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Abstract

A main topic regarding modern web browsers is user privacy. When surfing on the Internet, web
browsers typically store user-related browsing data, such as cookies, browsing history and web
site banners, on the local computer system. Saving that data locally may pose a security risk to
Internet users, as it can be recovered from a computer’s hard disk by means of various forensic
tools. To tackle this privacy issue, web browser vendors introduced the private browsing mode,
which promises not to store sensitive user data to the local system, in order to preserve user
privacy. As there exists no guarantee that the private browsing mode of modern web browsers
has been implemented and tested thoroughly from a forensically standpoint of view, in this work
a proof-of-concept is provided which examines this mode by means of a new forensic analysis
approach.
This approach takes advantage of two frameworks. One framework has been used for perform-
ing automated web browser tests, whereas the other one has been implemented for forensic
analysis purposes. The key feature of the analysis framework is based on the concept of process
monitoring, which offers the possibility to log file system events that have been induced by a
web browser during a private browsing session. The collected file system event log files have
been used for file recovery purposes in conjunction with Digital Forensics XML (DFMXL) files.
Generally, DFXMLs provide digital examiners with valuable information about file objects (e.g.
last access time, file size, allocation status).
The experimental evaluation of this work is based upon this information, in order to retrieve
those Internet artefacts which have been accessed when surfing the Internet in private mode.
The evaluation of the results has shown that the private modes of the tested web browsers have
been implemented differently. The amount of recovered Internet artefacts has varied depending
on the web sites as well as on the web browsers that have been used for testing. From foren-
sically standpoint of view, it has been found that private browsing artefacts can be recovered
effectively by using process monitor log files.
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Kurzfassung

Im Laufe der letzten Jahre hat der Begriff Privatsphäre für Internet-Benutzer immer mehr an Be-
deutung gewonnen. Normalerweise legen Web-Browser beim Internet-Surfen verschiedene Ar-
tefakte auf der Festplatte eines Rechner ab, um beispielsweise bessere Antwortzeiten in Bezug
auf Benutzeranfragen zu erzielen. Allerdings birgt dieses Default-Verhalten von Web-Browsern
einige Sicherheitsrisiken für deren Benutzer mit sich. Es können zum Beispiel Internet-Artefakte,
wie Bild- und Textdateien, von der Festplatte eines Rechners rekonstruiert werden, nachdem der
Web-Browser bereits beendet wurde.
Entsprechend haben die Hersteller von modernen Web-Browsern reagiert und ihre Produkte mit
einem Feature ausgestattet, das die Privatsphäre von Internet-Benutzern schützen soll. Dieses
Features wird privater Modus genannt. Wenn ein Web-Browser im privaten Modus gestartet
wird, lässt er üblicherweise keine digitalen Spuren auf der Festplatte zurück, die über das Surf-
Verhalten eines Internet-Benutzers Aufschluss geben. Nachdem allerdings keine Garantie be-
steht, dass der private Modus aus forensischer Sicht fehlerfrei seitens der Web-Browser Herstel-
ler implementiert wurde, bedarf es eines neuen Ansatzes, um die Qualität der implementierten
Software hinsichtlich der Privatsphäre von Benutzern zu prüfen. Im Rahmen dieser Arbeit wur-
de eine neue Methode entwickelt, um den privaten Modus von modernen Web-Browsern aus
forensischer Sicht zu überprüfen.
Der praktische Teil dieser Arbeit umfasst ein Test- und ein Analyse-Framework. Das Test-
Framework wird für das automatisierte Testen von ausgewählten Web-Browsern verwendet. Das
Analyse-Framework wird zum Auswerten der Testergebnisse eingesetzt. Das Kernkonzept die-
ser Arbeit, welches in beiden Frameworks umgesetzt wurde, basiert auf der Überwachung von
Prozessen. Beim Testen von Web-Browsern werden hierfür Log-Dateien erstellt, welche jene
Dateisystem-Events enthalten, die der private Modus eines Web-Browsers am lokalen Rech-
ner während des Internet-Surfens generiert hat. Diese Log-Dateien werden anschließend vom
Analyse-Framework dazu verwendet, um einerseits zu bestimmen, wann ein Web-Browser im
privaten Modus Dateien auf die Festplatte schreibt. Andererseits werden sie dazu verwendet,
um Internet-Artefakte von der Festplatte zu bergen, um in weiterer Folge bestimmen zu können,
welche Änderungen bei einzelnen Dateien (z.B. beim Dateiinhalt) stattgefunden haben. Hierfür
werden Digital Forensics XML (DFXML) Dateien eingesetzt.
Die Evaluation hat ergeben, dass die getesteten Web-Browser den privaten Modus in unter-
schiedlicher Qualität implementieren. In Abhängigkeit von den getesteten Web-Seiten und vom
verwendeten Web-Browser haben sich Unterschiede in der Anzahl der rekonstruierten Internet-
Artefakte gezeigt. Die Genauigkeit der eingesetzten, forensischen Methode hat sich positiv auf
das Finden von digitalen Spuren hinsichtlich des privaten Modus erwiesen.
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CHAPTER 1
Introduction

1.1 Problem Definition

Within the last two decades the Internet has rapidly expanded. More and more people frequently
use the Internet - with suitable software like web browsers - in business or for private purposes
(e.g. email, instant messaging).
Web browsers provide many features for retrieving, traversing and displaying various content
from the Internet. Several web browser products are available on the market, which differentiate
not only in layout, but in handling or the individual implementation.
When surfing the Internet modern web browsers are executed in public browsing mode by de-
fault. This basically means that user-related browsing data, such as cookies or bookmarks, are
stored on a computer’s hard drive. By collecting, storing and processing these data web browsers
can increase their performance to be able to handle user requests quickly.
In spite of the higher throughput of web browsers, capturing and storing individual browsing
data can violate user privacy. For example, if a computer is hacked by a local intruder, the per-
petrator will gain access to individual browsing data. Moreover, the intruder will be able to draw
conclusions about the browsing activities of the users of that computer. Depending on the value
of the individual browsing data (e.g. passwords, credit card numbers), an attacker could recover
and steal that data. To tackle this threat, modern web browsers offer a ”private browsing mode”
[ [87], Sammons, 2012 ], which claims not to store any user-related browsing data to the local
hard disk, in order to preserve user privacy. Due to the variety of modern web browsers and their
rapid development, private browsing modes are expected to work differently (depending on the
software vendor). As a consequence, the privacy of local users mainly depends on a properly
functioning private mode when dealing with web browsers.
From a forensically standpoint of view there exists no guarantee that the private browsing mode
of modern web browsers has been implemented and tested sufficiently. Therefore, digital inves-
tigation needs to be done, in order to detect privacy leaks in the private mode of modern web
browsers.

1



1.2 Aim of This Thesis

The main goal of this master’s thesis is to provide a forensic approach for investigating the pri-
vate browsing mode of modern web browser. A proof-of-concept is implemented by providing a
framework for web browser testing combined with a framework for the forensic analysis of web
browsing data. This approach can be used to determine whether or not user-related browsing
data has been stored on the local file system in the context of a private browsing session. Fur-
thermore, this approach can be used to recover user-related browsing data from the local system.
As modern web browsers can be used in private mode manually or automatically (e.g. with a
framework), the main research question to answer is whether there are any differences from a
forensically standpoint of view when a web browser is used in private mode manually, in con-
trast to when it is used in private mode automatically.
Assuming that there are differences between executing the private mode manually and automat-
ically, this thesis aims to evaluate these differences and give recommendations for the practical
use of the web browsers that have been tested.

1.3 Structure of This Thesis

In chapter 2, the field of digital forensics is introduced. An introduction to file systems is pre-
sented. Additionally, common forensic analysis techniques are described. Digital anti-forensic
techniques are presented and an explanation is provided of how this topic is related to the pri-
vate browsing mode of web browsers. Chapter 3 illustrates the new approach for investigating
the private mode of modern web browsers. The field of virtualisation is introduced as well as
process monitoring. In chapter 4, the implementation of the testing framework as well as of
the forensic analysis framework is described. Chapter 5 defines test scenarios that have been
evaluated. Additionally, the findings are reported. In chapter 6, the test results are discussed. In
addition the chapter discusses the strength and limitations of the proposed approach. Chapter 7
concludes this master’s thesis.
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CHAPTER 2
Background

2.1 Introduction to Digital Forensics

Within the last decades computers and networks have grown rapidly and according to this fact
computer crime did as well. In [21] computer crime is also referred to as cyber crime being only
one related term out of many. In cases of cyber crimes the computer, the network or a digital
media must be a central part of the criminal act, contrary to crimes that involve an unforeseen
computer usage, e.g. during an incident. Crimes like terrorism, child pornography or drug
dealing may involve some kind of digital evidence (e.g. documents, images or movies), which is
located on digital media like hard drives or compact disks. Therefore, collecting digital evidence
within the context of a digital investigation will become more important in order to detect and
prevent such crimes [21, 37, 38].
Digital investigation is not limited to cyber crime, but it can be used in different contexts and
there are several other explanations of this term available. As stated by Carrier, ”A digital
investigation is a process where we develop and test hypotheses that answer questions about
digital events.” [ [33], Carrier, 2005 ]. Brown defines digital investigation with the words ”digital
forensics” [ [31], Brown, 2009 ] referring to ” ... the art and science of applying computer
science knowledge and skills to aid the legal process.” [ [31], Brown, 2009 ]. Another definition
of digital forensics is given in [50] which uses the terms ”digital archaeology” [ [50], Farmer and
Venema, 2005 ] and ”digital geology” [ [50], Farmer and Venema, 2005 ]. Digital archaeology
describes the direct consequences that occur on a system which follow from user actions, e.g.
the modification of file timestamps, whereas digital geology means that the outcome of digital
processes is not directly affected by a user, e.g. the allocation of file space. In any case, either
users or processes trigger events that create digital evidence. Carrier defines digital evidence
as ” ... a digital object that contains reliable information that supports or refutes a hypothesis.”
[ [33], Carrier, 2005 ], in order words, digital evidence supports or refutes the hypothesis which
is about to be tested within the context of a digital investigation.
According to [22,50], a digital investigation is about extracting data of a system and processing it
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to gain more information about the truth of events. To achieve this goal the next section presents
an overall process for managing digital investigations.

2.1.1 The Digital Forensic Process

Various proper definitions of digital forensic process models are available, for example one
in [81] and another in [82]. For reasons of simplicity this work covers the digital investiga-

Figure 2.1: Schematic representation of the digital forensic process model [37]

tion process model according to [37], as can be seen in figure 2.1. Altheide and Carvey [22]
summarise the steps of this process model by describing three consecutive phases [22]:

1. Acquirement

As part of the initial acquisition process, proper information gathering is a compelling
task. The media which contain evidentiary value, such as optical media, mobile phones
or disk drives, are identified and collected for further examination. There may be addi-
tional artefacts like manuals for a correct device handling. In some cases precise media
specific information like disk geometry, hidden partitions or unknown file systems are re-
trieved [48, 54].
During the acquisition phase it is recommended to preserve the state of the original media
by creating a ”working copy” [ [22], Altheide and Carvey, 2011 ]. This copy is a duplicate
of the original media and more appropriate for the next investigation step, since forensic
tools are known to modify and destroy disk data respectively.
Additionally, the preservation of digital data focuses on techniques to ensure data integrity,
e.g. checksums or cryptographic hashes [31].

2. Examination

The preserved data is filtered and divided into two sets. One set consists of artefacts that
are of no potential value and the other one contains artefacts which are relevant for further
examination [31]. These artefacts are subjected to an adequate analysis (e.g. file content
analysis) and the gained results are interpreted by the investigator [22]. The outcome of
this phase mostly depends on the skills and experience of the investigator, because digital
evidence occurs in various forms and may come from different locations being difficult to
analyse [44].
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3. Reporting

A proper documentation of all findings has to be managed throughout the whole process
of a digital investigation to ensure the completeness of the chain of custody in a way which
is admissible in court of law, i.e. the forensic report needs to be documented thoroughly to
be able to defend the documented actions against the adverse party [48]. Typically, the ev-
idence found during the investigation is extracted from the analysed media and transferred
to portable media like a CD-ROM or a DVD-ROM [22, 31].

Philipp et al. [79] suggest to archive the collected evidence to have it for future use. Basically this
means that a bundle is created, which consists of a proper maintained process documentation and
the archived data. It is recommend to store such bundles securely to protect it from unauthorised
access, e.g. theft, as well as environmental damage, e.g fire or flooding.

2.1.2 Disk Imaging Techniques

As part of the digital investigation process, proper data acquisition techniques are necessary
when creating a working copy, i.e. the integrity of the original media has to be preserved.
Therefore, choosing a forensically sound disk imaging technique may not always be a simple
task. In [57] a methodology is presented which allows investigators to formulate requirements
for picking an appropriate imaging technique. Based upon different criteria, such as memory
type (e.g. physical, virtual) or data destination format (e.g. raw, structured), an imaging tech-
nique can be evaluated which fits best.
Data duplication is established in a forensically sound manner by using approved tools that do
not alter the original storage device during the duplication process. In general, either a physical
or a software write-blocker is used to accomplish a forensic copy of a storage device. What
method to use depends on different circumstances. If the storage media cannot be easily re-
moved because it is built-in a mobile device, e.g. a laptop, then a write-blocking software may
be used, otherwise a physical write-blocker is recommended. In the latter case the storage media
is removed from the original workstation and is connected to a forensic workstation via hard-
ware write-blocker [44].
In agreement with NIST Special Publication 800-86 there are two ways of creating a working
copy [64]:

• Logic Copy

Establishing a simple logic copy of a volume is performed by copying its files and direc-
tories [48]. Additional file system information like deleted content (e.g. files, directories),
partially overwritten files or free space is usually not part of a logic copy [64,87]. The data
contained in a logic copy will depend on the tools that are used to conduct the copy [87].
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• Bit Copy

When performing a bit copy the original source media is copied bit-by-bit to a new des-
tination, i.e. this copy represents the exact duplicate of the original media [48]. Data can
be copied by using two different approaches: ”disk-to-disk” [ [64], Kent et al., 2006 ] or
”disk-to-file” [ [64], Kent et al., 2006 ]. The disk-to-disk approach copies the data directly
from one media to another one, whereas disk-to-file duplicates a media by copying its
contents to a single file. Usually bit copies take longer to perform and more disk storage
is required, due to the fact that more details are copied.

Sammons [87] recommends to choose the destination media’s size larger than the source’s one,
because when conducting a bit-by-bit copy extra file system data may have to be stored. Be-
fore the cloning process can take place, a forensically ”clean” destination media is required, i.e.
which does not contain any data. Cleaning can be accomplished by using tools that will com-
pletely overwrite the media with ones or zeros [87].

2.1.3 The Volatility of Data

During a forensic investigation digital evidence can be collected by acquiring data of a dead
system, which is powered off, or a live one that is up and running [87]. The term volatile is
applied to data, which can only be collected from live systems, in opposition to non-volatile data
which is available on both dead and live systems [61].
Typically, volatile data is kept in RAM of a computer. This data can contain information about
open network connections, recently accessed files, login sessions, running processes or password
hashes. Non-volatile data is saved permanently on a media, e.g. software configuration files,
password files. Although non-volatile data can be acquired from dead or live systems, usually the
system is shut down when non-volatile data is collected in the course of a digital investigation.
A system shutdown can be accomplished by shutting down the operating system or by pulling
the power plug.
Traditional forensic investigations were dealing with the inspection of non-volatile data; volatile
data was neglected. Nowadays neglecting volatile data may be insufficient in the case of an
investigation, because software products like instant messengers may have file logging disabled
by default. Digital evidence regarding such messaging applications may be residing in RAM
only. Therefore, forensic examiners may lose valuable information by ignoring the content of
the RAM [61, 64, 87].
Acquiring data from a live system could be one possible solution for this problem taking into
account that collecting live data has its drawbacks. A forensically sound approach to preserve
digital evidence should not change a system, it is not of significance whether dead or alive.
In fact, live acquisition of data modifies the running system which may not be a forensically
sound approach in court of law. Whether performing a live acquisition or not, in any case, it is
advisable to create an accurate documentation [39].
The following enumeration presents the order of volatility of data by containing the highest
volatile items at the top [30, 48, 50] :
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1. Register, cache

2. Routing table, arp table, process table, kernel statistics, memory

3. Temporary file system

4. Disk or other storage media

5. Remote logging and monitoring data

6. Physical configuration, network topology

7. Archival media (e.g. floppy, backup media, CD-ROM, hard copies)

Before preserving any digital data forensic examiners are advised to understand the volatility of
data, in order to apply adequate procedures to the data which needs to be preserved.

2.2 Introduction to File Systems

When dealing with the long-term storage of data, such as files on a computer system, file sys-
tems are crucial to accomplish this task. File systems are responsible for maintaining various
information about files like structural data, e.g. the creation time of a file, the file content [33].
Several file system types on different operating systems are available, for example, the File
Allocation Table (FAT), the New Technology File System (NTFS) or the Unix File System
(UFS) [33, 73, 79].

2.2.1 File System Abstraction Levels

File systems are important to computer systems, because they handle data on a logical level (e.g.
files, directories) which is a significant feature for a long-term data storage system. According
to [22] such storage systems can be divided top-down into six abstraction levels [22]:

• Physical disk

Disks represent the physical storage devices for data and can be arranged in many ways.
For example, a home computer comprising of a single hard disk or a storage area network
(SAN) system with countless disk drives may be possible. Physical disk interfaces like
ATA/IDE, SCSI or FireWire can be used for accessing disk content. The geometry of a
disk consists of platters with tracks and sectors. Usually each sector has a size of 512 bytes
and for each track the sector numbers start with one [31, 33]. In general, disk analysis is
not part of a digital examination, because a lot of special training, deep knowledge and
expensive equipment is necessary (e.g. electron microscopy) [22].

• Disk volume

A disk volume, which is described as a collection of numerous sectors, can span one
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or more physical devices. Volumes can be split up into independent partitions, where
each partition comprises of a sequence of consecutive sectors. Depending on the con-
figuration, a single disk can consist of a couple of volumes, where some volumes are
partitioned [22, 33].

• File system

File systems are stated to offer appropriate mechanisms for storing a file’s content and
its meta data on a media by defining the logical format of files [22, 73]. Furthermore, file
systems collect statistical information like the disk quota usage of processes or users.
Modern file systems manage a journal which can be advantageous in the case of a digital
investigation [33], as digital evidence may be found by inspecting the journal. Addition-
ally, journaling file systems can be used for crash recovery purposes. There are two types
of journaling file systems, the ones which keep only meta data logs and the others which
store data and meta data to their journals. If a system crash takes place, having a journaling
file system will make the recovery process less time-consuming [50].

• Data block

According to [33], data units represent the smallest, freely allocatable element of a file
system to store data. Modern file systems use data units of 4096 bytes (4KB), whereas
older file systems use smaller ones, e.g. 512 bytes, 1024 bytes. Data units are referred
to as blocks or clusters; the term which is used mostly depends on the surrounding file
system. The data content of a file, for example, a portion of a video film or a simple text,
is stored to a specific data unit on the file system [22]. Files are a collection of many
standardised data units that are connected with each other [33].

• Meta data

Meta data is commonly known as ” ... data about data ... ” [ [44], Daniel and Daniel,
2011 ]. File meta data describes various structural properties about files, e.g. the file size,
the last modification timestamp, the file owner as well as access control information [22].
All this type of information is stored in logical structures like the Master File Table (MFT),
when dealing with NTFS, or in form of inodes on Unix-related systems [33, 73].

• File

On the last level there are file names which enable users to find and access various disk
content. For example, users can read and write documents or browse directories [22].
Besides their names, files have assigned an identification number which is called inode.
The composition of an inode is different on NTFS compared to Unix-based file systems.
NTFS uses the Master File Table (MFT) in combination with MFT entries for maintain-
ing its files, whereas Unix-like file systems handle files by using inodes and data blocks.
Generally, the term inode is file system independent. Inodes typically contain meta data
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information about a file together with the pointers to the clusters that are holding the data
content [33, 50, 79].

The following section describes the term slack space which is a standard ”feature” of almost all
file systems.

2.2.2 Slack Space

When dealing with file systems, another relevant factor is slack space [79, 89]. As depicted in
figure 2.2, modern file systems organise disk space in a multiple of 512-byte sectors (e.g. 1KB,
2KB, 4KB), depending on the volume size [89]. For instance, if disk space is allocated for saving

Figure 2.2: File system with 4 KB cluster size contains no data [44]

a 6656-byte file, the file system will use two 4096-byte clusters [44]. The remaining 1536 bytes
are called file slack space, as shown in figure 2.3. If the file gets deleted, some file systems

Figure 2.3: File system with 4 KB cluster size contains file data [44]

only modify the allocation status of the file-related clusters by changing them from allocated
to unallocated [45]. The file content still remains unchanged on the disk which is illustrated in
figure 2.4. If a newly created file is to be stored, which is smaller in size than the old file was,

Figure 2.4: File system with 4 KB cluster size after file data has been deleted [44]

the remaining content of the old file will not be overwritten. An example is given in figure 2.5.
In contrast to modern operating systems, older versions of Microsoft’s OS, e.g. MS-DOS, did
not pad slack space with null bytes [22]. Instead, MS-DOS used variable content from RAM for
padding, known as RAM slack [22,73]. According to [73], file slack plus RAM slack is referred
to as drive slack.
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Figure 2.5: File system with 4 KB cluster size contains new file data and old (deleted) file
data [44]

2.3 Common Digital Forensic Analysis Techniques

A good knowledge of investigation techniques is essential when performing computer forensics.
The following sections introduce common investigation techniques that can be applied to com-
puters in case of a forensic examination. The techniques which have been selected are focusing
on Windows platforms mainly, since the practical of this thesis is based upon this operating sys-
tem.
Digital investigations of such platforms have already been done. For example, Hayes et al.
[59,60] discuss general topics concerning Windows forensics, such as biometrics, backup mech-
anisms, restoration points, touch-screen computing, file encryption, web browsing or file group-
ing. Additionally, the authors point out the differences between Windows 7, Vista and XP from
a forensically stand point of view.

2.3.1 Timeline Analysis

In the course of a digital investigation, timelines can be used to reconstruct a map of events that
happened on a system. An event can be, for example, the creation of a file. One possible way to
generate a timeline can be achieved by using the MAC times of events. The term MAC stands
for the time when a file has been modified, accessed or created. Generally the creation time is
set when a file is created by saving it on the file system. The modification time is set when the
content of a file is altered, whereas the access time is updated on file access.
In the past forensic examinations often focused on timeline analysis of single file systems which
nowadays may not be sufficient, due to the fact that an attacker or malicious software leaves
multiple traces on several systems, e.g. routers, firewalls. Therefore, constructing overall time-
lines seems to be a more feasible way. An overall timeline can be created by merging several
timelines from different systems to one big timeline, also known as ”super timeline” [ [22], Al-
theide and Carvey, 2011 ]. By using overall timelines, valuable conclusions can be drawn about
events from various systems which may reveal the existence of malicious software or an intru-
sion taking place [22, 34, 36, 47, 87].
General concepts concerning timeline analysis are presented in [22]:

• Relative times

Despite the fact that system events may be seen as a sequence of dots on a time axis,
investigators have to make connections between all these dots and try to understand the
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relationship between their occurrence. If an examiner focuses only on a few events, time-
line analysis may lead to tunnel vision with no reliable outcome. The investigation of
relative times can be explained by using three terms: before, after and during. Before and
after are used to describe an event that occurred either before or after another event (dis-
crete point) on the timeline. In a similar way the term during can be used to describe that
an event occurred between two other events. By considering the concepts before, after or
during an investigator is able to reduce the search space for specific events which helps to
improve the search accuracy [22].

• Inferred times

When a full reconstruction of the timeline is not possible, inferred times can be used to
determine what happened on a system [22]. The concept of inferred times is usually ap-
plied to deleted data. For example, inferring times can be accomplished by comparing the
different MAC times of a file. This information can be connected to a file’s data clusters,
taking into account that some or all data clusters have already been reused [22, 33].

• Embedded times

Another similar concept to inferred times are embedded times. According to [38], time
information can be embedded in many documents like PDF files. If deleted files with em-
bedded timestamps remain unused on the system, digital examiners will be able to extract
the embedded times for further analysis by recovering the file content [22].

• Periodicity

The periodicity of events is another source of information for examiners which indicates
the elapsed time between the occurrence of repeated events. This concept enables inves-
tigators to recognise backdoor traffic, since malicious software tends to generate network
traffic or tries to execute subprocesses in regular intervals. Therefore, fixed-length peri-
ods of recurring events or the speed of their recurrence can be used to detect malicious
behaviour on a system [22].

In addition to the introduced concepts another term regarding timeline analysis is the ”Least
Frequency of Occurrence” [ [22], Altheide and Carvey, 2011 ], which means that an examiner
should look for rare events, such as two new users that have been added to a rather stable domain
of a thousand existing users. This may also be an indicator for a potential intrusion [22].
Many frameworks, such as The Sleuth Kit (TSK) support timeline generation. When creating
timelines of NTFS-based Windows systems with TSK, MAC times are displayed by using the
MACB pattern, where M represents the modification time, A stands for the last access time, the
letter C is assigned to the last modified time of the file meta data and B refers to the time when
the file was created.
The initial task when creating a timeline is to locate the target file system. TSK offers a command
line utility called mmls that can be used to perform this task, as seen in listing 2.1 [34, 36].
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DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000002047 0000002048 Unallocated
02: 00:00 0000002048 0000206847 0000204800 NTFS (0x07)
03: 00:01 0000206848 0052426751 0052219904 NTFS (0x07)
04: ----- 0052426752 0052428799 0000002048 Unallocated

Listing 2.1: Sample output of The Sleuth Kit command line utility mmls describing the structure
of a disk image file [36]

As shown in listing 2.1, there are two NTFS partitions contained in the disk image. Within the
next step, a NTFS partition is chosen arbitrarily for timeline generation. TSK provides another
utility called fls that creates a so called ”body file” [ [34], Carvey, 2009 ], which is a text file
with a purpose-built format [34]. A fls call can be performed as follows, as shown in listing 2.2.

fls -o 206848 -i raw -f ntfs -r -p -m "C:" image_file > body_file.txt

Listing 2.2: Sample call of the The Sleuth Kit command line utility fls when creating a body
file [34]

The command line options in listing 2.2 are described as follows: -o stands for the offset of
the particular partition according to the mmls output, -i specifies the output format, -f refers to
the file system type, -r forces the program to traverse folders recursively, -p tells the program
to display full paths and -m specifies the mount point (e.g. a drive letter, the root folder) [36].
As mentioned above, the body file has a specific format [34]. The excerpt shown in listing 2.3
shows a schematic view of an arbitrary body file.

0|C:/$AttrDef|4-128-4|r/rr-xr-xr-x|48|0|2560|1362002463|1362002463|/
1362002463|1362002463
0|C:/$BadClus|8-128-2|r/rr-xr-xr-x|0|0|0|1362002463|1362002463|/
1362002463|1362002463
0|C:/$BadClus:$Bad|8-128-1|r/rr-xr-xr-x|0|0|26736586752|1362002463|/
1362002463|1362002463|1362002463
0|C:/$Bitmap|6-128-4|r/rr-xr-xr-x|0|0|815936|1362002463|1362002463|/
1362002463|1362002463
0|C:/$Boot|7-128-1|r/rr-xr-xr-x|48|0|8192|1362002463|1362002463|/
1362002463|1362002463
0|C:/$Extend|11-144-4|d/dr-xr-xr-x|0|0|552|1362002463|1362002463|/
1362002463|1362002463
0|C:/$Extend/$ObjId:$O|25-144-6|r/rr-xr-xr-x|0|0|56|1362002465|/
1362002465|1362002465|1362002465
0|C:/$Extend/$Quota:$O|24-144-3|r/rr-xr-xr-x|0|0|88|1362002465|/
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1362002465|1362002465|1362002465

Listing 2.3: Excerpted content of a body file generated by the The Sleuth Kit command line
utility fls [34]

Body files usually can be converted into a human-readable format, for example, by applying a
Perl script to the file [34].
When conducting a timeline analysis of NTFS, investigators should be aware that NTFS main-
tains two different MAC time fields for each file. A detailed analysis of MAC times on NTFS is
presented in [25, 33, 42].

2.3.2 Deleted File Recovery

This investigation technique deals with the recovery of deleted files. Usually, for end users
the visible data on a file system is more important, than the invisible one. Forensic investigators
might be more interested in invisible data, especially data which has been deleted. Most forensic
examiners know that deleting data usually does not really delete it, but marks the allocation status
of the related data clusters as free. In most cases the file still exists, but is invisible for normal
users. Files can be deleted conventionally, for instance, by using the DEL or ERASE command
on Windows. Moving files may also delete them, for example, if a file is moved from one hard
disk to another [34, 89].
Salvaging deleted data can be accomplished manually or by adopting automated recovery tools,
but care should be taken, due to the false positive rate of automatically recovered data. It is
suggested that forensic examiners verify the correctness and consistency of the generated tool
output and match the results with other file system details [38]. According to [22], deleted data
can be classified more precisely by using the following terms [22]:

• Deleted data

This type of deleted data is represented by an unlinked file (or directory) that is not visible
on the user level. Despite that, the file has got an intact header, which stores the file name
and additional meta data. The file content still remains on the file system and is connected
to the file header, except that the file space is flagged as free for recycling [22].

• Unallocated data

A file is called unallocated when the file meta data structure (e.g. the MFT entry) was
unallocated or reused, but the file content (e.g. the clusters) is still remaining in data clus-
ters on the disk. File carving is a method which can be used to export idle data clusters
from the file system [22, 37].

• Orphaned data

Deleted data is called orphaned when the link between the data and meta data structure
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of a file (or a directory) is not working anymore. File recovery may not be possible and
result in inaccurate findings [22].

• Overwritten data

”Files that are overwritten are generally considered to be unrecoverable.” [ [87], Sam-
mons, 2012 ] From a forensically standpoint, the recovery of overwritten files is a chal-
lenging task. A full recovery is not possible due to the fact that at least one or more
clusters of a file have been reallocated to other files. Overwritten files can only be recov-
ered partially depending on the extent of overwriting [22].

Users who are not fully aware of how their computer works may think that pulling data into the
recycle bin will delete it. The recycle bin may be the first place to look at when collecting digital
evidence. Users can bypass the recycle bin in Windows by setting the NukeOnDelete key in
the Windows Registry or by hitting Shift and Delete. In contrast to prior versions of Windows,
Windows 7 has reorganised the recycle bin structure. When a file is deleted through the Windows
Explorer shell, it will be deferred to a subdirectory of $Recycle.Bin. This sub folder is named
after the current user’s SID. Files sent to $Recycle.Bin keep its original file extension. The file
names start with $R followed by six various characters [34, 36, 87].
After inspecting the recycle bin thoroughly, in order to detect digital evidence, an investigator
may consider the next step to be the recovery of MFT entries. Data can be recovered unless the
MFT entry has not been reused, because the file system does not necessarily delete MFT entries
once they have been created. For example, when a large amount of files is being created and
deleted, NTFS will keep the corresponding MFT entries for an indefinite period of time. In fact,
NTFS will attach new entries to the MFT or reuse old ones for storing new data. When a file
is deleted, its MFT entry will be set to unallocated as well as its data clusters. The recovery
of unallocated files is possible by parsing the entire MFT. Unallocated MFT entries usually
have a reference to their parent directory. Therefore, the whole file path can be reconstructed.
Unless the MFT entry of the parent directory has been reused or unless the file content has been
overwritten, a full recovery of the corresponding file is likely to be successful [22, 33, 37, 89].
For an investigator it may be also interesting, when a file or directory was deleted or by whom
it was deleted. As there is no update of the timestamps of deleted files when they are removed,
the deletion time only can be approximated from the time the file was last used or modified. It is
also rather difficult to say what user deleted a specific file. Therefore, consistency checks need
to be done, for example, by including the verification of the file permissions or by examining the
most recently used files [38].
Beside the aforementioned file recovery strategies, there exist other ways to reconstruct deleted
data as well. An approach is proposed in [72], where an algorithm was used to rebuild directory
trees for deleted files.
Other data recovery approaches can be accomplished by using The Sleuth Kit. This framework
offers several command line utilities to recover deleted data, such as ils, icat, ifind or ffind. For
instance, the ils utility lists unallocated files by default, whereas icat is used to recover the file
content of inodes. The ffind program is used to map the inode number to the file or directory
name that references it - ifind maps data clusters to their corresponding inode [50].
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2.3.3 Windows Registry Forensics

Unlike Unix-based operating systems, a core component of modern Windows OSes is the reg-
istry which is a hierarchical database that maintains various settings regarding OS users and
(un)installed applications, as well as plenty of configuration data about the operating system
itself. Configuration data can be time-based information, for example, the date when a user
last logged in a wireless network. There exists also other configuration data, for instance, in
Windows Vista there is a setting that tells the operating system not to update a file’s last access
time, which is enabled by default. From a forensic standpoint the Windows Registry holds lots
of valuable information about a considerable amount of events which happened during runtime.
As a result of the large amount of data contained in the registry and due to the fact that Windows
is of closed source, forensic analysis can be challenging, since there is hardly anybody who has
highly detailed knowledge of every registry entry [34–36].
Another obstacle concerning a digital investigation of the Windows Registry is the fragmenta-
tion of the registry entries. Usually registry fragmentation results from the software which was
installed or removed. Investigators will be confronted with invalid and inconsistent registry en-
tries [62]. Therefore, general approaches should be considered when analysing the Windows
Registry. For instance, the principle of the ”Least Frequency of Occurrence” [ [36], Carvey,
2012 ] can be applied to detect malicious system behaviour. Even investigators should have
an eye on most recently used registry entries or entries that reveal information about the URLs
typed by a user into a web browser [34–36, 38].
The Windows Registry is organised in files, known as hives, as well as keys and subkeys which
are explained below. Some of this hive files are stored on the system permanently, while others
are volatile having their content accessible only when the system is up. Investigators should keep
this in mind and extract the necessary data from the volatile hives, especially when performing
a post mortem analysis [34–36].
In accordance with [34–36, 40], the core hives in later Windows versions like Windows 7 com-
prise of the files SECURITY, SAM, software and system. Additionally, beginning with Windows
2000 another hive file, called Default, was released, which is a subkey of HKEY_USERS. As
compared with modern Windows OSes (e.g. Vista, 7), prior versions of Windows (e.g. 95, 98)
stored some of the hives differently. For example, in Windows 7 the hives which belong to
the registry key HKEY_LOCAL_MACHINE (SAM, SECURITY, system and software) can be
found in the directory Windows\system32\config, whereas in Windows 98 the hive files were
located in the Windows root folder. These hive files used names dissimilar from Windows 7,
for example, in Windows 98 there was a hive file named user.dat [35, 37]. In order to analyse
the Windows Registry, forensic examiners can access the hive files by using specific keys and
subkeys [34]:

• HKEY_LOCAL_MACHINE

The keys contained in this hive are composed out of the core hive files. This hive main-
tains the central configuration of the system, such as hardware drivers or diverse software
settings [34–36].
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• HKEY_USERS

The hive associated to this name manages the actively loaded user profiles for the com-
puter system. Typically, the user profiles are located within the NTUSER.DAT hive file.
With Windows 7, some entries have been moved from the NTUSER.DAT hive to the US-
RCLASS.dat hive. Both hives are merged when a user logs in, in order to be presented as
unified file [34–36].

• HKEY_CURRENT_USER

The keys contained in this hive are volatile and pertain to the currently logged-on user. For
example, there is a key counting the number of running programs on the desktop [34–36].

• HKEY_CURRENT_CONFIG

This hive is volatile as well and represents the hardware profile which is used on system
start-up [34].

• HKEY_CLASSES_ROOT

This hive is volatile in nature and maintains the file types on a Windows system. Ad-
ditionally, it determines the application to be used to open specific file types.
HKEY_CLASSES_ROOT is initialised based upon the hives HKEY_LOCAL_MACHINE
and HKEY_CURRENT_USER [34–36].

As illustrated in figure 2.6, the registry is structured hierarchically and consists of keys and
subkeys containing different values. Generally, every value has the attributes type and data. The
type attribute can have one out of multiple values. Figure 2.6 shows two types named REG_SZ
and REG_DWORD where the former represents a fixed length text string (e.g. Unicode, ASCII)
and the latter indicates a 4 byte integer number. Having cognisance of the different type values
will enable investigators to perform an effective search. In fact, the value range of the data
attribute depends on the type attribute which was chosen when modifying a specific registry
key [34].
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Figure 2.6: Sample view of the Windows Registry Editor showing keys, subkeys, values and
types [35]

The Windows Registry can be analysed in various ways, either investigators can connect
to a computer system doing a live scan or the registry can be examined offline. For anal-
ysis purposes the usage of tools (e.g. Regshot) is recommended due to the complexity of
the registry data [34–36]. Investigators may also conduct a manual examination, since there
are registry keys which are commonly known to bare valuable information. For example, the
HKEY_LOCAL_MACHINE\Software key contains subkeys which display the patch level, the
current version, the installation date or the Microsoft product ID of the operating system. Other
subkeys included in HKEY_LOCAL_MACHINE\System\ControlSet\Control hold informa-
tion about the computer name, the time zone, the log on/off time or the time of the last shut-
down [40, 47].
Besides, in [97] additional research has been done in the field of Windows Registry forensics
by pointing out particular registry keys that can be used especially in case of an intrusion. The
authors have concluded that the valuable registry keys to be analysed may vary based on the
case [97].

2.3.4 File Carving

Recovering deleted data does not always reveal valuable information. There are some reasons
why investigators may struggle to find digital evidence. For example, traditional data recovery
will not be possible, if the file meta data of deleted files, which has been partially or fully
overwritten with other data, no longer exists. Therefore, an advanced data recovery approach,
called file carving, can be used to extract and reconstruct deleted data from unallocated space
[38, 44].
Usually file carving is based upon the analysis of file headers and footers [37, 38, 87]. This type
of analysis is also referred to as file structure-based carving [77]. Both file header and footer are
also referred to as file signature. In general, each file has a header as well as a corresponding
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footer. In between the header and footer the file data is stored. Figure 2.7 shows a list of common
file signatures. Once a file’s header or footer is detected, it can be carved out partially or fully

Figure 2.7: Sample file signatures for JPEG, GIF and Microsoft Office files [37]

depending on the integrity of the file, in other words, the effectiveness of file carving relies on
the assumption of unallocated files having arranged their data in contiguous clusters [37,38,87].
Despite the fact that modern operating systems try to store data on the hard drive contiguously,
there are some reasons why the file system is forced to write files which comprise of two or more
fragments [51]:

• Data on a file system will be written in fragments, if the hard drive has been used for a
long time. There may be no consecutive clusters to store the data, because lots of data has
been added and removed.

• When appending data to a file, the additional data will be stored to a different location on
the hard disk due to the lack of unallocated space behind the original file. This behaviour
was observed on most file systems, but sometimes files will be completely relocated.

• Depending on the file system type, file fragmentation is a standard feature, for example,
UFS will store big files in fragments to the hard drive.

File carving can be performed manually, e.g. via copy and paste, or automatically by using tools
like foremost or scalpel. Furthermore, investigators will find digital evidence by inspecting a
file with a hex editor manually [37]. As depicted in figure 2.8, the characteristic string Exif de-
notes that the file is stored in the Exchangeable Image File Format - commonly used on digital
cameras. Prior to Exif the file header displays the string ÿØÿá, which is related to the JPEG file
header FF D8 FF, as shown in figure 2.7. This type of validation method is also called ”Magic
Number Matching” [ [23], Aronson and van den Bos, 2011 ]. Other validation approaches may
consider using some of the following aspects to detect unallocated data, such as file dependen-
cies (e.g. size, internal structure), cyclic redundancy check sums, different file encodings or
compression formats [23].
Typically, the process of salvaging files by means of tools generates a significant amount of
fragmented or broken files. Due to the lack of file meta data, in some cases, recovery tools can
only estimate the original size of the files to be recovered. To overcome this problem, partial file
carving can be accomplished instead of salvaging a full disk image. Partial file carving takes ad-
vantage of restoring and merging the different data parts of a file into a single file, which would
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Figure 2.8: Sample view of a hex editor displaying the file signature of a JPEG file [37]

allow for more control of the recovery process than carving the full image [37, 38, 87].
Similar to file structure-based carving fast object validation can be applied to carve bifragmented
files. Fast object validation deals with recovering files consisting of two fragments, where each
fragment is decoded and validated by using the bifragment gap carving algorithm. In order to
apply this method properly, working file headers and footers are necessary [51].
Several different concepts and techniques regarding file carving have been presented in [77] to
circumvent the weaknesses of carving methods base upon the file structure. Carving techniques
have been developed which have adopted graph theory for problem solving. For example, file
carving has been formulated as Hamilton path problem. The k-vertex disjoint path problem
has resulted from the refinement of the Hamilton path problem, as the prior one has not taken
file fragmentation statistics into account. Additionally, graph-based algorithms, such as parallel
unique path and shortest path first, have been proposed [77].
Towards graph-based techniques, another methodology has been proposed in [83] which uses
file fragment classification in order to find files that match specific patterns of data formats
like JPEG, MP3 or ZLIB. As the authors have concluded, their approach is based on easy dis-
coverable patterns. The authors have emphasised to focus on the establishment of specialised
strategies, in order to target only on certain data.
Further research has yielded in various scientific papers that propose methods for carving graph-
ics files as well as compressed data. As shown in [71], the accuracy of image and thumbnail
file carving has been improved by using a new pattern matching approach. Another study [65]
on image files focuses on the calculation of similar pixels which are contained within different
image file fragments. It is also possible to recover JPEG-encoded images by using the corre-
sponding thumbnail files from the thumbnails database, which usually is created when the image
is viewed [55]. Other studies developed file carving methods for compressed data, especially for
RAR archives [96] and NTFS compressed data [98].
File carving has been applied to the Windows Registry as well by parsing the internal structure
of the hive files, which are binary by nature and organised on the disk in so called HBIN blocks,
in order to reassemble the registry keys. Due to the fragmentation of the registry hive files, only
not fragmented hive files have been recovered [95].
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2.3.5 Network-based Forensics

Towards forensic investigation techniques like deleted file recovery or file carving, the area of
network-based forensics is more sophisticated, because investigations are not limited to a local
computer system, but will include many computers from several networks (e.g. company and/or
home networks), which can be connected to each other differently, e.g. over wire or wireless.
Network-based forensic methods typically focus on wired networks, but due to the popularity of
wireless networks, cyber criminals may abuse them as well to perform illegal activities, such as
launching attacks against other network users [49, 87]. By applying digital forensics to wireless
networks, these issues can be overcome [68].
Another hurdle concerning network-based forensics is that capturing all traffic may not be pos-
sible due to the complexity of the network structure or the large amount of data which flows
through it [49,87]. To improve network-based examinations Sibiya et al. [90] present guidelines
which cover best practises to establish a forensically sound investigation process.
When investigating the network, examiners should be familiar with the different network types
that exist, at least the Local Area Network (LAN) or the Wide Area Network (WAN).
An important topic regarding network types is packet routing. Packet routing deals with the
transmission of small data chunks, called packets, which are exchanged between a sender and
a receiver. These packets may cover digital evidence and capturing them may possibly reveal
valuable information to an investigator. Forensic examiners may be able to extract sensitive data
collected from network traffic like user names or passwords [49, 87]. Different approaches for
packet analysis are presented in [90], such as protocol analysis, packet attribute extraction or
charting the network flow. Moreover, by monitoring the network regularly, an examiner may be
able to uncover a network intrusion taking place [49, 87]. As presented in [88], forensic investi-
gators were able to detect a spam network by monitoring Domain Name System (DNS) traffic.
Usually computer-based networks are build on the well known OSI reference model by which
data is divided into small packets before transmission. There exist a variety of network proto-
cols. Among them there is the well known Transmission Control Protocol (TCP) which is build
upon the Internet Protocol (IP). Since the Internet Protocol is part of the OSI reference model,
investigators are recommended to get acquainted with the different OSI layers before perform-
ing packet analysis [66]. To get a better understanding of the complexity of IP packets, figure
2.9 depicts an IP packet with its various data fields, such as source and destination IP address,
as well as the total length of the IP packet. Typically, capturing and analysing network traffic,
such as IP packets, can be accomplished by using tools like tcpdump or its more popular ex-
tension for Windows systems, called Wireshark, which additionally provides a graphical user
interface [66]. Wireshark is a capable of collecting live network traffic. It can read traffic from
different interfaces like Ethernet, IEEE 802.11 (wireless) or FDDI. Additionally, it provides in-
vestigators with useful features to reconstruct the data that is located on the application layer of
the OSI model [49, 66].
Another packet acquisition and analysis software similar to Wireshark is presented in [56], where
a program has been implemented which automatically captures all packets from the network and
extracts the transmitted data consecutively.
Beside the examination of network traffic, digital evidence may be contained within log files as
well, e.g. web server logs. Investigators may be able to retrieve additional information from
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Figure 2.9: Sample view of an IP packet comprising of various attributes [66]

log file inspection like legal and illegal user actions which have been performed on a computer
system [49, 87].

2.3.6 Physical Memory Forensics

In accordance with [31,37], volatile data can be contained in the physical memory of a computer,
for example, in the RAM. Many operating systems extend the physical memory by a logical
(virtual) memory which is stored on the hard disk, for example, in form of page or swap files.
In general, physical memory data disappears when the system is shut down, whereas logical
memory data perhaps will remain on the hard disk depending on the system configuration [31].
Therefore, it is advisable to capture the data most likely to be altered, such as the data contained
within the physical memory [94].
In contrast with physical computing environments, the memory handling of virtual machines
(VMs) is different, because the content of the RAM is stored on the hard disk when the VM
goes in suspended mode. This allows investigators to collect the physical memory from hard
drives [38].
Analysing volatile data either from physical or logical memory often discloses important in-
formation about what happened on a live system. A forensic investigator may encounter the
following information, for example [31, 37, 61, 94]:

• Current network information (e.g. TCP/UDP ports or IP address information)

• Processes currently executed (i.e. loaded libraries referring to their parent process)

• Tasks currently scheduled (i.e. task flagged as completed)

• Clipboard data (i.e. user input buffered for further usage)
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• Open file handles (i.e. files opened by processes for reading/writing)

The items provided in the list above is not exhaustive. One can imagine that a forensic examiner
can find other volatile data in memory as well, such as malware (e.g. rootkits). Typically, mali-
cious software can be detected when it is loaded into physical memory for execution or written
to swap space [31, 37].
Usually before a physical memory analysis can be started, the memory has to be dumped to a
file. Physical memory images of a live system are created in a similar way to which a hard disk
of a dead system is acquired. There are many tools that can be adopted for physical memory ac-
quisition like dd, Winen or Fastdump. Besides, the destructiveness of memory acquisition tools
should be taken into account, i.e. a collection tool running on Windows XP may affect the phys-
ical memory regarding the memory needed by the acquisition tool itself, as well as the Dynamic
Link Libraries (DDLs) that are needed for executing this tool. In order to choose an appropriate
memory acquisition tool which has only little effect on the memory, several quality criteria can
be defined, such as physical memory consumption (e.g. page file count), file system impact (e.g.
shared DLLs count) and virtual memory usage (e.g. virtual byte count) [31, 34, 61, 94].
After dumping the memory to a file there are various ways for content analysis like doing a
keyword search, running the utility software strings on a dump file or browsing the dump file
with a hex editor [24].
In contrast to a keyword search that is conducted manually, forensic frameworks, such as Volatil-
ity or Memoryze, can be used to improve the outcome of a physical memory investigation [34].
Volatility is able to determine the operating system, for example, by supplying the ident com-
mand line option, as illustrated in listing 2.4.

F:\MemoryForensics>python volatility ident -f F:\image\xp-suspicious.dd
Image Name : F:\image\xp-suspicios.dd
VM Type : Service Pack 1
Image Type : nopae
DTB : 0x38000
Datetime : Thu Jul 07 16:34:23 2011

Listing 2.4: Sample output of the command line tool Volatility identifying the operating system
on the basis of a physical memory dump [34]

Other command line options like plist or connections can be specified as well. The plist op-
tion allows investigators, for instance, to retrieve the list of running processes from a memory
image, whereas the connection option lists all active network connections [34]. An excerpt of
Volatility’s plist output is shown in listing 2.5.

F:\MemoryForensics>python volatility pslist -f F:\image\xp-suspicious.dd
Name Pid PPid Thds Hnds Time
Fast.exe 301 201 3 21 Jul 27 17:46:30 2011
winlogon.exe 302 202 15 596 Jul 27 17:46:31 2011
TaskSwitch.exe 303 203 5 583 Jul 27 17:46:32 2011
Directcd.exe 304 206 45 23 Jul 27 17:46:33 2011

23



services.exe 305 209 7 293 Jul 27 17:46:34 2011
ati2evxx.exe 306 223 20 259 Jul 27 17:46:35 2011
Crypserv.exe 307 244 32 694 Jul 27 17:46:36 2011
EM_EXEC.exe 308 225 83 192 Jul 27 17:46:45 2011
atiptaxx.exe 309 230 1 204 Jul 27 17:46:46 2011
Smc.exe 310 231 34 506 Jul 27 17:46:47 2011
mqsvc.exe 311 261 22 539 Jul 27 17:46:48 2011

Listing 2.5: Sample output of the command line tool Volatility listing the running processes of
a Windows operating system based on a physical memory dump [34]

In contrast to frameworks like Memoryze or Volatitily, the authors of [99, 100] have proposed
another method based upon the ”Kernel Processor Control Region” [ [100], Zang et al., 2010 ]
to extract, for example, the list of running processes or user login information from the memory
of a Windows 7 system.
Other studies are focusing on the physical memory of Windows as well and have proposed
an approach which deals with keyword searching. The search patterns comprise of the user
input that is supplied to the application during runtime. Memory images have been evaluated
of the following Windows applications in the course of a digital investigation: Excel, Outlook,
PowerPoint and Internet Explorer. The results have shown that the applications have stored
many string and numeric values to the physical memory. For example, salvaging numeric values
of Excel has been difficult due to the numeric format that has been used in memory [75, 76].

2.4 Digital Anti-Forensic Techniques

As forensic techniques evolved within the last decade, anti-forensic techniques did as well. In
general, anti-forensic techniques can be used to confuse forensic examiners with the aim to
hamper the digital investigation process. For example, criminals or terrorists used anti-forensic
methods to wipe out their digital traces. Even the corporate management took advantage of anti-
forensic tools in order to hide electronic records, such as suspicious e-mails [87].
The term anti-forensics can be defined in various ways. According to Barbara, anti-forensics
is defined as ” ... an approach to manipulate, erase, or obfuscate digital data or to make its
examination difficult, time consuming, or virtually impossible.” [ [87], Barbara (as cited in
Sammons), 2012 ]. Since anti-forensics provide a large variety of techniques, only commonly-
used ones will be described within the next section to get a good basic understanding.
In accordance with [43], anti-forensics techniques can be divided into the categories data wiping,
data corruption and data hiding, whereas the latter one is most commonly used. According to
[28,34,37,39,45,46,67,70,73,79,87,91–93], data can be hidden by making use of the following
techniques: data encryption, hidden directories and files, deleted directories and files, renamed
directories and files, steganography, alternate data streams, etc. Data hiding and obfuscation
techniques targeting the physical structure of a hard disk, such as the ”Host Protected Area”
[ [27], Berghel, 2007 ] (HPA) and the ”Device Control Overlay” [ [27], Berghel, 2007 ] (DCO),
are discussed in [27, 37] as well.
In contrast to data hiding, data wiping as well as data corruption deal with the manipulation and
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destruction of data. Although the underlying intention of data destruction seems to be noble,
since this technique can be used to preserve user privacy, misuse is possible, in order to defeat
data recovery techniques [29, 87]. As data destruction is not limited to a local system, forensic
examiners should be aware of remote wipes a forger could perform [80]. The quality of data
wiping mostly is based upon the wipe algorithm and the number of deletion runs that were
applied to the data. Consequently, there is no guarantee that a wiping software will destruct all
data that needs to be deleted.
Defragmentation can be also used to corrupt or overwrite data. This process involves tying up
the clusters related to a file and moving them to another disk location, in the hope of destroying
data with evidentiary value. The effectiveness of this approach is considered to be fair, since not
all valuable data may be deleted [29, 87].
In [78] the authors present a method of detecting and erasing sensitive data stored on hard disks.
Implemented as a Windows service, the proposed solution determines the sensitivity of data by
means of user-defined classification rules, file system monitoring (e.g. copy, modify or delete
files) and disk scanning (e.g. initial, maintenance). The results have shown that sensitive data
remained undetected on the hard disk.
Another opportunity to wipe sensitive data permanently is provided by means of encryption with
secure key erase. A drawback regarding this technique is that the data will not stay encrypted
forever. Data recovery will be possible, if the encryption method initially used for encryption
was broken [46]. Therefore, forgers may adopt more powerful ways of data destruction which
include procedures like demagnetising, etching or shredding media [89].

2.5 Digital Forensic Analysis of Modern Web Browsers

The major topic introduced within this section is the digital investigation of the private mode of
modern web browsers. Private web browsing deals with data hiding, data corruption as well as
data wiping, such that it can be considered as a part of digital anti-forensics.

2.5.1 Private Browsing Mode

Beside the standard features offered by web browser vendors, a feature implemented in newer
browser versions is called private browsing mode. The purpose of this feature is to protect
users from being tracked on local computer systems, e.g. during a forensic investigation. For
example, in the newer versions of Firefox private browsing will not save user-related data, such
as the visited web pages. Moreover, individualised data contained in the browser cache as well
as passwords, cookies, search bar entries and form field entries will no longer be stored [87].

2.5.2 Related Work

As aforementioned, a major issue concerning web browsers is user privacy. In [32] a study is
presented about the safety of web browsers. The results have shown that popular web browsers
like Internet Explorer and Firefox contain many vulnerabilities that might have affected the
private browsing mode as well. Due to the fast development of modern web browsers newer
software versions will contain vulnerabilities which will have an adverse effect on user privacy.
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As a consequence, digital investigation of the private browsing mode has been done in order to
ascertain whether user-related data has been leaked to the local computer or not.
In [58], an investigation approach is presented which has been applied to the Internet Explorer.
The study has focused on the examination of user-related data which has been located in the
unallocated disk space, such as cookies, browsing history and cache. Although the approach has
been implemented thoroughly, a disadvantage is that this investigation technique is not scalable,
since it only targets one web browser. Another drawback of this method is that it uses a keyword
search which is limited on a couple of pre-defined string values for parsing the unallocated disk
space. In [20], a similar approach has been applied to Facebook’s instant messaging service
in order to detect digital remnants left on the local hard drive with respect to user-related chat
messages.
In contrast, the automated monitoring of web URLs for forensic analysis is presented in [19].
A HTTP-sniffer has been proposed for logging individualised browsing data by storing it to a
remote server. An advantage of this methodology is that the digital examination of the web
contents accessed by a user is possible even if the local hard disk has been wiped. The main
issue concerning this solution is that HTTP traffic is logged only, regardless of where and what
user-related data has been written to the local hard drive.
In [63], a tool is presented that is capable of reconstructing and visualising a user’s brows-
ing session by taking advantage of the Internet Explorer API. Although the visualisation of the
browsing data may be useful for digital investigators in order to rebuild a user’s browsing ses-
sion, the approach only deals with allocated data, but neglects the unallocated disk space. Since
this study has focused on the Internet Explorer, user-related session data of other web browsers
cannot be recovered by using this tool.
In contrast to the aforementioned studies which have not explicitly discussed private web brows-
ing, the following studies survey the investigation of the private browsing mode. The digital
investigation of portable web browsers like Chrome is presented in [69]. The forensic artefacts,
which remain locally after browsing in public and private mode, have been evaluated. A key-
word search similar to the proposed method from [58] has been applied.
In [86] and [18] the private browsing mode of popular web browsers (Internet Explorer, Fire-
fox, Chrome, Safari) has been examined. Different approaches have been used in [86], such as
a keyword search as well as the forensic analysis of the physical memory and the hard drive.
Furthermore, [18] evaluates different browser add-ons of the aforementioned web browsers and
conducts a source code analysis for Firefox as well as automated unit testing. It has been found
that web browser add-ons can threaten user privacy. Despite this fact, both studies [18, 86] have
not revealed any information about whether they have been able to monitor all (from the start
until the end) browser actions which have been performed during a private browsing session or
not.
In [74], further research has been done on private and portable web browsers. In opposition
to [18, 86], this approach uses a utility, called DaemonFS, which is capable of monitoring the
actions a software application carries out on the file system, e.g. a web browser. For further
analysis FTK Imager has been utilised. As the results have shown, individualised data has been
located in the physical memory, in the unallocated space and in the slack space. In [41], a de-
tailed forensic analysis regarding the private browsing mode of the Internet Explorer 10 has been
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done. The study has shown that the Internet Explorer has stored lots of user-related browsing
data locally, over different series of application live cycles. Another thing worth mentioning is
that the digital investigation has taken advantage of virtual machines, in order to run different
tests on the Internet Explorer.
Although much excellent research has been done, further research is still needed.
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CHAPTER 3
Conceptual Design

This chapter presents a new approach for the digital investigation of the private browsing mode
of modern web browsers. The theoretical concepts of virtualisation and process monitoring are
described, as they represent the two fundamental parts which the proposed investigation ap-
proach is based on.
Beside an introduction to the field of virtualisation and process monitoring, particular features
of both Oracle’s virtual machine VirtualBox [17] and Microsoft’s process monitoring tool Proc-
mon [11] are explained, which are required by the new investigation approach.
VirtualBox has been chosen as virtual environment for testing, because it is freely available and
the provided functionality is sufficient for the investigation approach. Although Windows is not
free of charge, it is used as test operating system due to its large user base and because privacy
issues will affect the majority of end-users.
Since Windows is the target testing platform, Microsoft’s Procmon is the tool of choice for
performing process monitoring. This tool is capable of observing process features at a very
low-level, e.g. the process memory consumption. Additionally, it provides features for trac-
ing file system events induced by individual processes, e.g. web browsers. When thinking of
common digital investigation techniques, process monitoring seems to be more advantageous to-
wards the timeline creation, since a process monitoring log file contains only particular process
events, whereas a traditional timeline covers even more system events, such as the operating
system noise. Due to the accuracy of process monitor log files, deleted file recovery will be
more effective as well. Therefore, process monitoring is chosen as suitable concept for the new
investigation approach.

3.1 Virtualisation in the Field of Digital Forensics

As virtualisation has grown steadily within the last decade due to benefits like reduced hardware
and power costs, the digital investigation of virtual environments has become more popular.
Digital examiners have been required to inspect virtual machines (VMs) in order to find digital
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evidence, because virtual environments are rather likely to be detected and compromised, for
example, by an attacker or a malicious software. Contrary to usual investigation scenarios re-
garding virtual environments, for instance, in the context of a legal dispute, virtual machines can
be used for different purposes as well, e.g. software testing. Virtual machines are suitable in this
case, since they offer a ”clean” environment that can be used iteratively [26].

3.1.1 Virtual Machine Snapshots

Virtual environments typically provide a feature which is referred to as ”snapshot” [ [26], Barrett
and Kipper, 2010 ]. A VM snapshot represents a particular virtual machine state that has been
captivated at a specific date and stored to an arbitrary media, e.g. a hard drive. In other words,
snapshots can be used for preserving (”freezing”) the state of virtual machines which implicates
the current state, the settings and data contained on the file system. Reversely, this means that
snapshots can be restored arbitrarily at any time, for example, in the case of an error. [26]
Managing snapshots can be accomplished by the usage of ”Universal Unique Identifiers” [ [17],
Oracle, 2013 ] - or in its abbreviated form UUIDs. In general, a UUID is a randomly generated
alpha numerical string which is commonly used to identify VM snapshots [17, 26].
When investigating virtual environments, acquiring a VM’s file system is a crucial task forensic
investigators are concerned with in order to perform further analysis. Although imaging of
virtual machines is accomplished similar to ”real” (hardware-based) machines, in the case of a
virtual machine only the virtual machine itself needs to be preserved instead of the entire hard
disk of a physical computing environment [26].
In order to perform this task, virtual machines offer an imaging functionality which is called
”cloning” [ [26], Barrett and Kipper, 2010 ]. For example, Oracle’s VirtualBox provides the
command VBoxManage clonehd for disk imaging (cloning). A sample call of this VBoxManage
feature is presented in listing 3.1.

VBoxManage clonehd snapshot_UUID.vdi output_file.dd --format RAW

Listing 3.1: Sample call of the VirtualBox command line utility VBoxManage to convert a
virtual machine snapshot into a disk image file [17]

As can be seen in listing 3.1, the instruction clonehd requires three parameters, in order to make
VBoxManage work properly. Firstly, the UUID of the snapshot has to be specified plus the
suffix .vdi, since VirtualBox maintains its snapshots by means of VDI files [17]. Secondly, the
output file name is required which can be chosen randomly. Thirdly, the image format has to be
specified, for example, raw indicates that bit copying is going to be performed.

3.1.2 Virtual Machine Shared Folders

Virtual machines offer a feature called shared folders, which can be used to transfer data between
the guest file system (virtual environment) and the host file system without having a network
connection [26]. For example, VirtualBox implements this feature by using purpose-built file
system drivers. When creating a virtual share usually a directory is made on the host file system
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and linked to the guest file system afterwards. Listing 3.2 depicts a sample call, where a shared
folder test_share is created on file path /home/shared [17].

VBoxManage sharedfolder add "test_vm" --name "test_share"
--hostpath "/home/shared"

Listing 3.2: Sample call of the VirtualBox command line utility VBoxManage to create a shared
folder [17]

VirtualBox offers the possibility to mount a shared folder manually or automatically after ma-
chine start-up. Additionally, shared folders can be mounted in read-only or read/write mode [17].

3.1.3 Virtual Machine Screenshots

Typically virtual machines provide a screenshot function which can be used to take screenshots
of a guest environment and store them, for example, to a directory on the host system. A Vir-
tualBox screenshot is typically created by typing the VBoxManage command controlvm, as
presented in listing 3.3.

VBoxManage controlvm "vm_name" screenshotpng "foto.png"

Listing 3.3: Sample call of the VirtualBox command line utility VBoxManage to create a
screenshot [17]

Virtual machine screenshots can be used for diagnostic purposes, for example, by taking a pic-
ture of the virtual environment’s GUI after a program has crashed [17].

3.2 Monitoring and Measurement of Processes

Process monitoring is a powerful approach which can help programmers to diagnose and fix
software issues, since it provides the capability to observe processes at a very low-level. Addi-
tionally, process monitoring can be used for testing purposes, such as tracing file system events
induced by individual processes, e.g. web browsers.
Within the next sections process monitoring on Windows platforms is explained by giving an
overview of Procmon’s features which are essential for the new investigation approach.

3.2.1 Monitoring File System Events

As stated in [84], Windows processes are containers which provide resources for executing pro-
gram code. Typically, a Windows process consists of a unique process identifier (PID), a parent
process identifier (PPID), a list of threads, a virtual address space, an executable program, a list
of process handles (e.g. semaphores, ports) and a security context.
Process monitoring in Windows can be accomplished with Procmon. This utility is capable of
monitoring different aspects of a process like registry operations, file system operations, network
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activity, (sub-)process creation or threading. Although Procmon offers several possibilities of
monitoring different aspects of a process, this thesis aims to monitor file system events which
have been induced by web browsers. Monitoring network or registry aspects of processes goes
beyond the boundaries of this work, therefore they are omitted and may be part of a future
work [84, 85].
Figure 3.1 illustrates Procmon’s graphical user interface. As seen, the processes notepad.exe as

Figure 3.1: Sample view of the main window of Microsoft’s process monitoring utility Procmon
[85]

well as cmd.exe are monitored. Furthermore, the GUI shows in column Operation the different
types of operations a process has executed, such as CreateFile, which indicates an operation
related to the file system [85].
According to [7], Microsoft has published a list of various file management functions which
Procmon is able to monitor, e.g. OpenFile, CopyFile, DeleteFile.

3.2.2 Filtering and Logging File System Events

When using Procmon, important file system events can be separated from unimportant ones
by the usage of filters. Procmon provides a GUI for defining filters, as shown in figure 3.2.
Procmon’s filter functionality can be used to restrict the processes which are going to be mon-
itored as well as specific system events, in order to refine the monitoring results. After a filter
has been defined, it is possible to export the filter to use it a later date. For example, by reusing
the same filter for different processes, a comparison can be made between these processes (e.g.
web browsers), thereby yielding in more accurate results.
Furthermore, Procmon provides three different file formats to save monitoring results: PML,
XML and CSV. PML is Procmon’s proprietary format and comes with the full quality of the
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Figure 3.2: Sample view of the filter settings menu of Microsoft’s process monitor utility Proc-
mon [84]

monitoring results. PML allows Procmon to import monitoring results on any system [84]. For
the purpose of this thesis the CSV file format is chosen, since both the XML and the PML struc-
ture are more complex and consume too much disk space, whereas the structure of the CSV file
format is simple and can be processed more effectively.

3.3 Monitoring the Private Browsing Mode of Modern Web
Browsers

The following section presents a new approach for the digital investigation of the private mode of
modern web browsers. This approach takes advantage of the VirtualBox and Procmon features
which have been described before.

3.3.1 Conceptual Design of the Forensic Investigation Approach

The basic idea of monitoring modern web browsers is explained within this section. Figure 3.3
depicts a diagram consisting of two axis b and t, where b indicates, by how many percent the
web browser has been loaded into the RAM for execution. Zero percent means that the virtual
machine is up and running. A hundred percent means that the browser has been launched suc-
cessfully in private mode, which is indicated by x. The variable t represents the time that has
passed since the web browser start-up. The variables y and z represent in each case the state of
the virtual machine, i.e. y indicates that the web browser in private mode is being shut down and
z indicates that the web browser is shutdown as well as the virtual machine.
From a testing perspective it is assumed that the private mode of modern web browsers gener-
ates events (digital evidence) on the local hard drive between the web browser start-up (x) and
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shutdown (z). This events are logged by means of Procmon.
From a conceptual point of view, an initial snapshot is created before the virtual machine is
launched. Afterwards the virtual environment is started. Procmon is launched and configured
with specific filter settings and started in capturing mode before the web browser is launched for
testing, in order to log that file system events which have been triggered by the web browser.
Then the web browser is launched in private mode for testing (x). During this time virtual ma-
chine screenshots are taken of each web site called in the web browser. The screenshots are
stored to a shared virtual machine folder. After a specified time (y), testing is stopped and the
web browser is shut down. In the meanwhile the process monitor has logged all file system
events in form of a protocol which is exported in CSV format. The Procmon log files are saved
to the shared virtual machine folder as well.

Figure 3.3: Description of the forensic analysis concept for investigating the private mode of
modern web browsers

Next to that (z), the process monitor log file is cleared and the web browser is shut down as well
as the virtual machine. After that a virtual machine snapshot is created which represents the
state of the virtual machine hard disk at time z. Next, the virtual machine is reset to the initial
state being ready for new test runs.
Finally, the initial snapshot and snapshot z are imaged to two separate disk image files. Both
image files are correlated with the Procmon log files that are contained on the virtual machine
share. Afterwards the information gained from the previous correlation step is used to compare
both snapshots to each other, in order to find and recover that digital evidence which has been
left on the disk image after the web browser shut-down. A detailed technical description of this
conceptual design is provided in the next chapter.
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CHAPTER 4
Implementation

This chapter presents the implementation of the testing and forensic investigation approach.
First of all a holistic solution has been implemented, where both the testing and the analysis
component have been automated (requiring minimal manual interaction). This implementation
has been refused due to technical reasons regarding the process control of VirtualBox. The
main problem was that Procmon could not be launched properly. In other words, the Procmon
log files, which contain the monitored file system events, could not be created when Procmon
was launched via the VirtualBox process creation API. Therefore, the implementation of the
proposed approach was split into two automated parts that require more manual interaction than
the prior solution.
One part is the testing framework, which is located on the guest system (virtual machine), and
the other part is the analysis framework, which is situated on the host system. In this chapter,
the configuration of both the testing and analysis environment is described. The implementation
of both frameworks is presented, as well as the whole testing and analysis procedure.
The testing framework has been implemented in Java by means of Selenium [12], which is a
web browser automation framework. The analysis framework has been implemented in The
Python Programming Language (Python) and takes advantage of The Sleuth Kit [14], a forensic
analysis tool kit, the fiwalk utility [53], which is part of The Sleuth Kit, and Digital Forensics
XML (DFXML) files [53].

4.1 Configuration of the Test Environment

The configuration of the testing environment consists of the latest web browsers that have been
available at test time. The testing environment is configured as follows:

• VirtualBox 4.3.10 r93012

• Windows 7 (Service Pack 1)

• Procmon 3.05
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• Internet Explorer 11.0.9600.16428IS

• Firefox 28.0

• Chrome 33.0.1750.154 m

• Safari 5.1.7 (7534.57.2)

• Opera 20.0.1387.91

• Java Software Development Kit 1.7 Update 45

• Selenium Development Kit 2.39.0

• Selenium Web Driver for Internet Explorer 2.39.0

• Selenium Web Driver for Chrome 2.39.0

• ~20 GB Hard disk

• ~5,2 GB RAM

VirtualBox has been chosen to be the virtual environment. Windows 7 (Service Pack 1) has been
selected to be the guest operating system, which has been set up on the virtual machine. Proc-
mon has been chosen as process monitor utility. The web browsers Internet Explorer, Chrome,
Firefox, Opera and Safari have been selected for testing purposes, since they are very popular
due to their large user base [2].

4.1.1 Shared Folder Settings

As aforementioned in section 3.1.2, VirtualBox supports shared folders by means of the ”Guest
Additions” [ [17], Oracle, 2013] feature. The testing framework uses this feature for sharing
data between the guest and the host system. A shared folder, named test_share, is required by
the testing framework. This folder is mounted as read/write on the guest system and contains
two sub folders as follows:

• procmon_configs

This folder contains several configuration files for Procmon. Generally, each configu-
ration file can consist of different filter settings which are used for filtering file system
events.

• test_result

Within this folder the testing results are stored, i.e. the folder holds the generated Procmon
log files, the URLs of the web sites which have been used for testing, as well as the screen-
shots of the visited web sites. The screenshots have been created by using VirtualBox’s
screenshot feature, as presented in section 3.1.3.
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4.1.2 Process Monitor Filter Settings

Procmon has been set up to use a previously created configuration (PMC) file [84] that is located
on the shared folder procmon_configs. Generally, Procmon event filters can be created and added
to a Prcomon configuration file. These filters specify what system events are kept or dropped at
monitoring time. For the purposes of this work, Procmon has been configured to include (keep)
the file system events that match the conditions which are shown schematically in table 4.1.
These events have been found to be suitable for forensic analysis, since they represent the well
known file system operations: create file, modify file, delete file and rename file. As seen in the
table, the filter settings additionally contain the process names of the web browsers which have
been selected for testing.

Column Relation Value Action
Process Name is iexplore.exe Include
Process Name is chrome.exe Include
Process Name is firefox.exe Include
Process Name is safari.exe Include
Process Name is opera.exe Include
Operation is CreateFile Include
Operation is WriteFile Include
Operation is SetDispositionInformationFile Include
Operation is SetRenameInformationFile Include

Table 4.1: Schematic view of Microsoft Procmon’s include filters used in the implementation
of the testing framework [7, 16, 84]

According to [7, 16], the file system operations from table 4.1 can be interpreted as follows:
CreateFile is registered when a file is created or opened for reading. WriteFile is registered
when data is written to a file. SetDispositionInformationFile is registered when a file is marked
for deletion. Usually, such files are deleted after they have been closed, as initial testing has
shown. SetRenameInformationFile is registered when a file is renamed.
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Additionally, Procmon has been configured to exclude (drop) all events which suit to the
conditions, as presented in table 4.2.

Column Relation Value Action
Process Name is Procmon.exe Exclude
Path ends with .icm Exclude
Path ends with .ICM Exclude
Path ends with .exe Exclude
Path ends with .EXE Exclude
Path ends with .ttf Exclude
Path ends with .TTF Exclude
Path ends with .ttc Exclude
Path ends with .TTC Exclude
Path ends with .dll.mui Exclude
Path ends with .DLL.MUI Exclude
Path ends with .pf Exclude
Path ends with .PF Exclude
Path ends with .nls Exclude
Path ends with .NLS Exclude
Path ends with .dll Exclude
Path ends with .DLL Exclude
Path ends with .tlb Exclude
Path ends with .TLB Exclude
Path ends with .customDestinations Exclude
Path ends with .customDestinations-ns Exclude
Path ends with .ini Exclude
Path ends with .INI Exclude
Path ends with .Manifest Exclude
EventClass is .Registry Exclude
EventClass is .Network Exclude
EventClass is .Process Exclude
EventClass is .Profiling Exclude

Table 4.2: Schematic view of Microsoft Procmon’s exclude filters used in the implementation
of the testing framework [84]

The filters in table 4.2 pre-filter files which can be classified as noise generated by the operating
system. The digital evidence contained in these files is negligible for further analysis, as initial
tests have shown. Therefore, these files are omitted. Additionally, the system events which be-
long to the event classes .Registry, .Network, .Process and .Profiling are excluded from logging,
as the focus of this Master’s thesis lies on monitoring file system events [84].
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4.1.3 Web Browser Settings

The configuration of the Internet Explorer, Chrome, Firefox, Opera and Safari has remained un-
changed, except some minor modifications. Due to performance issues that have been observed
during initial testing, the web browsers have been configured to block pop-ups.
Add-ons and plug-ins have been disabled, which has been found to be useful at test time. Initial
tests also have shown that enabled web browser add-ons and plug-ins slow down the testing
process. Therefore, these features have been disabled as well.
The set-default-browser option has been disabled for the selected web browsers, otherwise every
time on web browser start-up a notification is displayed by forcing the user to set a default web
browser. The browsing history has been cleared and disabled by default for each web browser.

4.2 Description of the Testing Framework

As mentioned before, the testing framework is written in Java and takes advantage of Selenium’s
web browser automation features. The following sections describe the overall testing procedure
in form of a UML sequence diagram, as seen on figure 4.1. Due to technical limitations that are
explained in section 4.5.1, applying the automated testing procedure has been found to be suit-
able only for the Internet Explorer and Chrome. Therefore, the descriptions provided in sections
4.2.2 and 4.2.3 are focusing on the automation of these web browsers. However, Firefox, Safari
and Opera have been tested according to the steps of the overall testing procedure in a way that
the automated steps have been performed manually, as presented in chapter 5.

4.2.1 Definition of the Overall Testing Procedure

The overall testing concept, which has been implemented, is illustrated in figure 4.1.
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Figure 4.1: Description of the overall testing procedure for testing web browsers in private
mode
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The testing steps from figure 4.1 are explained as follows:

1. start Procmon

The testing environment is started and Procmon is launched.

2. load config

Procmon is provided with a configuration file that is located on the shared folder
/test_share/procmon_configs. This file contains the settings that are necessary for filter-
ing those file system events which have been induced by a specific web browser, e.g. the
Internet Explorer, Chrome.

3. listen for events

After Procmon has been configured properly, it starts capturing file system events which
match the specified filter criteria.

4. start browserlauncher

The browserlauncher application is executed with the command line arguments provided
by the user. This Java application represents the core of the testing framework which is
used for web browser automation and testing purposes.

5. parse cmd line args

The browserlauncher parses the provided command line arguments and determines the
web browser which needs to be started in private mode.

6. prepare test share

The virtual machine shared folder from section 4.1.1 is prepared by the browserlauncher,
i.e. for each test run a sub folder is created under /test_share/test_result. This sub folder
contains the virtual machine screenshots and a browserlauncher application log file con-
sisting of the web sites that timed out. The screenshots and application log files are not
part of the experimental evaluation, as they have been only used for diagnostic purposes
during testing. Furthermore, the Procmon log files are stored to that sub folder for further
analysis.

7. read URLs

The browserlauncher parses the URLs which have been provided via input file from
/test_share/test_result.

8. launch web browser in private mode
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The browserlauncher starts that web browser in private mode which has been provided
via command line argument. Section 4.2.2 explains the features which are part of this step
in more detail.

9. execute web browser tests

The browserlauncher calls the URLs that have been parsed from the command line in
the previously launched web browser. A more technical description of the sub steps that
are part of this step is provided in section 4.2.3.

10. tear down web browser

After testing has been finished the browserlauncher quits the web browser and shuts down.

11. export log file

After testing has been finished, the Procmon log files need to be exported manually to
that shared folder, which has been created for storing the test results,
e.g. /test_share/test_result/ie_test_result_20140501.

The following sections cover technical aspects of the Selenium configuration that has been used
in conjunction with the automation of Internet Explorer’s and Chrome’s private mode. Addi-
tionally, the step ”execute web browser tests” (step nine) from the overall testing procedure is
explained in more detail.

4.2.2 Launching Web Browsers in Private Mode

The testing framework uses Selenium for web browser automation. Selenium provides a com-
ponent, called WebDriver, [13] which is a generic Java class for launching web browsers. When
launching the Internet Explorer or Chrome via Selenium, the implementing classes of Web-
Driver, which are the InternetExplorerDriver [10] and the ChromeDriver [4], have been used.
According to [5], the InternetExplorerDriver has been configured to use the following properties
at start-up:

Property Value
webdriver.ie.driver path_to_driver\IEDriverServer.exe
ie.forceCreateProcessApi true
ie.browserCommandLineSwitches -private
ie.ensureCleanSession true

Table 4.3: Schematic view of the settings required by the Selenium framework for launching
Internet Explorer’s private mode [5]

As seen in table 4.3, the InternetExplorerDriver requires the path to the binary IEDriverServer.exe
to be set, in order to launch the Internet Explorer. Furthermore, Selenium requires the Windows
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Registry key Computer\HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main
\TabProcGrowth to be set with the value zero and the ie.* options to be configured, so that the
Internet Explorer can be launched in private mode [10].
According to [3–5], the ChromeDriver uses the following properties at start-up:

Property Value
webdriver.chrome.driver path_to_driver\chromedriver.exe
--user-data-dir path_to_chrome_user_profile\Google\Chrome\User Data
--incognito true

Table 4.4: Schematic view of the settings required by the Selenium framework for launching
Chrome’s private mode [3–5]

As seen in table 4.4, the ChromeDriver uses the path to the binary chromedriver.exe [4]. The
other options from table 4.4 are used to launch Chrome’s private profile.

4.2.3 Testing Web Browsers in Private Mode

When performing web tests, the browserlauncher application controls the browser under test.
According to figure 4.2, the browserlauncher carries out the following steps for each URL that
is tested:

1. navigate to URL

The browserlauncher is built upon the ”Implicit Wait” [ [15], Selenium, 2013 ] com-
ponent of Selenium. This feature is used when navigating between arbitrary URLs. After
a specified time the ”Implicit Wait” [ [15], Selenium, 2013 ] feature notifies the browser
to call the next URL in the address bar.

2. log to time out log file

If a specific web site is not loaded within the specified period of time, the browserlauncher
logs the name of the web site to a log file that has been created on the virtual machine
shared folder, e.g. /test_share/test_result.

3. take screenshot

Finally, the browserlauncher takes a screenshot of each web page regardless of whether or
not the web page has been loaded completely.
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Figure 4.2: Detailed description of the step ”execute web browser tests” from the overall testing
procedure
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4.3 Configuration of the Analysis Environment

The configuration of the analysis environment differs form the configuration of the testing envi-
ronment. The analysis environment has the following characteristics:

• Python 2.7

• The Sleuth Kit 4.1.2

• DFXML Python binding 1.0.1

• Fiwalk Python binding 0.6.3

• ~500 GB Hard disk

• ~8 GB RAM

Python has been used for imaging the VirtualBox snapshots to disk image files. The Sleuth Kit
release contains the fiwalk utility which can be used to process disk images efficiently. Addition-
ally, fiwalk is able to create DFXML files when processing disk images. Generally, a DFXML
file represents a file object, which is residing on a disk image, in XML structure [53]. Both the
DFXML and the fiwalk Pyhton binding are required for producing DFXMLs.
The overall analysis procedure is described more detailed in section 4.4, but before the configu-
ration of the analysis framework is presented.

4.3.1 Storage Controller Settings

VirtualBox maintains a XML file (.vbox) for each virtual machine [17]. A .vbox file holds
different configuration data, such as snapshot UUIDs that are mapped to one or more storage
controllers. A storage controller represents the ”hard disk” of a virtual machine. As seen in list-
ing 4.1, the snapshot with the UUID ”7a0467d2-d0d7-43dd-9f5f-7177d3b46e10” has attached
one SATA storage controller. The analysis framework requires only one storage controller per
snapshot to be configured. Each storage controller represents the state of a particular snapshot
at a specific time, for example, the state of the hard disk after a web browser test, which can be
used for imaging.

<Snapshot uuid="{7a0467d2-d0d7-43dd-9f5f-7177d3b46e10}">
...
<StorageControllers>

<StorageController name="SATA">
<AttachedDevice type="HardDisk">

<Image uuid="{1386b43a-4e6f-42b4-adf0-84313bce3e94}"/>
</AttachedDevice>

</StorageController>
</StorageControllers>

<Snapshot>

Listing 4.1: Schematic view of the storage controller section of VirtualBox’s .vbox XML file
[17]
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Other VirtualBox options like host I/O caching, which is used to cache the write operations of the
virtual hard disk, or the property ”setextradata” [ [17], Oracle, 2013 ], which can be used to set
the commit rate of the guest file system to the virtual hard disk, have remained unchanged, since
disk imaging as well as the forensic analysis take place after the virtual machine shutdown [17].
This virtual machine configuration is considered to be forensically sound as well as comparable
to a real computer system, because it is assumed that all cached write operations have been
written to the storage controller after the virtual machine shutdown.

4.3.2 Folder Structure of the Analysis Framework

The analysis framework uses the following folder structure:

• analysis_folder

This folder contains the init folder and one or more snapshot folders, which are used
for further analysis.

• init_folder

This folder contains the disk image of the initial snapshot and its corresponding DFXML
file.

• snapshot_folder

Beneath a snapshot folder there are two sub folders, called analysis_result and test_result.
The analysis_result folder contains the disk image of a particular snapshot, its correspond-
ing DFXML file and the recovered browsing data, such as cookies or graphics files. The
test_result folder consists of the log files generated by Procmon as well as the virtual
machine screenshots, the time out log file and the tested URLs.

A detailed explanation of how Procmon log files, disk images and DFXML files are used when
analysing disk images is provided in the following sections.

4.4 Description of the Forensic Analysis Framework

The analysis framework has been written in Python and uses features of The Sleuth Kit, the
fiwalk utility and DFXML. Similar to the testing framework, the following section describes the
overall analysis procedure in form of a UML sequence diagram, as seen in figure 4.3. Addi-
tionally, particular sections of the analysis procedure are described in more detail for a better
understanding.

4.4.1 Definition of the Overall Analysis Procedure

The analysis framework implements the concept of comparing virtual machine snapshots to
process monitor log files, in order to find digital evidence which has been created in the context
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of a private browsing session. According to section 3.3.1, at least two snapshots have to be
supplied to the analysis framework, where one snapshot is referring to the state of the virtual
hard disk before a web browser test (initial snapshot) and at least one snapshot is referring to the
virtual disk state after a web browser test (snapshot X). By means of the analysis framework, it is
possible to compare the initial (”clean”) snapshot to a snapshot X that contains private browsing
data.
The overall analysis procedure is depicted in figure 4.3.
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Figure 4.3: Description of the overall forensic analysis procedure for examining the private
mode of modern web browsers
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According to figure 4.3, the following steps are performed when conducting a forensic anal-
ysis of the private mode of modern web browsers:

1. start browsmon

The analysis framework consists of the Python script browsmon.py (browsmon) which
is used for performing the forensic analysis of different virtual machine snapshots.

2. parse cmd line args

Browsmon parses the provided command line arguments to determine the virtual machine
and the corresponding snapshots for further analysis.

3. convert initial snapshot to disk image

The browsmon application requests VirtualBox to convert the virtual hard disk of the
initial snapshot to a disk image. Additionally, a DFXML file is generated based on that
disk image.

4. convert snapshot X to disk image

This step and the following ones are carried out iteratively for each provided snapshot.
Browsmon converts the virtual hard disk of an arbitrary snapshot X to a disk image X.

5. create DFXML file from disk image X

Browsmon creates a DFXML file from disk image X. A detailed explanation of creat-
ing such XML files is given in section 4.4.2.

6. calculate recoverable files from Procmon log files

Browsmon parses the Procmon log files which are related to the snapshot X and calcu-
lates all potentially recoverable files. Within this step duplicate file names are filtered, due
to the fact that a file can be contained multiple times within a Procmon log file.

7. parse DFXML files

Generally, the analysis framework uses DFXML files to map file paths to inode num-
bers. The list of potentially recoverable files contains the relative file paths of those files
which have been logged during a particular private browsing session. Browsmon takes
each file path and searches for its corresponding inode number within the initial snapshot
DFXML file as well as within the snapshot X DFXML file. For each valid inode number
a file object is extracted from the aforementioned DFXML files (initial DFXML and/or
snapshot X DFXML). Afterwards, these file objects are stored to separate XML files. A
more detailed description of creating and extracting DFXML file objects, is presented in
section 4.4.2.
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8. compare DFXML files

The DFXMLs of matching file objects (those with the same file path) are compared to
each other. For matching files a .diff file is created which stores the result of the compari-
son. Section 4.4.3 covers the process of comparing DFXML file objects in more detail.

9. recover files from disk images

The file objects with a valid inode number are recovered from the initial disk image and/or
the snapshot X disk image for further analysis purposes. In other words, by taking advan-
tage of inode numbers, web browser artefacts, such as the browsing history or cookies,
can be recovered. This step is described in more detail in section 4.4.4.

4.4.2 Creating Digital Forensics XML Files

In [52, 53], Garfinkel presents the fiwalk utility as part of The Sleuth Kit framework. As men-
tioned before, fiwalk is capable of extracting file objects as DFXML files from arbitrary disk
images. Listing 4.2 shows a sample of a DFXML file object, called fwlink[1].htm, which has
been located in the Internet Explorer’s web cache directory.

<fileobject>
...
<filename>Users/win7/AppData/Local/Microsoft/Windows/

Temporary Internet Files/Content.IE5/U92U03D9/fwlink[1].htm
</filename>
...
<name_type>r</name_type>
<filesize>182</filesize>
...
<inode>60911</inode>
...
<mtime>2013-11-14T13:59:33Z</mtime>
<ctime>2013-11-14T13:59:33Z</ctime>
<atime>2013-11-14T13:59:33Z</atime>
<crtime>2013-11-14T13:59:33Z</crtime>
...
<byte_runs>
<byte_run file_offset=’0’ fs_offset=’0’ img_offset=’105906176’

len=’182’ type=’resident’/>
</byte_runs>
<hashdigest type=’md5’>8a11c6169f03fc4d310fc8c0f947cb54</hashdigest>
<hashdigest type=’sha1’>6ca3cd1e41678833dc1ac45a71a78276ca5e8585
</hashdigest>

</fileobject>

Listing 4.2: Schematic view of a file object in DFXML format produced by the fiwalk utility
[53]
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A detailed description of the DFXML tags is available at [6]. The XML tags listed listing 4.2
are used for further analysis, since they provide valuable information to investigators, such as
the file name, MAC times or the information whether or not a file’s content has changed. The
XML tags from listing 4.2 are describes as follows [6]:

• filename

This attribute describes the full path of the file relative to the root folder, i.e. C: or D:
in Windows.

• name_type

This attribute identifies the file type. For example, r stands for regular file. Also di-
rectories, hard links, named pipes, etc. are valid file types.

• filesize

This attribute reports the file size in bytes.

• inode

This attribute reports the inode number of a file object.

• mtime, ctime, atime, crtime

These attributes describe a file’s MAC times as follows: mtime stands for last modifica-
tion time, ctime stands for last modification of the meta data, atime stands for last access
time and crtime stands for the creation time of a file.

• byte_runs

This attribute reports the byte runs of a file which means that a file is organised in a
byte array on the hard disk. Byte_runs contains the cryptographic hash value for each
array element.

• hashdigest

This attribute refers to the cryptographic hash value that is calculated from the whole
file content. Typically, fiwalk calculates the md5 and sha1 hash sum of a file.

The remaining XML tags are omitted, since they are not necessarily required for the further
evaluation, as presented in chapter 5.
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4.4.3 Comparing Digital Forensics XML Files

After the file objects have been extracted from the initial snapshot DFXML file as well as form
an arbitrary snapshot X DFXML file, the analysis framework creates a .diff file for matching file
objects (file objects with the same file path), as seen in listing 4.3.

<fileobject>
...
<filename>Users/win7/AppData/Local/Google/Chrome/User Data/

Default/History-journal
</filename>
...
<name_type>r</name_type>
<filesize>16384</filesize>
...
<inode>66355</inode>
...

- <mtime>2013-12-08T16:23:28Z</mtime>
? - - ^^^

+ <mtime>2013-12-08T22:31:35Z</mtime>
? ++++ ^

- <ctime>2013-12-08T16:23:28Z</ctime>
? - - ^^^

+ <ctime>2013-12-08T22:31:35Z</ctime>
? ++++ ^

<atime>2013-11-14T14:46:51Z</atime>
<crtime>2013-11-14T14:46:51Z</crtime>
...
<byte_runs>

<byte_run file_offset="0" fs_offset="1812656128"
img_offset="1918562304" len="16384"/>

</byte_runs>
- <hashdigest type="md5">6ce5b8b6b73e3149eea54d5e8e9f5f58</hashdigest>
- <hashdigest type="sha1">01965d4158c06ee6e395aa32ee66bac1c7ba8988

</hashdigest>
+ <hashdigest type="md5">50c518c6e2dae518aed504e231c6249b</hashdigest>
+ <hashdigest type="sha1">d030648ead25a7bfbb55511f76628f7fecbc77c3

</hashdigest>
</fileobject>

Listing 4.3: Schematic view of a .diff file showing the differences between two DFXML file
objects

The XML excerpt in listing 4.3 shows that the Chrome’s History-journal file has changed. As
can be seen, the file’s mtime, ctime and both hash digests have been modified.
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4.4.4 Recovering Data From Disk Images

The last step being performed by the analysis framework is the recovery of private browsing
data. The current implementation uses the icat [8] utility, which is part of The Sleuth Kit, for
file recovery purposes. Icat is run by the analysis framework via Python’s sub process control
mechanisms. File contents (no directories) are recovered according to their inode number, ir-
respective of their allocation status (e.g. allocated, unallocated). Ignoring a file’s allocation
status will enable investigators to retrieve more potentially valuable information about what has
happened on the file system during a private browsing session. Slack space is not recovered, be-
cause the current solution focuses on deleted file recovery. Recovering slack space will require
an approach that uses file carving techniques. This would exceed the borders of this work and
therefore was not implemented.

4.5 Lessons Learned

This section summarises the technical challenges that were observed during the implementation
phase.

4.5.1 Testing Framework

First of all it was challenging to get the web browsers started in private browsing mode properly,
because each browser has special characteristics and requires different settings, i.e. Chrome uses
browsing profiles, whereas the Internet Explorer does not use any profile.
It should be mentioned that the Selenium framework is evolving fast and it was observed that
several versions of the framework were published while the testing framework was implemented.
The problem was that some versions of the Selenium framework were not compatible with some
web browser versions. One is advised to keep the Selenium framework up to date when testing
new browser versions.
Another obstacle concerning the Selenium framework was that not all five web browser could
be launched automatically, due to the limited support of Selenium’s WebDriver class. For ex-
ample, Opera’s latest version was not supported by Selenium. Safari’s private mode could not
be launched automatically, due to problems concerning the command line parameter handling.
Furthermore, the test data generated by Firefox could not be recovered from the virtual machine
disk image, because the WebDriver class erases Firefox’s temporary working directory perma-
nently on web browser shutdown. Therefore, only a partially automated approach has been
implemented by focusing on the Internet Explorer and Chrome as well.
It should be noted that the current implementation of Selenium is not able to handle more than
one web browser tab at test time. Therefore, all web sites are called in the same browser tab
sequentially.
Due to technical reasons of VirtualBox’s process creation API, the initial testing and analysis
approach was refused. While the initial approach was implemented, it was observed that Proc-
mon crashed all the time, i.e. the configuration (PMC) file could not be applied to Procmon
automatically. Furthermore, Procmon’s log files could not be extended automatically during the
initial testing phases.
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In addition it has been found that web browser testing via Selenium is a time consuming task.
Initial tests have shown that calling 1000 URLs (by using a time out of 10 seconds per URL)
via the browserlauncher takes about three hours. It should be mentioned that Procmon generates
several log files depending on the testing purposes. Each Procmon log file will contain at most
450 MB of log data depending on the amount of tested web sites. Investigators are advised to
provide enough disk space for storing log files.

4.5.2 Analysis Framework

As the implementation of the analysis framework went on, it was observed that the forensic
analysis of disk images was a time consuming task. An initial analysis has shown that convert-
ing VirtualBox storage controllers to disk images of approximately 20 GB in size takes about
30 to 40 minutes. Creating DFXML files from disk images by means of the fiwalk utility takes
seven to ten minutes per disk image, as parsing those DFXML files lasts around three to five
minutes per file. Comparing DFXML files as well as recovering file contents from a disk image
is performed in a rather short amount of time.
Another technical detail to mention is that ifind [9] initially was used to find the inode infor-
mation of potentially recoverable files. This mechanism was refused due to performance issues.
Thus, searching inode numbers within DFXML files has been found to be a more appropriate
solution, since testing has shown that parsing XML files can be performed more efficiently than
calling ifind via Python’s sub process control mechanisms.
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CHAPTER 5
Experimental Evaluation

In this chapter the experimental evaluation of the practical part of this work is presented. Firstly,
three different testing scenarios are defined that have been selected for web browser testing. Sec-
ondly, the procedures for generating and collecting test data are described. Finally, the private
browsing artefacts are presented, which have been found in the course of the digital investiga-
tion.

5.1 Definition of the Test Scenarios

Defining test cases is a crucial task when verifying the user privacy features of modern web
browsers from a forensically point of view. The following test cases have been found to be
valuable: The test scenario described in section 5.1.1 allows investigators to create a baseline of
those Internet artefacts which are accessed during a public browsing session. This baseline can
be compared to the test scenarios defined in section 5.1.2 and in section 5.1.3, which evaluate
the Internet artefacts a web browser accesses in private mode.

5.1.1 Public Browsing Mode Launched Manually

By performing this testing scenario, the web browser is launched manually. A single browser
window is used for testing, which is configured to be in public browsing mode. No browser tabs
are used. During testing, the web sites are accessed in the same browser window consecutively.
A new web site is called as soon as the previous site has been loaded.

5.1.2 Private Browsing Mode Launched Manually

This testing scenario is similar to the testing scenario presented in section 5.1.1, except that the
browser under test is launched in private browsing mode.
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5.1.3 Private Browsing Mode Launched Automatically

In addition to manual testing, the private browsing mode of a web browser is tested automatically
by means of the testing framework, as explained in section 4.2.

5.2 Generating Test Data

All tested web sites have been selected according to Alexa’s web site ranking [1]. The top three
web sites (www.google.com, www.facebook.com and www.youtube.com) have been used for
testing the public and private browsing mode of the Internet Explorer, Chrome, Firefox, Safari
and Opera manually. As initial tests have been performed, this approach has been found to be
suitable, as testing a small set of web sites generates a manageable amount of test data that can
be evaluated, in order to find valuable Internet artefacts. This step has been performed for each
of the five web browsers.
Within the next step Alexa’s top 300 web sites have been selected for testing the private browsing
mode of the Internet Explorer, Chrome, Firefox, Safari and Opera. This step has been performed
manually, due to the technical issues regarding Selenium.
The last step deals with the automation of the Internet Explorer and Chrome, as both browsers
offer mechanisms for launching their private mode automatically. For each web browser the top
1200 web sites of the Alexa ranking have been selected. Each set can be divided into four sub
sets of 300 web sites. As initial tests have shown, a set of 300 web is sites suitable when testing
a web browser’s private mode.

5.3 Collecting Test Data

In accordance with the testing scenario from section 5.1.1, the top three web sites of the Alexa
ranking have been called in each web browser subsequently. As a result, ten different virtual ma-
chine snapshots have been collected, i.e. for each web browser a snapshot has been created that
has contained the public browsing data and another one that has contained the private brows-
ing data. According to the testing scenario from section 5.1.2, the private mode of each web
browser has been tested manually by using Alexa’s top 300 web sites. This step has resulted in
five additional snapshots. Conforming to the test scenario from section 5.1.3, the private mode
of the Internet Explorer and that one of Chrome has been tested automatically by using Alexa’s
top 300 web sites, which has produced eight additional snapshots.

5.4 Test Results and Evaluation

Within this section an overview of the evaluation is given. Furthermore, the evaluation of the
test results is presented in more detail.
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5.4.1 Overview

In general, the experimental evaluation includes allocated and unallocated file objects that have
been found in the virtual machine disk images. Data contained in slack space, orphaned data as
well as overwritten data is omitted, since this would exceed the scope of this work.
Within the following sections there are presented two types of tables. The columns of table type
one are interpreted as follows:

• Web Browser

This column states the browser name.

• Files With Inodes

This column displays the number of distinct file names which have been connected to
a valid inode number (even after web browser shutdown), regardless whether the file con-
tent was recoverable or not.

• Snapshot X

This column covers those files, which have been contained in an arbitrary snapshot X.

• Snapshot X / Initial Snapshot

This column states which files have been contained in a specific snapshot X as well as
in the corresponding initial snapshot. Basically this means that a file, for example, called
y, has been located under a specific path in snapshot X and the same file name (plus file
path) has been located in the initial snapshot. The matching criteria of both file objects is
the file path. File y from snapshot X and the corresponding file y from the initial snapshot
have been recoverable.

The columns of table type two are interpreted as follows:

• Internet Artefact

This column states the name of the Internet artefact, which has been found in a partic-
ular disk image.

• Attribute

This column presents the attributes of an artefact, which are: the file path pointing to
that artefact, its MAC times as well as its SHA1 sum. From a forensically standpoint of
view, these attributes can be considered to proof the existence of digital evidence in the
context of an examination.

• Value

This column presents the attribute values of a file’s path, MAC times and SHA1 sum.
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In this work, table type two is used to highlight the findings, which have been recovered from
different private browsing sessions, whereas table type one states the number of recovered files
in general. When describing public browsing artefacts, table type two is omitted, since this work
focuses on private browsing artefacts. The public browsing artefacts in section 5.4.2 are only
described for a better understanding of the entire work. The private browsing artefacts in section
5.4.2 are presented by using table type two.
Generally, private browsing artefacts have been accessed locally during each test run. Each web
browser starts writing and / or modifying and / or removing private browsing data on start-up,
during the browsing session and on shutdown, which has been observed when analysing the
collected Procmon log files.
During the analysis phase a big amount of private browsing artefacts of the Internet Explorer
has been exposed. Many different file types have been detected. The following sections present
a representative for each valuable file type in more detail by using table type two. These repre-
sentatives cover digital evidence and can be used to create a chain of custody in the course of a
digital investigation. Additionally, the sections present those web sites (out of the tested ones)
the private browsing artefacts have been referring to.
Contrary to the Internet Explorer, the other web browsers have not revealed valuable private
browsing data, except Safari. The valuable private browsing artefacts of Safari are described
by the use of table type two as well. The presentation of the private browsing artefacts cre-
ated or modified by the other web browsers is omitted, as no digital evidence has been exposed
regarding the visited web sites.

5.4.2 Evaluation of the Manual Test Scenarios

This section presents the evaluation of the Internet artefacts which have been generated by the
public and private mode of the Internet Explorer, Firefox, Chrome, Safari and Opera in course
of the manual testing phase. A comparison of these artefacts is provided in order to point out
potential similarities and differences.

Public Browsing Artefacts

Table 5.1 shows the number of browsing artefacts that have been accessed when testing the
public browsing mode of the Internet Explorer, Chrome, Firefox, Safari and Opera by means of
Alexa’s top three web sites www.google.com, www.facebook.com and www.youtube.com.

Web Browser Files With Inodes Snapshot X Snapshot X / Initial Snapshot
Internet Explorer 165 131 22
Chrome 204 63 63
Firefox 91 83 2
Safari 52 46 0
Opera 160 134 12

Table 5.1: Public browsing artefacts generated by the Internet Explorer, Chrome, Firefox, Safari
and Opera when tested Alexa’s top three web sites manually
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Internet Explorer As can bee seen in table 5.1, Procmon has monitored 165 distinct files
which the Internet Explorer has accessed in public mode. 154 files have been recovered from
the virtual machine disk images, whereof 131 files have been contained in snapshot X and 22
files have been contained in both snapshots.
As the investigation took place, many Javascript files, XML files and graphics files, such as
PNG or JPEG, have been discovered. But also other file objects that have no well known file
name extensions. For example, the file 4309200C3DBAD0F6F0DFACE9165FD092 located
under path /Users/pc/AppData/LocalLow/Microsoft/CryptnetUrlCache/MetaData does not have
any extension. This file has consisted of binary data, as the analysis has revealed. Several cook-
ies from www.google.com, www.facebook.com and www.youtube.com have been found under
/Users/pc/AppData/Roaming/Microsoft/Windows/Cookies. For example, a binary file, called
{AA052660-CCC6-11E3-9F3D-080027776A60}.dat, under path /Users/pc/AppData/Local/Mi-
crosoft/Internet Explorer/Recovery/High/Active has contained the URLs of www.google.com,
www.facebook.com and www.youtube.com. Even a few graphics files have been recovered in-
dicating that the Internet Explorer has visited these web sites.
Each file of the 22 files from the initial snapshot has been compared to its matching file from
snapshot X. The evaluation has shown that at least one of the file object attribute values has
changed, except the file name.
Among the 22 files there have been, e.g. counters.dat, cversions.1.db, msimgsiz.dat. The in-
spection of these binary files has revealed no digital evidence regarding the visited web sites.

Chrome According to table 5.1, Procmon has monitored 204 distinct files which have been
accessed on the virtual hard disk via Chrome’s public browsing mode. Further analysis of the
virtual machine disk images has shown that 63 files have been found in snapshot X and 63 files
have been contained in both snapshots. Examining the disk image has revealed certain sqlite
database files which Chrome either has generated or modified during the browsing session.
Digital traces regarding www.google.com, www.facebook.com and www.youtube.com have been
recovered from the following sqlite database files: Current Session, Current Tabs, Favicons,
Cookies, Cookies-journal, History, History Provider Cache, Network Action Predictor, Network
Action Predictor-journal, Origin Bound Certs, Shortcuts and Shortcuts-journal. These database
files have been among the modified files, which basically means that a particular sqlite database
file from the initial snapshot has had a different file content as the corresponding file from snap-
shot X. Other digital evidence concerning www.youtube.com and www.google.com has been
found, for example, in a file named 000041.log, that Chrome possibly uses for logging.

Firefox Investigating Firefox’s public browsing mode has resulted in the following findings:
Procmon has registered 91 distinct files, whereof 83 have been contained in snapshot X, as
presented in table 5.1. The files counters.dat and cversions.1.db have been contained in both
snapshots. Both files are typically used by the Internet Explorer as well. An examination of
these files has not revealed digital evidence that has been connected to any of the visited web
sites.
Digital evidence pointing to www.google.com, www.facebook.com and www.youtube.com has
been contained in Firefox’s cache files, named _CACHE_001_, _CACHE_002_ and _CACHE_003_
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under path /Users/pc/AppData/Local/Mozilla/Firefox/Profiles/4vsne8e5.default/Cache. Addi-
tionally, Firefox’s sqlite databases, e.g. cookies.sqlite, permissions.sqlite and places.sqlite, have
revealed information about the visited web sites.

Safari The digital investigation of Safari’s public browsing mode has resulted in 52 distinct
files, as can be seen in table 5.1. During the browsing session no files have been modified,
although Safari has created 46 files on the snapshot X disk image. The files Cache.db, Cook-
ies.binarycookies, History.plist, LastSession.plist, WebpageIcons.db have contained digital evi-
dence indicating that Safari has visited www.google.com, www.youtube.com and
www.facebook.com.

Opera When assessing Opera’s public browsing artefacts, 160 different files have been found
locally based on the Procmon log files, whereof 12 files have been contained in both snapshots
and 134 files have been found in snapshot X, as shown in table 5.1. Opera has modified the cver-
sions.1.db file, as well as some files that have been located under path /Users/pc/AppData/Local-
Low/Microsoft/CryptnetUrlCache/Content, which have had no well known file extension (simi-
lar to those files contained under the directory the Internet Explorer /CryptnetUrlCache). When
examining Opera’s Internet artefacts, several graphics files have been found, such as favicons of
www.youtube.com and www.facebook.com. Additionally, digital evidence regarding the three
web sites has been contained in the sqlite database files Cookies, data_1, data_3, Favicons,
Favicons-journal, History and History Provider Cache.

Private Browsing Artefacts

The following section contains the analysis result of ten test runs regarding the private browsing
mode of the Internet Explorer, Chrome, Firefox, Safari and Opera. Table 5.2 shows the test
results of those five test runs, which have been conducted by visiting Alexa’s top three web
sites, whereas table 5.3 contains the results of those five test runs, that have been performed by
visiting Alexa’s top 300 web sites. As seen in both tables, the test results vary depending on the
visited web sites as well as on the tested web browsers.

Web Browser Files With Inodes Snapshot X Snapshot X / Initial Snapshot
Internet Explorer 135 92 30
Chrome 116 17 33
Firefox 57 51 2
Safari 80 73 0
Opera 79 53 12

Table 5.2: Private browsing artefacts generated by the Internet Explorer, Chrome, Firefox, Safari
and Opera when tested Alexa’s top three web sites manually
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Web Browser Files With Inodes Snapshot X Snapshot X / Initial Snapshot
Internet Explorer 18123 17006 1048
Chrome 584 135 144
Firefox 83 76 2
Safari 87 75 5
Opera 364 260 88

Table 5.3: Private browsing artefacts generated by the Internet Explorer, Chrome, Firefox, Safari
and Opera when tested Alexa’s top 300 web sites manually

Internet Explorer Generally when analysing the private browsing mode of the Internet Ex-
plorer, a different behaviour to its public mode has been observed. As can be seen in table 5.2,
the Procmon log files have contained 135 distinct files, whereof 92 files have been found in
snapshot X and 30 files have been contained in both snapshots. As compared to the Internet
Explorer’s public mode, its private mode has not stored cookies to the snapshot X disk image.
Among the files from snapshot X a file, called {93E34706-CCC5-11E3-8B9B-080027776A60}.dat,
has been detected. Table 5.4 describes the attributes of this file. It has revealed traces of

Internet Artefact Attribute Value

{93E34706-CCC5-
11E3-8B9B-
080027776A60}.dat

Path
/Users/pc/AppData/Local/Microsoft/
Internet Explorer/Recovery/High/Active

MAC

mtime: 2014-04-25 22:06:09
atime: 2014-04-25 22:06:09
ctime: 2014-04-25 22:06:09
crtime: 2014-04-25 22:06:09

SHA1 b8a40d991c795355479f868365f17f0ae6c85ec4

Table 5.4: Private browsing artefact generated by the Internet Explorer pointing to
www.google.com, www.facebook.com and www.youtube.com

www.google.com, www.facebook.com and www.youtube.com. In addition to this finding, sev-
eral files have been recovered indicating that the Internet Explorer has called these three URLs.
Table 5.5 shows those artefacts which have pointed to www.youtube.com.
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Internet Artefact Attribute Value

1[1].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/FX53N95V

MAC

mtime: 2014-04-25 22:05:57
atime: 2014-04-25 22:05:57
ctime: 2014-04-25 22:05:57
crtime: 2014-04-25 22:05:57

SHA1 1673954e58303966f6f3475a63d2c0840710e3d6

1[2].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/FX53N95V

MAC

mtime: 2014-04-25 22:05:57
atime: 2014-04-25 22:05:57
ctime: 2014-04-25 22:05:57
crtime: 2014-04-25 22:05:57

SHA1 17fe17b7bdb5080c4bd09de9a29ca86023cae5e6

1[4].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/FX53N95V

MAC

mtime: 2014-04-25 22:05:57
atime: 2014-04-25 22:05:57
ctime: 2014-04-25 22:05:57
crtime: 2014-04-25 22:05:57

SHA1 ee59ce5f9a49080aac6906b1be5bb150aa8436fd

1NYPWD5C.htm

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/2KHPLC4H

MAC

mtime: 2014-04-25 22:05:54
atime: 2014-04-25 22:05:54
ctime: 2014-04-25 22:05:54
crtime: 2014-04-25 22:05:54

SHA1 698fe43dceac73a4bd2b9d84ee0028ca628ec816

player-common-
vflYYQ18S[1].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/6RQ61YAG

MAC

mtime: 2014-04-25 22:05:59
atime: 2014-04-25 22:05:59
ctime: 2014-04-25 22:05:59
crtime: 2014-04-25 22:05:59

SHA1 56a52efdbe1b45d1b9b927eb6432e093b01090c8

Table 5.5: Private browsing artefacts generated by the Internet Explorer referring to
www.youtube.com
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Table 5.6 presents those Internet artefacts that have referred to www.google.com. As can be
seen, this table contains the artefact logo11w[1].png, which has been found in the snapshot X
disk image as well as in the initial snapshot disk image. This table entry shows that the file has
been modified during the private browsing session, as indicated by the modified MAC times and
SHA1 sums. Table 5.7 shows the Internet artefact which has pointed to www.facebook.com.

Internet Artefact Attribute Value

favicon[1].ico

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/H1UEFVG3

MAC

mtime: 2014-04-09 18:35:20
atime: 2014-04-09 18:35:20
ctime: 2014-04-09 18:35:20
crtime: 2014-04-09 18:35:20

SHA1 e2020bf4f2b65f62434c62ea967973140b3300df

nav_logo193[1].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/9M0V594T

MAC

mtime: 2014-04-25 22:05:42
atime: 2014-04-25 22:05:42
ctime: 2014-04-25 22:05:42
crtime: 2014-04-25 22:05:42

SHA1 fb409adb53e544dbf6938bd13e02d51d2ab621a0

logo11w[1].png

Path
Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/E21RIXID

MAC

X mtime: 2014-04-25 22:06:56
Init mtime: 2014-03-28 23:24:51
X atime: 2014-04-25 22:06:56
Init atime: 2014-03-28 23:24:51
X ctime: 2014-04-25 22:06:56
Init ctime: 2014-03-28 23:24:51
X crtime: 2014-04-25 22:06:56
Init crtime: 2014-03-28 23:24:51

SHA1
X: 68cb9af63939e1d509d34a5bf92fb2824acb64c3
Init: 349841408d1aa1f5a8892686fbdf54777afc0b2c

Table 5.6: Private browsing artefacts generated by the Internet Explorer pointing to
www.google.com
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Internet Artefact Attribute Value

pNXXLTrgcZK[1].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/P8LC0BGK

MAC

mtime: 2014-04-25 22:05:49
atime: 2014-04-25 22:05:49
ctime: 2014-04-25 22:05:49
crtime: 2014-04-25 22:05:49

SHA1 41eb03fcd7db597b9ea904fb0d05eeaa5f709d11

Table 5.7: Private browsing artefact generated by the Internet Explorer pointing to
www.facebook.com

When evaluating the test results regarding Alexa’s top 300 web sites, the number of files
with inodes in table 5.3 is different as compared to those from table 5.2. As seen in table 5.3,
the Procmon log files have contained 18123 distinct files, whereof 17006 files have been found
in snapshot X and 1048 files have been detected in snapshot X as well as in the initial snapshot.
The Internet Explorer’s private mode has not created any cookie files, which is similar to the
behaviour that has been observed when analysing the test result regarding Alexa’s top three web
sites.
Similar to the previous evaluation of the Internet Explorer’s private browsing mode, a file called
{A22C12BB-E713-11E3-BA39-080027776A60}.dat, has been recovered from the snapshot X
disk image, as presented in table 5.8.

Internet Artefact Attribute Value

{A22C12BB-
E713-11E3-BA39-
080027776A60}.dat

Path
/Users/pc/AppData/Local/Microsoft/Internet Explorer/
Recovery/High/Active

MAC

mtime: 2014-05-29 09:58:06
atime: 2014-05-29 09:58:06
ctime: 2014-05-29 09:58:06
crtime: 2014-05-29 09:58:06

SHA1 f6e37172a6c788c56defdd1f8daadca435995904

Table 5.8: Private browsing artefact generated by the Internet Explorer containing digital evi-
dence regarding Alexa’s top 300 web sites when tested manually
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This file has exposed digital evidence concerning the following URLs, as seen in table 5.9.

www.doublepimp.com www.milliyet.com.tr www.flickr.com
www.photobucket.com www.twitter.com www.alibaba.com
www.godaddy.com www.bing.com www.odnoklassniki.ru
www.ndtv.com www.baidu.com www.rambler.ru
www.pandora.com www.goo.ne.jp www.chinaz.com
www.lenta.ru www.facebook.com www.mail.ru
www.rbc.ru www.popads.net www.google.be
www.bleacherreport.com www.twitch.tv www.ettoday.net
www.wp.pl www.google.ro www.moz.com
www.avito.ru www.businessinsider.com www.gmx.net
www.meetup.com www.fedex.com www.39.net
www.samsung.com www.douban.com www.stackexchange.com
www.4dsply.com www time.com www.mercadolivre.com.br
www.disqus.com www.mama.cn www.google.pt
www.usatoday.com www.youtube.com www.blogspot.com
www.uploaded.net www.constantcontact.com www.bitly.com
www.avito.ru www.leboncoin.fr www.ucoz.ru
www.youyuan.com www.mashable.com www.washingtonpost.com

Table 5.9: URLs revealed by the Internet Explorer’s private browsing mode when tested Alexa’s
top 300 web sites manually

During the digital investigation various file types have been detected on the snapshot X disk
image. A list of the file types that the Internet Explorer has accessed most frequently in the
course of this specific test run is presented in table 5.10. According to each file type, a different
number of items (files) has been recovered. Among these files there have been many graphics
files, such as JPEGs, GIFs and PNGs, but also HTML, CSS and Javascript files have been found.
The Internet artefacts contained in table 5.11 and in table 5.12 have revealed digital traces by

File Type Items
jpg 6692
png 3366
js 2809
gif 2289
htm 917

File Type Items
css 837
txt 192
eot 171

woff 107
json 97

File Type Items
svg 57
tmp 23
ico 13
dat 12
xml 10

File Type Items
cab 8
cms 6
swf 4
db 2

others 442

Table 5.10: File types created by the Internet Explorer’s private browsing mode when tested
Alexa’s top 300 web sites manually

referring to several URLs of the tested web sites.
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Artefact Attribute Value

integ1[1].jpg

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/K7AVE189

MAC

mtime: 2014-05-29 09:56:33
atime: 2014-05-29 09:56:33
ctime: 2014-05-29 09:56:33
crtime: 2014-05-29 09:56:33

SHA1 13cad9ed2c9d4bd1738566e32e30f004885bcb34

twttr[1].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/H1UEFVG3

MAC

mtime: 2014-05-29 09:47:42
atime: 2014-05-29 09:47:42
ctime: 2014-05-29 09:47:42
crtime: 2014-05-29 09:47:42

SHA1 c58494bd373cdd3f99ce61be77f52ec647d40ef0

unlogo03[1].gif

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/UFKPZ290

MAC

mtime: 2014-05-29 09:48:58
atime: 2014-05-29 09:48:58
ctime: 2014-05-29 09:48:58
crtime: 2014-05-29 09:48:58

SHA1 1903290203634f92528c1d316bfaa373354cd152

yahoo-min[1].js

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/H1UEFVG3

MAC

mtime: 2014-05-29 09:51:46
atime: 2014-05-29 09:51:46
ctime: 2014-05-29 09:51:46
crtime: 2014-05-29 09:51:46

SHA1 9ec06e59640219090d69e016ed21bf7f47b75836

VAOL0OJO.htm

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/8UOXYNFW

MAC

mtime: 2014-05-29 09:56:12
atime: 2014-05-29 09:56:12
ctime: 2014-05-29 09:56:12
crtime: 2014-05-29 09:56:12

SHA1 4e00340a692954aa5d6ec0f1602bafe6ed2485a3

Table 5.11: Private browsing artefacts generated by the Internet Explorer refer-
ring to www.paypal.com, www.twitter.com, www.baidu.com, www.yahoo.com and
www.washingtonpost.com when tested Alexa’s top 300 web sites manually
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Artefact Attribute Value

f[1].txt

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/8UOXYNFW

MAC

mtime: 2014-05-29 09:56:14
atime: 2014-05-29 09:56:14
ctime: 2014-05-29 09:56:14
crtime: 2014-05-29 09:56:14

SHA1 0ec5c4642ca4528c395b011093b86a0536658252

p[1].json

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/IMPBATQ6

MAC

mtime: 2014-05-29 09:42:57
atime: 2014-05-29 09:42:57
ctime: 2014-05-29 09:42:57
crtime: 2014-05-29 09:42:57

SHA1 e0c5339165ec60e447b059a62fec3351935c5921

ico_linkedin[1].svg

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/8EF7Q49B

MAC

mtime: 2014-05-29 09:35:26
atime: 2014-05-29 09:35:26
ctime: 2014-05-29 09:35:26
crtime: 2014-05-29 09:35:26

SHA1 45e96b1238f2b5fd6d0e882c01d8b8bee87266a3

dat9713.tmp

Path /Users/pc/AppData/Local/Temp

MAC

mtime: 2014-05-29 09:56:55
atime: 2014-05-29 09:56:55
ctime: 2014-05-29 09:56:55
crtime: 2014-05-29 09:56:55

SHA1 3573ce02b7e4ce86e6445048d7291673c84d89c2

sojus-dockt-an-iss-an-
36181590,view=
videoChannelXml.bild[1]
.xml

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/X174NYMH

MAC

mtime: 2014-05-29 09:51:19
atime: 2014-05-29 09:51:19
ctime: 2014-05-29 09:51:19
crtime: 2014-05-29 09:51:19

SHA1 7a98ad660e031bb12e443a89c145133b9a36e7bb

Table 5.12: Private browsing artefacts generated by the Internet Explorer referring to
www.washingtonpost.com, www.indiatimes.com, www.linkedin.com, www.wordpress.com and
www.bild.de when tested Alexa’s top 300 web sites manually
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These URLs and their related Internet artefacts (file types) are connected as follows:

• integ1[1].jpg→ www.paypal.com

• twttr[1].png→ www.twitter.com

• unlogo03[1].gif→ www.baidu.com

• yahoo-min[1].js→ www.yahoo.com

• VAOL0OJO.htm→ www.washingtonpost.com

• f[1].txt→ www.washingtonpost.com

• p[1].json→ www.indiatimes.com

• ico_linkedin[1].svg→ www.linkedin.com

• dat9713.tmp→ www.wordpress.com

• sojus-dockt-an-iss-an-36181590,view=videoChannelXml.bild[1].xml→ www.bild.de

For example, when the Internet Explorer has visited www.washingtonpost.com in private mode,
several Internet artefacts have been accessed on the local hard disk, as indicated by the findings
in table 5.8, in table 5.11 and in table 5.12. Obviously, this means that investigators will be
able to recover more Internet artefacts referring to the same web site in the course of a forensic
examination.
No digital evidence has been detected by analysing files of the following types: eot, woff, cab,
css, cms, swf, db and ico. The term others in table 5.10 includes files with no well known file
suffix like the file
0B1B84E1509125064E3D44331C3817C2_AF3AB4EE7CFAD73E2B899C1EB105F1B2. Typ-
ically, these files are in binary format. No digital evidence regarding the tested web sites has
been found by examining such files. As can be seen, the evaluation of this test run has yielded
in similar results as compared to those results when tested Alexa’s top three web sites.

Chrome When investigating Chrome’s private browsing mode, 116 distinct files have been
listed in the Procmon log files, whereof 17 files have been found in snapshot X and 33 have
been contained in both snapshots. This is shown in table 5.2. In contrast to Chrome’s public
mode, the private mode has not revealed user-related browsing data. Although sqlite database
files, such as Cookies, Cookies-journal, History Provider Cache and Network Action Predictor,
have had modified file attributes (e.g. MAC times, hash digests), the examination of these files
has yielded in no valuable information about the visited web sites.
The evaluation of Chrome’s test result concerning Alexa’s top 300 web sites has yielded in
the following findings: 584 distinct files have been listed in the Procmon log files, whereof
135 files have been found in snapshot X and 144 have been detected in both snapshots. This
is shown in table 5.3. As a result, the examination has not revealed any user-related browsing
data. Although Chrome’s sqlite database files, such as History, History-journal, History Provider
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Cache, Shortcuts and Web Data, have had modified file attributes, the investigation of those files
has not resulted in any digital evidence about the tested web sites. The evaluation of this test run
indicates that Chrome behaves similarly as compared to the test results regarding Alexa’s top
three web sites.

Firefox According to table 5.2, Procmon has reported 57 distinct files which Firefox has ac-
cessed locally in private browsing mode. 51 files have been recovered from the snapshot X disk
image. The file contents of counters.dat and cversions.1.db have been modified, which is similar
to the behaviour that has been observed when investigating Firefox’s public mode. In contrast
to Firefox’s public browsing mode, its private mode has not revealed any valuable informa-
tion about the visited web sites. The files _CACHE_001_, _CACHE_002_ and _CACHE_003_
under path /Users/pc/AppData/Local/Mozilla/Firefox/Profiles/4vsne8e5.default/Cache have not
contained any user-related browsing data. Another difference between the public and the private
mode is that when using the latter one, Firefox purges graphics files on web browser shutdown.
Additionally, the private mode cleans that user-related browsing content which is contained in
the sqlite databases.
When analysing the private browsing artefacts according to Alexa’s top 300 web sites, there has
been no big difference, as compared to the test results regarding Alexa’s top three web sites,
except the number of files which have been created locally. As seen in table 5.3, Procmon has
reported 83 distinct file names which Firefox has accessed in private browsing mode. 76 files
have been recovered from snapshot X and two files have been salvaged from both snapshots.
The evaluation of the recovered files has not exposed any user-related browsing data.
The investigation of both test runs has yielded in no valuable information about the tested web
sites.

Safari In accordance with table 5.2, the examination of Safari’s private mode has revealed
80 distinct files, whereof 73 files have been found in snapshot X. Contrary to the evaluation
of Safari’s public browsing mode, the files Cache.db, Cookies.binarycookies, History.plist and
LastSession.plist have not contained any digital evidence pointing to the visited web sites. Fur-
ther analysis has revealed user-related browsing data which has been contained in the file Web-
pageIcons.db. Table 5.13 shows this file, its attributes and values. The file has contained URLs
referring to www.google.com, www.facebook.com and www.youtube.com. Additionally, figure

Artefact Attribute Value

WebpageIcons.db

Path /Users/pc/AppData/Local/Apple Computer/Safari

MAC

mtime: 2014-04-25 22:00:04
atime: 2014-04-25 22:00:04
ctime: 2014-04-25 22:00:04
crtime: 2014-04-25 22:00:04

SHA1 47f57867eba5fde59376029becce0f8cd47240fd

Table 5.13: Private browsing artefact generated by Safari containing digital evidence regarding
www.google.com, www.facebook.com and www.youtube.com
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5.1 illustrates the content of the sqlite database table pageurl, that is part of the WebpageIcons.db
file. As can be seen, digital traces are contained in this table which point to Alexa’s top three

Figure 5.1: Sample view of Safari’s sqlite database table pageurl revealing digital evidence
concerning www.google.com, www.facebook.com and www.youtube.com

web sites.
Contrary to the test result concerning Alexa’s top three web sites, the examination of Safari’s
private mode regarding Alexa’s top 300 web sites has revealed 87 distinct file names, whereof 75
files have been contained in snapshot X. Five files have been found in both snapshots. Table 5.3
shows this test result. Again the evaluation of this test run has exposed user-related browsing data
which has been located in the file WebpageIcons.db. Table 5.14 shows the file and its attributes.
Similar to the Internet Explorer file {A22C12BB-E713-11E3-BA39-080027776A60}.dat from
before, the WebpageIcons.db file has revealed digital traces regarding the web sites, as shown in
table 5.15. No digital evidence has been found by inspecting the remaining browsing artefacts.

Opera Prcomon’s log files have contained 79 distinct files regarding Opera’s private browsing
session, as seen in table 5.2. 53 files have been found in snapshot X, whereas 12 files have
been contained in both snapshots. Similar to Opera’s public mode, its private mode has mod-
ified the cversions.1.db file and some other files under path /Users/pc/AppData/LocalLow/Mi-
crosoft/CryptnetUrlCache/Content. No valuable digital evidence has been exposed by the private
browsing mode, although it has accessed several browsing artefacts on the local hard disk, e.g.
Archived History, Visited Links, Web Data and stash.db.
The evaluation of Alexa’s top 300 web sites has yielded in similar findings: Procmon’s log files
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Artefact Attribute Value

WebpageIcons.db

Path /Users/pc/AppData/Local/Apple Computer/Safari

MAC

mtime: 2014-05-29 14:34:21
atime: 2014-05-29 14:34:21
ctime: 2014-05-29 14:34:21
crtime: 2014-05-29 14:34:21

SHA1 c8161c625ec252b2de883c9236881c41e49cbb4d

Table 5.14: Private browsing artefact generated by Safari containing digital evidence regarding
regarding Alexa’s top 300 web sites when tested manually

www.4dsply.com www.amazon.fr www.apple.com
www.ask.com www.avito.ru www.baidu.com
www.bing.com www.blogspot.in www.domaintools.com
www.ebay.de www.facebook.com www.fedex.com
www.goodgamestudios.com www.google.at www.google.be
www.google.ca www.google.ch www.google.cl
www.google.co.in www.google.co.jp www.google.com
www.google.com.bd www.google.com.hk www.google.com.ng
www.google.com.ph www.google.com.sg www.google.com.tr
www.google.com.tw www.google.co.th www.google.co.uk
www.google.co.ve www.google.co.za www.google.dz
www.google.fr www.google.gr www.google.it
www.google.pt www.google.ro www.google.ru
www.ikea.com www.leboncoin.fr www.mail.ru
www.meetup.com www.msn.com www.myntra.com
www.onclickads.net www.rediff.com www.snapdeal.com
www.t.co www.thefreecamsecret.com www.tripadvisor.com
www.ups.com www.vube.com www.w3schools.com
www.warriorforum.com www.wikihow.com www.wikipedia.org
www.wordpress.org www.wordreference.com www.yandex.ru

Table 5.15: URLs revealed by Safari’s private browsing mode when tested Alexa’s top 300 web
sites manually

have contained 364 distinct file names regarding Opera’s private browsing session, as shown in
table 5.3. 260 files have been contained in snapshot X, whereas 88 files have been found in
both snapshots. Although Opera’s sqlite databases, such as Favicons, History, History-journal,
History Provider Cache, thumbnails.db or Web Data, and its cache files, such as data_0, data_1
or data_2, have been accessed during the test run, the private mode has not revealed user-related
browsing information.
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5.4.3 Evaluation of the Automated Test Scenarios

This section presents the evaluation of the automated test results regarding the Internet artefacts
which have been generated by the private browsing mode of the Internet Explorer and Chrome.

Private Browsing Artefacts

As can be seen in table 5.16 the testing results of the Internet Explorer and Chrome are similar
to those in the table 5.3. Approximately 21500 Internet artefacts have been detected when evalu-

Web Browser Files With Inodes Snapshot X Snapshot X / Initial Snapshot
Internet Explorer 18984 17282 1312
Internet Explorer 23045 22198 512
Internet Explorer 22632 21734 581
Internet Explorer 22457 21639 570
Chrome 394 74 182
Chrome 171 57 14
Chrome 261 87 91
Chrome 263 79 116

Table 5.16: Private browsing artefacts generated by the Internet Explorer and Chrome when
tested Alexa’s top 300 web sites automatically

ating the four test runs of the Internet Explorer, which is a quite similar behaviour as it has been
observed when evaluating the manual test results. In contrast to the Internet Explorer, Chrome
has not revealed user related browsing data, although browsing artefacts have been accessed,
such as the sqlite database files History, Network Predictor, Visited Links or Web Data. At an
average, 175 of Chrome’s private browsing artefacts have been recovered.
As the evaluation of both web browsers has yielded in findings that have been similar to the
findings of the manual testing phase, the execution of further test runs has been omitted. A de-
tailed presentation of test run two to four of the Internet Explorer and those test runs of Chrome
has been neglected, since further analysis has yielded in a similar outcome as compared to the
outcome from section 5.4.2. Therefore, the following section only presents the first test run of
the Internet Explorer in more detail. This test run has been chosen to point out the similarities
/ differences between the manual and the automated execution of the Internet Explorer’s private
browsing mode.

Internet Explorer As can be seen in table 5.17, the Internet Explorer has created items (files)
of a similar file type as compared to those items from table 5.10.
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File Type Items
jpg 6771
png 3598
js 3436
gif 2459
css 879

File Type Items
htm 860
eot 140

woff 106
json 102
tmp 42

File Type Items
svg 40
txt 21
dat 8
xml 7
ico 7

File Type Items
swf 5
cab 4
cms 3
db 2

ohters 104

Table 5.17: File types created by the Internet Explorer’s private browsing mode when tested
Alexa’s top 300 web sites automatically

The Internet artefacts presented in table 5.18 and in table 5.19 have revealed digital traces
regarding the following web sites:

• integ8[1].jpg→ www.paypal.com

• twttr[1].png→ www.twitter.com

• unlogo03[1].gif→ www.baidu.com

• yahoo-min[1].js→ www.yahoo.com

• LJ7WZAV5.htm→ www.washingtonpost.com

• yerelhaberler[1].txt→ www.milliyet.com

• q[1].json→ www.rakuten.co.jp

• google_follow[1].svg→ www.google.com

• dat26F8.tmp→ www.twitter.com

• -30373542,sort=1,n=1,view=rss2.bild[1].xml→ www.bild.de

As can be seen, the automated execution of the Internet Explorer’s private mode has resulted
in artefacts that are identical to those which have been detected when testing Alexa’s top 300
web sites manually. For example, the files twttr[1].png, unlogo03[1].gif and yahoo-min[1].js
have referred to the same web sites as their equivalents from section 5.4.2. Furthermore, these
artefacts and their counterparts have had the same SHA1 sums, as presented in table 5.11 and
table 5.18. As has been observed before, the Internet Explorer’s private mode will create several
browsing artefacts which are related to a single web sites. For instance, the files twttr[1].png and
dat26F8.tmp have referred to www.twitter.com.
No digital evidence has been detected by examining the following file types: css, eot, woff,
dat, ico, swf, cab, cms and db. The file type others can be understood in a similar manner as
described in section 5.4.2.
A difference between the manual and automated execution of test runs is that the automated
execution of Internet Explorer’s private browsing mode has not left digital traces in .dat files.
This behaviour has been observed when analysing the remaining three automated test runs of
the Internet Explorer as well.
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Artefact Attribute Value

integ8[1].jpg

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/2LDTUL6S

MAC

mtime: 2014-03-29 06:48:59
atime: 2014-03-29 06:48:59
ctime:2014-03-29 06:48:59
crtime: 2014-03-29 06:48:59

SHA1 c8d7f6b9846785eda50040c9b5f971543b2bd6ef

twttr[1].png

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/NI9JJ69Q

MAC

mtime: 2014-03-29 06:37:37
atime: 2014-03-29 06:37:37
ctime: 2014-03-29 06:37:37
crtime: 2014-03-29 06:37:37

SHA1 c58494bd373cdd3f99ce61be77f52ec647d40ef0

unlogo03[1].gif

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/9M0V594T

MAC

mtime: 2014-03-29 06:38:54
atime: 2014-03-29 06:38:54
ctime: 2014-03-29 06:38:54
crtime: 2014-03-29 06:38:54

SHA1 1903290203634f92528c1d316bfaa373354cd152

yahoo-min[1].js

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/9M0V594T

MAC

mtime: 2014-03-29 06:41:25
atime: 2014-03-29 06:41:25
ctime: 2014-03-29 06:41:25
crtime: 2014-03-29 06:41:25

SHA1 9ec06e59640219090d69e016ed21bf7f47b75836

LJ7WZAV5.htm

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/YVRY29JX

MAC

mtime: 2014-03-29 06:48:30
atime: 2014-03-29 06:48:30
ctime: 2014-03-29 06:48:30
crtime: 2014-03-29 06:48:30

SHA1 448194b8c17a9aa645c87946e54d7f08d78ace3c

Table 5.18: Private browsing artefacts generated by the Internet Explorer refer-
ring to www.paypal.com, www.twitter.com, www.baidu.com, www.yahoo.com and
www.washingtonpost.com when tested Alexa’s top 300 web sites automatically
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Artefact Attribute Value

yerelhaberler[1].txt

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/YVRY29JX

MAC

mtime: 2014-03-29 06:48:22
atime: 2014-03-29 06:48:22
ctime: 2014-03-29 06:48:22
crtime: 2014-03-29 06:48:22

SHA1 3930a73e6fade04c1bc93845ea9c006c44178e73

q[1].json

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/RWDCNZFL

MAC

mtime: 2014-03-29 06:32:03
atime: 2014-03-29 06:32:03
ctime: 2014-03-29 06:32:03
crtime: 2014-03-29 06:32:03

SHA1 e98eb5bb6760e62838c37c6b7ed38b547f2d0c2e

google_follow[1].svg

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/P8LC0BGK

MAC

mtime: 2014-03-29 06:38:08
atime: 2014-03-29 06:38:08
ctime: 2014-03-29 06:38:08
crtime: 2014-03-29 06:38:08

SHA1 c552fd5b5bd2cc3937c38cb41a913415dad29b2f

dat26F8.tmp

Path /Users/pc/AppData/Local/Temp

MAC

mtime: 2014-03-29 06:49:29
atime: 2014-03-29 06:49:29
ctime: 2014-03-29 06:49:29
crtime: 2014-03-29 06:49:29

SHA1 f39a8d4aa32bc495d77f47a0df42d2d2f11aa07d

-30373542,sort=1,
n=1,view=rss2.bild[1]
.xml

Path
/Users/pc/AppData/Local/Microsoft/Windows/
Temporary Internet Files/Content.IE5/IMPBATQ6

MAC

mtime: 2014-03-29 06:40:49
atime: 2014-03-29 06:40:49
ctime: 2014-03-29 06:40:49
crtime: 2014-03-29 06:40:49

SHA1 d126c744e78e14190aba20edf0f1d113cd3389de

Table 5.19: Private browsing artefacts generated by the Internet Explorer referring to
www.milliyet.com, www.rakuten.co.jp, www.google.com, www.twitter.com and www.bild.de
when tested Alexa’s top 300 web sites automatically
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5.5 Summary

Generally, all five web browser have left digital traces on the virtual machine disk images when
they had been used in private mode. Each tested web browser has written data on start-up, during
a browsing session and on shutdown.
The main finding during the digital investigation has been the privacy leak in the Internet Ex-
plorer’s private browsing mode. The Internet Explorer created a big amount of data on the
local hard drive which has not been removed on shutdown. Therefore, many files have been
recoverable. Due to the large bulk of data, a sample file per file type has been drawn for the
most frequently occurred file types, in order to show that the recovered Internet artefacts are
connected with the tested web sites. The evaluation of the manually tested web sites has not
resulted in many differences as compared to automatically tested ones.
Basically this mean that forensic examiners will have to look for files of the following file types
when investigating the private mode of modern web browsers: jpg, png, gif, js, htm, txt, json,
svg, tmp, dat and xml. There may be a chance that these files bear digital evidence. As a con-
sequence, forensic investigators can draw conclusions about the actions a user has performed on
the Internet.
Another finding has been the WebpageIcons.db file when investigating Safari’s private browsing
mode. This sqlite database file has contained digital traces which have referred to the tested
URLs. Examiners are advised to keep an eye on this file in the course of a digital investigation,
as they may find digital evidence there about the web sites a user has visited.
The other web browsers have implemented their private browsing mode in a sufficient way. No
relevant user-related browsing data has been exposed.
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CHAPTER 6
Discussion

Within this chapter the results of this work are discussed. The strength and the limitations of the
proposed digital investigation approach are described as well as the remaining challenges and
future work.

6.1 Discussion of the Test Results

The evaluation of the test results has been carried out according the defined test scenarios from
section 5.1. In general, the evaluation of the collected data has been done by checking random
samples, because the Internet Explorer has generated a big amount of test results. An in-depth
inspection of all Internet Explorer browsing artefacts would have exceeded the scope of this
work, which was therefore omitted. Chrome, Firefox, Safari and Opera have created a rather
small amount of test results, as browsing data typically is stored to their sqlite databases.
In the first step, the public browsing artefacts of the manual test scenario have been examined.
As part of this scenario, Alexa’s top three web sites have been used for testing. All five web
browsers have left digital evidence on the virtual machine disk images. The Internet Explorer,
for example, has created cookies and various graphics files (e.g. PNGs, JPEGs) - Javascript and
XML file have been detected as well. Additionally, the Internet Explorer has modified a few .dat
files, where digital evidence has been found regarding the tested web sites.
Contrary to the Internet Explorer, the other web browsers have left digital traces in their specific
sqlite database files. For instance, Chrome has created digital evidence by writing data to its His-
tory database, whereas Firefox has used its cache files (e.g. _CACHE_001_) to save browsing
data. Similar to Firefox and Chrome, Safari and Opera have stored the browsing content to their
database files, such as Cache.db (Safari) or Favicons (Opera), thereby revealing user actions on
the Internet. As the analysis has shown, all web browser except the Internet Explorer are mainly
using sqlite databases for caching web data. Safari, for example, also uses a .plist files which
are in binary format, whereas Chrome, for instance, uses log files that are in text format.
In the second step, the private browsing artefacts of all five web browsers have been analysed.
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Within this step the web browsers have been tested manually by using Alexa’s top three web
sites and they have been tested by the usage of Alexa’ top 300 web sites. The main difference
between both test scenarios is the amount of browsing data that has been logged by Procmon,
as well as the number of inodes that have been recovered from the virtual machine disk images,
i.e. more test results have been obtained by performing tests across a wider range of web sites.
For example, when evaluating Internet Explorer’s private mode according to the first test sce-
nario, it has not been possible to recover any cookie files, as it has been the case when analysing
Internet Explorer’s public mode. Nevertheless, the Internet Explorer has left a .dat file and some
other files which have contained traces of Alexa’s top three URLs. The remaining four web
browsers have wiped out their digital traces, except Safari which has left digital evidence in the
WebpageIcons.db file.
When examining Internet Explorer’s private mode regarding Alexa’s top 300 URLs, there has
been leaked a big amount of user-related browsing data to the local hard drive. In contrast, the
other web browsers - except Safari which has left digital traces in the WebpageIcons.db file as
well - have not exposed sensitive user data, although they have modified and created several
browsing artefacts, such as sqlite database files, log files or binary files, on the local hard disk.
In the third step, the private browsing mode of the Internet Explorer and Chrome has been tested
automatically. The evaluation of the four test runs performed by the Internet Explorer has re-
vealed many browsing artefacts. This indicates that the Internet Explorer’s private mode acts
similar to the observations that have been made during the manual testing phase. The evaluation
of Chrome’s automated test runs has exposed no valuable user-related browsing data.
As a result, it has been found that the private modes of the tested web browsers have been im-
plemented properly, except that one which is released with the Internet Explorer. Furthermore,
it has been found that there are differences from a forensically standpoint of view, such as the
number of recovered files and specific file contents, when the private browsing mode is launched
manually, in contrast to when it is launched automatically.
Chrome mainly has used its sqlite databases, but it has written various log files to the local hard
disk as well. Firefox, Safari and Opera have not been tested yet automatically, but an analysis
of the manually tested web sites has shown that their private modes act rather similar to that of
Chrome.

6.2 Strength of This Approach

One of the key benefits of this approach is the accuracy of monitoring the actions a web browser
performs on the local file system (e.g. of a virtual machine), when surfing on the Internet. Mon-
itoring those events has been done effectively by collecting log data via Procmon.
Another advantage in contrast to the approach of classical timeline analysis is that the Proc-
mon log files contain detailed information about those files which have been accessed during a
browsing session, i.e. classical time lining compared to the examination of Procmon’s log files
is not effective enough, because classical timelines do not only contain information about the
events a particular process has triggered on the local file system, but they comprise of all file
system events (including operating system noise) that have occurred locally. For example, by
using Procmon’s log files a detailed history of those file system events can be obtained that a
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web browser has induced on the local system. This more detailed ”timeline” can be used not
only for analysing the history of particular events, but also for recovering files, which is another
benefit.
Another advantage of the proposed forensic investigation approach is the detection of modified
file contents by means of fiwalk and DFXML. Fiwalk is capable of generating DFXML files
which can be easily compared to each other, in order to detect similarities and/or dissimilarities
between specific file objects.

6.3 Limitations of This Approach

A limitation of this approach is the partial automation of both the testing framework as well
as the forensic analysis framework. Due to the technical limitations of VirtualBox’s process
control in conjunction with Procmon, testing web browsers can only be performed by manually
configuring the testing framework every time before a test run. For example, a shared folder on
the host and on the guest system needs to be prepared every time before a test can be launched.
Additionally, the folder structure of the previous test run needs to be saved manually and the
testing framework needs to be provided with new input data.
Another drawback of this approach is the limited Selenium support for Firefox, Safari and Opera,
as automating these web browsers has been found to be unsuitable. Therefore, testing all five
web browser in an automated way was not possible.
Another disadvantage of this approach is the big amount of browsing data, that needs to be
evaluated manually, e.g. in the case of the Internet Explorer. Due to this fact, a detailed analysis
of each recovered file object was not possible.

6.4 Remaining Challenges and Future Work

As described in the previous section, a hurdle to overcome will be the partial automation of the
remaining three web browsers.
The forensic analysis framework may be extended as part of a future work by covering features
like slack space analysis or file content analysis by means of file carving.
A further improvement of the overall analysis procedure will be the implementation of a database
that will contain the test results of certain test runs. These test results can be analysed by using
adequate data mining techniques, in order to find user-related web browsing patterns.
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CHAPTER 7
Conclusion

The goal of this work was to detect user privacy leaks in the private browsing mode of modern
web browsers by applying a new digital investigation approach, which enables forensic exam-
iners to find the digital evidence a web browser has left on the local computer system after a
browsing session.
An introduction has been given to the field of digital forensics by explaining the consecutive
steps of the digital forensic process, which are the acquisition, the examination and the presen-
tation of digital evidence. As part of the acquisition phase, disk imaging techniques have been
described, as well as the volatility of data, which is crucial to understand when collecting and
preserving digital evidence.
The abstraction levels of file systems and slack space have been introduced, since a basic knowl-
edge about file system features can be useful in course of a digital examination. Furthermore,
common digital forensic analysis techniques have been described, which are timeline analysis,
deleted file recovery, Windows Registry forensics, file carving, network forensics and physical
memory forensics.
As part of the field of digital forensics, anti-forensic techniques have been presented. The goal
of anti-forensics is to make digital investigations difficult, i.e. there exist many anti-forensic
methods, such as data encryption or data destruction, which can be used to hamper a digital
investigation. Due to the fact that private web browsing uses anti-forensic techniques as well, an
introduction to this topic has been presented. Additionally, the related work section in this work
discusses several approaches that have been applied to counterfeit those anti-forensic techniques
which modern web browsers use for enhancing user privacy.
For the implementation of the proposed forensic analysis approach, the theoretical concepts of
timeline analysis and delete file recovery have been used. The remaining investigation tech-
niques mentioned in this work may be part of a future work, as implementing them would have
exceeded the scope of this work.
The practical part of this work takes advantage of virtual machines, as they provide suitable
mechanisms for web browsers testing, as well as for performing a forensic analysis of browsing
data. In addition to virtual machines process monitoring is the key concept that has been used
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for implementing the testing and forensic analysis framework.
The testing framework aims to automate web browsers, in order to filter and log those events
that a web browser has triggered on the local file system, when calling various web sites. The
forensic analysis framework processes these log files and performs file recovery from virtual
machine disk images. Additionally to file recovery, another benefit of the proposed forensic
analysis approach has been the effectiveness of finding valuable private browsing artefacts by
means of Digital Forensics XML files.
The evaluation of the test results has been structured as follows: firstly, the manual test scenar-
ios - for both the public and the private mode of the Internet Explorer, Chrome, Firefox, Safari
and Opera - have been analysed. Secondly, the automated test results generated by the Internet
Explorer’s and Chrome’s private mode have been inspected, in order to find digital evidence
regarding the tested web sites.
The main research question whether there are differences between the manual and the automatic
execution of the private mode can be answered as follows: There exist differences between the
manual and automated test runs depending on the web sites as well as on the web browsers
which have been used for testing.
The evaluation of the test results has shown that the private browsing modes of the tested web
browsers have been implemented sufficiently, except that one which is implemented in the In-
ternet Explorer and that one in Safari. Therefore, regarding user privacy, one is recommended
to use either Chrome, Firefox or Opera instead of the Internet Explorer and Safari in the tested
version.
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