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Abstract

A firm might not have perfect information about its own productivity,

because observing the true realization might be too costly in terms of op-

portunity costs of attending to other sources of uncertainty. Building on

Sims (1998, 2003), I use insights from information theory to study the be-

havior of information constrained firms. The focus is on the informational

friction on the firm side only. This allows analyzing the implications of

imperfect information for individual firms. Additionally, a welfare analysis

is conducted by solving a social planner’s problem. Interestingly, a com-

parison using approximations in log-deviations is not applicable, although

such an approximation is often used in the literature. In the decentralized

economy, output might not be maximized under full information. Further-

more, the distortions due to monopolistic competition are increasing in the

amount of information agents are allowed to process.
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1 Introduction

Firm owners or managers have many decisions to make and many of these decision

need different sources of information. Information acquisition is costly—most

notably because of opportunity costs—and thus getting the knowledge of the

exact level of a relevant variable might not be feasible. Hence, most decisions are

based on imperfect information, because a good guess or a very noisy observation

is the best information available. This, in turn, can affect the aggregate outcomes

of the economy.

Although the economics of information was initially mostly used studying microe-

conomic questions, there is a literature exploring the role of imperfect information

in a macroeconomic setting. For example, Phelps (1970) and Lucas (1972) study

how imperfect information leads to real effects of monetary policy. Barro (1976,

1977) analyzes effects of monetary shocks, which are unanticipated due to im-

perfect information. All these early approaches assume exogenous information

structures, which are ad hoc and hard to justify. For example, in the model of

Lucas (1972), it is not clear why agents would not be able to observe the cur-

rent state of monetary policy, especially, nowadays with an easy access to the

internet this assumptions seems unreasonable. Thus, informational frictions in

macroeconomics have received less emphasis until recently.

A more recent approach—known as sticky-information—was introduced by Mankiw

and Reis (2002). In this setup only a fraction of firms update their information

set. The other firms stick with their old information. The updating process—

where updating gives full information—is modeled as reduced form á la Calvo

(1983). Reis (2006) provides a micro-foundation for sticky-information models,

endogenizing the updating decision. If firms need to a pay fixed cost to acquire

new information then same results as in the reduced form updating can be ob-

tained. Even in this microfounded approach firms update to full information if

they choose to update. Thus, the choice is about when to update and not about
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what information the firm should acquire. In this sense, the information choice

is not entirely endogenous.

Allowing agents to choose which information they want to obtain leads to an

information structure, which is determined within the model. Sims (1998, 2003)

introduces such a framework explicitly augmenting economic models with this

choice dimensions and it is known as rational inattention. In models with rational

inattention one combines economics with insights from information theory—most

notably the results from Shannon (1948). A key feature of these models is that

agents only have a limited capacity for processing information about random vari-

ables in the economy. The agents are rational insofar that they choose on which

variables they should focus their attention. Thus, the key difference to other

approaches is that no assumptions about the information structure are needed a

priori. The information acquired by agents is determined as an equilibrium object

and thus completely endogenous. Recently, models of rational inattention were

used to study macroeconomic and finance questions like price inertia, monetary

policy, or consumption and portfolio choice. Examples include Adam (2007), Luo

(2008), Maćkowiak and Wiederholt (2009a), Nieuwerburgh and Veldkamp (2010),

Mondria (2010), and Paciello and Wiederholt (2014). Veldkamp (2011) provides

a more general textbook treatment of macroeconomic and finance applications of

imperfect information.

Using the framework of rational inattention, I show that in a decentralized econ-

omy increasing the information capacity leads to a reduction of output. For

a social planner this result turns around and more information leads to higher

output. The difference of the social optimum and the decentralized economy

are increasing in information capacity; this is, the distortion increases with an

increase in information. Eventually, in the full information equilibrium the dis-

tortion is maximal. However, a simple proportional tax can restore the socially

optimal behavior.
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The model is a monopolistically competitive economy, where firms face an in-

formation constraint. Due to this information constraint, firms are not able to

observe the true realization of their productivity. A similar framework is used in

other models with rational inattention, for example the ones cited above. How-

ever, these paper assume that idiosyncratic shocks or errors in decision making do

not have aggregate effects, in the sense that these shocks on the individual level

do not effect aggregate outcomes directly. To explicitly address this aggregation

issue, I assume that the only source of uncertainty comes from idiosyncratic pro-

ductivity. Another interesting question—which has not been addressed by the

literature yet—is what welfare implications does such an informational friction

have. To study this question, I solve a social planner’s problem. The objective of

the social planner is to maximize the agent’s utility, in my specific setup this is

equivalent to maximizing output. A comparison of the social planner’s problem

and the decentralized economy allows the analysis of the distortions arising due

to the information constraints.

In general, most models of rational inattention cannot be solved analytically. To

circumvent this problem, the model is approximated with log-deviations from

the non-stochastic steady state. For the decentralized economy, this is done in

the first part of this paper as well. However, for the social planner’s problem

this approach is not applicable and thus an approximation in level deviations

is used. I show that the outcome of the level- and log-deviation approximation

in the decentralized economy are very similar. Therefore, the comparison with

the social planner is valid and the welfare analysis with these approximation is

sensible. This issue for the social planner’s problem might be a reason why this

welfare question was not yet addressed by the literature.

For the decentralized economy, several papers in the literature are related to the

analysis of price setting provided here. As already mentioned above, in the sticky-

information model of Mankiw and Reis (2002) a fraction of firms obtains full

information. For other firms the information set does not change. All the firms set
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prices optimally given their information set and thus only a small fraction of firms

sets prices given the newest information. Mankiw and Reis claim that their model

generates a Phillips curve which suites data better than the usual New Keynesian

Phillips curve. Woodford (2003) assumes that agents observe aggregate demand

only through a noisy signal. Given the realization of the signal the firms set

prices optimally. Woodford’s analysis relates informational frictions to real effects

of monetary policy similar to Lucas (1972). Thus, in both models there is an

aggregate effect through individual imperfect information. However, both models

also have the information structure exogenously assumed and this is in stark

contrast to models of rational inattention, although, parts of the information

acquisition choice can be endogenized in sticky-information models as shown by

Reis (2006).

My analysis is more closely related to Maćkowiak and Wiederholt (2009a) and

Matejka (2010). Both models incorporate rational inattention to study the be-

havior of firms. Maćkowiak and Wiederholt use a log-quadratic approximation to

show that it is optimal for firms to focus most of their attention to idiosyncratic

variables. By assumption, the idiosyncratic uncertainty does not matter in the

aggregate. This point is explicitly addressed in this thesis. Matejka studies the

behavior of a monopoly which faces an information constraint. In contrast to

most other models of rational inattention, Matejka does not use an approxima-

tion of the objective. He shows that it might be optimal for firms to have discrete

pricing—even when the underlying uncertainty stems from a continuous distri-

bution. Aggregation is not needed in his paper as there is only one monopoly.

In this sense, the analysis presented here is somewhere in-between Maćkowiak

and Wiederholt (2009a) and Matejka (2010). Furthermore, to the best of my

knowledge, a welfare analysis was not considered in the literature yet.

The thesis is structured as follows. In Section 2, I introduce some basic concepts

from information theory. Moreover, a key result of rational inattention—the

analytic solution to quadratic Gaussian problems—is presented. This result is
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applied to economic models in the later sections. The main contribution of the

thesis is in Section 3. There I derive the optimal behavior of firms and discuss the

implications on aggregate variables. The firms problem is analyzed with a log-

and a level-quadratic approximation of the profit function. In this section also

the social planner’s problem is discussed. Furthermore, a comparison between

the decentralized economy and the social planner’s solution is provided. In the

end of the section, numerical examples are used to check if the approximations

of the firm’s objective are valid. I conclude in Section 4.

2 Information Theory and Rational Inattention

The purpose of this section is to provide a self-contained summary of the concepts

and results I use in the model below. Readers familiar with the technical aspects

of the rational inattention framework of Sims (1998, 2003, 2006) are advised to

proceed to Section 3 directly. In the first section some important definitions and

key results of information theory are introduced. In the second part, the main

theorem of rational inattention is presented and discussed.

2.1 Information Theory

Most of the definitions and results in this section are taken from Cover and

Thomas (2006). However, note that in this thesis only continuous random vari-

ables are considered and for this reason only the definitions for these variables

are presented. This section focuses on concepts and results necessary for the

economic model below. The reader interested in a more in-depth coverage of

information theory is referred to Cover and Thomas (2006).

Information theory was introduced by Shannon (1948). The basic idea is to

quantify information to answer questions about communication. In order to do

so, several well-defined concepts are needed. First of all, we need a measure of

uncertainty associated with a random variable. Shannon (1948) derived such a

5



measure from four axioms. Here, I only present the result, which is known as the

entropy of a random variable. Let f(x) denote the probability density function

(pdf) of the random variable X. From nnow on, it is assumed that the pdf exists.

Then entropy of X is defined as follows.1

Definition 1. The entropy H(X) of a continuous random variable X with pdf

f(x) is defined as

H(X) = −
∫
X
f(x) log f(x) dx,

where X denotes the support of X.

It is straightforward to extend this definition to random vectors and conditional

entropy (Cover and Thomas, 2006, p. 229–30). Note that entropy is a property

of the distribution and does not depend on the realizations. Furthermore, the

logarithm is usually taken to base 2 so that the entropy of a fair coin flip is

normalized to one. The unit of entropy with base 2 is called bits. If the natural

logarithm is used in the definition, then the units care called nats. This latter

approach is used throughout this thesis. Of course, by the properties of the

logarithm the two different measures of entropy are related through multiplication

by a constant.

In the main analysis most random variables are normally distributed. The entropy

of a Gaussian random variable has an intuitive expression. If X ∼ N (µ, σ2), then

H(X) =
1

2
log
(
2πeσ2

)
.

For a normal distribution, entropy is an increasing function that only depends

on the variance. This means that the uncertainty associated with a Gaussian

1Henceforth, with a slight abuse of notation, I denote the pdf associated with a random
variable X by f(x) only. Thus, another random variable Y has pdf f(y) as well. Then, f(x)
and f(y) might be different functions.
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random variable is captured by its variance. Note that the entropy of normal

distribution is invariant to the mean, which is true more generally.

As mentioned above, entropy measures the uncertainty associated with a random

variable (or vector). Now, with that in hand it possible to quantify information

contained in one random variable about another variable. This measure is known

as mutual information.

Definition 2. Let X and Y be two random variables with joint pdf f(p, x) and

marginal pdfs f(x) and f(p), respectively. Then mutual information I[X;Y ] is

defined as

I[X;Y ] = H(X)−H(X|Y ).

Here, H(X|Y ) denotes the entropy of X conditional on Y . Intuitively, mutual in-

formation measures the reduction of uncertainty of X due to the knowledge of Y .

Mutual information of two random variables is zero if and only if the two variables

are independent. Mutual information is a special case of a Kullback–Leibler dis-

tance. In particular, the Kullback–Leibler distance of the joint distribution and

the product of the marginals is the same as mutual information. An immediate

consequence of this result is that mutual information is always non-negative, be-

cause the Kullback–Leibler is always non-negative as well (Cover and Thomas,

2006, pp. 26–27).

In the economic model presented in the subsequent section, mutual information

is constrained by an exogenous parameter. To describe the optimal behavior of

firms under such a constraint it is important to know if mutual information is a

convex or a concave function. This question is answered by the following theorem.

Theorem 1. Let X and Y be random variables with joint pdf f(x, y) = f(x)f(y|x).

• For a fixed f(y|x), I[X;Y ] is concave in f(x).

• For a fixed f(x), I[X;Y ] is convex in f(y|x).
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Proof. See Cover and Thomas (2006, p. 31).

Another important feature of mutual information is its invariance under mono-

tonic transformations. This feature is exploited in the economic model as well

and is stated formally next.

Proposition 1 (Invariance of Mutual Information). Let X and Y be random

variables. If Z = a+ bY , where a and b 6= 0 are scalars, then I[X;Y ] = I[X;Z].

Proof. This is a special case of Kraskov et al. (2004). In their appendix they

show that the statement generalizes to homeomorphisms.

This result is intuitive: a linear transformation of one random variable contains

the same information about some other random variable as the original one. This

is because each realization of the transformed variable can be associated with one

and only one realization of the original variable.

The definitions and results presented here are enough to use them in an economic

context. However, before turning to the economic model, a key theorem from

rational inattention is presented in the next section.

2.2 Rational Inattention

In models with rational inattention (RI), one combines economics with insights

from information theory. Rational inattention was introduced by Sims (1998,

2003) to incorporate imperfect information into economic models. A key feature

of these models is that agents have a limited capacity in processing information

about random variables in the economy. This is modeled as a exogenous limit on

mutual information of the choice and the state variables.2 The agents are rational

insofar that they choose on which variables they should focus their attention.

However, compared to other economic models with imperfect information, in RI

models the information structure is endogenously determined within the model.

2It is also possible to allow agents to buy more capacity, but this approach is not used in
this work.
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Most models with RI are rather complicated and thus rely on numerical solutions.

Currently only a very specific class of RI problems has an analytic solution.3 This

solution was first mentioned by Sims (2003), but without a formal statement. In

this section a static rational inattention problem is discussed and then this specific

solution is presented.

Consider an economic agents who wants to minimize the expected loss of a given

loss function L.4 The loss functions depends on a choice p and on a state x. The

agent faces a constraint, which limits the mutual information of the choice and

the state variable. The problem of the agent is to choose a joint distribution

which minimizes the expected losses taking as given the marginal distribution

of the state variable (the prior distribution) and which respects the information

constraint. Formally the problem can be stated as

min
f

{
E[L(X,P )] =

∫
X

∫
P
L (x, p) f(x, p) dp dx

}
(1)

s.t.

∫
P
f(x, p) dp = g(x), ∀x ∈ X

f(x, p) ≥ 0, ∀(x, p) ∈ X × P

I[X;P ] ≤ κ,

where κ is the exogenously given maximum capacity of information flow. The

objective of this minimization problem is, as mentioned above, the expected loss.

The first constraint describes the available choices for the joint distribution. It

describes consistency of a Bayesian agent in the sense that the posterior adds

up to the prior g(x). The second non-negativity constraint is necessary for a

probability distribution. The most interesting constraint is the last one, the

3Actually, Maćkowiak and Wiederholt (2009a) derived an analytic solution for a very similar
problem, but in a dynamic context. I consider only a static problem here.

4In economics, it is more natural to have an agent maximizing a utility function. Maximizing
a quadratic utility function is equivalent to minimizing a quadratic loss function. The use of a
loss function is in line with the model presented below.
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information constraint. The constraint states that the reduction of uncertainty

is on average less or equal to κ. If κ would be large enough, the agent could

choose a distribution f(x, p) which puts all the mass on the optimal p∗ given

x. However, usually this is not possible and the agent must choose f(x, p) as to

minimize expected losses.

Without any further assumptions this problem does not have an analytic solu-

tion. However, note some important features of this optimization problem. The

objective is linear in the choice f and by Theorem 1 the constraint set is convex.

Even with this well behaved functional forms strong assumptions need to be im-

posed to get an analytic solution. These special assumptions and the solution are

summarized in the following theorem.

Theorem 2. Let the loss function be quadratic, i.e. L (X,P ) = (αX − P )2 for

some constant α. Furthermore, suppose the prior is a normal distribution, i.e.

X ∼ N (µ, σ2
x). Then a bivariate normal distribution (X,P ) ∼ N2(µx, µp, σ

2
x, σ

2
p, ρ)

is a solution to (1). The parameters are given by

µp = αµx

σ2
p = α2

(
1− e−2κ

)
σ2
x

ρ2 = 1− e−2κ

Proof. This is a simplified and static version of Maćkowiak and Wiederholt (2009b,

Technical Appendix, Section 3).

An intuitive result is implied by this theorem. As a bivariate normal distribution

is the optimal joint distribution, the behavior is the same as if the agent receives

are signal about the state variable. The noise in the signal depends on the

information capacity κ.
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Corollary 1. Under the assumption of Theorem 2 it is optimal to choose a signal

S of the form

S = X + ε,

where ε ∼ N (0, (e2κ − 1)−1σ2
x) and X ⊥ ε. The optimal choice P is then given

by the optimal behavior conditional on this signal.

Proof. Follows from Maćkowiak and Wiederholt (2009a, Proposition 3 and 4).

Also recall if X and Y follow a bivariate normal distribution N2(µx, µy, σ
2
x, σ

2
y , ρ),

then

X|Y ∼ N
(
µx +

σx
σy
ρ(y − µy), (1− ρ2)σ2

x

)
,

where ρ denotes the correlation coefficient. (See e.g. Bickel and Doksum, 2001,

p. 501) .

Although this corollary shows that the agents chooses a signal with independent

Gaussian noise, it is not a standard signal extraction problem, because the signal

is an endogenous result. The agents chooses this signal and thus it stems from

the agents internal system. This information structure is not assumed a priori.

Indeed, if the assumptions of Theorem 2 are relaxed this form of signal might not

be optimal anymore. An example of this case is discussed in Subsection 3.3.

In this section basic elements of information theory were introduced. Moreover,

a basic rational inattention model was presented, where the agent’s mutual in-

formation of the state and his choice is constraint. Now, this machinery is used

to study the behavior of monopolistic competitive firms. All of these firms are

subject to such an information constraint. This is done in the next section.
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3 The Economic Model

In this section the behavior of information constrained firms is studied. In ad-

dition to the individual behavior also the aggregate outcomes are discussed, in

particular, the question how the information constraint on the individual level

affects the aggregate economy is addressed. The focus of the following analysis

is on firms. The consumer side is modeled without any friction in information

processing. Of course, including an information constraint on the consumer side

too raises further interesting questions, but studying such questions is left for

future research.

The economy is accommodated by a representative household with a continuum

of members and by N small firms, where N is a large number such that firms

take aggregates as given.5 The market structure is assumed to be monopolistically

competitive to allow firms to set individual prices. Thus, this part of the model

is very similar to the economy studied by Dixit and Stiglitz (1977), where the

number of firms is also finite.

Moreover, in the rational inattention literature the finiteness of firms usually

plays an important role. For example, in the DSGE model of Maćkowiak and

Wiederholt (2011) an infinite number of firms is not possible, because consumers

would need infinite information to track all the prices in the economy. However,

as it is usual in the case of finite firms it is important that firms do not take into

account that their actions might influence aggregate outcomes.

The representative household consumes a Dixit–Stiglitz aggregator of the N dif-

ferent goods and supplies labor inelastically. Total labor supply is normalized to

N . This normalization guarantees that the endogenous variables do not depend

on the size of the economy. I discuss this issue in more detail below. The income

of the household comes from two sources. First, there is the labor income coming

5For the aggregate equilibrium outcomes the limit as N → ∞ is used. First, this allows
to use a law of large number which yields analytic expressions for the aggregate variables.
Second, this limit circumvents any mathematical issues arising from a continuum of firms and
consumers.
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from the inelastic labor supply and second, firm profits are income as well. In this

setup aggregate output and consumption (demand) are the same and are given

by

Y =

(
1

N

N∑
i=1

Q
η−1
η

i

) η
η−1

. (2)

Here, η > 1 is the elasticity of substitution and Qi is demand for good i. The

representative household maximizes aggregate output taking prices and profits as

given. Formally, the household solves

max
{Qi}Ni=1

Y =

(
1

N

N∑
i=1

Q
η−1
η

i

) η
η−1


s.t. PY =

1

N

N∑
i=1

PiQi =
1

N

N∑
i=1

(Πi + wLi)

1

N

N∑
i=1

Li = 1,

where P denotes the aggregate price level, Pi is the price of good i. Profits and

labor demand of firm i are denoted by Πi and Li, respectively. The wage rate w

is normalized to one. Optimizing behavior of the household implies an isoelastic

demand function for good i.

Qi = Y

(
Pi
P

)−η
(3)

Aggregate output and the budget constraint include averages over N different

goods for the following reason. As N is large, one can think of this sum as an

approximation of an integral over a continuum of goods with unit mass. Because

of this averaging, the normalization of labor supply to N is needed.

Firms are indexed by i ∈ {1, . . . N}. A linear technology transforms one unit

labor into one unit of good i. The uncertainty a firm faces is only about the

productivity. Idiosyncratic productivity is determined exogenously by a random
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variable. Let Ai denote the productivity level of firm i. It is assumed that Ai is

independent of Aj for all i 6= j. There is no capital or any other factor needed

for production. I assume that firms maximize expected profits taking the de-

mand function into account. Under full information this is a simple optimization

problem.6

max
P

{
Π(Y,P , X, P ) = Y

(
P

P

)−η
(AP − 1)

}
(4)

Due to the linear production assumption, the labor demand is equal to the de-

mand for good i, i.e. Li = Qi. In this baseline problem, optimal price setting is

the standard result for models of monopolistic competition. Under full informa-

tion the optimal behavior is to charge a mark-up over the costs, i.e. P = η
η−1

1
A

.

However, the question is how the firm behaves if it cannot fully observe its pro-

ductivity. Therefore, a constraint on mutual information as described in the

previous section is introduced. Note that this implies that the uncertainty for a

firm comes from the uncertainty in idiosyncratic productivity only.

If the information flow is limited the firm has a prior distribution for productivity

g(A) and solves

max
f

∫
A

∫
P
Y

(
P

P

)−η
(AP − 1) f(A,P ) dP dA (5)

s.t.

∫
P
f(A,P ) dP = g(A), ∀A ∈ A

f(A,P ) ≥ 0, ∀(A,P ) ∈ A× P

I[A;P ] ≤ κ.

This is a very similar problem to (1). As in the case for the rational inattention

problem, there is no analytic solution known in the general case. The problem

can be solved solved numerically, and this is done later in this thesis. However,

6Whenever no confusion arises I drop the firm index.
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to obtain an analytic solution I follow Maćkowiak and Wiederholt (2009a) and

proceed with a log-quadratic approximation around the non-stochastic steady

state. This approximation reshapes the problem such that Theorem 2 applies.

Before proceeding with the approximation, let me define the equilibrium in this

general setup. This is useful, because the equilibrium concept is used throughout

the thesis and applies to the approximation as well. The decentralized equilibrium

is defined as follows.

Definition 3. The tuple ((fi, Ai, Pi, Qi, Li)i∈{1,...N}, Y,P) constitutes a decentral-

ized equilibrium with information capacity κ if

1. fi solves (5) for every firm i ∈ {1, . . . N} taking Y and P as given

2. (Ai, Pi) ∼ fi(A,P ), ∀i ∈ {1, . . . N}

3. Output of good i, Qi, is given by (3) for every firm i ∈ {1, . . . N}

4. Aggregate price level is given by P =
(

1
N

∑N
i=1 P

1−η
i

) 1
1−η

5. Aggregate real output Y is given by (2)

6. The labor market clears, i.e. 1
N

∑N
i=1 Li = 1 and Qi = Li, ∀i ∈ {1, . . . N}

3.1 The log-quadratic case

As the previous stated problem of the firm does not have an analytic solution,

I use an log-quadratic approximation of the objective. Already Maćkowiak and

Wiederholt (2009a) use this approach in a very similar setup and can be outlined

as follows:

1. Find the non-stochastic steady state (NSSS)

2. Find a log-quadratic approximation around the non-stochastic steady state

3. Derive the optimal behavior with full information using the approximation

of step 2
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4. Find a quadratic loss function

5. Apply Theorem 2 with the quadratic loss function to find the optimal be-

havior

6. Derive the equilibrium (Definition 3) with the optimal choice of step 5.

The non-stochastic steady state is found by setting the variance of each random

variable to zero. In the case here, the only random variable is the productivity

A. I normalize NSSS productivity to one. Denote the NSSS variables with a bar,

then

Āi = Ā = 1, ∀i ∈ {1, . . . N} (6)

P̄ = P̄ = P̄i =
η

η − 1
, ∀i ∈ {1, . . . N} (7)

Ȳ = Q̄ = Q̄i = L̄i = 1, ∀i ∈ {1, . . . N} (8)

Π̄ = Π̄i =
1

η − 1
, ∀i ∈ {1, . . . N} (9)

Next, the log-quadratic approximation around this NSSS is derived. From now

on, let small letter variables denote the deviations from the NSSS. Then the profit

function can be written as

π(a, p) = Π(Āea, P̄ ep).
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The first and second partial derivatives evaluated at zero are

π1 =
∂π(a, p)

∂a

∣∣∣∣
a=0
p=0

= Y

(
P̄

P

)−η
η

η − 1

π2 =
∂π(a, p)

∂p

∣∣∣∣
a=0
p=0

= Y

(
P̄

P

)−η
(η − η) = 0

π11 =
∂2π(a, p)

∂a2

∣∣∣∣
a=0
p=0

= π1

π22 =
∂2π(a, p)

∂p2

∣∣∣∣
a=0
p=0

= −ηY
(
P̄

P

)−η
< 0

π12 =
∂2π(a, p)

∂a∂p

∣∣∣∣
a=0
p=0

= π22.

Denote the approximated profit function with π̃. Using the partial derivatives

from above and the profits in the NSSS it follows that

π̃(a, p) =
1

η − 1
+ π1a

(
1 +

a

2

)
+
π22
2
p2 + π22ap.

This approximation allows to solve for the optimal pricing behavior without an

information constraint. The optimal choice is given by

pNC = −a.

Thus, it is optimal to adjust the price one-to-one for any deviations of productiv-

ity. Intuitively, the firms charge a monopoly markup already in the NSSS. More-

over, the optimal pricing behavior in the general form is log-linear in productivity.

Hence, only an one-to-one adjustment for deviations in prices is needed outside

of the NSSS.7 With this optimal behavior, the loss due to suboptimal pricing is

given by

7Actually, due to the functional forms the optimal behavior in log-deviations with the log-
quadratic approximation of the objective yields the same policy as without approximation.
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L(a, p) ≡π̃(a, pNC)− π̃(a, p)

=
π22
2

(
p2NC − p2

)
+ π12a (pNC − p)

=
π12
2

(
a2 − p2

)
− π12a (a+ p)

=− π12
2

(a+ p)2 .

This is a quadratic loss function as required by Theorem 2. The other require-

ment of the rational inattention theorem is a Gaussian prior. Thus, I assume

that a ∼ N (0, σ2
a). Then the previous derivations together with Theorem 2 and

Corollary 1 prove the following theorem.

Proposition 2. Let ai ∼ N (0, σ2
a) with ai ⊥ aj for all i 6= j and each firm

solves (5) with a log-quadratic approximation around the non-stochastic steady

state. Then, the optimal prices without an information constraint are given by

pi,NC = −ai

pi,NC ∼ N (0, σ2
a).

If there is an information constraint κ, then the unconditional distribution of

optimal prices is given by

pi ∼ N (0, (1− e−2κ)σ2
a).

The last statement is equivalent to first choosing a signal of the form

si = ai + εi

with εi ∼ N
(

0,
σ2
a

e2κ − 1

)
and ai ⊥ εi ⊥ εj, ∀i 6= j,
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then setting the price according to

pi = −E[ai|si] = −
(
1− e−2κ

)
si.

Discussing some comparative statics of this behavior reveals some intuitive inter-

pretation of the price setting. If κ → ∞, then pi → pi,NC , which makes sense,

because an infinite amount of information capacity allows to set the optimal

price, which is the price without an information constraint. On the other hand,

if κ → 0, then pi → 0: if the agents are not allowed to process any information,

then they set the steady state value. The last case obtains also if σ2
a → 0: if there

is no variation in a, then the economy is in the NSSS.

Ultimately, the goal is to conduct welfare analysis by comparing the decentralized

equilibrium with the solution of a social planner who maximizes output. The

social planner chooses quantities directly without considering prices. For this

reason the optimal behavior of firms in terms of quantities is needed as well.

Fortunately, there is a simple relationship between optimal pricing and optimal

quantities, which is summarized in the following corollary.

Corollary 2. If firms choose quantities instead of prices, the optimal behavior is

qi = −ηpi.

This relationship holds with and without an information constraint.

Proof. The demand function (3) relates prices to quantities. Expressing Q and

P in log-deviations from the NSSS yields the result without an information con-

straint. With an information constraint, the result follows from Proposition 1.

Now—as the individual behavior is characterized—it is possible to aggregate and

obtain the other equilibrium objects. For the aggregation I work with the optimal

pricing behavior. Of course, by the relation in Corollary 2 the aggregate equilib-

rium objects are the same in either case. The remaining equilibrium objects are
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aggregate demand and the price level. With these objective we can characterized

the equilibrium as follows.

Theorem 3. Let ai ∼ N (0, σ2
a) with ai ⊥ aj for all i 6= j and each firm solves (5)

with a log-quadratic approximation around the non-stochastic steady state. Then

the individual behavior in equilibrium as defined by Definition 3 is characterized

by Proposition 2. Although, Definition 3 needs to be adjusted so that fi solves (5)

with the log-quadratic approximation of the profit function.8 Furthermore, in the

limit as N →∞ the equilibrium aggregate price level is given by

P = P̄ e
1
2
(1−η)(1−e−2κ)σ2

a

and aggregate output is

Y = e−
1
2
η(1−e−2κ)σ2

a .

Proof. The first part is Proposition 2. Recall that pi ∼ N (0, (1−e−2κ)σ2
a). Using

the definition of the price level allows to solve for the equilibrium price level.

P = lim
N→∞

P̄

(
1

N

N∑
i=1

epi(1−η)

) 1
1−η

= P̄
(
E
[
epi(1−η)

]) 1
1−η

= P̄ e
1
2
(1−η)(1−e−2κ)σ2

a

The second equality follows form a weak law of large numbers (WLLN) as N

approaches infinity. For the second equality note that the expected value in the

second line is the moment generating function (MGF) of normal distribution

evaluated at 1− η.

8Again, due to the functional forms, the equilibrium under full information without approx-
imation is the same as with approximation and full information.
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The aggregate output is determined by labor market clearing and the aggregate

labor constraint:

1 = lim
N→∞

1

N

N∑
i=1

Li = lim
N→∞

1

N

N∑
i=1

Qi

= lim
N→∞

1

N

N∑
i=1

Y

(
P̄ epi

P

)−η
= Y e

1
2
η(1−η)(1−e−2κ)σ2

aE[e−ηpi ]

= Y e
1
2
η(1−e−2κ)σ2

a

Again, third and fourth equality follow from a WLLN with N approaching infinity

and the MGF, respectively.
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Figure 1: Comparative statics of κ and σ2
a

To see what this equilibrium implies, Figure 1 plots the aggregate variables for

different values of information capacity κ and variance of the productivity σ2
a.

For this specific case, I used η = 2. However, the qualitative results of the

comparative statics are general and not specific to the choice of parameters. As

for the individual behavior, zero information capacity (or zero variance of a) leads

to the steady state outcome of Y and P . If κ → ∞, the equilibrium without

an information constraint is approached. This full information equilibrium is
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indicated with the dotted lines in the left figure. The decrease in price level and

aggregate output with an increase in κ follows the same logic as with an increase

in σ2
a. The behavior of the price level is intuitive, because a higher σ2

a (or κ)

gives some firms the possibility to set a lower price and have a bigger market

share. In turn, the aggregate price level decreases as well. To see why aggregate

output drops as well, note that the Dixit–Stiglitz aggregator is symmetric in its

arguments. With the aggregate labor constraint in place, the highest output is

achieved in the NSSS. As soon as there is some variation, the symmetry and

the labor constraint combined lead to a reduction in aggregate output. Nominal

demand is the product of the price level and (real) output. Thus, the behavior

of nominal demand is a combination of the other functions. It decreases faster

than real output with an increase in both, σ2
a and κ.

In the decentralized economy allowing more information processing leads to a

decrease in output. Although, this result is mainly driven by—as explained

above—the symmetry of the Dixit–Stiglitz aggregator and the aggregate labor

constraint. Therefore, the question arises how does the decentralized equilibrium

perform compared to a social planner’s solution. Is it always better to have full

information for a social planner or does a similar issue arise as well? These and

other questions are answered next.

3.1.1 Social Planner

How would a social planner allocate the production if he faces similar information

constraints as the individual firms do in the last section? The objective of the

social planner is to maximize the utility of the representative household. How-

ever, he takes the effects of different productivity levels and the aggregate labor

constraint into account. This allows me to relate the decentralized economy with

the social planner’s solution. Two possible differences might appear. On the one

hand, there is the direct effect of inefficient individual’s actions. On the other

hand, the individual behavior might lead to further distortions on the aggregate
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level. To study the social optimal choice, I need to proceed in a similar manner

as in the decentralized economy.

In general the social planner solves

max
f

E [Ψ(A,Q)] =

∫
A

∫
Q

(
1

N

N∑
i=1

AiQ
η−1
η

i

) η
η−1

f(A,Q) dQ dA

 (10)

s.t.

∫
Q
f(A,Q) dQ = g(A), ∀A ∈ A

f(A,Q) ≥ 0, ∀(A,Q) ∈ A×Q

I[Ai;Qi] ≤ κ, ∀i ∈ {1, . . . , N}

1

N

N∑
i=1

Qi = 1,

where Q = (Qi)
N
i=1 and A = (Ai)

N
i=1. As in the previous section, I use a log-

quadratic approximation around the NSSS. Because of the aggregate labor con-

straint the NSSS is the same as in the decentralized economy (see equations (6)

to (9)). Note that there is no inefficiency due to monopolistic competition, be-

cause real output is pinned down by the labor constraint. In the decentralized

economy the price level adjusts so that these equations constitute an equilibrium.

The social planner chooses the quantities directly, but of course has to respect

the aggregate labor constraint.

The next step is to take a log-quadratic approximation around this NSSS. How-

ever, it is useful to have a closer look at the Dixit–Stiglitz aggregator first. By

construction (and assumption η > 1), the aggregator is concave in every argu-

ment (Dixit and Stiglitz, 1977). This is not the case anymore if one considers the

log-deviations from any positive point Q̃ at the point of zero deviations. Formally,

this means

∂2

∂q2i
Q̃

(
1

N

N∑
i=1

Aie
qi
η−1
η

) η
η−1

∣∣∣∣∣∣∀qi=0

∀Ai=1
= Q̃

1

Nη

(
1

N
+ η − 1

)
> 0.
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This derivative is positive everywhere, not only if qi = 0 and Ai = 1 for all

i ∈ {1, . . . , N}. Hence, the Dixit–Stiglitz aggregator is convex in each argument

for log-deviations. For illustration purposes, it is instructive to have a closer look

at the aggregator for the two good case at steady state productivity, i.e. N = 2

and Ai = 1. The aggregator for level arguments is just the standard two goods

CES utility

U(Q1, Q2) =

(
1

2
Q

η−1
η

1 +
1

2
Q

η−1
η

2

) η
η−1

. (11)

The log-deviations aggregator reads as

U(q1, q2) = Q̃

(
1

2
eq1

η−1
η +

1

2
eq2

η−1
η

) η
η−1

. (12)

Graphically, this is illustrated in Figure 2 for the case of N = 2 and η = 3. In

the left panel the level sets for the first case (11) is plotted. It has the usual

convex upper contour sets. On the contrary, the graph on the right panel has

convex lower contour sets. This graph corresponds to the case of log-deviations

as in (12).
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Figure 2: Level sets of the Dixit–Stiglitz aggregator
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This observation is important for the further analysis. The goal is to derive

a quadratic loss function to apply Theorem 2. If the objective is convex, a

corner solution is the optimal choice. Hence, a quadratic loss function cannot

be derived. This is a fundamental deficiency of the log-approximation, which

changes the nature of the problem so that the usual technique is not applicable.

Maybe this is the reason why no one conducted a social planner’s analysis for such

a problem before. However, I pursue a different way to get an analytic solution

to the social planner’s problem and use a quadratic approximation in levels.

Expressing the Dixit–Stiglitz aggregator in level deviations from a particular value

preserves the concavity. However, this social planner’s solution is not comparable

to the previously presented decentralized equilibrium. Hence, I characterize the

decentralized equilibrium with a quadratic approximation in levels first.

3.2 The level-quadratic case

In the previous section I derived the optimal behavior of firms facing an infor-

mation constraint and discussed the implications for the decentralized economy.

I found that a comparison with a social planner’s solution is not possible, be-

cause the Dixit–Stiglitz aggregator is convex in its arguments expressed in log-

deviations. For this reason a level approximation is needed. To get a valid

comparison, the decentralized economy with level-deviations is presented first.

The steps are very similar to the log-quadratic case, also note that the NSSS is,

of course, the same.

I start out with expressing the objective of firm, the profits Π, in level deviations

from the NSSS.

π(a, q) = Π
(
Ā(1 + a), Q̄(1 + q)

)
Note that I work with the quantity choice right away. This gives the relevant

behavior which is comparable to the social planner’s behavior. For the second
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order Taylor approximation, the partial derivatives evaluated at zero are needed.

They are

π1 =
∂π(a, q)

∂a

∣∣∣∣
a=0
q=0

= Y
1
ηP

π2 =
∂π(a, q)

∂q

∣∣∣∣
a=0
q=0

=
η − 1

η
Y

1
ηPĀQ̄

η−1
η − Q̄ = 0

π11 =
∂2π(a, q)

∂a2

∣∣∣∣
a=0
q=0

= 0

π22 =
∂2π(a, q)

∂q2

∣∣∣∣
a=0
q=0

= −1

η

η − 1

η
Y

1
ηPĀQ̄

η−1
η < 0

π12 =
∂2π(a, q)

∂a∂q

∣∣∣∣
a=0
q=0

=
η − 1

η
Y

1
ηPĀQ̄

η−1
η = −ηπ22 > 0.

This implies—and is easily verified—that the optimal quantity with full informa-

tion is

qNC = ηa.

Note that this is the same functional form as in the log-quadratic case (see Corol-

lary 2). Deviations from this optimal behavior yield a quadratic loss function:

L(x, q) =
π12
2

(ηa− q)2 .

As π12 > 0, the loss is positive as it should be. This result allows to apply Theo-

rem 2 and the results are summarized in the following theorem. The distribution

of the deviations is adjusted to match the first two moments of the log-normal

distribution of the choice as derived in the previous section. With this adjustment

the problem is still parametrized by the variance of the log-deviations σ2
a.

Proposition 3. Let ai ∼ N
(

1
η

(
e

1
2
σ2
a − 1

)
, eσ

2
a

(
eσ

2
a − 1

))
with ai ⊥ aj for all

i 6= j and each firm solves (5) with a level-quadratic approximation around the

non-stochastic steady state. Then, the optimal quantities without an information
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constraint are given by

qi,NC = ηai

qi,NC ∼ N
(
e

1
2
σ2
a − 1, η2eσ

2
a

(
eσ

2
a − 1

))
.

If there is an information constraint κ, then the unconditional distribution of

optimal quantities is given by

qi ∼ N
(
e

1
2
σ2
a − 1, η2(1− e−2κ)eσ2

a

(
eσ

2
a − 1

))
.

The last statement is equivalent to first choosing a signal of the form

si = ai + εi

with εi ∼ N

0,
eσ

2
a

(
eσ

2
a − 1

)
e2κ − 1

 and ai ⊥ εi ⊥ εj, ∀i 6= j,

then setting the price according to

qi = ηE[ai|si] = η
(
1− e−2κ

)
si.

Proof. Follows from the previous discussion, Theorem 2, and Corollary 1.

The intuition and the comparative statics are very similar to the log-quadratic

case. A higher information capacity brings the behavior closer to the behavior

under full information. Asymptotically, the information constraint behavior con-

verges to the full information case. Whenever κ → 0, firms behave as if the

economy is in the non-stochastic steady state.

The fact that the behavior of a level approximation is the same as in the log-

approximation gives hope that two models are comparable. To see if this is indeed

the case, I look at the other aggregate variables which determine the equilibrium.
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Labor market clearing, the aggregate labor constraint, and the limit as N → ∞

pin down Q:

1 = lim
N→∞

Q
1

N

N∑
i=1

(1 + qi)

= QE[1 + qi] = Qe
1
2
σ2
a .

Now we can characterize aggregate output. It is also possible to derive the price

level. However, the price level does not have a nice algebraic expression and does

not give much insight. Thus I present and discuss only output of the economy.

Y = lim
N→∞

Q

(
1

N

N∑
i=1

(1 + qi)
η−1
η

) η
η−1

= Q
[
E
[
(1 + qi)

η−1
η

]] η
η−1

Unfortunately, these equations involve non-integer moments because η > 1. How-

ever, note that if σ2
a = 0, the output in the NSSS is obtained. The same is ob-

tained in the case of σ2
a > 0 and κ = 0. In the latter case firms just behave as in

the NSSS. For the intermediate case the non-integer moment can be calculated

numerically. However, to get an analytical expression, I present a second order

Taylor approximation of the expected value as well.

Y ≈ QE
[
1 +

η − 1

η
q − η − 1

2η2
q2
] η
η−1

= Q

[
1 +

η − 1

η

(
e

1
2
σ2
a − 1

)
− η − 1

2η2
(
V[q] + E[q]2

)]
= Q

[
1 +

η − 1

η

(
e

1
2
σ2
a − 1

)
−

η − 1

2η2

(
η2(1− e−2κ)eσ2

a

(
eσ

2
a − 1

)
+
(
e

1
2
σ2
a − 1

)2)]

An analytical expression is useful for the comparison with the social planner

solution. Also note that σ2
a needs to be sufficiently small for a valid comparison
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of the log-quadratic and level-quadratic case. To see how close the different

values are, Figure 3 plots a comparison of output for the log- and the level-

approximation. The black line represents the output in the log-quadratic case.

Blue and red lines are the exact and the approximated output for the level case,

respectively.

0 1 2 3
0.96

0.97

0.98

0.99

1

Information Constraint κ (fixed σ2
a=0.03)

O
u
tp

u
t

0 2 4 6

0.96

0.98

1

100 × σ2
a (fixed κ = 0.5)

Log
Level
Level Approx.

Figure 3: Model comparison of log- and level-deviations

The values are the same for the case with κ = 0 or σ2
a = 0. This is not surprising,

because this is how the models were constructed. With an increase in either κ or

σ2
a the difference increases, but is still reasonable small. An important issue is that

the overall shape is preserved as well. Furthermore, note that the approximated

expected value in the level case is closer to the log case than the exact output

for the level case. This relates also to the non-monotonic behavior of output

at higher variances for the exact level case (see right graph). To avoid complex

numbers, I approximate the normal distribution for the level-deviation by a folded

normal around zero. Thus, a greater variance puts more mass below zero and

this changes the distribution of the folded normal. In turn, this approximation

might not be accurate for large σ2
a.

Although, the depicted variances seem small, they are not in economic terms. To

see why, consider the case of σ2
a = 0.05. This implies a standard deviation of

about 0.51 for the normal distribution of the level-deviations of the quantities.

Economically, this means that about 32% of the quantity realizations are 51%

29



above or below the NSSS. Even more drastically, about 6.5% of the realizations

are 102% below the NSSS. These realizations imply a negative quantity, thus they

hit the lower bound of zero.

Overall, the log-quadratic and the level-quadratic equilibrium seem to be com-

parable for small productivity variances. The small variances are not necessary

small in an economic context. This conclusion justifies the comparison of a so-

cial planner’s solution with a level-quadratic approximation to the decentralized

economy.

3.2.1 Social Planner

Previously, it was shown that a social planner’s problem in the log-quadratic

case leads to a convex objective in a maximization problem, which implies a

corner solutions. For an analytic solution a quadratic loss function is needed

(see Theorem 2). With a corner solution it is not possible to derive a quadratic

loss function. The problem of convexity does not arise with an approximation in

level-deviations. For the decentralized economy, it does not make a big difference

if a log- or level-deviations approach is used given that the variance is sufficiently

small.

As discussed before, the social planner solves (10). However, now I consider

a level-quadratic approximation of the objective. For this reason express the

objective in level-deviations from the NSSS.

ψ(a, q) = Ψ(Ā (1 + a) , Q̄ (1 + q)) = ĀQ̄

(
1

N

N∑
i=1

[(1 + ai)(1 + qi)]
η−1
η

) η
η−1

(13)

Note that even if Q̄ 6= 1 6= Ā, it would not influence the analysis, because it is

just a positive constant multiplying the other term. As before, I use a second

order Taylor approximation around the NSSS.

30



The partial derivatives evaluated at the origin are

ψ1 =
∂ψ(a, q)

∂ai

∣∣∣∣
∀qi=0

∀ai=0
=

1

N
ĀQ̄

ψ2 =
∂ψ(a, q)

∂qi

∣∣∣∣
∀qi=0

∀ai=0
= ψ1

ψ11 =
∂2ψ(a, q)

∂a2i

∣∣∣∣
∀qi=0

∀ai=0
=

1

N

ĀQ̄

η

(
1

N
− 1

)
≈ − 1

N

ĀQ̄

η
< 0

ψ22 =
∂2ψ(a, q)

∂q2i

∣∣∣∣
∀qi=0

∀ai=0
= ψ11 < 0

ψ12 =
∂2ψ(a, q)

∂ai∂qi

∣∣∣∣
∀qi=0

∀ai=0
=

1

N

1
N
− 1 + η

η
ĀQ̄ ≈ 1

N

η − 1

η
ĀQ̄.

The approximations hold for sufficiently large values of N . Here, we also see

that the concavity is preserved as ψ22 < 0. One might wonder why ψ2, the first

derivative with respect to the choice variable, is not zero. In the firms problem

this derivative is zero, which follows directly from the optimality condition in the

NSSS. The firm does not have to take into account the aggregate labor constraint.

The social planner, on the other hand, has to satisfy this constraint. In this case

the partial derivative is not zero, but is the shadow price (the Lagrange multiplier)

of the aggregate labor constraint.

Using these derivatives for a second order Taylor approximation and dropping

terms independent of the choice, the social planner with full information solves

max
q

N∑
i=1

qi −
1

2η

N∑
i=1

q2i +
η − 1

η

N∑
i=1

aiqi

s.t.
N∑
i=1

qi = 0.

Solving for the optimal behavior yields qi,SP,NC = (η − 1)ai. Note that the

coefficient is smaller than the coefficient in the decentralized solution η. That is,

under perfect information the individual firms respond too strongly to a change

in their productivity. The social planner adjusts the quantity not as radically as
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an individual firm given a change in productivity. In the decentralized economy

a simple tax on quantity adjustments can restore the social optimal easily.

Proposition 4. A tax rate τ = 1/η on quantity adjustments restores the optimal

policy of a social planner.

Proof. We are looking for a τ such that

(1− τ)qNC = qSP,NC .

Plugging in yields the desired result:

(1− τ)ηa = (η − 1)a

τ =
1

η
.

This result is very intuitive. The elasticity of substitution η determines the

monopoly mark-up charged by firms. A high value of η implies only a small

mark-up, i.e. only small monopoly power. In the limit, η → ∞, the monopoly

power vanishes and the economy approaches perfect competition. In this case the

tax rate τ approaches zero as there is no distortion due to monopolistic compe-

tition. If η decreases, the monopoly power increases and therefore the tax rate

increases as well. Note that the tax rate result carries through to the case with

limited information capacity. To see this, the behavior with restricted informa-

tion flow is needed first. The optimal behavior under full information implies a

quadratic loss function due to suboptimal behavior.
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L(a, q) =ψ2

N∑
i=1

(qi,SP,NC − qi) +
1

2
ψ22

N∑
i=1

(
q2i,SP,NC − q2i

)
+ ψ12

N∑
i=1

(qi,SP,NCai − qiai)

,
N∑
i=1

qi +
1

2η

N∑
i=1

[
(η − 1)2 a2i − 2(η − 1)qiai + q2i

]
=

1

2η

N∑
i=1

[(η − 1) ai − qi]2 (14)

In the third line, I drop the terms independent of the choice qi. They do not

affect the behavior anyway. The last equality holds due to the aggregate labor

constraint. With the assumption that ai is independent of aj for all i 6= j and

because the information constraint is separately given for each good,9 it is possible

to consider each element of the sum separately and apply Theorem 2. However,

also the aggregate labor constraint needs to be fulfilled. This is 1
N

∑N
i=1 qi = 0.

Given that N is sufficiently large, this does not cause any problems as a law of

large numbers applies and imposing E[qi] = 0 makes sure that the labor constraint

is met in the limit.10 The previous discussion, together with Theorem 2 proves

most of the following theorem.

Theorem 4. Let ai ∼ N
(

1
η

(
e

1
2
σ2
a − 1

)
, eσ

2
a

(
eσ

2
a − 1

))
, ∀i, ai ⊥ aj, ∀i 6= j,

and the social planner solves (10) with a level-quadratic approximation around

the non-stochastic steady state. Then, the output maximizing quantities without

9Later in Subsection 3.3 I show that having one overall information constraint leads to the
same outcome.

10As in the decentralized economy, the moments is matched with the log-normal distribution
of the log-deviation case. In order to get rid of the level effect of the log-normal distribution,

I relax the aggregate labor constraint. This means that I allow E[qi] = η−1
η

(
e

1
2σ

2
a − 1

)
. This

value is very close to zero for the variances under consideration.

33



an information constraint are given by

qi,SP,NC = (η − 1)ai

qi,SP,NC ∼ N
(
η − 1

η

(
e

1
2
σ2
a − 1

)
, (η − 1)2 eσ

2
a

(
eσ

2
a − 1

))
.

If there is an information constraint κ for each good, then the optimal quanti-

ties are given by

qi,SP ∼ N
(
η − 1

η

(
e

1
2
σ2
a − 1

)
, (1− e−2κ) (η − 1)2 eσ

2
a

(
eσ

2
a − 1

))
qi,SP = (η − 1)E[ai|si] = (η − 1)

(
1− e−2κ

)
si

where si = ai + εi

εi ∼ N
(

0,
(
e2κ − 1

)−1
eσ

2
a

(
eσ

2
a − 1

))
, with εi ⊥ εj, ∀i 6= j and εi ⊥ ai.

In the latter case, output is given by

Ψ = E
[
(1 + ai + qi + aiqi)

η−1
η

] η
η−1

Proof. Everything but Ψ follows from the previous discussion and Corollary 1.

Output follows from (13) and a law of large numbers as N tends to infinity.

Comparing the behavior with an information constraint using the signal reveals

that the result about the tax rate applies here as well. In general, the behavior

under full information carries through to the case with an information constraint.

The social planner makes smaller adjustments to productivity deviations than an

individual firm does.

Here, the expression for output not only involves a non-integer moment, but also

random variables which are not normally distributed. Thus, only some special

cases can be considered analytically. The behavior with an information constraint

asymptotically approaches the full information case. Therefore, also output con-

verges to the full information case. If σ2
a → 0, the output converges to the NSSS.
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If the social planner is not allowed to process any information (κ = 0), then

qi = η−1
η

(
e

1
2
σ2
a − 1

)
and output is

[
1 +

η − 1

η

(
e

1
2
σ2
a − 1

)]
E
[
(1 + ai)

η−1
η

] η
η−1

. (15)

This still involves a non-integer moment, but now the random variable is Gaus-

sian which helps investigating the behavior numerically. However, an analytical

expression, also for κ > 0, might help to understand output for the social plan-

ner’s choice. In the decentralized economy, it turned out that a second order

Taylor approximation of the term in the expectation was very accurate. Using

this approximation in the social planner’s context yields an approximate output

of

Ψ ≈E

[
1 +

η − 1

η
(ai + qi)−

η − 1

2η2
(
a2i + q2i

)
+

(
η − 1

η

)2

aiqi

] η
η−1

=

{
1 +

η

η − 1

(
e

1
2
σ2
a − 1

)
− η − 1

2η2

[
eσ

2
a

(
eσ

2
a − 1

) (
1 +

(
1− e−2κ

)
(η − 1)2

)
+
(
e

1
2
σ2
a − 1

)2 1 + (η − 1)2

η2

]
+

(η − 1)3

η2
(
1− e−2κ

) [
eσ

2
a

(
eσ

2
a − 1

)
+

1

η2

(
e

1
2
σ2
a − 1

)2]} η
η−1

.

Figure 4 adds the approximated social planner’s output Ψ to the left panel of

Figure 3. The graph reveals that the difference between the social planner’s

solution and the decentralized economy increases with κ. With a high value of κ

the full information is approached and the difference is the usual inefficiency due

to monopolistic competition. If less information processing is allowed the gap

narrows. If κ → 0, the social planner and the firms set the NSSS values. The

gap arises because σa 6= 0. Thus, there is a distortions, because firms never take

the aggregate labor constraint explicitly into account. The labor market clears

because aggregate demand adjusts downward accordingly. The social planner

always takes the labor constraint explicitly into account. Therefore, the social
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planner is able to use movements in productivity explicitly to increase output.11

The dashed line indicates Ψ for κ = 0 using (15). This line indicates that the

approximation is close to the true value - at least at κ = 0.
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Figure 4: Output of social planner and decentralized economy

Figure 4 shows the output for a specific value of σ2
a only. However, the result is

more general. For this reason, Figure 5 plots the output ratio (social planner’s

value divided by the decentralized output, level-approximated value) for different

values of κ and σ2
a. In the NSSS, i.e. σ2

a = 0, the difference is zero. This is as

expected: by the aggregate labor constraint the NSSS is the same in both cases.

An increase in σ2
a with κ = 0 leads to the gap as described above. More important

is that for any value of σ2
a the difference increases with an increase in κ. It is also

intuitive that at a lower value of σ2
a the full information difference is reached with

lower values of κ. If there is not much variation, then having a lot information

does not improve the decisions significantly.

To sum up, even with the strict assumption that the NSSS is the same for the so-

cial planner as in the decentralized economy, there emerge substantial distortions

11A small level shift is also due to the distributional assumptions. Also see Footnote 10.
However, this effect is very small and does lead to a different conclusion.
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Figure 5: Output ratio of social planner and decentralized economy

outside the NSSS. At the firm level, the adjustments to changes in productiv-

ity are too large compared to a social optimal behavior—a social planner would

make smaller adjustment if productivity levels change. On the aggregate this

implies that the biggest difference of social planner to decentralized economy in

terms of output arises in a full information equilibrium. This is independent of

the productivity variance. Intuitively, in a full information equilibrium the usual

distortions due to monopolistic competition arise. If the agents (social planner

and firms) have finite information capacity their behavior is closer to the behavior

in the NSSS. By assumption, in the NSSS the aggregate variables are the same

for the social planner and for the decentralized economy.

This concludes the main analysis. Even in this simple model interesting results

emerge due to limited information processing. An interesting further step would

be to include an information friction on the consumer side as well. This might

lead to interesting feedback effects á la Maćkowiak and Wiederholt (2011).
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3.3 Extensions

The main analysis in the previous section revealed some interesting findings even

with a quadratic approximation of the objective functions. I discuss two exten-

sions in this section. The one is about the approximation. Do firms which solve

the general problem stated in Equation 5, behave close to the behavior predicted

by the quadratic approximation? The other is about the social planner. How

does the social planner choose if he faces only one overall information constraint

and not one constraint for each firm or good?

3.3.1 The general firm problem

In this section, I discuss the behavior of a firm which solves the general non-

quadratic problem stated in (5). As the profit function is not quadratic, The-

orem 2 does not apply. An analytic solution to such a problem is not known.

Hence, I rely on numerical results in this section. Matejka (2010) showed that

the quadratic Gaussian case is very special and a Gaussian posterior is not opti-

mal in general. Often, this leads to discrete behavior.

In this thesis I consider four different possible setups. The first is the same setup

as in the log-quadratic case. This case is presented mostly for illustration of

how such problems can be analyzed. Furthermore, it is a good reference point

as an analytic solution is known. The second case is that log-deviations are

normally distributed, but the objective is not approximated. In the third example

I consider normally distributed level-deviations, but again without approximating

the objective. The last example shows the behavior if productivity is uniformly

distributed. Especially the last one is in spirit of Matejka (2010). I do not

consider any general solution to the social planner’s problem, as such a problem

is far more complex. A firms problem is relatively simple as it requires to find a

joint distribution of two variables. This means that an optimization over a two

dimensional grid needs to be done. In the social planner’s problem the objective
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of interest is a joint distribution of 2 × N variables, which is an optimization

problem on a 2N dimensional grid.

For the firms problem I use the following numerical procedure. First, 25 grid

points on each dimension discretize the 2 dimensional space. Second, invariance

of the solution to the size of the choice space determines the size of the space

under consideration. The size of the space and the 625 grid points allow to use a

standard optimization routine to solve (5). The result is a joint distribution over

the 2 dimensional discretized space.

The log-quadratic case. If firms solve (5) with a log-quadratic approximation

of the objective an analytic solution is available. The result is stated in Propo-

sition 2. Recall that the optimal behavior with full information is pNC = −a.

Thus, with full information all the mass of the joint distribution f(a, p) would be

on the diagonal. With an information constraint,12 this cannot be achieved, but

the optimal behavior puts most of the mass close to the diagonal. Figure 6 plots

the optimal joint distribution f(a, p) for the same economic parameters as in the

examples in the previous section. The information capacity is set to κ = 1 and

the prior variance is σ2
a = 0.01. The graph is exactly as just described. Most of

the mass sits at the diagonal. Due to the information constraint not all the mass

is exactly on the diagonal. The theory predicts that the posterior distribution is

Gaussian as well. At first glance, this seems to be fulfilled as well. Graphically,

this is confirmed by looking at the conditional distributions f(p|a). Figure 7

plots these marginal distributions for five different values of a. Note that the

small asymmetry at the end points is due to the approximation, because there is

no grid point exactly at the mode.

Figure 8 plots the marginal distributions f(p) for different values of κ. For all κ,

the marginal is a normal distribution. Furthermore, the variance decreases with

a decrease in κ. This is also intuitive and in line with theory. The lower κ the

12Note that in all the numerical examples, a finite κ would correspond to full information,
because the distributions is discretized.
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Figure 6: Optimal joint distribution f(a, p) in the log-quadratic case
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closer the behavior to the NSSS behavior. With κ = 0.05 almost all mass is on

zero, the NSSS value. For κ = 1 and κ = 2 the distributions are almost the same.

This happens because these values of κ are already close to the full information

case.
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Figure 8: Optimal marginal distributions f(p) in the log-quadratic case for dif-
ferent κ

The log-deviation case. The previous example showed that with a quadratic

objective the numerical results are as predicted by theory. However, there was not

much new insight in this exercise. For this reason, I consider the non-quadratic

objective with log-deviations now. I keep the assumption that a ∼ N (0, σ2
a).

The objective is

Y

(
P̄

P

)−η
e−ηp

(
ĀeaP̄ ep − 1

)
,

where the firm takes all the upper case variables as given. Now, Theorem 2 does

not apply anymore and a Gaussian posterior distribution is not guaranteed. Look-
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ing at the marginal distributions f(p) in Figure 9 reveals that the distributions

have a slight asymmetry for some values of κ. For this example all the parameters

are the same as before. Note that with (almost) full information (κ ≥ 0.5) the

marginal distribution is a normal distribution. With full information it is still

optimal to track the productivity change one-to-one and thus a normal distribu-

tion is optimal. With a lower information constraint the marginal distributions

are not too different from a normal distribution, but have some significant asym-

metries. However, the log-quadratic case seems to be a good approximation to

this non-linear problem. The gain of getting an analytic solution might outweigh

the approximation loss.
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Figure 9: Optimal marginal distributions f(p) in the log-deviation case for dif-
ferent κ

The level-deviation case. In the main analysis, I used the level-quadratic

approximation of the firms objective for a comparison with the social planner’s

solution. For the same reason as in the analytic part I assume that the level-

deviations are distributed according to a ∼ N
(

1
η

(
e

1
2
σ2
a − 1

)
, eσ

2
a

(
eσ

2
a − 1

))
.
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Now, (13) is the objective and no approximation is used. The choice is the

joint distribution of quantity and productivity deviations, i.e. f(a, q). Figure 10

shows the optimal marginal distribution f(q). In this case the linear-quadratic

approximation seems to be very accurate. As in the approximation, the variance

of f(q) is about η2 higher than the variance of f(a) with full information. Note

that the range of the q-axis is doubled compared to the previous graphs.
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Figure 10: Optimal marginal distributions f(q) in the level-deviation case for
different κ

The uniform case. In this last experiment, I drop the Gaussian assumption.

The firm uses the general objective (4). Now the difference is that the produc-

tivity, not the deviations, are uniformly distributed, i.e. A ∼ U [0.825, 1.175].

This distribution has mean one too, so that the NSSS is the same as before.

Furthermore, the variance is similar to the variances of the normal distribution

considered before. Matejka and Sims (2011) show that such problems might give

rise to discrete behavior.
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From Figure 11 it is not clear if discrete behavior is optimal, especially, for small

values of κ. Here the objective is not quadratic and therefore the proposition

about discreteness of Matejka (2010) is not applicable. However, for higher values

of κ it seems that there are discrete masspoints, which is in line with the numerical

results of Matejka (2010). He finds that even without an quadratic objective

discrete behavior is optimal in many cases.

Some similarities with the examples before are worth mentioning. With a low

κ the optimal choice approaches the NSSS behavior. An increase in κ leads

to a higher variance until the full information case is reached. There the prior

distribution can be tracked perfectly. For very small values of κ a marginal

distribution similar to a Gaussian seems to be optimal. For higher values of κ a

bimodal distribution arises where some points have a lot of mass. Also note that

the mean of the distribution stays the same at P̄ = η
η−1 .
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Figure 11: Optimal marginal distributions f(p) in the uniform case for different
κ

To sum up, the log-quadratic approximation seems to be good for relatively high

values of κ. The level-quadratic approximation is very accurate for all values of
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κ. In this setup even a non-Gaussian prior leads to an distribution which is close

to a normal distribution for small values of κ. The clear discreteness result is

not confirmed here, but this is not contradicting the formal proposition about

discreteness in Matejka (2010), because the objective is not quadratic. However,

a bimodal distribution with discrete masspoints arises for medium values of κ,

which has some spirit of the discreteness result of Matejka (2010).

3.3.2 The Social Planner with one Information Constraint

In the main part I analyzed a planning problem, where the social planner has

a separate information constraint for each good. This simplified the analysis

insofar that each good could be considered independent of the others. Only

the aggregate labor constraint linked the decisions about the individual goods

together. One might wonder what happens if the social planner is allowed to

shift the information allocation from one good to another. In other words, what

are the implications of a social planner with one overall information constraint

only. For comparison reason his total capacity is kept at the same level. Formally

the social planner solves (10), but N information constraints are replaced by

I[A;Q] ≤ Nκ.

I assume that ai ∼ N (µ, σ2) , ∀i, xi ⊥ xj, ∀i 6= j. This covers the social plan-

ner’s case in the previous section, but simplifies the notation. However, with this

multivariate information constraint Theorem 2 does not apply directly. Fortu-

nately, by Proposition 3 and 4 in Maćkowiak and Wiederholt (2009a) it is optimal

to choose for each good a signal of the form true productivity plus independent

Gaussian white noise, i.e. si = ai + εi for all i with ai ⊥ εi and εi ⊥ εj for all
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i 6= j. Thus, the information constraint can be rewritten as

κi ≡
1

2
log

(
σ2

σ2
εi

+ 1

)
(16)

N∑
i=1

κi ≤ Nκ.

κi can be thought of as the attention devoted to good i. Using the second or-

der Taylor approximation from above, the optimal choice given the signal si is

qi = (η − 1) (1− e−2κi) si. Plugging this in the expectation of the quadratic loss

function (14) gives the objective in terms of κi’s.

E [L(a, q)] = E

[
1

2η

N∑
i=1

((η − 1)ai − qi)2
]

= E

[
1

2η

N∑
i=1

(
(η − 1)ai − (η − 1)

(
1− e−2κi

)
(ai + εi)

)2]

=
(η − 1)2

2η

N∑
i=1

Ei
[
e−4κia2i +

(
1− e−2κi

)2
ε2i

]
=

(η − 1)2

2η

N∑
i=1

σ2e−2κi ,

where the third equality follows from the independence of ai and εi. The last

equality uses (16). Note that the objective is convex in every κi. This allows to

characterize the optimal behavior by the first order conditions of the following

problem.

min
{κi}Ni=1

1

2

N∑
i=1

e−2κi

s.t.
N∑
i=1

κi ≤ Nκ

The first order condition imply that κi = κj for all i, j ∈ {1, . . . , N}. This, in turn,

means that κ∗i = κ for all i. This shows that a social planner with one overall

46



information constraint behaves the same as if he had a separate information

constraint for each good. This is intuitive for two reasons. The problem is

symmetric. Therefore, if it is better to focus attention on more than one good,

then the best is to split it equally on all goods. As the problem is convex, a

corner solution is not optimal. This shows that it does not make a difference

if the social planner has a separate information constraint for each good or one

overall constraint. Either specification gives the same result.

4 Conclusion

This paper studied the behavior of firms which face an information constraint.

Due to the information constraint firms are not able to observe the true realiza-

tion of their productivity. The market structure is assumed to be monopolistic

competitive to allow for individual price setting. The optimal behavior cannot be

characterized by an analytic solution in general, however, the rational inattention

literature provides an analytic solution for a special case of such a problem. This

special case holds for quadratic loss functions. In order to apply this to the firms

problem, a second order Taylor approximation of the profit function is needed.

In addition to the firms problem, a social planner’s problem was considered to

analyze the implications of the information constraint on the efficiency of the

decentralized economy. The social planner’s problem faces the same issue as in

the firms problem. Thus, a quadratic approximation of the objective is needed

in this case as well. The standard approach is to use an approximation in log-

deviations. This was done, for example, also with the firm’s problem. As it

turned out, the Dixit–Stiglitz aggregator is not concave in log deviations, which

does not allow to derive a quadratic loss function. For this reason a level-quadratic

approximation was used.

The main findings are the following. The optimal behavior of a firm—where it

does not matter if the price or quantity is chosen—is characterized by a sim-
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ple function which is linear in productivity and decreasing in the information

capacity. This optimal behavior has some important implications for aggregate

outcomes. Most importantly, output is not maximal in a full information case.

Output in the decentralized economy is maximized either if agents are not allowed

to process any information or if the economy is the non-stochastic steady state.

This result is driven by the symmetry of the Dixit–Stiglitz aggregator and the

aggregate labor constraint. In equilibrium aggregate output needs to adjust to

clear the labor market.

It was shown, that the optimal policy using a level-quadratic approximation of

the firms objective leads to the same functional form as in the log-quadratic case.

For this reason, the behaviors in both cases are comparable. However, this only

holds for small productivity variances. Due to the normality assumption of the

deviations, a high variance would put too much mass on negative realizations,

which would not fit into the economic framework.

For the social planner a log-quadratic approximation is not possible, because the

objective function is not concave. This is needed to get an an analytic solution.

To cope with this problem, a level-quadratic approximation is used as well. The

level-approximation preserves the concavity of the original objective. The optimal

behavior of the social planner is very similar to the behavior in the decentralized

economy. However, the reaction to deviations in productivity are less strong

than in the decentralized economy. Introducing a simple tax in the decentralized

economy could restore the social optimal behavior.

The social planner maximizes output, which is equivalent to maximizing the util-

ity of a representative household in the model under consideration. By assump-

tion, the non-stochastic steady state output yields the same for the social planner

and the decentralized economy. Under full information the usual inefficiency due

to monopolistic competition is obtained. This implies that intermediate cases

have less distortions than a full information setup. Or in other words, distor-

tions are increasing in the amount of information agents are allowed to process.
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Furthermore, it was shown that the results are robust to the modeling choice of

the information constraint in the social planner’s problem. It does not matter

whether the social planner has a separate information constraint for each good

or one overall information constraint. With one information constraint the social

planner would still allocate the same amount of attention to each good.

In the last part of this paper four numerical exercises were conducted to see if

the approximations to the firm problems are valid. If the firm wants to maximize

profits and log-deviations of productivity are normally distributed then the opti-

mal behavior is close to the approximated one. For the level-approximation the

approximation is even better. In the last experiment the Gaussian assumption

was dropped. Instead, I assumed that productivity has a uniform distribution.

In this case, the optimal behavior is characterized by an almost Gaussian dis-

tribution of prices for low information capacity cases. For intermediate cases a

bimodal distribution is optimal. This, in turn, might have important implications

for the aggregate variables as well. Further research in this direction could be

fruitful.

An interesting avenue for future research could be to model an information friction

on the consumer side as well. Including this feature might lead to interesting

feedback effects. Because the consumer side has also implications for the firms

and for aggregate variables, such as aggregate output and the price level, as

well. Solving such a model might be challenging, but it is far from clear that

the results presented here are the same (or turn around?) if one includes an

information constraint on the consumer side as well.
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