
Technische Universität Wien

A-1040 Wien . Karlsplatz 13 . Tel. +43-1-58801-0 . www.tuwien.ac.at

Semantic-aware Mashup

for Personal Resources

towards Open Semantic Enterprise

DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

VO Sao Khue

Matrikelnummer 0727941

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. A Min Tjoa

Diese Dissertation haben begutachtet:

(Univ.Prof. Dipl.-Ing. Dr.techn.
A Min Tjoa)

 (Univ.-Prof. Dr. Josef Küng)

Wien, 30. April 2014

(VO Sao Khue)

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

http://www.tuwien.ac.at/

Technische Universität Wien

A-1040 Wien . Karlsplatz 13 . Tel. +43-1-58801-0 . www.tuwien.ac.at

Semantic-aware Mashup

for Personal Resources

towards Open Semantic Enterprise

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

VO Sao Khue

Registration Number 0727941

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. A Min Tjoa

The dissertation has been reviewed by:

(Univ.Prof. Dipl.-Ing. Dr.techn.
A Min Tjoa)

 (Univ.-Prof. Dr. Josef Küng)

Wien, 30. April 2014

 (VO Sao Khue)

http://www.tuwien.ac.at/

i

Erklärung zur Verfassung der Arbeit

Sao-Khue, VO

Donaufelder straße 54/3301, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als

Ent- lehnung kenntlich gemacht habe.

 (Wien, 30. April 2014) (VO Sao Khue)

ii

iii

Acknowledgements

The work of this dissertation has been conducted at the Institute of Software Technology and

Interactive System, Vienna University of Technology, Austria. However, I would never have

been able to finish my dissertation without the support and encouragement of my Professors,

my colleagues, my friends, and my family.

First of all, I would like to express my deep gratitude to my supervisor, Professor A Min Tjoa

for his patient guidance, encouragement and useful critiques of this research work. More

important, I am greatly indebted for his spiritual support in many aspects of life.

I would also like to express my sincere thank to Professor Josef Küng, my second advisor for

his revise and guidance to my work.

I am very grateful to Dr. Amin Anjomshoaa for his inspiring advices and valuable comments

during the planning and development of my work. He also supported me in the new literature

and pointed me to the good ideas.

In addition, I would also like to thank to my friends, my colleagues at the Institute of Software

Technology and Interactive System for supporting me in my research. Especially, I very much

appreciate the members of Secure 2.0 project and SEMERGY project providing me the

perfect working environment.

I would finally like to thank to my wife, my older brother, and my father who were always

encouraging me with their best wishes. Although I will not have the chance to share this work

with my mother, she is always in my heart and I will try to make her proud always in

everything I do.

iv

Abstract

Business objectives are accomplished successfully when human resource management

systems are developed and implemented according to organizational goals, particularly if

personal information management (PIM) is adopted to utilize all employee information

productively. Some PIM systems use Semantic Desktops, the semantic personal desktop

layer for integrating applications and personal life items, as the means to support users in

information management. More and more organizations/enterprises are taking advantage of

mashups, which support users in fast integration of heterogeneous data from multiple

sources. However, although most people and organizations/enterprises benefit from the

collaborative principles of Web 2.0 technologies by using social networking sites (SNSs) to

build their social activities/relations and support their knowledge management, the

unstructured data overload is increasing and distributing in both human lifetime and

workplace. In addition, those PIM systems are limited to local storage or isolated data

repositories, and do not fulfill most of the requirements for a collaborative environment, above

all at the organizational level. Therefore, a key issue arises in the necessity to provide a

flexible and semantic-based way for bringing in internal and external data sources (especially

personal information sources from Semantic Desktops and SNSs) into enterprises.

This thesis aims to utilize semantic web and mashup technologies for semantic-based

information integration and to leverage existing personal resources in Semantic Desktops and

SNSs. A lightweight mashup language and a semantic-based mashup framework are

proposed to enable a semantic-aware mashup dataflow that primarily supports non-experts to

create mashup data for personal/organizational use. In addition, reusable components for

Web 2.0 information retrieval are developed to prepare mashable resources and trustworthy

mashup data. Subsequently, the mashup results can be combined with other policies for self-

monitoring purposes in preventing the disclosure of personal/organizational information in

Web 2.0 via SNSs. The introduced mashup system and its components could be adapted to

the layered approach of Open Semantic Enterprise for the semantic data integration in

enterprises. Such adaption would support knowledge workers and enable activity-oriented

collaboration, as well as to team up with coworkers in the collaborative environment of

enterprises.

v

Kurzfassung

Die Erreichung von Unternehmenszielen ist wesentlich von der Effizienz ihrer

Personalmanagementsysteme abhängig Deshalb ist es ein Forschungsziel, Personal

Information Management (PIM) - Systeme so zu gestalten, dass möglichst viel

Mitarbeiterinformationen berücksichtigt werden.

Einige PIM-Systeme verwenden zur Unterstützung des Inforrmationsmanagements

Semantic-Desktop Ansätze mit einer eigenen semantischen Schichte zur Integration von

Applikationen und rechtlich konformen persönlichen Informationen.

Sehr oft jedoch erfüllen die existierenden Systeme die spezifischen Anforderungen einer

Kollaborationsumgebung nicht.

Obwohl Organisationen und deren MitarbeiterInnen von den Kooperationsmöglichkeiten der

Web 2.0-Technologien und deren Social-Networking-Sites (SNS) sehr wesentlich profitieren

können, haben wir es doch mit einer zunehmenden Überlastung durch unstrukturierte Daten

am Arbeitsplatz zu tun.

Deshalb zielen immer mehr Organisationen/Unternehmen darauf ab Mashups, welche eine

schnelle Integration heterogener Daten aus unterschiedlichen Quellen ermöglichen, zu

nutzen. Hierzu ist es notwendig, ein flexibles und semantisch gesteuertes System für interne

und externe Datenquellen - insbesondere persönliche Datenquellen- im Unternehmen zur

Verfügung zu stellen.

Diese Arbeit zielt weiters darauf ab, Semantic Web und Mashup Technologien so zu nutzen,

dass eine semantisch-basierte Verwendung vorhandener Ressourcen in Semantic Desktop

sowie Social Network Systemen ermöglicht wird. Zu diesem Zweck wird eine Mashup

Sprache und eine semantisch-basierte Mashup- Grundstruktur vorgeschlagen, die dem

Benutzer in leichter Weise das Arbeiten mittels semantischen Mashup- Workflows gestatten.

Darüber hinaus wurden wiederverwendbare Komponenten für Web 2.0-Information-Retrieval

entwickelt, um „mashable“ Ressourcen und vertrauenswürdige Mashup Daten vorzubereiten.

Es ist ein weiteres Ziel dieser Arbeit, dass Mashup-Ergebnisse mit dem Monitoring von

Social Network Systemen (zur Verhinderung eines möglichen Missbrauchs von

schutzwürdigen Informationen) integriert werden, sodass die Weitergabe und Nutzung

solcher Informationen im Web 2.0 präventiv verhindert werden können.

vi

Die vorgestellten Mashup-Ansätze können in einem mehrschichtigen Open Semantic

Enterprise für die jeweilige semantische Informationsintegration in Unternehmen angepasst

werden. Solche Anpassungen würden in einem kollaborativen Umfeld eines Unternehmens

eine verbesserte handlungsorientierte Zusammenarbeit der MitarbeiterInnen ermöglichen.

vii

Contents

CHAPTER 1 INTRODUCTION .. 1

1.1 Introduction and Motivation .. 1

1.2 Research Questions .. 3

1.3 Thesis Contributions .. 3

1.4 Thesis Organization ... 4

CHAPTER 2 BACKGROUND AND RELATED WORK ... 5

2.1 Background ... 5

2.1.1 Web 2.0 and Social Web .. 6

2.1.2 Linked Data .. 7

2.1.3 Mashup ... 9

2.1.4 Open Semantic Enterprise .. 13

2.1.5 Knowledge Worker ... 17

2.2 Related Work ... 19

2.2.1 Semantic Desktop .. 19

2.2.2 Open Semantic Enterprise .. 20

2.2.3 Mashup Approaches ... 20

2.2.4 Mashup Security ... 28

2.3 Summary ... 29

CHAPTER 3 MASHABLE PERSONAL RESOURCES AND SERVICES 30

3.1 Personal Resources in SematicLIFE ... 30

3.2 Personal Resources in SocialLIFE ... 32

3.3 Mashable Personal Resources .. 33

3.3.1 Linking Personal Resources with LOD Cloud.. 33

3.3.2 Semantic-based Personal Resources Retrieval .. 38

3.3.3 Semantic-enabled Personal Services ... 39

3.4 Summary ... 42

viii

CHAPTER 4 TRUSTWORTHINESS OF MASHUP DATA .. 43

4.1 Self-Monitoring in Social Networking Sites ... 43

4.2 Knowledge Sharing Policies .. 49

4.3 Exploiting Disambiguated Information Retrieval ... 50

4.3.1 Word Sense Disambiguation for Mashable Resources 51

4.3.2 SOM-based Personal Resources Clustering ... 54

4.4 Summary ... 58

CHAPTER 5 SEMANTIC-BASED MASHUP .. 59

5.1 Semantic-based Mashup ... 59

5.2 Personal Resources Mashup Language .. 61

5.3 Semantic Mashup Formulation .. 64

5.3.1 Definition and Rule ... 64

5.3.2 Realization of Definitions and Rules ... 65

5.3.3 Widget-based Query Generation .. 66

5.3.4 Mashup Algorithm ... 68

5.4 Semantic Mashup Patterns .. 70

5.5 Summary ... 72

CHAPTER 6 IMPLEMENTATION RESULTS AND EVALUATION 73

6.1 Implementation Results ... 73

6.1.1 Personal Resources Retrieval from SocialLIFE .. 73

6.1.2 Mashup Workspace .. 77

6.1.3 Widget Tree .. 77

6.1.4 Widget UI .. 79

6.1.5 Mashup Editor .. 82

6.1.6 Mashup Portal .. 83

6.1.7 Mashup Sequence Diagram ... 84

6.1.8 Mashup Use Cases .. 85

6.2 Mashup Framework Evaluation.. 91

6.2.1 Mashup Framework Components ... 91

ix

6.2.2 Data Retrieval Strategy ... 91

6.2.3 Mashup Development Cycle ... 92

6.2.4 Simple User Interaction Mechanism ... 92

6.2.5 Security and Privacy Policy ... 93

6.2.6 Integrating SemanticLIFE and SocialLIFE data ... 94

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 95

7.1 Conclusion ... 95

7.2 Future Work ... 98

Bibliography ... 99

x

List of Figures

Figure 2.1: Recent mashup trends and API growth [22] ... 10

Figure 2.2: An example of data mashup for Austrian museums .. 11

Figure 2.3: Enterprise Mashup Architecture [24] .. 12

Figure 2.4: Principal pillars of Open Semantic Enterprise [29] ... 15

Figure 2.5: Layered approach in Open Semantic Enterprise [29] .. 16

Figure 2.6: The implementation of the vision in Open Semantic Enterprise [30] 17

Figure 2.7: An example of DERI Pipes [84] ... 25

Figure 2.8: An example of MashQL Queries [88] ... 27

Figure 2.9: Mashup creation with JackBe Presto [51] ... 28

Figure 3.1: SemanticLIFE framework [12] ... 31

Figure 3.2: The most popular SNSs in 2013 via the conversation prism [104] 32

Figure 3.3: Linking SemanticLIFE and SocialLIFE with LOD Cloud .. 35

Figure 3.4: Architecture for publishing data as Linked Data ... 36

Figure 3.5: Conversion of financial data from OFX format into RDF/N3 37

Figure 3.6: RDF representation of personal resources in SemanticLIFE and SocialLIFE 38

Figure 3.7: SPARQL query towards data mashups for SemanticLIFE and SocialLIFE 39

Figure 3.8: LIDS description for APIs and RESTful services .. 40

Figure 3.9: Lowering and lifting in LIDS for APIs and RESTful service 41

Figure 3.10: An example of semantic-enabled personal services ... 42

Figure 4.1: Overall solution for self-monitoring in social network [124]....................................... 46

Figure 4.2: SOM visualization of high risk group on the friends’ interest map [124] 47

Figure 4.3: Mashup solution to create a SOM visualization of high risk group of the friends’

interest in Facebook [12] .. 48

Figure 4.4: The main classes and properties of the Privacy Preferences Ontology [128] 50

xi

Figure 4.5: Word Sense Disambiguation for mashable personal resources 53

Figure 4.6: Input and Template Vector file of SOM training for clustering friends’ interest in

Facebook. ... 57

Figure 4.7 SOM Visualization and clustering for friends’ interest in Facebook 57

Figure 5.1: Semantic-based mashup architecture for SemanticLIFE and SocialLIFE 60

Figure 5.2: The schema of personal resources mashup language (PRML)............................... 61

Figure 5.3: The schema of widget parameters of PRML. .. 63

Figure 5.4: The process for applying ontologies and mashup rules in the mashup. 65

Figure 5.5: Query generation based on widget parameters ... 67

Figure 5.6: An example of query generation based on widget parameters 68

Figure 5.7: An example of mashup pattern to retrieve personal resources. 71

Figure 5.8: Mashup patterns store of personal resources .. 71

Figure 6.1: An example of personal resources retrieval from social data in Facebook &

Freebase ... 75

Figure 6.2: Query Freebase schema for data annotation ... 76

Figure 6.3: Mashup Workspace .. 77

Figure 6.4: Widget tree for personal resources mashups in SemanticLIFE and SocialLIFE. .. 78

Figure 6.5: Widget UI generation mechanism ... 79

Figure 6.6: Parsing FacebookEvents widget’ parameters into Widget UI and relevant

SPARQL query. ... 81

Figure 6.7: Mashup editor with highlighted feasible connection .. 82

Figure 6.8: Mashup Portal with some sample widget UIs ... 83

Figure 6.9: Sequence diagram of designing and running mashup .. 84

Figure 6.10: Personal finance mashup for showing bank statements in calendar view 85

Figure 6.11: SOM visualization and clustering of friends’ interest from Facebook. 87

Figure 6.12: SOM visualization and clustering of friends’ twits from Twitter for self-monitoring.

 .. 88

xii

Figure 6.13: A personalized mashup use case on demand .. 89

Figure 6.14: Design personalized mashup in Mashup Editor ... 90

Figure 6.15: Semantic-aware dataflow ... 92

Figure 6.16: Running mashup platform in multiple environments perspective. 93

Figure 7.1: The vision of adapting mashup application in the layered approach of Open

Semantic Enteprise. .. 96

List of Tables

Table 2.1: Most popular Web 2.0 technologies and their usage possibilities in

organizations/enterprises. .. 7

Table 2.2: Status and features comparison of popular mashup tools ... 26

Table 6.1: Advanced features in semantic-based mashup system compared with other

mashup products. .. 94

Algorithm

Algorithm 5.1: Mashup algorithm .. 69

xiii

Abbreviations

AJAX Asynchronous JavaScript and XML

BPEL Business Process Execution Langage

EKM Enterprise Knowledge Management

EMML Enterprise Mashup Markup Language

JSON JavaScript Object Notation

LED Linked Enterprise Data

LIDS Linked Data Services

LOD Linked Open Data

LOS Linked Open Services

OFX Open Financial Exchange

OMA Open Mashup Alliance

OSE Open Semantic Enterprise

PKM Personal Knowledge Management

RDF Resource Description Framework

RSS Rich Site Summary or Syndication

SOM Self-Organization Map

SPARQL Simple Protocol and RDF Query Language

SNSs Social Networking Services

XML Extensible Markup Language

XPDL XML Process Definition Language

WSDL Web Service Description Language

CHAPTER1

CHAPTER 1 INTRODUCTION

1.1 Introduction and Motivation

Personal information management is considered as a key to human resource management,

which plays an important role in accomplishment of business objectives. In 1988, Baird and

Meshoulam stated, “Business objectives are accomplished when human resource practices,

procedures and systems are developed and implemented based on organizational needs,

that is, when a strategic perspective to human resource management is adopted” [1]. From

the organization and individual perspectives, employees should be aware that the value of

personal knowledge management (PKM) is “helping individuals to be more effective in

personal, organizational and social environments” [2].

Some PKM applications are partially adapted to managing personal information over a

human lifetime by using Semantic Web and ontology as a basis for content representation.

Semantic Web is an effort to create a new technological framework that represents

information more meaningful for both humans and computers [3]. As the backbone of

Semantic Web, ontology is a key technique which provides common vocabulary, represents

knowledge, and annotates resources with semantic for organizing information and publishing

data. However, these PKM applications are limited to local storage and do not fulfill most of

the requirements for a collaborative environment. Although enterprise knowledge

management (EKM) systems entail formally managing knowledge resources to facilitate

accessing and reusing of knowledge [4], these systems cannot work effectively unless the

knowledge workers contribute their knowledge resources and assets to

organizations/enterprises.

Recently, many organizations/enterprises started using the Web 2.0 techniques by

applying SNSs in order to increase effectiveness of their business in collaboration. In 2006,

McAfee used the term Enterprise 2.0 to focus on aspects of Web 2.0 platforms that are used

2

by enterprise to make practices and results of their knowledge workers visible [5]. Web 2.0

has changed the Internet paradigm from a traditional read-only web to a social web that

facilitates information sharing, collaboration and business processes. People have the

tendency to share their knowledge or resources which are not only stored locally on their

personal computer or isolated data repositories, but also transferred to SNSs on the web (e.g.

Google documents, MindMeister mind maps, YouTube videos, LinkedIn profiles, Flickr

images, Twitter tweets, etc.). With the new generation of the World Wide Web, people

interact with SNSs by expressing their profiles, schedules, plans, and activities in an

interoperable and extensible way.

In the meantime, there is quite a lot of discussions about the success and challenges of

Enterprise 2.0 projects [6], [7] in applying Web 2.0 techniques via SNSs to create an effective

collaborative community, and understanding how social computing can help the enterprises

achieve their performance goals. The potential of Enterprise 2.0 cannot be fully realized

without the active support of human resources [8]. With SNSs in an enterprise environment,

employees can share their data (e.g. skills, interests, or activities, etc.) with their groups or

colleagues. From the enterprise perspective, employees can collect business information

from customers and partners through SNSs by exploring the relationship of business

establishments, professionals, or individuals. In an informal survey of organizations, 65% of

workers in big companies rely on themselves and co-workers, and not on their management,

to solve their problems [9]. For example, people often solve their problems by searching in

Google, reading in Wikipedia, finding experts or advisors in LinkedIn, etc. However, it should

be noticed that the volume of sharing data has increased rapidly and the disclosure of

personal/organizational information in Web 2.0 has created new security and privacy

challenges. On the other hand, the sharing data are not structured enough to enable

advanced data usage in an enterprise environment.

In order to support users in exploiting the potential of sharing data on the web, the data

should be managed in a machine-processable way by applying Semantic Web technologies.

During designing and discussing issues around the Semantic Web, Tim Berners-Lee came

up with the new term “Linked Data” that describes a method for publishing and interlinking

structured data so that it can become more useful for person or machine exploring the web of

data [10]. Besides, more and more social software and Web 2.0 applications have published

their APIs that enable software developers to “mashup” data by their APIs services. Mashup

is considered as a new proposition of social software and Web 2.0 for combining various data

http://blogs.zdnet.com/Hinchcliffe/?p=744
http://blogs.zdnet.com/Hinchcliffe/?p=718
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Tim_Berners-Lee

3

sources and services to be applied to new types of resources. The amount of user-generated

content sharing in SNSs is the potential resources for mashup in personal and business use

cases, such as mashup of customers or friends’ geo locations from your social networks to

find who have similar interested topics or products, etc. For an example of mashup,

HousingMap is a popular one that combined housing data from Craiglist [11] and displayed

them on Google Map.

From the above preliminary remarks, it is necessary to provide a flexible and semantic–

driven way to bring internal and external data sources, and especially personal resources into

enterprises. In addition, this research is trying to proceed the idea of “Integration of Personal

Services into Global Business” [12] that bridges the gap between the personal information

world and the global business. The ultimate goal of this research is also to find the solution

for the success of semantic-aware mashup for personal resources from Semantic Desktops

and SNSs in the trend of Enterprise 2.0.

1.2 Research Questions

This dissertation will deal with the following questions:

- How to apply a semantic-driven approach that integrates personal life items in

Semantic Desktops and SNSs in order to benefit individual, collaborative work and

better solve business processes in organizations/enterprises?

- How to secure mashable resources that can be combined with personal/organization

policies in order to protect and filter sharing data in a collaborative environment of

enterprise?

- How to create a semantic-based unified mashup model to support end-users in the

fast creation of data mashups and to fulfill users’ requirements on demand for

enterprise?

1.3 Thesis Contributions

The main contributions of this work would be:

- Bridge the gap between Semantic Desktops and SNSs in order to integrate and reuse

existing personal resources in an application. This objective also expands the scope

of our Semantic Desktop system – SemanticLIFE [13] in particular - and Semantic

Desktops in general into the web of data instead of isolated data silos.

4

- Contribute some formulations for mashup-related concepts such as semantic mashup,

widget, and mashup rules.

- Propose a lightweight mashup language and a semantic-based mashup system that

support end-users in designing semantic-aware mashup dataflow, aggregating and

presenting mashup data.

- Utilize the proposed semantic-based mashup system to the layered approach of Open

Semantic Enterprise for semantic information integration in organizations/enterprises.

1.4 Thesis Organization

The thesis is composed of three main parts: Background knowledge and related work

(chapter 2), Mashable personal resources and trustworthiness of mashup data (chapter 3 and

4), and Semantic-based mashup framework and Implementation results (chapter 5 and 6).

The chapters of this dissertation are organized as follows:

 Chapter 2 presents a comprehensive literature review of various background

knowledge and related work to conduct our approach.

 Chapter 3 explores the data sharing of knowledge workers and proposes a

solution to bridge the gap between Semantic Desktops and SNSs; and to prepare

mashable artifacts for the mashup process.

 Chapter 4 investigates the issue of trustworthiness and self-monitoring of mashup

data.

 Chapter 5 proposes a semantic-based mashup system that allows to mash up

personal resources in both Semantic Desktops and SNSs

 Chapter 6 presents the implementation of our mashup system and the evaluation

of results.

 Chapter 7 summarizes the contributions and the main results of this research.

5

CHAPTER 2

CHAPTER 2 BACKGROUND AND RELATED WORK

This chapter will present a comprehensive literature review of various domains, such as

Web 2.0 and Social Web. Current trends of Linked Data and Mashup technologies, which can

be applied for the data integration towards an Open Semantic Enterprise, are also discussed.

The related work will be investigated and discussed in further details.

2.1 Background

Collaborative environments particularly allow organizations/enterprises to realize a number of

competitive advantages to use their existing technology infrastructures as well as knowledge

workers for personal and teamwork collaboration. Recent approaches allow organizations to

improve the performance of teamwork by collaborative software, workflow systems,

documentation management systems, knowledge management systems, or social network

systems. According to Ballesteros [14], the top-ranked characteristic requirements of a

collaborative environment are ease of use, interoperability and scalability, service oriented

architecture, any place – anytime, high quality of service, support for data security and

privacy, low cost of entry and locating required information. Beyond these characteristics, the

ability to fully integrate with desktop management and apply social computing concepts to

become people and knowledge-centric are also considered [14]. Beside of this, it is

reasonable to predict that the challenges to current collaborative environments are the lack of

worker participation in knowledge management systems in particular, and the lack of

organization sharing in general. The possible reasons for the former lacking could be that

people do not submit or contribute their knowledge into a common knowledge repository; they

do not have time to share, or even their organizations do not have supporting tools; the

organizations are not ready for sharing or collaboration, or because of security issues.

Leveraging Web 2.0 features and Linked Data benefits, a number of Enterprise 2.0

platforms take a step toward a new paradigm by jointly generating, sharing and refining their

6

business knowledge. In this paradigm, knowledge workers are considered as co-producers of

both information and software services for a collaborative environment in enterprises.

2.1.1 Web 2.0 and Social Web

Tim O’Reilly introduced the term Web 2.0 to refer to the second generation of services on the

World Wide Web [15]. Web 2.0 is about connecting people and ideas through

communications that let people collaborate and share information online in real-time. The

communication mechanisms vary from podcasts, wikis, and feeds to social networking.

Compared to the first generation, Web 2.0 gives users experiences closer to desktop

applications than traditional static Web pages. Most of Web 2.0 applications use a

combination of new technologies, including public application programming interfaces (APIs)

or Representational State Transfer (REST) web services, Asynchronous JavaScript and XML

(AJAX), or Really Simple Syndication (RSS) feeds. With these new technologies, Web 2.0

allows users to interact and collaborate with others by web-based social software, such as

tagging, blogging, or wikis. The major inputs to Web 2.0 are users’ activities and

contributions. These contributions include content that users have submitted in their online

activities.

Applying Web 2.0 in organizations/enterprises, which is called Enterprise 2.0 [16], allows

the interaction among workers as well as customers in more collaborative and efficient ways.

Enterprise 2.0 aims to help knowledge workers and customers in collaborating, sharing, and

organizing information via Web 2.0 technologies. The table below gives a short description of

the most popular of Web 2.0 technologies and their usage possibilities in

organizations/enterprises.

Web 2.0

Technology

Short description Usage in Organizations/Enterprises

Blog A simple content publishing

system that is easily

maintained and is

composed of posts.

Blog can be used as an internal

communication channel in organizations

(project management) or as an external

communication channel (to partner and

customers).

Wiki A type of website that can

be created and edited

collaboratively by multiple

users.

Wiki can be used extensively in

organizations (e.g. knowledge management

system, corporate intranets).

http://en.wikipedia.org/wiki/Web_2.0

7

Social

networking

sites

Online community in which

people create personal

profiles, share information

with their friends, and make

contacts.

SNSs can also be built in organizations to

allow workers to share ideas, activities. In

addition, organizations can use SNSs to

advertise their products/services.

Podcast &

Video

Audio and video files are

made available for

streaming or downloading.

Podcasts and videos can provide learning

programs for internal communication to

employees or sharing of social activities.

RSS & Micro-

blogging

Both methods aim to allow

users to follow any updates

of works. Micro-blogging are

limited in characters, but

can be set up broad-based

conversations.

These techniques can be used to provide

updated team activities or promote their

products/services.

Tagging &

Social

bookmarking

Both techniques add

notations to resources to

enable easier categorization

and retrieval. Social

bookmarking is mainly

managed for web pages.

Inside organizations, these techniques can

facilitate the advanced search, better

information sharing within groups as well as

help staff to find relevant information and

reduce duplication of research.

Mashups Mashups aim to integrate

disparate data sources or

applications into a single

tool.

Mashups are being used extensively in

various organizations, and hold a significant

potential for enabling end-users to access

and manipulate information relevant to their

work.

Table 2.1: Most popular Web 2.0 technologies and their usage possibilities in

organizations/enterprises.

2.1.2 Linked Data

Tim Berners-Lee coined the term Linked Data to describe a method for publishing and

interlinking structured data so that it can support people or machines in exploring the web of

data [10]. It extends the standard Web technologies such as HTTP, URIs, and RDF to share

information in a machine-readable way. Besides, the term of Linked Open Data (LOD), which

is released under open license to encourage people or organizations to publish their raw

data, is also mentioned as Linked Data [10]. The Semantic Web community has a gained

momentum with the widespread publishing of LOD with very promising various datasets to

explore. DBPedia is a typical example and a large dataset of LOD, which makes the content

8

of Wikipedia linked and especially incorporated to other datasets on the Web such as

Geonames, WordNet, etc.

In his design issues [10], Tim Berners-Lee outlined four basic principles of Linked Data:

- Using URIs to indicate the names for things and start with HTTP.

- Using HTTP URIs to ensure that these things can be referred to and looked up.

- Showing useful information about things when theirs URIs is dereferenced or

looked up.

- Including hyperlinks to other related things via their URIs when publishing data on

the Web.

Based on the idea of LOD that turns document-oriented Web into a global giant database,

Linked Enterprise Data (LED) concept has been proposed for linking enterprise data to

interrelate enterprises’ silos of information [17]. However, as Hyland mentioned, creating an

application that combines linked enterprise content and public data is very compelling to

management. Hyland summarized some principle tasks to prepare for LED as follows [17]:

- Publishing content in both human and machine understandable formats, that major

search engines are able to parse.

- Leveraging existing controlled vocabularies, terms, and relationships, that enterprise

has already spent resources to develop.

- Ensuring the longevity of linked data identifiers, such as by using Persistent URLs

(PURLs) to manage their long-term resolution.

- Using Web Standards and Open Source Software (FLOSS) to achieve more effective

information sharing, repackaging and reuse, with a minimum of specialized Web

development skills.

- Following best practices and document them for others to use.

- Empowering a specialist in information analysis, access and data curation to assist

data owners with procedures and support exposing data

- Recognizing that there is no such thing as a typical project; initial prototypes may be

large or small, targeted toward critical data or purely academic in nature.

LOD is becoming increasingly important in information and data management. Once

organizations/enterprises have made their data accessible as linked data, this opens new

opportunities to efficiently reuse and leverage existing data in developing new applications

targeting specific business needs.

9

2.1.3 Mashup

Mashup is a part of an ongoing shift towards social software and Web 2.0 for combining data

and services to be used on new kinds of resources. According to a definition provided by

Fichter [18], mashup is a web application that uses content from different data sources to

generate a new web service presented in a single graphical interface. In enterprise-relevant

definition proposed by JackBe [19], mashup is a user-driven micro-integration of Web-

accessible data.

According to Breslin et al. [20], mashup can be applied to composite applications,

gadgets, management dashboards, ad-hoc reporting mechanisms, spreadsheets, data

migration services, social software applications and content aggregation systems. Mashup

also has the potential for more fundamental and sophisticated tasks in conjunction with

business processes [21]. The important benefits of mashup architecture are the possibilities

of reusing existing components and sharing community-generated components with other

users. These possibilities will radically decrease required time of development and

implementation phases. In the largest online mashup platform ProgrammableWeb [22], there

are more than 9000 mashup APIs of different topics that can be used. With those mashup

APIs, clients can consume multiple services or aggregate results to facilitate their

composition functionality. For a certain security reason, each service’s policy must be

dependent and respected.

Peenikal [23] showed that mashups may be divided into three main types:

- Data mashups: combine similar types of information and media from various sources

into a single representation. The combinations of these sources create completely

new web services that were not originally provided by either source.

- Consumer mashups: combine different data types; generate visual elements and data

from multiple sources.

- Business (or enterprise) mashups: specify applications that combine their own data

and application with other external web services. These mashups focus data on a

single presentation and allow collaborative actions among business users and

developers.

10

The below figure shows recent mashup trends and API growth, which are classified in

categories (e.g. enterprise, financial, science, etc.) and mashup types (e.g. Flickr, Facebook,

etc.) in ProgrammableWeb.

Figure 2.1: Recent mashup trends and API growth [22]

The following example illustrates a data mashup that combines museum data (name,

description, real-world geographic location) and museum pictures. The issue is that the

necessary data are stored in different sources and applications, for example museum data

and pictures are stored in DBPedia and Flickr, respectively. In order to integrate these data

and present them in a unique layout, a data mashup solution should be applied. The required

components for this mashup include:

- Linked Open Data from DBPedia: is a structured dataset associated with Wikipedia

resources.

- Open API Web Service from Google Maps: is a web mapping service application.

- Open API Web Service from Flickr: is a popular image hosting website.

- An HTML hosting the mashup content.

In this example, the Austrian museum data are queried via the SPARQL endpoint of

DBPedia. Based on the unique real-world geographic location of each museum, a request

11

containing geolocation is sent to Google Maps API Web Service, and a response is parsed to

display the museum on the Google map. Concurrently, the Flickr API Web Service is used for

searching for the museum photos that are tagged by the community. These mashup data will

be then displayed in an HTML host. The overview of this mashup is illustrated as follows:

Figure 2.2: An example of data mashup for Austrian museums

2.1.3.1 Enterprise Mashup

Enterprise mashup is exploited as a possible enabling technology to get a step closer to

Enterprise 2.0. Hoyer et al. has defined “An enterprise mashup is a Web-based resource that

combines existing resources, be it content, data or application functionality, from more than

one resource by empowering end users to create individual information centric and situational

applications” [24]. The enterprise mashup concept can be compared with other common

enterprise technologies like Business Process Management (BPM), Enterprise Service Bus

(ESB), Enterprise Application Integration (EAI), or Enterprise Information Integration (EII)

[25], [26]. Enterprise mashup is none of these things but conditionally complement all of

them. Enterprise mashup supports and extends those technologies by aggregating and

introducing the ability to create dynamic, user-centric solutions. ESBs are point-to-point

solutions, such as application to application. EAI aims to connect corporate systems at

12

application level rather than at data level and streamline business processes, whereas

enterprise mashup typically combines applications with goal of providing new functionality.

Architectural components of enterprise mashup are required resources, widgets, APIs,

and mashups. While mashups focus on application-to-user solutions that provide a visual

creation component oriented to end-users in real-time; enterprise mashup enables the

automation of situational needs of end-users. The following figure depicts a typical

architecture of enterprise mashup.

Figure 2.3: Enterprise Mashup Architecture [24]

Mashup tools contribute to a new vision of software development, where users are able to

reuse data, contribute, and expose core services within an organization/enterprise. These

tools should not require programming skills but rather support visual widgets, and integrated

components together. It could be realized that drag-and-drop mashup tools are simple

enough for users. In design principles for enterprise mashup architecture, Hoyer et al. [24]

specified the particular user roles as follows:

- End-Users: execute mashup scenarios, or personalize individual environment.

- Key-Users: create mashup scenarios by adding pre-build widgets, or connecting

widgets through their input/output ports.

- Consultants: create widgets by binding generic resources/services to UIs, or

transforming and aggregating data.

- Developers: make resources/services available and create or deploy services.

http://en.wikipedia.org/wiki/GUI_widget

13

2.1.3.2 Mashup Pattern

Mashup pattern represents the way to combine various services and the way to show

visualization data. Mashup pattern relies on services that integrate data from multiple

resources to create a new content, such as a new view or a new data source. There have

been a number of studies in mashup patterns [27] [28]. These studies provided the concepts

and addressed guidelines of different mashup patterns as follows:

- Self-service Pattern: Mashups are created by business users in order to support for

their required solutions through this pattern. This kind of pattern can range from

simple functions such as viewing data, personalizing information to complicated

functions such as mass customization of mashups from multiple resources.

- Source Integration Pattern: Organizations/Enterprises can integrate both internal and

external resources into potential mashups for decision-making or business needs.

Through these mashup patterns, organizations/enterprises can present their backend

information as services from disparate information sources.

- Share & Reuse Pattern: These mashup patterns can help business users in saving

much time for creating new business tasks that reuse and recombine existing

patterns.

2.1.4 Open Semantic Enterprise

Open Semantic Enterprise (OSE) concept was proposed by K. Bergman [29] to apply for

organizations that use languages and standards of Semantic Web, including RDF, RDFS,

SPARQL, OWL and others. OSE aims to use Semantic Web, Linked Data and the open world

assumption for integrating existing information assets and targeting knowledge management

applications. The scope of OSE is in knowledge management and representation

applications, which include data warehousing, data federation, business intelligence,

enterprise information integration, and so forth.

Based on current understandings and still-emerging use cases being developed, K.

Bergman [29] suggested seven guiding principles for OSE as follows:

- RDF Data Model: by defining controlled vocabularies with exact semantics, RDF

can be applied to all structured, semi-structured, and unstructured data. With this

expressive feature, RDF can be a useful language and data model for data

federation as well as interoperability across disparate datasets.

14

- Linked Data Techniques: are applied as a method of publishing structured data in

order to enable different data sources to be connected and queried for public or

enterprise data, open or proprietary.

- Adaptive Ontologies: ontologies can be bridged with others for creating new

structures and reusing useful relationships among concepts, integrating instance

data, or mapping to other schema or other knowledge and domains.

- Ontology-driven Applications: these applications are designed modular to operate

accordance to specifications, which contained in one or more ontologies, including

adaptive ontologies.

- Web-oriented Architecture: this architecture extends SOA, wherein its functions

are packaged into shareable and modular elements.

- Layered Approach: the conceptual architecture is layered in combination with

existing assets of both internal and external data, web service layer for distributed

and loosely coupled access, and Semantic technologies. This layer view is

presented as Figure 2.5.

- Open World Mindset: in principle, this open word mindset implies that there always

exist additional sources of data somewhere in the world, to be supplemented for

uncompleted data at hand. The open world mindset enables incremental

development, testing, and refinement.

15

The seven principal pillars of OSE are summarized by this following figure.

Figure 2.4: Principal pillars of Open Semantic Enterprise [29]

According to the idea of M. K. Bergman [29], embracing these principles of OSE can bring

the following benefits in knowledge management:

- Domains can be inspected and analyzed incrementally.

- Though schemas can be incomplete, they are developed and refined

incrementally.

- Data and structures within these OSE frameworks can be expressed and used

incompletely.

- Data with incomplete characterization can be combined with other complete

characterization data.

- Systems, which are built with these OSE frameworks, are robust and flexible. As

new structures or information are obtained, they can be incorporated without

negating the existing information.

- Both closed and open world subsystems can be bridged.

The layered architecture approach in OSE includes four following major layers:

- Application layer: this top layer provides specific functionalities for each suitable

application.

- Ontologies layer: this layer integrates adaptive ontologies and newly constructed

ontologies to supplement the standard machine-readable purpose. This is also the

effort and development of ontologies-driven applications.

- Assess/Conversion layer: in this layer, RDFizers or information extractors working

upon semi-structured or unstructured documents exposing their information assets

in RDF-ready form, which can be queried using SPARQL.

http://en.wikipedia.org/wiki/Sparql

16

- Existing assets layer: the real key to OSE is to build upon appropriate architecture

of existing information assets (e.g. internal database, external web data, or third

party APIs, etc).

These layers are illustrated in the following architecture:

Figure 2.5: Layered approach in Open Semantic Enterprise [29]

Recently, Georg Güntner presented “The Open Semantic Enterprise – Enterprise Data

Meets Web Data” in the recent 2nd International B2B software days in 2013 to outline the

architectural and conceptual approaches to open enterprise data sources, and combine them

with the Web of Data for realizing an OSE [30]. In addition, some open source tools and

frameworks are suggested to be easily integrated into existing applications without replacing

them. These toolsets focus on knowledge extraction (for example, Natural language

processing, Entity linking and disambiguation, content classification, and metadata extraction)

and networked knowledge (such as linked data platform, data federation, etc.). The

implementation of the vision in OSE is presented in the next figure.

Linked Data

Web

Services

SPARQL

External

Web Pages

Information

Extraction

Information

Extraction

Enterprise

Documents

Linked Data

SPARQL

Web

Services

External Web

DBs and APIs

RDFizer

Linked Data

SPARQL

Web

Services

RDFizer

RDBMS

Data ‘Silo’

Linked Data

SPARQL

Web

Services

RDBMS

Triple Store

Linked Data

SPARQL

Web

Services

RDBMS

Data ‘Silo’

RDFizer

Linked Data

SPARQL

Web

Services

Application Layer

Ontology

Layer

Access/

Conversion

Layer

External

Internal

Existing

Assets

17

Figure 2.6: The implementation of the vision in Open Semantic Enterprise [30]

Although the foundational approaches to OSE do not mean open data or open source,

they are suitable for these purposes with open source tools or are used for bringing external

information into the business value of enterprise. In addition, the implementation of the vision

in OSE can bring organizations into a ‘Linked Enterprise Data’ framework, a parallel idea to

Linking Open Data initiative that applies the use of the Linked Data paradigm to integrating

enterprise data.

2.1.5 Knowledge Worker

The concept of knowledge worker was introduced by Peter Drucker in the ‘60s [31]: “One who

works primarily with information or one who develops and uses knowledge in the workplace”.

The success of future enterprise environments requires the direct involvement of knowledge

workers. In fact, Peter Drucker addressed “Increase knowledge worker productivity is one of

the biggest management challenges in the 21st century” in his famous book “Management

Challenges of 21st century” [32]. It is noticeable that productivity of knowledge workers

changes widely. These changes have impacted the types of interactions in the workplace.

Following research in social computing and enterprise collaboration [33], the major changes

taking place in the knowledge worker environment have been considered are:

18

- Distribution and globalization: the workforce in organizations/enterprises is

increasingly more distributed and more virtualized.

- Cultural shift toward connectivity and transparency: innovations in computing

technology and SNSs have enabled people to stay more connected in their

personal lives.

To accomplish a business task, knowledge workers need to retrieve not only common

data sources in enterprises, but also data sources stored in personal desktops or even the

Internet. It is true that knowledge workers are no longer tethered to desktops. The increasing

participation of knowledge workers in SNSs provides more and more useful data sources in

large-scale organizations or society activities. SNSs allow users to build and maintain online

networks of friendships and relationships with friends or business partners for social and

professional purposes. In SNSs, people are not just connected but share places, events,

interests, and so on. These changes influence a transformational shift in how business work

will be completed in the workplace.

In Web 2.0 context, a number of different types of events in a collaborative environment

may occur that knowledge worker could bring benefits to an enterprise workplace. These

collaborative events, which were reported by Platt [34], can be summarized as follows:

- Content-based: people collect and collaborate around a subject matter such as

news or content, normally on a blog or a space-type environment.

- Group-based: people collect around an interest or idea such as a hobby and

discuss it in a forum.

- Project-based: people work together on a project or common task such as a

development project, an encyclopedia, or a book, etc.

The knowledge sharing of knowledge workers is considered as a key driver for enterprise

mashup. The reason for this is that knowledge workers can provide and share their personal

resources and their knowledge to other groups and other colleagues within

organizations/enterprises. In addition, knowledge workers are recommended to define and

build their own application in order to increase their productivity and innovation in

collaboration with others.

19

2.2 Related Work

In this work, three related subjects of this research are investigated. The first mentioned

subject is to facilitate the management of personal information over Semantic Desktops. The

next important one is an approach to create a semantic-based mashup prototype for proof of

concept. The third subject focuses on the security issues of mashup data when building

mashup applications. In this section, a comprehensive literature review of those mentioned

subjects with existing solutions and approaches is presented.

2.2.1 Semantic Desktop

Semantic Desktop is a new approach to PIM by creating a Semantic Web layer on a

personal computer and building application on top of this layer. Most of PIM research

approaches can be realized now via Semantic Desktops. In this part, some principal

approaches of this area are discussed.

Haystack [35] is considered as the first major research of PIM system. It provides a

platform based on RDF that manages all user information such as messages, documents,

and events. DBIN [36] is another PIM semantic approach, which supports users to create

personal semantic space by exchange of RDF data in peer-to-peer (P2P) network. In contrast

to P2P applications, which grow the availability data storage in local, DBIN grows RDF

knowledge.

seMouse [37], which is also based on semantic technologies, uses the mouse as an

interactive semantic device. With seMouse, users can annotate desktop resources by

pressing and sending the message of middle-button mouse click for building up OWL triple.

Gnowsis system at DFKI [38] takes existing Semantic Web technologies for integrating

desktop resources into a unified RDF graph to let users manage their information in a

semantic way. A refinement of Gnowsis is Nepomuk which aims to interconnect personal

information with social networks and create social Semantic Desktops [39].

Open IRIS [40] enables users to create their personal maps across their knowledge work.

The idea of SEMEX System [41] is to enable browsing of personal information in a semantic

way by associations generated between data items on the personal desktop. SemNotes [42]

is proposed as a note-taking application for creating a semantic knowledge around the notes,

with emphasis on the interlinking of personal information.

20

SemanticLIFE [43] was developed by IFS Group, Vienna Technology University. It offers

some core plug-ins to organize and manage various personal lifetimes’ information in runtime

by selecting Google Desktop for local information retrieval and two other plug-ins for

communication with internal and external services.

These PIM and Semantic Desktop systems aim to support better personal information

management and collaboration. However, they are limited only to the local storage and do not

fulfill most of the requirements for personal information, especially according to a

collaborative environment at the Enterprise 2.0 level.

2.2.2 Open Semantic Enterprise

Some approaches have embraced the foundation of the OSE including Open Semantic

Government, OpenSEA, and SemsSLATES. Open Semantic Government [44] has proposed

as a branch of governments that adopts the OSE’s seven principles. Also for an Open

Semantic Enterprise Architecture (OpenSEA), Schaun et al. [45] proposed an architecture

that combines an open semantic of ontology (TOGAF9) with a common logic (ISO

24707:2007 CL). However, this approach is mainly for semantic interoperation between

enterprises. For enhancing Enterprise 2.0 ecosystem, SemSLATES [46] provides an

approach that is based on Sematic Web and Linked Data technologies to enable a social

semantic middleware architecture on top of existing ecosystem. Although SemSLATES also

supports semantic mashup by using Exhibit [47], it focuses only on the integration of data

from Web-based services.

2.2.3 Mashup Approaches

In mashup approaches, a number of works have been already carried out in major projects.

In this section, some of their significant features will be highlighted.

2.2.3.1 Mashup Development Environments

There are various approaches developed as mashup environments that enabled users to

design mashups with an easy-to-use interface. In this section, a number of significant

approaches are featured.

Simile [48] is the earliest mashup system that retrieves data from HTML pages by

analyzing the DOM tree to tag retrieval data with keywords for searching or publishing later.

With similar approach as Simile, Dapper [49] is improved by supporting users with an

interactive screen. Dapper helps to build mashups by generating data feeds such as RSS,

21

XML, gadgets, or JSON, etc. from Web sites. Expanding users’ ability to make mashup Web

content for their personal needs or at work is the ultimate aim of Dapper system.

While Simile and Dapper require users to do the work such as data extraction, data

integration manually; Yahoo Pipes [50], Jackbe [51], Automator [52] provide visualization

tools that allow users to create mashups by aggregating content from various sources. Yahoo

Pipes [50] is a Web-based mashup platform to mash data feeds and other services. The

major objective of Yahoo Pipes is to generate data-oriented mashups. Mashups pipes are

created by connecting widgets that are stored and executed on Yahoo servers. The output of

these pipes can be accessed by clients as RSS, JSON or can be visualized on Yahoo Map.

JackBe Presto [51] offers a robust enterprise mashup environment for small, medium and

large enterprises to build internal enterprise mashup applications. This product provides

some main components such as Presto Dash, Presto Studio, Presto Wires, and Presto

Server that include mashup presentation, development, and processing capabilities. With

Yahoo Pipes and JackBe, however, users need to express their data mashups with a specific

language, such as YQL, EMML, for a relevant editor Yahoo Pipes, JackBe, respectively.

WSO2 Mashup [53] is an open source mashup platform that hosts JavaScript-based

mashups and provides the ability to consume, compose web services, feeds, and scraped

web pages. The generated mashups are exposed as services, and their interfaces are

described through WSDL. WSO2 Mashup is not targeted towards business users, but

towards developers with knowledge of XML, JavaScript, and AJAX.

Damia [25], [54] is an enterprise-oriented mashup platform developed by IBM that mainly

focuses on aggregation of data from enterprise data sources as well as Internet into feeds.

Based on these combined data feeds, this platform allows business users to create mashups

that are consumed by AJAX. Another end-to-end enterprise mashup platform of IBM was the

IBM Mashup Center that supported rapid dynamic web application. However, this product of

IBM had been withdrawn from marketing and was no longer available [55].

Exhibit [47] is a lightweight framework that aims at creating web pages with dynamic and

rich visualizations of structured data from aggregated data obtained in various formats, like

RDF/XML and Bibtex. Exhibit uses HTML pages as output and supports exporting its output

to different formats, such as RDF/XML or Exhibit JSON.

Serena Mashup Composer [56] is a part of Serena Products Suite that specifies the front

end of mashup by determining the execution of web services. However, this tool does not

support the use of database yet.

22

My Cocktail [57] has been developed within the context of a European project named

Omelette [58]. It is a web application, which provides a simple graphical user interface

allowing users to build mashups by dragging and dropping various components or services

within the interface. Besides, its mashups can be exported as iGoogle and Netvibes gadgets.

Another result within Omelette project is ResEval Mash [59] that presents a mashup

platform for research evaluation, such as for assessment of productivity or quality of

researchers, teams, institutions, and journals. However, this platform is specifically tailored to

the need of data sourcing about scientific publications and researchers from the Web,

aggregating them, computing metrics, and visualizing them.

Another European project is ServFace Builder [60] that is developed as a web-based

mashup authoring tool. This tool supports non-programmers in design and creation of

service-based interactive applications in a WYSIWYG manner. It applies the approach of

service composition at presentation layer, and supports build applications by composing web

services based on their frontends rather than application logic or data. In this tool,

applications are designed as a set of pages that can be connected to create a navigational

flow. Services of this tool are represented as form-based UIs and can be connected across

pages in order to define a dataflow.

With Google mashup editor [61] or Microsoft Popfly editor [62], users can also create

mashups quickly. However, these editors are no longer available.

2.2.3.2 Browser Extension Mashup

Other mashup approaches are implemented as browser extensions. These tools provided a

web-based personal portal to enable users to personalize mashups by adding HTML, CSS,

JavaScript or data feeds. In this section, some of major approaches are discussed.

Intel Mash Maker [63], [64] is an interactive Web-based tool that supports users editing,

querying, manipulating and visualizing semi-structured data; allows users to create mashups

by combining content while browsing different web sites. This tool is distributed as a plugin for

web browsers such as Mozilla Firefox and Internet Explorer. It also allows users to create

custom mashups from a collection of widgets that can be inserted into web pages when users

navigate them in the web browser.

Operator [65] is a Firefox add-on that leverages microformat and semantic data to support

users in combining information on web sites by injecting semantic data into HTML. PiggyBank

[66], [67] is another Firefox add-on that allows users to extract data on websites by turning

users’ Firefox browser into a mashup platform. Tabulator [68] is developed as both a Firefox

23

add-on and a web-based application that supports users in browsing the web of RDF data.

Piggy Bank and Tabulator illustrate personal mashup tools with generic functionality that let

users satisfy their own mashup needs. While Tabulator supports only RDF data, Piggy Bank

can extract data from HTML pages via web screen scrappers.

D.Mix [69] supports users in creating scripts to copy annotation data instead of traditional

copying of the whole web page elements to be used later while browsing web sites. Abiteboul

et al. [70] introduced a mashup model with their basic component called mashlet. Their

mashlets can query data sources, import other mashlets, use external web services, and

specify complex interaction patterns between its components. Their models can facilitate

dynamic mashlets composition, interaction, and reuse.

Ikeda et al. [71] proposed a mashup framework that provides GUI components to support

users in browsing mashup items. This framework consists of a data management engine and

a widget library that allow users to adopt demand-driven data creation and interactive widgets

to browse mashup data.

Vasko et al. [72] introduced a model-driven approach to integrate different domains into

Service Mashups design that included orchestration information derived from WS-BPEL

processes, coequal integration of RESTful/ WS-* Web services and role-based collaboration

of process participants. SAP Research [73] proposed a lightweight platform Enterprise

Mashup Application Platform (EMAP) to realize mashup applications. EMAP is a browser-

based application composition environment and runtime. Its model is based on the creation

and composition of reusable components with associated metadata via an exchange

mechanism called Event Hub.

The mentioned approaches seem to be suitable to the current mashup context. However,

those systems on the web require users with advanced knowledge of XML, JavaScript, CSS,

HTML, or Microformat.

2.2.3.3 Semantic Mashup

There are a number of proposals that adopted Semantic Web to support query and

creation of data mashups. In this section, their considerable features are going to be

presented.

iSPARQL [74] is a utility for building and executing SPARQL queries to fetch data. With

iSPARQL, users with prior knowledge of SPARQL can build the query with triple patterns,

optional patterns, or depiction of UNION queries. Potluck [75] is a tool for mixing data by

merging chosen fields of RDF. With Potluck, users need to manually map attributes between

24

sources and specify data integration. These kinds of tools require users having prior

knowledge of SPARQL, RDF, or MIME types.

ONKI [76], SA-REST [77] are other approaches that use ontologies to add semantic

annotations to their RESTful services or HTML Pages. ONKI provides developer widgets that

can utilize ONKI ontologies and services with a few lines of JavaScript code adding to the

HTML page. SA-REST allows the use of OWL or RDF to represent their ontology and

describe the service by embedding RDFa annotations into the HTML pages.

JOPERA [78] presents a layered architecture for mashup design separating the

integration logic from presentation logic, in which the former can deal with bottom-up and top-

down service composition and the latter is based on AJAX technology. Mashlight [79], which

is a lightweight framework for generating and executing mashups, provides users with a

simple method to create “process-like” mashups using “widget-like” Web 2.0 applications.

This tool allows the creation of mashups that are composed of several interacting widgets.

MashArt [80] is another mashup development platform, including a web editor based on

advanced user interaction mechanisms that allow the integration of data, services and UI

components through a unique language and a mashArt component library.

sMash [81] presents a semantic-based mashup navigation system by constructing and

visualizing data API network in three steps, including discovery, removing and visualization.

Their data APIs with the corresponding metadata are stored in the role of nodes in a graph,

sMash will find the corresponding mashup graph based on the APIs’ metadata properties and

present to the UI. Due to matching against the user query with APIs metadata, this process

requires users to know sufficiently IT knowledge in advance.

MatchUp [82] proposes an approach, which designs mashups based on a novel auto

completion mechanism. This approach exploits the similar classes of mashup components

that are designed by different users. When users select a mashlet in UI panel, the system

suggests the corresponding glue pattern. For this reason, the recommendation system is

limited to only providing glue patterns.

SPARQLMotion [83] is a graphical notation tool with an RDF-based scripting language

that supports users in describing data processing pipelines. But this tool provides one

vocabulary and one hard-coded execution engine for representing SPARQLMotion scripts.

DERI Pipes [84] is a better engine and graphical environment for general web data

transformations, which is inspired by Yahoo Pipes. It is an open source project that is used to

build RDF-based mashups. A pipe is written in an XML-based language that is defined by a

specification and invoked by an HTTP GET request via the DERI Pipes execution engine.

25

DERI Pipes support SPARQL, XQuery, and several scripting languages, which are used to

transform the fetched records, like an RDF resource. The output streams of data (XML, RDF,

and JSON) are enabled to display directly the results in Web browsers, or are accessible via

a URI and can be used in other applications.

The following figure depicts a mixing of three data sources in DERI Pipes with some

SPARQL expressions and operators.

Figure 2.7: An example of DERI Pipes [84]

The following table shows a survey of current popular mashup tools with different

functionality features.

 Yahoo

Pipes

Dapper Intel MashMaker WSO2 Mashup Jackabe DERI Pipes

Owner Yahoo Dapper Intel WSO Presto DERI

Initial release February 7,

2007

2005 April 22, 2008 January 28, 2008 March 2010 December

12, 2009

Current Status Beta Now part of

Yahoo

Past project and

has been retired

Migrated to

WSO2

Application

Server.

Version 3.6

with free 30

day trial.

0.7

Technology Standard

web, YUI

Standard

web

Browser plug-in Standard web Standard web Standard

web

26

Drag & Drop

feature

√ Missing Possible but

missing connected

widget

Missing √ √

Client Side None None √ None None None

Server Side √ √ None √ √ √

Programming

Skills

Average Average Non-programming Expert Expert Average

Table 2.2: Status and features comparison of popular mashup tools

2.2.3.4 Data Mashup Language

Besides researching into an easier way of mashups, mashup tools have also proposed

some mashup languages for performing programming logic and presenting data. These

mashup languages are characterized by several approaches that focus on different aspects

of mashups development. Some languages are data-oriented, XML-based languages, such

as MashQL, Enterprise Mashup Markup Language (EMML), and Open Mashup Description

Language (OMDL), which can be used like programming languages.

Mostarda and Palmisano [85] presented a novel approach based on hybrid functional

and logic programming language in writing web mashups. They also presented a JSON-

based scripting language called MU, which allows aggregating and manipulating data

sources over multiple external sources.

Yahoo Query Language (YQL) [86] is an expressive SQL-like language that allows users

to query data across web services or data from web pages. YQL also supports developing

data mashups by retrieving and manipulating data from APIs through a single web interface.

However, YQL facilitates data integration or data extraction, but does not intend to create a

complete mashup application.

MashQL [87] is another query-by-diagram language that allows people to query, build

data mashups, and pipeline RDF data on the Web. The idea of MashQL is allowing users to

navigate and query RDF graphs without prior knowledge about their vocabulary, schema, or

technical details. Queries in MashQL are parsed into and executed as SPARQL queries

automatically. MashQL markup is developed based on XML to serialize MashQL pipes in

interchangeable and textual format. MashQL pipe markup consists of some main elements to

27

represent metadata and input sources about the pipe itself. The output of MashQL queries

can be rendered into certain formats, such as XML, HTML, or RDF input to other MashQL

queries. The following figure illustrates an example of MashQL queries.

Figure 2.8: An example of MashQL Queries [88]

Enterprise Mashup Markup Language (EMML) [89] is another promising mashup

language in enterprise environments. It is an XML-based language, which is developed by

the Open Mashup Alliance (OMA). The EMML is an open language for development of

enterprise mashups and describes the processing flow for a mashup. A runtime engine is

required to interpret EMML statements of a mashup script. EMML provides a rich set of high-

level mashup-domain vocabularies to mash flexibility a variety of Web data-sources (namely

XML, JSON, JDBC, and Java Objects). EMML also provides a uniform syntax to invoke

different service styles (such as REST, WSDL, RSS/ATOM, and RDBMS). Although EMML is

an expressive language, it is quite complicated and difficult for users to apply. Besides,

EMML has not supported ontology or customized ontology yet; it only supports constructing

SPARQL queries and executing them. The next figure depicts a mashup sample of JackBe

with advanced functions such as sorting, merging, filtering, etc.

28

Figure 2.9: Mashup creation with JackBe Presto [51]

Open Mashup Description Language (OMDL) is a part of OMELETE project that supports

exporting mashup consisting of pages, layouts and widgets for importing into another platform

such as Apache Rave – an engine that aggregates and assists web widgets [90].

Contributing to those mashup languages in enterprise mashup platform, Messias et al.

[91] provided a way to invoke cross-domain SOAP web services by using client side

languages. With a Domain Specific Language (DSL) to describe web mashups, Swashup

(Situational Web Applications Mashups) [92] extends the Ruby on Rails architecture [93] to

develop mashups. Swashup DSL provides statements that contain various concepts to model

and describe web mashups.

In the current context, existing mashup tools and languages provide a mashup window

containing SPARQL queries; RDF data sources, and web feeds; as well as some specific

mashup languages that export mashup content consisting of pages or require end-users

already having some IT-knowledge such as data feeds and RDF.

2.2.4 Mashup Security

The use of Web 2.0 applications inside organizations/enterprises has created additional

security challenges. In order to ensure trustworthy resources and mashup data in enterprises,

mashup security issues have to be taken into consideration and improved in the collaboration

and personalization context. These issues have been investigated by several related works

as follows.

Hotta et al. [94] proposed the use of web content personalization and collaboration

simultaneously but without exchange of personal data. In order to support secure cross-

domain communication for web mashup developers, OpenMashupOS (OMOS) [95] has been

proposed as an extension of Mozilla Firefox that handles web pages as objects and allows

29

objects to communicate each other via their declared public interfaces. It can be configured to

be backward compatible with same origin policy.

SMash [96] was proposed a secure component model where different trust domains can

create components of content, and interact via a communication abstraction. Hasan et al. [97]

presented a component controlling dataflow within a mashup by using a permit-based

authorization delegation service named ‘Permit Grant Service’ that enables fine stateless

access control and authorization in mashups.

Jonas et al. [98] presented a security lattice-based method to mashup security. The

security lattice is built from the origins of mashup components and inferred directly from

mashup itself. Besides, they proposed a mechanism that allows origins to specify escaped

hatches for declassifying objects. Sqwelch [99] identified the gap between consumers and

enterprise by providing semantically-enabled mashup makers and trusted collaborative

environments which enable composition of mashups based on a concept of trust explicitly

specified by users through a visual interface.

Matthias et al. [100] presented a proof-of-concept implementation that enables the secure

usage of a mashup by protecting sensitive data against malicious widgets and operators.

Heidelinde et al. [88] proposed an approach by modeling and defining security rules for

mashup compositions in their own notations, and automatically evaluating submitted

mashups for compliance with the respective policies.

Zibuschka et al. [101] proposed reversed identity-based encryption within a public key

infrastructure to realize a secure mashup-providing platform (MPP). They used the new

definition MPP as a Web-based server-side platform offering APIs and hosting functionalities

that enable the creation of mashups.

2.3 Summary

This chapter has summarized the current contexts of a numerous related work, which include

Semantic Desktops, approaches to semantic mashups, and the security issues of mashups.

Although these works have been proved to be useful, they are still limited and under

development. Besides, the theoretical background of some domains such as Social Web,

mashup, Linked Data, knowledge worker and Open Semantic Enterprise are also presented.

This research is taking full advantage of these technologies to carry out our research. Next

chapter will explore the data sharing of knowledge workers and proposes a solution to

prepare mashable artifacts for our mashup system.

30

CHAPTER 3

CHAPTER 3 MASHABLE PERSONAL RESOURCES AND SERVICES

People have the tendency to share their knowledge or resources, which are not only stored

locally on their personal computers or isolated data repositories, but also transferred to SNSs.

With this new generation of Web 2.0, people interact with SNSs by expressing their profiles,

schedules, plans, and activities in an interoperable and extensible way. This chapter will

explore the personal data sharing in their Semantic Desktops and SNSs platforms. From that

point, the solutions that turn their heterogeneous sources into mashable artifacts are

investigated. This chapter also aims to bridge the gap between Semantic Desktops and SNSs

in order to integrate and reuse existing personal resources in an application. It also expands

the scope of our Semantic Desktop system – SemanticLIFE [13] in particular - and Semantic

Desktops in general into the web of data instead of isolated data silos.

3.1 Personal Resources in SematicLIFE

SemanticLIFE is an attempt for PIM systems that has been developed by Information

Software Engineering Group, Vienna Technology University to store, organize and manage

various personal life items [13]. It provides a repository of lifetime personal data from varied

resources such as email messages, browser web page, images, contacts, phone calls, life

events and other resources. SemanticLIFE framework offers various core plug-ins such as

Semantic Store, Message Bus and Web Service to manage the user profiles in static and

dynamic way as well as long term activities. The whole SemanticLIFE framework is depicted

as the following figure.

31

Figure 3.1: SemanticLIFE framework [12]

In SemanticLIFE, semantic store is responsible for lifetime personal data retrieval by

selecting Google Desktop as a desktop search application for information retrieval and adding

the appropriate semantic context in an ontological way to the index data of Google Desktop’s

repository. The two other plug-ins are responsible for providing a uniform access layer to

internal and external services and their semantic, including personal and global services for

service composition scenarios. Each personal resource retrieved in SemanticLIFE can be

seen as an entity in the RDF graph, where a <subject, predicate, object> triple indicates a

direct URI from a subject node to an object node, and the predicate indicates the relation

between subject and resource.

The SemanticLIFE framework is another effort to come a step closer to Vanevar Bush’s

vision of the Memex: ‘A memex is a device in which an individual stores all his books,

records, and communications, and which is mechanized so that it may be consulted with

exceeding speed and flexibility. It is an enlarged intimate supplement to his memory’ [102].

However, the major limitation of Semantic Desktops approaches is restricted to users’

desktops and precious semantic information is not yet effectively used in business processes

and tasks that people deal with in their workplace and daily life [12].

32

3.2 Personal Resources in SocialLIFE

SNSs are platforms that allow users to create and maintain online networks of friends or

business associates for professional and social reasons [103]. In addition, SNSs allow users

to surf their platforms for various purposes such as finding people with common interests,

finding jobs with relevant skills, or publishing messages to target users, etc.

In this work, the term ‘SocialLIFE’ is used to denote one’s lifetime information in SNSs, in

which personal resources are his/her activities (messages, comments, twits, etc.), interests

(books, movies, etc.), and related connections (friends, colleagues, etc.). To be more specific,

one’s SocialLIFE consists of interconnections of people relations such as friendship or

business/professional relationships on Facebook or LinkedIn; their interests such as video,

image or music on YouTube, Flickr or MySpace and so on. The following figure depicts

recent various platforms that people are able to use for their SocialLIFE.

Figure 3.2: The most popular SNSs in 2013 via the conversation prism [104]

In some SNSs, their published contents are in structured formats or annotated with a

number of Semantic Web vocabularies for expressing personal profile or social networking

information such as FOAF, hCard (an open microformat for publishing people, companies,

33

and organizations on the web). Most of social software provides APIs for access and

interaction. Those APIs define a generic set of service methods and functionalities to

exchange data. For instance, Flickr, Twitter, or Facebook API allows users to access most of

their data by using REST or HTTP-based web services. With these features, SNSs have

served as useful platforms for linking or reusing heterogeneous data of one’s SocialLIFE for

performing operation or aggregation.

3.3 Mashable Personal Resources

3.3.1 Linking Personal Resources with LOD Cloud

As noted before in section 2.1.2, Linked Open Data (LOD) aims to interlink data on the

Semantic Web and plays an important mechanism for information management and

integration. In order to bridge the gap between Semantic Desktops and Linked Data, several

research projects are conducted [105], [106]. These researches have the common goals to

combine resources from Linked Data and Semantic Desktops by using semantic metadata as

a common denominator, and to enrich the linked data within the personal information as well

as enterprise space.

To fully benefit from LOD cloud, it is crucial to put personal resources into a context that

interlinks resources and enables powerful personal services. In combination with SNSs, it is

useful to provide better linking content with different services, in which the shared information

is not just textual content but also multimedia content such as music, videos, or pictures.

There are a number of vocabularies, which enable data sharing by using Semantic Web

for linking personal resources with LOD cloud. The FOAF project [107] can be considered the

first Social Semantic Web application that combines RDF technology with data in SNSs.

FOAF profiles are used by many people, including researchers and professionals, as a

means to be a machine-readable ontology for describing personal/professional information,

activities and relations. With photo-sharing services from Flickr, there are some exporters

such as FlickrRDF exporter [108], Flickr2RDF [109], and FlickrWrappr [110] that allow users

to export their Flickr connections in construction with FOAF profile, extend DBPedia with RDF

links to Flickr’s photos, and parse metadata from Flickr’s photo into the RDF description

respectively.

With music-related content, MusicBrainz [111] – an open music encyclopedia - provides

the links between DBPedia and artists, or Jamendo [112] – a digital service platform for free

music – provides the links between MusicBrainz and GeoNames for geo location information.

These types of information from the music metadata can be represented with Music

http://en.wikipedia.org/wiki/Machine-readable
http://en.wikipedia.org/wiki/Ontology_%28computer_science%29
http://en.wikipedia.org/wiki/Person

34

Ontology, FOAF and GeoNames vocabularies that enable both people and machines to have

meaningful conversations about music. Semantically-Interlinked Online Communities (SIOC)

aims to enable the information integration of online community, and is commonly used in

combination with the FOAF vocabulary for expressing social networking and personal

information. In the enterprise context, this combination plays as an entry for modeling

individuals, teams, relations between individuals and teams; linking people to their interests

and skills; representing activities of online communities with related content; and identifying

unification across enterprise applications.

By following above remarks, the existing ontology models such as FOAF, SIOC,

Geonames, etc., are reused to benefit from and build semantic mashups, as well as to extend

SemanticLIFE ontology and support information integration with one’s SocialLIFE. The built-in

OWL properties such as owl:sameAs and rdfs:seeAlso are also re-used to link an individual

to another individual. For instance, these properties can be used to state that a resource (an

instance of a class) is related to another resource in an open dataset such as DBpedia,

FreeBase, DBLP Bibliography Database and so on.

http://www.foaf-project.org/

35

The following figure depicts the linking of personal resources in SemanticLIFE and

SocialLIFE with LOD cloud in this work. It might be considered that consuming FOAF profiles

provide a first step towards solving the issues of data portability between semantic

applications in SNSs.

Figure 3.3: Linking SemanticLIFE and SocialLIFE with LOD Cloud

According to the guidelines in preparing data for LOD [17], publishing the personal

resources into LOD is conducted in five simple steps as follows:

- Find some data with reuse potential, describe and give context as machine-

readable structured data.

- Use URLs to identify information resources so that others may point to them.

- Plan for persistence, i.e. Persistent Uniform Resource Locator (PURL)

- Publish data on the Web in XML, RDF, or even comma-separated values.

- Create an online catalog of published data so that others can find and reuse it.

SocialLIFE

Semnatic
LIFE

Twitter
Exporter

….

LinkedIn
Exporter

Facebook
Exporter

36

The architecture for publishing data as Linked Data can be illustrated in the following

figure.

Figure 3.4: Architecture for publishing data as Linked Data

To illustrate this section, a motivating use case about personal financial data (such as

bank statements) is realized. Many banks allow customers to use personal financial

management software or APIs to download their bank statements in OFX format. Open

Financial Exchange (OFX) is a unified specification to exchange electronic financial

information between financial institutions, consumers and businesses via the Internet [113].

In order to turn personal financial data into mashable artifacts, users’ OFX data should be

converted to RDF/N3. The following figure shows a sample format of the bank statement from

account <ACCTID> of bank <BANKID> that has some transactions <BANKTRANLIST> and

their relevant bank statements <STMTRN>. Each bank statement has its own id <FITID>,

statement name <Name>, amount <TRNAMT>, etc.

Data Access Application Code

(eg, SPARQL, RDF API)

Linked Data Web of Data

Web Server

(Apache, Jetty)

Data publishing

Structured Data (eg, OFX

Files)

Type of data

Converter (eg, OFX to N3

Converter)

Data preparation

Data storage RDF Triple

Repository

N3 Files

37

B
a

n
k
 S

ta
te

m
e

n
t

in
 O

F
X

 f
o

rm
a
t

#file:///bank_statement.ofx

<OFX>

...

 <BANKMSGSRSV1>

 <STMTTRNRS>

 <STMTRS>

 <CURDEF>EUR

 <BANKACCTFROM>

 <BANKID>20111

 <ACCTID>29214346800

 <ACCTTYPE>CHECKING

 </BANKACCTFROM>

 <BANKTRANLIST>

 <DTSTART>20120120

 <DTEND>20130220

 <STMTTRN>

 <TRNTYPE>XFER

 <DTPOSTED>20120120000000[+1:CET]

 <TRNAMT>-10.00

 <FITID>C9008723A732EC19

 <NAME>unbekannt

 <MEMO>AUTOMAT 11397 KARTE1 20.01.UM 17:27

 </STMTTRN>

 <STMTTRN>

 ...

 </STMTTRN>

 <BANKTRANLIST>

 <STMTRS>

 <STMTTRNRS>

 <BANKMSGSRSV1>

...

</OFX>

B
a

n
k
 S

ta
te

m
e

n
t

in
 g

ra
p
h

ofx:STMTRS [

 ofx:CURDEF "EUR";

 ofx:BANKACCTFROM [

 ofx:BANKID "20111";

 ofx:ACCTID "29214346800";

 ofx:ACCTTYPE "CHECKING";

]; # BANKACCTFROM

 ofx:BANKTRANLIST [

 ofx:DTSTART "2012-01-20";

 ofx:DTEND "2013-02-20";

 ofx:STMTTRN [

 ofx:TRNTYPE "XFER";

 ofx:DTPOSTED "2012-01-20T00:00:00+0100";

 …

]; # STMTTRN

]; # BANKTRANLIST

]; # STMTRS

Figure 3.5: Conversion of financial data from OFX format into RDF/N3

38

3.3.2 Semantic-based Personal Resources Retrieval

In this section, by using FOAF as a common representation format and in conjunction with

RDF data, the personal resources can be retrieved from various semantic data sources.

SemanticLIFE ontology can be further extended by adding the SocialLIFE entities. The

following sample presents the representation of social data and mashable personal resources

in RDF, in which a part of user information retrieval from SemanticLIFE and SocialLIFE would

be achieved through their FOAF files.

Figure 3.6: RDF representation of personal resources in SemanticLIFE and SocialLIFE

These personal resources can be used or accessed directly using SPARQL – a RDF

query language [114]. The results of SPARQL query will be the input data for the other

services in mashup process.

<?xml version="1.0"?>
<rdf:RDF xmlns:foaf='http://xmlns.com/foaf/0.1/'
xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
 <foaf:Person rdf:ID='http://voque.org/saokhue_foaf.rdf#Sao_khue'>
 <foaf:firstname>Khue</foaf:firstname>
 <foaf:family_name>Vo Sao</foaf:family_name>
 <foaf:mbox rdf:resource='mailto:saokhue@ifs.tuwien.ac.at'/>
 <foaf:birthday>22/01/1981</foaf:birthday>
 <foaf:gender>male</foaf:gender>
 <foaf:Document rdf:about='http://ifs.tuwien.ac.at/slife-
 google#item=file://C:\Khue-CV.doc'/>

 <foaf:holdsAccount
 rdf:resource='https://www.facebook.com/profile.php
 ?id=1802357483'/>
 <foaf:holdsAccount
 rdf:resource='http://twitter.com/#!/saokhue'/>
 <foaf:interest>
 <rdf:Description rdf:about='http://en.wikipedia.org/wiki/
 Enterprise_social_software'
 rdfs:label='Enterprise_social_software'/>
 </foaf:interest>
 <foaf:currentProject>
 <foaf:Project>

 <foaf:homepage>
 http://www.sba-research.org/research/
 data-security-and-privacy/secure-20/
 </foaf:homepage>

 </foaf:Project>
 </foaf:currentProject>
 <foaf:workplaceHomepage rdf:resource='http://ifs.tuwien.ac.at'/>
 </foaf:Person>
</rdf:RDF>

</rdf:RDF>

P
e

rs
o

n
al

 r
es

o
u

rc
e

s

in
 S

o
ci

al
LI

FE

P
e

rs
o

n
al

 r
es

o
u

rc
e

s

in
 S

em
an

ti
cL

IF
E

39

The following figure describes an example of SPARQL query language for extracting the

social network matching by FROM NAMED clause:

Figure 3.7: SPARQL query towards data mashups for SemanticLIFE and SocialLIFE

3.3.3 Semantic-enabled Personal Services

Based on the idea of personal web services [12], each person has his/her own services that

provide an intuitive way for sharing information with the outside world, helping to identify and

transact with the appropriate remote business processes. In an effort to describe semantic for

services, SA-REST [77] tries to annotate the HTML documentation of services. However, this

solution needs the developer’s decision in choosing which HTML pages to annotate.

EXPRESS [115] exploits similarities between REST services and Semantic Web, such as

realization of resources, self-describing representations, and uniform interfaces between

client and server. With the approach of EXPRESS, an OWL ontology describing resources

and relationships between them for Web Services must be provided.

Towards the combination of Linked Data and services technology, there are two existing

approaches: Linked Data Services (LIDS) [116], [117] and Linked Open Services (LOS) [118].

LIDS is proposed for integrating data-providing services with Linked Data, which leads to data

silos that are opened up to the Web of Data and enables the automatic integration of links to

LIDS with existing datasets. LOS is defined to wrap existing services with descriptions based

on SPARQL and RDF. While LIDS provides HTTP URIs with encoding parameters as key-

value pairs in the query string, LOS consumes RDF as output. Unlike LIDS and LOS that are

built based on SPARQL, RESTDesc [119] is built on N3. With LIDS, large amounts of data

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX foaf: http://xmlns.com/foaf/0.1/

SELECT DISTINCT ?personName ?topicName

FROM <http://semanticlife/employer_1.rdf>

FROM NAMED <http://semanticlife/employer_2.rdf>

FROM NAMED <http://semanticlife/employer_n.rdf>

WHERE {

 ?person rdf:type foaf:Person.

 ?person foaf:name ?personName.

 ?person foaf:topic_interest ?topicName.

 FILTER (?topicName = "Semantic Web")

}

Semantic

LIFE

Social

LIFE

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://xmlns.com/foaf/0.1/
http://semanticlife/employer_1.rdf
http://semanticlife/employer_2.rdf
http://semanticlife/employer_n.rdf

40

can be transformed for using on the Semantic Web and enable (semi-)automatic service

discovery and integration.

All gathered information in Semantic Desktops and SNSs platforms have to be parsed

into semantic personal services or mashable semantic-based resources that provide a

semantic way to express and exchange information from heterogeneous resources. Some

SNSs can be accessed by using the API services; these technologies are used to provide a

common and machine-readable model of metadata for content.

Realizing its potential, LIDS is applied as a suitable solution in this research, in which

using the simple vocabulary of LIDS that defines and describes the relevant service. The

principles for applying LIDS [116] are as follows:

- Describe input and output of services as SPARQL graph patterns.

- Communicate RDF by Restful content negotiation.

- The output should make explicit its relation with the input.

The following figure expresses a LIDS description for a common service:

Figure 3.8: LIDS description for APIs and RESTful services

Following [116], the LIDS syntax is explained in the following way:

- LIDS is a resource representing the described Linked Data service.

- ENDPOINT is the corresponding URI.

- ENTITY is the name of the entity.

- INPUT and OUTPUT are basic graph patterns encoded as a string using SPARQL

syntax.

- VARS is a string of required variables separated by blanks.

One of the advantages of LIDS approach is a method for semi-automatically build

semantic models of Web APIs, including lowering and lifting concepts. When lowering

@prefix lids: <http://openlids.org/vocab#>

LIDSDesc a lids:LIDS;

lids:lids_description [

lids:endpoint ENDPOINT ;

lids:service_entity ENTITY ;

lids:input_bgp INPUT ;

lids:output_bgp OUTPUT ;

lids:required_vars VARS

] .

APIs and RESTful Services

41

referred to the process of constructing non-semantic data for API calls (i.e., converting RDF

to input data), lifting referred to the process of constructing semantic data out of a non-

semantic API or service response (i.e., converting output to RDF before delivering results).

The lowering and lifting for all APIs and RESTful services are depicted as follows:

Figure 3.9: Lowering and lifting in LIDS for APIs and RESTful service

To illustrate this section, a service for searching personal events in SocialLIFE is created,

which has the URL http://localhost:8888/wrappers/thing. In the lowering side of this service,

the variables become part of URL service as a query string, in which the variables binding of

SPARQL query “SELECT ?thing WHERE {?thing foaf:name ?q}” become “?thing” and “?q”

variables of the service URL. In the case of searching “conference” events, the triple of input

variables, which construct the SPARQL query “?thing foaf:name ?q”, are “?events foaf:name

?conference”. In the lifting side, this service takes the name and the query variables to form

the service URL “http://localhost:8888/wrappers?thing=events&q=conference”. If the client

accepts RDF format, the service result will return RDF data. This example is illustrated more

details in the next figure.

http://localhost/serviceName/parameters

fixed endpoint variable part

lowering lifting

HTTP GET/POST

HTTP RESPONSE

APIs and RESTful services

http://localhost:8888/wrappers/thing
http://localhost:8888/wrappers?thing=events&q=conference

42

Figure 3.10: An example of semantic-enabled personal services

3.4 Summary

In this chapter, some solutions are presented for turning personal resources from

heterogeneous sources into mashable artifacts. These solutions also aim to bridge the gap

between Semantic Desktops and SNSs in general, and between SemanticLIFE and

SocialLIFE in particular. The next chapter will investigate the trustworthiness issue of mashup

data; and self-monitoring mashup data when design mashups.

D
a
ta

 r
e
s
p

o
n

s
e

 i
n

 R
D

F

<rdf:RDF xmlns:vcard="http://www.w3.org/2006/vcard/ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:fw="http://openlids.org/facewrap/vocab#"
xmlns:og="http://ogp.me/ns#">
<rdf:Description rdf:about="/wrappers/events#list">
 <fw:search_term>conference</fw:search_term>
 <fw:search_type>event</fw:search_type>
 <foaf:topic>
 <rdf:Description rdf:about="/wrappers/thing/1419029808311502#thing">
 <og:id>1419029808311502</og:id>
 <og:timezone>Asia/Karachi</og:timezone>
 <v:adr>LIAQUAT UNIVERSITY OF MEDICAL & HEALTH SCIENCES</v:adr>
 <foaf:name>3rd Lumhs Youth conference</foaf:name>
 <og:start_time>2013-01-15T08:00:00+0500</og:start_time>
 </rdf:Description>
 </foaf:topic>
 <foaf:topic> … <foaf:topic>
</rdf:Description>

@prefix lids: http://openlids.org/vocab#, @prefix foaf: http://xmlns.com/foaf/0.1/name

LIDS a lids:LIDS;

lids:lids_description[

 lids:endpoint “http://localhost:8888/wrappers/thing”

 lids:service_entity “list”

 lids:input_bgp

 lids:output_bgp “?list foaf:topic ?thing”

 lids:required_vars “q access_token”

]

Input Variables: ?thing=events and ?q=conference

Endpoint: http://localhost:8888/wrappers/events/conference?access_token=...#list

or http://localhost:8888/wrappers?thing=events&q=conference&access_token=...#list

Input Patterns:

Output Patterns: ?list foaf:topic ?events

S
e
rv

ic
e
 d

e
s

c
ri

p
ti

o
n

a
n

d
 v

a
ri

a
b

le
s
 c

o
n

s
tr

u
c
ti

o
n

“?events foaf:name ?conference"

“?thing foaf:name ?q”

http://openlids.org/vocab
http://xmlns.com/foaf/0.1/name
http://localhost:8888/wrappers/thing
http://localhost:8888/wrappers/events/conference?access_token=...%23list
http://localhost:8888/wrappers?thing=events&q=conference&access_token=...#list

43

CHAPTER 4

CHAPTER 4 TRUSTWORTHINESS OF MASHUP DATA

It has been observed that mashups bring new security threats on mashup-based business

processes in organizations/enterprises. These issues have been the subjects of several

works [96], [120]–[122]. The requirements of trustworthiness of mashup data in this mashup

system are also taken into consideration in this study. These requirements could be:

- Self-monitoring and disambiguation resources: it is obvious that so far there is no

optimistic solution to avoid completely an unwanted information disclosure with the

data sharing on Web 2.0 by the owners. They include the membership in SNSs, blog

entries, contributions on Wikipedia, shared media and virtual games. For these

reasons, the issue is how to help users identify trustworthy mashup data.

- Trusted resources (Data feeds, API, etc.): the resources are submitted, having lifetime

and shared by users. These resources should be validated by users; otherwise

untrusted resources will put other users at risk unintentionally.

- Widget owner: the sharing widget is decided by the widget owner. Users run a risk

when creating mashups with others’ shared widget. It is required that the shared

widget could be guaranteed of containing trustworthy data as well.

This section provides the overall approach of our project Secure 2.0 – Secure the

information sharing on Web 2.0 [123]. One of the main contributions of this project is a

prototype based on the Self-Organization Map that extracts and classifies provided content

on Web 2.0. This research aims to integrate recent research efforts from Semantic Web, Web

Service area, and Word Sense Disambiguation techniques with semi-structure Web 2.0

content to achieve more accurate semantic annotation of text and mashup result.

4.1 Self-Monitoring in Social Networking Sites

The Web 2.0 knowledge extraction and its applications demonstrate the power of

collaborative work, and how it can be used to assess collective data resources. The quality of

44

such data resources is being improved via statistical and analytical methods of community

behaviors. An interesting point in such collective knowledge systems is the vertical view that

brings together the contributions of a specific user/organization and makes inferences about

the behavior of user/organization. This vertical view, which is also referenced as Gigantic

Join, brings many benefits for Web 2.0 and Mashup architecture, but on the contrary, threats

the user’s privacy by disclosing the inferred facts about an individual or an organization [124].

For instance, the vertical view of a person who publishes YouTube videos plus his/her social

networks might trigger a false positive alarm for relevant supervisors. There are two major

concerns in such binary classifications:

- First of all, it is important to note that the ratio of an out-of-favor group (such as

terrorists, child abusers, etc.) to the normal people is very small. If the sensitivity (the

proportion of people that tested positive of all the positive people tested) of classifier is

selected to be very high there will be lots of false positives. Consequently, many

normal people will be classified as out-of-favor and specificity (the proportion of

people that tested negative of all the negative people tested) decreases.

- Another important issue is the fact that as soon as a person is incorrectly blacklisted

(false positive), it would be very difficult (if not impossible) to remove him/her from the

list. In other words, there is a greater tendency putting the people in the black list

rather than removing them from the list.

In order to hinder such scenarios, it is required an effective mechanism that can bridge

the gap between information domains and aggregate value from a mix of structured and

unstructured data. Due to the high degree of sensitivity that is used these days for classifiers,

it is essential to have a self-judgment tool that can be used by individual/organizations to

correct their facade to the public and disable incorrect interpretations about themselves. The

knowledge extraction from Web 2.0 entries can be of great importance in many cases. In

order to clarify the applications, a number of such use cases will be discussed in this section.

One of the interesting applications of content analysis is assistive services. The specific

Web 2.0 content should provide assistance for users who create similar content. In other

words, by analysis of existing content, some targeted templates and information structure

patterns will be established. These templates and patterns will be used to provide ad-hoc

suggestions for common content and structure for the given context. It is important to note

that the assistive services are not allowed to share sensitive data with other users; instead,

they would share the templates and general structure of information. A good example for this

45

group of services is the bookmark annotations that can be suggested to users according to

the favorite tags of a specific web page.

Another use case in knowledge extraction is the resource sharing. In Web 2.0

communities and especially in SNSs, some information is being shared with other users. The

“data sharing” in SNSs environments is decided by content owners and there is no holistic

solution to avoid the unwanted information disclosure. There is an ever growing need for

intelligent sharing of information based on the content of shared items, users’ relationships,

type of users, and personal-organizational sharing policies.

The other group of use cases, which is the center of attention in this section, is self-

monitoring of trust level. The data contributed by users on Web 2.0 is a good resource that

can reflect the individual/organizational behavior and attitude. For example, the membership

in SNSs, Facebook profiles and friend networks, shared pictures and videos, and virtual

games, are all together a rich set of information that can be used to judge people or

organizations. In some cases, these inferences are not correct and the individuals and

organizations have no means to prevent false judgments. To address this issue, some

technical and social issues will be discussed in the following sections.

All scenarios mentioned above have a common basic requirement, namely the automatic

conceptualization of the targeted content. Subsequently, the conceptualized results can be

used to provide assistive services, facilitate the resource sharing, or on a higher scale, be

combined with other data resources and used for self-monitoring purposes.

In this approach, we have tackled the automatic conceptualization challenges of Web 2.0

content by applying Semantic Web technologies. The outcomes of this approach will provide

a solid basis for addressing the assistive services and resource sharing scenarios.

This approach can be summarized as the following steps:

- The data will be extracted from social web platforms either by an API of a target

platform (such as Facebook API, Twitter API, etc.) or via a dedicated extractor

component.

- Text analysis techniques (such as Word Sense Disambiguation) are applied to

disambiguate and annotate the text with useful semantic information (Section 4.1.2).

- Self-Organizing Maps (SOM) (Kohonen, 2001) are used to visualize the result and

give the user an overview of his/her social network context (Section 4.1.3).

- After this step, quality measures are applied to find out high quality entries that have

the potential for being used as a template for assistive services.

46

- Another outcome of the SOM is a self-monitoring result by applying user-ethical

requirements and highlighting the points of interest on the resulting SOM in a given

context.

The following figure demonstrates the different steps of our solution to address the

requirements of the use cases mentioned above.

Figure 4.1: Overall solution for self-monitoring in social network [124]

As Unhelkar et al. [125] mention trust is also directly related to ethical issues in both

society and business. Ethical issues are very important, especially in a society that is

constantly influenced by the rapidly changing of the technology. Ethics are the principles used

to determine the purpose of organizations/enterprises’ decisions.

In this research scope, it is also required that all personal resources and shared data are

in secure and trust suitable for either user ethics or organization policy. User ethics can be

classified as follows:

- Personal ethics

 People have their personal preferences and lifestyles.

- Professional ethics

 Professions have some ethical values that should be followed.

 Organizations may also have some restrictions that should be followed by their

employees.

- Social ethics

 The community that people are living in may demand and require some social

behavioral values.

47

At the end of SOM process, a group of data points is merged and formed clusters. The

clusters are labeled and might be further improved for creating the ontologies. An important

note at this step is about security and privacy issues. After analysis of documents, sensitive

contents of nodes should be removed according to domain ontology. After creating SOM, the

points of personal resources need to be specified on the SOM map with corresponding ethics

in the private and working lives as well. In this approach, the points of interest are those

areas that are violating the above user ethics.

These ethics are encoded in user profiles, which can be combined with the semantic

information of SOMs. For instance, the job ethics might prohibit the user from sharing or

contributing discussions about a specific topic. In such cases, violating areas will be

highlighted on the SOM, and the user may react and take the necessary actions to correct the

situation. The following figure demonstrates this use case where the high risk group of friends

is highlighted on the interest map of friends.

Figure 4.2: SOM visualization of high risk group on the friends’ interest map [124]

These developed components are planning to integrate with the proposed mashup

architecture in section 5.1 to facilitate user interactions. The following figure demonstrates a

simple mashup to create a SOM of all books that friends of a specific user are interested in.

According to job ethics of interest book of this user, the map is then highlighted to find out

inappropriate connections in his/her Facebook profile.

48

Figure 4.3: Mashup solution to create a SOM visualization of high risk group of the friends’

interest in Facebook [12]

In the same way, the hot areas in the SOM Visualization of organizations/enterprises may

not want to be linked to sensitive data such as internal circulation documents or positive

advertisement campaign of competitors’ products. The identification of out-of-favor mashup

data is the responsibility of users or organizations/enterprises and this decision is left up to

them.

Mashup solutions facilitate the collection, integration, and publishing of data for non-

expert users. As a result, the mashup solutions can be seen as new data sources that may

feed other mashups, applications, services, or websites for personal/business use cases in

an easy way. The further explanation of mashup solution will be presented in Chapter 5. In

the rest of this section, each of the steps mentioned above will be discussed in more detail.

49

4.2 Knowledge Sharing Policies

The requirement of security and trusted privacy is a critical issue in personal information

management. This requirement is keeping on increasing when personal/organizational

information in Web 2.0 via SNSs and digital contributions are disclosed. In Information

Security and Assurance Conference, one of the major research challenges in leading cyber

security is that the ability to give end-users security controls and privacy that they can

understand and control for the dynamic, pervasive computing environments of the future

[126].

In order to facilitate knowledge sharing and reuse in an efficient and trustworthy way, it is

required to support the processes of information sharing by applying appropriate policies. In

addition, several domain ontologies and an efficient mechanism should be defined to enrich

personal/organizational profiles, and provide privacy ontology for applying

personal/organizational policies in filtering the sensitive data. Regarding to policy, for

example, a privacy policy can be “a statement or a legal document that discloses some or all

of the ways a party gathers, uses, discloses, and manages a customer or client's data.

Personal information can be anything that can be used to identify an individual, not limited to

but including; name, address, date of birth, marital status, contact information, ID issue and

expiry date, financial records, credit information, medical history, where you travel, and

intentions to acquire goods and services” [127]. The contents of this privacy policy will vary

depending upon the data privacy, data protection, and applicable law. A lightweight Privacy

Preference Ontology (PPO) has been proposed to enable users and prevent sensitive

information from publishing linked data [128]. Like many other existing ontologies, this

ontology can be further extended by adding the required concepts and entities.

In this research, policies are defined based on ontology PPO and combined with user

profile in Semantic Desktop’s ontologies for sharing knowledge including:

- User ontology: comprises the user profile, personal context and the data that might be

used in the rule-making process.

- Privacy ontology: defines the generic concepts of an information sharing domain, such

as personal information (name, address, ID issue, etc.).

- Organization policy: defines the organizational policies and obligations for information

sharing to restrict any sensitive data such as international hiring policies, new product

release policies, etc.

50

- Service ontology: describes the services, including personal services, and the

description of the information that will be disclosed using such services.

The following figure depicts the privacy ontology, which supports users in setting their

preference for sharing knowledge.

Figure 4.4: The main classes and properties of the Privacy Preferences Ontology [128]

4.3 Exploiting Disambiguated Information Retrieval

In Web 2.0 context, people easily annotate the shared content by free-form tagging with

keywords, tags or hashtags that act like related-categories or related-topics. This feature

makes the shared content more easily discoverable and browse-able by other users.

However, in order to retrieve this information, these issues of free-form tagging’s, such as

tagging ambiguity (i.e., difference meaning), tagging heterogeneity (i.e., acronyms, synonyms,

abbreviation, etc.), should be solved. Without the explicit semantic context, the process of

analyzing data and putting the data to work in a business process safely is still unpractical

without significant human involvement and this is the point that Semantic Web can be applied

to make the data machine process-able.

In order to explicitly exploit the information retrieval in a semantic way, WordNet ontology

(WordNet) [129] and Word Sense Disambiguation methods [130], [131] will be utilized in

conjunction with semi-structured Web 2.0 content to achieve a more accurate semantic

51

annotation of the personal resources [132]. Concurrently, applying the Self-Organizing Maps

(SOM) [133] to automatically cluster similar inputs, which are mapped close to each other to

categorize a group of any specific criteria, such as a group of experienced workers for a new

project, etc.

SOM provides a unique mechanism of clustering, through which a large amount of text

data is organized into a small number of meaningful clusters. It is important to note that,

similar resources are clustered together if they share similar concepts, and some concepts

may carry more weight compared to other concepts that appear in the same resources,

based on the concept frequency of those resources. In order to improve the quality of SOM,

the concepts need to be disambiguated first.

4.3.1 Word Sense Disambiguation for Mashable Resources

This research has conducted an improved Word Sense Disambiguation (WSD) method that

combines the existing WSD techniques with semi-structured Web 2.0 content to achieve

more accurate semantic annotations of personal resources. WSD has been considered as a

fundamental research problem in machine translation [134] and in artificial intelligence [135].

It is a task of determining the sense of an ambiguous word in a given context of surrounding

words, phrases, and sentences. For instance, the word “library” can be understood as “library

building” or “software library” according to its context and surrounding information. By

considering the context of this term and applying WSD techniques, this word can be clustered

together with other relevant terms. Fortunately, the senses of English words can be easily

extracted from free lexicon dictionaries such as WordNet that has been developed by

Princeton University [136]. Words in WordNet are organized in hierarchy and semantically

instead of alphabetically. Each node consists of a synset of words, that express the same or

a closely related word. These synsets are linked together by semantic relations, such as

hypernymy, hyponymy (nouns and verbs), meronymy (nouns), and antonymy (adjectives).

Almost all WSD methods require some common preprocessing steps that parse the input

text and prepare it for further method-specific processes. These common pre-processes

include actions such as tokenizing, stemming, and finding the meaning of the words in

dictionaries or lexicons such as WordNet.

There are numbers of WSD methods for defining the sense of words in a given context.

One group of such methods relies mainly on gloss-based and path-based calculations. These

methods, which are also referred to as Lesk-based methods, are listed below:

52

- Lesk algorithm [137] disambiguated word senses by finding their gloss in traditional

dictionaries and calculating its overlap with the glosses of its surrounding words.

- Kilgarriff & Rosensweig [138] applied the original Lesk and also considered the

overlaps between a word’s gloss with its context.

- Banerjee and Pederson [131] applied the original Lesk algorithm and used the

WordNet instead of traditional dictionaries.

Some other measures, which are categorized as semantic-based approaches, compute

the path distance between two concepts based on the semantic organization of

corresponding words in well-known taxonomies, i.e. WordNet, in order to detect the sense of

a given word. Some of the methods applying this approach are listed below:

- Leacock & Chodorow method [130] measures the similarity of word senses based on

their shortest path and their maximum depth of WordNet taxonomy in which similarity

score is calculated as -log(length/2*d) where :

 length is the shortest path between two concept c1, c2 (relation “is a „) and

 d is the maximum depth of the taxonomy

- Wu & Palmer method [139] measures the depth of the two concepts in WordNet

taxonomy, the depth of least common subsumer (LCS), and finally combines these

figures into a similarity score as 2 * d(lcs) / [d(c1) + d(c2)], where:

 d(lcs) is the depth of the least common subsumer (LCS) and

 d(c1),d(c2) are the depth of concept c1, c2 respectively

Among WSD methods, the algorithms of Lesk family are very suitable for the sense

disambiguation of single words but they do not have the same effective when applied to a

larger window of words. In contrast, semantic similarity measures compute the distance

between the hierarchies of related synsets in WordNet and provide better results. The

concepts of hierarchies and their weights have been used to align the ontology with domain

ontologies, calculation of neighborhoods, and semantic distance of different resources.

53

The following figure shows the text processing process followed by cleansing and

applying the WSD measures for personal resources. The final output should be annotated

categories that can be used for further knowledge extraction and analysis processes.

Figure 4.5: Word Sense Disambiguation for mashable personal resources

In this approach, a hybrid method to accomplish the WSD is applied. In the first step, Lesk

algorithm is used to find the correct sense of a word according to its context. At the end of

the WSD process, words will be annotated using the most appropriate sense of words in the

given context, based on WordNet senses. The annotation tags of words will be then created

by combining the words and adding the correct sense to it. As a result, all words will be

uniformly annotated by a well-defined taxonomy.

However, it is noticed that some words do not exist in lexicons. As an example, the

commercial or technical words such as Mashup, Flickr, or Servlet cannot be found in

WordNet. To address this issue, for those cases that the word is not found in WordNet, it is

possible to search that word via Google Search API [140] and the first result will be

considered as its gloss. In most cases, this approach will provide usable results for the next

steps. For instance, for the term Mashup, WordNet returns no result; however, the first result

in Google says: “In web development, a mashup is a web page or application that combines

data or functionality from two or more external sources to create a new service. ...” that is

W
S

D

P
ro

ce
ss

e
s

Resources i Resources j

Categories m Categories n

Cleansing

(Stop words, Punctuation)

Personal Resources

WordNet

Google Seach API

54

helpful for our purposes. In order to make the data usable, a lot of preprocessing tasks like

removing of unwanted symbols, words, html tags, xml tags, punctuation marks, numeric, and

stop words have to be done.

As a result of this solution, the annotation tags of words will be then created by combining

the words (stem of words) and adding the correct WordNet categories to it, and all resources

will be uniformly annotated by a well-defined taxonomy. The final outputs of the proposed

approach are annotated resources that can be used for further actions (such as knowledge

extraction and analysis processes), and express the rationale and semantic quality of

mashup data. The outputs will also help to address more complex use cases such as security

and privacy scenarios that need a deeper understanding of the text and its context for

applying the appropriate security and privacy policies.

4.3.2 SOM-based Personal Resources Clustering

In this approach, Self-Organization Map (SOM) has been used as a powerful method for

automatic clustering of high-dimensional statistical data, in which similar inputs are mapped

close to each other. Based on this property, SOMs can be visualized easily, and the physical

distance between concepts will depict the similarity of concepts concerning some predefined

features of items in the domain under study.

A typical SOM algorithm for classification of text-based items can be summarized as

follows [141]:

- Initialize input nodes, output nodes, and connection weights:

o Use the top (most frequently occurring) N terms as the input vector and create

a two-dimensional map (grid) of M output nodes.

o Initialize weights wij from N input nodes to M output nodes to small random

values.

- Present each document in order to:

o Describe each document as an input vector of N coordinates.

o Set a coordinate to 1 if the document has the corresponding term and to 0 if

there is no such term. Each document is presented to the system several

times.

- Compute distance to all nodes: compute Euclidean distance dj between the input

vector and each output node j:

55

where xi(t) can be 1 or 0 depending on the presence of i-th term in the document

presented at time t. Here, wij is the vector representing position of the map node j in

the document vector space. From a neural net perspective, it can also be interpreted

as the weight from input node i to the output node j.

- Select winning node j* and update weights to node j* and its neighbors:

o Select winning node j*, which produces minimum dj.

o Update weights to nodes j* and its neighbors to reduce the distances between

them and the input vector xi(t):

After such updates, nodes in the neighborhood of j* become more similar to the

input vector xi(t). Here, η(t) is an error-adjusting coefficient (0 < η(t) < 1) that

decreases over time.

- After the network is trained through repeated presentations of all documents, assign a

term to each output node by choosing the one corresponding to the largest weight

(winning term).

o Neighboring nodes, which contain the same winning terms, are merged to form

a concept/topic region (group). Similarly, submit each document as input to the

trained network again and assign it to a particular concept in the map.

In this approach, SOMToolbox [142] is used to apply this SOM algorithm. SOMToolbox is

an open source library for training SOM with different visualizations and quality measures.

For using this toolbox, two SOM vectors must be provided for the training process of a SOM:

- Input Vector file: this file describes the input vectors that consist of the following

primary parameters:

o $XDIM: is the number of input vectors in file.

o $YDIM: usually 1; this allows again form XDIM*YDIM to provide the total

number of vectors.

o $VEC_DIM: is dimensionality of vectors (weight vectors of map).

o Lists n vector elements of m weight vectors where m=XDIM and <VEC_ID> is

the label of weight vector

 <x_1_1> … <x_1_n> <VEC_ID_1>

 …

56

 <x_m_1> … <x_m_n> <VEC_ID_m>

- Template Vector File: this file describes the template vector providing the attributes

structure of the input vectors that consist of the following primary parameters:

o $XDIM: is the number of columns used in attribute list (min: 2, max:7).

o $YDIM: is the number of feature vectors in corresponding input vector file.

o Attributes list of the vectors by 7 columns

 <nr> <attr> | <df> <tf_coll> <max_tf> <min_tf> <mean_tf> (in which, nr:

consecutive numbering of attributes; attr: name of the attributes; df:

document frequency; tf_coll: term frequency in the whole collection;

max_tf, min_tf and mean_tf: are maximal, minimal and mean values of

this attribute in the group of feature vectors respectively).

As proof of concept for this section, the proposed approach to Facebook use case has

been applied:

- At first, the user’s network of friends in Facebook is scanned and their interests such

as books, music, movies, and television are extracted.

- In the next step, the items of interest are annotated with relevant categories such as

books type, music type, movies genre or television show. For a better classification,

the genres of the music bands, television shows, movies and books are used instead

of their titles (for example, movie Heroes has the genre of Drama/Sci-Fi). The genres

of each title are disambiguated with the method proposed in section 4.1.2 or extracted

from Facebook, Freebase (to be described in section 6.1.1).

- In the final step, a cluster of friends according to their interests will be displayed on

SOM visualization.

For clustering friends’ interests with SOM Algorithm and SOMToolbox, our retrieval data

will be provided in SOM input and template vector file with 26 friends in Facebook, 106

different genres of interest as described in the following figure.

In
p

u
t

V
e
c
to

r
F

il
e

$XDIM 26

$YDIM 1

$VEC_DIM 106

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Friend784334458

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 Friend1549107370

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Friend1608087898

1 0 1 0 0 0 0 0 2 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 13 0 0 0 0 1 0 1

0 0 0 1 0 0 2 0 1 Friend784833895

…

57

T
e
m

p
la

te
 V

e
c
to

r

F
il
e

$TYPE template

$XDIM 7

$YDIM 26

$VEC_DIM 106

0 music('heavy_metal|power_metal') 1 1 0 1 0.5

1 music('gangsta_rap|west_coast_hip_hop') 1 1 0 1 0.5

2 music('avant_garde_metal') 1 1 0 1 0.5

3 movies('psychological_thriller|comedy|thriller') 1 1 0 1 0.5

…

Figure 4.6: Input and Template Vector file of SOM training for clustering friends’ interest in

Facebook.

The SOM Visualization result of this use case is depicted in the below figure. In this SOM

map, each category of interest will be classified by each color and displayed in a circle

(movies in pink, books in cyan, television in green and music in yellow). The small yellow

number and the big black number indicate the number of friends that are interested in the

relevant categories and are interested in the same genre of categories, respectively.

Figure 4.7 SOM Visualization and clustering for friends’ interest in Facebook

58

4.4 Summary

This chapter has discussed some principal requirements for the trustworthiness of mashup

data. It has also conducted an improved WSD method and SOM technique to help users in

personal resources clustering, self-monitoring data and avoid unwanted information in SNSs.

Next chapter proposes the formulation for mashup-related concepts, a lightweight mashup

language, and a semantic-based mashup system that allow making mashup personal

resources in Semantic Desktops and SNSs.

59

CHAPTER5

CHAPTER 5 SEMANTIC-BASED MASHUP

5.1 Semantic-based Mashup

Semantic-based mashup is a mashup that can combine services and APIs supported or

annotated by a semantic layer [143]. To be more specific, semantic-based mashup applies

semantic technologies such as semantic annotation and information extraction to improve the

possibilities in choosing and matching the right input items [144]. In this section, the

semantic-based mashup architecture is proposed, which aims to facilitate the integration of

heterogeneous personal resources sources from SemanticLIFE and SocialLIFE within

organizations/enterprises.

This framework consists of four following layers (as illustrated in Figure 5.1):

- Mashable semantic data: This layer mainly focuses on the retrieval of personal

resources from SemanticLIFE and SocialLIFE in a structured data format, and

mapping them to adaptive ontologies, RDF, or Linked Data repositories in order to

make a better semantic mashup.

- Context & Security Policy: This layer is responsible for the efficient implementation of

information security and privacy policies. More importantly, this layer includes context

ontologies for describing personal services, as well as applies the privacy policies for

self-monitoring the information sharing between SemanticLIFE and SocialLIFE.

- Mashup Layer: The mashable semantic data are mashed up in this layer. To create

mashup data, the services in SemanticLIFE and SocialLIFE are referred in mashup

language that will be introduced in Section 5.2.

- Data visualization: This layer enhances original contents by adding graphical

representation like maps, or images (such as Google Map, Flickr). This layer

constitutes the main workspaces that allow end-users to interact with the mashup

platform. In addition, the usage of this main workspace is intended as a collaborative

usage environment, in which multiple users can share a common widget or a mashup

pattern for their common business needs.

60

Figure 5.1: Semantic-based mashup architecture for SemanticLIFE and SocialLIFE

In our framework, three following groups of services are supported:

- SPARQL-based services: query the semantic web data via SPARQL endpoints such

as DBPedia, Events, etc.

- Third party services: consume the third party APIs services that do not expose RDF

data, for example Flickr, Google Map, Weather …

- Personal services: query personal resources via custom personal services or via

SPARQL endpoints of the data repository of Semantic Desktops.

Mashup Workspace

Widget 1 Widget 2

Widget n

Mashup

Pattern

D
at

a
 V

is
u

al
iz

at
io

n

La
ye

r

C
o

n
te

xt
 &

 S
ec

u
ri

ty

P
o

lic
y

La
ye

r

Self-Monitoring

Security Policy

Data Filter

Trust Service

Values

Capabilities

Activity

Private Context Shared Context

 Personal Context

Identity

Location

Events

M
as

h
ab

le
 S

e
m

an
ti

c

D
at

a
La

ye
r

SemanticLIFE SocialLIFE

Personal Resources

M
as

h
u

p
 L

ay
er

Personal

Services

Process

Integration
Semantic

Annotation

61

5.2 Personal Resources Mashup Language

A lightweight mashup language has been proposed in this research to support our semantic-

based mashup system in personal resources mashups. Although a number of mashup

languages have been developed (such as MashQL [145], WSML [146], EMML [89]), each

mashup language provides a specific mechanism that enables users building web data

mashups. WSML supports end-user working from their browser by embedding scripts into

HTML; whereas MashQL is restricted to web data sources represented in RDF, and uses

SPARQL as the query language. EMML is a rather expressive language, but certainly quite

complicated and not easy for the users to apply. Besides, EMML has not supported ontology

or customized ontology mapping yet, it only supports constructing a SPARQL query and

executing it.

In this framework, the proposed personal resources mashup language (PRML) aims to:

- Create a simple mashup language, which helps developers create a widget for

mashup data in a semantic way.

- Develop new composite application in mashup process to fit personal needs

based on workflow of connectable widgets.

- Make easily new widget that inherits the predefined widget.

The PRML has four main parts, namely mashup, environment, widget, and parameter as

the following schema:

Figure 5.2: The schema of personal resources mashup language (PRML)

62

The root element of PRML schema is <mashup> element. The sub element of <mashup>

contains <environment> element that helps user know exactly which environment context

they are working with.

- Attribute context could be ‘SemanticLIFE’, ‘SocialLIFE’ or

‘Organizations/Enterprises’ or even more.

- Attribute state could be ‘checked’ or ‘unchecked’, meaning to be whether shown or

not in the mashup workspace.

The third level contains required <widgets> and additional attributes:

- Attribute ‘state’ is set ‘checked’ or ‘unchecked’, meaning the widget is chosen for

mashup or not.

- Attribute ‘context’ and ‘type’ are the name and type of personal context

respectively that users require.

- Attribute ‘service’ identifies the service type of that widget (for example, event,

financial service, etc.).

- Attribute ‘source’ indicates the service source (for example, SPARQL endpoint,

source of third party APIs service, etc.).

- Attribute ‘role’ is assigned a privilege to a specific user or a group of users who

can use the widget.

- Attribute ‘mapping’ supports mapping to ontology resource or properties, for

example, mapping=’rdf:type Place’ is mapping the input/output with the Place

concept of the target ontology.

- Attribute parameters indicates the additional parameters of the widget (input,

output).

The fourth level <parameters> contains one or more <input>, <output> elements.

- Attribute ‘name’ is the name of the input/output parameter.

- Attribute ‘type’ is the type of the input/output parameter (String, Number, Array,

Boolean, Date).

- Attribute ‘value’ is the value of the input/output parameter.

- Attribute ‘mapping’ supports mapping to the ontology resource or properties.

63

- Attribute ‘acceptedData/dataFormat’: is the type of data format that is accepted by

the output and input port. The data format can be JSON, XML, Sparql-results+xml

or object.

- Attribute ‘operator’ identifies an operator to construct constraints (for instance, >,

<, or regular expression, etc.)

- Attribute ‘requireSource’ indicates that the input requires data from another source

or not.

- Attributes ‘label’, ‘width’, and ‘height’: are referred to the additional values of the

input/output layout that will be used in UI container

The following figure indicates the overview schema for widget parameters of PRML.

Figure 5.3: The schema of widget parameters of PRML.

64

5.3 Semantic Mashup Formulation

For our semantic-based mashup system, some mashup concepts and rules are defined to

match with the proposed mashup language for semantic annotation.

5.3.1 Definition and Rule

Definition 1. Widget

A widget is a tuple of <I, R, P> where I = {i1,i2,… ,ip} is a set of Input ports, R is the result set

and P is the process (or web service) running inside the widget to consume the inputs I and

produce the result R. Each one of these elements has a set of metadata that describes the

functions and properties of that element. For instance, the input ports and output results have

the following metadata:

- format: accepted data format rule

- mapping: mapping rule attribute

- value: value of input/output

- extras: additional parameters such as layout, id, name

The process may include further metadata such as:

- additional parameters for the widget, such as id, name, width, height…

- process description

- type of process (e.g., SPARQL, Javascript based, Web Service, etc.)

In order to use a widget, they should be instantiated and called by the context engine.

One such context could be a Mashup environment.

Definition 2. Mashup

A mashup M is a set of 4-tuple, M = {<wi,cij,wj , Iwj> | i,j=0…n, i ≠ j} where

- wi, wj ∈ W: instance of widgets (W is the set of available widgets)

- cij : is the connector between two widgets that denotes the dataflow between

output port of widget wi and one of the input ports Iwj of widget wj.

In order to help users to design mashups in a semantic way, some rules for the mashup

process are defined as follows.

65

Let D = {d1, d2, ..., dq} be a set of data formats, and O = {o1, o2, ..., or} be a set of ontology

types.

Rule 1: Feasible Connection

A feasible connection between two widgets wi and wj is a connection cij that input data format

(di) or mapping ontology type (oi) of the output port on widget wi side is compatible with dj or oj

on the input port at widget wj side.

Rule 2: Avoiding loops

If the Mashup contains a 4-tuple <wi, cij, wj, Iwj> then there should be no a 4-tuple <wj, cji, wi,

Iwi>.

The process for applying these rules in mashup is depicted in the figure below.

Figure 5.4: The process for applying ontologies and mashup rules in the mashup.

5.3.2 Realization of Definitions and Rules

In this section, the realization of the definitions and rules mentioned above is described in

PRML syntax and explained in more details.

For each widget wi, input/output parameters can accept a data format di ∈ D. This rule is

described via property acceptDataFormat=’di’ of input/output parameters. The following

example depicts an input that only accepts data ‘String’.

<input acceptedDataFormat='String' name='event_name'/>

Mashup Editor

Ontologies
Choosing

Widget

Running

Mashup

Results

Mashup Rules

mashup

66

For each widget wj, input/output parameters can be mapped to an ontology type oi ∈ O. This

rule is described via property mapping=”oi”. The following sample input is mapped to a

financial ontology related to posted date (DTPOSTED) of bank statement.

<input name="start_date" type='date' mapping='ofx:DTPOSTED'/>

For forming a mashup M = <wi, cij, wj, Iwj>, this sample describes the widgets, their inputs and

connection as follows:

Widget wi ‘Bank Statement’ has three inputs and one output port, the data source of this

widget is retrieved via the SPARQL endpoint of bank statement repository. This widget is

defined in the following PRML systax:

<widget role='user' context='Bank Statement' mapping='slife: BankStatement'

source='http://localhost:8080/ repositories/bank_statement'>

 <parameters>

 <parameter>

 <input name="account" type='number' mapping='ofx:ACCTID'

 label='Bank Nr.'/>

 <input acceptedDataFormat='Date' name="start_date" type='date'

 mapping='ofx:DTPOSTED' label='From Date'/>

 <input acceptedDataFormat='Date' name="end_date" type='date'

 mapping='ofx:DTPOSTED' label='To Date'/>

 <output dataFormat='sparql-results+xml' name='bank_statements'

 mapping='ofx:STMTTRN'/>

 </parameter>

 <parameters>

</widget>

Widget wi connects with widget wj ‘Calendar’, which shows the bank statement in a

calendar viewer, is defined in the following syntax:

<widget context='Calendar' parameters='Calendar.paras' service='CalendarViewer'>

 <parameter>

 <input name='calendars' requiredSource='true'

 acceptedDataFormat='sparql-results+xml' />

 </parameter>

</widget>

The connection cij is established via output port named ‘bank_statements’ of wi and input

port named ‘calendar’ of wj.

5.3.3 Widget-based Query Generation

In order to query remote RDF resources, the query is constructed based on widget

parameters as follows:

Suppose P = {p1,p2,..., pn} is a set of input parameters of the widget and R is the output

result of the widget. Each input parameter pi (i=0…n) has its optional properties such as

name, mapping, type, value and operator in turn.

67

A query Q can be defined as: Q = <S, W, F> where

- S = <SELECT, R, P>: SELECT statement with relevant parameters

- W = <WHERE, R, P>: WHERE clause with relevant parameters

- F = <FILTER, P>: FILTER constrains with relevant required parameters

Query Q is generated by the following principles:

- Enumerating parameters’ names for the SELECT part: the SPARQL variables of

SELECT statement are formed by output R and relevant parameters’ names. The

SELECT statement must be “SELECT ?R ?p1[name] … ?pn[name]”.

- Taking output R, names, and mappings of parameters to form the triple patterns

for WHERE clause. The WHERE clause must be “WHERE {?R ?p1[mapping] ?p1[name]

. … . ?R ?pn[mapping] ?pn[name] }”

- Taking names, values, and operators of parameters to add filter expressions for

the FILTER constrains: depending on relevant parameters’ operators, the syntax

of the FILTER will be alternative. For example, if the operator of pi is ‘regex’, the

string matching syntax must be “FILTER (regex(?pi[name], ?pi[value]))”; otherwise, the

syntax must “FILTER (?pi[name] ?pi[operator] ?pi[value])”.

Figure 5.5: Query generation based on widget parameters

W
id

g
e
t

P
a
ra

m
e
te

rs
 <parameter>

 <input name='p1[name]' mapping='p1[mapping]' type='p1[type]'
 value='p1[value]' operator='p1[operator]'/>
 <input name='p2[name]' mapping='p2[mapping]' type='p2[type]'
 value='p2[value]' operator='p2[operator]'/>
 …
 <input name='pn[name]' mapping='pn[mapping]' type='pn[type]'
 value='pn[value]' operator='pn[operator]'/>
 <output name='R'/>

</parameter>

P
a
rs

in
g

 p
a

ra
m

e
te

rs
 i

n
to

S
P

A
R

Q
L

With pi∈P, i=0…n
SELECT ?R ?p1[name] ?p2[name]… ?pn[name]
WHERE {?R ?p1[mapping] ?p1[name] .
 ?R ?p2[mapping] ?p2[name] .
 …
 ?R ?pn[mapping] ?pn[name] .
 <!-- if pi[operator]= 'regex'-->
FILTER (regex(?pi[name], ?pi[value]))
 <!-- else -->
FILTER (?pi[name] ?pi[operator] ?pi[value])

}

68

The following example depicts the process of generating a SPARQL query from widget

parameters for an event service.
W

id
g

e
t

p
a

ra
m

e
te

rs
 <parameter>

 <input name='event_name' mapping='foaf:name' value='%EVENT_NAME%'

operator='regex' />

 <input name='place' mapping='vcard:address' value='%PLACE%'

operator='='/>

 <input name='start_time' value='%START_TIME%' mapping='og:start_time'

operator='>='/>

 <input name='end_time' dataFormat='Date' operator='<='

mapping='og:end_time' value='%END_TIME%'/>

 <output name='thing'/>

</parameter>

P
a
rs

in
g

 p
a

ra
m

e
te

rs
 i

n
to

 S
P

A
R

Q
L

SELECT ?thing ?event_name ?place ?start_time ?end_time

WHERE {?thing foaf:name ?event_name .

?thing vcard:address ?place .

?thing og:start_time ?start_time .

?thing og:end_time ?end_time

 . FILTER (regex(?event_name,'%EVENT_NAME%'))

 . FILTER (?place ='%PLACE%')

 . FILTER (?start_time >='%START_TIME%')

 . FILTER (?end_time >='%END_TIME%')

}

ORDER BY ?thing

Figure 5.6: An example of query generation based on widget parameters

5.3.4 Mashup Algorithm

Suppose that a set of widgets {wi…wj} is used in a mashup composition M. If wj is requested

to execute, then it is necessary to check whether wj requires output from another widget wi or

not. If wj has no required input, then wj is able to execute. Otherwise, wi (the widget that

provides the required input) needs to be called and so on. For this reason, a mashup

algorithm for possible loop detection is required.

Algorithm for mashup in our case is based on the acyclic directed graphs, in which each

widget of mashup is considered as a vertex of a graph, and each connection between two

widgets is considered as an edge of a graph. For iterating through all widgets of a mashup

(nodes of a graph), it is considered to apply the very basic algorithm for graph that is Depth

first-search (DFS) algorithm to ‘visit’ the widgets. In case of mashup, the output value of any

69

selected widget will be the input value of the connected widgets via the relevant port. The

mashup M and the visited widget will be handled by the main recursive function

processWidget(M,widget). Each visited widget will perform the corresponding process inside

by the function executeProcess() and return the value via the output port. This return value

could be the input value of the connected widget (if available).

Instead of checking all edges at once in DFS algorithm, the edges are checked in two

phases by differentiating discovery edges and back edges via input ports or output port

respectively. Discovery edges are those edges connecting a vertex to another descendant

one, and back edges are those edges connecting a vertex to another ancestor one.

The steps of mashup algorithm can be described in the following recursive pseudo code

for processing a mashup:

Algorithm processWidget(M,widget)

 Input: mashup M, an instance widget ∈ M

1: if widget.inputPorts > 0 then

2: for each inputPort ∈ widget
 //get connected widget

3: previousWidget = inputPort.connectedWidget
4: if previousWidget is executed then

 //get value of connected widget
5: widget.inputPort.value = previousWidget.outputPort.value
6: else
7: //recursive-process connected widget
8: widget.inputPort.isVisited = true
9: processWidget(M,previousWidget)
10: end for
11: end if
12: widget.isExecuted = true;

//executeProcess function: execute process inside widget (SPARQL, service, etc)
13: widgetResult = executeProcess()

14: for each outputPort ∈ widget
15: nextWidget = outputPort.connectedWidget
16: if nextWidget.inputPort is visited then
17: //get value of current widget
18: nextWidget.inputPort.value = widgetResult
19: else

 //recursive-process connected widget
20: nextWidget.inputPort.isVisited = true
21: processWidget(M,nextWidget)
22: end if
23: end for
24: return widgetResult

Algorithm 5.1: Mashup algorithm

70

5.4 Semantic Mashup Patterns

In this research, semantic mashup pattern is a set of services/widgets, including SPARQL

services, semantic personal services or other external web services that can be executed to

make data mashups by the proposed mashup framework. Semantic mashup patterns can be

seen as the predefined patterns that are constructed from SemanticLIFE and SocialLIFE for

using and sharing of widgets.

It is possible to use mashup patterns to explore the accumulation of personal resources

for following practical purposes:

- Personalization: mashup widgets are personalized based on personal context. With

some preferences or sensitive contents, widgets are private or shareable. For

example, users want to share their interests but keep their banking statements in

private.

- Real-time monitoring: allows users/organizations to observe the interested real-time

data from mashups via SNSs or from other users’ shared widgets.

- Reuse & Collaboration: widgets are created and saved in a repository for later use or

for collaborating in workflows.

The following mashup pattern, which is defined in PRML, depicts a sample pattern to

retrieve personal events from SemanticLIFE and pictures from Flickr, which are annotated

with the relevant places of personal events.

71

<mashup>

 <environment context='SemanticLIFE'>

 <widget role='user' creator='user' context='Calendar Events'

 service='CalendarEvents' type="calendar_event"

mapping='slife:Calendar'

 source='http://localhost:8080/repository/'>

 <parameters>

 <parameter>

 <input acceptedDataFormat='String' type='string'

 name='event_name' mapping='foaf:name' operator='regex'/>

 <input acceptedDataFormat='String' type='string'

 name='place' mapping='vcard:address' operator='regex'/>

 <input acceptedDataFormat='Date' type='date'

 name='start_time' mapping='event:start_time' operator='>='/>

 <input acceptedDataFormat='Date' type='date'

 name='end_time' mapping='event:end_time' operator='<='/>

 <output name='events' mapping='rdf:type Events'

 dataFormat='sparql-results+xml'/>

 </parameter>

 </parameters>

 </widget>

 </environment>

 <environment context='SocialLIFE'>

 <widget role='user' type='flickr'

 source='http://api.flickr.com/services/rest/?method=flickr.photos.search'>

 <parameters>

 <parameter>

 <input name='tags' type='string'

 requiredSource='true' acceptedDataFormat='entry'>

 <input name='api_key' type='string' value='%FLICKR_API_KEY%'/>

 <input name='per_page' type='string' value='5'/>

 </parameter>

 </parameters>

 </widget>

 </environment>

</mashup>

Figure 5.7: An example of mashup pattern to retrieve personal resources.

The semantic mashup patterns can be simply reused and archived in a store of mashup

patterns that depicts in the following figure:

Figure 5.8: Mashup patterns store of personal resources

http://local/rss ...

http://local/service ...

http://local/sparql ...

Mashup Patterns

Store

Private

widget Shared

Wiget

http://social/rest ...

http://social/rdf ...

http://social/sparql...

SocialLIFE

Social APIs

SPARQL Endpoint

Tags

SemanticLIFE

Data Feed

Personal Service

SPARQL Endpoint

http://local/rss
http://local/service
http://local/sparql
http://social/rest
http://social/rdf
http://social/sparql

72

5.5 Summary

This chapter has proposed some formulations for mashup-related concepts such as semantic

mashup, widget, and mashup rules. In addition, this chapter has also proposed a lightweight

mashup language and a semantic-based mashup system that support end-users to design

semantic-aware mashup dataflow. The next chapter will present the implementation prototype

of our mashup system, some significant use cases, and evaluation results.

73

 CHAPTER6

CHAPTER 6 IMPLEMENTATION RESULTS AND EVALUATION

6.1 Implementation Results

As a proof of concept and evaluation of the proposed approach, a prototype has been

developed based on Adobe Flex [147]. Adobe Flex is a free, open source application

framework for the development and deployment of cross-platform applications on all major

browsers, desktops, and devices.

For preparing data for mashup use cases, some financial data are converted from OFX

format into RDF triple and stored in the SemanticLIFE repository (as described in Section

3.3.1). Besides, some other SocialLIFE information resources such as Twitter tweets,

Facebook interests, Flickr images, etc. will be used.

6.1.1 Personal Resources Retrieval from SocialLIFE

Some user-generated contents in SNSs are available to download or access in structured

data, feeds, or other data formats that are open to everyone such as Open Graph of

Facebook. These structured data are the goldmine of potential mashup data that can be

mashed up and used by different applications. However, there are also some SNS sources

that are either unstructured or lack of the required information. Some examples of such data

resources are users’ tweets in Twitter or users’ interests in Facebook. Even if developers are

able to capture those data, they are not readily available for analysis or reuse.

In order to retrieve some unstructured personal resources from SNSs and preparing data

for mashup, a data retrieval component is implemented for extracting data from major SNSs

platforms such as Facebook, Flickr, Youtube, Twitter, and MindMeister [148]. The

unstructured data are transformed into structured data, which are leveraged in various ways

(i.e., mashup in our study). The retrieved data are also stored locally and used as the

buffered feeds to improve the processing performance.

74

For personal resources retrieval from SocialLIFE, personal resources from Facebook

have been retrieved and integrated with Freebase to annotate resources with the relevant

metadata in the following use case.

Collecting and aggregating social data from Facebook & Freebase

Facebook is a social networking service and has more than 500 million monthly active

users, 900 million objects and 30 billion pieces of contents that people interact with [149]. It

provides a social channel to enable users to create their personal Home Page (like profiles,

photos, events, etc.), and create their social connection (such as their friendships, joining an

interested group or community). It also supports a development platform that enables

developers to interact with Facebook data through its graph API and open graph protocol

[150]. Because of Facebook’s popularity, other enterprises and developers may include

Facebook’s Social Plugins into their websites or applications to make their pages more social.

The simplest example is the “Like Button” that enables users to like any links, movies, books,

etc. These characteristics make Facebook become a large online personal data repository.

In Facebook, many users may lose the overview of what their friends are doing and this

may lead to incorrect judgments about them when the interest of a friend is out-of-favor. For

this purpose, the user’s network of friends is scanned and all interests will be extracted. In the

next step, the interest items are automatically annotated with relevant information such as

book category, film genre, etc. In this case, Facebook users’ profiles and friends’ interests are

considered as the main entry and the main data for integration respectively. Depending on

the friends’ security and privacy settings, the integration application can access the personal

information, including name, gender, interest (music, books, movies, etc.), and some other

information. The solution for collecting and aggregating social data from Facebook &

Freebase can be summarized as follows:

- After Facebook’s users are logged in, the user profile and his/her friend list will be

extracted by Facebook Java API [150].

- Interest types (music, books, movies, television) of each Facebook friend will be

retrieved and integrated with Freebase for their annotation in turn. The integration

solution with Freebase will be described in next section.

In addition, this solution is also a preparing step for another mashup solution that

consumes the Facebook friends’ interest data to create a Self-Organising Map (SOM) for self-

monitoring in social networks. This approach was described with further details in Chapter 4.

In the later mashup solution, the output result will be delivered to the SOM component to

visualize and give the users an overview of his/her social network context.

75

The following figure depicts the steps for personal resources retrieval from social data in

Facebook & Freebase.

Figure 6.1: An example of personal resources retrieval from social data in Facebook &

Freebase

Integrating Freebase for retrieval of data annotation

Freebase was developed to be a large public structured knowledge base, which supports

human and machine-readable data in the semantic way. In Freebase, data are structured in

schema and expressed through domains, types, and properties. Freebase contains more

than ten million topics of people, places, and things with thousands of types [151]. Each topic

is linked to other related topics and annotated with important properties like movie genres,

book subjects, etc. With Freebase, users can query and disambiguates entities in varied

ways by searching for IDs, properties, or text. Every retrieved entity is available in JSON or

RDF, which makes it easy to analyze.

Our solution for retrieval of personal data annotation can be summarized as follows:

- Each user interest entry in Facebook will be classified in an appropriate type of

interest, then it will be searched in Freebase based on its schemas, which are

expressed via types and properties [152]. For example, the “book” is expressed in

type “book/book” and has some properties such as id, name.

Extract Interests

Integrate

 for

Annotation
SOM Visualization

76

- The user interest entry will be queried to Freebase by using Freebase API via

Metaweb Query Language (MQL) [153]. MQL allows developers to incorporate

their applications with data from Freebase database. For example, the following

query

https://api.freebase.com/api/service/mqlread?query={"query":{"type":"type_

of_interest","name_of_interest":"The World is flat","gerne":[]}} is

supposed to search the genre of a book named “The World is flat”.

- The details of interest entry are extracted from Freebase result.

The following figure depicts how an object (i.e. user interest entry) is annotated and

retrieved by querying in Freebase Schema.

Figure 6.2: Query Freebase schema for data annotation

Metaweb Query Language (MQL)

Result

Genre

“id”:”name_of_interest”

“type”:”type_of_interest

”

“id”:”id_of_genre”

“name”:”name_of_genre

”

Freebase Schemas

77

6.1.2 Mashup Workspace

With this framework, users can design mashups in a mashup workspace based on pre-built

widgets. The mashup workspace has an associated layout, which includes some core

components such as mashup widget tree, mashup editor, and mashup portal. These

components help users to design and execute mashup in a consistent front-end layout as the

following figure.

Figure 6.3: Mashup Workspace

6.1.3 Widget Tree

To represent widgets for the mashup design, a tree structure is used in a hierarchical view. In

this tree structure form, each widget is described in PRML syntax, in which the widget will

refer to the corresponding service, ontologies, and parameters. Some widgets will implement

the simple or complex logic service, which could be the personal services or the third party

social services (such as Google Map, Flickr, etc.). Some widgets may be translated to

SPARQL to query RDF data from the SPARQL endpoints. The widgets can be assigned to a

special privileged role to a particular user or a group of users.

In addition, end-users can combine with some other widget types:

- Viewers: present the mashup data in various formats such as in Geographic Map,

Grid, or Diagram.

78

- Functions: process the output data to adapt requirements with other widgets. For

instance, in order to show the location of the events’ place in map users need to use

‘Location converter’ to extract the latitude and longitude of the relevant place.

The following figure shows an example of widget tree with relevant configuration in PRML

that represent the widgets for personal resources mashups in SemanticLIFE and SocialLIFE.

<environment context='SemanticLIFE'>

 <widget role='user' creator='user'

 context='Calendar Event' service='CalendarEvent'

 type="calendar_event" mapping='slife:Calendar'

 source='http://localhost:8080/repositories/sparql'

 parameters='CalendarEvent.paras'/>

 <widget role='user' creator='user'

 context='Bank Statement' type="bank_statement"

 mapping='slife:BankStatement'

 source='http://localhost:8080/repositories/sparql'

 parameters='BankStatement.paras'/>

</environment>

<environment context='SocialLIFE'>

 <widget role='user' context='Facebook Friends'

 type='FacebookFriends' service='FacebookFriends'

 parameters='FacebookFriends.paras'/>

 <widget role='user' context='Facebook Events'

 type='FacebookEvents' service='FacebookEvents'

 parameters='FacebookEvents.paras'/>

 <widget role='user' context='LinkedIn Friends'

 type='LinkedInFriends'

 parameters='LinkedInFriends.paras'/>

 <widget role='user' context='Flickr'

 type='flickr'

 mapping='http://locahost/sociallife-items.owl#Image'

source='http://api.flickr.com/services/rest/?method=flick

r.photos.search'

 parameters='flickr.paras'/>

 <widget role='user' service='Youtube'

 type="youtube" mapping='rdf:type Video'

 parameters='Youtube.paras'/>

 <widget role='user' context='Weather'

 type="weather" mapping='rdf:type Weather'

 parameters='Weather.paras'/>

 …

</environment>

Figure 6.4: Widget tree for personal resources mashups in SemanticLIFE and SocialLIFE.

79

6.1.4 Widget UI

Widget UI is an instance for a specific widget in the widget tree. In the proposed mashup

system, Widget UI is both a graphical user interface and a software component with a specific

function. Widget UI is defined in PRML syntax that can be rendered and described as a user

interface with functional form elements. In this section, a convenient and flexible Widget UI

generation mechanism is provided for parsing the predefined widget from PRML files into a

built-in form.

Widget UI generation mechanism

The mechanism for Widget UI generation is described as in the following figure and steps:

Figure 6.5: Widget UI generation mechanism

- First, the user interface configuration and functionality of the widgets are defined in

PRML files.

- Then the widget PRML files are imported into the widget manager.

- The widget container will validate and render those PRML files:

o Widget parameters are in turn rendered into form properties, services, data

format, and input/output.

o Service parameter will be called by the relevant service.

o Input/output parameters will be mapped with the appropriate ontologies.

- Finally, Widget UIs are generated if the validation is successful.

map

import

Widget PRML Files

Widget Manager

generate

Widget UIs

validate and render

Widget Container

Widget Parameters

Service

Data Format

Form Property

Inputs/Output

s
 Ontologies

Service call

80

Service and user interface of a Widget UI are rendered by a widget container with the

following parameters:

- Form properties types: support String, Number, Array, Boolean, Date.

- Mapping type: support mapping to ontology resource or properties. For example, in

order to map a location with a place ontology, the following syntax is used:

mapping=’rdf:type Place’ if the place ontology of RDF Schema, or mapping=’dbpedia-

owl: Place’ if the place ontology of DBpedia.

- Data Format: is the type of data format that input or output port accepts. The data

format can be JSON, XML, or object.

- Service: is referred to a specific viewer (e.g. Calendar Viewer, Flickr Viewer, etc.),

data operation (e.g. Location converter, etc.), or service (e.g. personal service, third

party service, or SPARQL-based service).

The following example describes the generation steps of Widget UI with the appropriate

ontologies and service from a PRML file:

- Widget’s parameters are defined in PRML file: for example, FacebookEvents requires

four input parameters, namely ‘event_name’, ‘place’, ‘start_time’ and ‘end_time’; and

one output parameter namely ‘events’.

- Widget parameters are rendered into form elements that are mapped with appropriate

domain ontologies and service. Each input parameter is represented as a form

element such as textbox, combo box or date field. For example, the FacebookEvents

widget is executed by the built-in service ‘FacebookEvents’, input parameter ‘place’

represents a textbox and is mapped with the ontology ‘vcard:address’, input

parameter ‘start_date’ represent a date field, and is mapped with the ontology

‘og:start_time’, etc.

- Widget UI is then parsed into a SPARQL query with relevant variables according to

the widget-based query generation in section 5.3.3.

81

The following figure depicts more details for the example mentioned above:

D
e
fi

n
in

g
 W

id
g

e
t

P
a

ra
m

e
te

rs

<parameter widget='FacebookEvents'>

 <input acceptedDataFormat='String' type='string' name='event_name'

 mapping='foaf:name' label='Event Name' operator='regex'

 value='%EVENT_NAME%'/>

 <input acceptedDataFormat='String' type='string' name='place'

 mapping='vcard:address' label='Place' operator='regex'

 value='%PLACE%' />

 <input acceptedDataFormat='Date' type='date' name='start_time'

 mapping='og:start_time' label='Start Date' operator='>='

 value='%START_TIME%'/>

 <input acceptedDataFormat='Date' type='date' name='end_time'

 mapping='og:end_time' label='End Date' operator='<='

 value='%END_TIME%'/>

 <output mapping='rdf:type Events' label='Events' name='events'/>

</parameter>

M
a
p

p
in

g
 O

n
to

lo
g

y
 a

n
d

S
e
rv

ic
e
 w

it
h

 W
id

g
e
t

U
I

M
a
p

p
in

g
 p

a
ra

m
e
te

rs
 f

ro
m

W
id

g
e
t

U
I

in
to

 S
P

A
R

Q
L

SELECT ?thing ?event_name ?place ?start_time ?end_time

WHERE {?thing foaf:name ?event_name .

?thing vcard:address ?place .

?thing og:start_time ?start_time .

?thing og:end_time ?end_time

 . FILTER (regex(?event_name,'Conference'))

 . FILTER (regex(?place,'Wien'))

 . FILTER (?start_time >='2013-10-01')

 . FILTER (?end_time <='2013-11-30')

}

ORDER BY ?thing

Figure 6.6: Parsing FacebookEvents widget’ parameters into Widget UI and relevant

SPARQL query.

Service

Domain

Ontology

82

6.1.5 Mashup Editor

The mashup editor is used to design the visual mashup by dragging and dropping widgets

from the widget tree into the mashup editor. The drag-and-drop widgets will be rendered in

corresponding widget UIs that represent the data/service operations. Widgets can be

connected via feasible connections according to the first rule in section 5.3.1. For each

feasible connection, when users choose an output port to find the connectable input port, the

mashup editor will highlight the input ports of other widgets that have the same matching data

or ontology type.

For instance in the following figure, the output of ‘Bank statements’ widget has the feasible

connection with the input of ‘Calendar Viewer’ widget, which is highlighted but the input port

of ‘Google Map’.

Figure 6.7: Mashup editor with highlighted feasible connection

83

6.1.6 Mashup Portal

Mashup portal is a workplace that displays widget UIs and delivers mashup data to users.

Mashup portal is built by composing separate widget UIs in the mashup design phase of

mashup editor. Each widget UI provides the mashed up data from diverse sources or

services. After executing mashed up services, their results are rendered and shown as

appropriate widget UIs in a uniform way where users can access and preview their mashup

data. Mashup portal also allows users to customize or navigate their view of information. The

following figure illustrates how the mashup portal is displayed.

Figure 6.8: Mashup Portal with some sample widget UIs

84

6.1.7 Mashup Sequence Diagram

The following figure shows the UML sequence diagram that summarizes the sequence

activities for designing and running data mashups in our framework.

Figure 6.9: Sequence diagram of designing and running mashup

In the above sequence diagram, after receiving the loaded widget message, the mashup

workspace will request the widgets from the widget manager. The relevant widget is then

returned to users for editing. Once users request mashup to run, the mashup workspace will

send the processing mashup message to the mashup manager. The mashup manager will

process each widget in turn by executing the corresponding service. The retrieval result will

be mashed up to return mashup data.

During the design phase, users can edit (update or delete) the loaded widget, or load the

new one. In addition, users can run a specific widget to preview the mashup data instead of

running the whole mashup workflow.

85

6.1.8 Mashup Use Cases

As a proof of concept, the proposed approach has been applied to some mashup use cases

that integrate personal resources in SemanticLIFE and SocialLIFE in our mashup platform.

Use Case 1: Personal Finance Mashup

According to a statement of Tim Berners-Lee, “There is lots of data we all use every day, and

it is not part of the web. I can see my bank statements on the web, and my photographs, and

I can see my appointments in a calendar. But can I see my photos in a calendar to see what I

was doing when I took them? Can I see bank statement lines in a calendar?

Why not? Because we do not have a web of data. Because data is controlled by applications,

and each application keeps it to itself”

Besides, you might have many bank accounts and want to keep a record of different bank

transactions from those accounts in a single view such as a calendar view.

For addressing this use case, the mashable bank statements have been prepared as

described in section 3.3.1. In mashup editor, two following basic widgets are used:

- Bank Statements widget: retrieves bank statements for a bank account in a specific

time.

- Calendar widget: shows details of bank statements in a single and flexible view.

The following figure depicts for the personal finance mashup.

Figure 6.10: Personal finance mashup for showing bank statements in calendar view

86

Use case 2: Self-monitoring in SocialLIFE

In Facebook environment, each user usually has a number of friends in his/her network,

where each friend has a collection of interests including books, movies, music, etc. Many

users may lose the overview of what their friend are doing and this might lead to incorrect

judgments when the interest of a friend is out-of-favor. A simple mashup is requested to

create a SOM of all types of interests, in which friends of a specific user are interested. The

SOM map is then highlighted according to user ethics of relevant interest of this user. The

high risk groups of friends are highlighted on the interest map of friends to help the user find

out the inappropriate connections in his/her Facebook profile.

For realizing this self-monitoring use case, the user’s network of friends in Facebook is

scanned and all interests will be extracted:

- At first, the data from Facebook API for a specific user has been extracted. The

following categories of interest have been considered: books, music, movies, and

television.

- In the next step, the interest items are annotated with relevant categories such as

books, music types, movies genres, or television shows. For a better classification, the

genres of the music bands, television shows, movies and books are used instead of

their titles (for example, movie Heroes has the genre of Drama/Sci-Fi). The mashable

resources for this use case have been retrieved and extracted as described in details

in section 6.1.1.

- Finally, a classification of friends according to their interest will be displayed on SOM

visualization as depicted in the following figure.

87

Figure 6.11: SOM visualization and clustering of friends’ interest from Facebook.

In this use case, the following widgets have been used:

- Interest of friends in Facebook: this widget retrieves the annotated interest of friends

in Facebook.

- Ethics Maker: according to user’s ethics, the high risk groups of friends are highlighted

on the interest map of friends to help the user find out inappropriate connections in

his/her Facebook profile.

- SOM Visualization: the interest of each friend and classification of friends according to

their interest are visualized in a widget. In this SOM map, each category will be

classified by a different color and displayed in a circle (movies in pink, books in cyan,

television in green and music in yellow). The small yellow number and the big black

number indicate the number of friends who are interested in the relevant category and

in the same genre of categories, respectively.

88

Similarly, the proposed approach has also been applied to Twitter use case. In this use

case, the tweets of a user are extracted from Twitter using Twitter API [154]. In the next step,

the words are disambiguated and visualized in a SOM. This step uses the top 1000 frequent

words that have been occurring in the input tweets. In this use case, the highlighted red

points are those areas that are violating the job ethics in organizations/enterprises context.

The result of this process is depicted in the following figure.

Figure 6.12: SOM visualization and clustering of friends’ twits from Twitter for self-monitoring.

89

Use case 2: Personalized Mashup

I want to check events in my local calendar as well as from my SNSs in a specific time. For a

specific event, show me some famous tourist attractions in the location of that event,

including some photos (if available), other additional contextual information (weather

condition, political status, my social friends, etc.), and show all information on my mashup

portal.

In this context, it is necessary to analyze and map the above information into appropriate

resources and services as follows:

- The next event (time, location) can be retrieved in the user’s event from both

SemanticLIFE and SocialLIFE (i.e. Facebook in this case).

- The famous tourist attractions near the retrieved event location are queried from SNSs

API (Freebase, DBPedia, Flickr APIs) and shown on the map if their geocoding data is

available.

- If the weather condition is required, the weather widget will provide forecast data for

the given location (Google Weather API).

The following figure illustrates the overview for this use case.

Figure 6.13: A personalized mashup use case on demand

Mashup Workspace

Map + Weather Widget Photo Widget

Other context

Other Social APIs (Google Map,

Weather, etc.)

Weather Data Photo

Other Services

Geocoding LinkedData

Geometry Other data Place

Data Extraction

Other Contexts

Time

Location

Services

Mashup

Personal Services

SemanticLIFE SocialLIFE

request

Additional Context

(Photo, Weather, etc.)

Local Events

Social Events

90

Figure 6.14: Design personalized mashup in Mashup Editor

With such a personalized mashup, the mashup editor will contain six widgets (as depicted

in the above figure):

- Calendar Events widget: retrieves personal calendar events in SemanticLIFE or

SocialLIFE (i.e., Facebook events). This widget will return the events with relevant

information (e.g. locations or organizer).

- Tourist attractions widget: calls third party service to return information about Places

based on the input location. This service may be a query to DBpedia via its dedicated

SPARQL Endpoint.

- Geolocation converter: is a widget that converts the place address into the geolocation

format for viewing in Google map.

- Google map widget: shows the obtained places in map visualization.

- Flickr widget: is a third party service of Flickr to search photos that match some

criteria, in this use case, the matching condition will be the place name.

- Weather widget: shows the weather forecast of the given place.

91

6.2 Mashup Framework Evaluation

Several evaluation frameworks [155], [156], [157], [158], [159] have tried to evaluate existing

mashup tools and existing approaches in different dimensions. In the scope of this research,

the mashup framework is evaluated preliminarily using the following evaluation features.

6.2.1 Mashup Framework Components

The primary feature of mashup framework is the requirement of components [159], [160]

[161], in which three basic requirements are integration of existing services and information,

data aggregation in server-side, and information presentation in client-side. In addition,

mashup framework is required providing easy integration of existing mashup components as

well as an efficient allocation of mashup components. These components can be mashed up

via generic APIs or SPARQL Endpoint that retrieve data from different sources.

Our approach is also conducted in a similar way to deal with the major design

characteristics of mashup applications:

- Integrate existing services and information: SPARQL query language and REST

services are the key services in our framework for querying semantic data that linked

data stored in RDF format and third party services from SNSs, respectively.

- Aggregate data on the server side: some common format standards such as JSON,

XML are used to provide a simpler format for data aggregation on the server side.

- Present information on the client side: the results getting from the server side can be

visualized on the client side as image, map, or data grid.

6.2.2 Data Retrieval Strategy

Data retrieval strategy is a fundamental step in mashup programming since it makes the data

available for being used in mashups [157]. Some mashup tools use screen scraping and

access the document object model of the web pages [47], [48], [64]. In some cases, some

frameworks require scripting and code handling. As a result, users need to understand RSS,

XML, gadgets, JSON, RDF feeds, and mashup query languages [51], [53], [83], [86], [145].

This research has conducted data retrieval and annotate in a semantic way with pre-built

widgets that allow users to simply drag and drop them into mashup editor without prior

knowledge of RDF, SPARQL, etc.

92

6.2.3 Mashup Development Cycle

Mashup framework should focus on the discovery mashable components as the core

elements of the development process by enabling the reuse of existing resources in new

combinations [159], [161]. With our UI generation mechanism of widgets, developers can

reuse or extend existing widget and services for further development.

6.2.4 Simple User Interaction Mechanism

One of the main objectives of mashup framework is to provide a graphical and simple user

interaction that abstracts the users from the underlying resources and the corresponding

technical interfaces [162]. Although the current mashup developments focus mainly on the

data aggregation that aims at automating or semi-automating mashup development to serve

non-programmers, the end-users are still required a basic level of programming knowledge,

such as identifying parameters for operators, loops problems, if-else-then, strings

comparison, or some SPARQL syntax [50], [84].

Most of the current mashup tools provide a mashup window containing SPARQL queries

to support in querying RDF data sources and web feeds. Some mashup tools use a specific

mashup language that is not easy to understand for end-users without prior knowledge of that

language or extensive programming skills. In our solution, end-users can be non-

programmers but can easily find the correct widgets on the fly. The following figure depicts

the semantic-aware dataflow of input/output connections between widgets. This feature

allows users to find feasible widget connections easily.

Figure 6.15: Semantic-aware dataflow

Wrong mashup connection which is not

allowed in mashup editor

Feasible mashup connection

93

6.2.5 Security and Privacy Policy

The major risks in creating mashup are security and privacy policies [157], [162], [122].

Due to involvement of servers, the security and privacy policies such as cookies issues

should be handled with care. This always happens in case of server-based mashup tools

[50]. If mashup applications are developed and used as browser add-ons [64], [66], they can

address these issues. However, those browser add-ons are required to solve the problem of

supporting multiple web browsers.

In our implementation, an open source application framework of Adobe Air and Flex is

applied. This platform supports common design patterns, which are suitable for all major

browsers, desktops and multiple devices. Our framework has also applied WSD and SOM

techniques to support users in personal resources clustering, self-monitoring mashup data

and avoid unwanted information in SNSs via a visualization way.

The following figure demonstrates the perspective of running in multiple environments for

our mashup platform.

Figure 6.16: Running mashup platform in multiple environments perspective.

94

6.2.6 Integrating SemanticLIFE and SocialLIFE data

The last major goal of this mashup framework is integrating SemanticLIFE and SocialLIFE

data. With this feature, mashup technology is used as an effective way to facilitate the

integration of personal resources on Semantic Desktops and SNSs.

The following table shows some existing features and points out some advanced features

of our semantic-based mashup system compared with other mashup products. The most

noticeable features in our system are semantic-aware dataflow, self-monitoring mashup, and

integrating Semantic Desktops and SNSs (integrate SemanticLIFE and SocialLIFE in

particular).

Features Our semantic-based

mashup system

Yahoo

Pipes

JackBe Dapper DERI

Pipes

Data Retrieval √ √ √ √ √

Data Aggregation √ √ √ √

Data Flow √ √ √ √

Semantic data √ √

Semantic-aware dataflow √

Reuse/extend mashup

component

√ √ √ √ √

Self-monitoring mashup √

Integrate Semantic

Desktops and SNSs

√

Table 6.1: Advanced features in semantic-based mashup system compared with other

mashup products.

95

CHAPTER7

CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

Considering the information overload issues both on Semantic Desktops and SNSs, this

research aims to use semantic metadata for information integration and semantic-based

mashups to benefit the personal resources. This research proposed a lightweight mashup

language and semantic-based mashup framework for creating personal resources mashup

solutions. In addition, a solution of self-monitoring for mashable resources is proposed.

Although the implementation of this mashup framework is in progress, and some more

components are still needed, the implemented prototype shows the efficiency of the proposed

approach. The research contributions of this research work can be summarized as follows:

- Integrating personal resources in SemanticLIFE and SocialLIFE

o Expanding the scope of SemanticLIFE into the web of data instead of isolated

data silos on the desktop.

o Bridging the gap between SemanticLIFE and SocialLIFE in order to integrate

and reuse existing personal resources in different use cases.

- Building semantic-based mashup system

o Lightweight mashup language: creates a simple mashup language to help

users to develop widgets based on their required context in a semantic way.

o Main components of a mashup framework: the major components of a mashup

framework such as mashup editor, mashup portal have been developed.

These components facilitate the integration of existing services and personal

resources.

o Simple mashup mechanism: supports end-users to create mashup solutions

based on pre-built widgets and create new widgets that inherit predefined

widgets.

96

o Semantic-aware mashup dataflow: users may easily create mashups and find

the connectable ports via the semantic-aware input/output ports of widgets on

the fly.

o Self-monitoring mashup data: support users in self-monitoring their social data

to get rid of unintentional risks or sensitive information leakages.

- Utilizing Semantic Web, Linked Data, and mashup technologies towards the layered

approach of Open Semantic Enterprise (OSE) and semantic information integration.

Our proposed solutions can be adapted to OSE as depicted in the following figure.

-

-

-

-

-

-

-
-

Figure 7.1: The vision of adapting mashup application in the layered approach of

Open Semantic Enteprise.

SemanticLIFE

SocialLIFE

Linked Data

Web

Services

SPARQL

External

Web Pages

Information

Extraction

Information

Extraction

Enterprise

Documents

Linked Data

SPARQL

Web

Services

External Web

DBs and APIs

RDFizer

Linked Data

SPARQL

Web

Services

RDFizer

RDBMS

Data ‘Silo’

Linked Data

SPARQL

Web

Services

RDBMS

Triple Store

Linked Data

SPARQL

Web

Services

RDBMS

Data ‘Silo’

RDFizer

Linked Data

SPARQL

Web

Services

Access/

Conversion

Layer

External

Internal

Existing

Assets

Ontology

Layer

Security and

Privacy

Mashup

Layer

97

In this section, the research questions are revisited to show how the proposed solution

can address these challenging issues.

RQ1. How to apply a semantic-driven approach that integrates personal life items in

Semantic Desktops and SNSs in order to benefit individual, collaborative work and better

solve business processes in organizations/enterprises?

To answer this research question, Chapter 3 presented the mashable resources solution

by applying semantic and Linked Data technologies for linking the personal resources in

Semantic Desktops and SNSs. In addition, a number of existing vocabularies of LOD cloud

and adapted ontologies have been used such as FOAF, Geolocation, DBpedia’s datasets,

and OFX – ontology for personal finance. With the combination of these technologies, a

better linking and sharing mechanism between data resources and information have been

provided in which the shared information is not just textual contents but also multimedia

contents (such as images, videos, etc.).

RQ2. How to secure mashable resources that can be combined with

personal/organization policies in order to protect and filter sharing data in a collaborative

environment of enterprise?

To address the security-related issues in data mashups, Chapter 4 applied the WSD and

SOM techniques to help users in self-monitoring and avoiding unwanted information leakage,

as well as identifying trustworthy mashable resources. In addition, with pre-built widgets that

have been developed in our framework, users can have a better overview of information

resources.

RQ3. How to create a semantic-based unified mashup model to support end-users in the

fast creation of data mashups and to fulfill users’ requirements on demand for enterprise?

Chapter 5 described a semantic-based mashup framework where end-users and mashup

developers collaborate to design mashup on demand. To illustrate how mashup can be

designed and executed, some example use cases were described and implemented. Those

use cases typically prove the semantic-based mashup possibilities in mashup framework as

presented in Chapter 6.

98

7.2 Future Work

In the next studies, the development of our proposed system should be continued to improve

the mashup language and self-monitoring components. Automatic widget composition would

also be a major task in the future research of semantic mashup. The mashup sharing issues

should be done in order to support end-users in collaborating to build data mashups in

enterprises.

Besides, more third party APIs of SNSs should be exploited and implemented in order to

enrich personal resources and the mashup repository as well. In addition, further experiments

for performance and usability evaluation should be conducted. Finally, more mashup scenario

should be carried out to benefit the business value of knowledge worker resources, towards

Open Semantic Enterprise context in future.

99

Bibliography

[1] L. Baird and I. Meshoulam, “Managing Two Fits of Strategic Human Resource
Management,” Academy of Management Review, vol. 13, 1988.

[2] D. Pauleen, “Personal knowledge management: Putting the ‘person’ back into
the knowledge equation,” Online Inf. Rev., vol. 33, no. 2, pp. 221–224, 2009.

[3] T. Berners-Lee, H. James, and L. Ora, “The Semantic Web,” 2001. [Online].
Available: http://www.scientificamerican.com/article.cfm?id=the-semantic-web.
[Accessed: 26-Mar-2008].

[4] D. E. O’Leary, “Enterprise knowledge management,” Computer (Long. Beach.
Calif)., vol. 31, no. 3, pp. 54–61, 1998.

[5] A. McAfee, “Enterprise 2.0: The Dawn of Emergent Collaboration,” MIT Sloan
Management Review, 2006. [Online]. Available:
http://sloanreview.mit.edu/article/enterprise-the-dawn-of-emergent-
collaboration/. [Accessed: 11-Sep-2012].

[6] D. Hinchcliffe, “Enterprise 2.0: Finding success on the frontiers of social
business,” 2009. [Online]. Available: http://blogs.zdnet.com/Hinchcliffe/?p=744.
[Accessed: 25-Sep-2012].

[7] D. Hinchcliffe, “14 Reasons Why Enterprise 2.0 Projects Fail,” 2009. [Online].
Available: http://blogs.zdnet.com/Hinchcliffe/?p=718. [Accessed: 25-Sep-2012].

[8] E. Metter, T. Perrin, V. Gyster, and R. Lamson, “Enterprise 2.0 and HR -
Realizing the Potential,” IHRIM J., vol. XII, no. 5, 2008.

[9] A. Corriveau, “The Informal Organization.” [Online]. Available:
http://www.businesswire.com/portal/site/google/index.jsp?ndmViewId=news_vie
w&newsId=20070731005934&newsLang=en. [Accessed: 15-Aug-2012].

[10] Tim Berners-Lee, “Linked Data,” 2006. [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html. [Accessed: 22-Sep-2012].

[11] C. Newmark, “Craigslist,” 2008. [Online]. Available: www.craigslist.org.
[Accessed: 04-Dec-2013].

[12] A. Anjomshoaa, “Integration of Personal Services into Global Business,” Vienna
University of Technology, Vienna, Austria, 2009.

100

[13] M. Ahmed, H. H. Hoang, M. S. Karim, S. Khusro, M. Lanzenberger, K. Latif, E.
Michlmayr, K. Mustofa, H. T. Nguyen, A. Rauber, A. Schatten, T. M. Nguyen, A.
M. Tjoa, and T. A. M. Ahmed M, Hoang H H, Karim M S, Khusro S,
Lanzenberger M, Latif K, Michlmayr E, Mustofa K, Nguyen H T, Rauber A,
Schatten A., Tho M. N., “‘SemanticLIFE’ - A Framework for Managing
Information of A Human Lifetime.,” in iiWAS, 2004, vol. 183, no. October 2004.

[14] Isidro Laso Ballesteros, “New Collaborative Working Environments 2020 -
Report on industry-led FP7 consultations,” Bruxelles, 2006.

[15] T. O’Reilly, “What is Web 2.0?,” 2005. [Online]. Available:
http://oreilly.com/web2/archive/what-is-web-20.html. [Accessed: 26-Jun-2011].

[16] A. McAfee, “Enterprise 2.0, version 2.0.” [Online]. Available:
http://andrewmcafee.org/2006/05/enterprise_20_version_20/.

[17] B. Hyland, “Preparing for a Linked Data Enterprise,” in Linking Enterprise Data
SE - 3, D. Wood, Ed. Springer US, 2010, pp. 51–64.

[18] D. Fichter, “What is a Mashup?,” 2005. [Online]. Available:
http://books.infotoday.com/books/Engard/Engard-Sample-Chapter.pdf.

[19] JackBe, “A Business Guide to Enterprise Mashups,” 2008. [Online]. Available:
http://mdc.jackbe.com/downloads/JackBe_business_guide_to_enterprise_mash
ups.pdf. [Accessed: 15-Aug-2012].

[20] J. G. Breslin, Alexandre Passant, and Stefan Decker, The Social Semantic
Web. Springer, 2009.

[21] G. Bader, A. Anjomshoaa, and A. M. Tjoa, “Privacy Aspects of Mashup
Architecture,” 2010 IEEE Second Int. Conf. Soc. Comput., pp. 1141–1146, Aug.
2010.

[22] ProgrammableWeb.com, “ProgrammableWeb - Mashups, APIs, and the Web
as Platform,” 2013. [Online]. Available: http://www.programmableweb.com/.

[23] S. Peenikal, “Mashups and the Enterprise,” White Paper, 2009.

[24] V. Hoyer and K. Stanoevska-Slabeva, “Design Principles of Enterprise
Mashups,” in Wissensmanagement, 2009, pp. 242–253.

[25] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh, “Damia -
Data Mashups for Intranet Applications,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data - SIGMOD ’08,
2008, p. 1171.

101

[26] P. De Vrieze, L. Xu, A. Bouguettaya, J. Yang, and J. Chen, “Process-Oriented
Enterprise Mashups,” 2009 Work. Grid Pervasive Comput. Conf., pp. 64–71,
May 2009.

[27] M. Ogrinz, Mashup Patterns - Designs and Example for the Modern Enterprise.
Addison Wesley, 2009, p. 428.

[28] G. Bader, A. Anjomshoaa, and Am. M. Tjoa, “A Context-Aware Mashup
Integration Guideline for Enterprise 2.0,” in Multidisciplinary Research and
Practice for Information Systems SE - 2, vol. 7465, G. Quirchmayr, J. Basl, I.
You, L. Xu, and E. Weippl, Eds. Springer Berlin Heidelberg, 2012, pp. 17–30.

[29] M. K. Bergman, “Seven Pillars of the Open Semantic Enterprise,” 2010.
[Online]. Available: http://www.mkbergman.com/859/seven-pillars-of-the-open-
semantic-enterprise/. [Accessed: 16-Jan-2011].

[30] H. B. Guentner Georg, “The Open Semantic Enterprise - Enterprise Data meets
Web Data,” 2nd B2B Software Days. Vienna, Austria.

[31] P. F. Drucker, The Effective Executive: The Definitive Guide to Getting the
Right Things Done. Harperbusiness Essentials, 1967.

[32] P. F. Drucker, Management Challenges for the 21st Century. Harper Business,
1999, p. 207.

[33] Doculabs, “Social Computing and Collaboration for the Enterprise - Enabling
Knowledge Worker Productivity,” White Paper, 2010.

[34] M. Platt, “Web 2.0 in the Enterprise,” Architecture Journal, 2007. [Online].
Available: http://msdn.microsoft.com/en-us/library/bb735306.aspx. [Accessed:
07-Mar-2012].

[35] D. Quan, D. Huynh, and D. R. Karger, “Haystack: A Platform for Authoring End
User Semantic Web Applications,” in Second International Semantic Web
Conference (ISWC 2003), vol. ISCW, D. Fensel, K. Sycara, and J. Mylopoulos,
Eds. Sanibel Island, FL, USA: Springer, 2003, pp. 738–753.

[36] G. Tummarello, C. Morbidoni, M. Nucci, D. Elettronica, and I. Artificiale,
“Enabling Semantic Web Communities with DBin: An Overview,” in The
Semantic Web - ISWC 2006 SE - 69, vol. 4273, I. Cruz, S. Decker, D.
Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, Eds.
Springer Berlin Heidelberg, 2006, pp. 943–950.

[37] J. Iturrioz, S. F. Anzuola, and O. Díaz, “Turning the Mouse into a Semantic
Device: The seMouse Experience,” in The Semantic Web: Research and

102

Applications SE - 34, vol. 4011, Y. Sure and J. Domingue, Eds. Springer Berlin
Heidelberg, 2006, pp. 457–471.

[38] DFKI, “Gnowsis - Semantic Desktop environment.” [Online]. Available:
http://www.gnowsis.org/. [Accessed: 25-Sep-2012].

[39] T. Groza, S. Handschuh, K. Moeller, G. A. Grimnes, L. Sauermann, E. Minack,
C. Mesnage, M. Jazayeri, G. Reif, and R. Gudj�nsd�ttir, “The NEPOMUK
Project - On the way to the Social Semantic Desktop,” in Proceedings of
International Conferences on new Media technology (I-MEDIA-2007) and
Semntic Systems (I-SEMANTICS-07), Graz, Austria, September 5-7., 2007, pp.
201–210.

[40] A. Cheyer, J. Park, and R. Giuli, “IRIS: Integrate. Relate. Infer. Share,” 1st
Work. Semant. Desktop. 4th Int. Semant. Web Conf., 2005.

[41] X. L. Dong and A. Halevy, “A Platform for Personal Information Management
and Integration,” in Second Biennial Conference on Innovative Data Systems
Research (CIDR 2005), 2005.

[42] S. Handschuh and S. Decker, “The Semantic Desktop at Work : Interlinking
Notes,” in Proceedings of the 7th International Conference on Semantic
Systems (I-Semantics ’11), 2011, pp. 17–24.

[43] M. Ahmed, “Context-Based Privacy Management of Personal Information Using
Semantic Desktop : SemanticLIFE Case Study,” in Proceedings of the 10th
International Conference on Information Integration and Web-based
Applications & Services (iiWASS ’08), 2008, no. c, pp. 214–221.

[44] C. Dan, “Guiding Principles for the Open Semantic Government,” 2010.
[Online]. Available: http://docwiki.citizen-
dan.org/index.php/Guiding_Principles_for_the_Open_Semantic_Government.
[Accessed: 25-Sep-2012].

[45] S. Bridges, J. Schiffel, and S. Polovina, “OpenSEA : A Framework for Semantic
Interoperation between Enterprises,” in Next Generation Data Technologies for
Collective Computational Intelligence Studies in Computational Intelligence, vol.
352, 2011, pp. 61–86.

[46] A. Passant, P. Laublet, J. G. Breslin, and S. Decker, “Enhancing Enterprise 2.0
Ecosystems Using SemanticWeb and Linked Data Technologies: The
SemSLATES Approach,” no. Linking Enterprise Data, D. Wood, Ed. Boston,
MA: Springer US, 2010, pp. 79–102.

103

[47] D. F. Huynh, D. R. Karger, and R. C. Miller, “Exhibit: lightweight structured data
publishing,” in Proceedings of the 16th international conference on World Wide
Web, 2007, pp. 737–746.

[48] MIT, “SIMILE Project,” 2011. [Online]. Available: http://simile.mit.edu/.
[Accessed: 20-Sep-2012].

[49] Yahoo Dapper, “Dapper: The Data Mapper,” 2012. [Online]. Available:
http://open.dapper.net/. [Accessed: 22-Sep-2012].

[50] Yahoo Pipes, “Pipes: Rewire the web,” 2012. [Online]. Available:
http://pipes.yahoo.com/pipes/. [Accessed: 22-Sep-2012].

[51] JackBe, “JackBe Presto,” 2012. [Online]. Available:
http://jackbe.com/products/presto. [Accessed: 22-Sep-2012].

[52] S. Mayers and M. Lee, “Mac OS X Automation with Automator and
AppleScript,” in Learn OS X Lion SE - 31, Apress, 2011, pp. 593–627.

[53] WSO2, “WSO2 Mashup Server–where to now?,” 2012. [Online]. Available:
http://wso2.com/blogs/thesource/2012/12/wso2-mashup-serverwhere-to-now/.
[Accessed: 22-Sep-2012].

[54] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau, Y.-H. Ng,
D. Simmen, and A. Singh, “Damia: a data mashup fabric for intranet
applications,” in Proceedings of the 33rd international conference on Very large
data bases, 2007, pp. 1370–1373.

[55] IBM, “Software withdrawn: IBM Mashup Center,” 2012. [Online]. Available:
http://www-01.ibm.com/common/ssi/rep_ca/8/897/ENUS912-068/ENUS912-
068.PDF. [Accessed: 22-Sep-2012].

[56] Synergex, “Serena Business Mashups,” 2008. [Online]. Available:
http://pvcs.synergex.com/products/serena_business_mashups.aspx.
[Accessed: 20-Oct-2012].

[57] Romulus, “MyCocktail Mashup Builder,” 2010. [Online]. Available:
http://www.ict-romulus.eu/web/mycocktail. [Accessed: 20-Oct-2012].

[58] Omelette, “Omelette Project,” 2009. [Online]. Available: http://www.ict-
omelette.eu/home. [Accessed: 20-Sep-2012].

[59] M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and M. Marchese, “ResEval
Mash : A Mashup Tool for Advanced Research Evaluation,” Proc. 21st Int. Conf.
companion World Wide Web (WWW ’12 Companion), pp. 361–364, 2012.

104

[60] ServFace, “ServFace - Service Annotations for User Interface Composition,”
2010. [Online]. Available: http://www.servface.eu/. [Accessed: 25-Sep-2012].

[61] Google, “Google Mashup Editor,” 2009. [Online]. Available:
https://developers.google.com/mashup-editor/. [Accessed: 25-Sep-2012].

[62] M. Popfly, “Microsoft Popfly,” 2007. [Online]. Available:
http://en.wikipedia.org/wiki/Microsoft_Popfly. [Accessed: 25-Sep-2012].

[63] R. J. Ennals and M. N. Garofalakis, “MashMaker: Mashups for the Masses,” in
Proceedings of the 2007 ACM SIGMOD international conference on
Management of data - SIGMOD ’07, 2007, p. 1116.

[64] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and P. Gandhi, “Intel Mash
Maker: Join the Web,” ACM SIGMOD Rec., vol. 36, no. 4, p. 27, Dec. 2007.

[65] M. Kaply, “Operator - Add-ons for Firefox,” 2010. [Online]. Available:
https://addons.mozilla.org/en-us/firefox/addon/operator/. [Accessed: 25-Sep-
2012].

[66] D. Huynh, S. Mazzocchi, and D. Karger, “Piggy Bank: Experience the Semantic
Web Inside Your Web Browser,” in The Semantic Web – ISWC 2005 SE - 31,
vol. 3729, Y. Gil, E. Motta, V. R. Benjamins, and M. Musen, Eds. Springer
Berlin Heidelberg, 2005, pp. 413–430.

[67] MIT, “Piggy Bank,” 2011. [Online]. Available:
http://simile.mit.edu/wiki/Piggy_Bank. [Accessed: 20-Oct-2012].

[68] T. Berners-lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A.
Lerer, and D. Sheets, “Tabulator: Exploring and analyzing linked data on the
semantic web,” Proc. 3rd Int. Semant. Web User Interact. Work., 2006.

[69] B. Hartmann, L. Wu, K. Collins, S. R. Klemmer, and S. R. Klemmer,
“Programming by a Sample: Rapidly Prototyping Web Applications with d.mix,”
in Proceedings of the 20th annual ACM symposium on User interface software
and technology - UIST ’07, 2007, pp. 241–250.

[70] S. Abiteboul, O. Greenshpan, and T. Milo, “Modeling the mashup space,”
Proceeding 10th ACM Work. Web Inf. data Manag. - WIDM ’08, p. 87, 2008.

[71] S. Ikeda, T. Nagamine, and T. Kamada, “Application Framework with Demand-
Driven Mashup,” J. Univers. Comput. Sci., vol. 15, no. 10, pp. 2109–2137,
2009.

105

[72] M. Vasko and S. Dustdar, “Introducing collaborative Service Mashup design,” in
Lightweight Integration on the Web (ComposableWeb’09), 2009, no. April, pp.
51–62.

[73] R. Gurram, B. Mo, and R. Gueldemeister, “A Web Based Mashup Platform for
Enterprise 2.0,” in Web Information Systems Engineering – WISE 2008
Workshops SE - 17, vol. 5176, S. Hartmann, X. Zhou, and M. Kirchberg, Eds.
Springer Berlin Heidelberg, 2008, pp. 144–151.

[74] O. S. Inc, “OpenLink iSPARQL,” 2006. [Online]. Available:
http://dbpedia.org/isparql/. [Accessed: 20-Sep-2012].

[75] D. F. Huynh, R. C. Miller, and D. R. Karger, “Potluck: Data mash-up tool for
casual users,” Web Semant. Sci. Serv. Agents World Wide Web, vol. 6, no. 4,
pp. 274–282, Nov. 2008.

[76] E. Hyvönen, K. Viljanen, J. Tuominen, and K. Seppälä, “Building a National
Semantic Web Ontology and Ontology Service Infrastructure –The FinnONTO
Approach,” in The Semantic Web: Research and Applications SE - 10, vol.
5021, S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, Eds.
Springer Berlin Heidelberg, 2008, pp. 95–109.

[77] A. P. Sheth, K. Gomadam, W. State, and A. P. S. G. Lathem, “SA-REST:
Semantically Interoperable and Easier-to-Use Services and Mashups,” no.
December, pp. 84–87, 2007.

[78] B. Biörnstad and C. Pautasso, “Let It Flow: Building Mashups with Data
Processing Pipelines,” in Service-Oriented Computing - ICSOC 2007
Workshops, E. Di Nitto and Matei Ripeanu, Eds. Vienna, Austria: Springer
Berlin Heidelberg, 2009, pp. 15–28.

[79] M. Albinola, L. Baresi, M. Carcano, and P. Milano, “Mashlight : a Lightweight
Mashup Framework for Everyone,” in 2ndWorkshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web (MEM 2009), 2009.

[80] F. Daniel, F. Casati, S. Soi, J. Fox, D. Zancarli, and M.-C. Shan, “Hosted
Universal Integration on the Web: The mashArt Platform,” in Service-Oriented
Computing SE - 51, vol. 5900, L. Baresi, C.-H. Chi, and J. Suzuki, Eds.
Springer Berlin Heidelberg, 2009, pp. 647–648.

[81] B. Lu, Z. Wu, C. Zhou, and H. Chen, “sMash : Semantic-based Mashup
Navigation for Data API Network,” in Proceedings of the 18th international
conference on World wide web - WWW ’09, 2009, pp. 1133–1134.

[82] O. Greenshpan, T. Milo, N. Polyzotis, and S. Abiteboul, “Autocompletion for
mashups,” Proc. VLDB Endow., vol. 2, no. 1, pp. 538–549, Aug. 2009.

106

[83] H. Knublauch, “SPARQLMotion,” 2010. [Online]. Available:
http://sparqlmotion.org/. [Accessed: 24-Sep-2012].

[84] D. Le-Phuoc, A. Polleres, G. Tummarello, and C. Morbidoni, “Rapid prototyping
of semantic mash-ups through semantic web pipes,” Proc. 18th Int. Conf. World
wide web - WWW ’09, p. 581, 2009.

[85] M. Mostarda and D. Palmisano, “MU : an hybrid language for Web Mashups ∗,”
in International World Wide Web Conference (WWW2009), 2009.

[86] YQL Yahoo, “Yahoo! Query Language - YDN,” 2007. [Online]. Available:
http://developer.yahoo.com/yql/. [Accessed: 22-Sep-2012].

[87] M. Jarrar and M. D. Dikaiakos, “MashQL : A Query-by-Diagram Topping
SPARQL,” in Proceedings of the 2nd international workshop on Ontologies and
information systems for the semantic web (ONISW ’08), 2008, pp. 89–96.

[88] H. Hobel, J. Heurix, A. Anjomshoaa, and E. Weippl, “Towards Security-
Enhanced and Privacy-Preserving Mashup Compositions,” in Security and
Privacy Protection in Information Processing Systems SE - 22, vol. 405, no.
Security and Privacy Protection in Information Processing Systems IFIP
Advances in Information and Communication Technology, L. Janczewski, H.
Wolfe, and S. Shenoi, Eds. Springer Berlin Heidelberg, 2013, pp. 286–299.

[89] OMA, “Open Mashup Alliance FAQ,” 2009. [Online]. Available:
http://mdc.jackbe.com/downloads/Open_Mashup_Alliance_FAQ_for_Customer
s.pdf. [Accessed: 15-Aug-2013].

[90] Apache, “Apache Rave,” 2012. [Online]. Available: https://rave.apache.org/.
[Accessed: 04-Dec-2013].

[91] C. Messias, R. Spolon, M. A. Cavenaghi, R. S. Lobato, M. Angel, C. Vaz, and
E. Vargas, “Utilizing cross-domain SOAP web services using client- side
languages in an Enterprise Mashup Platform,” in Proceedings of the XV
Brazilian Symposium on Multimedia and the Web (WebMedia ’09), 2009, pp. 3–
6.

[92] E. M. Maximilien, A. Ranabahu, and S. Tai, “Swashup,” in Companion to the
22nd ACM SIGPLAN conference on Object oriented programming systems and
applications companion - OOPSLA ’07, 2007, p. 797.

[93] D. H. Hansson, “Ruby on Rail,” 2005. [Online]. Available: http://rubyonrails.org/.
[Accessed: 04-Dec-2013].

[94] H. Hotta, T. Nozawa, and M. Hagiwara, “A Design of Client Side Information
Management Method for Web Services Collaboration,” in Proceeding WI-IATW

107

’07 Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology - Workshops, 2007, pp. 95–98.

[95] S. Zarandioon, D. (Daphne) Yao, and V. Ganapathy, “OMOS: A Framework for
Secure Communication in Mashup Applications,” 2008 Annu. Comput. Secur.
Appl. Conf., pp. 355–364, Dec. 2008.

[96] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama, “SMash:
Secure Component Model for Cross-Domain Mashups on Unmodified
Browsers,” in Proceeding of the 17th international conference on World Wide
Web - WWW ’08, 2008, p. 535.

[97] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky, and N. Ramani, “Please Permit
Me: Stateless Delegated Authorization in Mashups,” in 2008 Annual Computer
Security Applications Conference (ACSAC), 2008, pp. 173–182.

[98] J. Magazinius, A. Askarov, and A. Sabelfeld, “A lattice-based approach to
mashup security,” Proc. 5th ACM Symp. Information, Comput. Commun. Secur.
- ASIACCS ’10, p. 15, 2010.

[99] R. Fox, J. Cooley, and M. Hauswirth, “Collaborative development of trusted
mashups,” Proc. 12th Int. Conf. Inf. Integr. Web-based Appl. Serv. - iiWAS ’10,
p. 255, 2010.

[100] M. Herbert, T. Thieme, J. Zibuschka, H. Roßnagel, and F. Iao, “Secure
Mashup-Providing Platforms - Implementing Encrypted Wiring,” in Current
Trends in Web Engineering SE - 9, vol. 7059, A. Harth and N. Koch, Eds.
Springer Berlin Heidelberg, 2012, pp. 99–108.

[101] J. Zibuschka, M. Herbert, and H. Roßnagel, “Towards Privacy-Enhancing
Identity Management in Mashup-Providing Platforms,” in Data and Applications
Security and Privacy XXIV SE - 18, vol. 6166, S. Foresti and S. Jajodia, Eds.
Springer Berlin Heidelberg, 2010, pp. 273–286.

[102] V. Bush, “As We May Think,” 1945. [Online]. Available:
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-
think/303881/. [Accessed: 01-Nov-2012].

[103] J. G. Breslin, A. Passant, and S. Decker, The Social Semantic Web. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009.

[104] B. Solis, “Introducing The Conversation Prism,” 2008. [Online]. Available:
http://www.briansolis.com/2008/08/introducing-conversation-prism/. [Accessed:
04-Nov-2012].

108

[105] L. Drăgan, R. Delbru, T. Groza, S. Handschuh, and S. Decker, “Linking
Semantic Desktop Data to the Web of Data,” Semant. Web – ISWC 2011 SE -
3, vol. 7032, pp. 33–48, 2011.

[106] T. Groza, L. Drăgan, S. Handschuh, and S. Decker, “Bridging the Gap between
Linked Data and the Semantic Desktop,” Semant. Web - ISWC 2009 SE - 52,
vol. 5823, pp. 827–842, 2009.

[107] D. B. and L. Miller, “FOAF Vocabulary Specification 0.97,” 2010. [Online].
Available: http://xmlns.com/foaf/spec/. [Accessed: 07-Mar-2012].

[108] A. Passant, “RDF export of Flickr profiles with FOAF and SIOC.” [Online].
Available: http://apassant.net/blog/2007/12/18/rdf-export-of-flickr-profiles-with-
foaf-and-sioc/.

[109] Kanzaki, “Flickr photo info to RDF image description,” 2007. [Online]. Available:
http://www.kanzaki.com/works/2005/imgdsc/flickr2rdf. [Accessed: 25-Sep-
2012].

[110] C. B. C. Bizer, “Flickr wrappr,” 2009. [Online]. Available: http://wifo5-
03.informatik.uni-mannheim.de/flickrwrappr/. [Accessed: 11-May-2012].

[111] MetaBrainz, “MusicBrainz - The Open Music Encyclopedia,” 2003. [Online].
Available: http://musicbrainz.org/. [Accessed: 15-Aug-2012].

[112] Jamendo, “Jamendo - The #1 platform for free music,” 2006. [Online].
Available: http://www.jamendo.com/en/. [Accessed: 25-Sep-2012].

[113] OFX, “Open Finacial Exchange,” 2007. [Online]. Available: http://www.ofx.net/.
[Accessed: 15-Aug-2013].

[114] W3C, “SPARQL Query Language for RDF,” 2008. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/. [Accessed: 11-Aug-2012].

[115] A. Alowisheq, D. E. Millard, T. Tiropanis, and A. M. Alowisheq David Tiropanis,
Thanassis, “EXPRESS: EXPressing REstful Semantic Services Using Domain
Ontologies,” in 8th International Semantic Web Conference (ISWC 2009), vol.
5823, VA, USA: Springer Berlin Heidelberg, 2009, pp. 941–948.

[116] S. Speiser and A. Harth, “Integrating Linked Data and Services with Linked
Data Services,” in The Semantic Web: Research and Applications SE - 12, vol.
6643, G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P.
Leenheer, and J. Pan, Eds. Springer Berlin Heidelberg, 2011, pp. 170–184.

[117] S. Speiser and A. Harth, “Towards Linked Data Services,” in International
Semantic Web Conference (ISWC 2010), 2010, pp. 5–8.

109

[118] B. Norton and R. Krummenacher, “Consuming Dynamic Linked Data,” in 1st
International Workshop on Consuming Linked Data (COLD2010), 2010, pp. 1–
12.

[119] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, E. Mannens, R. Van De
Walle, and J. G. Vallés, “RESTdesc — A Functionality-Centered Approach to
Semantic Service Description and Composition,” in 9th Extended Semantic
Web Conference, 2012, pp. 4–5.

[120] S. Crites, F. Hsu, and H. Chen, “OMash: Enabling Secure Web Mashups via
Object Abstractions,” in Proceedings of the 15th ACM conference on Computer
and communications security - CCS ’08, 2008, p. 99.

[121] R. Hashimoto, N. Ueno, and M. Shimomura, “A design of usable and secure
access-control APIs for mashup applications,” in Proceedings of the 5th ACM
workshop on Digital identity management - DIM ’09, 2009, p. 31.

[122] C. Yanchun and W. Xingpeng, “A Security Risk Evaluation Model for Mashup
Application,” 2009 Int. Conf. Inf. Manag. Innov. Manag. Ind. Eng., pp. 212–215,
2009.

[123] Edgar Weippl, “Secure 2.0 - securing the information sharing on web 2.0,”
Austrian FIT-IT project. [Online]. Available:
http://www.ifs.tuwien.ac.at/node/6570. [Accessed: 22-Sep-2012].

[124] A. Anjomshoaa, K. Vo-Sao, A. Tahamtan, A. M. Tjoa, and E. Weippl, “Self-
monitoring in social networks,” International Journal of Intelligent Information
and Database Systems, vol. 6, no. 4. p. 363, 2012.

[125] B. Unhelkar, A. Ghanbary, and H. Younessi, Collaborative Business Process
Engineering and Global Organizations. IGI Global, 2009, p. 383.

[126] CRA and ACM, “Leading cyber security experts identify key research
challenges,” Press Release: Leading Cyber Security Experts Identify Key
Research Challenges, 2003. [Online]. Available:
http://archive.cra.org/Activities/grand.challenges/security/press.release.html.

[127] M. McCormick, “New Privacy Legislation,” 2003. [Online]. Available:
http://www.ica.bc.ca/kb.php3?pageid=2326.

[128] O. Sacco and A. Passant, “A Privacy Preference Ontology (PPO) for Linked
Data,” in Linked Data on the Web Workshop at WWW2011, 2011.

[129] C. Fellbaum, “WordNet and wordnets,” in Encyclopedia of Language and
Linguistics, 2005, Second Edition., pp. 665–670.

110

[130] C. Leacock and M. Chodorow, “Combining Local Context and WordNet
Similarity for Word Sense Identification,” An Electron. Lex. Database, pp. 265–
283, 1998.

[131] S. Banerjee and T. Pedersen, “Extended gloss overlaps as a measure of
semantic relatedness,” in Proceedings of the 18th international joint conference
on Artificial intelligence (IJCAI’03), 2003.

[132] A. Anjomshoaa, K. Vo-Sao, A. M. Tjoa, E. Weippl, and M. Hollauf, “Context
Oriented Analysis of Web 2.0 Social Network Contents MindMeister Use-case,”
The 2nd Asian Conference on Intelligent Information and Database Systems.
Springer LNCS/LNAI, Hue City, Vietnam, 2010.

[133] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, pp.
1–6, 1998.

[134] W. Weaver, “Translation,” in Machine Translation of Languages, Reprinted .,
New York: John Wiley & Sons, 1949, pp. 15–23.

[135] J. C. Mallery, “Thinking about foreign policy: Finding an appropriate role for
artificial intelligence computers,” in Master’s thesis, M.I.T. Political Science
Department, 1988.

[136] P. University, “WordNet - A lexical database for English,” 2005. [Online].
Available: http://wordnet.princeton.edu/.

[137] M. Lesk, “Automatic sense disambiguation using machine readable dictionaries:
how to tell a pine cone from an ice cream cone,” in SIGDOC ’86: Proceedings
of the 5th annual international conference on Systems documentation, 1986,
pp. 24–26.

[138] A. Kilgarriff and J. Rosenzweig, “Framework and Results for English
SENSEVAL,” Comput. Hum., vol. 34, no. 1–2, pp. 15–48, 2000.

[139] Z. Wu and M. Palmer, “Verb semantics and lexical selection,” in 32nd. Annual
Meeting of the Association for Computational Linguistics, 1994, pp. 133–138.

[140] G. Developers, “Google Custom Search API,” 2011. [Online]. Available:
https://developers.google.com/custom-search. [Accessed: 22-Sep-2012].

[141] H. Chen, C. Schuffels, and R. Orwig, “Internet Categorization and Search: A
Self-Organizing Approach,” J. Vis. Commun. Image Represent., vol. 7, no. 1,
pp. 88–102, Mar. 1996.

[142] R. Mayer and A. Rauber., “SOMToolbox,” 2011. [Online]. Available:
http://www.ifs.tuwien.ac.at/dm/somtoolbox/. [Accessed: 20-Nov-2012].

111

[143] A. Malki and S. M. Benslimane, “Building Semantic Mashup,” in Proceedings
ICWIT 2012, 2012, pp. 40–49.

[144] B. Endres-Niggemeyer, Semantic Mashups Intelligent Reuse of Web
Resources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[145] M. Jarrar, “A Query Formulation Language for the Data Web,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 5, pp. 783–798, Feb. 2012.

[146] M. Sabbouh, J. Higginson, S. Semy, and D. Gagne, “Web mashup scripting
language,” in Proceedings of the 16th international conference on World Wide
Web, 2007, pp. 1305–1306.

[147] Adobe, “Adobe Flex - open source framework,” 2004. [Online]. Available:
http://www.adobe.com/products/flex.html. [Accessed: 25-Sep-2012].

[148] MeisterLabs, “Mind Mapping Software - Create Mind Maps online,” 2008.
[Online]. Available: http://www.mindmeister.com/. [Accessed: 12-Aug-2012].

[149] Facebook, “Statistic,” 2011. [Online]. Available:
http://www.facebook.com/press/info.php?statistics. [Accessed: 20-Nov-2012].

[150] Facebook, “Facebook Graph API,” 2011. [Online]. Available:
http://developers.facebook.com/docs/reference/api/. [Accessed: 20-Nov-2012].

[151] Freebase, “Freebase API — Google Developers,” 2010. [Online]. Available:
https://developers.google.com/freebase/. [Accessed: 22-Sep-2012].

[152] Freebase, “Freebase Schema,” 2010. [Online]. Available:
http://www.freebase.com/schema.

[153] Freebase, “Freebase Developers,” 2010. [Online]. Available:
http://wiki.freebase.com/wiki/Developers. [Accessed: 22-Sep-2012].

[154] Twitter, “The Twitter REST API,” 2010. [Online]. Available:
https://dev.twitter.com/docs/api. [Accessed: 04-Nov-2011].

[155] S. Aghaee and C. Pautasso, “An Evaluation of Mashup Tools Based on
Support for Heterogeneous Mashup Components,” in Current Trends in Web
Engineering, 2012.

[156] I. Pahlke, R. Beck, and M. Wolf, “Enterprise Mashup Systems as Platform for
Situational Applications,” Bus. Inf. Syst. Eng., vol. 2, no. 5, pp. 305–315, Aug.
2010.

112

[157] S. S. Minhas, P. Sampaio, and N. Mehandjiev, “A Framework for the Evaluation
of Mashup Tools,” 2012 IEEE Ninth Int. Conf. Serv. Comput., pp. 431–438, Jun.
2012.

[158] W. Al Sarraj, “A Usability Evaluation Framework for Web Mashup Makers for
End-Users,” in Disseratation, Web and Information System Engineering Lab,
Department of Computer Science, Faculty of Science & Bio-Engineering
Sciences, Vrije Universiteit Brussel, 2012, p. 200.

[159] N. Carrier, T. Deutsch, C. Gruber, M. Heid, and L. L. Jarrett, “The business
case for enterprise mashups,” Web 2.0 technology solutions, IBM White Paper,
no. August, 2008.

[160] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and C. Schroth, “Enterprise
Mashups: Design Principles towards the Long Tail of User Needs,” 2008 IEEE
Int. Conf. Serv. Comput., pp. 601–602, Jul. 2008.

[161] W. Ketter, M. Banjanin, R. Guikers, A. Kayser, R. E. Westernacher, P. Jibes, B.
V. J. B. V, and B. V Jibes, “Introducing an agile method for enterprise mash-up
development,” in In Proc. of the IEEE Conf. on Commerce and Enterprise
Computing, 2009.

[162] V. K. S.-S. Hoyer and K. Stanoevska-Slabeva, “Generic Business Model Types
for Enterprise Mashup Intermediaries,” in Value Creation in E-Business
Management SE - 1, vol. 36, M. Nelson, M. Shaw, and T. Strader, Eds.
Springer Berlin Heidelberg, 2009, pp. 1–17.

