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Introduction

It is a very strong property of a complex function to be univalent. The Riemann
mapping theorem states the existence of a biholomorphic (hence univalent) mapping
from any simply connected open proper subset of the complex plane to the unit circle.
Nevertheless for a given mapping in many cases univalence is not easy to prove. There
are a lot of necessary and sufficient conditions on functions to ensure univalence (see
for example [Pom]).

In this master’s thesis we focus on an approach based on the theory of indefinite
inner product spaces. The so called Littlewood subordination principle or Littlewood
subordination theorem states, that for a univalent self-mapping b of the complex unit
disc, that fixes the origin, the composition operator is a contraction on various spaces of
holomorphic functions. The composition operator induced by b is the linear operator,
that maps any given function of the studied space to the composition with b. It was
introduced in 1925 by John Edensor Littlewood [Lit25] and holds for example for the
Bergman, Hardy and Dirichlet space. Unfortunately this criterion is not sufficient for
any of the mentioned spaces. Nevertheless it is possible to expand the subordination
principle to a certain Krein space, such that it is sufficient. This will be the goal of
the Master’s thesis at hand.

In Chapter 1 we start by introducing the concept of formal power series and how
the contraction operator may be defined for such series. It is loosely based on [Hen74]
and [GK02]. We continue by discussing the theory of indefinite inner product spaces
and how a topology can be defined on Krein spaces, a certain class of indefinite inner
product spaces. For a more detailed discussion of indefinite inner product spaces
see for example [Bog74]. Moreover, we briefly describe the concept of defect spaces
and defect operators of contraction operators, since it is an important ingredient in
some proofs of Chapter 4. We conclude the first chapter with an introduction to the
theory of reproducing kernel Hilbert spaces, a class of Hilbert spaces, that includes
the Bergman and Hardy space. A more detailed survey of such spaces was written by
Aronszajn in 1950 [Aro50].

The second chapter consists of the introduction of two certain reproducing kernel
Hilbert spaces, namely the Bergman and the Dirichlet space.

In Chapter 3, we prove the Littlewood subordination principle for the Dirichlet
space. Further we introduce generalized Dirichlet spaces and present a proof for the
subordination principle based on [RR94].

The last chapter is dedicated to proving the main result of this work, Theorem 4.0.6,
which states, that the composition operator induced by a function b being a contraction
on a certain Krein space is already sufficient for b to be univalent. This theorem first
appeared in the proof of the Bieberbach conjecture by L. de Branges [dB85] in 1985.

ii



Introduction

The proof in hand is based on an article by N. Nikolski and V. Vasyunin [NV92], which
we tried to supplement with many details to make it an intelligible read.
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Chapter 1

Preliminaries

1.1 Formal Power Series

Defintion 1.1.1. Let (an)n∈N0
∈ CN0 be an arbitrary complex series. Then we call

f(z) =

∞∑
n=0

anz
n (1.1)

a formal power series and denote the family of all such formal power series by S+
0 . If

we consider only series (an)n∈N ∈ CN, starting with index one, we denote the resulting
family of formal power series by S+. For k ∈ N the symbol Pk refers to the set of all
polynomials with complex coefficients of degree less or equal than k, i.e.

Pk := {
∞∑
n=0

anz
n : an = 0, n > k}

and P :=
⋃∞
k=0 Pk the set of all Polynomials. Furthermore we denote the set of all

Polynomials p ∈ Pk with p(0) = 0 by Pk0 and P0 :=
⋃∞
k=0 Pk0 .

The radius of convergence R(f) ∈ [0,+∞] of a formal power series f is defined as

R(f) :=

{
1

lim supn→∞ |an|1/n
, lim supn→∞ |an|1/n > 0

+∞, lim supn→∞ |an|1/n = 0
(1.2)

Remark 1.1.2.

(i) The term formal refers to the fact, that up to this point, we do not make any
assumptions about convergence of the series or which values can be substituted
for z. Technically until now every formal power series is nothing else, but the
sequence of its coefficients.

(ii) Note that R(f) is non-negative, but in general not positive. Consider for example
the formal power series

f(z) :=
∞∑
n=0

nnzn.

Then, because of
lim sup
n→∞

|nn|1/n = lim
n→∞

n = +∞

the radius of convergence R(f) is 0.
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Chapter 1 Preliminaries

Provided with addition and scalar multiplication on S+
0 defined by

∞∑
n=0

anz
n +

∞∑
n=0

bnz
n :=

∞∑
n=0

(an + bn)zn

λ

∞∑
n=0

anz
n :=

∞∑
n=0

λanz
n,

(1.3)

for all
∑∞

n=0 anz
n,
∑∞

n=0 bnz
n ∈ S+

0 and λ ∈ C, the space S+
0 is a complex vector

space. The neutral element of the addition is the formal power series with only zero
coefficients

∑∞
n=0 0 · zn =: 0.

The following theorem states some well-known facts about power series. Proofs can
be found in any basic analysis book. Notation is mostly based on [RS02]

Theorem 1.1.3. Let f(z) =
∑∞

n=0 anz
n ∈ S+

0 be a formal power series. Then

(i) f(z) converges absolutely for z ∈ BR(f)(0) and is divergent for |z| > R(f), where
Br(z0) := {z ∈ C : |z − z0| < r} denotes the complex open disc with center z0

and radius r.

(ii) in case that R(f) > 0, the function f : z 7→ f(z) is holomorphic on BR(f)(0).
Its derivative is given by f ′(z) =

∑∞
n=1 nanz

n−1 =
∑∞

n=0(n+ 1)an+1z
n. Further

R(f ′) = R(f).

(iii) for a second power series g(z) =
∑∞

n=0 anz
n ∈ S+

0 the product (f · g)(z) has the
radius of convergence R(f · g) ≥ min{R(f), R(g)} and

(f · g)(z) =

∞∑
n=0

cnz
n

with
cn =

∑
i,j∈N0
i+j=n

aibj .

(iv) Every holomorphic function f : D → C on an open set D with 0 ∈ D allows
a unique power series expansion f(z) =

∑∞
n=0 anz

n with radius of convergence
R(f) ≥ sup{r > 0 : Br(0) ⊆ D}.

(v) f(z) converges uniformly on Br(0) for any r ∈ R with 0 < r < R(f).

By Theorem 1.1.3 (i), we can interpret every formal power series f(z) with R(f) > 0
as a function

f :

{
BR(f)(0) → C

z 7→ f(z).

For z ∈ BR(f)(0) ∩ BR(g)(0) addition and scalar multiplication as defined in (1.3)
coincide with the point-wise addition and scalar multiplication in the vector space of
functions.
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Chapter 1 Preliminaries

Defintion 1.1.4. We define the formal differential operator on S+
0 by

d :

{
S+

0 → S+
0∑∞

n=0 anz
n 7→

∑∞
n=0(n+ 1)an+1z

n.

Theorem 1.1.3 (ii) shows that we can interpret every formal power series f , with
R(f) > 0 as a holomorphic function f : BR(f)(0)→ C, where for z ∈ BR(f)(0)

(df)(z) = f ′(z).

Defintion 1.1.5. The product of two formal power series can be defined as( ∞∑
n=0

anz
n

)
·

( ∞∑
n=0

bnz
n

)
:=

∞∑
n=0

(
n∑
i=0

aibn−i

)
zn.

For k ∈ N we are able to introduce the k-th power of a formal power series by induction( ∞∑
n=0

bnz
n

)1

:=

∞∑
n=0

bnz
n

( ∞∑
n=0

bnz
n

)k
:=

( ∞∑
n=0

bnz
n

)k−1

·

( ∞∑
n=0

bnz
n

)
.

We write ( ∞∑
n=0

bnz
n

)k
=
∞∑
n=0

b(k)
n zn (1.4)

for the corresponding coefficients b
(k)
n . Further we define the zeroth power of a formal

power series by ( ∞∑
n=0

bnz
n

)0

:= 1.

By Theorem 1.1.3 (iii) we know that R(bk) ≥ R(b). The coefficients b
(k)
n can be

computed explicitly in the following way:

Theorem 1.1.6. For k ∈ N, the coefficients in (1.4) satisfy

b(k)
n =

∑
n1+n2+...+nk=n

(n1,...,nk)∈Nk0

bn1bn2 . . . bnk . (1.5)

Proof. For k = 1 we have( ∞∑
n=0

bnz
n

)1

=
∞∑
n=0

b(1)
n zn =

∞∑
n=0

bnz
n.

3



Chapter 1 Preliminaries

The coefficients b
(1)
n = bn fulfill equation (1.5), since the sum only consists of the

summand bn.
Now assume that (1.5) holds for k ∈ N. By Definition 1.1.5, we have

( ∞∑
n=0

bnz
n

)k+1

=

( ∞∑
n=0

bnz
n

)k
·

( ∞∑
n=0

bnz
n

)

=

( ∞∑
n=0

b(k)
n zn

)
·

( ∞∑
n=0

bnz
n

)

=
∞∑
n=0

(
n∑
i=0

b
(k)
i bn−i

)
zn.

From

n∑
i=0

b
(k)
i bn−i =

n∑
i=0

 ∑
n1+n2+...+nk=i

(n1,...,nk)∈Nk0

bn1bn2 . . . bnk

 bn−i

=
n∑
i=0

∑
n1+n2+...+nk+n−i=n
(n1,...,nk,n−i)∈Nk+1

0

bn1bn2 . . . bnkbn−i

=
∑

n1+n2+...+nk+1=n

(n1,...,nk+1)∈Nk+1
0

bn1bn2 . . . bnk+1
= b(k+1)

n

we obtain ( ∞∑
n=0

bnz
n

)k+1

=
∞∑
n=0

b(k+1)
n zn,

which proves (1.5) by complete induction.

Now we are able to define the composition of two formal power series.

Defintion 1.1.7. Let b(z) =
∑∞

n=0 bnz
n be a formal power series. Then we define the

composition operator Cb by

Cb :

{
domCb → S+

0∑∞
n=0 anz

n 7→
∑∞

n=0

(∑∞
k=0 akb

(k)
n

)
zn,

where the domain of Cb is defined by

domCb := {
∞∑
n=0

anz
n ∈ S+

0 :
∞∑
k=0

akb
(k)
n converges, n ∈ N0}.
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Chapter 1 Preliminaries

Remark 1.1.8.

(i) Let b(z) =
∑∞

n=0 bnz
n be arbitrary and f(z) =

∑∞
n=0 anz

n, g(z) =
∑∞

n=0 cnz
n

such that f, g ∈ domCb. Then

∞∑
n=0

(ak + λck)b
(k)
n =

∞∑
n=0

akb
(k)
n + λ

∞∑
n=0

ckb
(k)
n

exists for λ ∈ C. Hence, domCb is a linear subspace of S+
0 .

(ii) For f(z) = zk, k ∈ N,

(Cbf)(z) =
∞∑
n=0

b(k)
n zn = b(z)k

shows, that the composition of zk with a formal power series b(z) coincides with
the k-th power of the formal power series b(z), as defined in Definition 1.1.5.

The following example shows, that in general domCb 6= S+
0 :

Example 1.1.9. We define two formal power series by f(z) :=
∑∞

n=0 z
n, and b(z) :=

1+z. Then b(z)k =
∑k

n=0

(
k
n

)
zn. But the sum

∑∞
k=0

(
k
n

)
is divergent for all n ∈ N0.

Hence, f /∈ domCb.

Nevertheless, in the special case, that b(0) = 0, the domain of Cb is the whole space,
as the following theorem shows:

Theorem 1.1.10. For b(z) =
∑∞

n=0 bnz
n =

∑∞
n=1 bnz

n (i.e. b0 = 0) we have
domCb = S+

0 .

Proof. Let k ∈ N k > n. Then for every tuple (n1, n2, . . . , nk) ∈ Nk0 with n1 + n2 +
. . . + nk = n, there exists at least one j ∈ {1, 2, . . . , k} such that nj = 0. It follows
from Theorem 1.1.6, that

b(k)
n =

∑
n1+n2+...+nk=n
(n1,n2,...,nk)∈Nk0

bn1bn2 . . . bnk =
∑

n1+n2+...+nk=n
(n1,n2,...,nk)∈Nk0

0 = 0,

since b0 = 0. Hence, for any arbitrary complex sequence (an)n∈N0 ∈ CN0 , the sum∑∞
k=0 akb

(k)
n has only a finite number of non-zero summands. Therefore, it converges

and its sum coincides with
∑n

k=0 akb
(k)
n . This shows that f(z) =

∑∞
n=0 anz

n ∈ domCb
and we obtain domCb = S+

0 .

Lemma 1.1.11. Let b(z) =
∑∞

n=0 bnz
n and f(z) =

∑∞
n=0 anz

n ∈ domCb. Then
|b0| ≤ R(f).

5



Chapter 1 Preliminaries

Proof. Since f ∈ domCb, the series
∑∞

n=0 b
(n)
k an converges for every k ∈ N0 by defi-

nition of domCb. In particular, this is true for k = 0. Because of b
(n)
0 = bn0 , we find

that
∞∑
n=0

b
(n)
0 an =

∞∑
n=0

bn0an

converges. By Theorem 1.1.3, (i) this can only be the case if |b0| ≤ R(f).

Theorem 1.1.12. An arbitrary complex series
∑∞

n,k=0 an,k converges absolutely if and
only if

∑∞
k=0 |an,k| < +∞, for all n ∈ N0 and

∑∞
n=0

∑∞
k=0 |an,k| < +∞. In this case

∞∑
n,k=0

an,k =
∞∑
n=0

∞∑
k=0

an,k =
∞∑
k=0

∞∑
n=0

an,k.

Proof. A proof can be found in [Rud70].

Lemma 1.1.13. Let b(z) =
∑∞

n=0 bnz
n, f(z) =

∑∞
n=0 anz

n ∈ S+
0 , such that R(b) > 0

and |b0| < R(f). Then f ∈ domCb and there exists a real number δ > 0, with
δ ≤ R(Cbf), such that (Cbf)(z) = f(b(z)) for all z ∈ Bδ(0).

In this case for all real constants r > 0 such that r ≤ R(b) and b(Br(0)) ⊆ BR(f)(0),
we have R(Cbf) ≥ r and (Cbf)(z) = f(b(z)) for all z ∈ Br(0).

Proof. We define a formal power series by

c(z) :=

∞∑
n=0

cnz
n :=

∞∑
n=0

|bn|zn.

By Theorem 1.1.6, we have

|b(k)
n | =

∣∣∣∣∣∣∣∣
∑

n1+...+nk=n
(n1,n2,...,nk)∈Nk

bn1 · ... · bnk

∣∣∣∣∣∣∣∣
≤

∑
n1+...+nk=n

(n1,n2,...,nk)∈Nk

|bn1 | · ... · |bnk |

=
∑

n1+...+nk=n
(n1,n2,...,nk)∈Nk

cn1 · ... · cnk = c(k)
n ,

for k ∈ N.

If we recall the definition of the radius of convergence (1.2), it is clear, that R(c) =
R(b) > 0. Since c(z) is continuous on BR(b)(0) and c(0) = |b0| < R(f) by assumption,
there exists a δ ∈ R, 0 < δ < R(b) such that |c(z)| < R(f) for all z ∈ Bδ(0).

6



Chapter 1 Preliminaries

Using this, we can calculate for z0 ∈ Bδ(0)

∞∑
n=0

∞∑
k=0

∣∣∣anb(n)
k zk0

∣∣∣ =
∞∑
n=0

|an|
∞∑
k=0

|b(n)
k ||z0|n ≤

≤
∞∑
n=0

|an|
∞∑
k=0

c
(n)
k |z0|n =

∞∑
n=0

|an|c(|z0|)n < +∞.

since c(|z0|) = |c(|z0|)| < R(f).

Furthermore, since |z0| < R(b), the series b (z0)n =
∑∞

k=0 b
(n)
k zk0 converges absolutely

for every n ∈ N. So we can apply Theorem 1.1.12 to the series
∑∞

n,k=0 anb
(n)
k zk0 and

obtain that
∑∞

n=0 anb
(n)
k converges for all k ∈ N. Thus, f ∈ domCb. Moreover,

f(b(z0)) =
∞∑
n=0

an

∞∑
k=0

b
(n)
k zk0 =

∞∑
k=0

∞∑
n=0

anb
(n)
k zk0 = (Cbf)(z0).

Now let r > 0 be such that b(Br(0)) ⊆ BR(f)(0). Then f(b(z)) is a holomorphic
function on Br(0), since it is the composition of two holomorphic functions. Hence,
by Theorem 1.1.3, (iv), it has a unique power series expansion f(b(z)) =

∑∞
n=0 dnz

n.
The radius of convergence of

∑∞
n=0 dnz

n is at least r.

Let δ be as above. Since Cbf is holomorphic on Bδ(0), it has a unique power series
expansion

∑∞
n=0 enz

n. We conclude that

∞∑
n=0

dnz
n = f(b(z)) = (Cbf)(z) =

∞∑
n=0

enz
n

for all z ∈ Bδ(0). Since the power series expansion is unique, dn = en follows for all
n ∈ N0. Hence, Cbf has a radius of convergence of, at least, r and (Cbf)(z) = f(b(z))
for all z ∈ Br(0).

Example 1.1.14. Let b(z) =
∑∞

n=1 bnz
n ∈ S+ be an arbitrary power series with R(b) >

0 and

Bµ(z) =

∞∑
n=0

(
µ
n

)
zn (1.6)

denote the Binomial series, for an arbitrary complex number µ. The binomial coeffi-
cients in (1.6) are defined by(

µ
n

)
:=

{
µ(µ−1)(µ−2)···(µ−n+1)

n! , n ∈ N
1, n = 0.

It is well known, that

R(Bµ) =

{
+∞, µ ∈ N0

1, µ ∈ C \ N0

7



Chapter 1 Preliminaries

and Bµ(z) = (1 + z)µ for all z ∈ BR(Bµ)(0). Since b(0) = 0, we know by Theorem

1.1.10, that domCb = S+
0 and hence Bµ(z) ∈ domCb.

Now let r > 0 be such that |b (z) | < 1 for all z ∈ Br(0). Then due to Lemma 1.1.13
we have R(CbBµ) ≥ r and

(CbBµ) (z) = Bµ (b(z)) = (1 + b(z))µ ,

for all z ∈ Br(0).

This motivates the following definition.

Defintion 1.1.15. Let f(z) =
∑∞

n=0 anz
n ∈ S+

0 be an arbitrary power series with
a0 6= 0 and µ ∈ C. Then we define the µ-th power of f(z) by

f(z)µ := aµ0 (CbBµ)(z)

where

b(z) :=

∞∑
n=1

an
a0
zn.

Remark 1.1.16. Let f , b and µ be as before with R(f) > 0. Then because of R(b) =
R(f) > 0 and b(0) = 0 Lemma 1.1.13 asserts, that R(fµ) > 0.

1.2 Spaces with indefinite inner product

Defintion 1.2.1. Let X be a complex vector space, and [·, ·] : X ×X → C a hermitian
mapping (i.e. [x + λy, z] = [x, z] + λ[y, z] and [x, y] = [y, x] for x, y, z ∈ X , λ ∈ C).
Then we call [·, ·] an inner product and the pair (X , [·, ·]) an inner product space.

Remark 1.2.2. Note, that for x ∈ X from [x, x] = [x, x] follows that [x, x] ∈ R.

Defintion 1.2.3. An element x ∈ X is called

positive ⇔ [x, x] > 0
negative ⇔ [x, x] < 0
neutral ⇔ [x, x] = 0

isotropic ⇔ [x, y] = 0, y ∈ X .

We denote the set of all isotropic elements by X ◦ and call it the isotropic part of
(X , [·, ·]).

An inner product space is called positive (negative) definite if all elements except
for the zero vector are positive (negative) elements. It is called positive (negative)
semidefinite if it has no negative (positive) elements. Otherwise it is called indefinite.
X is called degenerated if X ◦ 6= {0}. Otherwise it is called non-degenerated.

Remark 1.2.4. If Y ≤ X is a linear subspace of an inner product space (X , [·, ·]), then
(Y, [·, ·]) is an inner product space itself. We call the subspace Y positive/negative
(semi)definite if (Y, [·, ·]) is positive/negative (semi)definite.

8



Chapter 1 Preliminaries

Lemma 1.2.5. The isotropic part X ◦ of an inner product space (X , [·, ·]) is a linear
subspace of X . Every element of X ◦ is neutral.

Proof. For x, y ∈ X ◦ and arbitrary z ∈ X , λ ∈ C we have

[x+ λy, z] = [x, z] + λ[y, z] = 0.

Hence X ◦ is a linear subspace. The second assertion is clear.

Example 1.2.6. Every Hilbert space (H, 〈·, ·〉) is a positive definite inner product space.

Remark 1.2.7. Since X ◦ is a linear subspace of X , the factor space X/X ◦ is again a
vector space. If we endow X/X ◦ with the inner product

[x+ X ◦, y + X ◦]/X◦ := [x, y] (1.7)

the space (X/X ◦ , [·, ·]/X◦ ) is again an inner product space. Note, that [·, ·]/X◦ is her-
mitian, since [·, ·] is hermitian. It is well-defined, since for x1, x2, y1, y2 ∈ X such that
x1 − x2, y1 − y2 ∈ X ◦, we have [x2 − x1, y1] = 0 and there follows

[x1 + X ◦, y1 + X ◦]/X◦ − [x2 + X ◦, y2 + X ◦]/X◦ =

= [x1, y1]− [x2, y2] = [x1, y1]− [x2, y2]− [x1 − x2, y1] =

= [x2, y1 − y2] = 0.

Let x+X ◦ ∈ X/X ◦ such that [x+X ◦, y+X ◦]/X◦ = 0 for all y+X ◦ ∈ X/X ◦ . Then

0 = [x+ X ◦, y + X ◦]/X◦ = [x, y]

for all y ∈ X shows, that x ∈ X ◦ and hence (X/X ◦)◦ = 0. Thus X/X ◦ is non-
degenerated.

Example 1.2.8. Let (X1, [·, ·]1), (X2, [·, ·]2) be positive semidefinite inner product spaces.
Then we define (X , [·, ·]) by X := X1 ×X2 and

[(x1, x2), (y1, y2)] := [x1, y1]1 − [x2, y2]2 .

Since [·, ·]1 and [·, ·]2 are inner products, [·, ·] is an inner product as well. Let ι1, ι2
denote the embeddings of X1, X2 into X . Then, since X1, X2 are positive semidefinite,

[ι1(x1), ι1(x1)] = [x1, x1]1 − [0, 0]2 = [x1, x1]1 ≥ 0

and
[ι2(x2), ι2(x2)] = [0, 0]1 − [x2, x2]2 = −[x2, x2]2 ≤ 0

for all x1 ∈ X1, x2 ∈ X2. Hence ι1(X1) is a positive semidefinite and ι2(X2) a negative
semidefinite subspace of X .

If (x1, x2) ∈ X is isotropic, we have

0 = [(x1, x2), (y1, y2)] = [x1, y1]1 − [x2, y2]2 (1.8)

for all (y1, y2) ∈ X . Hence x1 ∈ X ◦1 and x2 ∈ X ◦2 . If, on the other hand x1 ∈ X ◦1 and
x2 ∈ X ◦2 , equation (1.8) holds for all (y1, y2) ∈ H. Thus,

X ◦ = X ◦1 ×X ◦2 .

9
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Defintion 1.2.9. We call two elements x, y ∈ X of an inner product space (X , [·, ·])
orthogonal if [x, y] = 0 and denote this by x[⊥]y. Two subspaces X1,X2 ≤ X are called
orthogonal if x1[⊥]x2 for all x1 ∈ X1, x2 ∈ X2, and we denote this fact by X1[⊥]X2.

The orthogonal complement M [⊥] of a set M ⊆ X is defined as

M [⊥] := {x ∈ X : x[⊥]m, m ∈M}.

A linear operator P : X → X is called a projection if it is idempotent (i.e. P 2 = P ).
A projection is called orthogonal (with respect to [·, ·]) if ranP [⊥] kerP .

Lemma 1.2.10. Let (X , [·, ·]) be an inner product space and X1,X2 ≤ X subspaces of
X , such that

X1 u X2 = X (1.9)

(the symbol u denotes a direct sum i.e. X1 +X2 = X and X1 ∩X2 = {0}). Then there
exist unique linear projection operators Pi : X → Xi, i = 1, 2, with PiXi = Xi and
kerPi = X1−i

If the spaces are such that

X1[u]X2 = X (1.10)

(i.e. X1 u X2 = X and X1[⊥]X2), the projectors Pi are orthogonal.

Proof. For x ∈ X exist x1 ∈ X1, x2 ∈ X2, such that x = x1 + x2. This decomposition
is unique: For y1 ∈ X1, y2 ∈ X2 with y1 + y2 = x, we have

0 = x1 − y1 + x2 − y2.

Since x1 − y1 ∈ X1 and x2 − y2 ∈ X2 and X1 ∩ X2 = {0},

x1 − y1 = x2 − y2 = 0.

Now we define Pix := xi for i = 1, 2. Because of

Pi(x1 + x2 + λ(y1 + y2)) = xi + λyi = Pi(x1 + x2) + λPi(y1 + y2)

for xi, yi ∈ Xi, λ ∈ C they are linear, and since P 2
i x = Pixi = xi = Pix, they are

projections. The kernel of P1 is

ker P1 = {x ∈ X : P1x = 0} = X2

and vice versa.

Let Q 6= 0 be linear a projection on Xi. Then

Pi(x1 + x2)−Q(x1 + x2) = xi − xi = 0

shows that Q = Pi. Hence, if X1[⊥]X2, the projectors are orthogonal.

10
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Defintion 1.2.11. Let (X , [·, ·]) be an inner product space and X+, X− subspaces of
X such that

X = X+[u]X−[u]X◦.

Then we call the space X decomposable and the pair (X+,X−) a fundamental decom-
position of X . The linear operator

J :

{
X → X
x 7→ P+x− P−x,

where P± denote the projections onto X±, is called fundamental symmetry or met-
ric operator. If we want to emphasize, that a fundamental symmetry J belongs to
the fundamental decomposition (X+,X−), we will also call the triplet (X+,X−, J) a
fundamental decomposition of X .

Lemma 1.2.12. For a fundamental decomposition (X+,X−, J) of an indefinite inner
product space (H, [·, ·]),

(i) [x, y] = [P+x, y] + [P−x, y]

(ii) [P±x, y] = [x, P±y] = [P±x, P±y]

(iii) [Jx, y] = [x, Jy]

(iv) [x, y] = [Jx, Jy] = [JJx, y]

hold for x, y ∈ X

Proof. (i): Let x◦ ∈ X ◦ such that x = (P+ + P−)x+ x◦. Then

[x, y] = [P+x, y] + [P−x, y] + [x◦, y] = [P+x, y] + [P−x, y].

(ii): Follows from X+ ⊥ X−.
(iii):

[Jx, y] = [P+x, y]− [P−x, y] = [x, P+y]− [x, P−y] = [x, Jy]

(iv):

[Jx, Jy] = [P+x, P+y]− [P+x, P−y]− [P−x, P+y] + [P−x, P−y] =

= [P+x, P+y] + [P−x, P−y] = [P+x, y] + [P−x, y] = [x, y].

The second equality follows from (iii).

Example 1.2.13. Recall the indefinite inner product space from Example 1.2.8 and
assume this time, that X1,X2 are positive definite. Then, since X ◦ = {0} and

[ι1(x), ι2(y)] = [(x, 0), (0, y)] = [x, 0]1 − [0, y]2 = 0,

(ι1(X1), ι2(X2)) is a fundamental decomposition. The action of J is given by J(x1, x2) =
(x1,−x2).

11
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Defintion 1.2.14. Let (X , [·, ·]) be an inner product space and (X+,X−, J) a funda-
mental decomposition. Then we define a mapping by

[·, ·]J :

{
X × X → C

(x, y) 7→ [Jx, y]

and call it the inner product induced by the fundamental decomposition (X+,X−, J).

Lemma 1.2.15. Let (X , [·, ·]) and (X+,X−, J), be again an inner product space and
an arbitrary fundamental decomposition. Then [·, ·]J is a positive semidefinite inner
product. Moreover

(X , [·, ·])◦ = (X , [·, ·]J)◦

and (X , [·, ·]J) is positive definite if and only if (X , [·, ·]) is non degenerated.

Proof. Since J is linear, [·, ·]J is linear in the first argument and because of

[x, y]J = [Jx, y] = [x, Jy] = [Jy, x] = [y, x]J

by Lemma 1.2.12, (iii), for all x, y ∈ X , it is hermitian. It is also positive semidefinite,
since for x ∈ X

[x, x]J = [Jx, x] = [P+x, x]− [P−x, x] = [P+x, P+x]− [P−x, P−x] ≥ 0.

Now let x ∈ (X , [·, ·])◦. Then by Lemma 1.2.12, (iii),

[x, y]J = [Jx, y] = [x, Jy] = 0

for all y ∈ X and hence (X , [·, ·])◦ ⊆ (X , [·, ·]J)◦.

For x ∈ (X , [·, ·]J)◦ we have

[x, y] = [Jx, Jy] = [x, Jy]J = 0

for all y ∈ X due to Lemma 1.2.12, (iv), and thus (X , [·, ·])◦ ⊇ (X , [·, ·]J)◦. The last
assertion is clear since the isotropic parts coincide.

Remark 1.2.16. Since the inner product [·, ·]J is positive semidefinite, it induces a
semi-norm ‖ · ‖J on X by

‖x‖2J := [x, x]J

for all x ∈ X . By Lemma 1.2.15 ‖ · ‖J is a norm if and only if (X, [·, ·]) is non-
degenerated.

Defintion 1.2.17. Let (K, [·, ·]) be a decomposable, non-degenerated inner product
space and assume that there exists a fundamental symmetry J such that (K, [·, ·]J) is
complete. Then we call (K, [·, ·]) a Krein space.

12
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Example 1.2.18. Consider again the inner product space from Examples 1.2.8 and
1.2.13. This time assume, that X = H1 × H2 = ι1(H1)[u]ι2(H2), where (H1, 〈·, ·〉1),
(H2, 〈·, ·〉2) are Hilbert spaces. Now let ((xn, yn))n∈N be a Cauchy series in X . Then
because of

‖(xn, yn)− (xm, ym)‖2J = [(xn − xm, yn − ym), (xn − xm, yn − ym)]J

= [xn − xm, xn − xm]1 + [yn − ym, yn − ym]2

= ‖xn − xm‖21 + ‖yn − ym‖22,

the series (xn)n∈N, (yn)n∈N are Cauchy in H1 and H2 respectively. Since H1 and H2

are complete, there exist x ∈ H1 and y ∈ H2 such that limn→∞ ‖xn − x‖1 = 0 and
limn→∞ ‖yn − y‖2 = 0. Thus,

lim
n→∞

‖(xn, yn)− (x, y)‖2J = lim
n→∞

‖xn − x‖21 + lim
n→∞

‖yn − y‖21 = 0.

Hence, (X , [·, ·]J) is complete and (X , [·, ·]) is a Krein space.

Lemma 1.2.19. Let (X , [·, ·]) be a semidefinite inner product space. Then

(i) X ◦ = {x ∈ X : x is neutral}

(ii) for x, y ∈ X the Cauchy-Schwartz inequality

|[x, y]| ≤
√

[x, x][y, y] (1.11)

holds.

Proof. If (X , [·, ·]) is negative semidefinite, we just consider the positive semidefinite
inner product space (X ,−[·, ·]). So we can assume without loss of generality, that
(X , [·, ·]) is positive semidefinite.

Let x, y ∈ X be arbitrary such that [x, y] 6= 0. For λ ∈ R we have

0 ≤
[
x− λy [x, y]

|[x, y]|
, x− λy [x, y]

|[x, y]|

]
= [x, x]− λ [x, y]

|[x, y]|
[y, x]− λ [y, x]

|[x, y]|
[x, y] + λ2[y, y]

= [x, x]− 2λ|[x, y]|+ λ2[y, y].

(1.12)

We already know that X ◦ ⊆ {x ∈ X : x is neutral}. Assume that y is neutral

and [x, y] 6= 0 for some x ∈ X . Then, because of [y, y] = 0, choosing λ > [x,x]
2|[x,y]| in

inequality (1.12) leads to

0 ≤ [x, x]− 2λ|[x, y]| < [x, x]− [x, x] = 0.

Hence, [x, y] = 0 for all x ∈ X and therefore y ∈ X ◦, which shows (i).

If x or y are isotropic, inequality (1.11) is fulfilled. For x, y /∈ X ◦, setting λ = |[x,y]|
[y,y]

in inequality (1.12) asserts

0 ≤ [x, x]− |[x, y]|2

[y, y]
,

which is equivalent to (1.11).
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Lemma 1.2.20. Let (K, [·, ·]) be an inner product space and (K+,K−, J) some funda-
mental decomposition. Then for M ⊆ K, the set M [⊥] is a linear subspace of K and
M [⊥] is closed with respect to ‖ · ‖J .

Proof. For x ∈M , we define a linear mapping by

fx :

{
K → C
y 7→ [x, y].

Then we can write M [⊥] as

M [⊥] =
⋂
x∈M

ker fx.

Because of

|fx(y)|2 = |[x, y]|2 = |[Jx, y]J |2 ≤ ‖Jx‖J‖y‖J
for all x, y ∈ K, the mappings fx are continuous with respect to ‖ · ‖J and each ker fx
is a closed subspace of (K, [·, ·]J). Hence, M [⊥] is a closed subspace as well.

Remark 1.2.21. The proof in Lemma 1.2.20 works also for for an arbitrary inner
product space (X , [·, ·]) and a norm ‖ · ‖ on X , such that fx is continuous for all
x ∈ X .

Since we will use it in the proof of the following lemma, we present a formulation of
the closed graph theorem (without proof).

Theorem 1.2.22 (Closed graph theorem). Let (X , ‖·‖X ), (Y, ‖·‖Y) be Banach spaces
and T : X → Y a linear operator. Then T is continuous if and only if the graph of T
(i.e. the set {(x, y) ∈ X ×Y : y = Tx}) is closed in X ×Y, endowed with the product
topology.

Proof. Can be found in [Rud70].

Lemma 1.2.23. Let K be a Krein space and (K+,K−, J) be the fundamental decom-
position such that (K, [·, ·]J) is complete. Further, let (K′+,K′−, J ′) be an arbitrary
fundamental decomposition. Then there exists a real constant C > 0, such that

‖JJ ′x‖J ≤ C‖x‖J (1.13)

and

‖J ′Jx‖J ′ ≤ C‖x‖J ′ (1.14)

for all x ∈ X

Proof. To prove inequality (1.13), we first note that, because of

‖Jx‖2J = [JJx, Jx] = [Jx, x] = [x, x]J = ‖x‖2J ,

the operator J is an isometry with respect to ‖ · ‖J and therefore continuous. Now let
(xn)n∈N be a series in K such that limn→∞ ‖xn−x‖J = 0 and limn→∞ ‖P ′+xn−y‖J = 0

14
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for some x, y ∈ K. Then, since by Lemma 1.2.20 K′+ =
(
K′−
)[⊥]

is closed, we have

y ∈ K′+. Moreover, because P ′+xn − xn ∈ K′−, and K′− =
(
K′+
)[⊥]

is closed as well, we
obtain

lim
n→∞

P ′+xn − xn = y − x ∈ K′−.

Now
0 = P ′+(y − x) = y − P ′+x

shows, that P ′+x = y. Thus P ′+ is closed with respect to ‖ · ‖J . By the closed graph
theorem, it is continuous. It can be shown analogously, that P ′− is continuous with
respect to ‖ · ‖J as well. Since JJ ′ = J(P ′+ − P ′−) is the composition of continuous
mappings, it is continuous itself. Hence, there exists a real constant C > 0, such that
(1.13) holds.

To prove inequality (1.14), we first show by complete induction, that∥∥J ′Jx∥∥2n

J ′
≤
∥∥(J ′J)2nx

∥∥
J ′
‖x‖2

n−1
J ′ (1.15)

holds for every n ∈ N. By the Cauchy-Schwartz inequality and Lemma 1.2.12, we find∥∥J ′Jx∥∥2

J ′
=

[
J ′Jx, J ′Jx

]
J ′

=
[
J ′Jx, Jx

]
=

[
J ′J ′JJ ′Jx, x

]
=

[
(J ′J)2x, x

]2
J ′
≤
∥∥(J ′J)2x

∥∥
J ′
‖x‖J ′ ,

for all x ∈ K. But this is nothing else, but inequality (1.15) with n = 1.
Now assume, that (1.15) holds for some n ∈ N. Then for x ∈ K∥∥J ′Jx∥∥2n+1

J ′
=

(∥∥J ′Jx∥∥2n

J ′

)2

≤
(∥∥(J ′J)2nx

∥∥ ‖x‖2n−1
J ′

)2

=
∥∥(J ′J)2nx

∥∥2 ‖x‖2
n+1−2
J ′

=
[
(J ′J)2nx, (J ′J)2nx

]
J ′
‖x‖2

n+1−2
J ′

=
[(
JJ ′
)2n

J ′
(
J ′J
)2n

x, x
]
‖x‖2

n+1−2
J ′

=
[
(J ′J)2n+1

x, x
]
J ′
‖x‖2

n+1−2
J ′

≤
∥∥∥(J ′J)2n+1

x
∥∥∥
J ′
‖x‖J ′ ‖x‖

2n+1−2
J ′ =

∥∥∥(J ′J)2n+1
x
∥∥∥
J ′
‖x‖2

n+1−1
J ′ ,

shows that (1.15) holds for all n ∈ N. From the previously proven inequality (1.13),
we derive ∥∥(J ′J)2nx

∥∥2

J ′
=

[
(J ′J)2nx, (J ′J)2nx

]
J ′

= [(J ′J)2nx, J(J ′J)2n−1x]

= [J(J ′J)2nx, J(J ′J)2n−1x]J

≤ ‖(JJ ′)2nJx‖J‖(JJ ′)2n−1Jx‖J
≤ C2n‖Jx‖JC2n−1‖Jx‖J = C2n+1−1‖x‖2J .
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Combining this with (1.15) yields

∥∥J ′Jx∥∥
J ′
≤
(∥∥(J ′J)2nx

∥∥ ‖x‖2n−1
J ′

)2−n

≤

≤
(
C2n− 1

2 ‖x‖J ‖x‖2
n−1
J ′

)2−n

= C1−2−n−1‖x‖2−nJ ‖x‖1−2−n

J ′

for all n ∈ N. For n→∞ on the right hand side we obtain inequality (1.14).

Theorem 1.2.24. Let K be a Krein space. Then two norms induced by fundamental
symmetries are equivalent.

Proof. Let (K+,K−, J) be the fundamental decomposition such that (K, [·, ·]J) is com-
plete and (K′+,K′−, J ′) an arbitrary fundamental decomposition. Then it is sufficient
to show that ‖ · ‖J and ‖ · ‖J ′ are equivalent, i.e. there exist real constants λ1, λ2 > 0,
such that

λ1‖x‖J ′ ≤ ‖x‖J ≤ λ2‖x‖J ′
for all x ∈ X .

Since (X , [·, ·]J) is positive definite, by the Cauchy-Schwartz inequality, Lemma
1.2.12 and Lemma 1.2.23 we have

‖x‖2J ′ = [J ′x, x] = [JJ ′x, x]J ≤ ‖JJ ′x‖J‖x‖J ≤ C‖x‖2J . (1.16)

Inequality (1.16) also holds if we switch J and J ′. Thus, we obtain

1√
C
‖x‖J ′ ≤ ‖x‖J ≤

√
C‖x‖J ′ .

Corollary 1.2.25. Let (X , [·, ·]) be an inner product space. Then the following state-
ments are equivalent:

(i) (X , [·, ·]) is a Krein space.

(ii) There exists a fundamental decomposition (H1,H2, J) such that (H1, [·, ·]) and
(H2,−[·, ·]) are Hilbert spaces.

Proof. (ii)⇒ (i):
We’ve already established that in Examples 1.2.8, 1.2.13 and 1.2.18.

(i)⇒ (ii):
Let (X+,X−, J) be a fundamental decomposition, such that (X , [·, ·]J) is complete.
Since for x ∈ X+, y ∈ X− we have

[x, x] = [Jx, x] ≥ 0

−[y, y] = [Jy, y] ≥ 0

the spaces (X+, [·, ·]) and (X−,−[·, ·]) are positive semidefinite. Moreover, because
by definition (X , [·, ·]) is non-degenerated and all neutral elements are isotropic by
Lemma 1.2.19, (X ; [·, ·]) and (X−,−[·, ·]) are positive definite. Since X+ = (X−)⊥ and
vice versa, they are closed with respect to ‖ · ‖J and, therefore, Hilbert spaces.
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Since we will need it later on, we define contraction operators on (indefinite) inner
product spaces as follows:

Defintion 1.2.26. Let (X , [·, ·]) be an inner product space, and T : X → X be a
linear operator. Then we call T a contraction if

[Tx, Tx] ≤ [x, x]

for all x ∈ X .

Note that, if [·, ·] is positive definite, T being a contraction is equivalent to T being
a bounded linear operator with norm smaller or equal 1.

Defintion 1.2.27. A Krein space H1[u]H2 such that min{dimH1, dimH2} < +∞ is
called Pontryagin space.

1.3 Defect operators

Defintion 1.3.1. Let (H, 〈·, ·〉H)H be a Hilbert space and T : H → H a bounded
linear operator. Then we denote the family of all such operators by B(H). We call
T ∈ B(H) a contraction if

‖Tx‖H ≤ ‖x‖H

for all x ∈ H (i.e. ‖T‖ ≤ 1).

Further we define the space H(T ) by

H(T ) := ranT = {x ∈ H : ∃y ∈ H : x = Ty} .

Since for every x ∈ H
T−1x = {y}+ kerT,

for any y ∈ T−1x and kerT is a closed subspace of H, the set T−1x is closed in H.
Hence there exists a unique yx ∈ H with

‖yx‖H = min {‖y‖H : x = Ty}

and we can define an inner product and norm on H(T ) by

〈x, z〉H(T ) := 〈yx, yz〉H , ‖x‖2H(T ) := ‖yx‖2H = 〈yx, yx〉H .

Remark 1.3.2. Note that yx = y−Py for any y ∈ T−1x, where P denotes the orthog-
onal projection on kerT . Therefore yx is the unique element of T−1x ∩ (kerT )⊥.

Since ranT ∗ ⊆ (kerT )⊥

‖TT ∗x‖H(T ) = ‖T ∗x‖H

follows for all x ∈ H.
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It is easy to check, that
(
H(T ), 〈·, ·〉H(T )

)
is again a Hilbert space.

Let (H, 〈·, ·〉H)H be a Hilbert space and T : H → H be a contraction operator on
H, then because of (I denotes the identity on H)

〈(I − TT ∗)x, x〉H = ‖x‖2H − 〈TT ∗x, x〉H = ‖x‖2H − ‖T ∗x‖2H ≥
≥ ‖x‖2H

(
1− ‖T ∗‖2H

)
= ‖x‖2H

(
1− ‖T‖2H

)
≥ 0,

the operator I − TT ∗ is positive. In particular there exists a unique, self-adjoint and
non-negative square-root (I − TT ∗)

1
2 ∈ B(H).

Defintion 1.3.3. Let H be a Hilbert space, and T : H → H a linear contraction
operator. Then we call the operators

DT := (I − T ∗T )
1
2 , DT ∗ := (I − TT ∗)

1
2

the defect operators and the Hilbert spaces

DT := H(DT ), DT ∗ := H(DT ∗)

the defect spaces of the operator T .

Theorem 1.3.4. Let H be a Hilbert space, and T : H → H a linear contraction
operator. Then x ∈ H is an element of DT ∗ if and only if

sup
y∈H

(
‖x+ Ty‖2H − ‖y‖2H

)
< +∞

In this case we can calculate the DT ∗-norm by

‖x‖2DT∗ = sup
y∈H

(
‖x+ Ty‖2H − ‖y‖2H

)
Proof. See [NV91], Chapter 1.

Remark 1.3.5.

(i) Since for x ∈ DT ∗

‖x‖D∗T = sup
y∈H

(
‖x+ Ty‖2H − ‖y‖2H

)
≥ ‖x+ T0‖2H − ‖0‖2H = ‖x‖2H

the embedding

ι :

{
DT ∗ → H
x 7→ x

is a contraction.

18
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(ii) Because of

‖D2
T ∗x‖2DT∗ = ‖DT ∗D

∗
T ∗x‖2DT∗

= ‖D∗T ∗x‖2H
=

〈
(I − TT ∗)

1
2 x, (I − TT ∗)

1
2 x
〉2

H
= 〈(I − TT ∗)x, x〉H
= ‖x‖2H − ‖T ∗x‖2H ≤ ‖x‖2H

for all x ∈ H, the operator D2
T ∗ : H → DT ∗ is a contraction as well.

Lemma 1.3.6. Let T be a self-adjoint operator on a Hilbert space H, and P an
arbitrary dense subset of H. Then the set D2

T ∗P is dense in DT ∗.

Proof. Let f = Tg ∈ H (T ) be arbitrary. Since T is continuous and self-adjoint,
we can decompose the space H into the closed linear subspaces ranT u kerT =
ranT u (ranT )⊥, and denote the orthogonal projections on kerT and ranT by Pk
and Pr respectively. Then since Prg ∈ ranT there exists h ∈ H such that Th = Prg.
Moreover since h ∈ H and P is dense in H, there exists a sequence (pn)n∈N, such that
limn∈N ‖pn − h‖D = 0. Now we define (fn)n∈N :=

(
T 2pn

)
n∈N ⊆ T

2P.

Because of

‖fn − f‖H(T ) = ‖T 2pn − Tg‖H(T ) = ‖T (Tpn − g)‖H(T ) =

= min
k∈kerT

‖Tpn − g + k‖D = min
k∈kerT

‖Tpn − Prg − Pkg + k‖D ≤

≤ ‖Tpn − Th‖H + min
k∈kerT

‖Pkg + k‖H ≤ ‖T‖‖pn − h‖H

limn→∞ ‖fn − f‖H(T ) = 0. Hence T 2P is dense in H(T ), since f was arbitrary.

1.4 Reproducing Kernel Hilbert spaces

For an arbitrary, non-empty set X, we denote the set of all functions from X to C by
CX . If we define the addition of f, g ∈ CX by (f + g)(x) := f(x) + g(x) and the scalar
multiplication of f ∈ CX with λ ∈ C as (λf)(x) := λf(x) for all x ∈ X, then CX is a
vector space.

For every x ∈ X we can define the mapping

ιx :

{
CX → C
f 7→ f(x).

Because of ιx(λf + g) = λf(x) + g(x) = λιxf + ιxg for f, g ∈ CX , λ ∈ C, the mapping
ιx is linear.
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Defintion 1.4.1. Let X be an arbitrary set and (H, 〈·, ·〉H) be a Hilbert space, such
that H ≤ CX i.e. H is a linear subspace of CX . The space H is called a reproducing
kernel Hilbert space (or RKHS) over X if ιx ∈ H′ for all x ∈ X, where the symbol H′
denotes the topological dual space of H, defined by

H′ := {h : H → C
∣∣h is linear and continuous}.

Lemma 1.4.2. Let (H, 〈·, ·〉H)H be a RKHS over X, then there exists a kernel function
KH : X ×X → C, such that for all w ∈ X the function KH(·, w) ∈ H and KH has the
reproducing property:

f(w) = 〈f,KH(·, w)〉H (1.17)

for all f ∈ H.

Proof. Let w be an arbitrary element of X. Since H is a RKHS, ιw ∈ H′ and by
the Riesz representation theorem there exists a unique kw ∈ H, such that 〈f, kw〉H =
ιwf = f(w) for all f ∈ H. Now we define our kernel function as

KH(z, w) := kw(z).

The existence of a kernel function is already a sufficient condition for a Hilbert space
to be a RKHS.

Lemma 1.4.3. Let (H, 〈·, ·〉H)H be an arbitrary Hilbert space, such that H ≤ CX for
a non-empty set X. Assume that there exists a kernel function KH : X ×X → C with
KH(·, w) ∈ H, for all w ∈ X such that KH fulfills the reproducing property (1.17).
Then H is a RKHS over X.

Proof. If we have 〈f,KH(·, w)〉H = f(w) = ιwf for f ∈ H, w ∈ X, the functional ιw
is bounded by the Cauchy-Schwartz inequality.

If H is a RKHS, the following lemma shows that H(T ) has the same structure.

Theorem 1.4.4. Let (H, 〈·, ·〉H)H be a RKHS over a set X with reproducing kernel

K and T : H → H be a bounded linear operator. Then the space
(
H(T ), 〈·, ·〉H(T )

)
is

again a RKHS with reproducing kernel KH(T )(·, w) := TT ∗K(·, w).

Proof. For fixed w, the function KH(T )(·, w) is an element of H(T ). So it is only left
to show, that KH(T ) has indeed the reproducing property. For this purpose let w ∈ X,

f ∈ H(T ) and g ∈ H such that f = Tg and g ∈ (kerT )⊥. Now we calculate〈
f,KH(T )(·, w)

〉
H(T )

= 〈Tg, TT ∗K(·, w)〉H(T ) = 〈g, T ∗K(·, w)〉H

since ranT ∗ ⊆ kerT⊥, and further

〈g, T ∗K(·, w)〉H = 〈Tg,K(·, w)〉H = 〈f,K(·, w)〉H = f(w).
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Defintion 1.4.5. Let (H, 〈·, ·〉) be a Hilbert space. Then we call T ≤ H×H a linear
relation. If T is a closed subspace of H ×H it is called a closed linear relation. The
adjoint of T is defined by

T ∗ :=
{

(x, y) ∈ H ×H
∣∣ 〈u, y〉 = 〈x, v〉 , (u, v) ∈ T

}
. (1.18)

Remark 1.4.6.

(i) Every linear operator T : H → H can be viewed as a linear relation if we identify
T with its graph.

(ii) The adjoint of the graph of a linear operator T as defined in (1.18) coincides
with the graph of the adjoint operator T ∗.

(iii) For any linear relation R

R∗∗ = R, R
∗

= R∗.

For a proof and more on linear relations and their adjoint see [Kal14].

Lemma 1.4.7. Let (H, 〈·, ·〉H)H be a RKHS over a set X with reproducing kernel K
and b : X → X be a function such that the linear operator C defined by Cf := f ◦ b
maps into H. Then C∗ = span {(K(·, w);K(·, b(w)) : w ∈ X)} if we identify C with
its graph.

If in addition C is a contraction

KH(T )(z, w) := K(z, w)−K(b(z), b(w))

is the reproducing kernel of the space H(T ), with T := (I − CC∗)
1
2 .

Proof. We define R := span {(K(·, w),K(·, b(w)) : w ∈ X)}. Then R is a closed sub-
space of H × H and therefore a closed linear relation. A pair (f ; g) ∈ H × H by
definition of the adjoint linear relation is an element of R∗ =

(
R
)∗

if and only if

〈g, u〉H = 〈f, v〉H (1.19)

for all (u; v) ∈ R. By definition of R, we have

(u; v) =

(
N∑
n=1

λnK(·, wn);
N∑
n=1

λnK(·, b(wn))

)

for some N ∈ N, λn ∈ C, wn ∈ X. Hence, if (f ; g) ∈ R∗

g(w) = 〈g,K(·, w)〉H = 〈f,K(·, b(w))〉H = f(b(w)) = (Cf)(w)

for all w ∈ X. Thus we have R∗ ⊆ C. On the other hand f ◦ b = Cf together with
the reproducing property yields

〈f,K(·, b(w))〉H = f(b(w)) = 〈f ◦ b,K(·, w)〉H .
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By linearity (1.19) is fulfilled for all (u; v) ∈ R, and therefore R∗ = C. We conclude

C∗ = (R∗)∗ =
((
R
)∗)∗

= R.

To prove the second assertion we calculate the kernel of H(T ) by Theorem 1.4.4 and
obtain

KH(T )(z, w) = (TT ∗K(·, w)) (z) = ((I − CC∗)K(·, w))(z) =

= K(z, w)− (CK(·, b(w)))(z) = K(z, w)−K(b(z), b(w)).
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The Bergman and the Dirichlet space

2.1 The Bergman Space

Lemma 2.1.1. Let (H, 〈·, ·〉H) be a (complex) Hilbert space, X an arbitrary (complex)
vector space and ψ : H → X a linear bijection. Then (X, 〈·, ·〉X) is a Hilbert space,
where the inner product is defined as

〈·, ·〉X :

{
X ×X → C

(x, y) 7→
〈
ψ−1(x), ψ−1(y)

〉
H .

The mapping ψ is isometric.

Proof. First note, that 〈·, ·〉X is sesquilinear, conjugate symmetric and non-negative,
since it is the composition of a conjugate symmetric, non-negative sesquilinear form
and a linear mapping.

Let x ∈ X, such that 〈x, x〉X = 0. Since

0 = 〈x, x〉X =
〈
ψ−1(x), ψ−1(x)

〉
H

and 〈·, ·〉H is positive definite, we get that ψ−1(x) = 0 and hence x ∈ ker ψ. Due to
the fact that ψ is one-to-one, we have that x = 0. This shows that 〈·, ·〉X is positive
definite.

Because for arbitrary x ∈ X

‖ψ(x)‖2X = 〈ψ(x), ψ(x)〉X =
〈
ψ−1(ψ(x)), ψ−1(ψ(x))

〉
H = 〈x, x〉H = ‖x‖2H,

the mapping ψ is in fact an isometric isomorphism.

Now let (xn)n∈N be a Cauchy series in X, i.e.

∀ ε > 0∃N0 ∈ N : ‖xn − xm‖X < ε, ∀m,n ≥ N0.

Since ψ is isometric, the series
(
ψ−1(xn)

)
n∈N is a Cauchy series in H. Because of the

completeness of H it converges to some h ∈ H. Now

‖xn − ψ(h)‖X = ‖ψ−1(xn)− h‖H

shows that xn → ψ(h), and hence X is complete.
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Let CN0 =
{

(an)n∈N0
: an ∈ C, n ∈ N0

}
denote the set of all complex series.

With addition and scalar multiplication defined by

(an)n∈N0
+ (bn)n∈N0

:= (an + bn)n∈N0
(2.1)

λ (an)n∈N0
:= (λan)n∈N0

(2.2)

for (an)n∈N0
, (bn)n∈N0

∈ CN0 , λ ∈ C, the set CN0 is a complex vector space. The
neutral element of the addition is the series (0)n∈N0 .

It is a well known fact, that the linear subspace l2 ≤ CN0 , defined by

l2 :=

{
(an)n∈N0

∈ CN0 :
∞∑
n=0

|an|2 < +∞

}
,

equipped with the inner product

〈·, ·〉l2 :

{
l2 × l2 → C(

(an)n∈N0
, (bn)n∈N0

)
7→

∑∞
n=0 anb̄n

is a Hilbert space.

Defintion 2.1.2. Let the mapping ψ be defined by

ψ :

{
CN0 → S+

0

(an)n∈N0 7→
∑∞

n=0

√
n+ 1 anz

n.

The space
(
A2, 〈·, ·〉A2

)
, with A2 := ψ(l2) and 〈ψ(a), ψ(b)〉A2 := 〈a, b〉l2 is called

Bergman space.

Theorem 2.1.3. The Bergman space
(
A2, 〈·, ·〉A2

)
, is a RKHS over the open unit disc

D := R1(0) with kernel function

KA2(z, w) :=
∞∑
n=0

(n+ 1)w̄nzn.

Proof. To show, that A2 is in fact a Hilbert space, we’d like to apply Lemma 2.1.1.
So we have to verify its assumptions. We already know, that l2 is a Hilbert space, and
S+

0 is a vector space.
For λ ∈ C, a := (an)n∈N0

, b := (bn)n∈N0
∈ l2 and z ∈ D, we have

ψ(a+ λb)(z) =

∞∑
n=0

√
n+ 1(an + λbn)zn

=
∞∑
n=0

√
n+ 1(an)zn + λ

∞∑
n=0

√
n+ 1(bn)zn = ψ(a)(z) + λψ(b)(z).

For a = (an)n∈N0 such that ψ(a) = 0 =
∑∞

n=0 0 · zn, immediately follows an = 0 for all
n ∈ N0. Hence ker ψ(a) = {(0)n∈N0}.
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This shows, that ψ(l2) is a vector space, and ψ is an isomorphism between l2 and
ψ(l2). So all the requirements of Lemma 2.1.1 are fulfilled. Thus A2 is a Hilbert space.

Next we show that A2 ≤ CD. To do so, we define a function f : [0, 1) → C by
f(x) := x

1−x . Because of

f ′(x) =
d

dx

x

1− x
=

d

dx

∞∑
n=1

xn =
d

dx

∞∑
n=0

xn+1 =
∞∑
n=0

(1 + n)xn < +∞ (2.3)

for all x ∈ [0, 1), it follows for z ∈ D, that

f ′
(
|z|2
)

=
∞∑
n=0

(n+ 1)|z|2n < +∞.

This shows, that for z ∈ D, the series
(√
n+ 1 |z|n

)
n∈N0

is an element of l2.

Let (an)n∈N0 be an arbitrary l2-sequence. Then (|an|)n∈N0 is an element of l2 as well
and we may calculate

∞∑
n=0

|
√
n+ 1 anz

n| =
〈

(|an|)n∈N0 ,
(√
n+ 1 |z|n

)
n∈N0

〉
l2
< +∞

for all z ∈ D. Because of

ψ((an)n∈N0) =
∞∑
n=0

√
n+ 1 anz

n,

this shows, that the radius of convergence of ψ((an)n∈N0) is indeed greater or equal to
one and hence ψ((an)n∈N0) ∈ CD. By Theorem 1.1.3 (i) we can interpret the elements
of A2 as functions on D, where addition and scalar multiplication on A2 coincides with
the point wise addition and scalar multiplication on CD, i.e. A2 ≤ CD.

It remains to show, that A2 is indeed a RKHS with reproducing kernel KA2 . Since
for w ∈ D

KA2(·, w) = ψ((
√
n+ 1 w̄n)n∈N0),

KA2(·, w) ∈ A2 and because for ψ((an)n∈N0) ∈ A2 we have

〈ψ((an)n∈N0),KA2(·, w)〉A2 =
〈
(an)n∈N0 , (

√
1 + n w̄n)n∈N0

〉
l2

=
∞∑
n=0

√
1 + nanw

n = ψ((an)n∈N0)(w),

KA2 has the reproducing property (1.17). By Lemma 1.4.3 this is sufficient for A2 to
be a RKHS.

Remark 2.1.4. If we substitute w̄z for x in equation (2.3), we obtain

KA2(z, w) =
∞∑
n=0

(n+ 1)w̄nzn =
d

dx

x

1− x

∣∣∣∣
x=w̄z

=
1

(1− w̄z)2

for |z| < 1
|w| . Hence KA2(·, w) has a radius of convergence of 1

|w| .
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Theorem 2.1.5. A formal power series f(z) =
∑∞

n=0 anz
n belongs to A2 if and only

if
∞∑
n=0

1

n+ 1
|an|2 <∞.

In this case

‖f‖2A2 =

∞∑
n=0

1

n+ 1
|an|2.

For two functions f, g ∈ A2, f(z) =
∑∞

n=0 anz
n, g(z) =

∑∞
n=0 bnz

n we can calculate
the inner product by

〈f, g〉A2 =
∞∑
n=0

1

1 + n
anb̄n.

Proof. If we define (ãn)n∈N := ψ−1(f) =
(

1√
n+1

an

)
n∈N0

, we have

∞∑
n=0

|ãn|2 =

∞∑
n=0

1

n+ 1
|an|2

in the sense, that the sum on the left hand side is finite, if and only if the sum on the
right hand side is finite. Hence f ∈ A2 if and only if

∑∞
n=0

1
n+1 |an|

2 < +∞. In this
case

‖f‖2A2 = ‖ψ−1(f)‖2l2 = ‖(ãn)n∈N‖2l2 =
∞∑
n=0

|ãn|2 =
∞∑
n=0

1

n+ 1
|an|2 .

We can calculate the inner product by

〈f, g〉A2 =
〈
ψ−1(f), ψ−1(g)

〉
l2

=

=

〈(
1√

1 + n
an

)
n∈N

,

(
1√

1 + n
bn

)
n∈N

〉
l2

=

∞∑
n=0

1

1 + n
anb̄n.

The Bergman space is a subspace of the vector space of all analytic functions on the
open unit disc D. The following example shows, that it is a proper subspace.

Example 2.1.6. Consider the function f(z) := 1
1−z . It is analytic on the open unit disc

and allows a power series expansion f(z) =
∑∞

n=0 z
n. But since

∞∑
n=0

1

n+ 1
=

∞∑
n=1

1

n

is not finite, we know by Theorem 2.1.5, that f /∈ A2.
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Lemma 2.1.7. Let f(z) :=
∑∞

n=0 anz
n be a formal power series with R(f) ≥ 1. Then

f ∈ A2 if and only if ∫
D
|f(z)|2 dA(z) < +∞,

where dA means integration by the normalized area measure on D (i.e. dA = 1
πdλ2).

In this case

‖f‖2A2 =

∫
D
|f(z)|2 dA(z).

Furthermore for f(z) =
∑∞

n=0 anz
n, g(z) =

∑∞
n=0 bnz

n ∈ A2, we can calculate the
inner product by

〈f, g〉A2 =

∫
D
f(z)g(z) dA(z).

Proof. Let f(z) =
∑∞

n=0 anz
n, g(z) =

∑∞
n=0 bnz

n be arbitrary analytic functions on
D and R be an arbitrary real number, 0 < R < 1. Since the involved series converge
uniformly on BR(0), we can calculate∫

BR(0)
f(z)g(z) dA(z) =

∫
BR(0)

∞∑
n=0

anz
n
∞∑
k=0

bkzk dA(z)

=

∞∑
n,k=0

anb̄k

∫
BR(0)

znz̄k dA(z)

=
1

π

∞∑
n,k=0

anb̄k

∫ R

0

∫ 2π

0
rn+k+1eiφ(n−k) dφ dr

=
1

π

∞∑
n=0

anb̄n 2π

∫ R

0
r2n+1 dr

=

∞∑
n=0

R2n+2 1

n+ 1
anb̄n.

(2.4)

We denote by χA(z) the characteristic function of the set A ⊆ C, defined as

χA :=


C → {0, 1}

z 7→

{
1, z ∈ A
0, z /∈ A

If we substitute f for g in equation (2.4) and calculate the limit R↗ 1, we obtain by
the monotone convergence theorem

∞∑
n=0

1

n+ 1
|an|2 = lim

R↗1
R2n+2

∞∑
n=0

1

n+ 1
|an|2 =

= lim
R↗1

∫
D
χBR(0)(z)|f(z)|2 dA(z) =

∫
D
|f(z)|2 dA(z),
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which shows the first statement. For f, g ∈ A2 we have

〈f, g〉A2 = lim
R↗1

R2n+2 〈f, g〉A2 = lim
R↗1

R2n+2
∞∑
n=0

1

n+ 1
anbn =

= lim
R↗1

∫
D
χBR(0)(z)f(z)g(z) dA(z). (2.5)

Since(∫
D
|χBR(0)(z)f(z)g(z)| dA(z)

)2

≤
(∫

D
|f(z)g(z)| dA(z)

)2

≤

≤
∫
D
|f(z)|2 dA(z)

∫
D
|g(z)|2 dA(z) < +∞

by the Cauchy-Schwarz inequality, we can apply the dominated convergence theorem
to the right hand side of equation (2.5) and obtain

〈f, g〉A2 = lim
R↗1

∫
D
χBR(0)(z)f(z)g(z) dA(z) =

∫
D
f(z)g(z) dA(z).

Lemma 2.1.8. Let f be a formal power series, f(z) =
∑∞

n=0 anz
n, such that its

formal derivative df ∈ A2. Then f is an element of A2.
If g(z) =

∑∞
n=0 bnz

n is a second function fulfilling the same assumptions, then

〈
f ′, g′

〉
A2 =

∞∑
n=1

nanb̄n.

Proof. By assumption we have (df)(z) =
∑∞

n=0(n + 1)an+1z
n ∈ A2. Theorem 2.1.5

asserts

∞∑
n=1

1

n+ 1
|an|2 ≤

∞∑
n=1

n|an|2 =

∞∑
n=0

(n+ 1)|an+1|2 =

=
∞∑
n=0

1

n+ 1
|(n+ 1)an+1|2 < +∞.

Hence f ∈ A2. Since f, g ∈ A2 ≤ CD, they are holomorphic on D and we can write
f ′, g′ instead of the formal derivative. By the second part of Theorem 2.1.5 we have

〈
f ′, g′

〉
A2 =

〈 ∞∑
n=0

(n+ 1)an+1z
n,
∞∑
n=0

(n+ 1)bn+1z
n

〉
A2

=

∞∑
n=0

1

n+ 1
(n+ 1)an+1(n+ 1)b̄n+1 =

∞∑
n=1

nanb̄n.
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The following example shows, that in general the converse of the assertion in Lemma
2.1.8 is not true.

Example 2.1.9. We define a formal power series f by f(z) :=
∑∞

n=1
1√
n
zn. Because of

∞∑
n=1

1

n+ 1

∣∣∣∣ 1√
n

∣∣∣∣2 =
∞∑
n=1

1

n(n+ 1)
≤
∞∑
n=1

1

n2
=
π2

6
< +∞

f is an element of A2. The derivative f ′ is given by

f ′(z) =

∞∑
n=1

n√
n
zn−1 =

∞∑
n=0

√
n+ 1 zn.

But f ′ /∈ A2, since
∞∑
n=0

1

n+ 1
|
√
n+ 1|2 =

∞∑
n=0

1

is not finite.

Because for λ ∈ C and two analytic functions f, g : D→ C with f ′, g′ ∈ A2

(f + λg)′ = f ′ + λg′ ∈ A2,

the set
{
f : D→ C : f is analytic, f ′ ∈ A2

}
is a subspace of A2, and Example 2.1.9

shows, that it is a proper subspace. Unfortunately, the following example proves, that
it is not closed with respect to ‖ · ‖A2 .

Example 2.1.10. We define a series of functions (fk)k∈N by fk(z) :=
∑k

n=1
1√
n
zn. Since

for all k ∈ N, the function fk is a polynomial, it is analytic on D. The derivative is
given by (dfk)(z) = f ′k(z) =

∑k
n=1

n√
n
zn−1 =

∑k−1
n=0

√
n+ 1 zn. Because of

k−1∑
n=0

1

n+ 1
(n+ 1) = k < +∞

f ′k ∈ A2 holds for all k ∈ N by Lemma 2.1.8. If we remember the function f defined
in Example 2.1.9 we have

‖f − fk‖2A2 =

∥∥∥∥∥
∞∑
n=1

1√
n
zn −

k∑
n=1

1√
n
zn

∥∥∥∥∥
2

A2

=

∥∥∥∥∥
∞∑

n=k+1

1√
n
zn

∥∥∥∥∥
A2

=

=
∞∑

n=k+1

1

n+ 1

1

n
≤

∞∑
n=k+1

1

n2
.

Since
∑∞

n=1
1
n2 converges, limk→∞ ‖f − fk‖A2 = 0. Hence the limit of (fk)k∈N with

respect to ‖ · ‖A2 is f . But we know from Example 2.1.9, that f ′ /∈ A2.

So if we want the set of all formal power series f , such that df ∈ A2 to be a Hilbert
space, we have to choose a different norm.
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2.2 The Dirichlet Space

Defintion 2.2.1. Let φ be the mapping

φ :

{
s → S+

(an)n∈N0 7→
∑∞

n=1
1√
n
an−1z

n.

Then we define the Dirichlet space (D, 〈·, ·〉D) by

D := φ(l2), 〈φ(a), φ(b)〉D := 〈a, b〉l2
for φ(a), φ(b) ∈ D.

Theorem 2.2.2. Let f(z) =
∑∞

n=1 anz
n be a formal power series. Then the following

statements are equivalent:

(i) f ∈ D,

(ii) df ∈ A2,

(iii)
∑∞

n=1 n|an|2 < +∞,

(iv) R(f) ≥ 1 and
∫
D |f

′(z)|2 dA(z) < +∞

Proof. We shall prove the implications (i)⇒ (ii), (ii)⇒ (iii), (ii)⇒ (iv), (iii)⇒ (i)
and (iv)⇒ (ii).

(i)⇒ (ii):
We assume that f ∈ D. Then there exists a series (bn)n∈N0 ∈ l2, such that

f(z) = φ ((bn)n∈N0) =

∞∑
n=1

1√
n
bn−1z

n.

The formal derivative of f is given by

(df)(z) =

∞∑
n=1

n
1√
n
bn−1z

n−1 =

∞∑
n=0

√
n+ 1bnz

n.

Due to
∞∑
n=0

1

n+ 1
|
√
n+ 1 bn|2 =

∞∑
n=0

|bn|2 = ‖(bn)n∈N0‖2l2 < +∞

by Theorem 2.1.5 the formal power series df is an element of A2.
(ii)⇒ (iii), (ii)⇒ (iv):
If we assume, that the formal power series df belongs to A2, then due to Lemma

2.1.8, f ∈ A2 and f is holomorphic on D, i.e. R(f) ≥ 1 and satisfies (df)(z) = f ′(z).
We also know by Lemma 2.1.8, that

∞∑
n=1

n|an|2 = ‖f ′‖2A2 < +∞,
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Chapter 2 The Bergman and the Dirichlet space

since f ′ ∈ A2. Due to Lemma 2.1.7 f ′ ∈ A2 also implies∫
D
|f ′(z)|2 dA(z) < +∞.

(iv)⇒ (ii) : If f is analytic on D, then f ′ is also analytic on D by Theorem 1.1.3 (iv).
Lemma 2.1.7 tells us that this, together with the assumption

∫
D |f

′(z)|2 dA(z) < +∞
gives f ′ ∈ A2.

(iii)⇒ (i)

We assume that
∑∞

n=1 n|an|2 < +∞ and have to show that φ−1(f) ∈ l2. Since

φ−1

( ∞∑
n=1

anz
n

)
=
(√
n+ 1 an+1

)
n∈N0

,

we have

+∞ >

∞∑
n=1

n|an|2 =

∞∑
n=0

(n+ 1)|an+1|2 =
∥∥∥(√n+ 1 an+1

)
n∈N0

∥∥∥2

l2
= ‖φ−1(f)‖l2 .

Theorem 2.2.3. The Dirichlet space is a RKHS over D with kernel function

KD(z, w) :=

∞∑
n=1

w̄n

n
zn.

For f(z) =
∑∞

n=1 anz
n, g(z) =

∑∞
n=1 bnz

n ∈ D the inner product satisfies

〈f, g〉D =
∞∑
n=1

nanb̄n =

∫
D
f ′(z)g′(z) dA(z) =

〈
f ′, g′

〉
A2 .

Proof. For the first part, we use again Lemma 2.1.1. We already know, that l2 is a
Hilbert space. Since for (an)n∈N0 , (bn)n∈N0 ∈ l2, λ ∈ C

φ ((an)n∈N0 + λ(bn)n∈N0) =

∞∑
n=1

1√
n

(an−1 + λbn−1) zn =

=
∞∑
n=1

1√
n
an−1z

n + λ

∞∑
n=1

1√
n
bn−1z

n = φ((an)n∈N0) + λφ((bn)n∈N0),

the mapping φ|l2 : l2 → D is linear, and by definition of D onto. Since

ker φ = φ−1(0) = (0)n∈N0

it is also one-to-one and therefore a bijection. According to Lemma 2.1.1 (D, 〈·, ·〉D)
is a Hilbert space.
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By Theorem 2.2.2 (iv), we know that D ≤ CD. Let w ∈ D be arbitrary. Because of

∞∑
n=1

n

∣∣∣∣ w̄nn
∣∣∣∣2 =

∞∑
n=1

|w|2n

n
≤
∞∑
n=1

|w|2n =
|w|2

1− |w|2
< +∞

Theorem 2.2.2 (iii) yields
∑∞

n=1
w̄n

n z
n ∈ D. Since for an arbitrary f(z) =

∑∞
n=1 anz

n ∈
D 〈

f,
∞∑
n=1

w̄n

n
zn

〉
D

=

〈 ∞∑
n=1

anz
n,
∞∑
n=1

w̄n

n
zn

〉
D

=
∞∑
n=1

nan
w̄n

n
=
∞∑
n=1

anw
n = f(w),

the function KD(z, w) is the reproducing kernel of the RKHS D.
For two arbitrary functions f(z) =

∑∞
n=1 anz

n, g(z) =
∑∞

n=1 bnz
n ∈ D we calculate

the inner product by

〈f, g〉D =
〈
φ−1(f), φ−1(g)

〉
l2

=

=
〈(√

n+ 1 an+1

)
n∈N0

,
(√
n+ 1, bn+1

)
n∈N0

〉
l2

=

=

∞∑
n=0

(n+ 1)an+1b̄n+1 =

∞∑
n=1

nanb̄n

which shows the first equality. By Theorem 2.2.2 (ii) and (iv), we know that df = f ′,
dg = g′ ∈ A2. Hence we can use the second part of Lemma 2.1.8 and Lemma 2.1.7
and obtain

∞∑
n=1

nanb̄n =
〈
f ′, g′

〉
A2 =

∫
D
f ′(z)g′(z) dA(z).

Remark 2.2.4. Because of

log

(
1

1− z

)
=
∞∑
n=1

z

n

for all z ∈ D, we can calculate the Dirichlet Kernel by

KD(z, w) = log

(
1

1− w̄z

)
for all |z| < 1

|w| . Hence the radius of convergence of the function KD(·, w) is 1
|w| .

2.3 Generalized Dirichlet spaces

Defintion 2.3.1. Let λ be an arbitrary real number and (an)n∈N ∈ CN. Then we call

f(z) =
∞∑
n=1

anz
n+λ
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Chapter 2 The Bergman and the Dirichlet space

a generalized power series and denote the set of all such generalized power series by
Sλ.

Remark 2.3.2.

(i) With addition and scalar multiplication defined similar as on S+
0 , the space Sλ

is a vector space.

(ii) We can write every f(z) =
∑∞

n=1 anz
n+λ ∈ Sλ as f(z) = zλg(z) with g(z) =∑∞

n=1 anz
n ∈ S+.

(iii) For λ ∈ Z≥−1, we have Sλ ⊆ S+
0 . Hence, we can interpret f(z) =

∑∞
n=1 anz

n+λ ∈
Sλ as analytic function on BR(f)(0).

(iv) For λ ∈ Z≤−2, a function f(z) = zλg(z) := zλ
∑∞

n=1 anz
n with R(g) > 0 and

a1 6= 0 has a pole of order λ−1 at the origin. Thus f is analytic on BR(g)(0)\{0}.

(v) For λ ∈ R \ Z a function f(z) = zλg(z) := zλ
∑∞

n=1 anz
n can be interpreted as a

function on BR(g)(0). In fact, fixing θ ∈ R and defining zλ by
(
reiφ

)λ
:= rλeiλφ,

where we choose φ ∈ [θ, θ + 2π) we can view f(z) as function z 7→ zλg(z). This
function is analytic on BR(g)(0) \ eiθ · [0,+∞).

g(z) is an analytic continuation on BR(g)(0) of f(z)
zλ

.

Defintion 2.3.3. Let λ a real number. Then we define the generalized Dirichlet space
(Dλ, [·, ·]Dλ) by

Dλ :=

{
f(z) =

∞∑
n=1

anz
n+λ ∈ Sλ :

∞∑
n=1

anz
n ∈ D

}

with the corresponding inner product

[f, g]Dλ :=

∞∑
n=1

(n+ λ) anb̄n,

for f(z) =
∑∞

n=1 anz
n+λ, g(z) =

∑∞
n=1 bnz

n+λ ∈ Dλ.

Remark 2.3.4.

(i) Note, that the sum in the definition of the inner product converges, since the∑∞
n=1 nanb̄n and hence also

∑∞
n=1 anb̄n converge absolutely.

(ii) For f(z) =
∑∞

n=1 anz
n+λ ∈ Dλ, the function

∑∞
n=1 anz

n ∈ D is an analytic

continuation of f(z)
zλ

to the whole unit disc. The mapping

ψ :

{
D → Dλ∑∞

n=1 anz
n 7→

∑∞
n=1 anz

n+λ

is linear and bijective, and thus an isomorphism.
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(iii) It is easy to check, that for λ ∈ R the space Dλ is a linear subspace of Sλ and
that [·, ·]Dλ is an inner product. Therefore (Dλ, [·, ·]Dλ) is an inner product space
as defined in Definition 1.2.1. Since for f(z) =

∑∞
n=1(n+ λ)anz

n+λ ∈ Dλ

[f(z), f(z)]Dλ =

∞∑
n=1

(n+ λ)|an|2,

it is positive definite if λ > −1, positive semidefinite if λ = −1 and indefinite if
λ < −1. If λ ∈ R \ Z≤−1 it is also non-degenerated. For λ ∈ Z≤−1 the isotropic
part consists of all constant functions.

Lemma 2.3.5. For arbitrary λ ∈ R, let f(z) =
∑∞

n=1 anz
n+λ ∈ Sλ. Then f is an

element of Dλ if and only if the sum

∞∑
n=1

(n+ λ)|an|2 (2.6)

converges. In this case

[f, f ]2Dλ =
∞∑
n=1

(n+ λ)|an|2.

Proof. f(z) ∈ Dλ by definition implies
∑∞

n=1 anz
n ∈ D, and hence∣∣∣∣∣

∞∑
n=1

(n+ λ)|an|2
∣∣∣∣∣ ≤

∞∑
n=1

n|an|2 + |λ|
∞∑
n=1

|an|2 ≤

≤
∞∑
n=1

n|an|2 + |λ|
∞∑
n=1

n|an|2 ≤ (1 + |λ|)

∥∥∥∥∥
∞∑
n=1

anz
n

∥∥∥∥∥
2

D

< +∞. (2.7)

If on the other hand (2.6) converges, we get

∞∑
n=1

n|an+N−1|2 ≤
∞∑
n=1

(n+N + λ− 1)|an+N−1|2 =
∞∑
n=N

(n+ λ)|an|2 < +∞

with N := max {1,−bλc+ 1}. Thus

∞∑
n=1

(n+N − 1)|an+N−1|2 = (N − 1)

∞∑
n=1

|an+N−1|2 +

∞∑
n=1

n|an+N−1|2 < +∞

and moreover

∞∑
n=1

n|an|2 =
N−1∑
n=1

n|an|2 +
∞∑
n=1

(n+N − 1)|an+N−1|2 < +∞.

Therefore
∑∞

n=1 anz
n ∈ D. The last assertion is clear.
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Remark 2.3.6. Let k ∈ N and f(z) =
∑∞

n=1 anz
n+k ∈ Sk. Then because of

f(z) =
∞∑
n=1

anz
n+k =

∞∑
n=k+1

cnz
n,

with cn = an−k and
∞∑

n=k+1

n|cn|2 =
∞∑
n=1

(n+ k)|an|2,

f is an element of Dk if and only if f ∈ D. Also the inner products on Dk and D
coincide. Since Dk = (Pk)⊥, it is a closed subspace of D and therefore a Hilbert space
itself.

Theorem 2.3.7. For an arbitrary real number λ > −1, the generalized Dirichlet space
Dλ is a Hilbert space.

Proof. We have already established, that for such λ, the space (Dλ, [·, ·]Dλ) is a positive
definite inner product space and hence ‖ · ‖Dλ :=

√
[·, ·]Dλ is a norm.

Let (fk(z))k∈N =
(∑∞

n=1 a
k
nz

n+λ
)
k∈N ⊆ Dλ be a Cauchy series. Then because for

arbitrary g(z) =
∑∞

n=1 cnz
n+λ ∈ Dλ

‖
∞∑
n=1

cnz
n‖2D =

∞∑
n=1

n|cn|2 ≤
∞∑
n=1

(n+ λ+ 1)|cn|2 =

= ‖g(z)‖2Dλ +
∞∑
n=1

|cn|2 ≤ ‖g(z)‖2Dλ +
1

1 + λ

∞∑
n=1

(n+ λ)|cn|2 =
2 + λ

1 + λ
‖g(z)‖2Dλ

we have that the series (
f̃k(z)

)
k∈N

:=

( ∞∑
n=1

aknz
n

)
k∈N

is a Cauchy series in D and since D is complete, it converges to some function f ∈ D
with respect to ‖ · ‖D. Combining this with equation (2.7) in all we obtain

lim
k→∞

‖fk(z)− f(z)‖2Dλ ≤ (1 + λ) lim
k→∞

‖f̃k(z)− f(z)‖2D = 0.

Thus (Dλ, [·, ·]Dλ) is complete and therefore a Hilbert space.

Theorem 2.3.8. For an arbitrary real number λ < −1, λ /∈ Z the generalized Dirichlet
space Dλ is a Pontryagin space.

Proof. We already mentioned in Remark 2.3.4, (i), that Dλ is a non-degenerated inner
product space. We define

X+ :=

{ ∞∑
n=1

anz
n+λ : an = 0, n+ λ < 0

}
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X− :=

{ ∞∑
n=1

anz
n+λ : an = 0, n+ λ > 0

}
.

Then X+, (X−) are positive (negative) definite linear subspaces of Dλ and since
Dλ = X+[u]DλX−, (X+,X−) is a fundamental decomposition of Dλ. The according
fundamental symmetry J is defined by

(Jf)(z) := f+(z)− f−(z) :=
∞∑

n=d|λ|e

anz
n+λ −

b|λ|c∑
n=1

anz
n+λ =

=
∞∑
n=1

cnz
n+λ+d|λ|e −

b|λ|c∑
n=1

anz
n+λ

for f(z) =
∑∞

n=1 anz
n+λ ∈ Dλ and cn := an+d|λ|e. Hence (X+, [·, ·]) is nothing else,

but Dλ+d|λ|e and therefore a Hilbert space.

For f(z) =
∑b|λ|c

n=1 anz
n+λ ∈ X− we can calculate the J-norm by

‖f(z)‖2J = −
b|λ|c∑
n=1

(n+ λ)|an|2 ≥ 0.

Thus ‖·‖J on X− is equivalent to the Euclidean norm on Cb|λ|c and therefore (X−,−[·, ·])
is complete as well. Hence by Corollary 1.2.25 (Dλ, [·, ·]Dλ) is a Krein space and since
X− has finite dimension it is a Pontryagin space.

Remark 2.3.9. Let N ∈ N. Then (X+,X−) with

X+ :=

{ ∞∑
n=1

anz
n−N : an = 0, n < N

}

X− :=

{ ∞∑
n=1

anz
n−N : an = 0, n > N

}
is a fundamental decomposition of D−N . By the same means as in the proof of
Theorem 2.3.8, one shows, that (X±, [·, ·]J) are Hilbert spaces. But since (D−N )◦ =
C := {f(z) = c : c ∈ C} 6= {0} it is not a Krein space. Nevertheless, we can define the
factor space

(
D−N/C , [·, ·]/C

)
as in Remark 1.2.7 to obtain a Krein space.
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Littlewood’s subordination principle

3.1 The subordination principle for the Dirichlet space

Defintion 3.1.1. Let b(z) :=
∑∞

n=0 bnz
n ∈ S+

0 be an arbitrary formal power series.
Since the Bergman and the Dirichlet space are linear subspaces of S+

0 , we can apply
the composition operator Cb from Definition 1.1.7 to all functions f ∈ A2 (D), such
that f ∈ domCb. We define

CA
2

b :

{
domCA

2

b → A2

f 7→ Cbf

CD
b :

{
domCD

b → D
f 7→ Cbf,

where domCA
2

b := {f ∈ domCb : f, Cbf ∈ A2} and domCD
b := {f ∈ domCb :

f, Cbf ∈ D}.

Lemma 3.1.2. Let b(z) =
∑∞

n=0 bnz
n ∈ S+

0 be a formal power series with R(b) > 0
and |b0| < 1. Then there exists a real constant δ > 0 such that for f ∈ domCD

b

(domCA
2

b ), f(b(z)) =
(
CD
b f
)

(z) (f(b(z)) =
(
CA

2

b f
)

(z)) for all z ∈ Bδ(0).

Proof. Since b is continuous on BR(b)(0), there exists 0 < δ ≤ R(b) such that |b(z)| < 1

for all z ∈ Bδ(0). Thus for every f ∈ domCD
b (domCA

2

b ) we can apply the second
part of Lemma 1.1.13 with r = 1.

Remark 3.1.3. For every f ∈ domCD
b (domCA

2

b ), the function CD
b f (CA

2

b f) is an
analytic continuation of f ◦ b on the whole unit disc.

Lemma 3.1.4. Let b(z) =
∑∞

n=0 bnz
n be a formal power series such that domCD

b = D

(domCA
2

b = A2) and |b0| < 1. Then R(b) ≥ 1 and |b(z)| < 1 for all z ∈ D.

Proof. Since the function f(z) = z is an element of D (A2), we have (Cbf)(z) = b(z) ∈
D (A2). Hence R(b) ≥ 1 by Theorem 2.2.2, (iv).

Now assume that there exists z0 ∈ D such that |b(z0)| > 1. Then the function

g(z) := KD

(
z, b(z0)

−1
)

is an element of D = domCD
b . Hence the composition CD

b g is

again in D and by Lemma 3.1.2 there exists some δ > 0 such that

(CD
b g)(z) = g(b(z)) = KD

(
b(z), b(z0)

−1
)

=
∞∑
n=1

1

n
b(z)nb(z0)−n = log

(
1

1− b(z)b(z0)−1

)
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for all z ∈ Bδ(0). But the right hand side has no analytic continuation to the point
z0, which is a contradiction to the fact that CD

b g is analytic on D.

Now assume, that b(z1) = 1 for some z1 ∈ D. Then, by the maximum modulus
principle we have that b ≡ 1 on D, which is a contradiction to the assumption |b0| =
|b(0)| < 1.

The same line of proof works for the Bergman space.

Defintion 3.1.5. Let b : D→ D a holomorphic, injective function, such that b(0) = 0.
We call such a function a normalized, univalent mapping of D into D and denote the
family of all such functions by B.

Remark 3.1.6. Every b ∈ B has a unique power series expansion of the form b(z) =∑∞
n=1 bnz

n with radius of convergence R(b) ≥ 1.

Theorem 3.1.7 (Littlewood subordination theorem for the Dirichlet space). Let
b ∈ B be a normalized, univalent mapping from D into D. Then the domain of the
composition operator domCD

b is the whole space D and

(CD
b f)(z) = f(b(z))

for all z ∈ D. Furthermore CD
b is a contraction operator (i.e. CD

b is bounded with
norm ‖CD

b ‖ ≤ 1).

Proof. According to Theorem 1.1.10, the domain of the composition operator Cb is
the whole space of formal power series S+

0 .

Let f(z) ∈ D. Then by Theorem 2.2.2, (iv) we know that R(f) ≥ 1. Since |b(z)| < 1
for all z ∈ D, we can apply the second part of Lemma 1.1.13 with r = 1 and obtain, that
R(Cbf) ≥ 1 and (Cbf)(z) = f(b(z)) for all z ∈ D. Hence, Cbf = f ◦ b is holomorphic
on D.

If we split b in its real and imaginary part, b(x + iy) = u(x, y) + i v(x, y) and use
the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
,

we get

det |Db| =

∣∣∣∣∣
(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)∣∣∣∣∣ =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
=

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=
∣∣b′∣∣2 .
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Using the transformation rule and the fact that b(D) ⊆ D, we obtain∫
D

∣∣∣∣ ddz (Cbf)(z)

∣∣∣∣2 dA =

∫
D

∣∣∣∣ ddz f (b (z))

∣∣∣∣2 dA
=

∫
D

∣∣f ′ (b (z))
∣∣2 ∣∣b′(z)∣∣2 dA

=

∫
b(D)

∣∣f ′ (z)∣∣2 dA
≤
∫
D

∣∣f ′ (z)∣∣2 dA < +∞

(3.1)

by Theorem 2.2.2, (iv).

Using again Theorem 2.2.2, (iv), inequality (3.1) yields Cbf ∈ D. Hence, domCD
b =

D. Furthermore by Theorem 2.2.3

‖CD
b f‖2D = ‖Cbf‖2D =

∫
D

∣∣∣∣ ddz (Cbf)(z)

∣∣∣∣2 dA ≤ ∫
D

∣∣f ′ (z)∣∣2 dA = ‖f‖2D

which shows ‖CD
b ‖ ≤ 1.

Although the condition of Theorem 3.1.7 is necessary for a function b : D→ D with
b(0) = 0 to be univalent, unfortunately it is not sufficient. Our goal throughout the
remainder of this section will be, to expand the Littlewood subordination theorem to
a superset of D, that this condition is sufficient.

3.2 The subordination principle for generalized Dirichlet
spaces

Defintion 3.2.1. Let λ ∈ R and b(z) =
∑∞

n=1 bnz
n ∈ S+ be a formal power series

such that b1 6= 0. Then we define the composition operator Cλb on Sλ by

Cλb :

{
Sλ → Sλ

zλg(z) 7→ zλ
(
b(z)
z

)λ
(Cbg)(z)

where b(z)
z :=

∑∞
n=1 bnz

n−1 =
∑∞

n=0 bn+1z
n. Note, that the expression

(
b(z)
z

)λ
is

well defined and an element of S+
0 by Definition 1.1.15, since b1 6= 0. Moreover

g(z) ∈ domCb, since due to Theorem 1.1.10 domCb = S+
0 . Because of g(z) ∈ S+ the

formal power series
(
b(z)
z

)λ
(Cbg)(z) is also an element of S+ and therefore Cλb maps

indeed into the space Sλ.

Since Dλ ⊆ Sλ, we can apply the composition operator Cλb to functions in Dλ.
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Remark 3.2.2. Let b ∈ B. For λ ∈ Z the elements from Dλ can be interpreted as
analytic functions on D \ {0}, and the operator Cλb acts just as f 7→ f ◦ b.

For λ ∈ R \ Z we can interpret the elements from Dλ as functions on D \ {0} as
in Remark 2.3.2, (v), with a fixed θ ∈ R. Here Cλb no longer acts as f 7→ f ◦ b.
Nevertheless, for f ∈ Dλ the quotient of (Cλb f)(z) and f(b(z)) is the quotient of two
possibly different branches of the function zλ. Hence, (Cλb f)(z) = f(b(z)) · ψ(z) with
an unimodular function ψ(z).

Our goal throughout this section will be to prove the following theorem.

Theorem 3.2.3 (Littlewood subordination principle for generalized Dirichlet spaces).
Let λ be any real number and b ∈ B. Then the composition operator Cλb is a contraction
from Dλ to itself.

For proving this theorem we need the following classical result from real analysis:

Theorem 3.2.4 (Green’s theorem). Let γ : [a, b] → R2 be a positive oriented, piece-
wise smooth, simple closed curve, Ω the region bounded by γ and D an open set con-
taining Ω ∪ γ. Let further p, q ∈ C(D;R) ∩ C1(Ω;R), then∫

Ω

∂

∂x
p(x, y) +

∂

∂y
q(x, y) dλ2(x, y) =

∫
γ
p(x, y) dy − q(x, y) dx, (3.2)

where ∫
γ
q(x, y) dx :=

∫ b

a
q (γ (t)) · γ′1(t) dt,

∫
γ
p(x, y) dy :=

∫ b

a
p (γ(t)) · γ′2(t) dt,

holds.

Proof. A proof can be found in [Rud70].

Remark 3.2.5. By splitting p and q into their real and imaginary parts, one checks
quickly that Theorem 3.2.4 also holds for complex valued p and q. By identifying the
complex plane with R2 equation (3.2) holds, where∫

γ
q dx :=

∫ b

a
q (γ (t)) · Reγ(t) dt,

∫
γ
p dy :=

∫ b

a
p (γ(t)) · Imγ(t) dt,

for a positive oriented, piecewise smooth, simple closed curve γ with interior Ω and
p, q and their partial derivatives are holomorphic in Ω and continuous on an open set
D ⊇ Ω.

Corollary 3.2.6 (Green’s theorem, complex version). Let γ ⊆ C be a piecewise
smooth, positive oriented, simple closed curve and Ω ⊆ C its interior. Let further
f, g be holomorphic functions on Ω which are continuous on an open set D containing
Ω ∪ γ such that f ′, g′ are continuous on Ω. Then∫

Ω
f (z) g′ (z) dλ2(z) =

1

2i

∮
γ
f(z)g(z) dz

holds.
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Chapter 3 Littlewood’s subordination principle

Proof. If we use the Wirtinger derivatives

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
,

then by using the Cauchy-Riemann equations we obtain for any holomorphic function
h(x+ iy) = u(x, y) + iv(x, y)

∂h(z)

∂z̄
=

1

2

(
∂h(z)

∂x
+ i

∂h(z)

∂y

)
=

1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

)
=

1

2

(
∂u

∂x
+ i

∂v

∂x
− i ∂v

∂x
− ∂u

∂x

)
= 0

and

∂h(z)

∂z̄
=

1

2

(
∂h(z)

∂x
+ i

∂h(z)

∂y

)

=
1

2

(
∂u

∂x
− i ∂v

∂x
+ i

∂u

∂y
+
∂v

∂y

)
=

∂u

∂x
− i∂u

∂x
= h′(z).

Because for holomorphic functions h, k

∂

∂z̄
(h(z)k(z)) =

1

2

(
∂

∂x
(h(z)k(z)) +

∂

∂y
(h(z)k(z))

)
=

1

2

(
∂h(z)

∂x
k(z) + h(z)

∂k(z)

∂x
+ i

∂h(z)

∂y
k(z) + ih(z)

∂k(z)

∂y

)
=

∂h(z)

∂z̄
k(z) + h(z)

∂k(z)

∂z̄

the product rule also holds for the the Wirtinger derivative ∂
∂z̄ and

1

2i

∮
γ
f(z)g(z) dz =

1

2

∫
γ
f(z)g(z) dy − if(z)g(z) dx

=
1

2

∫
Ω

∂

∂x
f(z)g(z) + i

∂

∂y
f(z)g(z) dλ2(z)

=

∫
Ω

∂

∂z̄
f(z)g(z) dλ2(z)

=

∫
Ω

∂f(z)

∂z̄
g(z) +

∂g(z)

∂z̄
f(z) dλ2(z)

=

∫
Ω
g′(z)f(z) dλ2(z)

follows.
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Now the proof of Theorem 3.2.3 is basically contained in the following lemma:

Lemma 3.2.7. Let λ be a real number, f(z) =
∑∞

n=1 anz
n+λ ∈ Dλ and b ∈ B. Then

∞∑
n=1

(n+ λ)|an|2 −
∞∑
n=1

(n+ λ)|cn|2 =

∫
D\b(D)

|f ′|2dA (3.3)

holds, where
∑∞

n=1 cnz
n+λ = (Cλb f)(z).

Proof. If b(z) = φz with φ ∈ T both sides of equation (3.3) are zero. So we may
assume by Schwarz’s Lemma, that |b(z)| < |z| for all z ∈ D.

Let δ be a real number with 0 < δ < 1 and Cδ := {z ∈ C : |z| = δ}. Then |b(Cδ)| < δ
and because b is one to one and continuous b(Cδ) is again a closed curve located in
the interior of Cδ. Furthermore let m ∈ Cδ be a point satisfying r := |b(m)| =
maxz∈Cδ |b(z)|, θ such that b(m) = reiθ, and ε > 0 arbitrary, we define a curve γδ,ε by

γδ,ε := γ1 − γ2 − γ3 + γ4.

with

γ1(t) := δeit, t ∈ [θ + ε, θ + 2π − ε]
γ2(t) := tei(θ+2π−ε), t ∈ [r2, δ]

γ3(t) := b
(
δeit
)
, t ∈ [θ1, θ2]

γ4(t) := tei(θ+ε), t ∈ [r1, δ].

Here θ1, θ2, r1, r2 are chosen such that b(δeiθ1) = r1e
i(θ+ε) and b(δeiθ2) = r2e

i(θ+2π−ε).
We call the interior of this curve Ωδ,ε.

We interpret zλ on D \ {0} as (reiφ)λ := rλeiλφ, where φ ∈ [θ, θ + 2π); see Remark
2.3.2. Interpreting f(z) accordingly, f and f ′ are holomorphic on Ωδ,ε ∪ γδ,ε. With
Theorem 3.2.6 we obtain

π

∫
Ωδ,ε

∣∣f ′(z)∣∣2 dA(z) =

∫
Ωδ,ε

∣∣f ′(z)∣∣2 dλ2(z)

=
1

2i

∮
γδ,ε

f ′(z)f(z)dz

=
1

2i

∮
γ1

f ′(z)f(z)dz − 1

2i

∮
γ2

f ′(z)f(z)dz−

− 1

2i

∮
γ3

f ′(z)f(z)dz +
1

2i

∮
γ4

f ′(z)f(z)dz.

(3.4)

Note that for f(z) = zλg(z) ∈ Sλ with R(g) ≥ 1, the function z 7→ f ′(z)f(z) does
not depend on the branch of zλ that we chose above and has therefore a continuous
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continuation to D \ {0}. In fact,

f ′(reiφ)f(reiφ) =

∞∑
n=1

(n+ λ)an(reiφ)λ+n−1
∞∑
m=1

āmreiφ
λ+m

= r2λ
∞∑
n=1

(n+ λ)anr
n−1ei(n−1)φ

∞∑
m=1

amr
me−imφ

= r2λ
∞∑
n=1

(n+ λ)anr
n−1ei(n−1)(φ+2π)

∞∑
m=1

amr
me−im(φ+2π)

= f ′(rei(φ+2π))f(rei(φ+2π)),

(3.5)

for all φ ∈ R, 0 < r < 1.

For fixed δ > 0 the functions f(z), f ′(z) are uniformly bounded on Bδ(0)\b(Bδ(0)) ⊇
Ωδ,ε. Thus by the dominated convergence theorem, equation (3.4) becomes

π

∫
Ωδ

∣∣f ′(z)∣∣2 dA(z) =

∫
Ωδ

∣∣f ′(z)∣∣2 dλ2(z) =
1

2i

∮
γδ

f ′(z)f(z)dz =

=
1

2i

∮
γ1

f ′(z)f(z)dz − 1

2i

∮
γ2

f ′(z)f(z)dz−

− 1

2i

∮
γ3

f ′(z)f(z)dz +
1

2i

∮
γ4

f ′(z)f(z)dz. (3.6)

with
γ1(t) := δeit, t ∈ [θ, θ + 2π]

γ2(t) := tei(θ+2π), t ∈ [r, δ]

γ3(t) := b
(
δeit
)
, t ∈ [θ, θ + 2π]

γ4(t) := teiθ, t ∈ [r, δ].

Since f ′(z)f(z) is continuous on D \ {0}, we get

1

2i

∮
γ4

f ′(z)f(z) dz − 1

2i

∮
γ2

f ′(z)f(z) dz = 0.

We calculate

1

2i

∮
γ1

f ′(z)f(z) dz =
1

2i

∫ θ+2π

θ
δ2λ

∞∑
n=1

∞∑
m=1

(n+ λ)anamδ
n−1eit(n−1)δme−itmiδeit dt

=
1

2

∞∑
n=1

∞∑
m=1

(n+ λ)anamδ
m+n+2λ

∫ θ+2π

θ
ei(n−m)tdt

= π
∞∑
n=1

(n+ λ)|an|2δ2n+2λ.
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As Cλb f also belongs to Sλ, we also have

π

∞∑
n=1

(λ+ n)|cn|2δ2n+2λ =
1

2i

∮
γ1

(Cλb f)′(z)(Cλb f)(z) dz.

The function z 7→ f(b(z)) is holomorphic on D \ b−1(eiθ · [0,+∞)), which is dense
in D. Moreover, by Remark 3.2.2, z 7→ f(b(z)) coincides with z 7→ Cλb f(z) up to a
multiplicative unimodular function. As both functions are holomorphic on D\(b−1(eiθ ·
[0,+∞)) ∪ eiθ · [0,+∞)) this unimodular function is constant on the components of
this open subset of D. Hence, for z belonging to this open set we have

(Cλb f)′(z)(Cλb f)(z) = eiµf(b(z))′eiµf(b(z)) = f ′(b(z))f(b(z))b′(z).

Since both sides of this equation have a continuous continuation to D \ {0} and as an
intersection of two open and dense sets D \ (b−1(eiθ · [0,+∞)) ∪ eiθ · [0,+∞)) is dense
in D \ {0}, we have

(Cλb f)′(z)Cλb f(z) = f ′(b(z))f(b(z))b′(z),

on D \ {0}. Thus, we obtain

π
∞∑
n=1

(λ+ n)|cn|2δ2n+2λ =
1

2i

∮
γ1

f ′(b(z))f(b(z))b′(z) dz

=
1

2i

∮
b(γ1)

f ′(z)f(z) dz

=
1

2i

∮
γ3

f ′(z)f(z) dz.

All in all (3.6) becomes

π

∫
Ωδ

∣∣f ′(z)∣∣2 dA = π

∞∑
n=1

(λ+ n)|an|2δ2n+2λ − π
∞∑
n=1

(λ+ n)|cn|2δ2n+2λ.

Since∫
Ωδ

∣∣f ′(z)∣∣2 dA =

∫
D
χΩδ(z)

∣∣f ′(z)∣∣2 dA ≤
≤ δ2+2λ

( ∞∑
n=1

(λ+ n)|an|2 +
∞∑
n=1

(λ+ n)|bn|2
)
< +∞

we can apply the dominated convergence theorem and by calculating the limit δ ↗ 1
we obtain equation (3.3).

After this preliminaries the proof of Theorem 3.2.3 is no longer difficult:

44



Chapter 3 Littlewood’s subordination principle

Proof of Theorem 3.2.3. For f(z) =
∑∞

n=1 anz
n+λ ∈ Dλ Lemma 3.2.7 asserts

[
Cλb f, C

λ
b f
]
Dλ

≤
[
Cλb f, C

λ
b f
]
Dλ

+

∫
D\b(D)

|f ′|2dA

=

∞∑
n=1

(n+ λ)|cn|2 +

∫
D\b(D)

|f ′|2dA

=
∞∑
n=1

(n+ λ)|an|2 = [f, f ]Dλ < +∞.

Hence, Cλb f ∈ Dλ and Cλb is a contraction.

45



Chapter 4

De Branges’ univalence criterion

In the previous section we have seen, that for an analytic function b : D → D with
b(0) = 0, b′(0) 6= 0 to be univalent, it is a necessary condition that the composition
operator Cλb : Dλ → Dλ is a contraction. In the following section we will see, that the
composition operator being a contraction on a certain space is already sufficient for
such a function b to be univalent.

Defintion 4.0.1. We denote the vector space of all formal power series with also
negative powers by S :=

{∑
k∈Z akz

k : ak ∈ C
}

and define operators P±, P0 and S on
S by

(P+f)(z) :=

∞∑
k=1

akz
k,

(P0f)(z) := a0,

(P−f)(z) :=
∞∑
k=1

a−kz
−k

and
(Sf)(z) := f

(
z−1
)
.

P+ and P− are the projections on the subspaces of power series S+ (S−) with only
positive (negative) exponents. P+ + P0 is the projection on the space

D0 :=

{ ∞∑
n=0

anz
n :

∞∑
n=1

anz
n ∈ D

}
.

Further we define the space ID by

ID :=
⋃
N∈N

D−N .

We equip ID with the indefinite inner product ∞∑
k=−N1

akz
k,

∞∑
k=−N2

bkz
k


ID

:=

 ∞∑
k=−N1

akz
k,

∞∑
k=−N2

bkz
k


Dmin{−N1,−N2}

=

=
∞∑

k=min{−N1,−N2}

kak b̄k.

46



Chapter 4 De Branges’ univalence criterion

Remark 4.0.2. The elements of ID are Laurent series with only finite negative powers.
They can be interpreted as analytic functions on D \ {0} and can have a pole of finite
order at 0.

Defintion 4.0.3. For a given function b ∈ S+, b′(0) 6= 0, we define the composition
operator on ID in the following way.

CIDb :

{
domCIDb → ID

f(z) :=
∑∞

n=−N anz
n 7→ C−Nb f,

where
domCIDb :=

{
f ∈ ID : CIDb f ∈ ID

}
.

Remark 4.0.4.

(i) Since for k ∈ Z by Remark 3.2.2 CDk
b f = f ◦ b, we have

(
CIDb f

)
(z) = f(b(z)),

for z ∈ D \ {0}.

(ii) If b ∈ S+ is such that domCIDb = ID, then because z 7→ z−1 ∈ ID, the function
b has no zeros in D\{0}. Otherwise CIDb

(
z 7→ z−1

)
would have a pole of at least

order one in D \ {0}.

(iii) For b ∈ B the operator CIDb is a contraction from ID to itself, since for∑∞
n=−N anz

n ∈ ID[
CIDb f, CIDb f

]
ID

=
[
C−Nb f, C−Nb f

]
D−N

≤ [f, f ]D−N = [f, f ]ID ,

by Theorem 3.2.3.

Defintion 4.0.5. For any formal power series f(z) =
∑

k∈Z akz
k ∈ S, we define

f ](z) :=
∑
k∈Z

ākz
k.

Note that f and f ] have the same domain of analyticity and for z such that f is
analytic in z

f ](z) = f(z̄).

Our goal for the remainder of this section will be to prove the following result:

Theorem 4.0.6. Let b : D → D be holomorphic with b′(0) 6= 0. Then the following
three statements are equivalent:

(i) b ∈ B.

(ii) The operator CIDb : ID→ ID is a contraction with respect to [·, ·]ID.

(iii) CD
b is bounded and there exists a well defined contraction operator Gb : D → D

such that
Gb|P = P+C

ID
b] S

(
CD
b

)∗∣∣∣
P
. (4.1)
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Defintion 4.0.7. We define the indefinite inner product space KD by

KD :=

{∑
k∈Z

akz
k :

∞∑
k=1

akz
k,

∞∑
k=1

a−kz
k ∈ D

}

and endow it with the inner product[∑
k∈Z

akz
k,
∑
k∈Z

bkz
k

]
KD

:=
∑
k∈Z

kak b̄k + a0b̄0.

Remark 4.0.8.

(i) If we endow D0 ⊆ KD with [·, ·]KD, it can be interpreted as a one dimensional
extension of D. Thus,

(
D0, [·, ·]KD

)
is again a Hilbert space.

(ii) ((P+ + P0)(KD), P−(KD)) =
(
D0, SD

)
is a fundamental decomposition of KD.

For f = Sg ∈ SD

−[f, f ]KD = ‖Sf‖2D = ‖SSg‖2D = ‖g‖2D,

and the spaces (D0, [·, ·]KD), (SD,−[·, ·]D) are Hilbert spaces. Therefore, KD is
a Krein space.

The J-norm of f(z) =
∑∞

k∈Z akz
k ∈ KD can be calculated by

‖f‖2J = [P+f, f ]KD + [P0, f ]KD − [P−f, f ]KD =

=

∞∑
n=1

n|an|2 + |a0|2 −
∞∑
n=1

n|a−n|2 =
∑
k∈Z
|k||ak|2 + |a0|2.

(iii) Let f(z) =
∑

k∈Z akz
k ∈ KD be arbitrary. Then the functions fn(z) :=

∑∞
k=−n akz

k

form a sequence in ID with

lim
n→∞

‖f − fn‖2J = lim
n→∞

∥∥∥∥∥∥
∑

k≤−n−1

akz
k

∥∥∥∥∥∥
2

J

= lim
n→∞

∞∑
k=n+1

k|a−k|2 = 0,

since SP−f =
∑∞

k=1 akz
k ∈ D. Hence, ID is dense in KD with respect to ‖ · ‖J .

Defintion 4.0.9. Let M ⊆ C be a one dimensional manifold. Then we denote the
surface measure of M by µM and use the notation L2(M) for the space of all square
integrable functions on M with respect to µM .

Remark 4.0.10.

(i) If we set M = T, the L2(T)-norm of f ∈ L2(T) can be calculated by

‖f‖2L2(T) =

∫
T
|f(z)|2 dµT(z) =

∫ 2π

0
|f(eit)|2 dt
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(ii) Let b : T → C be analytic and one to one. Then the L2(b(T))-norm of f ∈
L2(b(T)) can be calculated by

‖f‖2L2(b(T)) =

∫
b(T)
|f(z)|2 dµb(T)(z) =

=

∫ 2π

0
|f(b(eit))|2|b′(eit)| dt =

∫
T
|(f ◦ b)(ζ)|2|b′(ζ)| dµT(ζ)

(iii) If there exist C1, C2 > 0 such that C1 ≤ |b′(ζ)| ≤ C2 for all ζ ∈ T, we have

C1‖f ◦ b‖2L2(T) ≤ ‖f‖
2
L2(b(T)) ≤ C2‖f ◦ b‖2L2(T).

Lemma 4.0.11. Let f(z) =
∑

k∈Z akz
k ∈ KD such that f is analytic on an annulus

containing T. Then f ∈ L2(T) and there exists a real constant C ≥ 0 such that

‖f(z)‖L2(T) ≤ C‖f(z)‖J .

Proof. We can compute the L2(T)-norm squared of f by∫
T
|f(z)|2 dµT(z) =

∫
T

∑
k∈Z

akz
k
∑
j∈Z

āj z̄
j dµT(z)

=
∑
k,j∈Z

akāj

∫
T
zkz̄j dµT(z)

=
∑
k,j∈Z

akāj

∫ 2π

0
eiϕ(k−j) dϕ

= 2π
∑
k∈Z
|ak|2

≤ 2π

(∑
k∈Z
|k||ak|2 + |a0|2

)
= 2π‖f(z)‖2J < +∞

since the involved series converge uniformly.

Lemma 4.0.12. Let b : B1+ε(0)→ C be an analytic, univalent function for some ε >
0, such that b(0) = 0 and there exists r ∈ R, 0 < r < 1 with b(D) ⊆ Br(0). Let further
pn be a sequence of polynomials in z−1 such that pn(1

z ) ∈ P0 and limn→∞ ‖pn‖J = 0.
If the sequence CKDb pn converges to some g ∈ KD with respect to ‖ · ‖J , then g = 0.

Proof. Since convergence in ‖ · ‖J dominates convergence in ‖ · ‖L2(T), we have

lim
n→∞

‖CIDb pn − g‖L2(T) = 0.

Thus there exists a subsequence pnk such that

lim
n→∞

(
CIDb pnk

)
(z) = g(z)
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for almost every z ∈ T.

Since b is analytic and univalent on B1+ε its derivative b′ is bounded and bounded
away from zero on T. Therefore, the sequence pnk is a Cauchy-sequence in the space
L2(b(T)) by Remark 4.0.10. Thus there exists h ∈ L2(b(T)) such that

lim
n→∞

‖pnk − h‖L2(b(T)) = 0.

Again there exists a subsequence of pnk which we will call pni such that limni→∞ pni(b(z)) =
h(b(z)) for almost every z ∈ T. By uniqueness of the limit, we have h ◦ b = g almost
everywhere on T.

Now let z ∈ C \ b(D). Then we obtain for R > 1

2πipn(z) =

∮
∂BR(0)

pn(ζ)

z − ζ
dζ −

∮
b(T)

pn(ζ)

z − ζ
dζ. (4.2)

by Cauchy’s integral formula. Because of

lim
R→∞

∣∣∣∣∣
∮
∂BR(0)

pn(ζ)

z − ζ
dζ

∣∣∣∣∣ = lim
R→∞

∣∣∣∣∫ 2π

0

pn(Reit)

z −Reit
iReit dt

∣∣∣∣
≤ lim

R→∞

∫ 2π

0

|pn(Reit)|
| z
Reit
− 1|

dt

= 0,

we can write (4.2) as

pn(z) = − 1

2πi

∮
b(T)

pn(ζ)

z − ζ
dζ

= − 1

2πi

∫ 2π

0

pn(b(eit))

z − b(eit)
b′(eit)ieit dt

= − 1

2πi

∫
b(T)

pn(η)

z − η
ib−1(η)

b′(b−1(η))

|b′(b−1(η))|
dµb(T)(η)

= − 1

2πi

∫
b(T)

pn(η)

z − η
iφz(η) dµb(T)(η)

if we define

φz(η) := b−1(η)
b′(b−1(η))

|b′(b−1(η))|
.

The assumption limn→∞ ‖pn‖J = 0 implies the existence of a subsequence pnj , such
that limj→∞ pnj (z) = 0 for almost every z ∈ T. Thus calculating the limit nj → ∞
yields

0 = − 1

2πi

∫
b(T)

h(η)

z − η
iφz(η) dµb(T)(η). (4.3)

Since the right hand side is holomorphic in z, this holds for every z ∈ C \ b(D).
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Next we study the expression[
zk, hφz

]
L2(b(T))

=

∫
b(T)

h(η)φz(η)ηk dµb(T)(η) =

∮
b(T)

h(η)ηk dη. (4.4)

For k < 0 the right hand side is zero, since by the residue theorem

lim
n→∞

∮
b(T)

pn(η)ηk dη = 0.

To obtain the same for k ≥ 0 we rewrite (4.3) by

0 =

∫
b(T)

h(η)

z − η
iφz(η) dµb(T)(η)

=

∫
b(T)

∞∑
k=0

ηk

zk+1
h(η)iφz(η) dµb(T)(η)

=

∞∑
k=0

1

zk+1
i

∫
b(T)

ηkh(η)φz(η) dµb(T)(η),

(4.5)

where we used
1

z − η
=

1

z

1

1− η
z

=
∞∑
k=0

ηk

zk+1
.

Since (4.5) is the unique Laurent series expansion of the zero function, all the coeffi-
cients are zero. Thus, (4.4) is zero for all k ∈ Z. Because the set {zk : k ∈ Z} is dense
in L2(b(T)) and φz 6= 0, this implies h = 0 as an element of L2(b(T)). Therefore, g = 0
as an element of L2(T) and, since it is analytic also as an element of KD.

Lemma 4.0.13. Let fn, f be holomorphic functions on Aδ such that fn ∈ KD and
limn→∞ fn = f uniformly on Aδ. Then f ∈ KD and limn→∞ ‖fn − f‖J = 0.

Proof. By Cauchy’s integral formula, we can write the derivative of P+fn for z ∈ Aδ
and 0 < ε < δ as

2πi (P+fn)′ (z) =

∮
∂B1+ε(0)

fn(ζ)− (P−fn) (ζ)

(ζ − z)2
dζ =

=

∮
∂B1+ε(0)

fn(ζ)

(ζ − z)2
dζ −

∮
∂B1+ε(0)

(P−fn) (ζ)

(ζ − z)2
dζ. (4.6)

Since P−fn is holomorphic in C \B1−δ(0), we have∮
∂B1+ε(0)

(P−fn) (ζ)

(ζ − z)2
dζ =

∮
∂BR(0)

(P−fn) (ζ)

(ζ − z)2
dζ =

∫ 2π

0

(P−fn) (Reit)

(1− z
Reit

)2

i

Reit
dt

for all R > 1− δ, z ∈ Aδ. By calculating the limit R→ +∞ we obtain∮
∂B1+ε(0)

(P−fn) (ζ)

(ζ − z)2
dζ = 0.
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Thus, (4.6) becomes

2πi (P+fn)′ (z) =

∮
∂B1+ε(0)

fn(ζ)

(ζ − z)2
dζ.

Since P+fn is holomorphic on B1+δ(0), this holds in particular for z ∈ D. Repeating
the same argument with f instead of fn yields

2πi sup
z∈D
| (P+fn)′ (z)− (P+f)′ (z)| = sup

z∈D
|
∮
∂B1+ε(0)

fn(ζ)− f(ζ)

(ζ − z)2
dζ|

≤ sup
z∈D

∮
∂B1+ε(0)

|fn(ζ)− f(ζ)|
ε2

dζ

≤ 2(1 + ε)π sup
ζ∈∂B1+ε(0)

|fn(ζ)− f(ζ)|.

Therefore (P+fn)′ → (P+f)′ uniformly in D and from this it follows that

lim
n→∞

‖ (P+fn)− (P+f) ‖2D = lim
n→∞

∫
D
| (P+fn)′ (z)− (P+f)′ (z)|2 dA(z) ≤

≤ lim
n→∞

sup
z∈D
| (P+fn)′ (z)− (P+f)′ (z)|2 = 0. (4.7)

We can repeat the same argument with the functions gn(z) := (Sfn)(z) = fn(z−1),
g(z) := (Sf)(z) = f(z−1) and obtain

0 = lim
n→∞

‖ (P+gn)− (P+g) ‖2D =

= lim
n→∞

‖ (P+Sfn)− (P+Sf) ‖2D = lim
n→∞

‖ (SP−fn)− (SP−f) ‖2D. (4.8)

For P0fn there holds

2πi lim
n→∞

|P0fn − P0f | = lim
n→∞

∣∣∣∣∣
∮
∂B1+ε(0)

fn(ζ)− f(ζ)

ζ
dζ

∣∣∣∣∣ ≤
≤ lim

n→∞
sup

ζ∈∂B1+ε(0)
|fn(ζ)− f(ζ)| = 0. (4.9)

By combining (4.7), (4.8) and (4.9) we finally obtain

lim
n→∞

‖fn − f‖2J = lim
n→∞

‖P+fn − P+f‖2D + ‖SP−fn − SP−f‖2D + |P0fn − P0f |2 = 0.

On KD the composition operator is not as easy to define as on ID, nevertheless the
following lemma shows under which conditions on b it admits a closure:
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Theorem 4.0.14. Let b : B1+ε(0) → C be an analytic, univalent function for some
ε > 0, such that b(0) = 0 and there exists r ∈ R, 0 < r < 1 with b(D) ⊆ Br(0). Then
there exists a linear operator CKDb : domCKDb → KD such that CKDb is the closure of
the operator CIDb with respect to the norm ‖ · ‖J .

Let f ∈ KD and δ ∈ R, δ > 0 such that f is analytic on Aδ, where Aδ :=
{z ∈ C : 1− δ < |z| < 1 + δ} and b(Aε) ⊆ Aδ. Then f ∈ domCKDb and

(CKDb f)(z) = f(b(z))

holds for all z ∈ Aε.

Proof. To show that the operator CIDb allows closure, we have to show, that for every
sequence (fn)n∈N ⊆ ID, such that limn→∞ ‖fn‖J = 0 and limn→∞ ‖CIDb fn − g‖J = 0
for some g ∈ KD, it follows that g = 0.

Now let fn be such a sequence. Because of

‖fn‖2J = ‖P+fn‖J + ‖P0fn‖J + ‖P−fn‖2J = ‖P+fn‖2D + |P0fn|2 + ‖SP−fn‖2D,

we know, that

lim
n→∞

‖P+fn‖KD = lim
n→∞

|P0fn| = lim
n→∞

‖P−fn‖J = 0. (4.10)

Therefore, since CD
b is a contraction

lim
n→∞

‖CIDb P+fn‖2D = lim
n→∞

‖CD
b P+fn‖2D ≤ lim

n→∞
‖P+fn‖2D = 0. (4.11)

Combining (4.10) and (4.11) and the fact that CIDb P0fn = P0fn yields

lim
n→∞

‖CIDb P−fn − g‖2J = lim
n→∞

‖CIDb P−fn + CIDb P+fn + CIDb P0fn

− g − CIDb P+fn − CIDb P0fn‖2J
= lim

n→∞
‖CIDb fn − g − CIDb P+fn − CIDb P0fn‖2J

≤ lim
n→∞

‖CIDb fn − g‖2J + lim
n→∞

‖CIDb P+fn‖2J

+ lim
n→∞

|CIDb P0fn|2 = 0.

Therefore, the sequence CIDb P−fn converges to g with respect to ‖ · ‖J . Thus, we can
apply Lemma 4.0.12 for pn := P−fn to conclude that g = 0.

To show the second part, write f(z) =
∑

k∈Z akz
k and define

fn(z) :=

∞∑
k=−n

akz
k ∈ ID.

The sequence (fn)n∈N converges uniformly on any compact subset of Aδ. Therefore
limn→∞ fn(b(z)) = f(b(z)) uniformly on any compact subset of Aε, particularly on
Aε1 , for ε1 < ε. Since uniform convergence on Aε1 implies convergence with respect
to ‖ · ‖J by Lemma 4.0.13, we have that f ∈ domCKDb and (CKDb f)(z) = f(b(z)) for
all z ∈ Aε.
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Next we list some useful facts about the operator f 7→ f ]:

Remark 4.0.15.

(i) Because of
∞∑
n=1

n|ān|2 =
∞∑
n=1

n|an|2, (4.12)

a function f is in D if and only if f ] ∈ D. In this case ‖f‖D = ‖f ]‖D. Due to
this fact, and the fact that

f(z̄) + λg(z̄) = f ](z) + λ̄g](z),

for g, f ∈ D, the mapping f 7→ f ] is an anti-linear, isometric bijection on D.

(ii) A function f ∈ S is an element of ID if and only if f ] ∈ ID. In this case[
f ], f ]

]
ID

= [f, f ]ID .

(iii) Let b(z) =
∑∞

n=1 bnz
n ∈ S+, b′(0) 6= 0 and f(z) =

∑∞
k=−N akz

k ∈ domCIDb .
Then

(CIDb] f)(z) = f(b(z̄))

=
∑
k=−N

ak

( ∞∑
n=1

bnz̄n

)k

=
∑
k=−N

āk

( ∞∑
n=1

bnz̄n

)k
= f ](b(z̄) = (CIDb f ])(z̄) = (CIDb f ])](z).

(iv) Let b : D→ D, b′(0) 6= 0 be such that domCIDb = ID. Then because of (iv) and
(iii) [

CIDb] f, C
ID
b] f

]
ID

=
[
(CIDb f ])], (CIDb f ])]

]
ID

=
[
CIDb f ], CIDb f ]

]
ID

for all f ∈ ID. In particular this implies, that

domCIDb] = domCIDb

and that CIDb is a contraction if and only if CID
b]

is a contraction.

Moreover if b satisfies the assumptions of Lemma 4.0.14, we have

domCKDb] = domCKDb .
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Lemma 4.0.16. Let b(z) =
∑∞

n=1 bnz
n be holomorphic on D, with b(D) ⊆ D, such

that CD
b is bounded and let p ∈ Pk0 . Then

(
CD
b

)∗
p ∈ Pk0 and

(
CD
b

)∗
p depends only on

b1, . . . , bk.

Proof. As for j > k〈(
CD
b

)∗
p, (z 7→ zj)

〉
D

=
〈
p,
(
CD
b

)
(z 7→ zj)

〉
D

=
〈
p, bj

〉
D

= 0,

(
CD
b

)∗
p(z) is a polynomial of degree k as well.

Let b(k) :=
∑k

n=1 bnz
n. For arbitrary f ∈ D we have〈(

CD
b

)∗
p, f
〉
D

= 〈p, f ◦ b〉D =
〈
p, f ◦ b(k)

〉
D

=
〈(
CD
b(k)

)∗
p, f
〉
D
,

since, writing f(b(z)) =
∑∞

n=1 cnz
n, the coefficients cn for n ≤ k only depend on

b1, b2, . . . , bk.

Remark 4.0.17. Recall the following fact about a closed operator. Let H be a Hilbert
space and T : domT → H a closed linear operator. Let further an ∈ domT be a
sequence, such that limn→∞ an ∈ H and limn→∞ Tan ∈ H. Then limn→∞ an ∈ domT
and

T
(

lim
n→∞

an

)
= lim

n→∞
Tan.

Lemma 4.0.18. Let b(z) =
∑∞

n=1 bnz
n be analytic and univalent on B1+ε(0) for some

ε > 0, such that b(0) = 0 and there exists r ∈ R, 0 < r < 1 with b(D) ⊆ Br(0). Then

P−C
ID
b] S

(
CD
b

)∗
p = Sp (4.13)

holds for all p ∈ P0.

Proof. The operator CD
b is bounded and due to Lemma 1.4.7 we have, that(

S
(
CD
b

)∗
KD(·, w)

)
(z) = (SKD(·, b(w))) (z) = KD(z−1, b(w)) (4.14)

for all w ∈ D, |z| > 1. Since for fixed w the right hand side of equation (4.14) is
analytic on C \ B|b(w)|(0), by the uniqueness theorem equation (4.14) even holds for
all z > |b(w)|.

Since b is univalent and continuous on B1+ε and b(0) = 0 there exist δ, r > 0, such
that |b(w)| < 1− δ < |b(z)| for all z ∈ Aε and |w| ≤ r. Therefore b(Aε) ⊆ Aδ and the
functions

fw(z) := KD(z−1, b(w))

are analytic on Aδ, since the radius of convergence of KD(z, w) is 1
|w| by Remark 2.2.4.

Thus, Lemma 4.0.14 yields

fw ∈ domCKDb = domCKDb]
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for all |w| ≤ r. Hence, we can apply CKD
b]

and obtain for z ∈ Aε(
CKDb] S

(
CD
b

)∗
KD(·, w)

)
(z) =

(
CKDb] fw

)
(z)

= KD(b](z)−1, b(w))

= log

(
1

1− b(w)b](z)−1

)

= log

(
b](z)(z − w̄)

z (b](z)− b](w̄))

)
+ log

(
1

1− w̄z−1

)
= h(z, w) +KD(z−1, w), (4.15)

where we used the notation

h(z, w) := log

(
b](z)(z − w̄)

z (b](z)− b](w̄))

)
.

Since b] is univalent on B1+ε(0) by assumption and therefore (b])′(0), (b])′(w̄) 6= 0, the
function h(·, w) is analytic on B1+ε(0). The function KD(z−1, w) on the other hand is
analytic on C\B|w|(0) as function in z.

Now let k ∈ N arbitrary. By multiplying (4.15) with wk and integrating over ∂Br(0)
with respect to ν := µ∂Br(0), we obtain for fixed z ∈ B1+ε(0)∫

∂Br(0)

(
CKDb] S

(
CD
b

)∗
wkKD(·, w)

)
(z) dν(w) =

=

∫
∂Br(0)

wkh(z, w) dν(w) +

∫
∂Br(0)

wkKD(z−1, w) dν(w). (4.16)

Because of∫
∂Br(0)

wkKD(y, w) dν(w) =

∫
∂Br(0)

wk
∞∑
n=1

w̄nyn

n
dν(w) =

=
∞∑
n=1

ynrk+n

n

∫ 2π

0
eit(k−n) dt = 2π

r2kyk

k
,

for all |y| < 1
|w| , (4.16) becomes

∫
∂Br(0)

(
CKDb] S

(
CD
b

)∗
wkKD(·, w)

)
(z) dν(w) =

=

∫
∂Br(0)

wkh(z, w) dν(w) + 2π
r2k

k
z−k, (4.17)

for |z| > |w|.
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Since z 7→ hw(z) := h(z, w) is holomorphic on B1+ε(0) we can write its ‖ · ‖J -norm
for w ∈ ∂Br(0) as

‖hw‖2J = ‖hw − hw(0)‖2D + |hw(0)|2 =

∫
D
|h′w(ζ)|2 dA(ζ) + |hw(0)|2 ≤

≤ sup
ζ∈D
|h′w(ζ)|2 + |hw(0)|2 = |h′w(ζw)|2 + |hw(0)|2

for some ζw ∈ T, by the maximum modulus principle for holomorphic functions. Thus,

sup
w∈∂Br(0)

‖h(·, w)‖2J ≤ sup
w∈∂Br(0)

|h′w(ζw)|2 + |hw(0)|2 =

= sup
w∈∂Br(0)

∣∣∣∣ 1

ζw − w̄
− (b])′(ζw)

b](ζw)− b](w̄)

∣∣∣∣2 +

∣∣∣∣log

((
b]
)′

(0)

)
+ log

(
w̄

b](w̄)

)∣∣∣∣2 < +∞

shows, that the function on the right hand side of (4.17) is again an element of KD.
Moreover, since we can interpret the integral as limit of a Riemann sum, the bounded
operator S

(
CD
b

)∗
commutes with the integral and we have

∫
∂Br(0)

(
S
(
CD
b

)∗
wkKD(·, w)

)
(z) dν(w) = S

(
CD
b

)∗
2π
r2kzk

k
∈ KD

Since CKD
b]

is closed it commutes with the integral as well (see Remark 4.0.17) and we
obtain∫

∂Br(0)

(
CKDb] S

(
CD
b

)∗
wkKD(·, w)

)
(z) dν(w) = CKDb] S

(
CD
b

)∗
2π
r2kzk

k
. (4.18)

Combining equations (4.17) and (4.18), we have for p(z) := zk

2πr2k

k

(
CIDb] S

(
CD
b

)∗
p
)

(z) =

∫
∂Br(0)

wkh(z, w) dν(w) +
2πr2k

k
z−k.

Since h(·, w) is analytic and uniformly bounded on D, the function∫
∂Br(0)w

kh(·, w) dν(w) is analytic on D. Thus

P−C
ID
b] S

(
CD
b

)∗
p = Sp.

Since CID
b]
S
(
CD
b

)∗
is linear, this holds for all p ∈ P0.

Lemma 4.0.19. Let b(z) =
∑∞

n=1 bnz
n ∈ S+, b1 6= 0 be arbitrary and p ∈ Pk0 . Then

P−C
ID
b]
Sp only depends on b1, . . . , bk
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Proof. We define (b])(k)(z) :=
∑k

n=1 b̄nz
n. Then for j ≤ k, q(z) = z−j(

P−C
ID
b] q

)
(z) = P−

(
b](z)−j

)
= P−

((
(b])(k)(z) + zkck(z)

)−j)
= P−

(
(b])(k)(z)−j

(
1 +

zkck(z)

(b])(k)(z)

)−j)

= P−

(
(b])(k)(z)−j

(
1 +

∞∑
n=1

(
−j
n

)
zk+n−1ck(z)n

(
z

(b])(k)(z)

)n))
= P−(b])(k)(z)−j = P−

(
CID

(b])(k)
q
)

(z),

where we used the notation ck(z) :=
∑∞

n=1 b̄n+kz
n.

Corollary 4.0.20. Let b : D → D, b(z) :=
∑∞

n=1 bnz
n, with b1 6= 0, such that CD

b is
bounded. Then

P−C
ID
b] S

(
CD
b

)∗
p = Sp (4.19)

holds for all polynomials p ∈ P0.

Proof. For k ∈ N, let p ∈ Pk0 be arbitrary. Then b(k)(z) :=
∑k

n=1 bnz
n ∈ Pk0 and

because of (b(k))′(0) 6= 0 there exist some ε > 0 and 1 > r, δ > 0, such that bδ(z) :=
b(k)(δz) is univalent on B1+ε(0) and bδ(D) ⊆ Br(0). Because of δz ∈ B and〈

CD
δz

∞∑
n=1

anz
n,

∞∑
n=1

cnz
n

〉
D

=

〈 ∞∑
n=1

an(δz)n,

∞∑
n=1

cnz
n

〉
D

=

=
∞∑
n=1

nanδ
nc̄n =

〈 ∞∑
n=1

anz
n, CD

δz

∞∑
n=1

cnz
n

〉
D

for
∑∞

n=1 cnz
n ∈ D arbitrary, the operator CD

δz is self-adjoint.
Furthermore CIDδz S = SCIDδ−1z and CIDbδ = CIDδz C

ID
b(k)

. Hence, we obtain

p = CIDδz C
ID
δ−1zp

= CIDδz SP−C
ID
b]δ
S
(
CD
bδ

)∗
CD
δ−1zp

= SP−C
ID
δ−1zC

ID
b]δ
S
(
CD
δ−1zC

D
bδ

)∗
p

= SP−C
ID
(b(k))]

S
(
CD
b(k)

)∗
p = SP−C

ID
b] S

(
CD
b

)
.

With this preliminaries we are able to show that the Grunsky operator satisfying
(4.1) indeed exists.
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Theorem 4.0.21. Let b : D → D, b(z) =
∑∞

n=1 bnz
n, b1 6= 0, such that domCIDb =

ID and CIDb is a contraction with respect to [·, ·]ID. Then there exists a contraction
operator Gb : D→ D that satisfies (4.1).

Proof. By Remark 4.0.15, (iv) we know, that CID
b]

is a contraction, since CIDb is a

contraction by assumption. Let f ∈ D and p ∈ P be arbitrary. Then f + S
(
CD
b

)∗
p ∈

ID and thus

‖CIDb]
(
f + S

(
CD
b

)∗
p
)
‖2ID ≤ ‖f + S

(
CD
b

)∗
p‖2ID. (4.20)

By using Corollary 4.0.20 on the left hand side, we obtain

‖CIDb]
(
f + S

(
CD
b

)∗
p
)
‖2ID = ‖CIDb] f + (P+ + P−)CIDb] S

(
CD
b

)∗
p‖2ID

= ‖CD
b]f + P+C

ID
b] S

(
CD
b

)∗
p+ Sp‖2ID

= ‖CD
b]f + P+C

ID
b] S

(
CD
b

)∗
p‖2D − ‖p‖2D

(4.21)

since CD
b]
f + P+C

ID
b]
S
(
CD
b

)∗
p ∈ D and Sp ∈ SD. On the right hand side, because of

f ∈ D and S
(
CD
b

)∗
p ∈ SD, we have

‖f + S
(
CD
b

)∗
p‖2ID = ‖f‖2D − ‖

(
CD
b

)∗
p‖2D. (4.22)

Combining (4.20), (4.21) and (4.22) yields

‖CD
b]f + P+C

ID
b] S

(
CD
b

)∗
p‖2D − ‖f‖2D ≤ ‖p‖2D − ‖

(
CD
b

)∗
p‖2D. (4.23)

If we take the supremum over all f ∈ D and use Theorem 1.3.4, the left hand side is
nothing else but the D(

CD
b]

)∗-norm of P+C
ID
b]
S
(
CD
b

)∗
p squared. The right hand side

can be written as

|p‖2D − ‖
(
CD
b

)∗
p‖2D = 〈p, p〉D −

〈(
CD
b

)∗
p,
(
CD
b

)∗
p
〉
D

=
〈
p− CD

b

(
CD
b

)∗
p, p
〉
D

=

〈(
I − CD

b

(
CD
b

)∗) 1
2
p,
(
I − CD

b

(
CD
b

)∗) 1
2
p

〉
D

= ‖D(CD
b )
∗p‖2D = ‖D2

(CD
b )
∗p‖2D

(CD
b )
∗ .

Thus we have

‖P+C
ID
b] S

(
CD
b

)∗
p‖2D(

CD
b]

)∗ ≤ ‖D2

(CD
b )
∗p‖2D

(CD
b )
∗

for all polynomials p.
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Therefore the operator F defined by

F :

 D2

(CD
b )
∗P → D(

CD
b]

)∗
D2

(CD
b )
∗p 7→ P+C

ID
b]
S
(
CD
b

)∗
p

is well defined, and a contraction if we endow D2

(CD
b )
∗P with the D(CD

b )
∗-norm. Since

D2

(CD
b )
∗P is dense in D(CD

b )
∗ by Lemma 1.3.6, we can extended F to a contraction

operator H : D(CD
b )
∗ → D(

CD
b]

)∗ .
Now we define the Grunsky operator Gb by

Gb :

{
D → D
f 7→ ιHD2

(CD
b )
∗f

where ι is the embedding of D(CD
b )
∗ into D. Then Gb fulfills (4.1) by construction and,

since H, ι and D2

(CD
b )
∗ are contractions (see Remark 1.3.5), the Grunsky operator is a

contraction as well.

Lemma 4.0.22. Let b : D → D, b(z) =
∑∞

n=1 bnz
n, with b1 6= 0, such that CIDb is a

contraction. Then for arbitrary w ∈ D the function

gw̄(z) := GbKD(·, w)(z)

is the analytic continuation on D of the function

fw̄(z) := log

(
b(w)b](z)

b′(0)w̄z

)
+ log

(
z − w̄

b](z)− b(w)

)
.

Proof. For k ∈ N, p(z) ∈ Pk we already established in Lemma 4.0.16, that
(
CD
b

)∗
p is

a polynomial of degree k with
((
CD
b

)∗
p
)

(0) = 0. Thus we may define

pk(z) :=
k∑

n=0

p(k)
n zn :=

(
CD
b

)∗
(ζ 7→ ζk) + kck,

where the ck are the coefficients of the power series expansion of

log

(
b](z)

b′(0)z

)
=
∞∑
k=1

ckz
k

which has a positive radius of convergence r0.
By Theorem 4.0.21 the Grunsky operator Gb exists and by Corollary 4.0.20 fulfills

for p ∈ P, p(0) = 0

Gbp = P+C
ID
b] S

(
CD
b

)∗
p

= CIDb] S
(
CD
b

)∗
p− P−CIDb] S

(
CD
b

)∗
p− P0C

ID
b] S

(
CD
b

)∗
p

= CIDb] S
(
CD
b

)∗
p− Sp− P0C

ID
b] S

(
CD
b

)∗
p.
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Hence for z ∈ D, k ∈ N

Gb

(
ζ 7→ ζk

)
(z) = pk

(
1

b](z)

)
− nck −

1

zk
− P0C

ID
b] S

(
CD
b

)∗
(ζ 7→ ζk) =

=: pk

(
1

b](z)

)
− 1

zk
+ dk.

Further we calculate for arbitrary w ∈ D

gw̄(z) = (GbKD(·, w)) (z) =
∞∑
n=1

w̄n

n
(Gb (ζ 7→ ζn)) (z) =

=

∞∑
n=1

w̄n

n

(
pn

(
1

b](z)

)
− 1

zn
+ dn

)
. (4.24)

By using Lemma 1.4.7 we have

log

(
1

1− b(w)z

)
= KD(z, b(w)) =

((
CD
b

)∗
KD(·, w)

)
(z) =

∞∑
n=1

w̄n

n
(pn(z)− ncn)

for all z, w ∈ D. For |w| < r0 the series
∑∞

n=1 cnw̄
n converges and we can write

∞∑
n=1

w̄n

n
pn(z) = log

(
1

1− b(w)z

)
+
∞∑
n=1

w̄ncn = log

(
1

1− b(w)z

)
+log

(
b(w)

b′(0)w̄

)
.

The series on the left hand side converges if |w| < r0 and |b(w)| < |z|−1. For λ ∈ D\{0}
let δλ > 0 be such that |w| < r0, |w| < |λ|, |b(w)| < |b](λ)| for all |w| < δλ. Then for
arbitrary λ ∈ D and w ∈ Bδλ(0) we have

fw̄(λ) = log

(
b(w)b](λ)

b′(0)w̄λ

λ− w̄
b](λ)− b(w)

)

= log

 1

1− b(w)
b](λ)

+ log

(
b(w)

b′(0)w̄

)
− log

(
1

1− w̄
λ

)

=

∞∑
n=1

w̄n

n
pn

(
1

b](λ)

)
−
∞∑
n=1

w̄n

n

1

λn
.

(4.25)

Since for fixed z ∈ D, the right hand side of (4.24) converges, this shows, that the
series

∑∞
n=1

w̄
n dn has a radius of convergence of at least δz and from (4.24) and (4.25)

we obtain

gw̄(λ)−
∞∑
n=1

w̄n

n
dn = fw̄(λ) (4.26)

for λ ∈ D \ {0}, w ∈ Bδλ(0).
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Since gw̄ ∈ D for all w ∈ D, the functions gw̄ are analytic on D. Moreover, because
of

gw̄(z) = GbKD(·, w)(z) = [GbKD(·, w),KD(·, z)]D =

[(Gb)
∗KD(·, z),KD(·, w)]D = ((Gb)

∗KD(·, z)) (w)

the function w 7→ gw(z) is analytic on D for fixed z ∈ D. Hence the left hand side of
(4.26) is analytic as a function in w̄ for |w| < R

(∑∞
n=1

w̄n

n dn
)
. For small w, the right

hand side is analytic in λ on a disc containing the origin. Hence on this disc equation
(4.26) is valid. In particular, we have

0 = fw̄(0) = gw̄(0)−
∞∑
n=1

w̄n

n
dn = −

∞∑
n=1

w̄n

n
dn

for all w in this disc. Hence
∑∞

n=1
w̄n

n dn=0 for all w ∈ D and thus gw̄(z) is an analytic
continuation of fw̄(z) to the whole bidisc.

Now we are able to prove Theorem 4.0.6:

proof (of Theorem 4.0.6). (i) ⇒ (ii) follows immediately from Remark 4.0.2, (iii)
(ii) ⇒ (iii) is exactly the result of Theorem 4.0.21.
Last we prove that (iii) ⇒ (i): Suppose that b is not univalent. Since we already

know, that b(z) 6= 0 for all z 6= 0 by Remark 4.0.4, (ii), there exist w̄1, z1 ∈ D, w̄1 6= z1

with b(w̄1) = b(z1) 6= 0. Hence the function fw̄1 has no analytic continuation to the
point z1 which is a contradiction to the statement of Lemma 4.0.22.
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