TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

DIPLOMARBEIT

A characterization of univalent
functions on the complex unit disc by
indefinite inner product spaces

ausgefiihrt am Institut fiir
Analysis und Scientific Computing
der Technischen Universitat Wien

unter der Anleitung von
Ao. Univ. Prof. Dipl.-Ing. Dr. techn.
Michael Kaltenback

durch
Markus Wess, BSc.

Wiedner Hauptstrafie 106/1/5
1050 Wien

Datum Unterschrift



Contents

Introduction ii
1 Preliminaries 1
1.1 Formal Power Series . . . . . . . . . . .. .. ... .. ... 1
1.2 Spaces with indefinite inner product . . . . . . .. ... ... ... .. 8
1.3 Defect operators . . . . . . . . ... 17
1.4 Reproducing Kernel Hilbert spaces . . . . . . ... ... ... ..... 19
2 The Bergman and the Dirichlet space 23
2.1 The Bergman Space . . . . .. ... ... o 23
2.2 The Dirichlet Space . . . . . . . ... ... 30
2.3 Generalized Dirichlet spaces . . . . . . . . .. ... oL, 32
3 Littlewood’s subordination principle 37
3.1 The subordination principle for the Dirichlet space . . . . . ... ... 37
3.2 The subordination principle for generalized Dirichlet spaces . . . . . . 39
4 De Branges’ univalence criterion 46

Bibliography 63



Introduction

It is a very strong property of a complex function to be univalent. The Riemann
mapping theorem states the existence of a biholomorphic (hence univalent) mapping
from any simply connected open proper subset of the complex plane to the unit circle.
Nevertheless for a given mapping in many cases univalence is not easy to prove. There
are a lot of necessary and sufficient conditions on functions to ensure univalence (see
for example [Pom]).

In this master’s thesis we focus on an approach based on the theory of indefinite
inner product spaces. The so called Littlewood subordination principle or Littlewood
subordination theorem states, that for a univalent self-mapping b of the complex unit
disc, that fixes the origin, the composition operator is a contraction on various spaces of
holomorphic functions. The composition operator induced by b is the linear operator,
that maps any given function of the studied space to the composition with b. It was
introduced in 1925 by John Edensor Littlewood [Lit25] and holds for example for the
Bergman, Hardy and Dirichlet space. Unfortunately this criterion is not sufficient for
any of the mentioned spaces. Nevertheless it is possible to expand the subordination
principle to a certain Krein space, such that it is sufficient. This will be the goal of
the Master’s thesis at hand.

In Chapter 1 we start by introducing the concept of formal power series and how
the contraction operator may be defined for such series. It is loosely based on [Hen74]
and [GK02]. We continue by discussing the theory of indefinite inner product spaces
and how a topology can be defined on Krein spaces, a certain class of indefinite inner
product spaces. For a more detailed discussion of indefinite inner product spaces
see for example [Bog74]. Moreover, we briefly describe the concept of defect spaces
and defect operators of contraction operators, since it is an important ingredient in
some proofs of Chapter 4. We conclude the first chapter with an introduction to the
theory of reproducing kernel Hilbert spaces, a class of Hilbert spaces, that includes
the Bergman and Hardy space. A more detailed survey of such spaces was written by
Aronszajn in 1950 [Aro50].

The second chapter consists of the introduction of two certain reproducing kernel
Hilbert spaces, namely the Bergman and the Dirichlet space.

In Chapter 3, we prove the Littlewood subordination principle for the Dirichlet
space. Further we introduce generalized Dirichlet spaces and present a proof for the
subordination principle based on [RR94].

The last chapter is dedicated to proving the main result of this work, Theorem 4.0.6,
which states, that the composition operator induced by a function b being a contraction
on a certain Krein space is already sufficient for b to be univalent. This theorem first
appeared in the proof of the Bieberbach conjecture by L. de Branges [dB85] in 1985.
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Introduction

The proof in hand is based on an article by N. Nikolski and V. Vasyunin [NV92], which
we tried to supplement with many details to make it an intelligible read.
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Chapter 1

Preliminaries

1.1 Formal Power Series

Defintion 1.1.1. Let (an),cy, € CNo be an arbitrary complex series. Then we call

f(z)=> an2" (1.1)
n=0

a formal power series and denote the family of all such formal power series by Sar CIf
we consider only series (an)neny € CV, starting with index one, we denote the resulting
family of formal power series by S*. For k € N the symbol P* refers to the set of all
polynomials with complex coefficients of degree less or equal than k, i.e.

pF .= {Zanz” tap=0,n>k}
n=0

and P := (J;2, P" the set of all Polynomials. Furthermore we denote the set of all
Polynomials p € P* with p(0) = 0 by P§ and Py := Uy, PE.
The radius of convergence R(f) € [0, +o0] of a formal power series f is defined as

limsup,, , o |an

1.2
+00, lim sup,, o |an|/" =0 (1.2)

) = { Em S >0

Remark 1.1.2.

(i) The term formal refers to the fact, that up to this point, we do not make any
assumptions about convergence of the series or which values can be substituted
for z. Technically until now every formal power series is nothing else, but the
sequence of its coefficients.

(ii) Note that R(f) is non-negative, but in general not positive. Consider for example
the formal power series

f(z) = Z n"z".
n=0

Then, because of
limsup [n”|"/™ = lim n = 400
n—00 n—o0

the radius of convergence R(f) is 0.
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Provided with addition and scalar multiplication on 88’ defined by

oo o o
Z anz™ + Z b2 = Z(an +by)2"
n=0 n=0 n=0

(1.3)

(o) (o]
n.__ n
A E apz” = g Aapz",

for all Y 0% janz", > o0 1 by2™ € S and A € C, the space 8§ is a complex vector
space. The neutral element of the addition is the formal power series with only zero
coefficients ) > /0 - 2" =: 0.

The following theorem states some well-known facts about power series. Proofs can
be found in any basic analysis book. Notation is mostly based on [RS02]

Theorem 1.1.3. Let f(2) =Y o0 jan2™ € S be a formal power series. Then

(i) f(z) converges absolutely for z € Bp()(0) and is divergent for |z| > R(f), where
By (20) := {2 € C: |z — 20| < 1} denotes the complex open disc with center zy
and radius r.

(ii) in case that R(f) > 0, the function f : z — f(z) is holomorphic on Bpr()(0).
Its derivative is given by f'(z) = > 00 | nayz""1 =>"2° ((n+1)an412". Further

R(f') = R(f). "

(iii) for a second power series g(z) = > o0 anz" € S the product (f - g)(z) has the
radius of convergence R(f - g) > min{R(f), R(g)} and

(F-9)(z) =3 cns”
n=0

with

Cp — Z aibj.

1,j€Np
i+j=n

(iv) Every holomorphic function f : D — C on an open set D with 0 € D allows
a unique power series expansion f(z) = Zif;o anz™ with radius of convergence
R(f) > sup{r > 0: B,(0) C D}.

(v) f(z) converges uniformly on B,.(0) for any r € R with 0 < r < R(f).

By Theorem 1.1.3 (i), we can interpret every formal power series f(z) with R(f) > 0

as a function
f . BR(f)(O) - C
' z = f(2).
For z € Bp(s)(0) N Bry(0) addition and scalar multiplication as defined in (1.3)

coincide with the point-wise addition and scalar multiplication in the vector space of
functions.
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Defintion 1.1.4. We define the formal differential operator on SS' by

d:{ N N SJOO
Yoo nzt = > o+ Daps12"

Theorem 1.1.3 (i1) shows that we can interpret every formal power series f, with
R(f) > 0 as a holomorphic function f : Br(s)(0) — C, where for z € Bg()(0)

(df)(2) = f'(2).

Defintion 1.1.5. The product of two formal power series can be defined as

£ (£) £ (50 )

n=0 \i=0

For k € N we are able to introduce the k-th power of a formal power series by induction

o0 1 o0
(Z bnz") = Z bp2"
n=0 n=0

(&) = (&) ()

[e.@] k oo
(Z bnz”> = Z bik) zn (1.4)
n=0 n=0

for the corresponding coefficients b%k). Further we define the zeroth power of a formal

power series by
o 0
(Z bnz”> = 1.
n=0

By Theorem 1.1.3 (i) we know that R(b¥) > R(b). The coefficients ') can be
computed explicitly in the following way:

We write

Theorem 1.1.6. For k € N, the coefficients in (1.4) satisfy

bk = > Dy by - - - b (1.5)
ni+nz2+...+ng=n
(nl,...,nk)Gng

Proof. For k =1 we have

(o] 1 o0 o0
(Z bnz") = Z bg)z” = Z bn2".
n=0 n=0 n=0
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The coefficients bg) = b, fulfill equation (1.5), since the sum only consists of the
summand b,,.
Now assume that (1.5) holds for k£ € N. By Definition 1.1.5, we have

() - () ()

<i bg’“&”) . (i bnz”>
n=0 n=0
_ N (zn: bgk)bn_i> P

i=0

n=0
From
n n
k
S oMb, = ST bubuy. by | bussi
1=0 1=0 ni+na+...4+ng=:
(”17--~,nk)eN](§
n
= > Dy by - - - by by
1=0 n1+n2+...4+np+n—i=n
(nl,...,nk,nfi)€N§+1
_ _ a(k+1
= > brybny -« by, = DETD
nitnz+..+ngp1=n
(nl,..‘,nkJrl)eNg_‘—l
we obtain
_ k+1
Shn) =Y
which proves (1.5) by complete induction. O

Now we are able to define the composition of two formal power series.

Defintion 1.1.7. Let b(z) = > 7, b,2" be a formal power series. Then we define the
composition operator Cj by

domC, — SSF

Cy: 00 n 0 00 n
b { Zn:O anz = Zn:(] (Zk:() akbglk)>z ’

where the domain of Cj is defined by

o0 oo
dom Cp := {Z anz" € S : Zakbg"’) converges, n € Np}.
n=0 k=0
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Remark 1.1.8.

(i) Let b(z) = > 07 o bnz™ be arbitrary and f(z) = > .07 janz"™, g(z) = > ooy cn2z"”
such that f, g € dom C}. Then

Z(ak -+ )\Ck>bg€) = Z akbff) + A Z Ckb%k)
n=0 n=0 n=0

exists for A € C. Hence, dom C} is a linear subspace of SJ .

(i) For f(z) = 2*, k € N,
(Cof)(z) = D b 2" = b(2)*
n=0

shows, that the composition of z* with a formal power series b(z) coincides with
the k-th power of the formal power series b(z), as defined in Definition 1.1.5.
The following example shows, that in general dom Cj, # Sar :
Ezample 1.1.9. We define two formal power series by f(z) := > " 2", and b(z) :=
1+2z. Then b(z)F = Zizo (S) 2", But the sum ) 72 (i) is divergent for all n € Ny.
Hence, f ¢ dom C}.
Nevertheless, in the special case, that b(0) = 0, the domain of Cj, is the whole space,

as the following theorem shows:

Theorem 1.1.10. For b(z) = > 7 bpz" = Y 2 b2 (i.e. by = 0) we have
dom Cy = SaL.

Proof. Let k € N k > n. Then for every tuple (ny,ng,...,ng) € N’(‘j with n1 + ng +
...+ ng = n, there exists at least one j € {1,2,...,k} such that n; = 0. It follows
from Theorem 1.1.6, that

(k) = > bpybpy . bay, = > o0=0,

ni+ns+...+ng=n ni+ns+...4+ng=n
(n1,m2,...,n ) ENE (n1,m2,...,n ) ENE

since by = 0. Hence, for any arbitrary complex sequence (an)nen, € CMNo. the sum
Yo akbg{“‘) has only a finite number of non-zero summands. Therefore, it converges
and its sum coincides with » aib¥). This shows that f (2) =Y 0 panz" € dom Cy
and we obtain dom Cj = SO+ . O

Lemma 1.1.11. Let b(z) = > 2 (02" and f(z) = > .07 ganz™ € domCy. Then
[bo| < R(f).
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Proof. Since f € dom Cy, the series Y ° b,gn)an converges for every k € Ny by defi-

(n) _ n

nition of dom (. In particular, this is true for £ = 0. Because of by~ = by, we find
that

oo o

S e = 3 o

n=0 n=0
converges. By Theorem 1.1.3, (i) this can only be the case if |bg| < R(f). O

Theorem 1.1.12. An arbitrary complex series Z?fk:o an, i, converges absolutely if and
only if Y po g lan k| < o0, for alln € Ny and Y 07 S0 |an k| < +00. In this case

0o 0o 00 0o 0
§ Qn L = § § an k. = § § Qp k-

n,k=0 n=0 k=0 k=0n=0
Proof. A proof can be found in [Rud70]. O

Lemma 1.1.13. Let b(2) = > 02 bp2™, f(2) = Y02 yanz" € Sy, such that R(b) >0
and |bg] < R(f). Then f € domCj, and there exists a real number § > 0, with
0 < R(Cyf), such that (Cypf)(2) = f(b(2)) for all z € Bs(0).

In this case for all real constants v > 0 such that r < R(b) and b(B,(0)) € Bgs)(0),
we have R(Cypf) > 1 and (Cyf)(2) = f(b(z)) for all z € B,(0).

Proof. We define a formal power series by

c(z) := icnz" = i |bp|2".
n=0

n=0 =

By Theorem 1.1.6, we have

ni+...+n=n
(n1,m2,...,n ) ENF

< Y Pl lba

ni+...+ng=n
(n1,m2,...,n ) ENF

k
R R T )

ni+..+ng=n
(n1,n2,...,n,)ENF

for k e N.
If we recall the definition of the radius of convergence (1.2), it is clear, that R(c) =

R(b) > 0. Since c(z) is continuous on Bp(0) and ¢(0) = |bo| < R(f) by assumption,
there exists a 6 € R, 0 < § < R(b) such that |c¢(z)| < R(f) for all z € B;(0).
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Using this, we can calculate for zy € Bs(0)

S fouts = Z\aanw(" lzol" <

n=0 k=0 n=0
o0
< Z |an| zc;w = 3" Janle(|20])" < +oc.
n=0 k=0 n=0

since e(|zol) = |e(|20))] < R(f),
Furthermore, since |zp| < R(b), the series b (z0)" = > 72, b( )Zo converges absolutely
for every n € N. So we can apply Theorem 1.1.12 to the series Zn,k:[} anbz(g )Zo and

obtain that y > anbgl) converges for all k € N. Thus, f € dom Cy. Moreover,

=3 > s ZZan M2k = (Cof)(20)-

n=0 k=0 k=0n=0

Now let 7 > 0 be such that b(B,(0)) € Bgs)(0). Then f(b(z)) is a holomorphic
function on B, (0), since it is the composition of two holomorphic functions. Hence,
by Theorem 1.1.3, (iv), it has a unique power series expansion f(b(z)) = Y 2 dp2".
The radius of convergence of Y 7 ( d,z" is at least r.

Let 0 be as above. Since Cyf is holomorphic on B;(0), it has a unique power series
expansion Y 2 enz". We conclude that

o0

Z dnz" z)) = (Cof)(2) = Z enz”

n=0

for all z € Bs(0). Since the power series expansion is unique, d,, = e, follows for all
n € Ny. Hence, Cpf has a radius of convergence of, at least, r and (Cypf)(z) = f(b(2))
for all z € B,(0). O

Ezample 1.1.14. Let b(z) = > 7, byz™ € ST be an arbitrary power series with R(b) >

0 and _
Bu(z)=Y (‘;) " (1.6)

denote the Binomial series, for an arbitrary complex number p. The binomial coeffi-
cients in (1.6) are defined by

<M> B {#(#—1)(#—3'"(#—714-1)’ ncN

n 1, n = 0.

It is well known, that
400, €Ny
1, pweC \ No
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and By(z) = (1 + 2)* for all 2 € Bp(p,)(0). Since b(0) = 0, we know by Theorem
1.1.10, that dom C, = S; and hence By,(z) € dom Cj,.

Now let > 0 be such that [b(2) | < 1 for all z € B,(0). Then due to Lemma 1.1.13
we have R(CyB,) > r and

(CyBy) (2) = By (b(2)) = (1 +b(2))",
for all z € B,(0).
This motivates the following definition.

Defintion 1.1.15. Let f(z) = Y00 ja,2™ € S be an arbitrary power series with
ap # 0 and p € C. Then we define the pu-th power of f(z) by

F(2) = ag(CoBy)(2)

where
oo

b(z) := Z—nz”.
n=1 0

Remark 1.1.16. Let f, b and p be as before with R(f) > 0. Then because of R(b) =
R(f) > 0 and b(0) = 0 Lemma 1.1.13 asserts, that R(f*) > 0.

1.2 Spaces with indefinite inner product

Defintion 1.2.1. Let & be a complex vector space, and |-, -] : X x X — C a hermitian
mapping (i.e. [z + Ay, z] = [z,2] + Ay, 2] and [z,y] = [y, 2] for z,y,z € X, A € C).
Then we call [+, ] an inner product and the pair (X, [-,:]) an inner product space.

Remark 1.2.2. Note, that for x € X from [z, x| = [z, z] follows that [z, z] € R.

Defintion 1.2.3. An element z € X is called

positive < [z,z] >0

negative < [z,2] <0
neutral < [z,2] =0

isotropic < [z,y]=0,y€ X

We denote the set of all isotropic elements by X° and call it the isotropic part of
(X ) ['7 ])

An inner product space is called positive (negative) definite if all elements except
for the zero vector are positive (negative) elements. It is called positive (negative)
semidefinite if it has no negative (positive) elements. Otherwise it is called indefinite.

X is called degenerated if X° # {0}. Otherwise it is called non-degenerated.

Remark 1.2.4. If ) < X is a linear subspace of an inner product space (X, [,-]), then
(Y, [,+]) is an inner product space itself. We call the subspace Y positive/negative
(semi)definite if (), [-,+]) is positive/negative (semi)definite.
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Lemma 1.2.5. The isotropic part X° of an inner product space (X,[-,-]) is a linear
subspace of X. Fvery element of X° is neutral.

Proof. For xz,y € X° and arbitrary z € X, A € C we have
[+ Ay, 2] = [2,2] + Aly, 2] = 0.
Hence X° is a linear subspace. The second assertion is clear. ]

Ezample 1.2.6. Every Hilbert space (H, (-, -)) is a positive definite inner product space.

Remark 1.2.7. Since X° is a linear subspace of X, the factor space X' /yo is again a
vector space. If we endow X'/ yo with the inner product

[+ X%y + X7, = [z,y (1.7)
the space (X/xe,[-;"]/,.) is again an inner product space. Note, that [-,-],, . is her-
mitian, since [-, -] is hermitian. It is well-defined, since for 1, x2,y1,y2 € X such that
x1 — X2, Y1 — Y2 € X°, we have [x9 — x1,y1] = 0 and there follows

[1 4+ X% y1 + X))o — [T2 + X%, Y2 + A°]
= [z1, 1] — [22, 92] = [v1,y1] — [72,92] — [T1 — 72, 01] =
= [72,y1 — 2] = 0.
=0 for all y + X° € X/xo. Then

[xo =

Let x + X° € X'/ xo such that [z + X°,y + X°]

/ x0
0=[z+X°%y+X°,. =[x,y

for all y € X shows, that z € X° and hence (X/yo)° = 0. Thus X/xo is non-
degenerated.

Example 1.2.8. Let (X1, [-,-];), (X2, [+, ]5) be positive semidefinite inner product spaces.
Then we define (X, [-,-]) by X := X} x X3 and
[(z1,22), (y1,92)] := [z1, 9]y — [32, 9], -

Since [+, -]1 and [-,-]2 are inner products, [-,-] is an inner product as well. Let ¢1, o
denote the embeddings of X7, X3 into X'. Then, since X7, X are positive semidefinite,

[t1(z1), e1(21)] = [21, 21]1 — [0,0]2 = [21,21]1 > 0
and
[ta(w2), L2(x2)] = [0,0]1 — [x2, X2]2 = —[22,22]2 <0

for all x; € Xy, x9 € Xa. Hence ¢1(AX)) is a positive semidefinite and t2(X2) a negative
semidefinite subspace of X.
If (x1,22) € X is isotropic, we have

0= [(z1,22), (y1,y2)] = [1,y1]1 — [T2,92]2 (1.8)

for all (y1,y2) € X. Hence z1 € Xy and z2 € X5. If, on the other hand z; € A7 and
zg € Xy, equation (1.8) holds for all (y1,y2) € H. Thus,

X = X x XS,
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Defintion 1.2.9. We call two elements z,y € X of an inner product space (X, [-,])

orthogonal if [z, y] = 0 and denote this by z[L]y. Two subspaces X}, X < X are called

orthogonal if x1[L]xs for all z1 € X}, z9 € Xy, and we denote this fact by X[ L]As.
The orthogonal complement M of a set M C X is defined as

MM = {zex: z[Llm, m e M}.

A linear operator P : X — X is called a projection if it is idempotent (i.e. P? = P).
A projection is called orthogonal (with respect to [-,-]) if ran P[L] ker P.

Lemma 1.2.10. Let (X, [,-]) be an inner product space and X1, Xo < X subspaces of
X, such that

X1+ X=X (1.9)
(the symbol + denotes a direct sum i.e. X1+ Xo = X and X1 N Xy = {0}). Then there
exist unique linear projection operators P; : X — X, © = 1,2, with P,X; = X; and
kerR = Xl—i
If the spaces are such that
Xi[+]Xe =X (1.10)

(i.e. X1+ Xo =X and X1[L]Xs), the projectors P; are orthogonal.

Proof. For x € X exist x1 € X1, xo € Xy, such that x = x1 + x2. This decomposition
is unique: For y; € A1, yo € Xy with y1 + yo = x, we have

0=2z1 —y1 + 22 — Y2
Since 1 — y1 € X} and x9 — Yo € Xy and X N Xy = {0},
1 —y1 =22 — Y2 =0.
Now we define P;x := x; for i = 1,2. Because of
Pi(z1 4+ 22+ My + y2)) = zi + Ayi = Pi(z1 + 22) + AP;(y1 + y2)

for x;,y; € X;, A € C they are linear, and since me = Pix; = x; = Pyx, they are
projections. The kernel of P; is

kerPlz{l'EX:Pla}:O}:Xg

and vice versa.
Let @ # 0 be linear a projection on X;. Then

R-(xl +x2) —Q(.731 +$2) =x;—x; =0

shows that @ = P;. Hence, if X;[L]Xs, the projectors are orthogonal. O

10
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Defintion 1.2.11. Let (X, [-,-]) be an inner product space and X}, X_ subspaces of
X such that
X = X, [HA_[HX..

Then we call the space X decomposable and the pair (X, X_) a fundamental decom-
position of X'. The linear operator

7 X - X
| * — Pyx—P_z,

where Py denote the projections onto X4, is called fundamental symmetry or met-
ric operator. If we want to emphasize, that a fundamental symmetry J belongs to
the fundamental decomposition (X, X_), we will also call the triplet (X4, X_,J) a
fundamental decomposition of X.

Lemma 1.2.12. For a fundamental decomposition (X, X_,J) of an indefinite inner
product space (H,[,]),

(i) [z, y] = [Pyx,y] + [P-z,y]
(i) [Pra,y] = [z, Pry] = [Pz, Pry]
(i) [Jo,] = [, Ty
(iv) [z,y] = [Jz, Jy] = [JJz,y]
hold for x,y € X
Proof. (i): Let x5 € X° such that z = (Py + P_)x + .. Then
[z, y] = [Pra,y] + [Pz, y] + [wo, y] = [Py, y] + [P, y].
(ii): Follows from X, L X_.
[Ja,y| = [Pra,y| — [P-x,y] = [z, Pyy] — [z, P_y] = [z, Jy]
(iv):
[Jz,Jy] = [Pyx, Pyy] — [Prx, P_y| — [P_x, Pry] + [P-z, P_y| =
= [P+J:’P+y] + [P,ﬂj‘,P,y] = [P+$ay] + [P*x7y] = [$7y]
The second equality follows from (7). O

Ezample 1.2.13. Recall the indefinite inner product space from Example 1.2.8 and
assume this time, that X, Xy are positive definite. Then, since X° = {0} and

[t1(2), 12(y)] = [(,0), (0,9)] = [2,0]1 = [0,y]2 = 0,

(01(AX1), 12(AX2)) is a fundamental decomposition. The action of J is given by J(z1, z2) =
(x1, —x2).

11
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Defintion 1.2.14. Let (X, [-,:]) be an inner product space and (X4, X_,J) a funda-
mental decomposition. Then we define a mapping by

) XxX — C
["'“'{ (@) = [Jo.y

and call it the inner product induced by the fundamental decomposition (X, X_, J).

Lemma 1.2.15. Let (X,[-,"]) and (X4, X_,J), be again an inner product space and
an arbitrary fundamental decomposition. Then [-,-]; is a positive semidefinite inner
product. Moreover

(X, [D° = (X, [ 0)°
and (X, [-,:]7) is positive definite if and only if (X,[-,+]) is non degenerated.

Proof. Since J is linear, [-, -] is linear in the first argument and because of

[‘Tﬂy]J - [J‘ray] = [‘ijy] = [Jya'ﬂ = [yax]J

by Lemma 1.2.12, (7i7), for all z,y € X, it is hermitian. It is also positive semidefinite,
since for r € X

[z,z]; = [Jx,z| = [Py, 2| — [P-x,z| = [Prz, Pyx] — [P_z, P_x] > 0.
Now let x € (X,[,+])°. Then by Lemma 1.2.12, (4ii),
[x7y]J = [Jxay] = [xvjy] =0

for all y € X and hence (X, [-,-])° C (X, [ ]s)°.
For z € (X,[-,-]s)° we have

[x>y] = [J.%‘,Jy] = [x>Jy]J =0

for all y € X due to Lemma 1.2.12, (iv), and thus (X,[-,])° 2 (X,[,]s)°. The last

assertion is clear since the isotropic parts coincide. O
Remark 1.2.16. Since the inner product [-,-] is positive semidefinite, it induces a
semi-norm || - || on X by
2
[z]|7 = [z, z],
for all x € X. By Lemma 1.2.15 || - ||; is a norm if and only if (X,[-,-]) is non-
degenerated.

Defintion 1.2.17. Let (K,[-,-]) be a decomposable, non-degenerated inner product
space and assume that there exists a fundamental symmetry J such that (IC, [-,-] ;) is
complete. Then we call (I, [-,-]) a Krein space.

12
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FEzample 1.2.18. Consider again the inner product space from Examples 1.2.8 and
1.2.13. This time assume, that X = H; X Hao = t1(H1)[+]e2(H2), where (Hi, (-, *);),
(Ha2, (-, -)5) are Hilbert spaces. Now let ((zn,¥yn)),cy be a Cauchy series in X. Then
because of
[(Zns Yn) = (Tm, ym)ll2J = [(@n = Tm; Yn — Ym): (Tn — T, Yo — Ym)]J
= [Zn = Tm, T — Tt F [Yn — Yms Yn — Yml2
= Jn — 2ml + i — il

the series (n)neN, (Yn)nen are Cauchy in H; and Ho respectively. Since H; and Ho
are complete, there exist € H; and y € Ha such that lim, o ||z, — 2|1 = 0 and
limy, 00 ||yn — y|l2 = 0. Thus,

Jim([(2n,yn) = (9|5 = lim fan — 2§+ lim [y, —y[i =0.
Hence, (X, [, ]s) is complete and (X, [-,]) is a Krein space.
Lemma 1.2.19. Let (X,[-,]) be a semidefinite inner product space. Then
(i) X° ={x € X : x is neutral}

(ii) for x,y € X the Cauchy-Schwartz inequality

[z, 9l < Vz, 2][y, y] (1.11)
holds.
Proof. If (X,[-,+]) is negative semidefinite, we just consider the positive semidefinite
inner product space (X,—[-,:]). So we can assume without loss of generality, that
(X, [,]) is positive semidefinite.

Let x,y € X be arbitrary such that [z,y] # 0. For A € R we have

[z,yl [y

ol ™ Mgl

= [r. 2] — lxvyl ] — lya'ml T 2
= [z, 2] — 2X[[2, y]| + N[y, y]-

We already know that X° C {z € X : z is neutral}. Assume that y is neutral

and [z,y] # 0 for some x € X. Then, because of [y,y] = 0, choosing A > 2‘@’"2” in

0< |z — Ay

(1.12)

inequality (1.12) leads to

Hence, [z,y] = 0 for all € X and therefore y € X°, which shows (i).
If x or y are isotropic, inequality (1.11) is fulﬁlled For x,y ¢ X°, setting \ = ll ll

in inequality (1.12) asserts
[, y]?
[y, 9]

which is equivalent to (1.11). O

0<[z,z] —

Y

13
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Lemma 1.2.20. Let (K,[-,-]) be an inner product space and (K4+,K_,J) some funda-
mental decomposition. Then for M C IC, the set MW s a linear subspace of K and
MW s closed with respect to || - || ;.

Proof. For x € M, we define a linear mapping by

e { K — C

ly = [zl
Then we can write M as

M = m ker f,.

zeM
Because of
o) = [z, 9] = [Tz, 9l < 1Tzl llylls

for all z,y € K, the mappings f, are continuous with respect to || - || ; and each ker f,
is a closed subspace of (K, [-,-]s). Hence, M [L] is a closed subspace as well. O

Remark 1.2.21. The proof in Lemma 1.2.20 works also for for an arbitrary inner

product space (X,[-,-]) and a norm | - || on X, such that f, is continuous for all
reX.

Since we will use it in the proof of the following lemma, we present a formulation of
the closed graph theorem (without proof).

Theorem 1.2.22 (Closed graph theorem). Let (X, ||-||x), (Y, ||-|ly) be Banach spaces
andT : X — Y a linear operator. Then T is continuous if and only if the graph of T
(i.e. the set {(x,y) € X x Y : y="Tax}) is closed in X x Y, endowed with the product
topology.

Proof. Can be found in [Rud70]. O

Lemma 1.2.23. Let K be a Krein space and (K4+,K_,J) be the fundamental decom-
position such that (KC,[-,-]) is complete. Further, let (K',K",J") be an arbitrary
fundamental decomposition. Then there exists a real constant C > 0, such that

1T T %]l < Cllzls (1.13)

and
| Tx|| ;o < Cllz|| (1.14)

forallz e X

Proof. To prove inequality (1.13), we first note that, because of
| Jz|5 = [Tz, Ja] = [Ja, 2] = [z, 2] = ||=[|3,

the operator J is an isometry with respect to || - |7 and therefore continuous. Now let
(2 )nen be a series in K such that lim, o ||z, — 2|7 = 0 and lim,, o || PLan,—ylls =0

14
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for some x,y € K. Then, since by Lemma 1.2.20 K/, = (IC’_)M is closed, we have
y € K!_. Moreover, because P| x, —x, € K, and K_ = (IC’JF)M is closed as well, we
obtain

lim P! Ty — T, =y—2x€K_.

n—oo
Now
0=P (y—z)=y— Pz
shows, that Pz = y. Thus P is closed with respect to || - ||;. By the closed graph
theorem, it is continuous. It can be shown analogously, that P’ is continuous with
respect to || - ||; as well. Since JJ' = J(P, — P’) is the composition of continuous
mappings, it is continuous itself. Hence, there exists a real constant C' > 0, such that
(1.13) holds.
To prove inequality (1.14), we first show by complete induction, that
|7 72| < (| ||, )% (1.15)
holds for every n € N. By the Cauchy-Schwartz inequality and Lemma 1.2.12, we find
|’ = [J'Jx,J Jz],,
= [J "Jx, J x]
= [J/J/JJ/J$7SC]
= [(J'D)2a,2]?, < ||(J' )|
for all x € K. But this is nothing else, but inequality (1.15) with n = 1.
Now assume, that (1.15) holds for some n € N. Then for z € K

J’ H‘THJ”

e a2
a5 = (1213)
n__ 2
< (lern@ef a5 )
— || | |2 2
= [(J ), () ]J, 2% 2
= [(JJ')Q" J’ (J/J) x x} ”xH2“+1 2
= {(J/J)Qnﬂx,x} HxHQ"Jrl -2
= H(J,J)QHH H HZE||J,||x||2n+ _H (J'J) on+1 ) ||:c||2n+1 17

shows that (1.15) holds for all n € N. From the previously proven inequality (1.13),

we derive
2

H(J/J)an| J'

= [(J, J)znx]J'
= (T )z <J'J>2"—1:c1
I, I,
I(JT) Tz| ()" T
O || Jal| ,CF |l s = € )3

A

IN

15
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Combining this with (1.15) yields

27’n
|ae ], < (| e 215 ) <
n__ 1 on_1 2=n _o9o—n—1 —-n _9—n
< (" HlalsllelZ ) = )3
for all n € N. For n — oo on the right hand side we obtain inequality (1.14). O

Theorem 1.2.24. Let K be a Krein space. Then two norms induced by fundamental
symmetries are equivalent.

Proof. Let (K4,K_,J) be the fundamental decomposition such that (K, [-, -] s) is com-
plete and (K'4, K'_, J’) an arbitrary fundamental decomposition. Then it is sufficient
to show that || - ||; and || - ||~ are equivalent, i.e. there exist real constants A1, Ay > 0,
such that

Allzllr < =l < Aellll

for all x € X.
Since (X,[-,:]s) is positive definite, by the Cauchy-Schwartz inequality, Lemma
1.2.12 and Lemma 1.2.23 we have

15 = [J'@, 2] = [T w,aly < ||T 2] sl|z]ls < Cllal]3- (1.16)
Inequality (1.16) also holds if we switch J and J’. Thus, we obtain
1
— |zl < ||zl < VC|z]| 5.
\FC” L < llzlly < VOl
U

Corollary 1.2.25. Let (X,[,‘]) be an inner product space. Then the following state-
ments are equivalent:

(i) (X,[-,]) is a Krein space.

(i) There exists a fundamental decomposition (Hi,Hz,J) such that (Hi,[,-]) and
(Ha, —[,"]) are Hilbert spaces.
Proof. (ii) = (4):
We'’ve already established that in Examples 1.2.8, 1.2.13 and 1.2.18.
(i) = (ii):
Let (X4, X_,J) be a fundamental decomposition, such that (X,[-,-]s) is complete.
Since for x € X4, y € X_ we have

[z,2] = [Jz,z] >0

[y, yl =[Jy,y] > 0

the spaces (Xy,[,:]) and (X_,—[,‘]) are positive semidefinite. Moreover, because
by definition (X, [-,-]) is non-degenerated and all neutral elements are isotropic by
Lemma 1.2.19, (X;[-,-]) and (X_, —[-,-]) are positive definite. Since Xy = (X_)* and
vice versa, they are closed with respect to || - || and, therefore, Hilbert spaces. O
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Since we will need it later on, we define contraction operators on (indefinite) inner
product spaces as follows:

Defintion 1.2.26. Let (X,[-,-]) be an inner product space, and T' : X — X be a
linear operator. Then we call T a contraction if

[Tz, Tx] < [z, ]

for all z € X.
Note that, if [-, -] is positive definite, T being a contraction is equivalent to T being
a bounded linear operator with norm smaller or equal 1.

Defintion 1.2.27. A Krein space H[+]|H2 such that min{dim H;,dim Hs} < 400 is
called Pontryagin space.

1.3 Defect operators

Defintion 1.3.1. Let (#,(-,-);/),, be a Hilbert space and T': H — H a bounded
linear operator. Then we denote the family of all such operators by B(H). We call
T € B(H) a contraction if

1T2]l3¢ < [|ll2

for all z € H (i.e. [|T] <1).
Further we define the space $H(T") by

HT):=ranT ={vecH:IyeH: x=Ty}.

Since for every x € H
T 'z = {y} + ker T,

for any y € T~'2 and ker T is a closed subspace of H, the set T 'z is closed in H.
Hence there exists a unique y, € ‘H with

1Yl = min {[lyl} : =Ty}

and we can define an inner product and norm on $(7°) by
(@, 2) gy = Wor¥2)a, N2lia) = Nallf = (Yo va)yy -

Remark 1.3.2. Note that y, =y — Py for any y € T2, where P denotes the orthog-
onal projection on ker T'. Therefore v, is the unique element of 77 2 N (ker T)*.
Since ran T* C (ker T')*
1TT* %) = T2

follows for all € H.

17
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It is easy to check, that (f_)(T), (-, '>fJ(T)) is again a Hilbert space.

Let (H,(-,-)4)4 be a Hilbert space and T': H — H be a contraction operator on
H, then because of (I denotes the identity on #)

(L =TT, 2y, = 2ll3, — (TT @, )y = el — |17 >
> el (1~ 17°13) = llzlid (1~ 1713 > o,

the operator I — TT™ is positive. Im1 particular there exists a unique, self-adjoint and
non-negative square-root (I — TT*)2 € B(H).

Defintion 1.3.3. Let H be a Hilbert space, and T : H — H a linear contraction
operator. Then we call the operators

Dr:=(I—-T'T)2,  Dp-:=(I—TT")2
the defect operators and the Hilbert spaces
Dr:=9H(Dr),  Dr+:=H(Dr+)
the defect spaces of the operator T

Theorem 1.3.4. Let ‘H be a Hilbert space, and T : H — H a linear contraction
operator. Then x € H is an element of Dr~ if and only if

sup ([l + Tyll3; — lylF) < +oo
yEH

In this case we can calculate the Dp+-norm by

|21, = sup (= + Tyl — llyl%)
yeEH

Proof. See [NV91], Chapter 1. O
Remark 1.3.5.
(i) Since for x € Dy~

llip; = sup (lz + Tyllz = lyl3,) = [l + TOI3, — 0117 = ll=]7
Yy

the embedding
L { Dr« — H

r = X

1S a contraction.

18
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(ii) Because of

|DF-l[p,.. = |Dr-Diwx|p,.

= | Dpall3,

- <(I —TTY)2x, (I — TT)? x>2

(I =TT")z,x)y
= |=lf, - IT*=3 < |3

H

for all x € H, the operator D%* : H — Dr« is a contraction as well.

Lemma 1.3.6. Let T be a self-adjoint operator on a Hilbert space H, and P an
arbitrary dense subset of H. Then the set D%*P 18 dense in Dp«.

Proof. Let f = Tg € $H(T) be arbitrary. Since T is continuous and self-adjoint,
we can decompose the space H into the closed linear subspaces ranT + kerT =
ranT + (ranT)*, and denote the orthogonal projections on ker 7" and ranT by Py
and P, respectively. Then since P,g € ranT there exists h € H such that Th = P,g.

Moreover since h € H and P is dense in H, there exists a sequence (pn),,cy, such that
lim,en |[pn, — h|lp = 0. Now we define (fy)nen = (TQpn)neN C T*P.
Because of

Ifr — fllsy = 1T2p,, — Tollary = IT(Trn — 9)llsr) =

— min |Tp, — kllo = min ||[Tp, — - P, klo <
Juin || Tpy, — g +kllp = min |[Tpn — Prg = Prg + kllo <

< | Tpn —Thlp + min ||Peg+ klln < [|T[llpn — Rlln
ke€ker T’

limp o0 || fn = flls(r) = 0. Hence TP is dense in $(T'), since f was arbitrary. O

1.4 Reproducing Kernel Hilbert spaces

For an arbitrary, non-empty set X, we denote the set of all functions from X to C by
CX. If we define the addition of f,g € CX by (f +g¢)(z) := f(x) + g(x) and the scalar
multiplication of f € CX with A\ € C as (\f)(z) := Af(x) for all z € X, then C¥X is a
vector space.

For every x € X we can define the mapping

) .{(CX - C
’ [ ).

Because of tz(Af 4+ g) = Mf(x) + g(x) = Ao f + 129 for f,g € CX, X € C, the mapping
Lt is linear.
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Defintion 1.4.1. Let X be an arbitrary set and (H, (-,-),,) be a Hilbert space, such
that % < CX i.e. H is a linear subspace of CX. The space H is called a reproducing
kernel Hilbert space (or RKHS) over X if ¢, € H' for all z € X, where the symbol H’
denotes the topological dual space of H, defined by

H':={h:H — C|h is linear and continuous}.

Lemma 1.4.2. Let (H, (-,)4)4, be a RKHS over X, then there exists a kernel function
Ky : X x X — C, such that for allw € X the function Ky(-,w) € H and Ky has the
reproducing property:

fw) = (f, Ky (-, w)y (1.17)
forall f € H.
Proof. Let w be an arbitrary element of X. Since H is a RKHS, ¢, € H' and by

the Riesz representation theorem there exists a unique k,, € H, such that (f, ky), =
twf = f(w) for all f € H. Now we define our kernel function as

Ky(z,w) := ky(2).
O

The existence of a kernel function is already a sufficient condition for a Hilbert space
to be a RKHS.

Lemma 1.4.3. Let (H,(:,-)5)5, be an arbitrary Hilbert space, such that H < CX for
a non-empty set X. Assume that there exists a kernel function Ky : X x X — C with
Ky (-, w) € H, for all w € X such that Ky fulfills the reproducing property (1.17).
Then H is a RKHS over X.

Proof. If we have (f, Ky(-,w))y = f(w) = tof for f € H, w € X, the functional ¢,
is bounded by the Cauchy-Schwartz inequality.
O

If H is a RKHS, the following lemma shows that $(7) has the same structure.

Theorem 1.4.4. Let (H,(:,")3)4 be a RKHS over a set X with reproducing kernel
K and T : H — H be a bounded linear operator. Then the space (ﬁ(T), (-, ‘>5(T)) is
again a RKHS with reproducing kernel Kgp)(-,w) := TT*K (-, w).

Proof. For fixed w, the function Kgp)(-,w) is an element of $(7). So it is only left
to show, that K7 has indeed the reproducing property. For this purpose let w € X,
f€9(T) and g € H such that f = Tg and g € (ker T)*. Now we calculate

<f7 Kj'j(T)('a ’IU)>5(T) = <Tga TT*K(? w)>y‘)(T) = <g7 T*K(> w)>’)—[
since ranT™ C ker TJ-, and further

(9, T"K (-, w))y = (Tg, K(,w))yy = (f, K(,w)gy = f(w).
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Defintion 1.4.5. Let (H,(-,-)) be a Hilbert space. Then we call T' < H x H a linear
relation. If T is a closed subspace of H x H it is called a closed linear relation. The
adjoint of T is defined by

T = {(z,y) e H x | (u,y) = (z,v), (u,v) € T}. (1.18)
Remark 1.4.6.

(i) Every linear operator T : H — H can be viewed as a linear relation if we identify
T with its graph.

(ii) The adjoint of the graph of a linear operator 7" as defined in (1.18) coincides
with the graph of the adjoint operator T™.

(iii) For any linear relation R
R* =R, R = R".

For a proof and more on linear relations and their adjoint see [Kall4].

Lemma 1.4.7. Let (H,(:,")y)y be a RKHS over a set X with reproducing kernel K
and b : X — X be a function such that the linear operator C defined by Cf := fob
maps into H. Then C* = span {(K(-,w); K(-,b(w)) : w € X)} if we identify C' with
its graph.

If in addition C is a contraction

Kgry(2z,w) == K(z,w) — K(b(2),b(w))

is the reproducing kernel of the space $H(T), with T := (I — C’C*)%.

Proof. We define R := span {(K(-,w), K(-,b(w)) : w € X)}. Then R is a closed sub-
space of H x H and therefore a closed linear relation. A pair (f;g) € H x H by
definition of the adjoint linear relation is an element of R* = (E)* if and only if

(g9, u)y = (f,0)y (1.19)

for all (u;v) € R. By definition of R, we have

N N
(usv) = <Z An K (-5 wn); Z A K (- b(wn))>
n=1 n=1
for some N € N, \, € C, w,, € X. Hence, if (f;9) € R*

g(w) = (g, K(-,w))yy = (f, K (-, 0(w))), = f(b(w)) = (Cf)(w)

for all w € X. Thus we have R* C C. On the other hand f ob = Cf together with
the reproducing property yields

<va(ﬂb(w))>H = f(b(w)) = <f © bﬂK<'7w)>H :
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By linearity (1.19) is fulfilled for all (u;v) € R, and therefore R* = C'. We conclude
=)y =(®) =F

To prove the second assertion we calculate the kernel of $(7") by Theorem 1.4.4 and
obtain

Koy (z,w) = (TT K(, w)) (2) = (I = CCT)K (-, w))(2) =
= K(z,w) = (CK(,b(w)))(2) = K(z,w) = K(b(2), b(w))-

O]
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The Bergman and the Dirichlet space

2.1 The Bergman Space

Lemma 2.1.1. Let (H,(:,")4) be a (complex) Hilbert space, X an arbitrary (complex)
vector space and ¥ : H — X a linear bijection. Then (X, (-,-)x) is a Hilbert space,
where the inner product is defined as

‘) { XxX — C
VXL (@) = (TN @) T W)y,

The mapping 1 is isometric.

Proof. First note, that (-,-)y is sesquilinear, conjugate symmetric and non-negative,
since it is the composition of a conjugate symmetric, non-negative sesquilinear form
and a linear mapping.

Let z € X, such that (z,z)y = 0. Since

0= (z,2)x = (¥~ (), 97 (@),

and (-, ), is positive definite, we get that ¢ ~!(z) = 0 and hence x € ker 1. Due to
the fact that 1 is one-to-one, we have that x = 0. This shows that (-,-), is positive
definite.

Because for arbitrary x € X

(@)% = (W (@), v(@) x = (P (@(x)), ¥ (Y(2)))y, = (2,2 = 2l

the mapping v is in fact an isometric isomorphism.
Now let (z1,),cn be a Cauchy series in X, i.e.

Ve>03dNy € N: ||z, — zp||x <&, Ym,n > Np.

Since 1 is isometric, the series (1/1_1(a:n))n oy is a Cauchy series in ‘H. Because of the
completeness of H it converges to some h € H. Now

lzn — ¥ (R)llx = 1™ (2n) = hllx

shows that x, — 1(h), and hence X is complete. ]
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Let CNo = {(a”)nENo :an € C,n € Ny} denote the set of all complex series.
With addition and scalar multiplication defined by

(an)nGNo + (bn)n€N0 = (a’n + bn)nGNo (21)
A (an)neNO = (/\an)neNo
for (an)peny s (On)pen, € CNo, X\ € C, the set CNo is a complex vector space. The

neutral element of the addition is the series (0)pen,-
It is a well known fact, that the linear subspace l; < CNo, defined by

Iy = {<an>neNo €Ch: ) lanl’ < +oo} ,

n=0
equipped with the inner product

b Xlz — C

Uy { (@) ey Gudery) = S @b

is a Hilbert space.
Defintion 2.1.2. Let the mapping 1 be defined by
v { st
(@n)nen, + ano n+1layz".

The space (A2 (-,-) 42), with A% := ¢(l3) and (¢(a),¥(b)) 42 = (a,b)2 is called
Bergman space.

Theorem 2.1.3. The Bergman space (AQ, (-, ->A2), is a RKHS over the open unit disc
D := R1(0) with kernel function

[e.9]

Kp2(z,w) := Z(n + Dw"z".

n=0

Proof. To show, that A? is in fact a Hilbert space, we’d like to apply Lemma 2.1.1.
So we have to verify its assumptions. We already know, that ls is a Hilbert space, and
Sar is a vector space.

For A € C, a = (an),en, » b = (bn),en, € l2 and 2z € D, we have

P(a+ Ab)(z) = i vn+ 1(an + Aby) 2"

n=0

=3 Vn+1(an)z" + AVt 1(bp)2" = (a)(2) + Mp(b)(2).
n=0 n=0

For a = (an)nen, such that ¢(a) = 0= 377 02", immediately follows a,, = 0 for all
n € No. Hence ker 1(a) = {(0)nen, }-

24



Chapter 2 The Bergman and the Dirichlet space

This shows, that ¢(l2) is a vector space, and 1 is an isomorphism between Iy and
¥(l3). So all the requirements of Lemma 2.1.1 are fulfilled. Thus A? is a Hilbert space.
Next we show that A? < CP. To do so, we define a function f : [0,1) — C by

f(z) := 1%. Because of
d w d o d o S
/ _ v _ v n_ 7 n+1l _ 1 n 2.3
F@) drl—=z dx;x da:nzoaj 7;)( +n)a" < foo (2:3)
for all z € [0,1), it follows for z € D, that
F(127) =D (n+ D2 < +o0.
n=0

This shows, that for z € D, the series (v/n +1 |z]”)n6N0 is an element of [5.

Let (apn)nen, be an arbitrary la-sequence. Then (|ay,|)nen, is an element of I as well
and we may calculate

o
>~ Wit Tanz"| = ((anhnene, (VAT 112" 0y, ), < +o0
n=0 2

for all z € D. Because of

¢((an)n€No) = Z vn+1 anzn7
n=0

this shows, that the radius of convergence of ¥((an)nen,) is indeed greater or equal to
one and hence 9 ((an)nen,) € CP. By Theorem 1.1.3 (i) we can interpret the elements
of A? as functions on ), where addition and scalar multiplication on A? coincides with
the point wise addition and scalar multiplication on CP, i.e. A% < CP.

It remains to show, that A? is indeed a RKHS with reproducing kernel K 42. Since
forweD

KA2<'7w) - w(( vn+1 wn)nENO)7

K 42(-,w) € A% and because for 1((a)nen,) € A% we have
<'¢((an)n€No)v KA2('7 w)>A2 = <(an)n€N0a ( v1+ nwn)n€N0>12 =
Z V1+na,w" = ¢((an)n6No)(w)a
n=0

K 42 has the reproducing property (1.17). By Lemma 1.4.3 this is sufficient for A2 to
be a RKHS. ]

Remark 2.1.4. If we substitute wz for = in equation (2.3), we obtain

o0
d =z 1
K g 1 ik n:—i =
42 (z,w) nz:%(n—k Jw"z izl " (—ap

for |z| < Wll Hence K 42(-,w) has a radius of convergence of ﬁ
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Chapter 2 The Bergman and the Dirichlet space

Theorem 2.1.5. A formal power series f(z) =Y oo qanz™ belongs to A% if and only
if

o0

In this case
o0

1
1715 = 3 ol

For two functions f,g € A%, f(2) = 300 janz™, g(2) = Yo% byz™ we can calculate

the inner product by
o

1 _
(fag>A2 = Z anbn-
= 1+n
= RS D N A
Proof. If we define (ap)neny = ¢~ (f) = (\/ﬁan)nem, we have
> fan? =3 g oo
n=0 n=0

in the sense, that the sum on the left hand side is finite, if and only if the sum on the
right hand side is finite. Hence f € A? if and only if > °° %_H lan|* < +00. In this

case
00 00

1152 = 197 DI, = I@anenllt, = D laal? =D

n=0 n=0

1
n—+1

|an|2~

We can calculate the inner product by

(fr9) a2 = (W) Hg)),

The Bergman space is a subspace of the vector space of all analytic functions on the
open unit disc . The following example shows, that it is a proper subspace.

Ezample 2.1.6. Consider the function f(z) := i It is analytic on the open unit disc

and allows a power series expansion f(z) = 2 z". But since

=1 =1
Zn—i—l :ZE
n=0 n=1

is not finite, we know by Theorem 2.1.5, that f ¢ A2
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Chapter 2 The Bergman and the Dirichlet space

Lemma 2.1.7. Let f(z) := ) 7 janz" be a formal power series with R(f) > 1. Then
f € A? if and only if

/ F(2)P dA(z) < +oo,
D

where dA means integration by the normalized area measure on D (i.e. dA = %d)\g).
In this case

112 = /D ()2 dA(2).

Furthermore for f(z) = Yo% janz", g(z) = D02 bp2™ € A%, we can calculate the

inner product by
()= [ FEEIAG),

Proof. Let f(z) = Y 02 anz", g(z) = > .07 byz™ be arbitrary analytic functions on
D and R be an arbitrary real number, 0 < R < 1. Since the involved series converge
uniformly on Bgr(0), we can calculate

/BR(O)f(z)g(z)dA(z) = /BR Z anz Z bpzk dA(z
= anb 2"ZF dA(z)
n%:O k/
_ - Z anbk/ / n+k+1 z¢(n k) dgde (24)

nkO

B R
== Z anbn, 27r/ r2ntl qr
T

:ZR2n+2 1 b
= n+1

We denote by x4(z) the characteristic function of the set A C C, defined as

C — {0,1}
XA = . 1, z€A
0, z¢ A

If we substitute f for g in equation (2.4) and calculate the limit R 1, we obtain by
the monotone convergence theorem

o0

1 2 2
—l Rn+2 2
T;)n—{—l‘an’ lm Zn+1|n|

= Iim [ Xm0 @R 44 = [ 7P aAG)
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which shows the first statement. For f,g € A? we have

(f9)a2 = Jim R (f,0) 42 = Jimm 22 Z e tnbn =

= I [ Xpu(D (9 dAR). (25)

Since

([ oo se@lian) < ( [ 1rea@laae) <
< [P [ o)A < +

by the Cauchy-Schwarz inequality, we can apply the dominated convergence theorem
to the right hand side of equation (2.5) and obtain

(e = Jim [ Xouo()F (oG 4AG) = [ F@aEIaAG)
]

Lemma 2.1.8. Let f be a formal power series, f(z) = Y oo ,an2", such that its
formal derivative df € A%2. Then f is an element of A?.
If g(z) = Y02 o bn2™ is a second function fulfilling the same assumptions, then

<f,a g/>A2 = Z nangn
n=1

Proof. By assumption we have (df)(z) = Y00 o(n + 1)an112" € A% Theorem 2.1.5
asserts

o0 [e9]

1
S il < Xl = 30+ Dol =
n=1 n=0
-y
n=0n

1 |(n 4 1)ans1|* < +oo.

Hence f € A2. Since f,g € A? < CP, they are holomorphic on D and we can write
f', ¢" instead of the formal derivative. By the second part of Theorem 2.1.5 we have

<flag/>A2 — <Z(n+1)an+1z”,Z(n+1)bn+1z”> =
A2

n=0 n=0
1
z;) nt 1 (n + 1)an+1 n+1 n+1 Z nan n-
n=
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Chapter 2 The Bergman and the Dirichlet space

The following example shows, that in general the converse of the assertion in Lemma
2.1.8 is not true.

Example 2.1.9. We define a formal power series f by f(z) =3 7, ﬁz” Because of

> SRR | 01 g2
nz:l _Zn(n—l—l)gz:an_6<+oo

n=1 n=
f is an element of A%. The derivative f’ is given by

L
n+1|vn

fl(z) = 3 M1 2 3 n+ 12"

But f’ ¢ A2 since

o0 1 o0
2 _
;+1|\/n+1| _;1

is not finite.

Because for A € C and two analytic functions f,g: D — C with f/, ¢’ € A?
(f+Ag) = ' +Ag' € A%,

the set {f :D — C: fis analytic, f' € A2} is a subspace of A%, and Example 2.1.9
shows, that it is a proper subspace. Unfortunately, the following example proves, that
it is not closed with respect to || - || 2.

Ezample 2.1.10. We define a series of functions (fy)sen by fi(z) :== S2F_, -=2". Since

n=1/n
for all k € N, the function fi is a polynomial, it is analytic on ID. The derivative is

given by (dfy)(z) = fi.(z) = ZI:L:1 %z”fl = Zﬁ;(lj vn + 12" Because of

-1

Ed

1

0n+1

fi € A? holds for all k£ € N by Lemma 2.1.8. If we remember the function f defined
in Example 2.1.9 we have

(n+1) =k <400

3
I

2

k
If = fell%e = ;O Lo > e > Lol =
n=1 \/ﬁ n=1 \/ﬁ A2 n=k+1 \/ﬁ A2
00 00
1 1 1
= — < —
n=k+1 n=k+1

Since > 7, # converges, limg o0 ||f — fkllaz = 0. Hence the limit of (fx)xen with
respect to || - || 42 is f. But we know from Example 2.1.9, that f’ ¢ A2

So if we want the set of all formal power series f, such that df € A% to be a Hilbert
space, we have to choose a different norm.
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Chapter 2 The Bergman and the Dirichlet space

2.2 The Dirichlet Space

Defintion 2.2.1. Let ¢ be the mapping

‘ s - St
(z) ’ (aTZ)TLENO — Z;L.Ozl ﬁan_lzn.
Then we define the Dirichlet space (D, (:,-)5) by
D= ¢(l2)7 <¢(a)7 ¢(b)>© = (a, b>l2

for ¢(a), p(b) € D.

Theorem 2.2.2. Let f(z) = > 77, anz" be a formal power series. Then the following
statements are equivalent:

(i) f€D,
(ii) df € A2,
(iii) 357y nlan]? < +o0,
(i) R(f)>1 and [ |f'(2)? dA(z) < +oo

Proof. We shall prove the implications (i) = (i), (i7) = (ii4), (i7) = (iv), (i) = (i)
and (iv) = (i7).
(1) = (i1):
We assume that f € ©. Then there exists a series (b, )nen, € l2, such that
— 1

f(Z) =¢ ((bn)neNo) = Z %bn_lzn.

The formal derivative of f is given by

(df)(z) = n\lfb =S Vit Tbe,
n=1 n n=0

Due to

o0

1 oo
Z:: SVt bl = nZ:% [b* = [1(bn)nen 17, < 400
by Theorem 2.1.5 the formal power series df is an element of A?.

(ii) = (ii3), (i) = (iv):

If we assume, that the formal power series df belongs to A%, then due to Lemma
2.1.8, f € A% and f is holomorphic on D, i.e. R(f) > 1 and satisfies (df)(z) = f'(2).
We also know by Lemma 2.1.8, that

o0

> nlanl = 1f1%2 < +oo,

n=1
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Chapter 2 The Bergman and the Dirichlet space

since f’ € A?. Due to Lemma 2.1.7 f' € A? also implies
[17@P dA) < +oc.
D

(iv) = (1) : If f is analytic on D, then f’ is also analytic on D by Theorem 1.1.3 (iv).
Lemma 2.1.7 tells us that this, together with the assumption [ |f'(2)[* dA(z) < +o0
gives f' € A2,

We assume that Y °° | nla,|> < 400 and have to show that ¢~1(f) € lo. Since

o
-1 <Z anz"> — (\/n + 1a”+1)nENo s
n=1

we have
00 > Y nlanf? = Y (0 + Dlaps* = || (VA + 1 anﬂ)neNo = 6~ ()ln,-
n=1 n=0

Theorem 2.2.3. The Dirichlet space is a RKHS over D with kernel function

0 _n
=3
n

n=1

For f(z) =Y 071 anz™, g(z) = > 72y bpz™ € D the inner product satisfies

<fvg>© = nzjlnanbn = /]D)f (z)gl(z) dA(Z) = <f % >A2

Proof. For the first part, we use again Lemma 2.1.1. We already know, that l» is a
Hilbert space. Since for (an)neny, (bn)nen, € l2, A € C

¢((an)n€No +)‘( neNo Z \F an 1 +)\bn 1) =

Z an 1% "‘)\Z \/» bp_12" ¢((an)n€No)+)‘¢((bn)n€No)7

the mapping ¢|;, : lo — ® is linear, and by definition of ® onto. Since

ker ¢ = ¢~ 1(0) = (0)nen,

it is also one-to-one and therefore a bijection. According to Lemma 2.1.1 (D, (-,-)5)
is a Hilbert space.
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Chapter 2 The Bergman and the Dirichlet space

By Theorem 2.2.2 (iv), we know that ® < CP. Let w € D be arbitrary. Because of

o " | o ’w|2n o ) w’2
— n __
Dol =2 <Z|w| ﬁ<+°°
n=1 n=1
Theorem 2.2.2 (iii) yields 300 ; 2-2" € D. Since for an arbitrary f(z) = > 00 ; a,2" €

£y)

@5ﬁ77 <Z%z§; > gy%m_i% - fw)

n=1

the function Kg(z,w) is the reproducing kernel of the RKHS ©.
For two arbitrary functions f(z) =Y 02 anz", g(z) = > o2, bp2" € D we calculate
the inner product by

(f.900 = (07 (107 (9)y, =
= <(\/man+1)neN ) (\/m’ bn+1)nENo>12 -
= Z(n + 1 an+1bn+1 Znan n

n=0

which shows the first equality. By Theorem 2.2.2 (ii) and (iv), we know that df = f,
dg = g € A?. Hence we can use the second part of Lemma 2.1.8 and Lemma 2.1.7

and obtain -
> nonbn = (.9') o = [ FTE dA).
n=1 D

Remark 2.2.4. Because of
log ( ) Z —

for all z € D, we can calculate the Dirichlet Kernel by

Fotern s (125

1—wz

for all |z] < ﬁ Hence the radius of convergence of the function Kg (-, w) is ﬁ

2.3 Generalized Dirichlet spaces

Defintion 2.3.1. Let A be an arbitrary real number and (a,,),,cy € CV. Then we call

o0
= g ap 2"
n=1
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Chapter 2 The Bergman and the Dirichlet space

a generalized power series and denote the set of all such generalized power series by
Sh.

Remark 2.3.2.

(i) With addition and scalar multiplication defined similar as on SJ , the space S
is a vector space.

(ii) We can write every f(z) = 300 an,2"™ € Sy as f(z) = 2*g(2) with g(2) =
Yoo Lanz™ € ST

(iii) For A € Z>_1, we have Sy, C Sy . Hence, we can interpret f(z) = > °°  a,2"™* €
Sy as analytic function on Bg(s)(0).

(iv) For A € Z<_s, a function f(z) = 2%g(z) := 2*>.0% | an2™ with R(g) > 0 and
a1 # 0 has a pole of order A—1 at the origin. Thus f is analytic on Bp4)(0)\{0}.

(v) For A € R\ Z a function f(2) = z*g(z) := 2* > 2% | a,2™ can be interpreted as a
function on Bp(,)(0). In fact, fixing § € R and defining 2> by (rei‘ﬁ)A = rret?,
where we choose ¢ € [0, 0 + 27) we can view f(z) as function z — 2*g(z). This
function is analytic on Bg()(0) \ € - [0, +00).

g(z) is an analytic continuation on Bp4)(0) of %

Defintion 2.3.3. Let A a real number. Then we define the generalized Dirichlet space
(/D/\7 ['7 ']9,\) by

Dy = {f(z) = Zanz"H‘ € Sy: Zanz" € @}
n=1

with the corresponding inner product

i n+Aa
n=1

for f(z) =322, an 2", g(2) = >, b, 2"t € D).
Remark 2.3.4.

(i) Note, that the sum in the definition of the inner product converges, since the
> oo nayby, and hence also Yo7 | a,by, converge absolutely.

(ii) For f(z) = 3%, an2"t* € D), the function Y °°  a,2" € D is an analytic
(z

continuation of f—A) to the whole unit disc. The mapping
z

lZJ' D — @)\
Tl i an” e Efleanzn“

is linear and bijective, and thus an isomorphism.
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(iii) It is easy to check, that for A € R the space D) is a linear subspace of Sy and
that [-,-]p, is an inner product. Therefore (Dy, [, -], ) is an inner product space
as defined in Definition 1.2.1. Since for f(z) = >0 | (n + A)a,z"** € D,

o0

[(2), F(2)]p, = D> _(n+ Nan|*,

n=1

it is positive definite if A > —1, positive semidefinite if A = —1 and indefinite if
A< —1. If A € R\ Z<_; it is also non-degenerated. For A € Z<_; the isotropic
part consists of all constant functions.

Lemma 2.3.5. For arbitrary A\ € R, let f(2) = Y20, a,2"t* € S\. Then f is an
element of Oy if and only if the sum

o

> (n+ Nlan (2.6)

n=1

converges. In this case
o0

[f: 1oy = D _(n+ Alanf”

n=1

Proof. f(z) € D) by definition implies Y ° | anz" € D, and hence

o0 oo oo
Yo+ Nanl?| <D nlan* + 1A Y laal* <
n=1 n=1 n=1
o0 oo oo 2
< nfan? + MDD nlan < A+ ane"| < +oo. (2.7)
n=1 n=1 n=1 D
If on the other hand (2.6) converges, we get
[e.o] o o
> nfaninvo1P <D+ N+ A= Dlaninal> = Y (n+ Mlan|? < 00
n=1 n=1 n=N
with N := max {1,—|\| + 1}. Thus
o0 oo oo
Y+ N=Dlagn-1P = (N =1 Janen—1* + Y nlagsn-1|* < +oo
n=1 n=1 n=1
and moreover
00 N—-1 00
z:n|an|2 = Z nlan|* + Z(n + N = 1)]anin_1]* < +oo.
n=1 n=1 n=1
Therefore Y 02 | a,2" € . The last assertion is clear. d
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Remark 2.3.6. Let k € N and f(z) = 322, a,2™* € 8. Then because of

oo o0
= Zan2”+k = Z cn 2",
n=1 n=k+1
with ¢, = a,,—; and
o [oe)
> nfeal? =D (n+k)anl,
n=k+1 n=1

f is an element of ®y if and only if f € ®. Also the inner products on ®j and ©
coincide. Since Dy = (Pk)l, it is a closed subspace of ® and therefore a Hilbert space
itself.

Theorem 2.3.7. For an arbitrary real number A > —1, the generalized Dirichlet space
D ts a Hilbert space.

Proof. We have already established, that for such A, the space (D, [+, -], ) is a positive
definite inner product space and hence | - |9, := /[, ]9, is a norm.
Let (fi(2))ken = (oo akz"+’\) C D, be a Cauchy series. Then because for

n=1""n

arbitrary g(2) =Y 00 | ¢, 2" € D),

I ch " = Zn!cnP < Z(n+ At 1fen]? =

n=1

24X
~ lo(:) B, + 3 leal? < )1, + HAZ”“\%'? a3,

n=1

we have that the series

(1), = (S 4)

is a Cauchy series in ® and since ® is complete, it converges to some function f € ©
with respect to || - [[o. Combining this with equation (2.7) in all we obtain

Jm [fi(2) = F2)IB, < (1+ ) lim [[fi(=) = f(2)]5 = 0.

keN

Thus (D, [, ]p,) is complete and therefore a Hilbert space.
O

Theorem 2.3.8. For an arbitrary real number A < —1, X\ ¢ 7Z the generalized Dirichlet
space Dy is a Pontryagin space.

Proof. We already mentioned in Remark 2.3.4, (i), that © is a non-degenerated inner
product space. We define

= {Zanz"+)‘: an =0, n+/\<0}
n=1
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[o@)
X_ = {Zanz”'M: an:O,n+)\>0}.
n=1

Then Xy, (X_) are positive (negative) definite linear subspaces of ©) and since
Dy = X [+Ho, X, (X, X) is a fundamental decomposition of ©,. The according
fundamental symmetry J is defined by

oo LIAL
UNE) = F@) — fo(2) = Y a2 = Y a,emH =
n=1

n=T[|A[]

00 LIAL]
= 3 e tHINT Y g pnd
n=1 n=1

for f(z) = Y0 ap2"t € Dy and ¢, = ant(a[]- Hence (X4, [-,-]) is nothing else,

n=1

but Dz and therefore a Hilbert space.
For f(z) = Zgi‘f anz" T € X_ we can calculate the J-norm by

LIAI]
I3 ==+ Nlaal? > 0.

n=1
Thus ||-||; on X_ is equivalent to the Euclidean norm on CUM and therefore (X, —[-,])
is complete as well. Hence by Corollary 1.2.25 (D, [-, -], ) is a Krein space and since
X_ has finite dimension it is a Pontryagin space. O

Remark 2.3.9. Let N € N. Then (X, X_) with

oo

Xy o= {Zanz”_N: an—O,n<N}
n=1
oo

X_ = {Zanz”_N: an:O,n>N}
n=1

is a fundamental decomposition of ®_p. By the same means as in the proof of
Theorem 2.3.8, one shows, that (X4, [, ]s) are Hilbert spaces. But since (D_yn)° =
C:={f(z) =c: ce C} # {0} it is not a Krein space. Nevertheless, we can define the
factor space (D_n/c,[-,-]/.) as in Remark 1.2.7 to obtain a Krein space.

36



Chapter 3

Littlewood’s subordination principle

3.1 The subordination principle for the Dirichlet space

Defintion 3.1.1. Let b(z) := Y00 1 b,2™ € S be an arbitrary formal power series.
Since the Bergman and the Dirichlet space are linear subspaces of SO+ , we can apply
the composition operator Cj, from Definition 1.1.7 to all functions f € A% (D), such
that f € dom Cp. We define

0542 :{ domC’bA2 - A?
= Gf
Cl? :{ domCP — D
[ = Gof,
where dom C{* == {f € domCy : f,Cpf € A%} and domCP = {f € domC} :
f7 be € Q}
Lemma 3.1.2. Let b(z) = > o0 b,2™ € S be a formal power series with R(b) > 0
and |bg| < 1. Then there exists a real constant § > 0 such that for f € dom Cl?

(dom C{* ), f(b(=)) = (CR) (=) (fb(=)) = (C£F) (2)) for all = € By(0).

Proof. Since b is continuous on Br)(0), there exists 0 < 0 < R(b) such that [b(2)| < 1

for all z € B;(0). Thus for every f € domCy (dom CZ;“Z) we can apply the second
part of Lemma 1.1.13 with r = 1. O

Remark 3.1.3. For every f € domCp (dom C{:‘z), the function CP f (C{:‘zf) is an
analytic continuation of f o b on the whole unit disc.

Lemma 3.1.4. Let b(z) = 320, b,2™ be a formal power series such that dom CP = D
(domC’,;42 = A?) and |bo| < 1. Then R(b) > 1 and |b(z)| < 1 for all z € D.

Proof. Since the function f(z) = z is an element of ® (A?), we have (Cyf)(z) = b(2) €
D (A2). Hence R(b) > 1 by Theorem 2.2.2, (iv).
Now assume that there exists zp € D such that |b(z9)] > 1. Then the function

9(z) == Ko (27 b(zo) 1) is an element of ® = dom Cf. Hence the composition Cg is
again in ® and by Lemma 3.1.2 there exists some § > 0 such that

20)(z) = z)) = zzil:wlznzfnzo L
(CP9)(2) = 9(b(2)) = K= (b(2),b(z0) ) ;nbﬂb( 0) 1g<1_b<z>b<z0)1)

37



Chapter 3 Littlewood’s subordination principle

for all z € Bs(0). But the right hand side has no analytic continuation to the point
2o, which is a contradiction to the fact that Cg“) g is analytic on D.

Now assume, that b(z;) = 1 for some z; € D. Then, by the maximum modulus
principle we have that b = 1 on D, which is a contradiction to the assumption |by| =
|b(0)| < 1.

The same line of proof works for the Bergman space. O

Defintion 3.1.5. Let b : D — D a holomorphic, injective function, such that b(0) = 0.
We call such a function a normalized, univalent mapping of D into ID and denote the
family of all such functions by 5.

Remark 3.1.6. Every b € B has a unique power series expansion of the form b(z) =
Yooy bpz™ with radius of convergence R(b) > 1.

Theorem 3.1.7 (Littlewood subordination theorem for the Dirichlet space). Let
b € B be a normalized, univalent mapping from D into D. Then the domain of the
composition operator dom C? is the whole space ® and

(CPf)(z) = f(b(2))

for all z € D. Furthermore C? is a contraction operator (i.e. C? is bounded with
b b
norm ||CP| < 1).

Proof. According to Theorem 1.1.10, the domain of the composition operator Cj is
the whole space of formal power series Sar .

Let f(z) € ©. Then by Theorem 2.2.2, (iv) we know that R(f) > 1. Since |b(z)| < 1
for all z € D, we can apply the second part of Lemma 1.1.13 with » = 1 and obtain, that
R(Cyf) > 1 and (Cypf)(2) = f(b(2)) for all z € D. Hence, Cpf = f o b is holomorphic
on D.

If we split b in its real and imaginary part, b(z + iy) = u(x,y) + i v(z,y) and use
the Cauchy-Riemann equations

ou  Ov
or — dy
ou  Ov
dy — ox

we get
ou Ou 2 2
= 2= oudv Oudv ou ov 2
= Ox By = = —_ —_ = /
det |Db| ‘(gg’: g;;)‘ Oxdy Oy ox <8x> + (8x> ‘b‘ '
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Using the transformation rule and the fact that b(D) C D, we obtain
2
flgonol u-
D D
/ 2077 2
= [17 GEnP e aa

:/ 17 (2)]* da
b(D)

/ 2
§/D‘f (z)|” dA < 400

2

d d
—(Ch)2) IO da

(3.1)

by Theorem 2.2.2, (iv).
Using again Theorem 2.2.2, (iv), inequality (3.1) yields Cpf € ©. Hence, dom CP =
®. Furthermore by Theorem 2.2.3

d 2 )
I3 1% = IIbeH%ZA‘W(be)(z) dAé/D\f ()" dA = | fII%

which shows ||CP || < 1. O

Although the condition of Theorem 3.1.7 is necessary for a function b : D — D with
b(0) = 0 to be univalent, unfortunately it is not sufficient. Our goal throughout the
remainder of this section will be, to expand the Littlewood subordination theorem to
a superset of ®, that this condition is sufficient.

3.2 The subordination principle for generalized Dirichlet
spaces

Defintion 3.2.1. Let A € R and b(z) = > o2, b,2"™ € ST be a formal power series
such that b1 # 0. Then we define the composition operator C’bA on Sy by

8)\ — S,\
Cg‘:

P92~ (1) (Gg)(e)

A
where @ = 300 bp2™ Tl = 3¢ b,12™. Note, that the expression (@) is
well defined and an element of Sar by Definition 1.1.15, since by # 0. Moreover
g(2) € dom Cy, since due to Theorem 1.1.10 dom C, = S;. Because of g(z) € ST the

A
formal power series (@) (Cpg)(2) is also an element of ST and therefore C} maps
indeed into the space S)y.

Since ©) C Sy, we can apply the composition operator Cg‘ to functions in .
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Chapter 3 Littlewood’s subordination principle

Remark 3.2.2. Let b € 6. For A € Z the elements from ®) can be interpreted as
analytic functions on D\ {0}, and the operator C’bA acts just as f+— fob.

For A € R\ Z we can interpret the elements from ©) as functions on D \ {0} as
in Remark 2.3.2, (v), with a fixed # € R. Here C,f‘ no longer acts as f — f ob.
Nevertheless, for f € Dy the quotient of (C)f)(z) and f(b(2)) is the quotient of two
possibly different branches of the function 2*. Hence, (C3f)(z) = f(b(2)) - ¥(z) with
an unimodular function (z).

Our goal throughout this section will be to prove the following theorem.

Theorem 3.2.3 (Littlewood subordination principle for generalized Dirichlet spaces).
Let X\ be any real number and b € 8. Then the composition operator C’g‘ 18 a contraction
from Dy to itself.

For proving this theorem we need the following classical result from real analysis:

Theorem 3.2.4 (Green’s theorem). Let 7 : [a,b] — R? be a positive oriented, piece-
wise smooth, simple closed curve, ) the region bounded by v and D an open set con-
taining QU ~y. Let further p, ¢ € C(D;R) N CY(Q;R), then

/Qaaxp(x,y) + a(zq(x,y) dXa(z,y) = /p(m,y) dy — q(z,y) dz, (3.2)

where

b b
x,y)dr = -1 () dt, x,y)dy := -5 (t) dt,
/y o(z,9) / 0 (v (£)) (1) dt / P, y) dy / p(/(1)) - 4(t) dt

holds.
Proof. A proof can be found in [Rud70]. O

Remark 3.2.5. By splitting p and ¢ into their real and imaginary parts, one checks
quickly that Theorem 3.2.4 also holds for complex valued p and ¢. By identifying the
complex plane with R? equation (3.2) holds, where

A gdz = / 4y (1) - Ren (1) de. / pdy = / b (5(0) - ary (1)

for a positive oriented, piecewise smooth, simple closed curve + with interior 2 and
p, q and their partial derivatives are holomorphic in  and continuous on an open set
D DAQ.

Corollary 3.2.6 (Green’s theorem, complex version). Let v C C be a piecewise
smooth, positive oriented, simple closed curve and Q C C its interior. Let further
f, g be holomorphic functions on €2 which are continuous on an open set D containing
QU such that f', g are continuous on 2. Then

() — 1 ol
[ F@TE ) = 5 § e

holds.
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Chapter 3 Littlewood’s subordination principle

Proof. If we use the Wirtinger derivatives

o _1(o 0y o _1(0 .oy
0z 2\0x  oy)’ 0z Ox 8y
then by using the Cauchy-Riemann equations we obtain for any holomorphic function

h(z +iy) = u(x,y) +iv(x,y)

Oh(z)
0z

and

Oh(z) 1 (0h(z) | .0h(z)
2\ oz e oy
<8u Ov . Ou 81})

ox 8ac+z67y+87y
_ Ou Ou
= %—Z%—h(fé')

Because for holomorphic functions h, k

5= (k) = 5 (50 (PR + 5 (k)

2
= 5 (520 41252+ i %) 1 ino )
_ Oh(z) 0k(z)
0z k(=) + h(z) 0z
the product rule also holds for the the Wirtinger derivative % and
1 -
%j{f(z)g(z)dz = /f 9(2)dy — if(2)g(2) dz
- / +z§y F(2)g(z) dXa(2)
= / 9(2) dAa(2)
_ [0, 99(2)
= [ 250+ B2 ) il
— [ TG dule)
Q
follows. O

41



Chapter 3 Littlewood’s subordination principle

Now the proof of Theorem 3.2.3 is basically contained in the following lemma:

Lemma 3.2.7. Let X be a real number, f(z) = .20 a,2"t* € D) and b € B. Then

S (04 Mlanl = S0+ Veaf? = / 2dA (3.3)
n=1 n=1 D\b(D)

holds, where Y7 cn " = (Cé\f)(z)-

Proof. If b(z) = ¢z with ¢ € T both sides of equation (3.3) are zero. So we may
assume by Schwarz’s Lemma, that |b(2)| < |z| for all z € D.

Let 6 be areal number with 0 < 6 < 1 and C5 := {2z € C: |z| = }. Then |b(Cs)| < ¢
and because b is one to one and continuous b(Cjs) is again a closed curve located in
the interior of Cys. Furthermore let m € Cs be a point satisfying r := |b(m)| =
max,cc; |b(2)], @ such that b(m) = re?, and e > 0 arbitrary, we define a curve 5. by

Vo =1 — V2 — V3 + V4.

with
Y1 (t) := de, teld+e0+2m1—¢]
Yo(t) = te' 02 =e), t € [ra, 0]
(t) = b (de”) t € [61,04)
Y4(t) = te'0Fe), t € [r1,d].

Here 60y, 0o, 71,79 are chosen such that b(5e’) = r1e/) and b(Je??) = rye@+27—2),
We call the interior of this curve ;..

We interpret z* on D\ {0} as (re’®)* := r2e™?, where ¢ € [0, 0 + 27); see Remark
2.3.2. Interpreting f(z) accordingly, f and f’ are holomorphic on Q5. U 5. With
Theorem 3.2.6 we obtain

. / £/ (o)) dA(z) = / 7)) dra(2)
Qs.e Qe

1 )
K $_rere -
— 1 ’
=5 § FOTEE =5 1
_ 1 i
5} SETC 27{

Note that for f(z) = 2*g(z) € Sy with R(g) > 1, the function z — f’(z)f(z) does
not depend on the branch of z* that we chose above and has therefore a continuous
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Chapter 3 Littlewood’s subordination principle

continuation to D\ {0}. In fact,

(3.5)

m _—im(¢p+2m)

[o.¢] o
N T , —
f(re'®) f(rei®) = Z(n + N ay, (ref®)r -t Z Qe -
n=1 m=1
o0
= 2 Z(n + Napr"™ ei(n=1) Z A e ime
n=1
o ) oo
— 22 Z(n + )\)an,r,n—lez(n—l)(gﬁ—i-%r) Z T e
n=1 m=1

= [(re! ) f(reilo+2m),

forallp e R, 0 < r < 1.

For fixed § > 0 the functions f(z), f'(z) are uniformly bounded on Bs(0)\b(Bs(0)) 2
5. Thus by the dominated convergence theorem, equation (3.4) becomes

\f / )] dra(z b T ()= =
Mif()() = f()ﬂ
b e +o-f SETEE (36)
V3 V4
with
Y1 (t) == de' € (0,6 + 2n]
Yo(t) = te' <9+2’f) t € [r,d]
v3(t) :==b (56“) te€0,0+2n]
Ya(t) = te' t € [r,d].
Since f'(z)f(z) is continuous on D\ {0}, we get
1 rNFTS g
5 SETE -5 § rTGE=0
We calculate
1 Oem 2 — — en—1 _it(n—1) ¢m —itm s it
% Aﬂf( 2)f(z)dz = % ) ;;(n—k)\)anamd e dMe Mo dt

oo 00 0+2m
= % Z Z (n+ )\)andmém‘m‘”'2A / eln=mt gy

0

n=1m=1

= 7 Z(n + )\)\an\252"+2)‘.

n=1
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Chapter 3 Littlewood’s subordination principle

As Cg‘ f also belongs to Sy, we also have

T O mlea P = O (@Y (EN G
v

n=1 1

The function z ~ f(b(z)) is holomorphic on D\ b1 (e” - [0, +00)), which is dense
in D. Moreover, by Remark 3.2.2, z — f(b(2)) coincides with z — C}f(z) up to a
multiplicative unimodular function. As both functions are holomorphic on D\ (b= (e® -
[0, +00)) U € - [0, +00)) this unimodular function is constant on the components of
this open subset of . Hence, for z belonging to this open set we have

(o) ()(Cpf) (=) = €M f(b(2)) er f(b(2)) = f'(b(2)).f(b(2))¥'(2)-

Since both sides of this equation have a continuous continuation to D\ {0} and as an
intersection of two open and dense sets D\ (b=1(e? - [0, +00)) U e - [0, +00)) is dense
in D\ {0}, we have

(CO) ()CXf(2) = /(0(2)) F(B())V (2),

on D\ {0}. Thus, we obtain

%
1 J—
- 5§ reRG
= L4 reie -

2i 3

P Ol PR = P TOE () d:
7

n=1

All in all (3.6) becomes

w/ f'(2)]" dA = Ty (A n)|an P67 = 1) (A n)|eq P82
Qs

n=1 n=1

Since
/ |f’(z)\2dA:/Xgé(z)]f’(z)\QdAg
Qs D

< 522 (Z(A +n)an? +) (A + n)|bn|2) < +00

n=1 n=1

we can apply the dominated convergence theorem and by calculating the limit 6 7 1
we obtain equation (3.3). O

After this preliminaries the proof of Theorem 3.2.3 is no longer difficult:
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Chapter 3 Littlewood’s subordination principle

Proof of Theorem 3.2.3. For f(z) =3.°°  a,2"** € ©, Lemma 3.2.7 asserts

n=1

cisai, < [aisad, + [ irPas

A

o0

_ Z(n+/\)|cn|2+/ ' 2dA
D\B(D)

n=1
= > (n+Nanl* =[f, flp, < +o0.
n=1

Hence, C’I;\f €9, and C’bA is a contraction.
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De Branges’ univalence criterion

In the previous section we have seen, that for an analytic function b : D — D with
b(0) = 0, ¥(0) # 0 to be univalent, it is a necessary condition that the composition
operator Cg‘ : D\ — D, is a contraction. In the following section we will see, that the
composition operator being a contraction on a certain space is already sufficient for
such a function b to be univalent.

Defintion 4.0.1. We denote the vector space of all formal power series with also
negative powers by S := {ZkeZ apz® : ay € (C} and define operators Py, Py and S on
S by

(Prf)(z) = ) axz",
k=1

(Pof)(z) == ao,

(P-f)(z) = > apzt
k=1

and

(SH(z):=f(z71).
P, and P_ are the projections on the subspaces of power series ST (§~) with only
positive (negative) exponents. Py + Py is the projection on the space

D0 .= {ianz" : ianz" € @}
n=0 n=1

Further we define the space 79 by

9 := | D_n.
NeN

We equip Z® with the indefinite inner product

o] o] 00 00
Z akzk, E bkzk = Z akzk, Z bkzk =
k=—N1 k=—Ns

70 k=—N1 k=—No

= Z kakl_)k.

k=min{—N1,— Nz}
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Chapter 4 De Branges’ univalence criterion

Remark 4.0.2. The elements of 79 are Laurent series with only finite negative powers.
They can be interpreted as analytic functions on D\ {0} and can have a pole of finite
order at 0.

Defintion 4.0.3. For a given function b € ST, b'(0) # 0, we define the composition
operator on Z® in the following way.

CI'D . { dom CZ;Z?D — I@
b flz) = Yoo nanzt Cng,

where
dom CT° .= {f cI0: CI0f eI@}.
Remark 4.0.4.

(i) Since for k € Z by Remark 3.2.2 C?’“f = fob, we have (CE®f) (2) = f(b(2)),
for z €e D\ {0}.

(ii) If b € ST is such that dom Cf® = I®, then because z — z~! € D, the function
b has no zeros in D\ {0}. Otherwise C¥® (z + z~') would have a pole of at least
order one in D\ {0}.

(iii) For b € B the operator CI® is a contraction from Z® to itself, since for
Yol Nzt €ID

n=

CEorops] = GG N <l ey = [ e

by Theorem 3.2.3.
Defintion 4.0.5. For any formal power series f(z) = Y, ., apz® € S, we define
A 2) = Zékzk.
keZ

Note that f and f* have the same domain of analyticity and for z such that f is
analytic in z

fHz) = F(2).
Our goal for the remainder of this section will be to prove the following result:

Theorem 4.0.6. Let b : D — D be holomorphic with ' (0) # 0. Then the following
three statements are equivalent:

(i) b e B.
(ii) The operator CE® : ID — ID is a contraction with respect to [, ] 1o

i) CP is bounded and there exists a well defined contraction operator Gy : © — D
b
such that .
Gylp = PLCE2S (c,?) ‘P. (4.1)
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Defintion 4.0.7. We define the indefinite inner product space K2 by
o0 (o ]
KD := {Zakzk : Zakzk,Za_kzk € 5‘3}
kEeZ k=1 k=1

and endow it with the inner product

[Z akzk, Z bkzk] = Z kayby, + agbo.
KD

kEZ k€EZ kEZ

Remark 4.0.8.

(i) If we endow D° C KD with [+, ],p, it can be interpreted as a one dimensional
extension of ®. Thus, (330, [ ~],C©) is again a Hilbert space.

(i) ((Py + Po)(KD), P-(KD)) = (D°,5D) is a fundamental decomposition of KD.
For f = Sg € S®
~[f, flco = IS f1% = 1158915 = llgll3.

and the spaces (D, [, -]xo), (SD, —[,-]o) are Hilbert spaces. Therefore, KD is
a Krein space.

The J-norm of f(z) = > r¢, arz® € KD can be calculated by

Hf”%z[P+f7ﬂ/c©+[P07f];cz)_[P—fvﬂicz):

oo oo
= nlanl® + lao* =Y nlan* =" |kllaxl? + |aol*.
n=1 n=1 kEeZ

(iii) Let f(z) = Y pez arz® € KD be arbitrary. Then the functions f,(z) := Y 5o agz”
form a sequence in 7% with

2

o
Jim [[f = fallf = T [l Y axe®| = T Y klagf? =0,
k<-n-—1 7 k=n+1

since SP_f =332, agz® € . Hence, ID is dense in KD with respect to || - || ;.

Defintion 4.0.9. Let M C C be a one dimensional manifold. Then we denote the
surface measure of M by pps and use the notation Lo(M) for the space of all square
integrable functions on M with respect to uas.

Remark 4.0.10.
(i) If we set M =T, the Ly(T)-norm of f € La(T) can be calculated by

2w
0

11 = [ 1P dunz) = [ Ise)Pa
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(ii) Let b : T — C be analytic and one to one. Then the Lo(b(T))-norm of f €
La(b(T)) can be calculated by

2 — 2 d _
12, o0 /b(T)!f(Z)I e (2)
2 ) )
- / FOE) PV ()] dt = / I(F 0 BRIV ()] dux ()
0 T
(iii) If there exist Cy,Cy > 0 such that C1 < |b/(¢)] < Cs for all ( € T, we have

Cillf o bll7, ey < IF 17, 00my < Collf o blIZ, (my-

Lemma 4.0.11. Let f(2) = Y oy axz” € KD such that f is analytic on an annulus
containing T. Then f € La(T) and there exists a real constant C' > 0 such that

1f )l o(ry < ClLFE)-

Proof. We can compute the Ly(T)-norm squared of f by

/TZ apz® Z Eszj dur(z)

JCRE
T

kez JET
= Z a,a; / k5 dur(z)
kjez T
2 )
= Z a’kaj/ 67‘90(]/”‘7]) dgo
k,jEZ 0
= 21 ) |l
keZ
< 27 (Z |Fel|ax|* + Iao!2> = 27| f(2)[F < +o0
keZ
since the involved series converge uniformly. O

Lemma 4.0.12. Let b: B14.(0) — C be an analytic, univalent function for some & >
0, such that b(0) = 0 and there exists r € R, 0 < r < 1 with b(D) C B,(0). Let further
pn be a sequence of polynomials in 2z~ such that pn(%) € Po and lim,_,~ ||pn|l; = 0.
If the sequence CgCi)pn converges to some g € KO with respect to || - ||, then g = 0.

Proof. Since convergence in || - || ; dominates convergence in || - ||z, (T), we have
: 5] —
Jim [[C5pn = gl Ly(m) = 0.
Thus there exists a subsequence pj, such that

lim (€7, ) (2) = ()

n—oo
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for almost every z € T.

Since b is analytic and univalent on By, its derivative b’ is bounded and bounded
away from zero on T. Therefore, the sequence p,, is a Cauchy-sequence in the space
Ls(b(T)) by Remark 4.0.10. Thus there exists h € La(b(T)) such that

Jim_([pn, = hll ey = 0-

Again there exists a subsequence of p,, which we will call p,, such that lim,, o pp,(b(2)) =

h(b(z)) for almost every z € T. By uniqueness of the limit, we have h o b = g almost
everywhere on T.

Now let z € C\ b(DD). Then we obtain for R > 1

2ripn(2) = 7{ Pal6) 4o _ 7{ Pale) g (4.2)
9Br(0) Z — € (T) #— G
by Cauchy’s integral formula. Because of
27 it .
lim ]{ Pl gl = tim / PulBE) it at
R—o0 0BR(0) z — C R—oo | /o z — Re?

2 it

R X2
< lim/ 7“07;( ¢ )|dt
R—o0 0 |7Reit - ].|

we can write (4.2) as

R S (G (9]
pn(z) - o f;(’]r) o C d<
_ L " pa(b(e))

2m‘/0 z — b(et)
_ 1 pa(n) 1, V(07 (n)
— _277Ti ) z_nlb l(n)mdub(m(n)

1 pa(m),
~ Tom /b(T) z - 771@(77) Hhaem) (1)

v (eyie dt

if we define 1)
_ o'(b=(n
¢=(n) == b7 () oy 55
b'(b=1(n))]
The assumption limy,—, [|ps||; = 0 implies the existence of a subsequence py,,, such

that lim; ;o pn;(2) = 0 for almost every z € T. Thus calculating the limit n; — oo
yields

L[ h(n)
2w Jyry 2 — 1

id=(n) dyery (1) (4.3)

Since the right hand side is holomorphic in z, this holds for every z € C\ b(D).
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Next we study the expression

0], o= [ e ) = § weatdn. (@)
b(T) b(T)

For k < 0 the right hand side is zero, since by the residue theorem

lim pn(n)nk dn = 0.

To obtain the same for £ > 0 we rewrite (4.3) by

Oz/bm "l )wSZ( ) Ay (n)

- /bmkzoz;’“u )i (1) dpiym) (m) (4.5)
1

=5 i [ hs () i (o)

where we used
k

z—n z1-1 L an
k=0

Since (4.5) is the unique Laurent series expansion of the zero function, all the coeffi-
cients are zero. Thus, (4.4) is zero for all k € Z. Because the set {z* : k € Z} is dense
in Lo(b(T)) and ¢, # 0, this implies h = 0 as an element of Lo(b(T)). Therefore, g = 0
as an element of Ly(T) and, since it is analytic also as an element of KD. O

Lemma 4.0.13. Let f,, f be holomorphic functions on As such that f, € KD and
limy, 00 frn = f uniformly on As. Then f € KD and lim,,_, || fn — f||l7 = 0.

Proof. By Cauchy’s integral formula, we can write the derivative of Py f,, for z € As
and 0 < e <4 as

v 1l = (P Q) .
omi(Pof) ()= f I -
fn(C) (P-fn) (¢)
= d¢ — ——==d¢. (4.
ngHs(O) (C—2)? 9B14.(0) ((—2)? ¢ (46)
Since P_ f,, is holomorphic in C\ B;_5(0), we have
(P_fn) () . (P—fn) (©) fn T (P fn (Re') i
7{931+s(0) (€—2) = 0BRr(0) (¢ — d( / Rew)Q Re't i

forall R >1—9, z € Aj. By calculating the limit R — +o00 we obtain

(P-fa) () ,.
j({aBHs(o) (€ —2)? =0
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Thus, (4.6) becomes

2mi (P fo) (2) = § ) g,

oB14.(0) (€ — 2)?

Since Py f,, is holomorphic on By44(0), this holds in particular for z € D. Repeating
the same argument with f instead of f,, yields

o sup| (Pif) (2) — (Pyf) (2)] = sup| Q= 1) 4y
€D 2D Jopi,.0) (C—2)
(O - £
)
< 24 swp (O - FOI
¢€0B14:(0)

Therefore (Py f,)" — (P4 f) uniformly in D and from this it follows that

T [ (Pef) = (Pef) 1B = Jim [ (P () = (Pof) () dAG:) <

< Tim sup| (Pyfu) (2) = (Pef) (2)2 = 0. (4.7)

n—oo z€D

We can repeat the same argument with the functions g,(z) = (Sf.)(2) = fu(z71),
g(2) = (Sf)(z) = f(z7!) and obtain

0= tim | (Pyga) — (Peg) |3 =
= lim [|(PySfa) — (PyS) |13 = lim [[(SP-f,) — (SP_f) [} (48)

For Py f, there holds

274 lim ‘POfn - Pof‘ = lim
n—r00

n—oo

f fn(C) — f(C)dC <
9B14.(0) ¢ -

< lim  sup  [fu(Q) = f(O =0. (4.9)

N=0 rechB; 1 (0)

By combining (4.7), (4.8) and (4.9) we finally obtain
Jim (| = fI5 = lim |[Psfo = Pof|3 + ISP-fo — SP-fI% + |Pofu — PofI> = 0.
O

On K2 the composition operator is not as easy to define as on Z®, nevertheless the
following lemma shows under which conditions on b it admits a closure:
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Theorem 4.0.14. Let b : B14.(0) — C be an analytic, univalent function for some
e > 0, such that b(0) = 0 and there exists r € R, 0 < r < 1 with b(D) C B,(0). Then
there exists a linear operator C{)CD : dom C’l’f@ — KD such that C’éCD is the closure of
the operator CE® with respect to the norm || - || ;.

Let f € KD and 6 € R, § > 0 such that f is analytic on As, where As =
{zeC:1-0<|z| <146} and b(A.) C As. Then f € domC® and

(CE21)(2) = f(b(=))
holds for all z € A..

Proof. To show that the operator Cin) allows closure, we have to show, that for every
sequence (fp)neny € ZD, such that lim, o || fn]l7 = 0 and lim, HCbIan —gll;=0
for some g € KD, it follows that g = 0.

Now let f,, be such a sequence. Because of

1£all7 = 1Py fulls + 1Pofalls + |1 P=full7 = 1Py fulls + [Poful® + 1S P-full3,
we know, that
lim [Py fullco = lim [Pof| = lim [P_fulls = 0. (4.10)
Therefore, since C’? is a contraction
lim |CFPP fullh = lim [CRPfulh < lim [Pofuld =0, (410)
Combining (4.10) and (4.11) and the fact that CZ° Py f,, = Py f,, yields
ICT°2P_fu—gll5 = lim [|C° P fu + Cy®Psfu + Cy° Rofn

— g-CPOP, f, — CTPyful%
= lim |Gy fu =9 = C{ Py fu = CPPofull3

lim
n—oo

- 70 2 | 1 70 2
< nh_?;oHCb fn—9||J+nh_{goHCb Py full5

+  lim |[CPPRyf. > =0.
n—oo

Therefore, the sequence C’bI@P_ fn converges to g with respect to || - || ;. Thus, we can
apply Lemma 4.0.12 for p, := P_ f, to conclude that g = 0.
To show the second part, write f(z) = >,y axz” and define

o0

fn(z) = Z apzt € I®.

The sequence (fn)nen converges uniformly on any compact subset of As. Therefore
limy, 00 fn(b(2)) = f(b(2)) uniformly on any compact subset of A., particularly on
Ae,, for 1 < e. Since uniform convergence on A., implies convergence with respect
to || - || by Lemma 4.0.13, we have that f € dom C}® and (CF® f)(z) = f(b(2)) for
all z € A.. ]
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Next we list some useful facts about the operator f — f%:

Remark 4.0.15.

(i) Because of

oo oo
> nfan? =Y nlanl, (4.12)
n=1 n=1

a function f is in ® if and only if f* € ®. In this case | f]lo = ||f*|lo. Due to
this fact, and the fact that

F(Z) +2g(2) = F4(2) + Ad* (2),
for g, f € ®, the mapping f — f% is an anti-linear, isometric bijection on D.

(i) A function f € S is an element of Z® if and only if f* € Z®. In this case

L F) =1 e

(iii) Let b(z) = Y00 by2™ € ST, ¥(0) # 0 and f(2) = Y o0 yarz® € dom CL®.
Then

(CPNE) = fO)
%
= Z ag (anzn>
n=1

k=—N
0o k
- Z ar. (Z bnz">
k=—N n=1

= i) = (CFPf9)(2) = (CF° f)¥(=2).
(iv) Let b: D — D, 5 (0) # 0 be such that dom CZ® = ID. Then because of (iv) and
(iii)

CRRECRRf| =[P ] = e o ]

W) W)

for all f € Z®. In particular this implies, that
dom C’Iﬁ@ = dom CZ®

and that Cbzz) is a contraction if and only if Cgf) is a contraction.

Moreover if b satisfies the assumptions of Lemma 4.0.14, we have

dom C{f‘) = dom C}®.

54



Chapter 4 De Branges’ univalence criterion

Lemma 4.0.16. Let b(z) = > 07 | byz™ be holomorphic on D, with b(D) C D, such
that C’bD 18 bounded and let p € 73(])“. Then (C'b@)*p € 73(])‘3 and (C'b@)*p depends only on
bi,...,bg.

Proof. As for j > k
<(C§))*p’ (2 zj)>z> - <p, (C’?) (2= Zj)>® - <p’bj>© =0,

(cy )* p(2) is a polynomial of degree k as well.
Let b0 .= Zﬁ:l b,2". For arbitrary f € © we have

(68 080, =5 0a = {p.5000), — ((c80) 0.5),.

since, writing f(b(z)) = > .o, cp2™, the coefficients ¢, for n < k only depend on
by, by, ... by 0

Remark 4.0.17. Recall the following fact about a closed operator. Let H be a Hilbert
space and T : domT — H a closed linear operator. Let further a, € domT be a
sequence, such that lim,, .~ a, € H and lim,_,o, T'a, € H. Then lim,,_,~ a, € domT
and

T ( lim an> = lim Ta,.

n—oo n—o0

Lemma 4.0.18. Let b(z) = > 7, b,z™ be analytic and univalent on B11.(0) for some
e > 0, such that b(0) = 0 and there exists r € R, 0 < r < 1 with b(D) C B,.(0). Then

P_CZ08 (c,?)* p=Sp (4.13)
holds for all p € Py.

Proof. The operator C’? is bounded and due to Lemma 1.4.7 we have, that

(5(cP) Kolw) (2) = (SKa (- b(w))) () = Koz, b(w)) (4.14)

for all w € D, |z| > 1. Since for fixed w the right hand side of equation (4.14) is
analytic on C\ Bjy()|(0), by the uniqueness theorem equation (4.14) even holds for
all z > [b(w)].

Since b is univalent and continuous on B4, and b(0) = 0 there exist §,r > 0, such
that |b(w)| <1—6 < |b(z)| for all z € A, and |w| < r. Therefore b(A.) C As and the
functions

fuw(z) = K@(zfl, b(w))
1

are analytic on Ay, since the radius of convergence of Kg(z,w) is Tl by Remark 2.2.4.
Thus, Lemma 4.0.14 yields

fuw € dom CK® = dom C{)E@
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for all |w| < r. Hence, we can apply C’é%g and obtain for z € A,

(0,595 (C;?)* K;g(-,w)) (z) = (C{j@ fw) (2

1 b (2)(z — w) o 1
“1g<dw@»—ww»)+lg<1—wzl>
= h(z,w) + Ko(z ' w), (4.15)

where we used the notation

WM%M)
V) - F(w) )

Since b is univalent on By .(0) by assumption and therefore (b%)'(0), (b%)’(w) # 0, the
function A(-,w) is analytic on By yc(0). The function Kgp(z~%,w) on the other hand is
analytic on C\Bj,(0) as function in z.

Now let k € N arbitrary. By multiplying (4.15) with w* and integrating over B,.(0)

with respect to v := pgp, (0), we obtain for fixed z € B14(0)

h(z,w) := log (z

/BBT(O) (C{,ﬁi)s (Cl?)*ka@(.,wD (2) dv(w) =

:/ wPh(z, w) dl/(w)—i—/ wh Ko (271 w) dv(w). (4.16)
B, (0) 9Br(0)

Because of

k _ wkoou_)y J(w) —
L oot = [ kS )

for all |y| < 1, (4.16) becomes

[w]?

/ (c5s (CR) whKa (- w) (=) du(w) =
0B,(0)
7,‘Qk
:/ wPh(z,w) dv(w) 4+ 2r—27F, (4.17)
8B(0) k

for |z| > |w|.
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Since z — hy(2) := h(z,w) is holomorphic on Bj1.(0) we can write its || - || j-norm
for w € 0B,(0) as

lhallF = thw = R (0) 13 + [hu (0)* = /D [he (O dA(C) + [hu (0)]? <

< sup 1y, ()1 + [ (0)[* = |1y (Gu) * + [ (0) 2
¢eb
for some (,, € T, by the maximum modulus principle for holomorphic functions. Thus,

sup [[AC,w)llF < sup R, (Go)P + [hu (0)F =

weIB(0) wedB-(0)
_ 1 () () [ 2\ o \[?
QR P Fomr R T oy e bﬁ<w>‘ * e (<b) (0>> *loe (Ww)) = e

shows, that the function on the right hand side of (4.17) is again an element of £D.
Moreover, since we can interpret the integral as limit of a Riemann sum, the bounded
operator S (C’bD )* commutes with the integral and we have

T2k k

/6&(0) (5 (@) wrKo(,w)) (z)dv(w) = 5 (CF) 2r—= e kD

Since Cﬁg is closed it commutes with the integral as well (see Remark 4.0.17) and we
obtain

KD o\*, k ) o\* ., rhe
/ (cbﬁ S (C’b ) WK (- w)) (2) dv(w) = CEPS (¢ ) o (4.18)
8B, (0)
Combining equations (4.17) and (4.18), we have for p(z) := 2*
22k 70 o) * k 22k _k
’ (Cbn S <Cb ) p) (2) = / w h(z,w) dv(w) + P
8B,(0)
Since h(-,w) is analytic and uniformly bounded on D, the function
faBT(O) w*h (-, w) dv(w) is analytic on D. Thus
P_CI°s (c?) p = Sp.
Since C’;QS (C’?)* is linear, this holds for all p € Py. O

Lemma 4.0.19. Let b(z) = >0 b,2" € Si, by # 0 be arbitrary and p € PE. Then
P,Cﬁ@Sp only depends on by, ..., by
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Proof. We define (b%)(%)(z2) Zk bnz™. Then for j < k, q(z) = 277

(P,cff’q) (z) = P (bﬁ
<( 2) + ek (2)) j)
= P (bﬁ )F)( <1+m>_j>
(bﬁ )®)( (1+Z< > htn—1 ok, )n <(bt¢)(zk)(z)>n))

= =P (C(bu)(k)q) (2),

where we used the notation c*(2) := 3" | b, 2" O

Corollary 4.0.20. Let b: D — D, b(z) := >0 b,2", with by # 0, such that CF is
bounded. Then .
PGS (CP) p=5p (4.19)

holds for all polynomials p € Py.

Proof. For k € N, let p € Pt be arbitrary. Then b (2) = 22:1 bpz" € PE and
because of (b*))/(0) # 0 there exist some € > 0 and 1 > r,§ > 0, such that bs(2) :=
b(¥)(5z) is univalent on By (0) and bs(D) C B,(0). Because of §z € B and

<C§zianz",icnz"> :<ian(6z)",icnz”> =
n=1 n=1 D n=1 —

D

= Znan6 Cp = <Z anz" C(;Z chz”>
)

n=1

for >0 | ¢,2™ € D arbitrary, the operator C? is self-adjoint.
Furthermore CJZZQS = SC’(;I_QIZ and C’I)Z&@ C’ C'b(,g> Hence, we obtain

p = CPCIS
= CPSpP.C} S(Cbgé)*Cf,lzp
_ sp_cgﬂzcéﬁs(cf,lzcg)*p
= SP.CE3,,8(CRy) p=5P-CEPs (cP).

0

With this preliminaries we are able to show that the Grunsky operator satisfying
(4.1) indeed exists.

58



Chapter 4 De Branges’ univalence criterion

Theorem 4.0.21. Letb: D — D, b(z) = >°°, b,2", by # 0, such that dom CI® =
19 and C'bzD is a contraction with respect to [-,-|;. Then there exists a contraction
operator Gy, : © — D that satisfies (4.1).

Proof. By Remark 4.0.15, (iv) we know, that Clﬁ@ is a contraction, since C’bZg is a

contraction by assumption. Let f € ® and p € P be arbitrary. Then f+ .5 (C’?)*p €
79 and thus

IG5 (£+5(CR) p) 130 < I1F +5(CF) pli3o. (4.20)
By using Corollary 4.0.20 on the left hand side, we obtain
ICE (£+5(CR) ») 130 = ICE2f + (Pr + P)CES (CP) pli3a
= cg s + PS5 (CF) p+ Sl (4.21)
=GR f +P-CERS () pllh — Ilpll3

since C’lﬁf + P+C£©S (Cb@)*p €® and Sp € §9. On the right hand side, because of
fe®and S (Cb@)*p € 59, we have

1F 45 (CR) plido = 1115~ 11 (CF) pl3: (4:22)

Combining (4.20), (4.21) and (4.22) yields

ICRF + PeCERS (CF) pli3 = 1713 < Ipl3 — 1 (CR) plh. (4.23)

If we take the supremum over all f € ® and use Theorem 1.3.4, the left hand side is

nothing else but the D (CD)*—norm of P+C’£©S (C’gD )* p squared. The right hand side
bl
can be written as

*
pl3 — 1 (c?) vl

|
=
3
v}

\
S
/N

<3
N—
*
=
/N
<3
N—
*
=3
~——
@]

= HD(CZ)D)*pHQD = ”D?Cb@)*p

’% D * *
(e9)
Thus we have

1P.CEs (CF) plip, . <ID}

(%)

2

for all polynomials p.
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Therefore the operator F' defined by
D? .P — D .
(c?) (3

D%Cb@)*p = PLCL2S (CP)p

is well defined, and a contraction if we endow D% CD)*P with the D( op)*-norm. Since
b b

F

D?C@>*P is dense in D(CQ)* by Lemma 1.3.6, we can extended F' to a contraction
b b
operator H : D(C?)* — D<Cﬁ>*.

Now we define the Grunsky operator G by

. { D - D
b: — (HD? ..
/ ey
where ¢ is the embedding of D( o2y’ into ®. Then G} fulfills (4.1) by construction and,
b

since H, ¢ and D? .. are contractions (see Remark 1.3.5), the Grunsky operator is a
(&)
b

contraction as well. O

Lemma 4.0.22. Let b: D — D, b(z) = Y 0% | b,z", with by # 0, such that CI® is a
contraction. Then for arbitrary w € D the function

ga(2) = GpKo (- w)(2)

is the analytic continuation on D of the function

= lo b(w)bi(2) o Z—w
o= g( oLs ) - g(bﬂ(z)—b(w))

Proof. For k € N, p(z) € Py, we already established in Lemma 4.0.16, that (Cg‘))*p is
a polynomial of degree k with ((C’?Yp) (0) = 0. Thus we may define

k
pr(z) =Y plHa" = (C?) (¢ = ¢F) + key,
n=0

where the ¢ are the coefficients of the power series expansion of

bi(z) .k
lo — = Ciz
) (b'w)z 2
which has a positive radius of convergence .

By Theorem 4.0.21 the Grunsky operator G, exists and by Corollary 4.0.20 fulfills
for p e P, p(0) =0

Gyp = PyCZo8 <Cg3)*p

CBs (cP) p—PcRs () p—ncRs () v

- o5 (q?)*p — Sp— RCIPS (C?)*p.
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Hence for z € D, k € N

G (60 ¢) ) = (i) — w5~ BB (CF) (6 ¢4 =

Further we calculate for arbitrary w € D

o0

90(2) = (Gl w) (2) = 3 2 (G (¢ =€) (2) =

n=1
i % ( <bﬁzz)> - Zin 4 dn> L (4.24)

n=1

By using Lemma 1.4.7 we have
1 * = o
log (1_b(w)> = Kn(z,b(w)) = ((CF) Kalw)) (2) = 3 “=(pa(z) = ne,)

n=1

for all z,w € D. For |w| < 1o the series Y ~° | ¢, @™ converges and we can write

0" 1 b(w)
;n <1—b ) Zw Cn = 10g<1—b(w)z>+log<b’(0)w>.

The series on the left hand side converges if |w| < rg and |b(w)| < |z|~!. For A € D\ {0}
let dy > 0 be such that |w| < ro, |w| < |A|, |b(w)| < [b*(N)] for all |w| < &x. Then for
arbitrary A € D and w € Bj, (0) we have

-(\) = lo BulB(y) A=
fa(A) =1 g( V(0)wA bE(N) _(w)>
1 bw) !
o . o _ 4.2
(w) () () e

= " 1 ) o 1
=Y — )Y ——
nz:l n (bﬁ()\) nZ:l n A"

Since for fixed z € D, the right hand side of (4.24) converges, this shows, that the
series Y7 | 2d, has a radius of convergence of at least 6, and from (4.24) and (4.25)

we obtain -
w"
— 4.2
-2 ) (4:26)

n=1

for X e D\ {0}, w € By, (0).
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Since gz € ® for all w € D, the functions gz are analytic on D. Moreover, because
of

9w (2) = GpKo (-, w)(2) = [GpKp (-, w), Ko (, 2)|p =
[(Gy)" Ko (-, 2), Ko (-, w)lp = ((Gb)" Ko(:,2)) (w)

the function w — gy,(2) is analytic on D for fixed z € D. Hence the left hand side of
(4.26) is analytic as a function in @ for |w| < R (302, “’Tndn) For small w, the right
hand side is analytic in A on a disc containing the origin. Hence on this disc equation

(4.26) is valid. In particular, we have

0= u(0) = 9a(0) = 3 Ty == > U,
n=1 n=1

for all w in this disc. Hence >, %"dnzo for all w € D and thus gz(2) is an analytic

continuation of fz(2) to the whole bidisc. O
Now we are able to prove Theorem 4.0.6:

proof (of Theorem 4.0.6). (i) = (ii) follows immediately from Remark 4.0.2, (7ii)

(ii) = (ii1) is exactly the result of Theorem 4.0.21.

Last we prove that (iii) = (i): Suppose that b is not univalent. Since we already
know, that b(z) # 0 for all z # 0 by Remark 4.0.4, (ii), there exist wy, 21 € D, w; # 21
with b(w1) = b(z1) # 0. Hence the function fg, has no analytic continuation to the
point z; which is a contradiction to the statement of Lemma 4.0.22. O
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