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Abstract

Cloud computing had and still has a major impact on how applications are made accessible for
the users. Due to the advantages cloud computing has, there is a demand to migrate applications
to the cloud. Unfortunately there does not exist general guidelines how to define the required
application execution environments and deployment requirements so that they can be interpreted
by any arbitrary cloud provider.

In the last years, cloud providers came up with approaches to be able to describe cloud
resources in form of an interpretable template. Just recently, in November 2013, OASIS pub-
lished the open standard TOSCA [44], which aims to unite existing proprietary approaches and
standardise them. Approaches following a declarative way of describing orchestrated cloud re-
sources are quite recent and are extended frequently, as it is a promising possibility of illustrating
complex dependencies and limitations of computing resources in a way that can be read by hu-
man beings as well.

This thesis firstly discusses model driven engineering and cloud computing separately and
afterwards, how they can be combined. The main aim is to create a model that contains enough
information about dependencies, limitations and application specific requirements, which can
support the migration of the application to the cloud.

Furthermore, the master’s thesis proposes a process, which is subdivided into two parts: De-
ployment and Provisioning. The first step is about creating UML models and refining them with
UML extensions (classifiers, profiles and stereotypes), which consists out of cloud computing
specific attributes. The second step converts the model into a template, by means of applying
model to text transformations, in order to be interpretable and executable by cloud providers.

Existing solutions only address partial aspects of the whole problem, focusing on other ob-
jectives. One of the main goal of this thesis is the creation of a unified and model-based solution,
whose processes and tools support the application modeler and make a (semi-)automatic execu-
tion of the deployment and provisioning of an application in the cloud possible.
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Kurzfassung

Cloud-Computing hatte und hat noch immer einen großen Einfluss darauf, wie Applikationen
Benutzern zur Verfügung gestellt werden. Aufgrund der überwiegenden Vorteile, die Cloud-
Computing mit sich bringt, besteht ein großes Bestreben, Applikationen in die Cloud zu mi-
grieren. Leider existieren derzeit keine allgemeinen Richtlinien, in welcher Form die benötigten
Ausführungsumgebungen und die Erstellungsspezifikationen einer Applikation definiert werden
sollen, damit diese von jedem x-beliebigen Cloud Betreiber verwendet werden können.

In den letzten Jahren wurde vermehrt der Fokus auf Ansätze gelegt, die es ermöglichen,
Ressourcen in der Cloud in Form eines interpretierbaren Templates zu beschreiben. Erst letztes
Jahr, im November 2013, wurde von OASIS ein offener Standard TOSCA [44] veröffentlicht,
der versucht bereits existierende propitäre Ansätze zusammen zu fassen und zu vereinheitlichen.
Die Entwicklung hin zu einer deklarativen Beschreibung von orchestrierten Ressourcen in der
Cloud sind noch Neuland und werden ständig erweitert, da es sich um eine vielversprechende
Möglichkeit handelt, komplexe Abhängigkeiten und Einschränkungen von Computerresourcen
in einem für den Menschen lesbaren Format zu beschreiben.

Diese Arbeit beleuchtet zuerst die Welten von Model-Driven-Engineering und Cloudcom-
puting und wie diese beiden kombiniert werden können. Das Ziel besteht darin ein Modell zu er-
stellen, das ausreichend Information über Abhängigkeiten, Einschränkungen und applikationss-
pezifische Anforderungen beinhaltet, damit es bei der Migration der Applikation in die Cloud
unterstützend verwendet werden kann.

Im Rahmen dieser Arbeit wird weiters ein Prozess beschrieben, der in zwei Schritte un-
terteilt ist: Erstellung und Bereitstellung. Im ersten Schritt werden UML Modelle erstellt und
mit UML Erweiterungen (Typen, Profile und Stereotypen), welche Cloud-Computing spezifi-
sche Attribute beinhalten, verfeinert. Der zweite Schritt besteht darin, die Modelle mit Hilfe von
Transformationen in Templates zu konvertieren, damit diese vom entsprechenden Cloud Betrei-
ber interpretiert und exekutiert werden können.

Bestehende Ansätze adressieren nur Teilaspekte des Migrationsproblems und fokussieren
sich auf Teillösungen. Einer der Hauptziele dieser Arbeit ist, die Erstellung einer vereinheit-
lichten und modell-basierenden Lösung, dessen Prozesse und Tools den Applikationsmodellie-
rer unterstützen und einen (semi-)automatischen Ablauf der Erstellung und Bereitstellung einer
Applikation in der Cloud ermöglichen.
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CHAPTER 1
Introduction

1.1 Motivation

Cloud computing offers new possibilities for IT companies, to provide services to their cus-
tomers. There is no need to plan for peak loads in advance, as additional resources can be
acquired instantly. Therefore, moving applications to so-called cloud providers, which operate
data centres all over the world, are an appealing opportunity to save costs and minimize the
expenses for own IT infrastructure.

In the last years cloud computing became really popular and following a recently published
forecast analysis, the size of the cloud computing market will constantly increase in the next
years. Currently the market size is said to be 153.6 Billion of Dollars worth, whereas in 2016 a
market size of 206.6 Billion of Dollars is expected [3]. For that reason, more and more compa-
nies started their own business providing cloud computing facilities and are trying to get market
share. Big advantages [5] for cloud consumers are the charging principle (pay-per-use) and the
elasticity of cloud environments to automatically acquire resources (processing power, storage,
bandwidth) or release them, depending on current circumstances such as work load or amount of
requests. Those benefits of cloud computing can only be exploited, if the application is moved
to the cloud.

The ARTIST project [10], works towards a model-based migration process to move exist-
ing applications to cloud environments. An excerpt of this process [9] is shown in Figure 1.1,
whereas this master’s thesis aims at supporting the last two phases: Prepare Deployment and
Execute Provisioning.

The whole project follows a Model Driven Engineering (MDE) approach, so a model-centric
solution for a deployment and provisioning process in this master’s thesis suggests itself. When
using a model-based approach during software development, models are not used only for doc-
umentation, but are major artefacts of the software development process. Deployment require-
ments, system constraints and cloud service dependencies of an application can be represented
in a model on a higher level of abstraction and thus in a structured way. In doing so, the infor-
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Figure 1.1: Context of master’s thesis within ARTIST [10]

mation can be converted by means of model transformations into a format that is interpretable
by a cloud provider, which can be used to support and automate the provisioning process.

As the title of this masters thesis mentions as well, the transition from a non-cloud to a
cloud environment from the viewpoint of an application can be split into two parts: deployment
and provisioning, which is also discussed by Eilam et al. in [23]. The deployment is about
the modelling part that captures the necessary cloud-specific information in form of models.
The provisioning is the subsequent step, which translates the enriched deployment model into a
format that is interpretable by cloud providers and can help to automatise the process.

1.2 Problem Statement

There exist formats, such as CloudFormation from Amazon, which can be used to define cloud
resources requirements that can be interpreted by cloud providers. Those scripts are hard to
maintain and tedious when parts have to be adapted. When application deployment requirements
are specified on a higher level of abstraction, only deployment relevant data are represented in
those models and contribute to a better understanding. For this reason the first research question
is: How can cloud application deployments be expressed in terms of models?

Shifting an application to the cloud causes new challenges to be solved. Depending on the
service abstraction layer, a cloud computing provider is working on, there are specific problems,
which have to be taken into account. In the case of Infrastructure as a Service (Iaas) especially
the orchestration of multiple virtual machines, the structure of the required execution stacks
and the intercommunication have to be analysed. When choosing a cloud provider who offers
Platform as a Service (PaaS), more adaptations have to be done to the application itself, as the
provider operates on a higher abstraction layer and infrastructure-related properties or execution
environments are predefined.

An application has specific constraints or dependencies on services or environments that are
captured in a structured way in form of models. As cloud providers offer APIs to provision
cloud resources, it suggests itself to automate the provisioning process as well. Thus, the second
research question is as follows: How can the resource provisioning for cloud applications be
automated?

2



The information of a model that expresses deployment requirements on a higher level of
abstraction, can be used to automatically provision required cloud resources by using advanced
MDE techniques [12] such as model transformations and useful conventions encoded by them.

Several existing approaches introduced meta languages or additional languages in order to
describe application deployments [25, 47, 46]. The proposed solution should use approaches that
are familiar to application modelers, such as diagrams from the UML standard. This standard
is widely accepted and should be tested for its applicability in modelling and supporting the
deployment process. Especially structural models like class diagrams, component diagrams and
deployment diagrams should be considered. Hutchinson et al. [35, 36] discuss advantages and
benefits when integrating UML in the software development process.

By following a MDE approach, models can be automatically transformed into formats that
are interpretable by cloud providers, such as TOSCA1. This standard introduces a way to de-
scribe virtual appliances in a universal way, to ensure interoperability, to provision cloud re-
sources across multiple cloud platforms easily which prevent vendor lock-ins. It should be
analyzed, if these standards or similar approaches can be integrated into the deployment and
provisioning process.

1.3 Aim of Thesis

This section describes by means of a motivating example the aim of this master’s thesis and
discusses the steps Deployment and Provisioning and how the solution looks like.

1.3.1 Motivating Example

For a better understanding, Figure 1.2 shows a model of the components and deployment topol-
ogy of the Java PetStore application2, which is a relatively simple e-commerce application that
uses Java technologies such as JavaServerPages (JSP), Enterprise JavaBeans (EJB) and Java
Message Service (JMS). It contains three packages: Petstore Components, Petstore Deployment
and Deployment Library. Petstore Components exemplarily depicts parts of used classes and
their relationships. The artifacts PetstoreBusiness and PetstoreData manifest those components.
The second package Deployment Library is one of the results of this thesis. The library defines
modeling concepts to express cloud-oriented deployment topologies at the type level and is im-
ported by the third package Petstore Deployment, which contains the deployment requirements.
This definitions are used to decide which and how many cloud resources have to be created
during the provisioning process.

In this example both, the data store and the application container reside on the same virtual
machine, which has requirements such as Debian as the operation system or a CPU power of 2.6
GHz. Furthermore, the container is meant to be a Java Enterprise Edition execution environment
(for instance a JBoss web server).

The aim is to develop modeling facilities to let modelers express these dependencies and
requirements in an abstract way to support the application modeler during the definition of de-

1https://www.oasis-open.org/committees/tosca/
2http://www.oracle.com/technetwork/java/petstore1-3-1-02-139690.html
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ployment requirements for the application. Furthermore, this information can be converted into
a format that supports the provisioning process.

Figure 1.2: Deployment Requirements of Sample Application

In the following two sections, the aims of the thesis is described that try to solve the previ-
ously mentioned challenges:

1.3.2 Cloud-based Application Deployment

To facilitate application deployment to the cloud and to express information on a higher level of
abstraction a model-based approach is used in this master’s thesis. According to Selic [48], when
designing a domain specific language that should be based on UML, the first step is a metamodel,
which is developed isolated from any UML idiosyncrasy. In this work, the metamodel contains
general cloud computing concepts, how cloud resources are arranged and concepts that are spe-
cific for IaaS in order to facilitate the modelling process of an application and its deployment
requirements.

To provide application modelers a familiar environment, the metamodel is used for a UML-
based solution, which is the CAML library discussed in [8]. Furthermore, the application mod-
eler can include predefined templates of common execution stacks and blueprints of best-practise

4



examples for orchestrating cloud resources. The UML library contains profiles and stereotypes
that can be applied to model elements to enhance the expressiveness.

The metamodel is designed in a way to comply with the following points:

• Cloud provider independent: The structure of the metamodel is cloud provider agnostic,
which means it does not contain specific concepts from one cloud provider, but introduces
a generic way of describing cloud resources.

• Focus on IaaS: As already mentioned, the metamodel contains generic cloud computing
concepts, with a focus on IaaS, including individual configuration of cloud resources, such
as virtual networks and virtual machines

• Differentiation between PIM and PSM: the differentiation between platform-independent
model (PIM) and platform-specific model (PSM) can alleviate the model process even
more [41], as a PIM contains generalized cloud service definitions, which are independent
of the cloud provider and so does not restrict the modeler to one specific vendor.

Apart from defining required cloud resources, the definition of scalability behaviour of vir-
tual machines is important, as elastic scaling is one of the advantages of cloud computing. The
metamodel for defining scaling rules has the following characteristics:

• Focus on IaaS: The metamodel facilitates the definition of scaling rules on the IaaS cloud
abstraction layer. It contains various scaling criteria and scaling statistics that are used to
trigger a scaling operation.

• Cloud provider independent: The design of the scaling metamodel is cloud provider inde-
pendent and it is possible to express scaling rules once and use them for different cloud
providers.

1.3.3 Provisioning to the cloud

Once all deployment requirements have been manifested in form of models, they have to be
transformed into a format that can be interpreted by cloud providers. In other words, the in-
formation related to deployment requirements should leverage the automatic provisioning of
required cloud resources.

In this work, automation is achieved by model transformation rules. There are two types of
transformation rules that are used in this master’s thesis:

• Model to Model (M2M) transformation rules: The application modeler defines deploy-
ment requirements in form of UML models and applies profiles and stereotypes to model
elements to enhance the expressiveness. The UML models have to be converted by means
of applying M2M transformations into a model that conforms to the metamodel presented
in this master’s thesis.
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• Model to Text (M2T) transformations rules: Based on the metamodel discussed earlier,
M2T transformation are implemented targeting two formats that are interpretable by cloud
providers and can support the provisioning process: CloudFormation from Amazon and
Heat from OpenStack.

1.4 Approaches and Methodologies Applied

The master’s thesis is based on design science introduced by Hevner et al. [33], following a
constructive approach. The three phases (analysis, design and evaluation) are furthermore sub-
divided into the following points:

Analysis phase. The evaluation of existing approaches and technologies, which probably can
be integrated or adapted, is crucial, as others may have already identified similar problems and
presented solutions for them, which could be the basis for the approach proposed in this work.
Critically analysing their strengths and weaknesses of each evaluated approach is important, in
order to be able to learn from their conclusions and probably to avoid similar problems.

APIs, which try to unify proprietary cloud provider APIs, such as deltacloud3, jClouds4 or
libCloud5 are promising candidates to be part of the developed approach in this master’s thesis.
The applicability and usability has to be investigated.

Open standards, which try to describe cloud resources in a cloud provider interpretable way,
such as the Open Virtualisation Format (OVF) or TOSCA6, standardised interfaces such as the
Open Cloud Computing Interface (OCCI) 7, or proprietary formats such as CloudFormation
from Amazon, could be helpful for the provisioning process.

It is important to know, which cloud provider offers what kind of cloud service and how they
can be configured through their respective APIs, as their offering can differ from each other.

Design phase. In the design phase, the process is planned conceptually, which includes both
sub processes: the deployment and the provisioning. For each activity of the process input and
output are specified. Furthermore, a metamodel for describing cloud deployments and scaling
rules are is developed. Afterwards, the metamodel is used in a UML context in form of a model
library and UML profiles. As soon as the metamodel is defined, transformation rules can be
created (M2M and M2T).

Evaluation phase. In the evaluation phase, a tool support is provided based on a prototypical
implementation of the proposed approach. The expressiveness of the approach and its feasibility
is evaluated based on three representative case studies.

3http://deltacloud.apache.org
4https://jclouds.apache.org/
5http://libcloud.apache.org/
6https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
7http://occi-wg.org
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1.5 Structure of Thesis

The master’s thesis is structured as follows: In Chapter 2 a brief introduction to cloud computing
and MDE is given. Furthermore, as a model-based approach is applied in this work, the question
of how cloud computing and MDE can be combined is discussed. Chapter 3 introduces a high
level process to support deployment and provisioning, the metamodel that defines the structure
of deployment descriptions and scaling rules, to define scaling behaviour of virtual instances.
In this chapter, the focus is set on how each step of the process is realised and how predefined
execution stacks are included during the deployment. In Chapter 4, a prototypical implementa-
tion of the mentioned process is discussed. The first part mentions technologies and frameworks
that are used for implementing the solution. In the second part of this chapter, the prototyp-
ical implementation is discussed by emphasising on technical details. Afterwards in Chapter
5, the solution is evaluated by means of representative case studies. Chapter 6 covers similar
approaches and compares them with the approach proposed in this work. Finally, Chapter 7
draws a conclusion and mentions potential extensions. Moreover, a critical reflection including
limitations of the developed approach is given.
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CHAPTER 2
Cloud Computing meets Model Driven

Engineering

2.1 Cloud Computing Principles

Is cloud computing only a new word used for marketing purposes to describe already existing
technology? Back in 2008 the CEO of Oracle, Larry Ellison said at the Oracle OpenWorld con-
ference The interesting thing about cloud computing is that we have redefined cloud computing
to include everything that we already do ... But I do not understand what we would do differ-
ently in the light of cloud. [17], but Armbrust et al. try to invalidate in [5, 4] the assumption that
cloud computing is an invention of the marketing department. When speaking about hardware
provisioning and pricing structures, there are three main differences compared to conventional
computing[4, 28]: (i) there “exists” infinite computing resources that are available when needed,
which means additional capacity can be added whenever necessary (ii) companies do not have to
commit themselves in advance to hardware infrastructure considering it as variable costs rather
than depreciated capital and (iii) payment of used resources, such as processing power and stor-
age, is done on a short-time basis, which means renting 100 virtual machines for one hour costs
the same than renting one instance for 100 hours.

Another important point is the distinction between cloud consumer and cloud provider. A
company, which relies on cloud computing infrastructure to be able to offer their services, is a
consumer and at the same time can be a provider on a higher abstraction layer. The different
abstraction layers will further be discussed in 2.1.1.

The National Institute of Standards and Technology characterised cloud computing with the
following capabilities [6]: (i) on-demand self-service: A consumer can ask for additional com-
puting facilities or network storage without interacting with a sales-person of the cloud provider,
(ii) broad network access: Cloud computing resources are accessible over the internet, (iii)
resource pooling: The provided computing and storage facilities are located in big data centres
spread all over the world. Consumers share physical and virtual resources, which can dynami-
cally be assigned or reassigned over time. Users do not have the ability to determine the exact
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location of their resources, except on a higher abstraction (e.g. region of data centre is eu-west-1,
which could be Amsterdam, Dublin, Frankfurt, London, Madrid, Milan, Paris or Stockholm in
the case of AWS1), (iv) rapid elasticity: Additional resources can be provisioned automatically
and within a short time period. Although physical computing capabilities are limited, in theory
they are unlimited available to every user. Rapid elasticity also means automatic down-scaling
of resources, if the workload drops. Scaling often can be configured time or load depended and
(v) measured service: Cloud resources are constantly monitored and outages or performance
issues are reported to the provider and the user of the services.

Harman et al [28] think the main argument to deploy software into the cloud is a question of
optimisation and efficiency: “Optimisation of resource usage can be achieved by consolidating
hardware and software infrastructure into massive data centres, from which these resources are
rented by consumers on-demand”.

2.1.1 Cloud Computing Service Models

Mainly, there exist three different cloud computing abstraction layers, namely Software as a Ser-
vice, Platform as a Service and Infrastructure as a Service. Figure 2.1 illustrates this architecture
of layers, whereas each abstraction layer has its own characteristics [6]:

• Software as a Service (SaaS): Consumers can access an application through a thin client,
like a web browser or a mobile application. The underlying cloud resources are managed
by the provider. Cloud storage providers such as Dropbox2 or GoogleDrive3 are examples
for SaaS.

• Platform as a Service (PaaS): Consumers have the ability to deploy and run self-created or
purchased software in the cloud. Often the platform is tied to a couple of specific program-
ming languages, for instance Google App Engine4 currently supports Java, Python, PHP
and Go and faces some limitations concerning installed libraries. Furthermore, specific
platform services may not be available within other PaaS clouds, which leads to vendor
lock-in (see Section 2.1.2).

• Infrastructure as a Service (IaaS): Although the physical hardware is still maintained by
the provider, consumers can use virtual instances, network storage and other virtualised
resources on which software can be deployed. Even the operating system of virtual ma-
chines can be configured and tailored. Amazon is according to [31] with Amazon Web
Services the leading company in IaaS.

Borders between IaaS and PaaS are becoming indistinct, the authors of [4] even refuse to
differentiate among IaaS and PaaS, as they think that general accepted definitions still vary
broadly. They prefer to distinguish between utility computing (IaaS and PaaS) and SaaS. Harman

1http://aws.amazon.com/about-aws/globalinfrastructure/
2https://www.dropbox.com/
3http://drive.google.com/
4https://developers.google.com/appengine/
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Figure 2.1: Cloud Computing Abstraction Layers, Source: Author with ideas from [28]

et al. [28] speak of artificial distinctions, which should be avoided as for instance data storage
services can be assigned to one of the three abstraction layers depending how they are used.

Although Amazon initially started with a service to provide virtual machines and storage,
they try to gain market share in higher abstraction layers of cloud computing as well, as with
AWS they try to offer a Swiss army knife. Based on their original cloud computing infrastruc-
ture, they constantly introduce new services, which are free-of-charge, as only for the underlying
cloud resources one has to pay for. For instance, Elastic Beanstalk5 abstracts away the config-
uration of virtual machines and creates a chosen environment automatically, in which users can
run their applications. This can be compared to the Google App Engine.

2.1.2 Potential Risks and Challenges When Moving to the Cloud

Although in theory the migration of applications to the cloud are seamlessly, in practise one can
face serious problems and risks. An application could be designed to run in a local environment
or on dedicated server infrastructure and therefore cloud computing technologies and principles
have not been considered. Moving to the cloud can be beneficial, but according to [32] the main
reasons why companies decided not to take the risk to move to the cloud, were concerns about
security and integration and unexpected costs. In this section some of the problems and risks are
described in detail.

Cloud Costs. Beside the financial benefits (no commitment to hardware in advance, rapid
elasticity, per-use principle), which already have been mentioned earlier, there exist some draw-
backs as well. The main question is about overhead costs during migration, which can occur

5http://aws.amazon.com/elasticbeanstalk/
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during redevelopment of parts of the application [55], as well as the reoccurring operating costs
for cloud resources [38].

Technology Gap. Tran et al. [55] exemplified a migration scenario of a .NET application to
the azure cloud. The application was developed a few years ago and hence relied on outdated
technologies, whereas usually in the cloud one has to build on the latest technologies. In this
concrete example the gap was between an SQL Server 2005, the application was based on, and
SQL Azure (comparable to SQL Server 2008), which was not compatible to older versions. Due
to the evolution of services there may be no direct method to migrate from an old version to the
newest one, however detours through intermediate migration steps have to be accepted.

Vendor Lock-In. To be able to migrate an application to the cloud, some parts have to be
re-engineered, such as the database layer. Starting from IaaS, the higher the cloud abstraction
level is, the bigger the dependency on provided services and APIs gets. For instance, if a virtual
machine is created with Amazon AWS, the configuration of the application stack can by done ad
libitum. As soon as more things are abstracted away, less flexibility and customizability is pro-
vided to the consumer. This means in general, on a PaaS layer more application re-development
has to be done than on IaaS [6].

From a consumer perspective it is clear that the migrated application should not be exe-
cutable only on one specific cloud, but with low adaption effort on an arbitrary one. Especially
when using PaaS, the provided APIs greatly differ from each other, which means once an ap-
plication is developed against API A, changing to another cloud provider with API B would be
time consuming and would result into additional costs.

One mitigation strategy is to unify different cloud APIs and use one homogenous API (see
Section 6.1.2), against an application is programmed to that enables interoperability and easy
application migration to other cloud providers. This provider agnostic interface, hides provider-
specific characteristics but at the same time takes off the ability to use provider-specific unique
features, as it can only support the “lowest common denominator” set of capabilities [6].

Whereas heterogeneity may be attractive for cloud providers, a unified API would lower
the switching costs of consumers, but will not necessarily cut down the provider’s profit as
standardization would enable consumers to run their applications in both private and public
cloud environments, which could expand the market [4].

Replication and Scalability. Legacy applications possibly were not developed with a hidden
agenda of replication, which means it can not be replicated without further modifications. There
are two types of parallelism: user-level (users accessing the same service) and data-level (data
can be handled in parallel) [28]. Before migration, one has to think about implications and con-
sequences if the application still runs faultlessly if instances are replicated to meet the current
workload. If the workload can not be parallelised an additional virtual instance would be worth-
less.

The authors of [1] focus on data management in the cloud. The replication of data among large
geographic distances stands in conflict with the ACID principle, which is provided by common
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transactional database systems. Mostly, consistency is loosened in favor of availability, as both
can not be guaranteed as the CAP theorem shows [26].

Data Privacy. Especially nowadays with the disclosure of the NSA surveillance program
PRISM [54], data privacy in the cloud is a well-known issue. Application data were formerly
stored on companies internal servers, which were under the control of them. Confiding critical
or secret data to a third party should not be done without thinking about proper encryption [53].
Another important question is the location of the stored data, as by definition cloud can mean
everywhere on the world. Companies may be worried about the physical location of their data,
as they become subject of the local data-protection laws, which may be in conflict with laws
of the home country or contracts with their customers [15]. Transactional databases normally
contain detailed operational data of a company and its customers, which must not be disclosed
under any circumstances, as this would result into data privacy violations [1].

2.2 Model Driven Engineering

The Object Management Group (OMG) published in 2000 a paper about a strategy of a Model
Driven Architecture (MDA), which is a special initiative of the common principle of MDE [11].
There are three main characteristics of the MDA strategy [49]:

Higher levels of abstraction. The problem as well as the solution are modeled on a higher
level of abstraction. This ensures that irrelevant and distracting information of a complex system
is stripped away. The concepts of the problem domain ideally can be described with modelling
languages, which hide the underlying implementation technologies. This leads mostly to non-
text representations which is easier to comprehend.

Automation. Due to a higher level of abstraction, it is easier to implement a computer-based
automation to support analysis, design and implementation. Any reoccurring task, which can
be accomplished by computers better than by humans, is suitable for automation. Model trans-
formations or conversion of high-level abstracted models to the program level (source code
generation) are predestinated for automation. With modelling languages such as eUML6, it is
even possible to execute them and evaluate correctness and suitability of the modeled system.
A designated intention of MDA is that the transformation of models should be at least semi-
automatic, to minimise the effort of keeping the models updated and to lower the maintenance
costs [37].

Industry standards. With the usage of industry standards and best practises, a common basis
for communication and collaboration of people from different fields is provided. To prevent
lock-in to one specific tool or vendor, MDA uses open industry standards (such as UML), which
provides the possibility of exchanging models between diverging tools. With UML, a model
can be “constructed, viewed, developed, and manipulated in a standard way at analysis and

6http://www.soyatec.com/euml2/
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design time” [51]. This means a system can be analysed and criticised before starting with the
implementation and so, structural changes are still easier and economically feasible.

When object oriented programming languages got popular and replaced procedural ones, the
key principle was to think about “everything is an object”, which simplified the way of writing
new software. The widely accepted software paradigm of object orientation may have reached
its boundaries and has to be replaced with a new one, which is MDE and which changes the
key principle of thinking to “everything is a model” [11]. As mentioned in [51], “Companies
that adopt the MDA gain the ultimate in flexibility: the ability to derive code from a stable
model as the underlying infrastructure shifts over time. ROI flows from the reuse of application
and domain models across the software lifespan”. If this argument delivers in practise what
it promises, is still a matter of discussions and personal opinion. Reasons why MDE still has
not replaced the object oriented paradigm are listed in Selic [49] and can be grouped into three
categories:

Technical hurdles. The usability of available tools for MDE is still poor and causes a decrease
of the learning curve for developers. Although the functionality of such tools can be quite ma-
tured, complex or counterintuitive tool sequences make the application of such tools unattractive.
The other major problem, among technical issues, is the lack of amply theoretical background
for MDE. Most MDE technology was created to solve individual problems targeting specific is-
sues, which stands in contrast with programm-oriented methods that come with a broad coverage
of theoretical background knowledge and solid patterns to avoid common problems.

Cultural hurdles. Even if people are aware of potential advantages and benefits when using
a model driven approach, the inhibition level of introducing new technologies and tools into a
functioning development environment is still high. The additional overhead cannot be disputed.
A far more critical factor are software developers, who tend to think in general conservatively.
For most technologies, not an insignificant time has to be brought up to get an expert, which
implies a rejection of a new technology, even if it could offer more features.

Economic hurdles. Shareholders are interested in profit and it is not easy to justify an in-
troduction of new development methods and tools, especially if it cannot be assured that the
investment will be worth it.

Making one step further and moving away from the object oriented paradigm, where the re-
lationship between objects and classes can be described with instanceOf and the connection
between classes with inheritsFrom, towards to a MDE approach results into the ability to de-
scribe a certain view or detail of a system in form of a model. The way a model describes
a system is defined in its metamodel. The linkage between a system and its model is called
representedBy, and a model conformsTo a metamodel [11].

PIM versus PSM in MDA. The idea behind PIMs is to describe a system in such a neutral way
that it does not contain any platform or implementation specific constraints and characteristics
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[11]. Miller et al. mention in [41] advantages of PIMs, such as an easier validation of correct-
ness of models or integration and interoperability among different systems “can be defined more
clearly in platform-independent terms, then mapped down to platform specific mechanisms”.
The additional expenses when separating application aspects into PIM and PSM are compen-
sated due to the increased flexibility as one can rely on stable platform-neutral models from
which PSMs can be derived. A PSM contains both technical details, which can differ depending
on the underlying platform, and business semantics, which originate from the related PIM. The
better the PSM reflects the execution platform, the better application code can be generated au-
tomatically. Another advantage of PIMs is the resistance against shifting enterprise boundaries:
Developed modules would have to be re-developed from scratch if the underlying technology
changes, which can be prevented when using PIM [51].

It is unquestionable that the correct tools have to be provided to make MDE effective. It should
be clear that models are not only used for documentation purposes, but are artefacts that have
to be maintained like program source code. This can be only achieved, if the additional time
expense results into a perceivable benefit, because if not, cultural and economic hurdles (as
discussed earlier) will prevent the establishment of a MDE approach [37].

2.3 Model Driven Engineering for the Cloud

After having explained both topics separately, it is time to focus on the question if and how
they can be combined. Is it possible to use MDE principles in the context of cloud computing
deployments and in which way could they be supportive and benefit from each other? Deploy-
ment requirements and dependencies ideally should be describable in a structured manner, which
serves as an interface between the MDE world and the cloud computing world.

What is the best way to define requirements an application has on the underlying computer
infrastructure? Is there a way to use this definition not only for documentation purposes, but also
for a better understanding of the application infrastructure? Can this model of application re-
quirements be created in a way to support the maintenance and evolution of applications towards
the cloud?

It turns out that a model driven approach, which was explained in 2.2, is a very good solution
for this specific problem. There is definitely a need of “an advanced high-level programming
model for building Cloud-oriented business solutions in a multi-provider environment” [52].
Ideally an application developer has the ability to execute the deployment and provisioning of the
application on her own, without having a profound knowledge of complex server configurations.

Application requirements can be categorised into the following group of constraints [52]:

Hardware constraints. Requirements such as hard disk size, amount of CPU cores, processor
architecture or amount of working memory are examples for hardware constraints. In some
cases, a cloud provider only offers a certain combination of hardware specifications and groups
them together into instance types or flavours. For instance, Amazon has a great variety7 of

7http://aws.amazon.com/ec2/instance-types/#instance-details
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different instance types. m1.xlarge for example provides 4 CPU cores and 15 GB of working
memory. It is clear that hardware requirements mostly can not be fulfilled accurately, but the
best compromise has to be determined.

Software constraints. Starting with the operating system, all software that is needed to run the
guest application can be considered as software constraints. On every cloud abstraction layer, the
constraints in relation to the required execution environment may differ or even may be limited
by the cloud provider. On an IaaS level pre-baked images, which contain pre-installed software,
can be used to initialise the virtual machine, whereas additional software has to be installed once
the machine has booted.

Storage constraints. An application needs to store data, such as log files or raw data. Con-
straints may include the storage location or the required disk size.

Data constraints. An application normally has a persistence layer to read and write data. If
this source has to be moved to the cloud as well, there may be some data constraints. For example
the following requirements may be interesting: type and version of the database management
system, database engine, size of database, backup strategy or type of storage solution (key-value,
relational or document-oriented).

Security constraints. If an application has special security requirements, it is important to
know, if a certain cloud provider is offering solutions to fulfil them. Furthermore, policies in
form of firewall rules and access restrictions are constraints that have to be considered.

Performance constraints. A company, which provides an application, can have service level
agreements with their customers. For instance, the application must be available 99% of the
time. With the help of deploying an application to multiple data centres or the usage of elastic
scaling and load balancing, such requirements can be fulfilled.

Cost constraints. Not all cloud providers have the same cost structure and some of them may
be cheaper than other ones. A company’s application could have a limited budget that must not
be exhausted. Appropriate cloud resources have to be acquired to ensure to stay within budget.

Compliance constraints. These constraints are about legal requirements an application may
have. The question is, if a set of cloud resources are available to satisfy regulations.

It is possible that constraints or part of them are not relevant for a certain cloud abstraction
layer. Given the example of software constraints, one may not be able to choose the operating
system of a virtual machine, if working on a PaaS level.

Furthermore, the description of all constraints should be free from technical details and
should abstract away any vendor specific attributes. In this way, requirements matching can be
done with multiple cloud providers and the best one eventually could be selected.
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In some cases a developer may not be aware of all capabilities and services a cloud provider
offers. This results into the necessity of semi-automatic search capabilities of available re-
sources. Strategies of how this can be achieved are described in [30, 29, 56].

2.3.1 Unified Cloud APIs

To the best of our knowledge, standardised cloud computing interfaces targeting IaaS, which
aim to be implemented by the cloud provider directly, are not widely adapted. This raises once
again the question which format or strategy should be used to fill the gap between MDE and
cloud computing.

There are various community driven open source libraries under development, which intro-
duce an additional layer between cloud consumers and cloud providers and which homogenise
cloud provider specific APIs. With such a library it would be possible to create a self-implemented
application, which reads the deployment requirements from a file that has been extracted from
the cloud deployment models in a previous step. As the library provides one unified interface
for all supported cloud providers, the application would not have to consider any idiosyncrasy
of a proprietary API, which is not necessarily compatible with other APIs. Because of the speed
new features and capabilities are added to the APIs, it is unlikely that in the future there will be
one common interface, as it is the strategy of cloud providers to set themselves apart from others
with unique services [30].

This is an important fact: As another abstraction layer between the provisioning engine of
cloud providers and the application modeler is introduced, the availability of new features in
such libraries can be limited or delayed.

When provisioning cloud resources to the cloud, inconsistent states, where half of the cloud
resources haven been provisioned and some may have not because of an error, are suboptimal.
There exist only two desired states: Either everything goes well and all cloud resources are
available or in the case of an error, already deployed resources should be deleted to guarantee a
consistent state. This functionality is not provided by these libraries, in fact, each resource has
to be created through a separate API request and subsequent requests cannot be linked to former
ones. DeltaCloud or jClouds, which are describe in 6.1.2, would be examples for unified cloud
APIs.

2.3.1.1 Middleware

A middleware, such as Cloudify (described in 6.1.3.3), is a software which is installed on a
dedicated controller node, which on the one hand provides a vendor agnostic API to the user and
on the other hand communicates with and manages all provisioned virtual instances. Each of
them run an agent service, which provides the controller node with statistics about CPU load or
hard disk write operations. Based on this information the controller node can decide if a scaling
(starting or terminating virtual machines) has to be performed. Furthermore, software updates
or any other operations the user desires, are propagated by the controller node.

The middleware constitutes another layer of abstraction and therefore is not limited to one
cloud provider. Technically in the case of Cloudify, jClouds is used to communicate transpar-
ently with cloud provider such as Amazon AWS. Often the middleware provides a way to use
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a template description of needed cloud resources to be provisioned. The unification once again
comes along with a limited feature set.

2.3.2 Templates

The most promising approach of describing a set of necessary cloud resources is in form of a
templates. One of the main advantages is that the template can be parsed by the cloud provider in
advance and any contradictions concerning configuration can be identified before the provision-
ing takes place. Furthermore, cloud providers process templates transactional, which means that
if the provisioning of one resource fails, everything gets rolled back and any already provisioned
appliance will be deleted. The other way around, once the system was able to provision all re-
sources contained in the template and terminates successfully, it is guaranteed that all resources
are available. This means there does not exist an inconsistent state.

There exist different template formats, whereas some of them originate from or where in-
spired by others. Examples are HOT, CloudFormation or OVF. An example how such a template
can look like, is given in Listing 2.1. It defines a simple virtual machine, with certain properties
such as flavour, type of image and the name. The description of cloud resources in a structured
way can be read by both, humans and machines.

Listing 2.1: Sample Template of a HOT Template in YAML Syntax
1 heat_template_version: 2013-05-23
2
3 resources:
4 compute_instance:
5 type: OS::Nova::Server
6 properties:
7 flavor: m1.small
8 image: F18-x86_64-cfntools
9 name: Example Server Node

Cloud providers, who offer an API that is capable of interpreting such templates, often speak
of orchestration of cloud resources. A template does not define how resources should be pro-
visioned, but what kind of resources are necessary. This makes it easy to keep templates cloud
provider independent, provided that the cloud provider supports the format. This is one of
the most crucial points, as if a format or a standard is not supported by the majority of cloud
providers, its practical applicability is limited.

Another advantage of templates is that models can be converted by model transformations to
any arbitrary template format that can be interpreted by cloud providers. Moreover, a template
can be checked into a version control system as they are simple text files.

2.4 Building an Application Stack in the Cloud

Once deployment requirements (including hardware and software requirements) have been cap-
tured in form of models, there is still the question how the required execution stack, which is
necessary to run the cloud application, can be created automatically. This strongly depends on
which cloud abstraction layer is targeted. As already mentioned, IaaS provides the most flexible

18



solution and virtual instances can be customized all-embracing. When speaking about PaaS, the
dependency on APIs and available libraries is stronger and detailed information about hardware
requirements (i.e. amount of CPU cores) can not be taken into account during migration. On the
other hand, there are software requirements, which can be categorised into different layers, each
of them depending on underlying layers and so on. All layers grouped together can be seen as a
stack, which enables an application to be run in the cloud.

There are different approaches to address the problem of how to semi-automatically create
and setup execution stacks on cloud resources. Figure 2.2 illustrates four different possibilities
of a virtual image configuration to ensure that a Java-based application (such as the PetStore),
can be executed on the virtual machine. The application Cloud Application needs a database,
a web server and a Java execution environment, which are already part of the virtual image or
have to be installed once the virtual machines has booted.

Figure 2.2: Virtual Image Configuration Options. Source: [2]

Pre-baked image. All dependencies, inclusively the application, are baked into one virtual
image. If the existing application is already running in a virtual environment it is easier to create
a snapshot of the server in its current state and transfer it to the cloud. The main drawback is
when components have to be changed, such as updating or patching the web server, the oper-
ating system or the application itself. To persists such changes, the virtual images needs to be
recreated. The advantage is, as soon as a virtual machine is initialised with the image, it is ready
for operation instantly.
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Container approach. Market places like AWS market place8, which are tightly integrated
with their provided cloud services enable consumers to look for pre-configured virtual machines
images, which are ready to be deployed onto a virtual appliance. The creator can determine
the hourly rate she wants to charge, which is billed to the consumer additionally to the normal
expenses of using virtual resources. Although this approach is comfortable and does not include
a lot of configuration it is quite inflexible. There may be some installed software, which are
not necessary to run the application that would result into wasted resources. If the technology
stack is unavailable, one would have to search for the most accurate alternative and eventually
re-configure it afterwards. Compared to the pre-baked image strategy, the application code is
decoupled from the rest of the software stack, which is handy when the application needs to be
updated.

Layer approach. Compared to the previous two approaches, this is one is more agile. The
strategy is to create images in advance only with the most basic layers, which do not have to
be updated frequently. All layers above are described in an abstract way, often called recipes.
These have to be interpreted and executed when the virtual machine is initially booted and before
it can be used for productive purposes. The flexibility of such recipes, which describe everything
needed to install and configure a specific software, lies in the definition of configuration param-
eters such as version numbers or user credentials.

An application that is capable to interpret and run recipes is Opscode Chef, which is ex-
plained in more details in Section 7.3.

Raw. As the image just contains the operating system, all configuration has to be done from
scratch, every time a new virtual instance is booted. In relation to application scaling this may
not be effective, as the installation of needed software may consume more time than the peak
period, where an additional instance is needed, lasts. On the other hand, the used image does
not have to be maintained and kept updated, as the majority of cloud providers provide images
of up-to-date operating systems.

2.4.1 Search Based Software Engineering

The idea of search based software engineering (SBSE) was already considered in 2001 by Har-
man et al. in [27] and has been successfully applied to a various of different software engineering
problems such as test data generation or automated patching [28].

The authors of [28] explore the possibility of how SBSE “can help to optimise the design,
development, deployment and evolution of cloud computing for its provider and their clients”
[28]. In the following the focus lies mainly on the client side, as this master’s thesis describes
the problem from a consumer’s point of view.

In general SBSE can be seen as a problem solving method in software engineering, where
“computational search and optimisation techniques” [28] are used to find an optimal solution
among other potentially correct solutions, which may be in conflict. There are two steps in-
volved to convert a common software engineering problem into one which can be solved by the

8https://aws.amazon.com/marketplace/
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SBSE approach. (i) reformulation of the problem, which means the definition of candidates
representing possible solutions and (ii) definition of an evaluation function, which fulfils the
ability to determine the better solution, out of two given ones.

Concerning the previously mentioned container approach, [28] addresses the problem in
detail and provides a solution in applying SBSE. When using pre-configured virtual images,
some software components may not be used at all, which would waste unnecessarily resources
and may affect both: client (additional costs, higher response time) and provider (demand of
physical hardware). The main question is to determine the trade-off between the frequency of
using a module and the possible reduction of allocated hard disk space when removed.

Partial evolution, which has a long history and was applied already in 1977 for specialising
programs [7], is one method to identify those modules which are unused and therefore could be
removed in favor of smaller machine images. In this case, dependencies between modules are
represented as a graph, where single nodes or a small group of nodes can be striped away, which
makes the graph smaller, but at the same time lowers the functionality.

The authors of [50] and [34] describe an approach of slicing unused parts of the source
code to increase performance on the application layer. In general there are three methods: static
slicing (without executing the program), dynamic slicing (considering program input) and condi-
tioned slicing (bridging the gap between static and dynamic). [28] claim that the statical method
of this approach can be applied to cut virtual images as well.

The third approach is a searched based approach to identify parts which can be deleted or
even better to search for a way to create a new image, out of the old one and recording the
intermediate necessary steps to assure reproducibility in the future.
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CHAPTER 3
Deployment and Provisioning Process

After having discussed MDE and cloud computing and how they can be used together, the next
step is to have a look on an approach that can be used to merge the gap between them. In the
following, a process is described that aims to use deployment models to support the deployment
and provisioning of applications and the required cloud resources.

During developing the modelling process, our goal was to keep it as flexible as possible
regarding to extensions and target formats. The reason is simple: As it was elaborated in Sec-
tion 2.3, there exist efforts to make a description of cloud resource vendor agnostic, but such
approaches are rather new and still under development. In such a case, the process all the more
should be easy to extend to target new formats or to define new ways a cloud deployment is
described.

3.1 The Model-based Deployment and Provisioning Process

Figure 3.1 illustrates the whole process, which is proposed in this master’s thesis. In general, the
process can be split into two sub parts: Deployment and Provisioning. The deployment is about
modelling application requirements and refining model elements with cloud computing concepts
towards a selected cloud environment. Starting with general definitions and requirements of an
application, a PIM model gets converted through any arbitrary amount of refinement iterations
to a PSM model. In this context, platform independent means that the model is provider agnostic
and does not contain any cloud provider specific information.

The provisioning on the other hand, takes a model that conforms to the CMM as an input and
transforms it to an orchestration template, which is interpretable by cloud providers to perform
the provisioning of the cloud resources.

In the following, we introduce the Cloud Metamodel (CMM) and discuss the deployment
and provisioning process more detailed: (i) creation of modelling library and extensions for
model refinements, (ii) model refinement, (iii) model to model transformation, (iv) model to
text transformation and (v) provisioning engine, whereas each step consists out of sub-activities.
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Figure 3.1: Deployment and Provisioning Process

From an application modeler point of view, the process is initiated by modelling the cloud
application, which eventually results into deployed cloud resources, with certain provisioning
information fed back into the model.

3.1.1 The Cloud Metamodel (CMM)

According to Selic [48] when designing a domain specific language that should be used as a
UML extension in form of profiles or stereotypes, it is important to concentrate on the concepts
and functionalities the DSL should have and to create a metamodel that is treated isolated from
any UML idiosyncrasy. The mapping to UML correspondent elements is done in the next step.

Furthermore, the process in Figure 3.1 was designed from the end to the beginning, as firstly
we had to know what kind of functionalities and possibilities cloud providers offer, to be able to
design the CMM and to make realistic assumptions.

As already mentioned, a model conforming to the CMM is used as an starting point for
the provisioning sub process. The CAML library, discussed by Bergmayr et al. in [8], is a
CMM representation in UML, a so-called internal DSL manifested in the UML metamodel.
This enables application modelers to model their application and cloud resources in a familiar
UML environment.

Furthermore, CMM is the basis for all model to text transformations in the process, and adds
additional flexibility to the provisioning process: Even if a model was not created with UML,
it is possible to use the provisioning sub process. Through model to model transformations a
model can be transformed into a model that conforms to the CMM.

In the following paragraphs, we would like to give a detailed overview of the CMM. Various
cloud providers such as Amazon AWS, Rackspace and HP Cloud (both OpenStack), as well as
middleware providers (for instance Cloudify) have been analyzed and a generic metamodel that
enables the description of any arbitrary cloud deployment model was developed. The empha-
sis is clearly on IaaS clouds, and introduces concepts to describe infrastructure related cloud
resources, network aspects and firewall rules.

Cloud Resource. Figure 3.2 shows the relation between a cloud resource and virtual appli-
ances it consists of. A virtual appliance can have dependencies on other appliances, and pos-
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Figure 3.2: Relation between a Cloud Resource and Virtual Appliances

sesses an attribute, which roughly categorises the appliance into one of the listed instance types.

Virtual Appliance. Apart from the instance type, a virtual appliance can have requirements
(see Figure 3.3), which have to be considered during provisioning. Region and availability zone
are related to the physical location of the data centre of a cloud provider. Such definitions can
be important for reasons like data privacy or resilience policies. Hardware specifications are
normally summarized as an instance flavour (for example a F4 Google App instance has 512MB
of working memory and a CPU of 2.4GHz). The image ID is used as a unique identifier for an
image that should be used for booting the virtual instance. This can be a basic Linux installation
or a pre-configured system, which already contains installed software.

Apart from requirements each virtual appliance has a stack, which is described by stack
properties (for a more detailed explanation see the paragraph Stack property). We assume that a
virtual appliance consists at least out of one stack property.

Stack property. A collection of hardware and software properties forms the stack of a virtual
appliance. As already mentioned, in most cases hardware requirements are expressed as instance
types, which would mean that information about the hard is redundant. In any case we decided
to keep this information, as it may be useful in the future. Furthermore, not in all cases an
instance flavour can be found for arbitrary hardware requirements.

As shown in Figure 3.4, the following hardware characteristics can be defined: CPU, HDD,
Memory, the process architecture and the amount of virtual CPU cores. In the case of software
it gets more complex. Figure 3.4 does not show all references regarding the software element, as
this will be discussed in the next paragraph. Software can depend on other software, for instance
a Tomcat6 server has a dependency on Java. In other words with those references a dependency
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Figure 3.3: Requirements of a Virtual Instance

tree can be constructed. Most of the software can be obtained by package managers, such as apt
or yum for Linux or MSI for Windows machines.

Software. Software packages can provide services that are exposed to other applications, ser-
vices or users. The connection between a software package and a service is shown in Figure 3.5.
Furthermore, each service comes with a set of firewall rules. This is necessary, as normally a
newly created virtual machine cannot be reached from outside and any installed service listening
for incoming connections would be unreachable. A firewall rule can be seen as a definition of
how and under which circumstances traffic is let passing through the firewall. It is possible to
define the type of IP protocol and the type of application protocol separately, as well as the traffic
direction (i.e., if it is incoming or outgoing traffic). There also exists the functionality to define
port mappings, which means for example incoming requests to a certain port are forwarded to
the port of the virtual machine the service is running on. A rule also can be defined for specific
IP addresses or IP ranges, so that the companies public IP may have access to services, which
are only designated for internal usage and are not available for public.

3.1.2 Scaling Rules

Scaling rules are difficult to be represented in form of stereotypes. We decided to define an own
domain specific language, which can be included into UML models. The goal was to design the
DSL in such a way to make it cloud provider independent targeting IaaS clouds. The underlying
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Figure 3.4: Definition of Stack Properties

Figure 3.5: Software and Firewall Rules

model of such a DSL definition can be used as an input for model transformations, which makes
it easy to process the information and integrate them into the provisioning process.

Scaling rule. A virtual resource can have an arbitrary amount of scaling rules, which contains
definitions concerning the scaling behaviour. An excerpt of the scaling metamodel concerning
rule can be seen in Figure 3.6. For instance, a scaling rule can use various scaling criteria, such
as CPU usage or disk write operations, a cool down time in which no further scaling operations
are performed and different scaling statistic that define how samples are aggregated. To keep
the figure compact, not all enumerations are included, but in Section B a complete picture of the
scaling metamodel is given.
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Figure 3.6: Composition of Scaling Rule

Furthermore, there are some scaling requirements that do not have to be defined for every
rule. For instance, to limit the expenses the maximum amount of concurrent virtual machines
can be defined. Another example would be the initial amount of virtual machine that should be
created during provisioning.

3.1.3 Modelling Library and Extensions for Model Refinements

Once the CMM is defined, it can be used in the context of UML. In our case the CAML library
from the ARTIST project, is a UML internal language based on the CMM.

A standard deployment model in UML contains elements, such as Node or ExecutionEn-
vironment, which are promising for modelling cloud resource deployment descriptions in an
abstract way. Certainly they do not offer the whole scope of expressiveness we are striving for,
but just represent the basic structure. The CAML library consists of profiles and stereotypes,
which can be applied to model elements to add new functionalities and information to increase
expressiveness. Furthermore, the library contains best practise scaffolds of possible deployment
scenarios, to accelerate the deployment.

The aim is to start the process with a model, which is as much cloud provider-independent as
possible. In this case different cloud providers and deployment options can be evaluated during
the model refinement, which is described in the next section.

Furthermore, the library offers a mechanism for extensions, which can be applied to model
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components during a refinement iteration, in order to reach a higher specificity of the model.
There exist extensions for each abstraction level, which means some of them represent general
cloud computing concepts, whereas others reflect possible configurations of one specific cloud
provider. Latter ones consist partly of static information, which can be obtained through APIs,
offered by the cloud providers and can be integrated automatically into the appropriate extension.
This kind of data, such as availability zones or virtual machine characteristics, is subject to
change and should be updatable by the modelling library maintainer in a controlled and semi-
automatic way (see Section 3.2 for further explanations).

Deployment Blueprints. An application modeler may not be aware of all available cloud ser-
vices and how they could be combined. With the definition of best practise deployment config-
urations, which can be used as deployment scaffolds, the modelling process can be facilitated
and accelerated. Those blueprints mainly target the composition of cloud resources and the
communication links between them.

For a better understanding, Figure 3.7 illustrates a blueprint for a common web application
deployment. There are two load balancers, one distributes the workload among the web servers
and the other one takes care that the application servers’ load is balanced. For an improved
reliability the servers may be deployed in different availability zones (geographical location of a
data centre).

Figure 3.7: Blueprint for a Common Web Application Deployment

Execution Stack Blueprints. On top of an operating system, an application modeler may want
to define constraints concerning the execution stack, to be able to run the application. There can
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be limitations or only a couple of options the modeler can choose from (this strongly depends
on the cloud abstraction layer). An execution stack consists out of software packages, which can
depend on each other. Such dependency trees are suited to be modeled as blueprints, which only
have to be referred and used by the modeler.

Figure 3.8 depicts a software stack for the Apache Tomcat 6. The software package Tomcat6
has dependencies on other packages, and exposes a software service, which can be used by the
entitled. For each software package, the package manager can be defined to configure how it
should be retrieved and installed. Furthermore, specifications about the version and the language
type a software package satisfies can be provided.

In the case of a software service, operating ports and protocol types are useful information
in order to configure firewall rules or to establish port-forwarding mechanisms.

Figure 3.8: Blueprint for a Tomcat Software Stack

3.1.4 Model refinement

Coming back to the sample application that was introduced in 1.3, the generic deployment model
has to be refined. In other words, additional stereotypes will be applied the model element
ServerNode. Further refinements are: (i) applying stereotypes to other model components, (ii)
executing predefined transformation rules, (iii) defining scaling behaviour, (iv) integrating sup-
plemental data provided by the modeler. As the rules are defined by the maintainer of the
modelling library, it is not the scope of responsibility of the modeler to adapt or change them.
Nevertheless transformation rules are parameterized by considering manually provided informa-
tion by the modeler and by offering choices in the case of multiple feasible solutions for defined
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requirements. During this procedure, the deployment model eventually contains cloud provider
specific data and is ready to be converted into a model, which conforms to the already discussed
CMM.

Refining PIMs to PSMs. It is hard to draw a line and to say when a model is platform inde-
pendent and when it gets platform dependent. Apart from the first and the last model, which
obviously can be categorized as PIM and PSM, for intermediate refined models, it is every time
a question of the point of view. Under certain aspects, a PSM still can be seen as PIM and vice
versa. If the deployment model contains already specific data for one cloud provider, it may still
be open, which software stack is going to be used by the virtual machines. We are aware of and
accept this unclarity, as it does not affect the way of how models are refined.

To keep the graphical representation of the process simple, the refinement is illustrated as a
one-time activity. This could lead to the wrong assumption that multiple refinement iterations
are not possible, but the opposite is the case: An application modeler would perform small and
fine-grained refinements that are summarised as one general refinement operation.

Coming back to the running example, which was introduced in the previous chapter, Figure
3.9 shows the transition from a model, which holds the information in an idiosyncratic way to a
representation that uses stereotypes and elements from the model library, which can be used for
further refinement iterations. Not all information has been included yet, but this will take place
in further iteration, where more and more deployment relevant constraints are added.

Figure 3.9: Transition to a Model that uses Model Library Stereotypes and Elements.

A possible result of the first refinement iteration is illustrated in Figure 3.10. The model
is getting slowly platform specific, as a concrete instance type in form of a stereotype from
Amazon AWS has been applied to the application server element. m1_large fulfils all specified
hardware requirements and introduces new slots that can be defined and customised, such as
region, operatingSystem or availabilityZone.

The diagram of the running example (see Figure 1.2) contained some application specific
requirements, such as a Java execution environment and an application server than can serve the
PetStore application (for instance Apache Tomcat). This information will be included in further
model refinement iterations, in this iteration only in a general way though, as Figure 3.11 shows.
The deployment target of the defined software stack is a language environment that requires Java
as its language type. This is a rather broad description of application specific requirements, but
facilitates the evaluation of different software stacks, which fulfil the language type.
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Figure 3.10: First Model Refinement Iteration.

Figure 3.11: Second Model Refinement Iteration.

Following this iterative approach it is easier to find alternatives for some requirements, if it
is not possible to completely satisfy them. As an example there may be a blueprint for a JBoss
server, which meets the application language requirement and that could be used, if there was
no blueprint for an Apache Tomcat web server.

Fortunately there was a blueprint available, which was included into the model, as Figure
3.12 depicts. After three refinement iterations, the model contains enough information, to be
passed to the next step of the process.

3.1.5 Model to Model transformation

Conceptually this step has some similarities with to last one: The model gets transformed into
another one. Nevertheless something unique and distinctive is happening, as in this step no
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Figure 3.12: Third Model Refinement Iteration.

further refinement is done, but the model gets converted into a model that conforms to the CMM
(see Section 3.1.1), which proposes a way of describing specific cloud deployments without
restrictions of which cloud provider is being targeted.

One may argue that this step is unnecessary, as a refined model could be transformed directly
to a representation, which can be interpreted by the cloud provider. The whole process has been
designed in a way to be as flexible as possible, to make it even easier to enter the process at any
desired step.

Transformation into a CMM conforming model. The introduction of the CMM enables
anybody to convert their models, not necessarily created by previous steps of the process, into a
model which conforms to CMM. It would be even possible to derive a domain specific language
from the metamodel bypassing the whole UML modelling process. We think these arguments
are reasonable enough, to introduce this extra step and justify additional efforts. Furthermore, it
reduces the complexity of the next step, as model to text transformations can rely on only one
metamodel and do not have to consider cases in which other metamodels are used. We want to
emphasise once again that the deployment process does not have to be done in UML, but any
other approach, persisting application requirements in form of models, is possible. The only
condition is, to write model to model transformations to obtain a model that conforms to the
CMM.
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3.1.6 Model to Text Transformation

A representation of deployment requirements in form of a model cannot be parsed and consumed
directly by a cloud provider, but has to be converted into a format that can be interpreted by a
cloud provider. The chosen image strategy, which has been already discussed in Section 2.4,
influences directly the structure of the orchestration template. If a pre-backed image strategy is
used, less information about the required application stack has to be included in the template.
The model to text transformation rules are designed by following the principle of convention
over configuration, which means that reasonable defaults are used and adaptions have to be
configured.

3.1.6.1 Transformation into a Cloud Provider Readable Format

Independently of which format a model is converted into, the principle of creating transforma-
tion rules stays the same: As the source model conforms every time to the CMM, a specific
structure and relations between model elements can be assumed and facilitates creating rules. If
a transformation to a specific format is required, which has not been implemented yet, it is easy
to create those rules and/or extend existing ones. As the deployment information is represented
in a format-agnostic model, structural changes in the target format or adaption requirements can
be achieved by modifying the relevant transformation rules.

The strategy is to design a modular system by means of a plugin system. In other words, the
core consists out of transformation rules that produce a valid orchestration template but does not
consider fine-grained details. Each loaded plugin contributes its own rules and/or extends exist-
ing ones, which results into an orchestration template that also contains detailed specifications
of cloud resources, such as the behaviour for elastic scaling.

3.1.7 Provisioning Engine

The last step of the suggested process is about the provisioning engine. Ideally the resulting
representation of the model, also called the template, is interpretable by the cloud provider itself
(through a web portal or a proprietary API).

The provision engine uses the template as an input and takes care that the resources are
created in the desired cloud. The important requirement is that the creation of cloud resources is
done transactionally: Either all parts of the orchestration template are created or as soon as the
creation of one element fails, already generated resources are deleted thus the transaction gets
rolled back.

After a successful creation, provisioning specific information such as IP addresses or DNS
names can be fed back into the deployment model and represented graphically to the application
modeler.

3.2 UML Profile Enrichment

The second process, which is illustrated in Figure 3.13, is about maintaining the modelling
library. The process is not executed by the application modeler, but by the supplier of the library.
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Figure 3.13: UML Profile Enrichment

Lets take the CAML library as an example: It contains static data that can change over time, for
instance information about instance types, available instance flavours or pricing information.
Such data can change on a regular basis and are suited for integrating them into the modelling
library in an automatic way.

In the first step, the data gets extracted through proprietary APIs that are offered by the cloud
providers and is stored locally in a structured way. The data is used as an input for the next step,
which takes care about the enrichment of the respective UML profiles programmatically.

The goal of this process is to facilitate the update of the UML library in a automatic way, as
manual alteration and extension could be cumbersome and error-prone.
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CHAPTER 4
Prototypical Implementation

In the previous Chapter 3, it was described how a model-based deployment and provisioning
process of applications could look like. In this chapter, a prototypical implementation of the
proposed process is presented, to show the feasibility. Moreover, the prototype is used for evalu-
ation purposes. In the following section, a short overview, about the technologies that were used
to implement the prototype, is given.

4.1 Used technologies

For the deployment and provisioning process we used the Eclipse Modeling Framework (EMF1)
as a basis, as it ships with a lot of tools and extensions that are useful for implementing the
prototype.

We created the CMM in Ecore, which is a reference implementation of EMOF. Other ex-
tensions of the Eclipse Modelling Framework are perfectly aligned with Ecore. For instance,
all model-to-model transformation rules were written in ATL2 and ATL/EMFTVM3 was used
for in-place transformation, which is an extended version of the ATL compiler. In contrast to
conventional ATLAS transformation rules, with in-place transformations all elements from the
source model, which are not captured by a rule, are copied to the output model without further
modifications. For model to text transformations, Acceleo4 is used, which offers the functional-
ity to convert a model to a textual representation. So-called templates contain static sections and
dynamic sections that are filled with data from the model.

Part of EMF is the Xtext5 framework, which can be used to define own domain specific lan-
guages (DSL). Xtext describes the grammar of the DSL and how an Ecore model is represented

1http://eclipse.org/modeling/emf/
2https://eclipse.org/atl/
3http://wiki.eclipse.org/ATL/EMFTVM
4https://eclipse.org/acceleo/
5http://www.eclipse.org/Xtext/
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Figure 4.1: Deployment and Provisioning Process

in a textual way. We used Xtext to define our own scaling DSL, to express scaling behaviour
and scaling parameters in a descriptive and textual manner.

For the implementation of the process of enriching UML profiles, a Node.js6 script was used,
to extract information from cloud provider APIs and other sources. The enrichment of the UML
profiles was implemented as a Java program that uses libraries of the EMF, which facilitates the
adaption and extension of UML models programmatically.

4.2 Implementation of Deployment and Provisioning Process

To make it easier to follow the implementation explanations of each step of the deployment and
provisioning process, Figure 4.1 illustrates the process from the previous chapter with additional
information about used technologies in each step.

4.2.1 Deployment Process

The deployment sub process mainly consists of model refinement operations. For the prototype,
we used the CAML library [8], which is a UML internal language based on the concepts pro-
vided by the CMM, as we think that application modelers should use tools and environments
they are already familiar with, like the UML.

4.2.1.1 Model refinement

The refinement activity of the deployment process is about the transition from a PIM to a PSM
through an arbitrary amount of iterations. The application modeler imports profiles provided
by CAML in her deployment model, applies stereotypes to model elements and configures slot
values of stereotypes. Obviously this step is done manually and hardly can be automated.

An additional feature are validation rules, which can be defined for specific model elements.
Figure 4.2 shows an example of an OCL constraint applied to the stereotype InstanceType. With

6http://nodejs.org/

38

http://nodejs.org/


such constraints, it is possible to validate the model before a transformation takes place. In this
particular case, it is checked if the selected availability zone is within the selected region.

Figure 4.2: OCL constraint used for Model Validation

4.2.1.2 Scaling Rules DSL

As already mentioned, we used Xtext to define our own DSL to express scaling behaviour in
a textual way. Rules about scaling behaviour are hard to be modeled as slot values of applied
stereotypes. The DSL grammar defines how scaling rules have to be described in a textual way
and at the same time facilitates the persistence in form of an Ecore model. Xtext automatically
reflects any textual changes in the underlying model and vice-versa. This allows us to integrate
an inline editor in Papyrus, which offers syntax highlighting and auto completion according
to our Xtext grammar. Furthermore, as the information is stored in form of a model, which
conforms to a metamodel, it easily can be used for a model transformation.

We analysed possible scaling configurations from Amazon AWS, OpenStack and Cloudify
to consider. On an IaaS abstraction layer, scaling rules are defined in the scope of a virtual
instance. For instance, average CPU utilization, outgoing network traffic or disk read operations
are common scaling statistics.

Figure 4.3 illustrates an example of a definition of a scaling rule for a virtual node. We
decided to align the Xtext grammar with the natural language, to make the rule more readable
and understandable. Each scaling rule has a name that should be unique among other rules for the
particular virtual instance. Because of the previous mentioned differences between application
centric and instance centric scaling rule definitions, we decided to separate them as well in the
Xtext grammar. Keywords are formatted as bold green text, whereas variables and values are
displayed in a blue font. General configurations that are not rule specific, are annotated in the
config block.

Listing 4.1 shows the instance scaling part of the scaling DSL grammar. Multiple rules can
be defined for one instance, each consisting out of instance specific and/or application specific
scaling behaviour definitions. The general scaling configuration is defined once for all rules.

4.2.1.3 Model to Model transformation

After the model has been refined with sufficient cloud specific information, the model has to be
converted into a model that conforms to the CMM. Figure 4.4 shows an example of how slot
values of stereotypes applied to the cloud node CN, are extracted by an ATL transformation rule.
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Figure 4.3: Scaling Rule Definition

Listing 4.1: Excerpt of the Scaling DSL Grammar
1 grammar ac.at.tuwien.big.dsl.ScalingDsl with org.eclipse.xtext.common.Terminals
2 generate scalingDsl ’http://www.at.ac/tuwien/big/dsl/ScalingDsl’
3
4 ScalingRules:
5 ’scaledBy {’ rules+=(Rule)* config=ScalingConfiguration ’}’
6 ;
7 Rule:
8 ’rule ’ ruleName=ID ’ {’
9 (’instance {’ instanceScale=InstanceScale ’}’)?

10 (’application {’ applicationScale+=ApplicationScale ’}’)?
11 ’}’
12 ;
13 InstanceScale:
14 ’scale ’ scaleAction=ScalingActionType ’ by ’ instanceScaleAmount=INT
15 ’when ’ statistic=ScalingStatisticType ’ of ’ criteria=InstanceScalingCriteriaType
16 ’ is ’ comparisonOperator=ComparisonOperatorType threshold=INT unit=InstanceUnitType
17 ’then wait for ’ coolDown=INT ’ seconds to cool down’ ’use ’ periodAmount=INT
18 ’ evaluation periods each lasting ’ periodTime=INT ’ seconds’
19 ;

The information is persisted in a model, which conforms to a structure that was defined in the
CMM.

With a model that conforms to the CMM, the deployment sub process is finished and the
subsequent provisioning process is ready to be executed, taking the CMM conforming model as
an input.

4.2.2 Provisioning Process

The aim of this step is to use the CMM conforming model and turn it into action. This can only
be achieved through model to text transformations, as a model hardly can be interpreted by a
provisioning engine or a cloud provider.
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Figure 4.4: Model to Model Transformation

4.2.2.1 Preliminary Considerations

Making the right decision concerning the target format is crucial, as for each format separate
transformation rules have to be generated. We evaluated open and/or best practise standards, if
they would be suitable as a target format.

Although OVF is an official standard, there is a lack of support and integration among cloud
providers. With Amazon AWS, which is one of the most popular providers on the IaaS level,
it is not possible to use OVF templates or OVA archives to import or export virtual machines.
Rather, they try to push their own implementations and make them defacto-standards (see Sec-
tion 6.1.3.1). Moreover, OVF does not support the specification of the required software stack,
which however is essential for a unified description of both, hardware and software.

We evaluated DeltaCloud (described in Section 6.1.2) quite a while, as the support of OVF
sounded promising. Unfortunately it turned out that beside of a Git commit7 of a DeltaCloud
community member, which supports OVF for VMware vSphere8, there was no OVF support.

For this reason, we discarded the idea of converting our models into OVF format, as even
through a unified API such as DeltaCloud, it was not possible to use OVF. We decided to use
three different target formats: Heat from OpenStack, CloudFormation from Amazon AWS (both
described in Section 6.1.3) and a plain JSON file that is interpretable by our own provisioning
engine.

4.2.2.2 Model to Text transformation

Heat and CloudFormation are orchestration interfaces of the respective cloud providers, which
can interpret textual descriptions and configurations of desired cloud resources (called templates)
and provision them. Figure 4.5 shows the relation between the cloud node CN and how an
interpretable representation should look like. In this case, CloudFormation is used as a target
format. Beneath the model element, the respective model transformation rule is shown.

7https://github.com/dkoper/deltacloud-core/commit/69d7d6f70169af07a1b73
8http://www.vmware.com/products/vsphere/
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Figure 4.5: Model to Text Transformation with CloudFormation as the Target Format

The figure probably leads to the assumption that the UML element gets directly converted
into an interpretable representation, but this is not the case. Just for a better comprehension we
decided to leave out the CMM conforming model in this figure.

The Acceleo template extracts data from the model, to define the instance type, the security
groups and a unique identifier to create a resource name. Some data, such as the image ID, is
statically defined, as the manifestation of the rules depend on the chosen image strategy as well.

4.2.2.3 Provisioning Engine

Concerning the provision engine, we evaluated various approaches with different complexity
levels:

Cloud resource deployer. As described in Chapter 6.1.2, there exists a few number of li-
braries, which try to unify heterogenous cloud provider APIs into one consistent one. Our first
idea was to transform our deployment model into JSON notation, as it is lightweight and easy to
read for humans (see sample output in listing 4.2).
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Listing 4.2: Sample Output of Textual Model Used by Own Deployer
1 {
2 "virtualInstances": [{
3 "name": "ServerA",
4 "HWProperties": [{
5 "description": "Working memory",
6 "type": "MEMORY",
7 "unit": "GB",
8 "value": "0.4"
9 }],

10 "Requirements": [{
11 "type": "REGION",
12 "value": "eu-west-1"
13 }, {
14 "type": "AVAILABILITY_ZONE",
15 "value": "eu-west-1b"
16 }, {
17 "type": "FLAVOUR",
18 "value": "t1.micro"
19 }]
20 }]
21 }

We build a small JAVA application, which parsed the JSON file and used jClouds to deploy
our cloud resources to one of the supported cloud providers. One of the biggest drawbacks of
libraries, which unify proprietary APIs, is that they mainly implement functionality, which is
offered by all cloud providers. This means that we were able to provision cloud resources and
do basic configuration, but we soon reached the boundaries of the library, especially when more
complex configuration was necessary.

Cloud Resources Orchestration Interface. To add more functionality to our deployment
models, we decided to create interpretable representations of our models in the CloudForma-
tion format or Heat format. In this case, the provisioning engine part of the process is optional,
as the file can be uploaded to the web backend of Amazon or OpenStack. Nevertheless for a
more convenient way of testing and evaluating, we implemented a Node.js script, which con-
nects to the API of the orchestration module, uploads the template and initiates the creation
automatically.

Dynamic variables such as IP addresses, operating ports or DNS names can not be pre-
determined and are a result of the provisioning process. Fortunately with CloudFormation and
Heat, it was possible to define special output parameters, which were of interest in regards to
the deployment model. A post-deployment routine in form of a small JAVA programm was
implemented, to feed the information back into the deployment model.

Figure 4.6 depicts an example of a deployed RDS database in the Amazon cloud, with de-
ployment information such as operating port and public DNS name. In this way the model can
be used for documentation purposes as well.

To be able to assign deployment information to its respective modelling component, we
used the xmiID, which is unique for each element within a model. We are aware that during
model transformations this id can change, but in our case no model alteration happens during
the provisioning process.

43



Figure 4.6: Deployed RDS Database with Deployment Information

4.3 Implementation of UML Profile Enrichment Process

To the best of our knowledge, information about instance types or availability zones can not be
extracted by using a unified API such as jClouds, but for each cloud provider its own proprietary
API has to be used. We mostly used the REST interface of the APIs, which meant that we had
to build all HTTP request from scratch, in order to retrieve the required information. For this
purpose, we decided to use a Node.js script, as it is lightweight, relies on clear asynchronous
programming patterns and supports JSON out of the box.

4.3.1 Solution

Figure 4.7 has already been discussed in the previous chapter, but for a better understanding we
decided to list the process once again, as the explanation of the solution will refer to each step
of the process. Furthermore, we added additional information about used technologies in each
step.

Figure 4.7: UML Profile Enrichment

Extract Information. The first step is about using proprietary cloud provider APIs to extract
useful information that can be integrated into the UML library. In the prototype implementa-
tion a Node.js script connects itself to three cloud providers: Amazon AWS9, Rackspace10 and

9http://aws.amazon.com/
10http://www.rackspace.com/
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TryStack11 and saves the result in JSON notation to a file (see listing 4.3 and 4.4 for sample
output).

Listing 4.3 shows a sample output for Amazon AWS, which contains information about
regions and their respective availability zones and hourly prices depending on the region (in
general, instances hosted in the USA are cheaper), the operating system (for Windows instances
there may incur licence fees) and the instance type.

Listing 4.3: Sample Output of the Information Extraction Script: Regions and Prices
1 "aws": {
2 "regions": {
3 "eu-west-1": {
4 "regionName": "eu-west-1",
5 "zones": [
6 "eu-west-1a",
7 "eu-west-1b",
8 "eu-west-1c"
9 ]

10 }
11 },
12 "prices": {
13 "eu-west-1": {
14 "Linux": {
15 "m1.small": [{
16 "price": "0.065",
17 "currency": "USD"
18 }]
19 },
20 "Windows": { ... },
21 }
22 }
23 }

In listing 4.4, available flavours at TryStack and Rackspace are shown. For hardware re-
quirements matching it is important to know that only predefined instance type configurations
are available and certain discrepancies cannot be avoided. The most suitable flavour has to be
selected among others.

Enrich UML Profiles. The extracted data is used in the final step as an input to enrich the
UML profiles with new or updated data. This is done through a Java programm, which parses
the JSON file and modifies the UML profile with the help of libraries provided by the EMF.

As an example, Figure 4.8 shows a UML enumeration and an instance flavour, which has
been created automatically based on the extracted data that were received through the API. This
information can be helpful in various ways, such as (semi-) automatical requirements matching
(regarding to costs or characteristics) or improvement of overall expressiveness of the model.

11http://trystack.org/
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Listing 4.4: Sample Output of the Information Extraction Script: Flavours
1 "trystack": {
2 "flavors": {
3 "m1.small": {
4 "name": "m1.small",
5 "memory": 2048,
6 "virtualCores": 1,
7 "localDisk": 20
8 }
9 }

10 },
11 "rackspace": {
12 "flavors": {
13 "512MB Standard Instance": {
14 "name": "512MB Standard Instance",
15 "memory": 512,
16 "virtualCores": 1,
17 "localDisk": 20
18 }
19 }
20 }

Figure 4.8: Extracted Availability Zones and Instance Type from Amazon AWS
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CHAPTER 5
Evaluation

In this section, the expressiveness and the applicability of the presented solution is evaluated.

5.1 Blueprints

In order to facilitate the start of the modelling process, we created best practise blueprints of
cloud resource orchestrations. These blueprints can be used as a basic scaffold, which later can
be altered or extended. To provide blueprints, which correspond to real-world deployment sce-
narios, we used reference architectures from Amazon1 and recommendations from Rackspace2.
Although they are originally described in a way to promote their own cloud products, we gener-
alised them and introduced a generic terminology, which means that the blueprints can be used
independently of the target cloud provider. Nevertheless as cloud computing is a fast moving
environment some services may not be available for all cloud providers and replacing the service
with alternative cloud resources may be necessary.

Blueprints for various scenarios and application domains, such as web application hosting,
online games or e-commerce applications, have been created. We identified four main categories
in which all cloud resources can fit into: Computing and Networking Service, Utility Service,
Data Processing Service and Storage and Content Delivery Service. Computing and Networking
Service contains cloud resources such as load balancers, DNS services or virtual machines. We
categorised email gateway, monitor service and identify service as Utility Service. Under Data
Processing Service fall service like search engine service, map reduce service, workflow service
and queue service. The last category Storage and Content Delivery Service is all about providing
data to applications and store them safe, secure and efficient. It contains cache service, CDN
(content distribution network) service, block storage service, object storage service and database
service.

1http://aws.amazon.com/architecture/
2http://www.rackspace.com/knowledge_center/article/rackspace-open-cloud-

reference-architecture
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In table 5.2 a summary of how many elements per cloud resource category per blueprint is
stated.

Cloud Resource Categories
Blueprint name Comp. & Network Utility Data Processing Storage and CD
Advertisement Serving 5 - 1 2
Batch Processing 2 - 2 2
Content And Media Serving 3 - - 3
E-Commerce Checkout Service 4 1 1 1
E-Commerce Marketing Recommendations 4 1 1 3
E-Commerce Web Frontend 7 - 1 4
File Synchronization Service 3 2 - 2
Financial Services Grid Computing 3 - 1 4
Media Sharing 6 - 3 1
Online Games 3 1 1 3
Web Application Hosting 7 - - 3
Web Log Analysis 1 - 1 3
Basic Cloud Architecture 1 1 - 2
Content Management System Architecture 2 1 - 2
Reverse Proxy Cloud Architecture 4 - - 1
Tiered Cloud Configuration 3 1 - 4
Web Application Configuration 7 1 - 4

Table 5.1: Amount of model elements per category per blueprint

5.2 Case study

In the following section, three different applications with different complexity level will be de-
ployed via the process, which has been discussed in this master’s thesis. The aim is to investigate
the practical applicability of the process in practise, if additional configuration work is necessary
and which possible extensions could be subject of further work.

The three applications have the following characteristic:

• Calendar application: Requires an application server and a database. The application is
provisioned through the provisioning client and CloudFormation. A layered-image strat-
egy is used, where some software is installed after the machine has booted.

• PetStore: Requires an application server, a database and a load balancer. The deployment
model contains scaling rules and the application will be provisioned through Heat and
CloudFormation. As an image strategy, a container approach is used.

• Ticket Monster: Requires as well a database, a load balancer and an application server
with scaling rules. The performance differences between a pre-baked image strategy and
a raw-image strategy in combination with elastic scaling are evaluated. Furthermore, Heat
and CloudFormation are the target formats.
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In theory everything always looks easier and one does not take all modalities into account.
Especially the configuration of application servers and the adaption of the hosted software can
be cumbersome, as the devil is in the detail.

5.2.1 Cloud Providers Used For Evaluation

During our evaluation we decided to sign up for an Amazon free-trial account3, which allows
the usage of certain AWS resources for a limited time for free. The reason why we chose
Amazon was beside the economical incentives that Amazon is the market leader in IaaS, as
already mentioned.

As a second cloud infrastructure, we chose to install and configure OpenStack on our own
hardware as a private cloud. The following paragraphs will discuss the used configuration of
OpenStack in detail.

Firstly, lets have a look on the network topology, which is illustrated in Figure 5.1, whereas
we followed a three-node example architecture described in the OpenStack installation manual4.
Essentially, there are three isolated physical networks responsible for different purposes: man-
agement network, virtual instances network and external network. The management network
is used for managing and configuring all three physical nodes. The API of OpenStack, which
is exposed by the controller node is accessible through this network. All virtual machines are
assigned to a subnet of the virtual instance network. The network node is capable of creating
virtual routers and virtual switches, to establish communication paths between them. The net-
work node has also one network interface connected to the external network. Normally virtual
instances launched within OpenStack are not reachable from outside. Through public floating
IP, a virtual instance can provide services that are accessible from the internet as well. Floating
IPs are mapped by the network node to a specific virtual instance within OpenStack.

We used the following services of OpenStack:

• Basic services: Keystone for Authentication, Glance for hosting virtual images that can
be used for launching new instances, Nova for managing computing nodes, which provide
processing power to start new virtual machines, Horizon for a web based management
interface and Neutron for advanced networking capabilities.

• Additional services: Heat for the orchestration of cloud resources, which is capable of
parsing Heat templates (similar to CloudFormation)

As an operating system CentOS 6.5 was installed on all three servers. Furthermore, the
following hardware was used:

For evaluation, all three provisioning strategies that were implemented and integrated in the
process and which were already mentioned in 4.2.2.3 are considered. In some examples, not all
strategies could be used, wether because of compatibility problems or technical reasons.

3http://aws.amazon.com/free/
4http://docs.openstack.org/icehouse/install-guide/install/yum/content/ch_

overview.html#architecture_example-architectures
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Figure 5.1: Network Topology for the Private OpenStack Cloud

Hardware specifications
Node CPU Working memory HDD Network
Network Node Intel Xeon DP E5440 @ 4x 2.83GHz 16GB 160GB 100Mb/s
Compute Node Intel Xeon DP X5482 @ 4x 3.20GHz 16GB 250GB 100Mb/s
Controller Node Intel Xeon DP L5410 @ 4x 2.33GHz 16GB 500GB 100Mb/s

Table 5.2: Hardware Specifications for the OpenStack Environment Provided by an Intel (R)
Modular Server

5.2.2 Calender Application

The first example is a calender application, which uses a MySQL database for persisting new
events. The deployment requirements are illustrated in Figure 5.2 and consist out of an applica-
tion server and a database. The process is initiated with the basic modelling of cloud resource
requirements, for instance a virtual machine is used for the application server. Furthermore, a
generic stereotype microInstance is applied to CalAppServer and general hardware characteris-
tics such as one virtual core and working memory of 512MB.

As we decided to deploy our application to the AWS cloud, we perform a model refinement
that automatically applies AWS specific stereotypes on selected model elements (see Figure 5.3).
In this case, the hardware requirements, which were defined in the previous step, are satisfied
by a t1.micro virtual instance from Amazon and therefore the appropriate stereotype was added.
We want the application to be hosted in the western European region in availability zone 1a. As
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Figure 5.2: General Deployment Requirements for Sample Application #1

we are not using any load balancer, we do not want the application to be scaled. Concerning the
database we choose the smallest available instance type and MySQL as the database engine.

Figure 5.3: AWS Specific Deployment Requirements for Sample Application #1

Apart from the fact that Linux is used as the operating system, an operating environment
is defined to ensure the execution of the calender application (see Figure 5.4). Each operating
environment consists of a deployment target, which in our case is Apache Tomcat6. As already
mentioned in Chapter 3, the modelling library provides predefined execution stacks with all their
dependencies of other software and services. Those dependencies Apache Tomcat6 is relying
on, will be taken into account in the next transformation step. In this example we are following a
layered approach, as additional software is not baked into the image, but is installed afterwards.

In the next step the model is transformed into an interpretable representation. We are going
to use our own provisioning client and CloudFormation and will discuss the results separately.
Heat can not be used, as Amazon AWS does not offer an interface for Heat.

5.2.2.1 Provisioning Client

As our self-implemented provisioning client relies on jClouds, the functionality is limited.
Apart from the fact that creating a database are not supported by jClouds at all, the creation

51



Figure 5.4: Operating Environment Requirements for Sample Application #1

of CalAppServer involved some troubles as well. The provisioning clients parses the JSON
configuration and concatenates all hardware requirements and other requirements, such as the
region. Firstly, only the region can be specified, but no the availability zone within a region. Fur-
thermore, the library is pretty inflexible concerning requirements matching, as it return choices
that are matching exclusively all requirements. Concerning the operating system type, we could
determine some inconsistencies, as defining Linux as an operating system, systems with Ubuntu
were not listed. In the case of Amazon, the version number was not used to specify a ceratin
release such as Ubuntu 14.04, but was used to specify the date the image has been built. This
implies at the same time that although jClouds provides the ability to match by version strings,
it is not practicable nor intuitive why Amazon uses the build date instead of the version number.
The consequence is that the operating system can not be further specified.

Concerning the hardware requirements, jClouds can be used to do basic requirements match-
ing and provisioning. This is limited to virtual instances, as additional cloud resources such as
a database can not be created. In the case of required software and dependencies that have to
be installed on the virtual machine, jClouds lacks of support. To the best of our knowledge,
jClouds does not provide a common way of installing software, abstracting away the differences
and idiosyncrasies of an operating system, apart from executing shell scripts through jClouds.
As discussed in Section 7.3, jClouds integrates well with Chef Opscode though.

5.2.2.2 CloudFormation

The other strategy we evaluate with the Calendar application example, is the provisioning through
CloudFormation from AWS. The functionality and possibilities to define constraints and express
yourself is broader. Compared to the provisioning client, availability zone and specifications
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concerning the services to be installed can be annotated. With CloudFormation, we were able
to provision the virtual instance, as well as the MySQL database. Figure 5.5 illustrates the end
result (for instance public DNS names for resources), embedded in the deployment model.

Figure 5.5: Provisioned Cloud Resources for Sample Application #1

Although software dependencies can be specified, the solution is still not flexible enough as
it has to be predefined through which package manager the installation should take place. For
instance, the Debian distribution uses apt-get to install new software packages, whereas rpm-
based versions of Linux such as CentOS use yum. We used for this example as an operating
system Amazon Linux, which has been tailored for the usage on AWS infrastructure. As the
calendar application archive was publicly available, we added manually an instruction to copy
the war-archive, during provisioning, into the respective application folder, so that it can be
served instantly after the machine is running. Apart from that, we also had to manually configure
the database settings of the application, such as IP address, username and password, so that the
application could connect to the database.

5.2.3 PetStore Application

The second example used for evaluation was the PetStore application, which has already been
introduced in previous chapters. Figure 5.6 shows the general deployment requirements the
applications has. A load balancer is used to distribute incoming requests. The request load
of the application can not be determined in advance. For this purpose scaling rules for virtual
instances have to be defined in further steps. These rules are used, to perform elastic scaling
automatically. The third element is a database that is used for persistence purposes.
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Figure 5.6: General Deployment Requirements for Sample Application #2

As already described in the first evaluation example, the next step consists out of the defini-
tion of hardware requirements and configuration parameters. As in this example, a load balancer
combined with scaling rules are used, Figure 5.7 depicts the scaling configuration we used for
the application server. We defined two scaling rules, both on the instance level. The first rule
scalingDown defines the behaviour, when the average CPU utilization of all running instances is
lower than 40%. In this case one of the machines will be terminated (=scale down). To calculate
the average CPU usage statistic, a sample lasting 60 seconds is taken 5 times. Out of this data
it is determined if the scaling has to be performed or not. To prevent a bias within the samples,
after a scaling has taken place, the scaling engine will be inactive for 120 seconds, before it
returns to take samples. The rules for scaling up looks similar. The only difference is that once
a threshold of 80% CPU utilization is reached, a new instance will be launched. In the general
configuration section we define settings that are related to all scaling rules. In this example we
want to launch two instances at the very beginning, have at least one instance and at a maximum
five instance running at the same time.

The first example showed that the abilities while modelling a software stack with the library
is limited. Furthermore, using a layered approach, where additional software has to be installed
after the machine has booted, in combination with a load balancer and scaling rules, could be
problem. Let us assume that there is a temporary request peek and the scaling engine decides to
scale up and trigger the creating of a new virtual instance. If the creation of a new instance needs
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Figure 5.7: Scaling Rules For the Application Server

more time than the period of time the additional instance is needed, the idea of elastic scaling is
taken ad absurdum.

For that reason, we use a container approach in this example. The image, the virtual instance
are booted from, is provided by Bitnami, which offers a huge variety of pre-configured virtual
images that can be used for local or cloud installations. We retrieved an image that contained
Ubuntu and JBoss and all its dependencies from the Bitnami website5. For our private Open-
Stack installation, we downloaded the image, converted it into a flatten single vmdk-image and
uploaded it through the image service of OpenStack glance to the image registry. In the case of
Amazon, the image was available through their image repository and could be referenced by its
ID.

During our preliminaries it turned out that the image we used for OpenStack did not have
cloud-init6 installed, which is capable of configuring a cloud instance at an early stage, such as
injecting SSH keys for public/private key authentication. For this example, we used two formats
the model was transformed to: CloudFormation and Heat. As we did not model the software
stack in our model, settings for security groups and port forwarding information for the load
balancer were not available. For that reason, we manually added certain firewall rules to the
Ecore model, so that they could be considered during the model to text transformation. Our
experiences with both formats, will be described in the next two sections.

5.2.3.1 CloudFormation

The second example used for evaluation is more complex, which means that the CloudFormation
template could not be created completely automatically. As already mentioned, we used an
image from Bitnami, which contained a pre-configured JBoss application server. All Bitnami

5https://bitnami.com/stack/jboss
6http://cloudinit.readthedocs.org/en/latest/
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images can also be accessed via the image repository of AWS and are identified by a unique AMI
ID, which had to be inserted into the CloudFormation template manually. We did not model
any software stack requirements, as a pre-configured image with an application server and all
dependencies was used. As a consequence the firewall rules for incoming traffic for the load
balancer and the virtual machines could not be configured automatically and some definitions
had to be configured manually.

In order to run the PetStore application and to be able to communicate with the database, the
JBoss server has to be configured. JBoss manages database access through data sources, defined
in an XML configuration file. As new application server instances are created automatically
(according to the workload following the defined scaling rules), the configuration of the JBoss
server has to reside in the template definition as well as manual configuration after the instance
has been launched takes the idea of elastic load balancing ad absurdum.

Listing 5.1 shows the instructions embedded in the CloudFormation template, which are
necessary to create a data source and deploy the application. In more detail, two files are created
in the home directory of the user bitnami. The first file (/home/bitnami/PetStoreJEE6.war) is
copied from an external source and contains the application and its library in a war archive.
The second file (/home/bitnami/conf ) is created dynamically as information about the MySQL
database are included, such as connection URL, operating port and user credentials. It also
refers to the first file in order to deploy the application. Apart from creating new files, in the
section UserData, a custom bash script is defined, which triggers the bootstrapping process
after a virtual instance has been started. During this process the previously mentioned files are
created. After the instance has been bootstrapped, we call the JBoss CLI script, to execute all
commands defined in /home/bitnami/conf.

Listing 5.1: Configuration of JBoss Server within CloudFormation
1 "files" : {
2 "/home/bitnami/PetStoreJEE6.war": {
3 "source": "http://web.student.tuwien.ac.at/~e0926741/PetStoreJEE6.war"
4 },
5 "/home/bitnami/conf" : {
6 "content" : { "Fn::Join" : ["", [
7 "connect\n",
8 "data-source add --name=PetStoreDS --jndi-name=java:jboss/PetStoreDS --user-name=root --

password=8wkqNMHC --connection-url=jdbc:mysql://",
9 {"Fn::GetAtt" : ["iDqEoDjEeSMg6X7n3H9g", "Endpoint.Address"]},":",

10 {"Fn::GetAtt" : ["iDqEoDjEeSMg6X7n3H9g", "Endpoint.Port"]},
11 "/iDqEoDjEeSMg6X7n3H9g --driver-name=mysql-connector-java-5.1.12-bin.jar\n",
12 "data-source enable --name=PetStoreDS\n",
13 "deploy /home/bitnami/PetStoreJEE6.war\n"
14 ]]},
15 "mode" : "000644",
16 "owner" : "bitnami",
17 "group" : "bitnami"
18 }
19 },
20 "UserData": {
21 "Fn::Base64" : { "Fn::Join" : ["", [
22 "#!/bin/bash -ex\n",
23 "/usr/local/bin/cfn-init -s ", { "Ref" : "AWS::StackId" },
24 " -r LaunchConfigurationgW8EIDjEeSMg6X7n3H9g --region ", { "Ref" : "AWS::Region" }, "\n",
25 "/opt/bitnami/jboss/bin/jboss-cli.sh --file=/home/bitnami/conf\n",
26 ]]}}

Amazon provides images of a customised Linux for AWS, which also contains a package
called cfn-init that is capable of installing new software packages, creating new files (in this
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example /home/bitnami/PetStoreJEE6.war and /home/bitnami/conf ) and and start new services
according to the configuration of the CloudFormation template. The image provided by Bitnami
did not have cfn-init pre-installed and had to be loaded in order to be able to bootstrap the virtual
machine. Listing 5.2 shows the necessary steps to retrieve and install the cfn-init package.

Listing 5.2: Installation of the Package cfn-init
1 "UserData": {
2 "Fn::Base64" : { "Fn::Join" : ["", [
3 "#!/bin/bash -ex\n",
4 "apt-get update\n",
5 "apt-get -y install python-setuptools\n",
6 "wget -P /root https://s3.amazonaws.com/cloudformation-examples/aws-cfn-bootstrap-latest.tar.gz

","\n",
7 "mkdir -p /root/aws-cfn-bootstrap-latest","\n",
8 "tar xvfz /root/aws-cfn-bootstrap-latest.tar.gz --strip-components=1 -C /root/aws-cfn-bootstrap

-latest","\n",
9 "easy_install /root/aws-cfn-bootstrap-latest/","\n"

10 ]]}}

The creation of all cloud resources took about 10 minutes and another 5 minutes to register
the virtual machine in the load balancer pool. This strongly depends on how the health check
of virtual instances is configured. The load balancer checks every five seconds if the virtual
machine is still alive, and retrieves current CPU usage, network load and other metrics. We set
the (un)healthy threshold to 2, which means a virtual instance is considered as (un)healthy as
soon as 2 health checks fail/succeed. With this configuration, we decreased the response time of
the load balancer to a minimum.

As stated previously, we defined two scaling rules, which use CPU usage statistics as a basis
to decide if scaling has to be performed. To simulate workload and be able to evaluate the
functionality of the defined rules, we connected to the first virtual machine via SSH, and created
6 detached processes all executing the yes command writing any result to /dev/null, like so: yes
> /dev/null &. This resulted into a CPU utilisation of 100% and after 5 minutes (5 evaluating
periods of 60 seconds) a new instance was spawned.

5.2.3.2 Heat

The deployment of the PetStore application in our private OpenStack cloud required some pre-
liminary work to be done, as we used the image from Bitnami that was designated for virtual
machine players, such as VMWare or VirtualBox. As the image was split into various files,
we flatten it and converted into the .vmdk format that is readable by Glance, the image service
of OpenStack. After this step, we added the image to the registry by executing the following
command on the console:

Listing 5.3: Adding a New Image to the Glance Image Repository
1 glance image-create --name "JBoss Application Server" --disk-format vmdk --container-format bare

--is-public True --progress < jboss_7_11_bitnami.vmdk

We did not consider that the previously mentioned image did not contain the required soft-
ware package cloud-init for injecting SSH keys and creating files during boot time. For that
reason we abandoned the idea of using the pre-configured image from Bitnami and created our
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own. The process was straightforward: After launching a new instance with a plain CentOS 7
installation, we installed the JBoss application server manually. After finishing the configuration
step, we made a snapshot of the running machine and used that image for the virtual machines
defined in the heat template.

Although the API of the orchestration platform of OpenStack is based on CloudFormation
and still can interpret templates in the CloudFormation syntax, Heat introduces new concepts
with every new release of OpenStack. For instance, Heat is not limited to the scaling of virtual
instances, but every cloud resource can be considered for scaling. Furthermore, a load balancer
in Heat is a plain proxy that forwards all request to a pool of virtual instances. The definition
of the pool itself contains all required information, such as the load balancing method a monitor
that test the availability of each registered pool member. Amazon AWS assigns by default public
ip addresses to every virtual resource that is created, in OpenStack we had to define IP address
assignments explicitly.

One of the biggest differences is that Heat provides the functionality of defining own re-
source types that can be used for instance for the purpose of auto scaling. This is achieved by
creating sub-templates, which can be deployed as stand-alone templates as well and are embed-
ded in the main template.

Similar to CloudFormation, we created custom bash scripts that are executed during boot
time to create a data store for JBoss and to deploy the application automatically. As HOT uses
the YAML syntax it, the created template is easier to read and looks cleaner. Instead of brackets
and commas, indentations are used to structure the content of the template. Whereas incorrect
usage of indentation leads to a parsing error, model to text transformations are easier, as closing
tags, quotation marks or similar are not necessary.

As we did not use the OpenStack Trove (Database as a Service), we configured the applica-
tion to reuse the database that was created with CloudFormation. According to our observations,
with OpenStack virtual instance got recognised as healthy instance, to which traffic can be for-
ward to, faster and the registering process did not last as long as in the case of AWS. In order
to simulate a heavy workload and to trigger a scaling operation, we proceeded with the same
strategy of spanning new processes as we did in the case of CloudFormation. With the telemetry
service of OpenStack ceilometer we could reconstruct in more detail when and why a scale-in
or a scale-out happened, which has not always been the case with AWS.

5.2.3.3 Observed Issues and Challenges From an Application Perspective.

Application Data Management. The PetStore application was taken as an example for the
proof of concept and was not further optimised in relation to cloud specific data management.
The application uses Hibernate as an ORM mapper and populates the necessary database struc-
ture automatically upon deployment. In combination with elastic scaling and the automated
creation of new instances this would have been suboptimal. For that reason, we decided to ini-
tialise the database once and ensured that the application did not change the database structure
upon deployment.

Application Container Configuration. Another issue we stumbled over, was the session han-
dling among multiple application server. For instance, if the authentication is forwarded by the
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load balancer to server A, but further requests are handled by server B, the user would have to
re-authenticate. One solution on the load balancer level, would be a cookie stickiness, which
means the load balancer keeps record which server issued which cookies and forwards further
request to the appropriate server. Another solution would affect the configuration of all appli-
cation servers, which would be grouped in a cluster, knowing that they are operating in a cloud
environment. Nevertheless this issues are out of scope of this master’s thesis.

5.2.4 JBoss Ticket Monster

The Ticket Monster application is a reference implementation that uses state of the art tech-
nologies developed by the creators of the JBoss application server. It was designed in a way
to be runnable on cloud infrastructure and the data storage can be in-memory or any arbitrary
database. The deployment and provisioning process starts as usual with the definition of require-
ments, as shown in Figure 5.8. The virtual machine ComputeNode contains a JBoss application
server as an operating environment, which deploys the Ticket Monster application. If the chain
is viewed from the other end, a dependency graph can be derived: because the Ticket Monster
application requires a JBoss application server, the virtual machine has to provide an appropri-
ate operating environment. The virtual machine should use CentOS as the operating system,
combined with an instance flavour of m1.medium. Apart from the virtual machine, two further
cloud resources are required: a load balancer and a database server that defines requirements
such as storage capacity or database engine. Detailed specifications about scaling behaviour are
modelled in subsequent steps.

Figure 5.8: Deployment Requirements of Required Cloud Resources for the Ticket Monster
Application

One of the interesting questions is, which image strategy should be used, as various ap-
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proaches are possible. The model illustrates the dependencies and requirements, and can be
used as a decision support. In the following we want to evaluate the raw image strategy and
the pre-baked image strategy in combination with load balancing. They are the opposite of each
other, whereas a raw image is lightweight and the whole installation workload is done once the
machine is booted, a pre-baked image is bigger, as all dependencies and the application itself
are already contained, but as soon as the virtual machine has been booted, it is ready to handle
incoming requests. The virtual image has to be created and configured beforehand though.

For the third example we used for both image strategies our private cloud based on Open-
Stack to deploy all cloud resources except for the database, which was created beforehand and
externally (in our case in the Amazon AWS cloud). The reason was that we had to configure the
application in the pre-baked image before taking a snapshot and using it for the scaled virtual
instances.

Elastic Scaling with Pre-baked Image. According to the specified scaling rules, we simulated
a high CPU load to trigger a scale-out. As we used a fully configured pre-baked image, the
instance was able to serve request instantly after it had booted. One of the main drawbacks is
the configuration of the image, as keeping it updated requires additional maintenance time and
as soon as the application or one of its dependencies change a new image has to be prepared.

Another issue related to the JBoss server was the fact that sometimes the deployment timeout
was too short and therefore the deployment failed. After adapting the server configuration and
creating a new image, the problem could be solved.

Overall, the created Heat template was less complex, as no configuration scripts had to be
included (this was already done in a previous step). This means, the resulting template form the
model to text transformation could be used without any further modification.

Elastic Scaling with Raw Image. For the raw image, we used CentOS 7 as the operating
system, which only contained general software packages. Apart from installing Java and the
JBoss application server, which includes downloading a couple of hundred MBs, we had to de-
ploy database drivers in form of jar-archives, as shown in Listing 5.4 (URLs have been minified
for a better readability of the template). It basically downloads a MySQL driver and a Post-
greSQL driver from a publicly accessible server to a temporary directory and afterwards copies
them to the deployment directory of the JBoss application server, which takes care of automatic
deployment.
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Listing 5.4: Configuration Scripts for ComputeNode
1 jBossDownload:
2 type: OS::Heat::SoftwareConfig
3 properties:
4 group: ungrouped
5 config: |
6 #!/bin/sh
7 wget http://red.ht/1eMZTLO -P /var/tmp/jboss-as.tar.gz
8 tar -zxf /var/tmp/jboss-as.tar.gz -C /opt
9

10 driverDownload:
11 type: OS::Heat::SoftwareConfig
12 properties:
13 group: ungrouped
14 config: |
15 #!/bin/sh
16 wget http://bitly.com/1wFnqvj -P /tmp
17 wget http://bit.ly/ZZeKDm -P /tmp
18 cp /tmp/mysql-connector-java-5.1.12-bin.jar /opt/jboss-as/standalone/deployments/
19 cp /tmp/postgresql-9.1-903.jdbc4.jar /opt/jboss-as/standalone/deployments/

It is important to know that this bootstrapping process has to be done every time a new ma-
chine is started. The same applies for instances that are created through elastic scaling. Having
these limitations in mind, our expectations of a poor scaling behaviour were confirmed. We
could observe that the sum of sample taking time and cool-down time was too short for provi-
sioning an additional instance. This triggered the initiation process of another instance, as the
used sample statistic (in our case CPU utilization) was still above the defined threshold.

5.3 Results of the Case Study

The presented deployment and provisioning process has been evaluated by using a prototypical
implementation of it and by applying the process to three different applications. Table 5.3 gives a
short overview about how many elements were necessary to model the required cloud resources
and how long the deployment and the provisioning took time.

The amount of model elements does not include elements from profiles or model libraries
that were used, but represent the count of elements in the custom model only. Concerning the
deployment time, it strongly depends on how familiar one is with the used tools and the model
library itself. Quite frankly, it is an advantage to know how transformation rules are written, as
modelling is more intuitive and gets more effective as less errors are made. The provisioning
time on the other side strongly depends on the modeled cloud resources: For instance, as soon
as a relational database is part of the orchestration, we observed an extra time of 8 minutes for
the provisioning process.

Application Deployment time Provisioning time
Calendar 2 min 6 min
Petstore 3 min 13 min
Ticket Monster 4 min 15 min

Table 5.3: Summary of the evaluation outcomes of the three applications
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Feasibility. We proved with the case study and the three applications that the discussed model-
based deployment and provisioning process is feasible. We successfully deployed and provi-
sioned the application and its dependencies to two different cloud providers. As already men-
tioned, the deployment time strongly depends how familiar the application modeler is with the
modelling tools and the used modelling library. As the implementation of the process is a proto-
typical one, an application modeler has to know how the constellation of all cloud resources and
the application stack should look like, in order to be able to convert the model into a executable
textual representation.

Automation. In some parts, the deployment and provisioning process can be seen as semi-
automatical. Especially the deployment subprocess is dominated by manually refining the model
with cloud specific concepts such as applying profiles and stereotypes. Apart from blueprints,
an application modeler can use as a starting point, the automation of this step would be really
hard, as refining strongly depends on the application needs and how the orchestration should
look like. As there does not exist a homogenous application, we followed the principle of con-
vention over configuration, which means that reasonable defaults are used during model trans-
formations. Nevertheless especially when considering application provisioning, constraints are
application specific and, as already discussed in the previous section, sometimes manual tweaks
of the orchestration templates are necessary.

Provisioning of software stack. As already discussed in Section 2.4 and illustrated in Figure
2.2 there exist different virtual image strategies, which have an indirect impact on the scaling
behaviour and the provisioning of new instances. There are two extremes: The raw image
and the pre-baked image approach. According to our evaluations, the raw image approach is
not applicable for rapid elastic scaling as the provisioning time of the machine takes too long.
Especially in the field of software stack provisioning there exists a potential for extensions,
which are discussed in Section 7.3.
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CHAPTER 6
Related Work

6.1 Related technologies

This section describes some related technologies and formats. Some of them haven been used
for the process that has been developed in this master’s thesis.

6.1.1 Template formats

Apart from CloudFormation and Heat, there are other template formats, which help to describe
a virtual machine in a textual and interpretable way. This subsection discussed some of them.

6.1.1.1 Open Virtualisation Format (OVF)

This format was originally designed by Dell, HP, IBM, Microsoft, VMware, XenSource and
was proposed in 2007 to DMTF as an open standard [20]. With OVF it is possible to describe
virtual appliances in a generic way to be as compatible as possible to any cloud provider. Having
a glimpse on the structure of an OVF file, it is XML based and consists out of various human
readable entries such as virtual nodes or network and disc specifications. Starting from virtual
network cards and CPU criteria up to virtual DVD drives, a wide range of hardware specifi-
cations can be described with OVF. Referenced files to virtual hard disks or disk images can
be packed together within one archive which is called an Open Virtualisation Appliance (OVA)
archive. Additionally, server certificates and scripts, which have to be run once the server has
been setup, can be included.

The current version of the OVF standard is 2.1.0 [21], which was published in January,
2014. It is important to know that out of the box without custom extensions it is not possible
to describe software requirements with OVF, which are on top of the operating system, such
as application environments or database management systems. This means, OVF provides a
unified way of describing virtual appliances targeting attributes, which are mostly relevant for
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the IaaS abstraction layer. Although OVF sounds quite promising, to our best knowledge it is
not supported by OpenStack or Amazon.

No matter how good a standard is, the usage has to be justified in terms of functionality and
applicability. If major cloud providers refuse to integrate the standard, other solutions have to
be found. DMTF also published a specification of a Cloud Infrastructure Management Interface
(CIMI) [19], which is also capable of processing OVF files. This means, once cloud providers
have implemented CIMI, it would be possible for consumer to communicate in a unified way
with each cloud provider.

A comparable approach is the Open Cloud Computing Interface from OGF, which core is
described by the authors of [43] and according to their website1 further specifications are in
progress. They propose a protocol and an API, which defines a way of how to interact with
the OCCI core through restful HTTP requests. The OCCI working group is not responsible for
OCCI reference implementations, but this is done by the community. There exists an imple-
mentation for Openstack, but according to the last commit to the git repository it does not seem
active though.

6.1.1.2 TOSCA

TOSCA[44] (Topology and Orchestration Specification for Cloud Applications) is a standard
that has been published by the Organization for the Advancement of Structured Information
Standards (OASIS) in November, 2013. A YAML version has been released in March, 2014
as a draft[45] and v1.1 is, to the best of our knowledge, still under development. Although it
introduces unique features, some concepts can be compared to AWS CloudFormation or Heat
from OpenStack. Palma et al. introduce in [44] a way of describing service components and
definitions of how they depend on each other, in a structured way using a service topology.
Through orchestration processes, TOSCA provides the ability to describe how such resources
are created or modified. The combination of service components and orchestration processes
are grouped into service templates, which provide sufficient information to enable application
deployment to different environments of various cloud providers and to support the management
of the application throughout the whole software lifecycle, such as updating or elastic scaling.

6.1.2 Unifying Cloud APIs

Unified APIs hide proprietaries characteristics of an arbitrary cloud provider API exist for dif-
ferent program languages, which are discussed in the following.

6.1.2.1 DeltaCloud

DeltaCloud2 can be used as a Ruby library, but ships with its own server, which is a top-level
project of the Apache Software Foundation3 and provides a unified REST interface to perform
commands on the IaaS abstraction layer. It supports major cloud providers4, such as Amazon

1http://occi-wg.org/about/specification/
2http://deltacloud.apache.org/
3http://www.apache.org/
4http://deltacloud.apache.org/drivers.html#drivers
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AWS, OpenStack or IBM SmartCloud. The server can be seen as an intermediate between the
developer or a program and a specific cloud provider. It abstracts away singularities of cloud
computing APIs through cloud specific drivers and provides a unified interface, which can be
addressed in three different ways. Firstly, Delatcloud provides a backend web interface, which
can be accessed via a browser. As Amazon is one of the leader in cloud computing, their EC2
API5 is supported as well. Furthermore, CIMI (Cloud Infrastructure Management Interface)
from DMTF6 is implemented, which provides the possibility to use OVF as well.

Other than Deltacloud, the following libraries have to be embedded into an application.
Programs are written against the library interfaces, which offer a generic way of accessing the
API of an arbitrary supported cloud provider. Among others, libCloud and jClouds are examples
for such libraries:

6.1.2.2 libCloud

libCloud7 can be used in Python programs. The library supports the most popular cloud providers8

and implements four components: Compute, which is mainly used to manage virtual servers and
to run deployment scripts. Storage to access cloud storage services, Load Balancer to create,
delete and maintain virtual load balancers (Load Balancer as a Service) and DNS to manipulate
DNS zones or add a DNS entry. Furthermore, libCloud offers a special debug mode, where all
incoming and outgoing HTTP requests can be analysed. As libCloud is thread safe, it can be
used in multi-threaded applications as well.

6.1.2.3 jClouds

jClouds9, which is written in Java, can be seen as the small Java pendant to libCloud, because
it unifies only compute and storage APIs10. For application debugging, stubs for both APIs
are available, which enables developer to test their source code without targeting an existing
cloud provider, which would imply costs. jClouds also offers a basic requirements matching
functionality, to find the most appropriate instance type or machine image by providing hardware
characteristics such as amount of CPU cores, working memory or hard disk size.

6.1.3 Proprietary Approaches to Describe Deployment Requirements

Most of the proprietary approaches to describe deployment requirements are declarative. This
means the template contains instructions about what cloud resources are necessary, but it is
not described how they should be provisioned. This is the responsibility of the provisioning
interface, which consumes such template specification files.

5http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
6http://dmtf.org/standards/cloud
7http://libcloud.apache.org/
8http://libcloud.apache.org/supported_providers.html
9http://jclouds.incubator.apache.org/

10http://jclouds.incubator.apache.org/documentation/reference/supported-
providers/
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6.1.3.1 Amazon AWS Approaches

With Amazon Web Services, Amazon builds a variety of additional cloud services around their
original service of Elastic Cloud Computing (abbreviated EC2). Some of them try to minimise
the complexity of the creation of new virtual appliances, whereas in the background EC2 in-
stances are still used. This should not be an advertisement for AWS, but as Amazon is the
leading company among IaaS platform providers [31], it is a good idea to analyze and evaluate
some of their approaches.

CloudFormation. With CloudFormation, Amazon introduced a template language to describe
multi-tier applications with AWS specific resources. This human-readable definition of cloud
resources, software packages, hardware requirements and configuration in JSON notation can
be extended with embedded console scripts, which can contain installation instructions, addi-
tional configurations for software or any arbitrary console command. Amazon provides ready-
to-deploy templates for different applications11. Although the whole template language is re-
lated to AWS, Heat (see Section 6.1.3.2) for OpenStack offers an interface, which is capable of
parsing CloudFormation templates and use them for deployments.

Amazon OpsWorks. Amazon OpsWorks takes a different approach and introduces a stack
with different layers. Each layer is responsible for a specific purpose and can be customized
with Opscode Chef recipes, which are grouped together into cookbooks12. In most of the cases,
Chef cookbooks are maintained by the community via a Git repository. More technical, each
cookbook consists out of various Ruby scripts (where the recipes are defined) and aim to work
on different platforms (Windows included).

The drawback is that the cook books cannot be taken directly from OpsWorks, but have to
be modified to work with AWS EC2 instances. One would have to adapt recipes or rely on the
predefined layers from the AWS engineers, which makes it unattractive for a unified deployment
solution.

6.1.3.2 Heat Openstack

Openstack follows with Heat13 a similar way, compared to Amazon’s CloudFormation approach.
Heat is the orchestration module of Openstack and can parse templates in two different formats:
YAML and JSON. Templates, which are in the YAML format, can use two different Heat tem-
plate syntaxes, which have minor differences. The JSON format is compatible with the Amazon
CloudFormation syntax and was the first format Heat supported. Although the HOT syntax is
the official template format, there are still parallels between both formats and some concepts
have been adapted. Whereas JSON uses brackets to define a tree structure, YAML relies on pure
indentation.

11http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
12http://community.opscode.com/cookbooks
13https://wiki.openstack.org/wiki/Heat
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Heat can be seen as a proof that Amazon’s approach with CloudFormation has the poten-
tial to get a de-facto standard, if more and more cloud providers implement the principle of
describing required cloud resources as a template in an interpretable format.

Openstack’s support for Heat is still in its early stages and in general this approach of de-
scribing a whole cloud resource deployment in form of a template is novel. The first commit14

to the Git repository, announcing CloudFormation support in the context of Openstack, was in
March, 2012.

6.1.3.3 Cloudify

Cloudify is a middleware, which can be used to manage cloud resources transparently. In the
background, it uses jClouds to communicate with the supported cloud providers. Essentially,
Cloudify consists out of a management machine, which takes care of and communicates with all
virtual resources, which are part of the application. Initially, each node gets bootstrapped and
runs a Cloudify agent, which can receive commands from the management machine. Deploy-
ment, scaling and monitoring of cloud resources are done via the management machine.

In the context of this master’s thesis, Cloudify could be interesting as it provides the ability
to define application and service recipes, which are used to describe the application in a cloud
provider neutral way. The authors of [40] think that middleware systems like Cloudify, will have
a strong influence on the further adaption of cloud computing, as they provide generic interfaces
and infrastructure abstraction.

6.2 Similar approaches

In this section, a comprehensive overview of similar existing approaches and a clear differentia-
tion to our approach is given. In some cases potential synergy effects are discussed.

6.2.1 Managing the Configuration Complexity of Distributed Applications

The authors from the IBM research department introduce in [23] an approach to help to manage
the configuration complexity of distributed applications, which are deployed to data centres.
Their approach is based on the principle of separating concerns: Application developers capture
the logical structure of an application, as this is what developers are responsible for and know
the best. Domain experts on the other side, define model transformation rules that incorporates
their domain expertise. Application deployers provide common deployment patterns and cloud
providers can provide a model that describes all available resources within their cloud. In the
article they present a tool, which takes these four inputs and creates a set of possible deployment
topologies, which satisfies the defined requirements.

The authors emphasise that one of their main goals is to share deployment knowledge in
form of models. Some of existing methods of provision automatisation are based on scripts,
which can be error-prone and not effective. Furthermore, they explain why MDE can have such

14https://github.com/openstack/heat/commit/38de4d2564b75316ef5a61eb0b1a87b22a19731c

67

https://github.com/openstack/heat/commit/38de4d2564b75316ef5a61eb0b1a87b22a19731c


a positive effect in relation to application deployment, as the model can be used and reused for
various occasions, such as visualization, provisioning and configuration.

As models can significantly improve efficiency, Eilam et al. in [23] are convinced that MDE
will be the base of the next generation of configuration management tools and most technologies
used in this domain are already moving towards model-based solutions. With the principle of
separating concerns, different types of models are introduced, which rely on each other: (i) log-
ical application structure (LAS), contains all functional requirements an application has and is
created by developers, (ii) logical deployment model (LDM), is based on a LAS and enhances
it with desired deployment patterns. To speed up creation of LDM, logical topology models
(LTM) are used, which can be compared to blueprints, which have been discussed in Chapter 3.
LTMs are predefined topology models that consists out of best practise deployment scenarios.
(iii) deployment topology generator, takes a LAS or a LDM and tries to create a set of physical
deployment topologies. Such a topology consists out of a complete software stack, configuration
constraints and network requirements. In other words, it is a description of a ready-to-deploy
system. The conversion from a LAS into a physical deployment topology is achieved by apply-
ing iteratively model transformation rules, which have been created by domain experts.

Eilam et al. distinguish in [23] between deployment and provisioning. The deployment is
described as the phase that starts with a LAS and ends with a physical deployment topology.
Provisioning is the step, in which the physical deployment topology is parsed and gets converted
into a deployment plan that is executed by the provisioning engine. A cloud provider may have
specific rules or constraints, which have to be considered during the creation of the deployment
plan. This information can be grouped together into a data centre model (DCM), which is taken
into account by the planner.

Some of the main concepts are: (i) every module in a diagram has a container. For example a
Java container has to be hosted by an application server, but the application sever at the same time
is contained by an operating system, which is contained by a machine. (ii) Model transformation
rules define how to manipulate the input model in terms of copying, adding, deleting or altering
elements based on preconditions that those elements must fulfil. (iii) Within each iteration of
applying transformation rules to the model, a solution tree is created, which can contain leafs
that can not be further transformed, but at the same time do not represent a valid deployment
topology. Those leafs are called dead end and the tree has to be examined along another branch.
The authors call this approach transformation-based search, which can be enhanced by a proper
heuristic in order to apply transformation rules in a specific order and not in a random order. A
leaf of the solution tree has to reflect a valid deployment topology and has to be in accord with
the constraints of a cloud provider specified in its DCM.

The prototype implementation consists out of models, which manly describe elements that
can be inserted into the diagram during the execution of transformation rules. Interestingly the
do not use ATL for transformation rules, but all of them are defined in a imperative way in form
of Java code.

They list some of the advantages of their approach, such as: (i) reduction of complexity
of application deployments and reusability of models, (ii) separation of concerns, as everyone
contributes those parts to the deployment, where she is an expert in. For example, domain
experts can define transformation rules, and application deployer can concentrate on their field of
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responsibility), (iii) model transformations replace the requirement of (re)writing and adapting
deployment scripts and operate on a higher abstraction level.

This approach has some similarities with the one, which has been described in this master’s
thesis. LAS and LDM in their approach can be seen as the equivalent to PIM and PSM in our
approach. We encapsulate knowledge about specific cloud providers in UML profiles, whereas
here DCMs are used. To speed up the modelling process LTMs are used that contain a predefined
deployment structure. This is similar to our blueprints and software stacks that contain best
practise deployment scenarios.

The principle of a strict separation of concerns only has been considered to a certain extend.
We distinguish between model library maintainer and modeler. A more detailed definition could
be one potential extension (see 7.3).

One important difference is that the workflow presented in this approach ends with a deploy-
ment topology, but the actual provision of the defined cloud resources have to be done manually.
Our approach goes one step further and tackles the problem of provisioning as well.

6.2.2 Uni4Cloud

The authors of [47] introduce an approach called Uni4Cloud, which tries to facilitate the mod-
elling, deployment and management of applications in a multi-cloud environment on the IaaS
abstraction layer. They identified three main stakeholders: cloud providers, a service providers
that rent the infrastructure of cloud providers to deploy their applications and service users that
use the service hosted in the cloud. Their approach consists out of three modules:

Service modeler. The service modeler is a graphical user interface, which facilitates the cre-
ation of a deployment model. In the background, the information is stored as an OVF compliant
appliance (for further details of OVF see Section 6.1.1.1). Furthermore, the service modeler
contains predefined OVF templates of virtual machines, load-balancers and web servers that can
accelerate the modelling process. The resulting OVF file is never manipulated directly, but every
time through the user interface, where also application-specific and cloud-specific properties can
be defined. As OVF does not offer this functionality out of the box, Uni4Cloud uses self-defined
extensions that can be used in combination with the OVF format.

Service manager. This module is responsible for parsing the OVF description file and for
deploying it to the selected cloud provider. The service manager does not contact the cloud
provider directly, but communicates through the cloud adapter (see next paragraph), targeting
a unified cloud provider agnostic interface called OCCI. After deployment, any changes con-
cerning resource management or dynamic behaviour, such as scaling, are done by this module
as well. The authors note that this functionality is still in its early stages and is not explained
further.

Cloud adapter. The cloud adapter essentially is an implementation of the OCCI interface
specification. Every supported cloud provider has its proper plugin which translates unified
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OCCI commands into proprietary calls, which are specific to one cloud provider. With this strat-
egy, it is not important, to which cloud provider the service manager is going to deploy to, as the
communication is based on OCCI and any difference between cloud providers are transparent.

Uni4Cloud uses open standards such as OVF (described in 6.1.1.1), but OVF does not seem
to be practicable for describing cloud resources, due to the lack of support of this format. The
proposed service modeler seems to be in an early stage and there is space for improvement. To
the best of our knowledge, we could not find subsequent publications based on Uni4Cloud. As
already mentioned, the integration of elastic scaling, has been considered but is still not imple-
mented.

The reason why OVF is used as a format for the service modeler is unclear, as it gets parsed
by the service manager in the second step and OVF definitions are translated into OCCI specific
commands such as create instance or create network.

Instead of introducing a new modelling language, our approach relies on the well estab-
lished UML and uses native modelling elements, which are enhances by profile applications.
Furthermore, we also address the ability to define scaling rules.

6.2.3 CloudMIG

The focus of cloudMIG [25], is set on the controlled migration of an application and its sub-parts
into a adapted version of it, in order to leverage cloud specific advantages, such as scalability
and resource efficiency.

By means of an experiment, the authors pointed out that efficient application migration is
more than just creating virtual instances and installing the application without any further mod-
ification. To proof this assumption, they installed the open source ERP system Apache OFBiz15

on a couple of virtual instances and measured response time and CPU utilisation among a cer-
tain time frame. Their results show that some instance could no handle the increase of requests
efficiently, as the request response time went above an acceptable threshold. On larger instances,
CPU resources were over-provisioned, which resulted into more expenses. Although the applica-
tion was runnable on virtual instances, thus cloud compatible, it could not exploit the advantages
what a cloud offers. Furthermore, the authors are convinced that the advantage of cloud com-
puting in comparison to a self-owned computing infrastructure, of being more elastic in terms
of allocated virtual instances, is not exploitable by simply installing the unmodified application
in the cloud, but more sophisticated application re-engineering has to be done. In other words
the problem of under-provisioning and over-provisioning can also occur in the cloud.

As already mentioned, CloudMIG aims for an easy re-engineering process to make existing
applications ready for migration to the cloud and takes out some complexity, when adapting it to
target a specific cloud provider. As there will be always heterogeneity among cloud providers,
CloudMIG strives for a generic application migration approach.

The authors introduce a Cloud Suitability and Alignment (CSA) hierarchy that can be used
to classify existing software systems for their suitability of being run in one specific cloud.
There exists five statuses: Incompatible, Compatible, Ready, Aligned, Optimised. They can be

15http://ofbiz.apache.org/
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ordered in form of a pyramid, which means if an application in relation to one cloud provider has
as a status aligned, it is ready and compatible as well. The CSA hierarchy only takes technical
hurdles into account and no organisational restrictions or security policies.

Apart from CSA, Cloud Environment Constraints (CEC) are used to describe limitations of
a specific cloud provider. On a PaaS abstraction level, there may be some restrictions in terms
of a limited available feature set of the programming language execution environment. There
are three different types of CEC violations: Warning, Critical and Breaking. Those types are
in direct connection to the CSA status of an application. If the current status of the application
causes at least one CEC violation with the status breaking, the CSA would be incompatible.

The CEC definitions are included by a Cloud Environment Model (CEM), which has to be
created for every cloud provider CloudMIG should support. Furthermore, it includes transfor-
mation rules and cloud provider specific properties.

According to the authors, all simplistic migration approaches have at least one of the fol-
lowing shortcomings: (i) applicability, as only a few cloud providers are supported (ii) level
of automation: most of the re-engineering work is done manually as it is quite complex and
cloud environment constraints are not checked at design time (iii) resource efficiency, as soft-
ware may not be designed for the cloud environment’s elasticity and (iv) scalability, as there
does not exist automated support for evaluating the saleability of the target architecture. After
having discussed the terminology of CloudMIG, an overview of the migration process is given.
It consists out of six phases and tries to address the previously mentioned shortcomings:

Extraction. As CloudMIG is a model based approach, the current architecture has to be rep-
resented as a model. Sometimes the internal structure is not known completely or incomplete.
CloudMIG introduces a software architecture reconstruction methodology that analyses the pro-
gram code and generates a model, which conforms to OMG’s Knowledge Discovery Meta-
Model [42]. In order to consider the last two shortcomings Resource efficiency and Scalability,
fundamental knowledge about the application’s statistical properties, such as invocation rates
or average request size in bytes have to be collected to make proper decisions about how the
target architecture should look like. Data can be retrieved by processing log files or the usage
of monitoring tools and are stored in form of metrics in a model that conforms to the Structured
Metrics Meta-Model (SMM) [42], which also has been published by OMG.

Selection. After a model of the current application has been generated and utilization metrics
have been derived, a cloud provider and its associated CEM are selected. It contains a set of
CECs and transformation rules that are used in the next phase.

Generation. The generation phase has three outputs: Target architecture, mapping model and
constraint violation model and furthermore is subdivided into three sub processes. Firstly, the
model transformation phase uses the model transformation rules defined in the CEM and applies
them to the elements of the current architecture. In other words, each element is assigned to one
possible cloud resource, whereas it is about an initial assignment, which can be changed by one
of the subsequent steps. The next step is manually done by the developer and consists of the
configuration of rules and assertions. Some rules may be changed, such as altering numerical
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values or adjusting the execution order of them. The last step improves the mapping created in
the first one by considering resource-efficiency and rules that were adjusted by the developer.
Not all resource adjustments in favour off efficiency will result into an overall increase of effi-
ciency, as there may be some side-effects. For instance, splitting the application into components
and deploying them on different virtual machines to get optimise CPU usage, will increase the
network traffic due to the necessary communication between those components. In order to get
the best solution a heuristic rule-based search algorithm is used to consider all possible solutions
and select the best one. There may be some parts of the applications that have to be adapted
manually, as they violate one of the CEC, which is done in the last phase transformation.

Adaption. If the automated generation process has not considered some of the case-specific
requirements, the target architecture can be adapted manually. This phase can consists out of
multiple iterations.

Evaluation. Before the application gets transformed into the target architecture, it has to be
evaluated in terms of metrics. Apart from static analyses such as LCOM, the model can be
simulated with CloudSim16, to get a better insight of possible consequences and behaviour of
the application. The results may cause the developer to adjust some parts of the deployment,
which means going back to the adaption phase.

Transformation. The last phase is about realising the plan. There does not exist any support
from CloudMIG and is completely left to the developer.

CloudMIG extensively addresses the problem of adapting an application in a way, so that it can
be run on cloud resources and can exploit the advantages cloud computing offers. Our approach
mainly focuses on the underlying infrastructure. It is conceivable to combine both approaches
in order to benefit from each other.

6.2.4 CloudMF

CloudMF [24] introduces two levels of abstraction: Cloud Provider-Independent Model (CPIM),
which is cloud-agnostic and can be used as a template and Cloud Provider-Specific Model
(CPSM), which contains cloud provider specific concepts and is used as an input for the de-
ployment and provisioning engine. The described workflow can be separated into two parts:
Modelling environment and Models@run-time environment:

Modelling environment. The first step is done through an editor, which enables the user to
create a CPIM of the application in the domain specific modelling language (DSML). They
distinguish between type and instance definitions. Type definitions contain information of how
an artifact is retrieved, deployed and started. A instance definition, which is derived from a
type, are concrete representations and are used in the next step as an input for the refinement

16http://www.cloudbus.org/cloudsim/
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engine. The refinement engine converts a CPIM into a CPSM by adding cloud specific features,
which is done through the provisioning and deployment engine that in turn communicates with
the respective cloud provider. Once a CPSM is created, the provisioning can be done directly
in an imperative way by contacting directly the provisioning and deployment engine, or in an
declarative way through the models@run-time environment.

Models@run-time. The aim of the models@run-time environment is to reflect a change in the
running system in the model and the other way around, which means if the CPSM is changed the
running system should be updated as well. In order to do that some prerequisites are necessary,
such as sensors to detect changes in the running system or actuators, which are capable to the
propagate model changes to the running system.

CloudMF introduces two different types of models: CPIM and CPSM, which are related to PIMs
and PSMs of our process, but instead of using UML as the modelling language, a proprietary
DSL is used.

6.2.5 Aeolus

Aeolus[16, 39] address the problem of component deployment in the cloud. Components are
used to describe resources that can provided or require functionalities through ports. Each com-
ponent is expressed as a state machine, whereas a transition from one state to another can be pre-
vented if required functionalities are not satisfied. The focus lies on software packages that can
have dependencies on other software components. Moreover, they distinguish between strong
and weak requirements. In [16] they introduce the Aeolus flat model and describe eight formal
definitions, by means of the set theory notation. The complexity an Aeolus model tries to il-
lustrate in a declarative way is a “universe of possible components” [39] and a target state in
which individual components have to be in an active state in order to execute deployment. The
complexity is resolved by breaking it down into a “sequence of low-level deployment actions”
[39], which consist out of the creation and deletion of a resources, the binding and unbinding of
a port of a component and the state change of a component. Understandably there can exist more
than one sequence of low-level deployment actions to achieve a given configuration of compo-
nents. The authors of [39] elaborate on a novel planning technique to create a deployment plan
that is based on Aeolus models. It is subdivided into three parts: Reachability analysis, abstract
planning and plan generation.

Reachability analysis. The first step includes the calculation of all possible states each com-
ponent can obtain. As soon as the target state is reached, the creation of an abstract plan can be
initiated. For simplification during the reachability analysis, the low-level deployment actions
bind and delete are omitted. To find a way to reach the target state, a certain amount of state sets
are generated. The creation starts with all components being in their initial states. With each
iteration, a new set of states is created, by changing the state of a component having in mind
any functional dependencies. As soon as another iteration does not generate a new set of states,
there are two possibilities: the target state is among the the generated sets or there does not exist
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a solution for the goal. All sets together form the so-called reachability graph, which is used in
the next step.

Abstract planning. If the previous step identifies one or more possible solutions, an abstract
plan is computed. The abstract plan is retrieved by traversing the reachability graph in reverse
order by starting with the final state. Based on a heuristic it is determined, which node should be
collected and should be part of the abstract plan. For instance, between two nodes, the node that
is able to satisfy the maximum number (not already satisfied) requirements should be preferred.

Plan generation. The last step consists out of deriving a concrete plan based on the abstract
plan from the previous step. The strategy is to visit nodes from the abstract plan and execute the
action in order to get there, until the target state is obtained. Sometimes it is necessary to adapt
the plan, if a component duplication is required - this would be the case if the same component
in different states should be deployed simultaneously.

Aeolus uses its own defined syntax to define the desired target system in the cloud, which is
parsed by Zyphyrus and forwarded to Armonic, a deployment tool based on state machines that
can translate deployment definitions into API invocations [18].

This master’s thesis introduces a UML centric approach and application modelers do not
have to learn additional meta languages, as it would be the case for Aeolus.
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CHAPTER 7
Conclusion

7.1 Critical Reflection

The aim of this section is to summarise the master’s thesis results in a critical way and identify
current limitations and possible improvements.

7.1.1 All-Embracing Solution

Our proposed process should simplify the deployment and provisioning of an application to
the cloud and furthermore should be intuitive. At some stages the prototypical implementation
lacks of flexibility and is bound to some constraints, as it is hard to develop an all-embracing
solution. The implementation of a solution that addresses all different deployment scenarios and
application specific singularities can be complex or not feasible. Only by applying the process
to real world examples, disadvantages and weaknesses can be identified that furthermore could
be used as an input for modifications, adaptions or improvements of the process.

This master’s thesis follows a model-based approach, which proofed to be feasible and prac-
ticable. The EMF provides well maintained tools to manipulate models and align them with
the deployment process and use them to support the provisioning process. The presented CMM
is vendor independent and provides a unified way to describe cloud deployments on the IaaS
abstraction layer.

7.1.2 Automation

The goal of the process is a (semi-)automatical deployment and provisioning of an application
to the cloud. Especially when it comes to application specific environments, model to model
and model to text transformations are quite static and outcomes have to be manually altered (as
already discussed in Section 5). This includes manual insertion of additional installation and
configuration scripts into the template to install specific application dependencies and configure
them. This strongly depends on the application which is run on each server and can not be
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defined in a generic way as too many variables would influence the way an installation script
arranged.

7.2 Current Limitations and Possible Improvements

In this section, the presented process is analysed under the aspect of existing limitations. Some
of them can be circumvented by implementing extensions, which are discussed in Section 7.3.

Modelling of Networks. When creating virtual appliances in the cloud, not all of them should
be reachable from the internet. This is achieved through security groups, which can be seen as
firewall rules that determine which ports and protocols are going to be forwarded to a virtual
machine. At the same time, parts of the network should be private as well, as the communica-
tion between nodes should not take place through the internet. This can be achieved by placing
virtual machines into private networks within the cloud. The ability of creating private sub-
networks is still under development. Our plan is to distinguish between different type of links
(communication paths) between nodes and to make it possible to assign private IP addresses to
cloud resource.

Provisioning of Application. The evaluation concluded that more complex applications can
not be run on a virtual instance within the cloud without being further configured and “cloudi-
fied”. The approach that is presented in this master’s thesis focuses on the deployment and provi-
sioning of the underlying infrastructure that the application needs to be run in the cloud. Formats,
such as CloudFormation, offer the possibility of embedding a simple application-provisioning
workflow within the template. The functionality is limited though and consists of console scripts
that get executed during creating a new virtual machine. The application archive has to be pub-
licly available in order to be copied automatically into the web directory. As an application in
most of the cases relies on a data persistence layer, the IP address of a database has to be known
in advance. Under certain circumstances, the creation of the database may consume more time
than launching a new virtual instance, which means that the IP address is still not known. For this
reason, we leave the automated application provisioning to software solutions such as Chef Op-
scode or Docker, which encapsulates an application and its dependencies in a Docker container.
Both are discussed in Section 7.3.

Modelling of Software Stacks. In our approach we tried to model common software stacks
and included them into our model library. The problem is that there is no general software stack,
which is valid for all applications. For instance, a JBoss server may require special configu-
rations and parameters that are hard to express in form of a model. In other words, there are
so many different cases of how a JBoss application server can be configured that it would not
make sense to reflect the configuration in form of models. There exist solutions, which target ex-
actly the problem of supervised simultaneous multi-node configurations, such as Chef Opscode,
which is discussed in the next section.
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7.3 Potential Extensions

In this section potential extensions that could add additional functionality to our approach are
discussed.

7.3.1 Scaling rules for PaaS

Apart from analysing scaling configurations from Amazon and OpenStack, we also tried to
consider scaling rules on the PaaS abstraction layer. It turned out that scaling rules on a PaaS
level are application centric. This means, they are targeting the application context such as
pending latency or concurrent requests and can not be combined with scaling rules targeting
IaaS. For that reason we introduced a new section in out Xtext grammar, called application.
As shown in Figure 7.1, a rule can define scaling behaviour for a whole instance, or only for
a specific application. Examples for scaling criteria for applications are PendingLatency or
ConcurrentRequests.

Figure 7.1: Extending the Scaling Metamodel to Define Application Scaling Behaviour

7.3.2 In-place Transformation for Requirements Matching

Although refinement operations are done manually, we experimentally used in-place transfor-
mations to do basic requirements matching. For instance, the rules can determine if hardware
constraints of a node are compatible with one of the instance types and applied the respective
stereotype to the node element. In Listing 7.1, an excerpt of the in-place transformation is given
that shows how the most economic instance type is determined.

7.3.3 TOSCA Integration

The already introduced open standard TOSCA [44], which has been published in November,
2013, defines a uniformed way of describing cloud resources and their orchestration in a textual
format. Amazon AWS with CloudFormation was the trend setter in the field of cloud resources
orchestration, which was adapted by the orchestration service Heat of the open source cloud
OpenStack, as lots of the concepts can be found in it. Other than CloudFormation, which uses
JSON for the template syntax, Heat and also TOSCA use YML as a format to describe templates.
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Listing 7.1: In-Place Transformation: Requirements Matching
1 thisModule.economicPerformanceRequierementsMatching(
2 targetStereotype.getStereotypeApplication(appliedStereotype),
3 possibleStereotype.getStereotypeApplication(appliedStereotype)
4 )
5
6 helper def : economicPerformanceRequierementsMatching(current : OclAny, new : OclAny) : Boolean =
7 current.virtualCores > new.virtualCores
8 and current.memory > new.memory
9 and current.localDisk > new.localDisk

10 ;

As this master’s thesis already supports CloudFormation and Heat, it is easy to add support for
new formats such as TOSCA.

7.3.4 Chef Opscode integration

As already mentioned, one of the limitations of our approach is the ability to model the necessary
software stack in an all-embracing way. There exist software solutions, which try to solve exactly
this problem. One of them is Chef from Opscode1. Chef is capable of configuring virtual
appliances once the have been provisioned. This means, as soon as a virtual instance is created,
Chef comes into play.

It is possible to describe the necessary infrastructure as code snippets, which can be checked
in into a version control system and later on can be distributed to the respective nodes that have
to be configured. Chef focuses on the software layers that are above the operating system. The
configuration itself can be seen executable documentation of the infrastructure, which is needed
to execute the applications [14].

Chef comes with its own domain specific language, based on Ruby, which provides a way
of describing the desired state of a resource (so-called policies). Comparable to orchestration
templates such as CloudFormation or Heat, it is described what kind of resources are required,
but not how this should be achieved. Depending on the operating system the way of how the
desired state of a node is achieved can be different. Chef chooses, depending on the underlying
software, a certain provider, that abstracts away how new software gets installed on the node or
how the system gets configured. As the description is platform independent, it can be used for
private server systems as well as for cloud infrastructure. The basic setup of a Chef environment
consists out of a administrator workstation, which is capable of creating new configurations
for parts of the application infrastructure, a Chef server, which stores all configurations and
keeps a record of all manageable nodes, and nodes (virtual instances) that have to be configured.
To assure that Chef Server knows about available nodes it has to manage, they have to get
bootstrapped once in the beginning. Chef defines some concepts, which are explained shortly
[14]:

Resources. A resource is a small building block of a configuration template. For instance,
this could be a packet that should be installed, a file that has to be modified or a service, which

1http://www.getchef.com/
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should be started during startup. They can depend on each other and inter-communicate through
notifications, such as a resource could trigger another resource to be called.

Recipes and Cookbooks. A recipe contains an arbitrary amount of resources and segments
of code that define the policies, whereas a Cookbook contains various recipes and other file
templates that are typically needed for a specific software or functionality. To retain flexi-
bility and cover most of the operating systems, recipes which are describing the same soft-
ware are grouped together into one cookbook, which mostly is community maintained through
a version control system such as Git. For instance, the Nginx cookbook can be found un-
der https://github.com/opscode-cookbooks/nginx and can be used for various
Linux distributions. Each recipe is written in Ruby and can depend on other recipes. The goal
is to achieve an unattended installation process, which automatically does most of the setup
workload.

Run list. During the configuration of a machine, a chef client gets executed that retrieves a
run list, which contains a definition of cookbooks to be executed. For instance, a run list could
contain a JBoss and an Apache cookbook. In other words the run list is a collection of policies,
which have to be configured on that specific node. The chef client follows a check and repair
strategy, which means if the state of a resource meets its definition, no action is taken, whereas
any deviation from the resource definition is tried to be accommodated.

Roles. In an orchestration of cloud resources the individual virtual instance is not addressed
any more, but roles are assigned to a group of resources such as web server, database server.
This means a node can have one or more roles that it fulfils in the cloud appliance constellation.
Because of that with Chef it is possible to define roles and related cookbooks.

After having explained the basic functionality of Chef Opscode, the question is how it can be
integrated into our process. As already said our process lacks simplicity of defining a software
stack. At the same time the information of how cloud resources are arranges and how they
depend on each other is present in the UML models that have been created during the deploy-
ment process. This data could be used to automatically generate run lists and define roles, to
support the integration with Chef. There already exist lots of cookbooks maintained by the
Chef Opscode community, which means an automatic search for cookbooks that meet specific
requirements should be possible as well.

On the other hand it would be also possible to extend our self-implemented Provisioning
Client. As it is based on jClouds, which is compatible with Chef Opscode, it would be possible
to bootstrap virtual nodes with the Chef client programmatically and use cookbooks on them.

7.3.5 Docker

Docker2 was founded by Solomon Hykes and offers a functionality of executing applications
in isolated containers, which communicate with the underlying hardware through the Docker

2https://www.docker.com
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Engine.
Figure 7.2 depicts the difference between a conventional virtual machine on the left hand side,
which includes beside application code and other dependencies its own operating system and
a Docker container, which is a lightweight application container that can be deployed to any
arbitrary physical hardware, as it gets executed by means of the Docker Engine in an isolated
userspace process.

In other words this means that Docker provides all advantages a virtual machine has and
additionally is highly portable and efficient, due to its small container size. The container is
in a way standardised which means application developers care about the container contents,
such as the application itself and its dependencies, whereas the system administrators maintain
the appliances the Docket Engine runs on. With the approach that has been presented in this
master’s thesis, both tasks can be accomplished by the developer.

Figure 7.2: Difference Between Conventional Virtual Machines and Docker, Source: https:
//www.docker.com/whatisdocker/

Once a Docker container for an application has been created, it can be scaled easily as
launching additional containers is a matter of seconds. In combination with our approach, scal-
ing would happen on two layers. Additional Docker containers on one side, additional virtual
instances on the other side. As already mentioned, Docker container are lightweight, so it is
possible to run multiple containers on the same virtual instance, which increases efficiency and
may lower the overall running costs.

A container gets launched from a Docker image, which can be seen as a read-only template.
Most of the images are maintained by the Docker community and lots of pre-configured software
stacks and execution environments such as JBoss or Glassfish are available at Docker Hub.
Docker also follows a layer approach (see Section 2.4 for more details), but for example if the
application gets updated by a newer version, it is not necessary to recreate the whole image from
scratch, but an existing layer gets updated or an additional layer is added. In order to propagate
image changes, it is not necessary to send the whole image via the network, but just the update.
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This can be compared to a version control system that also only transmits changes.
To evaluate if Docker would be a suitable extension for our approach, we installed Docker

on a virtual machine and tried to run a JBoss Docker container from a pre-configured image
available at Docker Hub. The necessary command to launch a Docker container and start the
JBoss web server is illustrated in code listing 7.2.

After the container has been build, it is a question of seconds to launch the application server.
Compared to a virtual instance, which has to start all services after having booted, a huge benefit.
As Docker uses the virtualisation interface of the kernel of the host, the overhead of running a
container can be reduced to a minimum [22].

Listing 7.2: Command to Launch a JBoss Docker Container
1 docker run -d -p 8080:8080 -p 9990:9990 tutum/jboss

With MasteroNg3 the orchestration of Docker containers can be described in a textual for-
mat. It can be seen as a Heat template for Docker purposes. Beside the definition of working
memory and amount of CPU cores, the inter-dependencies among containers can be defined. A
text-to-model transformation into a MasteroNg compliant format would be conceivable.

7.3.6 CloudSim

CloudSim [13], is a “Framework for Modeling and Simulation of Cloud Computing Infrastruc-
tures and Services”. The aim is to simulate virtual appliances and services in form of models
before the provision process of cloud resources takes place.

CloudSim offers a Java library that contains cloud concepts and models such as data centre
or virtual instance. A concept has properties, which have to be configured before a simulation
can be initiated. The result of a simulation can include cost calculations, network flow and
network utilisation and electricity consumption. The simulation scenario is described in form of
a Java program.

The output of the solution presented in this master’s thesis, can be combined with CloudSim
in a way of created model-to-text transformations, which generate Java code that represent the
modelled cloud resources. Before the provisioning of cloud resources is initiated, CloudSim
could help to identify suboptimal configurations or network performance bottlenecks, which
could be fixed proactively.

7.4 Lessons Learned

In the last section, a couple of lessons learned are discussed, which were as well an important
outcome of this master’s thesis.

3https://github.com/signalfuse/maestro-ng, accessed 11-09-2014
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7.4.1 Different Strategies of Virtual Image Configuration

In the evaluation Section 5, we evaluated different image configuration strategies, which are ex-
plained in 2.4 in more details. Especially in combination with elastic scaling, we could identify
some major disadvantages for some of the strategies. For example, if a light weight machine
image is used that only contains the operating system, the whole execution stack and software
packages have to be installed when the machine has been booted for the first time. This can in-
clude the download and installation of an application server such as JBoss, which can consume
more time than the virtual machine would have been needed. Another negative aspect would
be, if the virtual machine after a couple of minutes is still not available (due to time-consuming
installation processes) and the creation of another virtual instance is initiated.
Which strategy should be used, strongly depends on the environment and the nature of the ap-
plication being run on the virtual machine. If it is not a problem if the creation of an additional
virtual machine takes a couple of minutes, the Raw-image strategy could be good enough.

7.4.2 Getting Familiar with Offerings and Available Technologies

It is really important to get familiar with offered technologies and services that are offered by
the cloud providers beforehand. In the case of Amazon AWS, creating different resources by
hand and experimenting with different APIs was important to gain a deep insight into the pro-
vided functionalities. As we configured Openstack as a private cloud, we could get even more
detailed knowledge about what is going on behind the scenes. So, rather than making unrealistic
assumptions, it was better to go the way backwards: Starting with orchestration solutions pro-
vided by the cloud providers and using them manually, helps to get an idea what is possible and
what not. With this knowledge, model to text transformations could be implemented and further
on, model to model transformations. In other words the process that is presented in this master’s
thesis widely has been implemented backwards.
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APPENDIX A
Cloud Metamodel

Figure A.1: Cloud Metamodel designed in Ecore
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APPENDIX B
Scaling Metamodel

Figure B.1: Scaling Metamodel designed in Ecore
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