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Kurzfassung der Dissertation

Diese Dissertation befasst sich mit zwei Verallgemeinerungen des CreditRisk+ Modells und
Anwendungen der Panjer Rekursion. Im ersten Teil behandeln wir eine Verallgemeinerung
des kollektiven Risikomodells und der Panjer Rekursion. Das Modell, das wir betrachten,
besteht aus mehreren Geschäftsbereichen mit abhängigen Ausfallzahlen. Es ist eine Summe
von kollektiven Risikomodellen. Eine Annahme des Modells ist, dass die Verteilungen der
Schadenzahlen Poisson-Mischverteilungen sind. Eine Mischverteilung spiegelt einen Aus-
fallgrund im CreditRisk+ Modell wider, das mathematisch gesehen ebenfalls ein kollektives
Risikomodell ist.

In unserer Dissertation sind die Ausfallgründe mit bestimmten Abhängigkeitsstruktu-
ren versehen und es wird bewiesen, dass die Panjer Rekursion ebenfalls anwendbar ist,
indem wir eine geeignete äquivalente Darstellung der Anzahl der Schäden finden. Diese
Abhängigkeitsstrukturen sind von stochastischer und linearer Natur. Solche stochastisch
linearen Abhängigkeitsszenarien sind dazu geeignet, auch negative Korrelation zwischen
den Schadenzahlen zu erzeugen. Bei der Mischung der Schadenzahlen mit gemeinsamen
Verteilungen bleibt ebenfalls die Anwendbarkeit der Panjer Rekursion erhalten.

Des Weiteren beweisen wir, dass, wenn die Verteilungen der Schadenhöhen voneinander
linear und stochastisch abhängen, die zusammengesetzte Verteilung mit Panjers Rekursion
berechnet werden kann. Es ist auch möglich, eine multivariate Variante der Panjer Rekur-
sion und von de Prils Rekursion zu beweisen, wenn die Schadenhöhen nicht unabhängig
und identisch verteilt, sondern austauschbar sind. Wir formulieren diese Ergebnisse in
entsprechenden Algorithmen.

Unter Benutzung dieser Resultate berechnen wir Risikobeiträge der Risiken aufgrund
eines Ausfallgrundes mit solchen Abhängigkeitsstrukturen. Dazu nutzen wir das Riskomaß
des bedingten Expected Shortfalls, das es auch zulässt, Risikobereitstellungen in einem
Multiperiodenmodell zu betrachten. Beispiele zeigen, dass unterschiedliche Arten von
Korrelationen unterschiedliche Verteilungen liefern.

Im zweiten Teil befassen wir uns mit dem kollektiven Risikomodell, wobei die Anzahl der
Schäden eine bestimmte Poisson-Mischverteilung hat. Da es ein allgemeiner Ansatz ist, eine
Gammaverteilung als Mischverteilung zu wählen, verallgemeinern wir diesen Misch-Ansatz
zu verallgemeinerten Gammafaltungen. Auf diese Weise verallgemeinern wir auch das
CreditRisk+ Modell. Man definiert eine verallgemeinerte Gammafaltung als den schwachen
Grenzwert einer Folge endlich vieler Faltungen von Gammaverteilungen.

Bereits bekannte Rekursionen für solch eine zusammengesetzte Poisson-Mischverteilung
erfordern in jedem Schritt die Auswertung eines Integrals. Dies kann einen hohen Rechenauf-
wand und auch einen numerischen Fehler verursachen. Wir umgehen die Berechnung dieses
Integrals in jedem Schritt, indem wir beweisen, dass eine geeignete Folge von Zufallsvariablen
existiert, die gegen die Poisson-Mischverteilung konvergiert, was die Anwendung der Panjer
Rekursion erlaubt. Infolgedessen geben wir eine Fehlerabschätzung für die Approximation
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dieser Folge bezüglich des Totalvariationsabstandes an. Unter Benutzung dieser Fehlerab-
schätzung einer geeigneten Approximation stellen wir einen Algorithmus für die Berechnung
der Verteilung des Gesamtverlustes vor.

Bis jetzt ist dieses Modell nur im eindimensionalen Fall betrachtet worden. Es ist
allerdings auch interessant, mehrere Geschäftsbereiche zu betrachten, was ein multivariates
Modell impliziert. Dies geschieht mithilfe multivariater verallgemeinerter Gammafaltun-
gen. Wir beweisen ein alternatives Ergebnis zur Abgeschlossenheit der multivariaten
verallgemeinerten Gammafaltungen, die durch endliche viele Faltungen von multivariaten
Gammaverteilungen approximiert werden können. Wir geben ebenfalls eine obere Schranke
für die Fehlerabschätzung bezüglich des Totalvariationsabstandes wie im eindimensionalen
Fall an. Es ist auch möglich, eine Darstellung zu finden, die eine Anwenung der Panjer
Rekursion gestattet, um die Verteilung der entsprechenden Zufallssumme zu berechnen. Wir
schließen mit Beispielen, die die Vorteile unseres Algorithmus’ im Gegensatz zur schnellen
Fourier Transformation und einer verbesserten Variante der schnellen Fourier Transformation
hervorheben.
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Abstract

This thesis examines two generalizations of the CreditRisk+ model and applications of
Panjer’s recursion. In the first part we discuss a generalization of the collective risk model
and of Panjer’s recursion. The model we consider consists of several business lines with
dependent claim numbers. It is a sum of collective risk models. The distributions of the
claim numbers are assumed to be Poisson mixture distributions. A mixing distribution
reflects a default cause in the CreditRisk+ model which, mathematically seen, is also a
collective risk model.

In our contribution we let the default causes have certain dependence structures and prove
that Panjer’s recursion is also applicable by finding an appropriate equivalent representation
of the claim numbers. These dependence structures are of a stochastic linear nature. Such
stochastically linear dependence scenarios are also capable of producing negative correlations
between the default causes. Compounding the default causes by common distributions also
keeps Panjer’s recursion applicable.

In addition, we prove that if claim size distributions depend on each other linearly and
stochastically, the compound distribution can be evaluated by Panjer’s recursion. It is also
possible to prove a multivariate variant of both Panjer’s and de Pril’s recursion if the claim
sizes are not i.i.d. but exchangeable. We put all this into corresponding algorithms.

Using these results we compute risk contributions of the risks due to a default cause
with such dependence structures. For this purpose we use the risk measure conditional
expected shortfall that also allows us to consider risk allocations in a multiperiod model.
Indeed, examples show that different types of correlation provide different distributions.

In the second part we discuss the collective risk model where the number of claims has a
certain Poisson mixture distribution. Since it is a common approach to choose a gamma
distribution as a mixing distribution, we generalize this mixture approach to generalized
gamma convolutions. In doing so, we also generalize the CreditRisk+ model. A generalized
gamma convolution is defined as the weak limit of a sequence of finitely many convolutions
of gamma distributions.

Already known recursions for such a compound Poisson mixture distribution require the
evaluation of an integral in each step. This may cause high computational effort and also a
numerical error. We circumvent the computation of this integral in each step by proving
that an appropriate sequence of random variables exists converging to the Poisson mixture
distribution, which allows for the application of Panjer’s recursion. Consequently, we give
an error estimate with respect to the total variation distance for the approximation by this
sequence. Using this error bound of a proper approximation we present an algorithm for
the calculation of the distribution of the total loss.

So far, this model has been discussed in the univariate case. However, it is also interesting
to consider several lines of business, which indicates the usefulness of a multivariate model.
This is realized with the help of multivariate generalized gamma convolutions. We prove an
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alternative closure result that shows how to approximate a multivariate generalized gamma
convolution by finite multivariate gamma convolutions. We also give an upper bound for an
error estimate with respect to the total variation distance, as in the univariate case. It is
possible to find a representation allowing for an application of Panjer’s recursion in order to
evaluate the distribution of the corresponding random sum, too. We conclude with examples
that pinpoint the advantages of our algorithm in contrast to fast Fourier transform and an
improved variant of fast Fourier transform.
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12.2 Probabilities of the event of no default of an extreme distribution of Λτ,0 with

τ = 10 000 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.3 Absolute differences between the probabilities w.r.t. an extreme distribution

of Λτ,0 with τ = 10 000 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.4 Probabilities of the event of no default w.r.t. the Pareto(0.6, 1.4) distribution. 140
12.5 Absolute differences between the probabilities w.r.t. the Pareto(0.6, 1.4) dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.6 Probabilities of the event of no default w.r.t. the Pareto(0.5, 2.5) distribution. 142
12.7 Absolute differences between the probabilities w.r.t. the Pareto(0.5, 2.5) dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
12.8 Absolute differences between the probabilities w.r.t. the Pareto(0.5, 2.5) dis-

tribution with higher working precision. . . . . . . . . . . . . . . . . . . . . 142

xiii



LIST OF TABLES

xiv



Part I

Generalized Panjer Recursion
for Dependent Claim Numbers

and Applications
to Credit Risk Aggregation
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Chapter 1

Introduction

The aggregation of risks in a portfolio is an important component in both insurance
mathematics and risk management. It is important for an insurance company to estimate
future claims of the insured persons, and banks have an increasing need to estimate the
volume of credit defaults that becomes more and more important with the introduction of
the Basel II and Basel III accords. The Basel II accord, cf. [4], also regulates operational
risk, which is defined as the risk of losses resulting from inadequate or failed internal
processes, people and systems, or from external events. In risk management there are
several risk models. The CreditRisk+ model (introduced by [10]) is one such with a lot of
practical features. It does not require many assumptions and it enables the computation
of the loss distribution recursively and exactly, i.e., it is not necessary to apply Monte
Carlo methods that introduce a stochastic error. Gundlach and Lehrbass [27] offer a wide
overview over CreditRisk+. However, the shortcoming of CreditRisk+ is that it does not
allow for dependent default causes. Bürgisser et al. [9] treat this problem and introduce
dependence between the default causes by sector correlation. Several approaches have been
published that aim at tackling this problem: Reiß [53] models dependent default causes by
incorporating market risk by using geometric Brownian motions. But he waives a solution
in closed form for this feature. Deshpande and Iyer [15] also consider a dependence model
for default causes in the usual CreditRisk+ model that comprises linear combinations of risk
factors and is a generalization of Giese [23]. They also consider VaR contributions. Instead,
we consider a more general linear dependence structure in an extension of the CreditRisk+

model that allows us to model negative correlation and we can also comprise a stochastic
component in the linear dependence. Moreover, we treat expected shortfall contributions
and present exact formulas for the risk contributions for gamma and τ -tempered α-stable
distributions. Gordy [25] proposes a different approach to the evaluation of the CreditRisk+

model, he proposes a saddle point approximation. For practical applications Vandendorpe
et al. [69] propose a parameterization of the characteristics of a portfolio which could be
also useful for a parameterization of our model.

Insurance companies too need to satisfy Solvency II requirements, and the model we
consider is capable of estimating and quantifying risks and can thus be used to determine
the minimal capital requirements, which is the first pillar of Solvency II. There is also an
increasing demand to reflect dependencies between the risks. As can be found in [48, p. 15],
it is interesting to note that in the definition of the target capital the expected shortfall is
used, a risk measure that we are also going to use in our model for risk contributions.

In the (extended) CreditRisk+ model as in the collective risk model it is necessary to
calculate the distribution of a random sum. In risk management, e.g. the CreditRisk+ model,
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Chapter 1. Introduction

the collective risk model is diversified into several risk clusters or lines of business and thus
random sums where each claim number is driven by a default cause. Thus we consider a
sum of several collective risk models. Since the claim numbers are modelled by Poisson
mixture distributions, it is meaningful to speak of default cause intensities as the default
causes are modelled by the mixing distributions. Hence we consider the random sum

S =
m∑
i=1

Ni∑
h=1

Xi,h, (1.1)

where {Xi,h}h∈N are independent sequences of independent and identically distributed
random variables for each i ∈ {1, . . . ,m} and N1, . . . , Nm are N0-valued random variables
independent of {(X1,h, . . . , Xm,h)}h∈N. Using such a random sum, we are able to consider
several business lines of an insurance company or several default cause intensities in the
extended CreditRisk+ model. Our model can be also used to estimate operational risk.

To put it more precisely, in former frameworks such as [21] the authors consider m default
cause intensities Λ1, . . . ,Λm where each claim number Ni for i ∈ {1, . . . ,m} depends on a
default cause intensity Λi. These default cause intensities are independent, and the Poisson
mixture distributions need to be in a Panjer(a, b, k) class. Hence, due to the independence,
Panjer’s recursion is applicable to these random sums. The distribution of a random variable
N , denoted by {qn}n∈N0 , belongs to a Panjer(a, b, k) class with a, b ∈ R and k ∈ N0 if
q0 = q1 = · · · = qk−1 = 0 and

qn =
(
a+

b

n

)
qn−1 for all n ∈ N with n ≥ k + 1. (1.2)

If fn = P[X1 = n] and af0 6= 1, then according to [21, Theorem 4.1] the distribution
pn = P[X1 + · · ·+XN = n] is given by the recursion

pn =
1

1− af0

(
P[X1 + · · ·+Xk = n] qk +

n∑
j=1

(
a+

bj

n

)
fjpn−j

)
(1.3)

for all n ∈ N with initial condition

p0 =

{
q0 if f0 = 0,∑

k≥0 qkf
k
0 otherwise,

(1.4)

which is the probability-generating function of the distribution of N at f0. The recursive
evaluation of such compound distributions was introduced by Panjer [50] and extended by
Willmot and Panjer [77]. The distributions belonging to a Panjer(a, b, k) class were identified
by Sundt and Jewell [63], Willmot [75], and Hess, Liewald, and Schmidt [30]. Sundt and
Vernic [64] contributed exhaustively to this topic amassing many interesting results. There
are many other contributions on the generalization of Panjer’s recursion. Hipp [33] provides
a speedy version for Panjer’s recursion for certain types of severity distributions. Willmot
[74] also considers a similar framework; besides mixed compound Poisson distributions he
also considers linear combinations of random variables as mixing distributions of Poisson
distributions. However, these mixture distributions only provide positive correlation.

The need for dependent claim numbers has already been mentioned. This issue gains
increasing importance. Recent years have brought some economic examples of dependent
claims. In 2009 the German car company Opel was having severe economic problems that
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also threatened suppliers and jobs with economic defaults. This is a typical example of a
positive correlation between defaults in a market: a default from Opel would have meant
the loss of their main customer to the suppliers. An example for a negative correlation
might be the collapse of the former Swissair airline in 2001. The collapse of an airline does
not decrease the general demand for flights so other airlines could profit from this collapse
and carry former Swissair passengers, thus perhaps lowering their own default probability.

Besides this demand for dependent claim numbers, it is also of interest to generalize the
extended CreditRisk+ model and the collective risk model, respectively, from another point
of view, from univariate dimensions to multivariate dimensions. In this case, it is possible to
consider two kinds of generalizations. Either there are multivariate counting distributions
and univariate severity distributions, or there are univariate counting distributions and
multivariate severity distributions. Hesselager [31] and Vernic [71] started to consider
recursions for the evaluation of bivariate compound distributions. In this case, the counting
distributions are univariate and the severity distributions are bivariate. Sundt [61] and Eisele
[18] considered recursions for multivariate compound distributions of this kind. Recursions
for both types of generalizations can be found in Sundt and Vernic [64]. Considering
multivariate claim sizes has the advantage that we can take time horizons into account,
which is also an important factor of such a model. This becomes obvious, especially in the
case of insurance companies where the occurrence of a claim usually causes several future
payments, and it is very often not clear at the notification of claim how these payments
might develop. This is also evident in e.g. health insurances during the recovery process
of a patient. Naturally, this also applies to banks if a credit default occurs; the bank may
expect recovery payments, but the size of these is not known at default.

This part of this thesis is organized as follows: in Chapter 2 we present some useful
results on compound and mixture distributions and the probability-generating functions of
the distributions of Poisson, negative multinomial, and logarithmic random vectors with
different mixture random vectors and random variables.

In Chapter 3 we introduce a general dependence structure of the default cause intensities
between risk factors and prove alternative representations of the claim numbers with the
same distribution allowing for the application of Panjer’s recursion. We generalize the
framework given in [21] that introduces an extended version of the Credit Risk+ model.
Our major result here is a linear dependence scenario with a stochastic component, i.e.,
the linear structure is chosen stochastically. This scenario allows for both positive and
negative correlation. A variant of Panjer’s recursion is applicable. An interesting special case
is a linear dependence structure with stochastic entries which makes negative correlation
clearer, hence this general dependence scenario offers several modes of dependence. As an
application we embed Giese’s framework [23] of a dependence structure into our model and
provide the application of Panjer’s recursion.

In Chapter 4 we consider a different dependence structure: we mix the default cause
intensities with common mixture distributions by choosing a parameter of the distribution
stochastically. If we have the same choice for several default cause intensities, this also
generates dependence. Then we prove that an alternative representation with the same
distribution exists that also allows for an application of Panjer’s recursion. In doing so, we
also admit the default cause intensities to consist of a stochastic and linear dependence.
Thus we observe both discrete and continuous dependence structures. This framework does
not only work for default cause intensities with a gamma distribution as it is already known
from the extended CreditRisk+ model, but it also works for so-called τ -tempered α-stable
distributions. This is a very flexible family of distributions and also allows for modelling of
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Chapter 1. Introduction

heavy tails.
In Chapter 5 we prove a generalization of Panjer’s recursion for multivariate dependent

claim size distributions and for claim numbers that are linked by more general relations
than in Equation (1.2). We therefore relax the assumption of independent and identically
distributed random variables and replace it with the assumption of exchangeable claim
sizes. Then the application of Panjer’s recursion requires a further step of computation,
i.e., the evaluation of an expected value that becomes necessary by the tower property.
Additionally, we present algorithms that show how to use Panjer’s recursion for our alternative
representations of claim numbers. We also generalize de Pril’s recursion in the same manner.
By adopting the approach for the construction of stochastically and linearly dependent
claim numbers we also construct a dependence scenario for claim sizes. This is also a model
in which a variant of Panjer’s recursion is applicable.

Chapter 6 is a contribution to capital allocation of the portfolio loss S and also presents an
algorithm for the evaluation of these contributions. Such dependence scenarios as introduced
above raise the question of their contribution to the risk, i.e., how the total portfolio risk can
be diversified to the risk coming from a single business line or default cause intensity. We
consider such a risk capital allocation with respect to the risk measure expected shortfall.
Because it is not only of interest to consider such a risk allocation for one time period, we
also introduce such risk measures given a σ-algebra, see also [34]. Conditioning on a certain
filtration of σ-algebras allows us to consider a multivariate framework, i.e., a model with
several time periods.

Finally, in Chapter 7 we conclude this part of this thesis with some interesting examples
that show that the choice of correlation has an impact on the distribution of the total
portfolio.
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Chapter 2

Properties of Compound and
Mixture Distributions

In this chapter we provide some general representations of distributions when compounded
or mixed that we will need in the following chapters. Additionally we introduce a depen-
dence scenario between default cause intensities and prove a corresponding formula for the
probability-generating function of the distributions of Poisson mixture vectors.

Remark 2.1. It is a very important result for us that a probability-generating function or a
Laplace transform uniquely determines a distribution, and we will have frequent recourse
to this result. A reference can be found in [42, Theorem 5.3]. The result is proven for
characteristic functions but also carries over to probability-generating functions and Laplace
transforms.

First, let us sketch the notation of a compound distribution.

Definition 2.2. Let N be an N0-valued random variable and let {Xh}h∈N be a sequence
independent of N , consisting of i.i.d. random variables such that X1 has the distribution F .
Define the random sum S =

∑N
h=1Xh. Then

(a) if N has a Poisson distribution with parameter µ, then S has a compound Poisson
distribution, and we write S ∼ CPoi(µ, F ),

(b) if N has a negative binomial distribution with parameters α > 0 and p ∈ [0, 1), then S
has a compound negative binomial distribution, and we wite S ∼ CNegBin(α, p, F ),

(c) if N has a logarithmic distribution with parameter q ∈ (0, 1), then S has a compound
logarithmic distribution, and we write S ∼ CLog(q, F ).

We start with a lemma about an equality in distribution between compound distributions
and Poisson mixture distributions.

Lemma 2.3. Let N be an N0-valued random variable and Λ a non-negative random variable
such that

L(N |Λ)
a.s.
= Poisson(Λ) . (2.4)

Let {Bh}h∈N be a sequence independent of (N,Λ), consisting of i.i.d. random vectors such
that B1 ∼ Multinomial(1; p1, . . . , pm). Let further {(X1,h, . . . , Xm,h)}h∈N be a sequence
independent of (N,Λ) and {Bh}h∈N, consisting of i.i.d. Rm-valued random vectors. Define

7



Chapter 2. Properties of Compound and Mixture Distributions

Si =
∑N

h=1Bi,hXi,h for i ∈ {1, . . . ,m} with the notation Bh = (B1,h, . . . , Bm,h). Then the
random sum S = (S1, . . . , Sm) satisfies for each component

L(Si |Λ)
a.s.
= CPoi(piΛ,L(Xi,1)) , i ∈ {1, . . . ,m},

and the components S1, . . . , Sm are conditionally independent given Λ. Additionally

L(S1 + · · ·+ Sm |Λ)
a.s.
= CPoi

(
Λ,

m∑
i=1

pi L(Xi,1)

)
(2.5)

holds.

Proof. Apply Remark 2.1. The probability-generating function of the conditional distribution
of S given Λ gives by the independence of (N,Λ) of {Bh}h∈N and {(X1,h, . . . , Xm,h)}h∈N
and since {Bh}h∈N and {(X1,h, . . . , Xm,h)}h∈N are sequences of i.i.d. random variables,
respectively,

GS |Λ(z)
a.s.
= E

[ m∏
i=1

z
∑N
h=1 Bi,hXi,h

i

∣∣∣∣Λ] a.s.
= E

[(
E
[ m∏
i=1

z
Bi,1Xi,1
i

])N ∣∣∣∣Λ], z ∈ [0, 1]m.

Using that {Bh}h∈N have a multinomial distribution and are independent of {(X1,h, . . . ,
Xm,h)}h∈N and applying the law of total probability with the notation GXi,1(z) = E[zXi,1 ]
provides

GS |Λ(z)
a.s.
= E

[( m∑
i=1

piGXi,1(zi)

)N ∣∣∣∣Λ].
Finally, using Equation (2.4) and p1 + · · ·+ pm = 1, we observe

GS |Λ(z)
a.s.
= exp

(
−Λ

(
1−

m∑
i=1

piGXi,1(zi)

))
a.s.
=

m∏
i=1

exp
(
−Λpi(1−GXi,1(zi))

)
.

Then the marginal probability-generating function of S given Λ is with a slight abuse of
notation zi = (1, . . . , 1, zi, 1, . . . , 1)

GS |Λ(zi)
a.s.
= exp

(
−Λpi(1−GXi,1(zi))

)
,

which is the probability-generating function of the conditional distribution of a random
variable Y given Λ, which has a compound Poisson distribution with Poisson parameter
piΛ and severity distribution L(Xi,1) for i ∈ {1, . . . ,m}. Equation (2.5) follows by [49,
Proposition 3.3.4]. q.e.d.

It is also interesting to consider compound distributions as in Lemma 2.3 with negative
binomial distributions instead. For this purpose we give a definition of the negative
multinomial distribution (cf. [59, Section 2]), which is a multivariate variant of the negative
binomial distribution.

Definition 2.6. A random vector N = (N1, . . . , Nm) has an m-dimensional negative
multinomial distribution with parameters α > 0 and p1, . . . , pm ≥ 0 where p1 + · · ·+ pm < 1
if

P[N1 = n1, . . . , Nm = nm] =
Γ
(
α+

∑m
i=1 ni

)
Γ(α)

∏m
i=1 ni!

pα0

m∏
i=1

pnii

for all n1, . . . , nm ∈ N0 where p0 := 1− p1 − · · · − pm. We denote the distribution of N by
NegMult(α; p1, . . . , pm).

8



According to [78, Equation (2.1)] the corresponding probability-generating function is

[0, 1]m 3 (z1, . . . , zm) 7→
(

1

p0
−

m∑
i=1

pi
p0
zi

)−α
.

In case m = 1 we obtain P[N = n] = Γ(α+n)
Γ(α)n! (1− p)αpn and

GN (z) =
(1− pz

1− p
)−α

, z ≤
∣∣∣1
p

∣∣∣,
which is a NegBin(α, p) distribution. For further reading on the negative multinomial
distribution the reader is referred to [59], [78], or [39, Chapter 36]. This negative multinomial
distribution can be also seen as a generalization in the sense of a generalization of the
geometric distribution, see also [47].

In the course of this thesis we will often use a result that is related to the negative
binomial distribution and provides an alternative representation. We set it here:

Remark 2.7. Let r > 0 and p ∈ (0, 1). According to [58, p. 95/96] and with an adjustment
to our notation of the negative binomial distribution

NegBin(r, 1− p) = CPoi(r ln(1/p),Log(1− p))

holds. Note that this transformation and shift of the convolution has already been considered
by Ammeter [1].

The following lemma will be useful for further applications.

Lemma 2.8. Let α, β > 0 and λ1, . . . , λm ≥ 0. Let T be a strictly positive random variable
and let Λ be a random variable such that L(Λ |T)

a.s.
= Gamma(αT, β). Let N = (N1, . . . , Nm)

be a random vector with conditionally independent components given Λ, T such that

L(Ni |Λ, T)
a.s.
= Poisson(λiΛ) , i ∈ {1, . . . ,m}.

Furthermore, consider an m-dimensional random vector M given T such that L(M |T)
a.s.
=

NegMult(αT ; p1, . . . , pm) with pi = λi
β+

∑m
d=1 λd

for i ∈ {1, . . . ,m}. Then M and N have the
same distribution.

Proof. For the proof we use Remark 2.1 and compute the probability-generating functions
of the conditional distributions of N and M given T , respectively. We start with the
random vector N given T for z ∈ [0, 1]m. Conditioning on (Λ, T ) and using the conditional
independence of N1, . . . , Nm given (Λ, T ) and the conditional distribution of N given Λ
yields

GN |T (z)
a.s.
= E

[ m∏
i=1

zNii

∣∣∣∣T] a.s.
= E

[ m∏
i=1

E
[
zNii
∣∣Λ, T ] ∣∣∣∣T] a.s.

= E
[ m∏
i=1

e−λiΛ(1−zi)
∣∣∣∣T].

Using the conditional distribution of Λ given T , we observe

GN |T (z)
a.s.
=

(
β

β +
∑m

i=1 λi(1− zi)

)αT
.

9
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Consider now the conditional distribution of the random vector M given T . Using the
conditional distribution of M given T with z ∈ [0, 1]m yields

GM |T (z)
a.s.
= E

[ m∏
i=1

zMi
i

∣∣∣∣T] a.s.
=

(
1

p0
−

m∑
i=1

pi
p0
zi

)−αT
a.s.
=

(
β +

∑m
d=1 λd
β

−
∑m

i=1 λizi
β

)−αT
by insertion of pi = λi

β+
∑m
d=1 λd

for i ∈ {1, . . . ,m} and p0 = β
β+

∑m
d=1 λd

. q.e.d.

A special case of this lemma has also been treated in [59, Section 3.b]; in this case the
random variable T is deterministic.

Remark 2.9. The negative multinomial distribution given in Definition 2.6 can also be
obtained as a certain mixture distribution. If we choose in Lemma 2.3 the random variables
Λ ∼ Gamma(α, β) and Xi,1 ≡ 1 for each i ∈ {1, . . . ,m}, then the probability-generating
function of the conditional distribution of S given Λ in the corresponding proof is for
z ∈ [0, 1]m

E
[
exp

(
−Λ

(
1−

m∑
i=1

pizi

))]
=

(
β

β + 1−∑m
i=1 pizi

)α
=

(
β + 1−∑m

i=1 pizi
β

)−α
,

hence L(S) = NegMult
(
α; p1

β+1 , . . . ,
pm
β+1

)
with p0 = β

β+1 .

Remark 2.10. The components of the negative multinomial distribution are not independent
since the corresponding correlation coefficient is not zero,

corr(Ni, Nj) =

√
pipjp2

0

(1 + pip0)(1 + pjp0)
, i, j ∈ {1, . . . ,m}, i 6= j,

as can be found in [39, Equation (36.28)]. As [59, p. 411] also states, the correlation
coefficient can only become zero if either pi or pj are zero, but then the distribution is
degenerate. Yet, as can be also found in [39, Chapter 36.3], the marginal distributions of the
negative multinomial distribution are negative binomial distributions. By Lemma 2.3 we
see that for i ∈ {1, . . . ,m} the marginal distribution of S with degenerate severity Xi,1 ≡ 1

is L(Si |Λ)
a.s.
= Poisson(piΛ). Due to Remark 2.9 this is also the marginal distribution of

a negative multinomial distribution if Λ ∼ Gamma(α, β) and also clarifies the type of
dependence between the marginal distributions. Applying Lemma 2.8 with m = 1 in that
framework and T ≡ 1, we observe that

L(Si) = NegBin
(
α,

pi
β + pi

)
, i ∈ {1, . . . ,m}.

In this thesis we will often use the Laplace transform of a multinomial distribution. We
give it here:

Remark 2.11. Let n ∈ N and 0 ≤ p1, . . . , pm ≤ 1. Let X be a random vector such that
X ∼ Multinomial(n; p1, . . . , pm). Then the Laplace transform of the distribution of X
satisfies

E
[
e−〈t,X〉

]
=

( m∑
i=1

pi e−ti
)n
, t = (t1, . . . , tm) ∈ Rm,

cf. e.g. [39, Equation (35.17)].
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We now present a result on a compound distribution with a negative binomial distribution
as a counting distribution.

Corollary 2.12. Let α > 0 and q ∈ [0, 1) and let T be a strictly positive random variable
and let N be a random variable such that L(N |T)

a.s.
= NegBin(αT, q) and {Bh}h∈N be a

sequence independent of (N,T ), consisting of i.i.d. m-dimensional random vectors such
that B1 ∼ Multinomial(1; p̃1, . . . , p̃m). Consider the random vector S =

∑N
h=1Bh. Then

the random sum S satisfies L(S |T)
a.s.
= NegMult(αT ; qp̃1, . . . , qp̃m).

Proof. We apply Remark 2.1 and consider the probability-generating function of the condi-
tional distribution of S given T . For z ∈ (0, 1]m with Bh = (B1,h, . . . , Bm,h) it is given as
follows

GS |T (z)
a.s.
= E

[ m∏
i=1

zSii

∣∣∣∣T] a.s.
= E

[ m∏
i=1

z
∑N
h=1 Bi,h

i

∣∣∣∣T] a.s.
= E

[
exp

( N∑
h=1

m∑
i=1

Bi,h ln zi

)∣∣∣∣T].
Using the independence of (N,T ) of {Bh}h∈N and that {Bh}h∈N are i.i.d. and that {Bh}h∈N
have a multinomial distribution and appling Remark 2.11 yields

GS |T (z)
a.s.
= E

[(
E
[
exp

( m∑
i=1

Bi,1 ln zi

)])N ∣∣∣∣T] a.s.
= E

[( m∑
i=1

p̃izi

)N ∣∣∣∣T].
Since N has a negative binomial distribution given T , we observe

GS |T (z)
a.s.
=

(
1

1− q −
q

1− q
m∑
i=1

p̃izi

)−αT
.

It is easy to see that according to Definition 2.6 p0 = 1− q and q
1−q

∑m
i=1 p̃izi =

∑m
i=1

pi
p0
zi

implies pi = qp̃i for i ∈ {1, . . . ,m}, which completes the proof. q.e.d.

A further result also exists on mixtures of the negative multinomial distribution. It is
a generalization of a result that can be found in [59, Section 3.d]. Let us first introduce a
generalization of the logarithmic distribution to multivariate dimensions taken from [59,
Section 3.d].

Definition 2.13. Let p1, . . . , pm ≥ 0 with 0 < p1 + · · · + pm < 1. A random vector
L = (L1, . . . , Lm) has a multivariate logarithmic distribution if for (l1, . . . , lm) ∈ Nm0 \ {0}

P[L1 = l1, . . . , Lm = lm] =
−1

ln p0
(l − 1)!

m∏
i=1

(plii
li!

)
,

where l =
∑m

i=1 li and p0 := 1 − p1 − · · · − pm. We denote the distribution of L by
MultLog(p1, . . . , pm).

According to [59, Equation (3.2)] its probability-generating function is given by

GL(z) =
ln(1−∑m

i=1 pizi)

ln p0
, z ∈ [0, 1]m. (2.14)

There is the following analogy to Corollary 2.12.

11



Chapter 2. Properties of Compound and Mixture Distributions

Example 2.15. Let L ∼ Log(q) with q ∈ (0, 1) and let {Bh = (B1,h, . . . , Bm,h)}h∈N
be a sequence independent of L, consisting of i.i.d. random vectors with a multinomial
distribution, i.e. B1 ∼ Multinomial(1; p1, . . . , pm). Define S =

∑L
h=1Bh. Thus we also write

S ∼ CLog(q,Multinomial(1; p1, . . . , pm)). Applying Remark 2.11, the probability-generating
function of the distribution of S for z ∈ [0, 1]m is given as follows:

GS(z) = E
[ m∏
i=1

z
∑L
h=1Bi,h

i

]
= E

[(
E
[ m∏
i=1

z
Bi,1
i

])L]
= E

[( m∑
i=1

pizi

)L]
=

ln
(
1− q∑m

i=1 pizi
)

ln(1− q) ,

hence S ∼ MultLog(qp1, . . . , qpm).

Then the aforementioned generalization is the following.

Lemma 2.16. Let λ > 0, p0 ∈ (0, 1) and p1, . . . , pm ≥ 0 with p0 + · · ·+ pm = 1. Let T be
a strictly positive random variable and let N be a random variable such that

L(N |T)
a.s.
= Poisson(λT ) . (2.17)

Let {Lh}h∈N be a sequence independent of (N,T ), consisting of i.i.d. m-dimensional random
vectors with L1 ∼ MultLog(p1, . . . , pm). Define the random vector S =

∑N
h=1 Lh. Then

L(S |T)
a.s.
= NegMult

(−λT
ln p0

; p1, . . . , pm

)
.

Proof. Using Remark 2.1 we prove the claim by considering the probability-generating
function of the conditional distribution of S given T for z ∈ (0, 1]m with Lh = (L1,h, . . . , Lm,h)

GS |T (z)
a.s.
= E

[ m∏
i=1

z
∑N
h=1 Li,h

i

∣∣∣∣T] a.s.
= E

[
exp

( N∑
h=1

m∑
i=1

Li,h ln zi

)∣∣∣∣T].
The sequence {Lh}h∈N is i.i.d. and independent of (N,T ). Hence, using also Equation (2.14),
we observe

GS |T (z)
a.s.
= E

[(
E
[
exp

( m∑
i=1

Li,1 ln zi

)])N ∣∣∣∣T] a.s.
= E

[(
ln(1−∑m

i=1 pizi)

ln p0

)N ∣∣∣∣T].
Using Equation (2.17) provides

GS |T (z)
a.s.
= exp

(
−λT

(
1− ln(1−∑m

i=1 pizi)

ln p0

))
a.s.
= exp

(−λT
ln p0

(
ln p0 − ln

(
1−

m∑
i=1

pizi

)))
.

A final simplification yields

GS |T (z)
a.s.
=
(1−∑m

i=1 pizi
p0

) λT
ln p0 ,

which completes the proof. q.e.d.
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We now provide the probability-generating function of the distribution of a Poisson
random vector that is mixed with a random vector whose components are non-negative. For
simplicity we now introduce an assumption on the dependence scenario.

Assumption 2.18. Let J 6= ∅ be an arbitrary finite set. Let Aj ∈ [0,∞)m×(n+1) for
j ∈ J and let J be a random variable with values in J . Define the random matrix AJ =∑

j∈J 1{J=j}Aj. Let (R1, . . . , Rn) be non-negative random variables and let R0 be a non-

negative constant. Define (Λ1, . . . ,Λm)> = AJ(R0, . . . , Rn)> and let Aj = (aji,l)1≤i≤m,0≤l≤n
for j ∈ J .

Lemma 2.19. Let Assumption 2.18 be satisfied. Let N1, . . . , Nm be random variables
conditionally independent given J,R1, . . . , Rn such that

L(Ni |J,R1, . . . , Rn)
a.s.
= L(Ni |J,Λi) a.s.

= Poisson(λi,JΛi) , i ∈ {1, . . . ,m}, (2.20)

where λ1,j , . . . , λm,j ≥ 0 for j ∈ J . Then the Laplace transform of the distribution of the
random vector (N,R) = (N1, . . . , Nm, R1, . . . , Rn) satisfies for (y, z) ∈ [0,∞)m+n

L(N,R)(y, z) = E
[
e−〈z,R〉

n∏
l=0

exp

(
−

m∑
i=1

λi,Ja
J
i,lRl(1− e−yi)

)]
.

Remark 2.21. The random variable J can be interpreted as selecting a dependence scenario
for (Λ1, . . . ,Λm). Accordingly, the random variables R1, . . . , Rn can be interpreted as risk
factors.

Proof of Lemma 2.19. We calculate the Laplace transform L(N,R) for (y, z) ∈ [0,∞)m+n.
Conditioning on J,R1, . . . , Rn and using the conditional independence of N1, . . . , Nm given
J,R1, . . . , Rn and that R1, . . . , Rn are measurable given J,R1, . . . , Rn and Equation (2.20)
yields

L(N,R)(y, z) = E
[
e−〈y,N〉 e−〈z,R〉

]
= E

[
e−〈z,R〉

m∏
i=1

E
[
e−yiNi

∣∣J,Λi] ]

= E
[
e−〈z,R〉

m∏
i=1

exp
(
−λi,JΛi(1− e−yi)

)]
.

Using (Λ1, . . . ,Λm)> = AJ(R0, . . . , Rn)> and the definition of AJ yields

L(N,R)(y, z) = E
[
e−〈z,R〉 exp

(
−

m∑
i=1

λi,J

n∑
l=0

aJi,lRl(1− e−yi)

)]
,

and provides the result for the Laplace transform L(N,R). q.e.d.

There are several examples for this general setting that might make it more clear and
allow for different representations. We consider the following model: A Poisson random
vector is mixed with a random vector whose components are stochastically and linearly
dependent. This also means that the choice for every component of the mixing random
vector may include a stochastic number of random variables for each default cause intensity.
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Example 2.22. Let J = {0, 1}n+1 and J be an (n + 1)-dimensional random vector
such that J = (J0, . . . , Jn) is J -valued. Further let (A)i,j = ai,jJj where ai,j ≥ 0 with
i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}, and let R1, . . . , Rn be n non-negative random variables
which are independent of J , and let R0 be a non-negative constant. Define (Λ1, . . . ,Λm)> =
A(R0, . . . , Rn)>.

Remark 2.23. The model in Example 2.22 may be embedded into Assumption 2.18. For
each j = (j0, . . . , jn) ∈ {0, 1}n+1 define (Aj)i,l = aji,ljl for i ∈ {1, . . . ,m} and l ∈ {0, . . . , n}.
Then let Aj =

∑
j∈{0,1}n+1 1{J=j}Aj .

The set J allows for a very flexible choice of dependence scenarios. The random variables
in J may be also matrix-valued. For the default cause intensities Λ1, . . . ,Λm each component
is chosen stochastically. Hence we present a Poisson random vector that is mixed with a
random vector, each component of which chosen stochastically. Therefore we make the
following assumption:

Example 2.24. Let J = {0, 1}m×(n+1) and let J1, . . . , Jm be m (n+1)-dimensional random
vectors such that Ji = (Ji,0, . . . , Ji,n) is {0, 1}n+1-valued for each i ∈ {1, . . . ,m}. Let further
(A)i,j = ai,jJi,j where ai,j ≥ 0 with i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}, and let R1, . . . , Rn
be n non-negative random variables which are independent of J1, . . . , Jm, and let R0 be a
non-negative constant. Define (Λ1, . . . ,Λm)> = A(R0, . . . , Rn)>.

Remark 2.25. This model can be also embedded into Assumption 2.18. Define J =
(J1, . . . , Jm)> with Ji ∈ {0, 1}n+1 for i ∈ {1, . . . ,m}. For each j ∈ {0, 1}m×(n+1) with
(j)i,l = ji,l for i ∈ {1, . . . ,m} and l ∈ {0, . . . , n} define (Aj)i,l = aji,lji,l and thus AJ =∑

j∈{0,1}m×(n+1) 1{J=j}Aj .
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Chapter 3

Construction of Dependent Claim
Numbers by Linear Combinations

In this chapter we present one of our major results. The starting point is the following. In
an extension of the CreditRisk+ model to be found in [21] the authors consider a random
claim number N = N1 + · · ·+Nm, where for each i ∈ {1, . . . ,m} the claim number Ni has a
Poisson mixture distribution and the mixing random variable is a gamma-distributed default
cause intensity Λi. The distribution of the random claim numbers is assumed to satisfy

L(Ni |Λ1, . . . ,Λm)
a.s.
= L(Ni |Λi) a.s.

= Poisson(λiΛi) , i ∈ {1, . . . ,m},

where λi ≥ 0. The default cause intensities are assumed to be independent.

In contrast, we develop an extension of this model by admitting dependence between
the claim numbers. We only stipulate that the claim numbers are conditionally independent
given Λ1, . . . ,Λm. Dependent default cause intensities provide the dependence structure. The
default cause intensities consist of several non-negative risk factors. We construct dependence
structures by linear combinations of the risk factors. These dependence structures are chosen
stochastically. In this setting we can also relax the assumption of gamma-distributed risk
factors and consider τ -tempered α-stable distributions, too.

3.1 Alternative Representation

We consider a scenario that can be described as a stochastic choice of a linear dependence
structure between default cause intensities. If we introduce generally dependent default cause
intensities, the independence between the random sums Si =

∑Ni
h=1Xi,h for i ∈ {1, . . . ,m}

is lost, hence a convolution is not possible either. While the independence is also lost in our
scenario, it is nevertheless possible to find an adequate representation of the claim numbers
with the same distribution such that a variant of Panjer’s recursion can be applied, as will be
seen later. These default cause intensities may be also considered as a multivariate gamma
distribution. There are several approaches to construct multivariate gamma distributions,
and one of them includes a linear dependence between the marginal distributions, cf. [44,
Chapter 48.3.4].

Based on Lemma 2.19, we derive a theorem that provides us with a general structure of
a stochastically chosen linear dependence scenario:
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Theorem 3.1. Let Assumption 2.18 be satisfied. Let N = (N1, . . . , Nm) be a random vector
with conditionally independent components given J,R1, . . . , Rn such that

L(Ni |J,R1, . . . , Rn)
a.s.
= L(Ni |J,Λi) a.s.

= Poisson(λi,JΛi) , i ∈ {1, . . . ,m},

where λi,j ≥ 0 for each j ∈ J . On the other hand, consider (n+1)|J | independent sequences
of i.i.d. random vectors {Bj,l,h}h∈N, such that

Bj,l,1 ∼ Multinomial(1; p1,j,l, . . . , pm,j,l) , (3.2)

where pi,j,l ∈ [0, 1] with
∑m

i=1 pi,j,l = 1 satisfies the condition pi,j,l
∑m

d=1 λd,ja
j
d,l = λi,ja

j
i,l

for each j ∈ J and l ∈ {0, . . . , n} and i ∈ {1, . . . ,m}. Let {Qj,l}j∈J ,l∈{0,...,n} be random
variables conditionally independent given J,R1, . . . , Rn which satisfy

L(Qj,l |J,R0, . . . , Rn)
a.s.
= L(Qj,l |Rl) a.s.

= Poisson

( m∑
i=1

λi,ja
j
i,lRl

)
. (3.3)

Assume further that (Qj,0, . . . , Qj,n) and the sequence {Bj,l,h}h∈N are independent for each
j ∈ J and l ∈ {0, . . . , n}. Finally, define the Nm0 -valued random vector M by

M =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

Bj,l,h.

Then (M,R1, . . . , Rn) and (N,R1, . . . , Rn) have the same distribution.

Proof. For the proof we apply Remark 2.1. Let R = (R1, . . . , Rn). First, an application of
Lemma 2.19 shows immediately that the Laplace transform of the distribution of (N,R) =
(N,R1, . . . , Rn) satisfies for (y, z) ∈ [0,∞)m+n

L(N,R)(y, z) = E
[
e−〈z,R〉

n∏
l=0

exp

(
−

m∑
i=1

λi,Ja
J
i,lRl(1− e−yi)

)]
.

Now consider the Laplace transform of the distribution of the random vector (M,R) =
(M1, . . . ,Mm, R1, . . . , Rn). By partitioning J , we obtain for all (y, z) ∈ [0,∞)m+n

L(M,R)(y, z) = E
[
e−〈y,M〉 e−〈z,R〉

]
= E

[
exp

(
−
〈
y,
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

Bj,l,h

〉)
e−〈z,R〉

]

=
∑
j∈J

E
[
1{J=j} e−〈z,R〉 exp

(
−

n∑
l=0

Qj,l∑
h=1

〈y,Bj,l,h〉
)]
.

Using that the sequences {Bj,l,h}h∈N are i.i.d. and independent of (Qj,0, . . . , Qj,n) for j ∈ J
and l ∈ {0, . . . , n} and have the distribution given in Equation (3.2) and thus applying
Remark 2.11, we observe

L(M,R)(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,R〉

n∏
l=0

(
E
[
exp

(
−〈y,Bj,l,1〉

)])Qj,l]

=
∑
j∈J

E
[
1{J=j} e−〈z,R〉

n∏
l=0

( m∑
i=1

pi,j,l e
−yi
)Qj,l]

.
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3.1. Alternative Representation

By conditioning on (J,R0, . . . , Rn), using the conditional independence of the random
variables Qj,0, . . . , Qj,n given J,R1, . . . , Rn for j ∈ J and Equation (3.3) and using that
R1, . . . , Rn are measurable given J,R1, . . . , Rn provides

L(M,R)(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,R〉

n∏
l=0

E
[( m∑

i=1

pi,j,l e
−yi
)Qj,l ∣∣∣∣Rl]]

=
∑
j∈J

E
[
1{J=j} e−〈z,R〉

n∏
l=0

exp

(
−
( m∑
i=1

λi,ja
j
i,lRl

)(
1−

m∑
i=1

pi,j,l e
−yi
))]

.

Noting pi,j,l
∑m

d=1 λd,ja
j
d,l = λi,ja

j
i,l yields

L(M,R)(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,R〉

n∏
l=0

exp

(
−

m∑
i=1

λi,ja
j
i,lRl(1− e−yi)

)]
,

which completes the proof. q.e.d.

Remark 3.4. The random variables Mi for i ∈ {1, . . . ,m} do not in general have a distribution
in a Panjer(a, b, k) class because the distributions of the random variables Qj,l for j ∈ J
and l ∈ {0, . . . , n} are not generally in a Panjer(a, b, k) class.

Remark 3.5. In the lemma the case
∑m

d=1 λd,ja
j
d,l = 0 for j ∈ J and l ∈ {0, . . . , n} has not

been considered separately. However, if
∑m

d=1 λd,ja
j
d,l = 0 holds for any j, l, then it is not

immediately clear how to choose the probability distribution of Bj,l,1. Yet, we observe that

in this case L(Qj,l |Rl) a.s.
= Poisson(0) = δ0. Hence for each i ∈ {1, . . . ,m} the corresponding

sum in Mi =
∑

j∈J 1{J=j}
∑n

l=0

∑Qj,l
h=1Bi,j,l,h does not have summands for the corresponding

j and l and this also holds for the random variables N1, . . . , Nm. Thus the distribution of
Bj,l,1 may be chosen arbitrarily.

Remark 3.6. The parameters λ1,J , . . . , λm,J might be considered as a redundant notation.
Indeed, in order to apply this framework as an extension of the CreditRisk+ model, they
represent the default probability of the obligors in the CreditRisk+ model, respectively. For
this reason they should be retained.

Remark 3.7. There are several well-known distributions that could be chosen for J . It
is possible to choose a multinomial distribution Multinomial(1; p1, . . . , pn). Further, it is
possible to choose a multivariate hypergeometric distribution (cf. [39, Chapter 39]) such
that J ∼ MultHyperGeom(h; 1, . . . , 1) with h ∈ {1, . . . , n} and J is n-dimensional.

Remark 3.8. Of course, there are also other methods to construct dependence between
default cause intensities: Shevchenko and Luo [46] propose a bivariate model to model risks
by a t-copula. They further use simulation and calibration methods. Yet, in such a case a
recursion is not possible.

Remark 3.9. If the risk factors R1, . . . , Rn have a τ -tempered α-stable distribution, then
it is possible to rewrite the corresponding Poisson mixture distribution as a compound
Poisson distribution, cf. [21, Lemma 5.10], where the severity distribution is an extended
negative binomial distribution. Furthermore, if the risk factors R1, . . . , Rn are infinitely
divisible, then it is possible to rewrite the Poisson mixture distribution as a compound
Poisson distribution, cf. [64, Corollary 4.1]. If the corresponding severity distribution is in a
Panjer(a, b, k) class, then an extension of Panjer’s recursion is also applicable.
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Chapter 3. Dependent Claim Numbers by Linear Combinations

Remark 3.10. Using this stochastically linear dependence, we are able to construct both
positive and negative correlation. Recall that Λi =

∑n
l=0 a

J
i,lRl for i ∈ {1, . . . ,m}. For the

sake of simplicity we first compute some preparing values we need.

If the risk factors R1, . . . , Rn are independent, then we observe for i, k ∈ {1, . . . ,m} with
i 6= k

E[Λi |J ]
a.s.
=

n∑
l=0

aJi,l E[Rl]

and

Var(Λi |J)
a.s.
=

n∑
l=1

(
aJi,l
)2

Var(Rl)

and

cov(Λi,Λk|J)
a.s.
=

n∑
l,p=1

aJi,la
J
k,p cov(Rl, Rp)

a.s.
=

n∑
l=1

aJi,la
J
k,l Var(Rl) .

Thus the variance of Λi is computed as follows

Var(Λi) = E[Var(Λi|J)] + Var(E[Λi |J ])

=

n∑
l=1

E
[(
aJi,l
)2]

Var(Rl) +

n∑
l=0

Var
(
aJi,l
)

(E[Rl])
2.

Accordingly we compute the covariance between Λi and Λk for i, k ∈ {1, . . . ,m} with i 6= k

cov(Λi,Λk) = E[ cov(Λi,Λk|J) ] + cov(E[Λi |J ] , E[Λk |J ] )

=
n∑
l=1

E
[
aJi,la

J
k,l

]
Var(Rl) +

n∑
l,p=0

cov
(
aJi,l, a

J
k,p

)
E[Rl] E[Rp] . (3.11)

Hence the correlation for i 6= k is

corr(Λi,Λk) =

∑n
l=1 E

[
aJi,la

J
k,l

]
Var(Rl) +

∑n
l,p=0 cov

(
aJi,l, a

J
k,p

)
E[Rl] E[Rp](

Var(Λi)
)1/2(

Var(Λk)
)1/2 .

Due to the Poisson mixture distribution of the claim numbersN1, . . . , Nm this also clarifies
the correlation between the claim numbers. Thus the variance of Ni for i ∈ {1, . . . ,m} is

Var(Ni) = E[Var(Ni |J,Λi)] + Var(E[Ni |J,Λi]) = E[λi,JΛi] + Var(λi,JΛi) , (3.12)

and the covariance between Ni and Nk for i, k ∈ {1, . . . ,m} with i 6= k is

cov(Ni, Nk) = E[ cov(Ni, Nk |J,R1, . . . , Rn) ] + cov(E[Ni |J,Λi] , E[Nk |J,Λk ] )

= cov(λi,JΛi, λk,JΛk) (3.13)

since E[NiNk |J,R1, . . . , Rn]− E[Ni |J,Λi]E[Nk |J,Λk ] = 0 due to the conditional indepen-
dence of the N1, . . . , Nm given J,R1, . . . , Rn and the conditional distribution of N1, . . . , Nm.

It might not be clear from this remark how this dependence structure may also provide
negative dependence. We give the following example.
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3.2. Examples

Example 3.14. Let Assumption 2.18 be satisfied. Let R1 and R2 be two independent
non-negative and non-degenerate risk factors. Then let J = {0, 1} and n = 2. A random
variable J on J independent of R1 and R2 can thus take the values j1 = 1 and j2 = 0, and
we define the following matrices:

Aj1 =

(
0 1 0
0 0 0

)
and Aj2 =

(
0 0 0
0 0 1

)
.

Then the default cause intensities are given by Λ1 = 1{J=1}R1 and Λ2 = 1{J=0}R2. Thus
the covariance is

cov(Λ1,Λ2) = E
[
1{J=1}R11{J=0}R2

]
− E

[
1{J=1}R1

]
E
[
1{J=0}R2

]
= − E

[
1{J=1}R1

]
E
[
1{J=0}R2

]
= − E[R1] P[J = 1] E[R2] P[J = 0]

because 1{J=1}1{J=0} = 0 and J,R1, R2 are independent. Therefore, with this anti-
thetic choice we obtain negative correlation between the default cause intensities since
the expected values are positive. Consequently, the equivalent representations are with
Bj,l,h = (B1,j,l,h, B2,j,l,h)

M1 = 1{J=1}

Q1,1∑
h=1

B1,1,1,h and M2 = 1{J=0}

Q0,2∑
h=1

B2,0,2,h

because Poisson(0) and Ber(0) are δ0-degenerate distributions. For a random sum S this
means

S =
2∑
i=1

Ni∑
h=1

Xi,h
d
=

2∑
i=1

Mi∑
h=1

Xi,h = 1{J=1}

Q1,1∑
h=1

B1,1,1,hX1,h + 1{J=0}

Q0,2∑
h=1

B2,0,2,hX2,h.

If we assume Rl to be gamma-distributed for l = 1, 2, we can apply a simplified version of
Algorithm 5.9.

3.2 Examples

3.2.1 Tempered Stable Distribution

We consider another and more general case as usual in the CreditRisk+ model that has
already been considered in [21]. We assume the risk factors to have a τ -tempered α-stable
distribution instead of a gamma distribution. Stable distributions are denoted by Sα(σ, β, µ)
with α ∈ (0, 2], σ > 0, β ∈ [−1, 1] and µ ∈ R (cf. e.g. [55, p. 9]). If α ∈ (0, 1), β = 1,
and µ = 0, then the support of Sα(σ, β, µ) is on the non-negative real line (cf. [55, p. 15]).
We can generalize such a distribution by a change of measure of Y ∼ Sα(σ, 1, 0) as in
[21, Section 5.3] by introducing additional parameters τ ≥ 0 and m ∈ N0 and obtain the
following distribution function

Fα,σ,τ,m(y) =
E
[
Y −m e−τY 1{Y≤y}

]
E[Y −m e−τY ]

, y ∈ R.

In case m = 0 this is a τ -tempered α-stable distribution (cf. [54, Theorem 4.1]). If the risk
factors R1, . . . , Rn in scenarios as in Assumption 2.18 have such a distribution, then the
respective distribution of the random sum S can be evaluated according to Algorithm 5.9
and Panjer’s recursion replaced by [21, Algorithm 5.12].
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Chapter 3. Dependent Claim Numbers by Linear Combinations

3.2.2 Dependence on Common Risk Factors with a Multivariate Gamma
Distribution

We give an example for our framework and embed Giese’s model in [23, Section 10.1] of
constructing a dependence structure. We present how his approach fits into our framework
and thus find an alternative representation for a recursive calculation of the distribution. As
in the independent case, Giese chooses the risk factors to be gamma-distributed. In order to
construct a dependence between the m default cause intensities Λ1, . . . ,Λm, he then takes
m+1 independent risk factors R1, . . . , Rm+1 with Rl ∼ Gamma(αl, 1) for l ∈ {1, . . . ,m+1}.
Giese supposes that σii = 1

αi+αm+1
for i ∈ {1, . . . ,m} is the variance of the risk factors. He

thereby obtains a linear dependence structure with

Λi = σii(Ri +Rm+1), i ∈ {1, . . . ,m}.

It can be seen without much effort that for the distribution

L(Λi) = Gamma(αi + αm+1, 1/σii)

holds. Note that this approach of constructing a multivariate gamma distribution with
dependent marginals had previously been introduced by Cheriyan and Ramabhadran, cf. [44,
Chapter 48.3.1]. Using this approach we obtain only positive correlation, cf. also Remark
3.10 with |J | = 1.

A generalization of the above dependence structure exists; in order to stay within the
framework of the CreditRisk+ model, we let the default cause intensities Λi for i ∈ {1, . . . ,m}
depend on idiosyncratic risk factors

Ii ∼ Gamma
(
αIi , β

)
, i ∈ {1, . . . ,m},

and on common risk factors

Cj ∼ Gamma
(
αCj , β

)
, j ∈ {1, . . . , n−m}.

These risk factors I1, . . . , Im, C1, . . . , Cn−m are assumed to be independent. Let R0 be a
non-negative constant.

As before for i ∈ {1, . . . ,m} we let the random claim numbers Ni have a mixture
distribution with conditionally independent components given Λ1, . . . ,Λm such that

L(Ni |Λ1, . . . ,Λm)
a.s.
= L(Ni |Λi) a.s.

= Poisson(λiΛi) , i ∈ {1, . . . ,m},

where λi ≥ 0. We let A ∈ [0,∞)m×(n+1) and obtain a linear dependence structure by setting

(Λ1, . . . ,Λm)> = A(R0, I1, . . . , Im, C1, . . . , Cn−m)>, (3.15)

where

A =


ai,0 = 0 for i ∈ {1, . . . ,m},
δi,j for j ∈ {1, . . . ,m},
ai,j for j ∈ {m+ 1, . . . , n}.

Hence the default cause intensities Λi are linearly dependent for i ∈ {1, . . . ,m}. Note that,
given the risk factors I1, . . . , Im, C1, . . . , Cn−m, the default cause intensities Λ1, . . . ,Λm are
conditionally independent.
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3.3. A Generalization of the Dependence by Approximation

This structure preserves the type of the distribution. An application of Theorem 3.1
with |J | = 1 provides the equality in distribution of the random vectors M and N where

M =
n∑
l=1

Ql∑
h=1

Bl,h,

and

Ql ∼

NegBin
(
αIl ,

∑m
i=1 λiδi,l

β+
∑m
i=1 λiδi,l

)
for l ∈ {1, . . . ,m},

NegBin
(
αCl ,

∑m
i=1 λiai,l

β+
∑m
i=1 λiai,l

)
for l ∈ {m+ 1, . . . , n},

are independent for l ∈ {1, . . . , n}.
Thus we can apply Panjer’s recursion for the random sum

S =
m∑
i=1

Ni∑
h=1

Xi,h
d
=

n∑
l=1

Ql∑
h=1

m∑
i=1

Bi,l,hXi,l,h,

where {Xi,l,h}h∈N and {Xn}n∈N are sequences of i.i.d. random variables that are equally
distributed for i ∈ {1, . . . ,m}, respectively. The distribution can be evaluated applying
Algorithm 5.9.

Remark 3.16. If the common risk factors have a τ -tempered α-stable distribution, i.e. Cl ∼
Fαl,σl,τl,0 for l ∈ {1, . . . , n−m}, then, due to the additivity property (cf. [54, Corollary 2.12])
the sum of such risk factors again has a τ -tempered α-stable distribution. Then the
distribution of the random variables Ql for l ∈ {m+ 1, . . . , n} in Equation (3.3) is a Poisson
distribution mixed over a τ -tempered α-stable distribution and hence not generally in a
Panjer(a, b, k) class, but the application of [21, Lemma 5.10] provides a means of converting
this distribution into a random sum with distributions in a Panjer(a, b, k) class, namely

Ql
d
=

Ll∑
h=1

Kl,h, l ∈ {m+ 1, . . . , n}

where Ll ∼ Poisson(δl) and {Kl,h}h∈N is a sequence independent of Ll, consisting of
i.i.d. random variables such that Kl,1 ∼ ExtNegBin(−αl, 1, pl), where the parameters are
δl = γαl,σl((

∑m
i=1 λiai,l + τl)

αl − ταll ) and

pl =
τl∑m

i=1 λiai,l + τl
and γαl,σl =

σαll
cos(αlπ/2)

.

Then Panjer’s recursion can be applied using Theorem 5.1. The convolution of these
compound Poisson distributions (the idiosyncratic risk factors also provide a compound
Poisson distribution) may be circumvented by an application of [49, Proposition 3.3.4] which
proves that a convolution of compound Poisson distributions is again a compound Poisson
distribution. Hence it is only necessary to apply Panjer’s recursion once.

3.3 A Generalization of the Dependence by Approximation

There is also another interesting application for mixtures with generalized gamma convolu-
tions (cf. [8]). Under certain conditions we can generalize the stochastic linear dependence
to stochastic polynomial dependence. We therefore cite a result in [7, Theorem 3]:
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Chapter 3. Dependent Claim Numbers by Linear Combinations

Theorem 3.17. Let X1, . . . , Xn be independent random variables with gamma distribution.
Then Xq1

1 · · ·Xqn
n is a generalized gamma convolution provided that |qj | ≥ 1 for j ∈

{1, . . . , n}.

A generalized gamma convolution is explained in Definition 9.10. Thorin [66] shows how
to extract the parameter a and Thorin measure U from a given distribution function, see
also Definition 9.10.

Hence we obtain a corollary of Theorem 3.1:

Corollary 3.18. Let Assumption 2.18 be satisfied. Define Rl = X l for l ∈ {0, . . . , n}
where X ∼ Gamma(α, β). Let N = (N1, . . . , Nm) be a random vector with conditionally
independent components given J,R1, . . . , Rn such that

L(Ni |J,R1, . . . , Rn)
a.s.
= L(Ni |J,Λi) a.s.

= Poisson(λi,JΛi) , i ∈ {1, . . . ,m},

where λi,j ≥ 0 for each j ∈ J . Define (n+ 1)|J | independent sequences of i.i.d. random
vectors {Bj,l,h}h∈N such that Bj,l,1 ∼ Multinomial(1; p1,j,l, . . . , pm,j,l) for each j ∈ J and

l ∈ {0, . . . , n} where pi,j,l ∈ [0, 1] with
∑m

i=1 pi,j,l = 1 satisfies pi,j,l
∑m

d=1 λd,ja
j
d,l = λi,ja

j
i,l.

Further, let M = (M1, . . . ,Mm) be an Nm0 -valued random vector such that

M =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

Bj,l,h,

where for each j ∈ J and l ∈ {0, . . . , n}

L(Qj,l |J,R0, . . . , Rn)
a.s.
= L(Qj,l |Rl) a.s.

= Poisson

( m∑
i=1

λi,ja
j
i,lRl

)
holds. Assume further that for each j ∈ J and l ∈ {0, . . . , n} the random variables
(Qj,0, . . . , Qj,n) and {Bj,l,h}h∈N,l∈{0,...,n} are independent. Then M and N have the same
distribution, and there exist parameters α

(k)
i,j,l > 0 and β

(k)
i,j,l > 0 for k ∈ N such that the

random variables P
(k)
j,l =

∑k
i=1R

(k)
i,j,l with

R
(k)
i,j,l ∼ NegBin

(
α

(k)
i,j,l,

∑m
d=1 λda

j
d,l

β
(k)
i,j,l +

∑m
d=1 λda

j
d,l

)

converge weakly to Qj,l as k → ∞ for j ∈ J and l ∈ {0, . . . , n}. For each P
(n)
j,l Panjer’s

recursion can be applied.

Proof. Apply Theorem 3.1 to obtain the stochastic equality between M and N . The
existence of the parameters α

(k)
i,j,l and β

(k)
i,j,l for k ∈ N is proven in Proposition 9.28, and the

representation of R
(k)
,i,j,l is given by Lemma 9.32. Apply Lemma 9.32 to provide the stochastic

convergence to each Qj,l for j ∈ J and l ∈ {0, . . . , n}. This also shows the applicability of
Panjer’s recursion, cf. also [21, Section 5.5], where the n-fold convolution is replaced by a
convex combination and thus a single application of Panjer’s recursion suffices. q.e.d.
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Chapter 4

Dependent Claim Numbers
by Continuous Mixtures

In Chapter 3 we constructed dependence between the default cause intensities by stochas-
tically linear combinations of risk factors, i.e., we compounded them. However, in the
literature the term compounding is also used to describe mixing random variables. Now we
construct dependence by continuous mixture distributions. We choose one parameter of
the distributions of the default cause intensities stochastically, and if it is equal for several
default cause intensities, we obtain dependence. As in Chapter 3 the independence between
the random sums Si =

∑Ni
h=1Xi,h for i ∈ {1, . . . ,m} is lost and there is also a need for

an alternative to convolutions. Hence we establish an alternative representation of the
claim numbers with equal distribution if the default cause intensities have either a gamma
distribution or a τ -tempered α-stable distribution.

4.1 One Level of Compounding

In this section we mix risk factors with random variables that do not themselves have
a mixture distribution. We consider a rather general result on mixture distributions to
construct dependent claim numbers. As in the previous chapter we let the default cause
intensities be stochastically and linearly dependent. Further, we specify a certain structure
of the distribution of the risk factors that is a mixture distribution.

Lemma 4.1. Let Assumption 2.18 be satisfied. Let T1, . . . , Tn be strictly positive random
variables. Let αl, βl > 0 for all l ∈ {1, . . . , n} and λi,j ≥ 0 for all i ∈ {1, . . . ,m} and j ∈ J .
Then we define two Nm0 -valued random vectors N and M as follows:

(a) Let R1, . . . , Rn be random variables with gamma distributions, conditionally independent
given J, T1, . . . , Tn and let their shape parameters be randomized, i.e. for each l ∈
{1, . . . , n}

L(Rl |J, T1, . . . , Tn)
a.s.
= L(Rl |J, Tl) a.s.

= Gamma(αlTl, βl) . (4.2)

Further, let N = (N1, . . . , Nm) be a random vector with conditionally independent
components given J,R1, . . . , Rn, T1, . . . , Tn such that for each i ∈ {1, . . . ,m}

L(Ni |J,R1, . . . , Rn, T1, . . . , Tn)
a.s.
= L(Ni |J,Λi) a.s.

= Poisson(λi,JΛi) (4.3)

with (Λ1, . . . ,Λm) as in Assumption 2.18.
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Chapter 4. Dependent Claim Numbers by Continuous Mixtures

(b) For each j ∈ J consider random variables Pj,1, . . . , Pj,n, which are conditionally inde-
pendent given J, T1, . . . , Tn, such that for each l ∈ {1, . . . , n}

L(Pj,l |J, T1, . . . , Tn)
a.s.
= L(Pj,l |Tl) a.s.

= Poisson(−αl ln(1− qj,l)Tl) (4.4)

with

qj,l =

∑m
i=1 λi,ja

j
i,l

βl +
∑m

i=1 λi,ja
j
i,l

,

and a random variable Pj,0 independent of J, T1, . . . , Tn such that

L(Pj,0) = Poisson

( m∑
i=1

λi,ja
j
i,0R0

)
. (4.5)

For each j ∈ J and l ∈ {0, . . . , n} let further {Yj,l,h}h∈N be (n + 1)|J | independent
sequences independent of (Pj,0, . . . , Pj,n), consisting of i.i.d. random variables such that
for l ∈ {1, . . . , n}

Yj,l,1 ∼
{

Log(qj,l) if qj,l > 0,

δ1 if qj,l = 0,
(4.6)

and Yj,0,1 ∼ δ1. For each l ∈ {0, . . . , n} and j ∈ J let {Bj,l,h,k}h,k∈N be (n + 1)|J |
independent sequences independent of {(Yj,0,h, . . . , Yj,n,h)}h∈N and (Pj,0, . . . , Pj,n), con-
sisting of i.i.d. random vectors such that

Bj,l,1,1 ∼ Multinomial(1; p1,j,l, . . . , pm,j,l) , (4.7)

where pi,j,l ∈ [0, 1] with
∑m

i=1 pi,j,l = 1 satisfies pi,j,l
∑m

d=1 λd,ja
j
d,l = λi,ja

j
i,l. Define the

random vector M by

M =
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

Bj,l,h,k. (4.8)

Then (M,T1, . . . , Tn) and (N,T1, . . . , Tn) have the same distribution.

Proof. For the proof we apply Remark 2.1. Let T = (T1, . . . , Tn). First, we compute the
Laplace transform of the distribution of (N,T ) = (N,T1, . . . , Tn) for (y, z) ∈ [0,∞)m+n.
Since N1, . . . , Nm are conditionally independent given J,R1, . . . , Rn, T1, . . . , Tn and since
T1, . . . , Tn are measurable given J,R1, . . . , Rn, T1, . . . , Tn and because of Equation (4.3), we
have

L(N,T )(y, z) = E
[
e−〈y,N〉 e−〈z,T 〉

]
= E

[
e−〈z,T 〉

m∏
i=1

E
[
e−yiNi

∣∣J,Λi] ]

= E
[
e−〈z,T 〉

m∏
i=1

exp
(
−λi,JΛi(1− e−yi)

)]
.

Using (Λ1, . . . ,Λm)> = AJ(R0, . . . , Rn)> and the definition of AJ gives

L(N,T )(y, z) = E
[
e−〈z,T 〉

m∏
i=1

exp

(
−λi,J

n∑
l=0

aJi,lRl(1− e−yi)

)]

= E
[
e−〈z,T 〉

n∏
l=0

exp

(
−

m∑
i=1

λi,Ja
J
i,lRl(1− e−yi)

)]
.
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Conditioning on J, T1, . . . , Tn, using the conditional independence of R1, . . . , Rn given
J, T1, . . . , Tn, using that T1, . . . , Tn are measurable given J, T1, . . . , Tn, and using Equation
(4.2) yields

L(N,T )(y, z) = E
[
e−〈z,T 〉 exp

(
−R0

m∑
i=1

λi,Ja
J
i,0(1− e−yi)

)

×
n∏
l=1

E
[
exp

(
−Rl

m∑
i=1

λi,Ja
J
i,l(1− e−yi)

)∣∣∣∣J, Tl] ]

= E
[
e−〈z,T 〉 exp

(
−R0

m∑
i=1

λi,Ja
J
i,0(1− e−yi)

)

×
n∏
l=1

(
βl

βl +
∑m

i=1 λi,Ja
J
i,l(1− e−yi)

)αlTl]
.

Now consider the Laplace transform of the distribution of the random vector (M,T ) =
(M1, . . . ,Mm, T1, . . . , Tn). Using the definition of M , we obtain for (y, z) ∈ [0,∞)m+n

L(M,T )(y, z) = E
[
exp

(
−
〈
y,
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

Bj,l,h,k

〉)
e−〈z,T 〉

]
.

Partitioning J yields

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉 exp

(
−

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

〈y,Bj,l,h,k〉
)]
.

Using that {Yj,l,h}h∈N and {Bj,l,h,k}h,k∈N are i.i.d. and independent of Pj,l for j ∈ J and
l ∈ {0, . . . , n} and that {Yj,l,h}h∈N are independent of {Bj,l,h,k}h,k∈N gives

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉

n∏
l=0

(
E
[
exp

(
−
Yj,l,1∑
k=1

〈y,Bj,l,1,k〉
)])Pj,l]

=
∑
j∈J

E
[
1{J=j} e−〈z,T 〉

n∏
l=0

(
E
[(
E
[
exp
(
−〈y,Bj,l,1,1〉

)])Yj,l,1])Pj,l].
By Equation (4.7) and by Remark 2.11 we obtain

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉

n∏
l=0

(
E
[( m∑

i=1

pi,j,l e
−yi
)Yj,l,1])Pj,l]

=
∑
j∈J

E
[
1{J=j} e−〈z,T 〉

n∏
l=0

(
GYj,l,1

( m∑
i=1

pi,j,l e
−yi
))Pj,l]

,

where GYj,l,1(z) denotes the probability-generating function of the distribution of Yj,l,1.
Conditioning on J, T1, . . . , Tn, using that T1, . . . , Tn are measurable given J, T1, . . . , Tn and
using the conditional independence of Pj,1, . . . , Pj,n given J, T1, . . . , Tn and the independence
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Chapter 4. Dependent Claim Numbers by Continuous Mixtures

of Pj,0 of J, T1, . . . , Tn for each j ∈ J and using Equations (4.4) and (4.5) provides

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉 exp

(
−R0

m∑
i=1

λi,ja
j
i,0(1−GYj,0,1

( m∑
i=1

pi,j,0 e−yi
)))

×
n∏
l=1

exp

(
αl ln(1− qj,l)Tl

(
1−GYj,l,1

( m∑
i=1

pi,j,l e
−yi
)))]

.

In case qj,l = 0 for some j, l, it follows that ln(1− qj,l) = 0, and we have

exp

(
αl ln(1− qj,l)Tl

(
1−GYj,l,1

( m∑
i=1

pi,j,l e
−yi
)))

= 1.

If qj,l > 0, then apply Equation (4.6) and note that qj,l
∑m

i=1 pi,j,l e
−yi =

∑m
i=1 λi,ja

j
i,l e−yi

βl+
∑m
i=1 λi,ja

j
i,l

,
hence a simplification yields

exp

(
αl ln(1− qj,l)Tl

(
1− ln

(
1− qj,l

∑m
i=1 pi,j,l e

−yi
)

ln(1− qj,l)

))
= exp

(
αlTl

(
ln(1− qj,l)− ln

(
1−

∑m
i=1 λi,ja

j
i,l e
−yi

βl +
∑m

i=1 λi,ja
j
i,l

)))
,

hence, since qj,l = 0 implies
∑m

i=1 λi,ja
j
i,l = 0 and since GYj,0,1(z) = z,

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉 exp

(
−R0

m∑
i=1

λi,ja
j
i,0(1− e−yi)

)

×
n∏
l=1

(
βl

βl +
∑m

i=1 λi,ja
j
i,l(1− e−yi)

)αlTl]
,

which completes the proof. q.e.d.

Remark 4.9. The representation of M in Equation (4.8) could be also written as a random
vector such that

M =
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Sj,l,h,

where {Sj,l,h}h∈N are sequences of i.i.d. random vectors for each j ∈ J and l ∈ {0, . . . , n}
such that with the notation Bj,l,h,k = (B1,j,l,h,k, . . . , Bm,j,l,h,k)

Sj,l,h = (S1,j,l,h, . . . , Sm,j,l,h) =

(Yj,l,h∑
k=1

B1,j,l,h,k, . . . ,

Yj,l,h∑
k=1

Bm,j,l,h,k

)
.

If qj,l > 0, then Example 2.15 shows that Sj,l,1 ∼ MultLog
(
r1,j,l, . . . , rm,j,l

)
with

ri,j,l = qj,lpi,j,l =
λi,ja

j
i,l

βl +
∑m

d=1 λd,ja
j
d,l

, i ∈ {1, . . . ,m}.
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4.1. One Level of Compounding

If qj,l = 0, then Yj,l,1 ∼ δ1, and it holds for the probability-generating function of the
distribution of Sj,l,1 with z ∈ [0, 1]m

GSj,l,1(z) = E
[(

E
[ m∏
i=1

z
Bi,j,l,1
i

])Yj,l,1]
= E

[( m∑
i=1

pi,j,lzi

)Yj,l,1]
=

m∑
i=1

pi,j,lzi,

hence Sj,l,1 ∼ Multinomial(1; p1,j,l, . . . , pm,j,l). The marginal distributions of Sj,l,1 can be
obtained by computing GSj,l,1(1, . . . , 1, zi, 1, . . . , 1) for i ∈ {1, . . . ,m}, and we see that the
marginal distributions have a compound logarithmic distribution, cf. Example 2.15.

Remark 4.10. It should be pointed out that the random variables T1, . . . , Tn need not be
independent. This is crucial for the construction of dependence. For instance we could
let T̃1, . . . , T̃p be independent random variables and T̃0 a non-negative constant. Define
another random matrix B =

∑
k∈K 1{K=k}Bk with K 6= ∅ an arbitrary finite set and

Bk ∈ [0,∞)n×(p+1) for k ∈ K and K a K-valued random variable. Then let (T1, . . . , Tn)> =
B(T̃0, . . . , T̃p)

>.

Remark 4.11. This approach also allows a construction with both positive and negative
correlations. Assume that E[Tl] <∞ for each l ∈ {1, . . . , n}. Then the covariance between
two default cause intensities Λi and Λk for i, k ∈ {1, . . . ,m} with i 6= k is given by Equation
(3.11)

cov(Λi,Λk) =
n∑

l,p=1

E
[
aJi,la

J
k,l

]
cov(Rl, Rp) +

n∑
l,p=0

cov
(
aJi,l, a

J
k,p

)
E[Rl] E[Rp]

because R1, . . . , Rn are not independent. We have E[Rl] = E[E[Rl |Tl] ] = E
[
αlTl
βl

]
for

l ∈ {1, . . . , n}. Further for l, p ∈ {1, . . . , n}

cov(Rl, Rp) = E[ cov(Rl, Rp |T1, . . . , Tn) ] + cov(E[Rl |Tl] , E[Rp |Tp])
= cov(E[Rl |Tl] , E[Rp |Tp])

holds because cov(Rl, Rp |T1, . . . , Tn) = 0 by the conditional independence of Rl, Rp given

T1, . . . , Tn. Since E[Rl |Tl] a.s.
= αlTl

βl
for l ∈ {1, . . . , n}, we have

cov(E[Rl |Tl] , E[Rp |Tp]) = cov
(αl
βl
Tl,

αp
βp
Tp

)
=
αlαp
βlβp

cov(Tl, Tp) .

In order to obtain negative correlation we take an antithetic choice on another level as in
Remark 3.10. Consider the following situation: Let |J | = 1 and A ∈ [0,∞)2×2 the identity
matrix such that Λi = Ri for i = 1, 2. Let T ∼ Beta(a, b) with a, b > 0. Define

T1 = T and T2 = 1− T. (4.12)

Since the mixing random variable needs to be strictly positive, this is an appropriate choice
because the beta distribution meets this requirement in our definition. Let L(R1 |T1)

a.s.
=

Gamma(α1T1, β1) and L(R2 |T2)
a.s.
= Gamma(α2T2, β2). Hence the covariance between Λ1

and Λ2 can be computed as follows

cov(R1, R2) =
α1α2

β1β2
cov(T1, T2) ,
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Chapter 4. Dependent Claim Numbers by Continuous Mixtures

and

cov(T1, T2) = E[T (1− T )] − E[T ] E[1− T ]

= E[T ] − E
[
T 2
]
− E[T ] + E[T ]2

= −Var(T ) .

Remark 4.13. We can use the representation of M in Lemma 4.1 for the computation of the
distribution of the random sum S if T1, . . . , Tn all have a beta distribution. Then, using the
notation Bj,l,h,k = (B1,j,l,h,k, . . . , Bm,j,l,h,k), we have

S =
m∑
i=1

Ni∑
h=1

Xi,h
d
=
∑
j∈J

1{J=1}

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

m∑
i=1

Bi,j,l,h,kXi,l,h,k,

where for each l ∈ {0, . . . , n} and i ∈ {1, . . . ,m} the sequences {Xi,l,h,k}h,k∈N are independent
and identical copies of {Xi,h}h∈N. The distribution of Pj,l for l ∈ {1, . . . , n} and j ∈ J is
a Poisson-beta distribution, also known as a general Waring distribution. Hesselager [32,
Theorem 1, Example 3] provides a recursive algorithm for a compound distribution with
such a counting distribution. Finally an n-fold convolution becomes necessary. In this
case T1, . . . , Tn should be independent. Applying Remark 4.10 it is possible to realize a
dependence scenario as in Equation (4.12) with the following parameters

(T1, T2)> =
(0 1

1 −1

)
(1, T )>.

For our next result it is necessary to introduce the notation of the extended negative
binomial distribution, cf. also [40, p. 227]:

Definition 4.14. Let k ∈ N, 0 < p ≤ 1, and α ∈ (−k,−k + 1). A random variable N has
an extended negative binomial distribution if

P[N = n] = 0 for n ∈ {0, 1, . . . , k − 1}

and

P[N = n] =

(
n+α−1

n

)
pn

(1− p)−α −∑k−1
j=0

(
j+α−1

j

)
pj

for n ∈ N with n ≥ k,

where the generalized binomial coefficient is given by(
n+ α− 1

n

)
=

Γ(n+ α)

n! Γ(α)
= (−1)n

(−α
n

)
.

We denote the distribution of N by ExtNegBin(α, k, p).

Then the probability-generating function of this distribution for the important case
k = 1 is given by

GN (z) =
1− (1− pz)−α
1− (1− p)−α for |z| ≤ 1

p
,

cf. e.g. [21, Equation (2.3)] with an adjustment to our notation.
Thus we can formulate a similar but different result to Lemma 4.1. Here we consider

τ -tempered α-stable distributions as distributions for the default cause intensities.
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4.1. One Level of Compounding

Lemma 4.15. Let Assumption 2.18 be satisfied. Let T1, . . . , Tn be non-negative random
variables and T0 a non-negative constant and σl > 0, τl ≥ 0 and αl ∈ (0, 1) for each
l ∈ {1, . . . , n} and λi,j ≥ 0 for each i ∈ {1, . . . ,m} and j ∈ J . Then we define the two
Nm0 -valued random vectors N and M as follows:

(a) Let R?0 be a non-negative constant and let R?1, . . . , R
?
n be random variables with τ -

tempered α-stable distributions, conditionally independent given J, T1, . . . , Tn and let
their parameters be random, i.e. for each l ∈ {1, . . . , n}

L(R?l |J, T1, . . . , Tn)
a.s.
= L(R?l |Tl)

a.s.
= Fαl,σl,τlTl,0. (4.16)

Let Rl = R?l Tl for l ∈ {0, . . . , n}. Let further N = (N1, . . . , Nm) be a random vector
with conditionally independent components given J,R?1, . . . , R

?
n, T1, . . . , Tn such that for

i ∈ {1, . . . ,m}

L(Ni |J,R?1, . . . , R?n, T1, . . . , Tn)
a.s.
= L(Ni |J,Λi) a.s.

= Poisson(λi,JΛi) (4.17)

with (Λ1, . . . ,Λm) as in Assumption 2.18.

(b) For each j ∈ J consider random variables Pj,1, . . . , Pj,n which are conditionally inde-
pendent given J, T1, . . . , Tn such that for each l ∈ {1, . . . , n} and j ∈ J

L(Pj,l |J, T1, . . . , Tn)
a.s.
= L(Pj,l |J, Tl) a.s.

= Poisson
(
δj,lT

αl
l

)
, (4.18)

where δj,l = γαl,σl((
∑m

i=1 λi,ja
j
i,l+τl)

αl−ταll ) with γαl,σl =
σ
αl
l

cos(αlπ/2) , and for each j ∈ J
a random variable Pj,0 which is independent of J, T1, . . . , Tn such that

L(Pj,0) = Poisson

( m∑
i=1

λi,ja
j
i,0R

?
0T0

)
. (4.19)

For each j ∈ J and l ∈ {0, . . . , n} let further {Yj,l,h}h∈N be (n + 1)|J | independent
sequences independent of (Pj,0, . . . , Pj,n), consisting of i.i.d. random variables such that

Yj,l,1 ∼
{

ExtNegBin(−αl, 1, qj,l) if qj,l > 0,

δ0 if qj,l = 0,
(4.20)

for l ∈ {1, . . . , n} and where

qj,l =

∑m
i=1 λi,ja

j
i,l∑m

i=1 λi,ja
j
i,l + τl

,

and Yj,0,1 ∼ δ1, and we use the convention 0/0 := 0. For each j ∈ J and l ∈ {0, . . . , n}
let {Bj,l,h,k}h,k∈N be (n + 1)|J | independent sequences independent of {(Yj,0,h, . . . ,
Yj,n,h)}h∈N and (Pj,0, . . . , Pj,n) for j ∈ J , consisting of i.i.d. random vectors such that

Bj,l,1,1 ∼ Multinomial(1; p1,j,l, . . . , pm,j,l) , (4.21)

where pi,j,l ∈ [0, 1] with
∑m

i=1 pi,j,l = 1 satisfies pi,j,l
∑m

d=1 λd,ja
j
d,l = λi,ja

j
i,l. Define the

random vector M by

M =
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

Bj,l,h,k.
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Then (M,T1, . . . , Tn) and (N,T1, . . . , Tn) have the same distribution.

Proof. For the proof we apply Remark 2.1. Let T = (T1, . . . , Tn). First, we compute the
Laplace transform of the distribution of (N,T ) = (N,T1, . . . , Tn) for (y, z) ∈ [0,∞)m+n.
Since N1, . . . , Nm are conditionally independent given J,R?1, . . . , R

?
n, T1, . . . , Tn and since

T1, . . . , Tn are measurable given J,R?1, . . . , R
?
n, T1, . . . , Tn and because of Equation (4.17),

we obtain

L(N,T )(y, z) = E
[
e−〈y,N〉 e−〈z,T 〉

]
= E

[
e−〈z,T 〉

m∏
i=1

E
[
e−yiNi

∣∣J,Λi] ]

= E
[
e−〈z,T 〉

m∏
i=1

exp
(
−λi,JΛi(1− e−yi)

)]
.

Using (Λ1, . . . ,Λm)> = AJ(R0, . . . , Rn)> and the definition of AJ and R0, . . . , Rn yields

L(N,T )(y, z) = E
[
e−〈z,T 〉

m∏
i=1

exp

(
−λi,J

n∑
l=0

aJi,lR
?
l Tl(1− e−yi)

)]

= E
[
e−〈z,T 〉

n∏
l=0

exp

(
−

m∑
i=1

λi,Ja
J
i,lR

?
l Tl(1− e−yi)

)]
.

Conditioning on J, T1, . . . , Tn, using the conditional independence of R?1, . . . , R
?
n given

J, T1, . . . , Tn and that T1, . . . , Tn are measurable given J, T1, . . . , Tn and Equation (4.16)
(and hence [21, Equation (5.25)]) provides

L(N,T )(y, z) = E
[
e−〈z,T 〉 exp

(
−

m∑
i=1

λi,Ja
J
i,0R

?
0T0(1− e−yi)

)

×
n∏
l=1

E
[
exp

(
−R?l Tl

m∑
i=1

λi,Ja
J
i,l(1− e−yi)

)∣∣∣∣J, Tl]]

= E
[
e−〈z,T 〉 exp

(
−

m∑
i=1

λi,Ja
J
i,0R

?
0T0(1− e−yi)

)

×
n∏
l=1

exp

(
−γαl,σl

(
Tαll

( m∑
i=1

λi,Ja
J
i,l(1− e−yi) + τl

)αl
− (Tlτl)

αl

))]
.

Now consider the Laplace transform of the distribution of the random vector (M,T ) =
(M1, . . . ,Mm, T1, . . . , Tn). Using the definition of M for (y, z) ∈ [0,∞)m+n we observe

L(M,T )(y, z) = E
[
exp

(
−
〈
y,
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

Bj,l,h,k

〉)
e−〈z,T 〉

]
.

Partitioning J yields

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉 exp

(
−

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

〈y,Bj,l,h,k〉
)]
.
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Using that {Yj,l,h}h∈N and {Bj,l,h,k}h,k∈N are i.i.d. and independent of (Pj,0, . . . , Pj,n) for
j ∈ J and l ∈ {0, . . . , n} and that {Yj,l,h}h∈N are independent of {Bj,l,h,k}h,k∈N, we observe

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉

n∏
l=0

(
E
[
exp

(
−
Yj,l,1∑
k=1

〈y,Bj,l,1,k〉
)])Pj,l]

=
∑
j∈J

E
[
1{J=j} e−〈z,T 〉

n∏
l=0

(
E
[(
E
[
exp
(
−〈y,Bj,l,1,1〉

)])Yj,l,1])Pj,l].
By Equation (4.21) and due to Remark 2.11 we obtain

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉

n∏
l=0

(
E
[( m∑

i=1

pi,j,l e
−yi
)Yj,l,1])Pj,l]

.

Conditioning on J, T1, . . . , Tn and using the conditional independence of Pj,1, . . . , Pj,n given
J, T1, . . . , Tn and the independence of Pj,0 of J, T1, . . . , Tn for each j ∈ J and using Equations
(4.18) and (4.19) yields

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉 exp

(
−

m∑
i=1

λi,ja
j
i,0R

?
0T0(1− e−yi)

)

×
n∏
l=1

exp

(
−δj,lTαll

(
1−GYj,l,1

( m∑
i=1

pi,j,l e
−yi
)))]

,

where GYj,l,1(z) denotes the probability-generating function of the distribution of Yj,l,1. If
qj,l = 0 for some j, l, then by Equation (4.20) GYj,l,1(z) = 1 and hence

exp

(
−δj,lTαll

(
1−GYj,l,1

( m∑
i=1

pi,j,l e
−yi
)))

= 1.

If qj,l > 0, then by Equation (4.20) and by qj,l
∑m

i=1 pi,j,l e
−yi =

∑m
i=1 λi,ja

j
i,l e−yi∑m

i=1 λi,ja
j
i,l+τl

, we have

exp

(
−δj,lTαll

(1−
(

τl∑m
i=1 λi,ja

j
i,l+τl

)αl − 1 +
(

1−
∑m
i=1 λi,ja

j
i,l e−yi∑m

i=1 λi,ja
j
i,l+τl

)αl
1−

(
τl∑m

i=1 λi,ja
j
i,l+τl

)αl ))

= exp

(
−γαl,σlTαll

((
τl +

m∑
i=1

λi,ja
j
i,l

)αl
− ταll

)−ταll + (τl +
∑m

i=1 λi,ja
j
i,l(1− e−yi))αl

(
∑m

i=1 λi,ja
j
i,l + τl)αl − ταll

)
,

hence, since qj,l = 0 implies
∑m

i=1 λi,ja
j
i,l = 0,

L(M,T )(y, z) =
∑
j∈J

E
[
1{J=j} e−〈z,T 〉 exp

(
−

m∑
i=1

λi,ja
j
i,0R

?
0T0(1− e−yi)

)

×
n∏
l=0

exp

(
−γαl,σlTαll

((
τl +

m∑
i=1

λi,ja
j
i,l(1− e−yi)

)αl
− ταll

))]
.

q.e.d.
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Unfortunately, due to the parameter αl ∈ (0, 1) for l ∈ {1, . . . , n}, it is not possible
to choose, as before, the random variables Tl with a gamma distribution or a τ -tempered
α-stable distribution. By [60, Example VI.12.8] Tαll is not even infinitely divisible if Tl
is gamma-distributed. It is only known that powers of τ -tempered α-stable distributed
random variables Tαll (then the distribution of Tl is by [60, Proposition VI.5.7] and [60,
Proposition VI.5.26] a generalized gamma convolution) are infinitely divisible if αl > 1, cf. [60,
Theorem VI.5.18] and [60, Proposition VI.5.19(i)]. If αl ∈ (0, 1), then Tαll is only infinitely
divisible if the corresponding characteristic function has no zeros (cf. [45, Theorem 8.4.1]).
Hence we need to assume that Tαll has a gamma distribution or a τ -tempered α-stable
distribution.

Remark 4.22. In Lemma 4.15 it is not possible to find a representation for the distribution
ExtNegBin(α, k, p) with k > 1 since the extended negative binomial distribution is a
truncated distribution and hence takes values greater than zero for n ∈ N with n ≥ k. But
Ni has a Poisson mixture distribution for i ∈ {1, . . . ,m} and can take the value 1. The
same holds for the extended logarithmic distribution.

4.2 Several Levels of Compounding

In this section we also construct dependence between default cause intensities by choosing
a parameter of their distributions commonly and stochastically. But now we engage in
an iterative mixture of distributions and the respective compound distributions that have
the same law. We present two basic results with a general alternative representation. The
first lemma is based on the fact that a Poisson-gamma mixture distribution is a negative
binomial distribution.

Lemma 4.23. Let M and N be Rm-valued random vectors and let λ > 0. Let T be a
real-valued random variable and assume that the characteristic function of the conditional
distribution of N given T satisfies

ϕN |T (s)
a.s.
= exp

(
−λT (1− ϕM (s))

)
, s ∈ Rm, (4.24)

where ϕM (s) denotes the characteristic function of the distribution of M . Given α > 0 and
p ∈ (0, 1), assume that T ∼ Gamma

(
α, λ1−p

p

)
and L ∼ NegBin(α, p). Define

M ′ =

L∑
l=1

M̃l,

where {M̃l}l∈N is a sequence independent of L, consisting of i.i.d. Rm-valued random vectors
with L

(
M̃1

)
= L(M). Then M ′ and N are equal in distribution.

Proof. For the proof we apply Remark 2.1. Consider first the Laplace transform of the
distribution of the random vector N = (N1, . . . , Nm). Condition on T and use Equation
(4.24) with s ∈ Rm

ϕN (s) = E
[ m∏
i=1

ei siNi

]
= E

[
E
[ m∏
i=1

ei siNi

∣∣∣∣T] ] = E
[
exp
(
−λT (1− ϕM (s))

)]
.

By the distribution of T and canceling λ/p we observe

ϕN (s) =

(
λ1−p

p

λ1−p
p + λ(1− ϕM (s))

)α
=
( 1− p

1− pϕM (s)

)α
.
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4.2. Several Levels of Compounding

The characteristic function of the distribution of M ′, where we use the notation M̃l =
(M̃1,l, . . . , M̃m,l), is computed as follows for s ∈ Rm

ϕM ′(s) = E
[ m∏
i=1

ei si
∑L
l=1 M̃i,l

]
= E

[
exp

( L∑
l=1

m∑
i=1

M̃i,l i si

)]
.

The sequence {M̃l}l∈N is independent of L and i.i.d., and by the distribution of L we have

ϕM ′(s) = E
[(

E
[
exp

( m∑
i=1

M̃i,1 i si

)])L]
=
( 1− p

1− pϕM (s)

)α
,

which completes the proof. q.e.d.

A further iteration is given in the next lemma:

Lemma 4.25. Let M and N be Rm-valued random vectors and let λ > 0. Let T be a
real-valued random variable and let T ′ be a strictly positive random variable. Assume that
the characteristic function of the conditional distribution of N given (T, T ′) satisfies

ϕN |(T,T ′)(s)
a.s.
= exp

(
−λT (1− ϕM (s))

)
, s ∈ Rm, (4.26)

where ϕM (s) denotes the characteristic function of the distribution of M . Let q ∈ (0, 1).
Assume that the conditional distribution of T given T ′ satisfies

L
(
T
∣∣T ′) a.s.

= Gamma
( −T ′

ln(1− q) , λ
1− q
q

)
. (4.27)

Let L ∼ Log(q). Let {M̃l}l∈N be a sequence independent of L, consisting of Rm-valued
i.i.d. random vectors with L

(
M̃1

)
= L(M). Define

M ′ =

L∑
l=1

M̃l.

Then
ϕN |T ′(s)

a.s.
= exp

(
−T ′(1− ϕM ′(s))

)
, s ∈ Rm.

Proof. Let us first consider the characteristic function of the distribution of the random
vector M ′ with s ∈ Rm

ϕM ′(s) = E
[ m∏
i=1

ei si
∑L
l=1 M̃i,l

]
= E

[
exp

( L∑
l=1

m∑
i=1

M̃i,l i si

)]
.

The sequence {M̃l}l∈N is i.i.d. and independent of L, hence by the distribution of L we
obtain

ϕM ′(s) = E
[(

E
[
exp

( m∑
i=1

M̃i,1 i si

)])L]
=

ln(1− qϕM (s))

ln(1− q) . (4.28)

The characteristic function of the conditional distribution of N = (N1, . . . , Nm) given T ′

for s ∈ Rm is computed as follows: Condition on (T, T ′) and use Equation (4.26)

ϕN |T ′(s)
a.s.
= E

[ m∏
i=1

ei siNi

∣∣∣∣T ′] a.s.
= E

[
E
[ m∏
i=1

ei siNi

∣∣∣∣T, T ′]∣∣∣∣T ′]
a.s.
= E

[
exp
(
−λT (1− ϕM (s))

)∣∣T ′].
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Using Equation (4.27) and canceling λ/q

ϕN |T ′(s)
a.s.
=

(
λ1−q

q

λ1−q
q + λ(1− ϕM (s))

) −T ′
ln(1−q) a.s.

=
( 1− q

1− qϕM (s)

) −T ′
ln(1−q)

.

Rewriting this as an exponential term and inserting Equation (4.28)

ϕN |T ′(s)
a.s.
= exp

( −T ′
ln(1− q) ln

( 1− q
1− qϕM (s)

))
a.s.
= exp

(
−T ′

( ln(1− q)− ln(1− qϕM (s))

ln(1− q)
))

= exp
(
−T ′(1− ϕM ′(s))

)
,

which completes the proof. q.e.d.

The characteristic function of the distribution of M opens a wide variety of distributions
from which to choose. We give a few examples:

Example 4.29. (a) It is possible to consider several lines of business and thus let M be
multivariate, e.g. M ∼ Multinomial(n; p1, . . . , pm) with n ∈ N.

(b) If M ≡ 1, the characteristic function ϕN |T (s) in Equations (4.24) and (4.26) turns out
to be the characteristic function of a Poisson mixture distribution a.s.

Now we consider a special case with iterated continuous mixtures. We apply the results
of the Lemmata 4.23 and 4.25. Lemma 4.23 describes the transformation in the first step of
iteration, and Lemma 4.25 indicates how to continue this iteration. This provides us with
iterated compound sums for random claim numbers, which allows for the application of
Panjer’s recursion.

For reasons of completeness and since it is not readily clear how the transformation with
M in N works, we give the complete proof of an application of these lemmata.

Corollary 4.30. Fix k,m ∈ N and α > 0 and p, p1, . . . , pm, q2, . . . , qk ∈ (0, 1). Let
l1, . . . , lm ∈ (0, 1) and l1 = 1 if and only if m = 1 with

∑m
i=1 li = 1. Then we define two

Nm0 -valued random vectors N and M as follows:

(a) Define M = (M1, . . . ,Mm) by

Mi =
M1∑
j1=1

Mk
j1∑

j2=1

. . .

M2
j1,...,jk−1∑
jk=1

Bi,j1,...,jkKi,j1,...,jk , i ∈ {1, . . . ,m},

where
M1 ∼ NegBin(α, p) (4.31)

and for each j ∈ {2, . . . , k} let {M j
j1,...,jk−j+1

}j1,...,jk−j+1∈N be independent collections of
i.i.d. random variables such that

M j
1,...,1 ∼ Log(qj) , j ∈ {2, . . . , k},

and let {(B1,j1,...,jk , . . . , Bm,j1,...,jk)}j1,...,jk∈N be a collection of i.i.d. random vectors such
that

B1,...,1 ∼ Multinomial(1; l1, . . . , lm) ,
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4.2. Several Levels of Compounding

and let {(K1,j1,...,jk , . . . ,Km,j1,...,jk)}j1,...,jk∈N be a collection of i.i.d. random vectors with

Ki,1,...,1 ∼ Log(pi) , i ∈ {1, . . . ,m}.

Let all these random variables be independent of each other.

(b) Further, let the components of N = (N1, . . . , Nm) be conditionally independent given
Λ1, . . . ,Λm, T1 such that for each i ∈ {1, . . . ,m}

L(Ni |Λ1, . . . ,Λm, T1)
a.s.
= L(Ni |Λi, T1)

a.s.
= Poisson(piΛi) , (4.32)

where

L(Λi |T1)
a.s.
= Gamma

( −li
ln(1− pi)

T1, 1− pi
)
, (4.33)

L(Tj−1 |Tj) a.s.
= Gamma

( −Tj
ln(1− qj)

,
1− qj
qj

)
, j ∈ {2, . . . , k}, (4.34)

L(Tk)
a.s.
= Gamma

(
α,

1− p
p

)
, (4.35)

and Λ1, . . . ,Λm are conditionally independent given T1.

Then the random vectors M and N have the same distribution.

Proof. We apply Remark 2.1. We compute the characteristic function of the conditional
distribution of N given T1. Conditioning on Λ1, . . . ,Λm, T1 and using the conditional
independence of N1, . . . , Nm given Λ1, . . . ,Λm, T1 and Equation (4.32) and the conditional
independence of Λ1, . . . ,Λm given T1 for s ∈ Rm gives

ϕN |T1
(s)

a.s.
= E

[ m∏
i=1

E
[
ei siNi

∣∣Λi, T1

] ∣∣∣∣T1

]
a.s.
=

m∏
i=1

E
[
exp
(
−piΛi(1− ei si)

)
|T1

]
.

Using the conditional distribution of Λ1, . . . ,Λm given T1 given by Equation (4.33) and
rewriting the characteristic function as an exponential term yields

ϕN |T1
(s)

a.s.
=

m∏
i=1

( 1− pi
1− pi + pi(1− ei si)

) −li
ln(1−pi)

T1

a.s.
= exp

(
−T1

m∑
i=1

li
ln(1− pi)

ln
( 1− pi

1− pi + pi(1− ei si)

))
.

Rewriting the logarithm and using
∑m

i=1 li = 1 provides

ϕN |T1
(s)

a.s.
= exp

(
−T1

m∑
i=1

li
ln(1− pi)

(
ln(1− pi)− ln(1− pi ei si)

))
a.s.
= exp

(
−T1

(
1−

m∑
i=1

ln(1− pi ei si)

ln(1− pi)
li

))
.

Note that by the theorem of total probability and the independence of {Bi,j}j∈N and
{Ki,j}j∈N for i ∈ {1, . . . ,m} it follows by the distribution of Ki,1 and Bi,1 that for the char-
acteristic function of the distribution of the random vector BK1 = (B1,1K1,1, . . . , Bm,1Km,1)
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with s ∈ Rm

E
[
exp

( m∑
i=1

Bi,1Ki,1 i si

)]
=

m∑
l=1

E
[
exp

( m∑
i=1

Bi,1Ki,1 i si

)∣∣∣∣Bl,1 = 1

]
P[Bl,1 = 1]

=

m∑
i=1

ln(1− pi ei si)

ln(1− pi)
li

holds. Hence

ϕN |T1
(s)

a.s.
= exp

(
−T1(1− ϕBK1(s))

)
. (4.36)

Let now k = 1 and M = (M1, . . . ,Mm) with Mi =
∑M1

j1=1Bi,j1Ki,j1 for i ∈ {1, . . . ,m}.
Using Equation (4.35), an application of Lemma 4.23 with λ = 1 immediately shows that
M and N have the same distribution.

We now prove the corollary for k ≥ 2. Let M and N be in the demanded form. Equation
(4.36) still holds and we apply Lemma 4.25 k − 1 times with λ = 1 using Equation (4.34).
Thus we obtain

ϕN |Tk(s)
a.s.
= exp(−Tk(1− ϕH(s))),

where {Hj1}j1∈N = {(H1,j1 , . . . ,Hm,j1)}j1∈N is a collection of i.i.d. random vectors such that

Hi,j1 =

Mk
1∑

j2=1

. . .

M2
1,...,jk−1∑
jk=1

Bi,1,...,jkKi,1,...,jk , i ∈ {1, . . . ,m}.

Then apply Lemma 4.23 with λ = 1 using Equation (4.35) and setting Mi =
∑M1

j1=1Hi,j1 for
i ∈ {1, . . . ,m}, hence M and N have the same distribution. q.e.d.

Example 4.37. This corollary includes the result of Giese [23, Section 10.2] as a special
case. Note that we use the the term mixture where Giese uses compound.

Again, Giese chooses the default cause intensities to be gamma-distributed. By mixing
m independent default cause intensities Λ1, . . . ,Λm with a common gamma-distributed
random variable, he constructs another dependence structure. This background variable is
denoted by T and is Gamma

(
1
σ̂2 , σ̂

2
)
-distributed. According to his calibration condition [23,

Equation (10.2)] we have σ̂2 ∈ (0, 1). Hence Giese obtains the following mixture distribution

L(Λi |T)
a.s.
= Gamma(αiT, βi) , i ∈ {1, . . . ,m}.

Note that Λ1, . . . ,Λm are independent given T . Using calibration condition [23, Equa-
tion (10.12)] we set βi ∈ (0, 1) for i ∈ {1, . . . ,m}. By [23, Equation (10.10)] with an
adjustment to our parameterization of the gamma distribution we have αi = βi because in
the Credit Risk+ model the mean of the default cause intensity Λi is 1 for i ∈ {1, . . . ,m}.
In order to fit into our framework, we should consider claim numbers N1, . . . , Nm such that

L(Ni |Λ1, . . . ,Λm)
a.s.
= L(Ni |Λi) a.s.

= Poisson((1− βi)Λi) .

Since these default cause intensities and hence the claim numbers are no longer indepen-
dent, we need to find an alternative representation with independent components but with
the same distribution in order to apply Panjer’s recursion.
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This problem can be easily solved since it is a straightforward application of Corollary
4.30 in the case k = 1: We set

Mi =
M1∑
j=1

Bi,jKi,j , i ∈ {1, . . . ,m},

where M1 ∼ NegBin
(

1
σ̂2 ,

1
σ̂2+1

)
and {Ki,j}j∈N are m independent sequences of i.i.d. random

variables with Ki,1 ∼ Log(1− βi) for i ∈ {1, . . . ,m}, and {Bj}j∈N is a sequence of i.i.d.
random vectors such that B1 ∼ Multinomial(1; l1, . . . , lm). The parameters l1, . . . , lm should
be determined by Equation (4.33) under the constraints l1 + · · · + lm = 1 and E[Λi] = 1.
If a solution does not exist, the condition E[Λi] = 1 should be released. Then the random
vectors N and M have the same distribution. Thus the dependence structure between the
marginal random variables (as projections) is preserved. The distribution of the sum of the
random claim numbers is also the same since addition is a continuous map.

Thus we can apply Panjer’s recursion in order to calculate the distribution of the random
sum

S =

m∑
i=1

Ni∑
h=1

Xi,h
d
=

M1∑
j=1

m∑
i=1

Bi,jKi,j∑
h=1

Xi,h,

where {Xi,h}h∈N are sequences of i.i.d. random variables independent of the random variable
M and the sequence {Ki,j}j∈N for each i ∈ {1, . . . ,m} which are in Panjer(a, b, k) classes.
The calculation can be done by an iterated application of Panjer’s recursion, cf. Algorithm
5.15.
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Chapter 5

Generalizations of Recursions
for Compound Distributions

In this chapter we present a generalization of Panjer’s recursion. The claim sizes may depend
on each other and may be multivariate. The distribution of the claim numbers may be
linked by several distributions and are only in special cases in Panjer(a, b, k) classes. We
present a generalization in the same manner of de Pril’s recursion. We also give algorithms
that show how Panjer’s recursion is applicable in our model with the dependence structures
given in Chapters 3 and 4. It might be suggested that the evaluation of the distribution of
Equation (1.1) requires an n-fold convolution, but our algorithm, based on the ideas of [21,
Section 5.5], circumvents these convolutions by an iterated application of Panjer’s recursion
and a convex combination. In the course of the algorithm we use the fact that a negative
binomial distribution is a compound Poisson distribution. The convex combination uses the
fact that the convolution of compound Poisson distributions provides another compound
Poisson distribution. In the introduction of this part of the thesis we cite further works on
generalizations of Panjer’s recursion.

5.1 A Generalization of Panjer’s Recursion and Algorithms

It is possible to relax the assumption of independent and identically distributed claim sizes.
The claim sizes may be considered as an infinite exchangeable sequence of random variables.
A basic approach to this idea can be found in [28], although the author does not describe the
recursion formula in detail. We only demand that the claim sizes are i.i.d. given a certain
σ-algebra F . Thus we prove a generalization of Panjer’s recursion, where the claim sizes are
allowed to depend on each other by a dependence structure that is not further specified. In
addition, we let the claim sizes be multivariate. The distribution of the claim numbers is
linked by Equation (5.2). We slightly extend the notation of [61], cf. also [57]. For this, we
use the following notation: if j ∈ Nd0, then we write 0 < j if 0 < jr for each r ∈ {1, . . . , d},
and we write 0 ≤ j if 0 ≤ jr for each r ∈ {1, . . . , d}.

Theorem 5.1. Fix l ∈ N. Let {Xh}h∈N be Nd0-valued random vectors and let F be a
σ-algebra such that {Xh}h∈N given F is a sequence of i.i.d. random vectors. Let {qn}n∈N0

and {q̃i,n}n∈N0 denote the conditional probability distributions given F of N0-valued random
variables N and Ñi for i ∈ {1, . . . , l}, respectively, which are conditionally independent
of {Xh}h∈N given F . Let {pn}n∈Nd0 and {p̃i,n}n∈Nd0 denote the conditional probability
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distributions given F of the random sums S = X1 + · · ·+XN and S̃(i) = X1 + · · ·+XÑi
for i ∈ {1, . . . , l}, respectively.

(a) Assume that there exist k ∈ N0 and R-valued F-measurable functions a1, . . . , al, b1, . . . ,
bl such that

qn
a.s.
=

l∑
i=1

(
ai +

bi
n

)
q̃i,n−i for all n ∈ N with n ≥ k + l (5.2)

and all the probabilities given F not used on the right side of Equation (5.2) are zero,
i.e.

q̃i,0
a.s.
= . . .

a.s.
= q̃i,k+l−i−1

a.s.
= 0 for all i ∈ {1, . . . ,min{l, k + l − 1}}. (5.3)

Then
p0

a.s.
= E

[(
P[X1 = 0 |F ]

)N ∣∣F]
with the convention 00 := 1 and

pn
a.s.
=

k+l−1∑
m=1

P[Sm = n |F ] qm +
l∑

i=1

∑
0≤j≤n
j∈Nd0

(
ai +

bi〈cn, j〉
i〈cn, n〉

)
P[Si = j |F ] p̃i,n−j (5.4)

for all n ∈ Nd0 \ {0} and cn an Rd-valued F-measurable function with 〈cn, n〉 6= 0 a.s.
and Si = X1 + · · ·+Xi.

(b) Assume that there exist F-measurable functions ν1, . . . , νl ∈ [0, 1] a.s. with ν1+· · ·+νl ≤
1 a.s. such that qn

a.s.
=
∑l

i=1 νiq̃i,n for all n ∈ N. Then pn
a.s.
=
∑l

i=1 νip̃i,n for all
n ∈ Nd0 \ {0}.

Proof. The proof is an adaptation of the proofs of [21, Theorem 4.5] which contributes the
claim numbers being linked by Equation (5.2) and a multivariate Panjer recursion given
in [61, Theorem 1]. The idea of the dependence between the claim sizes has already been
considered in [28].

In order to be precise we should also distinguish between a zero-random variable and
a set where the random variable is zero. For reasons of readability this is omitted. Since
{Xh}h∈N and N are conditionally independent given F and since {Xh}h∈N given F is a
sequence of i.i.d. random vectors, we obtain

P[S = 0 |F ]
a.s.
= P[N = 0 |F ] +

∞∑
i=1

P[X1 = 0, . . . , Xi = 0 |F ] P[N = i |F ]

a.s.
= P[N = 0 |F ] +

∞∑
i=1

P[X1 = 0 |F ]i P[N = i |F ]
a.s.
= E

[(
P[X1 = 0 |F ]

)N ∣∣F].
Let now n ∈ Nd0 \ {0}. For fixed i ∈ {1, . . . , l} and for every m ∈ N with m ≥ i let

Sm = X1 + · · ·+Xm = Sm−i + Si,m with Si,m = Xm−i+1 + · · ·+Xm. Since {Xh}h∈N given
F are i.i.d., we obtain

1{Sm=n}〈cn, n〉 a.s.
= E

[
〈cn, Sm〉1{Sm=n}

∣∣F] a.s.
=

m∑
h=1

E
[
〈cn, Xh〉1{Sm=n}

∣∣F]
a.s.
= m E

[
〈cn, X1〉1{Sm=n}

∣∣F] a.s.
= m E

[〈cn, Si,m〉
i

1{Sm=n}

∣∣∣F].
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Hence after taking the conditional expected value given F , we obtain

P[Sm = n |F ]
(
ai +

bi
m

)
a.s.
= E

[
ai +

bi〈cn, Si,m〉
i〈cn, n〉

1{Sm=n}

∣∣∣F]
a.s.
=

∑
0≤j≤n
j∈Nd0

(
ai +

bi〈cn, j〉
i〈cn, n〉

)
P[Si,m = j, Sm = n |F ]. (5.5)

For every m ≥ i the sums Sm−i and Si,m are conditionally independent given F since
X1, . . . , Xm are conditionally independent given F . By an analogous argument Si,m and Si
have the same distribution given F because both Si,m and Si have i summands, hence

P[Si,m = j, Sm = n |F ]
a.s.
= P[Si,m = j, Sm−i = n− j |F ]
a.s.
= P[Si = j |F ] P[Sm−i = n− j |F ]. (5.6)

Now we are prepared for the actual proof. Applying the conditional monotone convergence
theorem and using the conditional independence of Sm and N given F for every m ∈ N
yields

P[S = n |F ]
a.s.
=
∑
m∈N

P[Sm = n,N = m |F ]
a.s.
=

k+l−1∑
m=1

P[Sm = n |F ] qm +An, (5.7)

where the abbreviation An can be rewritten using Equation (5.2)

An :=
∞∑

m=k+l

P[Sm = n |F ] qm
a.s.
=

∞∑
m=k+l

l∑
i=1

P[Sm = n |F ]
(
ai +

bi
m

)
q̃i,m−i.

Inserting Equation (5.6) into Equation (5.5) and then into the above equation, we get

An
a.s.
=

∞∑
m=k+l

l∑
i=1

∑
0≤j≤n
j∈Nd0

(
ai +

bi〈cn, j〉
i〈cn, n〉

)
P[Si = j |F ] P[Sm−i = n− j |F ] q̃i,m−i

a.s.
=

l∑
i=1

∑
0≤j≤n
j∈Nd0

(
ai +

bi〈cn, j〉
i〈cn, n〉

)
P[Si = j |F ]

∞∑
m=k+l

P[Sm−i = n− j |F ] q̃i,m−i,

where the interchange of the summations is admissible because the series in the second line
converge for every i ∈ {1, . . . , l} and j ∈ Nd0 with 0 ≤ j ≤ n. This holds as follows: due to
Equation (5.3) and an index shift and by the conditional independence of {Xh}h∈N and N
given F

∞∑
m=k+l

P[Sm−i = n− j |F ] q̃i,m−i
a.s.
=

∞∑
m=i

P[Sm−i = n− j |F ] q̃i,m−i

a.s.
=

∞∑
m=0

P[Sm = n− j, Ñi = m |F ]
a.s.
= P[S̃(i) = n− j |F ]

a.s.
= p̃i,n−j .

Inserting this into An and An into Equation (5.7) provides the first part of the claim.
The second part of the theorem can be proven as in the proof of [21, Theorem 4.5] with

respect to F . q.e.d.
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Note that if l = 1, this theorem is the multivariate Panjer recursion given F with claim
numbers in a Panjer(a, b, k) class. We observe dependence between the claim sizes in two
types: The components of the random vectors {(X1,h, . . . , Xd,h)})h∈N may depend on each
other, and the Xh may depend on each other for different h ∈ N since {Xh}h∈N only needs
to be conditionally independent given F . If the σ-algebra F is finite, then the unconditional
distribution of S can easily be computed numerically, cf. following remark.

Remark 5.8. The unconditional distribution P[S = n] can be obtained by using the tower
property for expected values:

P[S = n] = E[P[S = n |F ] ] .

Hence we also need to insert Equation (5.4) into the above equation, which can be computed
if 〈cn, n〉 6= 0 a.s.

A possible application of the multivariate Panjer recursion could be a special case of
the extended CreditRisk+ model. If a default occurs, this default may lead to future
payments that should be considered. Then the extended CreditRisk+ model is a multiperiod
model. Thus it makes sense to allocate the development of possible claims to a multivariate
random variable X1. This model is insofar appropriate for such requirements since future
payments (may) depend on present or past payments, and the components of X1 need not
be independent. This framework is also useful in the collective risk model in the context
of insurances. Health insurances provide a typical example of a first claim that causes a
payment and, depending on the recovery process of the insured person, could lead to future
payments. The claim of a pension also causes future payments of an initially unknown
duration.

We now give algorithms for the different dependence scenarios we introduced and show
how Panjer’s recursion can be used for the evaluation of the distribution of S. They are
based on the knowledge that a negative binomial distribution can be written as a compound
Poisson distribution where the severity distribution is a logarithmic distribution, cf. also
[21, Section 5.5].

We adapt the algorithm in [21, Section 5.5] for the evaluation of the random sum S
in Equation (1.1). Panjer’s recursion in Theorem 5.1 simplifies a lot since we consider
{Xi,h}h∈N to be i.i.d. and univariate, hence we do not consider a σ-algebra F .

Algorithm 5.9. Consider the setting of Theorem 3.1. Assume that R1, . . . , Rn are independent
now. Then Qj,0, . . . , Qj,n are independent for each j ∈ J . Assume further that according
to the extended CreditRisk+ model the random variables R1, . . . , Rn have a distribution
such that Rl ∼ Gamma(αl, βl) with αl, βl > 0 for l ∈ {1, . . . , n}. We apply Theorem 3.1
and adopt the equivalent representation of the claim numbers into the random sum S in
Equation (1.1):

S =

m∑
i=1

Ni∑
h=1

Xi,h
d
=

m∑
i=1

Mi∑
h=1

Xi,h =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

m∑
i=1

Bi,j,l,hXi,l,h,

where {Xi,h}h∈N and {Xi,l,h}i∈N with l ∈ {0, . . . , n} and i ∈ {1, . . . ,m} are independent
sequences of i.i.d. N0-valued random variables with identical distributions. Hence, the
distribution of S can be calculated iteratively: Let for h ∈ N

W(j,l,h) =
m∑
i=1

Bi,j,l,hXi,l,h, j ∈ J , l ∈ {0, . . . , n}.
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Since {Bi,j,l,hXi,l,h}h∈N is i.i.d. and the distribution of Bj,l,1 is given in Equation (3.2), the
distribution of W(j,l,1) can be calculated directly by the law of total probability for p ∈ N0

and j ∈ J and l ∈ {0, . . . , n}, thus

P[W(j,l,1) = p] =
m∑
i=1

P[Xi,l,1 = p] P[Bi,j,l,1 = 1] =
m∑
i=1

P[Xi,l,1 = p] pi,j,l (5.10)

under the natural assumption that {Bi,j,l,h}h∈N and {Xi,l,h}h∈N are independent. Let

qj,l =

∑m
i=1 λi,ja

j
i,l

βl +
∑m

i=1 λi,ja
j
i,l

, j ∈ J , l ∈ {1, . . . , n}.

By Lemma 2.8 with m = 1 in that framework and T ≡ 1 for each j ∈ J and l ∈ {1, . . . , n}
the distribution of Qj,l is given by

L(Qj,l) = NegBin(αl, qj,l) .

If
∑m

i=1 λi,ja
j
i,l = 0, then according to Equation (3.3) we have L(Qj,l) = δ0, hence for these

j, l there is no random summation. Note that according to Remark 2.7 Qj,l
d
=
∑Lj,l

h=1K(j,l,h)

for each j ∈ J and l ∈ {1, . . . , n} with

Qj,l ∼ CPoi
(
αl ln

( 1

1− qj,l

)
,Log(qj,l)

)
. (5.11)

Define now according to [21, Remark 5.11] for r ∈ N

S(j,l,r) =

K(j,l,1)+···+K(j,l,r)∑
h=K(j,l,1)+···+K(j,l,r−1)+1

W(j,l,h), j ∈ J , l ∈ {1, . . . , n}. (5.12)

According to [21, Remark 5.11] the sequence {S(j,l,r)}r∈N is i.i.d. and since K(j,l,1) is in
a Panjer(qj,l,−qj,l, 1) class, L

(
S(j,l,1)

)
can be evaluated with a numerically stable Panjer

recursion, cf. Theorem 5.1. Note that qj,l = 0 is not possible in this case since by the above
arguments for L(Qj,l) the distribution Poisson(0) = δ0 would suppress a random summation.

For l = 0 and each j ∈ J we have L(Qj,0) = Poisson
(∑m

i=1 λi,ja
j
i,0R0

)
. Thus the total

portfolio loss if J = j can be written as

Sj =

Qj,0∑
h=1

W(j,0,h) +

n∑
l=1

Lj,l∑
r=1

S(j,l,r), j ∈ J .

Since {Xi,0,h}h∈N, . . . , {Xi,n,h}h∈N are independent sequences, the corresponding probabili-
ty-generating function provides with GW(j,0,1)

(z) = E[zW(j,0,1) ] and GS(j,l,1)
(z) = E[zS(j,l,1) ]

GSj (z) = exp

(
−

m∑
i=1

λi,ja
j
i,0R0(1−GW(j,0,1)

(z))

)

×
n∏
l=1

exp
(
−αl ln

( 1

1− qj,l

)
(1−GS(j,l,1)

(z))
)

= exp(−µj(1−Gj(z)))

43



Chapter 5. Generalizations of Recursions for Compound Distributions

for |z| ≤ 1 with

µj =
m∑
i=1

λi,ja
j
i,0R0 +

n∑
l=1

αl ln
( 1

1− qj,l

)
,

and

Gj(z) =

∑m
i=1 λi,ja

j
i,0R0

µj
GW(j,0,1)

(z) +
n∑
l=1

αl ln
(

1
1−qj,l

)
µj

GS(j,l,1)
(z) (5.13)

is a mixture distribution of L
(
W(j,0,1)

)
and L

(
S(j,1,1)

)
, . . . ,L

(
S(j,n,1)

)
for j ∈ J . Hence

|J | final numerically stable Panjer recursions for Poisson(µj) (cf. Theorem 5.1) yield the
distributions of Sj for each j ∈ J . To obtain the distribution of the random sum S in a
straightforward manner, in a last step we condition on the possible values of J

P[S = p] = P
[∑
j∈J

1{J=j}Sj = p

]
=
∑
j∈J

P[Sj = p] P[J = j], p ∈ N0.

In a similar way, it is also possible to consider the random sums with respect to one default
cause intensity Si =

∑Ni
h=1Xi,h for i ∈ {1, . . . ,m} and compute the multivariate distribution

of S′ = (S1, . . . , Sm). For this purpose we apply the numerically stable multivariate Panjer
recursion.

Remark 5.14. Algorithm 5.9 can be adapted to the multivariate case under the same
assumptions on the risk factors R1, . . . , Rn. By Theorem 3.1 the equivalent representation
of the claim numbers in the random sum Si for i ∈ {1, . . . ,m} is

Si =

Ni∑
h=1

Xi,h
d
=

Mi∑
h=1

Xi,h =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

Bi,j,l,hXi,l,h,

where {Xi,h}h∈N and {Xi,l,h}h∈N with i ∈ {1, . . . ,m} and l ∈ {0, . . . , n} are in l independent
sequences of i.i.d. random variables with identical distributions. Thus the main difference to
the univariate case is that we do not aggregate the claim sizes {Bi,j,l,hXi,l,h}h∈N for each
i ∈ {1, . . . ,m}, but consider it as a vector. We only need to replace in Equation (5.13)
W(j,0,1) by (BX)j,0,1 with (BX)j,l,h = (B1,j,l,hX1,l,h, . . . , Bm,j,l,hXm,l,h) and S(j,l,1) by T(j,l,1)

with T(j,l,r) = (T(1,j,l,r), . . . , T(m,j,l,r)), where for i ∈ {1, . . . ,m}

T(i,j,l,r) =

K(j,l,1)+···+K(j,l,r)∑
h=K(j,l,1)+···+K(j,l,r−1)+1

Bi,j,l,hXi,l,h, j ∈ J , l ∈ {1, . . . , n}.

Then we apply the multivariate Panjer recursion in Theorem 5.1 for cn being the unit vector
ei for i ∈ {1, . . . ,m} twice as in Algorithm 5.9.

In a constellation such as in Lemma 4.1 the evaluation of the distribution of the random
sum S is an adaptation of the algorithm in [21, Section 5.5] under certain assumptions and
slighty different from the other dependence scenario.

Algorithm 5.15. Consider the setting of Lemma 4.1. According to the approach of Giese
[23, Section 10.2] assume that the random variables T1, . . . , Tn have a distribution such that
Tl ∼ Gamma(σl, νl) with σl, νl > 0 for l ∈ {1, . . . , n}. Assume further that T1, . . . , Tn are
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independent. We apply Lemma 4.1 and adopt the equivalent representation of the claim
numbers into the random sum S in Equation (1.1):

S =

m∑
i=1

Ni∑
h=1

Xi,h
d
=

m∑
i=1

Mi∑
h=1

Xi,h =
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

m∑
i=1

Bi,j,l,h,kXi,l,h,k,

where {Xi,h}h∈N and {Xi,l,h,k}h,k∈N are independent sequences of i.i.d. random variables
with values in N0 and identical distribution for each i ∈ {1, . . . ,m} and l ∈ {0, . . . , n}.
Hence the distribution of S can be calculated iteratively. In contrast to Algorithm 5.9 we
need to insert some notation and steps. Let for h, k ∈ N

Z(j,l,h,k) =
m∑
i=1

Bi,j,l,h,kXi,l,h,k, j ∈ J , l ∈ {0, . . . , n}.

Since {Bi,j,l,h,kXi,l,h,k}h,k∈N are i.i.d., the distribution of Z(j,l,1,1) can be calculated directly
by the law of total probability for p ∈ N0 and j ∈ J and l ∈ {0, . . . , n} as in Equation (5.10)
under the natural assumption that {Bi,j,l,h,k}h,k∈N and {Xi,l,h,k}h,k∈N are independent for
every j ∈ J and l ∈ {0, . . . , n}. Since {Yj,l,h}h∈N are i.i.d. and Yj,l,1 has a logarithmic
distribution given in Equation (4.6) and hence is in a Panjer(qj,l,−qj,l, 1) class, the random
sums with h ∈ N

W(j,l,h) =

Yj,l,h∑
k=1

Z(j,l,h,k), j ∈ J , l ∈ {0, . . . , n}, (5.16)

can be evaluated by Panjer’s recursion for each j ∈ J , l ∈ {0, . . . , n}, and h = 1 (cf. Theorem
5.1). Let

sj,l =
−αl ln(1− qj,l)
νl − αl ln(1− qj,l)

, j ∈ J , l ∈ {1, . . . , n}.

Since Tl has a gamma distribution for l ∈ {1, . . . , n}, according to Lemma 2.8 with m = 1
in that framework and T ≡ 1

L(Pj,l) = NegBin(σl, sj,l) .

If qj,l = 0 for some j, l, then there is no random summation for these indices. Note that
according to Remark 2.7 Pj,l

d
=
∑Lj,l

s=1K(j,l,s) with

Pj,l ∼ CPoi
(
σl ln

( 1

1− sj,l

)
,Log(sj,l)

)
.

Insert Equation (5.16) into Equation (5.12) and let instead K(j,l,1) ∼ Log(sj,l). By the same
reasoning as in Algorithm 5.9 and in [21, Remark 5.11] L

(
S(j,l,1)

)
can be evaluated with

a numerically stable Panjer recursion for every j ∈ J and l ∈ {1, . . . , n}, cf. Theorem 5.1.
For l = 0 and each j ∈ J we have L(Pj,0) = Poisson

(
−α0 ln(1 − qj,0)T0

)
. Then the total

portfolio loss if J = j can be written as

Sj =

Pj,0∑
h=1

W(j,0,h) +
n∑
l=1

Lj,l∑
r=1

S(j,l,r), j ∈ J .
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By the same argumentation as in Algorithm 5.9 the probability-generating function of the
distribution of Sj can be written as

GSj (z) = exp(−µj(1−Gj(z)))

for |z| ≤ 1 with

µj = −α0 ln(1− qj,0)T0 +
n∑
l=1

σl ln
( 1

1− sj,l

)
,

and

Gj(z) =
−α0 ln(1− qj,0)T0

µj
GW(j,0,1)

(z) +

n∑
l=1

σl ln
(

1
1−sj,l

)
µj

GS(j,l,1)
(z)

is a mixture distribution of L
(
W(j,0,1)

)
and L

(
S(j,1,1)

)
, . . . ,L

(
S(j,n,1)

)
. The application of

Panjer’s recursion and the law of total probability works as in Algorithm 5.9.

Remark 5.17. The algorithms do not only work this way if R1, . . . , Rn and T1, . . . , Tn, respec-
tively, are gamma-distributed. They also work if R1, . . . , Rn or T1, . . . , Tn have a τ -tempered
α-stable distribution. By an application of [21, Lemma 5.10] the severity distribution of
the corresponding compound Poisson distribution of

∑Lj,l
h=1Kj,l,h is an extended negative

binomial distribution. Thus apply [21, Algorithm 5.12]. A special case of this class of
distributions is e.g. the inverse Gaussian distribution, which has also been described in [64,
p. 91]. Gerhold, Schmock, and Warnung [21, Example 5.21] also reveal how to evaluate such
a distribution.

Remark 5.18. If T1, . . . , Tn are not independent, it is possible to work with the framework of
Algorithm 5.15 if the dependence structure of the T1, . . . , Tn satisfies the structure given in
Assumption 2.18. Then an alternative representation of the random variables Pj,1, . . . , Pj,n
exists for j ∈ J given in Equation (4.4) by Theorem 3.1. Thus we can apply Algorithm 5.9.

Remark 5.19. Using the convex combination for the evaluation of the portfolio distribution
provides a claim size with a logarithmic distribution that might require high computational
effort in the evaluation of Panjer’s recursion. This convex combination also requires a high
computational effort in the evaluation of Panjer’s recursion with the Poisson distribution.
Yet, this approach is preferable since the evaluation of Panjer’s recursion for a negative
binomial distribution followed by several convolutions clearly demands more resources.

As we have seen, not only default cause intensities driving the claim numbers may
depend on each other, but claim sizes might, too. We now consider a special such case.
Theoretically, we could let every claim size be possibly dependent on every other claim
size. But since we could have theoretically infinitely many claims, we restrict ourselves to
dependence between claim sizes only with respect to the default cause intensities. This
could also be generalized to risk groups, cf. [57].

Under the following assumption it is possible to evaluate the distribution of S in Equation
(1.1) if the claim sizes are dependent.

Assumption 5.20. Let J 6= ∅ be an arbitrary finite set. Let Aj = (aji,l) ∈ Nm×n for j ∈ J
and i ∈ {1, . . . ,m} and l ∈ {1, . . . , n} and let J be a J -valued random variable. Let further
AJ =

∑
j∈J 1{J=j}Aj. Let Λ1, . . . ,Λm be independent, infinitely divisible, and non-negative

random variables and let N1, . . . , Nm be random variables conditionally independent given
Λ1, . . . ,Λm such that

L(Ni |Λ1, . . . ,Λm)
a.s.
= L(Ni |Λi) a.s.

= Poisson(λiΛi) , i ∈ {1, . . . ,m}.
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Define n independent sequences of i.i.d. discrete random variables {Zl,h}h∈N for l ∈ {1, . . . ,
n} independent of J . Set

(Y1,h, . . . , Ym,h)> = AJ(Z1,h, . . . , Zn,h)>, h ∈ N,

i.e.,

Yi,h =
∑
j∈J

1{J=j}

n∑
l=1

aji,lZl,h

for h ∈ N and i ∈ {1, . . . ,m}. Now let (S1, . . . , Sm) = (
∑N1

h=1 Y1,h, . . . ,
∑Nm

h=1 Ym,h).

We assume that the claim sizes have a dependence structure given in Assumption 5.20.
Then there is the following adaptation of the algorithm in [21, Section 5.5] in order to
compute the distribution of S =

∑m
i=1 Si:

Algorithm 5.21. In accordance with the extended CreditRisk+ model assume that the default
cause intensities have a distribution such that Λi ∼ Gamma(αi, βi) with αi, βi > 0 for
i ∈ {1, . . . ,m}. We insert the representation of {Yi,h}h∈N of Assumption 5.20 into the
random sum S in Equation (1.1):

S =

m∑
i=1

Ni∑
h=1

Xi,h
d
=

m∑
i=1

Ni∑
h=1

Yi,h =
∑
j∈J

1{J=j}

m∑
i=1

n∑
l=1

Ni∑
h=1

aji,lZl,h.

Hence, the distribution of S can be calculated iteratively. Note that since ai,j ∈ N, the
random variable ai,jZj,1 still has a discrete distribution. Let

qi =
λi

βi + λi
, i ∈ {1, . . . ,m}.

By Lemma 2.8 with m = 1 in that framework and T ≡ 1

Ni ∼ NegBin(αi, qi) , i ∈ {1, . . . ,m}.

Recall that according to Remark 2.7 Ni
d
=
∑Li

s=1Ki,s with

Ni ∼ CPoi
(
αi ln

(
1 + λi/βi

)
,Log(qi)

)
, i ∈ {1, . . . ,m}.

According to [21, Remark 5.11] let for r ∈ N and j ∈ J

S(i,j,l,r) =

Ki,1+···+Ki,r∑
s=Ki,1+···+Ki,r−1+1

aji,lZl,s, l ∈ {1, . . . , n}, i ∈ {1, . . . ,m},

and evaluate the distribution of S(i,j,l,1) with a numerically stable Panjer recursion (cf.
Theorem 5.1) for Log(qi), which is in a Panjer(qi,−qi, 1) class. Then the total portfolio loss
if J = j can be written as

Sj =

m∑
i=1

n∑
l=1

Li∑
r=1

S(i,j,l,r), j ∈ J ,

and the corresponding probability-generating function is

GSj (z) =

m∏
i=1

n∏
l=1

exp
(
−αi ln

(
1 + λi/βi

)
(1−GS(i,j,l,1)

(z))
)

= exp(−µ(1−Gj(z))),
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for |z| ≤ 1 with

µ = n
m∑
i=1

αi ln
(
1 + λi/βi

)
and Gj(z) =

m∑
i=1

n∑
l=1

αi ln
(
1 + λi/βi

)
µ

GS(i,j,l,1)
(z)

is a mixture distribution of L
(
S(1,j,1,1)

)
, . . . ,L

(
S(m,j,n,1)

)
. Hence |J | final numerically stable

Panjer recursions for Poisson(µ) and the distribution belonging to Gj for j ∈ J yield the
distributions of Sj . Finally, a conditioning argument provides the result.

Remark 5.22. It is also possible to evaluate the distribution of the random vector (S1, . . . , Sm)
in Assumption 5.20. This is described in [64, Chapters 20.2 and 20.6]

Thus we are able to observe a certain dependence structure between claim sizes, which
may happen in a realistic scenario, and are still able to apply a variant of Panjer’s recursion.

5.2 A Generalization of De Pril’s Recursion

As for Panjer’s recursion it is possible to derive a generalization of de Pril’s recursion
that evaluates higher moments of a random variable with compound distribution. This
recursion was introduced in [13]. De Pril’s recursion was also generalized in [21, Theorem 8.2
and Theorem 8.1]. We relax the assumption of i.i.d. claim sizes and replace it with the
assumption that the claim sizes are i.i.d. given a σ-algebra F . In addition, we consider
multivariate claim sizes. We put the result into the following lemma:

Lemma 5.23. Let the assumptions of Theorem 5.1 be satisfied.

(a) Let c be an Rd-valued F-measurable function and b ∈ N. Assume further that 〈c,X1〉n
and 〈c, S̃(i)〉n are σ-integrable with respect to F for every n ∈ {1, . . . , b}. Then for
every n ∈ {1, . . . , b}

E[〈c, S〉n |F ]
a.s.
=

k+l−1∑
p=1

qp E[〈c, Sp〉n |F ]

+
l∑

i=1

n∑
s=0

(
n

s

)(
ai +

bis

in

)
E
[
〈c, S̃(i)〉n−s

∣∣F ] E[〈c, Si〉s ∣∣F ]
holds, where Si = X1 + · · ·+Xi.

(b) Let the assumptions of Theorem 5.1 (b) be satisfied. Then

E[〈c, S〉n |F ]
a.s.
=

l∑
i=1

νi E
[
〈c, S̃i〉n

∣∣F ]
holds for all n ∈ {1, . . . , b}.

Proof. This proof is an adaptation of [21, Theorem 8.2] and is essentially the same; it is
repeated only for convenience of the reader. By Jensen’s inequality 〈c, Si〉n is σ-integrable
with respect to F for j ∈ N:

〈c, Si〉n = jn
(〈c,X1〉+ · · ·+ 〈c,Xi〉

j

)n
≤ jn−1(〈c,X1〉n + · · ·+ 〈c,Xi〉n) a.s.
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5.2. A Generalization of De Pril’s Recursion

The conditional expected value given F can be rewritten as a limit

E[〈c, S〉n |F ]
a.s.
= lim

M→∞

∑
0≤m≤M
m∈Nd0

〈c,m〉npm,

where pm is the conditional probability mass function of S given F in Equation (5.4) and
M → ∞ means Mr → ∞ for every r ∈ {1, . . . , d}. We apply Theorem 5.1 and note that
Equation (5.4) is valid when multiplied by 〈c,m〉 and set cn = c. Hence inserting Equation
(5.4) yields

∑
0≤m≤M
m∈Nd0

〈c,m〉npm a.s.
=

∑
0≤m≤M
m∈Nd0

〈c,m〉n
( k+l−1∑

p=1

P[Sp = m |F ] qp

+
l∑

i=1

∑
0≤j≤m
j∈Nd0

(
ai +

bi〈c, j〉
i〈c,m〉

)
P[Si = j |F ] p̃i,m−j

)

a.s.
=

k+l−1∑
p=1

qp
∑

0≤m≤M
m∈Nd0

〈c,m〉n P[Sp = m |F ] +

l∑
i=1

Ei,M , (5.24)

where with an interchange of the order of summation

Ei,M
a.s.
=

∑
0≤m≤M
m∈Nd0

〈c,m〉n
∑

0≤j≤m
j∈Nd0

(
ai +

bi〈c, j〉
i〈c,m〉

)
P[Si = j |F ] p̃i,m−j

a.s.
=

∑
0≤j≤M
j∈Nd0

Mr∑
mr=max{1,jr}
r∈{1,...,d}

(
ai〈c,m〉n +

bi〈c, j〉
i
〈c,m〉n−1

)
P[Si = j |F ] p̃i,m−j .

For jr = 0 we may add the term for mr = 0 which is zero. Shifting the summation index
mr down by jr for each r ∈ {1, . . . , d}, we obtain

Ei,M
a.s.
=

∑
0≤j≤M
j∈Nd0

∑
0≤m≤M−j
m∈Nd0

(
ai〈c,m+ j〉n +

bi〈c, j〉
i
〈c,m+ j〉n−1

)
P[Si = j |F ] p̃i,m.

Noting 〈c,m+ j〉 = 〈c,m〉+ 〈c, j〉, applying the binomial formula and shifting the index up
by 1, we have

〈c, j〉〈c,m+ j〉n−1 =
n−1∑
s=0

(
n− 1

s

)
〈c,m〉n−1−s〈c, j〉s+1 =

n∑
s=1

s

n

(
n

s

)
〈c,m〉n−s〈c, j〉s.

Adding the zero and using the binomial formula also for 〈c,m+ j〉n and changing the order
of summation and the order of the summands provides

Ei,M
a.s.
=

n∑
s=0

(
n

s

)(
ai +

bis

in

) ∑
0≤m≤M
m∈Nd0

〈c,m〉n−sp̃i,m
∑

0≤j≤M−m
j∈Nd0

〈c, j〉s P[Si = j |F ].
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Inserting this into Equation (5.24) yields

∑
0≤m≤M
m∈Nd0

〈c,m〉npm a.s.
=

k+l−1∑
p=1

qp
∑

0≤m≤M
m∈Nd0

〈c,m〉n P[Sp = m |F ]

+
l∑

i=1

n∑
s=0

(
n

s

)(
ai +

bis

in

) ∑
0≤m≤M
m∈Nd0

〈c,m〉n−sp̃i,m
∑

0≤j≤M−m
j∈Nd0

〈c, j〉s P[Si = j |F ]. (5.25)

Letting M →∞ and noting that 〈c,X1〉n and 〈c, S̃(i)〉n are σ-integrable with respect to F
for n ∈ {1, . . . , b}, we see that the expected values given F in Equations (5.25) and (5.24)
are finite, hence the claim follows.

The second part of the proof can be proven as in [21, Theorem 8.2(b)] with respect to
F . q.e.d.

There is another generalization of de Pril’s recursion, based on [21, Theorem 8.1].

Corollary 5.26. Let c be an Rd-valued F-measurable function. Let S =
∑N

h=1Xh, where
{Xh}h∈N is a sequence independent of the random variable N , consisting of i.i.d. d-dimen-
sional random vectors that are conditionally independent given a σ-algebra F . Assume that
the distribution of N belongs to the Panjer(a, b, k) class. Define Sk = X1 + · · ·+Xk and
note E

[
〈c, S〉0 |F

]
= 1 by convention.

(a) If a < 1 and 〈c,X1〉s is σ-integrable with respect to F for s ∈ N, then 〈c, Sk〉n is
σ-integrable with respect to F and

E[〈c, S〉n |F ]
a.s.
=

1

1− a

(
P[N = k |F ] E[〈c, Sk〉n |F ]

+

n∑
r=1

(
n

r

)(
a+

br

n

)
E
[
〈c, S〉n−r |F

]
E[〈c,X1〉r |F ]

)

holds for every n ∈ {1, . . . , s}.

(b) If a = 1 and −b > 2 as well as if 〈c,X1〉s is σ-integrable with respect to F for an
s ∈ N \ {1} and E[〈c,X1〉|F ] > 0, then 〈c, Sk〉n+1 is σ-integrable with respect to F and

E[〈c, S〉n |F ]
a.s.
=

1

−b− 1− n E[〈c,X1〉|F ]

(
P[N = k |F ] E

[
〈c, Sk〉n+1 |F

]
+

n∑
r=1

(
n

r

)(n+ 1

r + 1
+ b
)
E
[
〈c, S〉n−r |F

]
E
[
〈c,X1〉r+1 |F

])

for every n ∈ {1, . . . , s− 1} with n < −b− 1.

Proof. (a) The proof is an adaptation of the proof in [21, Theorem 8.1]. Since N belongs
to the Panjer(a, b, k) class, the proof of Theorem 5.1 is applicable, and by exploiting
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Equation (5.25) and q0 = · · · = qk−1 = 0 we obtain∑
0≤m≤M
m∈Nd0

〈c,m〉npm a.s.
= qk

∑
0≤m≤M
m∈Nd0

〈c,m〉n P[Sk = m |F ]

+

n∑
r=1

(
n

r

)(
a+

br

n

) ∑
0≤m≤M
m∈Nd0

〈c,m〉n−rpm
∑

0≤j≤M−m
j∈Nd0

〈c, j〉r P[X1 = j |F ]

+

(
n

0

)
(a+ 0)

∑
0≤m≤M
m∈Nd0

〈c,m〉npm
∑

0≤j≤M−m
j∈Nd0

〈c, j〉0 P[X1 = j |F ].

Moving the term for r = 0 to the left side yields∑
0≤m≤M
m∈Nd0

(
1− P[X1 ≤M −m |F ] a

)
〈c,m〉npm a.s.

= qk
∑

0≤m≤M
m∈Nd0

〈c,m〉n P[Sk = m |F ]

+

n∑
r=1

(
n

r

)(
a+

br

n

) ∑
0≤m≤M
m∈Nd0

〈c,m〉n−rpm
∑

0≤j≤M−m
j∈Nd0

〈c, j〉r P[X1 = j |F ].

The rest of the proof of this part is exactly as in [21, Theorem 8.1(a)] except that we
need to apply the conditional versions of Fatou’s lemma and the dominated convergence
theorem, respectively.

(b) In case a = 1 and −b > 2 we have∑
0≤m≤M
m∈Nd0

P[X1 > M −m |F ] 〈c,m〉npm a.s.
= qk

∑
0≤m≤M
m∈Nd0

〈c,m〉n P[Sk = m |F ]

+

n∑
r=1

(
n

r

)(
1 +

br

n

) ∑
0≤m≤M
m∈Nd0

〈c,m〉n−rpm
∑

0≤j≤M−m
j∈Nd0

〈c, j〉r P[X1 = j |F ].

The rest of this part of the proof is also exactly as in [21, Theorem 8.1(b)], we need
only apply the conditional versions of Fatou’s lemma and the dominated convergence
theorem, respectively.

q.e.d.
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Chapter 6

Risk Contributions

Knowing the distribution of the portfolio loss S makes it possible to compute the corre-
sponding law-invariant risk measure ρ(S). For references on risk measures see [2] and [14].
The objective of risk contributions is to allocate the risk of the total portfolio to the risk of
a subportfolio. Knowing the risk that comes from the total portfolio, it is also possible to
diversify the risks into the subportfolios. An axiomatic approach to such a capital allocation
can be found in [41]. We follow the approach of Kalkbrener [41] and for i ∈ {1, . . . ,m}
consider a subportfolio Si of the portfolio S, where the risk capital distributed to this
subportfolio only depends on Si and S. We consider the capital allocation with respect
to expected shortfall. For this purpose we give an introduction to conditional expected
shortfall. This also allows us to consider risk contributions in a multivariate framework,
which becomes interesting if e.g. a bank will have a recovery rate over a period of time after
a credit default or if an insurance company observes a claim where the insured person’s
recovery takes time and several medical treatments. But first we consider a one-period
model and use these results to derive a result for the multi-period model.

6.1 Introduction and Basic Definitions

For a better understanding of the risk measures used, we first need to introduce some
notation. Because we also consider risk contributions in a multivariate framework, we
introduce this notation more generally as needed. We will not need this notation in this
generality in Section 6.2, but in Section 6.3. The following definitions of this section are
taken from [34]. We quote some results here:

Definition 6.1. Let (Ω,F ,P) be a probability space and G ⊂ F a sub-σ-algebra. Let X
be an F-measurable R-valued random variable and δ a G-measurable [0, 1]-valued random
variable. Then, define the lower δ-quantile qG,δ(X) of X given G as the essential infimum of
all G-measurable random variables Z : Ω→ R satisfying P[X ≤ Z |G] ≥ δ a.s.

As shown in [34], qG,δ(X) is G-measurable and satisfies P[X ≤ qG,δ(X)] ≥ δ a.s. We need
to lay the notational groundwork for the risk measure expected shortfall:

Definition 6.2. Let (Ω,F ,P) be a probability space and G ⊂ F a sub-σ-algebra. Let X be
an F-measurable R-valued random variable and δ be a G-measurable [0, 1]-valued random
variable. Then, define the adjusted indicator function fG,δ,X : Ω→ [0, 1] by

fG,δ,X := 1{X>qG,δ(X)} + βG,δ,X1{X=qG,δ(X)},

53



Chapter 6. Risk Contributions

where βG,δ,X : Ω→ [0, 1] is a G-measurable random variable satisfying

βG,δ,X
a.s.
=

{P[X≤qG,δ(X) |G]−δ
P[X=qG,δ(X) |G] on the event {P[X = qG,δ(X) |G] > 0},

0 otherwise.

In the following definitions we will need the notion of the upper G-measurable envelope
XG of X.

Definition 6.3. Let a probability space (Ω,F ,P) and a sub-σ-algebra G ⊂ F as well as an
F -measurable R-valued random variable X be given. Define XG as the upper G-measurable
envelope of X, i.e., as the essential infimum of all G-measurable random variables Z : Ω→ R
satisfying P[X ≤ Z] = 1.

Remark 6.4. Note that according to [29, Chapter I, § 4] we consider a general version of the
conditional expectation, which is defined for random variables that are σ-integrable with
respect to a σ-algebra.

Then conditional expected shortfall is defined as follows:

Definition 6.5. Let (Ω,F ,P) be a probability space and G ⊂ F be a sub-σ-algebra. Let
X be an F-measurable R-valued random variable and δ be a G-measurable [0, 1]-valued
random variable. Then the conditional expected shortfall of X at level δ given G is defined
by

ESδ[X |G] =


XG on {δ = 1},

1
1−δ E[fG,δ,XX |G] on {0 < δ < 1},
ess infδ′∈(0,1) ESδ′ [X |G] on {δ = 0},

where fG,δ,X is given in Definition 6.2.

Let L0(P) denote the vector space of all R-valued random variables X : Ω→ R on the
probability space (Ω,F ,P). Let L−G,1(P) denote the cone of those X ∈ L0(P) for which the

negative part X− is σ-integrable with respect to G. Accordingly we have the following
definition for the corresponding risk contributions:

Definition 6.6. For a portfolio loss L ∈ L0(P) and a G-measurable level δ with δ ∈ [0, 1]
consider a subportfolio loss X ∈ L0(P) with X1{L≥qG,δ(L)}1{δ>0} ∈ L−G,1(P). Then, the
conditional expected shortfall contribution of the subportfolio loss X to L at level δ given G
is defined by

ESδ[X,L |G] =


XG on {δ = 1},

1
1−δ E[fG,δ,LX |G ] on {0 < δ < 1},
ess infδ′∈(0,1) ESδ′ [X,L |G] on {δ = 0},

where fG,δ,L is given in Definition 6.2.

In case G is a trivial σ-algebra, i.e., P[G] ∈ {0, 1} for all G ∈ G, the δ-quantile given G
simplifies to the already known δ-quantile. Denote the lower δ-quantile for an R-valued
random variable X and level δ ∈ [0, 1] by

qδ(X) = min{x ∈ R | P[X ≤ x] ≥ δ}.
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6.2 Expected Shortfall Contributions

We start our considerations with the unconditioned case, i.e., a trivial σ-algebra G. We fix
a level δ ∈ (0, 1). For δ = 0 and X− integrable we have ESδ[X |G] = E[X]. This reflects a
model with only one time-period. In this thesis we consider the risk contributions of the
subportfolios coming from a default cause intensity. That is, consider m claim numbers Ni

with the corresponding default cause intensity Λi for i ∈ {1, . . . ,m}. According to Equation
(1.1) the portfolio loss is:

S =
m∑
i=1

Si, (6.7)

and we consider the random sums Si =
∑Ni

h=1Xi,h for i ∈ {1, . . . ,m} as subportfolios, and
therefore the following expected shortfall contributions

ESδ[Si, S] =
E
[
Si1{S>qδ(S)}

]
+ βδ,S E

[
Si1{S=qδ(S)}

]
1− δ , (6.8)

where

βδ,S =
P[S ≤ qδ(S)]− δ

1− δ .

Remark 6.9. If the claim sizes {Xi,h}h∈N are N0-valued for i ∈ {1, . . . ,m}, this capital
allocation can be evaluated using an extended Panjer recursion, cf. also [57]. The lower δ-
quantile qδ(S) can be computed by evaluating the single probabilities P[S = n], n = 0, 1, . . .
and adding up until P[S ≤ n] ≥ δ. The term βδ,S may be evaluated in the same manner.
Further note that

E
[
Si1{S>qδ(S)}

]
= E[Si] − E

[
Si1{S≤qδ(S)}

]
and E[Si1{S≤qδ(S)}] =

∑qδ(S)
n=1 E[Si1{S=n}] holds and that E[Si] can be computed using Wald’s

identity. It remains to compute E[Si1{S=n}] for n ∈ N0. Note that our assumptions imply
that S has a distribution on N0, hence the δ-quantile of S is also a natural number.

The expected shortfall contribution of Si on {S = n}, i.e., E[Si1{S=n}], can be evaluated
recursively. Since we considered different types of dependence structures between the claim
numbers, the recursive structure differs for each dependence structure. We require the
claim sizes to be discrete random variables, i.e., we allow them to take negative values. The
evaluation of the term E

[
Rl1{S=p−µ,J=j}

]
will be given in Section 6.4. The proofs are an

adaptation of [57] and [65, Lemma 1], respectively.

Theorem 6.10. Let Assumption 2.18 be satisfied. Let the random variables N1, . . . ,
Nm be conditionally independent given J,R1, . . . , Rn and satisfy Equation (2.20). Let for
i ∈ {1, . . . ,m} the independent sequences {Xi,h}h∈N of i.i.d. discrete random variables be
independent of all previously mentioned random variables and let the negative part X−i,1 be
integrable. Define for p ∈ R and i ∈ {1, . . . ,m} the set

Ii,p := {µ ∈ R \ {0}| P[Xi,1 = µ, S = p− µ] > 0}.

For every subportfolio Si with i ∈ {1, . . . ,m},

E
[
Si1{S=p}

]
=
∑
j∈J

λi,j

n∑
l=0

aji,l

∑
µ∈Ii,p

µ P[Xi,l,1 = µ] E
[
Rl1{S=p−µ,J=j}

]
, p ∈ R.
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Remark 6.11. If for each i ∈ {1, . . . ,m} the random variables {Xi,h}h∈N are N0-valued, then
the expectation can be only non-zero for p ∈ N and it suffices to consider Ii,p = {1, . . . , p}.

Proof of Theorem 6.10. By Theorem 3.1 the distribution of (N1, . . . , Nm) is equal to the
distribution of

M =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

Bj,l,h,

where (Qj,0,, . . . , Qj,n) and {Bj,l,h}h∈N,l∈{0,...,n} are independent for each j ∈ J and given
by Equations (3.2) and (3.3). Thus we consider the representation S′ =

∑m
i=1 S

′
i with

S′i =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

Bi,j,l,hXi,l,h,

where for each i ∈ {1, . . . ,m} and l ∈ {0, . . . , n} the sequence {Xi,l,h}h∈N is an independent
copy of {Xi,h}h∈N. It is a natural assumption that {Xi,l,h}h∈N is independent of Qj,l,
{Bi,j,l,h}h∈N, and J for i ∈ {1, . . . ,m} and l ∈ {0, . . . , n}. Because of this alternative
representation (S1, . . . , Sm)

d
= (S′1, . . . , S

′
m) holds and thus also (Si, S)

d
= (S′i, S

′). Using the
definition of S′i yields for each i ∈ {1, . . . ,m}

E
[
Si1{S=p}

]
= E

[
S′i1{S′=p}

]
=
∑
j∈J

n∑
l=0

E
[ Qj,l∑
h=1

Bi,j,l,hXi,l,h1{S′=p}1{J=j}

]
.

Then, using the law of total probability twice and that {Bi,j,l,hXi,l,h}h∈N are i.i.d. provides

E
[
Si1{S=p}

]
=
∑
j∈J

n∑
l=0

∞∑
k=1

k E
[
Bi,j,l,kXi,l,k1{S′=p}1{J=j}1{Qj,l=k}

]
=
∑
j∈J

n∑
l=0

∞∑
k=1

k
∑
µ∈Ii,p

µ P[S′ = p, J = j,Qj,l = k,Bi,j,l,kXi,l,k = µ]. (6.12)

Define, for each j ∈ J and l ∈ {0, . . . , n}, Ŝj,l = S′ −∑Qj,l
h=1

∑m
i=1Bi,j,l,hXi,l,h and

M̂k
j,l =

k−1∑
h=1

m∑
i=1

Bi,j,l,hXi,l,h, k ∈ N.

Note that {Bi,j,l,kXi,l,k = µ} with µ ∈ Ii,p implies Bi,j,l,k = 1 and Bi′,j,l,k = 0 for i′ 6= i.
Thus we subtract and add, respectively, exactly those Bi,j,l,hXi,l,h we need. Hence

{S′ = p, J = j,Qj,l = k,Bi,j,l,kXi,l,k = µ}
= {Ŝj,l + M̂k

j,l +Bi,j,l,kXi,l,k = p, J = j,Qj,l = k,Bi,j,l,kXi,l,k = µ}.

Since {Bi,j,l,kXi,l,k = µ} is independent of Ŝj,l, M̂
k
j,l, Qj,l, and J because

∑m
i=1Bi,j,l,hXi,l,h

is added and subtracted, respectively, it follows that

P[Ŝj,l + M̂k
j,l +Bi,j,l,kXi,l,k = p, J = j,Qj,l = k,Bi,j,l,kXi,l,k = µ]

= P[Ŝj,l + M̂k
j,l = p− µ, J = j,Qj,l = k] P[Bi,j,l,kXi,l,k = µ]. (6.13)
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By the conditional Poisson distribution of Qj,l given Rl for j ∈ J and l ∈ {0, . . . , n} it
follows that for k ∈ N

P[Qj,l = k |Rl] a.s.
=

(
∑m

d=1 λd,ja
j
d,lRl)

k

k!
exp

(
−

m∑
d=1

λd,ja
j
d,lRl

)
a.s.
=

∑m
d=1 λd,ja

j
d,lRl

k
P[Qj,l = k − 1 |Rl].

Since {Bi,j,l,hXi,l,h}h∈N is a sequence of i.i.d. random variables, M̂k
j,l are identically distributed

for k ∈ N. Further, due to the independence of Qj,l of Ŝj,l and M̂k
j,l

P[Ŝj,l + M̂k
j,l = p− µ, J = j,Qj,l = k]

= E
[
P[Ŝj,l + M̂k

j,l = p− µ, J = j |R1, . . . , Rn] P[Qj,l = k |Rl]
]

=

∑m
d=1 λd,ja

j
d,l

k
E
[
Rl P[Ŝj,l + M̂k

j,l = p− µ, J = j,Qj,l = k − 1 |Rl]
]

(6.14)

holds. Note that

{Ŝj,l + M̂k
j,l = p− µ, J = j,Qj,l = k − 1, Bi,j,l,kXi,l,k = µ}

= {S′ = p− µ, J = j,Qj,l = k − 1, Bi,j,l,kXi,l,k = µ},

and that for h ∈ N by Equation (3.2)

P[Bi,j,l,hXi,l,h = µ] = P[Xi,l,h = µ] pi,j,l. (6.15)

Hence we obtain because pi,j,l
∑m

d=1 λd,ja
j
d,l = λi,ja

j
i,l and (M,R1, . . . , Rn)

d
= (N,R1, . . . , Rn)

and by insertion of Equations (6.14) and (6.15) into Equation (6.13) and Equation (6.13)
into Equation (6.12)

E
[
Si1{S=p}

]
=
∑
j∈J

n∑
l=0

∞∑
k=1

∑
µ∈Ii,p

∑m
d=1 λd,ja

j
d,l

k
pi,j,lkµ P[Xi,l,1 = µ]

× E
[
Rl1{S′=p−µ}1{J=j}1{Qj,l=k−1}

]
=
∑
j∈J

λi,j

n∑
l=0

aji,l

∑
µ∈Ii,p

µ P[Xi,l,1 = µ] E
[
Rl1{S=p−µ}1{J=j}

]
.

q.e.d.

Now we consider a different construction of dependence between default cause intensities,
namely the dependence by common continuous mixture distributions. The proof is very
similar to that of Theorem 6.10, but it differs in some essential parts.

Lemma 6.16. Let T1, . . . , Tn be strictly positive random variables and αl, βl > 0, for
l ∈ {1, . . . , n} and λi,j ≥ 0 for i ∈ {1, . . . ,m} and j ∈ J and let the Assumptions (a) and
(b) of Lemma 4.1 be satisfied. Let for i ∈ {1, . . . ,m} the independent sequences {Xi,h}h∈N of
i.i.d. discrete random variables be independent of all previously mentioned random variables
and let the negative part X−i,1 be integrable. Define for p ∈ R and i ∈ {1, . . . ,m} the set

Ii,p := {µ ∈ R \ {0}| P[Xi,1 = µ, S = p− µ] > 0}.
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Let {Si,j,l,h}h∈N be independent sequences of i.i.d. random variables such that

Si,j,l,h =

Yj,l,h∑
k=1

Bi,j,l,h,kXi,l,k, h ∈ N,

for each j ∈ J and l ∈ {0, . . . , n}. Then for every subportfolio Si with i ∈ {1, . . . ,m} and
dependence structure of the default cause intensities given in Assumption 2.18

E
[
Si1{S=p}

]
=
∑
j∈J

n∑
l=1

(−αl) ln(1− qj,l)
∑
µ∈Ii,p

µ P[Si,j,l,1 = µ] E
[
Tl1{S=p−µ,J=j}

]
+
∑
j∈J

∑
µ∈Ii,p

m∑
d=1

λd,ja
j
d,0R0µ P[Si,j,0,1 = µ] P[S = p− µ, J = j]

holds for all p ∈ R.

Proof. The proof goes along the lines of the proof of Theorem 6.10. By Lemma 4.1 the
distribution of (N1, . . . , Nm) is equal to the distribution of

M =
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Yj,l,h∑
k=1

Bj,l,h,k,

where (Pj,0, . . . , Pj,n) and {(Yj,0,h, . . . , Yj,n,h)}h∈N and {(Bj,0,h,k, . . . , Bj,n,h,k)}h,k∈N are in-
dependent for each j ∈ J and given by Equations (4.4), (4.6) and (4.7). Thus we consider
the representation S′ =

∑m
i=1 S

′
i with

S′i =
∑
j∈J

1{J=j}

n∑
l=0

Pj,l∑
h=1

Si,j,l,h,

where for each i ∈ {1, . . . ,m} and l ∈ {0, . . . , n} the random variables {Xi,l,k}k∈N are
independent copies of {Xi,h}h∈N. It is a natural assumption that {Xi,l,k}k∈N is independent
of (Pj,0, . . . , Pj,n) and {(Yj,0,h, . . . , Yj,n,h)}h∈N and {(Bj,0,h,k, . . . , Bj,n,h,k)}h,k∈N for each i ∈
{1, . . . ,m} and l ∈ {0, . . . , n}. Because of the equivalent representation (S1, . . . , Sm)

d
= (S′1,

. . . , S′m) holds and thus also (Si, S)
d
= (S′i, S

′). Using the definition of S′i yields for each
i ∈ {1, . . . ,m}

E
[
Si1{S=p}

]
= E

[
S′i1{S′=p}

]
=
∑
j∈J

n∑
l=0

E
[ Pj,l∑
h=1

Si,j,l,h1{S′=p}1{J=j}

]
.

Using the law of total probability twice and that {Bi,j,l,h,kXi,l,k}h,k∈N and {Yj,l,h}h∈N are
i.i.d. provides

E
[
Si1{S=p}

]
=
∑
j∈J

n∑
l=0

∞∑
r=1

r E
[
Si,j,l,r1{S′=p}1{J=j}1{Pj,l=r}

]
=
∑
j∈J

n∑
l=0

∞∑
r=1

r
∑
µ∈Ii,p

µ P[S′ = p, J = j, Pj,l = r, Si,j,l,r = µ]. (6.17)
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Let, for each j ∈ J and l ∈ {0, . . . , n}, Ŝj,l = S′ −∑Pj,l
h=1

∑m
i=1 Si,j,l,h and

P̂ rj,l =
r−1∑
h=1

m∑
i=1

Si,j,l,h, r ∈ N.

Note that {Si,j,l,r = µ} with µ ∈ Ii,p implies Bi,j,l,r,k = 1 and consequently Bi′,j,l,r,k = 0 for
i′ 6= i, thus we subtract and add, respectively, exactly those Si,j,l,h we therefore need, hence

{S′ = p, J = j, Pj,l = r, Si,j,l,r = µ}
= {Ŝj,l + P̂ rj,l + Si,j,l,r = p, J = j, Pj,l = r, Si,j,l,r = µ}.

Since {Si,j,l,r = µ} is independent of Ŝj,l, P̂
r
j,l, Pj,l, and J because we subtract or add

Si,j,l,h,respectively, it follows for j ∈ J and l ∈ {0, . . . , n} that

P[Ŝj,l + P̂ rj,l + Si,j,l,r = p, J = j, Pj,l = r, Si,j,l,r = µ]

= P[Ŝj,l + P̂ rj,l = p− µ, J = j, Pj,l = r] P[Si,j,l,r = µ]. (6.18)

By the conditional Poisson distribution of Pj,l given Tl for j ∈ J and l ∈ {1, . . . , n} it
follows that for r ∈ N

P[Pj,l = r |Tl] a.s.
=

(−αl ln(1− qj,l)Tl)r
r!

exp
(
−(−αl ln(1− qj,l)Tl)

)
a.s.
=
−αl ln(1− qj,l)Tl

r
P[Pj,l = r − 1 |Tl],

and for l = 0 and r ∈ N we have

P[Pj,0 = r] =
(
∑m

d=1 λd,ja
j
d,0R0)r

r!
exp

(
−

m∑
d=1

λd,ja
j
d,0R0

)

=

∑m
d=1 λd,ja

j
d,0R0

r
P[Pj,0 = r − 1].

Since {Bi,j,l,r,kXi,l,k}k,r∈N and {Yj,l,r}r∈N are sequences of i.i.d. random variables, P̂ rj,l
are identically distributed for r ∈ N. Further, due to the independence of P̂ rj,l and Ŝj,l of
Pj,l for l ∈ {1, . . . , n}

P[Ŝj,l + P̂ rj,l = p− µ, J = j, Pj,l = r]

= E
[
P[Ŝj,l + P̂ rj,l = p− µ, J = j |T1, . . . , Tn] P[Pj,l = r |Tl]

]
=
−αl ln(1− qj,l)

r
E
[
Tl P[Ŝj,l + P̂ rj,l = p− µ, J = j, Pj,l = r − 1 |Tl]

]
, (6.19)

and for l = 0 because Pj,0 is independent of Ŝj,0 and P rj,0

P[Ŝj,0 + P̂ rj,0 = p− µ, J = j, Pj,0 = r]

= P[Ŝj,0 + P̂ rj,0 = p− µ, J = j] P[Pj,0 = r]

=

∑m
d=1 λd,ja

j
d,0R0

r
P[Ŝj,0 + P̂ rj,0 = p− µ, J = j, Pj,0 = r − 1] (6.20)

59



Chapter 6. Risk Contributions

holds. Note that for j ∈ J and l ∈ {0, . . . , n}

{Ŝj,l + P̂ rj,l = p− µ, J = j, Pj,l = r − 1, Si,j,l,r = µ}
= {S′ = p− µ, J = j, Pj,l = r − 1, Si,j,l,r = µ}.

Hence we obtain because (M,T1, . . . , Tn)
d
= (N,T1, . . . , Tn), and by insertion of Equations

(6.19) and (6.20) into Equation (6.18) and Equation (6.18) into Equation (6.17)

E
[
Si1{S=p}

]
=
∑
j∈J

n∑
l=1

∞∑
r=1

∑
µ∈Ii,p

r
(−αl) ln(1− qj,l)

r
µ P[Si,j,l,r = µ]

× E
[
Tl1{S′=p−µ}1{J=j}1{Pj,l=r−1}

]
+
∑
j∈J

∞∑
r=1

∑
µ∈Ii,p

r

∑m
d=1 λd,ja

j
d,0R0

r
µ P[Si,j,0,r = µ]

× P[S′ = p− µ, J = j, Pj,0 = r − 1]

=
∑
j∈J

n∑
l=1

(−αl) ln(1− qj,l)
∑
µ∈Ii,p

µ P[Si,j,l,1 = µ] E
[
Tl1{S=p−µ,J=j}

]
+
∑
j∈J

∑
µ∈Ii,p

m∑
d=1

λd,ja
j
d,0R0µ P[Si,j,0,1 = µ] P[S = p− µ, J = j].

q.e.d.

6.3 Conditional Expected Shortfall Contributions in a Mul-
tiperiod Model

In this section we consider non-trivial σ-algebras G that also reflect a model with d periods
and a filtration G0, . . . ,Gd−1 for d ∈ N. Hence we consider conditional expected shortfall
contributions. Then we consider multivariate claim sizes {(X1,i,h, . . . , Xd,i,h)}h∈N for i ∈
{1, . . . ,m}. Each component of such a claim size corresponds to a time period. This implies
that we choose a filtration of σ-algebras Gr with r ∈ {0, . . . , d − 1}. In time period r we
condition on the claims of the r− 1 preceding time periods. This means that at time period
r the preceding claim sizes and numbers are known. Because we are still interested in the
entire portfolio loss S, we aggregate over all time periods, i.e. we consider

S? =
m∑
i=1

Ni∑
h=1

d∑
r=1

Xr,i,h.

In the same manner we are interested in aggregated subportfolios. This requires some
further notation and also a decomposition of the claim numbers according to the period in
which they occur. We make this precise in the following lemma.

Lemma 6.21. Let Assumption 2.18 be satisfied and let N1, . . . , Nm be random variables as
in Equation (2.20) and let {(X1,i,h, . . . , Xd,i,h)}h∈N be independent sequences independent of
(N1, . . . , Nm, J, R1, . . . , Rn), consisting of i.i.d. Rd-valued random vectors for i ∈ {1, . . . ,m}.
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Define for i ∈ {1, . . . ,m} and r ∈ {1, . . . , d}

Ni,r =

Ni∑
h=1

1{X1,i,h=···=Xr−1,i,h=0,Xr,i,h 6=0}. (6.22)

Then the following holds:

(a) The random variables N1,1, . . . , Nm,1, . . . , Nd,1, . . . , Nm,d are conditionally independent
given J,R1, . . . , Rn

(b) For i ∈ {1, . . . ,m} and r ∈ {1, . . . , d} the random variable Ni,r is given by the condi-
tional distribution

L(Ni,r |J,R1, . . . , Rn)
a.s.
= L(Ni,r |J,Λi)
a.s.
= Poisson(λi,JΛi P[X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0] ) .

(6.23)

Furthermore define for i ∈ {1, . . . ,m} and r ∈ {1, . . . , d}

Si,r =

Ni,r∑
h=1

Yi,r,h,

where {Yi,r,h}h∈N is a sequence independent of (Ni,1, . . . , Ni,d), consisting of i.i.d. d-di-
mensional random vectors with L(Yi,r,1) = L(Xi,1 |X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0) if
P[X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0] > 0, otherwise take another arbitrary distribution.
Then for i ∈ {1, . . . ,m}
(c) the random variables Si,1, . . . , Si,d are conditionally independent given J,R1, . . . , Rn and

(d) the random variables Si and Si,1 + · · ·+ Si,d are equal in distribution.

Proof. We apply Remark 2.1. We first compute the probability-generating function of the
conditional distribution of N = (N1,1, . . . , Nm,1, . . . , N1,d, . . . , Nm,d) given J,R1, . . . , Rn for
z ∈ [0, 1]dm with z = (z1,1, . . . , zm,1, . . . , z1,d, . . . , zm,d). Using the conditional independence
of N1, . . . , Nm given J,R1, . . . , Rn and that {Xi,h}h∈N are independent of Ni for each
i ∈ {1, . . . ,m} and i.i.d., we observe

GN |(J,R1,...,Rn)(z)
a.s.
=

m∏
i=1

E
[ d∏
r=1

z

∑Ni
h=1 1{X1,i,h=···=Xr−1,i,h=0,Xr,i,h 6=0}

i,r

∣∣∣∣J,R1, . . . , Rn

]
a.s.
=

m∏
i=1

E
[ d∏
r=1

(
E
[
z

1{X1,i,1=···=Xr−1,i,1=0,Xr,i,1 6=0}
i,r

])Ni ∣∣∣∣J,R1, . . . , Rn

]
.

Note that 1{X1,i,1 6=0}, . . . , 1{X1,i,1=···=Xd−1,i,1=0,Xd,i,1 6=0} are independent for each i ∈
{1, . . . ,m} because the sets {X1,i,h = · · · = Xr−1,i,h = 0, Xr,i,h 6= 0} are disjoint. By
the conditional distribution of Ni given J,R1, . . . , Rn and the distribution of the Bernoulli
random variable 1{X1,i,1=···=Xr−1,i,1=0,Xr,i,1 6=0}, we obtain

GN |(J,R1,...,Rn)(z)
a.s.
=

m∏
i=1

d∏
r=1

exp
(
−λi,JΛi

(
1− E

[
z

1{X1,i,1=···=Xr−1,i,1=0,Xr,i,1 6=0}
i,r

]))
a.s.
=

m∏
i=1

d∏
r=1

exp(−λi,JΛi P[X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0](1− zi,r)),

61



Chapter 6. Risk Contributions

which proves the claim for the conditional distribution of Ni,r given J,R1, . . . , Rn and the
conditional independence of N1,1, . . . , Nm,1, . . . , N1,d, . . . , Nm,d given J,R1, . . . , Rn.

Now we calculate the characteristic function of the conditional distribution of Si,1 +
· · · + Si,d given J,R1, . . . , Rn with Yi,r,h = (Y1,i,r,h, . . . , Yd,i,r,h) and i ∈ {1, . . . ,m} and
r ∈ {1, . . . , d} for z ∈ Rd

ϕSi,1+···+Si,d |(J,R1,...,Rn)(z)
a.s.
= E

[ d∏
s=1

exp

( d∑
r=1

Ni,r∑
h=1

Ys,i,r,h i zs

)∣∣∣∣J,R1, . . . , Rn

]
.

Because the sets {X1,i,h = · · · = Xr−1,i,h = 0, Xr,i,h 6= 0} are disjoint for r ∈ {1, . . . , d}, the
random variables Ni,1, . . . , Ni,d are conditionally independent given J,R1, . . . , Rn, hence we
have

ϕSi,1+···+Si,d |(J,R1,...,Rn)(z)
a.s.
=

d∏
r=1

E
[
exp

(Ni,r∑
h=1

d∑
s=1

Ys,i,r,h i zs

)∣∣∣∣J,R1, . . . , Rn

]
.

Using that the sequences {Yi,r,h}h∈N are i.i.d. and independent of (Ni,1, . . . , Ni,d) for r ∈
{1, . . . , d} and applying the conditional distribution of Ni,r given J,R1, . . . , Rn for r ∈
{1, . . . , d} yields

ϕSi,1+···+Si,d |(J,R1,...,Rn)(z)
a.s.
=

d∏
r=1

E
[(

E
[
exp

( d∑
s=1

Ys,i,r,1 i zs

)])Ni,r ∣∣∣∣J,R1, . . . , Rn

]
a.s.
=

d∏
r=1

exp
(
−λi,JΛi P[X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0] (1− ϕYi,r,1(z))

)
, (6.24)

where ϕYi,r,1(z) denotes the characteristic function of the distribution of Yi,r,1. Hence
Si,1, . . . , Si,d are conditionally independent given J,R1, . . . , Rn. The characteristic function
of the distribution of Yi,r,1 can be evaluated as follows for z ∈ Rd

ϕYi,r,1(z) = E
[ d∏
s=1

ei zsXs,i,1

∣∣∣∣X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0

]

=
E
[∏d

s=1 ei zsXs,i,1 1{X1,i,1=···=Xr−1,i,1=0,Xr,i,1 6=0}
]

P[X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0]
. (6.25)

Inserting this term into Equation (6.24) and using
∑d

r=1 P[X1,i,1 = · · · = Xr−1,i,1 = 0,
Xr,i,1 6= 0] = 1 provides

ϕSi,1+···+Si,d |(J,R1,...,Rn)(z)

a.s.
= exp

(
−λi,JΛi

(
1−

d∑
r=1

E
[ d∏
s=1

ei zsXs,i,1 1{X1,i,1=···=Xr−1,i,1=0,Xr,i,1 6=0}

]))
a.s.
= exp

(
−λi,JΛi

(
1− E

[ d∏
s=1

ei zsXs,i,1

]))
.

Computing the characteristic function of the distribution of Si,1 + · · ·+ Si,d gives for z ∈ Rd

ϕSi,1+···+Si,d(z) = E
[ d∏
s=1

ei zs
∑d
r=1

∑Ni,r
h=1

∑d
s=1 Ys,i,r,h

]
= E

[
ϕSi,1+···+Si,d |(J,R1,...,Rn)(z)

]
.
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Noting Assumption 2.18 and Si =
∑Ni

h=1Xi,h, it is easy to see that Si
d
=Si,1 + · · · + Si,d.

q.e.d.

This is a useful representation that we will employ for a recursion of the conditional
expected shortfall. It is, however, a problem that for each i ∈ {1, . . . ,m} the random
variables Ni,1, . . . , Ni,d are not independent of each other but only conditionally given
J,R1, . . . , Rn. The reason is that each of the Ni,r with r ∈ {1, . . . , d} depends on the same
Λi. Therefore it is necessary to replace the Ni,1, . . . , Ni,d with conditional distributions that
use a different mixing distribution. This is done by a change of the density. We put it into
the following corollary:

Corollary 6.26. Let k1, . . . , kr−1, p ∈ N for r ∈ {2, . . . , d}. Fix i ∈ {1, . . . ,m}. Let the
conditions of Lemma 6.21 be satisfied. Then for each r ∈ {2, . . . , d}

P[Ni,r = p |Ni,r−1 = kr−1, . . . , Ni,1 = k1]

=
E
[
e−λi,JΛipi,r (λi,JΛipi,r)

p

p!

∏r−1
l=1 e−λi,JΛipi,l (λi,JΛipi,l)

kl

kl!

]
E
[∏r−1

l=1 e−λi,JΛipi,l (λi,JΛipi,l)
kl

kl!

] ,

where for each l ∈ {1, . . . , r}

pi,l = P[X1,i,1 = · · · = Xl−1,i,1 = 0, Xl,i,1 6= 0].

Proof. By using the definition of the conditional probability we compute for each r ∈
{2, . . . , d}

P[Ni,r = p |Ni,r−1 = kr−1, . . . , Ni,1 = k1] =
P[Ni,r = p,Ni,r−1 = kr−1 . . . , Ni,1 = k1]

P[Ni,r−1 = kr−1 . . . , Ni,1 = k1]
.

Conditioning on J,R1, . . . , Rn and using the conditional independence of Ni,1, . . . , Ni,r given
J,R1, . . . , Rn yields

P[Ni,r = p |Ni,r−1 = kr−1, . . . , Ni,1 = k1]

=
E
[
P[Ni,r = p |J,R1, . . . , Rn]

∏r−1
l=1 P[Ni,l = kl |J,R1, . . . , Rn]

]
E
[∏r−1

l=1 P[Ni,l = kl |J,R1, . . . , Rn]
] .

Using the conditional distributions of Ni,1, . . . , Ni,r given J,R1, . . . , Rn given in Equation
(6.23) provides

P[Ni,r = p |Ni,r−1 = kr−1, . . . , Ni,1 = k1]

=
E
[
e−λi,JΛipi,r (λi,JΛipi,r)

p

p!

∏r−1
l=1 e−λi,JΛipi,l (λi,JΛipi,l)

kl

kl!

]
E
[∏r−1

l=1 e−λi,JΛipi,l (λi,JΛipi,l)
kl

kl!

] .

q.e.d.

The next corollary proves that these conditional distributions provide the same dis-
tribution for the random sum Si for i ∈ {1, . . . ,m} and can therefore be used for our
model.
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Corollary 6.27. Let Assumption 2.18 and the assumptions of Lemma 6.21 be satisfied.
For each i ∈ {1, . . . ,m} define Si =

∑Ni
h=1Xi,h. Further, for each i ∈ {1, . . . ,m} let Pi,1 be

a random variable such that L(Pi,1) = L(Ni,1) and for r ∈ {2, . . . , d} let Pi,r be a random
variable such that L(Pi,r) = L(Ni,r |Ni,r−1, . . . , Ni,1). Then let for each r ∈ {1, . . . , d}

Si,r =

Pi,r∑
h=1

Yi,r,h.

Then Si and Si,1 + · · ·+ Si,d are equal in distribution for each i ∈ {1, . . . ,m}.

Proof. Let i ∈ {1, . . . ,m}. We apply Remark 2.1 and compute the characteristic function of
Si,1 + · · ·+ Si,d for z ∈ Rd using that {Yi,r,h}h∈N are i.i.d. and independent of Pi,r for each
r ∈ {1, . . . , d}

ϕSi,1+···+Si,d(z) = E
[ d∏
s=1

exp

( d∑
r=1

Pi,r∑
h=1

Ys,i,r,h i zs

)]

= E
[ d∏
r=1

(
E
[
exp

( d∑
s=1

Ys,i,r,1 i zs

)])Pi,r]
.

Applying for each r ∈ {1, . . . , d} the distribution of Pi,r and using the conditional indepen-
dence of Ni,r given Ni,1, . . . , Ni,r−1 for each r ∈ {1, . . . , d} gives

ϕSi,1+···+Si,d(z) = E
[(
ϕYi,1,1(z)

)Ni,1] d∏
r=2

E
[(
ϕYi,r,1(z)

)Ni,r ∣∣Ni,r−1, . . . , Ni,1

]
,

where ϕYi,r,1(z) is the characteristic function of the distribution of Yi,r,1. An application of
the law of total probability provides

ϕSi,1+···+Si,d(z) = E
[(
ϕYi,1,1(z)

)Ni,1]
×

d∏
r=2

∑
kr−1∈N0

· · ·
∑
k1∈N0

E
[(
ϕYi,r,1(z)

)Ni,r ∣∣Ni,r−1 = kr−1, . . . , Ni,1 = k1

]
× P[Ni,r−1 = kr−1, . . . , Ni,1 = k1].

Conditioning on J,R1, . . . , Rn yields

ϕSi,1+···+Si,d(z) = E
[(
ϕYi,1,1(z)

)Ni,1]
×

d∏
r=2

∑
kr−1∈N0

· · ·
∑
k1∈N0

E
[(
ϕYi,r,1(z)

)Ni,r ∣∣Ni,r−1 = kr−1, . . . , Ni,1 = k1

]
× E

[
P[Ni,r−1 = kr−1, . . . , Ni,1 = k1 |J,R1, . . . , Rn]

]
.
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An application of Corollary 6.26 provides

ϕSi,1+···+Si,d(z) = E
[(
ϕYi,1,1(z)

)Ni,1]
×

d∏
r=2

∑
kr−1∈N0

· · ·
∑
k1∈N0

∑
p∈N0

(
ϕYi,r,1(z)

)p E
[
e−λi,JΛipi,r

(λi,JΛipi,r)
p

p!

×
r−1∏
l=1

e−λi,JΛipi,l
(λi,JΛipi,l)

kl

kl!

]

= E
[(
ϕYi,1,1(z)

)Ni,1] d∏
r=2

∑
p∈N0

E
[
e−λi,JΛipi,r

(λi,JΛipi,rϕYi,r,1(z))p

p!

]
.

Since E
[
exp(−λi,JΛipi,r(1− ϕYi,r,1(z)))

]
= E[(ϕYi,r,1(z))Ni,r ] for r ∈ {1, . . . , d}, this can be

simplified as follows

ϕSi,1+···+Si,d(z) = E
[(
ϕYi,1,1(z)

)Ni,1] d∏
r=2

E
[(
ϕYi,r,1(z)

)Ni,r]. (6.28)

The characteristic function of the distribution of Yi,r,1 can be evaluated as in Equation
(6.25). A comparison with Equation (6.24) shows that the expected value of Equation (6.24)
yields the right-hand side of Equation (6.28), hence Si,1 + · · · + Si,d and Si are equal in
distribution for each i ∈ {1, . . . ,m}. q.e.d.

This corollary shows that the random sums Si can be decomposed into components
corresponding to the individual periods such that

Si
d
= Si,1 + · · ·+ Si,d,

where Si is a d-dimensional random vector for each i ∈ {1, . . . ,m}. Accordingly, the
aggregated subportfolios are given by

S?i =

d∑
r=1

Pi,r∑
h=1

d∑
s=1

Ys,i,r,h,

and it is easily seen that Si,r
d
=Si,r. Accordingly we define S? =

∑m
i=1 S

?
i . The corresponding

σ-algebras can be chosen such that

Gr = σ(Pi,1, . . . , Pi,r, {Yi,1,h}h∈N, . . . , {Yi,r,h}h∈N, i ∈ {1, . . . ,m}). (6.29)

for r ∈ {1, . . . , d− 1}. For r = 0 we set G0 = {∅,Ω}. We therefore consider exactly the claim
numbers and claim sizes that have occurred in the preceding r time periods.

Using these preparations, we can compute the conditional expected shortfall contributions
as follows. First, let r = 0 and we have

ESδ
[
S?i , S

? |G0

]
= ESδ

[
S?i , S

?
]
,

which is the standard expected shortfall risk contribution.
Let now r ∈ {1, . . . , d− 1}. Hence Gr is given by Equation (6.29) and non-empty. Let

Si,r′ = (S1,i,r′ , . . . , Sd,i,r′) such that Ss,i,r′ =
∑Pi,r′

h=1 Ys,i,r′,h for r′, s ∈ {1, . . . , d}. By [34] we
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can use the linearity of the conditional expected shortfall, and because Ss,i,1, . . . , Ss,i,r are
Gr-measurable for s ∈ {1, . . . , d}, we obtain

ESδ
[
S?i , S

? |Gr
] a.s.

=

d∑
s=1

ESδ

[ d∑
r′=1

Ss,i,r′ , S
?

∣∣∣∣Gr]
a.s.
=

d∑
s=1

(
Ss,i,1 + · · ·+ Ss,i,r + ESδ

[
Ss,i,r+1 + · · ·+ Ss,i,d, S

? |Gr
])
.

Applying Definition 6.6 yields

ESδ
[
S?i , S

? |Gr
] a.s.

=

d∑
s=1

(
Ss,i,1 + · · ·+ Ss,i,r

+
1

1− δ
(
E
[
1{S?>qGr,δ(S?)}(Ss,i,r+1 + · · ·+ Ss,i,d)

∣∣Gr]
+ βGr,δ,S? E

[
1{S?=qGr,δ(S

?)}(Ss,i,r+1 + · · ·+ Ss,i,d)
∣∣Gr]))

because βGr,δ,S? is Gr-measurable. If we assume that the claim sizes {(X1,h, . . . , Xd,h)}h∈N
are N0-valued, then βGr,δ,S? can be evaluated with an application of [34] and using an
extended Panjer recursion, cf. Algorithm 5.9. Since Ss,i,1, . . . , Ss,i,r are Gr-measurable for
s ∈ {1, . . . , d}, we can follow the arguments of [34] and we obtain for the δ-quantile of S?

given Gr

qGr,δ(S
?)

a.s.
=

d∑
s=1

(Ss,i,1 + · · ·+ Ss,i,r) + qδ

(
S? −

d∑
s=1

(Ss,i,1 + · · ·+ Ss,i,r)

)
. (6.30)

Because of Lemma 6.21 and Corollary 6.27 we have S?
d
=
∑m

i=1

∑d
r=1

∑Ni,r
h=1

∑d
s=1 Ys,i,r,h.

Since the claim sizes are i.i.d. and independent of each other, and if the claim sizes are
N0-valued, then qδ

(
S?−∑d

s=1(Ss,i,1 + · · ·+Ss,i,r)
)

can be evaluated using an extended Panjer

recursion (cf. Algorithm 5.9) if the single probabilities P[S?−∑d
s=1(Ss,i,1 + · · ·+Ss,i,r) = n]

for n ∈ N0, are evaluated and summed up until P[S? −∑d
s=1(Ss,i,1 + · · ·+ Ss,i,r) ≤ n] ≥ δ.

Since Ss,i,r+1 + · · ·+ Ss,i,d and S?−∑d
s=1(Ss,i,1 + · · ·+ Ss,i,r) are independent of Gr and

Ss,i,1 + · · ·+ Ss,i,r are Gr-measurable for s ∈ {1, . . . , d} (note Equation (6.30)), we observe

ESδ
[
S?i , S

? |Gr
] a.s.

=

d∑
s=1

(
Ss,i,1 + · · ·+ Ss,i,r

+
1

1− δ
(
E
[
1{S?>qGr,δ(S?)}(Ss,i,r+1 + · · ·+ Ss,i,d)

]
+ βGr,δ,S? E

[
1{S?=qGr,δ(S

?)}(Ss,i,r+1 + · · ·+ Ss,i,d)
]))

,

where the application of Equation (6.30) has been omitted to facilitate reading.
As in the case with a trivial σ-algebra G0 we note that

E
[
1{S?>qGr,δ(S?)}(Ss,i,r+1 + · · ·+ Ss,i,d)

]
= E

[
Ss,i,r+1 + · · ·+ Ss,i,d

]
− E

[
1{S?−

∑d
s=1(Ss,i,1+···+Ss,i,r)≤qδ(S?−

∑d
s=1(Ss,i,1+···+Ss,i,r))}(Ss,i,r+1 + · · ·+ Ss,i,d)

]
.
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Further

E
[
1{S?−

∑d
s=1(Ss,i,1+···+Ss,i,r)≤qδ(S?−

∑d
s=1(Ss,i,1+···+Ss,i,r))}(Ss,i,r+1 + · · ·+ Ss,i,d)

]
=

qδ(S
?−

∑d
s=1(Ss,i,1+···+Ss,i,r))∑

n=1

E
[
(Ss,i,r+1 + · · ·+ Ss,i,d)1{S?−

∑d
s=1(Ss,i,1+···+Ss,i,r)=n}

]
holds. Note that if S? −∑d

s=1(Ss,i,1 + · · ·+ Ss,i,r)) is an N0-valued random variable, then

qδ(S
? −∑d

s=1(Ss,i,1 + · · ·+ Ss,i,r))) is also N0-valued.
The last term can be evaluated recursively. We put it into the following corollary:

Corollary 6.31. Let Assumption 2.18 be satisfied. Let the random variables N1, . . . ,
Nm be conditionally independent given J,R1, . . . , Rn and satisfy Equation (2.20). Let for
i ∈ {1, . . . ,m} the independent sequences {(X1,i,h, . . . , Xd,i,h)}h∈N of i.i.d. discrete random
vectors be independent of all previously mentioned random variables and let the negative part
X−i,1 be integrable. Let Ss,i,r =

∑Pi,r
h=1 Ys,i,r,h for s, r ∈ {1, . . . , d} and let the distributions

of Pi,r and Yi,r,1 be given as in Corollary 6.27. Define for p ∈ R, s, r ∈ {1, . . . , d},
t ∈ {r + 1, . . . , d} and i ∈ {1, . . . ,m} the set

Ii,r,s,t,p :=

{
µ ∈ R \ {0}

∣∣∣∣ P[Ys,i,t,1 = µ, S? −
d∑
s=1

(Ss,i,1 + · · ·+ Ss,i,r) = p− µ
]
> 0

}
.

Then for every i ∈ {1, . . . ,m} and s, r ∈ {1, . . . , d}
d∑

t=r+1

E
[
Ss,i,t1{S?−

∑d
s=1(Ss,i,1+···+Ss,i,r)=p}

]
=

d∑
t=r+1

P[X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0]
∑
j∈J

λi,j

n∑
l=0

aji,l

×
∑

µ∈Ii,r,s,t,p

µ P[Ys,i,t,1 = µ] E
[
Rl1{S?−

∑d
s=1(Ss,i,1+···+Ss,i,r)=p−µ,J=j}

]
holds for all p ∈ R.

Proof. By application of Lemma 6.21 and Corollary 6.27

(S1,1, . . . , S1,d, . . . , Sm,1, . . . , Sm,d)
d
= (S1,1, . . . , S1,d, . . . , Sm,1, . . . , Sm,d)

holds and thus also (Si,r, S
?)

d
= (Si,r, S

?) for each i ∈ {1, . . . ,m} and r ∈ {1, . . . , d}. Note
that by Theorem 3.1 Ni

d
=Mi holds for each i ∈ {1, . . . ,m} with Mi given in Theorem 3.1.

Let now for each r ∈ {1, . . . , d}

Mi,r =

Mi∑
h=1

1{X1,i,h=···=Xr−1,i,h=0,Xr,i,h 6=0},

and obviously Ni,r
d
=Mi,r holds, cf. also Equation (6.22). Then the equivalent representation

of Mi,r for r ∈ {1, . . . , d} is given by

Mi,r =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l,r∑
h=1

Bi,j,l,h,
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where for each j ∈ J , l ∈ {0, . . . , n} and r ∈ {1, . . . , d}

L(Qj,l,r |J,R0, . . . , Rn)
a.s.
= L(Qj,l,r |Rl)

a.s.
= Poisson

( m∑
i=1

λi,ja
j
i,lRl P[X1,i,1 = · · · = Xr−1,i,1 = 0, Xr,i,1 6= 0]

)
,

and the remaining random variables are given as in Theorem 3.1. It can be clearly seen that
this claim holds after a comparison of the proofs of Lemma 6.21 and Theorem 3.1. Thus

also Ss,i,t
d
=
∑Mi,t

h=1 Ys,i,t,h for t ∈ {1, . . . , d} holds. Insertion yields

d∑
t=r

E
[
Ss,i,t1{S?−

∑d
s=1(Ss,i,1+···+Ss,i,r)=p}

]
=

d∑
t=r

E
[∑
j∈J

1{J=j}

n∑
l=0

Qj,l,t∑
h=1

Bi,j,l,hYs,i,t,h1{S?−
∑d
s=1(Ss,i,1+···+Ss,i,r)=p}

]
.

The rest of the proof is analogous to that of Theorem 6.10. It is only important to note that
due to t ∈ {r, . . . , d} we have Ys,i,t,h 6= 0, hence for µ ∈ Ii,r,s,t,p the set {Bi,j,l,hYs,i,t,h = µ}
is well-defined. q.e.d.

6.4 Derivation of the Algorithm for Theorem 6.10

We derived a formula for E
[
Si1{S=p}

]
but it still remains to compute E

[
Rl1{S′=p}1{J=j}

]
for p ∈ N0, j ∈ J , and l ∈ {1, . . . , n} and

S′ =
∑
j∈J

1{J=j}

n∑
l=0

Qj,l∑
h=1

m∑
i=1

Bi,j,l,hXi,l,h

as can be derived from Theorem 3.1. If R1, . . . , Rn are gamma-distributed, then we proceed
as in [57]. If R1, . . . , Rn have a τ -tempered α-stable distributions, then the approach is
different. We put this into the following theorem:

Theorem 6.32. Let ν ∈ N0 and n ∈ N. Let αl ∈ (0, 1), σ > 0 and τl ≥ 0 for l ∈ {1, . . . , n}
and let γ = (γ1 . . . , γn) ∈ {0, 1}n. Let the assumptions of Theorem 6.10 be satisfied and let
{Xl,h}h∈N be independent of Qj,l and {Bj,l,h}h∈N for j ∈ J and l ∈ {0, . . . , n}. Define for
every j ∈ J and l ∈ {1, . . . , n}

λ̄j,l =

m∑
i=1

λi,ja
j
i,l.

Define the parameters

qj,l =
λ̄j,l

τl + λ̄j,l
and γαl,σl =

σαll
cos(αlπ/2)

, j ∈ J , l ∈ {0, . . . , n}

and

δ1 =
n∑
l=1

γl(αl − 1) ln(1− qj,l) and δ2 =
n∑
l=1

γαl,σl((λ̄j,l + τl)
αl − ταll ).
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Let for l ∈ {1, . . . , n} the random variable Rl have a distribution such that Rl ∼ Fαl,σl,τl,0.
Let further {Wj,l,h}h∈N be independent sequences of i.i.d. random variables such that

Wj,l,h =

m∑
i=1

Bi,j,l,hXi,l,h, h ∈ N, j ∈ J , l ∈ {0, . . . , n}.

Let {L̃j,l,h}h∈N be independent sequences of i.i.d. random variables for j ∈ J and l ∈
{1, . . . , n} such that

L̃j,l,1
d
=

Lj,l∑
r=1

Wj,l,r, (6.33)

where Lj,l ∼ Log(qj,l) is independent of {Wj,l,h}h∈N. Let the following random variables and
sequences be independent of each other, respectively. Let {Q1

j,h}h∈N be a sequence of i.i.d.
random variables such that

L
(
Q1
j,1

)
=

1

δ1

n∑
l=1

γl(αl − 1) ln(1− qj,l)L
(
L̃j,l,1

)
, j ∈ J . (6.34)

Let {Nj,l,h}h∈N be independent sequences of i.i.d. random variables such that

Nj,l,1 ∼ ExtNegBin(−αl, 1, qj,l) , j ∈ J , l ∈ {1, . . . , n}. (6.35)

Define the sequence {Zj,l,h}h∈N of i.i.d. random variables such that Zj,l,h
d
=
∑Nj,l,h

r=1 Wj,l,r

for h ∈ N. Let further {Q2
j,h}h∈N be a sequence of i.i.d. random variables such that

L
(
Q2
j,1

)
=

1

δ2

n∑
l=1

γαl,σl((λ̄j,l + τl)
αl − ταll )L(Zj,l,1) , j ∈ J . (6.36)

Furthermore, define for j ∈ J the random variables

M ′j ∼ Poisson
(
δ1 + δ2 + λ̄j,0R0

)
. (6.37)

Now let S′j =
∑M ′j

h=1X
′
j,h for j ∈ J where {X ′j,h}h∈N is a sequence independent of M ′j,

consisting of i.i.d. random variables such that

L
(
X ′j,1

)
=

1

δ1 + δ2 + λ̄j,0R0

(
δ1 L

(
Q1
j,1

)
+ δ2 L

(
Q2
j,1

)
+ λ̄j,0R0 L(Wj,0,1)

)
. (6.38)

Let γl ∈ {0, 1} for l ∈ {1, . . . , n}. Then

E
[
Rγ1

1 . . . Rγnn 1{S′=ν}1{J=j}
]

= Cγ P[S′j = ν] P[J = j]

holds, where Cγ =
∏n
l=1

(
αlγαl,σlτ

αl−1
l

)γl.
Proof. We proceed first as in [57]. Assume that J,R1, . . . , Rn are independent. Consider a
weighted probability-generating function of the distribution of S′ for z ∈ [0, 1]

GS′,γ(z) =
∑
p∈N0

∑
j∈J

E
[
Rγ1

1 . . . Rγnn 1{S′=p}1{J=j}
]
zp

= E
[
Rγ1

1 . . . Rγnn z
S′
]

= E
[
E
[
Rγ1

1 . . . Rγnn z
S′
∣∣J] ].
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Condition on J,R1, . . . , Rn, hence Sl =
∑

j∈J 1{J=j}
∑Qj,l

h=1

∑m
i=1Bi,j,l,hXi,l,h are condition-

ally independent given J,R1, . . . , Rn for l ∈ {0, . . . , n}, thus

E
[
Rγ1

1 . . . Rγnn z
S′
∣∣J,R1, . . . , Rn

] a.s.
= Rγ1

1 . . . Rγnn

n∏
l=0

E
[
zSl
∣∣J,R1, . . . , Rn

]
. (6.39)

Let Gj,l(z) = E
[
zWj,l,1

]
be the probability-generating function of the distribution of Wj,l,1.

Then the conditional distribution of Qj,l given J,R1, . . . , Rn yields for l ∈ {0, . . . , n} (cf.
Equation (3.3))

E
[
zSl |J,R1, . . . , Rn

] a.s.
= E

[
zSl |J,Rl

] a.s.
= exp

(
−

m∑
i=1

λi,Ja
J
i,lRl(1−GJ,l(z))

)
. (6.40)

Inserting Equation (6.40) into Equation (6.39) yields

E
[
Rγ1

1 . . . Rγnn z
S′
∣∣J,R1, . . . , Rn

]
a.s.
= exp

(
−λ̄J,0R0(1−GJ,0(z))

) n∏
l=1

Rγll exp
(
−λ̄J,lRl(1−GJ,l(z))

)
. (6.41)

Take the conditional expectation given J of Equation (6.41) and use the independence of
J,R1, . . . , Rn

E
[
Rγ1

1 . . . Rγnn z
S′
∣∣J] a.s.

= exp
(
−λ̄J,0R0(1−GJ,0(z))

) n∏
l=1

E
[
Rγll exp

(
−λ̄J,lRl(1−GJ,l(z))

)∣∣J].
Let us introduce the notation of [21, Equation (5.32)]

Iα,σ(−m, s) := (−1)m
dm

dsm
exp(−γα,σsα), m ∈ N, s > 0

with γα,σ = σα

cos(απ/2) and Iα,σ(0, s) := exp(−γα,σsα) for s ≥ 0. Then for Rl ∼ Fαl,σl,τl,0 with

l ∈ {1, . . . , n} according to [21, Corollary 5.16]

E
[
Rγll exp

(
−λ̄J,lRl(1−GJ,l(z))

)
|J
] a.s.

=
Iαl,σl(−γl, λ̄J,l(1−GJ,l(z)) + τl)

Iαl,σl(0, τl)
.

If γl = 0, then

E
[
exp
(
−λ̄J,lRl(1−GJ,l(z))

)
|J
] a.s.

= exp
(
−γαl,σl

((
λ̄J,l(1−GJ,l(z)) + τl

)αl − ταll )),
cf. also [21, Equation (5.25)]. Analogously, if γl = 1, then

E
[
Rl exp

(
−λ̄J,lRl(1−GJ,l(z))

)
|J
]

a.s.
= αlγαl,σl

(
λ̄J,l(1−GJ,l(z)) + τl

)αl−1
exp
(
−γαl,σl

((
λ̄J,l(1−GJ,l(z)) + τl

)αl − ταll )).
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Transferring this into a common exponential, this provides for the weighted probability-
generating function for z ∈ [0, 1]

GS′,γ(z) =
∑
j∈J

E
[
Rγ1

1 , . . . , R
γn
n z

S′
∣∣J = j

]
P[J = j]

=
∑
j∈J

exp

(
−λ̄j,0R0(1−Gj,0(z))

+

n∑
l=1

γl ln
(
αlγαl,σl

(
λ̄j,l(1−Gj,l(z)) + τl

)αl−1)
− γαl,σl

((
λ̄j,l(1−Gj,l(z)) + τl

)αl − ταll ))P[J = j]. (6.42)

Let us treat the logarithmic term. We observe for each j ∈ J and l ∈ {1, . . . , n}

ln(λ̄j,l(1−Gj,l(z)) + τl) = ln
(
τl

( 1

τl
λ̄j,l
(
1−Gj,l(z)

)
+ 1
))

= ln(τl) + ln
(

1− λ̄j,l
Gj,l(z)− 1

τl

)
. (6.43)

Then

G̃j,l(z) =
ln(1− qj,lGj,l(z))

ln(1− qj,l)
is the probability-generating function of the distribution of the random sum L̃j,l,1. Thus we
obtain for every j ∈ J and l ∈ {1, . . . , n}

1− λ̄j,l
Gj,l(z)− 1

τl
=
τl + λ̄j,l

τl

(
1− λ̄j,l

τl + λ̄j,l
Gj,l(z)

)
=

1

1− qj,l
(1− qj,lGj,l(z)),

and hence

ln
(

1− λ̄j,l
Gj,l(z)− 1

τl

)
= (G̃j,l(z)− 1) ln(1− qj,l). (6.44)

Then the following holds for the weighted probability-generating function by insertion of
Equations (6.43) and (6.44) into Equation (6.42)

GS′,γ(z) =
∑
j∈J

exp

(
−λ̄j,0R0(1−Gj,0(z))

+
n∑
l=1

γl
(
ln(αlγαl,σl) + (αl − 1) ln(λ̄j,l(1−Gj,l(z)) + τl)

)
− γαl,σl((λ̄j,l(1−Gj,l(z)) + τl)

αl − ταll )

)
P[J = j]

= Cγ
∑
j∈J

exp

(
−λ̄j,0R0(1−Gj,0(z))

+

n∑
l=1

γl(αl − 1)(G̃j,l(z)− 1) ln(1− qj,l)

− γαl,σl
((
λ̄j,l(1−Gj,l(z)) + τl

)αl − ταll ))P[J = j]. (6.45)
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The exponential term in this sum is the probability-generating function Gj(z) of the
distribution of the sum of independent random sums

S′j =

Kj∑
h=1

Wj,0,h +
n∑
l=1

Mj,l∑
h=1

L̃j,l,h +
n∑
l=1

Pj,l∑
r=1

Nj,l,r∑
h=1

Wj,l,h, j ∈ J , (6.46)

where Kj ∼ Poisson
(
λ̄j,0R0

)
is independent of {Wj,l,h}h∈N. Furthermore,

Mj,l ∼ Poisson(γl(αl − 1) ln(1− qj,l))

are independent for l ∈ {1, . . . , n} and {L̃j,l,h}h∈N are independent sequences independent
of Mj,l, consisting of i.i.d. random variables such that L̃j,l,1 has the distribution given by
Equation (6.33) for each l ∈ {1, . . . , n}. The choice of the last random sum might not be
so obvious. A comparison of the last term of Equation (6.45) with [21, Equation (5.25)]
shows that this is a Poisson distribution mixed with a τ -tempered α-stable distribution.
An application of [21, Lemma 5.10] provides our representation of the last summand in
Equation (6.46), note our notation of the extended negative binomial distribution. Hence,

Pj,l ∼ Poisson
(
γαl,σl((λ̄j,l + τl)

αl − ταll )
)

are independent for l ∈ {1, . . . , n} and {Nj,l,h}h∈N are independent sequences independent
of Pj,l, consisting of i.i.d. random variables such that Equation (6.35) is satisfied and
{Wj,l,h}h∈N are independent sequences independent of Pj,l and {Nj,l,h}h∈N, consisting of
i.i.d. random variables such that Wj,l,1 has a distribution given by Gj,l(z).

We observe here that we have twice a sum of random variables with compound Poisson
distributions. According to [49, Proposition 3.3.4] we see that

S′j,1 =
n∑
l=1

Mj,l∑
h=1

L̃j,l,h, j ∈ J ,

also has a compound Poisson distribution, i.e., S′j,1
d
=
∑Tj

h=1Q
1
j,h where we have Tj ∼

Poisson(δ1) and L(Q1
j,1) is given by Equation (6.34).

According to [49, Proposition 3.3.4] we also see that the other random sum

S′j,2 =
n∑
l=1

Pj,l∑
r=1

Nj,l,r∑
h=1

Wj,l,h, j ∈ J ,

has a compound Poisson distribution, too, i.e., S′j,2
d
=
∑Uj

h=1Q
2
j,h, with Uj ∼ Poisson(δ2)

L(Q2
j,1) given by Equation (6.36).

Finally, since both S′j,1 and S′j,2 have a compound Poisson distribution, once more we
apply [49, Proposition 3.3.4] and we observe for each j ∈ J

S′j =

Kj∑
h=1

Wj,0,h + S′j,1 + S′j,2
d
=

M ′j∑
h=1

X ′j,h

where the distribution of M ′j is given by Equation (6.37) and the distribution of {Xj,h}h∈N
by Equation (6.38).
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Hence the weighted probability-generating function simplifies to

GS′,γ(z) = Cγ
∑
j∈J

Gj(z) P[J = j],

and thus by conditioning on J we obtain

E
[
Rγ1

1 . . . Rγnn 1{S′=ν}
]

=
∑
j∈J

E
[
Rγ1

1 . . . Rγnn 1{S′=ν}1{J=j}
]

= Cγ
∑
j∈J

P[S′j = ν] P[J = j], ν ∈ N0.

By comparison of the coefficients we have

E
[
Rγ1

1 . . . Rγnn 1{S′=ν}1{J=j}
]

= Cγ P[S′j = ν] P[J = j].

q.e.d.

Remark 6.47. Note that all random variables introduced in the theorem allow for an iterated
application of Panjer’s recursion. First, for each j ∈ J and l ∈ {0, . . . , n} the distribution
of Wj,l,1 can be determined by the law of total probability. The distribution of L̃j,l,1 can
be evaluated by an extended Panjer’s recursion (cf. Theorem 5.1) for each j ∈ J and
l ∈ {1, . . . , n}, hence the distribution of Q1

j,1 is also known. Since the distribution of Zj,l,1
can be computed with an extended Panjer recursion for each j ∈ J and l ∈ {1, . . . , n}, the
distribution of Q2

j,1 is also known. Because the distribution of X ′j,1 is a convex combination
of distributions that can be evaluated with an extended Panjer recursion, the distribution
of S′j can be computed by a numerically stable Panjer recursion for each j ∈ J .
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Chapter 7

Numerical Illustration

In this chapter we give examples of the impacts of different dependence structures in our
model on the distribution of the portfolio loss and on the corresponding risk contributions.
More precisely, this means we consider the impacts of different correlations. We will see that
given certain constraints originating from the extended CreditRisk+ model, the resulting
distributions differ.

7.1 Two Risk Factors

We give an example of the application of Algorithm 5.9 that implements the dependence
structures given in Theorem 3.1. We consider three cases of dependence structures and we
use the following assumptions and parameters: in each case we consider two independent
and gamma-distributed risk factors, i.e., Ri ∼ Gamma(α, β) for i = 1, 2 and α, β > 0. This
ensures that each risk factor has the same influence. A further constraint of our example
is a condition of the extended CreditRisk+ model, i.e., we assume for each default cause
intensity E[Λ1] = E[Λ2] = 1. In order to have a closer comparison we further assume that
the variances of the default cause intensities Λi are the same in each case of correlation. The
distribution of the random sum S in each of these cases can be given explicitly. Consider
the corresponding probability-generating functions. The three cases are the following:

(a) Independent default cause intensities

A =

(
0 1 0
0 0 1

)
.

Applying Theorem 3.1 and using |J | = 1 and thus omitting the index j for z ∈ [0, 1],
we observe

GS(z) = E
[
z
∑m
i=1

∑Ni
h=1Xi,h

]
= E

[
exp

(
−

2∑
i=1

λi

2∑
l=0

ai,lRl(1−GXi,1(z))

)]
= E

[
exp
(
−λ1R1(1−GX1,1(z))− λ2R2(1−GX2,1(z))

)]
=
( β1

β1 + λ1(1−GX1,1(z))

)α1
( β2

β2 + λ2(1−GX2,1(z))

)α2

,

which determines the convolution of two compound negative binomial distributions.
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(b) Negatively correlated default cause intensities (cf. Example 3.14) with a, b > 0

A1 =

(
0 b 0
a 0 0

)
, A2 =

(
a 0 0
0 0 b

)
.

We choose two dependence scenarios, i.e. J = {1, 2}, and we let J be a random variable
such that P[J = 1] = P[J = 2] = 1/2. Applying Theorem 3.1 and using J = {1, 2} for
z ∈ [0, 1], we observe

GS(z) = E
[
exp

(
−
∑
j∈J

1{J=j}

2∑
i=1

λi,j

2∑
l=0

aji,lRl(1−GXi,1(z))

)]

=
1

2
E
[
exp

(
−

2∑
i=1

λi,1

2∑
l=0

a1
i,lRl(1−GXi,1(z))

)]

+
1

2
E
[
exp

(
−

2∑
i=1

λi,2

2∑
l=0

a2
i,lRl(1−GXi,1(z))

)]
=

1

2
E
[
exp
(
−(λ2,1aR0 + λ1,1bR1)(1−GX1,1(z))

)]
+

1

2
E
[
exp
(
−(λ1,2aR0 + λ2,2bR2)(1−GX2,1(z))

)]
=

1

2
exp
(
−λ2,1aR0(1−GX1,1(z))

)( β1

β1 + λ1,1b(1−GX1,1(z))

)α1

+
1

2
exp
(
−λ1,2aR0(1−GX2,1(z))

)( β2

β2 + λ2,2b(1−GX2,1(z))

)α2

,

which determines the mixture of two compound negative binomial distributions each of
which is convoluted with a compound Poisson distribution. We give some explanations
for the choice of these matrices in the remark below.

(c) Positively correlated default cause intensities

A =

(
0 1 0
0 1 0

)
.

Assume for simplicity GX1,1(z) = GX2,1(z) for z ∈ [0, 1]. Applying Theorem 3.1 and
using |J | = 1 and also omitting the index j for z ∈ [0, 1], we obtain

GS(z) = E
[
z
∑m
i=1

∑Ni
h=1 Xi,h

]
= E

[
exp

(
−

2∑
i=1

λi

2∑
l=0

ai,lRl(1−GXi,1(z))

)]
= E

[
exp
(
−λ1R1(1−GX1,1(z))− λ2R1(1−GX2,1(z))

)]
=
( β1

β1 + (λ1 + λ2)(1−GX1,1(z))

)α1

,

which determines a compound negative binomial distribution.

Remark 7.1. The parameters a and b in Case (b) should be chosen such that E[Λi] = 1 and
the variance of Λi for i = 1, 2 in the case of negative correlation is the same as in the case
of positive correlation and the independent case. We also assume that R0 = E[R1]. In the
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independent case we obtain for the expected value E[Λ1] = E[R1] = α
β and for the variance

Var(Λ1) = Var(R1) = α
β2 . Hence we get the following constraint using the expected value

and that R1 and J are independent

E[Λ1] = E
[
aR01{J=2} + bR11{J=1}

]
=
a

2
E[R0] +

b

2
E[R1] =

α

β
,

hence a + b = 2. Because R1
d
=R2, this also holds for Λ2. Concerning the variance, we

observe the following by insertion of the definition of Λ1

Var(Λ1) = E
[
(aR01{J=2} + bR11{J=1})

2
]
−
(
E
[
aR01{J=2} + bR11{J=1}

])2
= E

[
(aR0)21{J=2} + (bR1)21{J=1}

]
−
(a

2

α

β
+
b

2

α

β

)2
.

According to [57] on properties of the gamma distribution we have E
[
R2

1

]
= α(α+1)

β2 , hence

Var(Λ1) =
a2

2

α2

β2
+
b2

2

α(α+ 1)

β2
− α2

β2

(a2

4
+
ab

2
+
b2

4

)
=
b2

2

α

β2
+
α2

β2

(a− b
2

)2
=

α

β2

by assumption. By algebraic transformations and using a = 2− b we have

1 =
b2

2
+ α(1− b)2 ⇔ b2 − 4α

1 + 2α
b+

2(α− 1)

1 + 2α
= 0.

Solving the quadratic equation yields

b1 =
2α+

√
2 + 2α

1 + 2α
and b2 =

2α−
√

2 + 2α

1 + 2α

If α ∈ (0, 1), then b2 is negative, but b1 ∈ [0, 2] for all α > 0. Hence b1 should be preferred.
Thus for given α the matrices A1 and A2 are determined.

We specialize the remaining parameters as follows: we choose the risk factors such that
E[R1] = E[R2] = 1, e.g., α = β = 2. Thus we have

b =
4 +
√

6

5
and a =

6−
√

6

5
.

As Poisson parameters we take λi,j = 20 with i, j = 1, 2. The parameter R0 is chosen
such that R0 = E[R1] = 1. Finally, for the distribution of the claim sizes we choose
Xi,1 ∼ NegBin(4, 0.4) for i = 1, 2. Note that this distribution is chosen arbitrarily and that
it does not have to be in a Panjer(a, b, k) class since it is the claim size distribution. We
compute the first 300 values of the respective probability mass functions.

For a better comparison we put the probability mass functions into one graph, see Figure
7.1. We see interesting differences between the probability mass functions. Taking the
probability mass function with independent default cause intensities as an initial point, we
observe that the probability mass function for negatively correlated default cause intensities
is a bit more light-tailed with a taller maximum, whereas the probability mass function for
positively correlated default cause intensities has a mass with a smaller maximum, and its
mass is distributed more to the tails. We also observe that the probability mass function for
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Figure 7.1: Probability mass functions of a portfolio loss for different dependence structures
with two risk factors and claim size Xi,1 ∼ NegBin(4, 0.4).

the default cause intensities with positive correlation has a heavier tail than the other two
probability mass functions.

We also compute risk contributions given in Theorem 6.10 and [57] for these parameters,
and their behaviour matches the observations for the distributions with these dependence
scenarios. A negative correlation between default cause intensities seems to produce a lower
risk than that of independent default cause intensities, and a positive correlation between
default cause intensities seems to produce a higher risk. This holds for all levels δ = 0.8, 0.9,
0.95, 0.99 for which we computed expected shortfall risk contribution. The results are given
in Table 7.1.

It is also possible to obtain results that show much more clearly the influence of different
dependence scenarios. They also show that the types of the curves of the probability mass
functions are independent of the claim sizes. This can be achieved by setting the claim sizes
Xi,1 ≡ 1 and keeping the other parameters. The result can be seen in Figure 7.2 with the
first 150 values of the corresponding probability mass functions. The curves in this figure
make clear that its behaviour is dominated by the correlation between the default cause
intensities and less by the claim sizes. In order to be able to compare this behaviour more
closely, we consider the variances. For this, we use Equation (3.12) in Remark 3.10. In case
of independence we obtain

Var(N1) = E[λ1,JΛ1] + Var(λ1,JΛ1) = 20 + 400 Var(Λ1) = 20 + 200 = 220 = Var(N2)

78



7.1. Two Risk Factors

Case (a) Case (b) Case (c)

level δ S1, S2 S1, S2 S1, S2

0.8 97.5538 95.1297 114.8308

0.9 111.8582 110.5307 139.1222

0.95 125.7218 124.0371 160.8160

0.99 156.4339 158.4093 211.9374

Table 7.1: Risk contributions of S1 and S2 according to Equation (6.8) for different levels δ
and dependence structures with claim size Xi,1 ∼ NegBin(4, 0.4).

by symmetry. Thus the variance is

Var(N) = Var(N1) + Var(N2) = 220 + 220 = 440.

In case of negative correlation between the default cause intensities we obtain

Var(N1) = E[λ1,JΛ1] + Var(λ1,JΛ1) = 20 + 400 Var(Λ1) = 220 = Var(N2)

by symmetry. By Equation (3.13) we have, using the definitions of Λ1 and Λ2 and the
independence of J,R1, R2

cov(N1, N2) = cov(λ1,JΛ1, λ2,JΛ2)

= 400
(
E
[
abR11{J=1} + abR21{J=2}

]
− E

[
a1{J=2} + bR11{J=1}

]
E
[
a1{J=1} + bR21{J=2}

])
= 400

(ab
2

E[R1] +
ab

2
E[R2] −

(a
2

+
b

2
E[R1]

)(a
2

+
b

2
E[R2]

))
= −400

(a− b
2

)2
.

Using the values for b and a = 2− b we obtain

cov(Λ1,Λ2) = −(1− b)2 = −
(5− 4−

√
6

5

)2
=

2
√

6− 7

25
.

Thus the variance is

Var(N) = Var(N1) + Var(N2) + 2 cov(N1, N2) = 220 + 220− 32(2
√

6− 7) ≈ 372.7673.

In case of positive correlation between the default cause intensities we obtain

Var(N1) = E[λ1,JΛ1] + Var(λ1,JΛ1) = 20 + 400 Var(Λ1) = 220 = Var(N2)

by symmetry. By Equation (3.13) we have

cov(N1, N2) = cov(λ1,JΛ1, λ2,JΛ2) = 400 cov(Λ1,Λ2) = 400 Var(R1) = 200.

Thus the variance is

Var(N) = Var(N1) + Var(N2) + 2 cov(N1, N2) = 220 + 220 + 400 = 840.

Correspondingly, there are the following risk contributions in Table 7.2.
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Figure 7.2: Probability mass functions of a portfolio loss for different dependence structures
with two risk factors and claim size Xi,1 ≡ 1.

7.2 Three Risk Factors

In this example we also apply Algorithm 5.9, but only consider two cases, namely a case with
independent default cause intensities and a case with both positive and negative correlation
between the default cause intensities. Again, we assume for each default cause E[Λi] = 1
with i ∈ {1, . . . , 3}. We now want to study the impacts of positive and negative correlation
between default cause intensities against each other in contrast to independent default cause
intensities.

We let the risk factors be independent and gamma-distributed with Ri ∼ Gamma(αi, βi)
with αi = 2 and βi = 14 for i = 1, 2, 3. The Poisson parameter is chosen such that λi,j = 15
for i = 1, 2, 3 and j = 1, 2. In the second case we let J = {1, 2} and consider a random
variable J with two values such that P[J = 1] = P[J = 2] = 1/2 holds. If the default cause
intensities are independent, we let

A =

( 1
40

21
4 0 0

1
40 0 21

4 0
1
40 0 0 21

4

)
.

In the second case with both positively and negatively correlated default cause intensities
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7.2. Three Risk Factors

Case (a) Case (b) Case (c)

level δ S1, S2 S1, S2 S1, S2

0.8 35.4147 34.0681 42.8699

0.9 41.1260 39.4924 50.5834

0.95 46.8182 45.7197 59.6559

0.99 58.3337 56.0463 77.9308

Table 7.2: Risk contributions of S1 and S2 according to Equation (6.8) for different levels δ
and dependence structures with claim size Xi,1 ≡ 1.

A B1 and B2

level δ S1, S2, S3 S1 and S2 S3

0.8 61.0196 68.0356 74.6372

0.9 67.4310 78.0559 87.7557

0.95 74.6255 87.9749 100.7708

0.99 87.8464 110.7696 130.7648

Table 7.3: Risk contributions of S1 to S3 according to Equation (6.8) for different levels δ
and dependence structures.

we let

B1 =

( 1
40

21
8 0 21

8
1
40 0 0 21

4
1
40 0 0 21

4

)
, B2 =

( 1
40 0 0 21

4
1
40 0 21

8
21
8

1
40 0 0 21

4

)
.

In both cases we let the parameter R0 = 10. Finally, as distribution of the claim sizes we
choose Xi,1 ∼ NegBin(4, 0.4) for i = 1, 2, 3. We compute the first 300 values of the respective
probability mass functions. We also combine both probability mass functions in one graph,
see Figure 7.3. In this figure it is interesting to note that a positive correlation between
default cause intensities seems to have a stronger impact on the distribution than a negative
correlation if we take the case of independent default cause intensities as a reference point,
see also e.g. Figure 7.2.

For these cases of dependence scenarios we also compute the corresponding risk contri-
butions regarding the respective default cause intensities. The results are given with respect
to different levels δ = 0.8, 0.9, 0.95, 0.99 in Table 7.3.
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Chapter 7. Numerical Illustration

Figure 7.3: Probability mass functions of portfolio loss for different dependence structures
with three risk factors and claim size Xi,1 ∼ NegBin(4, 0.4).
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Part II

An Approximation
via Panjer’s Recursion

for Poisson Mixture Models
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Chapter 8

Introduction

It is quite common in the collective risk model to use Poisson mixture models for the
distribution of N in a random sum

S =
N∑
n=1

Xn, (8.1)

where {Xn}n∈N is a sequence of independently and identically distributed random variables
and N is an N0-valued non-negative random variable independent of the sequence {Xn}n∈N.
In actuarial science the distribution of N is called claim frequency or claim counting
distribution, the distribution of X1 is called severity distribution. In this part of the thesis
we focus more on the distribution of N rather than on dependence structures as in the first
part. The intensity of the Poisson random variable N is chosen to be stochastic, and this
construction can represent effects such as heavy tails. Hence, for some non-negative random
variable Λ, we consider

L(N |Λ)
a.s.
= Poisson(Λ) .

Not only in classical risk theory or in insurance models but also in risk management such
as the extended CreditRisk+ model, it is a major issue to evaluate the distribution of S.
In [27, Chapter 2] the CreditRisk+ model is described to have risk factors driving the risk
of default with a gamma distribution. As the gamma distribution is a rather light-tailed
distribution, it is interesting to investigate alternative distributions, possibly with heavier
tails, that allow for the application of recursive methods like Panjer’s recursion in order to
evaluate the distribution of a random sum given in Equation (8.1). Since the distribution
of a risk factor corresponds to the mixing distribution of a Poisson mixture distribution
in our model, we also generalize CreditRisk+, and this is a good reason to call such a risk
factor default cause intensity. We should also mention that this approach can be applied to
approximate value-at-risk, cf. e.g. Equation (10.1) and also Lemma 10.2. Though not the
fastest method, recursions such as Panjer’s offer the opportunity to compute distributions
without a stochastic error as is the case in Monte Carlo methods or aliasing errors as in
the fast Fourier transformation (possibly with exponential tilting). Panjer’s recursion was
already introduced in the introduction of the first part of this thesis. The recursion that
characterizes a distribution in a Panjer(a, b, k) class is given by Equation (1.2) and the
recursion used for the evaluation of a random sum of the type (8.1) is given by Equations
(1.3) and (1.4). In that part the reader may also find further literature on Panjer’s recursion.

We consider a more general class of distributions for the default cause intensity, namely the
class of generalized gamma convolutions, which provide R+-valued random variables. It is the
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Chapter 8. Introduction

smallest class of distributions with support on R+ that contains all gamma distributions and
is closed under convolution and weak limits. Examples for generalized gamma convolutions
are the Pareto distribution, the beta distribution of the second kind, the (generalized) inverse
Gaussian distribution, and the lognormal distribution. Generalized gamma convolutions
are exhaustively treated in a monograph by Bondesson [8] as a continuation of Thorin’s
work, who studied whether the lognormal distribution is infinitely divisible or not and then
introduced generalized gamma convolutions, cf. [67] and [66]. Steutel and van Harn [60] also
contribute to this topic in their book on infinitely divisible probability distributions. James,
Roynette, and Yor [36] treat generalized gamma convolutions as distributions of processes.
Gerber [20] considers special generalized gamma convolutions, namely the generalized gamma
distribution, as mixing distributions of Poisson mixture random variables and computes its
distributions using Panjer’s recursion. Contributions to the multivariate case are given by
Barndorff–Nielsen, Maejima, and Sato [3]. A recent working paper by Pérez-Abreu and
Stelzer [51] also establishes new results on the representation of multivariate generalized
gamma convolutions.

The evaluation of the distribution of mixed compound Poisson distributions has already
been treated in [74], but with other mixing distributions. Hesselager [32] also generalizes
this recursion for some mixed compound Poisson distributions. The mixing distributions are
also in the class of distributions we consider. Wang and Sobrero [72] extend the results of
Hesselager to a more general class of distributions. Willmot [76] also provides the recursive
evaluation of certain mixed Poisson probabilities that are apart from Panjer’s recursion. The
results we mention here all provide exact evaluations of the respective compound Poisson
distributions. Unfortunately, it is no longer possible to calculate the distribution of S exactly
with the general class of distributions we consider, but we give an upper bound for the error
with respect to the total variation distance.

The remainder of this part of the thesis is organized as follows: In Chapter 9 we first
introduce finite convolutions of gamma distributed random variables as mixing distributions
of Poisson mixture distributions and then extend them to generalized gamma convolutions.
Since this means that we work with infinite series, we cannot compute the distribution
of Equation (8.1) exactly, but must approximate it. In this chapter we also present our
approach for the approximation of this Poisson mixture distribution which is based on finite
convolutions. It is a well-known result that a Poisson distribution mixed over a gamma
distribution provides a negative binomial distribution, and hence Panjer’s recursion can be
applied. Further we exploit the convolution property of the Poisson distribution mixed over
a finite gamma convolution. This will be crucial for our approximation.

Since we renounce an exact result using the approximation, Chapter 10 provides an
upper bound of the error of the approximation. This error bound is given with respect to
the total variation distance. Additionally, with regard to applications we also discuss two
possibilities to approximate a generalized gamma convolution which lead to an algorithm
to evaluate such a distribution. Here a decision must be taken whether to favor a more
efficient approximation with respect to the number of steps that requires a possibly numerical
integration or a less efficient integration with respect to the number of steps that circumvents
an integration and thus might be more stable. This approximation together with an iterated
application of Panjer’s recursion is merged into an algorithm.

In Chapter 11 we present a generalization to the multivariate case, i.e., we also extend
the CreditRisk+ model. This means that we present a characterization of a multivariate
generalized gamma convolution that we use for an alternative multivariate generalization of
Bondesson’s closure theorem. Using this result with an adaptation of notation, the results
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from the univariate case carry over to the multivariate case.
In Chapter 12 we present two examples that show the advantages of our approach in

comparison to different versions of the fast Fourier transformation. It will become obvious
that it is not clear a priori which of these versions of the fast Fourier transformation is
preferable in contrast to our algorithm that provides stable results. Additionally, there are
cases in which it is not possible to find an error estimate for fast Fourier transformations
where our error bound applies.
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Chapter 9

Gamma Convolutions

As already mentioned in the introduction, we consider a further class of distributions
that allows us to apply Panjer’s recursion for Poisson mixture models in the course of an
approximation. We mix Poisson distributions with generalized gamma convolutions. As
the name indicates, generalized gamma convolutions arise as the weak limit of sums of
independent gamma distributed random variables (cf. e.g. [8, p. 29]). Therefore we first
consider finite convolutions of gamma distributions that are mixed over Poisson distributions.
Afterwards we introduce generalized gamma convolutions and present a few properties.

9.1 Finite Gamma Convolutions

We start our considerations with finite gamma convolutions. For the sake of comparability,
we state the Laplace transform of a finite sum Y =

∑n
j=0 Yj of independent random variables

Yj with Yj ∼ Gamma(αj , βj) for j ∈ {1, . . . , n} and Y0 ∼ δa for a ≥ 0 which has the form

E
[
e−sY

]
= e−as

n∏
j=1

( βj
βj + s

)αj
= exp

(
−as+

n∑
j=1

αj ln
( βj
βj + s

))
(9.1)

for s > −min{β1, . . . , βn}. Thus we will see in how far finite gamma convolutions are special
cases of generalized gamma convolutions as its canonical representation will show. We prove
a corollary giving a different representation of a Poisson mixture distribution where the
mixing distribution is a finite gamma convolution. Note that we give it in the multivariate
case.

Corollary 9.2. Fix ki ∈ N for i ∈ {1, . . . ,m} and m ∈ N. Let αi,j , βi,j > 0 and ai ≥ 0
for i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}. Let Λ = (Λ1, . . . ,Λm) be a random vector with

Λi = ai + Yi,1 + · · ·+ Yi,ki for i ∈ {1, . . . ,m},
where Yi,j ∼ Gamma(αi,j , βi,j) are independent random variables for j ∈ {1, . . . , ki} and
i ∈ {1, . . . ,m}. Then consider the random vector N = (N1, . . . , Nm) with conditionally
independent components N1, . . . , Nm given Λ1, . . . ,Λm such that for i ∈ {1, . . . ,m}

L(Ni |Λ1, . . . ,Λm)
a.s.
= L(Ni |Λi) a.s.

= Poisson(λiΛi) , (9.3)

where λi ≥ 0 with λ1 + · · ·+ λm > 0. Further, let {Bi,j,l}l∈N be k1 + · · ·+ km independent
sequences of i.i.d. random variables with Bi,j,1 ∼ Ber(pi,j) such that

pi,j =
λi/βi,j∑m
d=1 λd/βd,j
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Chapter 9. Gamma Convolutions

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}. Additionally, assume that Ri,j ∼ NegBin(αi,j , qj)
such that

qj =

∑m
d=1 λd/βd,j

1 +
∑m

d=1 λd/βd,j

are independent of each other and of the sequences {Bi,j,l}l∈N for i ∈ {1, . . . ,m} and
j ∈ {1, . . . , ki}. Let Pi ∼ Poisson(λiai) be independent of each other and of Ri,j and
{Bi,j,l}l∈N for i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}. Now let M = (M1, . . . ,Mm) be a random
vector such that

Mi = Pi +

ki∑
j=1

Ri,j∑
l=1

Bi,j,l for i ∈ {1, . . . ,m}.

Then N and M have the same distribution.

Proof. In order to prove this corollary, we apply Remark 2.1. We start with the calculation of
the probability-generating function of the distribution of the random vector N : conditioning
on Λ1, . . . ,Λm, using the conditional independence of N1, . . . , Nm given Λ1, . . . ,Λm and
Equation (9.3) yields for 0 ≤ zi < 1 + βi,j/λi for i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}

GN (z) = E
[ m∏
i=1

zNii

]
= E

[ m∏
i=1

E
[
zNii
∣∣Λi]] = E

[ m∏
i=1

exp(−λiΛi(1− zi))
]
.

Using the definition of Λ1, . . . ,Λm and the distribution and the independence of Yi,j for
i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}, we have by Equation (9.1)

GN (z) = E
[ m∏
i=1

exp

(
−λi

(
ai +

ki∑
j=1

Yi,j

)
(1− zi)

)]

=
m∏
i=1

exp(−λiai(1− zi))
ki∏
j=1

exp
(
αi,j ln

( βi,j
βi,j + λi(1− zi)

))
.

Next, we consider the distribution of the random vector M and calculate its probability-
generating function. Taking into account that all the components are independent of each
other, we observe for 0 ≤ zi < 1 + βi,j/λi with i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}

GM (z) =
m∏
i=1

E
[
zMi
i

]
=

m∏
i=1

E
[
z
Pi+

∑ki
j=1

∑Ri,j
l=1 Bi,j,l

i

]
=

m∏
i=1

E
[
zPii
] ki∏
j=1

E
[
z
∑Ri,j
l=1 Bi,j,l

i

]
.

Using that {Bi,j,l}l∈N are i.i.d. and are independent of Ri,j and have a Bernoulli distribution
and that Pi have a Poisson distribution, we observe

GM (z) =
m∏
i=1

exp(−λiai(1− zi))
ki∏
j=1

E
[(
E
[
z
Bi,j,1
i

])Ri,j]
=

m∏
i=1

exp(−λiai(1− zi))
ki∏
j=1

E
[(

1− pi,j + zipi,j
)Ri,j].

By the distribution of Ri,j for i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki} we see that

GM (z) =
m∏
i=1

exp(−λiai(1− zi))
ki∏
j=1

(
1− qj

1− qj(1 + pi,j(zi − 1))

)αi,j
.
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A simplification yields

GM (z) =
m∏
i=1

exp(−λiai(1− zi))
ki∏
j=1

( 1

1 + λi/βi,j(1− zi)
)αi,j

=

m∏
i=1

ki∏
j=1

exp
(
αi,j ln

( βi,j
βi,j + λi(1− zi)

))
.

Hence the assertion follows. q.e.d.

Remark 9.4. Due to this representation result we may conclude that it is also possible to
apply Panjer’s recursion for a collective risk model with several business lines and a mixing
random vector Λ = (Λ1 . . . ,Λm) whose components have distributions of finite convolutions
of gamma distributions. In this case the recursion is exact.

Remark 9.5. With this multivariate version it is possible to generalize the CreditRisk+

model for several default cause intensities that influence the claim numbers on different
levels.

Remark 9.6. In Corollary 9.2 we consider a very special case of a multivariate gamma
distribution (and let us put ai = 0 for i ∈ {1, . . . ,m}). As the reader can verify in [44,
Chapter 48.3], multivariate gamma distributions usually have correlated components. The
approach of Prékopa and Szántai [44, Chapter 48.3.4] offers the possibility to construct
independent components by choosing the identity matrix for the matrix A.

Remark 9.7. Because we consider a random vector Λ = (Λ1, . . . ,Λm) this corollary differs
from Remark 2.9 that uses a univariate random variable Λ as a mixing distribution which
produces dependence between the components. That is also why we consider Bernoulli
random variables instead of merging them into a multinomial distribution which would
produce dependence.

9.2 Generalized Gamma Convolutions

Now we generalize finite convolutions of gamma distributions. Generalized gamma convolu-
tions were first treated in [66, 67]. The construction is based on discrete measures {Un}n∈N
that converge vaguely to the limit measure U and hence the corresponding distribution
converges weakly to its limit distribution.

Definition 9.8. A locally finite non-negative measure on the half line (0,∞) equipped with
its Borel σ-algebra satisfying∫

(0,1]
|ln t| U(dt) <∞ and

∫
(1,∞)

1

t
U(dt) <∞ (9.9)

is called a Thorin measure.

Furthermore, the conditions on U ensure that U is well-defined and that it is a Radon
measure, as demanded in [36, Definition 1.0]. We state a definition of the canonical
representation of generalized gamma convolutions as in [8, p. 29].
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Definition 9.10. A generalized gamma convolution is a probability distribution F on
R+ = [0,∞) with a ≥ 0 and Thorin measure U such that its Laplace transform is of the
form

L(s) =

∫ ∞
0

e−sx F (dx) = exp

(
−as−

∫
(0,∞)

ln
( t+ s

t

)
U(dt)

)
, s ≥ 0. (9.11)

The integral conditions on U ensure the existence of the integral in Equation (9.11):
This holds owing to the estimates ln( t+st ) ≤ ln(1 + s) + |ln t| for t ∈ (0, 1] and ln( t+st ) ≤ s/t
for t ∈ (1,∞). The parameter a reflects the left-extremity of the distribution. Note that a
finite gamma convolution such as in Equation (9.1) is also a generalized gamma convolution
if we set in the representation of the generalized gamma convolution the parameter a = 0
and choose U =

∑n
j=1 αjδβj . This is crucial for the construction and approximation of

generalized gamma convolutions as generalized gamma convolutions arise as the weak limit
of a sequence of finite gamma convolutions.

The next corollary shows that each Thorin measure U , that satisfies the integral conditions
and hence provides the well-definedness of the Laplace transform, determines a probability
distribution. By the uniqueness theorem in [66] such a probability distribution is uniquely
determined by the Thorin measure U and the parameter a.

Corollary 9.12. For every a ≥ 0 and Thorin measure U , the right-hand side of Equation
(9.11) is the Laplace transform of a probability distribution.

Proof. The proof of this claim is an application of Bernstein’s theorem, cf. [56, Theorem 1.4].
Note that the Laplace transform of a generalized gamma convolution is given by Equation
(9.11). Thus the complete monotonicity of L has to be shown. Consider the function
f(s) = −as−

∫
(0,∞) ln

(
t+s
t

)
U(dt) for s ≥ 0. The first derivative is

f ′(s) = −a−
∫

(0,∞)

t

t+ s

1

t
U(dt) = −f1(s), s > 0,

with

f1(s) = a+

∫
(0,∞)

1

t+ s
U(dt)

because integration and differentiation may be interchanged by [5, 16.2 Lemma]. We claim
that for j ∈ N with j ≥ 2

f (j)(s) = (−1)jfj(s), s > 0,

with

fj(s) =

∫
(0,∞)

(j − 1)!

(t+ s)j
U(dt)

holds, as a short proof by induction shows. It is easy to see that {fj(s)}j∈N is non-negative
for s > 0. In a next step we apply Faà di Bruno’s formula to calculate the n-th derivative of
L(s) = ef(s) and obtain

L(n)(s) = ef(s)
∑ n!

m1!m2! . . .mn!

n∏
j=1

(f (j)(s)

j!

)mj
, s > 0, (9.13)
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where the sum runs over all n-tuples of non-negative integers (m1, . . . ,mn) such that

n∑
j=1

jmj = n. (9.14)

Writing (−1)n =
∏n
j=1(−1)jmj by Equation (9.14) and noting that (−1)jmj (f j(s))mj =

(fj(s))
mj for all j ∈ {1, . . . , n}, Equation (9.13) proves that

(−1)nL(n)(s) = (−1)n ef(s)
∑ n!

m1!m2! . . .mn!

n∏
j=1

(f (j)(s)

j!

)mj
= ef(s)

∑ n!

m1!m2! . . .mn!

n∏
j=1

(fj(s)
j!

)mj ≥ 0

for s ≥ 0. Because this holds for every n ∈ N, L is completely monotone, and since L(0) = 1,
this determines uniquely a probability distribution. As these conclusions are independent of
the choice of the Thorin measure U and the parameter a, every Laplace transform of the
form (9.11) determines a probability distribution. q.e.d.

Since the multiplication of the Laplace transform by e−as for a > 0 corresponds to the
translation by a, we can also represent such a distribution as the convolution with a Dirac
measure δa (cf. [67, Equation (2.5)]), which is the weak limit of the gamma distributions
Gamma(an, n) for n→∞ because these have expectation a and variance a

n .
We state some clarifying notation for the Thorin measure U .

Notation 9.15. For the application of the theory of generalized gamma convolutions it is
convenient to identify the Thorin measure U with the non-decreasing and right-continuous
function U

U(t) = U((0, t]), t ∈ (0,∞).

This is reasonable because the first condition of Equation (9.9) and the local finiteness of U
guarantee U((0, t]) <∞.

Remark 9.16. As [36, Remark 2.4.3)] also states, finding the Thorin measure of a generalized
gamma convolution is tedious. Bondesson provides an inversion theorem [8, Theorem 3.1.4]
and a theorem on the representation of the Thorin measure [8, Theorem 4.3.2]. Nevertheless,
these result do not always provide explicit expressions, although [36, Theorem 2.3.3)] may
lead to a tractable expression.

Let T be the class of distribution functions of generalized gamma convolutions. We
assume that for each Fn ∈ T with n ∈ N the parameter an and the Thorin measure Un
characterize Fn. Our understanding of a reformulation in [8, p. 35] of [8, Theorem 3.1.5] is
the following:

Theorem 9.17. The sequence {Fn}n∈N ∈ T tends weakly to F ∈ T if and only if

(a) the sequence {Un}n∈N → U vaguely on (0,∞) as n→∞,

(b) 0 = limA→∞ lim supn→∞
∣∣an − a+

∫
(A,∞) t

−1 Un(dt)
∣∣,

(c) limε↘0 lim supn→∞
∫

(0,ε)(ln t
−1)Un(dt) = 0.

According to [8, p. 35] Condition (c) ensures that F is non-defective.
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Remark 9.18. The proof of this theorem seems to contain an expression with a false sign.
In the notation of the proof it should be

logψn(−1) = −
∫

[0,∞]
νn(dt).

Yet the sequence {νn}n∈N is still a sequence of bounded measures on [0,∞].

Thus by applying Theorem 9.17 we can approximate generalized gamma convolutions by
finite gamma convolutions. As mentioned above, generalized gamma convolutions provide
a rich class of distributions. To make the reader more familiar with generalized gamma
convolutions, we give some examples:

Example 9.19. Since a translation of a random variable by a can be approximated by a
gamma distribution, a generalized gamma convolution may be characterized in most cases
by a parameter a = 0. But there are distributions that require a 6= 0, as is also described in
[60, p. 349]. Let Un(t) = n1[n,∞)(t) for t ∈ (0,∞) and an = 0 for n ∈ N. By application of
Theorem 9.17, a sequence exists {Fn}n∈N ∈ T that weakly tends to some F ∈ T because
Un → U = 0 vaguely for n ∈ N,

a = lim
A→∞

lim
n→∞

(
an +

∫
(A,∞)

t−1 Un(dt)

)
= lim

A→∞
lim
n→∞

(
0 +

n

n

)
= 1,

and because Un → 0 as n → ∞, integrating around 0 over it yields 0. Thus the limit
distribution F is characterized by a = 1 and U = 0. Plugging this into the formula of the
Laplace transform gives L(s) = e−s, which is the Laplace transform of a degenerate random
variable.

Example 9.20 (Relationship to the τ -tempered α-stable distribution). This example shows
that our approach is a generalization of [21, Chapter 5.3]. For further explanations on stable
distributions read Section 3.2.1. Recall that the Laplace transform of a random variable
Y ∼ Sα(σ, 1, 0) is given by

E[exp(−sY )] = exp(−γα,σsα) for s ≥ 0, where γα,σ :=
σα

cos(απ/2)
,

cf. [55, Proposition 1.2.12] (note α ∈ (0, 1)).
According to [60, Proposition VI.5.7] a stable distribution of an R+-valued random

variable is a generalized gamma convolution for α ∈ (0, 1) and σ > 0, where

uα,σ(x) = γα,σα
sin(απ)

π
x−(1−α), x > 0,

is a density of Uα,σ. Steutel and van Harn [60, Proposition VI.5.26] note that if π is
the Laplace transform of a generalized gamma convolution, then so is the function s 7→
π(a+s)/π(a) for every a ≥ 0. A straightforward application shows that τ -tempered α-stable
distributions are also generalized gamma convolutions:

π(τ + s)/π(τ) = exp(−γα,σ(s+ τ)α)/ exp(−γα,στα) = exp(−γα,σ((s+ τ)α − τα)),

which is the Laplace transform of a τ -tempered α-stable distribution for s ≥ 0, cf. [21,
Equation (5.25)]. By knowledge of the density uα,σ characterizing the stable distribution, we
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can also derive the density uα,σ,τ of the Thorin measure Uα,σ,τ of the τ -tempered α-stable
distribution since we know its Laplace transform

exp(−γα,σ((s+ τ)α − τα)) = exp

(
−
∫

(0,∞)

(
ln
( t+ s+ τ

t

)
− ln

( t+ τ

t

))
uα,σ(t)dt

)
= exp

(
−
∫

(0,∞)
ln
( t+ s+ τ

t+ τ

)
uα,σ(t)dt

)
.

Using the substitution y = t+ τ yields

exp(−γα,σ((s+ τ)α − τα)) = exp

(
−
∫

(τ,∞)
ln
(y + s

y

)
uα,σ(y − τ)dy

)
= exp

(
−
∫

(0,∞)
ln
(y + s

y

)
uα,σ,τ (y)dy

)
,

where

uα,σ,τ (t) =

{
uα,σ(t− τ) if t > τ ,

0 otherwise.

Hence the Thorin measure Uα,σ,τ is

Uα,σ,τ (x) =

{
γα,σ

sin(απ)
π (x− τ)α if x > τ ,

0 otherwise.
(9.21)

Thus we could also apply the approximation algorithm we present. But in this case it is
possible to evaluate the distribution exactly.

If the mixing random variable has distribution Λ ∼ Fα,σ,τ,0, then according to [21,
Lemma 5.10] a random variable N ∼ Poisson(λΛ) for λ > 0 can be represented as a
random sum such that N

d
=
∑M

h=1 Yh where M ∼ Poisson
(
γα,σ

(
(λ+ τ)α − τα

))
and {Yh}h∈N

is a sequence independent of M , consisting of i.i.d. random variables such that Y1 ∼
ExtNegBin(−α, 1, p) with p = λ

τ+λ . Since the extended negative binomial distribution
ExtNegBin(−α, 1, p) is in the Panjer(1 − p, (−α − 1)(1 − p), 1) class, such a random sum
enables an iterated application of Panjer’s recursion. Since the extended negative binomial
distribution might be unstable for extreme parameters, [21, Algorithm 5.12], which is
numerically stable, should be used instead.

Example 9.22. There are well-known distributions that fit into the framework of τ -
tempered α-stable distributions. The Lévy distribution with α = 1/2 and τ = 0 (cf. [21,
Example 5.19]) leads to the following Thorin measure

U1/2,σ,0(x) =

√
2σx

π
, x > 0.

A density of F1/2,σ,0,0 is given by

f(x) =
( σ

2πx3

)1/2
exp
(
− σ

2x

)
, x > 0,

cf. [55, Equation (1.1.15)]. The inverse Gaussian distribution with mean µ > 0 and shape-
parameter σ̃ > 0 yields with σ = µ2/σ̃2 and α = 1/2 and τ = 1/(2σ̃2) (cf. [21, Example 5.21])
the Thorin measure

U1/2,σ,τ (x) =

{
σ̃
µπ

(
2(x− 1/(2σ̃2)

)1/2
if x > τ,

0 otherwise,

and U1/2,σ,τ (0) = 0.
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Chapter 9. Gamma Convolutions

Example 9.23 (The Pareto distribution). We consider the following cumulative distribution
function of a Pareto(g, h) distribution

P (x) = 1− (1 + (x/g))−h, x ≥ 0, g, h > 0.

According to [67] the Pareto(g, h) distribution is not only infinitely divisible, but also a
generalized gamma convolution. The inversion theorem in [8, Theorem 3.1.4] states a
connection between the moment generating function of the distribution of a random variable
and the corresponding Thorin measure U . Hence, we obtain with [67, Equation (3.17)]

q(x) =
Γ(h)

π
egx
(

(gx)−h +
∞∑
j=1

(gx)j−h

(h− 1) · · · (h− j)

)
− cot(hπ)

the Thorin measure

U(x) =
1

π
arccot(q(x)) ,

where x > 0 and h ∈ (0,∞) \ N.

Example 9.24 (The beta distribution). Let α, β > 0. Let X ∼ Gamma(α, 1) and Y ∼
Gamma(β, 1) be independent random variables. Then by [8, Theorem 5.1.1] the distribution
of Z = X

X+Y is also a generalized gamma convolution. It is the Beta(α, β) distribution and
has a probability density function

fα,β(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1),

cf. also [38, Equation (25.1)]. The derivation of the Thorin measure U is similar to the that
of the beta distribution of the second kind in the next example and is therefore omitted.
Note that we left out the values for the density for x = 0 and x = 1 since this would cause a
gap in the definition if α = 1 or β = 1, respectively.

Example 9.25 (The beta distribution of the second kind). The beta distribution of the
second kind with shape parameters α, β > 0 is also a generalized gamma convolution. It arises
as the ratio of two independent gamma distributed random variables. If X ∼ Gamma(α, 1)
and Y ∼ Gamma(β, 1) are independent, then according to [8, Theorem 5.1.1] the distribution
of Z = X/Y is a generalized gamma convolution and has a Beta′(α, β) distribution with
density

fα,β(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 + x)−(α+β), x > 0.

Unfortunately, the Thorin measure U cannot be given in a very elegant form, but only with
respect to the confluent hypergeometric distribution. The derivation of the Thorin measure
U can be found in [24]. The Thorin measure U is given by

U(x) =
1

π

∫ x

0
Im

U+′(α, 1− β,−z)
U+(α, 1− β,−z) dz

where

Im
U+′(α, 1− β,−z)
U+(α, 1− β,−z) = πβzβ−1 e−z

Γ(α)Γ(β)

Γ(α+ β)Γ(β + 1)

1

|U+(α, 1− β,−z)|2
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9.2. Generalized Gamma Convolutions

and for a > 0, b ∈ R, and Re z ≥ 0

Γ(a)U(a, b, z) =

∫ ∞
0

e−tz ta−1(1 + t)b−a−1dt.

According to [24] U+(a, b,−x) is the limit for U(a, b, z) as z approaches −x from the upper
half plane for positive real x.

Example 9.26 (The lognormal distribution). Thorin [66] shows that the lognormal dis-
tribution is a generalized gamma convolution, but there is no closed form for the Thorin
measure U . Nevertheless, let us state his results. Let N(y) = 1√

2π

∫ y
−∞ e−t

2/2 dt denote

the distribution function of the standard normal distribution function. Thorin considers
the following representation of the distribution function of the lognormal distribution with
α, β > 0

Λ(x) = Λ(x;α, β) =

{
N
(

ln(αx)
β

)
if x > 0,

0 otherwise.

The moment generating function of Λ is defined as λ(s) =
∫

(0,∞) esx dΛ(x) for Re s ≤ 0, and
its approximation as

λn(s) =

∫
(0,∞)

esx dΛn(x) =

∫
(0,∞)

dΛ(x)

(1− (sx/n))n
.

Then by [66, Theorem 4.1] the approximating measure {Un}n∈N, is given by

Un(y) =
1

π
arctan

Imλ+
n (y)

Reλ+
n (y)

, y > 0.

By help of [66, Theorem 5.2] we see that {Un}n∈N converges vaguely to the limit measure U
such that

U(y) =
1

π
arctan

Imλ+(y)

Reλ+(y)
, y > 0.

Remark 9.27. A similar Poisson mixture model leading to Panjer’s recursion was already
treated in [20], but with another, equivalent definition (cf. [36, Definition 1.0]) if we choose
the right measure. According to [60, Example VI.12.8] a random variable with a generalized
gamma distribution is defined as X

d
=Y 1/α with α 6= 0 and Y ∼ Gamma(r, 1) for r > 0. If

|α| ≤ 1, then it is known that the distribution of X also is a generalized gamma convolution.
If α > 1, then X is not infinitely divisible and hence its distribution not a generalized
gamma convolution. It is not known what holds in the case α < −1. Thus the model in [20]
and this model have some common cases, and the model in [20] shows how to evaluate the
respective distributions exactly.

As a generalized gamma convolution is the weak limit of convolutions of gamma distri-
butions, it can be shown without much effort that for each generalized gamma convolution
there exists a sequence that converges weakly to this distribution:

Corollary 9.28. For every generalized gamma convolution F characterized by a ≥ 0 and
Thorin measure U there exists a weakly convergent sequence {Fn}n∈N of finite gamma
convolutions characterized by the parameter a and Thorin measure Un with

Un =
n∑
j=1

α
(n)
j δ

β
(n)
j

, (9.29)

and {Un}n∈N converges vaguely to U as n→∞.
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Remark 9.30. The representation (9.29) implies that the corresponding distribution satisfies

Fn = δa ?Gamma
(
α

(n)
1 , β

(n)
1

)
? · · · ?Gamma

(
α

(n)
n , β

(n)
n

)
. Let Y

(n)
j ∼ Gamma

(
α

(n)
j , β

(n)
j

)
be

independent for j ∈ {1, . . . , n} and n ∈ N, then

Λn = a+
n∑
j=1

Y
(n)
j ∼ Fn. (9.31)

Proof of Corollary 9.28. Since a generalized gamma convolution is characterized by a Thorin
measure U , we construct a sequence of Thorin measures {Un}n∈N and show that this sequence
converges vaguely to U . A Thorin measure Un uniquely determines a distribution Fn. We
apply Theorem 9.17.

Let Zn = (β
(n)
k )0≤k≤n be a partition on a compact subset of (0,∞) where we have

0 < β
(n)
0 < β

(n)
1 < · · · < β

(n)
n <∞ and β

(n)
0 ↘ 0 and β

(n)
n →∞ as n→∞. The mesh of Z

is defined as mesh(Zn) = maxj=1,...,n(β
(n)
j − β(n)

j−1)→ 0 as n→∞. For each j ∈ {1, . . . , n}
let α

(n)
j = U(β

(n)
j ) − U(β

(n)
j−1). Consider now the Condition (a) of Theorem 9.17. Let

f : (0,∞)→ R be a continuous function with a compact support. By the definition of the

Lebesgue-Stieltjes integral and because supp(f) ⊂ (β
(n)
0 , β

(n)
n ]∫

(0,∞)
f(t)Un(dt) =

n∑
j=1

f(β
(n)
j )(U(β

(n)
j )− U(β

(n)
j−1))→

∫
(0,∞)

f(t)U(dt)

converges vaguely as the mesh µ(Z) gets smaller and smaller because U is monotone (it is
non-decreasing) for n→∞.

Consider now the Condition (b) of Theorem 9.17. For j ∈ {1 . . . , n} we have

1

β
(n)
j

(
U(β

(n)
j )− U(β

(n)
j−1)

)
=

1

β
(n)
j

∫
(β

(n)
j−1,β

(n)
j ]

U(dt).

Because 1/t is decreasing for t > 0, we estimate∫
(A,∞)

1

t
Un(dt) =

n∑
j=1

β
(n)
j >A

1

β
(n)
j

α
(n)
j ≤

∫
(A−mesh(Zn),∞)

1

t
U(dt).

Because this integral tends to zero as A→∞, the left-extremity of the limit distribution is
also a.

Finally, consider Condition (c). For j ∈ {1 . . . , n} we have

ln

(
1

β
(n)
j

)(
U(β

(n)
j )− U(β

(n)
j−1)

)
= ln

(
1

β
(n)
j

)∫
(β

(n)
j−1,β

(n)
j ]

U(dt).

Because ln(1/t) is decreasing for t > 0, we estimate∫
(0,ε)

ln
(1

t

)
Un(dt) =

n∑
j=1

β
(n)
j <ε

ln

(
1

β
(n)
j

)
α

(n)
j ≤

∫
(0,ε−mesh(Zn))

ln
(1

t

)
U(dt).

Because this integral tends to zero as ε→ 0, the assertion follows. q.e.d.

98



9.2. Generalized Gamma Convolutions

The next lemma describes the process of approximation of the Poisson mixture distribu-
tion mixed over a generalized gamma convolution.

Lemma 9.32. Fix λ ≥ 0. Let F be a generalized gamma convolution characterized by a ≥ 0
and Thorin measure U with Λ ∼ F and let {Λn}n∈N be a sequence of random variables
given by Equation (9.31) that converges weakly to Λ as n→∞. Let {Nn}n∈N be a sequence
of random variables such that

L(Nn |Λn) a.s.
= Poisson(λΛn) for each n ∈ N. (9.33)

Furthermore, for each n ∈ N let

R
(n)
j ∼ NegBin

(
α

(n)
j ,

λ

β
(n)
j + λ

)
, j ∈ {1, . . . , n}

and P ∼ Poisson(λa) be independent. Define a sequence of random variables {Mn}n∈N by

Mn = P +
n∑
j=1

R
(n)
j , (9.34)

Then Mn
d
=Nn for all n ∈ N and {Nn}n∈N converges weakly to some random variable N

such that

L(N |Λ)
a.s.
= Poisson(λΛ) . (9.35)

Proof. The existence of the sequence {Λn}n∈N is proven in Corollary 9.28 and this corollary
also proves the representation of the corresponding sequence of distributions {Fn}n∈N that
converges vaguely to the distribution F of Λ. The equality of the distributions of the random
variables Mn and Nn for each n ∈ N is an immediate result of Corollary 9.2 for m = 1
because the random variables {Bi,j,l}l∈N simplify to a δ1 distribution.

Due to the weak convergence of the sequence of the distributions {Fn}n∈N it follows that
the sequence of the distributions of the random variables {Nn}n∈N converges weakly, too,
since

P[Nn = k] = E[P[Nn = k |Λn] ] = E
[Λkn
k!

e−Λn
]

→ E
[Λk

k!
e−Λ

]
= E[P[N = k |Λ] ] = P[N = k]

as n → ∞ because the function f(x) = xk

k! e−x is continuous and bounded for x ∈ [0,∞).
Since L(Nn)

w→L(N) and Mn
d
=Nn for all n ∈ N, we conclude that also L(Mn) converges

weakly to L(N) as n→∞ due to the uniqueness of the limit. q.e.d.

Remark 9.36. It is interesting to note that a generalized analogue exists showing that a
Poisson-gamma mixture distribution is a negative binomial distribution. Bondesson [8,
p. 126/127, Chapter 8] defines the so-called generalized negative binomial convolution as
the weak limit of a sequence of finite convolutions of negative binomial distributions. This
class of distributions is the discrete analogue to the class of generalized gamma convolutions
which has compact support on R+. There is a correspondence between generalized negative
binomial convolutions and generalized gamma convolutions: A distribution is a generalized
negative binomial convolution if and only if its probability-generating function G(z) equals
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Chapter 9. Gamma Convolutions

the moment generating function M(z − 1) of a generalized gamma convolution, which can
be found in [8, p. 126/127, Chapter 8].

In this context, since a negative binomial distribution is also a compound Poisson distri-
bution, it is interesting to note the following result in [60, Theorem III.3.3]: a distribution on
R+ is infinitely divisible if and only if it is the weak limit of compound Poisson distributions,
which matches the distribution of N .
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Chapter 10

Error Bounds and an
Approximation

By approximating the random variable N given in Equation (9.35) by a sequence {Nn}n∈N,
the sequence of random sums Sn =

∑Nn
h=1Xh for n ∈ N approximates the random sum

S =
∑N

h=1Xh. We derive an upper bound of the distance between two Poisson distributions
each of which is mixed over a generalized gamma convolution with respect to the total
variation distance. A reference for the total variation distance can be found in [22]. This
estimate can be applied to the error estimate between the sequence {Sn}n∈N and the
limit random variable S. Generalized gamma convolutions are self-decomposable (cf. [60,
Proposition VI.5.5]) and hence infinitely divisible (cf. [60, Theorem V.2.5]). Thus, since we
consider Poisson mixture distributions, we can find a representation as a compound Poisson
distribution. This will be crucial for the proof of our error estimate of the approximation.
Further we present how the approximation can be realized.

10.1 An Upper Estimate for the Total Variation Distance

In this section we establish an upper bound for the total variation distance between two
Poisson mixture distributions each of which is mixed over a generalized gamma convolution.
To this end, we use Lemma 9.32 that provides Mn

d
=Nn for n ∈ N. Note that Theorem

10.8 presents a result in the total variation distance. Since we only need weak convergence,
the Prohorov metric is sufficient in this case. According to [35, Theorem 3.8] the Prohorov
metric dP metricizes the weak topology because N0 is a metric separable space and thus
metricizes weak convergence of random variables. Because of the argumentation in [35,
Equation (4.13)] the inequality

dP ≤ dTV

holds, hence the weak convergence follows by this estimate. We need this estimate because
the total variation distance does not metricize the weak topology but has other convenient
properties. These considerations have a direct application in risk management where the
risk measure VaR is used. The value-at-risk at level δ ∈ (0, 1) of a random loss S, which is
the δ-quantile of S, is an approximation of the value-at-risk of S′ in the sense that∣∣P[S ≤ qδ(S)] − P[S′ ≤ qδ(S)]

∣∣ ≤ sup
m∈R

∣∣P[S ≤ m] − P[S′ ≤ m]
∣∣

= dKS(L(S) ,L
(
S′
)
) ≤ dTV

(
L(S) ,L

(
S′
))
, (10.1)
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where dKS is the Kolmogorov–Smirnov distance (cf. [22]), and the claim sizes {Xh}h∈N are
also allowed to take real values. The last inequality holds by [22, Equations (5) and (6)].

We put this estimate more exactly into the following lemma:

Lemma 10.2. Let X and Y be real-valued random variables and denote the Kolmogorov–
Smirnov distance of their distribution by d = dKS(L(X) ,L(Y )). Then the quantiles of X
and Y satisfy

(a) qδ(X) ≤ qδ+d(Y ) for every level δ ∈ (0, 1− d) and

(b) qδ−d(X) ≤ qδ(Y ) for every level δ ∈ (d, 1).

Proof. (a) For a level δ ∈ (0, 1 − d) we estimate the quantile, and by adding and
subtracting P[X ≤ qδ+d(Y )], we estimate

δ + d ≤ P[Y ≤ qδ+d(Y )]

≤ P[X ≤ qδ+d(Y )] +
∣∣P[Y ≤ qδ+d(Y )] − P[X ≤ qδ+d(Y )]

∣∣.
Due to dKS(L(X) ,L(Y )) = supm∈R

∣∣P[X ≤ m] − P[Y ≤ m]
∣∣, we estimate

δ + d ≤ P[X ≤ qδ+d(Y )] + d,

hence P[X ≤ qδ+d(Y )] ≥ δ, therefore qδ(X) ≤ qδ+d(Y ).

(b) Note that the assumptions of the lemma are symmetric in X and Y . Applying (a)
and interchanging X and Y and letting δ′ := δ − d yields qδ′(Y ) ≤ qδ′+d(X), which
completes the proof.

q.e.d.

We continue with a representation result that we need for the comparison between our
approximation and the limiting compound Poisson distribution:

Lemma 10.3. Fix n ∈ N. Let αj , βj > 0 for j ∈ {1, . . . , n} and let λ ≥ 0. Let Yj ∼
Gamma(αj , βj) be independent random variables for j ∈ {1, . . . , n}. Let Λ be a non-negative
random variable such that Λ = a+ Y1 + · · ·+ Yn for a ≥ 0. Let N be a random variable
such that

L(N |Λ)
a.s.
= Poisson(λΛ) .

Then
L(N) = CPoi(µ, F ) ,

where

µ = λa+

n∑
j=1

αj ln
( 1

1− pj

)
and F =

λa

µ
δ1 +

1

µ

n∑
j=1

αj ln
( 1

1− pj

)
Fj , (10.4)

where Fj = Log(pj) with pj = λ
βj+λ

for j ∈ {1, . . . , n}.

Proof. Due to the convolution property of the Poisson distribution

Poisson(λΛ) = Poisson(λa) ? Poisson(λY1) ? · · · ? Poisson
(
λYn

)
holds, and for each j ∈ {1, . . . , n} there exist some random variables Lj conditionally in-

dependent given Y1, . . . , Yn such that L(Lj |Yj) a.s.
= Poisson(λYj). Then Lj ∼ NegBin(αj , pj)
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holds for j ∈ {1, . . . , n} because of Lemma 2.8 for m = 1 and T ≡ 1. By Remark 2.7 we
may write

Lj
d
=

Kj∑
h=1

Zj,h, j ∈ {1, . . . , n}, (10.5)

where Kj ∼ Poisson
(
αj ln

(
1

1−pj

))
and {Zj,h}h∈N are n sequences independent of Kj , con-

sisting of i.i.d. random variables such that Zj,1 ∼ Log(pj) for j ∈ {1, . . . , n}. Finally we
apply [58, Theorem 1.1.15] and obtain the claim. q.e.d.

The following result gives us a powerful tool to find an upper estimate for differences
between distributions of Poisson random sums with respect to the total variation distance
to be found in [70, Corollary 3.2]:

Corollary 10.6. Let α, β > 0. Let {Xh}h∈N and {Yh}h∈N be i.i.d. sequences of discrete
random variables with distributions F and G, respectively. Let M and N be Poisson
variables with means α and β, respectively, and M and N are independent of the sequences
{Xh}h∈N and {Yh}h∈N, respectively. Let S =

∑M
h=1Xh and T =

∑N
h=1 Yh. Then

dTV(L(S) ,L(T )) ≤ min{
∣∣√α−√β∣∣, ∣∣α− β∣∣}+ min{α, β}dTV(F,G) .

For the sake of simplicity we introduce the following notation:

Notation 10.7. Let λ ≥ 0. Define

κλ(t) = ln(t+ λ)− ln(t), t ∈ (0,∞).

Now we are prepared for our estimate:

Theorem 10.8. Let λ ≥ 0. Let Λ denote a random variable distributed as a generalized
gamma convolution characterized by the Thorin measure U and parameter a ≥ 0 and let Ψ
denote a random variable distributed as a generalized gamma convolution characterized by
the Thorin measure V and parameter b ≥ 0. Let∫

(0,∞)

( λ

t+ λ

)n
U(dt) ≥

∫
(0,∞)

( λ

t+ λ

)n
V (dt) for all n ∈ N (10.9)

be satisfied. Let the random variables N and M have Poisson mixture distributions such
that

L(N |Λ)
a.s.
= Poisson(λΛ) and L(M |Ψ)

a.s.
= Poisson(λΨ) .

Then the total variation distance satisfies

dTV(L(N) ,L(M)) ≤ 3

2

∣∣µ′ − ν ′∣∣+
µ− ν

2
+
λ |aν ′ − bµ′|

2ν ′
,

where

µ =

∫
(0,∞)

κλ(t)U(dt) and ν =

∫
(0,∞)

κλ(t)V (dt),

as well as µ′ = µ+ aλ and ν ′ = ν + bλ.

Remark 10.10. If a = b = 0 and U(T ) ≥ V (T ) for all T > 0, then

dTV(L(N) ,L(M)) ≤ 2(µ− ν).
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Remark 10.11. As we will see, a sufficient condition is

Ũ(T ) =

∫
(0,T ]

λ

t+ λ
U(dt) ≥

∫
(0,T ]

λ

t+ λ
V (dt) = Ṽ (T ) for all T > 0. (10.12)

Indeed, since Ũ(T ) and Ṽ (T ) define measures,∫
(0,∞)

( λ

t+ λ

)n−1
Ũ(dt) =

∫
(0,∞)

( λ

t+ λ

)n
U(dt)

and ∫
(0,∞)

( λ

t+ λ

)n−1
Ṽ (dt) =

∫
(0,∞)

( λ

t+ λ

)n
V (dt)

hold for every n ∈ N because T > 0 is arbitrary. Due to Ũ(T ) ≥ Ṽ (T ) for all T > 0 Equation
(10.9) follows. Ũ(T ) ≥ Ṽ (T ) for all T > 0 is also satisfied if U(T ) ≥ V (T ) for all T > 0.

Remark 10.13. The parameters µ and ν in Theorem 10.8 are well-defined, i.e., they are
finite. This holds as follows; we have κλ(t) = ln(t+ λ)− ln t ≤ ln(1 + λ) + |ln t| for t ∈ (0, 1],
and κλ(t) ≤ λ/t for t ∈ (1,∞). Hence the claim follows by Equation (9.9) because if the
integral is finite for subsets, then it is also finite for the union of these subsets.

Remark 10.14. In the discretized case of the generalized gamma convolution, i.e. a finite
gamma convolution, this convolution is characterized by a discrete measure V =

∑n
i=1 αiδβi

and hence ∫
(0,∞)

κλ(t)V (dt) =
n∑
i=1

αi ln(1 + λ/βi) = ν

holds.

Proof of Theorem 10.8. Since a Poisson random variable mixed with an infinitely divisible
non-negative random variable has a compound Poisson distribution (cf. [64, Corollary 4.1]),
we assume N

d
=
∑K

j=1 Pj and M
d
=
∑L

j=1Qj with the following assumptions: Let {Pj}j∈N
be a sequence of i.i.d. random variables, and the sequence is independent of K ∼ Poisson(µ′).
Further, let {Qj}j∈N be a sequence of i.i.d. random variables, and the sequence is independent
of L ∼ Poisson(ν ′). The first part of the upper bound is a direct application of Corollary
10.6 and provides

dTV(L(M) ,L(N)) ≤ min{
∣∣√µ′−√ν ′∣∣, ∣∣µ′−ν ′∣∣}+min{µ′, ν ′} dTV(L(P1) ,L(Q1)) . (10.15)

It remains to compute µ′, ν ′ and dTV(L(P1) ,L(Q1)). We first determine the distribution
of the random variables P1 and Q1 with the help of the probability-generating function.
We adopt the approach of [64, p. 90] that gives us the following formula for the Poisson
parameter µ′ and the probability-generating function GP1(z) of the severity distribution P1:

µ′ = − lnLλΛ(1),

GP1(z) =
ln
(

LλΛ(1)
LλΛ(1−z)

)
lnLλΛ(1)

,

where L is the Laplace transform of a generalized gamma convolution as in Equation (9.11).
Plugging this in yields for the Poisson parameter µ′

µ′ = − lnLΛ(λ) = − ln

(
exp

(
−aλ−

∫ ∞
0

ln
( t+ λ

t

)
U(dt)

))
= aλ+

∫
(0,∞)

κλ(t)U(dt) = µ+ aλ. (10.16)
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We compute ν ′ = ν + bλ in the same manner. In the next step we have

ln
( LλΛ(1)

LλΛ(1− z)
)

= ln

(
exp

(
−aλz −

∫
(0,∞)

ln
( t+ λ

t

)
U(dt)

+

∫
(0,∞)

ln
( t+ λ(1− z)

t

)
U(dt)

))
= −aλz −

∫
(0,∞)

ln
( t+ λ

t

)
U(dt) +

∫
(0,∞)

ln
( t+ λ(1− z)

t

)
U(dt),

which implies

GP1(z) =
1

−µ′
(
−aλz +

∫
(0,∞)

ln
( t+ λ(1− z)

t+ λ

)
U(dt)

)
=

1

µ′

(
aλz +

∫
(0,∞)

ln
( t+ λ

t+ λ(1− z)
)
U(dt)

)
.

Further, P[P1 = n] =
G

(n)
P1

(0)

n! for n ∈ N holds. The derivatives of GP1(z) are

G
(n)
P1

(z) =
1

µ′

(
aλ1{n=1} +

∫
(0,∞)

λn(n− 1)!

(t+ λ(1− z))n U(dt)

)
,

for n ∈ N, as a short proof by induction shows because integration and differentiation may
be interchanged according to [5, 16.2 Lemma]. Hence

P[P1 = n] =
1

n!µ′

(
aλ1{n=1} +

∫
(0,∞)

λn(n− 1)!

(t+ λ)n
U(dt)

)
=

1

nµ′

∫
(0,∞)

( λ

t+ λ

)n
U(dt) +

aλ

n!µ′
1{n=1}. (10.17)

The distribution of Q1 can be calculated in the same way by substituting Λ by Ψ and
plugging in V and b, and we obtain

P[Q1 = n] =
1

nν ′

∫
(0,∞)

( λ

t+ λ

)n
V (dt) +

bλ

n!ν ′
1{n=1}, n ∈ N.

By adding a “zero-term”, the difference between the probability mass functions of P1

and Q1 for n ∈ N evaluates to

P[P1 = n] − P[Q1 = n] =
λ(aν ′ − bµ′)

n!µ′ν ′
1{n=1}

+
1

n

(
1

µ′

∫
(0,∞)

( λ

t+ λ

)n
U(dt)− 1

ν ′

∫
(0,∞)

( λ

t+ λ

)n
V (dt)

)
=
λ(aν ′ − bµ′)

n!µ′ν ′
1{n=1}

+
1

nµ′ν ′

(
ν ′
(∫

(0,∞)

( λ

t+ λ

)n
U(dt)−

∫
(0,∞)

( λ

t+ λ

)n
V (dt)

)
+ (ν ′ − µ′)

∫
(0,∞)

( λ

t+ λ

)n
V (dt)

)
. (10.18)
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Due to the assumption in Equation (10.9) we calculate the absolute value for n ∈ N

∣∣P[P1 = n] − P[Q1 = n]
∣∣ ≤ λ |aν ′ − bµ′|

n!µ′ν ′
1{n=1}

+
1

nµ′ν ′

(
ν ′
(∫

(0,∞)

( λ

t+ λ

)n
U(dt)−

∫
(0,∞)

( λ

t+ λ

)n
V (dt)

)
+
∣∣µ′ − ν ′∣∣∫

(0,∞)

( λ

t+ λ

)n
V (dt)

)
. (10.19)

By application of [5, 11.5 Corollary] summation and integration may be interchanged in the
next estimate because (λ/(λ+ t))n is non-negative. By using Equations (10.18) and (10.19)
we obtain for the total variation distance

dTV(L(P1) ,L(Q1)) =
1

2

∞∑
n=1

∣∣P[P1 = n] − P[Q1 = n]
∣∣

≤ 1

2

(
λ |aν ′ − bµ′|

µ′ν ′

+
1

µ′

(∫
(0,∞)

∞∑
n=1

1

n

( λ

t+ λ

)n
U(dt)−

∫
(0,∞)

∞∑
n=1

1

n

( λ

t+ λ

)n
V (dt)

)

+

∣∣∣∣µ′ − ν ′µ′ν ′

∣∣∣∣ ∫
(0,∞)

∞∑
n=1

1

n

( λ

t+ λ

)n
V (dt)

)
.

The logarithm can be expanded as

∞∑
n=1

1

n

( λ

t+ λ

)n
= − ln

(
1− λ

t+ λ

)
= − ln

( t

t+ λ

)
, t > 0. (10.20)

Since − ln
(

t
t+λ

)
= ln

(
t+λ
t

)
, we obtain

dTV(L(P1) ,L(Q1)) ≤ 1

2

(
λ |aν ′ − bµ′|

µ′ν ′

+
1

µ′

(∫
(0,∞)

ln
( t+ λ

t

)
U(dt)−

∫
(0,∞)

ln
( t+ λ

t

)
V (dt)

)
+

∣∣∣∣µ′ − ν ′µ′ν ′

∣∣∣∣ ∫
(0,∞)

ln
( t+ λ

t

)
V (dt)

)
=

1

2

(
λ |aν ′ − bµ′|

µ′ν ′
+
µ− ν
µ′

+

∣∣∣∣µ′ − ν ′µ′ν ′

∣∣∣∣ ν)
≤ 1

2

(
λ |aν ′ − bµ′|

µ′ν ′
+
µ− ν
µ′

+

∣∣∣∣µ′ − ν ′µ′

∣∣∣∣). (10.21)

Since w.l.o.g. min{
∣∣√µ′ −√ν ′∣∣, ∣∣µ′ − ν ′∣∣} ≤ ∣∣µ′ − ν ′∣∣ and min{µ′, ν ′} ≤ µ′, we have by

insertion into Equation (10.15)

dTV(L(M) ,L(N)) ≤ 3

2

∣∣µ′ − ν ′∣∣+
1

2
(µ− ν) +

1

2

λ
∣∣aν ′ − bµ′∣∣

ν ′
,

which completes the proof. q.e.d.
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It is interesting to note that the total variation distance between random sums with the
same severity distribution only depends on the total variation distance between the claim
number distribution:

Corollary 10.22. Let the assumptions of Theorem 10.8 be satisfied. Let {Xh}h∈N be
a sequence independent of N and M , consisting of i.i.d. non-negative discrete random
variables. Let

S :=
N∑
h=1

Xh and T :=
M∑
h=1

Xh.

Then the total variation distance is

dTV(L(S) ,L(T )) ≤ 3

2

∣∣µ′ − ν ′∣∣+
µ− ν

2
+
λ |aν ′ − bµ′|

2ν ′

with the same notation as in Theorem 10.8.

Proof. We estimate the total variation distance between the random sums by applying the
law of total probability and then interchanging the order of summation

dTV(L(S) ,L(T )) =
1

2

∞∑
k=0

∣∣∣∣P [ M∑
h=1

Xh = k

]
− P

[ N∑
h=1

Xh = k

] ∣∣∣∣
=

1

2

∞∑
k=0

∣∣∣∣ ∞∑
m=0

P
[ m∑
h=1

Xh = k

] (
P[M = m] − P[N = m]

)∣∣∣∣
≤ 1

2

∞∑
m=0

∞∑
k=0

P
[ m∑
h=1

Xh = k

] ∣∣P[M = m] − P[N = m]
∣∣

=
1

2

∞∑
m=0

∣∣P[M = m] − P[N = m]
∣∣ = dTV(L(N) ,L(M)) .

This estimate can be also found in [70, Lemma 3.1]. An application of Theorem 10.8 provides
the claim. q.e.d.

Remark 10.23. Using the estimate in Theorem 10.8, it is possible to obtain an upper and
lower bound of the limit distribution, i.e., an approximating distribution that underestimates
the risk and an approximating distribution that overestimates it. The difference may be
estimated by the triangle inequality applied to the total variation distance. This holds as
follows: Let µ, ν, λ be probability measures on a countable state space Ω. Then

dTV(µ, ν) =
1

2

∑
x∈Ω

|µ(x)− ν(x)| = 1

2

∑
x∈Ω

|µ(x)− λ(x) + λ(x)− ν(x)|

≤ 1

2

∑
x∈Ω

(
|µ(x)− λ(x)|+ |λ(x)− ν(x)|

)
= dTV(µ, λ) + dTV(λ, ν) .

Remark 10.24. The problem of evaluating a compound Poisson mixture distribution with a
recursion was already treated in [64, Chapter 3.3]. The authors give a recursive algorithm
for the evaluation of such a compound Poisson mixture distribution and assume only the
mixing random variable to be positive while relaxing the assumption of infinite divisibility.
It is an alternative to Panjer’s recursion (which is used only partly). Yet, in the n-th step,
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the algorithm requires the calculation of the n-th derivative of the Laplace transform of
the mixing distribution. As the reader may surmise, computing the n-th derivative of the
Laplace transform of a generalized gamma convolution in Equation (9.11) is rather tedious
work. It includes the application of the product rule and chain rule which can be done
by Faà di Bruno’s formula. For growing n this quickly becomes a cumbersome term. Our
algorithm avoids the need to calculate derivatives as Panjer’s recursion usually does.

The Laplace transform of the mixing distribution also contains the problem of computing
an integral with respect to its Thorin measure. This integral might not be evaluable
analytically but only numerically. Hence, there would be some inaccuracy to cope with.
Unfortunately, the authors do not give an error estimate for this scenario.

10.2 Approximation of the Thorin Measure

In this section we consider approximations using the upper estimate given in Theorem 10.8.
In order to further extend the examination of the error bounds for applications, we apply
Theorem 10.8 to the Thorin measure V in Remark 10.14 which is a vague approximation
of the Thorin measure U as in Theorem 9.17. In the following lemma we include in our
consideration a case where U is not continuous but has several jumps. In this case the
approximation V is exact at these points and hence the step sizes cancel out, but the
approximation may have more steps than jumps. If U is continuous, we choose arbitrary
points for the step sizes (and hence the respective jump sizes are zero). The following lemma
provides an upper estimate for practical use in applications.

Lemma 10.25. Let λ > 0, n ∈ N and U denote the Thorin measure of a generalized gamma
convolution. Let 0 = β0 < β1 < β2 < · · · < βn with jump sizes ∆U(β1), . . . ,∆U(βn), where
∆U(t) := U(t)− U(t−). Let

−∆U(βi) < αi ≤
βi + λ

λ

∫
(βi−1,βi)

λ

t+ λ
U(dt)

for i ∈ {1, . . . , n}. Then for

V (t) :=
n∑
i=1

(
αi + ∆U(βi)

)
1[βi,∞)(t), t ∈ [0,∞), (10.26)

and

ν :=

∫
(0,∞)

κλ(t)V (dt) and µ :=

∫
(0,∞)

κλ(t)U(dt)

the following holds

0 ≤ µ− ν =

∫
(βn,∞)

κλ(t)U(dt) +
n∑
i=1

(∫
(βi−1,βi)

κλ(t)U(dt)− κλ(βi)αi

)
. (10.27)

Proof. For all t > 0 the function κλ(t) ≥ 0 is decreasing. Thus the integral is computed as
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follows since V does not contribute any mass between the points βi for i ∈ {1, . . . , n}:

µ− ν =

∫
(0,∞)

κλ(t) (U − V )(dt)

=

∫
(βn,∞)

κλ(t)U(dt) +

n∑
i=1

∫
(βi−1,βi)

κλ(t)U(dt) +

n∑
i=1

κλ(βi)
(
∆U(βi)−∆V (βi)

)
=

∫
(βn,∞)

κλ(t)U(dt) +

n∑
i=1

(∫
(βi−1,βi)

κλ(t)U(dt)− κλ(βi)αi

)
(10.28)

since ∆U(βi)−∆V (βi) = −αi for i ∈ {1, . . . , n}. It is easy to see that if

αi ≤
1

κλ(βi)

∫
(βi−1,βi)

κλ(t)U(dt),

the summands are non-negative, and if −∆U(βi) < αi, then V is a non-negative measure.
This does not yet provide an upper bound for the approximation error. In order that αi
also satisfies µ− ν ≥ 0 according to Theorem 10.8 consider the following: Ũ(T ) ≥ Ṽ (T ) in
Equation (10.12) implies for all βk with k ∈ {1, . . . , n}∫

(0,βk]

λ

t+ λ
(U − V )(dt) =

k∑
i=1

∫
(βi−1,βi)

λ

t+ λ
U(dt) +

k∑
i=1

λ

βi + λ

(
∆U(βi)−∆V (βi)

)
=

k∑
i=1

(∫
(βi−1,βi)

λ

t+ λ
U(dt)− λ

βi + λ
αi

)
≥ 0

if 0 ≤ αi ≤ βi+λ
λ

∫
(βi−1,βi)

λ
t+λ U(dt) for i ∈ {1, . . . , n}.

Hence αi with i ∈ {1, . . . , n} has to be smaller or equal to the minimum of the two upper
bounds. We claim that

βi + λ

λ

∫
(βi−1,βi)

λ

t+ λ
U(dt) ≤ 1

κλ(βi)

∫
(βi−1,βi)

κλ(t)U(dt).

Let
∫

(βi−1,βi)
λ
t+λ U(dt) = λ

βi+λ
αi. Then, by Equation (10.20) and since λ

t+λ is decreasing for
t ≥ 0, ∫

(βi−1,βi)
ln
( t+ λ

t

)
U(dt) =

∫
(βi−1,βi)

∞∑
n=1

1

n

( λ

t+ λ

)n
U(dt)

≥
∫

(βi−1,βi)

∞∑
n=1

1

n

( λ

βi + λ

)n−1( λ

t+ λ

)
U(dt)

=

∞∑
n=1

1

n

( λ

βi + λ

)n−1 λ

βi + λ
αi = αi ln

(βi + λ

βi

)
.

Hence the assertion follows. q.e.d.

Remark 10.29. The proof also shows that an optimal choice of αi is

αi =
βi + λ

λ

∫
(βi−1,βi)

( λ

t+ λ

)
U(dt), i ∈ {1, . . . , n}. (10.30)

109



Chapter 10. Error Bounds and an Approximation

The previous lemma gives us only an upper bound for the total variation distance. The
following corollary proves that the approximation in Remark 10.29 converges vaguely.

Corollary 10.31. Let λ > 0 and n(m) = n2m−1 − (2m−1 − 1) and U denote the Thorin
measure of a generalized gamma convolution. Let 0 = β

(1)
0 < β

(1)
1 < · · · < β

(1)
n(1) <∞ with

jump sizes ∆U(β
(1)
1 ), . . . ,∆U(β

(1)
n(1)), where ∆U(t) := U(t) − U(t−). Choose {α(m)

i }m∈N
for i ∈ {1, . . . , n(m)} as in Equation (10.30). For an appropriate choice of the step sizes
{β(m)

i }m∈N for i ∈ {1, . . . , n(m)} with β
(m)
n(m) →∞ and β

(m)
1 ↘ 0 as m→∞ the sequence

{Vm}m∈N is determined and converges vaguely to U as m→∞. The difference in Equation
(10.27) decays to zero.

Proof. By the choice of

α
(m)
i =

β
(m)
i + λ

λ

∫
(β

(m)
i−1 ,β

(m)
i )

λ

t+ λ
U(dt), i ∈ {1, . . . , n(m)}, m ∈ N,

the approximating sequence {Vm}m∈N becomes

Vm =

n(m)∑
i=1

(
β

(m)
i + λ

λ

∫
(β

(m)
i−1 ,β

(m)
i )

λ

t+ λ
U(dt) + ∆U(β

(m)
i )

)
δ
β

(m)
i

. (10.32)

To prove the vague convergence consider an arbitrary continuous function f : (0,∞)→ R
with compact support. Then we have

∫
(0,∞)

f(t)Vm(dt) =

n(m)∑
i=1

f(β
(m)
i )

(
β

(m)
i + λ

λ

∫
(β

(m)
i−1 ,β

(m)
i )

λ

t+ λ
U(dt) + ∆U(β

(m)
i )

)

=

n(m)∑
i=1

f(β
(m)
i )

(
β

(m)
i + λ

λ

(∫
(0,β

(m)
i )

λ

t+ λ
U(dt)−

∫
(0,β

(m)
i−1 ]

λ

t+ λ
U(dt)

)
+ ∆U(β

(m)
i )

)
where we note ∆U(0) = 0. Let Ũ(T ) =

∫
(0,T ]

λ
t+λU(dt) for T > 0. Noting that ∆U(β

(m)
i )

fills the gaps between the intervals (β
(m)
i−1 , β

(m)
i ) for i ∈ {1, . . . , n(m)} and m ∈ N, we observe∫

(0,∞)
f(t)Vm(dt) =

n(m)∑
i=1

f(β
(m)
i )

β
(m)
i + λ

λ

(
Ũ(β

(m)
i −)− Ũ(β

(m)
i−1 ) +

λ

β
(m)
i + λ

∆U(β
(m)
i )

)
→
∫

(0,∞)
f(t)

t+ λ

λ
Ũ(dt) =

∫
(0,∞)

f(t)U(dt) (10.33)

as m→∞ because of the definition of the Riemann-Stieltjes integral.
The integral in the upper estimate of Equation (10.27) can be arbitrarily small dependent

on the choice of the parameters β
(1)
1 and β

(1)
n(1). This holds as follows; we may assume that

β
(1)
1 , . . . , β

(1)
n(1) satisfy β

(1)
1 < β

(1)
n(1) < ∞ for the Thorin measure U such that the following

holds for some arbitrary ε > 0∫
(0,β

(1)
1 )

κλ(t)U(dt) ≤ ε/3 and

∫
(β

(1)
n(1)

,∞)
κλ(t)U(dt) ≤ ε/3, (10.34)

respectively. This holds because of an analogous argumentation for both integrals. The
well-defined state follows by Remark 10.13. Integrating at 0 and ∞ has measure zero and
κλ(t) is non-negative for λ > 0 and t > 0, thus the integrals are increasing.
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The sum in Equation (10.27) can be transformed as follows with respect to Equation
(10.30) using that λ/(t+ λ) decreases for t > 0

n(m)∑
i=2

(∫
(β

(m)
i−1 ,β

(m)
i )

κλ(t)U(dt)− κλ(β
(m)
i )α

(m)
i

)

≤
n(m)∑
i=2

(
κλ(β

(m)
i−1 )

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)
− κλ(β

(m)
i )

β
(m)
i + λ

λ

∫
(β

(m)
i−1 ,β

(m)
i )

λ

t+ λ
U(dt)

)

≤
n(m)∑
i=2

(
κλ(β

(m)
i−1 )

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)
− κλ(β

(m)
i )

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)
.

Simplifying this term and extracting the upper estimate of U(β
(m)
i −) − U(β

(m)
i−1 ), that is

maxi=2...,n(m)

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)
, yields

n(m)∑
i=2

(∫
(β

(m)
i−1 ,β

(m)
i )

κλ(t)U(dt)− κλ(β
(m)
i )α

(m)
i

)

≤
n(m)∑
i=2

(
κλ(β

(m)
i−1 )− κλ(β

(m)
i )

)(
U(β

(m)
i −)− U(β

(m)
i−1 )

)
≤ max

i=2...,n(m)

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)m(n)∑
i=2

(
κλ(β

(m)
i−1 )− κλ(β

(m)
i )

)
= max

i=2...,n(m)

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)(
κλ(β

(m)
1 )− κλ(β

(m)
n(m))

)
.

Reducing maxi=2...,n(m)

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)
by halves reduces the error coming from this

sum by halves. Choosing β
(m+1)
i for i ∈ {2, . . . , n(m + 1)} with i mod 2 ≡ 0 such that

β
(m+1)
i satisfies

U(β
(m+1)
i ) =

U(β
(m)
(i+1)/2−) + U(β

(m)
(i−1)/2)

2
,

and keeping the other β
(m+1)
i leads to a decay. Thus there exists an N = N(ε) such that

for n(m) ≥ N
n(m)∑
i=2

(∫
(β

(m)
i−1 ,β

(m)
i )

κλ(t)U(dt)− κλ(β
(m)
i )α

(m)
i

)
− κλ(β

(1)
1 )α

(1)
1 ≤ ε/3,

which denotes the middle term in Equation (10.27) with respect to Equation (10.34). Because
ε > 0 was chosen arbitrarily, the assertion follows. q.e.d.

A sequence of probability distributions defined by the sequence {Vm}m∈N that converges
vaguely converges weakly to a generalized gamma convolution as the next corollary proves.

Corollary 10.35. Let a Thorin measure U be given. Let the sequence of Thorin measures
{Vm}m∈N be given as in Equation (10.32). Then the sequence of generalized gamma convo-
lutions defined by {Vm}m∈N converges weakly to the generalized gamma convolution defined
by the Thorin measure U .
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Chapter 10. Error Bounds and an Approximation

Proof. For the proof we apply Theorem 9.17. Condition (a) has already been shown in
Corollary 10.31. We proceed as in the proof of Corollary 9.28. For Condition (b) following
Equation (10.33) we observe

∫
(A,∞)

1

t
Vm(dt) =

n(m)∑
i=1

β
(m)
i >A

1

β
(m)
i

β
(m)
i + λ

λ

(
Ũ(β

(m)
i )− Ũ(β

(m)
i−1 )

)

=

n(m)∑
i=1

β
(m)
i >A

1

β
(m)
i

(
U(β

(m)
i )− U(β

(m)
i−1 )

)
=

n(m)∑
i=1

β
(m)
i >A

1

β
(m)
i

∫
(β

(m)
i−1 ,β

(m)
i ]

U(dt).

As in Corollary 9.28 this has a upper estimate that converges to zero as A→∞. An analogous
argumentation holds for Condition (c) and

∫
(0,ε) ln(t−1)Vm(dt). Hence the assertion follows.

q.e.d.

The evaluation of an integral for each α
(m)
i for i ∈ {1, . . . , n(m)} as in Corollary 10.31

can be circumvented. The upper bound can be rewritten:

Remark 10.36. Consider the special case when αi = U(βi−)−U(βi−1) denotes the U -measure
of (βi−1, βi) for i ∈ {1, . . . , n}. Then, since κλ(t) is decreasing,

αi = U(βi−)− U(βi−1) ≤ (U(βi−)− U(βi−1))
κλ(βi−1)

κλ(βi)

≤ 1

κλ(βi)

∫
(βi−1,βi)

κλ(t)U(dt).

Hence this estimate simplifies to

0 ≤ µ− ν ≤
∫

(0,β1)
(κλ(t)− κλ(β1))U(dt) +

∫
(βn,∞)

κλ(t)U(dt)

+

n∑
i=2

αi
(
κλ(βi−1)− κλ(βi)

)
.

Corollary 10.31 shows that the upper bound of the smallness difference between µ and ν
can be chosen arbitrarily. However, this requires an evaluation of an integral, which could
become very uncomfortable. The next corollary finds a remedy. It is an approximation that
circumvents an approximation of the integral by approximating the measure U .

This corollary provides for each n ∈ N a decreasing estimate because µ and ν are
well-defined (see Remark 10.13), respectively. It formalizes Remark 10.36.

Corollary 10.37. Let λ > 0 and n(m) = n2m−1 − (2m−1 − 1) and U denote the Thorin
measure of a generalized gamma convolution. Let 0 = β

(1)
0 < β

(1)
1 < · · · < β

(1)
n(1) <∞ with

jump sizes ∆U(β1), . . . ,∆U(βn), where ∆U(t) := U(t) − U(t−). Let α
(1)
i = U(β

(1)
i −) −

U(β
(1)
i−1) for i ∈ {1, . . . , n(m)}. Let {Vm}m∈N be chosen as in Equation (10.26). Then for an

appropriate choice of the sequence {α(m)
i }m∈N for i ∈ {1, . . . , n(m)} and of β

(1)
1 and β

(1)
n(1)

the difference in Equation (10.27) converges to zero and the sequence {Vm}m∈N converges
vaguely to U as m→∞ if β

(m)
n(m) →∞ and β

(m)
1 ↘ 0 as m→∞.
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10.2. Approximation of the Thorin Measure

Proof. For the vague convergence consider a continuous function f : (0,∞) → R with

compact support. Then we have using Vm =
∑n(m)

i=1 (α
(m)
i + ∆U(β

(m)
i ))δ

β
(m)
i

and α
(m)
i =

U(β
(m)
i −)− U(β

(m)
i−1 )∫

(0,∞)
f(t)V (dt) =

n(m)∑
i=1

f(β
(m)
i )(U(β

(m)
i −)− U(β

(m)
i−1 ) + ∆U(β

(m)
i ))

=

n(m)∑
i=1

f(β
(m)
i )(U(β

(m)
i )− U(β

(m)
i−1 ))→

∫
(0,∞)

f(t)U(dt)

as m→∞ because of the definition of the Riemann-Stieltjes integral.
The integral in the upper estimate of Equation (10.27) can be arbitrarily small dependent

on the choice of the parameters β
(1)
1 and β

(1)
n(1). This holds as follows: we may assume that

β
(1)
1 , . . . , β

(1)
n(1) satisfy β

(1)
1 < β

(1)
n(1) < ∞ for the Thorin measure U such that the following

holds for some arbitrary ε > 0 shifting the first term of the sum in Equation (10.27) to the
lower estimate∫

(0,β
(1)
1 )

(κλ(t)− κλ(β
(1)
1 ))U(dt) ≤ ε/3 and

∫
(β

(1)
n(1)

,∞)
κλ(t)U(dt) ≤ ε/3, (10.38)

respectively. This holds because of an analogous argumentation for both integrals. The
well-defined state follows by Remark 10.13. Integrating at 0 and ∞, respectively, has the
measure 0 and κλ(t) is non-negative for λ > 0 and t > 0, thus the integral are increasing.

The sum in Equation (10.27) can be transformed as follows for i ∈ {2, . . . , n(m)} and

m ∈ N using α
(m)
i = U(β

(m)
i −)− U(β

(m)
i−1 )

n(m)∑
i=2

(∫
(β

(m)
i−1 ,β

(m)
i )

κλ(t)U(dt)− κλ(β
(m)
i )α

(m)
i

)

≤
n(m)∑
i=2

(
κλ(β

(m)
i−1 )

(
U(β

(m)
i −)− U(β

(m)
i−1 )

)
− κλ(β

(m)
i )α

(m)
i

)

=

n(m)∑
i=2

α
(m)
i

(
κλ(β

(m)
i−1 )− κλ(β

(m)
i )

)
.

Estimating with maxi=2,...,n(m) α
(m)
i and factoring this out yields

n(m)∑
i=2

(∫
(β

(m)
i−1 ,β

(m)
i )

κλ(t)U(dt)− κλ(β
(m)
i )α

(m)
i

)

≤ max
i=2,...,n(m)

α
(m)
i

n(m)∑
i=2

(
κλ(β

(m)
i−1 )− κλ(β

(m)
i )

)
=
(
κλ(β

(m)
1 )− κλ(β

(m)
n(m))

)
max

i=2,...,n(m)
α

(m)
i .

If we successively reduce the increments α
(m)
2 , . . . , α

(m)
n(m) of Vm by halves for m ∈ N (i.e.,

we also reduce the error resulting from this sum by halves), we have

α
(m)
i =

U(β
(1)
n(1)−)− U(β

(1)
1 )−∑n(1)

i=1 ∆U(β
(1)
i )

2m−1
, i ∈ {2, . . . , n(m)},
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Chapter 10. Error Bounds and an Approximation

and hence there exists an N = N(ε) such that for n(m) ≥ N

n(m)∑
i=2

(∫
(β

(m)
i−1 ,β

(m)
i )

κλ(t)U(dt)− κλ(β
(m)
i )α

(m)
i

)
≤ ε/3.

Hence the assertion follows. q.e.d.

Remark 10.39. A sequence of Thorin measures {Vm}m∈N given in Corollary 10.37 that con-
verges vaguely to a Thorin measure U defines a sequence of generalized gamma convolutions
that converges weakly to a generalized gamma convolution defined by the Thorin measure
U , as an application of Corollary 9.28 shows.

Corollary 10.31 and Corollary 10.37 lead to the following conclusions: Given a Thorin
measure U we determine a random variable Λ (cf. Definition 9.10). Because the sequence
{Vm}m∈N constructed in Corollaries 10.31 and 10.37, respectively, converges vaguely to U ,
it follows by Corollary 10.35 and Theorem 9.17, respectively, that the sequence {Λm}m∈N of
random variables converges weakly to Λ as m→∞.

To make the approximation more efficient, we state the following assumption in accor-
dance with Corollary 10.31:

Assumption 10.40. Apply the notation of Corollary 9.28 and let n(m) = n2m−1−(2m−1−
1). To make the approximation of the Thorin measure U by {Vm}m∈N more efficient, we
assume the following:

(a) If U has m jumps (with m + 2 = n), say at the points tk for k ∈ {1, . . . ,m} and if
t0 = 0, then we set

β
(1)
1 = c, β

(1)
k+1 = tk, β(1)

n = C,

such that c and C satisfy Equation (10.34) and then compute α
(1)
i for i ∈ {1, . . . , n}

according to Equation (10.30). If U does not have jumps, then we suggest taking the
following values

β
(1)
1 = c and β

(1)
2 = C,

and then calculate the corresponding α
(1)
i for i = 1, 2.

(b) For m ∈ N we assume for i ∈ {1, . . . , n(m+ 1)}

β
(m+1)
i =


β

(m)
i+1
2

if i mod 2 ≡ 1 and i < n(m+ 1)

U−1
(

1
2

(
U
(
β

(m)
i
2

)
+ U

(
β

(m)
i+2
2

)))
if i mod 2 ≡ 0 and i < n(m+ 1)

β
(m)
n(m) if i = n(m+ 1),

(10.41)

and that α
(m+1)
i satisfy Equation (10.30).

We now derive an algorithm that shows how to approximate recursively the random sum
S =

∑N
h=1Xh, where L(N |Λ)

a.s.
= Poisson(λΛ) and Λ is a generalized gamma convolution

with parameter a and Thorin measure U , and {Xh}h∈N is a sequence independent of (N,Λ),
consisting of i.i.d. random variables, which are either non-negative and discrete or discrete
approximations of continuous non-negative random variables:
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10.2. Approximation of the Thorin Measure

Algorithm 10.42. Given a generalized gamma convolution F with Λ ∼ F characterized
by a ≥ 0 and Thorin measure U , Corollary 10.31 describes how to construct a sequence
{Vm}m∈N that converges vaguely to U . For each m ∈ N the measure Vm defines a generalized
gamma convolution Fn and by Corollary 10.35 the corresponding distribution converges
weakly, by Theorem 10.8 and Lemma 10.25 the quality of convergence of the sequence of
random variables {Nm}m∈N follows. Corollary 10.31 also describes the difference between
the random variables N and Nm. An application of Lemma 9.32 provides a alternative
representation that also converges weakly. Equation (10.27) gives an upper bound of the
difference between µ and ν with respect to a series which also converges to 0. We proceed
as follows:

• Choose an error bound ε in the total variation distance. To obtain a reasonable result
pay attention to ε <

∫∞
0 κλ(t)U(dt). Determine by Assumption 10.40 (a) the first

parameters α
(1)
i , β

(1)
i for i ∈ {1, . . . , n(1)}.

• If Equation (10.27) is satisfied, we are done. Otherwise, determine α
(m)
i and β

(m)
i for

m ∈ N and i ∈ {1, . . . , n(m)} by Assumption 10.40 (b) and check Equation (10.27)
iteratively until the desired exactness is reached.

• By having found appropriate parameters α
(m)
i and β

(m)
i for i ∈ {1, . . . , n(m)} with

n(m) = n2m−1− (2m−1− 1), the respective distribution of the random variable Mn(m)

in Equation (9.34) is determined, which is a convolution of n(m) negative binomial
distributions. Then we can compute an appropriate approximation of the distribution
of S by Sn(m) which is

Sn(m)
d
=

Mn(m)∑
h=1

Xh =

P∑
h=1

Xh +

n(m)∑
i=1

R
(n(m))
i∑
h=1

Xi,h,

where {Xi,h}h∈N are n(m) independent sequences independent of the random variables
R

(n(m))
i for i ∈ {1, . . . , n(m)}, consisting of i.i.d. random variables and Xi,1 has the

same distribution as X1 for i ∈ {1, . . . , n(m)}. Additionally P ∼ Poisson(λa) holds.

• Let

q
(m)
i =

λ

β
(m)
i + λ

for i ∈ {1, . . . , n(m)}.

By Remark 2.7 we have R
(n(m))
i

d
=
∑L

(n(m))
i

h=1 Y
(n(m))
i,h for i ∈ {1, . . . , n(m)} such that

R
(n(m))
i ∼ CPoi

(
α

(m)
i ln

(
1

1− q(m)
i

)
,Log

(
q

(m)
i

))
.

We proceed as in [21, Section 5.5]. For the reader’s convenience we repeat the single
steps. Now let

S
(n(m))
(i,h) =

Y
(n(m))
(1,h)

+···+Y (n(m))
(i,h)∑

k=Y
(n(m))
(1,h)

+···+Y (n(m))
(i−1,h)

+1

Xi,k

for i ∈ {1, . . . , n(m)} and h ∈ N. By [21, Remark 5.11]

S
(n(m))
(i,1) + · · ·+ S

(n(m))

(i,L
(n(m))
i )

d
= Xi,1 + · · ·+X

i,R
(n(m))
i
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holds. The sequence {S(n(m))
(i,h) }h∈N is i.i.d. and the distribution of S

(n(m))
(i,1) can be calcu-

lated by a numerically stable Panjer recursion since Y
(n(m))

(i,1) is in the Panjer(qi,−qi, 1)
class.

• Further the random sum Sn(m) can be represented as

Sn(m) =
P∑
i=1

Xi +

n(m)∑
i=1

L
(n(m))
i∑
h=1

S
(n(m))
(i,h) ,

and the probability-generating function of its distribution is given by

GSn(m)
(z) = exp

(
λa(GX1(z)− 1)

) n(m)∏
i=1

exp

(
α

(m)
i ln

(
1

1− q(m)
i

)(
G
S

(m)
(i,1)

(z)− 1
))

= exp
(
(λa+ ν)(G(z)− 1)

)
,

where |z| ≤ 1 and ν =
∑n(m)

i=1 α
(m)
i ln

(
1

1−q(m)
i

)
and

G(z) =
λa

λa+ ν
GX1(z) +

n(m)∑
i=1

α
(m)
i ln

(
1

1−q(m)
i

)
λa+ ν

G
S

(n(m))
(i,1)

(z). (10.43)

• Hence calculating the distribution of S
(n(m))
(1,1) , . . . , S

(n(m))
(n(m),1) and of X1 provides the

coefficients of the respective probability-generating functions and the coefficients of
G(z), which are the probabilities of the severity distribution of a compound Poisson
distribution with counting distribution Poisson(λa+ ν). Thus we only conduct n(m)+1
Panjer recursions and replace the n(m) convolutions by a convex combination and
another numerically stable Panjer recursion.

Remark 10.44. This algorithm is very efficient with respect to the speed of approximation,

but might require a huge memory capacity. Remembering old values of the β
(m)
i has the

advantage that in each step we only need to compute for half of the β
(m)
i the value in

Equation (10.41). If the Thorin measure U is strictly monotone and continuous, the inverse
U−1 can be evaluated directly, otherwise U−1 should be understood as the generalized
left-inverse. If the inverse is known, the computation is very fast, otherwise the numerical
approximation of the inverse could become very time-consuming. This approximation can

be circumvented, if in each step 1
2

(
β

(m)
i + β

(m)
i+1

)
is taken, respectively, and then the α

(m)
i are

computed. This also converges vaguely, but the efficiency of approximation is abandoned.
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Chapter 11

An Extension of
the CreditRisk+ Model to
Multivariate Generalized Gamma
Convolutions

We now provide a generalization of the CreditRisk+ model with several risk factors. Consider
the random sum

S =
m∑
i=1

Ni∑
h=1

Xi,h, (11.1)

where the loss sizes {Xi,h}h∈N for i ∈ {1, . . . ,m} are m independent sequences of i.i.d.
random variables and the loss numbers (N1, . . . , Nm) are random variables, each with a
Poisson mixture distribution independent of all the losses {Xi,h}h∈N. We assume that the
mixing distributions are generalized gamma convolutions. Hence we model a common mixing
random vector with a multivariate distribution. It is therefore necessary to consider a further
characterization of generalized gamma convolutions in one dimension because this is crucial
for the construction of multivariate generalized gamma convolutions.

11.1 Introduction to Wiener–Gamma integrals

In Chapter 9.2 we introduced generalized gamma convolutions as the limit of sums of
independent gamma-distributed random variables. Now we consider once again generalized
gamma convolutions and introduce the notion of Wiener–Gamma integrals. This connection
is presented in [36], and we state here some results that are important for us. For further
reading on gamma processes cf. [68]. Recall that a gamma process (γt)t≥0 follows a
Gamma(t, 1) distribution for t > 0, cf. [36, Equation (4)]

P[γt ∈ da] =
e−a

Γ(t)
at−1da, a ≥ 0.

Thus we use Wiener–Gamma integrals as in [36, Equation (5)]

Λh :=

∫
(0,∞)

h(s) dγs,
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where h : R+ → R+ is a Borel measurable function such that∫
(0,∞)

ln(1 + h(u)) du <∞.

This condition ensures that the Laplace transform of Λh is well-defined, cf. [68, Equa-
tion (7)]. Such a Wiener–Gamma integral allows for another approach to generalized gamma
convolutions because they coincide as can be found in [36, Proposition 1.1].

Proposition 11.2. The class of positive generalized gamma convolution random variables
coincide with the class of Wiener–Gamma integrals. More precisely:

(a) If Λh =
∫

(0,∞) h(s) dγs, then

E
[
e−tΛ

h]
= exp

(
−
∫

(0,∞)
ln
(

1 +
t

x

)
Uh(dx)

)
, t ≥ 0

where Uh denotes the image of Lebesgue’s measure on R+ under the application s 7→ 1
h(s) .

In other terms: ∫
(0,∞)

e
− x
h(s) ds =

∫
(0,∞)

e−xz Uh(dz), x > 0.

We note that h may vanish on some measurable set.

(b) Let Λ denote a generalized gamma convolution with Thorin measure U . Let FU (x) :=∫
(0,x] U(dy) for x ≥ 0 and denote by F−1

U its right-continuous inverse, in the sense of
the composition of functions. Then

Λ
d
= Λh, with h(s) =

1

F−1
U (s)

.

These results can be generalized to higher dimensions. Let S‖·‖ be the unit sphere
on a finite dimensional Euclidean space B with respect to the norm ‖ · ‖ and equipped
with its Borel σ-algebra. Let K be a cone. Write SK,‖·‖ = S‖·‖ ∩ K. Examples for K
are K = R+ or Rm+ . As in [51, Section 4.1] we let the dual cone K ′ of K be defined
as K ′ = {y ∈ B | 〈y, s〉 ≥ 0 for every s ∈ K}. Let us first introduce the definition of a
multivariate gamma distribution, cf. [51, Definition 4.1, Proposition 3.3]:

Definition 11.3. Let µ be a probability distribution on K. Let α be a finite measure on
the unit sphere SK,‖·‖. Let β : SK,‖·‖ → (0,∞) be a Borel-measurable function satisfying
the condition ∫

SK,‖·‖

ln
(

1 +
1

β(v)

)
α(dv) <∞. (11.4)

Then µ is called an m-dimensional gamma distribution with characteristic quantities α and
β, abbreviated by ΓK(α, β) if the Laplace transform of µ satisfies

L(s) = exp

(∫
SK,‖·‖

∫
R+

(
e−r〈v,s〉−1

)e−β(v)r

r
dr α(dv)

)
(11.5)

for all s ∈ K ′.
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Note that by [51, Proposition 3.3] Equation (11.4) ensures that Equation (11.5) is well-
defined. Now we present some results of [51, Section 4.3] concerning Itô–Wiener–Gamma
integrals. Let γ = (γt)t≥0 be a K-valued gamma process such that µα,β = ΓK(α, β) is the
distribution of γ1. Let Nγ(ds, dx) be the random measure on R+ ×K associated to the
K-valued jumps of γ and ηµα,β which is the Lévy measure of γ1 given by

ηµα,β (E) =

∫
SRm+ ,‖·‖

∫
(0,∞)

1E(rv)
e−β(v)r

r
dr α(dv), E ∈ B(K).

Further (cf. [51, Section 4.3]), let h : R+ × SK,‖·‖ → R+ be a measurable function such that∫
SK,‖·‖

∫
(0,∞)

ln
(

1 +
h(w, v)

β(v)

)
dw α(dv) <∞,

in which case we say that h belongs to L(ΓK(α, β)). According to [51, Section 4.3] it can be
proven that the following Itô–Wiener–Gamma integral type is well defined

Λh = a+

∫
(0,∞)

∫
K
h
(
s,

x

‖x‖
)
xN(ds, dx) (11.6)

in the framework of integration with respect to infinitely divisible independently scattered
random measures (cf. [52, Lemma 2.3]) with a ∈ K. By [51, Proposition 4.2] the integral in
Equation (11.6) is well-defined if and only if h belongs to L(ΓK(α, β)). This is equivalent to
the following two conditions∫

SK,‖·‖

∫
(0,1/2)

|ln(t)| Gv(dt)α(dv) <∞

and ∫
SK,‖·‖

∫
(1/2,∞)

1

t
Gv(dt)α(dv) <∞,

where Gv(dt) is the measure on R+ which is the image of the Lebesgue measure on R+

under the change of variable s 7→ β(v)/h(s, v). It can be easily seen that there is a direct
analogy to the existence of the Thorin measure U in Equation (9.9). Finally, the following
proposition is important for us, cf. [51, Proposition 4.3]:

Proposition 11.7. Let h ∈ L(ΓK(α, β)). Then the distribution of the K-valued random
variable Λh is infinitely divisible and has Laplace transform

LΛh(s) = exp

(
−〈s, a〉 −

∫
SK,‖·‖

∫
(0,∞)

∫
(0,∞)

(
1− e−rh(z,v)〈s,v〉)e−β(v)r

r
dz dr α(dv)

)
= exp

(
−〈s, a〉 −

∫
SK,‖·‖

∫
(0,∞)

ln
(

1 +
〈s, v〉
t

)
Gv(dt)α(dv)

)
, s ∈ K ′, (11.8)

where a ∈ K and Gv is a Thorin measure on R+ for α-a.e. v which is the image of the
Lebesgue measure on R+ under the change of variable w 7→ β(v)/h(w, v) (cf. Definition
9.10). Moreover, the Lévy measure of Λh is

η(E) =

∫
SK,‖·‖

∫
(0,∞)

1E(rv)
kv(r)

r
dr α(dv), E ∈ B(K),

where

kv(r) =

∫
(0,∞)

e−rt Gv(dt).
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11.2 Multivariate Generalized Gamma Convolutions

In this section we introduce a version of multivariate gamma distributions and – the main
topic of this section – multivariate generalized gamma convolutions. For further reading
on multivariate infinitely divisible distributions cf. [3], for multivariate generalized gamma
convolutions cf. [51]. We will use multivariate generalized gamma convolutions as mixing
distributions for the Poisson mixture distribution of the claim numbers later in this chapter.
As in the case of multivariate gamma distributions a unique extension of generalized gamma
convolutions to higher dimensions does not exist, hence we consider two approaches.

A definition of the multivariate normal distribution motivates the following definition
of multivariate generalized gamma convolutions: a random vector Y is said to have a
multivariate normal distribution in a Hilbert space H if for every h ∈ H the scalar product
〈h, Y 〉 is normally distributed (cf. [11, p. 53]). According to [8, Chapter 3.6, p. 46], we may
extend Definition 9.10 to an m-dimensional generalized gamma convolution as follows:

Definition 11.9. The distribution of a random vector (Λ1, . . . ,Λm) with non-negative
components is said to be an m-dimensional generalized gamma convolution (in the weak
sense) if the distribution of c1Λ1 + · · ·+ cmΛm is a generalized gamma convolution whenever
c1, . . . , cm ≥ 0.

Using this definition, it is possible to model default cause intensities that satisfy the
requirements of Equation (11.1), as the next example demonstrates.

Example 11.10. If Λ1, . . . ,Λm are independent random variables each of which is dis-
tributed as a generalized gamma convolution, then c0 + c1Λ1 + · · · + cmΛm whenever
c0, . . . , cm ≥ 0 is a random variable with a generalized gamma convolution because general-
ized gamma convolutions are closed under convolution and scaling.

This is a very intuitive definition for an easy understanding. However, for an analytical
tractability there is a more useful characterization of a multivariate generalized gamma
convolution.

Let K now be a proper cone of Rm. As [51, Section 4.1] states, the cone K is called
proper if x = 0 whenever x and −x are in K. In accordance to our model assume that K =
Rm+ = [0,∞)m. With regard to Section 11.1 we are prepared for the actual characterization.
Multivariate generalized gamma convolutions are given by [51, Definition 4.4]:

Definition 11.11. The class of K-valued generalized gamma convolutions is the collection of
all infinitely divisible distributions on K with Lévy measure ηµ having a polar decomposition

ηµ(E) =

∫
SK,‖·‖

∫
(0,∞)

1E(rv)
kv(r)

r
dr α(dv), E ∈ B(K),

where kv(r) is a measurable function in v and completely monotone in r for α-a.e. v.

As in the univariate case, Proposition 11.7 states that the class of distributions of
Itô–Wiener–Gamma integrals Λh coincides with the class of K-valued generalized gamma
convolutions. Note that in most cases we will use the characterization given in Equation
(11.8).

Remark 11.12. It is not necessary to specify the norm we use. By [51, Proposition 3.4] we
need only change the parameterization if we choose another norm.
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These two definitions lead to a similar construction and interpretation of a multivariate
generalized gamma convolution. Since there are many approaches of finding a multivariate
gamma distribution, cf. [44, Chapter 48], a unique construction of a multivariate generalized
gamma convolution does not exist either. Cheriyan and Ramabhadran’s extension (cf.
e.g. [44, Chapter 48.3.1]) seems to offer a good starting point: Consider n independent
gamma-distributed random variables such that Yj ∼ Gamma(αj , βj) with αj , βj > 0 for
j ∈ {1, . . . , n}. Define Z = (Z1, . . . , Zm)> where Zi =

∑n
j=1 ci,jYj and ci,j ∈ {0, 1} for

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. For simplicity we assume that for each j ∈ {1, . . . , n} the
random variable Yj should appear in at least one Zi for i ∈ {1, . . . ,m}. Then the Laplace
transform of the distribution of Z is computed as follows

L(s) = E
[
e−〈s,Z〉

]
= E

[
e−

∑m
i=1 siZi

]
= E

[
e−

∑m
i=1 si

∑n
j=1 ci,jYj

]
, s ∈ Rm+ .

Using the independence of Y1, . . . , Yn and their distribution

L(s) =

n∏
j=1

E
[
e−

∑m
i=1 sici,jYj

]
=

n∏
j=1

( βj
βj +

∑m
i=1 sici,j

)αj
, s ∈ Rm+ .

Bringing this into an integral form yields

L(s) = exp

( n∑
j=1

αj ln

(
βj

βj +
∑m

i=1 sici,j

))

= exp

(
−
∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈s, v〉

t

)
Gv(dt)α(dv)

)
, (11.13)

where α({cj}) = αj and β(cj) = βj and h(w, v) = 1{w=1}(w, v) with cj = (c1,j , . . . , cm,j), cf.
Equation (11.8). If we take the supremum norm, then every cj for j ∈ {1, . . . , n} is on the
unit sphere and that is why the null-vector should be excluded. Note that according to [8,
Theorem 3.3.2] this is also the Laplace transform of a generalized gamma convolution for
si = s, which is in accordance with Definition 11.9 of a multivariate generalized gamma
convolution in the sense of Bondesson.

Using this definition it is possible to generalize Bondesson’s closure theorem [8, The-
orem 3.1.5] to higher dimensions. This result has already been proven in [3, Theorem F,
p. 27]. We give an alternative proof. Here and in the following 1 in the inner product
〈1, v〉 denotes the vector 1 = (1, . . . , 1). Along the lines of his argumentation, for reasons of
convenience, we define a signed measure νv(dt) on [0,∞] by

νv({0}) = 0 and νv({∞}) = 〈ba, v〉〈1, v〉, v ∈ SRm+ ,‖·‖, a ∈ Rm+ , (11.14)

and ba ∈ Rm depends on a which will be made clear in the proof of the lemma. According
to Bondesson’s choice, we let

νv(dt) = ln(1 + t−1〈1, v〉))Gv(dt), 0 < t <∞. (11.15)

Because this signed measure can be decomposed into the difference of two finite non-negative
measures, the convergence results of non-negative measures carry over. Further we let

g(s, v, t) =
1

ln(1 + t−1〈1, v〉) ln
( t+ 〈s, v〉

t

)
, s ∈ Rm+ , v ∈ SRm+ ,‖·‖, t > 0.
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Then the Laplace transform of a multivariate generalized gamma convolution is

L(s) = exp

(
−〈s, a〉 −

∫
SRm+ ,‖·‖

∫
(0,∞)

g(s, v, t) νv(dt)α(dv)

)
.

Then our generalization of Bondesson’s closure theorem is the following:

Lemma 11.16. Let {Fn}n∈N be an m-dimensional sequence of multivariate generalized
gamma convolutions, defined by the sequences of measures {(νn)v}n∈N and {αn}n∈N. If
Fn → F weakly as n→∞, then F is a multivariate generalized gamma convolution and the
corresponding measure νv is a vague limit on [0,∞] and α is the corresponding vague limit
on SRm+ ,‖·‖. Conversely, if (νn)v → νv vaguely as n → ∞ on [0,∞] and αn → α vaguely

as n → ∞ on SRm+ ,‖·‖ and νv({0}) = 0, then Fn → F weakly as n → ∞, where F is a
multivariate generalized gamma convolution which corresponds to νv and α.

Proof. We follow Bondesson’s proof of his closure theorem, cf. [8, p. 34/35]. Let Fn → F
weakly. Denote by Ln the Laplace transform of Fn. Then ln(Ln(s))→ ln(L(s)) as n→∞
for s ∈ Rm+ . Further

ln(Ln(1)) = −
∫
SRm+ ,‖·‖

∫
[0,∞]

ln
( t+〈1,v〉

t

)
ln(1 + t−1〈1, v〉) ln(1 + t−1〈1, v〉) (Gn)v(dt)αn(dv)

= −
∫
SRm+ ,‖·‖

∫
[0,∞]

(νn)v(dt)αn(dv)

holds. Since Ln(1) is defined for n ∈ N and the integrals are bounded (see also the definition
of h), it follows that this is bounded. Hence {(νn)v}n∈N is a sequence of bounded measures
on [0,∞] and {αn}n∈N is a sequence of bounded measures on SRm+ ,‖·‖. By Helly’s selection

theorem (cf. [42, Theorem 5.19]) there exists a subsequence {Lnk(s)}k∈N for s ∈ Rm+ that
converges pointwise in all points of continuity. According to the continuous mapping theorem
(cf. [43, Theorem 13.25]) the weak convergence is preserved if the measure of all points of
discontinuity is zero, which is satisfied here. Note that {Lnk(s)}k∈N uniquely determines
a subsequence {Fnk}k∈N of probability distributions. Further we should note that R+ is a
polish space, hence by [43, Theorem 13.34] the weak convergence of {Fn}n∈N implies that
{Fn}n∈N (and {Fnk}k∈N) is also tight. By [12, Theorem 22.22] it follows that the limit
determines a probability distribution.

The convergence of the subsequence {Lnk(s)}k∈N for s ∈ Rm+ induces convergent sub-
sequences {(νnk)v}k∈N with limit νv and {αnk}k∈N with limit α. Consider now the vague
convergence. t 7→ g(s, v, t) is continuous on [0,∞] for v ∈ SRm+ ,‖·‖ and s ∈ Rm+ , where

lim
t→0

g(s, v, t) = lim
t→0

ln(1 + 〈s, v〉/t)
ln(1 + 〈1, v〉/t) = 1

and

lim
t→∞

g(s, v, t) = lim
t→∞

( 1

t+ 〈s, v〉 −
1

t

)/( 1

t+ 〈1, v〉 −
1

t

)
= lim

t→∞

〈s, v〉t(t+ 〈1, v〉)
t(t+ 〈s, v〉)〈1, v〉 =

〈s, v〉
〈1, v〉 .
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Furthermore, consider
∫

[0,∞] g(s, v, t) νv(dt). For s ∈ Rm+ the map

v 7→
∫

[0,∞]
g(s, v, t) νv(dt)

is defined on the compact set SRm+ ,‖·‖. By Lusin’s theorem (cf. e.g. [5, 26.7 Theorem])

for every ε > 0 there exists a compact set K ⊂ SRm+ ,‖·‖ such that α(SRm+ ,‖·‖ \ K) < ε

and the restriction v 7→
∫

[0,∞] g(s, v, t) νv(dt)
∣∣
K

is continuous. Because the unit sphere
is compact, this is especially satisfied for K = SRm+ ,‖·‖ and thus this map is continuous.

Therefore, according to [79, p. 4] the image of the map v 7→
∫

[0,∞] g(s, v, t) νv(dt) is compact.

Altogether we have that {(νnk)v}k∈N is a vaguely convergent subsequence and t 7→ g(s, v, t)
is continuous on a compact support and that {αnk}k∈N is a vaguely convergent subsequence
and v 7→

∫
[0,∞] g(s, v, t) νv(dt) is continuous on a compact support. Hence, for every s ∈ Rm+

we have

ln(Lnk(s)) = −
∫
SRm+ ,‖·‖

∫
[0,∞]

g(s, v, t) (νnk)v(dt)αnk(dv)

→ −
∫
SRm+ ,‖·‖

∫
[0,∞]

g(s, v, t) νv(dt)α(dv)

= −
∫
SRm+ ,‖·‖

νv({0})α(dv)−
∫
SRm+ ,‖·‖

νv({∞})
〈s, v〉
〈1, v〉 α(dv)

−
∫
SRm+ ,‖·‖

∫
(0,∞)

g(s, v, t) νv(dt)α(dv)

as k →∞. The integral over νv({∞})〈s, v〉/〈1, v〉 can be written as follows noting νv({∞}) =
〈ba, v〉〈1, v〉 ∫

SRm+ ,‖·‖

〈ba, v〉〈s, v〉α(dv) =
m∑
i=1

si

∫
SRm+ ,‖·‖

〈ba, v〉vi α(dv),

where we now assume that for i ∈ {1, . . . ,m}

ai =

∫
SRm+ ,‖·‖

〈ba, v〉vi α(dv)

holds. Hence the vector ba = (b1, . . . , bm) should be chosen such that we obtain a. Note that
α is a product measure and hence Fubini’s theorem can be applied. For each i ∈ {1, . . . ,m}
we can write

ai =
m∑
j=1

bj

∫
vm∈[0,1]
‖v‖=1

. . .

∫
v1∈[0,1]
‖v‖=1

vjvi α1(dv1) . . . αm(dvm).

Because the integrals do not depend on b1, . . . , bm, this is a linear equation system. We
prove that for given a ∈ Rm+ we can construct solutions that satisfy the given linear equation
system. As the unit vectors e1, . . . , em are a basis of Rm+ , it suffices that we consider solutions
of this linear equation system where a = ei. Having such a solution, we get any arbitrary a
by linear combinations. The reader can confirm that finding a solution for a unit vector ei
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can be done by Gaussian elimination. If the matrix that is determined by the integrals is
not invertible, then we have (up to several) levels of free choice. Thus for given ba we obtain∫

SRm+ ,‖·‖

〈ba, v〉〈s, v〉α(dv) = 〈s, a〉.

Since νv({0}) = 0, F is a multivariate generalized gamma convolution. As can be
easily shown, the vague limits νv and α are uniquely determined, and by Billingsley [6,
Theorem 2.6] {(νv)n}n∈N and {αn}n∈N are vaguely convergent.

Conversely, the claim follows by an application of [5, 30.8 Theorem] and a translation of
the portmanteau theorem [6, Theorem 2.1], cf. [6, p. 26]. q.e.d.

It is possible to generalize Definition 11.9 up to infinite dimensions that also justifies
this definition in finite dimensions:

Remark 11.17. According to [17, Chapter 8, (2.7) Theorem] weak convergence in R∞ is
equivalent to convergence of finite dimensional distributions. Note therefore that R∞ is also
separable and complete (cf. the proof of [17, Chapter 8, (2.7) Theorem] and [17, Chapter 8,
(2.6) Lemma]), and hence by [6, Theorem 1.3] each probability measure on R∞ is tight.
Hence Definition 11.9 can be extended to infinite dimensions. We can then use Corollary
11.16 to construct infinite-dimensional generalized gamma convolutions.

Using Lemma 11.16 it is possible to give an existence result of a sequence of distributions
that converges weakly to a given multivariate generalized gamma convolution. For reasons
of convenience we use the supremum norm.

Corollary 11.18. Let F be an m-dimensional generalized gamma convolution with Λ ∼ F
defined by a ∈ Rm+ and a Thorin measure Gv on R+, which is the image of the Lebesgue
measure on R+ under the change of variable t 7→ β(v)/h(t, v) for v ∈ SRm+ ,‖·‖ and t ∈ R+,

and a finite measure α on SRm+ ,‖·‖. Then there exists a weakly convergent sequence {Fn}n∈N
of m-dimensional generalized gamma convolutions with Λn ∼ Fn for n ∈ N characterized
by {(Gn)v}n∈N and {αn}n∈N where

αn =
n∑
j=1

(α({v(n)
j })− α({v(n)

j−1}))δv(n)
j

for some isotonic sequence v
(n)
n = (v

(n)
1,n, . . . , v

(n)
m,n) ∈ SRm+ ,‖·‖ and

(Gn)v =
n∑
j=1

(Gv(b
(n)
j )−Gv(b(n)

j−1))δ
b
(n)
i

for a partition Zn = (b
(n)
j )0≤j≤n on a compact subset of (0,∞) for all n ∈ N. Let {(νn)v}n∈N

be defined according to Equations (11.14) and (11.15). Let ba be given. Then these sequences
converge vaguely to νv and α as n → ∞, respectively. Then Λn = (Λ1,n, . . . ,Λm,n) with

Λi,n = ai +
∑n

j=1 v
(n)
i,j Yj for i ∈ {1, . . . ,m}, and Yj ∼ Gamma(αj , βj) for j ∈ {1, . . . , n}

and n ∈ N are independent.

Proof. We proceed as in Corollary 9.28. Let Zn = (b
(n)
j )0≤j≤n be a partition where 0 <

b
(n)
0 < b

(n)
1 < · · · < b

(n)
n < ∞ and b

(n)
0 ↘ 0 and b

(n)
n → ∞ as n → ∞. The mesh of Z is

defined as mesh(Zn) = maxj=1,...,n(b
(n)
j − b

(n)
j−1) → 0 as n → ∞. Let f : (0,∞) → R be a
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continuous function with a compact support. By the definition of the Lebesgue-Stieltjes

integral and because supp(f) ⊂ (b
(n)
0 , b

(n)
n ] for v ∈ SRm+ ,‖·‖∫

[0,∞]
f(t) (νn)v(dt) =

n∑
j=1

f(b
(n)
j ) ln(1 + (b

(n)
j )−1〈1, v〉)(Gv(b(n)

j )−Gv(b(n)
j−1))

→
∫

[0,∞]
f(t) νv(dt)

converges vaguely for n → ∞ as the mesh µ(Z) gets smaller and smaller because Gv is
monotone (it is non-decreasing). Let f be a continuous function on SRm+ ,‖·‖ with compact
support. Then by the definition of the Lebesgue-Stieltjes integral∫

SRm+ ,‖·‖

f(v)αn(dv) =
n∑
j=1

f(v
(n)
j )(α(v

(n)
j )− α(v

(n)
j−1))→

∫
SRm+ ,‖·‖

f(v)α(dv)

converges vaguely as n → ∞. Thus by an application of Lemma 11.16 the constructed
sequence {Fn}n∈N converges weakly to F . q.e.d.

11.3 Applications to the Extended CreditRisk+ Model

In this section we use the results of the preceding section in order to extend the CreditRisk+

model for several business lines to a broader class of distributions – the multivariate
generalized gamma convolutions. As already mentioned above, the idea goes back to
Cheriyan and Ramabhadran’s extension (cf. e.g. [44, Chapter 48.3.1])

Applying this corollary it is possible to find an alternative representation for the approx-
imation.

Corollary 11.19. Let λ = (λ1 . . . , λm) with λi ≥ 0 for i ∈ {1, . . . ,m}. Define a sequence
{(Λ1,n, . . . ,Λm,n)}n∈N of random vectors given by independent random variables Yj for
j ∈ {1, . . . , n} and n ∈ N as in Corollary 11.18, and this sequence converges weakly to
a random vector Λ. Let {(N1,n, . . . , Nm,n)}n∈N be a sequence of random vectors. Let
N1,n, . . . , Nm,n be conditionally independent given Λ1,n, . . . ,Λm,n for each n ∈ N such that

L(Ni,n |Λ1,n, . . . ,Λm,n)
a.s.
= L(Ni,n |Λi,n) a.s.

= Poisson(λiΛi,n) , i ∈ {1, . . . ,m}.

On the other hand, consider n independent sequences of i.i.d. random vectors {B(n)
j,h }h∈N,

such that
B

(n)
j,1 ∼ Multinomial

(
1; p

(n)
1,j , . . . , p

(n)
m,j

)
,

where p
(n)
i,j ∈ [0, 1] with

∑m
i=1 p

(n)
i,j = 1 satisfies the condition p

(n)
i,j

∑m
d=1 λdv

(n)
d,j = λiv

(n)
i,j for

each j ∈ {1, . . . , n} and n ∈ N and i ∈ {1, . . . ,m}. Let {Q(n)
j }j∈{1,...,n} be independent

random variables for each n ∈ N which satisfy

L
(
Q

(n)
j

∣∣ Y1, . . . , Yn
) a.s.

= L
(
Q

(n)
j

∣∣ Yj) a.s.
= Poisson

( m∑
i=1

λiv
(n)
i,j Yj

)
.

Assume further for each n ∈ N that (Q
(n)
1 , . . . , Q

(n)
n ) and the sequences {B(n)

j,h }h∈N are
independent for each j ∈ {1, . . . , n}. Let the random vector P with independent components
Pi ∼ Poisson(λiai) for i ∈ {1, . . . ,m} be independent of (Q

(n)
1 , . . . , Q

(n)
n ) and the sequences
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{B(n)
j,h }h∈N for each j ∈ {1, . . . , n} and n ∈ N. Finally, let {Mn}n∈N be a sequence of

Nm0 -valued random vectors such that

Mn = P +

n∑
j=1

Q
(n)
j∑

h=1

B
(n)
j,h , n ∈ N.

Then Mn and (N1,n, . . . , Nm,n) have the same distribution for each n ∈ N and {Nn}n∈N
converge weakly to some random vector such that

L(N |Λ)
a.s.
= Poisson(λΛ) .

Proof. The equality in distribution follows by an application of Theorem 3.1 and the
convolution property of the Poisson distribution. The weak convergence of the sequence
{(Λ1,n, . . . ,Λm,n)}n∈N follows by Corollary 11.18. The weak convergence of the sequence
{Nn}n∈N follows as in the proof of Corollary 9.32. q.e.d.

We now derive an upper bound with respect to the total variation distance between
two Poisson mixture distributions with m-dimensional generalized gamma convolutions as
mixing distributions. The proof goes along the lines of Theorem 10.8.

Lemma 11.20. Let m ∈ N and λ = (λ1, . . . , λm) with λi ≥ 0 for i ∈ {1, . . . ,m} and
λ is not the null-vector. Let g ∈ L(ΓRm+ (α, β)) and h ∈ L(ΓRm+ (γ, δ)). Let (Λ1, . . . ,Λm)
denote a random vector distributed as an m-dimensional multivariate generalized gamma
convolution characterized by the Thorin measure G and the function g and parameter a
with non-negative components, and let (Ψ1, . . . ,Ψm) denote a random vector distributed as
an m-dimensional multivariate generalized gamma convolution characterized by the Thorin
measure H and the function h and parameter b with non-negative components. Let∫

SRm+ ,‖·‖

∫
(0,∞)

( 〈λ, v〉
t+ 〈λ, v〉

)n
Gv(dt)α(dv) ≥

∫
SRm+ ,‖·‖

∫
(0,∞)

( 〈λ, v〉
t+ 〈λ, v〉

)n
Hv(dt) γ(dv)

(11.21)
for all n ∈ N be satisfied. Further let N = (N1, . . . , Nm) and M = (M1, . . . ,Mm) be
random vectors with conditionally independent components given Λ1, . . . ,Λm and Ψ1, . . . ,Ψm,
respectively, such that

L(Ni |Λ1, . . . ,Λm)
a.s.
= L(Ni |Λi) a.s.

= Poisson(λiΛi)

and
L(Mi |Ψ1, . . . ,Ψm)

a.s.
= L(Mi |Ψi)

a.s.
= Poisson(λiΨi)

for i ∈ {1, . . . ,m}. Then the total variation distance satisfies

dTV(L(N) ,L(M)) ≤ 3

2

∣∣µ′ − ν ′∣∣+
1

2

(
µ− ν +

〈λ, |aν ′ − bµ′|〉
ν ′

)
,

where

µ =

∫
SRm+ ,‖·‖

∫
(0,∞)

κ〈λ,v〉(t)Gv(dt)α(dv)

and

ν =

∫
SRm+ ,‖·‖

∫
(0,∞)

κ〈λ,v〉(t)Hv(dt) γ(dv),

and µ′ = µ+ 〈λ, a〉 and ν ′ = ν + 〈λ, b〉, and κ〈λ,v〉 is defined as in Notation 10.7.
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Proof. As already mentioned before, this proof is similar to the proof of Theorem 10.8. A
multivariate generalized gamma convolution is infinitely divisible, cf. [51, Proposition 4.3]. A
Poisson distribution mixed over an infinitely divisible distribution is also infinitely divisible,
as can be found in [64, Theorem 4.1(v)], and can be easily generalized to the multivariate
case. Denote by Nm the set of m-dimensional natural numbers where each component
is positive. Since a Poisson distribution mixed with an infinitely divisible non-negative
random vector is a compound Poisson distribution with severity distribution in Nm (cf. [62,
Theorem 1]), we assume N

d
=
∑K

h=1Xh and M
d
=
∑L

h=1 Yh with the following assumptions:
Let {Xh}h∈N be m-dimensional sequences of i.i.d. Nm-valued random vectors independent
of K ∼ Poisson(µ′). Let further {Yh}h∈N be m-dimensional sequences of i.i.d. Nm-valued
random vectors independent of L ∼ Poisson(ν ′).

The results in [70], especially [70, Theorem 3.1], can be generalized without much effort
using the results in [73] insofar as we may consider multivariate severity distributions. The
first part of the upper bound is therefore a direct application of a generalization of Corollary
10.6 and provides

dTV(L(M) ,L(N)) ≤ min{
∣∣√µ′ −√ν ′∣∣, ∣∣µ′ − ν ′∣∣}+ min{µ′, ν ′} dTV(L(X1) ,L(Y1)) .

(11.22)

It remains to compute µ′, ν ′ and dTV(L(X1) ,L(Y1)). The Poisson parameters and the
probability-generating functions of the respective distributions can be derived along the
lines of the approach on [64, p. 90]. As we consider the multivariate case, we give the
derivation here: For completeness let us first state the probability-generating function of
the distribution of N for z ∈ [0, 1]m

GN (z) = E
[ m∏
i=1

E
[
zNii
∣∣Λi] ] = E

[ m∏
i=1

exp
(
−λiΛi(1− zi)

)]
= exp

(
−〈λ(1− z), a〉 −

∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ(1− z), v〉

t

)
Gv(dt)α(dv)

)
.

The probability-generating function of the distribution of M is similarly given. The Poisson
parameter of the compound Poisson distribution of N is given as follows:

P[N1 = 0, . . . , Nm = 0] = P[K = 0] = e−µ
′ µ′0

0!
= e−µ

′
,

hence

µ′ = − lnGN (0) = 〈λ, a〉+

∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ, v〉

t

)
Gv(dt)α(dv).

Accordingly, we obtain ν ′. Noting the Poisson distribution of the random variable K, the
probability-generating function of the distribution of N is given as follows for z ∈ [0, 1]m

GN (z) = GK(GX1(z)) = exp(−µ′(1−GX1(z))),

hence we have, using GN (z) = LΛ(λ(1− z)),

GX1(z) =
lnGN (z)

µ′
+ 1 =

ln
(

LΛ(λ)
LΛ(λ(1−z))

)
lnLΛ(λ)

.
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Thus we have for z ∈ [0, 1]m

ln

(
LΛ(λ)

LΛ(λ(1− z))

)
= ln

(
exp

(
−〈λz, a〉 −

∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ, v〉

t

)
Gv(dt)α(dv)

+

∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ(1− z), v〉

t

)
Gv(dt)α(dv)

))
.

The probability-generating function of the distribution of X1 is therefore given by

GX1(z) =
1

−µ′
(
−〈λz, a〉+

∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ(1− z), v〉

t+ 〈λ, v〉
)
Gv(dt)α(dv)

)
=

1

µ′

(
〈λz, a〉+

∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ, v〉
t+ 〈λ(1− z), v〉

)
Gv(dt)α(dv)

)
.

As [80, 1.1.2 Corollary] states, the probability mass function of X1 = (X1,1, . . . , Xm,1) is
given by

P[X1,1 = n1, . . . , Xm,1 = nm] =
1

n1! . . . nm!

∂n1+···+nmGX1(0)

∂zn1
1 . . . ∂znmm

.

Letting {n = 1} = {n1 = 1, . . . , nm = 1}, the partial derivatives are

∂n1+···+nmGX1(z)

∂zn1
1 . . . ∂znmm

=
1

µ′

(
〈λ, a〉1{n=1}

+

∫
SRm+ ,‖·‖

∫
(0,∞)

m∏
i=1

〈λ, v〉ni(ni − 1)!

(t+ 〈λ(1− z), v〉)ni Gv(dt)α(dv)

)
, (11.23)

as can be proven without much effort by induction as integration and differentiation can
be exchanged, cf. e.g. [5, 16.2 Lemma]. Thus we obtain with {X1 = n} = {X1,1 =
n1, . . . , Xm,1 = nm}

P[X1 = n] =
1

µ′

(〈λ, a〉1{n=1}

n1! . . . nm!
+

∫
SRm+ ,‖·‖

∫
(0,∞)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Gv(dt)α(dv)

)
.

The respective formula holds for P[Y1 = n], i.e.,

P[Y1 = n] =
1

ν ′

(〈λ, b〉1{n=1}

n1! . . . nm!
+

∫
SRm+ ,‖·‖

∫
(0,∞)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Hv(dt) γ(dv)

)
.

We can proceed as in Equations (10.18) and (10.19) by exploiting Equation (11.21) and
obtain∣∣P[X1 = n] − P[Y1 = n]

∣∣ ≤ 〈λ, |aν ′ − bµ′|〉
µ′ν ′n1! . . . nm!

1{n=1}

+
1

µ′ν ′

(
ν ′
(∫

SRm+ ,‖·‖

∫
(0,∞)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Gv(dt)α(dv)

−
∫
SRm+ ,‖·‖

∫
(0,∞)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Hv(dt) γ(dv)

)

+ |µ′ − ν ′|
∫
SRm+ ,‖·‖

∫
(0,∞)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Hv(dt) γ(dv)

)
(11.24)
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By application of [5, 11.5 Corollary] summation and integration may be interchanged
in the next estimate because (〈λ, v〉/(〈λ, v〉+ t))ni is non-negative for i ∈ {1, . . . ,m}. By
using Equation (11.24), for the total variation distance we obtain

dTV(L(X1) ,L(Y1)) =
1

2

∑
n∈Nm

n=(n1,...,nm)

∣∣P[X1 = n] − P[Y1 = n]
∣∣

≤ 1

2

(〈λ, |aν ′ − bµ′|〉
µ′ν ′

+
1

µ′

(∫
SRm+ ,‖·‖

∫
(0,∞)

∑
n∈Nm

n=(n1,...,nm)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Gv(dt)α(dv)

−
∫
SRm+ ,‖·‖

∫
(0,∞)

∑
n∈Nm

n=(n1,...,nm)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Hv(dt) γ(dv)

)

+

∣∣∣∣µ′ − ν ′µ′ν ′

∣∣∣∣ ∫
SRm+ ,‖·‖

∫
(0,∞)

∑
n∈Nm

n=(n1,...,nm)

m∏
i=1

1

ni

( 〈λ, v〉
t+ 〈λ, v〉

)ni
Hv(dt) γ(dv)

)
.

A comparison with the derivative in the integrals in Equation (11.23) shows that

∂n1+···+nm

∂zn1
1 . . . ∂znmm

ln
( t+ 〈λ(1− z), v〉

t+ 〈λ, v〉
)

=
m∏
i=1

〈λ, v〉ni(ni − 1)!

(t+ 〈λ(1− z), v〉)ni ,

hence we see that this series is the multivariate Taylor expansion at 0 applied to 1, and thus

T (1, 0) =
∑
n∈Nm

n=(n1,...,nm)

m∏
i=1

1

ni!

(
(1− 0)

〈λ, v〉
t+ 〈λ(1− 1), v〉

)ni
(ni − 1)! = ln

( t+ 〈λ, v〉
t

)
.

Hence we obtain

dTV(L(X1) ,L(Y1)) ≤ 1

2

(〈λ, |aν ′ − bµ′|〉
µ′ν ′

+
1

µ′

(∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ, v〉

t

)
Gv(dt)α(dv)

−
∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ, v〉

t

)
Hv(dt) γ(dv)

)
+

∣∣∣∣µ′ − ν ′µ′ν ′

∣∣∣∣ ∫
SRm+ ,‖·‖

∫
(0,∞)

ln
( t+ 〈λ, v〉

t

)
Hv(dt) γ(dv)

)
≤ 1

2

(〈λ, |aν ′ − bµ′|〉
µ′ν ′

+
µ− ν
µ′

+

∣∣∣∣µ′ − ν ′µ′

∣∣∣∣).
Since w.l.o.g. min{

∣∣√µ′ −√ν ′∣∣, ∣∣µ′ − ν ′∣∣} ≤ ∣∣µ′ − ν ′∣∣ and min{µ′, ν ′} ≤ µ′, we have by
insertion into Equation (11.22)

dTV(L(M) ,L(N)) ≤ 3

2

∣∣µ′ − ν ′∣∣+
1

2
(µ− ν) +

1

2

〈λ, |aν ′ − bµ′|〉
µ′ν ′

,

which completes the proof. q.e.d.
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We thereby obtain the following algorithm for the multivariate case:

Algorithm 11.25. Due to Corollary 11.18 an approximation of a multivariate generalized
gamma convolution is possible and Lemma 11.20 gives an error bound with respect to
the total variation distance which also provides an estimate for value-at-risk, cf. Equation
(10.1). The approximation of the Thorin measure Gv can be done as in Algorithm 10.42.
α can be approximated as in Corollary 11.18. Hence the approximation of a random sum
S =

∑m
i=1

∑Ni
h=1Xi,h by some random sum Sn(p) =

∑m
i=1

∑Ni,n(pi)
h=1 Xi,h should be clear,

where for each component i ∈ {1, . . . ,m} there are pi steps of approximation necessary and
n(p) =

∑m
i=1 n(pi). Let for simplicity ai = 0 for i ∈ {1, . . . ,m}. The random variablesNi,n(pi)

have a Poisson distribution mixed over finite gamma convolutions for each i ∈ {1, . . . ,m}.
By Corollary 11.19 we obtain an alternative representation of Sn(p), i.e.

Sn(p) =

m∑
i=1

Ni,n(pi)∑
h=1

Xi,h
d
=

m∑
i=1

n(p)∑
j=1

Q
(n(p))
j∑
h=1

B
(n(p))
i,j,h Xi,j,h,

where {Xi,h}h∈N and {Xi,j,h}j,h∈N are sequences with identical distributions for each i ∈
{1, . . . ,m}. Then the distribution of Sn(p) can be evaluated as in Algorithm 5.9; the
distribution of

∑m
i=1B

(n(p))
i,j,1 Xi,j,1 may be determined by the law of total probability. Then

we proceed along the lines of Algorithm 10.42. Let

q
n(p)
j =

∑m
d=1 λdv

n(p)
d,j

β
n(p)
j +

∑m
d=1 λdv

n(p)
d,j

for j ∈ {1, . . . , n(p)}.

Since Q
(n(p))
j ∼ NegBin

(
α
n(p)
j , q

n(p)
j

)
, by Remark 2.7 this distribution is equivalent to a

compound Poisson distribution as follows

Q
(n(p))
j

d
=

P
(n(p))
j∑
h=1

L
(n(p))
j,h ,

where

P
(n(p))
j ∼ Poisson

(
α
n(p)
j ln

(
1

1− qn(p)
j

))
and {L(n(p))

j,h }h∈N is a sequence independent of P
(n(p))
j for each j ∈ {1, . . . , n(p)}, consisting

of i.i.d. random variables such that L
(n(p))
j,1 ∼ Log

(
q
n(p)
j

)
.

Thus

Sn(p)
d
=

n(p)∑
j=1

P
(n(p))
j∑
h=1

Sj,h

holds, where Sj,h =
∑L

(n(p))
j,h

k=1

∑m
i=1Xi,j,kB

n(p)
i,j,k for h ∈ N. The distribution of Sj,1 may be

evaluated by a numerically stable Panjer recursion. Thus Sn(p) is the sum of independent
compound Poisson sums. This can be rewritten as follows for j ∈ {1, . . . , n(p)}

Tj =

P
(n(p))
j∑
h=1

Sj,h
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has a compound Poisson distribution and

Sn(p) =

n(p)∑
j=1

Tj

has a compound Poisson distribution with Sn(p)
d
=
∑R

j=1Kj where

R ∼ Poisson(γ) and L(K1)
a.s.
=

1

γ

n(p)∑
j=1

α
n(p)
j ln

(
1

1− qn(p)
j

)
L(Sj,1)

with

γ =

n(p)∑
j=1

α
n(p)
j ln

(
1

1− qn(p)
j

)
.

Hence the distribution of Sn(p) can be evaluated by a numerically stable Panjer recursion.

Remark 11.26. Using this algorithm, it is also possible to compute an approximation of
conditional expected shortfall. Using the alternative representation of an appropriate
approximation, without any further adaptations we can apply the results presented in
Sections 6.2 and 6.3.
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Chapter 12

Numerical Examples
of the Limitations
of the Fourier Transform

For illustration purposes we also give some examples that show the usefulness of our new
algorithm. As already mentioned, in our model we consider a compound Poisson mixture
distribution with the following constellation:

S =
N∑
h=1

Xh,

where {Xh}h∈N is a sequence independent of N , consisting of i.i.d. random variables. The
random variable N has a Poisson mixture distribution such that

L(N |Λ)
a.s.
= Poisson(λΛ) ,

where the distribution of Λ is a generalized gamma convolution with Thorin measure U
and parameter a. After choosing an error bound ε > 0 in Corollary 10.31, we can use this
measure U to approximate it with a discretization Vm for m ∈ N as described in Algorithm
10.42 and evaluate the approximating distribution. We compare this approach to the fast
Fourier transform (FFT). For the reader’s convenience we repeat the algorithm here as
it is described in [19]: let pn = P[S = n] and fn = P[X1 = n] for n ∈ N0 and pMn the
approximation of pn by FFT. First, note that the characteristic function of the distribution
of S can be written with respect to the characteristic function of the claim size distribution

ϕS(t) = E
[
ei tS

]
= GN (ϕX1(t)), t ∈ R,

where GN denotes the probability-generating function of the distribution of N . Then choose
a truncation point M ∈ N. The discrete Fourier transform f̂ = (f̂0, . . . , f̂M−1) is defined by

f̂j =
M−1∑
k=0

fk ei 2πjk/M , j ∈ {0, . . . ,M − 1}.

Then compute the inverse discrete Fourier transform of p̂M = GN (f̂)j∈{0,...,M−1} by

pMj =
1

M

M−1∑
k=0

p̂Mk e− i 2πjk/M , j ∈ {0, . . . ,M − 1}.
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The computational effort required by FFT is far lower than for our algorithm, but the
quality of the result might be critical due to aliasing errors, which seem to be tremendous
in some cases. Especially heavy-tailed distributions require a truncation point M that is
much higher than the numbers of the first n atoms. A substantial improvement is FFT with
a change of measure, the exponential tilting, cf. [26] and [19]. Therefore, for some θ > 0
consider the following tilting operator

Eθf = (e−θj fj)j∈{0,...,M−1}.

Then FFT with exponential tilting requires the tilting of the sequence f 7→ Eθf ; compute
first the discrete Fourier transform of Eθf and then the inverse discrete Fourier transform
of GN (Êθf). Finally untilt by applying E−θ.

However, in both cases the probability-generating function of the distribution of N has
to be evaluated. This means

GN (z) = E
[
zN
]

= E
[
e−λΛ(1−z)] = LΛ(λ(1− z)), z ∈ [0, 1],

which is the Laplace transform of a generalized gamma convolution, cf. Equation (9.11).
Hence in each step an integral has to be evaluated.

Grübel and Hermesmeier [26, Equation (2.12)] give an a posteriori error estimate for the
fast Fourier transform with truncation point M : if the second moment of the distribution of
the claim number N is finite, then

M−1∑
n=0

∣∣pMn − pn∣∣ =
∞∑

n=M

pn − E[N ]
∞∑

n=M

fn +O

(( ∞∑
n=M

fn

)2)
(12.1)

holds.
As [19] points out, FFT is usually faster than Panjer’s recursion (for n ≥ 256). As is

commonly known (cf. [19]), FFT usually needs just O(n log n) operations while Panjer’s
recursion requires O(n2) operations. Since we have to do this m+ 1 times (depending on the
accuracy) in order to obtain the probability-generating function of the linear combination of
the actual probability-generating function, cf. Equation (10.43), we end with O((m+ 1)n2)
operations. The estimation of an appropriate Vm takes O(m2) operations. Hence, the
complexity is O(n3).

In what follows, we consider two cases that provide interesting results.

12.1 A Comparison with the Exact Result

We consider the τ -tempered α-stable distribution as in Example 9.20. The exact evaluation
of such a compound Poisson mixture distribution can be found in [21, Algorithm 5.12]. We
compare this result to results obtained by fast Fourier transform, fast Fourier transform
with exponential tilting, and our algorithm. Exemplary computations show that both FFT
and FFT with exponential tilting can produce significant errors whereas the error that arises
from our algorithm can be controlled in any case.

12.1.1 Fast Fourier Transform

The class of τ -tempered α-stable distributions covers a rich class of distribution families.
One well-known distribution class is the Lévy distribution where α = 1/2 and τ = 0. For
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Figure 12.1: Approximations of Poisson(5Λ0,0) ∨ Poisson(5) with upper error bound ε = 0.1
for Panjer approximation in Algorithm 10.42. FFT Tilted and Panjer exact almost coincide,
cf. Table 12.1.

Difference exact value and approximating Panjer recursion 0.0320578

Difference exact value and FFT 0.29829869350

Difference exact value and FFT with exponential tilting 0.00000000369

Table 12.1: Absolute differences between the probabilities w.r.t. the Lévy distribution.

further information on the Lévy distribution cf. Example 9.22. This distribution is especially
interesting because a random variable X ∼ S1/2(σ, 1, 0) does not have an expected value (it
is not finite) and the second moments are infinite (cf. [55, Property 1.2.16]), too. Hence the
error estimate (12.1) for FFT is not applicable. Yet, our algorithm still provides an error
estimate. For an example of this distribution family we choose σ = 3, M = 512, λ = 5 and
X1 ∼ Poisson(5). The upper bound of the error is chosen as ε = 0.1 and the number of
steps of the approximation results in n = 8193. The tilting parameter is set to θ = 20/M
as [19] suggests. The result for j ∈ {0, . . . , 511} is shown in Figure 12.1. Obviously, FFT
does not perform very well, in contrast to FFT with exponential tilting and our algorithm.
The absolute differences for the computed values are depicted in Table 12.1. Although the
distribution of X1 is very light-tailed, FFT does not perform well. This is in contrast to
[19] that says that the wrap-around error might be an issue for considerable tail mass. If
the distribution of X1 is changed to have heavier tails, then the quality of the performance
of FFT is even worse. The reason for this misbehaviour might be the fact that the Lévy
distribution does not have a mean, i.e., the tail mass might be considerable.
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Figure 12.2: Approximations of Poisson(5Λτ,0) ∨ Poisson(50) with error bound ε = 0.01 for
Panjer approximation in Algorithm 10.42. Panjer, Panjer exact, and FFT almost coincide,
cf. Table 12.3.

12.1.2 Fast Fourier Transform with Exponential Tilting

As has already been pointed out in [19], heavy-tailed severity distributions can become a
considerable issue for the fast Fourier transform as Equation (12.1) shows. Grübel and
Hermesmeier [26] suggest applying the fast Fourier transform with exponential tilting in
this case. Experiments have shown however that even then there are cases in which the
fast Fourier transform with exponential tilting becomes quite unstable. The parameters are
chosen as follows. The τ -tempered α-stable distribution Λτ,0 ∼ Fα,σ,τ,0 is determined by the
parameters α = 0.8, σ = 1.2, and τ = 10 000 000. The Poisson parameter of the random
variable N is λ = 5, and for the severity distribution we choose X1 ∼ Poisson(50). The
truncation point is M = 512 and the tilting parameter θ = 20/M . The upper bound of the
error is ε = 0.01 and this requires an approximation of the measure in Equation (9.21) with
n = 2 steps.

The approximation then reads

U2 = 6729.66δ1.00945∗107 + 1.08712 · 1017δ9.22336∗1017

Since this is a very light-tailed distribution (more than 55% of the total mass of the
distribution are on the event of no default), Figure 12.2 depicts only the atoms j ∈
{1, . . . , 511}. We have E[N ] ≈ 29.8121 which supports the correctness of the result because
the mass should then be concentrated around j = 30.

The respective probabilities of no default are shown in Table 12.2. The absolute
differences between the three approximations and the exact result are given in Table 12.3.
It is striking that the fast Fourier transform with exponential tilting becomes quite unstable
for large j. Due to the negative values this is even not a probability mass function. Tests,
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Exact value 0.550878

Approximation by Panjer’s Recursion 0.552853

FFT 0.550878

FFT with exponential tilting 0.550878

Table 12.2: Probabilities of the event of no default of an extreme distribution of Λτ,0 with
τ = 10 000 000.

Difference exact value and approximating Panjer recursion 0.00395013

Difference exact value and FFT 0.00000000906361

Difference exact value and FFT with exponential tilting 0.404005

Table 12.3: Absolute differences between the probabilities w.r.t. an extreme distribution of
Λτ,0 with τ = 10 000 000.

where the random variable Λτ,0 is replaced by its expected value, suggest that this instability
originates from the stochastic parameter of the Poisson distribution.

The fast Fourier transform with exponential tilting seems to be subject to some numerical
instability. It was quite easy to find other examples, where the result was not a probability
mass function either.

Finding the source of instability is rather tedious work. The probability-generating
function of the distribution of N can be evaluated analytically, which excludes errors from
numerical integration. An analysis of the discrete Fourier transform, where fk = P[X1 = k]
for k ∈ N0, reveals the following for each j ∈ {0, . . . ,M − 1}

f̂j =
M−1∑
k=0

fk ei 2πjk/M

and

f̂M−j =

M−1∑
k=0

fk ei 2π(M−j)k/M =

M−1∑
k=0

fk ei 2πk e− i 2πjk/M

=
M−1∑
k=0

fk e− i 2πjk/M .

Thus we conclude for j ∈ {1, . . . ,M − 1}

Re(f̂j) = Re(f̂M−j) and Im(f̂j) = − Im(f̂M−j). (12.2)

The application of the probability-generating function of the distribution of N preserves
these relations and for j ∈ {1, . . . ,M − 1} we obtain

Re(GN (f̂j)) = Re(GN (f̂M−j)) and Im(GN (f̂j)) = − Im(GN (f̂M−j)). (12.3)
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The analysis of a single probability that is obtained by the inverse Fourier transform shows
that the summands of it satisfy for j ∈ {1, . . . ,M − 1} and k ∈ {0, . . . ,M − 1}

Re(GN (f̂k) e− i 2πjk/M ) = Re(GN (f̂M−k) e− i 2πjk/M ) and

Im(GN (f̂k) e− i 2πjk/M ) = − Im(GN (f̂M−k) e− i 2πjk/M ). (12.4)

Conducting the fast Fourier transform with exponential tilting and analyzing the single
steps for these relations shows that Equation (12.2) still holds. An analysis of Equation
(12.3) reveals that the problem should be found in the probability-generating function of
the Poisson mixture distribution. The probability-generating function is

GN (z) = E
[
zN
]

= E
[
E
[
zN |Λ

] ]
= E

[
e−λΛ(1−z)]

= exp(−γα,σ((λ(1− z) + τ)α − τα)).

For very large τ this difference becomes unstable, as the difference operation is generally
an unstable operation in numerical mathematics. There are several approaches to avoid
the computation of such a difference. A comparison with the exact result shows that using
numerical integration and setting the working precision up to 30 digits provides much better
results. A more elegant solution is the use of the binomial series

(λ+ τ)α − τα = τα
((λ+ τ

τ

)α
− 1
)

= τα
((

1 +
λ

τ

)α
− 1
)

= τα
∞∑
k=1

(
α

k

)(λ
τ

)k
.

If τ is large enough, then this series converges quite quickly. Equation (12.3) still holds,
but a comparison of these two approaches of computing the probability-generating function
illustrates that the respective equations differ by an order of up to 10−4. Accordingly,
the respective Equations (12.4) no longer agree either. This is an error that might also
happen with fast Fourier transform, but using fast Fourier transform with exponential
tilting requires multiplying by eθj for j ∈ {0, . . . ,M − 1}. In the worst case we multiply by
e20 ≈ 4.85 ·108. This could be the reason for instability. The improvement of the calculations
due to the newly set working precision can be found in Figure 12.3. The difference between
the exact values and the value obtained by FFT with exponential tilting then adds up to
only 3.40782 · 10−8. However, it is important to note that this approach does not work
in case τ = 0. This holds especially for the Lévy distribution. But this should not be a
problem since we do not have this sort of instability in this case.

12.2 A Comparison without Exact Result

As another meaningful example we take the Pareto distribution as a mixing distribution.
The Pareto distribution could be an interesting alternative as a default cause intensity to
the gamma distribution, which is quite often used as a default cause intensity. The reason
why it might be a natural extension is that it is an exponential transformation of a gamma
distribution, cf. [49, p. 98]. Therefore, for a portfolio with a large number of components,
the sum of the single default probabilities might became very large. This might make it
necessary to switch from a rather light-tailed distribution as the gamma distribution to
a more heavy-tailed distribution. For further information on the Pareto distribution cf.
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12.2. A Comparison without Exact Result

Figure 12.3: Approximations of Poisson(5Λτ,0) ∨ Poisson(50) with error bound ε = 0.01 for
Panjer approximation in Algorithm 10.42 and higher precision. Now all algorithms coincide.

Example 9.23. The expected value of Λ does not exist for h ∈ (0, 1) and the variance does
not exist for h ∈ (0, 2) (cf. [37, p. 577]). Hence the error estimate in Equation (12.1) does
not apply in this case.

We give two examples where either FFT or FFT with exponential tilting do not seem
to work properly, but our algorithm does. Although there is always one FFT that works,
determining which one works is tedious. Our algorithm is independent of that.

12.2.1 Fast Fourier Transform

Let the sequence of i.i.d. random variables {Xh}h∈N have a distribution such that X1 ∼
Poisson(25). This is a rather light-tailed distribution. Let λ = 20 and Λ ∼ Pareto(0.6, 1.4).
We choose the accuracy of the approximation to be ε = 0.01. The approximation of U by
{Vn}n∈N results in n = 513 steps. Since U admits a density (cf. [67, Equation (3.19)]), we
do not need to deal with points of discontinuity. We compute the probabilities of the first
M = 512 atoms and choose the tilting parameter θ = 20/M as [19] suggests. The results
for j ∈ {1, . . . , 511} are depicted in Figure 12.4, the values of the probability of no default
are shown in Table 12.4. The differences between the approximation via Panjer’s recursion
and the fast Fourier transforms can be seen in Table 12.5. As the difference between the
approximation via Panjer’s recursion and FFT is much bigger than the chosen error bound of
ε = 0.01, we should suppose that FFT provides a very critical result and needs a truncation
point that is much higher than the number of computed probabilities.

This is a rather surprising result because the fast Fourier transform should work well
with light tailed severities as can be concluded from Equation (12.1). Both FFT and FFT
with exponential tilting show slightly complex valued numbers.
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Chapter 12. Numerical Examples of the Limitations of the Fourier Transform

Figure 12.4: Approximations of Poisson(20Λ)∨Poisson(25) where Λ ∼ Pareto(0.6, 1.4) with
error bound ε = 0.01 for Panjer approximation in Algorithm 10.42. Panjer and FFT Tilted
almost coincide, cf. Table 12.5.

Approximation by Panjer’s Recursion 0.0991706

FFT 0.0989961

FFT with exponential tilting 0.0982446

Table 12.4: Probabilities of the event of no default w.r.t. the Pareto(0.6, 1.4) distribution.

12.2.2 Fast Fourier Transform with Exponential Tilting

Let now the sequence of i.i.d. random variables {Xh}h∈N have a distribution such that
X1 ∼ Poisson(30). This is also a rather light-tailed distribution. Let λ = 20 and Λ ∼
Pareto(0.5, 2.5). We again choose the accuracy of the approximation of the Thorin measure
U to be ε = 0.01. The approximation of U by Vn results in n = 257 steps and the
approximating points are chosen according to Equation (10.41). We have β1 = 0.120384 and
β257 = 24.5486, so the approximation takes place on a small interval only. The approximating
sequence can be seen in Figure 12.5 together with the sequence of the difference U − Vn.

Again, we approximate the distribution by our algorithm using Panjer’s recursion, FFT
and FFT with exponential tilting. The results can be found in Figure 12.6 for j ∈ {1, . . . , 511}.
The values for j = 0 are presented in Table 12.6. It is quite clear that the graph of the
probability mass function of the distribution computed by a fast Fourier transform with
exponential tilting does not depict a probability mass function. The cumulated absolute
differences between the results are given in Table 12.7. This example demonstrates that the
FFT with exponential tilting is very sensitive. Analyzing the internal values of the FFT with
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12.2. A Comparison without Exact Result

Difference Panjer’s Recursion and FFT 0.247445

Difference Panjer’s Recursion and FFT with exponential tilting 0.003546

Table 12.5: Absolute differences between the probabilities w.r.t. the Pareto(0.6, 1.4) distribu-
tion.

Figure 12.5: Approximations of the Thorin measure U of Λ ∼ Pareto(0.5, 2.5).

exponential tilting shows that the evaluation of the transformed probability mass function
of the claim sizes applied to the probability-generating function of the distribution of N is
critical. The computations shown in Figure 12.6 have been done with a default working
precision, which seems inadequate. The default working precision is machine precision that
yields 16 significant digits (cf. [16, p. 276]). Setting the working precision to 17 significant
digits yields a significant improvement, which can be seen in Figure 12.7. The cumulated
absolute differences can be found in Table 12.8.

These examples have shown several advantages of our new algorithm; we are not depen-
dent on the existence of moments and therefore have an error estimate of our approximation
in each case. Moreover, our algorithm is numerically much more stable that fast Fourier
transforms. We also only need to evaluate integrals once. This is especially useful if one
changes the distribution of the claim sizes because in this case, the FFT has to evaluate
the integrals once again. We also saw that FFT with exponential tilting is very sensitive in
terms of this integration.
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Figure 12.6: Approximations of Poisson(20Λ)∨Poisson(30) where Λ ∼ Pareto(0.5, 2.5) with
error bound ε = 0.01 for Panjer approximation in Algorithm 10.42. For small n Panjer and
FFT Tilted are quite close, for larger n Panjer and FFT are closer. Altogether, both FFT
and FFT Tilted are critical approximations for this distribution, cf. Table 12.7.

Approximation by Panjer’s Recursion 0.190276

FFT 0.188799

FFT with exponential tilting 0.188452

Table 12.6: Probabilities of the event of no default w.r.t. the Pareto(0.5, 2.5) distribution.

Difference Panjer’s Recursion and FFT 0.0871913

Difference Panjer’s Recursion and FFT with exponential tilting 0.127476

Table 12.7: Absolute differences between the probabilities w.r.t. the Pareto(0.5, 2.5) distribu-
tion.

Difference Panjer’s Recursion and FFT 0.0871913

Difference Panjer’s Recursion and FFT with exponential tilting 0.0045705

Table 12.8: Absolute differences between the probabilities w.r.t. the Pareto(0.5, 2.5) distribu-
tion with higher working precision.
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Figure 12.7: Approximations of Poisson(20Λ)∨Poisson(30) where Λ ∼ Pareto(0.5, 2.5) with
error bound ε = 0.01 for Panjer approximation in Algorithm 10.42 and higher working
precision. Now Panjer and FFT Tilted almost coincide, cf. Table 12.8.
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Glossary

Ber(p) Bernoulli distribution with 0 ≤ p ≤ 1
Beta(α, β) beta distribution with α, β > 0
Beta′(α, β) beta distribution of the second kind with

α, β > 0
CLog(q, F ) compound logarithmic distribution with pa-

rameter q ∈ (0, 1) and distribution F , cf. also
Definition 2.2

CNegBin(α, p, F ) compound negative binomial distribution with
parameters α ≥ 0 and p ∈ [0, 1) and distribu-
tion F , cf. also Definition 2.2

CPoi(µ, F ) compound Poisson distribution with Poisson
parameter µ ≥ 0 and distribution F , cf. also
Definition 2.2

dTV(F,G) total variation distance between the distribu-
tions F and G

ExtNegBin(α, k, p) extended negative binomial distribution, cf.
also Definition 4.14

Gamma(α, β) gamma distribution with parameters α, β >
0, a probability density is fα,β(x) =
αβ

Γ(α)x
α−1 e−βx for x > 0

LX(t) Laplace transform of the distribution of a ran-
dom variable X

L(X) law of a random variable X
Log(q) logarithmic distribution with q ∈ (0, 1), and its

probability mass function is given by f(k) =
−1

ln(1−p)
pk

k for k ∈ N
MX(t) moment generating function of the distribution

of a random variable X
MultHyperGeom(n, k1, . . . , km) multivariate hypergeometric distribution with

parameters n ∈ N and k1, . . . , km ∈ N0, cf.
also [39, Equation (39.1)]

MultLog(p1, . . . , pm) multivariate logarithmic distribution, cf. also
Definition 2.13

Multinomial(n; p1, . . . , pm) multinomial distribution with n ∈ N and 0 ≤
p1, . . . , pm ≤ 1

N0 natural numbers with zero, i.e., N0 =
{0, 1, 2, 3, . . . }
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Glossary

N natural numbers, i.e., N = {1, 2, 3, . . . }
NegBin(α, p) negative binomial distribution with parame-

ters α > 0 and 0 ≤ p < 1, cf. also Definition
2.6

NegMult(α, p1, . . . , pm) negative multinomial distribution with param-
eters α > 0 and 0 ≤ p1, . . . , pm < 1, cf. also
Definition 2.6

Pareto(g, h) Pareto distribution with g, h > 0 with cumu-
lative distribution function F (x) = 1 − (1 +
(x/g))−h for x ≥ 0

GX(z) probability-generating function of the distri-
bution of a random variable X

ϕX(t) characteristic function of the distribution of a
random variable X

Poisson(λ) Poisson distribution with mean λ ≥ 0

R real numbers with infinite values, i.e., R =
R ∪ {−∞,∞}

R+ non-negative real numbers, i.e., R+ = [0,∞)
Sα(σ, β, µ) stable distribution with α ∈ (0, 2], σ > 0,

β ∈ [−1, 1] and µ ∈ R, cf. also Section 3.2.1
Fα,σ,τ,m generalized stable distribution with α ∈ (0, 1),

σ > 0, τ ≥ 0, and m ∈ N0, cf. also Section
3.2.1; m = 0 implies a τ -tempered α-stable
distribution

U(dt) Thorin measure U , cf. also Definition 9.10
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