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Abstract

The author’s contributions to a planned Bell test, which aims to simul-
taneously close the loopholes freedom-of-choice, fair-sampling and locality
are presented. A special type of Bell inequality, the Eberhard inequality is
discussed in the first part of this thesis.

An existing source of polarization entangled photons was adapted to
the specific requirements of an experiment ensuring space-like separation
of the source and the measurement settings. In particular, the source was
operated in pulsed mode and difficulties in terms of coupling and visibility
were addressed. An automation was set up, which improved speed and
accuracy of the selection of the produced entangled state. Measurements
addressing stability issues and fluorescence are presented.

Two fast switchable polarization measurement modules were set up and
optimized for low optical loss, which is crucial for closing the fair-sampling
loophole. This involved a treatment of the mode structure of few-mode
fibers and its implications for efficient fiber coupling. The capability of the
modules of achieving a high optical transmission is demonstrated.



Zusammenfassung

In dieser Arbeit sind die Beiträge des Autors zu einem geplanten Exper-
iment zusammengefasst, welches darauf abzielt, eine Bellsche Ungleichung
zu testen und dabei gleichzeitig drei ,,loopholes” zu schließen: Freedom-
of-choice, fair-sampling und Lokalität. Eine spezielle Ungleichung, die zu
diesem Zweck verwendet wird ist die Eberhard Ungleichung, welche im er-
sten Teil der Arbeit behandelt wird.

Eine Quelle für polarisationsverschränkte Photonen wurde an die speziellen
Anforderungen angepasst, welche durch raumzeitliche Trennung der beiden
Messungen entstehen. Die Quelle wurde gepulst betrieben und die sich
daraus ergebenden Schwierigkeiten bezüglich Kopplungseffizienz und Polar-
isationskontrast wurden behandelt. Eine Automatisierung wurde erstellt,
welche die Genauigkeit der Einstellung bestimmter verschränkter Zustände
verbesserte und zeiteffizenter gestaltete. Im Anschluss werden Messungen
über die zeitliche Stabilität und die Fluoreszenz in der Quelle präsentiert.

Zwei schnell schaltbare Messmodule wurden aufgebaut und bezüglich
optischer Verluste optimiert. Dies ist entscheidend, um das fair-sampling
loophole zu schließen. Im Zuge dessen wurde die Modenstruktur von Few-
Mode Glasfasern untersucht und deren Auswirkungen auf effiziente Kop-
plungstechniken. Die optische Transmission der Messmodule wird gezeigt.
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Chapter 1

Introduction

As quantum theory became popular in the early 20th century, it became
clear that its predictions deeply challenge established ideas of how nature
works at a microscopic level. In particular, an important feature of this
theory is that its predictions about measurement contradict the intuitive
concepts of locality and realism.

This has first been demonstrated by Einstein, Podolsky, and Rosen
(EPR) in their famous paper from 1935 [1]. In 1964 J.S. Bell derived his
famous inequality [2] that pinned down the difference between quantum me-
chanics and local realistic theories by comparing statistical properties of
their predictions. The philosophical question of whether something is there
if nobody looks at it became experimentally testable.

According to quantum theory, entangled states exhibit correlations that
are fundamentally different from classical ones. This is the reason why,
for tests of local realism, classically derived inequalities can be violated in
experiments.

Since that time, similar inequalities have been derived and many exper-
iments have been performed. Almost all of the results falsified the intuitive
local realistic predictions and agreed with quantum mechanics.

As these observations are very counterintuitive, physicists have proposed
models, which could explain the measurement results without invoking non-
local mechanisms, giving rise to so-called loopholes. These loopholes are
assumptions or properties of the experimental setups, which can be exploited
to construct local realistic models that agree with the experiments.

In this thesis, the focus lies on the important loopholes: locality, freedom-
of-choice and fair-sampling, which are explained in Sec. 2.1.3.1. They have
been ruled out by separate experiments but up to this date, no experiment
has been performed that closes these three loopholes simultaneously. The
experiment described in this thesis aims to do this.
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Outline

The original EPR paradox and Bell’s inequality are reviewed in Secs. 2.1.1
and 2.1.2. The loopholes and a brief history of important past experiments
that closed them are presented in Sec. 2.1.3.

In Sec. 2.2, the derivation of a special Bell inequality, Eberhard’s in-
equality is reviewed. The importance of this inequality lies in the absence
of any fair-sampling assumption in the derivation. This inequality will be
tested the experiment described here.

In Sec. 3.1, an outline of the experimental setup is given. The basic setup
of the entangled photon source has already been used in the experiment [3].
Tests and improvements made by the author of this thesis to prepare the
source for use in the loophole-free experiment are described in Sec. 3.2.

In Sec. 3.3, the measurement setups are described. They were optimized
for low optical loss, which is necessary to close the detection loophole. Cal-
culations about the loss in fiber coupling and the design to minimize it are
described in Sec. 3.3.3. Transmission tests of the different components are
presented in Sec. 3.3.5.
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Chapter 2

Theory

2.1 Local Realism, Philosophical and Historical Back-

ground

2.1.1 Philosophical Background and the EPR Paradox

Realism and EPR

Realism is a philosophical view, according to which external reality is as-
sumed to exist and have definite properties, whether or not they are observed
by someone [4].

The counterintuitive predictions of quantum mechanics on the measure-
ment of entangled systems have first been pointed out by Einstein, Podol-
sky, and Rosen (EPR) in 1935 [1]. In what has become famous as the
EPR-paradox, they show the following.

Quantum mechanics conflicts with the intuitive idea that physical sys-
tems have certain properties and an ideal measurement does nothing but
read out a certain property. There are even further implications: in partic-
ular, according to EPR’s argument, can the uncertainty principle be under-
mined by the measurement of two entangled particles in conjugate bases (in
the EPR case position and momentum). EPR used the following definition
of the “elements of reality” i.e. real physical properties:

“If, without in any way disturbing a system, we can predict
with certainty [...] the value of a physical quantity, then there
exists an element of reality corresponding to this physical quan-
tity.” [1]

Their argument considers a state of two entangled particles that are
separated from each other and thus can not interact (assuming locality).
A measurement of the two particles with non-commuting operators, here
position and momentum, could yield definitive outcomes on either particle.
Therefore, both observables have to be real. This contradicts a quantum
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mechanical principle, according to which if the momentum is known exactly,
then the coordinate is indefinite, i.e. has no physical reality. They concluded
that the quantum mechanical wave function is not a complete description
of physical systems.

2.1.2 Bell’s Inequality

In 1964 Bell derived his famous inequality [2]. It provided a precise math-
ematical bound for properties of probability distributions generally arising
from classical theories. If physical observables are real and local, they should
behave accordingly.

However, as predicted by quantum theory, probability distributions for
the outcomes of measurements on entangled particles, violate the inequality.
This fact can be used to experimentally distinguish between local realistic
and quantum mechanical behaviour. The derivation is given here since it is
very instructive to understand how Bell’s implicit and explicit assumptions
correspond to mathematical properties of the probability distributions.

2.1.2.1 Definitions

Bell considered an experiment in which two particles in a spin-singlet state
are measured by two Stern-Gerlach apparati (2.1).

Figure 2.1: Gedankenexperiment for the construction of Bell’s inequality

The measurement outcomes (±1) are denoted by A and B, the settings
are represented by unit vectors ~a and ~b. The outcomes do not depend only
on the respective settings but also on an additional parameter, which is
usually referred to as “hidden-variable” λ. This variable assigns properties
to the individual particles at a time before the measurement. Its variation
throughout the different measurement runs follows a normalized probability
distribution ρ(λ).
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2.1.2.2 Bell’s Assumptions

Realism

It is assumed that the measured particles have real properties that exist
independently from observation. The global probability distribution for all
outcomes is completely determined by external parameters [4] (even though
the parameter λ can be stochastic). The choice of a measurement basis only
determines which property is read out, it does not influence the physical
state of the system.

Locality

Bell explicitly assumed the following about locality: each outcome only
depends on the hidden variable and the local setting, it depends on neither
outcome nor setting on the other side. Thus, the functions of the outcomes,
which in principle depend on any parameter, can be reduced as follows:

A(~a,B,~b, λ) = A(~a, λ) (2.1.1)

and vice-versa,
B(~b,A,~a, λ) = B(~b, λ) (2.1.2)

Freedom-of-Choice

It is assumed that the experimenter’s choice of measurement bases is not
influenced by the hidden variable λ:

~a(λ) = ~a, (2.1.3)

~b(λ) = ~b. (2.1.4)

Additionally, the probability distribution of the hidden variable is not
influenced by either of the setting choices:

ρ(λ|~a,~b) = ρ(λ) (2.1.5)

2.1.2.3 Derivation

These assumptions enter the derivation in the following expression for the
expectation value of a joint measurement P ,

P (a, b) =

∫

dλρ(λ)A(~a, λ)B(~b, λ). (2.1.6)

As A and B are defined to be equal to ±1, their product also equals ±1.
In the case of the same setting on either side (~a = ~b), P (~a,~b) is −1, if and
only if

A(~a, λ) = −B(~a, λ). (2.1.7)
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Since this situation (perfect anticorrelation) is predicted by the quan-
tum mechanical expectation value (E = −~a · ~b) for joint detection in the
considered setup, it is assumed in the following. Only then can the hidden
variable model reproduce quantum mechanical results. Using eq. 2.1.7, eq.
2.1.6 can be rewritten as

P (~a,~b) = −
∫

dλρ(λ)A(~a, λ)A(~b, λ). (2.1.8)

Combining this with the expectation value of a different setting combi-
nation results in

P (~a,~b)− P (~a,~c) = −
∫

dλρ(λ)
[

A(~a, λ)A(~b, λ)−A(~a, λ)A(~c, λ)
]

. (2.1.9)

Since A(~b, λ) = ±1 per definition, A(~b, λ)2 = 1 and thus eq. 2.1.9 is
equivalent to

P (~a,~b)− P (~a,~c) =

∫

dλρ(λ)A(~a, λ)A(~b, λ)
[

A(~b, λ)A(~c, λ)− 1
]

. (2.1.10)

Considering all possible sign combinations for the differentAs, it becomes
apparent that the maximum (minimum) value of the RHS is +(−)

∫

dλρ(λ)[1−
A(~b, λ)A(~c, λ). Therefore,

|P (~a,~b)− P (~a,~c)| ≤
∫

dλρ(λ)
[

1−A(~b, λ)A(~c, λ)
]

. (2.1.11)

Using
∫

ρ(λ) = 1, this can be identified as

|P (~a,~b)− P (~a,~c)| ≤ 1 + P (~b,~c). (2.1.12)

Quantum Mechanical Predictions

This is the original form of Bell’s inequality [2]. It is satisfied for all local
realistic models, which are constructed as above. But, inserting quantum
mechanical expectation values for a singlet state P (~u,~v) = E(~u,~v) = −~u · ~v
using e.g. angles for which ~a · ~c = 0,~a ·~b = ~b · ~c = 1√

2
≈ 0.7, the inequality

does not hold:

| − 1√
2
− 0| ≤ 1− 1√

2
, (2.1.13)

or
0.7 ≤ 0.3. (2.1.14)

Therefore, the inequality can be used to experimentally distinguish be-
tween quantum mechanics and local realism.
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2.1.3 Previous Experiments and their Loopholes

Many experiments testing local realism by the use of Bell’s or equivalent
inequalities have been performed since the early 1970s. Almost all of them
showed violations. Due to the counterintuitive nature of this result, many
attempts have been made to explain the performed experiments in a local re-
alistic framework. In order to do this, it was necessary to consider so-called
loopholes. These are imperfections in the specific experimental setups or as-
sumptions made in the derivation of the respective inequality. Subsequently,
the experiments have been improved and the majority of loopholes have been
closed.

2.1.3.1 Loopholes and How They Can Be Closed Experimentally

In this thesis, the focus lies on the following three loopholes:

• The Locality Loophole
As described in the previous section, in the derivation of Bell’s inequal-
ity, locality is assumed in the sense that neither the setting nor the
outcome on one side can influence the setting or the outcome on the
other side. In principle, seemingly non-local effects could be explained
if some sort of signalling took place from a particle that is measured
to modify the properties of the other particle of the same pair. If one
holds on to special relativity, this can be ruled out in an experiment
where the measurement setting choices are space-like separated from
each other. Only then it is possible to guarantee that neither the out-
come A nor the setting ~a were influenced by B or ~b and vice-versa
[5].

• The Freedom-of-Choice Loophole
The Freedom-of-Choice loophole stands for the possibility that the
hidden variable λ influences the choice of the measurement bases ~a
and ~b or vice-versa [11]. In order to close this loophole, the measure-
ment setting choices can be performed space-like separated from the
emission of a photon (or particle) pair in the source. According to
special relativity, in this way the settings are definitely independent
of λ and in turn they can not influence, which λ is manifested in the
source to create the corresponding particle pair.
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• The Fair-Sampling Loophole
The fair-sampling assumption is the assumption that experimental re-
sults faithfully reproduce the statistics of all particles involved. There-
fore the experimental outcomes can be mapped to theoretical proba-
bility distributions. Properties of these probability distributions are
used in Bell’s and other inequalities to test, whether the results can
be explained in a local realistic framework.

This assumption opens the so-called fair-sampling (or detection) loop-
hole. Local realistic models can be constructed that exploit it, see e.g.
[7, 8].

A condition for the assumption to hold is that the probability of co-
incidental detection has to be independent of the settings (apart from
them defining the corresponding projection operators for the measure-
ment) [9]. This condition includes that the choice of measurement
settings must not influence the rate of produced particle pairs or the
detection efficiency.

A way to test a local realistic inequality experimentally without invok-
ing this assumption is to use an inequality that includes undetected
photons in its derivation. Eberhard’s inequality (eq. 2.2.6) provides
this. In an experiment, the detection has to be very efficient since the
possibility of bad statistical sampling has to be taken into account.
The more efficient the detection, the closer the least representative
sample gets to the actual probability distribution. This is discussed in
Sec. 2.2.4.

2.1.3.2 Experiments

In the following section, several historical experiments are presented, where
the selection is based on how the loopholes have been addressed throughout
history. For a more complete history of Bell experiments, see e.g. [10, 11]
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The Beginning: Freedman and Clauser 1972

In 1972, Freedman and Clauser performed an experiment in which they
measured the polarization of photon pairs emitted in a cascade de-excitation
of calcium atoms. Due to conservation of angular momentum, the photons
carry the same polarization in any basis if they are emitted into opposite
directions. After they measured polarization correlations at different angles,
Freedman and Clauser found results that violated a modified form of Bell’s
inequality and agreed with quantum mechanical predictions [12]. The setup
is depicted in fig. 2.2.

Figure 2.2: The setup of the Freedman and Clauser experiment [12].

This experiment was to my knowledge the first to explicitly test local
hidden variable theories by the violation of a Bell inequality. The polariza-
tion measurements were not spatially separated though and a low detection
efficiency made it necessary to assume fair-sampling.

Locality: Aspect et al. 1982 and Weihs et al. 1998

The first experiment to address locality issues was performed by Aspect
et al. in 1982 [13]. In their setup, they used a similar source of entangled
photons based on the emission from a Ca cascade transition. The improve-
ment was to use acousto-optical switches on each side to guide the photons
through polarizers set to different angles instead of manually setting them.
The switches were driven periodically at incommensurate frequencies high
enough to ensure switching rates shorter than the photon transit time. By
this, measurements on two different bases on either side were performed.
The setup is depicted in fig. 2.3.

The results, violated a CHSH inequality by 5 standard deviations.
The first experiment, which explicitly imposed “strict Einstein locality

conditions” between the measurements was performed by Weihs et al. in
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Figure 2.3: The setup of the Aspect experiment [13].

1998 [14]. In contrast to Aspect et al., the analyzers were not switched peri-
odically but randomly, using quantum random number generators (QRNGs).
The setup of the measurement modules is depicted in fig. 2.4. Instead
of using a Ca cascade source, entangled photons for this experiment were
produced by spontaneous parametric down-conversion (SPDC) in a BBO
crystal.

Figure 2.4: The measurement setup used by Weihs et al. [14].

The results showed a violation of a CHSH inequality by 30 standard
deviations. From these results, it became clear that correlations of mea-
surements on entangled states violate local realistic predictions even if the
choices of the measurement bases are spatially separated from each other.
However, two important loopholes remained. Due to low detection efficiency,
a fair-sampling assumption was still necessary to interpret the results in this
way. The source was not spatially separated from the measurement, which
also left the freedom-of-choice loophole open.
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Freedom-Of-Choice: Scheidl et al. 2010

The freedom-of-choice loophole was first closed by Scheidl et al [6]. This
was done using a free-space link between the two Canary islands Tenerife
and La Palma and as such it was also the longest distance (144 km) between
entangled photons measured so far. Their setup is depicted in fig. 2.5. Their
results violated a CHSH inequality by 16 standard deviations.

Figure 2.5: The setup used by Scheidl et al. on the Canary islands [6].
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Efficient Detection: Rowe et al. 2001 and Giustina et al. 2012

In 2001, Rowe et al. performed a test of local realism that did not need a
fair sampling assumption due to very efficient detection. They used angular-
momentum-entangled 9Be+ ions in a linear trap instead of polarized photons.
After a detection laser beam was shone on the ions, the number of scattered
photons depended on the state of the ions. The measurement bases were set
by using different phase angles of the detection laser beam at the location
of the ions. For further details, refer to [15]. The measured correlations
violated a CHSH inequality. This experiment was the first to close the
detection loophole.

However, the two measurements in this experiment were not spatially
separated. Up to this date, only experiments using entangled photons could
address locality issues, since the photons travel much faster than massive
particles.

The detection loophole in a photonic experiment was first closed by
Giustina et al. in 2012. The source for entangled photons used is based on
type-II spontaneous parametric down-conversion (SPDC). The high detec-
tion efficiency necessary to close this loophole was achieved by optimizing
the source for high coupling efficiency and by the use of transition edge sen-
sors (TES) instead of conventional avalanche photon detectors (APD). The
setup is depicted in fig. 2.6.

The TES detectors as well as parts of the source were inherited and used
to set up the experiment described in this thesis (see Sec. 3.2).

Figure 2.6: The setup of the experiment by Giustina et al [3].
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2.2 The Eberhard Inequality

In 1993, Phillippe Eberhard published a Bell inequality that does not rely
on a fair-sampling assumption in its derivation and as such constitutes a
theoretical ground for an experimental closure of the detection loophole. It
is a form of a CH inequality [16], but in the derivation, sets of measurement
results are used instead of probability distributions. Undetected photons
are included as possible outcomes. Before the derivation is presented, the
concept of “families of independent results” is introduced, which is very
useful for a clear understanding.

2.2.1 Families of Independent Results

Any physical theory that is applied to an experimental situation predicts a
certain probability distribution for its results. In a paper from 1978 [17],
Eberhard pinned down mathematical properties of these probability distri-
butions and connected them to different concepts of locality. One of them,
which is particularly interesting in connection with Eberhard’s inequality is
described in the following.

Consider a typical EPR measurement setup (like in fig. 2.1) involving
two measurement parties Alice and Bob with two possible settings each.
The notation is as follows: the measurement setting on Alice’s (Bob’s) side is
represented by angles α(β). Their outcomes are denoted by A(B). Contrary
to Bell’s derivation, the outcomes are not restricted to ±1. Instead, they can
take arbitrary distinct values. The theoretically predicted joint probability
distribution is denoted by p(A,α,B, β).

The Concept

Consider a theory that predicts probability distributions showing the fol-
lowing property: the probabilities for obtaining the same local outcomes
A = Ai for the same local setting αi on Alice’s side are non-zero in every
possible setting combination (and simultaneously B = Bi for the setting βi
on Bob’s side):

p(A1, α1, B1, β1) > 0 (2.2.1)

p(A1, α1, B2, β2) > 0 (2.2.2)

p(A2, α2, B1, β1) > 0 (2.2.3)

p(A2, α2, B2, β2) > 0. (2.2.4)
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A theory that predicts probability distributions in this form (simultane-
ously satisfying eq. 2.2.1-2.2.4) implies that if one performs an experiment
with any setting (αi, βj), the outcome (Ai, Bj) is among the set of possible
results (for all i, j ǫ {1, 2}). Then, in an experiment in which four mea-
surements are performed (one in each setting), a non-zero probability is
predicted for the four corresponding outcomes to be as shown in table 2.1.

(α1, β1) (α1, β2) (α2, β1) (α2, β2)

(A1, B1) (A1, B2) (A2, B1) (A2, B2)

Table 2.1: A general family of independent results

Results of this form are said to constitute a “family of independent re-
sults” [17]. Note that the outcomes are not explicitly specified (Ai,Bi can
take any definite value). In such a family, Alice’s outcome, given her specific
local setting αi, is the same in two experiments with different settings on
Bob’s side β (i.e. in two measurements (αi, β1) and (αi, β2). At the same
time, Bob’s result is the same in two experiments (α1, βj) and (α2, βj).

Relation to Locality

Probability distributions arising from local hidden variable theories in
general have this property. It even holds for models that are only partially
local. To see this, consider a theory that predicts the following probability
distribution [17]:

p(A,α,B, β) = η
∑

λ

ρ(λ)f(λ,A, α)g(λ,B, β)+(1−η)H(A,α,B, β). (2.2.5)

The first term represents a classical hidden variable theory similar to the
one considered by Bell. The probability distribution of the hidden variable is
denoted by ρ(λ). The probability of a certain outcome on Alice’s f(λ,A, α)
as well as on Bob’s side (g(λ,B, β)) is a function of the local setting and
the hidden variable only. The second term includes an arbitrary probability
distribution dependent on both settings (H(A,α,B, β)). The relative weight
of the two terms is determined by the parameter η ranging from 0 to 1.

Even if H(A,α,B, β) represents a completely non-local model, which
does not predict families of independent results, p(A,α,B, β) will still do
so with finite probability if η > 0. The reason for this is that a fraction η
of Alice’s predicted outcomes are generated according to a model (the first
term in eq. 2.2.5) which does not require any knowledge about Bob’s setting
or outcome. In eq. 2.2.5, if it is possible to measure a certain local outcome
once, then it is also possible to measure the same local outcome with the
same local setting a second time. As a consequence, the same result A1
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on Alice’s side is predicted with non-zero probability in two experiments
with settings (α1, β1) and (α1, β2). Since the same holds for Bob’s side, this
corresponds to eqs. 2.2.1-2.2.4. Therefore, a family of independent results
is predicted with non-zero probability.

Relation to Experimental Sampling

In an actual experiment, probability distributions are never completely
accessible due to a finite sample size. To connect outcomes with proba-
bilistic predictions is of crucial importance for the assumptions made in the
derivation of Eberhard’s inequality. One can think of the sampling as a small
modification of the theoretical probability distribution. A histogram of the
sample will in general match a probability distribution which is slightly dif-
ferent than the original one, as the original probability distribution is only
exactly reproduced by an infinite number of results.

In an experimental situation, one could think of various mechanisms
that cause the obtained results not to match the probability distribution
exactly apart from the sample being finite: simple causes, such as (polar-
ization dependent) loss and sophisticated theories about hidden detection
probabilities etc. If one intends to derive an inequality without invoking
a fair-sampling assumption, individual results have to be considered rather
than probability distributions.

In a local realistic model (e.g. eq. 2.2.5 with η = 1), the following
property can be assumed for a certain parameter ε [17]. If one arbitrarily
eliminates a small fraction ε of possible results, as long as ε is small enough,
(Ai, Bj) is still among the set of possible outcomes of the measurements
(αi, βj) for all i, j. I.e. one could still find a family of independent results,
even if one dismisses a certain number of selected results. For this, it is
sufficient that families of independent results are predicted with non-zero
probability, which holds, even if a small fraction of probability is eliminated.

The testing of whether a probability distribution is non-zero is in that
sense robust with respect to eliminating parts of the sample - in other words
to unfair sampling.
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2.2.2 Derivation

2.2.2.1 Definitions

Eberhard’s derivation explicitly considers an experiment with polarized pho-
tons. The angles of two polarizing beam splitters on either side are denoted
as αi and βi. The choice of these angles constitute the measurement setting.

The innovation of Eberhard’s approach was to consider a no-photon-
detection event as a possible outcome of each measurement in the deriva-
tion. Using the original notation, each local measurement has three different
possible outcomes: for any given angle, a photon could be detected in the or-
dinary (o) or in the extraordinary (e) output of the polarizing beam splitter,
or remain undetected (u).

2.2.2.2 Eberhard’s Assumptions

In order to derive the inequality, three explicit conditions for local theories
are formulated [18]:

• The fate (the outcome) of Alice’s photon A is independent of Bob’s
setting (β1 or β2). It would yield the same result whether measured
in the setting (αi, β1) or in (αi, β2).

• The equivalent is true for Bob’s photon, B would be the same whether
the settings are (α1, βi) or (α2, βi).

• Considering a list of possible sequences of measurements and results,
it is possible to find four sequences that satisfy the first two conditions
and where the averages and correlations of these sequences agree with
the ones predicted by the theory in a statistically significant sense.

The first two conditions are self-explanatory. The essence of what can
be tested with the inequality is whether a setting on one side affects the
outcome on the other side.

The third condition needs some discussion. One can imagine a list of
(random) possible measurements and predicted results (events) of the form
shown in table 2.2.

From this list, a specific sample can be selected, which only consists of
families of independent results and therefore automatically satisfies the first
two conditions. The above list would thus be truncated as in table 2.3.

The four results shown here describe one possible family of independent
results. The third event from the initial list (table 2.2) was eliminated
because (α1, β2) → (e, o) does not form a family of independent results with
the other four events.

As described in 2.2.1, after a fraction ε of results is eliminated, if ε
is small enough, there are still intact families of independent results with
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Measurement round Settings Outcomes

1 (α1, β2) (e,e)

2 (α2, β2) (u,e)

3 (α1, β2) (e,o)

4 (α1, β1) (e,o)

5 (α2, β1) (u,o)

... ... ...

Table 2.2: An exemplary (random) list of measurement and outcomes.

(α1, β1) (α1, β2) (α2, β1) (α2, β2)

(e,o) (e,e) (u,o) (u,e)

... ... ... ...

Table 2.3: A possible family of independent results. The first row represents the
measurement settings. In each column, the local outcome is uniquely defined by
the local setting.

non-zero probability. Therefore, it is possible to find a non empty list of
predicted results in the form of table 2.3, if the theory that predicts them is
to some extent local realistic (Note that “the more” local realism (larger η
in eq. 2.2.5), the larger the ε can be).

A crucial point is the demanded statistical agreement of averages and
correlations between the remaining sample and the theoretical probability
distributions. The question is, whether the list of families of independent
results, which was filtered out of the whole sample of all predicted results is
still statistically representative of the theory.

The third condition thus could be reformulated as: if it is possible to
find a sample that consists of families of independent results only and it still
represents the theory in a statistical sense, then the theory is local.

By demanding averages and correlations of the truncated sample to agree
with their expectation values, it follows that the inequality also holds, if all
event rates are replaced by their expectation values. Thus, for an experiment
aiming to show a violation of the inequality, it is sufficient to show that the
inequality is violated by the measured averages. The actual elimination
process does not have to be performed.
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2.2.2.3 Derivation of the inequality

Sampling and Definitions

According to the conditions discussed in the previous section, a local the-
ory predicts results in a way that makes it possible to select a sample of
(predicted) experimental outcomes that consists only of families of inde-
pendent results. By doing this selection, averages and correlations are not
changed significantly. The selected sample contains an equal number of re-
sults for each setting (α1, β1), (α1, β2), (α2, β1), and (α2, β2). An exemplary
list considering the possible local outcomes (o, e and u) is given in table 2.4.
They are tallied in a way that each row represents one family of independent
results.

(α1, β1) (α1, β2) (α2, β1) (α2, β2)

(e,o) (e,e) (u,o) (u,e)

(u,o) (u,e) (o,o) (o,e)

(e,u) (e,u) (u,u) (u,u)

(o,e) (o,o) (e,e) (e,o)

(e,u) (e,e) (u,u) (u,e)

(o,o) (o,e) (e,o) (e,e)

... ... ... ...

Table 2.4: Exemplary sample consisting only of families of independent results.
The first row represents the measurement settings.

The number of results of the form (α1, β1) → (o, o) is denoted as noo(α1, β1).
It is the number of (o, o) events in the first column of table 2.4. An anal-
ogous notation is used for the number of other results in a corresponding
setting.

The inequality is derived as follows. Consider such a list of families of
independent results as our initial sample. We will eliminate parts of the
sample in three successive steps. The number of events left in the sample
decreases with each step. After this, a relation about the number of events
in the remaining sample can be obtained. This is possible by exploiting a
specific feature of such a list: if we know three of the four members of a
family of independent results, the fourth member (result) can be derived
with certainty.
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1. From the initial sample, we cross out all families of independent results
which do not contain results of the form (α1, β1) → (o, o). In the
exemplary table 2.4, all rows (families) are crossed out except the last
row.

In the first column, (representing the setting (α1, β1)), only results of
the form (o, o) remain.

The number of families still in the sample is equal to the total number
of (α1, β1) → (o, o) events, that is

noo(α1, β1).

As the sample consists only of families of independent results, this
elimination automatically restricts the set of results corresponding to
other settings than (α1, β1) in the following way:

In each family of independent results, Alice’s local outcome is the
same for different local settings on Bob’s side. Therefore, if all re-
maining families have the member (α1, β1) → (o, o), then A has to be
o also in different settings involving α1, that is, in the setting (α1, β2).
Therefore, all events in the settings (α1, β2), yield (o, x) (for arbi-
trary x). Different results (A 6= o), would not be compatible with
(α1, β1) → (o, o).

Analogously, all events in setting (α2, β1) are of the form (x, o), as B
is the same for β1 in all members of a family of independent results.

The situation is illustrated in fig. 2.8 on page 24. The (α1, β1) → (o, o)
events fall in the box marked with a •. As all other families are
eliminated, several outcomes are impossible to find in the remaining
sample, which can not be part of the same family of independent
results as (α1, β1) → (o, o). These are marked with an ∗ in fig. 2.8.

An exemplary sample after the first step is shown in table 2.5.

(α1, β1) (α1, β2) (α2, β1) (α2, β2)

(O,O) (O,e) (o,O) (o,e)

(O,O) (O,u) (u,O) (u,u)

(O,O) (O,x) (y,O) (y,x)

... ... ... ...

Table 2.5: A restricted sample after step 1. The number of remaining families
is equal to the number of (α1, β1) → (o, o) outcomes, that is noo(α1, β1). Capitals
indicate restrictions of step 1, x and y indicate arbitrary outcomes.
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2. In a second step, we cross out all families of independent results that
contain

(α2, β1) → (u, o),

or
(α2, β1) → (e, o)

(denoted by ⊗ in fig.2.8).

The number of removed families can not be larger than the total num-
ber of these outcomes in the initial sample, nuo(α2, β1) + neo(α2, β1).
It can be smaller, since we already eliminated all events that were not
part of families containing (α1, β1) → (o, o) in the first step.

Thus, the number of remaining families is greater than or equal to

noo(α1, β1)− nuo(α2, β1)− neo(α2, β1).

All remaining families have the members (α1, β1) → (o, o) and (α2, β1) →
(o, o). These are the only outcomes still present in our list correspond-
ing to the settings (α1, β1) and (α2, β1) respectively.

This implies that all remaining results in the setting (α2, β2) are of the
form (o, x) with arbitrary x. Other outcomes could not be in a family
of independent results together with (α2, β1) → (o, o) and therefore
have already been crossed out. These are denoted as × in fig. 2.8.

The sample after the second step is shown in table 2.6.

(α1, β1) (α1, β2) (α2, β1) (α2, β2)

(o,o) (o,u) (O,o) (O,u)

(o,o) (o,o) (O,o) (O,o)

(o,o) (o,x) (O,o) (O,x)

... ... ... ...

Table 2.6: A restricted sample after step 2. The number of remaining families
is equal or larger than noo(α1, β1) − nuo(α2, β1) − neo(α2, β1). Capitals indicate
restrictions of step 2 and x indicates arbitrary outcomes.
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3. From the remaining list, we remove all families containing

(α1, β2) → (o, u),

or
(α1, β2) → (o, e)

(denoted by ⊕ in fig.2.8).

Following the same arguments as above, the number of remaining fam-
ilies is greater than or equal to

noo(α1, β1)− nuo(α2, β1)− neo(α2, β1)− nou(α1, β2)− noe(α1, β2)

.

Only events (o, o) are left in the sample for the setting (α1, β2). Anal-
ogously to the previous step, this implies that all results in the setting
(α2, β2) are eliminated, which are not of the form (o, o). The implicitly
crossed out results are denoted by + in fig. 2.8.

The sample after the third step is shown in table 2.7.

(α1, β1) (α1, β2) (α2, β1) (α2, β2)

(o,o) (o,O) (o,o) (o,O)

(o,o) (o,O) (o,o) (o,O)

(o,o) (o,O) (o,o) (o,O)

... ... ... ...

Table 2.7: A restricted sample after step 3. The number of remaining families is
equal or larger than noo(α1, β1)−nuo(α2, β1)−neo(α2, β1)−nou(α1, β2)−noe(α1, β2).
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4. A look at table 2.7 or 2.8 shows that the remaining sample consists
only of (o, o) outcomes for any setting.

The number of families containing (α2, β2) → (o, o) in the initial list
of families of independent results (before the first elimination step)
was noo(α2, β2). This number is therefore greater than or equal to the
number of families in the remaining sample:

noo(α1, β1)−nuo(α2, β1)−neo(α2, β1)−nou(α1, β2)−noe(α1, β2) ≤ noo(α2, β2)
(2.2.6)

Table 2.8: Construction of Eberhard’s Inequality: Possible two-photon-
measurement outcomes are eliminated from the sample in each step according to
the symbols. See text. [18]

A condition for locality was that all averages and correlations of the
reduced sample (consisting only of families of independent results) agree
with the expectation values of the theory. Since the measured sample can
be arbitrarily large, the inequality also holds for the expectation values of
the ns, given the underlying theory produces the results without taking the
distant setting or outcome into account.

For an experiment, the measured quantities are single count rates on
either side and coincidence count rates. The individual quantities in the
inequality (2.2.6) can all be expressed by experimentally accessible rates.
Moreover, it is sufficient to use only a single outcome (o) for each polarizer.
The substitution is performed as follows [3]:

nxy(αi, βj) = Cxy(αi, βj), (2.2.7)

with x, yǫ{o, e} and i, jǫ{1, 2}, and Cxy representing the corresponding co-
incidence count rate.
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And,

nou(α1, β2) = SA
o (α1)− Coo(α1, β2)− Coe(α1, β2), (2.2.8)

nuo(α2, β1) = SB
o (β1)− Coo(α2, β1)− Ceo(α2, β1). (2.2.9)

Here, SA
o (α1)(S

B
o (β1)) represents the single count rate in the o output

of Alice’s (Bob’s) polarizing beam splitter at an angle α1(β1). Inserting this
into eq. 2.2.6 yields

J = SA
o (α1)+SB

o (β1)+Coo(α2, β2)−Coo(α1, β1)−Coo(α1, β2)−Coo(α2, β1) ≥ 0,
(2.2.10)

with the “Eberhard value” J , which is positive for any local realistic
theory.

2.2.3 Quantum Mechanical Predictions

In this section, a quantum mechanical model is presented that predicts a
violation of Eberhard’s inequality in the experiment. It also shows that in
the case of imperfect detection efficiency, the maximally violating state is a
non-maximally entangled one. Additionally, visualizations of various single
and joint detection probabilities are given in order to provide a geometrical
intuition about the inequality and non-maximally entangled states.

In Eberhard’s original derivation, some experimental uncertainties are
not accounted for. In the model presented here, the treatment of imperfect
polarization visibility of the produced state, different detection efficiencies in
the two arms, as well as accidental coincidence counts (see Sec. 3.2.7.2) are
added. The last point becomes especially important in a pulsed setup, which
we use in our experiment. Calculations were written as Mathematica code
by Marissa Giustina, Johannes Kofler and Sven Ramelow. Visualizations
were made by the author.

2.2.3.1 Calculation of the J-Value

We start with a two-photon-state of the form

|Ψ〉 = 1√
1 + r2

(|HV 〉+ r|V H〉). (2.2.11)

For r = ±1, this state represents the maximally entangled Ψ±-Bell-
states. For r = 0, the state is separable. In the case of imperfect visibility
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v, the state is not completely pure. Instead, it can be described by the
following density matrix in the basis {|HH〉, |HV 〉, |V H〉, |V V 〉} [19]:

ρ =
1

1 + r2









0 0 0 0
0 1 vr 0
0 vr r2 0
0 0 0 0









(2.2.12)

In the case of v = 1 we arrive at the pure state eq. 2.2.11. The probability
of detecting both photons of a pair in the o beams of two polarizers set to
the angles α and β respectively is given by

poo(α, β) = ηAηBTr(ρMA(α)⊗MB(β)), (2.2.13)

where the ηi denote the detection efficiencies of the two arms and Mi(x) the
projection operator corresponding to a measurement on Alice’s (i = A) or
Bob’s (i = B) side. The probability of detecting a single photon on Alice’s
(Bob’s) side is given by

pAo (α) = ηATr(ρMA(α)⊗ IB), (2.2.14)

pBo (α) = ηBTr(ρIA ⊗MB(β)), (2.2.15)

with the identity operator I. Therefore, for the experiment, single and
coincidence counts detected per unit time can be computed by

SA(α) = RTηATr(ρMA(α)⊗ IB) + dT, (2.2.16)

SB(α) = RTηBTr(ρIA ⊗MB(β)) + dT, (2.2.17)

Coo(α, β) = ηAηBTr(ρMA(α)⊗MB(β)) + accT, (2.2.18)

Here T stands for the measurement time. R for the pair production rate, d
for the single dark count rate and acc for the rate of accidental coincidences
(see Sec. 3.2.7.2). After experimentally determining the parameters ηi,R,
and d, a numerical algorithm was used to determine α, β, and r, which max-
imally violate eq. 2.2.10. For realistic parameters, the maximally violating
r is approximately 0.3, representing a non-maximally entangled state. In
the following section, an attempt is made to provide an intuition about this
situation.
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2.2.3.2 Intuition About Non-Maximally Entangled States and

the Inequality

In order to see a violation of Eberhard’s inequality, the following inequality
must be satisfied (cf. eq. 2.2.10).

SA
o (α1) + SB

o (β1) < Coo(α1, β1) + Coo(α1, β2) + Coo(α2, β1)− Coo(α2, β2).
(2.2.19)

To see how this can be achieved, consider figs. 2.7 - 2.10. For the ideal
case (η = 1), the sum of the two single count probabilities (eq. 2.2.14
and 2.2.15) as a function of the two polarizer angles (pAo (α1) + pBo (β1)) are
plotted in 2.7 for different r. In fig. 2.8, the corresponding coincidence count
probabilities (poo(α, β)) are depicted.
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Figure 2.7: Sum of single count probabilities at different polarizer settings
pAo (α1) + pBo (β1) for r = −1 (left),r = −0.3 (middle) and r = 0 (right)

α(deg)

β
(d
e
g
)

  0 180

 180

 p

 2

 0
α(deg)

β
(d
e
g
)

  0 180

 180

 p

 2

 0
α(deg)

β
(d
e
g
)

  0 180

 180

 p

 2

 0

Figure 2.8: Coincidence count probabilities at different polarizer settings poo(α, β)
for r = −1 (left),r = −0.3 (middle) and r = 0 (right)

It is interesting to see how for the Bell-states (r = ±1), only relative
angles between the polarizers matter, whereas otherwise, the absolute an-
gles have to be taken into account to compute the probabilities. For the
other extreme, the product state (r = 0), the probabilities are computed by
products of functions of each the two angles.
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Bell-States

For the Ψ±-states (r = ±1), the single count probabilities do not depend
on the measurement angles (figs. 2.7 left and 2.9 left). Therefore, both
single count terms appearing on the LHS of eq. 2.2.19 are equal for all
possible measurement angles. The angles therefore can be selected without
constraints to maximize the RHS involving the coincidence terms.

Non-Maximally Entangled States

Eq. 2.2.19 is asymmetric with respect to the setting combinations: All
angle combinations have to be taken into account in order to compute the
coincidences, whereas the single counts are determined only at the single set-
ting (α1, β1). This is exploited to decrease the upper bound of the required
detection efficiency.

Consider the detection probabilities for the state eq. 2.2.11 with r =
−0.3 (plotted in fig. 2.7 (middle) and 2.8 (middle) for unit efficiency). For
this state, the single count rates depend on the polarizer angles. By selecting
the angles (α1, β1) (where the single count rates are evaluated) accordingly,
the LHS of eq. 2.2.19 can be decreased.

The RHS of eq. 2.2.19 for |r| < 1 can not reach a value as high as for the
Bell-states. The decrease of the RHS is compensated though by a stronger
decrease of the LHS (the singles), given the measurement angles are chosen
accordingly. The overall coincidences to singles ratio in eq. 2.2.19 can be
increased, as the coincidences are evaluated at all four setting combinations.

Lower Detection Efficiency

In general, the single count terms scale linearly with efficiency and coinci-
dence count terms quadratically, since they involve two simultaneous single
detections. Thus, for lower detection efficiencies, the LHS in eq. 2.2.19 gets
bigger compared to the RHS, making it more difficult to satisfy eq. 2.2.19.

In the case of imperfect efficiency, the above described asymmetrization
of the single count probabilities becomes crucial, as the “natural” single
count rates increase compared to the coincidences. For single detection
efficiencies of less than 82.8% [18, 10], this is in fact necessary in order
to satisfy eq. 2.2.19. To illustrate the changes arising from low detection
efficiency, figs. 2.9 and 2.10, show single and coincidence count probabilities
for η = 0.7.
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Figure 2.9: Sum of single count probabilities at different polarizer settings
pAo (α1) + pBo (β1) for r = −1 (left),r = −0.3 (middle) and r = 0 (right) for 70%
coupling (η = 0.7)
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Figure 2.10: Coincidence count probabilities at different polarizer settings
poo(α, β) for r = −1 (left),r = −0.3 (middle) and r = 0 (right) for 70% coupling
(η = 0.7)

2.2.4 Experimental Requirements for Testing Eberhard’s In-

equality with Polarization-Entangled Photons

Summing up the above considerations, in order to be able see a violation
of Eberhard’s inequality in the form (eq.2.2.10), the following requirements
have to be met.

The EPR source must produce entangled photon pairs in the state eq.
2.2.11 with r adjusted to the experimental situation (i.e. to background and
detection efficiencies). The detection efficiencies need to be higher than a
certain threshold. Theoretically, for an ideal measurement with no back-
ground, this means η > 2/3.

To see this intuitively consider eq. 2.2.19. It can only be satisfied if the
two single count terms on the LHS are less than the three coincidence terms
on the RHS (assuming Coo(α2, β2) to be zero). As the single count rates
are by definition greater than or equal to the coincidence count rates, the
coincidences to singles ratio, that is, the coupling efficiency, needs to be at
least 2/3.
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In an actual experiment, zero background can not be expected. There-
fore, the detection efficiency has to be even higher, see fig. 2.11. In order
to minimize the required efficiencies, background counts have to be elimi-
nated as good as possible. The quality of the produced state in terms of
purity, precise r, and a high visibility (see Sec. 3.2.7) is essential to avoid
the required η to be higher than feasible.

Figure 2.11: Numerical calculation of the maximally tolerable background in %
of single count rate for various detection efficiencies (black •) [20].

The derivation of Eberhard’s inequality does not rely on a fair-sampling
assumtion. Therefore, if Eberhard’s inequality is violated in an experiment,
the detection loophole is automatically closed.
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Chapter 3

Experiment

3.1 Overall Experimental Sketch

Figure 3.1: Scheme of the experiment. A Sagnac source is pumped coherently
by 405 nm photons and produces down-converted 810 nm photons in an entangled
state. The 810 nm photons are collected into 30 m long single-mode optical fibers,
which lead to two separate measurement stations Alice and Bob. Two QRNGs
and EOMs are used to switch and set the measurement bases spatially separated
from the pair generation. The measured photons are coupled into telecom fibers and
detected using TES-detectors. Settings and results are time-tagged and correlations
are evaluated afterwards.

The experiment aims to show a violation of Eberhard’s inequality with
polarization entangled photons, fulfilling the requirement of space-like sep-
aration of the measurements and the source. When performed successfully,
it will close at least three important loopholes in one single experiment and
thus will be the most conclusive test of local realism to date. These loopholes
are the fair-sampling, freedom-of-choice and the locality loophole.

Entangled photon pairs are generated in a Sagnac Source (see Sec. 3.2)
and launched into optical fibers. The fibers lead to separate measurement
stations (Alice and Bob), where the polarization of each photon is measured
in a certain basis, randomly chosen by two quantum random number gen-
erators (QRNG) and switched accordingly using electro-optical-modulators
(EOMs). Two transition edge sensors (TES) are used for highly efficient
detection. The setup is depicted in fig. 3.1. The detection events are time-
tagged independently and the results from the two detectors are compared
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afterwards. In this way coincidence count rates for each setting combination
are obtained, which are used to test Eberhard’s inequality.

Each random number generation and the corresponding measurement
setting happens outside the light cone of the photon pair generation as well
as outside the light cone of the random number generation and the physical
measurement setting on the other side. This accounts for both the freedom-
of-choice and the locality loophole. All components are optimized for low
optical loss and the detectors are highly efficient in order to construct an
experimental situation where quantum mechanics predicts a violation of
Eberhard’s inequality.

3.2 The Entangled Photon Source

3.2.1 General Requirements

In order for the entangled photon source to qualify for testing Eberhard’s
inequality, it needs to produce photon pairs in a state for which quantum
theory predicts a violation of the inequality. Therefore, it is necessary to
have experimental control over the r parameter in eq. 2.2.11, which has to
be set according to the considerations in Sec. 2.2.3. We achieved this by
using a source based on a Sagnac interferometer.

One of the major challenges in this experiment was to increase the cou-
pling efficiency of our entangled photon source to an extent where we can
in theory see a violation. As optical loss enters linearly in the single count
rates and quadratically in the coincidence count rates, it is directly con-
nected to the coincidences to singles ratio. As discussed in Sec. 2.2.4, this
ratio (coupling) must be higher than 2/3 for the whole setup. Considering
inevitable loss in components other than the source (Pockels cells, coupling
to detector, long optical fibers...), the source needs to be optimized for cou-
pling even higher than that. Another requirement for the source is to achieve
good visibility. This issue is discussed in Sec. 3.2.7.

3.2.2 Experimental Setup

This section explains how the source of polarization-entangled photons used
in our experiment is set up to meet the above requirements.

The photon pairs are created in a non-linear crystal. In our case, the
material is type-II phase matched periodically poled KTiOPO4 (ppKTP),
which exhibits spontaneous parametric down-conversion (SPDC). In this
process, a pump photon is “split” into a vertically (V) polarized signal and
a horizontally (H) polarized idler photon [21, 22].

We pump the crystal coherently with 405 nm photons. The crystal is
kept at a temperature for which the signal and idler photons are wavelength
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degenerate. Due to momentum conservation, both down-converted photons
then have a wavelength of 810 nm.

The crystal is situated in a Sagnac interferometer. Pump photons en-
ter the interferometer through a dual wavelength polarizing beam splitter
(dPBS), which allows for pumping the crystal in two opposite directions
according to the polarization of the pump laser. By a specific arrangement
of dual half wave plate (dHWP), dPBS, and dichroic mirror the signal pho-
ton exits the Sagnac loop in one arm and the idler photon into the other
independent of the pump direction. But, depending on the pump direction,
signal and idler carry opposite polarizations. Signal and idler are collected
by two single-mode fibers. The two scenarios are depicted in fig. 3.2 and
fig. 3.3.

405nm SMF (from Pump)

dichroic Mirror810nm SMF

(to Alice)
810nm SMF 

(to Bob)
dHWP

ppKTP crystal

dPBS

H

BPF

BPF

H

HsVi

Hi

Vs

VsHi

Figure 3.2: The Sagnac source pumped with H polarized light resulting in the
state |HV 〉. The pump laser enters the Sagnac loop counter-clockwise passing a
dual wavelength polarizing beam splitter (dPBS). The down-converted photons pass
a dual wavelength half wave plate (dHWP) and exit the interferometer. The (H-
polarized) idler photon passes the dPBS and is collected into a single-mode fiber
(810 nm SMF) which leads to the Alice measurement. The (V-polarized) signal
photon is deflected by the dPBS and exits the interferometer towards a dichroic
mirror, where it is deflected and successively collected into a SMF leading to the
Bob measurement. In front of the collection fibers, band pass filters (BPF) block
out pump photons.

By pumping the source in a superposition of H and V polarized light,
entangled states are produced. The dPBS splits the pump beam into its H
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Figure 3.3: The Sagnac source pumped with V polarized light resulting in the state
|V H〉. The pump laser enters the Sagnac loop clockwise after being deflected by the
dual wavelength PBS (dPBS). The down-converted photons exit the interferometer
without passing the dHWP. The (H-polarized) signal photon passes the dPBS and is
deflected by the dichroic mirror. After this, it is collected into a single-mode fiber
(810 nm SMF) which leads to the Bob measurement. The (V-polarized) signal
photon is deflected by the dPBS and exits the interferometer towards the left fiber
coupler, where it is collected into a SMF leading to the Alice measurement. In front
of the collection fibers, band pass filters (BPF) block out pump photons.

component passing the loop counter-clockwise and its V component travers-
ing the loop clockwise. If a superposition of H and V enters the Sagnac loop,
the crystal is pumped in a superposition of both directions. As the clock-
wise pump direction results in the state |VsHi〉 and the counter-clockwise
one in |HsVi〉, a superposition of these two states is produced. That is, the
resulting photon pairs are polarization entangled. By controlling the polar-
ization state of the pump, we can choose the relative amplitude of the H
and V components γ, as well as the relative phase φ between them. Thus
the resulting state can be set according to these two parameters (up to a
normalization factor):

|Ψ〉 = |HsVi〉+ γeiφ|VsHi〉 (3.2.1)

By tuning the parameters, any two-photon polarization state can be
produced in this way. For instance, setting the phase φ to π and γ to 1
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results in the Ψ− Bell-state. More importantly, the Eberhard state (eq.
2.2.11) can be set accordingly for any desired r parameter.

The other requirements concerning coupling efficiency and visibility are
also possible to achieve with this source, as discussed in Secs. 3.2.7 and
3.2.10.

3.2.3 Author contributions to the Source

The main parts of the source are the ones used in [3]. The author adapted
the setup for the experiment described here as follows. The pump and its
polarization control setup were removed and an improved version suited for
pulsed operation was built in a separate setup (Sec. 3.2.5). The ppKTP-
crystal was exchanged to minimize fluorescence (Sec. 3.2.9). A new and
faster method for the alignment of the Sagnac loop was found and used
(Sec. 3.2.10). Several additional tests were performed in order to optimize
the components and to prepare the source for the experiment (Sec. 3.2.7
and 3.2.8).

Figure 3.4: Photo of the Source as set up in the lab with polarizers in the two arms
used for alignment. A beam profiling camera is inserted to measure the diameter
of the focus spot in the crystal (see Sec. 3.2.10).
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3.2.4 Pulsed Operation of the Source

3.2.4.1 Motivation: Timing Resolution for Space-Like Separation

Coincidence Window and Accidentals

If two photons belong to the same pair, their detection on Alice’s and
Bob’s side happens simultaneously, which leads to coincidence counts. These
are used to test a local realistic inequality. Experimentally, a time frame
(coincidence window) is defined, in which two clicks at the different detectors
are considered simultaneous.

As the photon pairs are not generated at regular intervals but distributed
in time according to Poissonian statistics, there is a finite probability that
two different photon pairs are detected within the same coincidence window.
If this happens, two photons which belong to two distinct pairs can mistak-
enly be considered as a coincidence. In order to minimize the probability
of these events, the coincidence window has to be much shorter than the
average pair generation frequency. For space-like separation of the measure-
ments and the source, the timing of photon pair creation and measurement
settings is very sensitive as well.

Improved Timing Resolution with Short Pulses

The TES detectors detect photons at > 95% efficiency [23], but the draw-
back is that they have a high jitter. As a consequence, the timing resolution
of our photon clicks is of the order of 50 ns and therefore the coincidence win-
dow for mapping the two photons of a single pair becomes wide (> 100 ns).
For comparison, traditional avalanche photodiode detectors (APD) exhibit
a jitter of tens of picoseconds [24] and much shorter coincidence windows
are possible.

Uncertainty in the detection times leads to difficulties to ensure space-like
separation. To overcome this problem, we use a pulsed setup to pump the
ppKTP-crystal. With short pulses, better timing resolution can be achieved:
knowing the pump was only on for a few nanoseconds, the photon pair
creation event in the source can be bounded within this on-time, even if the
actual detection is smeared out by the jitter. As long as the time-resolved
detection allows for a clear distinction between two successive pulses, the
photon creation time is assumed to be known up to the duration of a single
pulse.

Even if one does not rely on this assumption in a rigorous experiment, the
pulsed operation has the following advantage. If no photon pair is created at
the time between two pulses, the coincidence window length can be extended,
without increasing the probability of accidental coincidence detections. In
this way, distinct “trials” can be defined, in which the photon pairs are
generated.
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Pump Frequency and Pulse Length

The maximum physically achievable switching rate of the measurement
bases with our electro-optical-modulators (EOMs) is 1 MHz, corresponding
to a time difference between two measurements of 1 µs (see Sec. 3.3.4). This
defines the upper frequency limit for photon pair generation and thus for
the pump pulses in our experiment.

As the frequency is limited to a maximum of 1 MHz, the duration of a
single pulse is still a free parameter. As mentioned above, the probability
of creating two or more photon pairs within a single pulse needs to be min-
imized. Therefore, pump intensity and pulse length need to be low enough
to achieve this. Moreover, the shorter the pulse length, the more accurately
we can determine the production of a photon pair in the source.

On the other hand, longer pulses or higher pump intensity make it easier
to achieve high enough count rates to provide for good statistics within a
short amount of time. At the time this was written, a pulse length of 10 ns
was estimated to yield the best tradeoff and was chosen as a starting point
to work with.

3.2.4.2 Extinction Between Pulses

For the above considerations to be applicable, it is necessary to ensure that
practically no photons are created at times between two pulses. Only then
can one claim that all coincidence detections correspond to photons created
during the on-time of a single pulse and the timing requirements are fulfilled.

In our pump laser module, the pulsing is realized by modulating the
current in the laser diode. Due to fluorescence of the lasing material, there
is still a small probability of photon emission within the off-times of the
modulation current.

We first used an Omicron Laserage 405 nm 150/500 model laser diode
as a pump. It has a nominal modulation ratio (ratio of output power at
on-time to at off-time) of > 250 : 1 [25]. In order to check whether the
actual extinction between pulses is sufficient for our purposes, the following
measurement was performed.

Setup and Measurement

A function generator (Agilent) generated 5 V TTL pulses of 5 ns dura-
tion at a rate of 5 MHz. This signal was used to trigger the pulsed laser
diode (Omicron 150/500), which pumped the source at a wavelength of 405
nm. The 810 nm down-converted photons were collected into a single-mode
fiber (Thorlabs HP780) at one arm of the source and detected by a Laser
Components COUNT 10C-FC single photon counter. The setup is depicted
in fig. 3.5.

Coincidences between photon clicks and a delayed copy of the pump
pulse trigger signal were recorded. The delay was tuned in steps of the
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Figure 3.5: Schematic of the setup. A function generator (FG) generates two
identical TTL pulses. One of them is used to trigger the pulsed laser diode (LD).
The laser diode pumps a Sagnac Source. SPDC photon detections are recorded in
coincidence with the second TTL pulse. Subsequently, a delay is applied to one
of the pulses. The recorded coincidences represent SPDC photon detections at the
same time as the delayed pulse. By tuning this delay, photons detected during a
pulse and during the off-times of the laser diode were resolved.

smallest coincidence window size achievable with our coincidence logic (1.56
ns). Each step was measured for 100 s. In this way, we recorded a histogram,
which represents photon arrival times within a pulse, averaged over about
5 · 108 pulses (2.5% duty cycle). Thus, the required timing resolution to
distinguish photon arrivals within a pulse and during the off-time between
two pulses was achieved. The delay scan was performed using a LabView
program written by Andre Brandstötter. The result is depicted in fig. 3.6.

Results

A first scan was performed with a blocked pump beam in order to measure
background counts to 0.057 ± 0.005 s−1 per time bin (1.56 ns), which is
subtracted in the following.

The data from the scan in fig. 3.6 was partitioned into pulse on-time
(85-93 ns) and off-time (all other data points). The average off (on)-time
counts were determined to 0.08 ± 0.01 s−1 (24 ± 7 s−1) per time bin. This
corresponds to an extinction ratio of (291 ± 95) : 1. For 10 ns pulse length
at 1 MHz, the off-time is approximately 100 times as long as the on-time.
Therefore, the measured modulation depth corresponds to detecting an off-
peak photon every 3 well timed (on) photons.

The peak is wider than the on-time of the pulse (5 ns). This is due to the
fact, that the photons are generated at random times within a single pulse.
A photon, which was generated in the first (last) nanosecond of the pulse,
coincides with the trigger signal copy (also 5 ns duration) that is shifted
about -4 (4) ns. Therefore, given the coincidence window of 1.56 ns, a peak
width of 8-10 ns is expected. This agrees with the observations.
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Figure 3.6: Results of the delay scan to determine the extinction of the pump
laser between two pulses. “Coincidences” between a delayed trigger signal and
down-converted single photon clicks are logarithmically plotted vs the delay. See
text.

The results show that the Omicron 150/500 laser diode does not achieve
sufficient extinction between two pulses to ensure the validity of our timing
constraints if used in the experiment. As a consequence, the laser has been
upgraded to an Omicron TA Deepstar model, which has a nominal extinction
of ≥ 2500000 : 1 [25]. This corresponds to 25000 well-timed photons on one
off-time photon in our setup, a ratio of < 0.01%.
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3.2.5 The Pump Setup

A new pump setup was built for the source used in [3]. It is depicted in fig.
3.7 and 3.9.

QWP  HWP

(computer controlled)

405nm SMF

Spectrometer
CW 

Laser Diode

HWP

Polarizing

BPF

Flip Mirror TBG

to source

Pulsed 

Laser Diode

Figure 3.7: The final pump setup. A removable mirror (on an indexing mount) is
used to switch between two laser diodes (narrow bandwidth CW and pulsed). The
pulsed laser is spectrally filtered using a transmissive holographic Bragg grating
(TBG). A HWP is used to tune the pump power without disturbing the spectrum.
The pump photons are polarized using a polarizing band-pass-filter (BPF). Com-
puter controlled HWP and QWP are used to set the required polarization state.
After this, the photons are coupled into a 405 nm single-mode fiber (SMF), which
leads to the source.

3.2.5.1 Setup

For the reasons described below, both a pulsed laser diode (Omicron TA
Deepstar) and a continuous-wave (CW) diode (Ondax) were used. Using a
removable mirror (on an indexing mount), the Ondax CW diode was aligned
to overlap the beam of the pulsed laser diode.

Either laser is polarized using the same single sheet polarizer (Semrock
PBP01-405/10-25x36), which has a nominal polarization contrast of 106:1
[26]. In front of the polarizer, a half-wave plate (HWP) is used to tune the
output power. The polarization of the pump is controlled thereafter using
computer controlled HWP and quarter-wave plate (QWP) (see 3.2.6) and
the light is coupled into a single-mode fiber for 405 nm (Schäfter Kirchhoff
windowed SMC-400Si), which leads to the source.

40



After switching from one laser diode to the other, there is no need to
change the alignment of the fiber coupling lens or the polarization control.
In this way, the state selection can be performed independently of the laser
diode used. The pulsed laser was spectrally filtered using an holographic
Bragg grating. This was necessary to ensure good visibility as described in
Sec. 3.2.7.

dicroic Mirror810nm SMF 

(to Alice) 810nm SMF 

(to Bob)dHWP

ppKTP crystal

dPBS

Pol BPF

PolBPF

minimize coincidences

Figure 3.8: Scheme of the minimization procedure to select the correct two-
photon-state in the source.

3.2.5.2 Two Laser Diodes

A specific pump state in the source is set by tuning the polarization of the
pump beam to a state, in which a minimum in coincidences is observed at
correspondingly set polarizers in the source (see fig. 3.8). Such polarizer
angles exist for arbitrary two-photon polarization states. In order to in-
crease the precision of this minimization procedure, higher count rates are
favourable as a smaller detuning from the minimum results in a measurable
increase of count rates.

The pulsed laser diode (Omicron TA Deepstar) has a nominal output
power of 300 mW if used in CW mode. Pulsed at 1 MHz and 10 ns pulse
length (1% duty cycle), the expected output power reduces to 3 mW. Ad-
ditionally, a large fraction of this is lost by filtering the spectrum (see Sec.
3.2.7). In order to prepare a pump beam with Gaussian profile in the source,
the light is coupled into a single-mode fiber, which accounts for additional
loss.
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Setting the Omicron TA Deepstar to CW mode, though in principle
possible, results in a dramatic change of its spectrum. As a result, the
expected pair production rate is much lower than in CW operation using
the Ondax laser diode. The Ondax CW laser diode is better suited for
producing high count rates. As photons from both laser diodes pass the
same polarization control, it is possible to set the state at high count rates
using the Ondax laser diode and switch to the pulsed Omicron laser diode
after performing the minimization.

3.2.5.3 Polarization Control

The polarization of the pump was originally controlled by a HWP and a
QWP directly in the source. Due to imperfections, these exhibited a small
walkoff of the beam (≈ 1 mm transverse shift at 5 m distance, i.e. a ratio
of 1

5000).
In the source, the free-space distance measured from fiber tip to ppKTP-

crystal is ≈ 30 cm. Estimating the walkoff in the crystal by the above ratio
yields 60 µm. The focus spot diameter in the crystal is about 250 µm.
Therefore, the walkoff can not be neglected. In order to eliminate this
problem, the polarization control was moved in front of the single-mode
fiber for the pump.

Figure 3.9: Photo of the pump setup. Apertures are inserted for alignment.
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3.2.6 Automatization of the State Selection

3.2.6.1 Idea and Motivation

According to the quantum mechanics, a violation of Eberhard’s inequality
is predicted for a set of polarization states of entangled photons (see Sec.
2.2.3). These states are of the form eq. 2.2.11, where the parameter r lies
within a certain range. The dependence of the J-value on r is very sensitive.
It is depicted in fig. 3.10.
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-0.001
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Figure 3.10: Predicted J-value normalized to one photon pair as a function of the
r parameter of the polarization state, eq. 2.2.11. Fixed polarizer angles optimized
for the minimum r-value, 75% coupling in both arms, and 98% visibility are assumed
in this calculation. Eberhard’s inequality is violated for a negative J-value.

As an example, assume a coupling of 75% on both arms and a visibility
of 98%. If r deviates about 0.1 from its minimum value, the J-value per
photon pair increases from -0.0044 to -0.0009, which drastically increases
the difficulty of seeing a violation of Eberhard’s inequality. In order to
compensate for the increased J-value, the coupling efficiency in both arms
would have to be improved from 75% to 88%. The precise realization of a
maximally violating state in the source is therefore crucial in order to see a
violation of Eberhard’s inequality.

In the Sagnac source, the state is set by controlling the polarization of
the pump laser. The down-converted photons pass the dPBS in figs. 3.2 and
3.3 on pages 33 and 34 and populate the two pump directions according to
the relative phase and amplitude of the H and V polarization components of
the pump. As described in 3.2.5, the polarization is controlled in our setup
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using a half-wave plate (HWP) and a quarter-wave plate (QWP) before the
pump light is coupled into a single-mode fiber.

By passing through the fiber, the pump light’s polarization is unitarily
transformed. Therefore, the polarization state set by the wave plates is in
general different than the state, in which the pump photons exit the fiber
into the Sagnac interferometer.

The effective transformation of the pump photon’s polarization that re-
sults by rotating the HWP (QWP) in the pump setup is an arbitrary rotation
on the Bloch sphere. It is no longer possible to assign control of the relative
phase and amplitude of the two directions in the Sagnac loop to the two
wave plates separately.

In order to set a specific pump polarization state, we measure the polar-
ization of the resulting down-conversion photons directly. Polarizers in both
arms of the source are set to angles, where the desired down-converted two-
photon-state theoretically produces zero coincidence counts (see fig. 3.8).
After this, the wave plates are tuned until a minimum in coincidences is mea-
sured. In order to improve this procedure in terms of speed and accuracy,
an automatization was set up.

3.2.6.2 Changes in the Setup and Test

The mechanical wave plate mounts were replaced by computer controlled
ones (Newport Conex AGP). A direct encoding system ensured the necessary
repeatability and precision of the piezo motor driven rotation. The mounts
have a nominal precision of (0.003◦) [27].

As the design of the pump setup allows for setting the state indepen-
dently of switching the laser diodes, the Ondax CW laser can be used. This
has the advantage of significantly higher count rates, which in turn increases
the precision of the state-setting procedure for given measurement times (See
Sec. 3.2.5).
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Figure 3.11: Results of a set of Ψ−-state minimization measurements. HWP and
QWP, which control the pump polarization were set to 20 x 20 points around an
approximate minimum. Coincidence counts were measured for 10 s each point.
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Figure 3.12: The results of fig. 3.11 (dots) including a 2nd-order polynomial
surface fit. the exact minimum is determined using the fit parameters. See text.
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Automation vs Manual Adjustment

The minimization is performed by recording coincidences for a defined set
of wave plate angles around the approximate minimum. If the angles are
close enough, the results allow for fitting a second order polynomial surface
in order to determine the exact minimum, even though this position has not
necessarily been measured directly.

Exemplary results of this procedure are given in figs. 3.11 and 3.12. Here,
both polarizers in the source were set to 45◦, corresponding to a minimum
in coincidences for the Ψ− Bell-state. The result provides an insight, why
the automation using a fit has an advantage over manual minimization.

When performing the minimization manually, a common technique is
“walking”. One first minimizes the wave plates after each other. After this,
one of the wave plates is slightly detuned and the other one is minimized
accordingly. The two minima are compared to each other to determine the
right direction of the detuning. In this way, the two degrees of freedom can
be minimized.

Since the minimum in fig. 3.11 is so flat, the coincidence counts would
only change very slightly each “walking”-step and the manual procedure
converges very slowly. In order to determine, whether the new position
yields less coincidence counts than the initial one i.e. whether the direction
of the detuning is right, very long measurement time is needed (or a very
high pump power). Otherwise, the difference becomes much smaller than
Poissonian fluctuations in the count rates and thus becomes invisible.

Using the fitting algorithm, the exact minimizing wave plate positions
do not have to be measured directly, as they can be inferred from the mea-
surements of the surrounding points. As a result, fewer positions have to be
measured to achieve the same precision. In contrast to the manual proce-
dure, the information collected in all measurements are taken into account
to determine the fit parameters.

3.2.6.3 Principle of the Algorithm

The most accurate way of determining the wave plate positions that min-
imize the coincidence counts, is to measure many points for a long time
and fit the results. In order to accelerate the procedure, the approximate
minimum was guessed up to a certain precision and the fitting routine only
considers a set of points around this approximate minimum. In order to
achieve this, we use a fast method to find the approximate minimum. Af-
ter this, fewer measurements are needed to provide sufficient data for an
accurate fit.

The algorithm for finding the approximate minimizing wave plate posi-
tions is similar to manual walking. Each wave plate is shifted by a certain
increment and the coincidence count rates at the two last positions are com-
pared to each other. This is repeated as long as the count rate decreases.

46



Once the count rate starts to increase, the increment is multiplied by −1,
reversing the direction of the shift. If the measured increase in counts was
caused by statistical fluctuations, the shift will only be reversed twice, but
as soon as the actual minimum is reached, the shift will be reversed forever.
Thus, the iteration is stopped after the number of subsequent sign changes
exceeds a defined limit. These steps are repeated with smaller increment
and longer measurement times, if necessary.

This procedure finds only local minima. For the parameters used at the
time this thesis was written, the initial position of each wave plate had to be
guessed to a precision of ±10◦for the fit to yield fast and precise results. It is
assumed that the local minimum found using the above procedure meets this
requirement (which it did in almost all of the times tested). Alternatively
and even faster but less reliable, in-fiber polarization controllers [28] can be
used to find the approximate minimum.

After the iteration is completed, a number of measurements around the
approximate minimum is taken and the results are fitted using a second
order polynomial function in two variables.

The algorithm was programmed using LabView with an implemented
MATLAB routine to do the fit.

3.2.6.4 Performance

The performance was measured by conducting ten successive minimizations
on Ψ− and Ψ+ Bell-states and corresponding visibility measurements. The
parameters in the algorithm were optimized empirically to yield a good
tradeoff between speed and accuracy. At the time this thesis was written,
the system could set the source pumped with an Ondax laser diode to a
Ψ−-state with a visibility of 99.3% within roughly 5 minutes, measuring at
25 angle combinations for 10 s each.

The visibility was determined in the follwing way. Polarizers were in-
serted in both arms of the source. Coincidence counts (3 ns coincidence
window) integrated over 30 seconds were measured using APDs (TJ Twin
AQ) in all four polarizer angle combinations of ±45◦. The average minimum
(maximum) values were used to compute the visibility. See Sec. 3.2.7.
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3.2.7 Visibility

3.2.7.1 Motivation

The visibility for a two-photon-state is given by

v =
cmax − cmin

cmax + cmin
, (3.2.2)

where cmax (cmin) denotes the coincidence counts measured at combined
polarizer settings that theoretically maximize (minimize) the coincidence
rate. Commonly used is the Ψ−-visibility in D/A (diagonal/anti-diagonal)
basis. The cmax and cmin count rates are determined by setting the state

|Ψ−〉 = 1√
2
(|HV 〉 − |V H〉) (3.2.3)

and measuring coincidence counts of the two photons after they pass
polarizers at angles D and A (cmax) as well as D and D (cmin). This notion
of visibility is used throughout this thesis.

Effects of Reduced Visibility in our Experiment

In fig. 3.13, the effect of imperfect visibility on the expected J-value
is depicted (according to the calculations in Sec. 2.2.3 with assumed 75%
coupling). For instance, if the visibility drops from 98% to 96% in an ex-
periment, the J-value increases from -0.0048 to -0.0036, corresponding to
25%. This needs to be compensated by a smaller error bar, since we in-
tend to determine with certainty whether the measured J-value is negative.
Therefore, the difficulty in setting up the experiment in terms of coupling
and measurement time increases significantly if we would not ensure good
visibility. In the above example, the coupling of both arms would have to
be improved by 0.8 percent points if the visibility was reduced to 96% in
order to reach the same J-value as with a visibility of 98%.

Reasons for Imperfect Visibility

If in the experimental realization of the source, HV photons are distin-
guishable from the VH photons, the produced state will not be entangled
but rather be a mixture of HV and VH. This will diminish (increase) the
maximal (minimal) coincidence count rate and therefore reduce the visibil-
ity.

A common way for this to happen in the Sagnac source is an imperfect
mode overlap of the beams of the two pump directions in the interferom-
eter. This causes the position of a down-converted photon to be to some
extent correlated with its polarization. By measuring the position of the
photon, the polarization can be inferred, which undermines indistinguisha-
bility. While this can in principle be overcome by careful alignment and high
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Figure 3.13: Calculated J-value for different visibilities (normalized to the con-
tribution of one photon pair). For every visibility value, the angles and the r-
parameter, which yield the minimum J-value are determined numerically. 75%
coupling (detection efficiency) is assumed in both arms. For these parameters, a
drop in visibility about 1% leads to an increase of the J-value of ≈ 0.0006. A higher
J-value requires better statistics and thus longer measurement times to determine
with certainty whether it is negative.

quality optical components, other reasons for bad visibility can not. In this
thesis, the following two factors, which potentially decrease the visibility are
treated.

1. The generation of two photon pairs within the same pump pulse can
lead to accidental coincidences, which reduce the visibility. This has
to be addressed by choosing a low pump power.

2. The spectral bandwidth of the pump laser also influences the visibility.
A broad pump spectrum corresponds to an increased uncertainty of
the wavelength of the pump photons. At a specific crystal tempera-
ture, the SPDC photons are wavelength degenerate, if the crystal is
pumped exactly at the corresponding wavelength. Even though wave-
length degeneracy is not a necessary condition for entanglement, the
following problem arises if it is not fulfilled: because of imperfect opti-
cal components, dispersion effects can create differences in the optical
path lengths for the two pump directions (fig. 3.2 and 3.3) if there is a
slight wavelength difference of the SPDC photons. Due to the result-
ing arrival time difference, the two photons of the same pair become
to some extent distinguishable. As a result, the spectrum of the pump
laser needs to be filtered.
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Goals

In the following, the investigation of these two effects in the source is pre-
sented. The tests aim to provide a quantitative picture of how visibility is
reduced. First, the effect of accidental coincidences was examined and com-
pared to a theoretical model. Second, different gratings for spectral filtering
were tested. Based on the results, an estimation is given to determine the
optimal pump power and spectral bandwidth to be used in our experiment.

3.2.7.2 The Effect of Accidental Coincidences

Definition

In the experiment, two down-converted photons of a pair are detected by
two separate detectors, which encode the registration of a photon into an
electrical signal. If such signals are registered within a chosen coincidence
time window, the pair of detection events is called a coincidence count. In
the most common case, this happens when both photons of the same SPDC
pair are detected, as they were created exactly at the same time. However,
other accidental effects can lead to coincidence counts as well. These include
the detection of a single photon on one side and the simultaneous detection
of a background photon or electronic noise on the other. Another possible
scenario is the generation of two SPDC photon pairs within the coincidence
window where one photon of each pair gets detected. Such “unreal” coinci-
dences are called accidentals.

To see how accidentals affect the visibility in our source, consider eq.
3.2.2. The smaller cmin, the closer v gets to unity. cmin is the number of
coincidence counts measured at polarization angles, which, in theory, block
one photon of every pair and therefore lead to zero coincidence detections. In
the presence of accidental coincidences however, there is a lower boundary on
how small cmin can get. Since the accidentals can not be blocked by setting
the polarization angles accordingly, they are counted in the measurement of
cmin and therefore reduce the visibility.

In order to diminish this effect, the pump power has to be chosen in a
way to minimize the probability of two photon pairs being created within
the time frame of the coincidence window.

Theoretical Model

The expected accidental rate was estimated using the following consid-
erations. At polarizer settings that block all coincidences arising from a
single SPDC photon pair, single counts are still measured in both arms of
the source. In this configuration, each detection originates from a separate
photon pair and there is a 50:50 chance in which arm the detection hap-
pens. As the photon pairs are independent of each other, we can estimate
the accidental rate classically.
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In the following, it is assumed that the coincidence window is longer
than a pump pulse, but short enough to distinguish with certainty between
two successive pulses. In our experiment, the time between two pulses at 1
MHz is 1 µs. At the time this was written, the optimal duration of a single
pulse was 10 ns and the coincidence window length was of the order of 100
ns. As a consequence, the coincidence window length does not need to be
taken into account and accidental rates are calculated considering only pulse
length and frequency.

For each arm, the number of time-slots which can be discriminated is
equal to the number of pulses (np) within unit time. The detection events
on each arm are randomly distributed among these time slots. Therefore,
the probability of detecting a photon in arm i in a certain pulse is

si/np,

where si denotes the single counts per unit time for arm i.
Thus, the probability of photon detections within the same pulse on both

sides is s1s2
n2
p

. The expected number of accidentals per unit time is therefore

acc =

(

s1s2
n2
p

)

np =

(

s1s2
np

)

. (3.2.4)

If we pump the source at 1 MHz, we have np = 106 pulses per second.
The corresponding number of accidentals per second is

acc/s = s1s2 · 10−6, (3.2.5)

with the singles rate in single counts per second.
The same result can be obtained considering the probability of creating

more than one photon pair within a single pulse according to Poissonian
statistics [29],

pn =
αn

n!
e−α, (3.2.6)

where pn is the probability of generating exactly n SPDC photon pairs
within a single pulse and α is the average number of generated pairs per
pulse. Assuming equal coupling ratios η and single count rates s on both
arms, α can be expressed as a function of the single count rate as

α =
2s

ηnp
. (3.2.7)

The factor of two comes from the fact, that only half of the created pairs
can result in single count detections if polarizers are set up in the above
described configuration for measuring cmin.
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If n independent photon pairs are created within a single pulse, acciden-
tal coincidences are observed if at least one photon is detected on each arm
within the same pulse. With both polarizers set to D, this happens with
probability [29]

pacc(n) =
1

2n

n−1
∑

k=1

(

n
k

)

(

1− (1− η)k
)(

1− (1− η)n−k
)

. (3.2.8)

Eq. 3.2.8 is the joint detection probability under the constraint that the
corresponding photons originate from two separate pairs, which collapse into
opposite polarization states (DA and AD in our configuration). Only in this
case, simultaneous detection events happen on both arms. The expected
rate of accidental coincidences is therefore

acc =
∞
∑

n=1

αn

n!
e−αpacc(n)np. (3.2.9)

For realistic parameters, α is very small (α = 0.013 at 5000 single counts
per second, 75% coupling, and 1 MHz pulse frequency). Therefore, we can
approximate e−α in eq. 3.2.6 as one and neglect cases where n > 2. The
physical interpretation of this approximation is that scenarios involving three
or more SPDC pair generations within a single pulse are neglected. See fig.
3.14. Using this approximation, eq. 3.2.9 becomes

acc =
1

4
η2α2np. (3.2.10)

Inserting eq. 3.2.7 shows that this expression is equivalent to the classi-
cally derived accidental rate eq. 3.2.5.

The resulting visibility (v) can be approximated as [29]

v = 1− 2s

ηnp
. (3.2.11)

The visibility as a function of the single count rate is depicted in fig.
3.15.
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Figure 3.14: Contributions of n independent SPDC pair generation events within
a single pulse to the accidental rate as a function of the single count rate (eq. 3.2.9).
For low singles rates (top graph), the n > 2 case is negligible. At approximately
600000 singles per second, the scenario of generating three SPDC pairs within
a single pulse becomes the dominant cause for accidental coincidences (bottom
graph). In the calculations, 75% coupling and a pulse frequency of 1 MHz are
assumed.
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Figure 3.15: Upper bound for the achievable visibility as imposed by the cal-
culated accidental rate. The visibility was calculated using eq. 3.2.11 for 75%
coupling.
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Figure 3.16: For fun, the ppKTP-crystal in the source was replaced by a sheet
of paper. Assuming that the paper does not exhibit SPDC but just uncorrelated
fluorescence, all measured coincidences are accidentals. A quadratic fit was applied
(red curve) to the experimental count rates. The green curve shows the theoretical
accidental rate computed by eq. 3.2.5.

Paper Measurement

As a quick test, the ppKTP-crystal was moved out of the beam path in the
source (see fig. 3.2 or 3.3) and a piece of paper was inserted instead at the
same position. Even though no down-conversion happens in paper, there is
still an observable fluorescence effect. Thus, all measured coincidences can
be attributed to accidentals. In this test, the “source” was pumped at 1
MHz with 10 ns pulse duration using an unfiltered Omicron TA Deepstar
laser. The power was tuned using the HWP in fig. 3.7 instead of setting
the output power of the laser diode directly. In this way, it can be ensured
that the pump spectrum remains unchanged for all rates. Interference filters
with 20 nm FWHM bandwidth were used in front of the collection fibers.
Coincidences were recorded using APDs (TJ Twin AQ) for 10 s at different
pump powers. The data was fitted using a second order polynomial function.
The quadratic coefficient was determined to 0.9 · 10−6 ± 0.2 · 10−6 (theory:
10−6). The results are depicted in fig. 3.16 in comparison to the theoretical
formula eq. 3.2.5.

The measurement agrees with the theoretical prediction eq. 3.2.5. How-
ever, further evidence is needed, as the fluorescence in the sheet of paper
is not necessarily comparable to the case of accidentals arising from down-
conversion.
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Measured Accidentals in our Setup

Accidentals were directly measured in the source for different single count
rates. For this test, the source was set to produce a Ψ−-state. It was pumped
by the unfiltered Omicron TA Deepstar laser diode at a pulse rate of 1 MHz
with 10 ns pulse duration. The power of the pump laser was tuned using the
HWP in fig. 3.7 to produce single count rates between 1000 and 8000 s−1

(which was the highest achievable count rate at 1 % duty cycle at the time
this measurement was performed. This corresponds to ≈ 16000 singles/s
without polarizers inserted in the down-converted photon paths). 20 nm
FWHM broad (Semrock) bandpass filters at a center wavelength of 810 nm
were used in front of the collection fibers. Polarizers were put in both arms
of the source and set to measure the state in DD basis (45◦and 45◦). Thus,
in the case of unit visibility, no coincidences are expected.

After collection into single-mode fibers (SMF), the SPDC photons were
detected using APDs (TJ Twin AQ). Each point was measured for 10 s.
The coincidence window was set to 250 ns. This is much longer than the
duration of a single pulse, but sufficiently short no photons arriving in two
subsequent pulses can be mistakenly counted as a coincidence. Dark counts
were recorded for 100 s and subtracted. No accidental coincidences were
recorded during the time the pump laser was blocked.

Measured ccs Theoretical Accidental
accidentals subtracted ccs

Coefficients x2K1 + xK2 x2K1 xK2

K1 0.96 · 10−6 ± 0.26 · 10−6 10−6

K2 0.0073± 0.0014 0.0071± 0.0006

Table 3.1: Coefficients for the fits in fig. 3.17. The single count rate is represented
by x. Note that the quadratic coefficient of the measured coincidence counts agrees
well with the theoretically expected accidental rate (eq. 3.2.5), whereas the linear
coefficient agrees with the fit of the accidental corrected data.
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Figure 3.17: Effects of accidental coincidences on polarization visibility. The red
curve shows a quadratic fit of the measured coincidences at minimizing polarizer
settings (both at 45◦) for the Ψ−-state. The pump power was tuned to produce dif-
ferent single count rates. The blue curve shows the theoretically expected accidental
rate according to equation 3.2.5. This rate was subtracted from the experimentally
determined coincidence counts. The green curve shows a linear fit of the resulting
“real” coincidences.
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Results and Discussion

The results (fig. 3.17) show the expected quadratic dependence of acci-
dental coincidences on the pump power. For the lowest (highest) singles rate
in this test, the D/A visibility was determined to 96% (93%).

The coincidence counts measured this way include the accidentals we
were looking for, but can partly be attributed to other effects (in particular
imperfect alignment and the lack of spectral filtering). In order to discrimi-
nate these, the theoretical accidental rate (eq. 3.2.5, blue curve in fig. 3.17)
was subtracted from the measured coincidences. The difference is plotted in
green in fig. 3.17 and shows a linear dependence on the single count rate.
The resulting fit coefficients are shown in table 3.1.

Coincidence counts which show a quadratic dependence on the count rate
can be attributed to accidentals arising from the generation of two photon
pairs within the on-time of a single pulse or to the simultaneous detection of
two fluorescence photons, as the fluorescence scales with pump power. They
result in a linear decrease of visibility as a function of the single count rate.

Fluorescence attributes to less than 1% of photon emission in our source
(see Sec. 3.2.9). Therefore this effect can be neglected and all measured
coincidences, which scale quadratically can be attributed to the generation
of more than one SPDC photon pair within a single pulse. We can not
expect to eliminate this contribution by other means than selecting a lower
pump power.

In addition, fig. 3.17 shows coincidences, which grow linearly (∼ 0.07 ·s)
with the single count rate s in Hz. These are expected to reduce the visibility
by a constant factor independent of the pump power. This contribution can
not be explained by the accidentals model eq. 3.2.5 and is the reason for the
experimentally determined visibility to be smaller than the theoretical upper
bound (cf. fig. 3.15). A possible explanation is the large pump bandwidth
in this test, as explained in the following.
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3.2.7.3 Spectral Filtering

Another factor, which influences the visibility is the bandwidth of the pump
laser. Mainly due to dispersion in the optical elements used in the source,
a broad pump spectrum can reduce the visibility by inducing distinguisha-
bility through differences in the photon arrival times. This is a problem in
the pulsed setup, since the spectrum of our modulated laser diode is much
broader than that of the continuous-wave (CW) laser. As a consequence,
the pump laser was spectrally filtered using a Bragg grating. A schematic
is shown in fig. 3.18.

Figure 3.18: Schematic of a transmitting volume Bragg grating [30].

As can be shown geometrically, constructive interference occurs at inci-
dence angles and wavelengths for which the Bragg condition

sinΘB =
λ

2a
(3.2.12)

is satisfied. ΘB is the Bragg angle corresponding to the wavelength λ and a
is the lattice constant of the grating. The condition can be met by tuning
either the incidence angle or the wavelength. Therefore the Bragg grating
can be used for spectral or angular filtering. In our case, the laser light is
collimated and the incidence angle is tuned to produce a transmitted beam
with 405 nm wavelength. We also tested reflective Bragg gratings, which are
operated analogously. The only difference is that the lattice planes are ori-
ented parallel to the crystal surface and therefore the reflected beam is used
instead of the transmitted one. The following experiment was performed to
test how a filtered pump spectrum can enhance the visibility.
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Setup

The source was aligned and set to produce a Ψ−-state. Visibility measure-
ments were performed using different pump lasers. A spectrometer (Ocean
Optics USB 2000+) was added to the pump setup (see fig. 3.7) and for each
pump configuration, a spectrum was recorded.

The photons were detected with a Laser Components COUNT-10C-FC
detector. Even though these detectors have a nominal efficiency of just 61%,
they were used because of their very low dark count rate. As a consequence,
the coincidences to singles ratio was very low in this test (25%).

The power was tuned to very low count rates using the HWP in fig.
3.7 in order to make the effect of accidental coincidences negligibly small.
Visibility measurements were performed at polarizer settings DD/DA/AD
and AA. This constitutes an over-complete measurement, which reduces
systematic errors due to misalignment. The two measurements leading to
a lower visibility were discarded, however none of the two corresponding
values disagreed significantly.

Performed Measurements and Results

Dark counts of the two detectors were measured over 400 s to 9.7 s−1 and
7.9 s−1 and subtracted in the following. No accidental coincidences due to
background counts were recorded during this time. The coincidence window
was set to 78 ns. 20 nm FWHM broad (Semrock) bandpass filters at a center
wavelength of 810 nm were used in front of the collection fibers.

The source was first pumped with the continuous-wave (CW) laser diode
(Ondax). Each point was measured for 100 s. Subsequently the pump laser
was replaced by the unfiltered Omicron TA Deepstar pulsed laser diode and
the same measurements were performed. In the third step, a nominally <0.1
nm FWHM broad Bragg grating (OptiGrate BPF-405) was inserted to filter
the pulsed pump laser. The results of the visibility measurements are shown
in table 3.2 and fig. 3.19.

Pump Bandwidth Bandwidth Visibility
Gaussian 1/e (nm) FWHM (nm)

Ondax (CW) 0.161± 0.005 0.38± 0.01 98.6± 0.3%

Omicron w/o Grating 0.56± 0.12 1.309± 0.29 95.3± 0.2%

Omicron with Grating 0.148± 0.002* 0.349± 0.005* 98.6± 0.2 %

Table 3.2: Results of the visibility measurements with different pump spectra.
In this test, an estimated 0.7 % percent points in visibility is lost due to imper-
fect alignment. *Note that the resolution of our spectrometer (Ocean Optics USB
2000+) is 0.3 nm FWHM [31]. The nominal bandwidth of the Bragg grating used
is < 0.1 nm FWHM [30].
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Figure 3.19: Visibilities (top) and spectra (below) of the different pump laser se-
tups. The test was performed for three different laser diode setups without changing
the polarization control of the pump. The Omicron TA Deepstar laser pulsed at
1 MHz and 10 ns pulse length was tested without filtering (red) and filtered by
a 0.1 nm FWHM Bragg grating (green). The measured spectrum and visibility
while pumping with the (unfiltered) Ondax laser diode in continuous-wave mode
is shown in blue. It serves as a benchmark to correct for reduced visibility due to
misalignment. The lines represent the average visibility in each configuration.

Discussion

The CW measurements serve as a benchmark to estimate to what extent
the visibility was reduced due to misalignment in this test. Previous visi-
bility measurements (see Sec. 3.2.6) showed that the maximally achieveable
visibility using the Ondax laser diode was 99.3%.

Table 3.2 shows that only 98.6% were observed in this test. Therefore,
we can estimate that the visibility was reduced by approximately 0.7% due
to misalignment. Consequently, the absolute results can be interpreted as
pessimistic. The purpose of this test however was to compare the visibilities
resulting from different pump spectra with each other.

By the use of a narrow Bragg grating (OptiGrate BPF-405 0.1 nm
FWHM), the visibility could be improved by ≈ 3%, to essentially the same
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as if the CW mode laser diode was used. The drawback of using this grating
was that the maximally achievable count rates were very low (approximately
400 single and 300 coincidence counts per second). A tradeoff has to be found
between how narrow we want to filter the pump laser in order to increase
the visibility and what is the minimum count rate we need to produce for
the experiment.

3.2.7.4 Application - Pump Parameter Estimation

The above results were used to estimate the optimal pump power and spec-
tral bandwidth of the grating in terms of visibility.

The Visibility Map

The visibility as a function of pump power and spectral bandwidth is
estimated by combining the two effects described above. Earlier in this
section, the quadratic dependence of accidentals per second on the pump
power was determined to 10−6 · s2, where s are the single counts per second.
We assume that only this contribution changes the visibility as a function
of the pump power.

The accidental subtracted coincidences measured in fig. 3.17 show a
linear dependence on the pump power. We therefore expect the visibility
arising from contributions other than accidentals to be independent of the
pump power (cf. eq. 3.2.2). In particular, the effect of increased spectral
bandwidth is assumed to reduce the visibility by a constant fraction for ar-
bitrary singles rates. For the estimation presented here, a linear dependence
of visibility on the spectral bandwidth is assumed.

A constraint arises from the use of a Bragg grating. Due to the filtering,
the pump power is reduced as a fraction of the spectrum is discarded. As
a consequence, an upper bound for the pump power exists, which is lower,
the narrower the pump laser is filtered. In order to estimate this fraction,
the spectrum was integrated over different bandwidths, see fig. 3.20.

The maximally achievable single count rate with the unfiltered pulsed
laser operated at 1 MHz and 10 ns pulse length was measured to approxi-
mately 18000 s−1. The rate using a 0.1 nm FWHM grating was determined
to 400 s−1. Scaled to these values, the integration of the unfiltered spectral
distribution leads to the expected count rates depicted in fig. 3.20.

Note that in this estimation, no convolution was used. This corresponds
to filters with a rectangular spectral dependence. Experimentally, addi-
tional effects reduce the maximally achievable pump power, which were not
accounted for. Such effects are imperfect transmission of the gratings, wave
front distortion (which causes loss in single-mode fiber coupling) and addi-
tional loss due to reflection on the surfaces. Therefore, the results in fig.
3.20 should be treated as an estimation.
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Figure 3.20: Top graph: Spectrum of the unfiltered Omicron TA Deepstar pump
laser pulsed at 1 MHz and 10 ns pulse length in bar representation. Each bar
represents a “pixel” as read out by the spectrometer. Summing over a number of
bars allows for an estimation of the count rate at different bandwidths. Bottom
graph: Resulting estimated maximal SPDC single count rate for filtering different
bandwidths of the pump laser.
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Combining the above considerations, a “map” of the expected visibility
as a function of the pump parameters can be constructed, fig. 3.21.
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Figure 3.21: Contour plot of the estimated visibility as a function of pump power
and spectral bandwidth at 75% coupling in both arms. The shaded area can not
be reached with our laser diode (Omicron TA Deepstar), as the spectrally filtered
pump beam contains only a fraction of the total output power.

Discussion

From the experiments described in this section, we can conclude the fol-
lowing. The lower the required count rate for the experiment, the better the
visibility in the source can be. This is due to two different reasons.

The accidental rate increases quadratically with the single count rate and
thus reduces the maximal visibility. As an example, if one tolerates a visi-
bility of 98%, theoretically, the maximally allowed singles rate considering
only accidentals would be about 7000 s−1.

A second contribution to limit the visibility is the required spectral band-
width to achieve such count rates in our setup. As the duty cycle is very low,
we need to use a large fraction of the pump spectrum (≈0.5 nm bandwidth),
in order to achieve a single count rate of 7000 s−1. This in turn imposes an
upper bound on our visibility, which can be estimated to ≈ 97% in fig. 3.21.
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For a more precise estimation, additional gratings with different bandwidths
need to be tested.

The pulsed pump laser diode (Omicron TA Deepstar) has an output
power of 300 mW if operated in CW mode. This corresponds to 3 mW in
pulsed mode at a duty cycle of 1%. Inevitable losses due to fiber coupling
and spectral filtering further reduce the power of the pump beam, which
impinges on the ppKTP-crystal. In order to obtain good statistics in the
final measurement, a certain total number of photon counts is needed. Due
to finite mechanical and thermal stability of the optical components, mea-
surement times of several days are unacceptable. As a consequence, the
pair production rate and thus the pump power needs to be above a certain
threshold.

The optimal tradeoff between pump power and visibility is determined
by the required minimum count rate. Fig. 3.21 shows that if we require a
singles rate of 4000 s−1, an optimal visibility of 98% can be expected. At
the time this thesis was written, we were testing a Bragg grating with 0.3
nm FWHM bandwidth, which is expected to yield a visibility of ≈ 98% at
a single count rate of 5000 s−1.
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3.2.8 Drift and Fluctuations

3.2.8.1 Sensitivity to Environmental Temperature

An important issue in the final experiment is long-term alignment stability
of both the source and the measurement modules. As we need low count
rates for a high visibility (see Sec. 3.2.7), the required measurement time
increases. In order to determine how the coupling decreases with time and
changing temperature, the following measurement was performed.

Setup

The source was pumped with the Omicron TA Deepstar Laser diode with
10 ns pulse duration at 1 MHz. A narrow Bragg grating (OptiGrate BPF-
405, Spectral Selectivity < 0.1 nm FWHM) was used to spectrally filter the
pump. The down-converted photons were collected into single-mode fibers
(using 20 nm interference filters), which were directly spliced to telecom
fibers leading to the TES detectors. No polarizers were inserted in the
SPDC photon paths. For this test, the source was aligned to a coupling in
the two arms of 74% and 70% respectively. Single and coincidence counts
were recorded for about 40 minutes. In order to see the effects of temperature
drift, the air conditioning system in the lab was switched on after 20 minutes.
During the course of the measurement, the temperature was logged (Using
a Thorlabs TSP-01 thermometer). The results are depicted in fig. 3.22.

Discussion and Results

As can be seen in the graphs, the single count rates are affected by changes
of the environmental temperature. As the temperature drops about 5◦C
within 10 minutes (from t = 1000 s to t = 1600 s), the single count rate de-
creases from 381 to 304 (360 to 287) on arm 1 (2), a factor of approximately
80%. At the same time, the coupling ratios drop about 1 percent point.

The results suggest that stability is an issue if the environmental tem-
perature is not kept constant. A stable air temperature in the source is
important to maintain a good coupling over a timescale in the order an
hour. In the next section, fluctuations on a short timescale are addressed.
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Figure 3.22: Stability of count rates and coupling in the source. The room
temperature is shown in the top graph. In the middle graph, the red (blue) line
represents single counts per second on arm 1 (2). The green line shows coincidences
per second. In the lower graph, the coupling of arm 1 (red) and arm 2 (blue) is
plotted.
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3.2.8.2 Fluctuations: Oven and Turbulence

The fluctuations of the pair production rate (as seen as standard deviations
of the individual count rates) were a bit higher than expected by Poisso-
nian statistics. While aligning the source, a transverse movement of the
pump beam was observed. Since the coupling into single-mode fibers is
very sensitive to misalignment, it could be an explanation of the observed
“super-Poissonian” fluctuation in count rate.

The crystal was kept at a temperature of 140 ◦C to achieve wavelength
degeneracy of the SPDC photons. A possible explanation of the transverse
movement of the beam is turbulence caused by convection around the crys-
tal oven. In order to pin down this effect, the following measurement was
performed.

Setup and Measurement

A collection fiber and the bandpass filter were removed on one arm such
that only the lens used for coupling remained in the beam path. A beam
profiling camera (Point Grey Research Scorpion SCOR-20SO) was placed 5
cm behind this lens. A Gaussian fit was applied to the pump beam profile.
The transverse movement of the beam and the corresponding variation of
the fit parameters were recorded at various temperatures of the crystal.
Exemplary images taken by the camera in 10 s intervals with an exposure
time of 70 ms are shown in fig. 3.23.

If one inspects the beams very carefully, an increasing movement of the
beam at higher temperatures can be observed. As a quantitative measure
for this movement, the center position according to the Gaussian fit was
registered for 18 images at each temperature step. Fig. 3.24 shows a plot
of the standard deviation of the center position of the beam for various
temperatures.

Discussion

The fluctuation of the beam position increases with temperature. An
anomaly is observed at 140◦C oven temperature, as the standard deviation
decreases again. A possible explanation for this is that the timescale of the
turbulence becomes smaller, such that the fluctuations result in a smeared
out Gaussian beam instead of different positions of the camera images.

The above results strongly suggest that the oven temperature is respon-
sible for the fluctuations. It can be understood considering the design of the
oven (see fig. 3.25). The metal plate intended to heat the crystal is in fact
on either side a few mm longer than the crystal itself. Hot air in front of and
behind the crystal is likely to cause turbulence and is a possible explanation
for the walkoff. As a consequence, a new oven was designed, which fits the
crystal exactly and therefore is expected to reduce the effects of turbulence.
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Figure 3.23: Exemplary transverse pump beam profiles recorded at different crys-
tal temperatures. Note that a neutral density filter was used in front of the camera,
which caused a small disturbance of the recorded profile. Careful inspection shows
that the beam is more stable at lower temperatures. At higher temperatures, the
intensity decreases. This could be a sign of fluctuations at timescales faster than
the exposure time.
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Figure 3.24: Standard deviation of the transverse position of the beam as de-
termined by the fit parameters of 18 images taken in 10 s intervals at various
temperatures. The temperature for wavelength degenerate phase-matching in the
ppKTP-crystal is 140◦C.

Figure 3.25: Close-up of the Sagnac loop in the Source. The crystal oven is longer
than the crystal.
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3.2.9 Fluorescence of the ppKTP-Crystal

Besides correlated down-converted photons, the ppKTP-crystal additionally
exhibits fluorescence. Eberhard’s inequality is very sensitive to background.
As shown in Sec. 2.2.3, the detection efficiency required to see a violation
increases dramatically in the presence of background counts. Fluorescence
is such background. Therefore, we have to make sure the detection rate of
fluorescence photons is very small compared to the “real” SPDC photons.

Setup

The fluorescence was determined in the following way: The source was
pumped with the Ondax continuous-wave laser in a single direction i.e. set
to generate the product state |HV 〉. Inside the Sagnac interferometer, a
block was inserted after the pump beam passed the crystal.

The SPDC photons exit the crystal collinear to the pump beam. They
are not detected as this direction is blocked. The fluorescence on the other
hand is isotropic. As a consequence, a certain fraction of fluorescence pho-
tons is backscattered into the opposite direction of the pump beam. These
exit the interferometer into the collection fibers and are detected.

The crystal initially used in the source was 1 cm long ppKTP. Previous
measurements showed a fluorescence in the order of a few percent of the
SPDC photons. In order to improve this, the crystal was exchanged for 5
mm long ppKTP. The new crystal was previously used in the experiment
[3].

Measurements and Results

First, 2 nm FWHM interference filters were used in front of the collection
fibers. No polarizers were inserted into the SPDC beams. The temperature
in which this crystal exhibits wavelength degenerate (810 nm) phase match-
ing was determined in the following way. The temperature was tuned by
varying the heating current in the crystal oven, in order to find a maximum
in intensity of SPDC photons passing the narrow filters. At each point,
single and coincidence counts were measured over 120 seconds using TES
detectors. After the oven had been exchanged (see 3.2.8), the controller
was not yet calibrated to absolute temperature. Therefore, the absolute
temperature set in the oven controller did not match the degenerate phase-
matching temperature set previously. In this experiment, it was 170◦C (fig.
3.26).

At this temperature, measurements were taken for 200 s with and with-
out the block inserted. The measurement was repeated with 20 nm FWHM
bandwidth interference filters in front of the collection fibers. The results
are shown in tables 3.3 and 3.4. Dark counts were subtracted in all mea-
surements.
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Figure 3.26: Temperature scan of the coincidence rate using bandpass filters with
2 nm FWHM spectral selectivity centered at 810 nm. The maximum temperature
was determined to 170.0◦C by a Gaussian fit (red in figure).

Filter arm 1 arm 2 arm 1 arm 2
FWHM with block with block w/o block w/o block

2 nm 17.2± 0.7 21.1± 0.5 4029± 21 4051± 22

20 nm 28.5± 0.7 33.9± 0.6 4422± 8 4592± 9

Table 3.3: Count rates of the fluorescence measurement (in single counts per
second). Dark counts were subtracted in all measurements.

Filter arm 1 arm 2
FWHM

2 nm 0.42± 0.02 % 0.52± 0.1 %

20 nm 0.64± 0.02 % 0.74± 0.1 %

Table 3.4: Results of the fluorescence measurement in percent
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Discussion

The effect of background on the required coupling efficiency is depicted
in fig. 2.11 on page 30. Background counts of 0.6% increase the required
coupling efficiency from 66.7% to approximately 76%. A possible source of
systematic error in this experiment is fluorescence of the beam block itself
(2 mm thick black plastic) or other components. Therefore, the results can
be treated as an upper bound. Subsequent measurements are planned, in
which the block is present at all times and the crystal is moved in and out
of the beam path.
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3.2.10 Alignment and Coupling Efficiency of the Source

The alignment of the Sagnac source traditionally involves the following steps:

1. Using the first two mirrors in fig. 3.2 on page 33, the beam is aligned
to pass the first two lenses as central as possible in order to minimize
aberrations and ellipticity. These lenses are used to tune the focus
spot radius of the beam in the crystal.

2. The tilt of dichroic mirror and dPBS are adjusted according to the
angle of beam propagation.

3. Tilt and position of the two Sagnac mirrors are adjusted such that the
two components of the beam passing the loop in opposite directions
overlap. This is traditionally done optically by inserting a sheet of
paper and comparing the two spots.

4. The focus of the beam is adjusted to be exactly in the crystal, half-way
in the Sagnac loop.

5. The fiber couplers are aligned while the polarization is set to pump
only one specific direction. The same is repeated for the other di-
rection. In general, this leads to two different positions of the fiber
couplers.

6. Subsequently, the fiber couplers are positioned at the average between
these two positions and the coupling is optimized using only the Sagnac
mirrors.

7. The foci of both couplers are optimized by walking.

Iterating this procedure usually converges even though it takes a lot of time.
In order to improve the precision of the mirror alignment in step 3, the

fact that the source is built as an interferometer is exploited. A polarizer
for 405 nm (the pump wavelength) is inserted at 45 ◦after the beam exits
the Sagnac loop on Alice’s side, where no dichroic mirror is present.

This allows to see interference fringes (fig. 3.27) of the pump beam
arising from a small angular deviation of the beam components in the two
directions (the pump polarization has to be set to pump both directions with
approximately equal power). The greater the angular deviation, the more
fringes are visible. Moreover, the direction of the fringes provides additional
information about which tilt axis is aligned worse.

The pump beam, which exits the Sagnac loop the other way is coupled
back into the pump fiber. If the alignment is performed precisely, this is
visible as a bright spot reflected by the sheet polarizer in the pump setup.
Using the four degrees of freedom (two tilt axes on each mirror), the in-
terference pattern can be optimized simultaneously to the brightness of the
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Figure 3.27: Interference fringes in the pump beam showing imperfect tilt of the
Sagnac mirrors in both axes

back reflection spot. If centered correctly, the fringes disappear completely.
Directly measured with the TES detectors, a maximum coupling of 80% was
achieved by manual alignment.
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3.3 The Measurement Modules - Alice and Bob

3.3.1 Requirements

In the measurement modules, the SPDC photons need to be coupled effi-
ciently out of single-mode fibers coming from the source into telecom fibers
leading to the TES detectors. The polarization of the photons needs to be
measured at the angles specified in Sec. 2.2.3. The basis selection has to be
performed randomly and space-like separated from the emission of an SPDC
pair in the source as well as from the measurement on the other side.

3.3.2 Experimental Setup

The measurement modules are set up as follows. The photons are launched
out of the single-mode fiber and are collimated. The collimated beam passes
a HWP and a Pockels Cell, where the photon’s polarization state is rotated
into the desired measurement basis. Pockels Cells allow for switching times
of a few nanoseconds, which is necessary to meet the timing requirements for
space-like separation (See Sec. 3.3.4). A calcite beam displacer constitutes
the polarization measurement. The e-output of the beam displacer is blocked
by an aperture. The beam in the o-output is coupled into a telecom fiber
leading to a TES detector. The setup is depicted in fig. 3.28. Efficient fiber
coupling is achieved using high-precision coupling stages (Elliot Scientific)
and aspheric lenses. The focal lengths were chosen to achieve the optimal
focus spot radius on the target fiber (See Sec. 3.3.3).
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Figure 3.28: Setup of the measurement modules. Photons coming from the source
are collimated out of a single-mode fiber. The combination of Pockels cell, HWP,
and beam displacer constitutes the polarization measurement in two switchable
bases. An aperture blocks the e-output of the beam displacer. The o-output is
coupled into a telecom (1550 nm single-mode) fiber leading to the detector. The
dashed components are used for alignment of the Pockels cell. Via a flip mirror,
both outputs of the beam displacer can be coupled into multimode fibers. Together
with precise polarization control in front of the Pockels cell and the HWP after it,
this allows to set arbitrary states and measure in different bases simultaneously.
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3.3.3 Design of the low-loss Optical System

In the measurement setups, fiber coupling was an important source of optical
loss. Our transition edge sensors (TES) are equipped with standard telecom
fibers (SMF-28) to launch the photons onto the detector chips. These fibers
are optimized for single-mode operation at a wavelength of 1550 nm. For
810 nm photons, telecom fibers behave as few-mode fibers. In this section,
the mode structure and its implications for efficient coupling is discussed
in detail. Based on the results, the optimization of the individual optical
components is explained.

3.3.3.1 Modes in Telecom Fibers for 810 nm Light

Optical fibers consist of several cylindrical layers. The core is situated in the
center, about 5 µm in diameter for a 810 nm single-mode fiber. It is usually
made of silica glass. Around the core, about 100 µm in diameter, a slightly
lower refractive index is realized (usually by doped silica) in the cladding.
Additional layers can be applied on the outside for protection from stray
light and mechanical stress. A schematic is given in fig. 3.29.

Figure 3.29: Schematic sketch of the structure of an optical fiber [32].

Accounting for the different refractive indices of the layers, the calcu-
lation of modes in optical fibers can be treated by solving a scalar wave
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equation (Helmholtz equation) for a complex amplitude [33], which repre-
sents any of the cartesian components of the electric fields in cylindrical
coordinates,

(∆ + n(r)2k20)U = 0. (3.3.1)

Here, n(r) is the refractive index, which is dependent on the radial co-
ordinate. The wavelength enters via the wave number k0. After separation
of variables,

U(r, φ, z) = u(r)eilφeiβz, (3.3.2)

equation 3.3.1 for the radial component u(r) reads

d2u

dr2
+

1

r

du

dr
+

(

n(r)2k20 − β2 − l2

r2

)

u = 0. (3.3.3)

Since n is constant within the core (radius a) and within the cladding,
this can be rewritten using the definitions k2T = n(r < a)2k20 − β2 and
γ2 = β2 − n(r > a)2k20.

d2u

dr2
+

1

r

du

dr
+

(

k2T − l2

r2

)

u = 0, r < a (3.3.4)

d2u

dr2
+

1

r

du

dr
+

(

γ2 +
l2

r2

)

u = 0, r > a. (3.3.5)

The bound radial solutions in polar coordinates are proportional to
Bessel functions [33]:

u(r) ∼
{

Jl(kT r), r < a

Kl(γr), r > a,
(3.3.6)

where Jl(x) denotes the Bessel function of the first kind and order l
and Kl(x) is the modified Bessel function of the second kind and order l.

Requiring continuous solutions u(r) and ∂u(r)
∂r

at the core-cladding interface
determines the “propagation constant” β. For given parameters, a finite
number of discrete solutions exist and allows for a certain number of modes.
In general, the calculation is not analytically soluble and has to be done
numerically.

The number of modes, which can be excited in a fiber is equal to the
number of existing solutions that describe a continuous electromagnetic field
throughout the fiber. The dimensions of the core in relation to the wave-
length determines the number of possible solutions. Therefore, one can say
only a certain number of modes “fit” into the fiber. The transverse ampli-
tude distributions of the different modes are plotted in fig. 3.30.
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Figure 3.30: Transverse amplitude distribution of various modes in optical fibers
[34]. Blue (red) color indicates positive (negative) amplitude, i.e. 180◦phase dif-
ference. The modes are labelled according to their radial (l) and angular (m)
parameters as LPlm.

For a single-mode fiber, only one combination of β and l corresponds to
a continuous bound solution. If the core diameter is larger, several solutions
exist for different β and l s and more than one mode can be excited, generally
in a superposition. In the following, the amplitude distributions of the modes
are calculated for our specific fiber parameters.
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core diameter (2a) 8.2 µm

numerical aperture (NA) 0.14 (0.12*)

wavelength(λ) 810 nm

Table 3.5: Relevant parameters of Thorlabs SMF-28 optical fibers [35]. *Even
though the nominal NA for telecom wavelengths was 0.14, a check using the beam
profiler yielded an NA of 0.12 with 810 nm light. This value was used in the
calculation below.

Our Telecom Fibers

The parameters used to determine the mode structure in our telecom
fibers (Thorlabs SMF-28) are given in table 3.5. A numerical calculation of
the mode structure was implemented using MATLAB and a Mathematica
program. As a result, the Thorlabs SMF-28 fiber allows for two modes at
810 nm, LP01 and LP11. The amplitude of the fundamental mode (LP01)
has a Gaussian 1/e radius of ≈ 3.8µm. The radial amplitude distribution is
depicted in fig. 3.31.
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Figure 3.31: Calculated radial amplitude distribution of the LP01 (top) and
LP11 mode (bottom) in the SMF-28 fiber. the blue line indicates the core-cladding
interface (a).
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3.3.3.2 Efficient Fiber Coupling

Theoretical Considerations

The possibility to excite two modes instead of only a single one has several
implications for fiber coupling. In principle, which mode is excited and to
what extent is determined by the overlap integral of the amplitudes of a
specific fiber mode and the impinging focussed free-space beam at the fiber
tip [36, 37]. In general, both modes will be excited, depending on how phase
and amplitude of the electric fields match between the focus spot on the
fiber tip and the two modes.

As can be seen in fig. 3.31, in the LP01 mode, the energy (intensity) is
distributed around the center and only a small fraction of energy is carried
in the cladding. In the LP11 mode, the fraction of energy in the cladding
is much larger. Since loss in the cladding is generally higher than loss in
the core [36], a task for efficient coupling is to excite the LP01 mode with
the largest possible fraction of the input beam. A second reason for this
goal becomes clear if one considers how the beam is collimated. The free-
space beam will always have approximately a Gaussian transverse profile,
as it originates from a single-mode fiber. The LP01 transverse amplitude
distribution matches the Gaussian one by 99% [37]. The overlap of a Gaus-
sian beam with the LP11 mode is much smaller due to the LP11 mode’s
asymmetry and the two peaks (cf. fig. 3.30).

For the purpose of efficient fiber coupling, the light is focused by a second
lens onto the fiber tip. In the focus spot, the wave-front of a Gaussian beam
is perpendicular to its propagation direction. Therefore, the phase-surfaces
are planes. This accounts for efficient fiber coupling, since the LP01 mode
also shows this property. The reason for this is that the amplitude of the
LP01 mode is real and positive throughout its transverse profile, as can be
seen in fig. 3.30.

Therefore, the following conclusions can be drawn about how to couple
efficiently. By focusing light onto the fiber tip, we want to excite only the
LP01 mode. For this, we need the phase to be uniform throughout its
transverse profile, which applies in the focal plane. The free-space mode’s
transverse profile should be as close as possible to Gaussian. The size of the
focus spot has to match the fiber mode as precisely as possible and thus,
according to the above calculation, should have a Gaussian beam waist of
3.8 µm.

Experimental Techniques

By aligning the lens in front of the collection fiber, the focus spot is
transversally moved on the fiber tip. The relative phase and amplitude of
the excited LP01 and LP11 modes change according to the degree to which
the focussed beam overlaps with the respective mode. This situation can
be understood intuitively by looking at pictures of the light launched out of
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the telecom fiber taken with the beam profiler camera and comparing them
to the simulations. See fig. 3.32. Examples of the obtained mode structure
in comparison with simulations are given in fig. 3.33.

free-space beam
telecom fiber

camera

Figure 3.32: Measurement on how the alignment of the coupling lens influences
the excited mode structure. 810 nm light is coupled into the telecom fiber. At the
other end of the fiber, the light is launched directly to a camera. Information about
the relative phase and amplitudes of the excited modes can be obtained.

A feature of the mode structure in our fibers is that the LP01 mode
is completely symmetric, whereas the LP11 mode is antisymmetric (cf. fig.
3.30). By examining the symmetry of the camera image, it can be estimated
how much power is in which mode. Due to its antisymmetry, the “angular
rotation” of the LP11 mode also indicates the direction of transverse mis-
alignment (even though the absolute angle is polarization dependent as well,
which was omitted in the calculation). This additional information is inac-
cessible using a power meter only and makes the coupling with the camera
a lot easier.

If only information about the total power is obtained, it can occur that
the fiber is aligned for a good overlap with the LP11 mode and the coupling
does not exceed 75%, even though coupling techniques like “walking” and
“back-shining” are performed correctly. Therefore, the camera was an es-
sential tool for achieving a high transmission (>96%, see Sec. 3.3.5) of the
free-space bridge.
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Figure 3.33: Theoretical and experimental coupling of 810 nm photons into a
telecom fiber for 1550 nm . Left: Images taken by the beam profiler camera 2 cm
behind the fiber tip without using a lens (normalized). Right: Simulation of the
intensity distribution in the Thorlabs SMF-28 fiber. Calculated using LP01 and
LP11 superpositions of the form |Ψ〉 =

√
1− w|LP01〉+eiφ

√
w|LP11〉. Parameters

used: w = 0.6,φ = 0.32π (top); w = 0.64,φ = 1.575π(middle); w = 0.005,φ = 0π
(bottom). The comparison can be used to estimate (or fit), how the power is
distributed between the two modes. The (polarization dependent) angle of the
LP11 mode was added artificially to make the comparison more intuitive. Note
that the camera images look a bit rounder than the simulation, which is expected
as the image is taken not directly at the fiber tip, but slightly behind it.
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3.3.3.3 The Free-Space Beam

The Collimation Lens

For the selection of lenses with optimal effective focal lengths, the fol-
lowing calculation was performed. A ray optics approach was used as an
orientation to estimate the waist of the collimated beam. The core of the
single-mode fiber was assumed as a point source. This is justified because
the effective focal length of the collimating lens lies in the order of millime-
ters and the mode at the tip of a single-mode fiber has a diameter in the
order of micrometers. The numerical aperture of the fiber (NA = 0.12)
determines the divergence angle as NA = n sin(θ) [38]. By geometrical con-
siderations, the collimated beam waist (radius) w0 can be written as (for
n = 1)

wo =

√

NA2f2
out

1−NA2 =
NA

√

1−NA2
fout. (3.3.7)

Here, fout denotes the effective focal length of the lens and NA stands
for the numerical aperture of the fiber. The collimated beam waist was
measured using the beam profiler camera and various collimation lenses of
different focal lengths. The focus was adjusted by minimizing the spot size
at approximately 10 m distance. The beam profiler was inserted at the
position of the second fiber coupler (40 cm after the collimation lens). The
collimation lens was transversely aligned for maximal spherical symmetry
of the beam. Measurements were made at two different intensities of laser
light for each lens to check for inaccuracies. A Gaussian fit was applied to
the measured beam profiles, resulting in the values shown in fig. 3.34.

Figure 3.34: Ray-optically calculated (blue line) and measured (red points with
linear fit) collimated beam waists at different effective focal lengths (using Newport
New Focus aspheric lenses). Error bars represent one standard deviation of the fit
parameter representing the Gaussian 1/e waist. The calculated beam waists are
larger. See text.
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The measured beam waists are smaller than the calculated ones. A
possible reason is that focusing on 10 m distance does not exactly correspond
to collimating the beam. Also, using the Gaussian 1/e waist as a measure
does not correspond exactly to the beam radius arising from the geometrical
picture. The measured beam waists were used for the further calculations.

Shaping the Transverse Beam Profile

The light is launched out of the single-mode fiber and collimated by the
first lens. Aberrations and misalignment of this lens cause the free-space
beam to have a corrupted profile and would decrease the maximal transmis-
sion of the whole module. Lenses of several manufacturers and focal lengths
were tested for launching light out of the 810 nm single-mode fiber (Thor-
labs HP780). The first lens was aligned relative to the fiber using an Elliot
Scientific stage in order to optimize the transverse beam profile. Using a
beam profile camera (Point Grey Scorpion SCOR-20SO), the accuracy of
a Gaussian fit was determined. Empirically, the best results were achieved
with Newport New Focus aspheric lenses with small focal lengths. Exem-
plary images taken with the beam profiling camera are depicted in figs. 3.35
and 3.35.
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Figure 3.35: Measured transverse beam profile after collimating with a Newport
New Focus aspheric lens with an effective focal length of 2.75 mm. The profile is
nearly Gaussian.

Figure 3.36: Measured transverse beam profile after collimating with a Newport
New Focus aspheric lens with an effective focal length of 4.5 mm. The profile
deviates from Gaussian.

88



Issues

One of the (f =2.75 mm) lenses caused a slight ellipticity of the output
beam even after very careful alignment. Closer inspection revealed that
the lens was placed in the mount in a crooked angle (see fig. 3.37) in the
fabrication process. In order to compensate this, the lens was mounted at an
angle using washers, fig. 3.38. This improved the overlap of the collimated
beam with the Gaussian fit from 85 to 93%. In order to achieve an even
better Gaussian profile, additional lenses have been ordered and tested.

Figure 3.37: Photo of the crooked lens. Careful examination shows that the
surface of the lens is not completely parallel to the mount, resulting in an elliptical
beam shape. Due to the inferior overlap with the LP01 mode, the elliptical beam
can not be fiber coupled efficiently.

Figure 3.38: Construction for mounting the lens perpendicular to the fiber tip
using washers. See text.
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3.3.3.4 The Focus Spot

For a Gaussian beam, focused by a lens with focal length fin, the focus spot
radius wfoc can be determined by [33]

wfoc ≈
λfin
πw0

. (3.3.8)

Here, w0 is the radius of the collimated free space beam at the lens for
coupling. It is determined by the focal length of the collimation (fout) lens.
For efficient fiber coupling, the focus spot radius wfoc has to match the
radius of the desired LP01 mode in the fiber (wfoc = wLP01 = 3.8 µm).

From the available lenses, this condition was best met by Newport New-
focus aspheres with fout = 2.75 mm and fin = 6.24 mm. A calculation of
the mode overlap of the focus spot with the LP01 mode of our telecom fibers
yielded a theoretical upper bound for the coupling of more than 99%. All
lenses used are anti-reflection coated for < 0.4% reflectivity per surface [27].

3.3.3.5 Beam Displacer

The polarization measurement is performed using a combination of a Pockels
Cell and a HWP for basis selection followed by a beam displacer (BD). This
is a birefringent calcite crystal, which separates the two orthogonal polariza-
tion components into two parallel output beams (one for each polarization)
from which only one (the o-beam) is coupled into the detector fiber. Using
the beam profiler, the deviation of the transversal profile from the theoreti-
cally Gaussian one was determined, as the beam passes the BD. As a result,
the initially used BDs (Thorlabs BD40) were replaced by shorter ones (Thor-
labs BD27). Visual inspection using the beam profiler camera (see figs. 3.39
and 3.40) revealed a closer to Gaussian transversal profile. By the time this
was written, the overlap was not determined quantitatively.

3.3.4 Randomly Switched Pockels Cells

The second requirement for the measurement modules is the capability of
fast random switching of the measurement bases. This is achieved by using
Pockels Cells (PoCs). PoCs are devices, which modulate the polarization of
light. This is achieved by making use of a special case of the electro-optic
effect (Pockels effect), in which the refractive index changes linearly with an
externally applied electric field.

PoCs come in various designs and crystal materials. For our purposes, a
high transmission and a short switching time is required. A limiting factor
for the switching rate is acousto-optical ringing, which occurs in all Pock-
els cells as the materials used are all piezoelectric. We use PoCs made of
rubidium titanyl phosphate (RTP). Compared to other common materials
such as BBO, this material is best suited for switching at a very high rate

90



Figure 3.39: Beam profile after the old beam displacer (Thorlabs BD40). The
beam shows a slightly elliptic profile.

Figure 3.40: Beam profile after the new beam displacer (Thorlabs BD27). The
beam is almost perfectly Gaussian.

91



(switching times of a few ns) [39]. The reason is that it exhibits less piezo-
electric resonance and requires lower switching voltages for the same phase
shift.

The beam does not pass our Pockels cells through the optical axis, but
along the crystallographic x or y-axis. In this configuration, the crystal ex-
hibits static birefringence, even if no field is applied. Therefore, two crystals
of the same length are placed one after the other oriented at a relative an-
gle of 90◦. In this way, static birefringence is compensated, since the slow
polarization component in the first crystal becomes the fast in the second
crystal and vice-versa [39].

Once an electric field is applied, due to the electro-optic effect, the fast
axis in the first crystal becomes faster whereas the fast axis in the second
crystal becomes slower. The opposite holds for the slow axes. The result
is a relative phase shift of the two polarization components, which can be
controlled by the applied voltage. In other words, the Pockels cell acts as a
tunable wave plate.

3.3.4.1 Alignment and Voltage Selection

For the test of Eberhard’s inequality, each measurement module needs to
switch between projections onto two different angles α1 and α2. In the off-
state (no voltage applied), the PoC is aligned not to alter the polarization
state of the photons. The HWP is tuned to α1/2 in order to measure the
polarization at the angle α1 in combination with the beam displacer. In the
on-state (with applied voltage), the PoC needs to rotate the measurement
angle from α1 to α2. The voltage is selected accordingly. The electronics to
trigger the PoC are described in Appendix A.

In order to check whether the alignment and voltage selection results in
the correct rotation, the transformation needs to be tested in different bases.
For this, HWP and QWP are used in front of the PoC. Both output beams of
the beam displacer are coupled into multimode fibers (dashed in fig. 3.28),
which are used to simultaneously detect both the e and the o-output.
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3.3.5 Optical Transmission Measurements

In order to assess the capability of the modules in terms of low optical loss,
several transmission tests have been performed. First, a direct transmission
measurement of the Pockels Cells using an attenuated laser is presented.
Second, transmission tests of the modules using down-converted photons
are explained. The efficiency of the fiber coupling was determined and how
it decreases after insertion of beam displacer and Pockels Cell.

3.3.5.1 Pockels Cell Transmission Test

The transmission of the Pockels cells (Leysop RTP M320) was measured as
follows. An attenuated laser at 810 nm was coupled into a single-mode fiber
(Thorlabs HP780). To account for drift of the laser diode, the intensity
was monitored using an in-fiber beam splitter. One output of the beam
splitter was connected to an APD (TJ Twin AQ), which was used to monitor
fluctuations of the pump laser. A second single-mode fiber (Thorlabs HP780,
AR-coated on one side) was connected via I-piece to the other output of the
beam splitter. Subsequently, the light was collimated out of the AR-coated
side of this fiber. After 40 cm free-space distance, the beam was coupled
into a telecom (Thorlabs SMF-28) fiber, which was connected to a second
APD. The setup is depicted in fig. 3.41.

attenuated laser

810 nm

810 nm SMF 1550 nm SMF 

(telecom)

in-fiber 

beam splitter
Pockels Cell

APD

APD

Figure 3.41: Setup of the Pockels Cell transmission test. Intensity fluctuation are
monitored using an in-fiber beam splitter.

Single count rates were recorded on both detectors. The ratio of the two
count rates was used to calculate the transmission of the free-space coupled
arm, compensating intensity fluctuations of the laser diode. The ratio was
surprisingly stable (≈ 0.1% fluctuation on the timescale of one second).

The coupling was optimized without Pockels cell. Subsequently, the
Pockels cell was inserted into the free-space beam and the coupling was
optimized again. After each step, the normalized single count rate (i.e. the
ratio of singles in the two APDs) was recorded for 100 s. This procedure
was repeated 10 times in order to account for fluctuations in the achieved
coupling.

The optical loss caused by the Pockels cell was measured to 2.45±0.01%.
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Note that no voltage was applied to the Pockels cell during this test. The
manufacturer gives an estimation of the maximum insertion loss with 2%
[39].

3.3.5.2 Transmission of the Measurement Modules

In order to provide a precise estimation on what optical loss needs to be
expected for the measurement modules as a whole, the following measure-
ments were performed using down-converted photons in coincidence instead
of an attenuated laser source.

The source was set to generate a product state |HV 〉. SPDC pairs were
collected into two single-mode fibers. One of them was directly connected
to an APD (TJ Twin AQ). The other was connected to the measurement
module. An additional horizontally orientated polarizer was inserted into
the arm leading to the measurement module to compensate for imperfect
extinction of the |V H〉 component in the source. The collection fiber from
the measurement module (single-mode for telecom) led to a Perkin-Elmer
(Photon Counting Module SPCM-CD3321H) detector. A schematic of the
setup is depicted in fig. 3.42.

Sagnac

SourceAPD
Meas.

Module

Perkin-Elmer

Detector
810nm SMF

& 810nm SMF

810nm SMF

Figure 3.42: Setup of the measurement module transmission test. The coinci-
dences to singles ratio is determined with and without the measurement module
inserted. See text.

Coincidence and single count rates were measured for at least 100 s. After
each run, reference measurements were performed. For this, the fiber leading
to the measurement module was directly connected to the Perkin-Elmer
detector (dashed in fig. 3.42). This procedure was repeated 10 times and
the best result was taken. A computer program was written to evaluate the
transmission by comparing the coupling (coincidences to singles) ratio with
inserted measurement module to the coupling in the reference measurement.

Note that for historical reasons, a different Sagnac source was used for
this test than the one described above and used for the final experiment.
This source was not optimized for high coupling (less than 20% in this test).
It was pumped by a continuous-wave Omicron laser diode. The coincidence
window was set to 3.12 ns.
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Coupling only 96.0± 0.3%

Coupling and BD 93.6± 0.2%

Coupling, BD and PoC 89.3± 0.1%

Table 3.6: Measurement Module Transmission measurements. Successive results
for free-space coupling only, with inserted beam displacer (BD) and Pockels cell
(PoC).

The measurement was first performed for the “naked” measurement
module, i.e. just the free-space bridge from the HP780 (single-mode for 810
nm) to the SMF-28 (telecom, single-mode for 1550 nm) fiber. Subsequently,
a beam displacer (BD) was inserted and aligned for back-reflection.

The polarization transformation in the fiber was corrected for using in-
fiber-polarization controllers [28]. The calibration was done by minimizing
the single counts passing the beam displacer with a HWP at 45◦in front of it.
Subsequently, the HWP was removed and the transmission was measured.

As a final step, the Pockels cells were inserted and aligned and the whole
procedure was repeated. The best achieved results are presented in table
3.6.

Due to drift of the pair production rate in the source, the absolute singles
and coincidence rates exhibited strong fluctuations. Therefore, the difference
in coupling ratios (with and without inserting the module) was used to
determine the loss of the modules. A direct error analysis of the measured
data points was performed as well as one assuming Poissionian fluctuations.
In all cases, the larger error bound is shown in table 3.6. Detailed results
with error estimation are presented in appendix B.

Discussion and Issues

A few points have to be noted about this measurement. The anti-reflection
coated HP780 fibers can not be connected via I-piece to the TJ module APD.
This was the reason free-space Perkin-Elmer detectors were used. Their
drawback is a significant dependence of the efficiency on how the fiber is
positioned in the detector receptacle. Since there are no lenses involved, the
light is launched out of the fiber directly onto the diode. As a consequence,
the detection efficiency can vary each time the fiber is plugged in. Especially
using SMF-28 fibers, deviations of ±1% in the coupling could be observed.
Even though the fiber was connected with extreme care, systematic errors
due to this effect cannot be ruled out. The detection efficiency is expected
to be higher in the reference runs, as a single-mode fiber was used, which
corresponds to the best collimation (cf. the discussion on the mode struc-
tures in Sec. 3.3.3.1). The actual transmission therefore could be higher

95



than shown in table 3.6.
A second problem was the drift of the source. In the source used, the

crystal temperature for wavelength degeneracy was approximately room
temperature (≈ 24◦C). This was maintained by a Peltier element, which
exhibited a strong drift, especially on hot days. Measurement runs were
discarded as soon as a temperature change was measured at the oven con-
troller. However, a small drift always remained, which is responsible for a
systematic error of less than 2%. This estimation is based on the difference
in count rates for several measurement runs during the day.

A puzzling result is the apparent nearly 3 percent point loss arising from
the beam displacer. Reflection on the two AR-coated is expected to account
for < 0.5% loss [35]. A possible explanation for the results is imperfect
polarization correction by the in-fiber polarization controllers.

The Pockels cells are expected to account for maximally 3% loss, which
is slightly less than observed. At the time this was written, new Pockels
cells were ordered with a better anti-reflection coating, which is expected to
improve the transmission in the order of 1-2%.
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Chapter 4

Conclusions

The author’s contributions to a planned experiment, which aims to test a
Bell inequality, while simultaneously closing the three important loopholes
fair-sampling, freedom-of-choice and locality were presented. The entangled
photon source used in a recent experiment [3] was adapted and optimized
in the following way. A pulsed pump laser module was set up. While this
was necessary in order to allow for precisely timed generation of entangled
photon pairs in the source, it posed several problems in terms of visibility
and pair production rate. Effects of accidental coincidences and spectral
bandwidth on the quality of the produced state were investigated. Measure-
ments were performed to quantify these effects and the trade off between
spectral filtering and pump power.

An automatization was set up and programmed, which allows for com-
puter assisted precise setting of a specific state in the source. The setup
additionally eliminated a transverse walkoff of the pump beam in the source.
The ppKTP-crystal in the source was exchanged in order to minimize fluo-
rescence. The fluorescence of the new crystal was measured to be below 1%.
Turbulence was recognized as a possible reason for fluctuations of the count
rate and led to the design of an improved crystal oven. The sensitivity of
the coupling to changes of the outside temperature was tested. The source
was aligned using a new technique. A coupling of 80% in both arms of the
source was achieved. The maximally observed D/A visibility was 99.3% in
continuous-wave mode and 98.6% in pulsed mode.

Two measurement modules using Pockels cells were set up and optimized
for high optical transmission. This involved a treatment of modes in few-
mode fibers and implications for efficient fiber coupling. The modules are
capable of switching the measurement basis within a few nanoseconds and
performing a projective polarization measurement. The overall transmission
was measured to be at least 89%.
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Appendix A

Timing and Electronics

The following section describes the planned setup of the electronics to switch
the EOMs in the experiment. Our quantum random number generators
(QRNG) in principle consist of a laser diode, a beam splitter and two photon
detectors. Each photon produces a random click in one of the two detectors.
A binary random number is obtained each time a clock signal (at a definite
frequency) triggers a readout mechanism. A coincidence logic was used
to generate the signals for PoC switching according to the corresponding
random number. A schematic of the implementation is depicted in fig. A.1.

In order to ensure space-like separation, it is necessary to know the
elapsed time from photon detection to readout of the random number. The
shorter this time, the “younger” is the random number. Therefore, the
direct signals of the photon detectors in the QRNG are recorded. Once a
photon is detected, some recovery time is needed until the detector reaches
its initial sensitivity again, i.e until it reaches the same detection probability
as before. During this time, the probabilities of photon detection at the two
detectors are imbalanced. This in principle allows for some predictability
of the next random number. The coincidence logic was programmed (by
Thomas Lehner and Bernhard Wittmann) to discard all random numbers
for which the above problems arise.

This was done in the following way. The logic receives a clock signal to
start a measurement cycle. This signal is used to synchronize the separate
modules and the pump. Each cycle involves the following steps.

1. obtain a random number from the QRNG,

2. determine whether the random number is valid,

3. produce corresponding trigger signals to set the Pockels Cell.
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Figure A.1: Schematic of the measurement electronics. A function generator
(FG) a clock signal, which triggers a pump pulse in the source and a delayed copy,
which is fed through the coincidence logic to trigger the random number read out.
The QRNG returns a signal encoding the random number as well as the direct
pulses from the detectors in order to determine the age of each random number.
Using the algorithm described in the text, the coincidence logic generates signals
to switch the Pockels Cell (PoC) accordingly. The measurement setting and the
QRNG detector clicks are time-tagged (TTM) for later analysis.
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In the first step, the clock signal is fed through to the QRNG in order
to trigger the readout of a (binary) random number. This random number
is then returned to the logic. The second step needs some discussion. Some
of the obtained random numbers will have the timing problems described
above. In order to discard these, the following mechanism is used. Two
time frames are defined. The time, which we allow the photon click to
have happened before we read out the random number (tAge), and the
time, which we require the photo detector to have been in idle state before
detecting the photon, which defines the random number (tLeer). A “valid”
signal is generated only if two conditions are met.

1. One of the detectors clicked within tAge before the clock signal,

2. in the time tLeer before this click, the detector was idle (i.e. did not
click).

Exemplary scenarios are depicted in fig. A.2.
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Figure A.2: Schematic of the QRNG timing as it is processed by the programmed
coincidence logic. In the first three scenarios, a valid measurement setting is gen-
erated, in the last three, it is not. See text. Figure by Bernhard Wittmann.

Note that due to the technical realization, in order to set the length of
tLeer (red bars in fig. A.2) to a specific value x using a LabView program,
it actually has to be set to x + tAge. The reason for this is that the time
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windows are counted backwards from the beginning of a clock cycle. In our
experiment we require the following. Random numbers must not be older
than 40 ns before each clock cycle. In order to rule out internal correlation
effects in the QRNG, the QRNG has to be idle for at least 100 ns before
the valid random number is generated. Therefore, we set tAge to 40 ns and
tLeer to tAge+ 100 = 140 ns.

The third step produces TTL signals, which trigger the EOM-switches
if the random number was 1 and does not, if the random number was 0.
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Appendix B

Details of the Transmission

Measurement

In this section, the MATLAB code, which was written to evaluate the mea-
surement module transmission tests is presented. The loaded text files con-
tain single and coincidence count rates in 10 s bins as well as coupling ratios.
Dark counts were determined before each measurement and inserted as a
parameter. Reference measurements were taken after each run and loaded
from a separate file. The measurement error is obtained directly from the
statistics and compared to the expected Poissonian error.

The output of the program for the three measurements, transmission
of the free-space bridge/fiber coupling only, free-space bridge and beam
displacer as well as the transmission of the full module.

1 clear;

2 messdatei='bd93.txt';

3 eichungsdatei='bdeichung.txt';

4

5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 eichung=1;%reference file flag

7 plotten=0;%

8

9 %dark counts:

10 d1=4512;

11 d2=803;

12 acc=3;

13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14

15 A=load(messdatei);

16 %nam=input('name eingeben:','s')

17

18 col=A(:,1);

19 w=sqrt(length(col));

20

21 s1=mean(col);
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22 sigmas1=std(col);

23 fs1=sigmas1/w;

24 %

25 col=A(:,2);

26 w=sqrt(length(col));

27

28 s2=mean(col);

29 sigmas2=std(col);

30 fs2=sigmas2/w;

31 %

32 col=A(:,3);

33 w=sqrt(length(col));

34

35 cc=mean(col);

36 sigmacc=std(col);

37 fcc=sigmacc/w;

38 %

39 col=A(:,4);

40 w=sqrt(length(col));

41

42 k1=mean(col);

43 sigmak1=std(col);

44 fk1=sigmak1/w;

45

46 zeit=A(:,7);

47 messpunkte=length(col);

48

49 if (eichung)

50 ref=load(eichungsdatei);

51

52 col=ref(:,1);

53 w=sqrt(length(col));

54

55 es1=mean(col);

56 esigmas1=std(col);

57 efs1=esigmas1/w;

58 %

59 col=ref(:,2);

60 w=sqrt(length(col));

61

62 es2=mean(col);

63 esigmas2=std(col);

64 efs2=esigmas2/w;

65 %

66 col=ref(:,3);

67 w=sqrt(length(col));

68

69 ecc=mean(col);

70 esigmacc=std(col);

71 efcc=sigmacc/w;

72 %

73 col=ref(:,4);

74 w=sqrt(length(col));

75
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76 ek1=mean(col);

77 esigmak1=std(col);

78 efk1=esigmak1/w;

79 %

80 ezeit=ref(:,7);

81

82 zeitrefl=num2str(ezeit(length(ezeit)));

83 eichpunkte=length(col);

84 else

85

86

87 col=A(:,5);

88 w=sqrt(length(col));

89

90 k2=mean(col);

91 sigmak2=std(col);

92 fk2=sigmak2/w;

93

94 col=A(:,6);

95 w=sqrt(length(col));

96

97 kopplung=mean(col);

98 sigmakopplung=std(col);

99 fkopplung=sigmakopplung/w;

100 kopplungvec=col;

101

102

103 end

104

105 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

106 disp('*');

107 disp('*');

108 disp('*');

109 disp('*');

110 disp('*');

111 disp('−−−−−−−−−−−−−');

112

113 disp(['gemessen uber ' num2str(zeit(length(zeit))) ' ...

sekunden']);

114 disp('darks abgezogen');

115 disp('−');

116 disp('RESULTS:');

117 disp(['Messung von ',messdatei]);

118 disp(['Eichung von ',eichungsdatei]);

119 disp('−−−−−−−−−−−−−');

120 disp('MESSUNG:');

121 disp([num2str(messpunkte),' Messpunkte']);

122 %disp('darks abgezogen');

123 fps1=sqrt(s1)/sqrt(messpunkte);

124 fps2=sqrt(s2)/sqrt(messpunkte);

125 fpcc=sqrt(cc)/sqrt(messpunkte);

126 disp(['singles1: ' num2str(s1−d1) ' +/− ' ...

num2str(fs1) '(Pois:',num2str(fps1),') (sigma:' ...

num2str(sigmas1) ', rel fehler: ' num2str(fs1/s1*100) ...
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'% ; Poisson: ' num2str(fps1/s1*100) '% )']);

127 disp(['singles2: ' num2str(s2−d2) ' +/− ' ...

num2str(fs2) '(Pois:',num2str(fps2),') (sigma:' ...

num2str(sigmas2) ', rel fehler: ' num2str(fs2/s2*100) ...

'% ; Poisson: ' num2str(fps2/s2*100) '% )']);

128 disp(['coincidences: ' num2str(cc−acc) ' +/− ' ...

num2str(fcc) '(Pois:',num2str(fpcc),') (sigma:' ...

num2str(sigmacc) ', rel fehler: ' num2str(fcc/cc*100) ...

'% ; Poisson: ' num2str(fpcc/cc*100) '% )']);

129 fpk=sqrt((sqrt(cc)/sqrt(messpunkte)/s2)ˆ2+...

130 (s1*sqrt(s2)/sqrt(messpunkte)/s2ˆ2)ˆ2);

131 disp(['kopplung arm1: ' num2str(k1) ' +/− ' num2str(fk1) ...

'(Pois:',num2str(fpk),') (sigma:' num2str(sigmak1) ', ...

rel fehler: ' num2str(fk1/k1*100) '%)']);

132 disp('−−−');

133 if(eichung)

134 disp(['kopplung referenziert durch messung (uber ' ...

zeitrefl 's)']);

135 disp('EICHUNG:')

136 disp([num2str(eichpunkte),' Messpunkte'])

137 %disp('darks abgezogen');

138 efps1=sqrt(es1)/sqrt(messpunkte);

139 efps2=sqrt(es2)/sqrt(messpunkte);

140 efpcc=sqrt(ecc)/sqrt(messpunkte);

141 disp(['100%singles1: ' num2str(es1−d1) ' +/− ' ...

num2str(efs1) '(Pois:',num2str(efps1),') (sigma:' ...

num2str(esigmas1) ', rel fehler: ' ...

num2str(efs1/es1*100) '% ; Poisson: ' ...

num2str(efps1/es1*100) '% )']);

142 disp(['100%singles2: ' num2str(es2−d2) ' +/− ' ...

num2str(efs2) ' (Pois:',num2str(efps2),') (sigma:' ...

num2str(esigmas2) ', rel fehler: ' ...

num2str(efs2/es2*100) '% ; Poisson: ' ...

num2str(efps2/es2*100) '% )']);

143 disp(['100%coincidences: ' num2str(ecc−acc) ' +/− ' ...

num2str(efcc) ' (Pois:',num2str(efpcc),') (sigma:' ...

num2str(esigmacc) ', rel fehler: ' ...

num2str(efcc/ecc*100) '%) ;Poisson: ' ...

num2str(efpcc/ecc*100) '% )']);

144 efpk=sqrt((sqrt(ecc)/sqrt(eichpunkte)/es2)ˆ2+(es1*sqrt(es2)...

145 /sqrt(eichpunkte)/es2ˆ2)ˆ2);

146 disp(['100%kopplung arm1:' num2str(ek1) ' +/− ' ...

num2str(efk1) ' (Pois:',num2str(efpk),') (sigma:' ...

num2str(esigmak1) ', rel fehler: ' ...

num2str(efk1/ek1*100) '%)']);

147

148 disp('−−−');

149

150 disp('*********************************...

151 ************************************************');

152 disp('KOPPLUNG:');

153 [v,f]=quotient(s1−d1,fs1,es1−d1,efs1);

154 [vp,fp]=quotient(s1−d1,fps1,es1−d1,efps1);

155 disp(['quotient s1: ' num2str(v*100) ' +/− ' ...
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num2str(f*100) ' % (Pois: ',num2str(fp*100)]);

156 [v,f]=quotient(s2−d2,fs2,es2−d2,efs2);

157 [vp,fp]=quotient(s2−d2,fps2,es2−d2,efps2);

158 disp(['quotient s2: ' num2str(v*100) ' +/− ' ...

num2str(f*100) ' %(Pois: ',num2str(fp*100)]);

159 [v,f]=quotient(cc−acc,fcc,ecc−acc,efcc);

160 [vp,fp]=quotient(cc−acc,fpcc,ecc−acc,efpcc);

161 disp(['quotient cc: ' num2str(v*100) ' +/− ' ...

num2str(f*100) ' %(Pois: ',num2str(fp*100)]);

162 [v0,f0]=quotient(s1−d1,fs1,(s2−d2),fs2);

163 [v1,f1]=quotient(es1−d1,efs1,(es2−d2),efs2);

164 [v,f]=quotient(v0,f0,v1,f1);

165 %disp(['quotienten (s1/s2): ' num2str(v*100) ' +/− ' ...

num2str(f*100) ' %']);

166

167

168 disp('*************************************...

169 ********************************************');

170 [v,f]=quotient(k1,fk1,ek1,efk1);

171 [vp,fp]=quotient(k1,fpk,ek1,efpk);

172 disp(['quotient k1: ' num2str(v*100) ' +/− ' ...

num2str(f*100) ' %(Pois: ',num2str(fp*100)]);

173 disp('*************************************...

174 ********************************************');

175 else

176 disp('kopplung manuell referenziert (in labview):');

177 disp(['k1: ' num2str(k1) ' +/− ' num2str(k1) ...

' (sigma:' num2str(sigmak1) ', rel fehler: ' ...

num2str(fk1/k1*100) '%)']);

178 disp(['k2: ' num2str(k2) ' +/− ' num2str(k2) ...

' (sigma:' num2str(sigmak2) ', rel fehler: ' ...

num2str(fk2/k2*100) '%)']);

179 disp('kopplung %:');

180 disp([' ' num2str(kopplung) ' +/− ' ...

num2str(fkopplung) ' (sigma:' ...

num2str(sigmakopplung) ', rel fehler: ' ...

num2str(fkopplung/kopplung*100) '%)']);

181

182 end

183

184 if (plotten)

185 plot(zeit,kopplungvec);

186 ylabel('coupling(%)');

187 xlabel('time(s)');

188 end

106



��������	
��������

������������������������������

� ���� ���!"���

#

��$	�%$&

'�������("���)�*"+�� ,,���-.-

�/0+����("���/���-� 0++�� ��-�-.-

#############

'�$$	�&

�1��'���2���-�

�/��,��3&���������3��1�4�)54�67#��������8
"/�&�1�1��19��8�/�� &�51��4��:���,�;�+,��&�)�)�1���<�=�


"/��"�&�)�)3��1<�9

�/��,���&���������3��5)��1�44�67#�����3�8
"/�&�1���)�9��8�/�� &��)��45�:���,�;�+,��&�)�)�1)��<�=�


"/��"�&�)�)3�5��<�9

0"/�0/���0��&��������5���51��67#�3)�55�8
"/�&����549��8�/�� &34)��1)4:���,�;�+,��&�)�)�43��<�=�


"/��"�&�)�)�1���<�9

�"22,���� ��3&����)�3�1���67#�����33�#)58
"/�&)�)))�)1��9��8�/�� &)�))333)5:���,�;�+,��&�

)�)1��5<9

###

�"22,������;����!/��-����0+���������8�����5�����3�9

���>	�&

���'���2���-�

3))<�/��,��3&�����3�5334�)4�4�67#�13���3�8
"/�&�1�41449��8�/�� &�����54�4:���,�;�+,��&�

)���5��<�=�
"/��"�&�)�)3��14<�9

3))<�/��,���&�����3��)3����1��67#�����)4��8
"/�&�1�3���9�8�/�� &1���5�15:���,�;�+,��&�

)�)15�3�<�=�
"/��"�&�)�)3�5�1<�9

3))<0"/�0/���0��&��1�)��)315�67#�3��4�4��8
"/�&3)�3)�19�8�/�� &5�3�4451:���,�;�+,��&�)�)����<9�

=
"/��"�&�)�)��4��<�9

3))<�"22,���� ��3&)�3�)���67#�)�)))5)�5��8
"/�&)�)))1�)5�9�8�/�� &)�))�1�14:���,�;�+,��&�

)��44�3<9

###

????????????????????????????????????????????????????????????????????????????????

?

@�

�	�&

A�"-/��-��3&������4�67#�)��5)�3�<�8
"/�&�)�)�4��4

A�"-/��-���&�3))�1��1�67#�)�)�1)5��<8
"/�&�)�)�45��

A�"-/��-�00&��4��3���67#�)�)��3�3�<8
"/�&�)�)5�4��

????????????????????????????????????????????????????????????????????????????????

?

A�"-/��-��3&��4�)15��67#�)��5�)4�<8
"/�&�)��3��1

????????????????????????????????????????????????????????????????????????????????

?

BB�

Figure B.1

107



��������	
����������������
�����

�������������������������� �!��

!"����"���#$���

%

���	�&�'

���� ���($���!���)*)

�+,- ���($���!�+,- ���)*)

%%%%%%%%%%%%%

����	�'

�������. ��)�

�+��/���'����������000�1��2�2�34%��50�56�07
$+�'�2�88��9��7�+��"'�5���2028:���/�;�-/��'����110�<�=�


$+��$�'����050�0<�9

�+��/��0'��������������2�5152�34%���6�05�17
$+�'�6�85�69��7�+��"'��20��826:���/�;�-/��'����1622<�=�


$+��$�'����08160<�9

,$+�,+!��,��'������8�65�2628�34%�05����57
$+�'���18��9��7�+��"'085�8�1�:���/�;�-/��'����2256<�=�


$+��$�'����81�8<�9

�$../ ���"���'��������156�34%������1�%�27
$+�'�����085629��7�+��"'�������16�:���/�;�-/��'�

���6�62<9

%%%

�$../ �����;����#+��)�! �,-����� ���7�����0�����21�9

���>	�'

��������. ��)�

���<�+��/���'�������1��6�60���34%�00����0�7
$+�'�8�1�559��7�+��"'��8��016�:���/�;�-/��'����6��6<�

=�
$+��$�'����06��1<�9

���<�+��/��0'�������25�����18�34%���0���85�7
$+�'�8��16�9�7�+��"'�5���81�0:���/�;�-/��'�

����66��<�=�
$+��$�'����08��0<�9

���<,$+�,+!��,��'���286�8�34%�0��0����7
$+�'�1��6�09�7�+��"'101�8���:���/�;�-/��'������08<9�

=
$+��$�'����8�506<�9

���<�$../ ���"���'���11�1�34%�������1�8��7
$+�'�����0�0259�7�+��"'������50�:���/�;�-/��'�

�����5�0<9

%%%

????????????????????????????????????????????????????????????????????????????????

?

@�

�	�'

A $)+��)���'�����1���34%���0�1�2�<�7
$+�'�����6522

A $)+��)��0'��5����6�34%����8��0�<7
$+�'�����5��0

A $)+��)�,,'����8522�34%����8�61�<7
$+�'�����2���

????????????????????????????????????????????????????????????????????????????????

?

A $)+��)���'����6�08�34%�������5�<7
$+�'���0�881

????????????????????????????????????????????????????????????????????????????????

?

BB�

Figure B.2

108



��������	
�������������
����������
�����������

������������������������� !�"��

"#� ��#���$%���

&

���	�'�(

����!���)%��*+,�-.-

�/+0!���)%���/+0!���-.-

&&&&&&&&&&&&&

����	�(

�1������*!� -�

�/��2���(����������1�33,�4,,��56&�7��88�39
%/�(:,�:3:;��9�/��#(784��847����2�<�02��(�1�13,4�4=�>�


%/��%�(�1�1,�:8�=�;

�/��2��,(����������:,488�77���56&�77�,:379
%/�(:8��738;��9�/��#(�13�:78:����2�<�02��(�1�147�,:=�>�


%/��%�(�1�1,3,:=�;

+%/�+/"��+��(������37,,��,�8�56&��3�33��9
%/�(�,�:�7,;��9�/��#(�7:��44�����2�<�02��(�1�1��3,,=�>�


%/��%�(�1�17813:=�;

 %**2!���#���(����1��,317�56&���87,��&149
%/�(1�111,8:1,;��9�/��#(1�111���������2�<�02��(�

1�174�8,=;

&&&

 %**2!�����<����$/��-�"!�+0�����!���9�����8����38�;

���?	�(

:������*!� -�

�11=�/��2���(���������31�:177�56&�73���,39
%/�(::�7774;��9�/��#(8�1��:�7����2�<�02��(�

1�13��,,=�>�
%/��%�(�1�1,7�3�=�;

�11=�/��2��,(������,3384��788�56&�31�4,���9
%/�(:8���8;�9�/��#(:77���77����2�<�02��(�1�1878�:=�>�


%/��%�(�1�1,3�:=�;

�11=+%/�+/"��+��(��7��:�,:1��56&�,7��44��9
%/�(�,��1��;�9�/��#(�8���:�:����2�<�02��(�1��447:=;�

>
%/��%�(�1�17�3��=�;

�11= %**2!���#���(1��8�1��56&�1�111�474��9
%/�(1�11183��:;�9�/��#(1�111��81�����2�<�02��(�

1����3�=;

&&&

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@

��

�	�(

A!%-/��-���(����8����56&�1�1�:34�=�9
%/�(�1�1:7::8

A!%-/��-��,(��18�3477�56&�1�17��74�=9
%/�(�1�1:�4�,

A!%-/��-�++(��:�417:�56&�1��7,��=9
%/�(�1�1�3:44

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@

A!%-/��-� �(����:8�7�56&�1��,1,7�=9
%/�(�1�:8:,:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@

BB�

Figure B.3

109



Appendix C

Splice Loss

The collection fibers from the measurement setups need to be connected to
the (SMF-28) fibers leading to the detectors in cryogenic environment. This
is done by fusion splicing using a Fujikura FSM-60S splicer. The following
measurement was performed to estimate the optical loss arising from the
splicing.

In the splicing process, the ends of two optical fibers are joined using the
heat, in our case generated by an electric arc. In order to minimize optical
loss, the mode fields (compare Sec. 3.3.3.1) of the two fibers have to match
as perfectly as possible. This requires careful alignment of the two ends.
Formulas for the loss arising from transversal or angular misalignment are
given in [36, 37].

The loss estimation is done automatically by comparing measured angles
and transverse positions of the two fiber tips. Typical values for single mode
splices are 0.05 dB loss (or 99% transmission). For multimode splices, typical
loss is 0.3 dB, which corresponds to approximately 93% transmission [40].

We are dealing with 810 nm photons in 1550 nm single-mode fibers. In
order to estimate the loss in this case, the following test was performed.

Setup and Measurement

An attenuated laser produced photons at 810 nm. In order to account for
intensity drifts of the laser, a reference detector was connected using an in-
fiber beam splitter. The second output of the beam splitter was connected
to a 10 m long telecom fiber (Thorlabs SMF-28), which lead to a second
detector (both Perkin-Elmer Photon Counting Module SPCM-CD3321H).
The setup is depicted in fig.C.1.
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Figure C.1: Setup of the splice test.

The telecom fiber was cut and subsequently spliced together several
times. After each splice, measurements of the count rates were taken for
30 s. The optical transmission after a number of splices in this experiment
is compared with the estimation in fig. C.2.

Figure C.2: Transmission after a number of splices.

Results

The results show that it was possible to splice the fiber without mea-
surable loss in this test. The measured loss after almost every splice was
equal or lower than predicted by the automatic (single-mode!) estimation.
Possible sources of systematic errors were fluctuations in the beam splitter
and detection efficiency issues using the Perkin-Elmer detectors and SMF-28
fibers, as discussed in 3.3.5.1.

111



References

[1] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-
mechanical description of physical reality be considered complete?
Physical review, 47(10):777, 1935.

[2] John S Bell et al. On the einstein-podolsky-rosen paradox. Physics,
1(3):195–200, 1964.

[3] Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard
Wittmann, Johannes Kofler, Jörn Beyer, Adriana Lita, Brice Calkins,
Thomas Gerrits, Sae Woo Nam, et al. Bell violation using entangled
photons without the fair-sampling assumption. Nature, 2013.

[4] John F Clauser and Abner Shimony. Bell’s theorem. experimental tests
and implications. Reports on Progress in Physics, 41(12):1881, 1978.

[5] Emilio Santos. Constraints for the violation of the bell inequal-
ity in einstein-podolsky-rosen-bohm experiments. Physics Letters A,
200(1):1–6, 1995.

[6] Thomas Scheidl, Rupert Ursin, Johannes Kofler, Sven Ramelow, Xiao-
Song Ma, Thomas Herbst, Lothar Ratschbacher, Alessandro Fedrizzi,
Nathan K Langford, Thomas Jennewein, et al. Violation of local re-
alism with freedom of choice. Proceedings of the National Academy of
Sciences, 107(46):19708–19713, 2010.

[7] Emilio Santos. Critical analysis of the empirical tests of local hidden-
variable theories. Physical review A, 46(7):3646, 1992.

[8] F Selleri and A Zeilinger. Local deterministic description of einstein-
podolsky-rosen experiments. Foundations of physics, 18(12):1141–1158,
1988.

[9] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt.
Proposed experiment to test local hidden-variable theories. Physical
Review Letters, 23:880–884, 1969.

112



[10] Gregor Weihs. Ein Experiment zum Test der Bellschen Ungleichung
unter Einsteinscher Lokalität. PhD thesis, PhD thesis, Universität
Wien, 1999.

[11] Thomas Scheidl. A fundamental test and an application of quantum
entanglement. PhD thesis, uniwien, 2009.

[12] Stuart J Freedman and John F Clauser. Experimental test of local
hidden-variable theories. Physical Review Letters, 28(14):938, 1972.

[13] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of
bell’s inequalities using time-varying analyzers. Physical review letters,
49(25):1804, 1982.

[14] Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Wein-
furter, and Anton Zeilinger. Violation of bell’s inequality under strict
einstein locality conditions. Physical Review Letters, 81(23):5039, 1998.

[15] Mary A Rowe, David Kielpinski, V Meyer, Charles A Sackett, Wayne M
Itano, Christopher Monroe, and David J Wineland. Experimen-
tal violation of a bell’s inequality with efficient detection. Nature,
409(6822):791–794, 2001.

[16] John F Clauser and Michael A Horne. Experimental consequences of
objective local theories. Physical Review D, 10(2):526, 1974.

[17] Philippe H Eberhard. Bell’s theorem and the different concepts of lo-
cality. Il Nuovo Cimento B Series 11, 46(2):392–419, 1978.

[18] Philippe H Eberhard. Background level and counter efficiencies required
for a loophole-free einstein-podolsky-rosen experiment. Physical Review
A;(United States), 47(2), 1993.

[19] Johannes Kofler, Sven Ramelow, Marissa Giustina, and Anton
Zeilinger. On’bell violation using entangled photons without the fair-
sampling assumption’. arXiv preprint arXiv:1307.6475, 2013.

[20] Ph H Eberhard. Bell’s theorem without hidden variables. Il Nuovo
Cimento B Series 11, 38(1):75–80, 1977.

[21] Taehyun Kim, Marco Fiorentino, and Franco NC Wong. Phase-stable
source of polarization-entangled photons using a polarization sagnac
interferometer. Physical Review A, 73(1):012316, 2006.

[22] Alessandro Fedrizzi, Thomas Herbst, Andreas Poppe, Thomas
Jennewein, and Anton Zeilinger. A wavelength-tunable fiber-
coupled source of narrowband entangled photons. arXiv preprint
arXiv:0706.2877, 2007.

113



[23] Adriana E Lita, Aaron J Miller, and Sae Woo Nam. Counting near-
infrared single-photons with 95% efficiency. Optics express, 16(5):3032–
3040, 2008.

[24] Wikipedia: Single-photon avalanche diode. http://en.wikipedia.

org/wiki/Single-photon_avalanche_diode. Accessed: 10.12.2013.

[25] Omikron laserage laserprodukte gmbh. http://www.omicron-laser.

de/english/lasers/diode-lasers/modulated-lasers. Accessed:
21.10.2013.

[26] Semrock. http://www.semrock.com/FilterDetails.aspx?id=

PBP01-405/10-25x36. Accessed: 12.11.2013.

[27] Newport. http://www.newport.com. Accessed: 12.11.2013.

[28] Rp photonics encyclopedia. http://www.rp-photonics.com/fiber_

polarization_controllers.html. Accessed: 12.11.2013.

[29] Onur Kuzucu and Franco NC Wong. Pulsed sagnac source of narrow-
band polarization-entangled photons. Physical Review A, 77(3):032314,
2008.

[30] Optigrate. http://www.optigrate.com. Accessed: 12.12.2013.

[31] Ocean optics. http://www.oceanoptics.com/Products/

spectrometers.asp. Accessed: 20.11.2013.

[32] Computer desktop encyclopedia. http://www.answers.com/topic/

fiber-optics-glossary. Accessed: 28.10.2013.

[33] Bahaa EA Saleh, Malvin Carl Teich, and Bahaa E Saleh. Fundamentals
of photonics, volume 22. Wiley New York, 1991.

[34] Udo hartmann. http://drhart.ucoz.com/index/high_power_

laser_fibre/0-58. Accessed: 12.11.2013.

[35] Thorlabs inc. http://www.thorlabs.de. Accessed: 30.10.2012.

[36] Ajoy Ghatak. An introduction to fiber optics. Cambridge university
press, 1998.

[37] D Marcuse. Loss analysis of single-mode fiber splices. Bell Syst. Tech.
J, 56(5):703–718, 1977.

[38] Wikipedia: Numerical aperture. http://en.wikipedia.org/wiki/

Numerical_aperture. Accessed: 9.9.2013.

[39] Leysop ltd. http://www.leysop.com. Accessed: 12.11.2013.

114



[40] The fiber optic association. http://www.thefoa.org/tech/lossbudg.
htm. Accessed: 10.02.2014.

115


