
Autonomous Path Planning using
probabilistic Maps

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Albin Frischenschlager BSc.
Matrikelnummer 0926427

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Mitwirkung: Univ.-Ass. Dipl.-Ing. Oliver Höftberger

Wien, 05.10.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Autonomous Path Planning using
probabilistic Maps

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Albin Frischenschlager BSc.
Registration Number 0926427

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Assistance: Univ.-Ass. Dipl.-Ing. Oliver Höftberger

Vienna, 05.10.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Albin Frischenschlager BSc.
Rudolf Waisenhorn-Gasse 107, 1230 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all, I want to thank the advisers of my thesis Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu
Grosu and Univ.-Ass. Dipl.-Ing. Oliver Höftberger, who gave me the chance to do this thesis
and offered feedback and advise throughout my thesis.

Furthermore, I want to thank my girlfriend Natalie for her support during my studies and for
proofreading this thesis. She encouraged me in frustrating moments, which helped me to finish
this thesis and my studies.

Last but not least, I want to thank my family, which made my studies at the Vienna University
of Technology possible. They also eased the time of my studies by supporting me in every
possible way.

iii

Abstract

To fulfil their tasks, autonomous robots have to be able to independently and safely reach a target
location from their current position. Path planning enables a robot to do exactly this. Usually,
this is done with a map containing the static obstacles (e.g., walls) of the environment. Since
dynamic obstacles (e.g., humans) can be present in the environment, the static map alone is not
sufficient. Thus, the robot additionally needs sensors to continuously observe the environment
to detect dynamic obstacles and to avoid them. This approach, to avoid dynamic obstacles when
the robot “sees them”, can lead to highly suboptimal behaviour, since the robot will have to start,
stop and change the direction frequently.

To remedy this problem, probabilistic maps are used in this thesis to enhance common path
planning strategies. In contrast to static maps, a probabilistic map contains probabilistic informa-
tion about the likelihood of encountering dynamic obstacles in certain areas of the environment.
This information is used to avoid dynamic obstacles, such that the robot does not have to react
to them.

In this thesis, the navigation stack from the robot operation system (ROS) is used to allow
a Pioneer 3-AT (P3AT) robot to navigate autonomously. The ROS navigation stack, responsible
for path planning, is modified to use probabilistic maps to avoid dynamic obstacles. Addition-
ally, further adjustments and software components are developed to incorporate the limitations
of the Pioneer 3-AT robot. Since the Pioneer 3-AT robot only has sonar sensors the ROS navi-
gation stack is modified to use these sensors instead of a laser scanner.

With the help of experiments, suitable parameters for the new planning strategies have been
found. Finally, the advantages of path planning using probabilistic maps compared to static
maps are shown with further experiments.

v

Kurzfassung

Autonome Roboter müssen zur Erfüllung ihrer Aufgaben fähig sein, selbständig und sicher von
einer Position eine andere Position zu erreichen. Pfadplanung erlaubt einem Roboter dieses Ver-
halten. Normalerweise wird dies mithilfe einer statischen Karte gemacht, welche statische Hin-
dernisse (z.B. Mauern) der Umgebung enthält. Da in der Umgebung des Roboters auch dyna-
mische Hindernisse (z.B. Menschen) vorkommen können, ist eine statische Karte alleine nicht
ausreichend. Der Roboter benötigt zusätzlich Sensoren, um die Umgebung zu beobachten und
somit dynamische Hindernisse zu entdecken und ihnen auszuweichen. Der Ansatz, dass der Ro-
boter dynamisch Hindernissen ausweicht, wenn dieser “sie sieht”, kann zu sehr suboptimalem
Verhalten führen, da der Roboter dadurch oft starten, stoppen und Richtung wechseln wird.

Um dieses Problem zu umgehen, wurde in diese Arbeit mithilfe von probabilistischen Kar-
ten bestehende Pfadplanungsstrategien verbessert. Im Gegensatz zu statischen Karten, beinhaltet
eine probabilistische Karte Informationen über die Wahrscheinlichkeit auf ein dynamische Hin-
dernis in einem bestimmten Teil der Umgebung zu stoßen.

In dieser Arbeit wurde der navigation stack vom robot operation system (ROS) benutzt,
um den Pioneer 3-AT (P3AT) Roboter autonom navigieren zu lassen. Der ROS navigation stack,
welcher Pfadplanung durchführt, wurde so modifiziert, dass probabilistische Karten benutzt wer-
den um dynamischen Hindernissen auszuweichen. Zusätzlich wurden weitere Veränderungen
durchgeführt und Software Komponenten entwickelt um den Limitierungen des Pioneer 3-AT
Roboters entgegenzuwirken. Da der Pioneer 3-AT Roboter nur über Sonar Sensoren verfügt,
wurde der ROS navigation stack modifiziert, damit diese Sensoren anstelle eines Laser Scanners
eingesetzt werden.

Sinnvolle Parameter für die neuen Planungsstrategien wurden mithilfe von Experimenten
gefunden. Außerdem wurden die Vorteile von Pfadplanung mit probabilistischen Karten gegen-
über von statischen Karten mit weiteren Experimenten gezeigt.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem definition . 2
1.3 Methodological approach . 2
1.4 Structure of work . 3

2 Static path planning 5
2.1 Introduction . 5

2.1.1 Configuration space . 5
2.1.2 Frames . 7

2.2 Shortest path algorithms . 7
2.2.1 Dijkstra . 7
2.2.2 A* . 10

2.3 Continuous path planning . 12
2.3.1 Combinatorial path planning . 12
2.3.2 Sampling based path planning . 20

3 Dynamic path planning 31
3.1 Introduction . 31

3.1.1 Configuration-time space . 32
3.1.2 Online planning vs. offline planning 33

3.2 Planning in known dynamic environments . 33
3.2.1 Adapting combinatorial path planners 33
3.2.2 Adapting sampling based path planners 34
3.2.3 Velocity-Tuning . 34

3.3 Planning in partially known or unknown dynamic environments 35
3.3.1 Planning in configuration space . 35
3.3.2 Planning in configuration-time space 36
3.3.3 Obstacle avoider . 38

4 Path planning with probabilistic maps and sonar sensors 41
4.1 Path planning with probabilistic maps . 42

4.1.1 General idea . 42

ix

4.1.2 N-ary configuration space . 43
4.1.3 Choosing existing path planning strategies 43
4.1.4 The probabilistic map path planning strategy 45
4.1.5 Example . 47

4.2 Dynamic path planning with sonar sensors . 48
4.2.1 Laser vs Sonar . 48
4.2.2 Environment observation for dynamic path planning with laser scanners 50
4.2.3 Environment observation for dynamic path planning with sonar sensors 51
4.2.4 Example . 56

5 Implementation 59
5.1 Robot operating system (ROS) . 59

5.1.1 Filesystem level . 60
5.1.2 Computation Graph level . 60
5.1.3 Community level . 61
5.1.4 Transformations . 61
5.1.5 Starting a ROS node . 62

5.2 System Overview . 64
5.2.1 Global transformation tree . 64

5.3 Rosaria . 66
5.4 Probabilistic map server . 67
5.5 Sonar calibration . 69
5.6 Navigation stack . 70

5.6.1 Adaptive Monte Carlo Localisation 72
5.6.2 Costmap . 75
5.6.3 Move_base . 86

5.7 Rviz . 93
5.8 Navigation control module . 94
5.9 Safe navigation module . 94

6 Experiments and results 97
6.1 Pioneer 3-AT (P3AT) . 97
6.2 Experiment 1 . 98
6.3 Experiment 2 . 103

6.3.1 Experiment 2a: Travel through a dynamic area 103
6.3.2 Experiment 2b: Two ways to the goal 105

7 Future work 107
7.1 Filter sonar sensors readings . 107
7.2 Implement a new local_planner . 107
7.3 Introduce time into path planning . 107

8 Conclusion 109

x

A ROS launchfiles 111
A.1 start_navigation.launch . 111

A.1.1 amcl.launch . 113
A.1.2 move_base.launch . 114

A.2 navigation_control_module.launch . 118

Bibliography 121

xi

CHAPTER 1
Introduction

1.1 Motivation

Nowadays, robots are increasingly present in our daily life and it is easy to predict, that more
tasks will be accomplished by robots in the future, because of the advantages they bring with
them. To name a few, these are their accuracy regarding repetitive tasks, ability to operate in
terrains that are not accessible for humans or for reduced cost.

For every task, except the most basic ones, robots have to reason about actions they should
execute and when they should carry these actions out. This reasoning is known as action plan-
ning. The focus of this thesis is path planning, which is an important subcategory of action
planning. In path planning, the robot tries to safely reach a distant point, either supplied by a
human user or by a high level task, with minimal cost. A high level task could be finding a
missing person in difficult terrain.

Autonomously reaching arbitrary points is an important stepping stone for fulfilling various
interesting tasks. Possible tasks could be searching for stuck/injured persons after an earthquake
in difficult accessible- or dangerous areas, or finding a missing person in a forest. Both examples
are classical urban search and rescue (USAR) duties, in which extensive research is done [79].

Another area of operation could be humanoid robot butlers, which help elderly or disabled
people in the daily live. Tasks could be house cleaning or simple tasks like picking up dropped
down things. This idea can be extended to use robots in healthcare, another rich research field
[31].

A third possible task which is enabled through path planning is autonomously driving cars.
Passengers just have to declare the desired goal and the car drives to the goal via an optimal
route. An optimal route could be the fastest, the shortest, the most beautiful or the most fuel-
efficient. No further human interaction is needed and the passengers can use the driving time for
other activities like chatting, reading books or working.

1

1.2 Problem definition

Usually, to accomplish path planning, a static map of the environment is supplied. This map is
used to localize the position of the robot and to avoid static obstacles (e.g., walls). Since in most
environments dynamic obstacles, which are not contained in the map, exist, the static map alone
is not sufficient to reach the goal in a safe manner. Such dynamic obstacles are for example
humans in the robot’s environment or cars on a road, which both change their position over
time. To ensure safe traversal despite dynamic obstacles, the robot has to detect and avoid them.
Unfortunately, avoiding dynamic obstacles can lead to high costs to reach the final goal. If, for
example, the cost is measured as the time needed to reach the goal, movement through a place
crowded with dynamic obstacles, where the robot has to start, stop and change the direction
frequently because of these obstacles, will lead to a longer traversal time. A cheaper path with
respect to the average travel time would use a probably longer, but less crowded route to reach
the goal. The same is true for a street where traffic jams occur frequently. A longer alternative
route, avoiding this street could lead to a shorter travel time.

Additionally, path planning suffers from the same problem as most other robotic applica-
tions: the inherent uncertainty of sensors. This is problematic, since it is not possible to infer
the exact position of the robot and the obstacles. To overcome this fundamental problem, the in-
formation of various sensors, nowadays mostly modelled by probabilistic models, are combined
and filtered to get more exact results. This idea of probability is transferred to static maps yield-
ing probabilistic ones, that enable the planning algorithm to avoid regions with high probabilities
of obstacles.

1.3 Methodological approach

In the first step an extensive literature study to collect existing navigation strategies and algo-
rithms is done. Then the found strategies are evaluated for the possibilities for enhancement
with probabilistic maps.

Based on this, a new path planning strategy is developed, which uses probabilistic maps. The
idea of this new planning strategy is to avoid three types of areas. The first type are static obsta-
cles, which every path planner tries to avoid. The second type of areas are crowded places like a
busy road. At last, areas, which have the characteristic of infrequently used roads, which are in
bad shape, are avoided, since only slow movement is possible on such roads. The avoidance of
the last two areas is novel in path planning.

Additionally, the new path planning strategy is developed for the usage of sonar sensors,
instead of the commonly used laser sensors. Since sonar sensors are a lot cheaper than laser
scanners, this allows the usage of the new planning strategy for cheap autonomous robots.

The open source framework ’robot operating system’ (ROS) [71] is used for implementing
the new path planning strategy and for evaluation of the developed algorithms. Thus, distinct
experiments are conducted to obtain suitable parameters for the new planning strategies. Finally,
existing standard path planning algorithms are evaluated against the augmented strategies, with
respect to cost and performance.

2

1.4 Structure of work

At first, Chapter 2 defines the path planning problem for static environments and introduces im-
portant concepts. After the presentation of state-of-the-art algorithms for discrete path planning,
state of the art continuous path planning strategies for static environments are explained.

Chapter 3 defines the path planning problem for dynamic environments. Then it is shown,
how to extend the strategies presented in Chapter 2 to yield state of the art path planning in
dynamic environments.

After the theoretical background was laid out in the previous two chapters, Chapter 4 devel-
ops a new path planning strategy. First, probabilistic maps are used to enhance traditional path
planning strategies. The differences to traditional path planning is analysed. After the compar-
ison of sonar sensors with laser sensors, new algorithms are presented to use sonar sensors in
path planning.

In Chapter 5 the new developed path planning strategies is implemented. First, the Robot
Operating System (ROS), which is a central part in the implementation, is introduced. The main
concept, features and principles of ROS are explained as well as how a component can be started
in this system.

Then all ROS modules used in this thesis are presented in detail. It is shown how the naviga-
tion stack of ROS is adapted to use the new path planning strateges to yield more intelligent path
planning, is presented in detail. The implemented algorithms and data structures are explained.

Chapter 6 shows how the adoptions changed the path planning of the ROS navigation stack,
with the help of various experiments. First, the robot platform used for the experiments is
presented. Then, the advantages of using probabilistic maps compared to static maps in path
planning are shown.

Then, Chapter 7 discusses, how the implementation of this thesis can be extended to further
increase the usefulness of probabilistic maps in path planning.

At last, Chapter 8 concludes this thesis.

3

CHAPTER 2
Static path planning

2.1 Introduction

As already mentioned at Section 1, motion planning and therefore path planning is a fundamen-
tal need in robotics [45]. Thus, it is not surprising that this is one of the most studied problem
in robotics [17], which yielded various approaches and strategies to solve it. Most research for
path planning was done in static environments [83], meaning all obstacles in the environment
are known before the optimal path is computed. In contrast, in dynamic environments not all
obstacles are known beforehand. Examples for dynamic obstacles are moving humans or just a
chair, which was forgotten to put away and is now standing in an unexpected place.

In the following chapter, the path planning problem will be defined, followed by an overview
of the general ways to solve static path planning. In Chapter 3 we will see how the static methods
from this chapter can be adapted to solve path planning in dynamic environments.

2.1.1 Configuration space

The task of optimal path planning can be described as: Given a start and a goal location, the task
of optimal path planning is to find a collision free path for a given moving entity (from here on
called robot) with minimal cost.

To accomplish this in the most general form, the following attributes have to be known [83]:

• The geometry of the robot

• The geometry of the environment, in which the robot is operating (typically via a map)

• The degrees of freedom of the robot

• The start and goal location

With the help of the configuration space, introduced by Lozano-Pérez in [48], the path plan-
ning problem can be defined more formally. A configuration uniquely describes one possible

5

robot position in the world. For example a robot only capable of translation in a two-dimensional
world can uniquely be described by two coordinates (x and y). Hence, a configuration in this
example is two-dimensional. Note that the position of the same robot (only capable of trans-
lation in x and y direction) in a three-dimensional world can also be uniquely described by a
two-dimensional configuration. Furthermore, a configuration of a robot which is capable of
translation and rotation in a two-dimensional world is three-dimensional (x, y and the orienta-
tion of the robot theta). Hence, the minimal dimension of a configuration to uniquely describe
a robot position in the world only depends on the degrees of freedom (DOF) of the robot [34],
but not on the dimension of the world. The set of all possible configurations of a robot forms the
configuration space C. For a rigid robot, the maximum configuration space dimension can either
be three (two-dimensional world) or six (three-dimensional world) [17]. If the robot consists of
multiple moving bodies like an industrial manipulator arm or a robot with trailers, the maximum
dimension of C can be arbitrary [17].

Naturally, static obstacles exist in the environment and the robot should not collide with
them. Hence, all configurations in which a part of the robot collides with an obstacle are for-
bidden. Furthermore, all configurations in which the robot collides with itself are forbidden too,
like for an industrial manipulator arm, where the end-effector may collide with the base of the
robot [83]. All these forbidden configurations form the subset Ccoll of the configuration space C.

All other configurations are allowed and define the subset Cfree. Thus, C = Cfree∪Ccoll and
Cfree ∩ Ccoll = ∅.

With the help of the configuration space, the notions of path, collision free and minimal cost
can be defined more formally. In [83] Van den Berg defines the notions as follows: “A path
is defined as a continuous function π : [0, L] → C , parametrized by the length L of the path.
The path planning problem is to find a (collision-)free path between a given start configuration
s ∈ C and goal configuration g ∈ C . Formulated in terms of the configuration space C, that is
finding a path π such that π(0) = s and π(L) = g , and ∀t ∈ [0, L] : π(t) ∈ Cfree”.

Note that in [55] it was shown, that in general the path planning problem is PSPACE-hard,
which implies NP-hardness and that the runtime increases exponentially with every DOF of the
robot, and thus with every dimension of the configuration space [83] [42].

Let P be the set of all paths satisfying the previous condition. We defined c : P → N as
the cost function, which assigns a non-negative cost to every path. Since we are interested in the
path with minimal costs (the optimal path), we search for min

p∈P
{c(p)}.

We will see that we have to refrain from finding the optimal path when the dimension of C
gets too high, and instead be content with any valid path.

Now one could assume, that it is unavoidable to construct Ccoll to find such a path π. Later
we will see that this assumption is not true and static path planning algorithms can be classified
whether they need an explicit representation of Ccoll or not. The former ones are known as
sampling based path planners (see Section 2.3.2) the later ones as combinatorial path planners
(see Section 2.3.1).

6

2.1.2 Frames

An important concept in robotics are coordinate frames, often just called frames. A frame is
defined by the origin and the basis vectors of the coordinate system. One such frame is the
global frame in which the position of the robot and all obstacles can be expressed. Another
important frame is the robot frame, which can be imagined as a coordinate frame glued onto the
robot. Thus, a part of a robot has always position p in the robot frame, regardless of the robot
movement. Of course, this is not true for the position of the robot part in the global frame. When
the robot moves, the position of the robot and thus of all its parts, changes in the global frame.

2.2 Shortest path algorithms

In this chapter the famous Dijkstra algorithm [14], which finds the shortest paths from a single
start vertex to every other reachable vertex in a graph, will be introduced. As we will see, the
Dijkstra algorithm solves the path planning problem in discrete worlds with special constraint
robot geometry. The configuration space of a discrete world is a countable (in)finite set. Even
though the real world is continuous, it is worthwhile to examine the algorithm, since most of the
following solutions of optimal path planning in continuous worlds will be reduced to a discrete
problem. After discussing the Dijkstra Algorithm, we will examine a second discrete shortest
path algorithm, A* [28], which extends the Dijkstra algorithm by using heuristics to speed up
the process of finding the shortest path to the goal node.

2.2.1 Dijkstra

Assume a graph G = (V,E), where V is the set of vertices and E ⊂ V × V is the set of edges
that connect two vertices. Furthermore, we have a function c : E → N assigning a non-negative
cost to each edge {u, v} ∈ E. Given this ingredients the Dijkstra algorithm is able to find the
shortest paths from a start vertex s ∈ V to all reachable vertices in the graph G.

Depending on which parameter should be minimized, the cost function c({u, v}) for all
{u, v} ∈ E can represent different costs. The most common one is the distance between u and
v, but other possibilities, especially in path planning, could be travel time, clearance, safety or
needed energy.

Algorithm 1 shows the pseudo code of the Dijkstra algorithm as in [83].
For every vertex v the algorithm stores the current optimal cost from the start vertex s to

v, denoted by g(v). Furthermore, a backpointer bp(v) for every vertex stores the predecessor
vertex from which the start vertex is reachable via the shortest path. Hence, by following this
backpointers started by an arbitrary vertex v the shortest path between s and v can be determined.

At the beginning the true optimal costs from s to all other vertices are unknown, therefore
g(v) is set to infinity (line 2). Since reaching the start vertex s from itself has no cost, g(s) is set
to zero (line 4). To determine which vertex the algorithm should handle next, a queue Q sorted
ascending by the current optimal cost g is maintained. The last initialisation step is to add s into
Q (line 5).

After this initialisation, the algorithm repeats the next steps, until no further vertices are
stored in the queue Q, and thus, the shortest paths from s to all other reachable vertices are

7

Algorithm 1 Dijkstra
1: for all v ∈ V do
2: g(v)←∞
3: end for
4: g(s)← 0
5: Insert s into Q
6: repeat
7: v ← element from Q with minimal g(v)
8: Remove v from Q
9: for all neighbours u of v do

10: if g(v) + c(v, u) < g(u) then
11: g(u)← g(v) + c(v, u)
12: Insert or update u in Q
13: bp(u)← v
14: end if
15: end for
16: until Q 6= ∅

found. The first vertex v is taken from Q (line 7 and 8) and for every neighbour u it is checked if
u is reachable with less cost then before (line 10). The new cost to reach u is determined by the
cost to reach v (g(v)) plus the cost to reach u from v (c(v, u)) If u is reachable with less cost,
g(u) gets updated and u gets either inserted into Q or updated if it is already present (line 11
and 12). To recover the shortest path later, the backpointer of u is set to v (line 13).

Hence, starting at s, the costs to reach a vertex gets propagated through the graph until every
reachable vertex has a non finite cost and a valid backpointer. Note that the algorithm can easily
be extended to work on directed graphs.

The following example will illustrate the behaviour of the Dijkstra algorithm. Figure 2.1
shows an example graph, where the number besides each edge represents the cost function c.
With the help of the Dijkstra algorithm we compute the shortest path from s to every other
vertex. Table 2.1 illustrates the steps of the Dijkstra algorithm by showing the queue Q and the
current optimal cost g of every vertex at every step. Step 0 indicates the state of the algorithm
after initialisation (after line 5 in Algorithm 1). Then the algorithm gets executed until the
shortest paths, which are shown in Figure 2.2, are found.

The runtime of the Dijkstra algorithm depends on the implementation of the queue Q.
If a binary sorted tree is used, the runtime is O(E log V), whereas the optimal runtime of
O(V log V + E) can be achieved by using a Fibonacci heap [22] [83]. Furthermore, if only
the shortest path from the start vertex to some specific vertex is needed, the algorithm can be
terminated earlier when the shortest path to the goal vertex is found. The shortest path to a vertex
is found, after the vertex is removed from Q and lines 9 to 15 are executed for this vertex. This
is valid, since the current cheapest path is always pursued and when the mentioned condition
is met, no cheaper paths to this vertex can exist. Unfortunately, this does not lower the upper
bound of the runtime of the algorithm, since the goal vertex can be the last visited one, as in the

8

Figure 2.1: A graph for the Dijkstra example

step Q g(s) g(a) g(b) g(c) g(d) bp(s) bp(a) bp(b) bp(c) bp(d)

0 s 0 ∞ ∞ ∞ ∞ null null null null null
1 a, c, b 0 1 4 3 ∞ null s s s null
2 b, c, d 0 1 2 3 7 null s a s a

3 c, d 0 1 2 3 6 null s a s b

4 d 0 1 2 3 5 null s a s c

5 ∅ 0 1 2 3 5 null s a s c

Table 2.1: Steps in the Dijkstra algorithm to find the shortest path in Figure 2.1

Figure 2.2: The dashed lines represent the shortest path from s to all vertices

example.
S
Assume a discrete world in which a robot is operating. Hence, the corresponding con-

figuration space C is discrete too and can be transformed into a graph, where the costs of cells
containing obstacles are either set to an invalid value or removed from the resulting graph. When
the robot has only point-size, the Dijkstra algorithm solves the optimal discrete path planning
problem by finding the cheapest collision free path. Collision free, since the robot will travel
via cells visited by the Dijkstra algorithm. By construction, only cells which do not contain an
obstacle can be visited by the Djikstra algorithm. At first sight the assumptions of a discrete
world and a special robot geometry seem restrictive and not achievable in practice. But we will
see later that most solutions for continuous worlds and arbitrary robot shape will be reduced to
this approach.

9

2.2.2 A*

The Dijkstra algorithm is designed to find the shortest paths to all vertices in a graph from a
given start vertex. In path planning only the cheapest path between a start node and a goal node
is needed. This opens the question, if there are more suitable algorithms for this case. Indeed,
the A* algorithm [28] finds the shortest path between two nodes in less or equal number of steps
compared to Dijkstra. This is even true, when the Dijkstra algorithm is terminated after the
shortest path to the goal is found. A* focuses the search in the graph by a heuristic function
h(v), which estimates the cost to go from vertex v to vgoal. When h(v) is less or equal to the
true cost for all v ∈ V it is guaranteed that A* will find the optimal path [20] [19].

Algorithm 2 shows the pseudo code of A* as in [83].

Algorithm 2 A*
1: for all v ∈ V do
2: g(v)←∞
3: h(v)← lower-bound estimate of the distance between v and vgoal
4: end for
5: g(s)← 0
6: Insert s into Q
7: repeat
8: v ← element from Q with minimal (g(v) + h(v))
9: Remove v from Q

10: for all neighbours u of v do
11: if g(v) + c(v, u) < g(u) then
12: g(u)← g(v) + c(v, u)
13: Insert or update u in Q
14: bp(u)← v
15: end if
16: end for
17: until v = vgoal or Q 6= ∅

A* is very similar to the Dijkstra algorithm, but there are two differences. First, the key for
vertices sorted in queue Q is the sum of the current best cost g(v) and the heuristic function
h(v). Second, when vgoal is removed from queue Q, the algorithm terminates. Both differences
explain the reason why the heuristic has to return a value less or equal to the true cost to go from
v to vgoal. If this is the case the keys are bound, which guarantees that nodes on cheaper paths
will have smaller keys. Hence, when the goal is reached no cheaper path than the current one
can exist.

Assume a graph embedded in the plane, where the cost function c({u, v}) for all {u, v} ∈ E
expresses the Euclidean distance between u and v. A suitable heuristic for this example could be
the Euclidean distance to the goal. This choice satisfies the requirements since in this scenario
no path can be shorter than the Euclidean distance. The closer the return value of the heuristic
is to the true cost to the goal, the better the performance of A* [45] [52]. When h(v) = 0 for all
v ∈ V , A* is equal to the Dijkstra algorithm with early termination.

10

Figure 2.3 shows how many cells the Dijkstra- and the A* algorithm need to find the shortest
path from the start (diagonal cross) to the goal (symmetric cross) in a simple example. It is
assumed that every empty cell (white) has a cost of 1 and occupied cells (black) have infinite
costs. Furthermore, it is assumed that the right cell gets added to Q before the bottom one. The
number in a cell describes at which step the cell is visited. The heuristic h(v) of A* returns the
Manhattan distance, which is the length of the path with only left, right, up or down movements
along the axis of the grid. In this example the heuristic returns the exact cost to go. This fact
guarantees that A* does find the goal in minimum number of steps and no unnecessary cells are
visited. Furthermore, note, that the Dijkstra algorithm terminates after it finds the shortest path
to the goal, thus the last remaining cell is not visited.

(a) (b)

Figure 2.3: Cells visited in the Dijkstra- (a) and A* algorithm (b)

Best-first

The best-first algorithm is like A*, but Q only gets sorted by a cost to go heuristic h(v). Fur-
thermore, it is not required that h(v) underestimates the true cost to go from v to the goal, which
was important for A* to compute the optimal path. Thus, the solution of best-first will in gen-
eral not be the path with minimal cost. The advantage of this - at first sight inferior - algorithm
compared to A* is, that in many cases fewer vertices have to be visited until the goal is reached,
which decreases the run time [45]. Unfortunately, this is not guaranteed and in the worst case
the best-first algorithm needs longer than A*, since it is too greedy [45].

Later, we will see that for higher-dimensional problems only search for a valid path is rel-
evant instead of an optimal path, due the complexity of path planning. Thus, best-first has its
justification.

Up until now, only solutions for optimal path planning in discrete worlds were discussed.
Unfortunately, the real world is continuous and not discrete. Thus, the next section will show
algorithms to solve path planning in continuous worlds. Fortunately, the approaches for the
discrete world can be reused.

11

2.3 Continuous path planning

Solutions for path planning in continuous worlds can roughly be categorized into two categories.
Combinatorial path planning (Section 2.3.1) relies on the fact that Ccoll is explicitly constructed.
In contrast, sampling based path planning (Section 2.3.2) does not construct Ccoll explicitly, but
samples the configuration space C and uses fast collision checking methods to determine if a
collision will occur.

2.3.1 Combinatorial path planning

Combinatorial path planners need an explicitly constructed Ccoll to solve the path planning prob-
lem in continuous worlds. Unfortunately, constructing Ccoll is a computationally expensive
task. Thus, combinatorial path planners can only be used for low-dimensional configuration
spaces [83].

On the other hand, combinatorial path planners are complete, as opposed to sampling based
path planners. A path planner is complete, if it either finds a solution or it will correctly report
that no solution exists [26].

Constructing Ccoll explicitly

When Ccoll is constructed explicitly, the robot can simply be seen as a point in the configuration
space [83]. As long as the point stays out of Ccoll no part of the robot will collide with an
obstacle. If the robot is exactly at the border of Ccoll, the robot is “scratching” at the obstacle.
To do this, the geometry of the robot has to be added to the obstacles in a prober way. Here, one
can see that the requirement of point size robots for the shortest path algorithms is fulfilled for
combinatorial path planners (see Section 2.2).

The easiest case for explicitly constructing Ccoll is when the world is Rn for n = 1, 2 or 3
and the robot is only capable of translation. Under this assumptions Ccoll can be constructed with
the help of the Minkowski difference. For any two sets X,Y ⊂ Rn, the Minkowski difference is
defined as:

X 	 Y = {x− y ∈ Rn | x ∈ X, y ∈ Y }

in which x − y is just vector subtraction in Rn [45] [48]. Let O be the union of all obstacles
described as convex polyhedra (or polygons) andA be the convex polyhedra describing the robot
geometry. Then we get Ccoll = O 	 A. The statement is also true for non convex polyhedra,
since they can be expressed by unions of convex polyhedra.

In [48] Lozano-Pérez gives an efficient algorithm to calculate Ccoll using the Minkowski
difference in a 2D world, which can be extended for 3D worlds. With the previously mentioned
properties, the resulting Ccoll is a polyhedral too. The idea of this algorithm shall be presented
with the help of an example. The mathematical details and proofs can be found in [48].

Assume a single rectangular obstacle and a triangular robot (see Figure 2.4), where the
arrows stemming from the black dot showing the robot frame . Each object is described by the
edges forming the boundary and each edge e consists of two points e.1 and e.2. Since objects
are polyhedra, each point of each edge coincides with exactly one point of another edge.

12

Figure 2.4: A triangular robot and a rectangular obstacle

The algorithm to calculate Ccoll can be imagined as sliding the robot around the obstacle
while keeping them both in contact (see Figure 2.5). It can be seen, that each edge of A and O
forms a part of the resulting boundary of Ccoll. Thus, the algorithm has to determine the position
of each edge, by computing its translation.

O O

Ccoll

Figure 2.5: Sliding the robot around the obstacle creates Ccoll for Figure 2.4

The algorithm uses the inward edge normals of the robot and the outward edge normals of
the obstacle, sorted by the angle they make with the x-axis (see Figure 2.6 for a presentation in
a circular fashion).

Figure 2.6: The normals of Figure 2.4 sorted in circular fashion

To determine the translation of every edge, the algorithm proceeds as follows. Starting at one
edge normal v, it is checked if the other geometric object has an edge with the same normal w. If

13

this is the case, the edge ev corresponding to v gets subtracted from the edge ew corresponding
to w. Since an edge is represented as two points, this subtraction is actually two subtractions,
one for each point pair (ev.1− ew.1 and ev.2− ew.2).

If no such edge exists, the nearest normals x and y of the other geometric object to the left
and right in the sorted data structure are selected. Since the normals are sorted and the object is
polyhedral, the corresponding edges ex and ey of the two selected normals must be connected
via a single point p. Hence, p is one point of the edge ex and one point of the edge ey. The
sorting of the normals guarantees that p exists. For example, the edges corresponding to b1 and
b2 are connected via a point forming the left upper corner of the obstacle. Consequently, in
one way no other obstacle normal is between b1 and b2 in the sorted data structure. The edges
corresponding to b1 and b3 are not connected via a single point. This is represented by the fact,
that either b2 or b4 is between b1 and b3 in the sorted data structure. To gain the translation of
edge ev, subtract point p from the two points forming this edge (ev.1− p and ev.2− p).

Note that the points forming the obstacle edges are in the global frame, and the the points
forming the robot edges are in the robot frame. For example normal b2 has a1 and a3 as nearest
normals from the robot. The corresponding edges of the normals a1 and a3 are connected via a
point direct at the origin of the robot frame. Thus, the corresponding edge eb2 is not translated:

eb2.1−
(

0
0

)
= eb2.1

eb2.2−
(

0
0

)
= eb2.2

The same is true for normal b3. This procedure is repeated with the next normal in counter-
clockwise direction until all normals have been handled once.

The algorithm has a worst case run time of O(m+ n) where m is the number of edges of A
and n is the number of edges ofO. This runtime is only possible since the angles already appear
in counter clockwise direction at A and O.

Unfortunately, constructing Ccoll gets more complicated when the robot is capable of rota-
tion too. In the translation only case, the boundary of Cfree is piecewise linear since translation
is a linear operation [43] and the boundaries of A and O are polyhedral. Since rotations are not
linear, this is not true for the case of a robot capable of performing rotation. Therefore, the previ-
ous piecewise linear representations are replaced by semi-algebraic representations. This means
that the faces of A, O and Ccoll are represented by roots of multiple real valued polynomes. In
geometry a face describes a part of the boundary surface of a solid obstacle. One consequence
of the non-linearity of rotation is that the faces are curved and no longer polygonal [3] [48].
Constructing Ccoll is still possible in near-quadratic run time [27]. Unfortunately, in general a
combinatorial explosion occurs that produces too many facets [43] to use Ccoll reasonably in
subsequent path planners when the dimension of C gets too high.

General idea

Virtually all combinatorial path planners construct some sort of roadmap. Assume a graph
G = (V,E), where each vertex is some configuration of Cfree and each edge is some path

14

through Cfree connecting two vertices. Graph G is called a roadmap when the following two
requirements are met [41]:

1. Coverage: each configuration in Cfree can easily be connected to G

2. Connectivity: for all pairs of configurations in G between which a valid path exists in
Cfree, a valid path through the roadmap exists as well. This requirement forces that solu-
tions are not missed because G fails to map the connectivity of Cfree [45].

After the construction of such a roadmap, it can be used for multiple path planning queries.
If the start configuration of the robot, as well as the goal configuration is in Cfree, both can easily
be added to G by the coverage property. Since a graph is constructed and the robot is only point
size due to construction of Ccoll the shortest path planning algorithms from Section 2.2 can be
used to find the optimal path from start to goal. Thus, once such a roadmap is constructed the
method is complete, since it will either find a solution or it will correctly report that no solution
exists [83].

Various possibilities exist to construct a roadmap. Some of them are only possible in 2D
configuration spaces or generate poor results in higher-dimensional ones.

Cell decomposition

One common way to construct a roadmap is by decomposing Cfree into a finite number of cells.
Then one configuration for each cell and one on each border between the cells are designated
as sample points which serve as vertices of the roadmap. Which configuration gets selected is
not of particular importance, so the cell centroids are good choices [43]. For each cell an edge
from its sample point to the sample point on the borders is added to the roadmap. Each edge is a
line-segment path between the sample points of the cells. See Figure 2.7 for such a constructed
roadmap.

Figure 2.7: Roadmap resulting from the vertical cell decomposition

Again various different cell decompositions are possible, but [45] reports three properties a
cell decomposition should satisfy:

1. Computing a path from one configuration to another configuration in a cell must be easy.

15

2. For every cell the adjacency information can easily be extracted to build the roadmap.

3. For a given start and end configuration, it should be easy to determine the cells which
contain them.

One cell decomposition that satisfies all three properties is the vertical cell decomposition,
which decomposes Cfree such that every cell is either a trapezoid with vertical sides or a triangle
(which is a degenerated trapezoid). Thus, this technique is also known as trapezoidal decompo-
sition. This decomposition is also valid for configuration spaces with a higher dimension than
two, as long as Ccoll is polyhedral. To obtain this decomposition, try to extend rays upward and
downward through Cfree at every vertex which defines Ccoll, until Ccoll is hit [45]. Figure 2.8
shows C before 2.8(a) and after 2.8(b) the vertical cell decomposition.

(a) (b)

Figure 2.8: Vertical cell decomposition

The resulting roadmap (see Figure 2.7) satisfies the coverage requirement because each cell
is convex. Thus, every vertex can be connected to the corresponding cell sample point by a
straight path. The connectivity requirement is satisfied too, since the roadmap is directly derived
from the cell decomposition, which also preserves the connectivity of Cfree [45].

With the help of the plane-sweep (or line-sweep) principle the worst case runtime to com-
pute the decomposition is O(n log n) where n is the number of vertices which define Ccoll. The
line-sweep principle is an important idea from computational geometry and is the basis of many
cell decompositions in combinatorial path planning [45]. The name stems from the fact, that
some imaginary line sweeps across the space, stopping only where the underlying data features
interesting properties. This stopping is called an event. At the vertical cell decomposition this
imaginary line sweeps horizontally across the x-axis and stops at every vertex describing Ccoll.
Firstly all of these vertices get sorted ascending by their x-coordinate. Furthermore, the algo-
rithm maintains a list L, used to store some edges of Ccoll, implemented as a balanced binary
search tree. Thus, it is possible to determine the edges above and below one vertex in O(log n).
At every halt of the line, edges get added or deleted from L, depending on whether the triggering
vertex is at the beginning or the end of an edge. Adding and deleting elements to a balanced bi-
nary search tree can be done in O(log n). Since the line stops n times, the runtime of the whole
algorithm is O(n log n). See Figure 2.9 and Table 2.2 for the execution steps of the line-sweep
algorithm for the vertical cell decomposition.

16

Figure 2.9: All events for the line-sweep algorithm

event L event L

0 {d, a} 7 {d, j, k, b}
1 {d, b} 8 {d, j, l, b}
2 {d, e, f, b} 9 {d,m, l, b}
3 {d, i, f, b} 10 {c,m, l, b}
4 {d, i, h, g, f, b} 11 {c, b}
5 {d, i, h, b} 12 {}
6 {d, b}

Table 2.2: Steps in the line-sweep algorithm

The last step to solve the continuous optimal path planning problem is to determine how to
connect the start and stop configuration (s, g) to the roadmap. First, the cells which s and g
contain have to be found, which should, by the requirement for a cell decomposition, be easy.
If either s or g are not in Cfree, no cell will be found and the algorithm will correctly report
that no solution is possible. Assume the cells Cs and Cg contain s respectively g. Then connect
s to the sample point of Cs and g to the sample point of Cg. Again, this should by easy by
the first requirement for a cell decomposition. Hence, we got a graph including start and goal
which can be searched by the shortest path algorithms from Section 2.2 to find the optimal path.
Figure 2.10 shows the result for a sample search.

The vertical cell decomposition offers a nice balance between the number of generated cells
and computational efficiency [45]. In general it is preferable to generate less cells to reduce the
number of vertices in the resulting roadmap. Unfortunately, it is difficult to optimize the number
of cells, since determining the cell composition which produces the least number of convex cells
in a polygonal Ccoll with holes is NP-Hard [47].

Another possible cell decomposition is the cylindrical cell decomposition which is very sim-
ilar to the vertical cell decomposition. The difference is that the lines spawning from the vertices
do not stop at the border of Ccoll but go all the way from y = −∞ to y = ∞. Figure 2.11(a)
shows the cylindrical cell decomposition of Figure 2.8(a). The cylindrical cell decomposition
seems to be inferior to the vertical cell decomposition at first sight, since it generates more cells,

17

Figure 2.10: Result of a sample search

but it generalises nicely to any dimension and any C-space topology, in contrast to the vertical
cell decomposition [45].

(a) (b)

Figure 2.11: Cylindrical and grid cell decomposition of Figure 2.8(a)

The easiest possible, but uncommon way to obtain a cell decomposition is to discretise
Cfree via a grid as shown in Figure 2.11(b). Only cells which do not contain an obstacle get a
sample point assigned and instead of connecting each cell sample point with the border point,
the sample points get directly connected to their neighbours cell sample point. Neighbouring
cells are defined by the k-neighbourhood.

Lets name the set of neighbour cells for a cell the neighbourhood. [45] defines the k-
neighbourhood for vertices in a graph. This definition can be easily adapted for cells in grids.
Define the 1-neighbourhood N1(v) for cell c as

N1(c) = {c+ ∆q1, . . . , c+ ∆qn, c−∆q1, . . . , c−∆qn}

for an n-dimensional grid, where ∆qi for i = 1 . . . n are the grid resolutions of the axes. In a
two-dimensional grid this yields four 1-neighbours, which are the cells directly to the left, top,
right and bottom of c. In general, there are at most 2n 1-neighbours for a grid cell [45], since
grid cells at the border have fewer neighbours. The 2-neighbourhood N2(c) for c can be defined
as in [45]:

N2(c) = {c±∆qi ±∆qj | 1 ≤ i, j ≤ n, i 6= j} ∪N1(c)

18

Similar to the 2-neighbourhood a k-neighbourhood can be defined for a positive integer k ≤
n [45].

The trade-off for this simple cell decomposition is obviously the huge number of cells and
therefore a huge number of vertices in the roadmap G. Thus, the burden of the cell decomposition
gets transferred to the shortest path algorithms from Section 2.2. The grid cell decomposition can
be applied to every configuration space, regardless of its dimension or topology, but one should
keep in mind that at higher dimensions an explosion of cells and thus vertices will happen.

Visibility graph

There are ways to construct the roadmap G other than by decomposing Cfree into cells. One
such method is the visibility graph method described in [51]. Let every polygon vertex be a
reflex vertex for which the interior angle (in Cfree) is greater than the number π. As long as no
three consecutive vertices are collinear, every vertex of a convex polygon is a reflex vertex [45].
Let all reflex vertices which describe Ccoll be the vertices of the roadmap G. An edge between
two vertices is added, if they are mutually visible. Figure 2.12(a) shows the visibility graph for
our example configuration space.

(a) (b)

Figure 2.12: Shortest-Path roadmaps of Figure 2.8(a)

In fact, the resulting edges are the shortest possible paths between the vertices, which ex-
plains the alternative name of shortest-path roadmap. The start and the goal configuration of a
query get connected to the roadmap via edges to all visible vertices. Again, the algorithms from
Section 2.2 can be used to find the optimal path (see Figure 2.12(b)). When adopting the plane-
sweep principle to radial sweep the visibility graph can be computed in O(n2 log n) where n
is the number of vertices of Ccoll. In [25] an algorithm which computes the visibility graph in
O(n log n+ k) is presented, where k is the total number of edges in the roadmap.

Unfortunately, the visibility graph method has two flaws. First, a visibility graph encoding
the shortest paths does not exist in configuration spaces with dimensions higher than two [83].
Second, the paths are directly on the border of Ccoll. Thus, the robot is constantly scratching
at the obstacles on these paths. When the imperfect localisation and the inability of a robot to
follow a path exactly is added, the resulting paths can not be used as solutions. To circumvent

19

this problem, the paths have to be adjusted so that they come close to Ccoll but leave enough
margin for localisation and path following errors.

2.3.2 Sampling based path planning

General Overview

Since Ccoll is composed of an unwieldy number of facets [43] and due to the general complexity
of path planning, combinatorial path planners are too slow to be used frequently in practice [13].
Thus, a different category of approaches was developed. In sampling based path planning the
explicit construction of Ccoll is avoided and instead C (not Cfree) is either deterministically or
randomly sampled. To check if a sampled configuration is valid, a collision detection algorithm,
which can quickly determine if two three-dimensional objects collide, is used. The restriction to
three-dimensional objects is reasonable, since the underlying robot and obstacle geometry is at
most three-dimensional even in higher-dimensional configuration spaces [83].

The drawback of sampling based path planners is that in contrast to combinatorial path plan-
ners they are not complete, since they do not guarantee to report whether a solution exists [45].
Instead, some weaker notions of completeness are introduced. Sampling based path planners
using deterministic sampling can be resolution complete. This means that they will find a solu-
tion in finite time, when there is an existing solution, but they might search infinitely long when
no solution is possible [45]. In contrast, a sampling based path planner using random sampling
can be probabilistically complete, meaning that when a solution exists, the probability to find a
solution converges to 1, as the run time approaches infinity [78].

In all presented combinatorial path planners, a special data structure (the roadmap G) was
constructed, which enables them to process multiple queries for a path between arbitrary start
and goal configurations afterwards. The aim is to invest much time to build this roadmap, such
that these queries can be processed easily and as fast as possible, which has significant advan-
tages in real-time applications. All methods which follow this idea are called multiple-query
planners. If this precomputation is either difficult or not reasonable (like in changing environ-
ments) single-query planners, which solve a query without expensive precomputations should
be used.

Sampling based path planners for both approaches exist, but first a method is presented,
which follows the single-query model. Most single-query sampling based path planners execute
the following general steps [45]:

1. Initialisation: Create search graph G(V,E) with at least one vertex, typically s, g or both
and no edges.

2. Application of Vertex Selection Method (VSM): Choose a vertex qcurr ∈ V for expan-
sion.

3. Application of Local Planning Method (LPM): Via sampling attain a configuration
qnew ∈ C and create a path π between qcurr and qnew. Then check that π does not cause a
collision with the help of the collision detector . If no collision free path could be created,
go back to step 2.

20

4. Insert an edge in the graph: If qnew is not already present in V add it, then add the path
π as edge from qcurr to qnew to E.

5. Check for a solution: Check if g can be reached, starting at s in search graph G.

6. Return to Step 2: Repeat all steps until a solution is found or a user defined termination
condition is satisfied, in which the algorithm will terminate and return an error.

At step 3, Local Planning Method (LPM) a local planner tries to connect both configurations
via a simple collision free path, in most implementations just a straight line [83] [24]. It is called
local, since it does not try to solve the global path planning problem. It is expected that the local
planner will fail often to connect two configurations and will only be successful in simple cases.
This is the case since extensive experiments have shown that it is more important for a local
planner to be fast than to be so powerful to have a high success rate [23]. The local planner will
use the collision checker to identify if the path is valid. This is done by checking intermediate
configurations on the path in an often pre-set resolution [45]. This parameter is critical since if
the resolution is too fine, too much time is wasted on collision checking. On the other hand, if
the resolution is too coarse a colliding configuration is overlooked, resulting in an accepted but
invalid path.

Deterministic sampling

Again, the easiest way to implement a sampling based path planning algorithm is discretiza-
tion of C (not Cfree as in combinatorial path planning with a grid cell decomposition) as in via
a grid. The resulting configurations (vertices of G) are connected via paths with their respec-
tive neighbours as defined by the k-neighbourhood. Figure 2.13(a) shows such a grid using
1-neighbourhoods. When the start and stop configuration do not correspond with the grid’s ver-
tices, they need to be connected to the graph G. Various possibilities exist, but as a general rule,
the start and goal vertex should be connected to every vertex closer than the grid resolution [45]
(see Figure 2.13(b)). Typically, obstacles are present, and therefore some grid points and con-
necting paths are not present in G, since a robot at this locations would collide with the obstacles
(see Figure 2.13(c)). After the start and goal vertex are connected to the graph, the shortest path
algorithms from Section 2.2 can be used to find the optimal path (see Figure 2.13(d)).

There are two possible time-points to check for collisions, depending on whether a single-
query or multi-query planner should be achieved. When the single-query philosophy should be
applied, the algorithms from Section 2.2 are slightly modified to incorporate a collision checker
to reveal the colliding vertices and paths “on the fly”. On the other hand, when a multi-query
planner is desired, all vertices and paths can be checked for collisions by a collision checker in
a precomputing step, before the optimal path is searched. These differences reveal the strengths
of both philosophies. If for any reason the graph is searched only once, a single-query planner
using A* can save significant time, since the probability that not every grid vertex and path has
to be checked for collisions is high. If on the other hand, the graph is used multiple times, all
grid vertices and paths are checked exactly once which saves time in the long run.

One problem with this approach is to determine a good resolution. If the resolution is too
low, a solution might not be found, although one exists. On the other hand, if the resolution is

21

(a) (b)

(c) (d)

Figure 2.13: Grid Sampling Based Path Planner as depicted in [45]

too fine grained, the graph G gets too big, which is a problem, particularly in high-dimensional
configuration spaces and the search becomes too slow. To solve this dilemma, the method gets
adopted to iteratively refine the grid resolution until a solution is found, which results in inter-
leaved sampling and searching. One approach to do this is to double the resolution after a search
failed. Many of the vertices and edges can be reused and don’t have to be checked again, but
this profit diminishes rapidly in higher dimensions [45]. Assume a grid with 2n points where n
is the number of dimensions, resulting in two points per axis. Thus, after the first unsuccessful
run the grid has 4n points, after the second 8n points and so on. The problem with this is, the
bigger n is, the faster the growth of the number of grid points gets. For example, if n = 10 then
1024 vertices (grid points) are in G at the first iteration. In the next iteration it has already grown
to more than 1 million vertices! A similar but superior method is to discard the information of
the previous resolution by using grids with in grid points for iteration i. This yields 2n, 3n, 4n

points and so on which results in a better performance [45]. Discarding the information of the
lower resolution grids seems reasonable, since the time saving of using them diminishes rapidly
with higher dimensions.

22

Randomised potential fields

Using the shortest path algorithms from Section 2.2 in combination with a grid only works when
the problem can be solved with a small number of points, to ensure that every vertex in G can
be reached in reasonable time [45]. If the problem requires 50 points per dimension and has 10
dimensions, it is impossible to search all 5010 samples. In such a case a best-first heuristic can
be used to find a solution without the need to visit most vertices in the graph. Unfortunately, for
cases like shown in Figure 2.14, the best-first heuristic takes too long to reach the goal, since it
has to explore all vertices in the semi-circle. This is the case, since the best-first heuristic prefers
paths which will be blocked by the semi-circle.

Figure 2.14: In such a semi-circle, best-first needs much time to reach the goal

To circumvent this behaviour, the randomised potential field approach [4] [6] uses random
walks to escape situations where best-first is trapped at a local minimum. [45] reports that the
randomised potential field approach was the first sampling based planner which used a special
technique beyond classical discrete search in graphs and was very successful with it. The draw-
back is, that many heuristic parameters have to be set, depending on the problem [45].

The algorithm uses a potential function which is some form of cost function which tries to
estimate the cost to go from the current node to the goal node, like the heuristic function h from
A* (see Section 2.2.2). The difference lies in the fact that the potential function consists of an
attraction term which draws the robot towards the goal and a repulsion term which repeals the
robot from obstacles. Another analogy for a potential function are springs, drawing the robot
to the goal but pushing it away from obstacles. Or imagine that the goal is on the bottom of a
bowl and the obstacles are bumps. When the robot is a ball starting at the edge of the bowl, it
will automatically roll towards the goal, avoiding obstacles. The spring and the bowl analogy
represent stored potential energy and the robot tries to reach a lower energy state, which explains
the name of the potential function. Furthermore, it is not required that h underestimates the true
cost to go, as in A*.

The algorithm consists of three states and the VSM and LPM behaviour depends on the
current state. Initially, a high resolution grid discretizes C. The initial state of the algorithm is the
best-first method, which is started at the start configuration. The VSM selects the newest added
vertex qcurr ∈ V via best-first and the LPM selects a vertex qnew in the neighbourhood of qcurr
in a direction that minimizes h. This selection can either be done via random or deterministic
sampling. If for some runs the best-first method was not able to decrease h, the algorithm

23

changes to the state RANDOM WALK, since best-first is stuck at a local minimum.
In the RANDOM WALK state, the algorithm tries to escape the local minimum via randomly

changing the last added configuration (VSM). This is done by increasing or decreasing each
component of the last configuration by the grid resolution depending on a fair coin flip (LPM).
Via the collision checker it is checked if the obtained configuration is legal. When this check
fails, the obtained configuration gets discarded. Otherwise it forms the basis of a new random
walk. Random walks are repeated until either h gets decreased or a bound of maximum iterations
is reached. The loop bound itself is determined by sampling a predetermined random variable.
Then the algorithm state gets changed back to BEST-FIRST. Another bound K determines the
maximum number of tries to enter RANDOM WALK when best-first fails ([5] reports K = 20
as reasonable value). When best-first fails after the RANDOM WALK state was enteredK times,
the algorithm changes to the BACKTRACKING- state. In BACKTRACKING a random vertex
gets selected from all vertices obtained by BEST-FIRST, the counter gets reset and the state is
changed back to BEST-FIRST to restart from the randomly selected vertex.

Due to the random walking, the resulting paths can be too complicated to follow for a robot.
Fortunately, such paths can easily be transformed into smoother ones. This is done by iteratively
connecting two randomly selected vertices from the path with a straight line if possible. This
approach can be used for nearly all sampling based path planners.

The randomised potential fields approach is capable of escaping high-dimensional local min-
ima and was able to solve problems up to 31 degrees of freedom which was a breakthrough in
the early 1990s [45]. Unfortunately, a lot of parameters have to be tuned, which caused most
people to switch to newer methods [45]. The two, perhaps most commonly used, planners are
rapidly exploring random tree (a single-query planner) and probability road map (a multi-query
planner) [17].

Rapidly exploring random trees

The rapidly exploring random tree (RRT) method introduced in [44] is an incremental sampling
and searching algorithm which incrementally builds a search tree while gradually incrementing
the resolution. It follows the single-query philosophy. Furthermore, RRT is resolution com-
plete [44]. In contrast to the randomised potential field algorithm, no parameters are needed
in general, but some implementation variants introduce different parameters. The basic idea is
to get a random configuration α via sampling and to connect it to the nearest neighbour of the
search tree usually via the shortest path.

Assume a graph with four vertices and three paths connecting them to a tree rooted at some
vertex q0 (see Figure 2.15(a)). When the nearest neighbour of the search graph is a vertex qcurr
for the sampled configuration α as in Figure 2.15(b), both can be connected via a path. Alterna-
tively, the nearest point can also be on an edge of the search graph as shown in Figure 2.15(c).
In this case a new vertex qcurr is introduced at this point and the former path is split into two
separate paths. The last possibility is that α is not reachable from the search graph, since it is
either in Ccoll or behind an obstacle blocking a possible shortest path. As in every sampling
based planner this is checked by a collision detector. Independent of the reason why the sample
is not reachable, a path is made from qcurr to the last possible collision free configuration qnew
before the obstacle, as depicted in Figure 2.15(d).

24

q0

(a)

q0

qcurr

α

(b)

q0

qcurr

α

(c)

q0

qcurr
qnew

α

(d)

Figure 2.15: The initial situation and the different possibilities to connect qnew to the search
tree as depicted in [45]

Algorithm 3 shows the pseudo code of the rapidly exploring random tree method as in [45].
In line 3, the nearest configuration in G to α gets selected by the function NEAREST. NEAREST
basically is the VSM of the general framework presented before with a minor adaption. The
adjustment lies in the fact, that qnew can also be a configuration which is not present in V
beforehand, which happens when the nearest neighbour is on a path. Furthermore, it is assumed
that the function NEAREST handles this case by splitting the path into two separate paths and
adding a vertex at the splitting point. Also note that the NEAREST function does not take
obstacles into account when the nearest neighbour is selected. In line 4, qnew is either set to
the sampled configuration or to the nearest collision free configuration on the shortest path to α
by the function STOPPING-CONFIGURATION. It is possible that qcurr = qnew when qcurr is
already the nearest collision free configuration in the direction of α. In the other case, qnew and
the path between qcurr and qnew are added to the search tree G (lines 6 and 7).

Algorithm 3 Rapidly Exploring Random Tree
1: G.unit(q0)
2: for i = 1 to k do
3: qcurr ← NEAREST(G, α)
4: qnew ← STOPPING-CONFIGURATION(qcurr, α)
5: if qcurr 6= qnew then
6: G.add_vertex(qnew)
7: G.add_edge(qcurr, qnew)
8: end if
9: end for

25

Figure 2.16 shows an example RRT taken from [45] where q0 is in the centre of the graph.
The earlier sampled configurations created some sort of main branches, since the initial node
was the nearest neighbour. Later when more vertices and paths are present, smaller branches are
added since the nearest neighbours are closer. Thus, it is easy to see that the tree densely fills
the space, gradually increasing the resolution.

Figure 2.16: An example for a rapidly exploring random tree from [45]

Up until now, the presentation does not explain how to use RRT to solve a path planning
query (s, g). As always in path planning, multiple possibilities exist. The easiest way is to use
Algorithm 3 with s as initial node. Furthermore, the algorithm has to be modified to check if
g can be added to the search tree G with a collision free path. If this is the case, a solution is
found. The best way to do this is to use g instead of a random sample α when a biased coin flip
shows head. [45] reports that the probability of 1/100 heads and 99/100 tails is a good value.
If the probability for head is too high, the algorithm gets too greedy and the tree can’t expand
properly. On the other hand, if the probability is too low, the algorithm has no incentive to
connect the tree to G, resulting in unnecessary long run times. In this strategy, only one search
tree is used, but situations exist, in which two or more search trees are beneficial. One such
situation is depicted in Figure 2.17(a), showing a trap which is hard to leave for a tree rooted at
s. A Tree starting at g might not have such difficulties.

Since the algorithm does not know apriori whether s or g is trapped, the idea is to use two
search trees. Ta starts at s and Tb starts at g, which allows for much better performance [45].
One possibility to ensure that the trees meet while retaining their rapid exploring is to make the
bidirectional search balanced,which ensures that both trees are the same size [45]. The pseudo
code of this variant can be found in Algorithm 4, similar to the presentation in [83] and [45].
The way how Ta grows is exactly the same way as in Algorithm 3. When qnew gets added to
Ta, an attempt to extend Tb is made too. Tb extends the same way as Ta, but instead of using the
random sample α, qnew is used (line 9-14). Thus, Tb is effectively growing towards Ta. When

26

(a) (b)

Figure 2.17: Various traps as depicted in [45]

both trees connect to the same vertex, a solution is found, since both trees merge to one (line
13). Line 14 is the reason why the algorithm is called balanced. The search gets focused to the
smaller of the two trees by switching it to be the primary tree (Ta). Therefore, Ta is not always
the tree rooted at s. This is reasonable, since more energy should be invested into the tree which
has problems at expanding, like in trap cases shown in Figure 2.17(a). Smaller, with respect
to trees can reasonably be defined as number of vertices or the sum of all path lengths. When
line 14 is changed to swap the trees every iteration, the algorithm uses unbalanced bidirectional
search.

In situations when s as well as g are trapped, as shown in Figure 2.17(b), new trees in hard
to reach parts of C can help to solve these difficulties. Using more trees introduces additional
questions, as how to divide computation time between exploration and tree connection attempts.
Furthermore, it is not clear which connection attempts should be performed. This considerations
lead to the main idea of the planner of the next section. Every α gets added to the graph as a
new component and then it is tried to connect it with neighbouring components. Here and
subsequently, component is used in the graph theoretic sense. A subgraph H of graph G is
called component, when for each vertex in H it holds, that it is connected to every other vertex
in H via paths and it is not connected to every other vertex in G.

Probability road map

The probabilistic road map (PRM) approach is a probabilistically complete [45] multiple-query
planner. Thus, significant time is invested to build a roadmap in the preprocessing phase to later
answer multiple path planning queries fast and efficiently. The requirements for this roadmap
are the same as for the combinatorial path planners presented in Section 2.3.1.

Various persons worked on PRM independently, so it is not possible to name an inventor
unambiguously, but in most cases Kavraki and Latombe [36] or Overmars [53] are named.

The basic schema of PRM is shown in Algorithm 5 as presented in [45]. As in RRT, a
configuration α from C gets randomly sampled and a collision checker tests whether it lies in
Cfree (line 2). Only if this check succeeds, α gets added to the roadmap G (line 3). Then it is
attempted to connect α to nodes already present in G via collision free paths (lines 4-8), forming
the edges of G. To safe time, this connection attempt is only done with dedicated nodes out of
G. These nodes, called neighbour set, are computed by the function NEIGHBOURHOOD and

27

Algorithm 4 RRT BALANCED BIDIRECTIONAL
1: Ta.unit(s)
2: Tb.unit(g)
3: for i = 1 to k do
4: qcurr ← NEAREST(Ta, α)
5: qnew ← STOPPING-CONFIGURATION(qcurr, α)
6: if qcurr 6= qnew then
7: Ta.add_vertex(qnew)
8: Ta.add_edge(qcurr, qnew)
9: q′curr ← NEAREST(Tb, qnew)

10: q′new ← STOPPING-CONFIGURATION(q′curr, qnew)
11: if q′curr 6= q′new then
12: Tb.add_vertex(q′new)
13: Tb.add_edge(q′curr, q′new)
14: end if
15: if qnew = q′new then
16: then return SOLUTION
17: end if
18: end if
19: if |Tb| > |Ta| then
20: SWAP(Ta, Tb)
21: end if
22: end for
23: return FAILURE

we will see that there exist various possibilities to define this set. The function CONNECT, as
usual a local planner using a collision checker, creates these collision free paths. These steps are
repeated for a new sampled configuration, until a user defined stop-criterion is met. This can be
a maximum number of repetitions or that predefined configurations are inter-connected.

Algorithm 5 Probability Road Map
1: repeat
2: if α ∈ Cfree then
3: G.add_vertex(α)
4: for all q ∈ NEIGHBOURHOOD(α, G) do
5: if CONNECT(α, q) then
6: G.add_edge(α, q)
7: end if
8: end for
9: end if

10: until some stop-criterion is met

Since all connection attempts for α can fail, G can consist of multiple components. This is

28

no problem, since when enough time is invested, enough configurations will be sampled to even-
tually connect all components (assuming no isolated holes). After the roadmap was constructed,
it can be used for multiple path planning queries, as long as the environment does not change.
To find a path from s to g, lines 2-9 in Algorithm 5 have to be executed twice, replacing α with s
and g respectively. If both vertices are successfully connected to G, the shortest path algorithms
from Section 2.2 can be used to find a path. A path found in G directly corresponds to a path
in Cfree. If it is not possible to connect s or g to G, or the shortest path algorithm does not find
a solution, PRM can not determine if no solution exists or just not enough time was invested to
build G. This stems from the fact that PRM is only probabilistically complete.

Various possibilities exist to define the neighbour set. One obvious possibility is to use the
K nearest vertices to α. A typical value for K is 15 [45]. Another possibility is to use all
vertices in G where the distance is at most dmax. The reason behind this is, that the probability
to successfully connect two nodes decreases as the distance between the nodes increases [83].
To enhance this method, dmax could be reduced when the number of nodes in G increases.
Additionally, an upper limit K can be introduced to combine this approach with the previous
one. Finally, the connected components of G can be considered. Particularly it might not be
useful to connect a node with nodes of the same component, since this would not increase the
connectivity of the roadmap. Thus, the neighbour set could consist of the K nearest nodes of
every connected component in G. When K = 1, as recommended in [45] no cycle and thus no
alternative routes will be present in G.

Unfortunately, the standard PRM approach suffers from the narrow passage problem, which
is the difficulty to connect two components of G through a narrow passage as shown in Fig-
ure 2.18 [83].

Figure 2.18: The narrow passage problem

When uniform sampling is used, many sampled configurations are located in open regions
where no tight sampling is required to get a good coverage. On the other hand, only a small
amount of samples will be located in the narrow passage, since the narrow passage is only a
small fraction of Cfree. But especially there many samples are needed to get a good coverage,
such that PRM is able to connect all components of G. Thus, different sampling strategies were
proposed to circumvent the narrow passage problem. Note, that the narrow passage problem
only increases the time needed until a good connectivity of G is attained. Thus, the goal of every

29

new sampling strategy usually is to find ways to dramatically reduce the number or required
samples [45].

Some strategies do not try to detect narrow passages directly, but generate more samples in
the vicinity of obstacles, like Obstacle-based PRM (OBPRM) [1] [2] and Gaussian PRM [8].
In contrast strategies like Bridge Test Sampling [29] and Watershed labelling [82] find narrow
passages to generate more samples in appropriate regions.

As expected, RRT is faster than PRM for single query problems, since no roadmap has to be
build [17].

30

CHAPTER 3
Dynamic path planning

3.1 Introduction

Up to now, all presented path planning solutions assumed that obstacles are known beforehand
and are stationary. Only the robot was allowed to move. A natural extension is to permit moving
obstacles in the environment. Examples for moving obstacles are humans in a building, cars on a
street or other robots. When moving obstacles exist, the robot operates in a dynamic environment
with dynamic obstacles. As in the static case, dynamic path planning tries to find a collision free
path between a given start and goal location, but dynamic obstacles also have to be taken into
account. Thus, it is easy to see that the complexity of dynamic path planning is at least as high
as in the static case.

How much the complexity of dynamic path planning increases depends on the available
information about the dynamic obstacles. The easiest case is, when all dynamic obstacles and
their behaviour is known beforehand. Planners which solve this case of dynamic path planning
are presented in Section 3.2. The case, when the behaviour of dynamic obstacles is not known
or can only be estimated for a short time, is significantly more compex [83]. Planning under this
assumption is presented in Section 3.3.

One question that arises is, to which category obstacles which are stationary but which are
not contained in the static map belong. An example could be a forgotten box in a building.
On one hand, they do not move, hence, their behaviour is static. On the other hand, they are
not marked in the map. Thus, a path produced from a planner presented in Chapter 2 could
be unsafe. At the time when the map was created, the obstacle was not present and now it is.
Thus, it makes sense to classify it as a dynamic obstacle, since it has some (very low) dynamic
behaviour. So, static obstacles are all obstacles contained in the static map, dynamic obstacles
are all other present obstacles, regardless of their current behaviour.

31

3.1.1 Configuration-time space

Define T ⊂ R as the time-interval, which can either be bounded or unbounded [45]. In the
bounded case T = [0, tf], otherwise T = [0,∞], where 0 is the initial time and tf is the
final time. With the help of the time-interval, the configuration space C can be extended to the
configuration-time space donated by CT . The configuration-time space is formed as C × T ,
consisting of pairs (q, t), where q is a configuration out of C describing a robot location, and
scalar t out of T is a time-point [83]. Like the configuration space C, the configuration-time
space CT can be divided into CT free and CT coll. When at time-point t the robot positioned
at configuration q collides with an obstacle (static or dynamic), (q, t) is an element of CT coll.
Otherwise it is an element of CT free. A configuration q, where the robot would collide with a
static obstacle will be in CT coll regardless of the time-point, since static obstacles do not change
their position over time. Figure 3.1(a) [83] shows a configuration space with a static and a
dynamic obstacle and Figure 3.1(b) [83] depicts the corresponding configuration-time space.

(a) (b)

Figure 3.1: A configuration space with a static and a dynamic obstacle (a) [83]. The corre-
sponding configuration-time space (b) [83]

As in static path planning, dynamic path planning using the configuration-time space has to
be defined properly. In [83] Van den Berg defines: “A path through a dynamic environment (in
literature often called a trajectory) is defined as a continuous function π : T → C, parametrized
by time. The path planning problem in dynamic environments is to find a (collision-)free path
between a given start configuration s and goal configuration g. Formulated in terms of the
configuration-time space CT , that is finding a path π such that π(0) = s and π(T) = g, and
∀t ∈ [0, T] : (π(t), t) ∈ CT free”.

The time-interval only adds one additional dimension to the configuration space and thus,
planning directly in CT can be done with any of the static path planning methods from Chapter 2.
However, one critical difference has to be observed, time marches forward. For example consider

32

a path which first reaches (q1, 5) and later (q2, 3), which is only possible with time travel [45].
Thus, paths should be monotonically increasing in the time component to prevent this unrealistic
behaviour. The previous definition of a path enforces this constraint [83].

One last consideration concerns the goal. Up until now, a single configuration g ∈ C formed
the goal. Considering the time-interval T the question arises, when g should be reached. Thus,
when it is planned in CT , the single goal is replaced by a goal region. This region can be
expressed as {(g, t) ∈ CT free | t ∈ T} [45]. Similar set definitions can be made when the goal
should be reached before or after a specific time-point. The goal region forms a line (segment)
parallel to the time axis in CT . When g should be reached at a specific time-point t, the goal
region only consists of state (g, t).

3.1.2 Online planning vs. offline planning

In dynamic path planning a fundamental problem is, that path planners themselves need time ∆t
to compute a solution, in which dynamic obstacles move, and thus, the environment changes.
Hence, it is impossible to compute a path at t = 0, which should start at t = 0. The path would
immediately be outdated. To overcome this problem, a computed path starts at tr + ∆t when
the plan was requested at time-point tr [83].

The difficulty is to find a good value for ∆t. If it is too small, the planner has too little
time to find a path. On the other hand, if the value is to high, unnecessary and unacceptable
delays for some applications arise [83]. Another problem is, that for sampling based planners
(see Section 2.3.2) it is hard or impossible to predict the needed planning time beforehand [83].
To overcome this problem, so called online-planners were developed, which use approaches like
partial planning [54] or anytime planning [84].

In partial planning the planner tries to find a plan in a given time window ∆t. When the
time is over, the planner returns the path that is considered to be the best. When too little time
was available to find a complete path from start to goal, the closest path to the goal gets returned.
While the robot is following the found path, time gets invested to extend or finalise it.

Anytime planners also use a predefined time ∆t to find a path. The difference to partial
planners is, that anytime planners do in general find a complete path from start to goal [83].
They use the remaining time to refine the initial potentially low quality plan until the time is
over.

3.2 Planning in known dynamic environments

Path planning in known dynamic environments, i.e., when all obstacles and their corresponding
behaviour is known, is the easiest form of dynamic path planning. When the path planners from
Chapter 2 are adopted to yield monotonically increasing paths in the time component, they can
be used to solve the path planning problem in the configuration-time space CT .

3.2.1 Adapting combinatorial path planners

Combinatorial path planners are adapted by using a directed roadmap, where each edge is di-
rected. Thus, for every two states (q1, t1) and (q2, t2), where t1 6= t2 exactly one valid direction

33

exists for making a potential edge [45]. When t1 = t2 no edge between these two states can
exist, because this would require the robot to teleport from q1 to q2 or vice versa. When all obsta-
cles are polygonal and have piecewise linear movement, the resulting CT coll is polyhedral [45].
An obstacle moves linearly, when the movement of an arbitrary point (x, y) on this obstacle can
be described as (x+ c1 · t, y+ c2 · t) for some constants c1, c2 ∈ R. A piece-wise linear moving
obstacle is allowed to change to other linear movements at finitely many points in time.

In a configuration-time space with polyhedral CT coll, the vertical cell decomposition can
be applied to create a directed roadmap. First, the line-sweep principle can be used along the
time-axis, stopping at the time-points where obstacles change their linear movement. The re-
sulting cells can be further decomposed recursively. This procedure can be generalised to higher
dimensional configuration-time spaces [45].

3.2.2 Adapting sampling based path planners

In single-query path planners, the local planning method (LPM) has to be adapted to create
monotonically increasing paths in the time component. Usually a metric ρ for the configuration
space C is used to reveal the distance of two configurations in LPM. Out of ρ a pseudometric
ρ̂ for the configuration-time space CT can be constructed, which penalises non-monotonically
increasing path creation attempts. Let ρ̂ for a pair of states x = (q, t) and x′ = (q′, t′) be [45]

ρ̂(x, x′) =

0 if q = q′

∞ if q 6= q′ and t′ ≤ t
ρ(x, x′) otherwise.

Hence, when LPM tries to connect two states via a path without forward time progress, the
distance between these two points will be∞ and the attempt will be aborted. With the help of
ρ̂, RRT guarantees to create paths which move forward in time, with a single search tree. More
complicated is the case, when a bidirectional search should be utilised, because in general the
goal is a region and not a single point. One possibility to solve the dilemma is root the goal tree
at an entire time-invariant segment [45].

Multiple-query planners can easily be adapted by using a directed roadmap as define before,
which already takes forward time progress into account.

3.2.3 Velocity-Tuning

As an alternative for using the methods from Chapter 2 directly, [35] splitted the problem into
two parts. First, all dynamic obstacles are ignored and a path π gets computed with the help
of methods from Chapter 2 for the static case. Then, the velocities of the robot get tuned to
avoid dynamic obstacles crossing the precomputed path. This is done by constructing a new two
dimensional space X , where one dimension is the time and the second dimension is the position
of an object on its trajectory. When, at a given time-point t, the robot at position s on its path
collides with a dynamic obstacle, the state (t, s) is a colliding state in X (see Figure 3.2(b)).
X can be used to search for a safe path π̂. As before, a valid path π̂ in X has to be time-

monotonic, but it can be non-monotonic in the position on the path axis. Thus, the robot can stop,
accelerate, decelerate or even drive backwards on the original path π to avoid dynamic obstacles.

34

O

(a) (b)

Figure 3.2: An example of velocity tuning. A moving obstacle crossing the precomputed path
of the robot (a). The corresponding space X (b)

The advantage of the velocity-tuning method is, that X is always two dimensional [45]. This
allows to use simple adapted combinatorial- or sampling based path planners to search for a
path π̂ in X . Unfortunately, this method is not complete [83].

3.3 Planning in partially known or unknown dynamic
environments

The previous section assumed that every obstacle and their behaviour is known in advance. In
this chapter these assumptions are weakened, such that not all obstacles are known beforehand
and the trajectory of obstacles can only be predicted for a short time or not at all. It is obvious
that with such little knowledge it is impossible to create a path via an offline-planner once and
follow this plan until the goal is reached. Thus, different approaches have to be taken.

When the future trajectory of obstacles should be predicted, a robot needs some sensors
to observe the obstacles. When new obstacles appear or existing ones change their predicted
behaviour, the plan can be updated. Thus, the paradigm changes from plan once to interleaved
planning and sensing. How to predict future trajectories of obstacles is out of scope of this thesis.
More information about this topic can be found in [7] and [85].

3.3.1 Planning in configuration space

The easiest way to solve the path planning problem in partially known or unknown dynamic
environments is to avoid predicting the obstacle trajectories but use the methods of Chapter 2
repetitively. To be more precise, all obstacles marked in the map and observed by sensors are
treated as static. Thus, the well known path planning algorithms can be used. Hence, the path
planning is done in the configuration space C.

When the robot follows the computed path, it periodically checks if the environment has
changed with its sensors. For example, the assumed static obstacles changed their position or
new obstacles are visible. Depending on the chosen strategy, upon changes, a new path is always

35

computed or only when the original path is blocked. The disadvantage of this approach is, that
the plan always gets computed from scratch and the multiple-query planners, like PRM, are
absolut useless.

Various extensions for PRM were proposed to efficiently repair the roadmap when the en-
vironment changes. In [32] the first step is to use the PRM method to create a roadmap while
ignoring all dynamic obstacles. In the query phase a path is searched in the roadmap, while
checking the edges for collision with observed dynamic obstacles. This is done in an efficient
way, such that collision checks are postponed as long as possible to safe time. When no solu-
tion can be found, because some dynamic obstacles block an edge in the roadmap, a local RRT
is applied to reconnect the broken edge. During path following it is periodically checked, if a
collision with a dynamic obstacle will occur. When this might be the case, RRT is used again to
create a local path which evades the obstacle while retaining portions of the old plan. If this is
unsuccessful, a completely new plan is searched in the roadmap.

A similar approach to adapt PRM is presented in [34]. As in the previous approach, the
first step is to create a roadmap with the help of PRM, while ignoring all dynamic obstacles.
The main difference is, that in the next step the world gets discretised by a grid. In each grid
cell the vertices and edges from the roadmap which are influenced by the cell are stored. Thus,
when a grid cell changes its state, because a dynamic obstacle occupies or leaves a cell dur-
ing the execution, the corresponding vertices and edges in the roadmap can easily be updated
accordingly.

As we have seen, most path planners use the graph search algorithms from Section 2.2.
Neither of them is capable of updating a path when parts of the graph change. Thus, they
have to search for a path in the graph from scratch and can not reuse parts of the old path. To
overcome this problem, in [76] Stentz presented the Dynamic A* algorithm (D*). D* uses some
ideas from A*, but it allows that the edge weight changes during execution. For example, when
new obstacles are sensed. Thus, D* is suitable for dynamic environments. The main idea is, that
the search starts at the goal location and propagates to the start. When edge costs change, this
will be in the vicinity of the robot. This is the case, since the sensors carried by the robot only
have a limited range and field of view. Thus, often paths have to be repaired only in a small area
and the majority of the path can be reused. With the help of the extension Focused D* [77], a
speedup in the order of up to two magnitudes can be achieved compared to repeated A* [40].

3.3.2 Planning in configuration-time space

The planners presented previously do not use methods to predict the future trajectory of ob-
stacles. This simplifies the implementation, but the neglection of information like velocity or
movement direction of an obstacle can result in highly suboptimal results [83]. [83] gives an
example where such methods would have problems: “For instance, imagine a robot trying to
cross a road on which cars are driving. If the robot was to take a snapshot of the environment
with its sensors and assume fixed positions for each obstacle, then it would be in serious risk of
getting runover if it attempted to cross the road. In order to successfully accomplish this task,
the cars really need to be modelled as moving obstacles so that it can be anticipated where they
will be at future times.”

To do exactly this, planning has to happen in the configuration-time space CT . Algorithms

36

using this CT space can incorporate the predicted trajectories in their search for a valid path.
For example, all strategies for known dynamic environments (see Section 3.2) can be used.
Unfortunately, they can only be used in low dimensional configuration-time spaces, since they
require significant computation time [83].

A requirement, which is true for all algorithms used for planning in CT with an unknown
dynamic environment is, that the runtime of the algorithm is shorter than the validity of the pre-
dicted obstacle trajectories. If this demand can not be fulfilled, because either the planner took
too long or an obstacle unexpectedly changed its movement, the resulting path is immediately
outdated. Thus, the planner has to start a new search with the changed environment. In case this
happens too frequently, the robot will not make any, or only slow progress towards the goal.

To overcome this problem, an anytime planner for unknown dynamic environments was
developed in [83]. The advantage of this approach is, that the available time for the anytime
planner can be adjusted to the shortest valid trajectory prediction, and thus, that at every time
a solution can be extracted [83]. During the execution of the path, the future parts get refined.
Thus, the algorithm executes planning, execution, and observation in an interleaved manner.

In the initial phase, a roadmap is created while ignoring all dynamic obstacles with the help
of the PRM. This discretises C to a graph with many cycles, and thus, many alternatives to reach
a goal [83]. In the planning phase, a valid path from start to goal is searched with respect to the
currently estimated obstacle trajectories. This is possible in the configuration-time space CT .
Thus, a time axis is added to the configuration space. Furthermore, the new axis gets discretised
with step size ∆t. Each state 〈v, t〉 in CT consists of one vertex v of the graph created by the
PRM and one time-point t. The final search graph G is constructed by creating a vertex for every
state 〈v, t〉. Edges are added for states 〈v, t〉 to states 〈v, t + ∆t〉, allowing the robot to wait at
its current location. Furthermore, edges are created for states 〈v, t〉 to states 〈v′, t + ct(v, v

′)〉,
when v′ is the successor of v in the PRM graph and where ct(v, v′) is the time needed to traverse
from v to v′. Thus, a discretisation of CT is achieved.

The actual search in G is done by a slightly modified Anytime D* (AD*) algorithm [46], an
enhancement of the D* algorithm to be anytime capable. Like in the original D* algorithm, the
search is done backwards, i.e., from the goal to the start. Similarly as in Section 3.1.1, in general
the goal is a set of states in the configuration-time space CT . Since it is not known in advance
when the goal will be reached, the search is seeded with multiple goal states

GOALS = [〈vgoal, ht(ustart, vgoal)〉,
= 〈vgoal, ht(ustart, vgoal) + ∆t〉,
...

= 〈vgoal, max-arrival-time〉]

where vgoal is the goal vertex in the PRM graph and max-arrival-time is the maximum avail-
able time for the robot to reach the goal [83]. ht is one of two used heuristics, to further increase
the speed of AD*. ht(vstart, v) is set to the minimum possible time to reach vertex v from vstart
and hc(vstart, v) is set to the minimum possible cost for the same vertices. Both heuristics can
be computed in advance by any graph search algorithm and are used to increase the performance

37

of AD*. ht is used to prune the search graph G and hc controls the direction of the search of
AD*.

During the execution of the path, the robot observes the environment while also continually
improving the solution. When some changes occur, the previous solution can be repaired when
necessary, as in ordinary D*. Additionally, this is done in an anytime fashion. First, the heuristics
hc and ht have to be recomputed, which can be done quickly, since this has only to be done in
the PRM created graph [83]. Then, all states which are affected by the changed environment
are updated, which possibly triggers a replanning attempt, for example when the previously
computed plan is blocked by an observed obstacle.

3.3.3 Obstacle avoider

A completely different approach to solve planning in partially known or unknown dynamic
environments are so called obstacle avoider. In general, they do not rely on a map describing the
environment, but are a reactive sensor-based approach. Furthermore, they do not try to predict
the movement of obstacles. A new command is computed solely on the current sensor input and
possibly the state of the robot [75]. This is computationally very efficient and thus, commands
can be generated with a high frequency [75], which is ideal in highly dynamic environments.
This justifies the decision to not predict obstacle trajectories.

Obviously, obstacle avoiders can not produce optimal solutions and they can easily be
trapped in local minima like in U-shaped obstacles [75] [21]. Thus, they are also called lo-
cal approaches since they only use a small part of the world (what the robot’s sensors perceive)
to generate movement commands. All previous methods where global approaches, since they
use information of the whole world to find a path.

To solve this problem, obstacle avoiders are combined with global approaches. For example,
in [80] and [12] a local planner gets intermediate points of a path planned by a global planner as
goal. Thus, the local planner does not get stuck in local minima, but the ability to avoid obstacles
is retained.

Obstacle avoider can roughly be separated into two categories. Directional approaches oper-
ate in Cartesian spaces or configuration spaces to create the direction in which the robot should
move [39]. An example are potential field methods [37] [30] which use a potential function.
Similarly to the randomised potential fields path planner from Section 2.3.2, a potential function
consists of an attraction term which draws the robot towards the goal and a repulsion term which
repeals the robot from obstacles. Another example for a directional approach is the vector field
histogram method [9], which transforms multiple sensor readings into a histogram describing
the unoccupied space. This histogram is then used to compute the motion commands.

The disadvantage of directional approaches is, that the dynamic constraints (maximum ve-
locity/acceleration) of the robot are not taken into account [39]. Often these methods consist of
two stages. First, the direction in which the robot should travel is picked, then the motion com-
mand to travel in the chosen direction is generated. This is problematic for robots with limited
acceleration, since they have to take the impulse of the robot into account. [21]

Figure 3.3 depicts an example similar to [21] to show the problem. Assume the robot is
driving in the direction of the arrow to reach the goal with high speed. When the robot detects
the gap in the wall, the desired direction to move is obviously down (towards the goal) which

38

Figure 3.3: A situation where directional approaches have problems [21]

is a sharp right turn. When the robot is not able to decelerate fast enough, it will collide with
the right wall segment. Thus, the obstacle avoider has to consider the robot dynamic limits to
anticipate and prevent such situations

Velocity space approaches are capable to include the robot dynamics when the stearing com-
mand is chosen. As the name implies, all obstacle avoiders in this category search in the velocity
space of a robot for a suitable trajectory. The velocity space is the set of velocities the robot can
control [73]. For example, the velocity space for rigid robots with synchro- or differential-drive
consists of two orthogonal dimensions. One dimension for the translation velocity (driving for-
ward/backward in the robot frame) and one for the rotational velocity. Thus, each point in this
velocity space corresponds to a trajectory with constant velocity in Cartesian space. The velocity
space is limited by the robots maximum translational and rotational velocity. Furthermore, all
points which would lead to a collision with an obstacle are forbidden. These forbidden points
can efficiently be computed by collision avoiders.

One obstacle avoider which belongs to the velocity space category is the Dynamic Window
Approach (DWA) [21]. To generate a trajectory which does not collide with obstacles for n time
intervals, the DWA has to determine a velocity vector for each time interval. The problem is,
that the search space for such a trajectory is exponential in n [21]. DWA uses three steps to
reduce the search space, resulting in decreased runtime:

1. Only for the first time interval of a trajectory a velocity vector is searched. Constant
velocity is assumed for the remaining ones. This is feasible, since after every time interval
the search is repeated for the new “first” interval. This restriction reduces the search space
to two dimensions.

2. Only admissible velocity vectors are permitted. A velocity vector is admissible when the
robot can stop on the resulting trajectory before reaching an obstacle. This is done by
limiting the maximum velocity of a velocity vector. The limit gets calculated by combin-
ing the distance to the closest known obstacle on the corresponding trajectory with the
acceleration for breakage.

3. Only velocity vectors which are reachable in the next time interval are considered. Assume
that at time interval t, the robot has a translational velocity va and a rotational velocity ωa.

39

The dynamic window with accelerations v̇ and ω̇ is:

{(v, ω) | v ∈ [va − v̇ · t, va + v̇ · t] ∧ ω ∈ [ωa − ω̇ · t, ωa + ω̇ · t]}

The dynamic window is centred at the current velocity and only velocity vectors inside
this window are used for the search.

After these steps, the reduced down search space gets discretised and the velocity vectors
out of the resulting finite set get evaluated by a scoring function. This function consists of three
evaluation terms:

1. Target Heading: Measures the alignment of the robot to the goal. When the robot heads
directly to the goal, this term is maximal.

2. Clearance: Velocity vectors resulting in trajectories which are farther away from obsta-
cles are preferred.

3. Velocity: Velocity vectors with faster forward movement are preferred.

Then, the best valued velocity vector gets applied to move the robot for a short time and the
whole procedure is repeated until the goal is reached.

In [10] the DWA scoring function gets modified to favour velocity vectors which stay in
proximity of a previously planned global plan, to avoid local minima problem.

40

CHAPTER 4
Path planning with probabilistic maps

and sonar sensors

All current strategies to solve path planning in partially or fully unknown dynamic environments
(see Section 3.3) suffer from the same fundamental problem. Unknown obstacles can lead to
highly undesirable behaviour. For example, imagine a crowded place which a robot tries to
cross. In such a situation the robot frequently has to stop, restart and change directions, which
is highly subpar. Another scenario could be a narrow corridor which is completely blocked by
an obstacle with a very low dynamic. Thus, the robot has to backtrack to reach the goal via an
alternative path. In the worst-case, when the robot can not drive backwards or not enough space
is available for a rotation, the robot is stuck.

These problems stem from the fact, that not enough information about dynamic obstacles is
available. It is simply not possible to add humans in a crowded place as obstacles in a conven-
tional map. To circumvent this problems, probabilistic maps from [11] can be used.

With probabilistic maps it is possible to enhance path planning in partially or fully unknown
dynamic environments. For example, reconsider the example where the robot has to cross a
crowded place to reach its goal as fast as possible. With the additional information provided by
a probabilistic map, the crowded place might be avoided by a longer but less cumbersome way.
The distance covered by the alternative path is longer, but in average the goal is reached faster
since no expensive evasion motions have to be executed.

In this chapter, a path planning strategy is presented, which uses probabilistic maps to en-
hance path planning in exactly this way. Furthermore, algorithms for using sonar sensors for
environment observation in dynamic environments are shown.

41

4.1 Path planning with probabilistic maps

4.1.1 General idea

Carefully examining the information about probabilistic maps from [11] reveals how proba-
bilistic maps can be used to enhance path planning. A probabilistic map is a pixel map, where
the world is represented by a grid of pixels or cells. The special feature is, that for every cell
the occupancy probability and the time until change is stored. The occupancy probability is the
probability that an obstacle is present at the pixel’s location. The time until change is the average
time until the pixel changes it states from empty to occupied or vice-versa.

A cell contains a static obstacle like a wall, when the occupancy probability is high and
the time until change is high. A busy road, for instance, is characterized by a high occupancy
probability and a low time until change. The same is true for places crowded with moving
people. An infrequently used road in bad shape, would have a low occupancy probability and
a high time until change, since vehicles can only drive with reduced speed. On the other hand,
rarely used roads are identified with a low occupancy probability and a low time until change.
Note, that the roads are used as analogies to better see the impact of occupancy probability
and time until change. The concrete meaning depends on the environment, which the map is
representing. The words “high” and “low” have to be quantified by the probabilistic map path
planning strategy and may depend on the context.

These four corner cases directly lead to the principle idea for the new probabilistic map
path planning strategy. The robot should never travel through cells which have high occupancy
probability and high time until change, since this is the worst case, a static obstacle. Furthermore,
a robot should avoid cells with a low occupancy probability and a high time until change, since
they represent roads where the robot can only drive very slow. At last, cells which behave
like crowded places (high occupancy probability/low time until change) should be avoided by a
robot, since it will have to stop, start and change direction frequently in such cells.

It is important to notice, that these three regions are not equally bad for a robot. Driving
slow or starting and stopping frequently is certainly better than crashing into a static obstacle.

The last corner case (low occupancy probability and a low time until change) are the best
possible cells for a robot. Since they are infrequently used roads, where the robot can drive with
a high speed and obstacles will appear only with a low probability. Table 4.1 summarise theses
results, where + expresses preferable-, - expresses forbidden- and ~ expresses suboptimal cells.

high time until change low time until change
high occupancy probability - ~
low occupancy probability ~ +

Table 4.1: Assessment of the corner cases for the probabilistic map path planning strategy

The idea to avoid static obstacles is common to all path planning strategies. Novel is the
idea to avoid crowded cells (high occupancy probability and low time until change) and roads in
bad shape (low occupancy probability and high time until change).

42

4.1.2 N-ary configuration space

Additionally to static obstacles, the probabilistic map path planning strategy shall avoid crowded
places and roads in bad shape before the robot “drives into them”. Combinatorial- and Sampling
based path planners, presented in Chapter 2 are capable of doing exactly this with static obsta-
cles. Thus, it is obvious to adapt one of these path planners to be capable of avoiding crowded
places and roads in bad shape.

For the selection of the right path planning strategy, it must not be forgotten, that a difference
between static obstacles and the two other areas exist. Driving through a crowded place is
undesirable, but not forbidden. Thus, when the only way to the goal is through a crowded place,
the robot is allowed to pass through it. The same is true for roads in bad shape. On the other
hand, the robot must never drive to an area in which a static obstacle is present, since this would
lead to a crash. In other words, static obstacles reduce the allowed configurations for a robot,
while the other two areas influences the cost of a path.

As consequences of this observation, the configuration space definition has to be extended. It
is not enough to divide the configuration space into two sets Ccoll and Cfree, since configurations
which correspond to cells which have a crowded place characteristic, can not be member of
either set. As noticed, they are no obstacles, thus they can not be in Ccoll. On the other hand, they
can not be in Cfree, since all configurations in there are equal. However, there are configurations
which are better for a robot than configurations which correspond to crowded cells.

To solve this problem, the n-ary configuration space for n > 1 is defined as follows:

n⋃
i=1

Ci = C

n⋂
i=1

Ci = ∅

C1 = Cfree
Cn = Ccoll (4.1)

In this definition, the configurations space is divided into more than two sets, which is a general-
isation of the configuration space definition presented in Section 2.1.1. The greater n, the more
sets are available, and the finer the configurations can be distributed between the sets.

The set membership of each configuration directly translates to how attractive this configu-
ration is for a robot. The lower the number of the set, the more attractive is the configuration for
the robot. It is the task of the probabilistic map path planning strategy to distribute the config-
urations to the right sets. Note, that for n = 2 the well known “binary” configuration space is
attained.

4.1.3 Choosing existing path planning strategies

To fully utilize the n-ary configuration space definition, C (for a sampling based path planner) or
C \ Ccoll (for a combinatorial path planner) has to be discretised by a grid. To see this, examine
Figure 4.1(a), where C \ Ccoll is discretised by a vertical cell decomposition (see Section 2.3.1).

43

(a) (b)

Figure 4.1: Vertical cell decomposition with dynamic areas (a) and more sample points to avoid
unlucky sample selection (b)

In the configurations space, one static obstacle (black) and two dynamic regions (grey) are
visible. The darker the grey of a dynamic region is, the less attractive it is for the path planner.
One sample configuration on the shorter path between start and goal, lies in a dynamic region.
When only the cost of the sample configurations are used to determine the best path from start
to goal, the longer path on the bottom of the configuration space will be chosen. Unfortunately,
this path is not only longer, but it also leads through the more unattractive dynamic region.
To circumvent this, more points could be added on the paths created by the roadmap, shown
in Figure 4.1(b). This would guarantee, that in this case the shorter path is chosen. In case
additional dynamic regions are added to the top path, the bottom path will eventually get better,
and will be chosen.

In general, this is not the desired result. A path planner should detect this situation and
should avoid the dynamic region at the top, like depicted in Figure 4.2 with the dashed path.

Figure 4.2: Illustrating wow the dynamic area should be avoided with the help of the dashed
path

The problem of all path planners without a grid discretisation is, that they were not developed

44

for optimal path planning. Their sole purpose is, to find a valid path between start and goal in
high dimensional configuration spaces. Thus, to realise the idea of avoiding dynamic regions,
only the combinatorial path planner with grid cell decomposition (see Section 2.3.1) and the
grid sampling based path planner (see Section 2.3.2) are suitable.

4.1.4 The probabilistic map path planning strategy

The task of the probabilistic map path planning strategy is, to determine the cost of every cell in
the grid. The higher the cell cost, the less attractive the cell is for the planner. Every configuration
in a cell has the same cost as the cell it belongs to. Thus, this is the same as determining the set
membership for every configuration in a n-ary configuration space.

Whether this grid is then used with the combinatorial path planner with grid cell decompo-
sition or the grid sampling based path planner, is not important. Both planners use a shortest
path algorithm from Section 2.2 to find the cheapest path in this grid. They only differ in the
way, how they detect cells with obstacles.

For now, assume that the probabilistic map has the same dimension (number of axes) as the
n-ary configuration space. Hence, the cell cost of a grid cell can be determined by the occupancy
probability and the time until change of its corresponding cell in the probabilistic map. Thus,
the occupancy probability and the time until change have to be combined in a meaningful way.

The probabilistic map path planning strategy has to quantify the words high and low for the
four corner cases presented before (see Table 4.1). Since these values depend on the application
and the environment, two parameters have to be supplied by the user. Forbidden_probability
specifies the point from which the occupancy probability is too high. For map cells with
an occupancy probability equal or higher than forbidden_probability, the corresponding grid
cells get a cost value of n (obstacle) assigned. Since the grid cell is marked as containing
an obstacle, the robot will not drive through such cells. Similar, forbidden_time_until_change
states, when a time until change is too low. Additionally, forbidden_probability and forbid-
den_time_until_change serve as weight factor of how much the occupancy probability and time
until change influence the grid cell cost.

Special care has to be taken regarding the range of values of both map cell values. On one
hand, the occupancy probability clearly has a range from 0 to 100. On the other hand, the time
until change value can be between 0 and dynamic_time_max. Dynamic_time_max is contained
in the probabilistic map. As consequence, forbidden_probability would have to be set in line
with dynamic_time_max. For example, a forbidden_time_until_change of 5 in a map where
dynamic_time_max is 100 is much more restrictive, than in a map where dynamic_time_max is
10. To circumvent this, the time until change is mapped to the same range as the occupancy
probability (0 to 100). To map a time until change value to the occupancy probability range, it
has to be multiplied with the constant 100/dynamic_time_max. In principle, any other range
could have been used. For the sake of the easier comparability to forbidden_probability, the
range of occupancy probability is used. After this, the occupancy probability and the time until
change have the same range and can be combined.

Equation 4.2 shows how to compute the rating of a map cell, by combining occupancy
probability and time until change, following the previous ideas. The variable n is the maximal

45

cost value a cell can have and is identical to the n sets of the n-ary configuration space.

grid_cell_cost =min{n,max{n/forbidden_probability · occupancy_probability+

n/forbidden_time_until_change · 100/dynamic_time_max·
time_until_change,min_cost}} (4.2)

With the help of min_cost, each grid cell can have assigned a minimal cost. This allows the
shortest path algorithms from Section 2.2 to include the path length into their search.

Figure 4.3 shows a plot of resulting cost values using Equation 4.2, with forbidden_probability
set to 50, forbidden_time_until_change set to 75, n set to 200 and optional_term equals 0.

Figure 4.3: Plot of the resulting cost value using Equation 4.2, when forbidden_probability is
set to 50, forbidden_time_until_change is set to 75, n is set to 200 and optional_term equals 0

In case the n-ary configuration space does not have the same dimension as the probabilis-
tic map, one map cell determines the cell cost of multiple grid cells. For example assume the
probabilistic map has only two dimensions (x and y), but the rigid robot can translate and ro-
tate, forming a three-dimensional n-ary configuration space (x, y and θ). Thus, a map cell with
coordinates (x, y) determines the cost of all grid cells which have x and y as part of their coor-
dinate, independently of the rotation. This can be generalized for higher dimensional maps and
configuration spaces.

46

4.1.5 Example

The effect of the probabilistic map path planning strategy is demonstrated with the help of an
example. Figure 4.4(a) shows a two dimensional probabilistic map. The first value of each
cell is the occupancy probability, the second value is the time until change. In this example the
value range for time until change is [0, 20]. Region A is a crowded place, Region B has the
characteristic of an infrequently used road in bad shape, cells in region C are static obstacles and
region D is somewhere between the four corner cases shown in Table 4.1.

(a) (b)

Figure 4.4: A probabilistic map, where the first value is the occupancy probability and the
second value is the time until change (a). The computed grid cost values and the shortest path
from start to goal (b)

The grid cell costs, computed with Equation 4.2 and the parameters n = 10, forbidden_pro−
bability = 90, forbidden_time_until_change = 70 and min_cost = 1, are shown in Fig-
ure 4.4(b). Since time until change has a higher weight factor (forbidden_time_until_cha −
nge is lower than forbidden_probability), the grid cells in region D have relatively high cost
values, although they have a low occupancy probability.

Assume a robot, only capable of translation in the directions up, left, down or right, wants to
drive from start (diagonal cross) to the goal (symmetric cross). The algorithms from Section 2.2
would find the grey path, which indeed avoids the dynamic regions and the static obstacles.

Two major points have to be noted. First, the idea of the the probabilistic map path planning
strategy is to avoid dynamic regions and thus, the impression could arise, that it is capable of
avoiding dynamic obstacles. However, this is not true, since it is a pure global path planning
strategy. Thus, the probabilistic map path planning strategy has to be combined with strategies
presented in Chapter 3 to avoid dynamic obstacles.

Second, as discussed in Chapter 2, grid based path planners are not capable to find paths
in higher dimensional configuration spaces, because of the complexity of the path planning

47

problem. Thus, it is to expect, that the probabilistic map path planning strategy will only work
for rigid robots.

4.2 Dynamic path planning with sonar sensors

For dynamic obstacle avoidance, sensors are needed to observe the environment. Usually, laser
scanners are used for the environment observation because of their precision. In this thesis,
instead of laser scanners, sonar sensors are used for this task. The huge advantage of sonar
sensors compared to laser scanners is, that they are significantly cheaper.

This section presents, how sonar sensors can be used for environment observation in dynamic
path planning algorithms for partially known or unknown dynamic environments, as explained
in Section 3.3. For this, an existing laser scanner environment observation technique is adapted
to work with sonar sensors.

4.2.1 Laser vs Sonar

Before existing environment observation techniques for path planning can be modified, the gen-
eral functionality and the differences between sonar sensors and laser scanners have to be exam-
ined. Sonar sensors emit sound waves with a specific frequency to detect obstacles. At obstacles
the sound waves are reflected back to the sensor. The time between emitting and detecting a
sound wave and the knowledge of the speed of sound can be used to calculate the distance to the
obstacle. The functionality of a laser scanner is generally similar, but instead of sound waves,
laser beams are emitted and the speed of light is used to calculate the distance. Additionally, the
laser beam is steered, mostly with a mirror, to measure the distance in different angles.

These differences in the functionality lead to several shortcomings of sonar sensors com-
pared to laser scanners. The first shortcoming is the amount of available information. Since
the laser scanner can steer the laser beam, more measurements can be done per scan, compared
to a single measurement a sonar sensor can do. For example, the SICK LMS100 laser scanner
delivers 541 measured points (270◦ operation field with an angular resolution of 0.5◦) in one
scan. Figure 4.5(a) shows a measurement of the eight sonar sensors mounted on the Pioneer
3-AT robot platform and in Figure 4.5(b) the same measurement with a SICK LMS100 laser
scanners is shown.

It is easy to see that the laser measurement has a huge quantitative advantage over the sonar
sensor. The partial room layout is visible with one laser measurement. Additionally, laser scan-
ners also have qualitative superiority. This is the case since sonar sensors suffer from three
fundamental problems [16] [33]:

1. spatial resolution

2. specular reflections and cross talk

3. beam width

Sonar sensors have a lower spatial resolution than the laser system [16]. Thus, laser scanners
produce more accurate range measurements than sonar based systems [18].

48

(a) (b)

Figure 4.5: The difference in the quantitative quality between the eight sonar sensors on the
Pioneer 3-AT (b) and a SICK LMS100 laser scanners (a)

A more severe problem is, that sonar sensors suffer from specular reflections [33]. Specular
reflections are incidents when the incoming sound waves do not get reflected back from the
obstacle to the sonar sensors. Thus, the sonar sensors can not measure the time between emitting
and detecting the sound wave. As a consequence, the sonar sensor does not detect the obstacle.
Thus, only obstacles which are roughly perpendicular to the sound wave are detectable [15].
The specular reflection leads to another problem in multi sonar sensor environments. Crosstalk
is the problem when one sonar sensor disturbs the measurement of another sonar sensor. This
happens when an emitted sound wave of one sonar sensor gets reflected multiple times and
reaches another sonar sensor during its current measurement. Thus, the receiving sonar sensor
either measures the distance too short, or even worse, detects a non existent obstacle (a phantom
obstacle).

Another problem is, that sound can not be focused as good as light. Thus, instead of a narrow
beam, like in laser scanners, sonar sensors output a broad cone. This results in the inability to
detect the exact position of the obstacle [38], since it can be everywhere on the circular arc
created by the measured distance and the cone borders. To be on the safe side, it is assumed to
be on the whole circular arc. This assumption creates the problem that obstacles are observed
bigger than they are in reality. When an obstacle is detected right at one border of the cone, it
gets extended until the other cone border. Figure 4.6 illustrates this problem, where the dashed
lines represent the sonar cone and the solid line shows where the obstacle is assumed to be.

This is particularly problematic in narrow passages where the robot barely fits through, since
the sonar sensors assume the gap at the left as well as at the right side to be smaller than it is in
reality. Thus, such situations pose a serious problem for autonomously navigating robots which
solely rely on sonar sensors.

When multiple sonar cones overlap, the possible locations of the obstacle can be potentially
reduced. The possible obstacle locations are reduced by the sonar sensors, which have not
detected the obstacle. Thus, the less sonar sensors detect the obstacle, the better the possible

49

Figure 4.6: An example where the assumption that the obstacle is on the whole circular arc is
problematic

location can be inferred. Figure 4.7 shows an example of such a situation.

Figure 4.7: Overlapping sonar cones can potentially reduce the possible position of an obstacle

Since only the middle sonar sensor measures an obstacle at a range indicated by the cross,
it can only be on the solid arc. Unfortunately, when all sonar sensors detect the obstacle, the
possible obstacle locations can not be reduced.

Although sonar sensors suffer from these problems, there are reasons to use them neverthe-
less. First, sonar sensors are inexpensive. They are orders of magnitude less expansive than
laser scanners [18]. Second, sonar sensors might not be optimal for map generation and detailed
obstacle geometry recognition, but are good for pure obstacle detection [38]. Thus, if only the
question, whether the space in front of the robot is clear or not, has to be answered, sonar sensors
are a good choice.

Furthermore, laser scanners also have some problems. First, the advantage of a narrow beam
can be a problem, since the focused light forms a narrow measurement plane. All obstacles
under or above this measurement plane are not visible for the laser scanners [15]. Furthermore,
obstacles with mirror or glass surfaces are problematic or impossible to detect for laser scanners.

4.2.2 Environment observation for dynamic path planning with laser scanners

The main task of environment observation for dynamic path planning is to provide a model of
the environment in the vicinity of the robot. This model is used by the dynamic path planner to
ensure that the robot is not colliding with obstacles, while driving to the goal.

The navigation stack of the robot operating system (ROS) [61] uses a laser scanner and a
grid as environment model to fulfil this task. When a new laser scan is acquired, the first step

50

is to determine the grid cells which can not contain an obstacle. When a laser sensor detects
an obstacle three meters in front of the robot, no obstacle can be present between the robot
and the detected obstacle (at least not in the plane in which the laser is operating). This idea
is implemented by raytracing from the laser sensor origin to each measured point in the point
cloud. To compute the rays, the Bresenham-algorithm is used, which approximates a straight
line between two given points with grid cells. Thus, the cell cost of each grid cell, which lays on
a ray between the sensor origin and a measured point, is marked as empty. Figure 4.8 shows the
line computed from the cell containing the sensor (lower left) to the cell containing the measured
point (upper right).

Figure 4.8: Raytracing a measurement to set grid cells as empty

After the raytracing step, the grid cells, which contain one or more measured points, are
marked as containing an obstacle. In the example, every light grey grid cell would be marked as
empty and the dark grey grid cell would be marked as containing an obstacle.

4.2.3 Environment observation for dynamic path planning with sonar sensors

The previously presented ideas are used to develop an environment observation for dynamic
path planning with sonar sensors. The environment is modelled with the help of a grid, and ray-
tracing is used to determine the occupied and free grid cells. Although the idea for determining
which cells are occupied is presented before the idea to determine, which cells can not contain
obstacles, the actual execution order is different. First, the cells are cleared and afterwards the
obstacles are inserted into the grid. The presentation order was changed, since obstacle insertion
for sonar sensors significantly influences how the cells are emptied. Furthermore, note that all
algorithms assume, that the sonar sensor cones do not overlap.

Obstacle insertion

It is important to notice, that the semantics of sonar measurements are different from laser mea-
surements. As explained in Section 4.2.1, due to the sonar cone, it is not possible to determine

51

the exact position of an obstacle in a sonar measurement. Thus, the obstacle has to be assumed
on the whole circular arc which is created by the measured distance and the cone borders. To
simplify this, the obstacle is instead assumed on a line between the point on the left cone border,
which is exactly the measured distance away from the sonar sensor, and a similar point on the
right cone border. “Left”, “right” and “front” refer to the point of view of the sonar sensor. After
the algorithm is presented, a justification for this simplification is presented.

The pseudo code of the environment observation for dynamic path planning is shown in Al-
gorithm 6. Since the algorithm assumes no overlapping sonar sensors, it can be easily extended
for multiple sonar sensors.

Algorithm 6 ProcessMeasurement(dist)
1: if dist ≥ MAX_DIST then
2: return
3: end if
4: border_l.x← dist · cos(sonar.θ + φ) + sonar.x
5: border_l.y ← dist · sin(sonar.θ + φ) + sonar.y
6: compute cell border_l_cell out of border_l
7: border_r.x← dist · cos(sonar.θ − φ) + sonar.x
8: border_r.y ← dist · sin(sonar.θ − φ) + sonar.y
9: compute cell border_r_cell out of border_r

10: clearCells(border_l_cell, border_r_cell)
11: doBresenham(border_l_cell, border_r_cell)

The algorithm gets as argument the measured distance of a sonar sensor. If the distance is
greater or equal to a user defined MAX_DIST, the algorithm does nothing, since this indicates
an invalid measurement (lines 1-3). In lines 4 and 5 the border point on the left cone border
border_l, which is exactly dist away from the sonar sensor, is computed, where φ is the angle
from one cone border to the cone’s centre (see Figure 4.9).

d
is
t

sonar

border_l

border_r

θ

φ

x

y

Figure 4.9: The variables used to compute the cone border points

Afterwards, the grid cell border_l_cell, which contains border_l is computed (line 6). In
the same way, the grid cell border_r_cell, corresponding to the right cone border point is de-
termined (lines 7-9). The function clearCells in lines 10 computes, based on the measurements,

52

the cells which can be marked as empty. How this is done is presented afterwards. The last
step is to compute a straight line between border_l_cell and border_r_cell with the help of the
Bresenham-algorithm and to mark the cells as containing an obstacle (line 11).

Since a straight line and not a circular arc is used to insert an obstacle into the occupancy
grid, the obstacle is inserted nearer than the measurement is indicating. The error for an arbitrary
distance is maximal in the centre of the cone. The farther away the sensed obstacle is, the bigger
the error gets. The following formula can be used to calculate the error in the centre of the cone,
where φ is again the angle from one cone border to the cone’s centre:

max_error = dist · (1− cos(φ))

For example, assume the sonar sensor has an angle from one cone border to the cone’s
centre of roughly 7.5 degrees and a maximal range of 5 metres. Thus, the maximal error is
4.3 centimetres. This is not a problem, since it is inserted nearer than the obstacle is in reality.
Hence, the robot will not collide with an obstacle, since it believes to be nearer than it really is.
Furthermore, the error gets smaller when the robot is approaching the obstacle. At a distance of
one metre, the error is only 0.9 centimetres. Both facts justify the used simplification.

Figure 4.10 depicts the functionality of Algorithm 6. The sonar sensor is located on the
spot marked with the lower left cross. The dashed lines shows the cone’s borders and the dotted
line depicts the cone’s centre. The angle from one cone border to the cone’s centre (φ) is 20
degree. Assume that the sonar sensor measured an obstacle at a distance depicted by the cross
on the dotted line. The algorithm calculates the points on the cone borders, which are the same
distance away from the sonar sensor as the measured obstacle. The solid line in Figure 4.10
connects the cells, which contain the border points. With the help of the Bresenham-algorithm,
the cells approximating this line are computed (grey cells). Every cell on this line is marked as
containing an obstacle.

Figure 4.10: An example how Algorithm 6 inserts obstacles into the grid

53

Cell clearing

Cell clearing for sonar sensors uses the same idea as for laser scanners. When the sonar sensor
measures an obstacle three meters away, no obstacle can be present between the sensor and the
measured obstacle. The difference is, that not a single line but a triangle formed by the sonar
cone borders and the straight line at the measured distance has to be cleared. All cells of this
triangle have to be cleared.

Before the whole cell clearing function is explained, it is presented how the triangle’s cells
are cleared. With this knowledge, the whole cell clearing function is easier to understand. The
idea is to clear all cells on a traverse through the triangle. Each column is traversed by starting at
the border cell with the lowest y coordinate in this column. Then, neighbouring cells are visited
by increasing the y coordinate until another border cell is reached. This is done for every column
on which the triangle is present.

Since the traverse is always upwards, only two data structures describing the triangle are
needed. The data structure begin_cells contains the cells, which approximate the lower side(s)
of the triangle by the Bresenham-algorithm. Similarly, the data structure end_cells contains
the cells of the top side(s) approximation. Figure 4.11 shows the lower side (marked with b for
begin_cells) and top sides (marked with e for end_cells) of an example triangle. Other possible
orientations for a triangle are discussed later in this section.

x

y

Figure 4.11: The top (e for end_cells) and bottom (b for begin_cells) sides of a triangle

Algorithm 7 shows the pseudo code of function clearTriangle, implementing this ideas.

Algorithm 7 clearTriangle(begin_cells, end_cells)
1: for i = begin_cells.leftmostColIdx() to begin_cells.rightmostColIdx() do
2: for j = begin_cells.col(i).smallestY () to end_cells.col(i).greatestY () do
3: clear grid cell at (i, j)
4: end for
5: end for

The outer loop iterates over the columns (x-axis), starting with the lowest (leftmost) one. In
the inner loop, the column is traversed from the lowest cell to the highest cell (y-axis), clearing
all cells on this traverse.

54

The clearCells function, is shown in Algorithm 8. The arguments are the previously com-
puted border cells border_l_cell and border_r_cell.

Algorithm 8 clearCells(border_l_cell, border_r_cell)
1: leftCells← doBresenham(sonar_cell, border_l_cell)
2: rightCells← doBresenham(sonar_cell, border_r_cell)
3: frontCells← doBresenham(border_l_cell, border_r_cell)
4: if border_l_cell.x < sonar_cell.x and border_r_cell.x < sonar_cell.x then
5: if border_l_cell.x < border_r_cell.x then . 1.1
6: begin_cells← leftCells
7: end_cells← merge(rightCells, frontCells)
8: else . 1.2
9: begin_cells← merge(leftCells, frontCells)

10: end_cells← rightCells
11: end if
12: else if border_l_cell.x > sonar_cell.x and border_r_cell.x > sonar_cell.x then
13: if border_l_cell.x < border_r_cell.x then . 2.1
14: begin_cells← rightCells
15: end_cells← merge(leftCells, frontCells)
16: else . 2.2
17: begin_cells← merge(rightCells, frontCells)
18: end_cells← leftCells
19: end if
20: else
21: if border_l_cell.x < border_r_cell.x then . 3.1
22: begin_cells← merge(leftCells, rightCells)
23: end_cells← frontCells
24: else . 3.2
25: begin_cells← frontCells
26: end_cells← merge(leftCells, rightCells)
27: end if
28: end if
29: clearTriangle(begin_cells, end_cells)

First, the cells forming the three borders of the sonar cone (triangle) are computed. Ini-
tially, a straight line between the cell sonar_cell, containing the sonar sensor and the previously
calculated border_l_cell is computed with the help of the Bresenham-algorithm (line 1). This
version of the Bresenham-algorithm delivers a data structure leftCells, containing the cells,
which approximate the line. Line 2 computes a line from the sonar sensor cell to the right cone
border cell and delivers a similar data structure rightCells as before. In line 3, a line between
the left and right cone border is drawn, forming the border of the triangle in front of the sonar
sensor and delivering the data structure frontCells.

The next step is to determine which of the data structures leftCells, rightCells and front−

55

Cells form the data structure begin_cells respectively the data structure end_cells for the func-
tion clearTriangle. The decision depends on the orientation of the triangle in the grid.

Figure 4.12 shows the six triangle orientations which have to be distinguished by the func-
tion, to determine which data structure form the begin_cells and the end_cells. With them,
every possible triangle rotation is covered. The black dot marks the position of the sonar sen-
sor. Edges labelled with b have to be in begin_cells and edges labelled with e have to be in
end_cells.

x

y

Figure 4.12: Six cases, which have to be distinguished by function heading

Case 1 is characterized by the fact, that the x cell coordinate of the left and right border
points are smaller than the sonar position (line 4). If the x cell coordinate of the left bor-
der point is smaller than the right border point, the cone opens to the “top” (line 5, case 1.1).
Thus, leftCells forms begin_cells (line 6) and rightCells combined with frontCells form
end_cells (line 7). If the left border point is not smaller than the right border point, case 1.2
applies. In this case, leftCells and frontCells form begin_cells (line 9) and rightCells is
end_cells (line 10).

Case 2 applies, when the x cell coordinate of both border points are higher than the sonar
position (line 12). Lines 13-19 are similar to case 1, but are adapted to the changed rotation
as shown in Figure 4.12. When the x cell coordinate of the sonar sensor is in between the left
and right cone border x cell coordinate, case 3 has to be applied. Again, lines 21-27 are similar
to case 1 with the necessary adaptations. At last, the function clearTriangle is executed with
begin_cells and end_cells to clear the triangle.

4.2.4 Example

The environment observation for dynamic path planning with sonar sensors is concluded with
an example, to see the effects of the algorithm. Figure 4.13(a) shows the sonar cone’s borders
as dashed lines and the centre of the cone with the dotted line. The cross on the dotted line
depicts a measured obstacle, and the crosses on the cone’s borders are the calculated border

56

points. The solid lines, connecting the cell containing the sonar sensor and the cells containing
the border points, are approximated by the Bresenham-algorithm. The dark grey cells are in the
data structures leftCells, rightCells and frontCells returned by the Bresenham-algorithm.

(a) (b)

Figure 4.13: The dark grey cells approximate the solid lines and are in the data structures
leftCells, rightCells and frontCells (a) the ordering of how function clearTriangle (Algo-
rithm 7) clears the cells of a triangle

Every light grey cell depicted in Figure 4.13(b) is cleared by the function clearTriangle
(Algorithm 7). The numbers are the order in which the algorithm is traversing through the
triangle, formed by the approximated lines. After the cells are cleared, the obstacle is inserted
as shown in Figure 4.14. The dark grey cells are marked as containing an obstacle.

Figure 4.14: The result of clearing cells and inserting an obstacle based on a measurement

57

CHAPTER 5
Implementation

This Chapter shows, how the ideas of using probabilistic maps and sonar sensors for path plan-
ning, presented in Chapter 4 are implemented in the open source framework “robot operating
system” (ROS) [71]. The goal is that a Pioneer 3-AT (P3AT) [49] from MobileRobots, supplied
with a probabilistic map from [11], is capable of driving autonomously with its on-board sonar
sensors to a goal.

5.1 Robot operating system (ROS)

The robot operation system (ROS) is an open source framework which tries to ease the burden
of writing robust robot software. It contains tools, libraries and modules which address the most
common tasks for autonomous robots. Although the name implies that ROS is an operating
system, this is not the case. Functionalities a modern operating system offers, like memory
management, process management or scheduling are not present. Actually, it runs on top of
most common operating systems (e.g., Ubuntu, Debian, Windows). The core of ROS forms an
interprocess communication facility with four capabilities [72]:

• Message Passing: Software in this system can communicate via anonymous publish/sub-
scribe. Nodes subscribe at the master software node (ROS master noder) to one or more
topics in which they are interested. When a message is published at a given topic, every
node registered for this topic receives this message. This allows a very modular software
structure. For example, one node is exclusively responsible to publish the measurement of
a laser sensor. Other nodes can use this measurement to fulfil their tasks, without bother-
ing with low level communication with the laser sensor. When the laser sensor is changed,
only one node has to be updated accordingly.

• Recording and Playback of Messages: Since message passing in ROS is anonymous
and asynchronous, messages can be saved to a file and replayed later, without changing
any code in the modules. For example, laser sensor messages can be recorded and played
back at a later time-point to test a module under development in an offline fashion.

59

• Remote Procedure Calls: When synchronous communication is required, instead of the
asynchronous message passing, ROS provides remote procedure calls with so called ser-
vices.

• Distributed Parameter System: Modules can share configuration information. This al-
lows for easy module reconfiguration. Additionally, modules can change the configuration
of other modules during the runtime to influence their behaviour.

ROS was developed around the idea of collaborative robotics software development. This man-
ifests in the fact, that a lot of open source modules are present, which can be built upon and are
supplied by the community are present. Thus, users can immediately start with the implemen-
tation of their specific idea and do not have to build needed, but for their interest unnecessary,
features first.

ROS has three conceptual levels [65]:

• the Filesystem level

• the Computation Graph level

• the Community level

The following sections will present the major components of each level. A complete list can
be found at [65].

5.1.1 Filesystem level

The Filesystem level mainly consists of resources on the disk such as:

• Packages: A package is the main unit of software management in ROS. It can consist of
code, libraries, configuration files or other things which are logically connected.

• Stacks: Stacks consist of a collection of packages which solve a task together.

• Message (msg) types: Message types define the message structures which are sent in ROS.

• Service (srv) types: Service types define the request/response data structure used by ser-
vices (remote procedure calls).

5.1.2 Computation Graph level

The Computation Graph is the communication facility of ROS and can be seen as virtual network
through which different ROS processes communicate.

• Nodes: Nodes perform computations in the ROS system by executing packages. Since
ROS is modular, many different nodes are active at the same time solving various tasks
together.

60

• Messages: With the help of messages, nodes communicate with each other. A message is
a data structure consisting of various fields of different types. The structure of a message
is defined by the message type.

• Topics: Since communication in ROS follows the publish/subscribe pattern, topics are
needed to control the message exchange. All nodes interested in a specific topic subscribe
to it. A node sends a message by publishing it for a given topic and all nodes subscribed
to this topic receive it. For a single topic multiple subscribers and publishers can exist.
Furthermore, a node can publish and subscribe to multiple topics.

• Services: Services allow for synchronous communication via remote procedure calls, fol-
lowing the request/reply pattern. The message type of the request and the reply is defined
by the service type.

• Master: The master stores the published/subscribed topics for each node. Thus, when a
node subscribes to a topic, it asks the master for all registered publishers for this topic.
With this information the node connects to the publisher nodes via standard TCP/IP sock-
ets. Should a new node register as publisher, the master informs every subscriber node
about this event via callbacks. This allows the subscriber nodes to connect to the new
publisher node. Hence the master node is responsible that the nodes can find each other
to exchange messages.

Since the low level communication between ROS nodes is done with TCP/IP, not all of them
have to be located in the same system. Instead, they can be distributed between multiple ma-
chines. This enables different interesting scenarios. For example, a robot with a weak on-board
computing system could send data to a strong system to outsource the more complex tasks. An-
other scenario could involve multiple robots which are able to access data from other vehicles to
improve their local knowledge.

5.1.3 Community level

As already explained, ROS is built around the idea of code sharing. Thus, at the Community
level ROS provides different resources for developers like a wiki or a mailing-list to share their
developments.

5.1.4 Transformations

Another important concept in robotics is tht of transformation, which is handled by the tf pack-
age [70] in ROS. The need for transformations arises when a point in one frame (see Sec-
tion 2.1.2) should be transformed to a point in another frame. For example, assume the robot
frame’s coordinate origin is at the centre of the robot. Furthermore, let a laser sensor be mounted,
not in the middle of the robot, but displaced. A measurement of the laser sensor will be in the
laser sensor frame. To know how far a possible sensed obstacle is away from the robot centre,
the measurements have to be transformed into the robot frame. This is an example for a static
transformation, since the origins of the robot frame (the middle of the robot) and the laser frame

61

(the middle of the laser sensor) do not move relative to each other. Thus, the transformation can
be done with the help of a matrix multiplication, where the elements of the matrix are static and
can thus be computed once.

More complicated are dynamic transformations. As the name implies, these transformations
are time dependent. For example, consider again a robot with its frame centred at the origin and
a map. Initially the robot stays in the centre of the map frame. When the robot is driving, the
position of the robot changes in the map frame but the robot always stays in the centre of the
robot frame. Hence, depending on the time, the position of the robot in the map frame changes
and the origins of both frames move relative to each other. Again, to transform a point from one
frame to another the point has to be multiplied with a matrix. The problem is that the elements
of the matrix are not constant, since the relative position of the origins is not constant.

The tf package of ROS is capable of both transformations. The relationship of all frames
is maintained in a buffered tree structure, the transformation tree, where the vertices are the
existing frames. In the previous examples the map frame would be the root node with an edge
to the robot frame. Since the laser sensor is mounted on the robot, the robot frame would be the
parent of the laser frame. The static transformation from the laser frame to the robot frame can
be published by a tool contained in the tf module. The dynamic transformation from the robot
frame to the map frame is typically done by a localisation module. When all transformations are
set up correctly, it is possible to transform points from any frame to any other frame by following
the path between the two frames.

5.1.5 Starting a ROS node

There are two proper ways to start a ROS node. The easiest possibility is to use the command
line tool rosrun, which allows to run an executable, where parameters may be given optionally,
with the following syntax:

rosrun <package> <executable> _parameter:=value

In cases where multiple nodes with various parameters should be started, rosrun is imprac-
tical. A better way is to use the powerful tool roslaunch. It was developed to ease the starting
of multiple local or remote nodes and setting the parameters of these nodes. The tool accepts
a XML-file (with the .launch extension), which specifies which nodes should be started with
which parameters [66]. Because of the number of needed nodes and its usefulness, roslaunch
was used in this thesis. To use roslaunch to start nodes with a given launchfile, the following
command is used:

roslaunch <file>

The most important tags for the launch file are:

• <launch>: It is the root element of a launch file and acts as a container for other elements.

• <node>: This tag specifies a ROS node which should be started. Note that roslaunch does
not guarantee the starting order when multiple nodes should be started. As a consequence
it must not be assumed that a specific node is already running, but a node has to be capable
to wait until all required nodes are started. The following attributes are used in the thesis:

62

– pkg: The ROS package in which the executable of the node is located.

– type: The executable in the specified package which should be run.

– name: The name of the node.

– output: An optional argument. If output is set to screen, stdout/stderr from the node
will be seen on the screen. If log is stated, stdout is directed to a log file in the ROS
home directory and stderr will be printed on screen. The default argument is log.

– args: The arguments which should be passed to the node.

For a full list of attributes see [68].

• <param>: Used to set a single parameter on the parameter server. The variant used most
often is to specify the tag inside of a <node> tag, in which case the parameter is set for
this node. The following attributes occur in this thesis:

– name: The name of the parameter.

– type: The type of the parameter. Legal options are str, int, double and bool.

– value: To which value the parameter should be set. Must conform to the specified
type.

For a full list of attributes consult [68].

• rosparam: This tag allows to load, dump and delete multiple parameters from the param-
eter server, by reading a rosparam YAML file. Alternatively, a parameter with a list type
can be set with the help of rosparam. Again, the most common way is to use the tag inside
of a <node> tag. The used parameters are:

– command: An optional command which specifies the action. Valid values are load
(the default), dump and delete.

– file: The path to the YAML file, when the parameters should be read from a file. The
file consists of name: value tuples.

– param: The name of the parameter (when rosparam is used to set a parameter with
a list as type).

– ns: The namespace in which the parameter has its scope.

Again, a full list of attributes can be found in [68].

• include: Allows to include another roslaunch XML file into the current one. Thus, it
is possible to construct a complex launch file out of simple launch files. This mirrors the
ROS architecture of complexity via composition [67]. The following attributes were used:

– file: The path to the launch file.

– ns: The namespace in which the file should be imported.

Other attributes are listed in [68].

63

5.2 System Overview

Figure 5.1 shows the high-level ROS system architecture of the autonomous driving P3AT robot.
All used components and their intercommunication can be seen. The boxes represent ROS
packages and stacks respectively. A solid arrow represents a publish/subscribe communication,
with the topic as label. The nodes at the arrow-ends are subscribed to the respective topic and
consequently, nodes on the opposite ends publish messages to the topic. Dashed arrows represent
ROS services. The nodes at the arrow-ends are the callees and the nodes at the opposite ends are
the callers. Thus, the direction of the arrows illustrates the information flow.

The most important part, which forms the heart of the system, is the navigation stack. Al-
though it is only depicted as a single package, it consists of various modules with complex
interactions. It applies methods from Chapter 2 and Chapter 3 to safely move the robot from
an initial position to a goal. The navigation stack subscribes to the /initialpose topic and to the
/move_base_simple/goal topic to get the initial and goal location respectively. To publish both
topics either a powerful GUI called rviz or the navigation control module, a slim command line
tool, can be used.

The probabilistic map server reads a probabilistic map from a file and provides a static
and a probabilistic map for other ROS modules. They get distributed either by the services
static_map and probabilistic_map or via the topics /map and /prob_map. The navigation stack
uses both maps and requests the static_map via the service static_map and subscribes to the
topic /prob_map to receive the probabilistic map.

The rosaria module allows other ROS modules to access functionalities of the P3AT robot.
Rosaria publishes all sonar measurements to the /rosaria/sonar topic. These are needed by the
navigation stack for localisation and obstacle avoidance. Since the sonar measurements from
rosaria contain systematic measurement errors, a sonar calibration module was developed to
correct systematic errors. When a new sonar measurement is published on the /rosaria/sonar
topic the sonar calibration corrects it and publishes on the /sonar topic.

The navigation stack creates velocity commands to drive the robot around. The navigation
stack does this by publishing on the /cmd_vel topic. The safe navigation module listens to this
topic to determine if the movement command is safe. This is done by checking if the robot is
currently touching an obstacle with its bumpers. The bumper information is published by rosaria
to the /rosaria/bumper_state topic. Depending on the bumpers, the safety module publishes
commands to the /rosaria/cmd_vel topic, which are used by rosaria to actually control the robots
motors.

Not every module in Figure 5.1 was developed within the scope of this thesis. Modules with
a white background colour were already existing and were not modified. Grey backgrounds
indicate modules which were modified for this thesis. On the other hand, black modules were
developed especially for this thesis.

The following sections will elaborate on the modules and explain the changes made.

5.2.1 Global transformation tree

Figure 5.2 shows the transformation tree of the whole system. The root frame of the transfor-
mation tree is the map frame, in which map positions are expressed. The odom frame, which

64

Figure 5.1: The high-level system architecture of the autonomous driving P3AT robot

is a child of the map frame, expresses the odometry information. The AMCL module (see Sec-
tion 5.6.1) establishes the dynamic transformation between the map- and the odom frame. The
base_link frame is the robot frame, where the coordinate frame is attached to the robot. The

65

centre of the robot is the origin of the base_link. Rosaria (see Section 5.3) manages the dynamic
transformation between the odom- and the base_link frame. With this, it is possible to express
the position of the robot in the odom frame or in the map frame. With the help of child frames
of base_link, the position of robot parts like the sonar sensors can be expressed in arbitrary
frames, as long as they are part of the transformation tree. Since the parts are fixed on the robot,
transformations between them and base_link are static. Except for the front_sonarX frames, all
those transformations are provided by the p2os_urdf package [63]. It contains a Unified Robot
Description Format (URDF) model for the P3AT, which is an XML format to describe a robot
layout. The static transformations from the front_sonarX frames to the front_sonar frame are
provided by static transformation publishers [70]. The arguments to configure the static trans-
formation publishers can be found in Appendix A.1.

Figure 5.2: The ROS transformation tree, used in this thesis

5.3 Rosaria

The rosaria package [64] is needed to interact with the robot. It wraps the aria C++ drivers,
such that they can be used in ROS. This allows other ROS modules to set velocity commands
to drive the robot around and read odometry information, like estimated position. Furthermore,
the front and back bumpers can be read to detect whether the robot is colliding with obstacles.
Moreover, the eight front sonar sensors can be read to detect distant obstacles. In this thesis,
rosaria publishes/subscribes the following topics, where the brackets indicate the message type:

• /rosaria/cmd_vel (geometry_msgs/Twist): Allows to set velocity commands for the robot,
which aria will maintains automatically. Hence, to obtain constant velocity, the command
has to be sent only once.

66

• /rosaria/pose (nav_msgs/Odometry): Delivers the pose of the robot relative to the starting
position in the odom frame.

• /rosaria/bumper_state (rosaria/BumperState): Delivers the bumper state of the front/back
bumpers.

• /rosaria/sonar (sensor_msgs/PointCloud): Delivers the sonar readings in the front_sonar
frame.

• /tf (tf/tfMessage): Rosaria publishes the position of the robot in the odom frame. This
is done by providing the required informations for the transformation tree to transform
points from the base_link to the map odom frame (and vice-versa). Thus, the position of
the robot in an arbitrary frame can be requested from other ROS modules with the help of
the tf module.

To deliver somewhat reasonable odometry results, three parameter values have to be set to
calibrate the rotary encoders:

• TicksMM (double): The amount of read encoder ticks for an one millimetre tire rotation.

• DriftFactor (double): This value gets added to encoder reading of the left tire to compen-
sate for tire circumference differences.

• RevCount (double): Specifies the amount of read encoder ticks for an 180 degree rotation.

Another important parameter is port. This has to be set to the device over which the computer
communicates with the robot hardware. The correct port for the P3AT robot used in this thesis
is /dev/ttyS0.

No changes had to be made to rosaria to use it in this thesis. The values used for the odometry
calibration can be found in Appendix A.1.

5.4 Probabilistic map server

The probabilistic map server reads a probabilistic map from the filesystem and provides it as
a static and as a probabilistic map for other ROS modules. The probabilistic map server was
developed especially for this thesis and uses different ideas and code snippets from dynamic
mapping in [11] and the already existing static map server from the navigation stack [58].

The first step is to read the header-file of the probabilistic map. This file has to contain the
following tags, which are explained in [11]:

• image

• resolution

• origin

• negate

67

• occupied_thresh

• free_tresh

• map_array_size

• dynamic

• dynamic_time_max

Afterwards, the map can be loaded from the filesystem and provided for other modules,
which is done in two different ways. First, the map with and without dynamic information gets
published on two topics, one for the static map and one for the probabilistic map. Additionally,
the probabilistic map server publishes the map meta-data, like size and resolution on a third
topic. The second method is to use ROS services. Two service callback methods are present to
forward the static respectively the probabilistic map to the server caller.

In this thesis, the probabilistic map server publishes to the following topics and provides the
following services:

• /map (nav_msgs/OccupancyGrid): The topic on which the static map is published.

• /prob_map (dynamic_mapping/DynamicGrid): The probabilistic map is published on this
topic.

• /map_metadata (nav_msgs/MapMetaData): The topic on which the map metadata is pub-
lished.

• static_map: The service on which the static map can be requested.

• probabilistic_map: The service on which the probabilistic map can be requested.

The probabilistic map server has the following parameters:

• file_name (string): The path to the header file.

• static_service_name (string): The name of the service to acquire the static map.

• static_map_topic (string): The topic where the static map should be published.

• static_frame_id: (string) The frame of the static map.

• probabilistic_service_name (string): The name of the service to acquire the probabilistic
map.

• probabilistic_map_topic (string): The topic where the probabilistic map should be pub-
lished.

• probabilistic_frame_id (string): The frame of the probabilistic map.

• map_metadata_topic (string: The topic where the map meta-data should be published.

The parameter values used in this thesis can be found in Appendix A.1.

68

5.5 Sonar calibration

In this thesis, a sonar sensor message published by rosaria, contains eight sonar measurements.
One measurement for every sonar sensor, where the ordering in the message coincides with the
sonar sensors shown in Figure 6.2. Unfortunately, these sonar sensors readings delivered by
rosaria are unaccurate. Figure 5.3 shows the same situation as Figure 4.5 but the sonar sensor
readings from rosaria are overlayed with the laser readings.

Figure 5.3: A sonar measurement compared to a laser measurement

It is easy to see that the sonar sensors do not measure the same distance as the laser sensor.
Furthermore, extensive experiments showed, that the range difference of the measurement of
the laser- and sonar sensor increases, the closer the obstacle is to the sensor. Additionally, the
further the sonar sensors are on the side of the robot, the less the distance error is.

To overcome these problems, the sonar calibration module was developed. It subscribes
to the topic on which rosaria publishes the sonar sensor measurement messages. The sonar
calibration module calibrates the received measurements by using reference values and publishes
the resulting sonar measurements on a second topic.

The eight sonar measurements in a published sonar measurement message are points in the
front_sonar frame. The calibration is done by subtracting the estimated range error from the x
and y component of the measurement of every sonar sensor. How much the estimated range
error has to be reduced from x and y component depends on the angle of the sonar sensor to the
x-axis in the front_sonar frame (φ). Thus, the following equations are used to compute the new
point:

xnew = xold − error · cos(φ)

ynew = yold − error · sin(φ)

The range errors are estimated for every sonar sensor by its own linear function which were
determined with the help of extensive experiments.

In this thesis, the sonar calibration module publishes/subscribes to the following topics:

• /rosaria/sonar (sensor_msgs/PointCloud): On this topic the uncalibrated sonar measure-
ments are published from rosaria.

69

• /sonar (sensor_msgs/PointCloud): The calibrated measurements are published by the
sonar calibration module on this topic.

• /tf: (tf/tfMessage): The sonar calibration needs the position of each sonar sensor in the
front_sonar frame, which is provided by the tf module on this topic.

The following parameters are used by the sonar calibration module:

• linear_functions (list): The eight linear functions, each represented by two parameters k
and d. The first linear function is for the first (leftmost) sonar sensor, the second linear
function for the second sonar sensor and so on.

• sonar_sensor_topic_in (string): The topic on which the uncalibrated sonar measurements
are published.

• sonar_sensor_topic_out (string): The topic on which the calibrated sonar measurements
are published by the sonar calibration module.

The parameter values used in this thesis can be found in Appendix A.1. Figure 5.4 shows
the situation from Figure 5.3 with calibrated (white) sonar measurements. Note, that only the
four middle sonar sensors are calibrated, since the side sonar sensors deliver reasonable mea-
surements.

Figure 5.4: A calibrated sonar measurement compared to a laser measurement

5.6 Navigation stack

The navigation stack consists of various different ROS packages that solve together the task of
autonomous robot navigation. The navigation stack has the following three hardware require-
ments [61]:

1. The robot has a differential or holonomic drive. Hence, the navigation stack produces
velocity commands for x, y and theta.

70

2. A planar laser sensor is mounted on the robot. As already mentioned, only sonar sensors
are used in this thesis. As a consequence, various parts of the navigation stack had to be
changed to work with sonar sensors.

3. The robot’s planar geometry should be (nearly) a square or circle. The navigation stack
works for arbitrary shapes and sizes too, but it will have problems in narrow spaces like
doors with large rectangular robots. The P3AT is not a square, thus problems in very nar-
row spaces are expected, especially in combination with sonar sensors (see Section 4.2.1).

In the navigation stack, path planning is implemented by combining a global path plan-
ning method with a local obstacle avoider, as presented in Section 3.3.3. Figure 5.5 shows an
overview of the internal structure and dependencies of the navigation stack.

Figure 5.5: Overview of the internal structure of the navigation stack [62]

The heart of the navigation stack is the move_base module, consisting of various plug-ins.
Thus, nearly every aspect can be influenced by writing and using new plug-ins, allowing for max-
imal flexibility. Move_base consists of exactly one global- and one local_planner plug-in, each
with an instance of a costmap. Additionally, various recovery_behaviour plug-ins can be present
to recover the robot in unexpected situations. The costmaps hold information about obstacles
in the environment and are fed from sensors. Since only sonar sensors are used in this thesis,
the information is provided by the sonar calibration module. Furthermore, the global_costmap
gets supplied with a map of the environment. Obviously, the probabilistic map server module is
responsible for this task. The velocity command produced by the local_planner is used by the
base controller to drive the robot around. In this thesis, this is the safe navigation module which
forwards the command to rosaria.

The left side hints the required transformations for the move_base. First, it has to know
where the robot is located in the map. This is done by transforming the odometry frame (odom)
to the map frame (map). Since this is a dynamic transformation, a module has to provide the
appropriate information for the tf module. The AMCL module implements localisation and
informs the tf module about the required transformations. The odometry source is the rosaria

71

module. The transformation between the sonar sensors and the robot frame (base_frame) is
static. Thus, the required information can be supplied in advance and no further information is
needed for these transformations. Additionally, the local_planner has to know the current speed,
which is supplied by the rosaria module.

5.6.1 Adaptive Monte Carlo Localisation

The Adaptive Monte Carlo Localisation (AMCL) [56] module is responsible for localisation.
Localisation is the task to determine the position of the robot in a known environment. This
is done by combining observations of the environment, robot odometry information and a map
to reason with the help of statistical methods about the robot’s position. Therefore, the robot’s
movement and the sensor are modelled mathematically. With the help of a sensor model, the
probability for a pose, given a measurement and the map, can be estimated. More concrete,
the AMCL module implements a particle filter, namely the adaptive (or KLD-sampling) Monte
Carlo localisation approach from [81], where also detailed information about how localisation
is done can be found.

In this thesis, AMCL publishes/subscribes the following topics.

1. /sonar (sensor_msgs/PointCloud): The sonar measurements, which are the previous “ob-
servation of the environment”.

2. /tf (tf/tfMessage): Tf is needed for two aspects. First, the odometry information main-
tained by rosaria is required for particle filtering. Second, the estimated position of the
robot in the map frame is published. This is done by providing the required informa-
tion for the tf module to transform points from the odom frame to the map frame (and
vice-versa).

3. /initialpose (geometry_msgs/PoseWithCovarianceStamped): Specifies roughly the current
position of the robot in the map and AMCL will distribute particles for the Monte Carlo
localisation around this position. The better this approximation is, the faster the robot can
localise itself afterwards.

4. /amcl_pose (geometry_msgs/PoseWithCovarianceStamped): On this topic, AMCL pub-
lishes the current estimated position of the robot in the map frame.

5. /particlecloud (geometry_msgs/PoseArray): The topic on which AMCL publishes the par-
ticles of the filter for information or debugging purposes.

Since localisation is done with the help of previously perceived obstacles, a probabilistic map
does not help to improve localisation. Thus, in this module no changes regarding maps had to
be made. To get the static map from the probabilistic map server, the service static_map gets
called.

Adaptations

Some adaptations had to be made on the AMCL module to involve the changed requirements.
First, a sonar sensor model had to be developed. In the case of AMCL, the most severe dif-

72

ference between laser and sonar sensors in ROS is the message format of the measurement
messages. The main difference between these message formats is that sensor_msgs/LaserScan
messages from a laser sensor deliver the measurements in polar coordinates, whereas sen-
sor_msgs/PointCloud messages from a sonar sensor deliver the measurement in cartesian co-
ordinates. Since it is easy to convert between these representations the sonar sensor model is
very similar to the original laser sensor model.

Since the other parts of both models are similar, most parts of the laser model in the AM-
CLLaser class are transferred into the abstract class AMCLRange. Among others, AMCLRange
contains three pure virtual methods, which have to be implemented by the child classes AM-
CLLaser and AMCLSonar. These three methods express the difference between laser and sonar
measurements. computePolarCoordinates and computeCartesianCoordinates, which are two
out of these three methods, convert the measurement either to polar- or cartesian coordinates.
Since sonar measurements are already in cartesian coordinates, in AMCLSonar computeCarte-
sianCoordinates just returns the input. The same is true for computePolarCoordinates in AM-
CLLaser, since the laser measurements are already in polar coordinates. The last pure virtual
method is responsible to check if the delivered measurement is invalid. A measurement is in-
valid, when the measured distance is greater or equal a predefined value. In both sensor models
this can easily be checked. To control which sensor module is used and which message format
to expect, the new parameter range_sensor_type was introduced. Furthermore, the parameters
to influence the laser model were renamed from laser_X to range_sensor_X to express the pos-
sibility of other range sensor models.

Although, as before a static map is used for localisation and thus, nothing should change, the
usage of probabilistic maps introduces a problem. As already mentioned, localisation is done
with static obstacles. Thus, the internal map in AMCL only consists of three states, and each
cell gets the following values assigned:

• -1: the cell is known to be empty (occupancy probability is 0)

• +1: the cell is known to be occupied (occupancy probability is 100)

• 0: the cell is neither empty nor occupied

The problem is, that due to implementation reasons, static obstacles in probabilistic maps from
[11] can have an occupancy probability unequal to 100. Instead, even cells with a very high
occupancy probability have to be treated as cells containing static obstacles. This is also true,
when the dynamic part is removed from the probabilistic map to obtain a static one. The same
problem arises with empty cells. Thus, cells with a very low occupancy probability have to
be treated as empty cells too. To account for this problem, two new parameters were intro-
duced to set the thresholds when a cell is accepted to be occupied (occupied_threshold) or
empty (empty_threshold) respectively. When the occupancy probability is bigger or equal to
occupied_threshold, the cell in the internal map is set to +1, when it is smaller or equal to
empty_threshold, it is set to -1. As before, everything in between is set to 0.

73

Calibration

Unfortunately, the implemented particle filter and models have a lot of parameters, which were
required to be tuned to compensate for the poor odometry and the shortcomings of the sonar
sensors. The best parameter values were found by extensive experiments. The most important
overall particle filter parameters are:

• min_particles (int): The minimum number of particles.

• max_particles (int): The maximum number of particles.

• kld_err (double): The maximum error between the estimated and true distribution.

• kld_z (double): “Upper standard normal quantile for (1 − p), where p is the probability
that the error on the estimated distribution will be less than kld_err” [56].

The parameters for the measurement model are the former parameters for the laser model and
were renamed. These parameters are:

• range_sensor_type (string): Which sensor model is used. Valid values are laser and
sonar.

• range_sensor_model_type (string): Which range measurement model is used.

• range_sensor_topic (string): The topic on which the measurements are published.

• range_sensor_max_beams (int): How many evenly-spaced beams in each scan to be used
when updating the filter [56].

• range_sensor_z_hit (double): The weight of the “correct range with local measurement
noise” component of the sensor model (consult [81] for more information).

• range_sensor_z_short (double): The weight of the “unexpected objects” component of
the sensor model (consult [81] for more information).

• range_sensor_z_max (double): The weight of the “Failures” component of the sensor
model (consult [81] for more information).

• range_sensor_z_rand (double): The weight of the “random measurement” component of
the sensor model (consult [81] for more information).

• range_sensor_sigma_hit (double): Standard deviation, used in the ‘correct range with
local measurement noise” component of the sensor model (consult [81] for more informa-
tion).

• range_sensor_lambda_short (double): Exponential decay parameter used in the “unex-
pected objects” component of the sensor model (consult [81] for more information).

• range_sensor_max_range (double): The maximum range of the sensor. Measured ranges
greater equal this parameter are invalid.

74

The odometry model has the following parameters:

• odom_model_type (String): Which odometry model is used.

• odom_alpha1 (double): “The expected noise in odometry’s rotation estimate from the
rotational component of the robot’s motion” [56].

• odom_alpha2 (double): “The expected noise in odometry’s rotation estimate from trans-
lational component of the robot’s motion” [56].

• odom_alpha3 (double): “The expected noise in odometry’s translation estimate from the
translational component of the robot’s motion” [56].

• odom_alpha4 (double): “The expected noise in odometry’s translation estimate from the
rotational component of the robot’s motion” [56].

At last, the previously mentioned thresholds for converting the received map to a reduced internal
map representation can be set with the following parameters:

• occupied_threshold (int): Cells with cost value greater or equal this parameter are treated
as obstacles.

• empty_threshold (int): Cells with cost value less or equal this parameter are treated as
empty.

The values of the parameters can be found in Appendix A.1.1.

5.6.2 Costmap

Move_base uses the costmap_2d module for the local- and global_costmap. Costmap_2d pro-
vides a two-dimensional occupancy grid of the environment, on which planners can perform path
planning. Each cell has one of 256 cost values, which are determined by previously created maps
and sensor observations. Thus, the cost value of a cell can change when new observations are
made. This allows to insert and delete observed obstacles. Furthermore, obstacles get inflated
circularly by a user defined inflation radius. In this thesis, inflation is the process of increasing
the size of an obstacle, by modifying the cell costs of cells in the vicinity of the obstacle. A cell
with a cell cost of 255 is unknown, a cell cost of 254 represents an obstacle and and cells with
cost 0 are empty cells. The cell values between 0 and 254 are used for obstacle inflation. More
information about inflation can be found in Section 5.6.2. Furthermore, the occupancy grid gets
published, which is mainly used for debugging and information purposes.

The cell manipulation is fully adaptable, since the logic which determines the cell costs is
contained in plug-ins called layers. So for example, one layer is responsible to handle maps,
and another one is capable of the previously mentioned inflation. It is easy to add new layers to
extend the functionality of the costmap or adapt previously existing layers.

The costmap gets updated with a user defined frequency, which is configured via the up-
date_frequency parameter. At every update cycle, each layer gets called to modify a passed

75

occupancy grid, which allows the layer to modify the cell costs. Since every layer gets the mod-
ified occupancy grid of the previous layers, the layer call order is important. The call order is
influenced via the plugins parameter.

The costmap publishes/subscribes to the following topics, excluding the single layers:

• costmap (nav_msgs/OccupancyGrid): The occupancy grid gets published on this topic.
The exact topic is either /move_base_node/global_costmap/costmap or /move_base_node/-
local_costmap/costmap.

• /tf (tf/tfMessage): The costmap subscribes to this topic to get a transformation link be-
tween the values of parameter global_frame and robot_base_frame. In this thesis, this
links are provided by the AMCL module and the rosaria module respectively.

The parameters used by the costmap_2d module in this thesis, excluding parameters of the
single layers, are:

• global_frame (string): The frame in which the costmap is operating. In the following
module description, the term global frame always refers to the value of this parameter.

• robot_base_frame (string): The frame of the robot.

• transform_tolerance (double): The maximum allowed delay in transform (tf) data that is
tolerable in seconds.

• update_frequency (double): Specifies the map update frequency, as explained before.

• publish_frequency (double): The frequency of publishing the map to visualize it with
modules like rviz.

• rolling_window (boolean): Specifies if the rolling window version should be used. The
rolling window version keeps the robot always in the centre of the costmap. Regions
which were observed previously, but are out of bounds of the costmap, because the robot
moved onwards, are dropped. This is useful when only information about the vicinity of
the robot is required.

• width (int): The width of the occupancy grid in meters. This parameter can be overwritten
by the probabilistic map layer.

• height (int): The height of the occupancy grid in meters. This parameter can be overwrit-
ten by the probabilistic map layer.

• resolution (double): The resolution of the occupancy grid in meters per cell. This param-
eter can be overwritten by a layer.

• origin_x (double): The origin of the occupancy grid in the global frame in meters on the
x-axis. This parameter can be overwritten by the probabilistic map layer.

• origin_y (double): The origin of the occupancy grid in the global frame in meters on the
y-axis. This parameter can be overwritten by the probabilistic map layer.

76

• footprint (string): The footprint of the robot, which is needed for path planning and infla-
tion.

• plugins (list): Specifies which layers (name and type) are used. The order of this list is
used as the call order for the layers.

When information of a point has to be extracted out of the costmap, two steps have to be
performed. First, when the point is not already in the global frame of the costmap, it has to
be transformed to this frame. Then, the cell in the costmap, corresponding to the point in the
global frame has to be computed. In the subsequent algorithms, variables ending with _global
are points in the global frame. Similarly, variables ending with _map are map cells.

Probabilistic_map_layer

The probabilistic_map_layer is responsible to insert the information of a probabilistic map into
the occupancy grid. This layer was developed in this thesis to incorporate the dynamic informa-
tion of probabilistic maps developed in [11]. It is based on the previously existing static_layer
in the costmap_2d module, which is used to insert static maps into the occupancy grid. It imple-
ments the probabilistic path planning strategy presented in Section 4.1.

In the first step, the module subscribes to the topic on which the probabilistic map gets
published from the probabilistic map server. The topic can be changed via the probabilis-
tic_map_topic parameter. When the map is received, a temporary occupancy grid gets resized to
match the size and the resolution of the map. Hence, afterwards the temporary occupancy grid
and the probabilistic map have exactly the same number of cells. Then, the cell cost of each tem-
porary occupancy grid cell is determined by the occupancy probability and the time until change
of its corresponding cell in the probabilistic map with Equation 4.2 from Section 4.1.4. With the
help of the two new ROS parameters forbidden_probability and forbidden_time_until_change,
the corresponding values for Equation 4.2 can be set.

Algorithm 9 shows the pseudo code, which computes the cell cost for one temporary oc-
cupancy grid map cell. Lines 1-3 handle the case, when a map cell has an unknown cost
value. The cell cost of the temporary occupancy grid cell is set to NO_INFORMATION (255
in costmap_2d). Line 4 computes the cell cost with Equation 4.2. Since LETHAL_OBSTACLE
determines the maximal possible cost value, it is used as parameter n. Furthermore, min_cost
is set to 0, since the shortest path algorithm used by the global_planner plug-in, already incor-
porates the path length into its search for the shortest path.

Algorithm 9 ComputeCellCost(occupancy_probability, time_until_change)
1: if occupancy_probability = unknown_cost_value then
2: return NO_INFORMATION
3: end if
4: returnmin{LETHAL_OBSTACLE,max{LETHAL_OBSTACLE/forbidden_probabi−
lity ·occupancy_probability+LETHAL_OBSTACLE/forbidden_time_until_change ·
100/dynamic_time_max · time_until_change, 0}}

77

This algorithm is executed for every probabilistic map cell. When the probabilistic_map_lay-
er gets called to perform its function, the temporary occupancy grid is copied into the passed
occupancy grid. The probabilistic_map_layer subscribes to the following topic:

• /probabilistic_map (dynamic_mapping/DynamicGrid): The probabilistic_map_layer sub-
scribes to this topic to receive the probabilistic map from the probabilistic map server.

The probabilistic_map_layer has the following parameters:

• probabilistic_map_topic (string): The topic where the probabilistic map is published.

• forbidden_probability (double): Cells with an occupancy probability greater or equal this
parameter are treated as obstacles.

• forbidden_time_until_change (double): Cells with a time_until_change greater or equal
this parameter are treated as obstacles.

• use_maximum (boolean): Specifies how the temporary occupancy grid is copied into the
passed one. When this parameter is set to true, the maximum of the temporary and the
passed cell cost is used as new cell cost. When the parameter is false, the cell cost is
overwritten with the cell cost of the temporary map.

• unknown_cost_value (int): The value of an unknown cell in the probabilistic map.

Obstacle_layer

The obstacle_layer changes the cell costs of the occupancy grid based on sensor inputs. Thus,
it performs environment observation and models the environment with a two dimensional occu-
pancy grid. The incoming measurement messages are stored in a measurement buffer until the
obstacle_layer is called to perform its function. Then, based on the previously buffered mea-
surement messages, cells get cleared (set cost value to 0) or marked as containing an obstacle
(set cost value to 254). Afterwards, it is waited for the next call, during which incoming mea-
surement messages are buffered again. The obstacle_layer is capable to handle multiple sensors
in parallel.

The original implementation expects that the measurements are from laser sensors in either
cartesian- or polar coordinates. Since the following steps require a point cloud, measurements
expressed in polar coordinates are transformed to cartesian coordinates, which in fact are a point
cloud. After this unification, the measurement can be stored in the measurement buffer.

The functionality is nearly the same as explained in Section 4.2.2. When a laser sensor
detects an obstacle three meters in front of the robot, no obstacle can be present between the
robot and the detected obstacle. Thus, raytracing the laser beams with the help of the Bresenham-
algorithm is done to clear cells in the occupancy grid. Thus, the cell cost of each occupancy grid
cell which lies on a ray between the sensor origin and a measured point is set to FREE_SPACE.

Special care has to be taken when a measured point is outside the occupancy grid. If this
is the case, the ray is computed between the sensor origin and an endpoint, which lies on the
border of the occupancy grid and on a straight line between the sensor origin and the measured

78

point. This case is shown in Figure 5.6. Since the measured point is outside of the occupancy
grid, a helper point on the line between the sensor and the obstacle (dashed line in Figure 5.6) at
the border of the map is computed. Then, the solid line between the cell containing the sensor
and the cell containing the helper point is cleared with the help of the Bresenham-algorithm.

Figure 5.6: Raytracing for a measurement, which is outside of the occupancy grid

After the raytracing step, the measured points, or the helper points in case the measured
point be outside of the grid, can be inserted into the occupancy grid. This is done by setting the
cell cost value to LETHAL_OBSTACLE for each cell which corresponds to a measured point.

This thesis adapted the obstacle_layer to do environment observation with sonar sensors.
Thus, the concepts presented in Section 4.2.3 were implementend. Algorithm 10 shows the
implemented algorithm, which is basically Algorithm 6 from Section 4.2.3, with changes due to
ROS.

The first difference are the arguments of the algorithm. Instead of a single distance deliv-
ered by a sonar sensor, a data structure containing one sonar measurement message M and a
data structure sonar, containing the positions of every sonar sensor in the front_sonar frame is
handed to the algorithm as parameter. A sonar measurement message in ROS consists of multi-
ple points (not ranges), one for each available sonar sensor. These points are in the front_sonar
frame. Algorithm 10 is executed for every buffered measurement message. Furthermore, note
that the position of the sonar sensors in the front_sonar frame are static and can be precomputed
once. Again, in the subsequent explanations, “left”, “right” and “front” always refer to the point
of view of the sonar sensor.

Since multiple points are in M , for each point, cells are cleared and an obstacle is inserted.
Since the measurement is delivered as point, it is converted in line 2 to a distance. Lines 6-15
compute the left and right cell containing the cone border points as in Section 4.2.3. The dif-
ference is, that the points border_l and border_r have to be transformed from the front_sonar
frame to the points border_l_global and border_r_global in the global frame with the help of
the tf module (Line 8 and 13). Furthermore, since border_l_global and border_r_global might
be outside of the occupancy grid, they get scaled with an already existing function (line 9 and
14). A point outside of the occupancy grid is set to the border of the occupancy grid on a line

79

Algorithm 10 ProcessMeasurement(M , sonar)
1: for all (xi, yi) ∈M do
2: dist←

√
(xi − sonar.i.x)2 + (yi − sonar.i.y)2

3: if dist ≥ MAX_DIST then
4: continue
5: end if
6: border_l.x← dist · cos(sonar.i.θ + φ) + sonar.i.x
7: border_l.y ← dist · sin(sonar.i.θ + φ) + sonar.i.y
8: transform border_l from front_sonar frame to border_l_global in the global frame
9: scale border_l_global

10: compute cell border_l_cell out of border_l_global
11: border_r.x← dist · cos(sonar.i.θ − φ) + sonar.i.x
12: border_r.y ← dist · sin(sonar.i.θ − φ) + sonar.i.y
13: transform border_r from front_sonar frame to border_r_global in the global frame
14: scale border_l_global
15: compute cell border_r_cell out of border_r_global
16: clearCells(border_l_cell, border_r_cell, sonar.i)
17: doBresenham(border_l_cell, border_r_cell, LETHAL_OBSTACLE)
18: end for

between the sonar sensor and the original point as shown in Figure 5.6.
Afterwards, the cells border_l_cell and border_r_cell, containing the border points can be

determined (Line 10 and 15). After the cells are cleared with function clearCells, which will be
presented shortly, a straight line between border_l_cell and border_r_cell is computed, with
the help of the Bresenham-algorithm. The cell cost value for each cell on the line is set to
LETHAL_OBSTACLE (line 17). Thus, the obstacle is inserted as line between the cone border
points.

Algorithm 11 implements Algorithm 8 from Section 4.2.3. The only difference is, that the
position of the i-th sonar sensor in the global frame of the occupancy grid is determined with
the help of the tf package (line 1). The sonar positions sonar_global in the global frame are not
necessarily static, in contrasts to the front_sonar frame. Thus, no precomputation can be made.
Lines 3-31 are Algorithm 8 from Section 4.2.3.

In this thesis, the obstacle_layer subscribes the following topics:

• /sonar (sensor_msgs/PointCloud): The obstacle_layer subscribes to this topic, to receive
the calibrated sonar measurements messages from the sonar calibration module.

• /tf (tf/tfMessage): To receive the transformation tree, to transform various points to the
global frame.

The original obstacle_layer is capable of processing measurements of multiple sensors oper-
ating concurrently. Thus, a future use-case could be to use laser- and sonar sensors concurrently
to update the costmap. As a consequence, the adaptations explained previously, have to be
included into the existing obstacle_layer. The obstacle_layer has just one list parameter obser-

80

Algorithm 11 clearCells(border_l_cell, border_r_cell, sonar.i)
1: transform sonar.i from front_sonar frame to sonar_global in the global frame
2: compute cell sonar_cell out of sonar_global
3: leftCells← doBresenham(sonar_cell, border_l_cell)
4: rightCells← doBresenham(sonar_cell, border_r_cell)
5: frontCells← doBresenham(border_l_cell, border_r_cell)
6: if border_l_cell.x < sonar_cell.x and border_r_cell.x < sonar_cell.x then
7: if border_l_cell.x < border_r_cell.x then . 1.1
8: begin_cells← leftCells
9: end_cells← merge(rightCells, frontCells)

10: else . 1.2
11: begin_cells← merge(leftCells, frontCells)
12: end_cells← rightCells
13: end if
14: else if border_l_cell.x > sonar_cell.x and border_r_cell.x > sonar_cell.x then
15: if border_l_cell.x < border_r_cell.x then . 2.1
16: begin_cells← rightCells
17: end_cells← merge(leftCells, frontCells)
18: else . 2.2
19: begin_cells← merge(rightCells, frontCells)
20: end_cells← leftCells
21: end if
22: else
23: if border_l_cell.x < border_r_cell.x then . 3.1
24: begin_cells← merge(leftCells, rightCells)
25: end_cells← frontCells
26: else . 3.2
27: begin_cells← frontCells
28: end_cells← merge(leftCells, rightCells)
29: end if
30: end if
31: clearTriangle(begin_cells, end_cells)

vation_sources, which specifies the used sensors. The sub-parameters of observation_sources
are:

• topic (string): The topic on which the sensor publishes the measurement messages.

• data_type (string): The type of messages published on topic. Legal values are PointCloud,
PointCloud2 and LaserScan.

• sensor_frame (string): The frame in which the measurement is expressed.

81

• sensor_semantic (string): Controls the raytrace and obstacle insertion. With Narrow-
Beam, the original implementations are used, with BroadBeam, the new implementations
are used.

• cone_angle (double): The angle of the cone from the centre to one sonar border.

• observation_persistance (double): How long a measurement should be buffered in sec-
onds. A value of 0 stores only the latest measurement of this sensor.

• marking (boolean): When set to true, the measurements from this sensor are used to insert
obstacles.

• clearing (boolean): When set to true, the measurements from this sensor are used to clear
obstacles.

Probabilistic_inflation_layer

When the probabilistic_inflation_layer is called, it circularly inflates cells which got a cost value
set by previous costmap layers. Thus, probabilistic_inflation_layer has to be the last layer in the
call sequence to perform its function properly. The probabilistic_inflation_layer is based on
the previously existing inflation_layer in the costmap_2d module, which only inflates obstacles
(cells with cost value 254). The inflation of an obstacle works by setting proximity cells to a
lower cell cost depending on the distance to the cell containing the obstacle. The cost of cells,
which are farther away from the obstacle cell are set to a lower value, than cells in closer vicinity
to the obstacle cell. Thus, inflation can be seen as a fadeout of cost values. Figure 5.7 shows the
idea of obstacle inflation, where the Manhattan distance is used as distance metric.

Figure 5.7: Inflating an obstacle cell

The inflation in both inflation_layers is influenced by three values. Cells which are not far-
ther away from an obstacle then the inscribed radius of the robot are set to INSCRIBED_INFLA-
TED_OBSTACLE (253). The inscribed radius is the radius of the biggest circle which fully fits
inside of the robot’s footprint (see Figure 5.8 for an example with a rectangular robot).

Thus, after inflating cells with obstacles, the occupancy grid can be seen as an almost explic-
itly constructed two-dimensional configuration space via a grid cell decomposition (see Chap-
ter 2). The assumption is, that the robot geometry is a circle with the inscribed radius. Since the

82

Figure 5.8: The inscribed radius of a rectangular robot

robot can rotate in place, the rotation of the robot can be ignored for configurations, which yields
a two-dimensional configuration space. Unfortunately, the robot is not circular and depending
on the rotation it might nevertheless collide with an obstacle, even if it is in a cell with a cost
value smaller than 253. Hence, it is only an almost explicitly constructed two-dimensional con-
figuration space. The usage of the inscribed radius for explicitly constructing the configuration
space can be seen as underestimation of the robot’s footprint.

A overestimation of robot’s footprint is achieved, when the circumscribed radius is used.
The circumscribed radius is the radius of the smallest circle, which fully circumscribes the
robots footprint (see Figure 5.9 for an example with a rectangular robot).

Figure 5.9: The circumscribed radius of a rectangular robot

Would the circumscribed radius be used for obstacle inflation and thus, explicitly construct-
ing the configuration space, rotation would never cause collisions with static obstacles. The big
drawback of using circumscribed radius is, that obstacles would be inflated too large. Paths
which would be valid with the real robot footprint, are not found. Since this is not the case,
when the inscribed radius is used, this radius is used for obstacle inflation. Furthermore, con-
stant observation of the environment, prevent the robot to rotate into obstacles.

The two other values influencing the inflation is the maximal distance to which an obstacle
is inflated (inflation_radius) and a weight factor how rapidly the cell costs should decline (in-

83

flation_factor). Another important property of inflation is,that it causes the robot to stay away
from obstacles, since paths crossing cells with lower cell costs are preferred.

Since the dynamic areas inserted by probabilistic_map_layer can have arbitrary cell costs
between 1 and 254 which shall be inflated too, the developement of the probabilistic_inflation_layer
was necessary. The general idea is to insert every cell which is not empty and not unknown into
a priority queue Q forming the “source” cells. Starting with the cell c in Q with the highest cell
cost, the cell cost values of neighbouring cells are set. Additionally c gets removed from Q and
the neighbouring cells are inserted intoQ. This is repeated until every cell has got its appropriate
cell value. Thus, a chain reaction starting from the source cells is launched. A record stored in
Q has the following fields:

1. pos: The position of the cell in the occupancy grid, used to calculate the cell cost of
neighbouring cells.

2. src_pos: The position of the source cell in the occupancy grid which caused the cell to be
inserted into Q.

3. cost: The cost of the cell. This field is used to sort Q descendingly.

4. src_cost: The cost of the source cell.

The cell cost of one cell gets calculated by the function enqueue shown in Algorithm 12.
The arguments pos and src_pos are the coordinates of the cells in the occupancy grid for which
the cost value should be set (current cell), and the coordinates of the source cell which should
be inflated respectively. The cell cost of this source cell is stored in argument src_cost.

To prevent endless loops, a global seen array with the same size as the occupancy grid is
used, to store the information if a cell was already visited. If this cell was already seen in this
run, no further action is taken for this cell (lines 1-3). Then, the distance dist in meters between
the current cell and the source cell is determined (line 4). When the distance is bigger than the
inflation_radius, the source cell does not influence the current cell and no further actions have to
be taken. The idea to inflate obstacles with the help of the inscribed radius is in the probabilis-
tic_map_layer the same as in the previously existing inflation_layer. Thus, when the source cell
contains an obstacle and the distance to the current cell is smaller than the inscribed_radius,
new_cost is INSCRIBED_INFLATED_OBSTACLE (lines 8-10). Otherwise, new_cost is deter-
mined by the source cell’s cost, the distance minus the inscribed_radius and the distance weight
inflation_factor (line 12). If the source cell does not contain an obstacle, new_cost is de-
termined like in line 12, but the distance is not decreased by the inscribed_radius (line 15). In
line 17, the current cost of the current cell is stored in old_cost. If old_cost is smaller than
new_cost, the current cell costs are updated and the cell is marked as derived (lines 19 and 20).
Otherwise, new_cost is set to old_cost (line 22). Then, the cell is marked as seen (line 24) and
inserted into Q.

Algorithm 13 manages the queue Q and it is executed when the probabilistic_map_layer
gets called. Most parts of this algorithm are copied from the previously existing inflation_layer.
It gets the coordinates of a rectangle segment inside the occupancy grid as arguments. The
previous layers set the costs of cells only inside this rectangular sector.

84

Algorithm 12 enqueue(pos, src_pos, src_cost)
1: if seen[pos.x][pos.y] = false then
2: return
3: end if
4: dist←

√
(src_pos.x− pos.x)2 + (src_pos.y − pos.y)2 · resolution

5: if dist > inflation_radius then
6: return
7: end if
8: if src_cost = LETHAL_OBSTACLE then
9: if dist ≤ inscribed_radius then

10: new_cost← INSCRIBED_INFLATED_OBSTACLE
11: else
12: new_cost← src_cost− (dist− inscribed_radius) · inflation_factor
13: end if
14: else
15: new_cost← src_cost− dist · inflation_factor
16: end if
17: old_cost← occupancy_grid[pos.x][pos.y]
18: if old_cost < new_cost then
19: occupancy_grid[pos_x][pos_y]← new_cost
20: derived[pos.x][pos.y]← true
21: else
22: new_cost← old_cost
23: end if
24: seen[pos.x][pos.y]← true
25: Insert {pos, src_pos, src_cost, new_cost} into Q

At line 1, every cell in seen is set to false, indicating a new run. In lines 2-9, cells which
are not empty, not unknown and which have not been set by the costmap in a previous run, are
inserted into the queue Q, forming the “source” cells. After this initialisation, the record with
the highest cost is removed from Q. Then, in lines 10-25 the function enqueue gets called for
each of the four possible neighbouring cells (top, right, bottom, left). This is repeated until Q is
empty.

The probabilistic_inflation_layer has the following parameters:

• inflation_radius (double): The maximum distance in metres, to which an obstacle is in-
flated.

• inflation_factor (double): How fast the cell costs should decline with increasing distance
to the source cell.

85

Algorithm 13 cellInflation(min_x, min_x, max_x, max_y)
1: set every field in seen array to false
2: for x = min_x to max_x do
3: for y = min_y to max_y do
4: cost← occupancy_grid.[x][y]
5: if cost 6= FREE_SPACE and cost 6= NO_INFORMATION and derived[x][y] =

false then
6: Insert {(x, y), (x, y), cost, cost} into Q
7: end if
8: end for
9: end for

10: while Q 6= do
11: {pos, src_pos, cost, src_cost} ← element from Q with maximal cost
12: Remove {pos, src_pos, cost, src_cost} from Q
13: if x > 0 then
14: enqueue((pos.x− 1, pos.y), src_pos, src_cost)
15: end if
16: if y > 0 then
17: enqueue((pos.x, pos.y − 1), src_pos, src_cost)
18: end if
19: if x < size_x− 1 then
20: enqueue((pos.x+ 1, pos.y), src_pos, src_cost)
21: end if
22: if y < size_y − 1 then
23: enqueue((pos.x, pos.y + 1), src_pos, src_cost)
24: end if
25: end while

5.6.3 Move_base

The move_base module [59] implements the path planning algorithm. It follows a two stage ap-
proach as presented in Section 3.3.3. When a new goal is published on the /move_base_simple/goal
topic, move_base uses the global_planner plug-in to compute a global plan. To fulfil this
task, the global_planner uses the global_costmap, which represents the environment. When
the global_planner plug-in finds a valid global plan, it gets forwarded to the local_planner.
Otherwise, the recovery mode is triggered.

The local_planner is an obstacle avoider (see Section 3.3.3), which is responsible to follow
the global plan and to avoid obstacles. Thus, it creates velocity commands which are published
to actuate the robot until the robot gets within the tolerance to the goal or no valid velocity
command can be created. In this case, the robot gets stopped and the global_planner is activated
again. When a global plan is found again, it is forwarded to the local_planner. This procedure is
repeated until the local_planner is able to create a trajectory or the last valid velocity command
is longer than a user defined time ago. In this case, the recovery mode is triggered.

86

In the recovery mode the recovery_behaviours are executed sequentially. Recovery_behaviours
influence path planning by changing execution or resetting data structures, when no path can be
found. After every execution of a recovery_behaviour, the global_planner tries to find a path
which gets forwarded to the local_planner. When both planners find a plan, the recovery mode
is exited and normal operation continues. Otherwise, the next recovery_behaviour is executed.
When a planner fails after the last recovery_behaviour was executed, the path planning is termi-
nated and an error is displayed to inform the user that the goal can not be reached.

Move_base publishes/subscribes to the following topics:

• /move_base_simple/goal (geometry_msgs/PoseStamped): Move_base subscribes to this
topic to receive goal locations.

• /cmd_vel (geometry_msgs/Twist): On this topic, move_base publishes velocity commands
to actuate the robot.

In this thesis, the following parameters are used for the move_base module (see Appendix A.1.2
for the concrete values):

• base_global_planner (string): The plug-in, which should be used as global_planner.

• base_local_planner (string): The plug-in, which should be used as local_planner.

• recovery_behaviors (list): The list of recovery behaviours which should be used. The
ordering of this parameter is the ordering in which the recovery behaviours get executed.

• controller_frequency (double): The execution frequency in Hz of the local_planner.

• controller_patience (double): How long move_base will wait in seconds for a valid tra-
jectory from the local_planner, before recovery mode is entered.

• conservative_reset_dist (double): The radius around the robot in meters, which is used to
clear the costmap at the first two recovery steps.

Global_costmap

The global_costmap is one instance of the costmap_2d module and is used by the global plan-
ner. Figure 5.10(a) shows the used layers of the global_costmap. Since the global planner
needs information about obstacles and dynamic areas contained in a probabilistic map, the first
layer of the global_costmap is the previously described probabilistic_map_layer. Because the
global planner should be able to plan paths involving the observed environment, the second layer
used is the obstacle_layer. The probabilistic_inflation_layer completes the layers used in the
global_costmap. Since the probabilistic_map_layer is used, it is obvious that the global_frame
of the global_costmap is set to /map. The robot_base_frame is set to base_link. The values of
the costamp_2d parameters for the global_costmap can be found in Appendix A.1.2.

87

(a) (b)

Figure 5.10: Layers of the global_costmap (a) and the local_costmap (b)

Local_costmap

The local_planner uses a second, independent instance of the costmap_2d module, called the
local_costmap. Figure 5.10(b) shows the used layers of the local_costmap. As layers, the
obstacle_layer and the inflation_layer are used. Since the local_planner is designed to create
trajectories in close vicinity of the robot, the rolling_window parameter is set to true. Hence, the
robot always stays in the centre of the costmap, and the costmap size can be reduced to 5 x 5
meters.

This is also the reason why the probabilistic_map_layer is not used. It would increase the
size of the costmap to the size of the map, which would significantly increase the runtime of one
local_planner cycle.

Since the costmap is centred around the robot, the global_frame is set to /odom. As in
the global_costmap, the robot_base_frame is set to base_link. The values of the costmap_2d
parameters for the global_costmap can be found in Appendix A.1.2.

Global_planner

This thesis uses navfn [60] as global_planner plug-in to create global paths. Based on the global-
_costmap it creates a potential field. Then the Dijkstra algorithm and gradient descent is used to
compute a global path from the current position of the robot to the goal location.

No changes were made to navfn in this thesis. Navfn publishes on the following topic:

• /move_base/NavfnROS/plan (nav_msgs/Path): The last computed plan is published on
this topic.

In this thesis, one nafvn parameter is used:

• allow_unknown (bool): Controls whether plans, which traverse unknown space are al-
lowed.

88

Local_planner

As local_planner plug-in, the dwa_local_planner [57] module is used. As the name implies,
dwa_local-_planner implements the DWA obstacle avoider, presented in Section 3.3.3.

To compute one velocity command, every part of the plan created by the global_planner
, which is outside of the local_costmap, is removed. This trimmed down plan is called the
global plan in the dwa_local_planner module. To avoid confusion with the plan created by the
global-_planner, in this subsubsection global plan refers exclusively to the trimmed down plan.
The end of the global plan forms the local goal. For each trajectory, the robot movement gets
simulated, yielding a local plan. In the remainder of this section, trajectory and local plan is
used interchangeably, since one can think of a data structure, containing both information.

The DWA implementation from [57] differs in how the sampled trajectories are scored. A
trajectory in dwa_local_planner is scored by the following criteria:

1. Target Heading: Prefers plans, where at the endpoint the robot heads to the local goal.

2. Clearance: Plans which move over cells with lower costs are preferred. Since obstacles
are inflated, the local planner tries to stay away from them.

3. Global Path: Prefers plans which are on the global plan.

4. Progress: Plans that go towards the local goal are preferred.

5. Forward movement: Prefer trajectories which drive forward.

6. Velocity: Prefer trajectories which speed matches to the surrounding. Hence, in free areas
higher velocities are preferred. In dynamic areas or near obstacles a lower velocity is
preferred.

Note, that the preferred forward movement is important for the P3AT, since it has no sonar
sensors at the back. Thus, driving backwards is dangerous for the P3AT, as dynamic obsta-
cles behind the robot will not be detected. Furthermore, the velocity criterion was developed
especially for this thesis. For this, the local_planner needs access to the global_costmap. The
dynamic areas are stored in the probabilistic map, but the local_costmap can not use the proba-
bilistic_map_layer to utilise the map. Thus, a minor change was made to the move_base module
in this thesis, such that the local_planner plug-in has access to the global_costmap.

The idea is to calculate the average cell cost of all cells in the surrounding of the path based
on the global_costmap. Based on this average value, the optimal velocity can be calculated.
The robot should move with maximum velocity, when the average is zero. An average of 254
(lethal obstacle) is the other extremum, where the robot should not move at all. In between these
extrema, the cell cost averages are linearly mapped to velocities between zero- and maximum
velocity. The difference between this optimal velocity and the velocity of the trajectory, which
should be scored, is used to compute the score.

The pseudo code for this trajectory scoring idea is shown in Algorithm 14.
In the first three lines, needed variables are initialised. The average costs of the cells sur-

rounding the local path is approximated. For sample points on the local path, the cell costs

89

Algorithm 14 velocityScore(traj)
1: sum← 0
2: cell_cnt← 0
3: i← 1
4: while i ≤ traj.size do
5: transform traj.i from the global frame of the local_costmap to pos_global in the global

frame of the global_costmap
6: compute global_map coordinates pos_map out of pos_global
7: for x = −max_dist to max_dist do
8: y ← |x| −max_dist
9: while |x|+ |y| ≤ max_dist do

10: curr.x← pos_map.x+ x
11: curr.y ← pos_map.y + y
12: if curr ∈ global_occupancy_grid then
13: sum← sum+ global_occupancy_grid[curr.x][curr.y]
14: cell_cnt← cell_cnt+ 1
15: end if
16: y ← y + 1
17: end while
18: end for
19: i← i+ 2 ·max_dist+ 1
20: end while
21: avg ← sum/cell_cnt
22: vel_opt← vel_max · (1− avg/LETHAL_OBSTACLE)
23: return eweight·|traj.vel−vel_obt| − 1

of neighbours, which are at most max_dist away (Manhattan distance) are summed up. The
maximal distance can be set via the parameter velocity_cost_max_dist. As step size for these
sample points s ·max_dist + 1 is used. These sums can then be used to calculate the average
cell cost. The most outer loop (lines 4-20) selects the sample points on the local path. Each
sample point gets transformed from the global frame of the local_costmap to the global frame of
the global_costmap (line). Then, the global_costmap map coordinates can be computed (line 6).
Both loops in lines 7 to 18 sum up the costs of the sample point’s cell and its neighbour cells.

In line 21 the average of all this summed up cells is calculated. Line 22 computes the opti-
mal velocity based on the average cell costs of the surrounding of the path as described above.
The velocity score for the trajectory is determined by the difference between the speed of the
trajectory and the calculated optimal velocity, weighted by weight (line 23). The weight can be
set via the velocity_cost_weight parameter. The exponential function ensures, that the more the
trajectory speed deviates from the optimal speed, the worse (higher) the score for this trajectory
is.

When a large dynamic object appears directly on, or very near to the plan created by the
global_planner, the dwa_local_planner has problems to go round this obstacle. This happens,
because the planner tries to stay close to the plan from the global_planner. The problem is, that

90

the dwa_local_planner is able to create trajectories, but with no overall progress, like moving
forward and backwards repeatedly. So the global_planner is not activated to plan a path around
the dynamic obstacle.

To circumvent this problem, it is checked, if the robot was able to move at least a minimum
distance in a given time window. If this is not the case, it is assumed that the robot is stuck and
the dwa_local_planner reports that it is not able to produce a valid velocity. This activates the
global_planner, which might find a path around the blocking obstacle. This is done by storing
the pose of the robot at every dwa_local_planner cycle and comparing the current position with
the newest pose that is older than the current time + the time window length.

The dwa_local_planner publishes/subscribes to the following topics:

• /move_base/DWAPlannerROS/global_plan (nav_msgs/Path): The trimmed plan the plan-
ner tries to follow.

• /move_base/DWAPlannerROS/local_plan (nav_msgs/Path): The local plan, created by the
best scored trajectory on the last cycle.

• /rosaria/pose (nav_msgs/Odometry): The topic on which the odometry information is
published, to obtain the current velocity of the robot.

Since the dwa_local_planner needs the dynamics of the robot, in the thesis a lot of parame-
ters are used to calibrate the module:

• acc_lim_theta (double): The maximal rotational acceleration of the robot in rad/s2.

• max_rot_vel (double): The maximum absolute rotational velocity of the robot in rad/s.

• min_rot_vel (double): The minimum absolute rotational velocity of the robot in rad/s.

• acc_lim_x (double): The maximum x acceleration of the robot in m/s2.

• max_vel_x (double): The maximum x velocity of the robot in m/s.

• min_vel_x (double): The minimum x velocity of the robot in m/s.

• acc_lim_y (double): The maximum y acceleration of the robot in m/s2.

• max_vel_y (double): The maximum y velocity of the robot in m/s.

• min_vel_y (double): The minimum y velocity of the robot in m/s.

• max_trans_vel (double): The maximum absolute translational velocity (sum of x and y
velocity) of the robot in m/s.

• min_trans_vel (double): The minimum absolute translational velocity of the robot inm/s.

• stop_time_buffer (double): How much seconds the robot must stop before hitting an ob-
stacle, to consider a trajectory as valid.

• sim_time (double): How long each trajectory is simulated forward in seconds.

91

• sim_granularity (double): The step size for the simulation between points on a trajectory
in meters.

• vx_samples (integer): The number of samples to use in the x velocity space.

• vy_samples (integer): The number of samples to use in the y velocity space.

• vtheta_samples (integer): The number of samples to use in the theta velocity space.

• path_distance_bias (double): How much the distance to the path should be penalised.

• occdist_scale (double): How much the distance to obstacles should be penalised.

• use_velocity_cost (boolean): Controls if the velocity cost function should be used.

• velocity_cost_max_dist (integer): The radius of the circles used to compute the average in
cells.

• velocity_cost_weight (integer): How much the difference between optimal and current
velocity of the trajectory should be penalised.

• min_travel_dist (double): The minimal distance in meters, the robot has to move in the
time window, such that the robot is not considered to be stuck.

• storage_duration (double): The length of the time window in seconds.

The concrete values of the parameters were found by extensive experiments and can be found
in Appendix A.1.2.

Recovery_behaviours

The recovery_behaviours are executed, when either the global- or local_planner is not able to
produce a plan over a time period greater than a user defined threshold. The following routines
are used in this thesis, where the presentation order is the order of execution:

1. clear_local_costmap: Cells in the local_costmap, which are not farther away from the
robot than the value of the move_base parameter conservative_reset_dist, are cleared.

2. clear_global_costmap: Cells in the global_costmap, which are not farther away from the
robot than the value of the move_base parameter conservative_reset_dist, are cleared.

3. clear_everything: Every cell of the local- and global_costmap is cleared. Additionally,
the buffer of the obstacle_layers, storing the sonar measurements is emptied.

4. deactivate_obstacle_layer: The obstacle_layer of the global_costmap is deactivated for
exactly one global_planner cycle.

92

The deactivate_obstacle_layer recovery_behaviour was developed for this thesis, to over-
come a problem with the sonar sensors and narrow passages. Due to the sonar sensor cone
problematic, sometimes narrow passages are perceived smaller than they are in reality. When
the robot drives nearer, the true size is revealed. When this wrong perception occurs during
global path planning, the narrow passage could become too tight for the robot to fit through.
This is especially problematic when the narrow passage is the only open door of a room, which
should be entered or exited. Thus, as last resort, the obstacle_layer of the global planner is de-
activated for one planning attempt, to ignore dynamic obstacles and plan only with the help of
the probabilistic map.

5.7 Rviz

The rviz module [69] is a graphical user interface, to display information of ROS nodes and
interact with them. This thesis uses the rviz module for two purposes. First, to display various
information from the navigation stack, like the position of the robot and the costmaps. The
second purpose of the rviz module in this thesis is, to set the current position of the robot and
the goal location.

Figure 5.11 shows a picture of rviz, with the buttons to set the current position of the robot
and the goal location encircled.

Figure 5.11: The rviz graphical user interface with encircled buttons to control the current
position of the robot and the goal location

No modifications were made in the rviz module in this thesis.

93

5.8 Navigation control module

The navigation control module was developed especially for this thesis to control the initial
position of the robot and to set a goal which the robot should try to reach. Via the command line,
a user can select from predefined initial- and goal locations, and can thus, control the movement
of the robot. The advantage of a predefined list is, that the user does not have to know the
concrete coordinates of initial- and goal locations. This is especially useful in scenarios, where
a robot has to reach predefined locations multiple times. An example is a service robot, which
has to pick up and deliver objects from/to fixed locations.

The module gets supplied with two lists via the parameter server. The first list consists of
pairs of name and initial position. The second list is similar, but instead of initial positions, goal
locations are stated.

In the first step, the module reads both lists from the parameter server. Then for a name,
supplied from the user via the command line, is waited. Depending whether an initial- or goal
location was named, the module publishes the corresponding pose on the user defined initialpose
or goal topic. Afterwards, for a new user input is waited.

The navigation control module publishes to the following topics:

• /initialpose (geometry_msgs/PoseStamped): The topic on which the initial pose is pub-
lished.

• /move_base_simple/goal (geometry_msgs/PoseStamped): The topic on whith the goal
pose is published.

The following parameters are used by the navigation control module:

• initialposes (list): The list of pairs consisting of name and initial position. An initial
position consists of the coordinates (pose_x and pose_y) and the heading of the robot in
quaternion (orientation_x, orientation_y, orientation_z and orientation_w).

• goals (list): The list of pairs consisting of name and goal location. The format is the same
as for the initialposes list.

• initialpose_topic (string): The topic where a chosen initial pose should be published.

• goal_topic (string): The topic where a chosen goal location should be published.

• frame (string): The frame in which the initial- or goal location is located.

An example ROS launchfile can be found in Appendix A.2.

5.9 Safe navigation module

The sole purpose of the safe navigation module is to observe the bumpers of the Pioneer 3-AT
robot platform published by rosaria (see Section 5.3). When a module tries to drive the robot
forward but at least one forward bumper is pressed, the module commands the robot to stop. The
same procedure is done with backward driving and the backward bumpers.

94

Basically the safe navigation module is a trimmed version of the safety module developed
in [11]. That implementation used information from sonar- and laser sensors to avoid collisions
and to slow down the robot. Since this task is done by the navigation stack, this features are re-
dundant and thus, not needed. Furthermore it is computationally more efficient than the original
version, since the previously unrestricted polling is capped to 100 Hz. This results in much less
computational load for the processor.

The safe navigation module publishes/subscribes to the following topics in this thesis:

• /cmd_vel (geometry_msgs/Twist): The safe navigation module subscribes to this topic to
receive the velocity commands from the navigation stack.

• /rosaria/cmd_vel (geometry_msgs/Twist): Safe velocity commands are published on this
topic to actuate the robot via rosaria.

• /rosaria/bumper_state (rosaria/BumperState): Rosaria publishes the state of the front and
rear bumpers on this topic.

The safe navigation module has the following parameters:

• cmd_vel_topic_in (string): The topic on which other modules publish velocity commands
to control the robots motors. The default value is /cmd_vel.

• cmd_vel_topic_out (string): The topic on which the module which commands the robot
base (in this thesis this is rosaria) is subscribed to receive velocity commands. The default
value is /rosaria/cmd_vel.

• bumper_topic (string): The topic on which the state of the bumpers is published. The
default value is /rosaria/bumper_state.

95

CHAPTER 6
Experiments and results

Various experiments have been conducted to test the implementations made in this thesis and
to evaluate the effects of the improvements on the planned paths. The first experiment show,
how the parameters to insert dynamic areas to the global costmap, influence the global path
planning. The second experiments show the advantages of our path planning implementation,
using probabilistic maps instead of static maps.

6.1 Pioneer 3-AT (P3AT)

For the experiments, the Pioneer 3-AT (P3AT) [49] from MobileRobots was used as robot plat-
form, which has a size of 625 x 501 mm.

Figure 6.1 shows the sensors of the P3AT robot, which was used in this thesis:

1. Laser Scanner Sick LMS100

2. Camera Canon VC C50i

3. Front and rear bumpers

4. Eight front sonar sensors

5. RFID Scanner (white plate)

The laser, camera and RFID sensors are mounted extensions and no features of a basic P3AT.
To stay compatible with other P3AT robots, this thesis only uses the front sonar sensors and the
bumpers. The exact layout of the front sonar sensors can be seen in Figure 6.2.

The robot drives with a skid-steer, which is very similar to differential driving. Hence,
the robot has two independent operating motors - one for each side. This allows the robot to
determine its driving trajectory by different motor speeds on both sides. To drive a left curve,
the speed of the left motor has to be lower than the right motor. When the speed of both motors
are inverse, the robot rotates in place, which can be handy in narrow environments.

97

Figure 6.1: The Pioneer 3-AT (P3AT) with highlighted sensors [11]

Figure 6.2: The sonar sensor layout at the Pioneer 3-AT [50]

The P3AT robot platform estimates its position by using rotary encoders at the wheels. Un-
fortunately, this information is poor, especially after driving many curves, since skid steering is
known for its notoriously poor odometry [74]. The problem is that skidding depends highly on
the underground, and since only the rotations of the wheels are tracked, the real movement of
the robot might deviate from the estimated movement.

For the experiments, all the ROS modules, presented in Chapter 5, were used.

6.2 Experiment 1: determining the impact of
forbidden_probability and forbidden_time_until_change

In this experiment, the effects of different values for the parameters forbidden_probability and
forbidden_time_until_change are examined. Forbidden_probability is the weight factor for the
occupancy probability of a cell in a probabilistic map from [11], used to calculate the cost
value for the corresponding cell in the costmap. Forbidden_time_until_change is the weight

98

factor for the time until change of a cell in the same probabilistic map. Global plans from
the global_planner are created on the global costmap, with different forbidden_probability and
forbidden_time_until_change values. For each of these global paths, the path length in points
and the cost is determined. Note, that the path cost is not the sum of all cell costs over which
the path is travelling, but the costs created by the potential field used in the global_planner.
Thus, those two metrics allow to compare the global paths, created with different values for the
parameters.

Figure 6.3 shows the probabilistic map used for these experiments. During creation of the
probabilistic map, a person was moving between a static box in the top right corner and a point
in the bottom left corner. Thus, a dynamic corridor is formed between those two corners.

Figure 6.3: The probabilistic map used for the experiments to determine the impact of forbid-
den_probability and forbidden_time_until_change

To create situations with different time until change values, the time until change of the cells
in the probabilistic map are multiplied with the factors 0.5, 1 or 2.

The first test is made with the multiplication factor of 0.5. Figure 6.4 shows the global plans
created on costmaps with different forbidden_probability and forbidden_time_until_change val-
ues. The colour of each cell indicates the cost value of this cell in the costmap. Blue indicates a
unknown cell (cost value 255). Black denotes a cell with an obstacle (cost value 254) and white
cells are empty (cost value 0). The different grey gradients represents cost values between 253
and 1.

Note that the white square on the top of the picture is a display bug in rviz module, and is not
present in the real costmap. Figure 6.4(a) shows the path planned with forbidden_time_until_change
and forbidden_probability set to 50 (notated as 50/50). Figure 6.4(b), 6.4(c) and 6.4(d) show the
paths with values 50/75, 75/50 and 75/75.

It is easy to see, how the forbidden_probability value influences the recognition of the walls
as obstacles. The lower forbidden_probability is, the better the border between blue areas (un-
known cells) and the white areas (empty cells) are separated by black areas (obstacles, in this
case walls). Only when forbidden_probability is set to 50, the walls are recognized sufficiently
as obstacles. Thus, it is advisable to set the forbidden_probability to a value lower or equal to

99

(a) (b)

(c) (d)

Figure 6.4: The paths created on the map with multiplication factor 0.5, where forbid-
den_time_until_change and forbidden_probability is set to 50 and 50 (a), 50 and 75 (b), 75
and 50 (c), 75 and 75 (d)

50 in this environment. As the time until change in the dynamic area is very low in this map, the
value of forbidden_time_until_change does not influence the global path planning much. This
is reflected in Table 6.1, showing the length and cost of the paths.

50/50 50/75 75/50 75/75
path length 506 504 504 503
path cost 3385916 3316559 3297026 3272745

Table 6.1: Length and cost of the paths depicted in Figure 6.4

More interesting is the case, when the multiplication factor is 1, which results in the origi-
nally recorded map. Figure 6.5 shows the global paths with forbidden_time_until_change and
forbidden_probability set to 50/50, 50/75, 75/50 and 75/75.

Here, forbidden_time_until_change heavily influences the path created by the global plan-
ner. Furthermore, in this setup, forbidden_probability only influences the costs of the path, but
not the length of it. This can be seen in Table 6.2, showing the length and cost of the paths.

At last, Figure 6.6 shows the global paths, planned on the map with multiplication factor 2.

100

(a) (b)

(c) (d)

Figure 6.5: The paths created on the map with multiplication factor 1, where forbid-
den_time_until_change and forbidden_probability is set to 50 and 50 (a), 50 and 75 (b), 75
and 50 (c), 75 and 75 (d)

50/50 50/75 75/50 75/75
path length 521 521 508 506
path cost 4124079 3542683 3429164 3385476

Table 6.2: Length and cost of the paths depicted in Figure 6.5

This results in very high time until change in the dynamic area. Thus, the value of 50 for
forbidden_time_until_change ensures, that the global planner completely avoids the area where
the person was walking. Of course, this is paid with a considerablly longer path, as shown in
Table 6.3.

50/50 50/75 75/50 75/75
path length 626 589 531 528
path cost 5087118 4491993 4412524 3634928

Table 6.3: Length and cost of the paths depicted in Figure 6.6

101

(a) (b)

(c) (d)

Figure 6.6: The paths created on the map with multiplication factor 2, where forbid-
den_time_until_change and forbidden_probability is set to 50 and 50 (a), 50 and 75 (b), 75
and 50 (c), 75 and 75 (d)

So, what are optimal values for forbidden_time_until_change and forbidden_probability? In
general, no concrete answer can be given, since both values are highly dependent on the environ-
ment. When starting, stopping and replanning is very expensive, forbidden_time_until_change
should be set to a high value. This allows the planner to find paths through regions with a
low time until change. In areas with low time until change, few replanning attempts should
be needed. The danger of such areas is, that when obstacles appear, they might stay there
for a long time and the robot has to go back. When such reversals should be prevented, a
low forbidden_time_until_change should be chosen. Then, the planner will avoid areas with
a low time until change. Thus, should appear an obstacle on a path, found with a low forbid-
den_time_until_change, it should vanish soon.

The values derived from this experiment, which have been proven to be useful in practise for
the used environment, are 75 for forbidden_time_until_change and 50 for forbidden_probability.

102

6.3 Experiment 2: travelling time of path planning using
probabilistic- and static maps

The first experiment only showed how probabilistic maps influence the global path planning.
The experiments in this section compare the needed time to reach the goal with probabilistic
maps, in contrast to static maps. Thus, the robot was actually driving around and avoided static
and dynamic obstacles in the dynamic areas. This was done ten times with the static version of
the map and ten times with the probabilistic one, to gain a reasonable average of the travelling
times.

6.3.1 Experiment 2a: Travel through a dynamic area

Experiment 2a is done on the map from the first experiment (see Figure 6.3), with multiplication
factor 1 and forbidden_time_until_change and forbidden_probability set to 75 and 50, respec-
tively. The robot has to drive from the left upper corner to the bottom right corner as shown by
the planned paths in the first experiments, avoiding static and dynamic obstacles.

In the first test, no dynamic obstacles were placed inside the dynamic region. When the
robot uses the static map, it drives straight to the goal through the dynamic region, since it has
no knowledge about it. However, if the probabilistic map is used, the robot avoids the dynamic
area by following the global path shown in Figure 6.5(c). Obviously, the curved path produced
on the probabilistic map, is longer than the straight path planned on the static map. Thus, it is
no surprise that the average travel time to reach the goal location from the start, is shorter with
the static map than with the probabilistic map. The concrete values can be found in the first row
of Table 6.4.

avg. travel time stat. map avg. travel time dyn. map
no obstacles 19,90 s 22,90 s
dyn. cylinder 36,47 s 24,65 s

static box and dynamic cylinder 48,75 s 24,73 s

Table 6.4: The average travel time of the robot in the first set of tests

In the second test, a cylindrical obstacle is placed inside the dynamic area after the global
plan has been computed and the robot has started is movement, as shown in Figure 6.7. This is
done to emulate a dynamic obstacle, which is unknown at the beginning.

The straight path planned on the static map is blocked by the dynamic obstacle. Thus, the
robot following this path has to stop and completely change its direction to avoid the obstacle,
which is time consuming. When the robot follows the path created by the global planner on the
probabilistic map, the robot just has to slightly change the path to avoid the obstacle. This stems
from the fact, that the obstacle hardly influences the global path created on the probabilistic map.
The time difference can be seen in the second row of Table 6.4.

In the last test, a rectangular obstacle replaces the cylindrical obstacle, used in the second
tests. This is done before the robot plans the global path, such that it can incorporate it into the

103

Figure 6.7: The cylindrical obstacle is placed after the robot started to move

plan. The cylindrical obstacle is placed between the rectangular obstacle and the box contained
in the map, after the robot started to move (see Figure 6.8), to emulate a dynamic obstacle.

Figure 6.8: The cylindrical obstacle is placed between the rectangular obstacle (black) and the
box contained in the map

The plan created on the static map runs between the rectangular obstacle and the box. When
the cylindrical obstacle is placed, there is not enough space for the robot to drive between the
rectangular obstacle and the box. Thus, the new shortest path is to drive at the bottom of the map
to reach the goal, which is a huge time loss. A robot following the global plan created with the
help of the probabilistic map is not influenced by the dynamic cylindrical obstacle. This is the
case, since at the beginning the plan runs at the bottom of the map. The average time needed of
both variants can be seen in the last row of Table 6.4.

104

6.3.2 Experiment 2b: Two ways to the goal

Experiment 2b is done on the map shown in Figure 6.9. There are two ways to reach the goal
from the start. The upper way is shorter, than the lower one, but it has a dynamic region in it. In
this environment, the parameters forbidden_time_until_change and forbidden_probability were
both set to 50. Thus, the plan created on the static map uses the upper path, whereas the plan
created on the probabilistic map uses the lower path.

Figure 6.9: The environment used for the second set of tests

Again, in the first test no obstacles are placed inside the dynamic area. Since the plan
produced on the static map uses the shorter way, it is not surprising that the average travel time
of the robot following that plan is shorter, than the average travel time for the robot following
the plan created with the help of the probabilistic map. The first row of Table 6.5 shows the
corresponding average times.

avg. travel time stat. map avg. travel time dyn. map
no obstacles 35,50 s 48,75 s

obstacle at the border 77,00 s 48,75 s
obstacle in the middle 88,55 s 48,75 s

Table 6.5: The average travel time of the robot in the second set of tests

In the second test, a box is placed at the border of the dynamic area right besides the inner
wall (see Figure 6.10), before the global plan is created. Since this narrows the corridor of the
upper way, the robot following the plan created on the static map has a hard time to fit through
this corridor. Thus, the average travel time is considerablly increased for the robot on this path
(see the second row of Table 6.5). The average travel time for a robot following the plan created
on the probabilistic map stays the same, sine it is not influenced by the obstacle on the upper
way.

In the last test, a box is placed right in the centre of the dynamic area, blocking the upper
path completely for the robot (see Figure 6.11). Thus, when the robot detects that the upper path

105

Figure 6.10: A box is placed at the border of the dynamic area

Figure 6.11: A box blocking the upper path

is blocked it has to drive back and take the lower path, which is time consuming. Again, the
robot using the path computed with the probabilistic map is not affected. The last column of
Table 6.5 shows the average travel time.

106

CHAPTER 7
Future work

7.1 Filter sonar sensors readings

A possible fask for future work could focus on the sonar sensor problems. One such problem
is the specular reflection, creating phantom readings. These phantom readings are especially
problematic, when they directly appear in front of the robot, since the robot believes to perceive
an obstacle and tries to avoid it. A possible solution could be a module, which filters out such
sporadic effects, while allowing valid sonar measurements.

Another problem is, that in some situations, sonar sensors perceive narrow passages smaller
than they are in reality. Again, a module could use a heuristic, which detects such situations
with the help of previous measurements and corrects them.

For both problems it is important, that this preprocessing is done with minimal time over-
head. When the delay is to big, a fast driving robot will crash into obstacles before it got the
measurements from the filtering modules.

7.2 Implement a new local_planner

The path planning implementation of this thesis could be enhanced by a local_planner plug-
in for the move_base node, which is especially designed for the P3AT. This would increase the
usefulness of the robot platform, since the current used dwa_local_planner module was designed
for a broad range of robots. Unfortunately, it is not always capable to find valid trajectories for
the P3AT, although the area around the robot is empty.

7.3 Introduce time into path planning

An interesting enhancement could be the introduction of time to path planning. This would
allow to find fastest paths in contrast to the common shortest paths. Additionally, this would

107

allow the robot to wait for events, when the plan requires it. Combining this with probabilistic
maps would allow for sophisticated path planners.

For example, assume that a room can be entered via two independent doors and a probabilis-
tic map stores the dynamics of these doors. A path planner could decide to plan the path through
the door which is farther away, but has a better combined rating of dynamics and probability that
the door is open. The main difference to the current implementation is, that through introduction
of time, the robot could wait in front of the possibly closed door, until it is opened. This would
be feasible, since the known dynamics of the door allows to estimate a time window, in which
the door should open.

108

CHAPTER 8
Conclusion

The focus of this thesis was to use the information of probabilistic maps to enhance the path
planning of navigation algorithms, which are currently based on static maps. Probabilistic maps
are capable of storing dynamic areas, by storing occupancy probability and time until change
for every cell. A new path planning strategy was developed, which uses this dynamic areas, to
decrease the average time the robot needs to reach its goal. This comes from the fact, that less
expensive obstacle avoiding have to be done.

Additionally, instead of common used laser scanners, the developed path planning strategies
uses significant cheaper sonar sensors. Thus, new ways to insert and delete observations into
path planning algorithms were developed.

The developed path planning strategy was implemented by modifying the navigation stack
of the robot operating system (ROS). Additional ROS modules were developed to support the
autonomously driving robot.

To test the developed path planning strategy, a Pioneer 3-AT robot (P3AT) platform was used
as autonomously driving robot. Various experiments were conducted to show how probabilistic
maps influence the path planning of the navigation stack. Additionally, experiments with the
P3A show the potential of avoiding dynamic areas to decrease the drive time of a robot. Com-
pared to traditional path planning strategies, up to 45% less average time was needed to reach
the goal with the new strategy.

At last, various ideas and possibilities to further enhance path planning are proposed.

109

APPENDIX A
ROS launchfiles

A.1 start_navigation.launch

<launch>
<node name="rosaria" pkg="rosaria" type="RosAria">
<param name="port" value="/dev/ttyS0" />
<param name="TicksMM" value="149" />
<param name="DriftFactor" value="0" />
<param name="RevCount" value="33608" />

</node>

<include file="$(find p2os_urdf)/launch/pioneer3at_urdf.launch
" />

<node name="tf_sonar0" pkg="tf" type="
static_transform_publisher" args="0.147 0.136 0 1.570796 0
0 /front_sonar /front_sonar0 100" />

<node name="tf_sonar1" pkg="tf" type="
static_transform_publisher" args="0.193 0.119 0 0.872665 0
0 /front_sonar /front_sonar1 100" />

<node name="tf_sonar2" pkg="tf" type="
static_transform_publisher" args="0.227 0.079 0 0.523599 0
0 /front_sonar /front_sonar2 100" />

<node name="tf_sonar3" pkg="tf" type="
static_transform_publisher" args="0.245 0.027 0 0.174533 0
0 /front_sonar /front_sonar3 100" />

<node name="tf_sonar4" pkg="tf" type="
static_transform_publisher" args="0.245 -0.027 0 -0.174533
0 0 /front_sonar /front_sonar4 100" />

111

<node name="tf_sonar5" pkg="tf" type="
static_transform_publisher" args="0.227 -0.079 0 -0.523599
0 0 /front_sonar /front_sonar5 100" />

<node name="tf_sonar6" pkg="tf" type="
static_transform_publisher" args="0.193 -0.119 0 -0.872665
0 0 /front_sonar /front_sonar6 100" />

<node name="tf_sonar7" pkg="tf" type="
static_transform_publisher" args="0.147 -0.136 0 -1.570796
0 0 /front_sonar /front_sonar7 100" />

<node name="sonar_calibration_module" pkg="p3at" type="
sonar_calibration_module">

<rosparam param="linear_functions">
- {k: 0.0, d: 0.0}
- {k: 0,0, d: 0.0}
- {k: -0.010, d: 0.218}
- {k: -0.0172, d: 0.250}
- {k: -0.0172, d: 0.250}
- {k: -0.010, d: 0.218}
- {k: 0.0, d: 0.0}
- {k: 0.0, d: 0.0}

</rosparam>
<param name="sonar_sensor_topic_in" value="/rosaria/sonar"

/>
<param name="sonar_sensor_topic_out" value="/sonar" />

</node>

<node name="safe_navigation" pkg="p3at" type="safe_navigation"
/>

<node name="probabilistic_map_server" pkg="dynamic_mapping"
type="probabilistic_map_server">

<param name="file_name" value="$(find dap_launch)/map.yaml"
/>

<param name="static_service_name" value="static_map" />
<param name="static_map_topic" value="/map" />
<param name="static_frame_id" value="map" />
<param name="probabilistic_service_name" value="

probabilistic_map" />
<param name="probabilistic_map_topic" value="/prob_map" />
<param name="probabilistic_frame_id" value="map" />
<param name="map_metadata_topic" value="/map_metadata" />

</node>

112

<include file="$(find dap_launch)/amcl.launch"/>
<include file="$(find dap_launch)/move_base.launch"/>

</launch>

A.1.1 amcl.launch

<launch>
<node pkg="amcl" type="amcl" name="amcl" respawn="false">
<!-- overall filter parameters -->
<param name="min_particles" value="500"/>
<param name="max_particles" value="5000"/>
<param name="kld_err" value="0.05"/>
<param name="kld_z" value="0.99"/>
<param name="update_min_d" value="0.1"/>
<param name="update_min_a" value="0.2"/>
<param name="resample_interval" value="1"/>
<param name="transform_tolerance" value="0.2"/>
<param name="recovery_alpha_slow" value="0.0"/>
<param name="recovery_alpha_fast" value="0.0"/>
<param name="gui_publish_rate" value="10.0"/>

<!-- sonar model parameters -->
<param name="range_sensor_type" value="sonar"/>
<param name="range_sensor_topic" value="sonar"/>
<param name="range_sensor_max_beams" value="8"/>
<param name="range_sensor_z_hit" value="0.70"/>
<param name="range_sensor_z_short" value="0.05"/>
<param name="range_sensor_z_max" value="0.05"/>
<param name="range_sensor_z_rand" value="0.30"/>
<param name="range_sensor_sigma_hit" value="0.5"/>
<param name="range_sensor_lambda_short" value="0.1"/>
<param name="range_sensor_model_type" value="likelihood_field"

/>
<param name="range_sensor_likelihood_max_dist" value="2.0"/>
<param name="range_sensor_max_range" value="5.0"/>

<!-- odometery model parameters -->
<param name="odom_model_type" value="diff"/>
<param name="odom_alpha1" value="0.5"/>
<param name="odom_alpha2" value="0.1"/>
<param name="odom_alpha3" value="0.3"/>
<param name="odom_alpha4" value="0.4"/>

113

<param name="occupied_threshold" value="90"/>
<param name="empty_threshold" value="10"/>

</node>
</launch>

A.1.2 move_base.launch

<launch>
<node pkg="move_base" type="move_base" name="move_base_node"

required="true" output="screen">
<rosparam file="$(find dap_launch)/global_costmap_params.

yaml" command="load" ns="global_costmap" />
<param name="base_global_planner" type="string" value="navfn

/NavfnROS" />
<param name="NavfnROS/allow_unknown" type="bool" value="

false" />

<rosparam file="$(find dap_launch)/local_costmap_params.yaml
" command="load" ns="local_costmap" />

<param name="base_local_planner" type="string" value="
dwa_local_planner/DWAPlannerROS" />

<rosparam file="$(find dap_launch)/dwa_local_planner_params.
yaml" command="load" ns="DWAPlannerROS"/>

<param name="conservative_reset_dist" type="double" value="
3.0" />

<param name="controller_frequency" type="double" value="4.0"
/>

<param name="controller_patience" type="double" value="15.0"
/>

<rosparam param="recovery_behaviors">
- {name: local_costmap_reset, type:

clear_local_costmap_recovery/ClearLocalCostmapRecovery}
- {name: global_costmap_reset, type:

clear_global_costmap_recovery/ClearGlobalCostmapRecovery
}

- {name: clear_everything, type: clear_everything_recovery/
ClearEverythingRecovery}

- {name: ignore_observations, type:
ignore_observations_recovery/IgnoreObservationsRecovery}

</rosparam>

114

</node>
</launch>

global_costmap_params.yaml

global_frame: map
robot_base_frame: base_link
transform_tolerance: 0.2
rolling_window: false
footprint: [[-0.3125, -0.2505], [-0.3125, 0.2505], [0.3125,

0.2505], [0.3125, -0.2505]]
update_frequency: 1.0
publish_frequency: 1.0

plugins:
- {name: probabilistic_map, type: "costmap_2d::

ProbabilisticMapLayer"}
- {name: obstacles, type: "costmap_2d::ObstacleLayer"}
- {name: probabilistic_inflation, type: "costmap_2d::

ProbabilisticInflationLayer"}

probabilistic_map:
probabilistic_map_topic: /prob_map
forbidden_time_until_change: 75
forbidden_probability: 50
use_maximum: false
unknown_cost_value: -1

obstacles:
obstacle_range: 2.5
raytrace_range: 3.0

observation_sources: point_cloud_sensor
point_cloud_sensor: {
sensor_frame: front_sonar,
data_type: PointCloud,
topic: sonar,
sensor_semantic: BroadBeam,
cone_angle: 7.5,
observation_persistence: 2.0,
marking: true,
clearing: true

}

115

probabilistic_inflation:
inflation_radius: 0.55
inflation_factor: 750.0

local_costmap_params.yaml

global_frame: odom
robot_base_frame: base_link
transform_tolerance: 0.2
rolling_window: true
footprint: [[-0.3125, -0.2505], [-0.3125, 0.2505], [0.3125,

0.2505], [0.3125, -0.2505]]
update_frequency: 1.0
publish_frequency: 1.0
resolution: 0.02
width: 5.0
height: 5.0

plugins:
- {name: obstacles, type: "costmap_2d::ObstacleLayer"}
- {name: inflation, type: "costmap_2d::InflationLayer"}

obstacles:
obstacle_range: 2.5
raytrace_range: 3.0

observation_sources: point_cloud_sensor
point_cloud_sensor: {
sensor_frame: front_sonar,
data_type: PointCloud,
topic: sonar,
sensor_semantic: BroadBeam,
cone_angle: 7.5,
observation_persistence: 2.0,
marking: true,
clearing: true

}

inflation:
inflation_radius: 0.55
cost_scaling_factor: 10.0

116

dwa_local_planner.yaml

odom_topic: /rosaria/pose

parameters for speed_cost_function
use_velocity_score_function: true
velocity_score_penalty: 30
velocity_score_perimeter: 2

physical roboter parameters
acc_lim_theta: 0.8
max_rot_vel: 0.50
min_rot_vel: 0.10

acc_lim_x: 0.12
max_vel_x: 0.25
min_vel_x: -0.10

acc_lim_y: 0
max_vel_y: 0
min_vel_y: 0

max_trans_vel: 0.25
min_trans_vel: 0.10

simulation parameters
stop_time_buffer: 1.0

sim_time: 1.5
sim_granularity: 0.05
vx_samples: 10
vy_samples: 0
vtheta_samples: 15

path_distance_bias: 60
occdist_scale: 0.75

roboter is stuck parameters
min_travel_dist: 0.30
storage_duration: 15.0

117

A.2 navigation_control_module.launch

<launch>
<node name="navigation control module" pkg="navigation control

module" type="navigation control module" output="screen">
<rosparam param="initialposes">
- {name: ia,

pose_x: 0.520615816116,
pose_y: 2.68255114555,
orientation_x: 0.0,
orientation_y: 0.0,
orientation_z: -0.020884441603,
orientation_w: 0.999781896265
}

- {name: ib,
pose_x: 3.7177541256,
pose_y: 2.67154550552,
orientation_x: 0.0,
orientation_y: 0.0,
orientation_z: 0.017499173739,
orientation_w: 0.999846877736
}

</rosparam>
<rosparam param="goals">
- {name: ga,

pose_x: 0.520615816116,
pose_y: 2.68255114555,
orientation_x: 0.0,
orientation_y: 0.0,
orientation_z: -0.020884441603,
orientation_w: 0.999781896265
}

- {name: gb,
pose_x: 3.7177541256,
pose_y: 2.67154550552,
orientation_x: 0.0,
orientation_y: 0.0,
orientation_z: 0.017499173739,
orientation_w: 0.999846877736
}

</rosparam>

<param name="initialpose_topic" value="/initialpose" />

118

<param name="goal_topic" value="/move_base_simple/goal" />
<param name="frame" value="/map" />

</node>
</launch>

119

Bibliography

[1] Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher Jones, and Daniel
Vallejo. Obprm: An obstacle-based prm for 3d workspaces. In Proceedings of the Third
Workshop on the Algorithmic Foundations of Robotics on Robotics : The Algorithmic Per-
spective: The Algorithmic Perspective, WAFR ’98, pages 155–168, Natick, MA, USA,
1998. A. K. Peters, Ltd.

[2] N.M. Amato and Y. Wu. A randomized roadmap method for path and manipulation plan-
ning. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Confer-
ence on, volume 1, pages 113–120 vol.1, Apr 1996.

[3] F. Avnaim, J.D. Boissonnat, and B. Faverjon. A practical exact motion planning algorithm
for polygonal objects amidst polygonal obstacles. In Robotics and Automation, 1988.
Proceedings., 1988 IEEE International Conference on, pages 1656–1661 vol.3, Apr 1988.

[4] J. Barraquand and J.-C. Latombe. A monte-carlo algorithm for path planning with many
degrees of freedom. In Robotics and Automation, 1990. Proceedings., 1990 IEEE Interna-
tional Conference on, pages 1712–1717 vol.3, May 1990.

[5] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: controllability
and motion planning in the presence of obstacles. In Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, pages 2328–2335 vol.3, Apr 1991.

[6] Jérîme Barraquand and Jean-Claude Latombe. Robot motion planning: A distributed rep-
resentation approach. Int. J. Rob. Res., 10(6):628–649, December 1991.

[7] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Learning motion patterns of
persons for mobile service robots. In In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3601–3606, 2002.

[8] V. Boor, M.H. Overmars, and AF. van der Stappen. The gaussian sampling strategy for
probabilistic roadmap planners. In Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on, volume 2, pages 1018–1023 vol.2, 1999.

[9] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for mobile
robots. Robotics and Automation, IEEE Transactions on, 7(3):278–288, Jun 1991.

121

[10] O. Brock and O. Khatib. High-speed navigation using the global dynamic window ap-
proach. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Confer-
ence on, volume 1, pages 341–346 vol.1, 1999.

[11] Stephan Brugger. Integrating probabilistic information of dynamic environment into maps
for enhanced action planning. Master’s thesis, Vienna University of Technology, 2014.

[12] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer, Dirk
Schulz, Walter Steiner, and Sebastian Thrun. Experiences with an interactive museum
tour-guide robot. Artif. Intell., 114(1-2):3–55, October 1999.

[13] John F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA,
USA, 1988.

[14] E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE MATH-
EMATIK, 1(1):269–271, 1959.

[15] A Diosi and L. Kleeman. Advanced sonar and laser range finder fusion for simultaneous
localization and mapping. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceed-
ings. 2004 IEEE/RSJ International Conference on, volume 2, pages 1854–1859 vol.2, Sept
2004.

[16] G. Dudek, P. Freedman, and IM. Rekleitis. Just-in-time sensing: efficiently combining
sonar and laser range data for exploring unknown worlds. In Robotics and Automation,
1996. Proceedings., 1996 IEEE International Conference on, volume 1, pages 667–672
vol.1, Apr 1996.

[17] M. Elbanhawi and M. Simic. Sampling-based robot motion planning: A review. Access,
IEEE, 2:56–77, 2014.

[18] A Elfes. Sonar-based real-world mapping and navigation. Robotics and Automation, IEEE
Journal of, 3(3):249–265, June 1987.

[19] Henri Farreny and Henri Prade. Heuristics—intelligent search strategies for computer
problem solving, by judea pearl. (reading, ma: Addison-wesley, 1984). International Jour-
nal of Intelligent Systems, 1(1):69–70, 1986.

[20] Steven Fortune and Gordon Wilfong. Planning constrained motion. Annals of Mathematics
and Artificial Intelligence, 3(1):21–82, 1991.

[21] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance.
Robotics Automation Magazine, IEEE, 4(1):23–33, Mar 1997.

[22] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, July 1987.

[23] R. Geraerts and M.H. Overmars. Reachability analysis of sampling based planners. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pages 404–410, April 2005.

122

[24] Roland Geraerts and Mark H. Overmars. A comparative study of probabilistic roadmap
planners. In IN: WORKSHOP ON THE ALGORITHMIC FOUNDATIONS OF ROBOTICS,
pages 43–57, 2002.

[25] Subir Kumar Ghosh and D.M. Mount. An output sensitive algorithm for computing vis-
ibility graphs. In Foundations of Computer Science, 1987., 28th Annual Symposium on,
pages 11–19, Oct 1987.

[26] Ken Goldberg. Completeness in robot motion planning, 1993.

[27] Dan Halperin and Micha Sharir. A near-quadratic algorithm for planning the motion of a
polygon in a polygonal environment, 1995.

[28] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100–
107, July 1968.

[29] D. Hsu, Tingting Jiang, J. Reif, and Zheng Sun. The bridge test for sampling narrow
passages with probabilistic roadmap planners. In Robotics and Automation, 2003. Pro-
ceedings. ICRA ’03. IEEE International Conference on, volume 3, pages 4420–4426 vol.3,
Sept 2003.

[30] Y.K. Hwang and N. Ahuja. A potential field approach to path planning. Robotics and
Automation, IEEE Transactions on, 8(1):23–32, Feb 1992.

[31] IEEE Spectrum. http://spectrum.ieee.org/robotics/medical-robots. Accessed: 2014-05-10.

[32] L. Jaillet and T. Simeon. A prm-based motion planner for dynamically changing environ-
ments. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 2, pages 1606–1611 vol.2, Sept 2004.

[33] Klaus-Werner Jörg. World modeling for an autonomous mobile robot using heterogenous
sensor information. Robotics and Autonomous Systems, 14(2–3):159 – 170, 1995. Re-
search on Autonomous Mobile Robots.

[34] M. Kallman and M. Mataric. Motion planning using dynamic roadmaps. In Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
volume 5, pages 4399–4404 Vol.5, April 2004.

[35] K Kant and S W Zucker. Toward efficient trajectory planning: The path-velocity decom-
position. Int. J. Rob. Res., 5(3):72–89, September 1986.

[36] L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration for fast path
planning. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Con-
ference on, pages 2138–2145 vol.3, May 1994.

[37] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Robotics
and Automation. Proceedings. 1985 IEEE International Conference on, volume 2, pages
500–505, Mar 1985.

123

[38] Kyung-Hoon Kim and Kyung Suck Cho. Range and contour fused environment recognition
for mobile robot. In Multisensor Fusion and Integration for Intelligent Systems, 2001. MFI
2001. International Conference on, pages 183–188, 2001.

[39] Nak-Yong Ko and R.G. Simmons. The lane-curvature method for local obstacle avoid-
ance. In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International
Conference on, volume 3, pages 1615–1621 vol.3, Oct 1998.

[40] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in unknown
terrain. In Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE International
Conference on, volume 1, pages 968–975 vol.1, 2002.

[41] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Norwell,
MA, USA, 1991.

[42] J.P. Laumond. Robot motion planning and control. Lectures Notes in Control and Infor-
mation Sciences 229. Springer, N.ISBN 3-540-76219-1, 1998.

[43] S.M. LaValle. Motion planning. Robotics Automation Magazine, IEEE, 18(1):79–89,
March 2011.

[44] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. Tech-
nical report, 1998.

[45] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[46] Maxim Likhachev, David Ferguson , Geoffrey Gordon, Anthony (Tony) Stentz, and Sebas-
tian Thrun. Anytime dynamic a*: An anytime, replanning algorithm. In Proceedings of
the International Conference on Automated Planning and Scheduling (ICAPS), June 2005.

[47] Andrzej Lingas. The power of non-rectilinear holes. In Mogens Nielsen and ErikMeineche
Schmidt, editors, Automata, Languages and Programming, volume 140 of Lecture Notes
in Computer Science, pages 369–383. Springer Berlin Heidelberg, 1982.

[48] T. Lozano-Perez. Spatial planning: A configuration space approach. Computers, IEEE
Transactions on, C-32(2):108–120, Feb 1983.

[49] MobileRobots Inc. http://www.mobilerobots.com/researchrobots/p3at.aspx. Accessed:
2014-05-10.

[50] MobileRobots Inc. Pioneer 3 Operations Manual with MobileRobots Exclusive Advanced
Robot Control & Operations Software , 2006.

[51] Nils J. Nilsson. A mobile automation: An application of artificial intelligence techniques.
In Proceedings of the 1st International Joint Conference on Artificial Intelligence, IJ-
CAI’69, pages 509–520, San Francisco, CA, USA, 1969. Morgan Kaufmann Publishers
Inc.

124

[52] Nils J. Nilsson. Principles of artificial intelligence. Tioga Publishing Co., Palo Alto, CA,
1980.

[53] Mark H. Overmars and Mark H. Overmars T. A random approach to motion planning.
Technical report, 1992.

[54] S. Petti and T. Fraichard. Safe motion planning in dynamic environments. In Intelligent
Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on,
pages 2210–2215, Aug 2005.

[55] J.H. Reif. Complexity of the mover’s problem and generalizations. In Foundations of
Computer Science, 1979., 20th Annual Symposium on, pages 421–427, Oct 1979.

[56] Robot Operating System. http://wiki.ros.org/amcl. Accessed: 2014-09-04.

[57] Robot Operating System. http://wiki.ros.org/dwa_local_planner. Accessed: 2014-09-25.

[58] Robot Operating System. http://wiki.ros.org/map_server. Accessed: 2014-09-01.

[59] Robot Operating System. http://wiki.ros.org/move_base. Accessed: 2014-09-22.

[60] Robot Operating System. http://wiki.ros.org/navfn. Accessed: 2014-09-23.

[61] Robot Operating System. http://wiki.ros.org/navigation. Accessed: 2014-09-04.

[62] Robot Operating System. http://wiki.ros.org/navigation/tutorials/robotsetup. Accessed:
2014-09-04.

[63] Robot Operating System. http://wiki.ros.org/p2os_urdf. Accessed: 2014-09-22.

[64] Robot Operating System. http://wiki.ros.org/rosaria. Accessed: 2014-08-18.

[65] Robot Operating System. http://wiki.ros.org/ros/concepts. Accessed: 2014-08-16.

[66] Robot Operating System. http://wiki.ros.org/roslaunch. Accessed: 2014-08-21.

[67] Robot Operating System. http://wiki.ros.org/roslaunch/architecture. Accessed: 2014-08-
21.

[68] Robot Operating System. http://wiki.ros.org/roslaunch/xml. Accessed: 2014-08-21.

[69] Robot Operating System. http://wiki.ros.org/rviz. Accessed: 2014-09-28.

[70] Robot Operating System. http://wiki.ros.org/tf. Accessed: 2014-08-18.

[71] Robot Operating System. http://www.ros.org. Accessed: 2014-08-15.

[72] Robot Operating System. http://www.ros.org/core-components. Accessed: 2014-08-16.

125

[73] R. Simmons. The curvature-velocity method for local obstacle avoidance. In Robotics and
Automation, 1996. Proceedings., 1996 IEEE International Conference on, volume 4, pages
3375–3382 vol.4, Apr 1996.

[74] D.J. Spero and R.A Jarvis. Towards exteroceptive based localisation. In Robotics, Automa-
tion and Mechatronics, 2004 IEEE Conference on, volume 2, pages 822–827 vol.2, Dec
2004.

[75] C. Stachniss and W. Burgard. An integrated approach to goal-directed obstacle avoidance
under dynamic constraints for dynamic environments. In Intelligent Robots and Systems,
2002. IEEE/RSJ International Conference on, volume 1, pages 508–513 vol.1, 2002.

[76] A Stentz. Optimal and efficient path planning for partially-known environments. In
Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on,
pages 3310–3317 vol.4, May 1994.

[77] Anthony Stentz. The focussed d* algorithm for real-time replanning. In Proceedings of the
14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95, pages
1652–1659, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[78] Petr Svestka. On probabilistic completeness and expected complexity of probabilistic path
planning, 1996.

[79] TEDUSAR - Technology and Education for Search and Rescue Robots.
http://www.tedusar.eu/cms/. Accessed: 2014-05-10.

[80] Sebastian Thrun, Arno Bücken, Wolfram Burgard, Dieter Fox, Thorsten Fröhlinghaus,
Daniel Hennig, Thomas Hofmann, Michael Krell, and Timo Schmidt. Artificial intelli-
gence and mobile robots. chapter Map Learning and High-speed Navigation in RHINO,
pages 21–52. MIT Press, Cambridge, MA, USA, 1998.

[81] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[82] J.P. van den Berg and M.H. Overmars. Using workspace information as a guide to non-
uniform sampling in probabilistic roadmap planners. In Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 IEEE International Conference on, volume 1, pages 453–460
Vol.1, April 2004.

[83] Jur Pieter van den Berg. Path Planning in Dynamic Environments. PhD thesis, Utrecht
University, 2007.

[84] J. Vannoy and Jing Xiao. Real-time adaptive and trajectory-optimized manipulator mo-
tion planning. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 1, pages 497–502 vol.1, Sept 2004.

126

[85] Dizan Vasquez and Thierry Fraichard. Motion prediction for moving objects: a statisti-
cal approach. In In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2004.

127

	Introduction
	Motivation
	Problem definition
	Methodological approach
	Structure of work
	Static path planning
	Introduction
	Configuration space
	Frames
	Shortest path algorithms
	Dijkstra
	A*

	Continuous path planning
	Combinatorial path planning
	Sampling based path planning

	Dynamic path planning
	Introduction
	Configuration-time space
	Online planning vs. offline planning
	Planning in known dynamic environments
	Adapting combinatorial path planners
	Adapting sampling based path planners
	Velocity-Tuning

	Planning in partially known or unknown dynamic environments
	Planning in configuration space
	Planning in configuration-time space
	Obstacle avoider

	Path planning with probabilistic maps and sonar sensors
	Path planning with probabilistic maps
	General idea
	N-ary configuration space
	Choosing existing path planning strategies
	The probabilistic map path planning strategy
	Example
	Dynamic path planning with sonar sensors
	Laser vs Sonar
	Environment observation for dynamic path planning with laser scanners
	Environment observation for dynamic path planning with sonar sensors
	Example

	Implementation
	Robot operating system (ROS)
	Filesystem level
	Computation Graph level
	Community level
	Transformations
	Starting a ROS node
	System Overview
	Global transformation tree

	Rosaria
	Probabilistic map server
	Sonar calibration
	Navigation stack
	Adaptive Monte Carlo Localisation
	Costmap
	Move_base

	Rviz
	Navigation control module
	Safe navigation module
	Experiments and results
	Pioneer 3-AT (P3AT)
	Experiment 1
	Experiment 2
	Experiment 2a: Travel through a dynamic area
	Experiment 2b: Two ways to the goal

	Future work
	Filter sonar sensors readings
	Implement a new local_planner
	Introduce time into path planning
	Conclusion
	ROS launchfiles
	start_navigation.launch
	amcl.launch
	move_base.launch
	navigation_control_module.launch

	Bibliography

