
DISSERTATION

A Comparative Analysis of System Dynamics

and Agent-Based Modelling for Health Care

Reimbursement Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker
Institut für Analysis und Scientific Computing (E101)

eingereicht an der Technischen Universität Wien
bei der Fakultät für Mathematik und Geoinformation

von

Dipl.-Ing. Patrick Einzinger

Matrikelnummer: 0325491
Himmelreich 30, 3470 Engelmannsbrunn

Wien, im Oktober 2014

Diese Dissertation haben begutachtet:

(Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
Felix Breitenecker)

(Assoc. Prof. Dr.
Maja Atanasijević-Kunc)
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Abstract

System dynamics and agent-based modelling are two methods for modelling dynam-
ical systems. While both emphasize that complex dynamics can evolve from simple
rules and relationships, they have also important differences. Agent-based mod-
els are considered to be more flexible, but normally have a higher computational
demand than system dynamics models.

The central goal of this study is therefore to compare both approaches and in-
vestigate their similarities and differences. Moreover, it tries to answer the question
of under which conditions one of the two methods is preferable or how they could
complement each other. The motivation for these research questions comes from
the author’s modelling work on the study of reimbursement systems for physicians
in extramural health care. A further goal is therefore to investigate how agent-based
modelling and system dynamics could be applied to this field of research.

The thesis puts both methods on a common system-theoretic basis as it in-
troduces the concept of a stochastic dynamical system, which is able to cover
approaches that include randomness, such as agent-based modelling, but also con-
tains deterministic dynamical systems (in particular system dynamics models) as
a special case. It is then shown that system dynamics defines a dynamical system
via its equivalence to differential equation systems. For agent-based modelling,
a formal definition based on the Stochastic Discrete Event System Specification
(STDEVS) is given. The thesis then presents a comparative analysis of the two
methods regarding several aspects such as their suitability for modelling hetero-
geneity, the consequences of aggregation, and the representation of feedback. It is
shown that the concept of a rate is used to describe change equivalently both in
system dynamics and agent-based modelling.

The thesis argues that the two methods can complement each other beneficially
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if the most important dynamical relationships of a problem are first analysed with
a system dynamics model, which does not have to incorporate aspects such as
heterogeneity that are hard to capture in the method. On the contrary, a transfor-
mation can later lead to an equivalent agent-based model for further development.
The approach is demonstrated for a physician reimbursement model, which allows
for a comparison of the dynamic impact of different reimbursement systems both
on physicians’ treatment style and on the population’s health and which is pre-
sented in both a system dynamics and an agent-based version. Future research in
this application area can build upon the model structure developed here, and the
proposed modelling process has the ability to combine the strengths of the two
methods with little additional effort.



Kurzfassung

System Dynamics und agentenbasierte Modellbildung sind zwei Methoden zur Mod-
ellierung dynamischer Systeme. Beide basieren auf dem Konzept, dass einfache
Regeln und Zusammenhänge komplexes dynamisches Verhalten hervorbringen kön-
nen. Trotzdem gibt es wesentliche Unterschiede: Agentenbasierte Modelle werden
beispielsweise als flexibler angesehen, haben aber im Normalfall einen höheren
Rechenaufwand.

Ein zentrales Ziel der vorliegenden Studie ist daher, die beiden Modellierungsan-
sätze hinsichtlich ihrer Gemeinsamkeiten und Unterschiede zu vergleichen. Darüber
hinaus soll eine Antwort darauf gegeben werden, unter welchen Bedingungen eine
der Methoden zu bevorzugen ist oder wie sich die beiden Methoden gegenseitig
ergänzen können. Diese Fragestellungen wurden dabei von Modellierungsprojekten
des Autors zum Vergleich von Bezahlungssystemen für Ärztinnen und Ärzte im
niedergelassenen Bereich des Gesundheitssystems motiviert. Ein weiteres Ziel dieser
Arbeit ist daher herauszuarbeiten, wie agentenbasierte Modellierung und System
Dynamics in diesem Forschungsfeld angewandt werden können.

Als gemeinsame systemtheoretische Basis für beide Methoden wird das Konzept
eines stochastischen dynamischen Systems eingeführt. Es deckt Ansätze mit sto-
chastischen Elementen, wie etwa agentenbasierte Modellierung, ab, enthält aber
auch deterministische dynamische Systeme als Spezialfall. Tatsächlich definiert ein
System-Dynamics-Modell über die Äquivalenz zu Differentialgleichungssystemen
ein dynamisches System. Für agentenbasierte Modelle wird eine formale Definition
auf der Basis der Stochastic Discrete Event System Specification (DEVS) gegeben.
Anschließend werden beide Methoden anhand verschiedener Aspekte wie ihrer Eig-
nung für die Modellierung von Heterogenität, der Konsequenzen von Aggregierung
und der Abbildung von Feedback vergleichend analysiert. Es wird gezeigt, wie
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das Konzept einer Rate in einem gewissen Sinn äquivalent sowohl in System Dy-
namics als auch in der agentenbasierten Modellbildung für die Beschreibung von
Veränderung verwendet wird.

Die vergleichenden Analysen lassen darauf schließen, dass sich beide Methoden
gut ergänzen, wenn im Modellierungsprozess zuerst die wichtigsten dynamischen
Zusammenhänge mit einem System-Dynamics-Modell untersucht werden. Dieses
muss dabei Aspekte, die mit System Dynamics schwer abzubilden sind, vorerst nicht
berücksichtigen, kann aber später über eine Transformation in ein äquivalentes agen-
tenbasiertes Modell übergeführt werden. Der Ansatz wird in der Arbeit anhand
eines Modells der Bezahlung von Ärztinnen und Ärzten demonstriert, mit dem der
Einfluss unterschiedlicher Bezahlungssysteme sowohl auf den Behandlungsstil der
Ärztinnen und Ärzte als auch auf die Gesundheit der Bevölkerung untersucht wer-
den kann und das jeweils in einer Version für beide Methoden vorgestellt wird. Die
hier vorgestellten Modellstrukturen können als Grundlage für zukünftige Forschung
in diesem Anwendungsfeld dienen, und der vorgeschlagene Modellbildungsprozess
bietet die Möglichkeit, die Stärken von System Dynamics und agentenbasierter
Modellbildung mit geringem Zusatzaufwand zu vereinen.
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Chapter 1

Introduction

System dynamics and agent-based modelling represent two distinct modelling ap-
proaches: The former takes a top-down perspective and tries to model the system
under study according to its major components and their interactions, whereas the
latter is a bottom-up approach because it investigates a potentially large number
of microscopic elements that, together with their interactions, constitute the whole
system and its behaviour (Macal, 2010).

Both methodologies have been applied to the field of health care. It is often
argued that agent-based modelling is more flexible and that it is easier to represent
a system in great detail with agent-based modelling than with system dynamics.
The main disadvantage that agent-based simulations had in the past, namely longer
computing time, does not seem to be a big problem with the hardware of today.

However, the process of agent-based modelling and simulation (ABMS), from
problem definition through conceptual modelling, implementation, verification and
validation up to the analysis and presentation of results, is far less standardized
than the process of system dynamics (SD). This might come from the fact that
one person created most of the methodology of SD (for a history, see Forrester,
1995), whereas in the ABMS community there is not even a common definition of
an agent. Moreover, agent-based models are not built up from a limited few defined
elements as are SD models, which are mainly built from stock and flow variables,
augmented by parameters, auxiliaries, and table functions.

As a further example, consider the available diagramming techniques for con-
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2 CHAPTER 1. INTRODUCTION

ceptual modelling: It is standard for SD modellers to use causal loop diagrams and
stock and flow diagrams. The latter are even used directly in the implementation.
Agent-based models do not have such a standard representation in diagram form,
although, for example, Heath (2010) as well as Onggo and Karpat (2011) propose
types of diagrams to serve this function.

Despite such differences, Scholl (2001) recognizes that both fields do overlap
significantly in their fields of application and that they might complement each
other. Therefore, he calls for a cross study of the literature and suggests that
valuable insights might be gained from applying the two methods to the same
areas.

One field of study where no standard modelling approach has been established
yet is the analysis of different reimbursement systems for providers of health care.
Models in this area of application should answer the question of which schemes of
payment for doctors are optimal and what possible consequences of each scheme
could be. They must be able to incorporate, for example, the influence of reimburse-
ment on treatment decisions and health consequences for patients. All diseases that
lead to the consumption of health services play a role in this problem (not just
one as in typical decision-analytic modelling of isolated health care interventions),
which makes it even harder to deal with.

This thesis compares SD and ABMS both in general and with a special focus
on the application to health care reimbursement systems. On the one hand, it will
thus be important for future simulation studies in this particular field, where the
selection of the best modelling method is a key question. In particular, it is not
clear when and why the simulation of individuals should be more advantageous
than an aggregated representation with global quantities. On the other hand, the
results of the thesis will also be applicable to other areas of application where there
is potential for SD and ABMS.

1.1 Goals and Research Questions

Independently from the application field of health care reimbursement systems, the
thesis has two main goals:
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• To compare ABMS and SD and investigate their similarities and differences

• To analyse the conditions under which one of these two methods is preferable
and how they can complement each other

These goals should lead to general insights that are applicable to other areas of
health care as well as to modelling and simulation with SD and ABMS in general.
However, a narrower focus is also necessary in order to test the developed concepts
and to propose concrete model structures. The third goal is thus:

• To investigate how ABMS and SD are applicable to the study of health care
reimbursement systems

Several research questions follow from the goals stated above:

1. What constitutes a system dynamics or an agent-based model?

2. Do both methods share a common basis in systems theory?

3. What creates the dynamic behaviour in an agent-based model and in an SD
model?

4. Is there a common description of changes in individuals’ states in ABMS and
SD?

5. Under which circumstances is aggregation permissible in simulation models?

6. Is it possible to transform an SD model into an equivalent AB model and
vice versa, and if so, under which conditions?

7. How can SD and ABMS complement each other?

8. What are the core dynamic structures in SD and agent-based models for
comparing reimbursement systems?

System dynamics is a methodology with fixed building blocks (stocks, flows) and
strict semantics. In contrast, there is no universally accepted definition of what an
agent-based model is exactly. Tolk et al. even state that interest in such a definition
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has decreased in recent years. However, a comparison of the two methodologies
needs at least a working definition of SD as well as ABMS (Question 1) and,
preferably, a common system-theoretic basis, which is the task of Question 2.

Dynamic models are tools for the analysis of dynamic behaviour. Both method-
ologies generate this behaviour on the basis of the models’ structure and rules for
their execution (i.e., simulation). Questions 3 and 4 ask what drives behaviour in
SD and ABMS models and if these mechanisms are similar.

An oft-mentioned difference between the two methodologies is that SD uses
aggregated quantities to describe system behaviour, whereas ABMS maps individ-
uals separately. This leads to Question 5, because it is not clear when aggregation
can occur without severely distorting results.

Modelling methods have their advantages and disadvantages. If a researcher
starts building a model using one method because certain advantages of that model
seem to be important, is the choice then fixed, or is it possible to attain the same
perspective on the system or problem under study without much difficulty using
another method? Question 6 deals with the transformation of a given model in
either SD or ABMS into one based on the other methodology.

This problem is particularly important if one method, although most convenient
for describing the system, has severe disadvantages in one or more stages of the
modelling cycle. Agent-based models, for example, can easily be computationally
expensive, which might prevent extensive sensitivity analyses with many simulation
runs. On the other hand, system dynamics might not be able to cope with certain
system structures (e.g., networks) and complex interventions. Maybe both methods
could complement each other, either through hybrid models or different use scenarios
(Question 7).

Lastly, Question 8 calls for the development of simple model structures, both in
SD and ABMS, that capture the most important dynamic relationships of the prob-
lem of comparing health care reimbursement systems without too much distracting
detail complexity. Every epidemic model, for example, uses the positive feedback
loop caused by more infectious people infecting even more additional individuals
who in turn become infectious, even though implementation can differ depending
on the modelling method. It would be beneficial if such core dynamic structures
could be also identified for health care reimbursement systems.
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1.2 Structure of the Thesis

Both SD and ABMS are modelling methods that make it possible to describe
dynamical systems. Chapter 2 develops the system theoretic foundations of such
systems, in particular of those with stochastic behaviour, as agent-based models
often include discrete events where the time between events follows a probability
distribution.

On the basis of this, Chapter 3 and Chapter 4 describe the two modelling
methods in detail, both in terms of informal basic characteristics and in terms of
possible formal descriptions according to the definition of a dynamical system given
in Chapter 2. Each of the two chapters includes one real-world example where SD
and ABMS, respectively, are used to develop a model for the analysis of different
reimbursement systems in extramural health care.

The theoretical comparison follows in Chapter 5, where topics such as aggre-
gation, heterogeneity, feedback, and rates as a tool for describing change in both
SD and ABMS are covered. This chapter concludes with the recommendation that
SD and ABMS could complement each other in the modelling process if first SD
is used to develop a model that captures the important dynamic structure of a
problem without paying attention to detail complexity and this SD version is later
transformed into an equivalent agent-based model if necessary. Finally, Chapter 6
demonstrates this approach for a physician reimbursement model, where implemen-
tations using both modelling methods lead to practically identical results, which
shows that the transformation from SD into an equivalent ABMS model is possible.
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Chapter 2

System Theoretic Foundations

2.1 Introduction

Models can be created with just an intuitive understanding of the underlying
modelling method, but this comes with the disadvantage that rigorous mathematical
statements about the methods are then impossible. These statements require that
models and systems are defined as mathematical objects, rooted ultimately in an
axiomatic system such as set theory.

Neither system dynamics nor agent-based models have universally accepted
mathematical definitions1. As the enterprise of this thesis is to compare SD and
ABMS and statements should be as rigorous and valid as possible, it is necessary
to give at least working definitions of both model types. We will also show how
they can be seen as special cases of a class of more general mathematical objects:
stochastic dynamical systems. Note that while SD models are deterministic in the
sense that under the same initial conditions and input they always produce the same
state trajectories and output, deterministic systems can be seen as a special class of
stochastic systems where one possible system behaviour is always reproduced with
probability 1, that is, the probability measure of the behaviour is a Dirac measure.

The main purpose of this chapter is to give a useful definition of a stochastic
dynamical system. It is structured in the following way:

1SD models are often identified with differential equation systems, but this is not the original
definition. An equivalence between the two will be established in Section 3.4.2.

7
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• First, Section 2.2 clarifies what the terms model and system mean in this
context.

• Section 2.3.1 introduces the concept of a general stochastic system, which is
described as a probability space according to the theory of Willems (2013).
We show that this definition is also applicable for input-output systems.

• Section 2.3.2 defines stochastic dynamical systems, which are systems with
time-dependent behaviour and an internal state. It also contains a proof that
this definition is compatible with general stochastic systems (every stochastic
dynamical system describes a general stochastic input-output system).

• Finally, Section 2.4 provides a survey of other definitions of systems.

2.2 Models and Systems

An intuitive idea of modelling and simulation is that a model is a tool for solving
problems and answering questions that are related to a certain system. The method
consists of creating an (often formal and simplified) representation – the model –
and performing experiments, so-called simulations, with it. These simulations can
show the behaviour of the system under different circumstances, which may be
formalized as input and initial states.

We want to treat certain objects in the physical world as systems, for example a
hospital, the population of a country, or its health care system, but physical objects
are not mathematical objects and cannot satisfy a formal mathematical definition.
Therefore, we will give a general but informal definition of systems, and then a
formal definition of the special class of a mathematical system. What constitutes a
model will only be formal if all involved systems are mathematical systems.

Definition 2.1 (System). A collection of interacting or interdependent objects is
called a system. These objects are the components of the system.

Most systems interact with the outside world rather than exist in isolation.
Their system boundaries separate them from the environment. A system can still
interact with its surroundings by the input that it receives and the output that it
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generates. We call such a system an open system, as opposed to a closed system,
which exists in isolation (von Bertalanffy, 1950, p. 155).

There are two important aspects of a system: its structure and its behaviour.
Structure describes the components and how they are interconnected. What fol-
lows from this structure, the outcomes that the system generates under various
circumstances, constitute its behaviour, which can be measured in the form of data.
Zeigler, Praehofer, and Kim (2000, p. 25) emphasize this role of a system as “a
source of observable data”.

We call the system that is the actual object of an analysis the object system (or
source system) and denote it by ΣO. However, the structure and the full behaviour
of ΣO can be complicated, hard to understand, or hard to use in experiments, in
particular because usually it is a system from the real world and includes physical
objects or even humans. A model system ΣM that is in certain key ways similar to
ΣO, but simplified and easily accessible, might be preferable to work with.

Obviously, ΣM should be related to ΣO in some way. Let us denote with CO
and CM the sets of components of the two systems. Then, Ferstl and Sinz (2013, p.
22) require the specification of a model mapping f :CO → CM . One can also specify
that f is a homomorphism if both CO and CM have an algebraic structure, which
is the algebraic modelling approach, in contrast to the general approach without
the requirement of a homomorphism (Mesarovich & Takahara, 1975, pp. 218–220).

Even without that, there is a problem with this approach of mapping the
structures of two systems. Suppose the system of interest is a specific country
or, more specifically, its human population. A single differential equation for the
number of humans in the country might be our model system. The components of
this model system might be the number of humans (a state variable), the change
of humans per time unit, the number of births per year as a constant, and possibly
others. What constitutes a good model mapping? Every human can be seen as a
component of the object system, so f has to map him or her to a component of
ΣM , and naturally this will be the number of humans. However, there might be
components for which we do not want to have a counterpart in the model system
(e.g., the animals, trees, and buildings of the country). No component of it is a
reasonable stand-in for an animal. In the model, they are unnecessary.
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A better approach is to map behaviour instead of structure. Suppose we observe
a particular behaviour b in ΣO, then for ΣM there should be a counterpart b′. In
the example above, b might describe the development of the country over time,
including its population, animals, trees, buildings, and all other components. The
corresponding b′ of the model system only describes the number of humans at every
modelled time point. Two different possible behaviours b1 and b2 of ΣO will be
mapped to the same b′ as long as they give always the same number of humans.
The mapping ignores behaviour related to components that are of no interest. In
the following definition, we assume that every system has a set of all its possible
behaviours, the universal set of behaviour U.

Definition 2.2 (Model). A triple (ΣO,ΣM , f), where ΣO and ΣM are systems and
f :UO → UM is a surjective mapping, is a model. We call ΣO the object system,
ΣM the model system, and f the model mapping.

A model consists of three parts, two systems and the model mapping, but less
strictly one can also speak of a system ΣM as the model of the system ΣO. The
model mapping is then only implicit. This is the usual way in which the term
model is used, in particular because a model mapping can only be formally defined
for formal systems. For real systems (and in modelling studies the original object
system will most often be a real system) an “appropriate interpretation” (Ferstl &
Sinz, 2013, p. 22) must substitute for this formal mapping.

The focus on behaviour instead of structure is influenced by the behavioural
approach to systems theory (Willems, 1991). Section 2.4 gives more information
on this.

2.3 Stochastic Systems

2.3.1 General Stochastic Systems

The object or source system is usually a predetermined real system. Modellers try
to construct and experiment with an alternative model system to learn about this
object system. These alternative systems might be physical systems, but in our
context, they are only mathematical systems, that is, mathematical objects on the
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basis of axiomatic set theory that consist of interrelated components. Typically,
these components enter the definitions in the form of sets, and a mathematical
relation between these sets describes the interaction.

An example of such a definition is the concept of a general input-output system
(see Ferstl & Sinz, 2013, p. 16; Mesarovich & Takahara, 1975, p. 11; Pichler, 1975,
p. 22). Such a system has two components, an input and an output, and describes
which possible input elements are related to which possible output elements. More
formally, an input-output system is a triple (U, Y,B), where U is the set of possible
inputs, Y is the set of possible outputs, and B is a non-empty relation between
U and Y , which means that B ⊆ U × Y . This representation views the system
as a processor that receives an input and produces an output. An element y of Y
can either be a possible output for an element u of U , in which case (u, y) ∈ B
(which can be written as uBy), or not. Several different outputs can be possible
for an input. We call the relation B the behaviour of the system, which follows the
practice of Willems (1991).

This definition of a system defines a crisp subset of behaviour. A single element
of the universal set of all possible behaviour (U × Y in the case of an input-output
system) has just two possibilities: It either is in the subset of the behaviour or is
not. Such a deterministic definition of a mathematical system includes systems
formulated in a deterministic modelling method such as system dynamics, but it
makes it impossible to describe how likely a behaviour is.

Agent-based models often have stochastic elements, for example the time until
an agent takes a certain action might follow a probability distribution. A great
variety of different behaviours are possible, but some are far more likely than others.
Many phenomena in health care are not exactly predictable, no matter how much
information on the present and past state of the system is known. Examples for
this are the progression of a disease and mortality: Many attributes of a patient
might alter the risk for a specific event, but whether it will happen in a certain time
span is in most situations uncertain. What can be known is which future course
of events is more likely than another. From this it is clear that a useful definition
of a mathematical system should allow for the incorporation of probability, or
formally, a probability space. Indeed, Willems (2013) defines a stochastic system
as a probability space:
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Definition 2.3 (Stochastic System). A stochastic system is a probability space,
that is, a triple (Ω,F, P ) where Ω is a non-empty set (the outcome space), F is a
σ-algebra on Ω, and P :F → [0, 1] is a probability measure on F. The elements of
F are the events.

How does this definition correspond to deterministic mathematical models?
According to Willems, a deterministic model differentiates between two subsets of
the universal set of behaviour: Elements that are possible behaviour (the behaviour
B) and elements that are impossible (all other elements, i.e., the complement of
B). Therefore, the equivalent of a deterministic model is a stochastic system with
F = {∅, B,Bc,Ω}, where P (B) = 1 and P (Bc) = 0.

It is more difficult to find a suitable probability space for the representation
of a stochastic input-output model than it is in the deterministic case, where the
behaviour of the system, B, would simply consist of all input-output pairs that the
deterministic system might produce. Willems (2013) proposes a solution for simple
examples, the symmetric and asymmetric binary channels, which we also want to
use for the motivation of the problem. A construction analogue to the concept
of a stochastic process will then allow us to generalize the solution to arbitrary
stochastic input-output systems.

Example 2.4 (Deterministic Binary Channel). A binary channel has two input
elements, U = {u0, u1}, and two output elements, Y = {y0, y1}. Assume that the
channels always maps u0 to y0 and u1 to y1. The behaviour of the channel is then
the set B = {(u0, y0), (u1, y1)}, and it is clear how to construct the equivalent
stochastic system (see the discussion above).

Example 2.5 (Stochastic Binary Channel). In the stochastic case, the binary
channel has the same input and output sets. However, it maps u0 only with a
certain probability p0 to y0 and to y1 otherwise (i.e., with probability 1 − p0).
Similarly, it maps u1 to y1 with probability p1 and to y0 with probability 1− p1.

Which probability space would represent this system? It is normally senseless to
assign a probability to the event that one of the input elements occurs, because this
lies outside the model boundary and should therefore not be part of the system
description. But if we set Ω = U × Y = {(u0, y0), (u0, y1), (u1, y0), (u1, y1)} and
assume that F = 2Ω, as would seem reasonable, then we must assign probabilities
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to the events {(u0, y0), (u0, y1)} and {(u1, y0), (u1, y1)}. We could try to incorporate
that we are totally uninformed about the probability of the input elements by
specifying P ({(u0, y0), (u0, y1)}) = P ({(u1, y0), (u1, y1)}) = 1

2
.

This is similar to specifying a non-informative prior in Bayesian probability
theory, which is, however, a non-trivial task (see the discussion in Irony and Singpur-
walla (1997)). Signal spaces are normally infinite and infinite-dimensional function
spaces. It is not clear how to specify a non-informative marginal probability measure
on the space of input signals.

The example of the stochastic binary channel demonstrates the problems with
the construction of the probability space that constitutes the stochastic system.
Willems solves this for the binary channel in the following way: He sets Ω =

U × Y × E, where E = {e1, e2, e3, e4} is an auxiliary set, and assumes for F the
coarse σ-algebra that is generated by the events

E1 = {(u0, y0, e1), (u1, y0, e1)}

E2 = {(u0, y0, e2), (u1, y1, e2)}

E3 = {(u0, y1, e3), (u1, y0, e3)}

E4 = {(u0, y1, e4), (u1, y1, e4)}.

Furthermore, he sets the probabilities for these events to

P (E1) = p0(1− p1)

P (E2) = p0p1

P (E3) = (1− p0)(1− p1)

P (E4) = (1− p0)p1.

(2.1)

The probabilities of the outputs, given a particular input, are then brought back by
the concept of a constrained probability and subsequent marginalization to eliminate
the e’s. We do not give the details here (refer to Willems [2013]), but proceed to the
generalization of this mechanism and take a different point of view, which might
be more intuitive.

Assume that a stochastic input-output system consists of an input set U and an
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output set Y . Under a given u ∈ U , the system produces an output element that is
not fixed, but can be described as a probability variable ηu. It would be possible to
make Y into a probability space (with a certain σ-algebra E, for example the Borel
sets if Y is a topological space), separately for every u ∈ U , as in the following
definition.

Definition 2.6 (Input-Output System). A stochastic input-output system is a
structure (U, Y, (Eu)u∈U , (Pu)u∈U), where U and Y are non-empty sets (the input
set and the output set), (Eu)u∈U is a family of σ-algebras on Y , and (Pu)u∈U) is
a family of probability measures on these σ-algebras such that for all u ∈ U ,
(Y,Eu, Pu) is a probability space.

For a deterministic system, the σ-algebras on the output set would again be
the coarse σ-algebras {∅, Bu, (Bu)

c, Y }. We can then construct a stochastic system
according to Definition 2.3 as (U × Y, {∅, B,Bc, U × Y }, P ), where B = {(u, y) :

u ∈ U, y ∈ Bu} and P (B) = 1.

Indeed, it is always possible to find a suitable probability space (and thus, a
stochastic system) that corresponds to a given input-output system. The main
idea is that for every input u ∈ U the output is a (Y,Eu)-valued random variable
ηu: Ω → Y from one and the same probability space (Ω,F, P ) to the measurable
space (Y,E). The family (ηu)u∈U can be seen as a random mapping. Intuitively, we
imagine that first, a particular element ω ∈ Ω of the probability space is sampled.
The output is then predetermined for every possible input element, but we have
to select one specific u′ ∈ U and can only observe the output ηu′(ω), while the
realizations of all other random variables (nu)u∈U\{u′} are discarded.

As ω should determine the output for every u ∈ U , it seems natural to identify
it with a mapping ω:U → Y from the input into the output space. Therefore, we
define Ω := Y U , that is, the sample space is the set of mappings from U to Y .
Additionally, for any subset J ⊂ U , we write ΩJ := Y J .

Definition 2.7 (Canonical Projection). Let U and Y be non-empty sets. Then for
two non-empty subsets J ⊂ K ⊂ U the canonical projection from ΩK onto ΩJ is
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defined by

πKJ :ΩK → ΩJ

ω 7→ ω|J

and we write πJ := πUJ and πj := π{j}. The latter is the j-th coordinate mapping.

On the sample space Ω, the product σ-algebra F :=
⊗

u∈U Eu is defined as
the smallest σ-algebra such that all coordinate mappings are measurable. There
exists a unique probability measure

⊗
u∈U Pu on (Ω,F) such that for all finite

subsets J ⊂ U , the push-forward measure πJ(P ) equals the finite product measure⊗
u∈J Pu (see Bogachev [2007]). We call P :=

⊗
u∈U Pu the product measure of the

family (Pu)u∈U . Note that for a finite number of sets E1 ∈ Ej1 , . . . , En ∈ Ejn , the
probability of the Cartesian product is

P (E1 × . . .× En) = Pj1 ⊗ . . .⊗ Pjn(E1 × . . .× En) = Pj1(E1) · . . . · Pjn(En).

It turns out that the probability space (Ω,F, P ) is the natural stochastic system
that represents the input-output system.

Theorem 2.8. Let ΣIO = (U, Y, (Eu)u∈U , (Pu)u∈U) be a stochastic input-output
system. There then exists a stochastic system Σ and a family (ηu)u∈U of (Y,Eu)-
valued independent random variables such that

Pηu = ηu(P ) = Pu,

that is, the distributions Pηu of the random variables equal the corresponding prob-
ability measures Pu of ΣIO.

Proof. Choose
Σ = (Ω,F, P ) = (Y U ,

⊗
u∈U

Eu,
⊗
u∈U

Pu)

as a stochastic system and for (ηu)u∈U the coordinate mappings (πu)u∈U . From the
definition of the product σ-algebra F, the coordinate mappings are measurable and,
therefore, random variables. As a product measure, P fulfills ηu(P ) = πu(P ) = Pu.



16 CHAPTER 2. SYSTEM THEORETIC FOUNDATIONS

The family of random variables (ηu)u∈U is independent if for all finite subsets
J ⊂ U and all Ej ∈ Ej, j ∈ J the relationship

P ({ω ∈ Ω : (∀j ∈ J : ηj ∈ Ej}) =
∏
j∈J

P ({ω ∈ Ω : (ηj ∈ Ej)}) (2.2)

holds. Because the random variables are also the coordinate mappings, we get

{ω ∈ Ω : (∀j ∈ J : ηj(ω) ∈ Ej)} =

{
ω ∈ Ω : πJ(ω) ∈

∏
j∈J

Ej

}
.

Thus,

P ({ω ∈ Ω : (∀j ∈ J : ηj ∈ Ej}) = (πJ(P ))

(∏
j∈J

Ej

)
,

and because the push-forward measure πJ(P ) equals, according to the definition
of P, the finite product measure

⊗
j∈J Pj, we see that

(πJ(P ))

(∏
j∈J

Ej

)
=
∏
j∈J

Pj(Ej).

Again, by the definition of the product measure, Pj is nothing else than the push-
forward measure under the coordinate mapping πj (which is ηj), so that∏

j∈J

Pj(Ej) =
∏
j∈J

(ηj(P ))(Ej) =
∏
j∈J

P ({ω ∈ Ω : (ηj ∈ Ej)}),

which proves (2.2).

Example 2.9 (Stochastic Binary Channel, continued). The stochastic binary chan-
nel describes a stochastic input-output system with input set U = {u0, u1} and
output set Y = {y1, y2}. For every u ∈ U , the σ-algebra Eu is the discrete σ-algebra
P(Y ) = {∅, {y0}, {y1}, {y0, y1}}. The probability measures are given by

Pu0({y0}) = p0 Pu0({y1}) = 1− p0

Pu1({y0}) = 1− p1 Pu1({y1}) = p1
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For the corresponding stochastic system, we can choose (Ω,F, P ) as in the proof
of Theorem 2.8:

Ω = {ω1, ω2, ω3, ω4},

where the ωk are mappings from U to Y and given (in set notation) by

ω1 = {(u0, y0), (u1, y0)}

ω2 = {(u0, y0), (u1, y1)}

ω3 = {(u0, y1), (u1, y0)}

ω4 = {(u0, y1), (u1, y1)}.

With the product σ-algebra F, all coordinate mappings have to be measurable,
that is, π−1

0 (E0) ⊂ F and π−1
1 (E1) ⊂ F. But the preimages of the singeltons,

π−1
0 (y0) = {ω1, ω2} π−1

0 (y1) = {ω3, ω4}

π−1
1 (y0) = {ω1, ω3} π−1

1 (y1) = {ω2, ω4},

already generate the discrete σ-algebra, so that F = P(Ω) = P(Y U). Finally, we
have to construct the product measure P on this σ-algebra, which is finite in this
case. It follows that

P (ω1) = Pu0({y0})Pu1({y0}) = p0(1− p1)

P (ω2) = Pu0({y0})Pu1({y1}) = p0p1

P (ω3) = Pu0({y1})Pu1({y0}) = (1− p0)(1− p1)

P (ω4) = Pu0({y1})Pu1({y1}) = (1− p0)p1,

(2.3)

which is equivalent to the formulas in (2.1) that Willems gave. (This specifies the
whole probability measure because of its additivity.)

If we want to restrict the input to, for example, u0, we can use the random
variable η0 = π0 and get back its distribution:

Pη0(y0) = P (ω1) + P (ω2) = p0 = Pu0({y0})

Pη0(y1) = P (ω3) + P (ω4) = 1− p0 = Pu0({y1})
(2.4)
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2.3.2 Stochastic Dynamical Systems

In the previous definitions, the input and output sets were simply assumed to be
non-empty. Nothing was said about the nature of their elements.

Time systems, in contrast, are systems whose components are time signals,
that is, their behaviour can change at every time point. This class of systems is
important because many problems that arise in the health care system involve
timing. One example is the course of a disease over time.

Which mathematical structure can represent time? It should be at least a totally
ordered additive group. In this work, we will be more restrictive:

Definition 2.10 (Time Set). A time set T is a subset of R that is either discrete
(discrete time) or an interval with finite or infinite endpoints (continuous time).

Typical examples of time sets are Z and Z≥0 for discrete time as well as R and
R≥0 for continuous time. The definition excludes mixed time sets such as [0, 1]∪Z≥0.
We can now also formulate the definition of a time signal.

Definition 2.11 (Time Signal). A time signal f is a mapping from a time set T
to a non-empty set W , which is called the signal space.

A further concept is the state of a system. In the deterministic case, the state
at any time point determines the future (input-output) behaviour unambiguously.
The equivalent for a stochastic system is that the probability distribution of future
behaviours depends only on the present state.

We will require in the definition of a stochastic dynamical system that it has
input and output, such that two important components are the input-value set U
and the output-value set Y . Both input and output should be time signals and
have values in U and Y , respectively. The output space will therefore be Y T, but
for the input space a restriction U ⊂ UT might be better.

Consider, for example, a system described by differential equations, such as the
first order system

dy

dt
= u− y

y(0) = 0
(2.5)
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where u is the input function and y is the output function. If u is continuous, then
the right-hand side of (2.5) is continuous and therefore the initial value problem
has a solution according to the Peano existence theorem. (It is even unique because
the right-hand side is Lipschitz continuous in y.) But if u is not continuous, a
solution might not exist, such as in the case where the input u is the Heaviside
step function

H:R→ {0, 1}

t 7→ H(t) :=

1 for t ≥ 0

0 for t < 0.

Proposition 2.12. The initial value problem (2.5) with input u = H, where H is
the Heaviside step function, has no solution.

Proof. A solution y would have to fulfill

dy

dt
(t) =

−y(t) for t < 0

1 for t = 0,

and as a differentiable function it must be continuous. Since y(0) = 0, for ε > 0

there exists a δ > 0 such that |y(t)|< ε for all t with |t|< δ. In particular, for
δ < t < 0 we have |dy

dt
(t)|= |−y(t)|< ε. If we choose, for example, ε = 1

2
, we can

therefore fix a point t1 < 0 such that y(t) < 1
2
for all t with t1 ≤ t < 0. But as a

derivative, dy
dt

must have the intermediate value property according to Darboux’s
theorem and, therefore, take all values between dy

dt
(t1) and dy

dt
(0) = 1 on the interval

[t1, 0], which leads to a contradiction.

In the example above, it might therefore be a natural choice to take the set of
all continuous functions C(T) as input space U, because this secures that a solution
of (2.5) (i.e., a corresponding output) exists for each input. In Chapter 3, we will
see how to allow larger input spaces using the concept of weak solutions.

Additionally, a stochastic dynamical system should have a state space X. At
every time point t ∈ T, it will be in a state x(t), and the state together with the
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input should determine the output and the future states. This can be expressed by
two mappings:

1. the state transition map φ, which describes the future states

2. the output map η, which describes the output given the present state and the
input.

A suitable state transition map should fulfil a few important properties such as
consistency with the present state and causality. We will require the same properties
as Hinrichsen and Pritchard (2010), but extend the definition to the stochastic case.

Definition 2.13 (Stochastic State Transition Map). Let T be a time set, (X,EX)

be a measurable space (the state space), U be a non-empty set (the input value
set), U ⊂ UT be a non-empty set of time signals (the input space). Furthermore,
let (Ω,F, P ) be a probability space. A map

φ:Dφ → X

with domain Dφ ⊂ T2×X×U×Ω is a stochastic state transition map if it satisfies
the following properties:

1. Measurability: Let t, t0 ∈ T,x0 ∈ X,u ∈ U, and ω ∈ Ω such that (t, t0, x0, u, ω) ∈
Dφ. Then the function φt,t0,x0,u: Ω → X, ω 7→ φ(t; t0, x0, u, ω) is (Ω,F) −
(X,EX) measurable.

2. Interval property: For every t0 ∈ T, x0 ∈ X, u ∈ U, and ω ∈ Ω the set
Tt0,x0,u,ω := {t ∈ T : (t; t0, x0, u, ω) ∈ Dφ} is an interval containing t0.

3. Consistency: For every t0 ∈ T, x0 ∈ X, u ∈ U, and ω ∈ Ω the mapping φ has
the value φ(t0; t0, x0, u, ω) = x0 at the initial time t0.

4. Causality: Let u, v ∈ U be two different inputs. Then for any time point
t1 ∈ Tt0,x0,u,ω ∩ Tt0,x0,v,ω where u(t) = v(t) for all t ∈ [t0, t1[ it holds that
φ(t1; t0, x0, u, ω) = φ(t1; t0, x0, v, ω).
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5. Cocycle property: If for a time point t1 ∈ Tt0,x0,u,ω the state transition map
has the value x1 = φ(t1; t0, x0, u, ω), then Tt1,x1,u,ω ⊂ Tt0,x0,u,ω and it holds
that φ(t; t0, x0, u, ω) = φ(t; t1, x1, u, ω) for all time points t ∈ Tt1,x1,u,ω.

It is quite cumbersome to always write all five arguments of φ. If it is clear from
the context that four of the five arguments are fixed, then we simply set

φT:T→ X, t 7→ φT(t) := φ(t; t0, x0, u, ω)

φU:U→ X, u 7→ φU(u) := φ(t; t0, x0, u, ω)

φΩ: Ω→ X, ω 7→ φΩ(ω) := φ(t; t0, x0, u, ω),

and call φT a state trajectory.
The interval property guarantees that the state trajectory is defined on an

interval containing t0. Obviously, φT(t0) should equal x0, which holds because the
state transition map is consistent. That a trajectory should not depend on the future
of the input is the definition of causality. Finally, without the cocycle property we
could get different values depending on whether we use the state transition map
directly from t0 to t or indirectly via the intermediate time point t1. Randomness
adds the further necessary property that each φΩ is a random variable (i.e., a
measurable function). Altogether, we are now able to define a stochastic dynamical
system.

Definition 2.14 (Stochastic Dynamical System). A structure

Σ = (T, U,U, X, Y, (Ω,F, P ) , φ, η)

is a stochastic dynamical system with time set T, input value set U , input function
space U, state space X, output space Y , probability space (Ω,F, P ), state transition
map φ, and output map η if

• T is a time set,

• U ⊂ UT is a non-empty space of time signals,

• X, and Y are non-empty sets,
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• (Ω,F, P ) is a probability space,

• φ:Dφ → X and η:T × X × U → Y are mappings such that φ is a state
transition map with domain Dφ ⊂ T2 ×X × U× Ω according to Definition
2.13.

Again, this definition should correspond to the more general definitions in
the last section. More precisely, does every stochastic dynamical system describe a
general stochastic input-output system (and, with Theorem 2.8, a general stochastic
system)?

First, we have to construct suitable input and output spaces UIO and YIO. For
every input element, the probability measure on the output space should be fixed.
Therefore, it must include the input functions u of the dynamical system, the initial
time t0, and the initial value x0, such that UIO = X × T× U.

The output space is problematic, because the dynamical system produces output
trajectories with different domains. Thus, YIO is not a subset of Y T. Let S ⊂ P(T)

be the set of all intervals in T. Then we define

YIO :=
⋃
T∈S

Y T ,

such that the output space is the set of all functions from an interval in T to the
output value space Y .

For any element (t0, x0, u) of the input space UIO, we define a mapping

Ψ(., t0, x0, u): Ω→ YIO

ω 7→ Ψ(ω, t0, x0, u),
(2.6)

where Ψ(ω, t0, x0, u) is the function on the domain Tt0,x0,u,ω such that

Ψ(ω, t0, x0, u)(t) = η(t, φ(t; t0, x0, u, ω), u(t)) (2.7)

for all t ∈ Tt0,x0,u,ω.
Now we can define the σ-algebra E(t0,x0,u) to be the largest σ-algebra on Y such

that Ψ(., t0, x0, u) is measurable (that is, the intersection of all σ-algebras on Y

such that the mapping is measurable), and the natural probability measure P(t0,x0,u)
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on this σ-algreba is given by

P(t0,x0,u)(E) = P ({ω ∈ Ω : Ψ(ω, t0, x0, u) ∈ E}) (2.8)

for all E ∈ E(t0,x0,u). In this sense, there exists a corresponding general stochastic
input-output system for every stochastic dynamical system.

The advantage of this formulation as a stochastic dynamical system over the
more general system descriptions is that it more closely resembles how dynamic
computer models and simulations work. On the other hand, via the intermediate
step of constructing a corresponding input-output system and Theorem 2.8 it is
possible to represent it as a general stochastic system, that is, as one probability
space. Any question about the system is then nothing else than a question about
random variables on this probability space. For example, a cost-effectiveness model
generates output trajectories and calculates costs and effectiveness (e.g., in quality-
adjusted life years) from it. The corresponding probability space has elements that
are functions from the input space (whose elements are combinations of initial time,
initial state, and input signal) to the output space (whose elements are output
trajectories). Costs and effectiveness for a given input element are real-valued
random variables on this probability space.

Once again, deterministic dynamical systems should be a special case of stochas-
tic dynamical systems. They can be formulated by using a probability space with
only one element: Ω = {ω0}. Thus, the concept can cover SD as well as ABMS
models.

2.4 Related Work

This section gives an overview on other definitions that can be found in the literature
to show how they relate to the definitions we gave in this chapter. There are
differences between what authors understand by, for example, a dynamical system,
because some use the term for all systems that have time-dependent behaviour,
while others require them to have a state space. Some authors consider only input-
output systems. However, we regard these differences as minor and not fundamental.
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2.4.1 Informal Definitions of Systems

As already stated, informal definitions have the advantage of being applicable to
all possible objects. When it comes to the general concept of a system, such a
definition includes mathematical systems, but also mental and physical systems.

Von Bertalanffy (1950, p. 143) for example defines it as “a complex of interacting
elements”. Interaction means that there exists a relation R between the elements2

and that it influences their behaviour (i.e., the elements would behave differently if
they were in no relation or in a different one). The system is therefore more than
the sum of its parts, and moreover, understanding the behaviour of each element
in isolation is insufficient for deducing the behaviour of the system as a whole.

Pugachev and Sinitsyn (2001, p. 1) give a similar definition: “A set of interacting
subjects of any nature is called a system.”

In contrast, Zeigler et al. (2000, p. 25) use in their framework the term system
in the form of source system and view it as “the real or virtual environment that we
are interested in modeling”. For them a simulation model “is a set of instructions,
rules, equations, or constraints for generating I/O behavior3”.

Pichler (1975, p. 12) proposes a different perspective for models as simply scien-
tific descriptions of real phenomena, and here systems are always formal scientific
constructions that either serve to simulate the behaviour of the model or are pro-
posed as a basis for model construction (these two tasks are the endeavour of
systems theory). Therefore, from this point of view systems can serve as representa-
tions of models and not the other way around. They are always formal constructions
and Pichler does not speak of the real phenomenon as a system. In our terminology,
the equivalent of these formal constructions are mathematical systems.

All the definitions above that are applicable for real systems are quite consistent.
In summary, a system is a set of interacting components and may be the “prototype”
for a model that is supposed to represent the system and to be able to replicate
its behaviour.

2R in this context is not a relation in the mathematical sense, i.e., a subset of the Cartesian
product of two sets

3I/O means input-output. An input is given and the model generates the corresponding output
through simulation
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2.4.2 Formal Definitions of Systems

Most system theoretic formalizations in the literature are limited to the determin-
istic case. As with the definitions in this work, they also rely on mathematical
constructs and thus ultimately on set theory.

Some authors restrict their work to input-output systems. In contrast,Mesarovich
and Takahara (1975) construct their systems theory on a more fundamental level.
They start from a general notion of a system that formalizes the concept of a
set of interacting components, where interaction means essentially a restriction
on possible behaviour. Their general system is a relation SG ⊆

∏
i∈I Vi, where

V = {Vi|i ∈ I} is a family of non-empty sets with index set I 6= ∅. Ferstl and
Sinz (2013, p. 14) include additionally a set RG ⊆ {(Vi, Vj)|i, j ∈ I ∧ i 6= j} –
the structure – and call SG the behavior of the system. The Vi are called system
components. This definition is clearly a formalization of the concept described by
von Bertalanffy.

The structure RG formally describes which system components interact. The
elements of a component can be seen as its possible individual behavior, and the
system behaviour RG is a restriction on all feasible combinations of individual
behaviour. However, one cannot necessarily derive the behaviour of a component
from the given behaviour of all others, because there might be more than one
corresponding tuple in SG, e.g., for the trivial case

SG =
∏
i∈I

Vi.

Other types of system descriptions, such as the input-output system, are special-
ized forms of the general definition. The input-output system, for example, consists
only of the two components U and Y , and in the case of a time system, the elements
of the components are time signals.

Different requirements for dynamical systems can be found in the literature.
Willems (1991), for example, calls every system whose behaviour consists of time
signals a dynamical system. A state space is not a necessary requirement. Others,
such as Hinrichsen and Pritchard (2010), restrict dynamical systems to systems
with a state space. This richer concept is suitable for comparing SD and ABMS
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models, because both methods naturally facilitate state-space descriptions.
Dynamical systems with stochastic behaviour are a less developed area than

their deterministic equivalents. There is the theory of random dynamical systems
developed by L. Arnold (2003), which analyses dynamical systems that are per-
turbed by noise. Stochastic differential equations are a typical example. While the
theory fits well to this case, it is less convenient to describe the actions of stochastic
agents as basically deterministic actions that are disturbed by some stochastic
process.

Alternatively, we will treat the actions of agents to be stochastic themselves,
and Definition 2.14 formalizes the idea that the state transition and output maps
of a stochastic dynamical system depend directly on the chosen element ω of the
underlying probability space. One may think of ω as the seed of the pseudo-random
number generator that is used in a typical simulation model. It uniquely determines
the resulting stream of pseudo-random numbers and, therefore, the value of the
state transition map for a given initial time point, initial state, and input element
at every future time point.

2.5 Conclusions

The system theoretic foundations in this chapter provide a common basis for the
description of both deterministic and stochastic dynamical systems. It is thus
precisely clear what is meant by a dynamical system in general as well as in the
stochastic case. We will see that SD and ABMS are both methods that can be used
to describe such dynamical systems, although they have different properties.

Mathematical systems are studied because they can be used as models for real
systems. Definition 2.2 specified what a model is. There are always two systems
with a certain relation involved. The model system can then represent the object
system, which is normally the real system from the physical world. However, it could
also be a mathematical model itself. We can thus study if, for example, a dynamical
system formulated with one modelling method (e.g., SD) is interchangeable with
one formulated using another method (e.g., ABMS).



Chapter 3

System Dynamics

3.1 Introduction

System Dynamics (SD) is the first modelling methodology that is described in this
work. Historically, SD is older than agent-based modelling. It is also a very cohesive
theory. The fact that a single person, Jay W. Forrester, created most of the method-
ology might be one of the key reasons for this. The central elements of SD (e.g.,
stocks and flows) are fixed and clearly defined. Additionally, recommendations on
the modelling process, especially diagramming techniques such as causal diagrams
and stock-and-flow diagrams, are part of the literature on the methodology. This
can be seen as a standard for the modelling process not only in SD, but also in
other methods.

The next chapter builds upon the SD description and makes it clear that ABMS,
on the contrary, is much less cohesive and well-defined than SD. Nevertheless, both
methodologies have a clear concept of what is responsible for the dynamics of a
system.

3.2 The History of System Dynamics

The roots of SD lie in control theory and equation-based modelling. JayW. Forrester
was an engineer by training and transferred the ideas of control theory from technical
systems to industrial and socio-economic systems while he was working at the MIT
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Sloan School of Management in the 1950s (Forrester, 1995).
His first fields of application for the new methodology were industrial systems

and the dynamics of urban planning (Forrester, 1961, 1969). The focus on industrial
systems is responsible for the original name of the methodology: industrial dynamics.
Forrester’s influential textbook also bore this name.

Forrester’s early work on industrial systems illustrates two concepts important
to SD: feedback and delays. Together they are responsible for the dynamic behaviour
of the system. An example is a supply chain, where products are delivered from
a factory to a retailer over several intermediate stations (North & Macal, 2007,
pp. 63–65). Every station can place orders, which depend on the state of the local
inventory and on the expected future demand.

Figure 3.1: Supply chain with four levels: factory, distributor, wholesaler, and
retailer. Orders are sent to the next highest level up in the chain (e.g., from retailer
to wholesaler), while the material flow goes in the other direction (e.g., from factory
to distributor).

The inventory levels influence their own values: A low inventory level induces
more orders, which in turn increases the inventory level. This is an example of a
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feedback structure, that is, a case in which one variable of the system influences its
own change over time. In the supply chain example, feedback alone would stabilize
the system. However, the inventory level does not rise instantaneously on account
of the new orders; it takes some time for the new products to be delivered. This is a
delay, and together with the feedback structure it causes overshoot of the inventory
level, which decreases orders, but again there is a delay and it takes some time for
deliveries to be reduced. Altogether, the structure of the system inevitably leads to
oscillations with increasing amplitude, a phenomenon that is called the bull whip
effect.

Urban dynamics revealed another aspect of social systems: policy resistance,
which means that reasonable policies for solving a problem often just make things
worse because of the structure of the system. For example, Forrester (1969) showed
that the strategy of building more low-cost housing to revive depressed areas in
cities cannot work. Available low-cost housing attracts more people, but this also
raises unemployment in the depressed area. The standard of living declines and
the income in the area is too low to maintain the buildings. They are abandoned
and become excess housing. Housing then becomes even cheaper and attracts even
more people, but the excess housing also occupies land that would be needed for
job-creating buildings.

The success of SD in these first applications resulted in studies of a broad range
of problems, with “Limits to Growth”, a study for the Club of Rome, probably
being the most famous one. It built upon previous work from Forrester (1973)
on the future development of the earth, its population and resources as a whole.
Both studies predicted that the excessive growth of the world’s population, its
economy and pollution would lead to certain collapse. Newer studies have come to
the conclusion that the world is still on a path leading to disaster.

Both the work on urban dynamics and world dynamics demonstrate policy
resistance. Often the goal of system dynamics studies is not only to find an optimal
solution or to predict the further course of a system, but to explain why past policies
did not work. This leads to a better understanding of the system and points to
possible improvements.

In the past, system dynamics has found many areas of application. Health
care is one example. Homer and Hirsch (2006) list various health care topics where
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system dynamics has been applied, from disease epidemiology and drug addiction to
patient flows in emergency departments and health care capacity planning. They
also suggest that system dynamics could be helpful in creating more complete
models of population health, which might incorporate multiple interacting diseases.

3.3 The Building Blocks of System Dynamics Mod-

els

3.3.1 Stocks and Flows

One major advantage of SD is that only a few basic elements are necessary to build
a model. Every SD model consists of stocks and flows (equivalently, they are often
called levels and rates). Stocks are variables that accumulate a certain quantity.
Through this accumulation, stocks represent the memory and state of the system.

Flows are the other important variable type. They have no memory, because at
every time point, their value depends only on the current values of the stocks. But
they represent stock changes, because flows are the sole quantities that the stocks
directly accumulate. More specifically, a flow F may be an inflow of a certain stock
S, in which case S is increased by F , or it may be an outflow of S, in which case
S is decreased by F .

These two elements are enough to describe the entire dynamics of a system.
Actually, if the dependence of the flows on the stocks is specified through equations,
the system is equivalent to a system of ordinary differential equations (see Sec-
tion 3.4.2), where the stocks are the state variables and the flows are the right-hand
sides of the differential equations. Together with initial values for the stocks, an
initial value problem is given, which has a unique solution under the condition
well-known from the theory of differential equations that the right-hand side is
continuous in time and Lipschitz continuous in the state variable. In this regard,
SD is just another way of describing differential equations.

However, the systematic way of deriving the equations is the real benefit of
the method. The stock and flow structure is important on its own, even without
the equations, because even it alone gives qualitative insight into the possible and
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probable dynamic behaviour of a system. Moreover, it has a standardized graphical
notation, the stock and flow diagram. Figure 3.2 shows a simple stock and flow
diagram.

Stock 1

Stock 2

Inflow

Outflow

Flow

Figure 3.2: A stock and flow diagram that consists only of stocks (depicted as
boxes) and flows (depicted as pipes with valves in the middle). If the source or
sink of a flow is not important because it lies outside the system boundary, a small
cloud symbol is drawn instead. Blue arrows show causal dependencies.

In the diagram, boxes depict stocks and pipes with valves in their middle depict
flows. Every flow that ends in a stock is an inflow for this stock, whereas every
flow that begins in a stock is an outflow. Stock 1 has one inflow that begins in
a source outside the model boundary, depicted by a cloud symbol. Similarly, an
outflow goes from Stock 2 into a sink. The flow in the middle is both an outflow
for Stock 1 and an inflow for Stock 2.

There is an additional causal structure in the diagram. The blue arrows show
on which stocks the flows depend. For example, the flow between Stock 1 and
Stock 2 depends on both of them. On the other hand, it would be an error to use
Stock 1 in the equation of the outflow from Stock 2, because there is no blue arrow
from Stock 1 to Flow, which means that it is independent of Stock 1. Fortunately,
SD simulation software is capable of automatically detecting such inconsistencies
between diagram and equations.
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3.3.2 Auxiliaries and Constants

Stock and flow diagrams with only stocks, flows, and their causal dependencies
along with equations could describe every possible SD model, but often different
concepts and effects are involved in a flow equation. In this case, it is beneficial
to include intermediary variables to state these relationships directly in the stock
and flow diagram. They are called auxiliaries because of their not necessary but
often helpful nature. Like flows, these variables can depend on stocks and other
auxiliaries. It must always be possible to calculate their value from all values of
the stocks.

Additionally, stock and flow diagrams can include constant values as separate
quantities. Of course, it would be possible to just write these values in the equations
of auxiliaries or flows, but as in computer programming the use of such “magic
numbers” is considered to be bad practice. The SD methodology tries to encourage
modellers to make concepts graphically explicit and to give them meaningful names.

3.4 Describing Dynamical Systems Using System

Dynamics

3.4.1 What Is a Modelling Method?

Besides SD and ABMS, many additional modelling methods exists, such as dis-
crete event process models, Petri nets, bond graphs, and systems of differential or
difference equations. Each of them describes a way of formulating a model that
can be executed on a computer or for whom a solution can be calculated. But how
does this relate to the concept of a dynamical system given in Definition 2.14?

Clearly, most modelling methods do not simply state two potentially complicate
mappings such as in this definition. On the other hand, for every formulated model
there should exist a corresponding dynamical system in the sense of Definition 2.14.

Definition 3.1 (Modelling Method). Let D be the set of all stochastic dynamical
systems. A modelling method is a pair (M, τ), where M is a non-empty set, the
model space, and τ is a mapping from M to D.
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According to this definition, a modelling method must describe a set of possible
models and map each of these models to a (stochastic) dynamical system. It is not
necessary for τ to be injective, because a modelling method might allow for the
formulation of different models that describe the same dynamic behaviour (i.e., map
to the same dynamical system). However, every model should have a corresponding
dynamical system.

3.4.2 Formal Description of System Dynamics

Definition 3.2 (System Dynamics Model). A system dynamics model with m

stocks (levels), n flows (rates), ka auxiliaries, and kp parameters consists of n flow
or rate equations fi:Dfi → R, i ∈ {1, . . . , n}, where Dfi ⊂ Rm × Rka × Rkp , ka
auxiliary equations gj:Dgj → R, j ∈ {1, . . . , ka}, where Dgj ⊂ Rm × Rka × Rkp ,
and the flow coupling FC ∈ ({0, . . . ,m}2 \ {(i, i) : i ∈ {0, . . . ,m}})n.

The flow coupling FC denotes which stocks a flow connects. Here, the index 0

represents a source or sink. The pair (i, 0) in the flow coupling stands, for example,
for a flow from the i-th stock into a sink. A flow from the i-th stock into the stock
with index j would be represented by the pair (i, j).

All variables of a system dynamics model have values in R. We write x(t) ∈ Rm

for the state vector of stocks at time t, r(t) ∈ Rn for the vector of flows, a(t) ∈ Rka

for the vector of auxiliaries, and p ∈ Rkp for the parameter vector.
In the following, we want to find a corresponding differential or integral equa-

tion system for an SD model and define the state transition mapping and the
output mapping via the solution of this equation system. This is impossible if the
equations for the auxiliary variables form algebraic loops: Suppose that there are
three auxiliary variables a1, a2, and a3 in the model, and that the equations are
a1 = g1(x, a,p) = a2, a2 = g2(x, a,p) = a3, and a3 = g3(x, a,p) = a1. Obviously,
the equations are redundant and reduce to a1 = a2 = a3, which has infinitely many
possible solutions.

The question is which preconditions secure that there are no algebraic loops
involving auxiliaries. This involves the concept of causal links.

Definition 3.3 (Causal Link). In a system dynamics model, a variable v1, where
v1 is a stock, an auxiliary, or a parameter, is a direct cause of an auxiliary or flow



34 CHAPTER 3. SYSTEM DYNAMICS

v2 if the corresponding auxiliary equation gj (or fj) depends on v1, that is, if the
value of gj (or fj) is not the same for all values of v1, where all other variables are
fixed. Likewise, a flow v1 is a direct cause of a stock v2 if it is an outflow or inflow
of v2. In both cases, the model has a causal link from v1 to v2.

Beginning from a variable, it is possible to follow causal links.

Definition 3.4 (Causal Chain). A sequence v1, . . . , vk of variables with k ∈ N
is called a finite causal chain of length k beginning at v1 if for every i ∈ N with
1 ≤ i < k there is a causal link from vi to vi+1. Likewise, a sequence (vi)i∈N is
called an infinite causal chain beginning at v1 if it has the same property as in the
finite case.

Definition 3.5 (Causal Loop). A causal loop of length k is a finite causal chain
v1, . . . , vk where v1 = vk and vi 6= vj if 1 < i < k or 1 < j < k.

If and only if there is a causal loop that involves just auxiliary variables the
equations form an algebraic loop. We will now define a matrix that stores all causal
links between auxiliaries. It is possible to see if an SD model includes a causal loop
with only auxiliary variables from the structure of this matrix.

Definition 3.6 (Link Matrix). The link matrix L of an SD model with auxiliary
variables a1, . . . , aka is the matrix where Li,j is 1 if there is a causal link from ai to
aj and 0 otherwise.

Obviously, auxiliaries that have only causal links to flows do not pose any
problem. But also other auxiliaries with causal links only to these first kind of
auxiliaries cannot be part of an algebraic loop. We can pursue this strategy further
and thus classify them:

Definition 3.7 (Causal Order). An auxiliary is of causal order 0 if it has no causal
link to any other auxiliary. It is of order 1 if it has only causal links to auxiliaries
of order 0. Generally, an auxiliary has causal order n if it has links to auxiliaries of
order n− 1, but not causal links to auxiliaries of higher order. All other auxiliaries
have infinite causal order.
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Lemma 3.8. An auxiliary a0 has infinite causal order if and only if it is part of a
causal loop involving only auxiliaries or if there is a causal chain beginning at a0

that ends in such a causal loop.

Proof. No auxiliary in a causal loop has causal order 0, because every auxiliary in
the loop has a causal link to the next auxiliary in the loop. It follows that also
no auxiliary can be of order 1, because an auxiliary of order 1 only has links to
order-0 auxiliaries. The same holds for every finite order. Finally, if a causal chain
ends in an auxiliary that is part of a causal loop, all auxiliaries of the causal chain
have infinite order, which can be seen recursively.

On the other hand, suppose that a0 is not part of a causal loop with only
auxiliaries and there is also no causal chain beginning at a0 that ends in a loop.
As there are only ka auxiliaries and no auxiliary can be part of a causal chain
twice if the chain contains no loop, every causal chain that starts at a0 is finite. If
a0 has infinite order, at least one of the auxiliaries to whom it has a causal link,
denoted by a′0, has to have infinite order too. Again, one of the auxiliaries to whom
a′0 has a causal link has to have infinite order. In this way, it would be possible to
construct an infinite causal chain where every auxiliary has infinite order, which is
in contradiction of the fact that every causal chain starting from a0 is finite.

Figure 3.3 shows an example of a causal diagram with only auxiliary variables.
All auxiliaries in the loop have infinite causal order. Additionally, a0 has infinite
causal order because it has a link to another auxiliary of infinite order. The other
auxiliaries (a5, a6, and a7) have finite order.

Proposition 3.9. An SD model contains a causal loop involving only auxiliaries
if and only if it is not possible to renumber the auxiliaries such that the link matrix
is a lower triangle matrix.

Proof. First, suppose that the model has a causal loop involving only auxiliaries.
For the link matrix to be a lower triangle matrix, a variable ai can only have a
causal link to aj if j < i. One variable a′ of the causal loop has to be the variable
with the lowest number of all variables in the loop. As a variable in the loop, it
has a causal link to the next variable in the loop. This variable must then have a
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a3a1

a2

a4

a0 a5

a6

a7
Figure 3.3: In this causal diagram, a6 and a7 have causal order 0 (they have no
link to any other auxiliary). The only other variable with finite causal order is a5,
which has causal order 1 because it has only links to variables of order 0. All other
auxiliaries in the diagram have infinite causal order.

lower number then a′, which leads to a contradiction. Therefore, the link matrix
cannot be of lower triangular form.

Now suppose that no causal loop involves only auxiliaries. Lemma 3.8 shows
that then all auxiliaries must have finite causal order. We can therefore numerate
the auxiliaries according to their order: First, we take all order-0 auxiliaries, then
all order-1 auxiliaries, and so on. Each auxiliary can have only links to auxiliaries
with lower order, which shows that the link matrix is of lower triangular form.

The last proposition gives a characterisation of the system dynamics models
whose equations do not form algebraic loops. These models allow for the formation
of a differential equation system which depends only on the values of stocks and
parameters.

Proposition 3.10. If a system dynamics model contains no causal loops of only
auxiliaries, the flow equations can be written just in terms of stocks and parameters.

Proof. In a system dynamics model, the flow equations might be given as func-
tions that depend not only on stocks and parameters, but also on the values
of auxiliaries. However, according to Proposition 3.9, the auxiliaries of a system
dynamics model without algebraic loops can be enumerated such that the link
matrix is of lower triangular form. The value of the first auxiliary a1 depends
only on stocks and parameters, that is, there is a function g′1:D′g1 → R such that
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g′1(x(t),p) = g1(x(t), a(t),p) for all (x(t), a(t),p) ∈ Dg1 , where the domain D′g1 is
the restriction of Dg1 to the set Rm×Rkp . The second auxiliary a2 may depend on
a1 as well, but as the value of a1 is a function of only stocks and parameters, so
is a2. In general, as ai for 1 ≤ i < ka depends only on stocks and parameters, so
does ai+1 .

Finally, as all auxiliaries can be written as functions of stocks and parameters,
all flow equations are also only functions of stocks and parameters.

This result guarantees that it is possible to find a differential equation system
that is equivalent to the system dynamics model. Two problems could arise:

1. The differential equation system might not have a solution.

2. The differential equation might have more than one solution.

In both cases, it is not clear how to define the state transition mapping of the
corresponding dynamical system. We should thus require the differential equation
system to have a unique solution.

Chapter 2 provided a proof that the initial value problem (2.5) has no classical
solution if the input is the Heaviside step function. This is unsatisfactory, as the
Euler method that is typically used for the simulation of SD models does not have
any problems with this system. Only the first step, which can be made arbitrarily
small, is affected by the discontinuity. For all further steps, the input function
equals 1.

It is possible to solve the differential equation for t ≥ 0 with variation of
constants and ignore the discontinuity at t = 0, which leads to the solution y(t) =

1− e−t. For t < 0, we can set y(t) = 0. The “solution” has the following properties:

1. It is Lipschitz continuous.

2. It fulfils the differential equation for t 6= 0.

It seems natural to accept this function as a solution. This leads to one kind of
a generalized or weak solution concept: a solution in the sense of Carathéodory.

Definition 3.11 (Carathéodory Solution). A function is a Carathéodory solution
of an ordinary differential equation system on an interval I ⊂ R if it is absolutely
continuous and satisfies the differential equations almost everywhere on I.
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The function y in the example above is absolutely continuous, because it is even
Lipschitz continuous, and it satisfies the differential equation everywhere apart
from t = 0, that is, almost everywhere, thus it is a Carathéodory solution. Note
that an absolutely continuous function is differentiable almost everywhere. For
comparisons with other generalized solution concepts, see al Shammari (2006).

Definition 3.12 (State Trajectory of a System Dynamics Model). Let MSD be a
system dynamics model with no algebraic loop. The differential equation system

dx

dt
(t) = f(x(t),p), (3.1)

where x(t) is the state vector containing the values of the stocks, p is the parameter
vector, and f is the vector of flow equations that depends only on the stocks and
the parameters as in Proposition 3.10, is called the equivalent differential equations
system of MSD. For an initial state x0 at time t0, a Carathéodory solution of this
system is called a state trajectory of the system dynamics model.

Through this definition, it is possible to specify a state transition map that
corresponds to the SD model. For every fixed values of t0 and x0, we can set it to the
value of the state trajectory on the maximum interval where a unique Carathéodory
solution exists. It is permissible that this interval contains only t0. Obviously, the
state transition map obeys the other necessary properties such as consistency. Note
that a system dynamics model has no separate input variables. Therefore, the input
space of the corresponding dynamical system consists only of one element.

There is no single correct choice for an output map. An SD model usually has
no dedicated output variables. However, the values of all stocks and auxiliaries can
be seen as output. The output space is then Rm × Rka .

Overall, it is clear that we can find a dynamical system that accurately represents
the SD model. This system is deterministic (i.e., the probability space in the
definition of the stochastic dynamical system has only one element). What we have
also seen in this section is that for analytical purposes, it is correct to substitute the
actual SD model, which is a collection of stocks, flows, auxiliaries, and parameters
coupled by flow equations and auxiliary equations, with a differential equation
system.
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3.5 Case Example: Modelling the Influence of Group

Practices with System Dynamics

3.5.1 Introduction

This section illustrates how a research question about the influence of different
reimbursement systems in health care can be addressed with system dynamics. The
focus will lie on methodological considerations, not on the specific results, which
are published elsewhere, for example in Einzinger, Jung, Popper, and Pfeffer (2014).

Reimbursement sytems describe how physicians are paid for the medical services
they provide to patients. In the extramural sector in Austria (outside hospitals),
physicians are mostly self-employed. Therefore, we can exclude reimbursement
systems with a salary.

Remaining major types of reimbursement systems are:

1. Fee-for-service systems : Physicians receive payment for each medical service
(e.g., injections).

2. Per case flat rates : Physicians receive a fixed payment for a case or an episode
of care.

3. Per capita flat rates :Physicians receive a fixed payment per patient and time
period.

Mixed types are also possible, as it is for example possible to pay per case flat
rates, but reimburse some special medical services separately. This is the current
reimbursement system in Austria.

Research question

Many physicians in Austria practice alone or with colleagues of the same specialty.
However, the law now allows for the establishment of group practices with physicians
of different specialties, such that for instance an internist and a pulmonologist could
work together.
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The plan is for these group practices to be reimbursed with different reimburse-
ment systems than single practices. Specifically, schemes with flat rates are an
option.

The research question of the study was how the organizational change (the
merger to a group practice) and the change in reimbursement system would in-
fluence 1) the reimbursement of physicians (i.e., the costs for the payers) and 2)
the numbers of served cases and provided medical services. The unit of analysis
was a region of care, where several physicians of each of the two specialties reside.
It is assumed that only one group practice is formed, while the other physicians
continue practicing alone as shown in Figure 3.4.

Figure 3.4: From all physicians of two specialties (symbolized by two different
colours) in a region of care, two form a group practice.

Additionally to the base scenario (status quo without a group practice), four
group practice scenarios were defined, each with a different reimbursement system:

• Scenario 1 : No change in reimbursement system

• Scenario 2 : Cap of case value
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• Scenario 3 : Per case flat rates

• Scenario 4 : Mixed system with per case flat rates for cases inside group
practice and cap of case values for other cases

The Cause of Dynamics

The key question for modelling the situation above as a dynamical system or, more
specifically, as a system dynamics model is what drives the dynamics. In system
dynamics terms, one or more dynamic hypotheses are necessary. Additionally, the
scenarios should lead to different behaviour of the system, because otherwise the
model would not be helpful in gaining insights on their influences.

There are two interventions that differ between the scenarios: Firstly, while all
physicians work alone in the base scenario, two physicians form a group practice
in Scenarios 1–4. Secondly, the group practice physicians get paid differently.

It was assumed that the group practice would have a direct effect on referrals.
Suppose that an internist has to refer a patient to a pulmonologist. Usually, patients
would get a referral and then seek any physician of the corresponding specialty
themselves. However, if the internist works in a group practice with a pulmonologist
it is very likely that the patient will stay in the group practice for the referral. This
would lead to a rise in cases that are referred to the group practice pulmonologist,
provided the referrals from other internists stay the same.

It is then assumed that the surplus in cases in relation to the situation before
the group practice can change the physicians’ treatment style. They might, for
example, provide fewer medical services on average, which would again reduce their
workload. Additionally, a physician with many referred cases might attract fewer
new cases, for example due to long waiting lists. A model of this will thus include
feedback loops.

Different reimbursement systems affect two unique factors. On the one hand,
doctors might get paid more or less for the same work and would eventually adapt
their treatment style (e.g., provide more services to compensate for a payment loss).
On the other hand, a different reimbursement system can change which treatment
style earns the most money. It does not make sense for a physician to provide more
unique services than necessary in order to receive greater payment in a pure per
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case flat rate system. Therefore, physicians’ income is also part of feedback loops,
whose polarity can change according to the scenario.

3.5.2 Formulation as a System Dynamics Model

Aggregation of Physicians: Four Modules

System dynamics requires the formulation of a model in terms of global variables
as stocks, flows, auxiliaries, and parameters. In the problem of the group practice
study, several physicians play a role, not only the two group practice physicians.
The structure of how cases, consultations, medical services, and reimbursement are
modelled is similar for all physicians (as if they were one type of “agent”). There
is of course some difference between specialties and between the physicians in
the group practice and other physicians, but it did not seem to be necessary to
distinguish between different physicians of the same specialty who are not in the
group practice, so they were aggregated. Overall, practically every variable in the
model exists fourfold, one per specialty and practice style (group practice versus
single practice), like in four different modules, see Figure 3.5.

Cases Group Practice 
Internist

Cases Group Practice 
Pulmonologist

Cases Other Internists

Cases Other 
Pulmonologists

New cases

Referrals

4 similar modules

Figure 3.5: The group practice model consists of four modules, because nearly
every variable exists fourfold, per specialty and practice style. They are connected
through their referred cases. It is assumed that there are nor referrals between
physicians of the same specialty.
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Technically, these modules were realised in the form of array variables, which are
a standard feature of many SD simulators. Array variables allow for the combination
of similar variables that differ only along one ore more dimensions. For example,
when modelling a population, age might be such a dimension. It is possible to count
the number of individuals in the population at every age separately. One could store
these numbers in single variables p0, p1, . . . , p99, p100+, but to create such a large
number of variables in a graphical SD simulator would be cumbersome and the
diagrams would become cluttered. Alternatively, the modeller creates only one array
variable p that is indexed by age to get single numerical values. Townshend and
Turner (2000), for example, used array variables to model population heterogeneity
for different age and risk groups in a system dynamics study on the effectiveness
of Chlamydia screening. Arrays are a convenient feature, but they do not change
the mathematical structure of the model.

The model assumes only one connection among the four different modules:
through referrals. Physicians refer a certain proportion of their patients to their
colleagues of the other specialty (specialties other than the two in the group practice
are omitted), whose cases increase through these referrals. It is assumed that there
are no referrals to other physicians of the same specialty. The proportion of referrals
to the partner in the group practice is supposed to be higher in the group practice
scenarios than before the merger, so the referral part is an important feature of
the model.

Integrating Reimbursement at Discrete Intervals in a Continuous Model

System dynamics is a continuous time method, that is, the time set is always an
interval in R. Moreover, according to the last section, while the flows as functions of
time might have discontinuities, the stocks must be at least absolutely continuous.

Reimbursement, on the contrary, has a strong time discrete nature. In Austria,
the reimbursement period is a quarter of a year for most health insurance providers.
At the end of every quarter, reimbursement takes place for all claims accrued during
that period.

The quantity that an SD stock represents might, in reality, change at discrete
times in discrete steps. Often it is justified, however, to model it continuously
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because if many discrete items are aggregated in a stock, the increase or decrease
by one item is relatively small and the continuous flow can be a good approximation
to the quantized flow (Sterman, 2000).

Reimbursement is different. After a comparatively large time interval (a quarter
of a year), all accumulated claims get cleared. The cases, consultations, and medical
services that are counted during a reimbursement period are thus reset to zero.

In principle, the flows, measured in units per quarter of year, could serve as
approximations, because if these flows do not change much they nearly equal the
state of the stocks after one quarter. However, there are two things that speak
against this approach:

1. New cases, consultations, and medical services are not stocks. They do not
accumulate a quantity.

2. Domain experts from health insurance providers would be uncomfortable
with a model that does not resemble the discrete reimbursement interval.

Therefore, the model handles reimbursement as a discrete event after every time
unit, that is, after every quarter of year. At this event, it reimburses accumulated
cases, consultations, and medical services, which are set to zero. Figure 3.6 shows
that during each quarter of year, the cases of a physician rise nearly linearly before
they are reset. The model is thus not purely time-continuous in the strict sense,
but it can be seen as an SD model that is restarted after every time unit, with
different initial values. This is different from real hybrid models that have both
continuously changing variables and discrete state events.

Cases, Consultations, and Medical Services

During each reimbursement period, the model has to simulate the quantities that are
important for reimbursement. Physicians can get paid for each individual medical
service, which are normally listed in a catalogue of accountable services. They
may also receive lump sums, either for every patient they saw in a reimbursement
period (which constitutes a case), or for each time a patient visited them (each
visit constitutes a consultation).
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Figure 3.6: The accumulated cases of one physician during one year. At the end of
every reimbursement period of one quarter of year, the cases are reimbursed and
set to zero.

It is difficult for physicians to induce new cases, because patients decide to make
first contact. On the other hand, doctors can decide for each new case how many
consultations the patient should make and how many services they provide. In the
model, the flow of new cases is multiplied by an average number of consultations
per case to get the flow of new consultations. Similarly, these are multiplied by
an average number of medical services per consultation to get the flow of new
medical services. Figure 3.7 shows how the three different quantities are related to
reimbursement.

Every module has three stocks for acumulating cases and consultations, respec-
tively, and six stocks for medical services. First, there are three types of cases:

1. Lone cases : The patient does not visit a physician of the other specialty in
the same quarter of year.

2. Cases with group practice physician: The patient visits the group practice
physician of the other specialty in the same quarter of year.

3. Cases with the rest : The patient visits not the group practice physician, but
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Cases Consultations Medical Services

Reimbursement

Figure 3.7: The flow of new consultations equals the flow of new cases multiplied
by the average consultations per case. Similarly, new medical services depend on
new consultations. All three quantities determine the reimbursement at the end of
the quarter.

one of the other physicians of the other specialty in the same quarter of year.

It was necessary to separate these because some reimbursement systems pay dif-
ferently, for example, in cases where both group practice physicians are involved.
Additionally, average consultations per case and medical services per consultation
differ between cases that are treated alone and cases involving both specialties.

Second, only a subset of medical services are billable by both specialties. These
services are of special interest, in particular examinations, because they could unnec-
essarily be provided twice, once by each of the two treating physicians. Therefore,
the model separates such services (avoidable double examinations) from medical
services that only one specialty can provide (special services).

Each of the stocks for the three quantities has just one inflow (new cases, con-
sultations, medical services) and no outflow, because they are reset by the discrete
event. However, a new case adds only one consultation (and its accompanying
medical services), whereas the other consultations are added with a third order
delay. Thus, there is an additional implicit stock and flow structure, because a third
order delay is realized with three stocks.

Feedback in the Model

An SD model without feedback is not feasible, as in this case only time-dependent
variables drive the model behaviour, which would be determined exogenously and
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not endogenously. If the real system behaved like this an SD model would be
unnecessary for understanding it.

However, it is unlikely that a real system can exist without a feedback loop. An
extreme value argument illustrates this: Suppose one million patients try to get an
appointment with one physician. The physician could not serve all these patients,
thus, there must be some feedback that dampens new cases if the physician already
has too much work. He or she can either refuse new cases or reduce the time spent
per case.

The group practice model concentrates mainly on feedback loops that involve
either the workload of physicians or their income (from reimbursement). Figure 3.8
shows the loops for workload. A physician’s workload is calculated as a certain
fixed amount for every consultation and an additional time for every medical
service. Feedback effects are given in terms of workload relative to normal workload.
Therefore, it was possible to normalize workload such that a value of 1 represents a
normal workload. The parameter values (how long is the fixed time of a consultation
relative to normal workload, how long is an average medical service) were then
calibrated, that is, an amount of cases, consultations, and services as found in the
data leads to a workload value of 1.

Physicians’ perceived workload does not change immediately, but only after a
delay. It influences the average number of consultations per case and the average
number of medical services per consultation because it is assumed that physicians
are able to decrease these under higher workload. They can also refuse certain
new patients, such that new cases decrease. Fewer new cases, consultations, and
medical services in turn decrease workload, which closes balancing (i.e., dampening)
feedback loops.

Figure 3.9 shows feedback loops involving physicians’ income. They are similar
to the feedback loops with workload, except for the fact that the number of new
cases is not influenced and that the loops can also be reinforcing, depending on
the scenario: In a fee-for-service system, physicians can increase their income by
providing more services and consultations, but with per case flat rates, income does
not change in this way. It might even be beneficial to invest less time per case and
try to attract more cases instead. Additionally, it was assumed that physicians are
more willing to work more per case without extra payment if they feel adequately
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reimbursed.
Income is only changed once per quarter of a year through reimbursement. Dur-

ing a period of reimbursement, it is constant. Perceived income, however, changes
continuously by exponential smoothing:

(3.2)
Perceived Relative Income(t)

= 1 +

∫ t

0

Relative Income(s)− Perceived Relative Income(s)
Income Adjustment Time

ds

At the beginning, doctors perceive income to be normal (i.e., perceived income
equals 1).

The feedback loops involving income are balancing for a reimbursement system
in which medical services and consultations are reimbursed separately. For a per
case flat rate system, they are reinforcing.

A cap on the average case value puts additional pressure on physicians’ be-
haviour. If the average case value is beyond the cap, the physician works for free.
The model assumes that this pressure increases gradually as the case value ap-
proaches the cap. Figure 3.10 shows the corresponding feedback loops, which are
only active in scenarios with a reimbursement cap (Scenario 2 and Scenario 4).

All feedback effects were discussed with an expert group from the health insur-
ance providers. They all involve nonlinear table functions. It is unreasonable that
doctors would be able or even willing to change their treatment style (e.g., average
number of medical services) too far from the norm. Therefore, in general the change
of effect (for example, of income on number of medical services) decreases farther
away from the norm values. The resulting table function is s-shaped, not linear. It is
difficult to parametrize these relationships from data, so the assumptions involved
the opinion of the experts.

3.5.3 The Group Practice Model in Use

Most parameters, such as the normal number of services per consultation, the nor-
mal income for each specialty, and normal case numbers, could be derived from the
average values in data taken from health insurance providers. The simulation in the
base scenario (present situation with no merger to a group practice) should repro-
duce these values. Therefore, the few parameters that could not be parametrized
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Figure 3.8: A higher workload increases (with a delay) physicians’ perceived work-
load, which causes them to reduce the average consultations per case and medical
services per consultation. Additionally, they can refuse new patients, which reduces
new cases. All three effects decrease their workload, which closes balancing feedback
loops.

Relative Income
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Figure 3.9: A higher income increases (with a delay) the income relative to the target
income of physicians. This in turn increases their perceived relative income, which
causes them to reduce the average consultations per case and medical services per
consultation. (In a reimbursement system with per case flat rates, the polarity of this
link changes.) Fewer consultations per case and medical services per consultation
decrease income, which closes balancing (reinforcing) feedback loops.
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Figure 3.10: With a cap on the average case value (reimbursement per case), the
higher the actual case value is in comparison to the cap the less desirable it is for
the physician to work more. This in turn decreases the case value, which closes
dampening feedback loops.

with the available data (the fixed value of workload for a consultation and the
workload per medical service, which was assumed to differ between specialties)
were calibrated to match this condition.

The other scenarios simulate the forming of a group practice. As the system
is in equilibrium before the merger, it is possible to start the model with the
corresponding initial values and the parameters set to the values after the merger
(i.e., the two group practice physicians work together right from the start of the
simulation).

Many feedback loops of the model are dampening. This makes the simula-
tion runs very stable: The model quickly approaches an equilibrium. In general,
the values of the variables (e.g., cases, income, case value) after 12 quarters are
compared.

Overall, two different specialty combinations (internist and pulmonologist) and
parametrizations from two different health insurance providers (regional health
insurance of Vienna and of Upper Austria) were analysed. All scenarios were
simulated with standard assumptions as well as with the assumptions that either
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the group practice physicians could acquire more new cases (e.g., because of longer
opening hours) or that they would double their referral rates. For the results, see
Einzinger et al. (2014).

The implementation as an SD model had an important benefit: Simulations
take only a few seconds. It was thus possible to create a decision support tool with
which clients can analyse the results for a large set of different parameter values
without needing to work with the original model. The decision support tool is
implemented in a standard desktop spreadsheet software and contains the results
of about 1.4 million pre-calculated simulation runs (Jung, Einzinger, Pfeffer, &
Popper, 2014).

3.6 Conclusions

This chapter introduced SD as a method to specify a dynamical system. While
differential equations are not specified directly, each feasible SD model has an
equivalent differential equation system. It is reasonable to allow a generalized
solution concept in the sense of Carathéodory because in applications the right-
hand sides can have discontinuities.

The group practice model is one example of how SD was applied to a real world
problem involving different health care reimbursement systems. It was only possible
to use SD because the physicians outside of the emerging group practice could
be aggregated. On the other hand, the method allows for concentration on the
feedback loops that create the dynamics of the system, and the simulations are fast,
which is a precondition for analysing a large number of different parameter settings.
These features are important for comparisons with other modelling methods.
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Chapter 4

Agent-Based Modelling and
Simulation

4.1 Introduction

ABMS is the second modelling technique of this thesis. There are several important
differences to SD:

• It typically models a large number of individuals who constitute the system
(bottom-up view).

• There are different definitions of what constitutes an agent and, therefore,
an agent-based model.

• Agents are not restricted to consist of only a few different elements, in contrast
to SD models.

• There are no standard diagrams for conceptual modelling.

The present chapter gives an overview on the roots of ABMS and different
definitions of the concept. We also propose a working definition that is adapted
to our purpose but does not claim to be universal. Finally, an example of an
agent-based model for the comparison of reimbursement systems is presented.

53
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4.2 The Roots of Agent Based Modelling and Sim-

ulation

ABMS is, compared to SD, a rather new modelling method. It has its root in the
study of complex adaptive systems (CAS), which consist of a potentially large
number of interacting individual components and can adapt, for example to a
changing environment. Many biological systems (e.g., an ant colony) have these
characteristics and thus served as a motivation for the emergence of CAS (Macal
& North, 2010; North & Macal, 2007, p. 45).

Schelling (1971) proposed one of the first models of a social system that can
be called agent-based. In his model, two types of people (agents) are placed on a
rectangular area partitioned into rows and columns (Figure 4.1). Each individual is
discontent if the proportion of people of the same kind in his or her neighbourhood
(the nearby cells) is under a threshold. The discontent individuals move to another
free place where they are content. Surprisingly, even if people demand only half of
their neighbours to be of their own kind, strong segregation emerges.

Schelling’s model is a good example of agents with only one simple rule and
a global behaviour (segragation) that is not obvious from the behaviour of the
individuals. It can be simulated without the use of a computer, for example with
two different kinds of coins on paper or on a chessboard. The discrete space of the
model is one possibility of an environment for agents, which shows the relationship
with cellular automata. Other fields that influence ABMS are artificial intelligence,
network science, and the study of complex systems.

4.3 The Building Blocks of Agent-Based Models

According to Macal and North (2010), an agent-based model or system typically
consists of three parts:

• The agents of the system with all their properties and their behaviour.

• Interactions and relationships (e.g., through a connection network) between
the agents.
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Figure 4.1: In this example of the Schelling segregation model, two types of indi-
viduals (red and blue) live in an environment that consists of cells arranged in 19
columns and 13 rows.

• An environment where the agents live and with whom they interact.

The agents are of course a necessary component of every agent-based model.
Additionally, an agent-based model without some kind of interaction between the
agents would not have any advantage over simulating each agent individually, such
as in a microsimulation model. Agents without an environment (e.g., an underlying
space) are, on the other hand, imaginable.

In the Schelling model of the last section, the people who live on the rectangular
grid are the agents. The space with its cells is the environment. Individuals are
only influenced by other people in their neighbourhood, that is, in the surrounding
cells, which clarifies the relationships of the agents.

A key problem is that there is no single definition or set of requirements for
what constitutes an agent. Before proposing a working definition of an agent-based
model, we therefore give an overview of typical properties of agents in the literature.
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4.3.1 What Constitutes an Agent

There is not yet any standard definition of an agent. This does not have to be a
general problem:

Over the years, this interest in finding a formal consensus decreased
and emphasis was placed on application domains of the agent paradigm.
Fortunately, as other scientific areas show as well, a commonly agreed-
upon definition is not a prerequisite for the success of a concept in
practice. (Tolk & Uhrmacher, 2010, p. 76)

On the other hand, many agent definitions overlap substantially. They can serve
as a starting point for a working definition.

On the most basic level, an agent is at least an object, because it has both
attributes and behaviour (North & Macal, 2007, p. 24). This shows the strong
relationship with objects in object-oriented programming, where the attributes of
an object are its fields (variables) and its behaviour are its methods (functions).
Therefore, it is natural that most implementations of agent-based models use object-
oriented programming.

D’Inverno and Luck (2004, pp. 15–17) propose the framework SMART for
agency, which consists of a hierarchy of the terms

1. Entity

2. Object

3. Agent

4. Autonomous Agent

Each term has one additional definition compared to the preceding term. Entities
are just a collection of attributes. Objects, as stated above, also have behaviour,
agents have goals, and autonomous agents have motivations ; they “pursue their own
agendas as opposed to functioning under the control of another agent” (d’Inverno
& Luck, 2004, p. 17). All objects are entities, all agents are objects, and all
autonomous agents are of course agents.
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The key to what agents add to pure objects in SMART are the goals. For
d’Inverno and Luck, a goal is a state of the world that should be achieved. The
problem is that it is open to subjective interpretation if an object of a simulation
has such a goal. Does a ball bouncing on a surface have the goal of obeying the laws
of physics? Do individuals in an agent-based epidemic model, who have contacts
and potentially infect each other, have any goals? If not, is such a model not agent-
based, but rather consists just of objects? (Maybe individual-based would then be
a better term for these models.)

It seems that goals play a bigger role in the modelling process as guidelines for
the modeller on how agents should behave in specific circumstances. For example,
an agent who controls orders to a producer further upstream in a supply chain
models an individual in the real world. If he wants to incorporate realistic behaviour
the modeller can ask which goals that individual might have. The agent in the
model should select a behaviour that can at least be believed to be able to fulfil
these goals.

The selection mechanisms of behaviour are a further characteristic of agents.
They have rules for how to choose an action based on their goals, their state, and
the state of the environment (or rather, their knowledge of the environment). North
and Macal (2007, pp. 27–28) add that agents are also adaptive because they have
selection rules (“rules to change rules”). This allows agents to adapt their behaviour
and to learn. In the view of North and Macal, objects that lack one or more of the
necessary features of agents, such as adaptivity, are proto-agents.

There are several other characteristics of agents in the literature. Wooldridge
(1997), for example, requires the following four properties:

• Autonomy: Agents have their own encapsulated state that is not directly
accessible to other agents, and they can decide on their own actions.

• Reactivity: Agents live in an environment, which they can perceive and where
they can take actions in reaction to changes in this environment.

• Pro-activeness: Agents can also take actions on their own initiative in order
to pursue their goals.
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• Social ability: Agents communicate with each other and can use their com-
munication to achieve their goals.

Epstein (1999) adds further characteristic features of agent-based models:

• Heterogeneity: Typically, agents differ in their characteristics. For example,
they may have different parameter values (e.g., age or body weight of a patient
agent).

• Explicit Space / Local Interactions: Agents are often situated in a spatial
environment, such as a three-dimensional euclidean space or a network. In-
teractions are often restricted to the local surroundings (e.g., neighbours).

• Bounded Rationality: Agents typically do not have knowledge of everything
in their environment, and their computing power is limited, for example to
the use of heuristics to find an optimal decision.

An important problem is that, as Drogoul, Vanbergue, and Meurisse (2003)
note, these terms are weak and metaphorical. There is no direct translation into
computational properties. The same is true for formal mathematical modelling.
However, a formal description of agents should be guided by the concepts listed
above.

4.3.2 Agent-Based Models as Dynamical Systems

We restrict our formal description to discrete event agent-based systems, such
that only a finite number of changes can happen in a finite time interval. The
global time set should be a continuous subset of R. Most often, it will be the finite
interval [0, tend] for tend ∈ R+. A good starting point are the discrete event system
specification (DEVS) formalisms, which were originally developed by Zeigler et al.
(2000).

A DEVS has an input and an output set. It can send an output from its output
port to the input port of a DEVS to which it is coupled. The message passing of
agents does the same, with the exception that agents do not have to obey a strict
coupling. A network among agents might exist that restricts the messages that can
be passed, but it could change.
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There are extensions of the DEVS formalism that incorporate such a change
in structure (Barros, 1997). Based on these dynamic structure DEVS approaches,
several authors have tried to create formalisms for agent-based systems, such as
Duboz, Versmisse, Quesnel, Muzy, and Ramat (2006) and Steiniger, Krüger, and
Uhrmacher (2012). However, we try to keep it as simple and abstract as possible.
The network description, for example, should not be an explicit element of the
definition.

Another problem with most existing DEVS approaches is that they are deter-
ministic, while many applications only allow stochastic descriptions of agents, in
particular in health care. It is usually not possible to model for example disease on-
set as a deterministic event. Instead, stochastic rates are used. A formal description
for agent-based modelling should thus allow stochastic elements.

Actually, deterministic DEVS formalisms can be used for stochastic modelling.
A DEVS consists of sets and functions. One such function, for example, is the
internal transition function δint. In an internal transition, it maps the old state x1

to a new state x2. If we add a random number as an argument of the function the
result becomes stochastic.

For a more rigorous and general incorporation of randomness in DEVS, the con-
cept of probability spaces is necessary. Castro, Kofman, and Wainer (2010) propose
a formalism, STDEVS, that substitutes the internal and external transition func-
tion of classic DEVS with new functions Gint, Gext, Pint, and Pext. These functions
generate a probability space that depends on the present state of the DEVS. Thus,
a new state is not deterministically chosen, but stochastically from the probability
space on the state space.

Could STDEVS serve as a formal definition of agent-based models? To answer
this question, we have to think about what should be part of an agent and what an
agent should be able to do. First, agents should have a state. Only an agent itself
should be able to change its state directly because of autonomy. On the other hand,
agents must have the ability to communicate with each other (social ability). In
order to achieve this, they pass messages out of some message space to other agents.
Agents should be able to both react to messages and act pro-actively on their own.
Note that for finding out about the state of another agent, an agent should have to
send a message and wait for the reply. Every agent is fully autonomous and should
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not have to reveal its state if it does not want to.
Indeed, a DEVS produces output values from an output set Y , which can be

seen as messages to other DEVS. It has a state (which is an element of the state
space X), and only its own transition functions can change this state directly
(autonomy). The external transition functions represent the reactive component of
the DEVS, while the internal transition functions allow it to act on its own.

However, agents should not be restricted to only send messages to connected
agents. They should be able to choose a certain receiver or even to randomly select
one. A problem is that a DEVS does not “know” other DEVS in its environment.
In order to select one receiver randomly, each agent would thus have to store a list
of all other agents, which is undesirable.

We propose another mechanism: When an agent produces an output (i.e., sends
a message), it attaches a parameter called a mode m. This parameter could rep-
resent, for example, the intention to send the message to a random receiver. The
environment of the agent then forwards the message according to the mode the
sender specified. We can thus define agents similar to the STDEVS:

Definition 4.1 (Agent). An agent is a tuple

A = (U,X, Y,M,Gint, Gext, Pint, Pext, λ, ta),

where

• U is the input set,

• X is the state space,

• Y is the output or message set,

• M is the set of modes,

• Gint:X → 2X is a function that assigns a subset of X to every state x,

• Pint:X × 2X → [0, 1] maps a subset of X to a probability dependent on the
present state,

• Gext:X × R+
0 × U → 2X is a function that assigns a subset of X to every

state x, elapsed time e since the last event, and input message u,
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• Pext:X×R+
0 ×U×2X → [0, 1] maps a subset of X to a probability dependent

on the present state, the elapsed time, and the input message,

• λ:X → Y ×M is the output function, and

• ta:X → R+
0 is the time advance function.

For a given state x, the probability space for an internal transition is given by
(X, σ(Gint(x)), Pint(x, .)). Similarly, the probability space for an external transition
is (X, σ(Gint(x, e, u)), Pext(x, e, u, .)).

The agents are together situated in an environment. This is the analogue to a
coupled DEVS model. In this case, however, it must also be able to distribute a
message to a random receiver, based on the mode of the message.

Definition 4.2 (Agent-Based Model). An agent-based model consists of agents in
an environment, which is given by the tuple

N = (UN , YN ,MN , D, {Ad}, Gρ, Pρ, {Rd}, {Zi,d}, Select),

where

• UN , YN , and MN are the input, output, and set of modes analogue to the
agent definition,

• D is the set of agent references, such that for each d ∈ D, Ad is the corre-
sponding agent,

• Gρ:MN → 2D∪{N} is a function that assigns a subset of all agents including
the environment to every mode m,

• Pρ:MN × 2D∪{N} → [0, 1] maps a subset of all agents including the environ-
ment to a probability dependent on the mode,

• Rd:Md →MN is the mode translation function for d ∈ D,

• Zi,d is the message translation function from i to d, where ZN,d:XN → Xd

for i = N , Zi,N :Yi → YN for d = N , Zi,d:Yi → Xd otherwise, and
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• Select : 2D → D is the selection function that controls the priority of simul-
taneous events. For every subset of agents, it chooses one agent out of this
subset.

The agent-based model is thus similar to a coupled DEVS model, but the output
of an agentAd is not simply passed to connected agents. Instead, the output message
has a mode m with it, which is translated by the mode translation function Rd to a
mode m′ ∈MN of the environment. According to this mode, the functions Gρ and
Pρ construct a probability space on the set of all agents including the environment
itself. This models that the message can go to any other agent or to the output of
the environment.

The definition is already rather complex, but still it applies only to a restricted
subset of all commonly used agent-based models, because it does not allow for
agents to be created or destroyed. However, the formalism is powerful enough to
represent, for example, the agent-based version of the physician reimbursement
model that will be presented in Chapter 6, because there the agent populations
will be fixed.

Unfortunately, it is not clear how to construct the probability space that is
needed in Definition 2.13 for a stochastic state transition map in order to derive a
corresponding stochastic dynamical system. On the other hand, implementation of
an agent-based model has to rely on random numbers and in particular, on a stream
of uniformly distributed random numbers r∼U (0, 1). A fixed countably infinite
sequence of such random numbers leads to a unique system trajectory. Thus, for
agent-based models with probability spaces that can be represented by random
numbers there is a corresponding stochastic dynamical system whose underlying
probability space consists of countably infinite sequences of random numbers.
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4.4 Case Example: The GAP-DRGModel for Com-

paring Reimbursement Systems in Extramural

Health Care

4.4.1 Introduction

Apart from group practices, the choice of reimbursement system is also generally
important. According to Czypionka, Riedel, Obradovits, Sigl, and Leutgeb (2011),
it provides strong incentives that influence the provision of medical services, both
in the negative and positive sense. They summarize in their work the economic
theory of optimal reimbursement, which analyses theoretical economic models to
ascertain the effects of reimbursement systems. For example, Ellis (1998) states
that cost-based (fee-for-service) payment leads to over-provision of services, while
prospective payment, where only a lump sum is paid, results in under-provision of
services to high-severity patients.

The GAP-DRG (General Approach for Patient-oriented Ambulant DRGs) project
of the Main Association of Austrian Social Insurance Institutions was a research
project on per case flat rates in the extramural health care sector. It was based
on a comprehensive database of reimbursement data from practically all Austrian
health insurance providers and data on all hospital cases. The reimbursement data
were originally linked to the unique social security numbers of the patients, but
to assure privacy, all these numbers were converted to pseudonyms. The database
originally encompassed a time frame of two years, 2006 and 2007.

One goal of the GAP-DRG project was to develop medically and economically
homogeneous diagnosis related groups, based on the available reimbursement data,
and to assign flat rates to these groups. The second goal was to develop a model
to analyse the influence of different reimbursement systems, especially of flat rates,
on costs compared to the reimbursement system currently in use.

To achieve this last goal, the problem was depicted as in Figure 4.2. It shows
what has to be modelled to explain reimbursement. Medical problems (i.e., diseases
and other conditions) are probably the primary cause of patients consulting a
medical provider, who provides medical services based on his or her treatment
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decisions. Reimbursement, in turn, depends on these provided services and on the
reimbursement system. Of course, medical services might also be paid for with
lump sums if a flat rate system is in use.

Figure 4.2: Patients and medical providers are the two main types of individuals.
Patients have medical problems and consult providers, whose treatment decisions
lead to the provision of medical services. Based on these medical services and
depending on the reimbursement system, the payer reimburses the providers.

The model had to allow for the analysis of reimbursement of every specialty
(e.g., internists, general practitioners, ophthalmologists) and preferably also of the
distribution of this reimbursement. All physicians with a given specialty do not
necessarily have the same treatment style and provide the same services, so differ-
ences in the payments that individual physicians receive are to be expected and
should be possible in the model. Finally, patients might consult different providers
if something in the system changes. For example, there might be a scenario where
patients always must go to their family physician first and cannot consult a more
specialized physician directly. To which physicians the patients then go will be
dependent on what these physicians offer.

For these reasons, an agent-based approach seemed to be the most suitable
method for building the model. Patients and medical providers were obvious can-
didates for agents. Agent-based models have also the flexibility to map the process
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from the onset of patients’ medical problems to the provision of medical services
and on to reimbursement in a level of detail where even single services can be simu-
lated. The next section describes the structure of the GAP-DRG model (Einzinger
et al., 2013), which was designed to fulfill these requirements.

4.4.2 Formulation as an Agent-Based Model

Basic Structure

Figure 4.3 shows the structure of the model in terms of its objects. It contains two
agent types, the patients (Patient1) and medical providers (MedicalProvider).
Both are embedded in a common environment (Main).

Figure 4.3: The structure of objects in the model. The object Main is the en-
vironment; all other agents and objects are embedded in it. Medical providers
(MedicalProvider) and patients (Patient) are the two types of agents. Patients
can develop medical problems (MedicalProblem), which they store internally (i.e.,
they are part of the patients’ state). Additionally, there is a health market ob-
ject (HealthMarket) in the environment that handles the requests of patients for
providers. An exchangeable reimbursement system object ReimbursementSystem
handles reimbursement.

Patient agents have the rules that they consult providers depending on their
medical need, which is ultimately determined by their medical problems. They
might also consult a physician for medical check-ups without any disease, but this
probably counts only for a minority of cases, and grouping mechanisms of per case

1Class names and variable names are written in typewriter font.
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flat rates are usually based on diagnoses, so the change in reimbursement system
would mainly concern cases with a medical problem. In the model, patients can
get one or more medical problem objects, which they store internally.

A central health market object (HealthMarket) handles the search of patients
for providers. It stores the position of each provider. If a patient sends a request to
the health market, it only returns providers within an acceptable distance of the
patient. This is one example of locality and limited knowledge that is typical of
many agent-based models.

The reimbursement system (ReimbursementSystem) is also an object in the
agents’ environment. Medical providers communicate with it similarly to in real life.
For each visit, they send information on the visit (patient number, date, provided
services, diagnoses) to the reimbursement system, which performs reimbursement
at the end of each reimbursement period (a quarter of a year).

One important strength of the models’ design is that ReimbursementSystem
is an abstract class. Therefore, concrete implementations of this type are easily
exchangeable. All reimbursement systems have to obey the same interface. The
providers always send all the information that any reimbursement system could use.
A reimbursement system with per case flat rates would therefore get information
on the provided medical services and the diagnoses, even though it only uses the
diagnoses to calculate the reimbursement. A fee-for-service system, on the other
hand, ignores the diagnoses and pays for each single service.

The simulation period is usually the years 2006 and 2007 because the available
data for parametrization are also from this period. A simulation with the present
reimbursement system should therefore closely reproduce the data, whereas an
alternative scenario with another reimbursement system shows what would have
happened in those years with this other system.

Model Assumptions

As the model maps the whole process of service provision in great detail, simplifying
assumptions are necessary. There are typically thousands of different diagnosis
codes in classification schemes such as the International Statistical Classification
of Diseases and Related Health Problems (ICD), and the number of treatment
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decisions is similarly complex. Typical health care models focus on one specific
disease, its co-morbidities and its treatments. But the reimbursement system in
extramural health care concerns all medical problems that are treated there. This
also makes parametrization of the model more difficult. Therefore, the approach
presented here treats medical problems in a generic way, such that for every disease,
the same statistical analyses can be used to derive which medical services patients
typically get.

Since, for example, the prevalence of medical problems depends on demographic
attributes, the patient agents also have age and sex as parameters. The demogra-
phy of the agent population corresponds to the Austrian population according to
official statistics. However, Austria has more than eight million inhabitants, which
causes memory problems in simulations with the same number of patient agents,
so simulations were typically performed with a scaling factor of 0.1, such that one
agent in the model represents ten individuals of the real population.

Patient agents have an exact age, which increases during the simulation. How-
ever, for the parametrization with statistical analyses it was useful to work with a
classification into age groups of five years, with the exception of the first and last
age group, which contain newborns in their first year of life and people over the
age 90, respectively.

The model incorporates births and deaths of the patients, which all happen in
one single event in the middle of each year to avoid the scheduling of a large number
of additional events. The number of newborn patient agents is fixed according to
the birth numbers from official statistics of the two years 2006 and 2007. It does
not depend, for example, on the number of women of fertile age in the simulation.

Mortality, on the other hand, depends on the individual patient. In the middle
of every year, the simulation tests each patient against a death probability to
determine whether he or she survives. This probability changes with age, and
morbidity can have a strong influence.

It would be problematic to not consider the effect of medical problems on
the mortality of patients in the model because in this case, individuals without
any diseases would die at the same rate as highly multi-morbid individuals. As
a consequence, the proportion of multi-morbid individuals, especially in old age,
would be too high. Information on the numbers related to causes of death are
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available from official statistics, so a methodology was developed that allowed us
to incorporate the knowledge of how many death cases a certain medical problem
causes directly (Einzinger, Jung, & Pfeffer, 2012).

Theoretically, all diseases that are treated in the extramural health care sector
have to be incorporated into the model, but they were reduced to a manageable
number of selected chronic diseases on the basis of their prevalence and economic
importance. Specifically, these selected diseases are:

1. Diabetes

2. Hypertension

3. Coronary Heart Disease

4. Asthma and COPD

5. Degenerative Joint Disease

6. Chronic Back Pain

7. Incontinence

Obesity and the acute conditions intestinal infectious diseases, acute respiratory
infections, pneumonia, and influenza were also considered for inclusion as medical
problems. However, it was impossible to identify obese patients in the reimburse-
ment data, and the identification of acute episodes also poses serious problems.
These medical problems were therefore excluded.

Patients can either already have a medical problem at the beginning of the
simulation or get it during the simulation. The first case is determined by the
prevalence of the disease, which is treated as a probability in the model. It is tested
for every patient and every disease if the patient has the disease at simulation start.
Assume, for example, that the prevalence of a certain disease is 0.1 in a particular
age class of female patients, then such a patient has a probability of 0.1 of having
the medical problem at simulation start.

On the other hand, patients who do not have a certain medical problem can
get it depending on the incidence rates of the disease. It is assumed that the time
until a patient develops a particular disease is exponentially distributed (however,
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the incidence rate changes if the patient arrives at a higher age class). If a patient
can develop k different diseases with the incidence rates λ1, . . . , λk the time to the
development of the first additional disease is also exponentially distributed and has
the sum of the individual incidence rates as its overall rate. Therefore, the model
always draws the time of the next incidence of a disease for a patient, and then the
patient agent determines the particular disease (the probability for each disease is
the proportion of its corresponding incidence rate to the overall rate).

An important additional assumption is that the different diseases are indepen-
dent of each other, that is, patients have the same probability of developing, for
example, a coronary heart disease regardless of whether they already have hyperten-
sion and diabetes or not. This simplifies model calculations and the parametrization
from data, but is clearly only a crude approximation for some disease combinations
such as in the example above. Future research will need to analyse and probably
include correlations between related medical problems.

The next question is which health care need patients with a specific combination
of medical problems have and where they receive medical services. Service need in
the model is expressed as services listed in the Meta-tariff catalogue from Austrian
health insurance providers, which includes medical services such as intravenous
injections and electrocardiograms. Overall, the catalogue comprises over a thousand
different services.

The information on which medical services a patient with a diseases such as
diabetes typically consumes during one reimbursement period (i.e., a quarter of
a year) was derived statistically from the available reimbursement data. Patient
diagnoses are not registered in the data, so it was necessary to use drug prescription
data as an indicator for the diagnoses. Weisser, Endel, Endel, and Filzmoser (2010)
developed a method that allows probabilities for diagnoses to be derived from the
drugs that a patient receives. For example, a patient with a prescription for insulin
has diabetes with a 100 % probability, because only diabetes patients get insulin.

Based on these relationships between drug data and diagnoses, the statistical
experts in the project team evaluated which services patients with each of the
included medical problems typically get and with what frequency. These services
are the ones that often occur in a fixed time period around a diagnosis, that is,
around a drug prescription that indicates the diagnosis. Figure 4.4 shows how
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the frequencies of the services were counted. The most frequent services build the
service bundle for the medical problem. A cut-off point was determined to decide
how many of the most frequent services would be included.

Figure 4.4: Example for the derivation of service bundles from reimbursement data.
It shows two-year timelines (2006 and 2007) for three patients. The stars represent
a diagnosis of a particular disease or, more exactly, that the patient has a drug
prescription that is linked statistically to that disease. Medical services that the
patients got within 92 days of a diagnosis are counted. In this case, Service 1
would be counted four times and Service 2 would be counted once. The services of
Patient b do not count for this medical problem because he or she did not have
the corresponding diagnosis.

Each service in a service bundle for a specific medical problem has a corre-
sponding frequency distribution, which states how many times patients with that
diagnosis got the service in a quarter of a year where they had the diagnosis. In
the simulation, once per quarter every one of a patient’s medical problems sam-
ples from these frequency distributions. Thus, each medical problem generates its
service need.

A crucial assumption is how the various diseases of a multi-morbid patient
contribute to the patient’s overall medical need. In the GAP-DRGmodel, a patient’s
need is the maximum need of any of his or her medical problems in the same quarter
of a year. Suppose, for example, that a patient has diabetes and hypertension, and
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that his diabetes samples two intravenous injections, while his hypertension samples
one intravenous injection and one electrocardiogram. The overall service need of
the patient is then two intravenous injections and one electrocardiogram.

While the medical services that correspond to a diagnosis are an input to
the model, the specialties where the patients get these services are endogenously
determined. The idea is that the specialties differ in terms of their service portfolios,
which comprise all medical services that a physician may provide. For every specialty
and service, the percentage of physicians who got the service reimbursed at least
once in the two year period captured by the reimbursement database was evaluated
and serves as the probability that a medical provider in the model is initialized
with the service in his or her portfolio.

Every quarter of year, all of a patient’s medical problems generate their service
need. The patient then sends a request to the health market with his position and
his overall service need. First, the health market checks for two conditions:

1. Only physicians inside a search distance of the patient are eligible. The search
distance can differ. General practitioners have a lower search distance, while
there is no such limitation for laboratories.

2. All medical providers have only a limited capacity per day for treating patients.
This was assumed because single physicians with favourable service portfolios
should not attract an unreasonable number of patients. Patients register in a
first-in, first-out queue. If the queue is too long, new patients will not receive
this physician from the health market.

Figure 4.5 shows an example of how these conditions are applied.
After the health market has found a list of eligible providers, it has to determine

which of these providers the patient should consult. On the one hand, they should
cover the patient’s service need. On the other hand, the patient should not consult
unnecessary providers. The selected physicians should cover the services in an
optimal way, which means that a minimal number of physicians should cover as
many services as possible. A selection of physicians is better then another selection
if it meets more of the service need. If two selections cover the same amount of
services, then the selection with fewer medical providers is better.
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Figure 4.5: Patients and medical providers are distributed on a two-dimensional
rectangular space. If the patient in the lower left corner needs physicians to provide
medical services, she can choose only among the two physicians who are inside
her search distance (red circle). One of these two providers already has too many
patients in his or her queue, so only one provider is left in this example.
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Figure 4.6: In this example, a patient needs three different medical services. Three
physicians are available for the patient. He tries to cover the services with as few
providers as possible. One physician alone does not provide all three services, but
the patient can cover his service need with only Physician A and Physician C.

Mathematically, this optimization describes a variant of the minimum set cover
problem: For a universe U and a collection S = {S1, . . . , Sk} of subsets of the
universe, what is the minimum subset of S that covers the maximum possible
amount of elements of U? In the case of the provider search, the service need is the
universe U and the service portfolios of the physicians (more exactly, the services
in the portfolios that are also part of the service need) are the collection S.

The minimum set cover problem is an NP-hard problem. However, the greedy
algorithm, which consists of choosing in each step the element of S that covers
the largest number of still uncovered elements of U, is an efficient approximation
algorithm (Vazirani, 2003, pp. 16–17). The health market uses the greedy algo-
rithm, with a few alterations: Some specialties cannot be consulted by all patients.
Only children and adolescents can go to paediatricians, and only women may visit
a gynaecologist. Furthermore, it is not possible to consult a laboratory without
a referral, so the algorithm can only pick laboratories after another specialty. Fi-
nally, patients can go only to one medical provider with a given specialty per
reimbursement period.

A further question is how many visits to the returned providers a patient makes.
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Physicians can provide each different service once in one visit. If a patient consults
a physician and needs two intravenous injections, then she will get only one on
the first visit. Earlier versions of the model included the rule that patients always
visit a physician with the average frequency of visits in a quarter of a year that
patients had in the database, restricted to quarters of year where they visited the
corresponding specialty at least once. However, the validation process showed that
this leads to undesirable effects: If the service need includes only medical services
that the patient should get once, more then one visit is unnecessary. Conversely,
if the patient needs a medical service several times, she might not get the right
amount.

Therefore, the assumption was changed. Patients make visits to providers as
long as there are no services left that the patient needs and the physician can
provide. Thus, the service need and the portfolios of the providers determine the
number of visits.

Every time that medical providers treat a patient in their queue, they send a
message with a visit object to the reimbursement system. Visit objects include
the ID of the provider and the patient, the date of the visit, and information for
reimbursement such as provided services and the diagnoses that were treated.

The reimbursement system stores the information it needs. A per case flat rate
system, for example, can ignore the individual medical services, but it needs to
know which of a patient’s medical problems were treated and which physicians he
consulted. At the end of a reimbursement period, several reimbursement statistics
are updated. For example, the reimbursement system stores how much payment
each specialty received in a quarter of year. The model saves these statistics to
text files for later analysis.

4.4.3 Validation of the GAP-DRG Model

The model maps the health care process, from the occurrence of diseases to the
reimbursement of medical services, in great detail. Many assumptions were nec-
essary, and a big part of the process arises endogenously in the simulation; it is
not directly specified as input. It is thus not clear from the outset that the model
produces patterns similar to reality. Therefore, external validations that are only
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partly dependent on the source data are possible (Eddy et al., 2012). Various
measures from the simulation can be compared with analyses of the data, such as
how many different specialties patients consult during a quarter of a year and how
many times a medical service is provided (of a particular specialty, for a certain
medical problem type).

One example of the importance of the validation process concerns the number
of different specialties consulted in one reimbursement period. While the average
numbers from the model and the database were similar (1.66 in the model versus
1.48 in the data), the differences in the distributions, which are shown in Figure 4.7,
are more pronounced. Fewer patients in the model than in the database have contact
with only one specialty, but more with two different specialties.
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Figure 4.7: The distribution of the person-quarters of year in which a patient
consulted a given number of different specialties under normal parameter values of
search distance and provider capacity, from evaluations of the database and from
the model.

In the model, there are two types of parameters with high uncertainty: the
patients’ search distances and the providers’ capacities. The assumed standard
values were probably rather low. For example, the search distance for a general
practitioner was 5 kilometres in the model, and physicians had a capacity of 20
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cases per day during a week.
Sensitivity analyses showed that while qualitative results on the relative differ-

ences between reimbursement systems did not change with higher values for these
parameters, there was a significant influence on the number of specialties that pa-
tients must consult. As Figure 4.8 shows, the proportion of quarters of year where
patients consulted only one specialty nearly matched the value from the database
at higher parameter values. The proportion consulting two specialties is still higher,
but also closer to the data. A further increase in the search distance and the ca-
pacity of the providers would improve this, but the proportion of person-quarters
with three or more consulted specialties is already a bit too high and would become
worse. Other (and probably more complex) adaptations are necessary to obtain an
even better fit.
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Figure 4.8: The distribution of the person-quarters of year in which a patient
consulted a given number of different specialties under higher parameter values of
search distance and provider capacity, from evaluations of the database and from
the model.

This example shows that a model of such detail also needs quite detailed vali-
dation tests, as many different aspects of the model have to correspond with the
data. On the other hand, this testing of assumptions and theories provides an
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opportunity to gain knowledge on processes related to health care.

4.4.4 The GAP-DRG Model in Use

Several scenarios with different reimbursement systems were implemented using
the GAP-DRG model. In addition to the overall costs for extramural health care,
deferrals of costs between the specialties are of great importance.

Working with the model showed that the fair design of per-case flat rates as
reimbursement systems is not an easy task. Simple sharing mechanisms for the flat
rates, such as the equal distribution to all involved medical providers, can lead to
less income for physicians who normally provide a large portion of medical services,
while doctors who only provide a few services to a case might be better off.

Results have to be taken with caution as issues like the one shown in the last
section appear and are currently being used to improve the model. On the other
hand, work with the model generates new insights that are often plausible and at
least thought-provoking impulses.

Simulations of the GAP-DRG model take much longer than simulations of
the group practice model. It is thus not possible to analyse a huge number of
combinations of parameter values. Additionally, simulation runs have statistical
variation, though it is small compared to the differences brought about by different
reimbursement systems.

4.5 Conclusions

This chapter presented agent-based modelling and simulation with both its differing
but largely overlapping characteristics in the literature and discussed attempts at
creating a formal definition. Most notably, the method is based on the simulation
of often a large number of individuals in a bottom-up approach and is very flexible.
As we defined it, ABMS describes stochastic systems and uses discrete events where
agents can change their own state and interact with other agents as well as the
environment in which they live.

The case example of this chapter was the GAP-DRG model. It is far more
detailed then it would be possible with an SD model. This greater level of detail
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provides additional opportunities for assumption testing, but comes at the price of
more sources of error and the need to conduct more validation tests.



Chapter 5

Comparison of SD and ABMS

5.1 Introduction

Many different modelling methods allow for the formulation of models as dynamical
systems. Examples besides SD and ABMS are traditional process-oriented discrete
event simulation, Markov cohort models, and microsimulation models.

It is possible to represent a problem with practically any modelling method
(Roberts et al., 2012). While ordinary differential equations, for example, usually
describe individuals in a population in an aggregated way, they could be used to
describe each member of the population individually. (Though we have restricted
agent-based models to a discrete event timing, in a wider sense agent-based models
can allow each agent to be described with differential equations.) This would of
course yield a large number of equations and forfeit the advantages of an aggregated
description. Depending on the problem, one modelling method can therefore lead to
a more natural and compact model formulation than other methods. It is thus useful
to analyse the attributes of the modelling methods under investigation, SD and
ABMS, and to describe which characteristics of problems favour their utilization.

Different modelling methods focus on different aspects of a problem. Examples
are feedback in SD models and emergent behaviour, that is, global behaviour that
arises from the actions of individuals, in ABMS. On the other hand, some aspects
have equivalent descriptions in various modelling methods. For instance, both
SD and ABMS model change, because they are methods of describing dynamical
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systems. SD does this with its flows, while in a discrete event ABMS model, events
change the state and are often scheduled after stochastically determined time spans.
As we will show, both mechanisms can be seen as variants of the unifying concept
of a rate.

5.2 Classifications of Modelling Methods

A classification is an equivalence relation, where objects that are related to each
other are in the same class (Pawlik, Popper, & Breitenecker, 2007). At best, it
should be able to classify each conceivable method. Often methods are classified
along various different dimensions. The following taxonomy is an example of such
a classification.

5.2.1 Taxonomy According to Brennan et al.

Brennan et al. (2006) propose a taxonomy of modelling methods for economic
evaluations of health technologies, which is arranged along a horizontal and a
vertical axis. It assumes that a population is modelled.

On the horizontal axis, the primary distinguishing characteristic is if the method
represents the population at the individual or aggregated level. In the latter case,
similar individuals are aggregated by counting.

Aggregated models are further divided into deterministic and stochastic ap-
proaches. Methods at the individual level are supposed to be always stochastic,
but the taxonomy distinguishes between Markovian and non-Markovian ones. The
latter allow for distributions other than the exponential distribution (continuous
time models) and geometric distributions (discrete time models) for modelling the
time until the next event.

On the horizontal axis, the primary distinguishing characteristic is whether or
not the method allows interaction between individuals. In modelling methods that
do not allow interaction the change of one individual’s state only depends on his
or her own state. This is typical for Markov cohort models and microsimulation
models. A microsimulation, for example, can calculate the time trajectory of every
individual independently because the probability of a state transition depends only
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on the current state of the individual.
The taxonomy further divides the vertical axis according to how time is used in

the model. In methods without interaction, the only distinction made is between
untimed models (e.g., decision trees), which are not dynamical systems, and models
with time. Methods with interaction, on the contrary, are divided into discrete time
and continuous time methods.

Overall, modelling methods in the taxonomy of Brennan et al. are divided along
the following dimensions:

1. Aggregate level vs. individual level

2. Interaction vs. no interaction

3. Stochastic vs. deterministic (used only for aggregated level)

4. Markovian vs. non-Markovian (used only for individual level)

5. Untimed vs. timed (used only for methods without interactions)

6. Discrete time vs. continuous time (used only for methods with interactions)

In the taxonomy, SD is a deterministic aggregated method, which determines its
place on the horizontal axis. In terms of the vertical axis, it allows for interactions
and uses continuous time.

While the authors do not explicitly mention ABMS in their taxonomy, they do
include discrete event simulation, which has the same features in the taxonomy. Like
SD, ABMS allows for interactions and uses continuous time (events may happen at
an arbitrary time point on the continuous axis). However, it models the population
at the individual level and allows for non-Markovian distributions. Note that in
order to comply with the definition of a dynamical system, for each agent every
time till a future event has to be included in its state.

Overall, both methods allow for interaction and continuous timing, which is
why they occupy the same vertical position in the taxonomy. They differ in that
SD is deterministic and aggregates the population, whereas ABMS is stochastic
and models a population at the individual level. Therefore, they are on opposite
sides of the horizontal axis.
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5.2.2 Classification According to Borshchev and Filippov

Borshchev and Filippov (2004) classify the four methods SD, ABMS, (process-
based) discrete event models, and dynamic systems (here the term is restricted
to physical modelling). They use the distinction between discrete and continuous
timing differently than Brennan et al., because for them, models that change state
in discrete events are discrete and only models where state changes continuously
are continuous.

The other dimension that the authors use is the level of abstraction. Models that
are highly aggregated, have little detail, and analyse the object system at a strategic
level possess high abstraction. On the other end of the spectrum, models that map
individual objects without much aggregation, have high detail, and analyse the
object system at a operational level possess low abstraction.

In the classification of Borshchev and Filippov, SD is a continuous method,
while ABMS is predominantly discrete. Additionally, SD is placed at a high level of
abstraction, while the authors state that ABMS cover the whole range of abstraction,
from low to high. Agent-based models can map a system in high detail, when the
agents represent people or even smaller units, but they can also use a higher level
of abstraction, such as when the agents represent groups of people or companies.

5.2.3 Comparison of Further Attributes Used for Classifica-

tion

The previous classification schemes use only a few characteristics to classify mod-
elling methods. However, SD and ABMS differ in many more attributes. Schieritz
and Milling (2003), for example, present various differences between the two ap-
proaches. Table 5.1 shows an extended list that compares SD and ABMS in twelve
different attributes.

The modelling perspective of ABMS is a bottom-up one, where the modelling
process starts with individuals and small parts of a system to get an understanding
of the system’s global behaviour. SD, on the contrary, looks primarily at the global
state of a system and breaks it down into its major components (Macal, 2010). This
corresponds to the different levels of aggregation that are typical. In SD, individuals
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Table 5.1: A comparison of SD and ABMS in several different dimensions.

Attribute SD ABMS
Perspective Top-down Bottom-up
Level of aggregation Aggregated variables Individuals
Randomness Deterministic Possibly stochastic
Timing Continuous Discrete events
State space Continuous Arbitrary
Elements with state Stocks Agents, Environment
Origin of change Flows Events
Structural elements Feedback loops Agent connections
Structural changes Change of loop dominance Change of structure
Detailed formulation Equations Agent rules
Exogenous influence Exogenous variables Environment
Space Through compartments Explicit space

are not modelled separately, but counted in stocks of people with similar states
(e.g., infected individuals, susceptible individuals). These stocks are only further
disaggregated if it seems necessary.

As already discussed, time and state changes in SD are continuous, and it
describes deterministic systems. With the same initial conditions, an SD model
describes just one time trajectory. ABMS typically uses discrete events instead of
a continuous change, and the time spans between events often follow probability
distributions. Thus, agent-based models describe a probability space of time trajec-
tories, where every trajectory is piecewise constant (the overall state of the system
does not change between events, and there are only a finite number of events in a
finite time span).

SD uses only real variables, but ABMS allows arbitrary sets to make up the
state space. On the other hand, most often agents also have real variables or at
least a finite set of states.

The state of an SD model consists of the values of its stocks (explicitly or in the
form of delays, which are internally implemented with one or more stocks). In an
agent-based model, the overall state consists of the individual states of all agents
and the environment. State can only change through flows in the case of SD and
through events in the case of a discrete event ABMS.

Structural properties of a model play an important role in creating dynamic
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behaviour. In an SD model, causal links connect the variables, such as stocks and
auxiliaries, and form balancing or reinforcing feedback loops that are essential for
determining which dynamic modes of behaviour are possible (Sterman, 2000, pp.
108–127). Connections between agents, on the contrary, state which agents are able
to interact (i.e., send messages to each other). These connections or links can have
the form of a network or they can be implicitly given by spatial relationships. One
important difference to the causal links of SD models is that connections between
agents can dynamically change during simulation.

After a modeller has formulated the general structure of a model (stocks and
flows, agent types and their underlying environment), further specifications are
necessary to create an executable model. These specifications take the form of
equations in the case of SD. Agents, on the contrary, need rules (of execution).
Typically, they are formulated in a logical if-then form. Additionally, besides en-
dogenous relationships in an SD model and the behaviour of agents, influences from
the outside world are often included via exogenous variables (sometimes with the
help of table functions), which influence other SD quantities, or via an environment
for the agents.

Finally, an oft-mentioned difference between SD and ABMS is the capability
of agent-based models to explicitly express spatial relationships. Agents can have
coordinates in a spatial environment, move in this space and communicate with
nearby agents. SD can incorporate space if it models only a limited number of
individuals and has stocks for place, velocity, and other necessary spatial variables.
However, in the typical case of an aggregated population, the representation of
space is problematic.

A possible approach is to discretise the spatial environment into compartments
and to split the stocks of the SD model according to these compartments. For ex-
ample, Nguyen, Taillandier, Drogoul, and Auger (2012) infer a differential equation
model from an agent-based model of two species that compete for a common food
resource. The food in the agent-based version is randomly arranged in patches on
a two-dimensional environment. Since each patch is inhabited by only one species
after a certain initial period, the authors simplified the environment to consist
of two distinct food patches or compartments. Thus, the population divides into
members of Species A living in Patch 1, members of Species A living in Patch 2,
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members of Species B living in Patch 1, and members of Species B living in Patch
2. The differential equation model gave similar results to the agent-based model
(in particular, it reaches the same equilibrium).

5.3 Aggregation and Heterogeneity

The level of aggregation was one of the major differences between SD and ABMS
in the classifications discussed in the last section. It is thus appropriate to analyse
the nature and the legitimacy of aggregation for health care models, especially
regarding the application to reimbursement systems, in detail. In this section, we
assume for simplicity that the systems are autonomous and have no input. It is
then possible to treat the output map η as a mapping from the state space X to
the output space Y .

5.3.1 What to Aggregate: Patients, Diseases, Cases, Consul-

tations

Usually, decision-analytic models in health care explicitly represent patients, ei-
ther individually or as an aggregated population. The group practice model of
Section 3.5, however, only includes cases (and derived from it, consultations) on
the patient side, because it is focused on the providers and their behaviour after the
merger to a group practice. Cases are an external factor in these models. There is
no feedback of the providers’ treatment decisions on the patient population. Their
workload, however, influences the amount of new cases they get.

This example shows that not all problems need an explicit incorporation of
patients. If only one disease is considered, modelling diseases can also be equivalent.
However, as the GAP-DRG model shows, the explicit incorporation of multiple
diseases makes it necessary to link all attributes to patients.

5.3.2 How to Aggregate

Suppose that of n agents, every individual’s state is an element of the state space
Xind . An example is an agent-based SI model, where Xind = {Susceptible, Infected}.
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The state space of the overall model is therefore n-dimensional.

An SD equivalent of this model has only a 2-dimensional state space, which
consists of the numbers of susceptible and infected individuals (it is even sufficient
to have only one of these numbers as the sum always has to be n). This aggregation
is only feasible because it reduces the dimension of the state space. An SD model
with an n-dimensional state space would not be more efficient or mathematically
tractable than an agent-based model with n agents.

Aggregation can therefore be described by a mapping ζ:X → X ′ from a state
space X to a state space X ′, where X is high-dimensional and X ′ usually has a
low dimension. In the case of an aggregated SD model, this aggregated state space
is an Rk with a small k.

5.3.3 When Is Aggregation Admissible?

What we want from an aggregation is the following: It should map the state of a
complex high-dimensional model, in particular an agent-based model with a large
number of agents, to a state space with low dimension.

Not all such mappings are acceptable. If too much information gets lost the
resulting model is useless or it is not possible to calculate the change of state. On
the other hand, a certain amount of information loss is admissible. This depends
on what we are interested in.

Example 5.1 (Aggregation of the SI model). Important outcomes of an infectious
disease model are typically how many individuals are infected at a certain time
point under a particular policy (e.g., a vaccination) and how much an epidemic
costs. While it is possible in an agent-based model to record the state of particular
agents that is usually of interest only for purposes of verification and validation,
that is, to look for errors in the model.

Suppose that there is a fixed amount of n agents in an SI model. The state
of the whole model at a particular time point is then an element of Xn

ind =

{Susceptible, Infected}n. However, we are only interested in the value of the output
mapping η:Xn

ind → Y , where the output in Y = {0, . . . , n} represents the number
of infected individuals.
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If the state space of the aggregated model, X ′, equals this output space, then
some of the information is lost. It is impossible to infer from a state x′(t) = 3 which
three agents are infected. However, it suffices for the requested output information.
The other question is if we can calculate the future state trajectory from it. This
works only if the future number of infected individuals depends only on the present
number and not on which agents are infected in particular. With a homogeneous
mixing assumption (where each agent can transmit the disease to all other agents
with equal likelihood), this is usually true, but in general the further spread of
the disease will depend on the places occupied by the infected agents in a contact
network.

The situation presented in this example leads to a generalized definition.

Definition 5.2 (Admissible Aggregation). Let Σ be a stochastic dynamical sys-
tem with state space X, state transition map φ, and output map η:X → Y . An
aggregation mapping ζ:X → X ′ to another state space is admissible if there exists
a state transition map φ′ for the aggregated state space and an output map η′ such
that the diagram in Figure 5.1 commutes. If the aggregated model is deterministic,
then we require this in the sense that the future state of the aggregated model is
the expected value of the aggregation of the future state of the original model.

This definition makes clear what requirements an aggregation must fulfil. Inter-
estingly, the conditions do not only depend on the inner workings of the original
(agent-based) model, but also on the output quantity of interest. They illustrate
why the question or problem that a modelling project addresses is so important
and strongly influences the modelling method and the structure of a model.

5.3.4 Heterogeneity

Aggregation, especially aggregation by counting similar individuals, is strongly re-
lated to the heterogeneity of the individuals in a system and whether this influences
the evolution of the output quantity of interest. In Example 5.1, aggregation to
the number of infected individuals only works if these individuals are homogeneous.
If they differ from each other, either because some agents have more social con-
tacts than others and are therefore more likely to transmit the disease quickly, or
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Figure 5.1: For the aggregation mapping ζ to be admissible, this diagram must
commute: On the one hand, going from a state in X to another state at a future
time point by φ and then aggregate with ζ must give the same result (i.e., with
the same probability) as aggregation first and then going to the aggregated state
at the future time point with the state transition map φ′. On the other hand, two
states x and x′ that correspond through aggregation must also map to the same
output y through the output maps η and η′.
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because they have different attributes (e.g., infection probabilities due to good or
bad immune system), then it is important to know which individuals are infected
in order to predict the future course of the disease.

While one single real number might not be enough to represent the state of
the system in an aggregated yet sufficiently informative way there can still exist
aggregation mappings of a low dimension that are admissible. For example, if
patients were similar except for a difference between men and women, then instead
of counting the overall number of individuals with the interesting property (e.g.,
infection with a disease) the state of the system could be represented by the number
of men and the number of women with this property. There are, however, a few
problems with this approach:

1. Not all attributes have values in a finite set. For continuous attributes, such
as the weight of patients, aggregation by counting individuals is only possible
with discrete classes, which can introduce error into the model. It is possible
to reduce this error with a finer classification, at the cost of increasing the
number of classes.

2. Each additional attribute multiplies the number of classes that have to be
counted, and thus the dimension of the aggregated state space (see Figure 5.2).
This can quickly eliminate the advantage of aggregation. Brennan et al. (2006)
suggest the use of individual-based models if dimensionality gets too large.

Models for the analysis of reimbursement systems, such as the GAP-DRG model,
can have to incorporate not only attributes such as age, weight, sex, or insurance
status, but also a large number of medical problems. This makes the representation
of heterogeneity in the form of co-morbidities a major problem in these models.
There are not only patients who have diabetes or coronary heart problems, but also
patients with multiple chronic conditions, and they all can have different service
needs.

Osgood (2009) calls the approach of splitting a population in an aggregated
model into all combinations of the discriminating attributes “attribute-based dis-
aggregation”. He compares it with several other aggregated and individual-based
approaches. An important one is based on ageing chains and co-flows.



90 CHAPTER 5. COMPARISON OF SD AND ABMS

Figure 5.2: If heterogeneous individuals are counted, for each additional attribute
where they can differ the number of classes is multiplied (curse of dimensionality).
In this example, first only the distinction between males and females is taken into
account. As broad age classes and the body mass index classes uw = underweight,
norm = normal, ow = overweight, and ob = obese are added, the number of classes
quickly rises to 24.



5.3. AGGREGATION AND HETEROGENEITY 91

The name of ageing chains comes from a model structure that represents each
age class of a population as a stock. Ageing flows connect consecutive stocks.
This structure is also well suited to model patients’ progression through various
stages of a disease. For co-morbidities, it is possible to have several parallel ageing
chains. While this approach allows for a reduced number of different stocks, it has
some other drawbacks: it is not possible to track the number of individuals with a
certain combination of co-morbidities. One can know the number of patients with
diabetes and of patients with coronary heart disease, but not patients who have
both conditions. This approach would thus not be feasible for the level of detail in
the GAP-DRG model.

A large number of heterogeneous classes can be very cumbersome in an SD
model. The biggest problem is that the inclusion of a great deal of heterogeneity
makes it hard to incorporate a detailed feedback structure. If there are already
many stocks and the feedback structure that emanates from each stock has a few
parameters and auxiliaries then the overall number of variables will be even larger.
Furthermore, the graphical nature of SD models is then stretched to its limits.

For these reasons, if modellers incorporate such detailed heterogeneity into a
model at one place, they often have to aggregate it again at another place. One
example is an SD model of the prevalence of obesity in Austria, which incorporates
a fine-grained population model with 96 age classes, each for men and women
(Glock, Einzinger, & Breitenecker, 2012). For modelling the disease prevalence,
where a distinction between people with underweight, normal weight, overweight,
and obesity becomes necessary, it aggregates these age classes to broader ones. In
an agent-based model, this would not be necessary.

5.3.5 The Dangers of Ignoring Heterogeneity

As heterogeneity typically makes aggregation less feasible, it is interesting to analyse
what the consequences of ignoring it are. We will use a very simple, analytically
tractable, yet representative example.

Example 5.3 (Model of One Chronic Disease). Suppose we have a fixed population
of 1000 individuals who are all healthy in the beginning. They can develop a disease
that is not curable, that is, an individual who has the disease will stay chronically
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ill. All the men have the same incidence rate, as well as all the women.

Let x1 be the number of healthy men, y1 the number of men with the disease,
x2 the number of healthy women, and y2 the number of women with the disease.
Furthermore, let r1 and r2 be the incidence rates of men and women, respectively.
The situation is then described by the differential equation system

dx1

dt
= −r1x1

dy1

dt
= r1x1

dx2

dt
= −r2x2

dy2

dt
= r2x2.

(5.1)

On the other hand, if we do not distinguish between men and women, then the
differential equation system would be

dx

dt
= −rx

dy

dt
= rx.

(5.2)

Can this system give the same result as (5.1)? In this case, we have the equality

rx =
dy

dt
=
dy1

dt
+
dy2

dt
= r1x1 + r2x2,

which leads to
r =

r1x1 + r2x2

x1 + x2

.

Differentiation of both sides and plugging in the equations for x1 and x2 in (5.1)
further shows that

dr

dt
= −(r1 − r2)2 x1x2

(x1 + x2)2
.

The rate r is thus only a constant if r1 = r2 unless x1 or x2 is zero.

In other words, if there are men and women in the population, the average
incidence rate of the disease, r, changes over time. The reason for this is that if, for
example, men have a higher incidence rate, the proportion of men in the healthy
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population decreases over time, and thus the average incidence rate in the healthy
population that is still left also decreases.

The analysis of this example shows that it is only possible to ignore heterogeneity
in a model if another assumption, namely that the incidence rate of the disease is
constant, is dropped. But calculating the change in the rate requires one to keep
track of the heterogeneous composition of the population, so that is not an option.

On the other hand, it can be acceptable to treat the heterogeneous groups in an
aggregated way if the parameters do not differ too much. Figure 5.3 shows the time
trajectories of the number of people with the disease, compared for the model with
heterogeneity and for the aggregated model. It was assumed that the population
consists of an equal proportion of men and women. The incidence rate r1 for the
men was fixed to 0.1 per time unit, while the incidence rate r2 for women takes
the values of 0.1, 0.2, 0.3, and 0.5. Of course, the two models give the same results
for a value of 0.1 for r2. Even if the incidence rate of women is doubled, the two
trajectories only differ minimally. Finally, there is a big difference at the value of
0.5, which is largest at Time 8 (909 individuals in the aggregated model versus 766

individuals in the heterogeneous model).
Again, the research question driving the model is important for deciding if the

mistake of not ignoring heterogeneity is acceptable. If the goal is a quantitative
prediction of the process a substantial error is problematic. (However, the error may
still be small compared to other modelling errors and uncertainties.) If the model
serves to analyse and explain dynamic modes of behaviour, quantitative accuracy is
not necessary. In the example above, the qualitative behaviour is the same in both
the heterogeneous and the aggregated model. Incorporation of the right feedback
structure is more important than going into detail with heterogeneity.

5.4 Feedback in SD and ABMS

Feedback is one of the central concepts of the SD methodology. It is present if a
quantity influences itself indirectly over its causal effects on other quantities in the
system. In a causal diagram, this is always represented as a feedback loop through
the quantity. Note that feedback affects only future values of a variable, because
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Figure 5.3: The number of individuals with the disease in a population with 500
men and 500 women, compared for the models in (5.1) (heterogeneous) and in
(5.2), for a female incidence rate of 0.1, 0.2, 0.3, and 0.5, respectively. The male
incidence rate is fixed at 0.1.
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there must always be a stock and a flow involved in a feedback loop and the stock
accumulates the change in the flow over time, not instantly.

Feedback is the only way for an SD model to endogenously generate dynamic
behaviour. A model without feedback loops is driven by its exogenous variables
and is therefore useless for an explanation of dynamics.

Is the dynamic behaviour of an agent-based model also driven by feedback? The
states of agents are the equivalent of the stocks in an SD model, whereas events
are the equivalent of flows (see Table 5.1). Therefore, feedback is present if there
is some quantity derived from the state of agents that influences events that in
return can change the quantity.

Feedback can exist even if the agents are independent of each other (i.e., if they
do not interact or communicate). In the previous example, where individuals can
change their state by acquiring a disease, the greater the number of agents who are
still healthy, the greater the number who can develop the disease, which decreases
the number of healthy agents in return. Of course, this is analogue to the feedback
loop in the differential equation (SD) model.

Feedback of higher complexity of course also involves the interaction of agents.
Martinez-Moyano and Macal (2013) present an SD and an agent-based version
of an SIR model, where individuals can have one of the three states susceptible,
infected, and recovered. The flow of agents from the state susceptible to the state
infected depends on the interactions of these agents with agents who are already
infected. In our terminology, the greater the number of agents who are susceptible
and infected, the more frequently events where an infected agent has contact with
a susceptible agents and transmits the disease will happen.

The authors also propose a new diagram type for depicting the feedback struc-
ture of agent-based models: the agent feedback diagram. These diagrams are similar
to the stock and flow diagrams of SD, but, in line with the correspondence between
SD stocks and the state of agents, they show agents in a certain state as boxes
and agents’ possible state changes as flows. Additionally, it is possible to depict
the interactions of agents that determine these state changes in an agent feedback
diagram. For an example, see (Martinez-Moyano & Macal, 2013) or the diagram
in the next chapter.

In conclusion, feedback is present in agent-based models just as in SD models.
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The modelling process of ABMS does not, however, focus explicitly on feedback as
a source of the dynamics of a system. Rather, it results implicitly as a consequence
of the (interaction) rules of the agents.

5.5 Rates as a Universal Tool for Describing Change

in SD and ABMS

5.5.1 Introduction

Apparently, the flows between levels that count individuals in an SD model and
the events that change the state of agents in ABMS have a strong similarity. The
larger a flow is and the more events happen in a certain amount of time, the more
individuals change their state.

In the context of how often events happen and how fast the state of a system
changes there are a few terms that are used inconsistently and often lead to confu-
sion, namely fraction, risk, rate, fractional rate, ratio, probability, and proportion.
Especially the difference between risk and rate has a long tradition of error and
was ignored for a long time in the context of epidemiology. Vandenbroucke (2003)
describes the history of this problem.

The concept of a rate is particularly important for studying equivalent descrip-
tions in SD and ABMS. In SD, the term “rate” is even used as a synonym for flow.
On the other hand, in survival analysis, which deals with the times until certain
events (e.g., death, machine failure) happen, (hazard) rates also play an important
role. In this case, however, they are related to the probability distributions that
describe survival times.

It is not immediately obvious how these different types of rates (continuous
rates of change versus stochastic rates) are equivalent. The purpose of this section is
thus to clarify their relationship, but first, the concept of “risk” is analysed, because
it is often confused with rates.
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5.5.2 Risk

Risk is commonly expressed as a probability. One definition of risk is “the possi-
bility that something unpleasant or unwelcome will happen” (Oxford Dictionaries,
2013). Probability measures the degree of possibility. Therefore, the terms risk and
probability can be used synonymously for unpleasant or unwelcome future events.
In health care, the onset of a disease (incidence), disease progression, and death
(mortality) are typical examples of such events.

As a synonym for probability in the cases mentioned above, risk shares its
attributes: It is described as a dimensionless number between 0 and 1, which repre-
sents (in a frequentist sense) the limit of the relative frequency of the corresponding
outcome (the event of interest, e.g., the onset of disease in a certain time span) in
a series of independent trials when the number of trials approaches infinity.

While probability or risk itself is a dimensionless number without a time unit,
time does often play a role because the event of interest may be that something
happens within a certain period of time. For example, a person’s risk of dying in the
time span of one year could be 0.1. The probability as a number is dimensionless,
but it relates to an event in the period of one year.

The terms risk and rate both appear as a central concept in several mod-
elling methodologies. Before rates are introduced, the following subsection presents
Markov models as an example of a model that relies on risks.

A Modelling Methodology That Uses Risks: Markov Models

Markov models consist of a set of states and probabilities for the transitions
between them (Briggs & Sculpher, 1998). They represent a special type of stochastic
processes. Parzen (1962/1999, p. 22) defines a stochastic process as “a family of
random variables {X(t), t ∈ T} indexed by a parameter t varying in an index
set T". Normally the parameter t represents time. If for any n and time points
t1, t2, . . . , tn the conditional distribution of the random variable Xn depends only
on the value of X(tn−1) for known values of X(t1), X(t2), . . . , X(tn), then the
stochastic process fulfills the so-called Markov property and is called a Markov
process (Parzen, 1962/1999, p. 188). Formally, the Markov property states that



98 CHAPTER 5. COMPARISON OF SD AND ABMS

∀x1, x2, . . . , xn ∈ R:

P[X(tn) ≤ xn | X(t1) = x1, . . . , X(tn−1) = xn−1]

= P[X(tn) ≤ xn | X(tn−1) = xn−1] (5.3)

If both the index set and the state space of a Markov process are discrete sets, then
it is called a discrete parameter Markov chain. For each t ∈ T and states j and k
from the state space we define the transition probability pj,k(t) as P[X(t + 1) =

k|X(t) = j]. The transition probabilities from one time point t form a transition
matrix. All transition matrices together with the unconditional probability vector

p(0) =



p0(0)

p1(0)
...

pj(0)
...


=



P[X0 = 0]

P[X0 = 1]
...

P[X0 = j]
...


, (5.4)

completely determine the Markov process (Parzen, 1962/1999, p. 196).
In medical decision making, a typical Markov model would assume that each

patient runs through a Markov process, where the health states of the patient
correspond to the states of the process (Sonnenberg & Beck, 1993). The initial
unconditional probability vector describes the initial distribution of patients. For
example, all patients could start the process in the state "healthy". The transition
probability pj,k(t) is the probability that a patient who is in state j at time t will
be in state k at time t+ 1. For discrete Markov models the index t is often called
cycle instead of time.

5.5.3 Rates

Confusion with Risk

A simple example shows the problem with rates. Suppose that x(t) is the number
of healthy individuals at time t. Additionally, let p be the risk (or probability) of
developing a certain disease within one year. It follows that, on average, p · x(0)
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individuals should develop the disease during the first year.

Someone who is unaware of the difference between risks and rates might model
the number of healthy individuals with the following differential equation:

dx

dt
(t) = −px(t)

x(0) = x0

This might seem correct, because the derivative of x at time 0 equals p·x0. However,
as x decreases the derivative increases, and thus it is on average less than p · x0.

The exact solution of the differential equation is x(t) = x0 exp(−pt). Thus, after
one year x(0) − x(1) = (1− exp(−p))x0 individuals have got the disease. From
the inequality 1− exp(−p) < p, which holds for p > −1 (this is always true when
p describes a probability), it follows that these are indeed less individuals than
expected.

Taylor series expansion at p = 0 leads to an additional insight. The n-th
derivative of 1− exp(−p), for n ≥ 1, is (−1)n+1 exp(−p). This leads to the Taylor
series

(1− exp(−p))x0 =
∞∑
n=1

(−1)n+1p
n

n!
x0 = px0 + O(p2),

which shows that p ·x0 is the linear approximation of the number of individuals that
have got the disease after one year in the differential equation. This approximation
gets worse for larger values of p, that is, for diseases that occur frequently.

What would be the correct form of the differential equation? Suppose that at
every instant of time the derivative of x should equal a constant fraction r of the
number of healthy individuals, that is

dx

dt
(t) = −rx(t). (5.5)

Additionally, we know the fraction of healthy individuals after one year. The solution
of Equation 5.5 for the initial value x(0) = x0 is x0 exp(−rt). For t = 1 this leads
to the equation

px0 = (1− exp(−r))x0,
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which can be solved for r:
r = − ln(1− p) (5.6)

Equation 5.6 is the classic conversion formula for a probability p into a rate r,
which is the parameter of Differential Equation 5.5. With the correct conversion,
the solution of the differential equation has the desired property: It is equivalent to
the formulation with probabilities or risks. However, why is the parameter r called
a rate?

Definition of a Rate

According to Miller and Homan (1994, p. 52), a rate is conceptually the “instan-
taneous potential for change in one variable per unit change in another variable”.
Mathematically, it is nothing else than a derivative (Elandt-Johnson, 1975; Miller
& Homan, 1994): A quantity Y changes with every unit change in the quantity
X according to the instantaneous rate R, which calculates to

R = −dY
dX

.

In dynamic models, the quantity X will be in most cases nothing else than time.
Furthermore, change is often described relative to the size of Y , which leads to the
relative rate r, where

r =
−dY

dt

Y (t)
. (5.7)

These definitions work well when there is just one reason for change. For example,
let m be the (relative) death rate in the population N , and assume that individuals
leave the population only through death and cannot join the population during
the time horizon of interest:

dN

dt
= −mN(t). (5.8)

It follows that

m = −
−dN

dt

N(t)
,

and thus m actually is a relative rate.

However, if new individuals join the population with the relative birth rate b,
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the equation changes to
dN

dt
= (b−m)N(t). (5.9)

In this case, b−m can be expressed in the form of a relative rate as in Equation
5.7, but not b or m themselves. As both variables are usually called rates, a good
definition should include them. Furthermore, Equation 5.7 has a minus sign on
the right hand side. This works for the death rate but not for the birth rate. We
propose a better definition, which uses a decomposition of the derivative and solves
the problems mentioned above. It is restricted to rates of change where time is the
unit on the denominator.

Definition 5.4 (Rate Decomposition). Let Y,G1, G2, . . . , Gm, L1, L2, . . . , Ln be
elements of RT, where T is a time set. If Y is differentiable and dY

dt
=
∑m

i=1 Gi −∑n
j=1 Lj, then the sets G = {G1, G2, . . . , Gm} and L = {L1, L2, . . . , Ln} are a

rate decomposition of dY
dt

or, equivalently, of the change of Y . The elements of G
are called growth rates and the elements of L are called loss rates. Generally, all
elements of G and L are rates.

An infinite number of rate decompositions are possible. For example, the deriva-
tive of the number of individuals in the population, N , in the above example could
be expressed by one growth rate, as rN(t), or as the sum of one growth rate bN(t)

and one loss rate mN(t). Furthermore, an infinite number of other decompositions
are mathematically equivalent (e.g., the sum of (b − 1)N(t) and (m + 1)N(t)),
but the decomposition into births and deaths has also contextual meaning and is
therefore preferable.

The definition of a relative rate follows in a natural way:

Definition 5.5 (Relative Rate). If R is a rate (as in Definition 5.4) and if there
exists an r ∈ RT such that R(t) = r(t)Y (t),∀t ∈ T, then r is a relative rate.

Note that a relative rate for a given rate of a rate decomposition always exists
if the rate equals 0 for all time points where the quantity Y equals 0.

Example 5.6 (Rates of a Population Model). A population model describes the
dynamic changes in the number of people in a population (or in subgroups of a
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population). Equation 5.9 is a simple example of such a model. The rate decom-
position with G = {bN} and L = {mN} shows that bN and mN can be seen as
rates and b and m as relative rates. However, it is also possible to use the relative
net birth rate n = b −m. Then, the net birth rate nN is the difference of births
and deaths and thus the total change in the population:

dN

dt
= nN

It builds a trivial rate decomposition.

Rates of Stochastic Events

The quantities of interest in Section 5.5.3 changed continuously in time, and this
change was deterministic. However, there are two other modelling approaches for
the progress of time: discrete time and discrete events (Cellier, 1991, pp. 11–15).
Definition 5.4 is not directly applicable to either of the two.

Time is continuous in discrete event modelling, but the state of the system
changes only at a finite number of time points in each finite time interval. The
time points of future events may be sampled from probability distributions. In this
case, discrete event models are stochastic.

Suppose, for example, that a population consists of 100 individuals with a
certain highly lethal disease, and that the time until death of an individual is a
random variable T that follows an exponential distribution:

T ∼ Exp (λ) .

The parameter λ is called the rate parameter of the exponential distribution. Fig-
ure 5.4 shows an example of a survival curve for this setting. What connection
exists between this parameter and the definitions of rates (Definition 5.4 and 5.5)?

In the deterministic case, the rate (in the case of a trivial rate decomposition)
represented the change of a certain quantity, which is the number of individuals
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Figure 5.4: An empirical survival curve of 100 people who die after an exponentially
distributed time with rate λ = 0.3.
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alive, N , in the example above. The relative rate r should then calculate to

r =
dN
dt

N(t)
.

However, there will not be more then 100 different time points at which somebody
from the population actually dies. At these time points, the derivative of N does
not exist. At every other time point, the change equals zero. Even worse, in every
trial with 100 individuals with the disease, these time points would be different
just from random variation.

An alternative is the expected value of individuals alive at time point t. This
value is fixed:

E(N(t)) = N(0)P[T > t]

Note that P[T > t] is exactly how the survival function of a distribution, S(t),
is defined. In this sense, the expression N(0)S(t) is equivalent to the solution of
Equation 5.8. In the case of the exponential distribution, the cumulative distribution
function is F (t) = 1− exp(−λt), and from S(t) = 1− F (t) it follows that

E(N(t)) = N(0)S(t) = N(0) exp(−λt).

The deterministic model should explain the expected value of the number of
individuals alive without the random variation. That is, the solution of Equation
5.8, which is N(t) = N(0) exp(−mt), should be equal to E(N(t)). This is the case
if the rate parameter λ is equal to the relative death rate m. Furthermore, the rate
parameter of the distribution fulfills the definition of a relative rate (Definition 5.5)
if the survival function is exchanged for the quantity Y that changes with the rate.
This leads to the hazard function of the distribution, which is defined as

h(t) =
f(t)

S(t)
=
−dS

dt

S(t)
. (5.10)

The term hazard rate is therefore justified.
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Variance that Results from Stochastic Rates

The survival function describes the expected number of individuals in the original
state for each time point. It can be equal to the solution of a deterministic differential
equation. How can the actual quantity, which changes through stochastic events,
differ from the expected value?

Note: In the following, death of the individual will be the event of interest.
However, the same applies to every type of event that may happen only once.

For each of the n = N(0) individuals, the value of the survival function S(t)

describes the probability of surviving longer than t. Whether or not an individual
is alive at time t can thus be seen as an experiment with two alternative outcomes
(yes and no). Thus, N(t) follows a binomial distribution:

N(t) ∼ Bin (n, S(t))

Its variance var(N(t)) equals nS(t)(1− S(t)). Thus, it is highest when S(t) = 0.5,
that is, at the time point t where the probability of surviving at least until t is
exactly 0.5, which can be seen from setting the derivative of the variance to zero.

A further question is more complicated to answer: For a certain proportion q
of the n individuals, what is the distribution of the time point tq at which the i-th
individual dies, where i = bnqc+ 1?

This problems translates into a problem of distribution of order statistics.
The time of death of each of the n individuals is a random variable, denoted
by X1, X2, . . . , Xn. The i-th order statistic, Xi:n, is the i-th random variable that
results from arranging X1, X2, . . . , Xn into non-decreasing order, such that X1:n ≤
X2:n ≤ . . . ≤ Xn:n. Note that while the original random variables may be indepen-
dent, the order statistics are not.

It follows that the distribution of the i-th individual’s time of death is the
distribution of the i-th order statistic. For the case where X1, X2, . . . , Xn are inde-
pendent and identically distributed (i.i.d.) with a common absolutely continuous
cumulative distribution function (cdf) F (that is, they come from a continuous
distribution and the probability density function f exists), B. C. Arnold, Balakr-
ishnan, and Nagaraja (1992/2008, pp. 9–13) derive formulas for the pdf of the i-th
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order statistic, denoted by fi:n, and its cdf Fi:n:

fi:n(x) =
n!

(i− 1)! (n− i)!
(F (x))i−1 (1− F (x))n−i f(x) (5.11)

Fi:n(x) =
n∑
k=i

(
n

r

)
(F (x))r (1− F (x))n−r . (5.12)

Closed-form expressions of the expected value and the variance of order statistics
exist for particular distributions. The most important example is the case of the
exponential distribution, i.e., the case where the hazard rate for all individuals is
constant.

Theorem 5.7. If the survival times of n individuals are i.i.d. random variables
from a common exponential distribution, i.e., the hazard rate of each individual
equals a common constant λ, then the survival time of the i-th individual that dies,
Xi:n, is a random variable with expected value

E(Xi:n) =
i∑

k=1

1

λ(n− k + 1)

and variance

var(Xi:n) =
i∑

k=1

1

λ2(n− k + 1)2
.

Proof. 1 The joint density function of the order statistics X1:n ≤ X2:n ≤ . . . ≤ Xn:n

is given by

f1,2,...,n:n(x1, x2, . . . , xn) = n!
n∏
i=1

f(xi), −∞ < x1 ≤ x2 ≤ . . . ≤ xn <∞.

For the exponential distribution with pdf f(x) = λe−λxIx (0,∞) , where λ > 0, this
leads to

f1,2,...,n:n(x1, x2, . . . , xn) = n!λne−λ
∑n

i=1 xi , 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn <∞.
1The proof follows the proof for the special case of a standard exponential distribution given

in (B. C. Arnold et al., 1992/2008, pp. 72–73).
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Consider the transformation

h:Rn → Rn, x 7→ z,

where zi = (n − i + 1)(xi − xi−1), and define the multivariate random variable
Z = (Z1, . . . , Zn)T as Z := h(X), where X = (X1:n, . . . , Xn:n)T . The determinant
of the Jacobian matrix of the transformation is n! and, therefore, 1/n! for the
inverse of the transformation. Furthermore, the sum of the random variables is
invariant under the transformation, because

n∑
i=1

zi =
n∑
i=1

(n− i+ 1)(xi − xi−1) =
n∑
i=1

xi.

If follows that the transformed random variables have joint density function

fZ1,Z2,...,Zn:n(z1, z2, . . . , zn) = λne−λ
∑n

i=1 zi , 0 ≤ z1, z2, . . . zn <∞,

which shows that they are i.i.d. random variables from the exponential distribution
with rate parameter λ (i.e., its expected value is 1/λ).

It is then easy to see that

E(Xi:n) = E(
i∑

k=1

Zk
n− k + 1

) =
i∑

k=1

1

λ(n− k + 1)

and

var(Xi:n) = var(
i∑

k=1

Zk
n− k + 1

) =
i∑

k=1

1

λ2(n− k + 1)2
.

A desirable property of the i-th survival time, where i = bnqc+ 1, is that the
mean value of Xi:n should equal the value of the inverse cumulative distribution
function F−1 at q, where F−1(q) = sup {x : F (x) ≤ q} for q ∈ [0; 1) and F−1(1) =

sup {F−1(q) : q < 1} (for q < 1 this is the biggest possible q-quantile), because then
the i-th survival time of the n individuals would be an unbiased estimate of the
(biggest) time point at which the probability for having died equals q. This is true



108 CHAPTER 5. COMPARISON OF SD AND ABMS

asymptotically, and for an absolutely continuous F with a pdf f that is continuous
and positive at F−1(q) the i-th order statistic is asymptotically normal, or, more
precisely, for n→∞,

√
nf
(
F−1(q)

) Xi:n − F−1(q)√
q(1− q)

converges in distribution against a standard normal distribution (B. C. Arnold et
al., 1992/2008, pp. 223–224).

Summary of the Results on Rates

Overall, a rate describes how a quantity changes over time. For any quantity Y ,
the relative (or fractional) rate is given by (5.7).

In stochastic individual-based models, hazard functions of the probability dis-
tributions that model the time to events are relative rates, because they describe
the relative change in the corresponding survival functions. SD cannot incorporate
stochastic variability of a stock of individuals, but it can model the expected value
of the number of individuals that are left in the stock, which equals the initial
number of individuals times the survival function. From (5.10) it follows that the
equation for the flow R must be

R = −h(t)N(t),

where h is the hazard function and N is the expected number of individuals left in
the stock. Note that N(t) = N(0)S(t).

In the special case where the probability distribution is an exponential distri-
bution, the hazard function is equal to a constant relative rate r. This is thus
equivalent to one of the most common rate equations in SD, which multiplies the
current value of a stock with a constant relative rate.

The last section studied the variance of a stochastic individual-based model,
which makes it possible to predict how much such a model might differ from the
expected values. At a particular point in time, the variance grows linearly with
the number of individuals, n. This shows that the standard deviation relative to n
decreases.

Furthermore, the time at which the i-th of n individuals has changed his or her
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state in an individual-based model is an asymptotically normal estimator of the
q-quantile of the distribution function if i = bnqc+ 1. The bigger the population
is, the better the time at which a certain fraction of the population has changed
its state will estimate the expected value.

5.6 Transformations Between Models

5.6.1 Transformation of SD Models into Agent-Based Mod-

els

Stocks that Count Agents

The last chapter introduced rates and showed the equivalence of rates in SD and
ABMS models, as they can describe the deterministic change of level variables (the
cause for dynamics in SD) and the stochastic occurrence of events (the cause for
dynamics in stochastic ABMS models in discrete-event time). This allows for the
formulation of equivalent models in both methodologies, where the levels in the
SD model count the number of agents that are in a certain state (Borshchev &
Filippov, 2004).

The scheme works in the direction from SD to ABMS in the following way:

1. Identify the kinds of individuals who are counted in the levels of the SD
model. Normally, this can be seen from the units of the levels. For example,
there could be levels accumulating patients. Each of these kinds of individuals
leads to one type of agent.

2. Add attributes to the agents so that distinct values of the attributes corre-
spond to the different levels in the SD model which accumulate individuals
of this type.

3. For every inflow or outflow of individuals in the levels, add one type of event
to the model that changes the state of agents. These events might:

(a) Change the state of an agent, which is equivalent to flows between levels

(b) Create a new agent, which is equivalent to flows starting at a source.
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(c) Destroy an agent, which is equivalent to flows leading to a sink.

4. Include the rest of the SD structure in the environment of the agents. For
some levels, it might also be possible to model it inside the agents, for example
in the case of a coflow structure.

5. Make the events dependent on the agents that are in the respective states
and on the rest of the SD structure included inside the agents and in the
environment. The rates at which events happen are given by the equations
of the flows in the SD model (see Section 5.5).

5.6.2 Stocks that Average an Agent Attribute

Stocks in SD models do not always represent the number of individuals in a particu-
lar state. They can also track the average value of an attribute that each individual
in a population has, for example if the attribute is continuous and if it is not feasible
to split the population into a finite number of classes according to the attribute.

Such an aggregation can be problematic. Suppose, for example, that the at-
tribute of interest is the weekly workload of doctors. If its average value is 40 hours
per week, it is unclear whether all doctors work 40 hours or if some doctors work
less and some work considerably more. But this could lead to different average
decision-making. If all doctors have a normal workload, they might treat every pa-
tient optimally, while treatment errors might occur if some doctors are overworked.
Thus, assumptions on the distribution of the attribute have to be implicitly incor-
porated into the formulation of the decision if only the average value is an input
into the decision function.

When a quantity in an SD model represents an average attribute value, an
obvious approach is to assume that each agent in an equivalent agent-based model
has the same attribute value. This works, for example, for parameters.

Often in an SD model, however, a quantity is the average perceived value of a
certain input. A standard approach to model this is exponential smoothing, that
is, if u(t) is the input, x(t) is the perceived value of the input, and τ is the delay
time then

dx

dt
=
u(t)− x(t)

τ
.
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What is an equivalent rule for the state of agents where they perceive the
input at discrete events? For example, every patient that arrives at a doctor and
is treated adds a certain amount to the weekly workload of the doctor. How does
the perceived workload change for the doctor agent?

Suppose that the doctor has a perceived workload of 40 hours per week and
that a new patient whose treatment takes 0.5 hours arrives 0.1 weeks (16.8 hours)
after the last patient. The doctor can treat the workload since the last patient as a
constant quantity, that is, as 5 hours per week. To derive a formula for the update
of his perceived workload, we assume that it is based on exponential smoothing of
the constant input u = 5 hours/week with a delay time of τ = 2 weeks.

If t0 is the time of the last patient, t1 the time of the present patient, and x0 the
perceived value at t0, then the doctor updates his perceived workload according to
the solution of the initial value problem

dx

dt
(t) =

u− x(t)

τ

x(0) = x0.

(5.13)

This differential equation can be solved with variation of constants, which leads to

x(t1) = u+ (x0 − u) exp

(
−t1 − t0

τ

)
. (5.14)

In the example above, the doctor would update his perceived workload to

x(t1) = 5 + (40− 5) exp

(
−0.1

2

)
≈ 38.29 hours/week.

The longer the time since the last event is in comparison with the delay time,
the more the agent adapts his or her perceived value in favour of the new input,
which it approaches exponentially. Overall, (5.14) is a good equivalent to the SD
formula of exponential smoothing.
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5.6.3 Approaches for Transforming Agent-Based Models into

SD Models

In principle, any output trajectory from an agent-based model could be approxi-
mated with a differential equation system, as any differentiable function is trivially
the solution to such a system. The key problem is how to find such a system without
needing to simulate the agent-based model. Furthermore, it is only of value if it has
a comparably low dimension. One could also try to perform system identification
for a differential equation system by collecting data from the agent-based model,
but with limited excitation possibilities (no input signal) this is problematic.

The biggest problem is that agent-based models can have very complex interac-
tion structures and considerable heterogeneity. Agent-based SIR epidemic models
are a good example. Bicher and Popper (2013) analyse one such model with a
technique called diffusion approximation, which uses interpolation arguments and
Taylor series expansion to infer a partial differential equation that describes the
density of the global state of the system and an ordinary differential equation
system that describes the mean value. The latter system turns out to be the classic
SIR differential equation system. Homogeneous mixing is a prerequisite for this
result, because the transition rates of the system must only rely on the counts of
agents in each state. If a heterogeneous network connects the agents, these counts
are not an admissible aggregation in the sense of Definition 5.2, because in this
case the spread of the disease does not only depend on the total number of infected
agents, but also on the connections that the infected agents have.

Rahmandad and Sterman (2008) compare several types of contact networks
in agent-based models and their influence on disease spread. They show that the
results can quantitatively differ from the results of a differential equation model
that is equivalent to homogeneous mixing. As expected, an epidemic spreads more
slowly in less connected networks and its peak is lower. On the other hand, all
simulations produced qualitatively similar behaviour.

Keeling (1999) proposes an approach that does not only take into account
the numbers of individuals in each of the three states susceptible, infected, and
recovered, but extends the state to incorporate figures for the nine possible types
of pairs (e.g., susceptible-infected, infected-infected). Due to symmetries, this only
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requires five additional dimensions.
While these approaches are of analytical value, they seem to be restricted to

rather simple agent-based models where agents can only have a few different states.
Agent-based models of far greater detail complexity, such as the GAP-DRG model,
do not facilitate such techniques. However, the great strength of simulation models
is that they can cope with dynamic complexity. The model with the most detail
complexity is not necessarily the best one, and thus there might be a better approach
than constructing a complex agent-based model, where there is no hope of finding
a compact corresponding equation system, in the first place.

5.7 Conclusions and Proposed Integration of SD

and ABMS into the Modelling Process

SD and ABMS differ in several dimensions. While SD models are deterministic,
continuous-timed, and highly aggregated, agent-based models allow for stochastic
variation, are typically timed with discrete events, and can cope with large het-
erogeneity in agents, agent interactions, and the (spatial) environment. But these
advantages come at a price: Obviously, ABMS is often computationally far more
expensive, which might render it impossible to conduct extensive simulation exper-
iments (especially for sensitivity and uncertainty analysis with many parameters)
in modelling projects under time constraint.

There is, however, a more serious danger for modellers that relates to the power of
agent-based modelling. Senge (1990, pp. 71–72) emphasizes that often the dynamic
complexity (when it is not obvious which dynamic behaviour a system produces
through its cause and effect structure) is more important and provides more leverage
to change the behaviour of a system then the detail complexity (when the system
has many variables). But with agent-based models, it is tempting to incorporate a
large amount of detail complexity right from the start. This increases the possibility
of modelling errors because many aspects of the system will be unknown, it would
be very time-consuming to research them all, and a rich agent-based model can
be a highly complex piece of software. Additionally, the incorporation of dynamic
complexity can suffer.
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The two presented case examples in Chapter 3 and Chapter 4 illustrate that both
modelling methods, on their own, can have serious drawbacks. In the group practice
model, dynamic feedback is incorporated via the workload and reimbursement of
the physicians. Thus, it captures at least a part of the dynamic complexity of
the real system. On the other hand, SD is not well suited to explicitly model the
discrete reimbursement period, where all previous cases are reimbursed at the end
of quarter of a year.

The GAP-DRG model, in contrast, has great detail complexity. This makes
several aspects of modelling, such as parametrisation, verification, and model com-
munication harder and tends to shift the focus away from the dynamic complexity
and the driving feedback structure of the system.

It seems that choosing one modelling method, even only for this particular
problem (the analysis of reimbursement systems in extramural health care), is only
the second best option. A better way is to combine the strengths of both SD and
ABMS.

The modelling process in the SD methodology is well structured and uses
many techniques, such as causal loop diagrams and stock and flow diagrams, for
capturing the dynamic complexity and the most important feedback loops of the
system. These steps lead very quickly to an executable SD model. As shown in the
last section, the transformation of an SD model into an agent-based model is far
easier then a transformation in the other direction. Therefore, it makes sense to
first develop an SD model and restrict it to the incorporation of aspects for which
this method is well suited, and then to transform it into an equivalent agent-based
model only if this is necessary.

This approach has several advantages:

• The SD modelling process can lead to a better focus on the dynamic complex-
ity and feedback structure right from the start, from which the agent-based
model will also benefit.

• It is not necessary to incorporate every aspect into the SD model, even if it
is difficult to model, because there is always the option of saving it for the
agent-based model.

• The SD model can stay fairly aggregated, which makes it more manageable.
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• Transforming the SD model into an equivalent agent-based model should
be possible with relatively little overhead. It is conceivable that it might be
possible to even automatize this in the future.

• It is a good verification test to have two separately implemented models that
should render approximately the same behaviour.

• When the separate further development of the agent-based model starts
iteratively, it becomes clear what the greater detail complexity can add.

• Even in later stages when the agent-based model is not equivalent to the SD
model any more, it can be desirable to use the SD model for certain tasks,
such as extensive sensitivity analysis. The results can also lead to insight on
the agent-based model to a certain extent.

Historically, the field of epidemic models seems to have followed this path. The
classic differential equations of the SIR model were long established before the first
agent-based epidemic models. Thus, the most important driving dynamics were
always clear and available for orientation. Many different modelling techniques
could then produce equivalent behaviour and even incorporate additional aspects,
such as spatial effects (Schneckenreither, Popper, Zauner, & Breitenecker, 2008),
but they always had to measure up against the classic model, which arguably
captures the most essential feedback structure in a compact form. Even today,
textbooks on infectious disease modelling often use differential equation models
to illustrate concepts for maximal insight (see, for example, Vynnycky & White,
2010).

There are of course problems where properties that are directly suited to agent-
based modelling play a central role. For example, a model of robots playing a soccer
game should clearly incorporate the spatial aspect and the goal-driven behaviour
of the participants. In health care and epidemiology, however, the decision rules of
people are often not well-known and usually approximated by simple relationships,
predominantly of a stochastic nature. These areas should therefore be better suited
to a modelling process that starts with SD models to understand the dynamics
before elaborating it into an agent-based model.
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The following chapter follows the proposed approach and first develops an SD
model that captures the important dynamics and the feedback structure that involve
the reimbursement of physicians. It shows that it is indeed feasible to transform this
model into an equivalent agent-based model, which can then be further elaborated.



Chapter 6

Modelling Physician Reimbursement
in Both Methods

6.1 Introduction

The proposed modelling process from the last chapter uses SD to create a first
model that should capture the most important feedback structures of a problem.
Detail complexity and things that are hard to deal with in SD (e.g., heterogeneity,
spatial relationships, network structures) can be spared at this stage because the
option to transform the model into an agent-based one is available.

In the present chapter, we demonstrate this process with a simplified model
of physician reimbursement that includes the interaction between patients, their
disease state, and the pressures on physician behaviour from reimbursement and
their workload. The focus lies on the dynamic structure. Parameters are set to
plausible values, but not parametrized from data like the real world case examples
in Chapter 3 and Chapter 4.

6.2 Problem and Textual Model Description

A good modelling study starts with a description of the problem or research question
that should be answered. In the case of reimbursement systems in extramural
health care, one of the central questions is how different reimbursement systems
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influence the amount of provided health services, the quality of service, and the
costs for the payer as well as how an optimal reimbursement system should be
designed. According to Czypionka et al. (2011), most of the theory of optimal
service reimbursement is based upon the work of Ellis and McGuire (1986), who
develop an analytical model and derive conclusions from solving for an optimum of
the physicians’ utility function, which includes their profit (more specifically, the
profit of the hospitals where they are employed) and the benefit to the patients.

Such models do not study dynamic behaviour and how physicians react over
time to potentially changing pressures in the system. Physicians’ treatment deci-
sions can produce feedback by changing the future need of the patients, which in
turn influences their decisions (e.g., if their workload changes). Therefore, dynamic
simulation models might add additional insight to the already available theory. The
central research question is thus which dynamic behaviour physician’s choice of
service extent shows under different reimbursement systems and how it influences
patient health (i.e., which quality is achieved).

It follows that a model must include at minimum the health state of the popu-
lation, its influence on the physicians and their treatment decisions (which amount
of services they provide), and the feedback of the treatment to the health of the
population. There are many different factors influencing medical decision making
(Eisenberg, 2002), but we focus on two of them, physician income and workload.
The group practice model followed the same approach.

6.2.1 The Health of the Population

Consider a fixed population of n individuals. People with good health are part
of the healthy population (HP). They may become symptomatically ill with an
average incidence rate (IR), which depends on a fractional incidence rate (fir)
after which they belong to the sick population seeking treatment (SPST ). In this
state, individuals are in need of medical treatment and will consult physicians.

Patients who get successful treatments (ST ) become healthy again. However,
there are also unsuccessful treatments (UT ) that do not fully cure them. Such
individuals are then part of the latently sick population (LSP). As such, they
do not immediately need medical treatment, but after relapses (R), which take
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on average the time to relapse (ttr), they become again sick population seeking
treatment.

Like the GAP-DRG model (and unlike the group practice model), this struc-
ture keeps track of diseased individuals. It also allows that they stay ill without
immediately seeking treatment. However, the kind of disease or the occurrence
of multiple parallel diseases are not considered. Furthermore, the model does not
explicitly keep track of chronic diseases that may never heal. These simplifications
are due to the focus on dynamics instead of detail, which could be added in later
modelling steps but would complicate the models in a first step and thus hinder
insight.

What is new in this model structure, compared to the GAP-DRG and the
group practice model, is the possibility of taking quality into account. Higher
quality manifests in a higher fraction of success (FOS ) of treatments. In the GAP-
DRG model, medical services have no influence on patients’ state of health, and
the group practice model does not consider the health of the patients explicitly.

6.2.2 Cases and Services per Doctor

Persons in the sick population seeking treatment generate a certain amount of cases
(C) for physicians per day at a case rate per person (crpp). For every case, an
individual changes his or her state to either healthy or latently sick.

The number of cases per doctor (CPD) and day depends on the cases and
on the number of doctors (nod). Every case has a service need per case (snpc),
which leads to the service need per doctor (SNPD). This represents the amount of
medical services that would be the optimal treatment. The resulting services per
doctor (SPD) that an average physician performs per day depend on the true need,
but also on the service extent (SE ), which controls if the physicians provides on
average too many or too few services per case.

6.2.3 Workload and Reimbursement

It is assumed that the more services per day a physician has to perform the higher
his workload (W ), which is measured relative to a standard service volume (ssv),
is. However, doctors do not instantaneously adapt their perceived workload (PW ),
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upon which their reactions are based, but only after a certain time to perceive
workload (ttpw).

In general, reimbursement is some mixture of per case flat rates and fee-for-
service payment. The reimbursement per doctor (RPD) thus consists of the case
reimbursement (CR), which is calculated from the cases per doctor and the per
case flat rate (pcfr), and the service reimbursement (SR), which equals the services
per doctor times the average service tariff (ast).

Again, doctors adapt their perceived reimbursement (PR) after a certain time
to perceive reimbursement (ttpr). The normalized reimbursement (NR) is then the
reimbursement relative to some standard reimbursement (sr).

6.2.4 Service Extent and Its Influence on the Success of

Treatment

The service extent measures how many services doctors provide relative to the true
service need per doctor. Thus, values under 1 correspond to under-provision and
value above 1 to over-provision of services.

Both the perceived reimbursement and workload of a doctor influence his or her
service extent. If both assume their standard values they exercise the standard effect
of reimbursement on service extent (serse) and the standard effect of workload on
service extent (sewse). In this case, the effect of reimbursement on service extent
(ERSE ) and the effect of workload on service extent (EWSE ) both assume the
value 1. If reimbursement increases, its effect on service extent decreases, because
doctors do not have to work as much to reach their target income. Furthermore, if
workload increases, its effect on service extent also decreases, because doctors try
to spend less time on each patient to reduce their workload.

The model assumes that there is both a positve effect of service extent (PESE )
and a harmful effect of service extent (HESE ). If the service extent equals 1 the
fraction of success equals the optimal fraction of success (ofos). A lower service
extent decreases the positive effect of service extent, because doctors do not provide
all necessary services. Conversely, a higher service extent leads to a harmful effect
of service extent. In both cases, the resulting fraction of success will be sub-optimal.
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6.3 Feedback in the Model

The described structure includes several feedback loops. Figure 6.1 shows a simpli-
fied causal loop diagram of the model.

The most obvious feedback loops B1 (Target Income) and B2 (DesiredWorkload)
are balancing loops through service extent and reimbursement or workload:

Balancing Loop B1 (Target Income): The more services per case doctors
provide, the higher the reimbursement. When they perceive an increase in reim-
bursement they in turn reduce their service extent.

Balancing Loop B2 (Desired Workload): In the same manner as with re-
imbursement, doctors who perceive an increased workload decrease their service
extent.

There is also a reinforcing loop R1 (Prevention), which involves the health of
the population and the positive effect of service extent on the fraction of success.
On the other hand, B3 (Bad Treatment) is another balancing loop and involves
the harmful effects of over-treatment.

Reinforcing Loop R1 (Prevention): If service extent increases and more in-
dividuals become healthy through the positive effects of service extent, physicians’
workload and reimbursement decrease, because future cases are prevented. Thus,
they have more time and motivation to increase their service extent. Note that this
feedback loop is only active if the service extent is below the optimal level.

Reinforcing Loop R2 (Bad Treatment): This feedback loop, on the contrary,
becomes active if the service extent is above the optimal level. The harmful effects
of services increase and thus more people become latently sick. In the long term,
this leads to more relapses and more cases. Workload and reimbursement increase,
which provokes a decrease in service extent.
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6.4 Implementation as a System Dynamics Model

After the creation of a causal diagram, it is necessary to determine which variables
are stocks or flows. The model mainly includes the stocks of healthy individuals,
sick individuals seeking treatment, and latently sick individuals. It follows that
flows are the variables that influence these stocks.

Physicians perceive their workload and reimbursement only with a delay (they
average the input over time). If these delays are, for example, first order exponential
delays, then their implementation also involves a stock. Thus, the model includes
three explicit and two implicit stocks. Table 6.1 shows a detailed description of
the model equations and parameters. Plausible values based on educated guesses
were chosen for the parameters. In contrast to the presented case examples, no real
data was involved. This is unproblematic for demonstration purposes and avoids
the disclosure of potentially sensitive health insurance data.

Table 6.1: Model documentation of the SD physician reimbursement model.

Formulations and comments Units

HP(t) = HP(0) +
∫ t

0
ST (s)− IR(s)ds Person

The healthy population, HP , declines because of incident cases (i.e., new diseases)
through the incidence rate, IR. On the other hand, people become healthy again
trough successful treatments, ST .

SPST (t) = SPST (0) +
∫ t

0
IR(s) +R(s)− ST (s)− UT (s)ds Person

The sick population seeking treatment, SPST , accumulates individuals who become
initially sick through the incidence rate, IR, or have relapses, R. People leave this
stock through either successful or unsuccessful treatments, ST or UT .

LSP(t) = LSP(0) +
∫ t

0
UT (s)−R(s)ds Person

Individuals enter the latently sick population, LSP , after unsuccessful treatments,
UT , and seek treatment again after relapses, R.

Continued on next page
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Table 6.1 – continued from previous page

Formulations and comments Units

IR(t) = fir · HP(t) Person/Day
The incidence rate, IR, of newly ill people depends on the fractional incidence rate,
fir , and the number of people in the healthy population, HP .

R(t) = LSP(t)
ttr

Person/Day
Relapses, R, take on average the time to relapse, ttr , and can occur for individuals
in the latently sick population, LSP .

ST (t) = FOS (t) · C(t) Person/Day
Cases, C, become successful treatments, ST , according to the fraction of success,
FOS .

UT (t) = (1− FOS (t)) · C(t) Person/Day
Unsuccessful treatments, UT , are cases, C, that are not successful treatments ac-
cording to the fraction of success, FOS .

C (t) = crpp · SPST (t) Case/Day
Persons who seek treatment (SPST ) become cases, R, with an average case rate
per person, crpp.

CPD(t) = C(t)
nod

Case/(Doctor*Day)
Cases, C, divided by the number of doctors, nod , gives the average number of cases
per doctor, CPD .

SNPD(t) = snpc · CPD(t) Service/(Doctor*Day)
The service need per doctor, SNPD , equals the cases per doctor, CPD , multiplied
by the service need per case, snpc.

SPD(t) = SE (t) · SNPD(t) Service/(Doctor*Day)
The services per doctor, SPD , is the fraction of service need per doctor, SNPD ,
that is given by service extent, SE .

Continued on next page
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Table 6.1 – continued from previous page

Formulations and comments Units

CR(t) = pcfr · CPD(t) Euro/(Doctor*Day)
The case reimbursement, CR, per doctor is the per case flat rate, pcfr , multiplied
by the number of cases per doctor, CPD .

SR(t) = ast · SPD(t) Euro/(Doctor*Day)
The service reimbursement, SR, per doctor is the average service tariff, ast , multi-
plied by the services per doctor, SPD .

RPD(t) = CR(t) + SR(t) Euro/(Doctor*Day)
The total reimbursement per doctor, RPD , consists of the case reimbursement, CR,
and the service reimbursement, SR.

PR(t) = smooth(RPD(t), ttpr ,R0 ) Euro/(Doctor*Day)
The perceived reimbursement, PR, is the first order exponential smooth of the
reimbursement per doctor, RPD , where time to perceive reimbursement, ttpr , is
the average delay time. Its initial value is the standard reimbursement, R0 .

NR(t) = PR(t)
R0

Dimensionless
Normalized reimbursement, NR, is the perceived reimbursement, PR, relative to
the standard reimbursement, R0 .

ERSE (t) = TableForERSE(NR) Dimensionless
The table function TableForERSE() applied to the normalized reimbursement, NR,
gives the effect of reimbursement on service extent, ERSE .

W (t) = SPD(t)
ssv

Dimensionless
Workload, W , is measured by the services per doctor, SPD , relative to a standard
service volume, ssv .

Continued on next page
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Table 6.1 – continued from previous page

Formulations and comments Units

PW (t) = smooth(W (t), ttpw , 1) Dimensionless
The perceived workload, PW , is the first order exponential smooth of the workload,
W , where time to perceive workload, ttpw , is the average delay time. Its initial value
equals 1, which represents the case where services per doctor equals the standard
service volume.

EWSE (t) = TableForEWSE(PW ) Dimensionless
The table function TableForEWSE() applied to the perceived workload, PW , gives
the effect of workload on service extent, EWSE .

SE (t) = ERSE · serse · EWSE · sewse Dimensionless
Service extent, SE , is the product of the effect of reimbursement on service extent,
ERSE , the standard effect of reimbursement on service extent, serse, the effect of
workload on service extent, EWSE , and the standard effect of workload on service
extent, sewse. It describes how many service per case doctors provide in relation
to the true service need per case.

PESE (t) = TableForPESE(SE ) Dimensionless
The table function TableForPESE() applied to service extent, SE , gives the positive
effect of service extent,PESE . This describes the positive effect of necessary services
on health.

HESE (t) = TableForHESE(SE ) Dimensionless
The table function TableForHESE() applied to service extent, SE , gives the harmful
effect of service extent, HESE . This describes the harmful effect of unnecessary
services (i.e., additional services that are not part of the service need) on health.

Continued on next page
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Table 6.1 – continued from previous page

Formulations and comments Units

FOS (t) = PESE
HESE

· ofos Person/Case
The positive effect of service extent, PESE , divided by the harmful effect of service
extent, HESE , gives the proportion of the optimal fraction of success, ofos , that
is the actual fraction of success, FOS . It represents the proportion of cases where
a person gets cured.

n = 100 000 Person
There are one hundred thousand individuals in the population.

fir = 0.01 1/Day
We assume that the fractional incidence rate, fir , for becoming ill is 0.01 per day,
that is, people develop a disease every 100 days on average.

ttr = 30 Day
The average time to relapse, ttr , is assumed to be 30 days for a latently sick person.

crpp = 0.1 Case/(Person*Day)
The case rate per person, crpp, is assumed to be 0.1 cases per day and person, that
is, a sick person seeking treatment becomes a case at a doctor’s office after 10 days
on average.

snpc = 5 Service/Case
It is assumed that patients have a service need per case, snpc, of 5.

nod = 100 Doctor
There are 100 doctors in the model (i.e., one doctor per 1000 patients).

pcfr = 20 Euro/Case
The per case flat rate, pcfr , is 20 euros per case.

ast = 6 Euro/Service
According to the average service tariff, ast , a service costs 6 euros.

Continued on next page
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Table 6.1 – continued from previous page

Formulations and comments Units

ttpr = 45 Day
It is assumed that the average time to perceive reimbursement, ttpr , is half of a
quarter of a year, or 45 days.

ttpw = 10 Day
It is assumed that the average time to perceive workload, ttpw , is 10 days.

ofos = 0.9 Person/Case
The optimal fraction of success, ofos , is assumed to be 0.9, which means that under
optimal treatment the person is healed in 90 % of cases.

serse = 1.5 Dimensionless
It is assumed that the standard effect of reimbursement on service extent, serse,
is 1.5. Thus, even the standard reimbursement leads to an extension of services
(doctors would like to get more reimbursement then they do at present).

sewse = 0.8 Dimensionless
It is assumed that the standard effect of workload on service extent, sewse, is
0.8. Thus, the standard service volume has a reducing influence on service extent
(doctors would like to work less then they do at present).

See Appendix A for the definition of the table functions that are used in the
equations.

Initial values for the stocks in the model are also necessary. For a theoretical
analysis, a useful assumption is that the system should be in equilibrium, where
the in- and outflows to each stock cancel each other out. This leads to the following
equation system:
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IR ≡ ST

R ≡ UT

R0 ≡ RPD

W ≡ 1

(6.1)

From the last two equations of 6.1, it follows that in equilibrium, the effects of
reimbursement and of workload on the fraction of success FOS are both equal to
1: Only the standard effects remain. Thus, we can set

FOS =
ofos

TableForHESE(serse · sewse)
.

Note that with the parameter values of the standard effects of reimbursement
(serse) and of workload (sewse), the positive effect of service extent equals 1.

With this value for FOS , we can substitute the expressions for the rates into
the first two equations of (6.1) and solve for the initial values of the sick population
seeking treatment, SPST , as well as the latently sick population, LSP . The initial
value for the healthy population, HP , follows from the fact that the total population
equals n:

SPST (0) =
n

ttr · (1− FOS ) · crpp+ 1 + FOS · crpp/fir

LSP(0) = n−
(

1 +
FOS · crpp

fir

)
· SPST

HP(0) = n− SPST − LSP

(6.2)

In equilibrium, the service extent equals serse · sewse. As the sick population
seeking treatment is known from (6.2), we can express the standard reimbursement,
R0 , and the standard service volume, ssv , as

R0 =
pcfr + ast · sewse · serse · snpc

nod
(crpp · SPST )

ssv =
sewse · serse · snpc

nod
(crpp · SPST ) .

(6.3)

Thus, all values for initializing the model in equilibrium are known.
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6.5 Transformation Into an Agent-Based Model

6.5.1 Introduction

The developed SD model is easily transformable into an equivalent agent-based
model with the same global parameters.

Implicitly, there are two types of agents. It is clear that the three stocks healthy
population, sick population seeking treatment, and latently sick population count
persons. Therefore, the agent-based model must also contain n person-agents.

The second agent type is the doctors. While there are no stocks that count the
numbers of physicians in particular states, the variables service extent, perceived
reimbursement, perceived workload, and others represent average values of a pop-
ulation of individuals (doctors). Therefore, agents of this second type, according
to the number of doctors, have to be part of the model.

It is important to note that the modeller must provide information on whether
a stock or variable represents an agent count, an average value of a property that
each agent of a population has, or a real global quantity because this depends on
implicit knowledge of the system. An automatic algorithm for the transformation
of an SD model into an agent-based one could not infer this on its own.

6.5.2 Agent Type Person

The stocks that count individuals transfer directly to the states of the agents. State
charts are a convenient way to express agent behaviour (Borshchev & Filippov,
2004). They include the states and the possible transitions between states. In the
transformed agent-based model, these transitions are equivalent to the flows of the
SD model. The structure of the stock and flow diagram and of the state chart is
therefore essentially the same. Figure 6.2 shows the state chart of persons in the
agent-based physician reimbursement model.

The transitions from the states healthy or latently sick to the state sick seeking
treatment are triggered by rates (the fractional incidence rate and the inverse of
the time to relapse as in the SD model). This means that the time until the person
makes the transition is exponentially distributed, which follows the equivalence
shown in Section 5.5.
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healthy

sick seeking treatment

latently sick

Figure 6.2: The behaviour of the agent type person as a state chart, which maps
the stock and flow structure of the SD model. A person can be in one of the
three states healthy, sick seeking treatment, and latently sick. Transitions represent
people getting ill, successful and unsuccessful treatments (leading back to healthy
or to latently sick), as well as relapses. Additionally, the arrow inside sick seeking
treatment symbolizes the event when a sick person consults a doctor.
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Transitions in the other direction, which represent successful and unsuccessful
treatments, are not directly triggered. Instead, in the state sick seeking treatment,
the person will send a message after an exponentially distributed time (according
to the case rate of sick persons) to a random doctor. The message contains the
service need per case as a value. The doctor will then return a message with the
amount of services he or she provides to the patient (see the next section).

Upon receiving the message, the person calculates the service extent as the
fraction of the amount of services from the provider and the service need per case.
The probability of success is then calculated in the same way as in the SD model
with the table functions for positive and harmful effect of service extent and the
optimal fraction of success. This probability is used for a binary random experiment,
which determines whether the treatment was successful (the person transitions to
state healthy) or unsuccessful (the person transitions to state latently sick).

Just as the stocks in the SD model need initial values, each person-agent must
be in one of the three health states at the start of a simulation. This initial state
is also determined by a random experiment, where the probability of being in a
certain state equals the initial value of the corresponding stock in the SD model
divided by the total number of persons, n. Thus, the initial value is nothing else
but the expected value of the number of agents in the stock.

6.5.3 Agent Type Doctor

Doctors do not have a discrete state. Instead, their state consists of four different
variables: perceived workload, perceived reimbursement, service extent, and time of
last case.

Each time a doctor gets a message from a patient seeking treatment, he or she
takes the following steps:

1. Calculate the amount of services that the patient gets. It equals the service
need of the patient multiplied by service extent.

2. Send a message with the amount of services to the patient.

3. Update the perceived workload with the amount of services as input.
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4. Update the perceived reimbursement with the reimbursement, which is a
function of the amount of services, as input.

5. Update the service extent.

6. Set the time of last case to the present time.

The update of the perceived workload and the perceived reimbursement uses
(5.14) from Section 5.6.2. Time to perceive workload and time to perceive reimburse-
ment are the corresponding delay times. The new input value for the perceived
workload is the amount of services divided by the time span since the last case
of the doctor and the standard service volume. The reimbursement of the present
case equals the per case flat rate plus the average service tariff multiplied by the
amount of services, and the new input value for the perceived reimbursement is
the reimbursement of the present case divided by the time span since the doctor’s
last case.

The service extent, on the other hand, is a direct function of perceived workload
and perceived reimbursement. It is calculated in the same way as in the SD model.
Note that the state space of the doctors could thus be reduced, because service
extent follows directly from the perceived values of workload and reimbursement.

6.6 Comparison of Simulation Results

The last two sections presented two models of physician reimbursement. While
we constructed the ABMS version using the relationship between stochastic and
deterministic rates from Section 5.5 and the discrete event formulation of exponen-
tial smoothing (see Section 5.6.2), it is not clear that both models show the same
behaviour. A certain variability in the agent-based version is expected, because it
describes a stochastic dynamical system, but with 100 000 agents this should be
small, and the expected value should not differ from the SD results.

Both versions of the model were implemented in the simulation software Any-
Logic 6.9.0 because it supports both SD and ABMS. Simulations of the SD model
used the RK4 integration method with a time step of 0.001 days. All necessary
system dynamics elements were directly available in the software. State charts,
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Table 6.2: Equilibrium values for the SD physician reimbursement model.

Variable/Parameter Equilibrium Value Unit
Healthy Population 85 628.44 Person
Sick Population S. Treatm. 10 015.02 Person
Latently Sick Population 4 356.53 Person
Standard Reimbursement 560.84 Euro/(Doctor*Day)
Standard Service Volume 60.09 Service/(Doctor*Day)

transition rates, and messages between agents were also supported by AnyLogic,
but some functionality had to be coded in functions, such as the discrete event
formulation of exponential smoothing. This confirms that agent-based modelling
and simulation needs more advanced programming skills.

Therefore, this section compares the behaviour of both models in various sce-
narios. It will also make clear how the models can implement a per case flat rate
reimbursement system.

6.6.1 Base Run: The Models in Equilibrium

As stated in Section 6.4, it makes sense to assume that the system is in equilibrium
at the moment. The SD model produces a constant behaviour if it is initialized
with the equations (6.2) and (6.3). Table 6.2 shows the corresponding values. (Nor-
malized reimbursement and perceived workload are constantly 1 in the SD model
in equilibrium, which leads to a value of 1.2 for service extent.)

The agent-based model, on the contrary, does not show exactly constant be-
haviour because of the stochastic variation. However, as Figure 6.3 and Figure 6.3
show, the fluctuations are very small around the SD equilibrium values.

6.6.2 Scenario: Per Case Flat Rates

Per case flat rates do not reimburse single services, but only cases. The average
service tariff, ast , is therefore zero in this scenario. On the other hand, the per case
flat rate, pcfr , must be higher to compensate for the missing service reimbursement.
We set it to 56 euros, because this equals the per case flat rate in the base run (20

euros) plus the average service tariff (6 euros) multiplied by the service extent in
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Figure 6.3: The number of persons who are sick seeking treatment or latently sick
in the base run of the agent-based physician reimbursement model.
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the base run of the agent-based physician reimbursement model.
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equilibrium (1.2) and the service need per case (5).
The second effect is that now the service extent does not have a direct influence

on reimbursement. Therefore, it does not make sense for a physician to increase it
in order to receive more payment (or decrease it if he or she has more than enough).
This cuts the causal loop B1 (Target Income), such that the effect of reimbursement
on service extent is always 1, which lowers the service extent in comparison to the
base run (where standard service extent is 1.2).

In contrast, the group practice model assumes that there is also an effect of
reimbursement on the average number of services per case in a per case flat rate
system, but that it works in the other direction: A physician increases the service
extent if he or she feels that reimbursement is more adequate (i.e., higher). This is
also a possible assumption, but empirical data or expert opinion would be necessary
to decide if it is true and how large its effect is.

Figure 6.5 and Figure 6.6 show the results from both the SD and ABMS versions
of the model. Only the perceived workload influences the service extent, so it is
below the optimal value instead of too high as in the base run. Thus, the doctors
provide less services to the patients, and their perceived workload decreases. In
turn, they increase the service extent slightly. Additionally, the new level of the
service extent is more beneficial to the patients than it is in the base run, which
causes the number of latently sick patients to drop.

Again, there are only minimal differences between the results of the SD and the
AB model. The output trajectories for service extent are even nearly indistinguish-
able. Other curves, for example the sick population seeking treatment, show some
minor differences, but only over a very limited time span due to small stochastic
variations.

6.6.3 Scenario: Increase of Incidence Rate

An important test of system behaviour is the reaction to a certain change of an
input or a parameter. In this scenario, we assume that the fractional incidence rate
doubles from 0.01 to 0.02 after 10 days, which leads to far more individuals getting
sick (e.g., during a pandemic).

In principle, it is only necessary to change the parameter in both versions of the
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Figure 6.5: The number of persons who are sick seeking treatment or latently sick
in the scenario with per case flat rates as the reimbursement system, for the AB
and SD physician reimbursement models.
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model. However, the modeller must make sure that the new rate instantaneously
takes effect in the agent-based model for all agents. The time to the transition
from healthy to sick seeking treatment must be re-sampled for each agent in order
to achieve this. Otherwise, the increase in sick population would be delayed in the
agent-based model in comparison to the SD version.

Figure 6.7 and Figure 6.8 show the results for both models. As expected, the
number of sick individuals seeking treatment increases sharply after the change
in the fractional incidence rate. It saturates at a bit more than 17 thousand. The
latently sick population increases nearly linearly.
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Figure 6.7: The number of persons who are sick seeking treatment or latently sick
in the scenario where the fractional incidence rate changes from 0.01 to 0.02 after
10 days, for the AB and SD physician reimbursement models.

As a result, the perceived workload and reimbursement of the doctors also
increase sharply. This causes them to lower the service extent. At about time 50,
the perceived workload starts to decrease again. Again, the results of the SD and
ABMS model versions are nearly identical.
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6.6.4 Scenario: Increase of Incidence With Per Case Flat

Rates

Reimbursement with per case flat rates can potentially change the reaction of the
system to a higher incidence rate in the population. Thus, this section studies a
scenario with both a higher incidence rate and per case flat rates for reimbursement.

Figure 6.9 and Figure 6.10 show the corresponding results. The perceived
workload of the doctors drops initially because of the lower service extent, which is
provoked by the different reimbursement system. However, the perceived workload
(and the reimbursement) increases sharply after the change in incidence.
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Figure 6.9: The number of persons who are sick seeking treatment or latently sick
in the scenario with an increase in the fractional incidence rate and a per case flat
rate reimbursement system, for the AB and SD physician reimbursement models.

This causes service extent to decrease even more. Thus, the treatment is worse
than it was in the last section. As a consequence, there are about a thousand more
latently sick individuals at the end of simulation than without the per case flat
rate reimbursement system. This shows that under the assumptions of the models,
the system reacts better under the mixed system of per case flat rates and single
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service reimbursement. Again, both model versions lead to nearly identical results.

6.7 Conclusions

The physician reimbursement model depicts the most important properties of both
the GAP-DRG and the group practice model. It incorporates epidemiology (people
who develop diseases) as well as physician behaviour based on their workload
and their reimbursement, which depends on the applied reimbursement system.
However, the model was built to be as simplified and abstract as possible in order
to favour dynamic complexity over detail complexity. This facilitates the utilization
of the SD modelling process, although it is possible to transform the result into an
equivalent agent-based model. Both model versions show the same behaviour in
many different scenarios, apart from stochastic variation in the agent-based case,
which is very small, however, when the number of individuals is large.



144 CHAPTER 6. MODELLING IN BOTH METHODS



Chapter 7

Summary and Conclusions

This study set out to compare system dynamics and agent based models, with a
special focus on the modelling of health care reimbursement systems as a field of
application. The importance of the right choice of a modelling method for a certain
problem is often emphasized, and there are some recommendations in the literature
(see, for example, the taxonomy and recommendations of Brennan et al., 2006).
In practice, however, there might not always be simply one optimal decision, but
rather each method has advantages and disadvantages. No matter if a problem is
tackled with SD or ABMS, traps and difficulties can arise that would not have
occurred with the other methodology.

System dynamics is, for example, not well suited for modelling a heterogeneous
population that is partitioned in many different dimensions (e.g., age, sex, disease
state). Such models can quickly get unmanageable, partly because of the obligatory
graphical notation. In contrast, agent-based models are very flexible, but this can
beguile the modeller into the incorporation of a lot of detail complexity at the cost
of dynamic complexity. Such a model has little value to study dynamics and is also
prone to error.

On the other hand, there are features of SD that have a direct equivalent
in ABMS and vice versa. In particular, change in a system dynamics model is
represented by the flows or rates, whereas agents change their state in events,
which can be triggered by stochastic rates. Moreover, while feedback is a special
focus of SD, it is also present in ABMS through the interactions of agents. These
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similarities, but also the differences in advantages and disadvantages that modellers
face when using the two methods, suggested that a more extensive comparison
would be valuable.

7.1 Summary of Findings

The first research question of Chapter 1 asked what constitutes a system dynamics
or an agent-based model, respectively. This was answered in the two method-specific
chapters, Chapter 3 and Chapter 4. We can see an SD model as a collection of
stocks, flows, auxiliaries, and parameters together with rate equations and auxiliary
equations. Additionally, it must be specified which stocks are coupled by flows (flow
coupling).

SD models are not allowed to have algebraic loops, where only auxiliary vari-
ables depend on each other without any accumulating stock in between. This work
proposes formal definitions of causal links, causal chains, and causal loops, which
make it possible to show that if there are no algebraic loops, (i.e., no causal loops
of only auxiliaries) the flow equations of the SD model can be written just in terms
of stocks and parameters (see Proposition 3.10). Thus, the model has an equivalent
formulation as a differential equation system. Moreover, the links between auxil-
iaries form a link matrix, and the model has no algebraic loops if and only if it is
not possible to transform this matrix into a lower triangle form by renumbering
the auxiliaries.

Agent-based models consist of agents and an environment. Agents have their
own state and can perform actions. It is possible to ensure autonomy of the agents
by demanding that only an agent itself can change its state directly. Communication
with others is only conducted via messages. Possible formalizations of ABMS are
usually based on the DEVS formalism. We presented a new approach that is
based on STDEVS (Castro et al., 2010) but where agents have no fixed coupling.
Instead, they have more flexibility to send messages to different, even randomly
chosen receivers.

Systems theory can serve as a rigorous mathematical foundation for modelling
and simulation. Most approaches describe only deterministic systems, but many
agent-based models are stochastic. Therefore, the concept of a stochastic dynamical
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system is necessary. General stochastic systems can be described with a probability
space (Willems, 2013). We based our definition of a stochastic dynamical system
on deterministic dynamical systems, as defined by Hinrichsen and Pritchard (2010),
but added a probability space on which the state transition map also depends.
Deterministic dynamical systems (e.g., SD models) are a special case where the
probability space has only one element. It is thus possible to see both agent-based
and SD models as descriptions of stochastic dynamical systems.

Another question that this thesis tried to answer is: What creates the dynamic
behaviour in both model types? Feedback can be seen as the central mechanism
that determines which modes of behaviour a system might show. In SD, causal
loop diagrams and stock and flow diagrams always laid emphasis on feedback
relationships. ABMS, on the contrary, has no such focus, but feedback is nevertheless
present in agent-based models if the states of agents influence future events that in
turn may change these same states. An especially important case is when agents,
depending on their state, influence the states of other agents through interaction.
Agent feedback diagrams (Martinez-Moyano & Macal, 2013) make these feedback
processes explicit.

SD models describe change through flows, while agents change their state
through stochastically distributed events. The concept of rates covers both. In
general, a rate describes how some quantity changes over time. Flows in SD are
also called rates because they represent the change of the stocks. Hazard functions
for survival times (or the time to any other type of event than death) describe the
change of the survival function and, thus, the expected value of individuals who
have not had the corresponding event yet. Therefore, they are often called hazard
rates.

A stochastic agent-based model and an SD model can be equivalent in the sense
that a stock in the SD model represents the expected value of the number of agents
in the respective state. This is the case if the outflow of the stock, relative to the
value of the stock (the relative rate), equals the hazard function of the event that
represents the corresponding change of the agents’ state. An important special case
of the equivalence is when the relative rate is constant, as in

dN

dt
= rN,
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where N is the value of the stock and r is the constant relative rate. This de-
scribes the situation where the agents change their corresponding state after an
exponentially distributed time, where r is the rate parameter of the exponential
distribution.

It is even possible to derive formulas that describe the variance that results
from stochastic rates. The number of individuals that are still in their original state
at time t if they change it after a stochastically distributed time span is binomially
distributed with the corresponding value of the survival function, S(t), as its mean.
Its variance grows linearly with the total number of individuals, n, and thus the
standard deviation grows only with the square root. Relative to n, the deviation
becomes smaller if more agents are simulated, a result which is well-documented
empirically. Furthermore, with the theory of order statistics it is also possible to
derive formulas for the distribution of the time when the i-th individual changes
the state. Indeed, if q is a probability and i = bnqc+ 1 then the survival time of
the i-th individual is an asymptotically unbiased estimate of the time point where
the probability of having changed state is q.

While there is a strong equivalence between the rates in SD and ABMS models,
individual-based models are typically better at coping with heterogeneity and need
less aggregation. Aggregated models, on the contrary, usually have a state space
with a lower dimension. One important question is when such an aggregation is
admissible. This work showed that the answer depends on the output quantity of
interest. An aggregation is admissible if it is possible to calculate the future value
of the output from only the knowledge of the present aggregated state. However,
even if it is not possible to aggregate correctly, for example because of heterogeneity,
the resulting error may be small (compare the example in Section 5.3.5).

How to transform an SD model into an agent-based version depends on the
nature of its stocks. On the one hand, there can be stocks that count individuals in
certain states. The types of individuals (e.g., patients, doctors) must be identified
and lead to corresponding agent types, which have variables and parameters for
representing the states that are counted in the stocks. Additionally, the modeller
has to include events that change the states of agents as specified by the flows in
the SD model. On the other hand, global variables might also represent average
values of an attribute of the individuals. For parameters, it is feasible to assume
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that each agent has the same parameter value unless heterogeneity is important.
If, on the contrary, the quantity is the average perceived value of a certain input,
discrete exponential smoothing as derived in Section 5.6.2 is a feasible approach
to implement inside the agents.

There are approaches in the literature that try to deduce aggregated equations
from individual-based models. One such method is diffusion approximation (Bicher
& Popper, 2013). However, it needs the condition that the counts of agents in each
state are an admissible aggregation, which is violated, for example, by complex
network structures. While there are also approaches that try to circumvent this
(e.g., Keeling, 1999), it does not seem feasible to transform large models that
use the flexibility of the agent-based approach into fully equivalent differential
equations.

Instead, we propose a different approach that starts with the construction of
an SD model for new problems where the important dynamics and the feedback
structure are not already identified. The structured approach of SD with its focus
on feedback and dynamics instead of detail complexity is ideal for the first steps in
a modelling study. A later transformation into an equivalent agent-based model is
easier than the other way round, and it will prevent the modeller from including
too much detail complexity into the model right from the beginning.

This approach was tested in Chapter 6. The constructed physician reimburse-
ment model was developed in SD and then transformed into an agent-based model.
It includes the health state of persons in the population and the decision structure
of doctors, who react to their reimbursement and their workload by adapting the
service extent. Most notably, apart from very small stochastic variation, both model
versions lead to identical results.

7.2 Conclusions

The choice between modelling methods is not simply a technical question of which
one is superior. Both differential equations (i.e., SD) and agent-based models are,
in principle, capable of approximating any desired behaviour. However, the key
question is how likely it is with a certain modelling method that a modeller will
manage to produce a reasonably good model (good enough for the problem at hand)
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with an acceptable amount of effort and time. A method will perform well if it
allows one to focus on the really important aspects of a problem without including
too much unnecessary detail.

Traditionally, the literature focuses on certain properties of a problem that
favour a certain modelling method. For example, if a modeller wants to include
many heterogeneous classes of individuals, an agent-based approach is called for,
because dividing global quantities in an SD model into many different dimensions
can very quickly make it unmanageable. But the idea of “if your problem has this
property, then that is the right approach” over-simplifies the modelling process.
Modelling and simulation should lead to insight and enhanced understanding of
a problem. This is seen in one final model, but it is perhaps even better achieved
with a chain of models that build iteratively on each other.

Therefore, answers to the question above might differ depending on the stage
of the modelling process or on previous attempts to tackle a problem. The final
version of a model might be an agent-based one, but this might only have been
developed after several SD models that were already able to explain much of the
dynamic behaviour of a system. Infectious disease models have followed this path,
because practically every modeller knows of the classic SIR differential equation
approach before any attempt to construct a sophisticated agent-based model. It
is clear that any such model must include the positive feedback effect of more
infectious individuals having a larger capacity of infecting susceptible individuals.
While the results of models with different contact networks may differ significantly
(Rahmandad & Sterman, 2008), they show qualitatively similar behaviour because
the basic feedback structure is the same.

As system dynamics is a methodology with a strong focus on feedback, it is
pedagogically well suited for the first attempts to model a problem. The goal should
be to gain as much insight as possible while keeping detail complexity low. If im-
portant aspects of the problem that are easily tractable with SD are exhausted, a
transformation into an equivalent agent-based version could allow for the incorpora-
tion of things like heterogeneity. The agent-based physician reimbursement model
of the last chapter, for example, could be further enhanced, but the SD model is
always there as a reference. Additionally, tests could be conducted to see if new
features in the agent-based version are also easy to implement in SD.
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One limitation of this work is that there is no way to prove that modellers could
not directly create a good agent-based model without exploring the feedback struc-
ture first in SD. This is certainly possible, but probably unlikely. Only empirical
studies could show if there is a pedagogical advantage to first concentrating on the
general feedback structure among global quantities without using an individual-
based approach from the start. However, the similarities between the two methods
that were shown in this work suggest that they can complement each other in this
way.

Future research might develop methods to automatically transform a model
constructed in SD into an agent-based one. This would require the modeller to
indicate which stocks count agents and which stocks represent average values of an
agent attribute, but it could speed up the transformation process. Ideally, it would
take just one click to derive an equivalent agent-based version of an SD model. This
could also stimulate research on which properties of a system are hard to model in
system dynamics and how much results differ when they are not included.

Feedback plays a strong role in both modelling methods, be it between global
quantities or through the interaction of agents. The identification and quantification
of the causal effects that are part of a feedback structure from observational data
will thus be a further important area for future research. Robins and Hernán
(2009) present causal inference methods that allow for the analysis of the causal
effect of a time-varying exposure on an outcome, where the exposure is allowed
to depend on the former values of measured covariates and vice versa, that is,
exposure and confounders form feedback loops. Such methods might therefore also
prove valuable for the parametrization of both system dynamics and agent-based
simulation models.
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Appendix A

Table Functions of the Physician
Reimbursement Model

A.1 Effect of Reimbursement on Service Extent

It is assumed that the service extent decreases with increasing reimbursement (s-
shaped form). The influence is between 1.5 (if the physician gets no reimbursement)
and 0.8.

Table A.1: The values of the table function TableForERSE.

Argument Value
0.0 1.50
0.2 1.47
0.4 1.42
0.6 1.35
0.8 1.20
1.0 1.00
1.2 0.90
1.4 0.85
1.6 0.81
1.8 0.80
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A.2 Effect of Workload on Service Extent

Just as for reimbursement, the effect of workload on service extent is decreasing
(s-shaped form). It is assumed that even with a very small workload, the service
extent is not increased much. On the other hand, it is reasonable that for high
values of workload, it tends to zero.

Table A.2: The values of the table function TableForEWSE.

Argument Value
0.0 1.050
0.2 1.045
0.4 1.038
0.6 1.030
0.8 1.020
1.0 1.000
1.2 0.900
1.4 0.750
1.6 0.500
1.8 0.200
2.0 0.100
2.2 0.050
2.4 0.000
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A.3 Positive Effect of Service Extent

Service extent has an increasing positive effect on treatment success if it is below
the true service need (i.e., below 1). For higher values, the table function is constant.

Table A.3: The values of the table function TableForPESE.

Argument Value
0.0 0.50
0.2 0.70
0.4 0.85
0.6 0.92
0.8 0.97
1.0 1.00
2.0 1.00

A.4 Harmful Effect of Service Extent

Service extent has no harmful effect if it is below the true service need (i.e., below
1). For higher values, the harmful effect is increasing.

Table A.4: The values of the table function TableForHESE.

Argument Value
0.0 1.000
1.0 1.000
1.1 1.025
1.2 1.050
1.4 1.110
1.6 1.250
1.8 1.660
2.0 2.500
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List of Symbols

(Eu)u∈U Family of σ-algebras, indexed by input elements u

(M, τ) Modelling method with model space M

(Ω,F, P ) Probability space with outcome space Ω, σ-algebra F,
and probability measure P :F → [0, 1]

(Pu)u∈U) Family of probability measures, indexed by input ele-
ments u⊗

u∈U Eu Product σ-algebra of a family of σ-algebras (Eu)u∈U⊗
u∈U Pu Product measure of a family of probability measures

(Pu)u∈U

Bin (n, p) Binomial distribution with n trials and success prob-
ability p

η:T×X × U → Y Output map of a stochastic dynamical system

ηu Probability variable for the output of a stochastic
input-output system given an input u

Exp (λ) Exponential distribution with rate parameter λ

E(N(t)) Expected value of the random variable N(t)

λ:X → Y ×M Output function of an agent

R Set of real numbers
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R+ Set of positive real numbers

Z Set of integers

Z≥0 Set of non-negative integers

D Set of all stochastic dynamical systems

E σ-algebra on an output space Y

M Model space

MSD System dynamics model

S ⊂ P(T) Set of all intervals in T

U ⊂ UT Input function space

P(Y ) Power set of Y

FC Flow coupling of system dynamics model

Select : 2D → D Select function of an environment

ta:X → R+
0 Time advance function of an agent

ω ∈ Ω Random outcome

ΩJ Cartesian product of the output set Y over a subset
J of an index set

φ:Dφ → X State transition map of a stochastic dynamical system

φT:T→ X State trajectory

πJ Canonical projection from ΩU onto ΩJ , where J ⊂ U

πj Coordinate mapping for the j-th coordinate

πKJ Canonical projection from ΩK onto ΩJ , where J ⊂ K

P[E] Probability of the event E
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ΣIO Input-output system

ΣM Model system

ΣO Object system

W Signal space

τ Delay time

T Time set

U Universal set of behaviour

U (0, 1) Standard uniform distribution

a(t) Vector of auxiliaries at time t

p Vector of parameters

r(t) Vector of flows at time t

x(t) State vector of stocks at time t

var(N(t)) Variance of the random variable N(t)

ζ:X → X ′ Aggregation mapping from state space X to state
space X ′

A Agent

B ⊆ U × Y Behaviour of an input-output system

C(T) Set of continuous time functions

CM Components of model system

CO Components of object system

D Set of agent references

F :T→ [0, 1] Cumulative distribution function
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f :T→ W Time signal from time set T to signal space W

f :CO → CM Model mapping between object system and model
system

Fi:n Cumulative distribution function of the i-th order
statistic of a sample of size n

fi:n Probability density function of the i-th order statistic
of a sample of size n

Gρ:MN → 2D∪{N} Function that assigns a subset of all agents including
the environment to every mode m ∈MN

Gint, Gext Functions that assign subsets of the state space X of
an agent

H:R→ {0, 1} Heaviside step function

h:T→ [0,∞[ Hazard function of a distribution

L Link matrix of an SD model

M Set of modes of an agent

N Environment

p Risk or probability

Pρ:MN × 2D∪{N} → [0, 1] Probability function that maps a subset of all agents
including the environment to a probability dependent
on the mode

Pint, Pext Probability functions of an agent

R Rate

r Relative rate

Rd:Md →MN Mode translation function of an environment
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S:T→ [0, 1] Survival function of a distribution

U Set of inputs

u Input element

UN , YN , and MN Input set, output set, and set of modes of an environ-
ment

uBy The pair (u, y) is an element of the behaviour B

X State space of a dynamical system

x(t) State at time point t

Xi:n i-th order statistic for a sample of size n

Y Set of outputs

y Output element

Zi,d Message translation function from i to d
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