1}{n}\right]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}
\end{aligned}
$$

and analogously we get

$$
\left|\frac{\partial Q_{n}}{\partial x}\left(\frac{1}{R}, t\right)\right| \leq \sup _{y \in\left[\frac{1}{R}-\frac{1}{n}, \frac{1}{R}+\frac{1}{n}\right]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}
$$

and

$$
\begin{aligned}
& \int_{\left[t_{1}, t_{2}\right]}\left|\left(a q * \phi_{n}\right)(R)\right| \mathrm{d} t=\left(\int_{\left[t_{1}, t_{2}\right]} \mid(a(p-\hat{p}) \mid \mathrm{d} t) * \phi_{n}\right)(R) \leq \\
\leq & \left(\int_{\left[t_{1}, t_{2}\right]}(a p)(R) \mathrm{d} t\right) * \phi_{n}(R)+\left(\int_{\left[t_{1}, t_{2}\right]}(a \hat{p})\right) * \phi_{n}(R) \mathrm{d} t= \\
= & \left(P\left(\cdot, t_{2}\right)-P\left(\cdot, t_{1}\right)\right) * \phi_{n}(R)+\left(\hat{P}\left(\cdot, t_{2}\right)-\hat{P}\left(\cdot, t_{1}\right)\right) * \phi_{n}(R) \leq \\
\leq & \sup _{x \in \mathbb{R}}\left\{P\left(x, t_{2}\right)+\hat{P}\left(x, t_{2}\right)\right\} \leq C_{t_{2}}
\end{aligned}
$$

In the last step we used Lemma (4.7) point 12. Similarly we get

$$
\int_{\left[t_{1}, t_{2}\right]}\left|\left(a q * \phi_{n}\right)\left(\frac{1}{R}\right)\right| \mathrm{d} t \leq C_{t_{2}} .
$$

Therefore, we have for all $\mathbb{N} \ni n>\frac{1}{R}$:

$$
\begin{aligned}
& \iint_{V}\left(a q * \phi_{n}(x, t)\right)\left(q * \phi_{n}(x, t)\right) \mathrm{d} x \mathrm{~d} t \leq \\
\leq & C_{t_{2}}\left(\sup _{t \in\left[t_{1}, t_{2}\right]} \sup _{y \in\left[R-\frac{1}{n}, R+\frac{1}{n}\right]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}+\sup _{t \in\left[t_{1}, t_{2}\right]} \sup _{y \in\left[\frac{1}{R}-\frac{1}{n}, \frac{1}{R}+\frac{1}{n}\right]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}\right)+ \\
& \frac{1}{2} \int_{\left[\frac{1}{R}, R\right]}\left(\frac{\partial Q_{n}}{\partial x}\left(x, t_{1}\right)\right)^{2} \mathrm{~d} x \leq \\
\leq & C_{t_{2}}\left(\sup _{t \in\left(0, t_{2}\right]} \sup _{y \in[R-1, R+1]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}+\sup _{t \in\left(0, t_{2}\right]} \sup _{y \in\left[0, \frac{1}{R}+\frac{1}{n}\right]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}\right)+ \\
& \frac{1}{2} \int_{\left[\frac{1}{R}, R\right]}\left(\frac{\partial Q_{n}}{\partial x}\left(x, t_{1}\right)\right)^{2} \mathrm{~d} x
\end{aligned}
$$

Now we let $n \rightarrow \infty$. Since $q \in \mathcal{L}_{l o c}^{2}(U)$ (see Lemma (4.8)) and with Lemma (2.19) the left hand side converges to $\iint_{V}\left(a(x, t) q^{2}(x, t)\right) \mathrm{d} x \mathrm{~d} t$. Since there is
a $n>0$ such that $\frac{1}{R}+\frac{1}{n} \leq \frac{1}{R-1}$ we have

$$
\begin{align*}
& \iint_{V}\left(a(x, t) q^{2}(x, t)\right) \mathrm{d} x \mathrm{~d} t \leq \\
\leq & C_{t_{2}}\left(\sup _{t \in\left(0, t_{2}\right]} \sup _{y \in[R-1, R+1]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}+\sup _{t \in\left(0, t_{2}\right]} \sup _{y \in\left(0, \frac{1}{R-1}\right]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}\right)+ \\
& \frac{1}{2} \int_{\left[\frac{1}{R}, R\right]}\left(\frac{\partial Q}{\partial x}\left(x, t_{1}\right)\right)^{2} \mathrm{~d} x \tag{4.25}
\end{align*}
$$

By equation (4.23) we have $\left|\frac{\partial Q}{\partial x}\left(x, t_{1}\right)\right| \leq 1$ and $\lim _{t_{1} \rightarrow \infty}\left|\frac{\partial Q}{\partial x}\left(x, t_{1}\right)\right|=0$. Hence

$$
\lim _{t_{1} \rightarrow \infty} \frac{1}{2} \int_{\left[\frac{1}{R}, R\right]}\left(\frac{\partial Q}{\partial x}\left(x, t_{1}\right)\right)^{2} \mathrm{~d} x=0
$$

Again by equation (4.23) we have

$$
\begin{aligned}
& \frac{\partial Q}{\partial x}(x, t) \mathrm{d} x=\int_{(0, x)} q(\mathrm{~d} x, t)=\int_{(0, x)} p(\mathrm{~d} x, t)-\int_{(0, x)} \hat{p}(\mathrm{~d} x, t)= \\
= & \int_{[x, \infty)} \hat{p}(\mathrm{~d} x, t)-\int_{[x, \infty)} p(\mathrm{~d} x, t)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \quad \sup _{t \in\left(0, t_{2}\right]} \sup _{x \in[R-1, R+1]}\left\{\int_{[x, \infty)} p(\mathrm{~d} x, t)\right\}=\sup _{t \in\left(0, t_{2}\right]}\left\{\int_{[R-1, \infty)} p(\mathrm{~d} x, t)\right\} \leq \\
& \leq \\
& \sup _{t \in\left[0, t_{2}\right]}\left\{\int_{\mathbb{R}_{+}} \theta(x+2-R) p(\mathrm{~d} x, t)\right\}
\end{aligned}
$$

(Note that $p(\mathrm{~d} x, t)=\mu(\mathrm{d} x))$ where θ is a continuous function with

$$
\theta(x):= \begin{cases}1, & \text { if } x \geq 1 \\ 0, & \text { if } x \leq 0 \\ x, & \text { else }\end{cases}
$$

For each $t \in\left[0, t_{2}\right]$ holds $\lim _{R \rightarrow \infty} \int_{\mathbb{R}_{+}} \theta(x+2-R) p(\mathrm{~d} x, t)=0$. We also note, that $t \rightarrow \int_{\mathbb{R}_{+}} \theta(x+2-R) p(\mathrm{~d} x, t)$ is continuous since $t \rightarrow p(\mathrm{~d} x, t)$ is weakly
continuous and θ is continuous and bounded. It is easy to see, that $\left[0, t_{2}\right]$ is compact and $R \rightarrow \int_{\mathbb{R}_{+}} \theta(x+2-R) p(\mathrm{~d} x, t)$ is a decreasing family of continuous functions. Therefore, by Dinis Lemma (A.1)

$$
\lim _{R \rightarrow \infty} \sup _{t \in\left[0, t_{2}\right]}\left\{\int_{\mathbb{R}_{+}} \theta(x+2-R) p(\mathrm{~d} x, t)\right\}=0
$$

The same result holds obviously for \hat{p} and therefor

$$
\begin{equation*}
\lim _{R \rightarrow \infty} C_{t_{2}} \sup _{t \in\left(0, t_{2}\right]} \sup _{y \in[R-1, R+1]}\left\{\left|\frac{\partial Q}{\partial x}(y, t)\right|\right\}=0 \tag{4.26}
\end{equation*}
$$

We treat the second term in equation (4.25) similar:

$$
\begin{aligned}
& \sup _{t \in\left(0, t_{2}\right]} \sup _{x \in\left(0, \frac{1}{R-1}\right]}\left\{\int_{(0, x)} p(\mathrm{~d} x, t)\right\}=\sup _{t \in\left(0, t_{2}\right]}\left\{\int_{\left(0, \frac{1}{R-1}\right]} p(\mathrm{~d} x, t)\right\} \leq \\
& \leq \sup _{t \in\left[0, t_{2}\right]}\left\{\int_{\mathbb{R}_{+}} \hat{\theta}(x(R-1)) p(\mathrm{~d} x, t)\right\}
\end{aligned}
$$

where $\hat{\theta}: \mathbb{R}_{+} \rightarrow[0,1]$ is continuous and bounded function.

$$
\hat{\theta}(x):= \begin{cases}0, & \text { if } x \geq 2 \\ 1, & \text { if } 0<x \leq 1 \\ 2-x, & \text { else }\end{cases}
$$

Therefore $R \rightarrow \int_{\mathbb{R}_{+}} \hat{\theta}(x(R-1)) p(\mathrm{~d} x, t)$ is a decreasing family of continuous functions with $\lim _{R \rightarrow \infty} \int_{\mathbb{R}_{+}} \hat{\theta}(x(R-1)) p(\mathrm{~d} x, t)=0$. Therefore, again by Dinis Lemma:

$$
\lim _{R \rightarrow \infty} \sup _{t \in\left[0, t_{2}\right]}\left\{\int_{\mathbb{R}_{+}} \hat{\theta}(x(R-1)) p(\mathrm{~d} x, t)\right\}=0
$$

We have the same result for \hat{p} and with equation (4.25) we conclude that

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} \lim _{t_{1} \rightarrow 0} \iint_{\left[t_{1}, t_{2}\right] \times\left[\frac{1}{R}, R\right]}\left(a(x, t) q^{2}(x, t)\right) \mathrm{d} x \mathrm{~d} t= \\
= & \iint_{\left(0, t_{2}\right] \times(0, R]}\left(a(x, t) q^{2}(x, t)\right) \mathrm{d} x \mathrm{~d} t \leq 0
\end{aligned}
$$

for each $t_{2}>0$. This shows, that $q(x, t)=0$ a.s.

5 The general version with $U=\mathbb{R} \times \mathbb{R}_{+}$

Remark 5.1. In this section we reproduce the proof of M. Pierre with details. As we will see, the third condition for $a(x, t)$, i.e. $\forall t \in \mathbb{R}_{+}: x \rightarrow a(x, t)$ is differentiable at $x=0$ and $a(0, t)=a^{\prime}(0, t)=0$ is not needed here. Remember, it was only needed to proof $\frac{\partial P}{\partial x}(0, t)=0$, which can here be proven without mentioned condition for $a(x, t)$. The only difference is, that $\mu(\mathrm{d} x)$ and in the following $p(\mathrm{~d} x, t)$ are measures on \mathbb{R} instead of \mathbb{R}_{+}. The proof is very similar to the general case.

Theorem 5.2. Let $U:=\mathbb{R} \times \mathbb{R}_{+}$and $a: U \rightarrow \mathbb{R}_{+}$be a Borel function satisfying the following hypothesis:
$\forall 0<t<T$ and $R>0: \exists \epsilon(t, T, R)>0, m(T, R)>0$ such that:

- $\forall(x, s) \in[-R, R] \times[t, T]: a(x, s) \geq \epsilon(t, T, R)$ and
- $\forall(x, s) \in[-R, R] \times(0, T]: a(x, s) \leq m(T, R)$

Let μ be a probability measure on \mathbb{R} and $\int_{\mathbb{R}}|x| \mathrm{d} \mu(x)<\infty$. Then, there exists at most one family of probability measures $(p(\mathrm{~d} x, t), t \geq 0)$ such that:
(FP 1) $t \geq 0 \rightarrow p(\mathrm{~d} x, t)$ is weakly continuous, see Remark 2.4.
(FP 2) $p(0, \mathrm{~d} x)=\mu(\mathrm{d} x)$ and

$$
\begin{equation*}
\iint_{U} \frac{\partial \phi(x, t)}{\partial t} p(\mathrm{~d} x, t) \mathrm{d} t+\iint_{U} \frac{\partial^{2} \phi(x, t)}{\partial x^{2}} a(x, t) p(\mathrm{~d} x, t) \mathrm{d} t=0 \quad \forall \phi \in \mathcal{D}(U) \tag{5.27}
\end{equation*}
$$

Proof : We note, that equation (4.3) is the integral representation of the following statement:

$$
\frac{\partial p(\mathrm{~d} x, t)}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}(p(\mathrm{~d} x, t) a(x, t))=0 \quad \text { in } \mathcal{D}^{\prime}(U)
$$

We will split the proof into several parts.
Lemma 5.3. First, we prove some properties of the function

$$
M(x):= \begin{cases}-\int_{\mathbb{R}_{+}}(u \wedge x) \mu(\mathrm{d} u), & \text { if } x \leq 0 \\ \int_{(-\infty, 0)}(u \vee x) \mu(\mathrm{d} u)-x, & \text { else. }\end{cases}
$$

Note that $M(x)$ can also be written as

$$
M(x)= \begin{cases}-\left(\int_{[0, x]} u \mu(\mathrm{~d} u)+\int_{(x, \infty)} x \mu(\mathrm{~d} u)\right), & \text { if } x \leq 0, \\ \left(\int_{[x, 0]} u \mu(\mathrm{~d} u)+\int_{(-\infty, x)} x \mu(\mathrm{~d} u)\right)-x, & \text { else } .\end{cases}
$$

We will need the function later on. It holds,

1. $M(x)$ is Lipschitz continuous.
2. $M(x)$ is a.s. differentiable and its right derivative is given by

$$
M^{\prime}(x)=-\int_{(x, \infty)} \mu(\mathrm{d} u)=\int_{(-\infty, x]} \mu(\mathrm{d} u)-1
$$

3. $M^{\prime}(x)$ is monotonically increasing.
4. $M(x)$ is convex.
5. $\frac{\partial^{2} M(x)}{\partial x^{2}}=\mu(\mathrm{d} x) \quad$ in $\mathcal{D}^{\prime}(\mathbb{R})$

PROOF : We note, that we have proven this properties for $x>0$ in Lemma (4.3).

1. To show: $M(x)$ is Lipschitz continuous $\forall y<x<0$:

$$
\begin{aligned}
& |M(y)-M(x)|= \\
= & \left|\left(\int_{y, x)} u \mu(\mathrm{~d} u)+\int_{(-\infty, y)} y \mu(\mathrm{~d} u)-\int_{(-\infty, x)} x \mu(\mathrm{~d} u)\right)-y+x\right|= \\
= & \left|\left(\int_{y, x)} u \mu(\mathrm{~d} u)+(y-x) \int_{(-\infty, y)} \mu(\mathrm{d} u)-\int_{[y, x)} x \mu(\mathrm{~d} u)\right)-y+x\right| \leq \\
\leq & -\left(\int_{y, x)}(u-x) \mu(\mathrm{d} u)+(y-x) \int_{(-\infty, y)} \mu(\mathrm{d} u)\right)+x-y \leq \\
\leq & -\left(\int_{y, x)}(y-x) \mu(\mathrm{d} u)+(y-x) \int_{(-\infty, y)} \mu(\mathrm{d} u)\right)+x-y= \\
= & (x-y) \int_{(-\infty, x)} \mu(\mathrm{d} u)+x-y \leq 2(x-y)
\end{aligned}
$$

M is continuous at $x=0$ with $M(0)=0$ which is easy to see. Therefore, for $x<0<y: M(y)-M(x) \leq y-0+2(0-x) \leq 2(y-x)$.
2. We only need to calculate the right derivative for $x \leq 0$:

$$
\begin{aligned}
\frac{\partial}{\partial_{+} x} M(x) & =\frac{\partial}{\partial_{+} x}\left(\int_{(-\infty, 0)}(u \vee x) \mu(\mathrm{d} u)-x\right)= \\
& =\int_{(-\infty, 0)} \frac{\partial}{\partial_{+} x}(u \vee x) \mu(\mathrm{d} u)-1=\int_{(-\infty, 0)} \chi_{[u, 0)}(x) \mu(\mathrm{d} u)= \\
& =\int_{(-\infty, 0)} \chi_{(-\infty, x]}(u) \mu(\mathrm{d} u)-1=-\int_{(x, \infty)} \mu(\mathrm{d} u)
\end{aligned}
$$

3. Follows immediately from $\frac{\partial}{\partial+x} M(x)=\int_{(0, x]}(u) \mu(\mathrm{d} u)-1$ a.s. .
4. Follows immediately from the first and last point.
5. Let $f \in \mathcal{D}(\mathbb{R})$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}} f(x) \frac{\partial^{2} M(x)}{\partial x^{2}} \mathrm{~d} x= \\
= & \int_{\mathbb{R}} f(x) \frac{\partial}{\partial x}\left(\int_{(-\infty, x]} \mu(\mathrm{d} u)-1\right) \mathrm{d} x= \\
= & \int_{\mathbb{R}} f(x) \frac{\partial}{\partial x} \mu((-\infty, x]) \mathrm{d} x= \\
= & \int_{\mathbb{R}} f(x) \mu(\mathrm{d} x)
\end{aligned}
$$

Lemma 5.4. Let a probability measure μ and $p(\mathrm{~d} x, t)$ be as in Theorem (5.2). Then holds $\forall t \geq 0, \phi \in \mathcal{D}(\mathbb{R})$:

$$
\begin{equation*}
\int_{\mathbb{R}} \phi(x) p(\mathrm{~d} x, t)=\int_{\mathbb{R}} \phi(x) \mu(\mathrm{d} x)+\int_{\mathbb{R}} \int_{(0, t)} \frac{\partial^{2} \phi(x)}{\partial x^{2}} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s \tag{5.28}
\end{equation*}
$$

Remark 5.5. Note that (analogue to the general case) this lemma reads as $\int_{(0, t)} \frac{\partial^{2} a(x, s) p(\mathrm{~d} x, s)}{\partial x^{2}} \mathrm{~d} s=p(\mathrm{~d} x, t)-\mu(\mathrm{d} x)$ in $\mathcal{D}^{\prime}(\mathbb{R})$ or $\frac{\partial^{2} P(\mathrm{~d} x, t)}{\partial x^{2}} \mathrm{~d} s=p(\mathrm{~d} x, t)-$ $\mu(\mathrm{d} x)$ in $\mathcal{D}^{\prime}(\mathbb{R})$.
Proof : This proof works analogously to the general case. See Lemma (5.4).

Definition 5.6. Analogously to the general case, we define ror a family of probability measures $p(\mathrm{~d} x, t), t \geq 0$ and a Borel function $a(x, t)$ which satisfy the conditions in Theorem (5.2) the positive measure $P(\mathrm{~d} x, t)$ by

$$
P(\mathrm{~d} x, t):=\int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s
$$

Lemma 5.7. Let $P(\mathrm{~d} x, t)$ denote a measure as defined in Definition 5.6. Then holds:

1. $(P(\mathrm{~d} x, t), t \geq 0)$ is an increasing family of positive measures.
2. $t \rightarrow P(\mathrm{~d} x, t)$ is vaguely continuous and $P(\mathrm{~d} x, 0)=0$.
3. $\frac{\partial^{2} P(\mathrm{~d} x, t)}{\partial x^{2}}=p(\mathrm{~d} x, t)-\mu(\mathrm{d} x) \quad$ in $\mathcal{D}^{\prime}(U)$.
4. $\forall t \geq 0, P(\mathrm{~d} x, t)$ admits a density with respect to the Lebesgue measure, which we will denote by $P(x, t)$.
5. The function $x \rightarrow P(x, t)$ admits a right derivative denoted by $\frac{\partial P}{\partial x}(x, t)$:

$$
\begin{equation*}
\frac{\partial P}{\partial x}(x, t)=\int_{[x, \infty)}(\mu(\mathrm{d} u)-p(\mathrm{~d} u, t))=\int_{(-\infty, x)}(p(\mathrm{~d} u, t)-\mu(\mathrm{d} u)) . \tag{5.29}
\end{equation*}
$$

6. $\forall t \in \mathbb{R}_{+}: x \rightarrow P(x, t)$ is Lipschitz continuous with Lipschitz constant 1.
7. $\forall x \in \mathbb{R}: t \rightarrow P(x, t)$ is continuous.
8. $P(x, t)$ is continuous on U.
9. $\forall t \in \mathbb{R}_{+}: P(0, t)<\infty$.
10. $P(x, t)=$

$$
\begin{cases}-\int_{(0, \infty)}(u \wedge x) p(\mathrm{~d} u, t)+\int_{(0, \infty)}(u \wedge x) \mu(\mathrm{d} u)+P(t, 0), & \text { if } x \geq 0, \\ \int_{(-\infty, 0)}(u \vee x) p(\mathrm{~d} u, t)-\int_{(-\infty, 0)}(u \vee x) \mu(\mathrm{d} u)+P(t, 0), & \text { else. }\end{cases}
$$

11. $\forall(x, t) \in U: 0 \leq P(x, t) \leq P(0, t)+\int_{\mathbb{R}}|y| \mu(\mathrm{d} y)<\infty$.
12. $\frac{\partial P}{\partial t}(x, t) \mathrm{d} x=a(x, t) p(\mathrm{~d} x, t)$

PROOF:

1. This follows easily since $a(x, t) \geq 0$.
2. $P(\mathrm{~d} x, 0)=\int_{(0,0)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s=0$.

To show the vague continuity, we fix $f \in C_{K}^{+}(\mathbb{R})$. Then there exists $R>$ 0 with $\operatorname{supp}(f) \subseteq[-R, R]$. We will show, that $\lim _{t \rightarrow T} \int_{\mathbb{R}} f(x) P(\mathrm{~d} x, t)=$ $\int_{\mathbb{R}} f(x) P(\mathrm{~d} x, T)$. Also, from weak convergence of $p(\mathrm{~d} x, t)$, we know, that for all $\epsilon>0, T \geq 0: \exists \delta>0$:

$$
\begin{align*}
& \forall t \in[T-\delta, T+\delta]:\left|\int_{\mathbb{R}} f(x) p(\mathrm{~d} x, t)-\int_{\mathbb{R}} f(x) p(\mathrm{~d} x, T)\right| \leq \frac{\epsilon}{m(T, R)} \\
& \Leftrightarrow \sup _{t \in[T-\delta, T+\delta]}\left\{\left|\int_{\mathbb{R}} f(x) p(\mathrm{~d} x, t)-\int_{\mathbb{R}} f(x) p(\mathrm{~d} x, T)\right|\right\} \leq \frac{\epsilon}{m(T, R)} \tag{5.30}
\end{align*}
$$

Let $\epsilon>0$ and $t \in[T-\delta, T+\delta]$, then

$$
\begin{aligned}
& \int_{\mathbb{R}} f(x) P(\mathrm{~d} x, t)=\int_{\mathbb{R}} f(x) \int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s= \\
= & \int_{(0, T)} \int_{\mathbb{R}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s-\int_{[t, T)} \int_{\mathbb{R}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s
\end{aligned}
$$

Now, we estimate the second integral:

$$
\begin{aligned}
& \int_{[t, T)} \int_{\mathbb{R}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s \leq \text { using Fubini for positive terms } \\
\leq & \int_{[t, T)} \sup _{t \in[T-\delta, T+\delta]}\left\{\int_{\mathbb{R}} f(x) m(T, R) p(\mathrm{~d} x, s)\right\} \mathrm{d} s \leq \text { using eq. (5.30) } \\
\leq & \int_{[t, T)} \epsilon \mathrm{d} s=(T-t) \epsilon
\end{aligned}
$$

Putting all together we get:

$$
\begin{aligned}
& \lim _{t \rightarrow T} \int_{\mathbb{R}} f(x) P(\mathrm{~d} x, t)= \\
& \lim _{t \rightarrow T} \int_{(0, T)} \int_{\mathbb{R}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s- \\
& \lim _{t \rightarrow T} \int_{[t, T)} \int_{\mathbb{R}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s= \\
& \quad \int_{(0, T)} \int_{\mathbb{R}} f(x) a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s-\lim _{t \rightarrow T}(T-t) \epsilon= \\
& \quad \int_{\mathbb{R}} f(x) P(\mathrm{~d} x, T)
\end{aligned}
$$

3. See remark (5.5).
4. Analogously to the general case.
5. Point 3 also holds for $P(x, t)$ from point 4 . By integrating we obtain the right derivative:

$$
\begin{aligned}
& \frac{\partial P}{\partial x}(x, t)=\int_{(-\infty, x)}(p(\mathrm{~d} u, t)-\mu(\mathrm{d} u))+C(t)= \\
= & p((-\infty, x), t)-\mu((-\infty, x))+C(t)
\end{aligned}
$$

Suppose $C(t)>0$. Since $\lim _{|x| \rightarrow \infty} \frac{\partial P}{\partial x}(x, t)=C(t)$ there exists for each ϵ some $R>0$ with $\frac{\partial P}{\partial x}(x, t)>\epsilon$ for all $x \leq-R$. As shown in point (4), $x \rightarrow P(x, t)$ is Lipschitz continuous and therefore $P(-R, t)<\infty$. Therefore for $y<-R-\frac{P(-R, t)}{\epsilon}$ holds $P(y, t)<0$ which contradicts the positivity of P. We get a similar contradiction for $C(t)<0$, we conclude therefore $C(t)=0$.
6. To show: $\forall t \in \mathbb{R}_{+}: x \rightarrow P(x, t)$ is Lipschitz continuous with Lipschitz constant 1.
This follows from last point, since the right derivative satisfies

$$
\left|\frac{\partial P}{\partial x}(x, t)\right|=|p((0, x), t)-\mu((0, x))| \leq 1
$$

7. Analogously to the general case.
8. Analogously to the general case.
9. This follows simply from the fact, that $P(x, t)$ is continuous.
10. To show: $P(x, t)=\int_{(-\infty, 0)}(u \vee x) p(\mathrm{~d} u, t)-\int_{(-\infty, 0)}(u \vee x) \mu(\mathrm{d} u)+P(t, 0)$ for $x \leq 0$
By integrating equation (5.29) we get:

$$
\begin{aligned}
& P(0, t)-P(x, t)= \\
= & \int_{(x, 0)} \frac{\partial P}{\partial x}(u, t) \mathrm{d} u=\int_{(x, 0)} \int_{(-\infty, u)}(p(\mathrm{~d} v, t)-\mu(\mathrm{d} v)) \mathrm{d} u= \\
= & \int_{(-\infty, 0)} \int_{(-\infty, 0)} \chi_{(x, 0)}(u) \chi_{(-\infty, u)}(v) \mathrm{d} u(p(\mathrm{~d} v, t)-\mu(\mathrm{d} v))= \\
= & \int_{(-\infty, 0)} \int_{(-\infty, 0)} \chi_{(x, 0)}(u) \chi_{(v, \infty)}(u) \mathrm{d} u(p(\mathrm{~d} v, t)-\mu(\mathrm{d} v))= \\
= & \int_{(-\infty, 0)} \int_{(-\infty, 0)} \chi_{(x \vee v, 0)}(u) \mathrm{d} u(p(\mathrm{~d} v, t)-\mu(\mathrm{d} v))= \\
= & \int_{(-\infty, 0)}-(x \vee v)(p(\mathrm{~d} v, t)-\mu(\mathrm{d} v))=\int_{(-\infty, 0)}(x \vee v)(\mu(\mathrm{d} v)-p(\mathrm{~d} v, t))
\end{aligned}
$$

11. $0 \leq P(x, t)$ is trivial. We show the other inequality for $x \leq 0$:

$$
\begin{aligned}
P(x, t) & =P(0, t)+\int_{(-\infty, 0)}(x \vee v)(p(\mathrm{~d} v, t)-\mu(\mathrm{d} v)) \leq \\
& \leq P(0, t)-\int_{(-\infty, 0)}(x \vee v) \mu(\mathrm{d} v) \leq \\
& \leq P(0, t)+\int_{(-\infty, 0)}|v| \mu(\mathrm{d} v)<\infty
\end{aligned}
$$

Were we used the assumption for μ from theorem (5.2) and point 8 .
12. To show: $\frac{\partial P}{\partial t}(x, t) \mathrm{d} x=a(x, t) p(\mathrm{~d} x, t)$

This follows immediately from the definition of $P(x, t)$.

Lemma 5.8. There exists $p \in L_{l o c}^{2}(U)$ such that for almost every $t \geq 0$:

$$
\begin{equation*}
p(\mathrm{~d} x, t)=p(x, t) \mathrm{d} x \tag{5.31}
\end{equation*}
$$

PROOF : For the big part, this proof works analogue to the general case. We replace $\frac{1}{R}$ with $-R$ and don't need to extend the functions to $\mathbb{R} \times \mathbb{R}_{+}$since that is their original space of definition.
We fix $\alpha, \zeta \in \mathcal{D}\left(\mathbb{R}_{+}\right)$and assume $\alpha \geq 0$ and $\zeta \geq 0$. There exist $0<t_{1}<t_{2}$ and $R>0$ such that $\operatorname{supp}(\alpha) \subseteq\left[t_{1}, t_{2}\right]$ and $\operatorname{supp}(\zeta) \subseteq[-R, R]$. We set:

$$
\epsilon:=\epsilon\left(t_{1}, t_{2}, R\right) \quad \text { and } \quad m:=m\left(t_{2}, R\right)
$$

from the first two assumptions for $a(x, t)$. We define the function

$$
\begin{equation*}
\tilde{P}(x, t):=\zeta(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right) \tag{5.32}
\end{equation*}
$$

Then, by integrating by parts, we obtain

$$
\begin{aligned}
& \tilde{P}(x, t) \mathrm{d} x= \\
= & \zeta(x)(\alpha(t) P(x, t)-(\alpha(t) P(x, t)-\alpha(0) P(x, 0)- \\
& \left.\left.\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} s\right)\right) \mathrm{d} x= \\
= & \zeta(x)\left(\alpha(t) P(x, t)-\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} s\right)\right) \mathrm{d} x= \\
= & \zeta(x)\left(\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} x \mathrm{~d} s\right)=
\end{aligned}
$$

Now using Lemma (5.7) point 12 we obtain

$$
\begin{align*}
& =\zeta(x)\left(\int_{(0, t)} \alpha(s) \frac{\partial P}{\partial s}(x, s) \mathrm{d} x \mathrm{~d} s\right)= \\
=\tilde{P}(x, t) \mathrm{d} x & =\zeta(x) \int_{(0, t)} \alpha(s) a(x, s) p(\mathrm{~d} x, s) \tag{5.33}
\end{align*}
$$

Differentiating equation (5.33) with respect to t, we obtain

$$
\begin{equation*}
\frac{\partial \tilde{P}}{\partial t}(x, t)=\zeta(x) \alpha(t) a(x, t) p(\mathrm{~d} x, t) \quad \text { in } \mathcal{D}^{\prime}(U) \tag{5.34}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\partial \tilde{P}}{\partial t}(x, t) \leq \zeta(x) \alpha(t) m p(\mathrm{~d} x, t) \quad \text { in } \mathcal{D}^{\prime}(U) \tag{5.35}
\end{equation*}
$$

Differentiating equation (5.32) twice with respect to x, we get in $\mathcal{D}^{\prime}(U)$

$$
\begin{aligned}
& \frac{\partial \tilde{P}}{\partial x}(x, t)= \\
= & \zeta^{\prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)
\end{aligned}
$$

and therefore in $\mathcal{D}^{\prime}(U)$

$$
\begin{aligned}
& \frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)= \\
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t) \frac{\partial^{2} P}{\partial x^{2}}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial^{2} P}{\partial x^{2}}(x, s) \mathrm{d} s\right)=
\end{aligned}
$$

using Lemma (5.7) point 3

$$
\begin{aligned}
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t)-\mu(\mathrm{d} x))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)-\mu(\mathrm{d} x)) \mathrm{d} s\right)=
\end{aligned}
$$

With expanding the last term we get

$$
\begin{align*}
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(-\mu(\mathrm{d} x))+\int_{(0, t)} \alpha^{\prime}(s)(\mu(\mathrm{d} x)) \mathrm{d} s\right)= \\
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)) \mathrm{d} s\right)+ \\
& \zeta(x)(\alpha(t)(-\mu(\mathrm{d} x))+\alpha(t)(\mu(\mathrm{d} x)) \mathrm{d} s)= \\
= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)+ \\
& \zeta(x)\left(\alpha(t)(p(\mathrm{~d} x, t))-\int_{(0, t)} \alpha^{\prime}(s)(p(\mathrm{~d} x, s)) \mathrm{d} s\right)= \\
\frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)= & \zeta(x) \alpha(t) p(\mathrm{~d} x, t)-\zeta(x) \int_{(0, t)} \alpha^{\prime}(s) p(\mathrm{~d} x, s) \mathrm{d} s+\phi(x, t) \tag{5.36}\\
&
\end{align*}
$$

With

$$
\begin{aligned}
\phi(x, t)= & \zeta^{\prime \prime}(x)\left(\alpha(t) P(x, t)-\int_{(0, t)} \alpha^{\prime}(s) P(x, s) \mathrm{d} s\right)+ \\
& 2 \zeta^{\prime}(x)\left(\alpha(t) \frac{\partial P}{\partial x}(x, t)-\int_{(0, t)} \alpha^{\prime}(s) \frac{\partial P}{\partial x}(x, s) \mathrm{d} s\right)
\end{aligned}
$$

We show now that ϕ is in $\mathcal{L}^{\infty}(U)$.
Since α and ζ are in $\mathcal{D}(\mathbb{R})$ there exists $C_{\alpha}, C_{\alpha}^{\prime}, C_{\zeta}, C_{\zeta}^{\prime}, C_{\zeta}^{\prime \prime}>0$ such that $\alpha(t) \leq C_{\alpha}, \alpha^{\prime}(t) \leq C_{\alpha}^{\prime}, \zeta(x) \leq C_{\zeta}, \zeta^{\prime}(x) \leq C_{\zeta}^{\prime}, \zeta^{\prime \prime}(x) \leq C_{\zeta}^{\prime \prime}$. Since $P(x, t)$ is continuous (see lemma (5.7) point 8), There exists some C_{P} with $P(x, t) \leq$ C_{P} for all $(x, t) \in[0, R] \times\left[t_{1}, t_{2}\right]$. From lemma (5.7) point 6 we know, that $\frac{\partial P}{\partial x}(x, t) \leq 1$. Therefore,

$$
|\phi(x, t)| \leq C_{\zeta}^{\prime \prime}\left(C_{\alpha} C_{P}+t_{2} C_{\alpha}^{\prime} C_{P}\right)+2 C_{\zeta}^{\prime}\left(C_{\alpha}+t_{2} C_{\alpha}^{\prime}\right)=: C_{\phi}<\infty
$$

Furthermore we have

$$
\begin{align*}
& \zeta(x) \int_{(0, t)}\left|\alpha^{\prime}(s)\right| p(\mathrm{~d} x, s) \mathrm{d} s \leq \frac{C_{\alpha}^{\prime}}{\epsilon} \zeta(x) \int_{(0, t)} a(x, s) p(\mathrm{~d} x, s) \mathrm{d} s \leq \\
\leq & \frac{C_{\alpha}^{\prime}}{\epsilon} \zeta(x) P(x, t) \leq \frac{C_{\alpha}^{\prime}}{\epsilon} C_{\zeta} C_{P}<\infty \tag{5.37}
\end{align*}
$$

Which shows that equation (5.36) can be written as

$$
\frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)=\zeta(x) \alpha(t) p(\mathrm{~d} x, t)-\frac{1}{m} \Phi(x, t)
$$

with $\Phi \in \mathcal{L}^{\infty}(U)$. And therefore,

$$
\begin{equation*}
\zeta(x) \alpha(t) p(\mathrm{~d} x, t)=\frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)+\frac{1}{m} \Phi(x, t) \tag{5.38}
\end{equation*}
$$

From equations (5.35) and (5.38) we deduce

$$
\begin{equation*}
\frac{\partial \tilde{P}}{\partial t}(x, t) \leq \zeta(x) \alpha(t) m p(\mathrm{~d} x, t)=m \frac{\partial^{2} \tilde{P}}{\partial x^{2}}(x, t)+\Phi(x, t) \tag{5.39}
\end{equation*}
$$

In the following we want to define the convolution for \tilde{P} with a functions of a regularizing sequence $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ (See Lemma (2.18)). Without loss of generality
let $\operatorname{supp}(\phi) \subseteq\left[-\frac{1}{n}, \frac{1}{n}\right]$.
We define

$$
\tilde{P}_{n}(x, t):=\tilde{P}(x, t) * \phi_{n}(x)=\int_{\mathbb{R}} \tilde{P}(y, t) \phi_{n}(x-y) \mathrm{d} y
$$

From Definition (2.17) we know, that

$$
\frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t)=\frac{\partial^{2} \tilde{P}}{\partial x^{2}} * \phi_{n}(x, t)
$$

and similarly with equation (5.34)

$$
\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)=\frac{\partial \tilde{P}}{\partial t} * \phi_{n}(x, t)=\alpha(t) a(x, t) \zeta(x) p(\mathrm{~d} x, t) * \phi_{n}(x, t)
$$

We note, that $\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)$ is differentiable with respect to x. Now equation (5.39) also holds for the in x convoluted $\tilde{P}_{n}\left(\right.$ with $\left.\Phi_{n}:=\Phi * \phi_{n}\right)$:

$$
\begin{equation*}
\frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \leq m \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t)+\Phi_{n}(x, t) \tag{5.40}
\end{equation*}
$$

From [5, p. 26-27] we know, that

$$
\begin{equation*}
\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial t}\right) \subseteq \operatorname{supp}\left(\phi_{n}\right)+\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial t}\right)=\left[-R-\frac{1}{n}, R+\frac{1}{n}\right] \times\left[t_{1}, t_{2}\right] \tag{5.41}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial x}\right) \subseteq \operatorname{supp}\left(\phi_{n}\right)+\operatorname{supp}\left(\frac{\partial \tilde{P}_{n}}{\partial x}\right)=\left[-R-\frac{1}{n}, R+\frac{1}{n}\right] \times\left[t_{1}, \infty\right) \tag{5.42}
\end{equation*}
$$

We note from [5, p. 23, Fakta 13.3.11-3] that

$$
\begin{equation*}
\left\|\Phi_{n}\right\|_{\infty} \leq\|\Phi\|_{\infty}\left\|\phi_{n}\right\|_{1}=\|\Phi\|_{\infty} \tag{5.43}
\end{equation*}
$$

and therefore $\Phi_{n} \in \mathcal{L}^{\infty}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$.
We want to show, that $\frac{\partial \tilde{P}_{n}}{\partial t}$ is bounded in $\mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$by a Constant C
independent of n. We use equation (5.41) in the first step:

$$
\begin{align*}
& \quad \iint_{\mathbb{R} \times \mathbb{R}_{+}}\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x= \\
& =\iint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \mathrm{d} t \mathrm{~d} x \leq \text { using eq (5.40) } \\
& \leq m \iiint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t) \mathrm{d} t \mathrm{~d} x+ \\
& \iint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \Phi_{n}(x, t) \mathrm{d} t \mathrm{~d} x \tag{5.44}
\end{align*}
$$

We examine the first term. First we use Fubini's Theorem [6, p. 163] to switch integrating order, then partial integration (which is why we convoluted ; to get the necessary smoothness):

$$
\begin{aligned}
& m \iint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t) \mathrm{d} t \mathrm{~d} x= \\
= & m \int_{\left[t_{1}, t_{2}\right] \times[-1-R, R+1]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial^{2} \tilde{P}_{n}}{\partial x^{2}}(x, t) \mathrm{d} x \mathrm{~d} t= \\
= & m \int_{\left[t_{1}, t_{2}\right]}\left(\left.\frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t)\right|_{x=-1-R} ^{R+1}-\int_{[-1-R, R+1]} \frac{\partial^{2} \tilde{P}_{n}}{\partial t \partial x}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t) \mathrm{d} x\right) \mathrm{d} t=
\end{aligned}
$$

using equation (5.41)

$$
=-m \int_{\left[t_{1}, t_{2}\right]} \int_{[-1-R, R+1]} \frac{\partial^{2} \tilde{P}_{n}}{\partial t \partial x}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t) \mathrm{d} x \mathrm{~d} t=
$$

using Fubini's Theorem again

$$
\begin{aligned}
& =-m \int_{[-1-R, R+1]} \int_{\left[t_{1}, t_{2}\right]} \frac{\partial^{2} \tilde{P}_{n}}{\partial t \partial x}(x, t) \frac{\partial \tilde{P}_{n}}{\partial x}(x, t) \mathrm{d} t \mathrm{~d} x= \\
& =-m \int_{[-1-R, R+1]\left[t_{1}, t_{2}\right]} \frac{\partial}{\partial t}\left(\frac{\partial \tilde{P}_{n}}{\partial x}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x= \\
& =-m \int_{[-1-R, R+1]}\left(\left(\frac{\partial \tilde{P}_{n}}{\partial x}\left(x, t_{2}\right)\right)^{2}-\left(\frac{\partial \tilde{P}_{n}}{\partial x}\left(x, t_{1}\right)\right)^{2}\right) \mathrm{d} x=
\end{aligned}
$$

using equation (5.42)

$$
=-m \int_{[-1-R, R+1]}\left(\frac{\partial \tilde{P}_{n}}{\partial x}\left(x, t_{2}\right)\right)^{2} \mathrm{~d} x \leq 0
$$

Therefor

$$
\begin{aligned}
(5.44) \leq & \iint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]} \frac{\partial \tilde{P}_{n}}{\partial t}(x, t) \Phi_{n}(x, t) \mathrm{d} t \mathrm{~d} x \\
& \quad \text { using equation }(4.20) \\
\iint_{\mathbb{R} \times \mathbb{R}_{+}}\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x \leq & \frac{1}{2} \iint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]}\left(\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2}+\Phi_{n}(x, t)^{2}\right) \mathrm{d} t \mathrm{~d} x
\end{aligned}
$$

Which shows that

$$
\begin{aligned}
& \iint_{\mathbb{R} \times \mathbb{R}_{+}}\left(\frac{\partial \tilde{P}_{n}}{\partial t}(x, t)\right)^{2} \mathrm{~d} t \mathrm{~d} x \leq 2 \quad \iint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]} \Phi_{n}(x, t)^{2} \mathrm{~d} t \mathrm{~d} x \leq \\
& \leq 2 \iint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]}\left\|\Phi_{n}(x, t)\right\|_{\infty}^{2} \mathrm{~d} t \mathrm{~d} x= \\
& \text { using equation }(5.43) \\
& =2 \iiint_{[-1-R, R+1] \times\left[t_{1}, t_{2}\right]}\|\Phi(x, t)\|_{\infty}^{2} \mathrm{~d} t \mathrm{~d} x= \\
& =2\left(t_{2}-t_{1}\right)(R-2)\|\Phi(x, t)\|_{\infty}^{2}=: C<\infty
\end{aligned}
$$

From [1, p. 639, Theorem 3] we know, that since $\frac{\partial \tilde{P_{n}}}{\partial t}$ is bounded in $\mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$ there exists $u \in \mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$and a subsequence $I \subseteq \mathbb{N}$ with

$$
\lim _{i \rightarrow \infty} \int_{\left(\mathbb{R} \times \mathbb{R}_{+}\right)} f(x, t)\left(\frac{\partial \tilde{P}_{i}}{\partial t}(x, t)-u(x, t)\right) \mathrm{d} t \mathrm{~d} x=0 \text { for all } \in \mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)
$$

On the other hand we know from Lemma (2.19), that $\frac{\partial \tilde{P}_{n}}{\partial t} \rightarrow \frac{\partial \tilde{P}}{\partial t}$ in $\mathcal{D}^{\prime}(\mathbb{R} \times$ $\left.\mathbb{R}_{+}\right)$. Since the limit is unique in distributional sense, $u=\frac{\partial \tilde{P}}{\partial t} \in \mathcal{L}^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$.

PROOF: of Theorem 4.2
This proof works analogously to the proof in the general case. As examined in the above proof, we just have to replace $\frac{1}{R}$ with $-R$ and don't need to extend the function Q nor its derivatives to $\mathbb{R} \times \mathbb{R}_{+}$since that is their original space of definition.

6 Acknowledgement

I want to thank my supervisor, Dr. Stefan Gerhold for his guidance, patience and support. I also want to thank Dr. Harald Woracek for his helpful hints on distributions. Many thanks to Dr. Joachim Schöberl for his immediate answers regarding numerical evaluation.

Literatur

[1] Evans, Lawrence C.: Partial Differential Equations -. 2. Aufl. Heidelberg : American Mathematical Soc., 2010. - ISBN 978-0-821-84974-3
[2] Friz, P. ; Gerhold, S. ; Yor, M.: How to make Dupire's local volatility work with jumps. 2014 To appear in Quantitative Finance
[3] Hirsch, Francis ; Profeta, Christophe ; Roynette, Bernard ; Yor, Marc: Peacocks and Associated Martingales, with Explicit Constructions -. 2011. Aufl. Berlin, Heidelberg : Springer, 2011. - ISBN 978-8-847-01907-2
[4] Jüngel, Ansgar: Partielle Differentialgleichungen, Vorlesungsmanuskript. Dezember 2013
[5] Kaltenbäck, Michael: Vorlesungsskript aus Analysis 3. Februar 2010
[6] Kusolitsch, Norbert: Maß- und Wahrscheinlichkeitstheorie - Eine Einführung. 1st Edition. 2nd Printing. 3rd Printing. Berlin, Heidelberg : Springer, 2011. - ISBN 978-3-709-10684-6
[7] Schwartz, Laurent: Cours d'analyse -. Paris : Hermann, 1981. - ISBN 978-2-705-65551-8

A Appendix

PROOF of Lemma 2.12:
We show it for the 1-dimensional case, since we don't need it for higher dimensions. Let $\Omega \subseteq \mathbb{R}$ be an open set. We have to show that $\{f: \forall K \subseteq \Omega, K$ compact : $\left.\int_{K}|f(x)| \mathrm{d} \lambda(x)<\infty\right\}=\left\{f: \forall \phi \in \mathcal{D}(\Omega): \int_{K} \phi(x) f(x) \mathrm{d} \lambda(x)<\right.$ $\infty\}$.
First, let $\phi \in \mathcal{D}(\Omega)$ and f satisfy the first condition. Since $\operatorname{supp}(\phi)$ is compact,

$$
\int_{\operatorname{supp}(\phi)} \phi(x) f(x) \mathrm{d} \lambda(x) \leq\|\phi\|_{\infty} \int_{\operatorname{supp}(\phi)} f(x) \mathrm{d} \lambda(x)<\infty
$$

Therefore, we have the inclusion $\left\{f: \forall K \subseteq \Omega, K\right.$ compact : $\int_{K}|f(x)| \mathrm{d} \lambda(x)<$ $\infty\} \supseteq\left\{f: \forall \phi \in \mathcal{D}(\Omega): \int_{K} \phi(x) f(x) \mathrm{d} \lambda(x)<\infty\right\}$.
Now let f satisfy the second condition and K a compact set. Since $\Omega \supseteq K$ is open, $\operatorname{dist}(K, \partial \Omega)=\frac{2}{n}>0$ for some $\mathbb{N} \neq n>0$. Then $\phi(x):=\chi_{K} * k_{n}(x)$ where k_{n} is the regularizing sequence of Lemma (2.19). Then, according to Definition (2.17), ϕ has derivatives of all orders and since $\operatorname{supp}\left(k_{n}\right) \subseteq\left[-\frac{1}{n}, \frac{1}{n}\right]$ holds $\operatorname{supp}(\phi) \subseteq K+\subseteq\left[-\frac{1}{n}, \frac{1}{n}\right]$ and therefore $\operatorname{dist}(\operatorname{supp}(\phi), \partial \Omega) \geq \frac{1}{n}$. Hence, $\phi \in \mathcal{D}(\Omega)$. Therefor

$$
\int_{K} f(x) \mathrm{d} \lambda(x) \leq \int_{\mathbb{R}} \phi(x) f(x) \mathrm{d} \lambda(x)<\infty
$$

Which shows the other inclusion.

Satz A. 1 (von Dini). This Satz can be generalized to topological spaces. For our purposes the case \mathbb{R} with Euclidean Topology is sufficient.
Let K be a compact set with $K \subseteq \mathbb{R}$ and $\left(f_{n}\right)_{n \in \mathbb{N}}, f_{n}: K \rightarrow \mathbb{R}$ be a sequence of continuous functions with $f_{i}(x) \leq f_{i+1}(x)$ for all $x \in K$ (or $f_{i}(x) \geq f_{i+1}(x)$ for all $x \in K$). Let f be a continuous function with $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in K$, then $\sup _{x \in K} \lim _{n \rightarrow \infty}\left|f_{n}(x)-f(x)\right|=0$.

Proof : First we prove the case with $f_{i}(x) \leq f_{i+1}(x)$. Let $\epsilon>0$. We set $E_{n}=\left\{x \in K:\left|f_{n}(x)-f(x)\right|<\epsilon\right\}$. E_{n} is open since f_{n} is continuous. Since $f_{n} \rightarrow f$ pointwise, $\left(E_{n}\right)_{n \in \mathbb{N}}$ is an open cover of K. From $f_{i}(x) \leq f_{i+1}(x)$ follows $E_{i} \subseteq E_{i+1}$. Since K is compact, finitely many E_{i} are sufficient to cover K, i.e

$$
\bigcup_{i=1}^{N} E_{n_{i}} \supseteq K
$$

Let N denote the largest index (in the formula above, n_{N}). From the monotony of the E_{n} we deduce that $E_{N} \supseteq K$. Therefore $\left|f_{N}(x)-f(x)\right|<\epsilon$ for all $x \in K$. And again with the monotony we deduce $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $n \geq N$ and $x \in K$.
To proof the case with $f_{i}(x) \geq f_{i+1}(x)$ we just consider the sequence $-\left(f_{n}\right)_{n \in \mathbb{N}}$ which now satisfies above conditions for $-f$.

Remark A.2. As a reminder, we showed that $t \rightarrow P(x, t)$ is continuous and needed the vague continuity and monotonicy of $t \rightarrow P(x, t)$ together with the Lipschitz continuity of $x \rightarrow P(x, t)$. This counterexample shows, that continuity for $x \rightarrow P(x, t)$ is not sufficient to show the continuity of $t \rightarrow$ $P(x, t)$. We set

$$
\begin{aligned}
& P(x, t): \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow[0,1] \\
& P(x, t):= \begin{cases}\frac{1}{1-t}(1-x), & \text { if } t<x<1, t<1, \\
\frac{1}{1-t}(x-1), & \text { if } 1<x<2-t, t<1, \\
0, & \text { if } x=1, t<1, \\
1, & \text { else }\end{cases}
\end{aligned}
$$

which can also been written as

$$
P(x, t)= \begin{cases}\frac{1}{1-t}(1-x), & \text { if } 0<t<x, x<1 \\ \frac{1}{1-t}(x-1), & \text { if } 0<t<2-x, x>1, \\ 0, & \text { if } 0<t<1, x=1, \\ 1, & \text { else }\end{cases}
$$

We note, that $P(x, t) \leq 1$. From the second representation one can easily observe, that $t \rightarrow P(x, t)$ is monotonically increasing and from the first one, that $x \rightarrow P(x, t)$ is continuous for all $t \in \mathbb{R}_{+}$. It is also obvious, that $t \rightarrow$ $P(1, t)$ has a discontuinity at $t=1$. But $t \rightarrow P(x, t)$ is vaguely continuous: Let $f \in C_{K}^{+}\left(\mathbb{R}_{+}\right)$. Since the only discontuinity is at $t=1$ we have to show, that

$$
\lim _{t>\nearrow_{1}} \int_{\mathbb{R}_{+}} f(x) P(x, t) \mathrm{d} x=\int_{\mathbb{R}_{+}} f(x) P(x, 1) \mathrm{d} x=\int_{\mathbb{R}_{+}} f(x) \mathrm{d} x
$$

Abbildung 1: illustration of $P(x, t)$

We have

$$
\begin{aligned}
& \lim _{t \nmid 1} \int_{\mathbb{R}_{+}} f(x) P(x, t) \mathrm{d} x=\lim _{t \nmid}\left(\int_{(0, t)} f(x) \mathrm{d} x+\int_{(t, 1)} \frac{1}{1-t}(1-x) f(x) \mathrm{d} x+\right. \\
& \left.\int_{(1,2-t)} \frac{1}{1-t}(x-1) f(x) \mathrm{d} x+\int_{(2-t, \infty)} f(x) \mathrm{d} x\right)=
\end{aligned}
$$

Since $f \in C_{K}^{+}\left(\mathbb{R}_{+}\right)$is bounded and $P(x, t)$ is bounded, we have by dominated convergence

$$
=\int_{(0,1)} f(x) \mathrm{d} x+\int_{(1, \infty)} f(x) \mathrm{d} x=\int_{\mathbb{R}_{+}} f(x) \mathrm{d} x
$$

