
Depth Data Analysis for
Fall Detection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Christopher Pramerdorfer
Matrikelnummer 0626747

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: PD. Dr. Martin Kampel

Wien, 29.08.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Depth Data Analysis for
Fall Detection

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Christopher Pramerdorfer
Registration Number 0626747

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: PD. Dr. Martin Kampel

Vienna, 29.08.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Christopher Pramerdorfer
Nußdorfer Straße 78, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgments

I would like to thank my supervisor, Martin Kampel, for his support. Thanks are also
due to Rainer Planinc, who kindly provided his fall database for evaluation purposes,
and the members of the FEARLESS1 project for the opportunity to test the proposed
fall detection system in practice.

This work is dedicated to my mother, Christine, for her love and support.

1http://fearless-project.eu (last accessed on 20.08.2013)

ii

http://www.fearless-project.eu/

Abstract

Falls are a leading cause for accidental deaths among persons aged 65 or older. Fall
victims require immediate assistance in order to minimize morbidity and mortality rates.
However, statistically every other fall victim is unable to get back up without help. The
aim of fall detection is to ensure fast assistance by automatically informing caretakers in
case of falls. Different methods have been proposed for this purpose, but there are still
unresolved issues that limit the applicability of fall detection systems in practice.

This thesis introduces a new fall detection system using current depth-sensing tech-
nology, with the aim of addressing these limitations. This sensor technology has several
advantages over alternatives; it is unobtrusive, preserves the privacy of subjects, and
works independently of lighting conditions, allowing for continuous monitoring. The
generated data enables powerful scene analysis and, consequently, reliable fall detection.
The applicability of this technology is verified by means of a quantitative analysis, in
order to assess its limitations and data quality. In contrast to existing methods, the
proposed system emphasizes person detection and tracking, which allows for robust tem-
poral analysis and thus improves fall detection performance. To this end, this work also
proposes a new motion detection algorithm optimized for depth data and fall detection.
It is shown that this algorithm performs better than the state of the art on this type of
data. Furthermore, this work contributes to the research field of tracking by introducing
effective means for tracking multiple persons. The proposed system is easy to set up, plug
and play, and can run on inexpensive low-end hardware, promoting broad acceptance.

This work shows that reliable fall detection in depth data is possible, as verified on a
comprehensive fall database. At the time of writing, the system is tested under practical
conditions in four countries, with promising first results.

iii

Kurzfassung

Stürze sind ein Hauptgrund für unfallbedingte Todesfälle in der Gruppe der Personen
über 64. Im Falle eines Sturzes ist sofortige Hilfe notwendig, um die Morbiditäts- und
Sterblichkeitsrate zu minimieren. Statistiken zeigen jedoch, dass jedes zweite Sturzopfer
nicht in der Lage ist, ohne Hilfe wieder aufzustehen. Das Ziel der Sturzerkennung ist es,
schnelle Hilfe zu garantieren, indem diese im Falle eines Sturzes automatisch angefordert
wird. Sturzerkennung ist ein aktives Forschungsfeld; Limitationen aktueller Methoden
schränken die Anwendbarkeit in der Praxis jedoch noch ein.

In dieser Diplomarbeit wird ein neues System zur Sturzerkennung vorgestellt, das
versucht, diese Einschränkungen zu lösen. Dazu wird auf aktuelle Sensortechnologie
zurückgegriffen, die Tiefendaten liefert. Diese hat mehrere Vorteile gegenüber Alternativen,
insbesondere ist sie unauffällig, bewahrt die Privatsphäre und funktioniert unabhängig
von Lichtverhältnissen, wodurch eine kontinuierliche Überwachung ermöglicht wird.
Tiefendaten sind aussagekräftig und erlauben dadurch eine zuverlässige Sturzerkennung.
Dieser Sachverhalt wird mittels einer quantitativen Analyse verifiziert, im Zuge derer
auch die Einschränkungen der Technologie sowie die Qualität der generierten Daten
bewertet wird. Das vorgestellte Sturzerkennungssystem legt einen Fokus auf effektive
Algorithmen zur Erkennung und Verfolgung von Personen, da die dadurch ermöglichte
temporäre Analyse die Leistungsfähigkeit der Sturzerkennung steigert. Zu diesem Zweck
wurde ein neuer Algorithmus zur Bewegungserkennung in Tiefendaten entwickelt, der
insbesondere hinsichtlich Sturzerkennung leistungsfähiger als aktuelle Algorithmen ist.
Weiters stellt diese Diplomarbeit einen effizienten Ansatz zur Erkennung und Verfolgung
mehrerer Personen in Tiefendaten vor. Das entwickelte Sturzerkennungssystem ist einfach
zu installieren, muss nicht konfiguriert werden, und ist auf kostengünstiger Hardware
lauffähig, was die Akzeptanz in der Praxis fördert.

Diese Diplomarbeit zeigt, dass Tiefendaten eine zuverlässige Sturzerkennung ermögli-
chen. Dies wird mittels einer umfangreichen Sturzdatenbank überprüft. Zum Zeitpunkt
des Verfassens dieses Berichtes wird das vorgestellte System in vier Ländern in der Praxis
evaluiert, vorläufige Resultate sind vielversprechend.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Literature . 3

1.2.1 Active Methods . 3
1.2.2 Passive Methods . 3
1.2.3 Kinect-Based Methods . 4

1.3 Aim and Contributions . 7
1.4 Structure . 8

2 Sensor Analysis 9
2.1 Resolution . 9

2.1.1 Depth Resolution . 9
2.1.2 Spatial Resolution . 11

2.2 Precision . 12
2.2.1 Precision . 13
2.2.2 Measurement Deviations . 14
2.2.3 Error Model . 15

2.3 Reproducibility . 16
2.3.1 Clothing Materials . 17
2.3.2 Lighting Conditions . 17
2.3.3 Multiple Sensors . 20

2.4 Accuracy . 21
2.5 Conclusions . 21

3 Motion Detection 23
3.1 Related Literature . 23
3.2 Motion Detection in Depth Data . 25
3.3 The DMD Motion Detector . 25

3.3.1 Classification . 26
3.3.2 Model Initialization . 27
3.3.3 Model Adaption . 27

3.4 Results and Discussion . 29
3.4.1 Fall Detection . 30

v

3.4.2 Ghost Removal . 31
3.4.3 Speed . 32

4 Person Detection and Tracking 34
4.1 Related Literature . 34
4.2 Sensor-World Geometry . 36

4.2.1 Sensor Model . 36
4.2.2 World Coordinates . 37

4.3 Sensor Calibration . 38
4.3.1 Floor Detection . 38
4.3.2 Sensor Calibration . 39
4.3.3 Parameter Smoothing . 40
4.3.4 Results and Discussion . 40

4.4 Person Detection . 41
4.4.1 Computation of Plan-View Maps 41
4.4.2 Detection of Candidate Regions . 43
4.4.3 Feature Selection . 43
4.4.4 Classification . 45
4.4.5 Results and Discussion . 46

4.5 Tracking . 47
4.5.1 Association Costs . 47
4.5.2 Association of Tracks and Regions 48
4.5.3 Tracking-Based Classification . 49
4.5.4 Results and Discussion . 49

5 Fall Detection 52
5.1 State Detection . 52

5.1.1 Discrimination Between Active and Inactive Persons 53
5.1.2 Discrimination Between Fallen and Resting Persons 54

5.2 Fall Detection . 55
5.2.1 Detection of Falls . 56
5.2.2 Detection of Likely Falls . 58

5.3 View Frustum Analysis . 59
5.4 Event Handling . 61
5.5 Results and Discussion . 62

5.5.1 Detection of Visible Falls . 62
5.5.2 Detection of Invisible Falls Due to Sunlight 63
5.5.3 Detection of Occluded Falls . 64
5.5.4 Performance in Practice . 65
5.5.5 Speed . 65

6 Conclusions 66

Bibliography 68

vi

CHAPTER 1
Introduction

Falls are a major public health problem. Between 30% and 60% of US citizens of age 65
or older suffer from falls each year, and 10% to 20% of these falls result in serious injury,
hospitalization, or death [78]. Falls are the leading cause for accidental death in this age
group and among the leading causes of death in general [70]. Moreover, they are major
contributors to immobility and premature nursing home placement and thus threaten
the independence of elderly persons [91, 78]. Furthermore, falls can have significant
psychological consequences. In fact, the fear of falling is a prevalent concern among fall
victims and often leads to activity restriction, social withdrawal, and loss of independence
[5, 26, 78]. These conditions decrease the quality of life and can have a negative effect on
health, which may further increase the risk of falls [26, 78].

1.1 Motivation
Statistically, every other fall victim is unable to get back up without help [70]. However,
immediate help and treatment of injuries is vital for minimizing morbidity and mortality
rates [67, 64]. Fall victims that have to remain on the floor for prolonged periods of time
face the risk of potentially life-threatening diseases such as dehydration, hypothermia,
and pneumonia [70]. In a study conducted by Wild et al. [95] half of the fall victims that
remained on the floor for one hour or longer died within six months thereafter. Falls are,
therefore, particularly dangerous for older persons that live alone and thus cannot rely
on quick help in case of a fall, especially if too injured to call. In consequence, means are
required for ensuring help under these circumstances. Permanent personal assistance is
not feasible in terms of required manpower and health care costs. Panic buttons are a
proven method of enabling persons to call for help easily [62]. However, their applicability
with respect to falls is limited because they require user intervention, which may not be
possible due to unconsciousness, for example [69].

To this end, there has been active research in the field of fall detection, with the
aim to develop technology that is able to detect fall incidents and inform caretakers

1

(e.g. family members or ambulance personnel) [64]. Such technology can help decrease
morbidity and mortality rates among fall victims that live alone, raise their confidence
in living independently, and consequently allow them to stay at home, which is what
elderlies generally prefer [25]. Furthermore, fall detection has the potential to help cope
with increasing health care costs [25, 64, 49]. This is of particular interest considering the
ongoing demographic change; the percentage of older persons continues to increase and
is expected to reach almost 30% in Western Europe in 2050, as illustrated in Figure 1.1.

1950 2000 2050
0

5

10

15

20

25

30

year

p
e

rc
e

n
ta

g
e

 o
f

o
ld

e
r

p
e

rs
o

n
s

≥ 65 (MDC)

≥ 70 (MDC)

≥ 75 (MDC)

≥ 65 (Western Europe)

≥ 70 (Western Europe)

≥ 75 (Western Europe)

Figure 1.1: Estimated percentages of persons of ages {65, 70, 75} or older, according to
[93]. MDC includes Europe, Northern America, Australia, New Zealand, and Japan.

Consequently, research in this area (and the broader field of smart homes and ambient
assisted living [25]) has been supported by governments and international organizations.
At the time of writing, there are several research projects funded by the European Union.1
For example, the FARSEEING2 project aims to create a comprehensive fall repository,
which allows for proper evaluation of fall detection systems. The goal of the FATE3

project is to develop a reliable fall detection system using worn sensors, whereas the
FEARLESS4 project aims to accomplish this goal with vision-based sensors.

Fall detection systems must be reliable, that is they must exhibit a high sensitivity
(percentage of falls correctly detected as such) and specificity (percentage of detected falls
that actually happened). Moreover, they must be unobtrusive and respect the privacy of
subjects in order to achieve broad acceptance [57]. To this end, such systems also have to
be practicable, namely they must be inexpensive to acquire and maintain as well as easy
to install and operate. However, the following literature review highlights that many
existing fall detection methods and systems fall short in this regard.

1http://ec.europa.eu/digital-agenda/en/ict-and-fall-prevention-elderly (last accessed on 20.08.2013)
2http://farseeingresearch.eu (last accessed on 20.08.2013)
3http://project-fate.eu (last accessed on 20.08.2013)
4http://fearless-project.eu (last accessed on 20.08.2013)

2

http://ec.europa.eu/digital-agenda/en/ict-and-fall-prevention-elderly
http://farseeingresearch.eu
http://project-fate.eu/
http://www.fearless-project.eu/

1.2 Related Literature
Preliminary studies on fall detection were based on wearable accelerometers, with the
aim of detecting falls by means of body acceleration [66]. Since then different approaches
to fall detection have been proposed, which are here categorized in active and passive
methods. The former are based on input from sensors that are worn or attached to
the subject by other means, whereas the latter utilize sensors that are located in the
environment of the subject. This review focuses on fall detection using depth data as
current surveys on other approaches are available [64, 66, 100].

1.2.1 Active Methods

Methods based on wearable sensors are called active because they require the subject
to actively participate by wearing sensors. Research in this area has been active for
more than twenty years [57], with most methods relying on data from accelerometers or
orientation sensors [66]. Bourke [14] and Bagalà [9] recently compared several approaches,
the best achieved a sensitivity of 83% and a specificity of 97% under real-world conditions.

Active methods are cost-effective and easy to use [64]. Their main limitation is that
they are intrusive because they require subjects to wear sensors, which is often opposed
[100]. Even if subjects are willing to cooperate, the danger of forgetting to wear the
sensors remains. Measures have been proposed to reduce these limitations, for example by
embedding sensors into garments [65] or by utilizing mobile phone sensors [23]. However,
the limitations cannot be precluded, rendering active methods unfavorable [64].

1.2.2 Passive Methods

Passive fall detection employs sensors that are located in the environment of the subject,
hence user intervention is not required. Several methods of this kind are based on
vibration sensors placed on the floor [1], microphones [55], or both [56]. A limiting factor
of the former approach is that the performance depends on the floor type [55]. Recent
advances in audio-based fall detection are promising, but performance is still affected by
noise and other sound sources [54]. Another approach is to use pressure mats which are
comparatively inexpensive but lack in terms of specificity [64, 100].

Other passive methods aim to detect falls by means of cameras and computer vision.
A popular approach is to use background subtraction for person detection and to detect
falls via features derived from person regions, such as size, orientation, or shape [75, 77].
Supervised learning is frequently used for classification purposes [3, 77]. Some methods
assume that persons remain unmoving for several seconds after a fall [75, 77], which
is arguably too restrictive in practice. Another approach is to detect lying persons as
opposed to fall incidents [94]. More information on image-based fall detection is available
in the survey of Mubashir et al. [64].

Camera images convey limited information in terms of scene geometry. In fact,
Rougier et al. [76] argue that person detection and tracking in images is insufficient for
reliable fall detection. Several methods have been proposed that aim to overcome this

3

limitation by operating in world coordinates, which allow for more distinctive and robust
(view-independent) features. For example, the authors of [76] track the subject’s head in
3D space by means of pose estimation and detect falls using velocity information. Another
approach is to estimate world coordinates of objects via feature matching from multiple
cameras (e.g. stereo matching [68, 40] or silhouette matching [4, 22]). Nevertheless,
disadvantages inherent to the sensor technology limit the applicability of camera-based
fall detection. These disadvantages mainly stem from the fact that images encode lighting
conditions as opposed to scene geometry, hence scene changes are not necessarily reflected
in the data and vice versa. Furthermore, cameras do not work in darkness, hence
unobtrusive fall detection during nighttime is not possible. Feature matching techniques
are comparatively limited in terms of resolution and accuracy. Moreover, their setup is
complex because several cameras must be calibrated.

Time of flight sensors, which measure distances instead of lighting conditions (or
both) do not have these limitations. This sensor type has the advantage of being active
and thus works independently of lighting conditions, even during nighttime. Distance
estimation is part of the sensor firmware, reducing computational requirements. Time of
flight sensors are thus advantageous for fall detection and have been successfully used for
this purpose [43, 27]. However, they are still too expensive for widespread use.5

1.2.3 Kinect-Based Methods

In late 2010 a depth sensor called Kinect was released by Microsoft. This sensor has the
aforementioned advantages of time of flight sensors and estimates distances with a higher
resolution and accuracy [82]. Moreover, it is inexpensive, costing less than 200 euros. Its
depth-sensing technology was developed by PrimeSense [31] and is also used in other
products such as the Asus Xtion Pro Live, which is shown in Figure 1.2.

Figure 1.2: The Asus Xtion Pro Live sensor.

Kinect sensors project an infrared pattern into the scene, which is recorded using a
conventional camera. In every recorded image, this pattern is detected and matched with
the projection. The obtained correspondences are used to compute disparities, similar
to stereo matching. Details regarding the geometrical model of the sensor and how this
estimation works can be found in [31, 82, 47]. Kinects produce disparity maps with
resolutions of up to 640 by 480 pixels at up to 30 frames per second. The mapping from
disparity maps to depth maps (i.e. from disparities to distances) is explained in [82, 47].

5The sensors used in [43, 27] cost more than 2000 euros, although cheaper sensors exist.

4

An alternative is to use middleware for this purpose, such as OpenNI6 or KinectSDK7.
Pixels for which disparity estimation failed are flagged accordingly by the sensor. Such
pixels are called zero-pixels in this text.

Several methods for detecting falls using the Kinect sensor have been proposed, Table
1.1 contains a selection. All of those utilize background subtraction for person detection
and, with the exception of [28, 60], height-based features for fall detection. Such features
are naturally powerful for discriminating between upright and fallen persons because
the perceived height of persons is significantly lower if they lie on the floor after a fall.
All discussed methods except [69] also incorporate velocities, arguing that the vertical
velocity of persons increases considerably during a fall due to gravity and that slow falls
are not serious [8]. On the other hand, the authors of [69] reason that even slow falls
can be dangerous and thus must be detected, which excludes velocity-based features.
Furthermore, activities of daily living (e.g. sitting down) may be similar to falls in terms
of observed velocities, causing false alarms and impacting specificity [74, 46].

Table 1.1: Kinect-based fall detection methods discussed in this section.
method features used for fall detection

Auvinet & Meunier [8] height and velocity of head and person centroids
Dubey et al. [28] HU features of motion history image

Dubois & Charpillet [29] height and velocity of centroid, point deviation
Kepski & Kwolek [46] centroid, velocity and acceleration from worn device

Mastorakis & Makris [60] change of bounding box
Planinc & Kampel [69] height and orientation of the spine

Rougier et al. [74] height and velocity of centroid

Apart from [28, 46], all discussed methods are conceptually similar and relatively
simple; in all these cases persons are detected via background subtraction and the world
coordinates of some representation of the person are obtained and analyzed in order
to detect falls. Dubey et al. [28] follow a different approach, extracting HU features
from motion history images and using a support vector machine for classification. In [46]
information from both a Kinect and a worn device is analyzed.

All covered methods reportedly perform very well on simulated falls (higher than
96% in terms of sensitivity and specificity). Unfortunately, these methods were tested on
custom test sequences, hence direct comparisons are not possible. This issue is attributed
to the lack of publicly available Kinect fall datasets. To the knowledge of the author, the
sole extensive dataset of this sort was presented only recently by Planinc and Kampel [69].
Nevertheless, the reported results suggest that Kinect-based methods have the potential
for reliable fall detection in practice, while being relatively simple in concept and thus
moderate in terms of computational requirements. This is due to the fact that Kinect’s
depth data is powerful for this kind of scene analysis.

6http://openni.org (last accessed on 20.08.2013)
7http://microsoft.com/en-us/kinectforwindows (last accessed on 20.08.2013)

5

http://openni.org
http://www.microsoft.com/en-us/kinectforwindows/

However, the discussed methods have limitations that are expected to restrict their
performance in practice. Velocity-based features are too restrictive if slow falls are
considered important. Only Rougier et al. [74] account for falls that are not visible due
to occlusions, which is considered mandatory in practice. Impending sunlight can have
the same effect, a fact not taken into account. Furthermore, no method explicitly detects
whether persons lie down on beds or other furniture (hereafter referred to as resting);
discrimination is based solely on the features used for fall detection. This approach is
error-prone because observed heights of resting persons may be similar to those of fallen
persons, considering the height of some beds and couches. Particularly, height-based
discrimination is not reliable if falls that end in a sitting position should be detected.
While this is considered a requirement, some existing methods are tuned for persons that
lie flat on the floor. For example, the method proposed by Rougier et al. [74] requires
that the centroid height of fallen persons must be lower than 35.8cm, which is expectedly
too low in this regard. Velocity-based features are more powerful for differentiating
between fallen and resting persons, but imply the aforementioned restrictions.

Most of the covered methods [8, 28, 29, 46, 74] neglect person tracking, that is the
association of detections between subsequent frames. It is thus expected that these
methods fail in presence of multiple persons. Consequently, person tracking is considered
mandatory for reliable fall detection. Only the fall detection methods introduced in [69]
and [60] include tracking, which is accomplished by means of the NITE8 middleware.

The approach by Dubey et al. [28] is considered limited because neither motion
history images nor HU features are invariant in terms of sensor position, hence the
performance is expected to decrease if the sensor is positioned differently than during
training. However, this cannot always be avoided in practice because of environmental
restrictions. This also applies to the work by Kepski and Kwolek [46], who use the height
of the person centroid relative to the sensor height as a feature for fall detection.

Some of the discussed methods lack in terms of practicability. Those presented in
[8] and [28] appear too complex to run in real-time on low-end hardware (unfortunately,
information on computational requirements is missing in both cases). That introduced in
[46] runs on a PandaBoard ES, a low-cost ARM platform, but requires a worn device,
which is obtrusive. As mentioned before, [28] and [46] use features that restrict the sensor
placement, which complicates the installation and hinders a proper setup.

In conclusion, fall detection using Kinect sensors is a promising approach. This
is due to the fact that these sensors are inexpensive, unobtrusive, and provide data
that allow for robust person detection and distinctive features. Moreover, the data are
easily interpretable by humans, enabling verification of fall events by caretakers, for
instance. Details of monitored persons are not exposed, hence their privacy is preserved
[74]. Existing methods of this kind perform well on simulated falls, but often neglect
circumstances that are considered important in practice. Furthermore, some methods
seem too complex to run on low-end hardware or are inflexible in terms of sensor setup,
which limits their practicability and may hinder broad application.

8http://openni.org/files/nite (last accessed on 20.08.2013)

6

http://openni.org/files/nite/

1.3 Aim and Contributions
The aim of this thesis is to address limitations of existing Kinect-based fall detection
methods, with the purpose of developing a fall detection system that is both reliable and
practical. To this end, the system must detect falls reliably under practical conditions,
which include slow and occluded falls as well as changing scene conditions. For this
purpose, the limitations and data characteristics of the sensor must be known and
evaluated in terms of implications for fall detection. To the knowledge of the author,
such an analysis is missing in the literature. This thesis aims to fill this gap.

The algorithms involved must have low computational requirements in order to be
applicable on low-cost platforms. With this in mind, they were designed to run on
a PandaBoard ES9, an inexpensive single-board computer. This platform features a
dual-core ARM Cortex-A9 CPU with 1.2 GHz and 1 GiB of RAM. It has a low power-
consumption and is thus inexpensive to operate, and is small enough to be unobtrusive
(Figure 1.3). Another focus is easy setup and maintenance. To this end, flexibility in
terms of sensor placement is required and the system must be plug and play.

Figure 1.3: The PandaBoard ES, in comparison to a 2 euro coin.

The main contribution of this work is the introduction of a fall detection system that
is reliable in practice, inexpensive, and easy to install and operate, in order to advance
the research field of fall detection and ambient assisted living. Moreover, this thesis
analyzes aspects regarding the data quality of the Kinect sensor that are not covered
in the existing literature, information considered valuable in the design of Kinect-based
solutions. Furthermore, several algorithms constituting the system are applicable for other
tasks related to computer vision. In particular, this work proposes a new background
subtraction algorithm designed for the Kinect sensor that allows for robust detection of
persons and moving objects in general. The proposed fall detection system operates in
a so-called plan-view space, which has been successfully used for person detection and
tracking in the past [13, 33]. This work contributes to this research field by introducing

9http://pandaboard.org (last accessed on 20.08.2013)

7

http://pandaboard.org/

an efficient approach to tracking persons in plan-view space that can cope with multiple
persons, even if they move close together.

1.4 Structure
This thesis is structured as follows. Chapter 2 covers a quantitative analysis of the
Kinect sensor, with a focus on implications for person detection and fall detection. On a
high level of abstraction, the proposed fall detection system consists of three main parts,
namely motion detection, person detection and tracking, and fall detection (Figure 1.4).

Figure 1.4: High-level overview of the structure of the proposed system.

During motion detection, moving objects are detected. For this purpose, a new
background subtraction algorithm optimized for Kinect depth maps is presented in
Chapter 3. Depth maps and detected motion constitute the input to the person detection
and tracking stage, which is discussed in Chapter 4. During this stage, persons are
distinguished from other objects and tracked over time. A central concept are so-called
plan-view maps, which allow for efficient and robust person detection and scene analysis.
For computing these coordinates, the height and orientation of the sensor with respect to
the floor must be known. The system is able to estimate these properties automatically,
which simplifies the setup. Chapter 5 covers fall detection in plan-view coordinates as
well as scene analysis, namely automatic detection of sitting accommodations and regions
in which reliable fall detection is possible. Chapter 6 concludes this work.

8

CHAPTER 2
Sensor Analysis

In order to be able to evaluate the Kinect sensor for fall detection, its limitations and
data quality must be known. Such knowledge is also considered prerequisite for designing
reliable fall detection algorithms. However, previous work in the field of Kinect-based
fall detection does not address this topic in detail. Available literature on Kinect sensor
analysis does not focus on fall detection and is thus insufficient in this regard.

The aim of this chapter is to provide a detailed analysis of the data quality of Kinect
sensors and to discuss the results with respect to fall detection. A focus is on highlighting
limitations of the technology and possible implications for fall detection. For this purpose,
the sensor was evaluated in terms of the quality criteria (i) resolution, (ii) precision and
random errors, (iii) reproducibility, and (iv) accuracy [89, 44]. All experiments were
carried out on metrical data, as provided by OpenNI 2.1. This analysis is based on a
paper by the author of this thesis [71].

2.1 Resolution
The resolution of a measuring device describes the smallest details it is able to resolve [44].
With regard to depth sensors it is desirable to distinguish between depth resolution and
spatial resolution. In this text, the term depth resolution denotes the smallest difference
in distance the sensor can distinguish, while spatial resolution refers to the minimum size
of reliably detectable objects.

2.1.1 Depth Resolution

The depth resolution of the sensor restricts detectable scene changes. If the depth
resolution is too low, fallen persons or parts thereof may not be distinguishable from the
floor. This can cause fall detection algorithms that rely on a continuous detection of
fallen persons to fail. Stone and Skubic [87] mentioned this issue, but to the knowledge
of the author further analyses in this regard are missing in the literature.

9

Kinect sensors can distinguish between two object distances only if their difference is
large enough. This is because the sensor can derive disparities with only limited accuracy.
In fact, the sensor distinguishes between 1024 distinct disparities and thus distances [47],
while the measuring range spans approximately 10m.

In [47] Khoshelham and Elberink modeled the depth resolution of the Kinect as a
function of object distance. Their approach was to derive a mapping from disparity to
distance, by comparing corresponding values. They found this mapping to be quadratic
with respect to object distance. Consequently, the depth resolution of the sensor decreases
quadratically with object distance. Figure 2.1 shows the graph as proposed by [47]. Other
authors presented almost identical models [82, 2]. They employed a more direct approach,
estimating the depth resolution directly from metrical data by calculating differences
between adjacent measurements.

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

object distance (m)

re
s
o

lu
ti
o

n
 (

c
m

)

Figure 2.1: Depth resolution as a function of object distance.

The mapping from disparity to distance is carried out in software; therefore, the
depth resolution of the sensor was expected to vary slightly with software package and
version. In order to verify that the model shown in Figure 2.1 applies to the software used
for fall detection (OpenNI 2.1), an experiment similar to those in [82, 2] was conducted.
Distance measurements were recorded while the sensor was translated slowly away from
a wall, up to a distance of 11m. This was done three times to ensure that the obtained
dataset was complete, in the sense that it contained all values the sensor was able to
produce. All unique measurement values were sorted, constituting a tuple (d1, d2, . . . , dn),
and the depth resolution at object distance di was estimated as di+1 − di. The resulting
mapping confirms with those of [47, 82, 2].

As shown in Figure 2.1, the depth resolution of the Kinect remains below 10cm for
object distances closer than approximately 6m, but increases significantly thereafter. In
consequence limbs of fallen persons may be indiscernible from the floor at larger distances,
as illustrated in Figure 2.2. It is therefore suggested not to depend on a reliable detection
of limbs for fall detection.

10

Figure 2.2: Illustration of the effect of limited depth resolution on fall detection. The
image depicts a person lying flat on the floor at a distance of approximately 6m from
the sensor. Distances are color-coded, blue colors represent closer distances. Due to the
limited depth resolution, limbs are only partially distinguishable from the floor. This is
illustrated by the fact that colors in regions of arms or legs do not always differ from
those of the floor beneath them (left side of the vertical line).

2.1.2 Spatial Resolution

The minimum size objects must have in order to be reliably (i.e. continuously) detectable
from a certain distance depends on the spatial resolution of the sensor. According to a
datasheet1 by the developer of the depth sensing technology of the Kinect, the spatial
resolution is 3.4mm at an object distance of 2m. There exists only one publication that
examines this criteria in more detail [12]. The authors estimated the spatial resolution
by translating a planar test object with holes of different diameters away from the sensor
until these holes were no longer continuously perceptible. Unfortunately, the experiment
was limited to near-range (up to 2.5m).

One property that restricts the spatial resolution of an imaging device is the distance
between adjacent sensor pixels, denoted as sampling pitch [88]. The smaller the sampling
pitch, the higher the possible resolution. A model for the limitations imposed by this
property is the Ground Sample Distance (GSD). The GSD corresponds to the minimum
distance required between two objects in order for them to be separable from a certain
distance [53]. It is defined as GSD = dp/f , where p is the sampling pitch, f is the focal
length, and d is the object distance. The authors of [47] estimated p = 9.3µm and
f = 5.453mm. At an object distance of 2m this amounts to a GSD of about 3.41mm,
almost identical to the spatial resolution according the datasheet. Figure 2.3 (dotted
line) shows the GSD as a function of object distance.

The GSD disregards characteristics such as quality of optics. Furthermore, it does not
model complexities involved in distance estimation and hence represents the upper limit
for the spatial resolution of the Kinect. It was thus expected that the GSD differs from
the minimum size of reliably detectable objects. In order to verify this hypothesis, two
square patches of cardboard with side lengths of 1.875cm and 3.75cm, respectively, were
positioned in the scene, oriented towards the sensor. Two test objects were assumed to be

1http://primesense.com/wp-content/uploads/2013/02/PrimeSense_3DsensorsWeb.pdf (last accessed
on 20.08.2013)

11

http://www.primesense.com/wp-content/uploads/2013/02/PrimeSense_3DsensorsWeb.pdf

1 2 3 4 5 6 7 8 9
0

2

4

6

8

object distance (m)

lim
it
 (

c
m

)

ground sample distance

measured object size limits

Figure 2.3: The dotted line illustrates the GSD of the Kinect. The crosses indicate
the maximum distances at which the test objects were still reliably perceptible. The
continuous line shows the estimated graph.

sufficient given the linearity of the GSD. The objects were located 30cm away from the
background in order to preclude effects caused by the limited depth resolution. Maximum
object distances were estimated by translating the sensor away from the objects until
they were no longer reliably detectable by means of visual examination.

The results indicate a linear relation between object size and maximum distance.
The maximum distances at which the test objects were still reliably detectable were
much lower than predicted by the GSD, as shown in Figure 2.3. The size limits differ
considerably from [12], according to which the minimum object diameter is 4cm at a
distance of 1.5m. Discrepancies were expected, considering the different test methods.

The results presented in Figure 2.3 should be interpreted as clues for the sensor
capabilities under optimal scene conditions. Further testing showed that object shape,
surface properties, and lighting conditions can have a negative impact on performance.
Particularly, depending on scene conditions arms and legs of standing persons are not
reliably detectable at object distances beyond 6m. This circumstance underlines that fall
detection methods should not depend on a reliable detection of limbs.

2.2 Precision
The precision describes the variability between multiple measurements of the same object
under stable conditions [89]. With regard to the Kinect, the precision indicates the
closeness of repeated distance measurements. This criteria is particularly important with
respect to background subtraction algorithms, as their performance depends on data
stability. Knowledge of the sensor precision allows for estimating the performance of such
algorithms and aids in proper configuration.

12

2.2.1 Precision

Different methods have been proposed for estimating the precision of the Kinect sen-
sor. The authors of [47] did so by analyzing single frames. They examined distance
measurements of a planar surface that was oriented in parallel to the image plane of
the sensor. Sensor measurements represent distances between points and the image
plane (i.e. z-coordinates of observed points in the sensor coordinate system) [47, 2].
Therefore, deviations between these measurements were considered as measurement errors.
More precisely, they fitted planes to the measurements and estimated the precision as
the Root-Mean-Square Error (RMSE) between the measurements and the fitted planes.
This approach is illustrated in Figure 2.4. The authors found the sensor precision at a
particular object distance to be about half the depth resolution at that distance (Figure
2.5). Results presented in [20] support this hypothesis.

Andersen et al. [2] instead defined the precision as the range between consecutive
measurements. Temporal analysis is considered important as fall detection is a continuous
task. Unfortunately they examined the precision at only a single object distance.

x
y

di
st

an
ce

 (
m

m
)

0

50

100

0

50

100

150

2000
2020
2040

Figure 2.4: Distance measurements of a planar object from a distance of 2m. The plane
was obtained via robust plane fitting, similar to [47] and [20]. The RMSE corresponds to
the standard deviation between the fitted plane and the measurements [47].

In an effort to derive a model for the sensor precision that encompasses temporal
variations, the following experiment was conducted. A cardboard plane with a width
and height of 55cm by 99cm was used as the test object. The object was chosen because
it was planar and had little absorption and specularity, and therefore represented an
eminently suitable measurement target. The object was aligned parallel to the image
plane of the sensor and 100 frames were recorded. This was done from distances between
two and nine meters, in 1m steps. No significant infrared sources were present.

For every test distance, measurements of border regions were discarded as such regions
contain measurement errors [2]. Zero-pixels were removed and the remaining values were
consolidated to one set of values per distance d, denoted as xd. The cardinalities of xd are
summarized in Table 2.1. The sensor precision was estimated as the standard deviation

13

of xd, henceforth denoted as sd. In order to be able estimate the precision as a function
of object distance, a second order polynomial was fitted to the obtained (d, sd) pairs.

Table 2.1: Cardinalities of xd in thousand, for every test distance d.

d 2m 3m 4m 5m 6m 7m 8m 9m
|xd| 3572 1496 818 466 328 205 183 125

The resulting function is similar but greater than half the depth resolution, as visible
in Figure 2.5. There are two primary causes for the differences, apart from temporal
variations. First, multiple measurements of planar objects may only be treated as equal
if the object is aligned perfectly in parallel to the sensor plane. Small alignment errors
could not be avoided while obtaining xd. On the other hand, the plane-fitting approach
employed by [47, 20] is able to correct for such errors. Second, it was found that plane-
fitting RMSEs vary between frames. For example, the range over the RMSEs of the 100
frames used to generate x5 was almost 6mm. Under these circumstances, both models
are comparable. It is thus considered applicable to approximate the spatio-temporal
precision of the Kinect as half its depth resolution.

2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

object distance (m)

p
re

c
is

io
n

 (
c
m

)

Khoshelham & Elberink

observed precision

fitted curve

Figure 2.5: Sensor precision as a function of object distance. The dotted curve represents
half the depth resolution of the sensor, which according to [47] and [20] approximates its
precision. The obtained (d, sd) pairs are shown in red, together with a fitted curve.

In conclusion, the spatio-temporal precision of the Kinect remains high compared
to the measured distances throughout the measuring range. The following sections
investigate the relation between the precision and properties of measurement deviations.

2.2.2 Measurement Deviations

Given the high sensor precision, it was postulated that the measurements are stable in
general, with strong outliers occurring only infrequently. This assumption is supported

14

by [2] and [18], who found measurement histograms to be reminiscent of Gaussian
distributions. Unfortunately, both [2] and [18] tested only at a single object distance.

In order to confirm that strong measurement deviations are infrequent and to estimate
the measurement distribution, the ranges of xd were computed as rd = max(xd)−min(xd).
Histograms of xd were computed and the bins were sorted by frequency, in descending
order. The bins of every histogram were collected until the combined frequencies amounted
to at least 90% of the total number of measurements. Then, for each test distance d,
the range of the distances corresponding to the collected histogram bins was calculated.
These ranges are denoted as ad. Table 2.2 provides further information.

2 3 4 5 6 7 8 9
0

20

40

60

80

100

object distance (m)

ra
n

g
e

 (
c
m

)

r
d

a
d

Figure 2.6: (d, rd) in comparison with (d, ad) and fitted curves. The reason for the
outlier is apparent in Table 2.2 (only four distinct measurement values).

Figure 2.6 illustrates the obtained values for rd and ad, as well as fitted curves. It is
visible that rd reached substantial magnitudes at larger object distances. On the other
hand ad remained much smaller. This circumstance, the high goodness of fit (Figure 2.6),
and the statistics summarized in Table 2.2 further support the hypothesis that strong
outliers are infrequent. In fact, Table 2.2 shows that the numbers of unique measurements
of both xd (second row) and the collected histogram bins (third row) varied only slightly
throughout the measuring range. Thus the measurement stability and distribution in
terms of disparity levels was similar over all tested distances. This suggests that the
primary reason for the decreasing sensor precision is the decreasing depth resolution.

2.2.3 Error Model

On this basis, it is possible to model the frequencies and magnitudes of outliers as a
function of object distance. Such a model is considered valuable as it provides concise
information on the data quality to expect at a given object distance.

The precision of the Kinect was verified to correspond to half its depth resolution. In
consequence, the model can be estimated by analyzing magnitudes and frequencies of

15

Table 2.2: Statistics related to measurement deviations. The second row corresponds to
the number of unique values of xd, from which rd was derived. The third row represents
the number of collected histogram bins at every object distance. The last row shows the
percentages of measurements used for computing ad.

object distance d 2m 3m 4m 5m 6m 7m 8m 9m
unique measurements (rd) 7 6 5 5 5 5 4 5
unique measurements (ad) 4 2 2 3 2 2 2 2

percentages used for ad 90.8 92.6 93.4 98.6 95.8 96.4 93.9 99.2

measurement deviations in relation to the sensor precision. The analysis was carried out
by regarding xd as samples from a random variable Xd, whose properties were estimated
based on xd via statistical analysis. The expected value of Xd was estimated as the
sample mean of xd and is denoted as xd. The precision of the sensor at test distance d
corresponds to the standard deviation of Xd and was estimated via sd.

Measurement deviations were analyzed relative to the mean-subtracted data, |xd −
xd| = md. Different percentiles of this data were calculated. The pth percentile of a
dataset is the value below which p percent of the data fall. With regard to md this
means at least p percent of random errors had magnitudes of less than or equal to the
pth percentile. Thus, percentiles of md, henceforth denoted as vd,p, provide concise
information regarding the frequencies and magnitudes of deviations from the mean.

Measurement histograms suggest that Xd can be approximated by a Gaussian dis-
tribution, Xd ∼ N(xd, s

2
d). In order to verify this assumption, vd,p was compared with

Φ−1
d (q), with Φ−1

d (·) representing the quantile function corresponding to X0
d ∼ N(0, s2

d)
and q = 1− (1− p/100)/2.2 As X0

d is Gaussian with a mean of zero, Φ−1
d (q) represents

the interval [−Φ−1
d (q),Φ−1

d (q)] with a cumulative probability of p/100. Consequently,
under the assumption that Xd ∼ N(xd, s

2
d) vd,p corresponds to Φ−1

d (q).
Figure 2.7 (continuous curves) shows the graphs of second order polynomials fitted to

vd,90, vd,95 and vd,100, respectively. The graphs of the corresponding Φ−1
d (·) are depicted

as dotted curves. The observed values are reasonably close to the predictions, supporting
the above assumption. It is thus considered practicable to estimate the measurement
distribution relative to the mean as N(xd, s

2
d). An application for this approach is

presented in Section 3.3.1. However, it is important to consider that the limited depth
resolution causes the accuracy of the model to decrease with distance (Figure 2.7).

2.3 Reproducibility
The measurements used to examine the data quality in Section 2.2 were recorded in
absence of strong infrared (IR) radiation and using a test object whose material had little
absorption and reflectance. To be able to determine whether the results are generalizable,
effects of IR radiation and different clothing materials must be tested.

2q = 0.9999999 was used for p = 100 as Φ−1
d (1) = ∞.

16

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

object distance (m)

m
a

x
 d

e
v
ia

ti
o

n
 f

ro
m

 m
e

a
n

 (
c
m

)

90th percentile

95th percentile

100th percentile

90th percentile (predicted)

95th percentile (predicted)

100th percentile (predicted)

Figure 2.7: vd,90, vd,95 and vd,100 (continuous curves) and predictions (dotted curves).

2.3.1 Clothing Materials

Specular, absorbing, or translucent surfaces can degrade the data quality or preclude
measurements [47, 18]. Berger et al. [11] examined different materials and showed that
the percentage of zero-pixels is correlated with object specularity. However, clothing
materials were not tested. Other authors found that object materials can influence
the data quality, but did not conduct tests [47, 2]. Literature on the effect of clothing
materials is not available but considered necessary for assessing the applicability of the
Kinect sensor for fall detection.

In order to investigate the impact of different clothing materials on the sensor quality,
the experiment for estimating the sensor precision was repeated under identical test
conditions. However, the surface of the test object was covered with different clothing
materials, namely black cotton, red polyester, and black leather.

Figure 2.8 summarizes the results. The precisions for cotton and polyester were close
to the reference (Figure 2.5), but those for leather differed considerably. At distances
larger than 5m fractions of measurements of leather were zero-pixels (16% at a distance
of 7m). No zero-pixels were observed for cotton and polyester.

Clothing worn at home is often made from cotton or materials with similar reflectivity
properties, such as wool or linen. The test results indicate that the sensor quality is
stable with respect to such materials. It is therefore assumed that common clothing
materials have a negligible effect on the data quality.

2.3.2 Lighting Conditions

Strong IR radiation can influence the Kinect as it estimates distances based on a projected
IR pattern. Chow et al. [20] found that fluorescent lamps did not impact performance
significantly. According to own tests this is also applies to incandescent light bulbs. On
the other hand, the IR radiation in sunlight is strong enough to obscure the projected

17

2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

object distance (m)

p
re

c
is

io
n

 (
c
m

)

reference

black shirt

red jacket

leather jacket

Figure 2.8: Sensor precision for different object materials and test distances.

pattern, degrading or preventing measurements. This effect is mentioned in [47, 2] but
analyses are missing in the literature.

Figure 2.9: Color-coded depth map of the test scenario. The distances from the sensor
to the test objects I, II, and III were 4m, 5.5m, and 7.5m, respectively.

In order to analyze the impact of sunlight in an indoor environment, a test setup
was established in an office with three large windows. Three test objects in the form
of cardboard planes were positioned in the scene as shown in Figure 2.9. The object
materials were identical to that of the test object used in Section 2.2 and the objects
were oriented towards the sensor. Every 30 minutes 100 frames were recorded, over a

18

duration of 21 hours. The scene remained static. An illuminance meter was used to
measure illuminances at object centers, Table 2.3 summarizes the observed values. For
every test object, the sensor precision was estimated as in Section 2.2.1.

Table 2.3: Measured illuminances on the test objects.

time I II III
11:00 950 650 400
12:00 900 500 370
13:00 340 220 160
14:00 550 320 240
15:00 950 570 430
16:00 1700 700 530
16:30 3000 1050 450
17:00 250 150 90

The precision scores and consequently the measurement quality for the test objects I
and II remained almost constant, as illustrated in Figure 2.10. This stability is remarkable
considering the variances in illuminance. On the other hand, the precision for object
III varied considerably. Figure 2.10 shows a correlation between sensor precision and
illuminance, but there was a high variability even during nighttime.3 It is therefore
concluded that the sensor robustness decreases with distance but remains relatively high
up to distances of around 6m. This seems reasonable as the intensity of the projected
pattern decreases with distance because of speckle effects.

20 22 24 02 04 06 08 10 12 14 16
0

2

4

6

8

10

12

hour

p
re

c
is

io
n

 (
c
m

)

object I

object II

object III

Figure 2.10: Sensor precision over time.

At 16:30 test object I was partially exposed to direct sunlight emitting through a
3Different datasets were tested in order to rule out erroneous data, but the variability persisted. A

possible cause is internal sensor adaption [2].

19

window. The sensor was unable to measure distances to exposed parts.4 The maximum
illuminance for which measurements were still possible was approximately 6000 lux.
Importantly, this limit was found to vary strongly with sensor distance, surface properties
and reflection angles, and is therefore not universally applicable. The fact that direct
sunlight exposure can prevent measurements is important with regard to fall detection.
Emitting sunlight can cause large areas of zero-pixels on floors. If persons fall in such
areas they may not be detectable, or only partially. In order to minimize negative effects
on the detection of upright persons, sensors should be positioned at the opposite side of
windows so that persons remain detectable because of self-shadowing.

2.3.3 Multiple Sensors

Multiple Kinect sensors with overlapping views can result in a decreased data quality.
While the fall detection system presented in this text uses only a single sensor, knowledge
of effects of multiple sensors is considered valuable. Berger et al. [11] found that the
number of zero-pixels increases with sensor count and object specularity. Distances and
angles between sensors can also have an impact [73]. In [2] and [11] pattern overlap
caused a small fraction of zero-pixels, but no other effects.

Based on these findings it was expected that a second sensor has only minor effects
with respect to fall detection. In order to obtain more information in this regard, a
second sensor was present during the experiment described in Section 2.3.2. The second
sensor faced test object I as illustrated in Figure 2.11. The other test objects were not in
the sensor view and thus not affected by its projection.

4m

3m

30°

Figure 2.11: Sensor positions relative to test object I.

In presence of a second sensor at most 1.5% of measurements of object I were zero-
pixels. In floor areas the percentages were larger, as visible in Figure 2.9. The floor
had a higher specularity, thus the results agree with [11]. The measurement quality was
also affected. The measured precision for test object I was about 6cm (Figure 2.10),
considerably higher than the reference precision at the corresponding distance (about
2.2cm). These results contradict with [11, 2] in which no effects on quality were observed.

Further tests suggest that persons are reliably detectable in presence of a second
sensor, but the measurement quality decreases. In consequence, the results derived in
Section 2.2 are not applicable in this context.

4Zero-pixels were filtered in a preprocessing step and thus did not affect precision scores.

20

2.4 Accuracy
In this analysis, the accuracy a(d) corresponds to the signed difference between the true
distance d of an object and the average of a large number of distance measurements.
Knowledge of a(d) allows for correction, d′ = d− a(d). Available literature examines the
accuracy of the Kinect in near-range only [82, 47, 73].

In order to estimate a(d) a second-order polynomial was fitted to xd − td, with xd

and td representing the mean of xd and the true object distance, respectively. The graph
of a(d), shown in Figure 2.12, resembles the depth resolution of the sensor. This seems
reasonable considering that depth resolution is a major cause for the limited accuracy. It
should be noted that the results may vary slightly based on the software used.

2 3 4 5 6 7 8 9
0

5

10

15

20

25

object distance (m)

a
c
c
u

ra
c
y
 (

c
m

)

Figure 2.12: Sensor accuracy as a function of object distance a(d).

The results confirm that the accuracy remains high throughout the measuring range,
considering the impact of errors on the estimation of y-coordinates (object heights),
which are frequently employed for detecting falls. If the height difference between the
sensor and a considered point is h, the measured z-coordinate is m and the true value is
d, then from similar triangles it follows that δ = h(m− d)/m, with δ denoting the height
estimation error induced by the limited accuracy.5 Given the results shown in Figure
2.12, this error remains below 5cm for h = 2.2m, a reasonable height difference between
the mounted sensor and a fallen person, and m ≤ 7m.

2.5 Conclusions
The results presented in this chapter suggest that Kinect sensors are well-suited for fall
detection. The resolution and precision were found to be sufficient to allow for a reliable
detection of standing and fallen persons. However, fall detection algorithms should

5This applies on the condition that the sensor is a pinhole camera and thus represents an approximation.

21

not rely upon continuous detection of smaller body parts such as limbs. The sensor is
expected to be robust in terms of common clothing fabrics and infrared radiation through
sunlight for object distances up to approximately 6m. In conclusion it is considered
advisable to constrain the region of interest to distances up to 6m from the sensor.

Sunlight emitting through windows can result in regions on the floor for which no
measurements are available. Persons that fall in such areas may not be detectable in the
data. Reliable fall detection algorithms must account for this possibility.

This chapter introduced an approach for modeling frequencies and magnitudes of
outliers relative to the mean as a function of object distance. Knowledge of this model is
valuable to the proper configuration of algorithms, as highlighted in Section 3.3.1.

22

CHAPTER 3
Motion Detection

The first step of the proposed fall detection system is the localization of regions in which
motion occurs. Motion detection is often the first step in the detection of objects that
are expected to be moving. In particular, it is frequently utilized for person tracking [99].
A main incentive for employing motion detection is efficiency. Under the assumption
that relevant objects are moving, the search can be restricted to regions in which motion
occurs. In terms of pattern recognition, motion detection thus represents a method for
search-space reduction [17].

Motion detection must be accurate and fast in order to be feasible for object detection.
A family of methods that are able to fulfill these criteria under various circumstances
are called Background Subtraction (BS) methods [99]. These methods detect motion
in image sequences by comparing image frames to a background model, which is a
representation of the static parts of the depicted scene. In the simplest case, a single
frame of the same sequence is used (e.g. the most recent frame [42]). Image regions that
differ significantly from the model are classified as containing movement. Such regions
constitute the foreground, the rest represents the background. Each pixel of the input
frame is classified as either foreground or background, thus the output is a binary image,
called foreground mask [17]. Figure 3.1 illustrates this process.

3.1 Related Literature
Background subtraction has been used for motion detection for over three decades;
an early algorithm was proposed by Jain and Nagel [42] in 1979. A seminal work on
background subtraction was presented by Wren et al. [96], who modeled every pixel of
the background as a single Gaussian, based on recently observed frames. This allows the
background model to include sensor noise and to adapt to gradual scene changes such as
lighting changes. Later approaches adopted this on-line approach to model adaption.

Wren et al. used the mean for representing central tendency. A more robust alternative
is the median. However, maintaining medians is computationally complex as recently

23

(a) model (b) input frame (c) classification

Figure 3.1: Background subtraction. Regions of input frames (b) are classified as
foreground or background (c), based on similarity with a background model (a).

observed values must be stored and kept sorted. McFarlane and Schofield [61] suggested
an efficient shortcut. They showed that the background model converges towards the
median if its pixels are incremented or decremented based on observed pixel values. This
fact is the basis for the family of Σ−∆ BS algorithms [58, 52].

The aforementioned methods employ unimodal background models. Such models
cannot encode sudden input changes that should be regarded as background (e.g. caused
by waving trees or sudden lighting changes). Consequently, multimodal background
models have been proposed. Stauffer and Grimson [86] improved on the method by Wren
et al. by representing each model pixel as a mixture of Gaussians. Many variations
and advancements of this method have been presented, a summary can be found in [15].
Elgammal and Davis [30] presented a more flexible non-parametric approach.

More recently, Barnich et al. [10] introduced ViBe, a BS algorithm with interesting
properties. ViBe does not use an explicit model for describing variations in images.
Instead, each pixel of the background model is comprised on N samples collected from
previous frames. Whether an observed value is used to update the model and what
sample it replaces is determined probabilistically. ViBe performs comparable or better
than other state-of-the-art BS algorithms while being faster than most alternatives [17].

Despite considerable advances in this field, there are still scenarios in which modern
BS algorithms perform poorly. For instance, most methods classify shadows cast by
moving objects as foreground.1 Objects with similar appearance than the background
may not be reliably detectable, a frequent problem in surveillance. More information
on this topic can be found [92, 17]. Many remaining problems with respect to BS in
images stem from the fact that changes in the scene are not necessarily associated with
significant lighting changes (which would be reflected in images) and vice versa.

1Several methods for shadow detection and removal have been proposed, [72] gives a survey.

24

3.2 Motion Detection in Depth Data
The aforementioned methods were designed for use with grayscale or color images. On the
other hand, Kinect returns depth maps, which represent measured distances as opposed
to lighting conditions. Remarkably, many BS methods for grayscale images also work
with Kinect depth maps because mathematically both types of input are two-dimensional
matrices. Therefore, such BS methods have been used to detect motion in depth data.
For example, Rougier et al. [74] use the aforementioned method by Wren et al. to detect
motion in Kinect depth maps for the purpose of fall detection.

Kinect depth maps are more powerful for use with BS methods than traditional
images. This is mainly because there is a direct correspondence between scene geometry
and depth maps. This circumstance leads to the following advantages with regard to BS:

• Significant scene changes are always reflected in depth maps. Particularly, Kinects’
resolution and robustness with respect to clothing and lighting conditions allow for
reliable detection of persons.

• Conversely, significant changes in depth maps are caused only by changes in the
scene. For example, lighting changes and shadows have no significant effects.

• Measurement deviations due to sensor noise are unimodal, thus complex background
models are not required. For example, the method by Wren et al. [96] is appropriate,
given the distribution of measurement errors.

• Thresholds are intuitive as observed values represent distances.

Moreover, the information encoded in depth maps can be utilized to improve the
detection performance. For example, foreground objects are always expected to be closer
to the sensor than the background. However, to the knowledge of the author, BS methods
that explicitly utilize depth information have not been proposed so far. To this end,
Section 3.3 introduces a new BS method specifically designed for Kinect depth maps.
This method builds on the findings presented in Chapter 2 and explicitly utilizes depth
information in order to achieve a high detection performance of both upright and fallen
persons. In fact, results presented in Section 3.4 show that the proposed method performs
better than previous methods while being faster.

3.3 The DMD Motion Detector
In this section a new background subtraction algorithm for use with Kinect depth data is
proposed. This algorithm is henceforth denoted as DMD (Depth map Motion Detector).
DMD builds upon previous work in this field but utilizes distance information to increase
the detection performance. The main design goals of DMD were:

• High detection performance with respect to upright and fallen persons

• Unmoving and lying persons should be detectable over prolonged time periods

25

• No learning phase required, fast bootstrapping and ghost removal

• Fast processing speed and low memory consumption

• No configuration required

3.3.1 Classification

DMD was designed based on two central assumptions, namely that (i) observed values
represent distance measurements, and that (ii) objects constituting the background are
rigid. These assumptions are general and not restrictive in practice.

Under these assumptions a pixel p can represent foreground only if its value is smaller
(i.e. closer to the sensor) than the model m 6= 0. There are two possible causes for
p < m: presence of a foreground object, and measurement deviations due to sensor noise.
Therefore, the pixel should be classified as foreground only if p < (m − t), with t > 0
accounting for sensor noise. A special case is p = 0, that is an observed zero-pixel. In
this case there is no reliable way to determine the class of the pixel, based solely on
comparison with m. DMD always regards such pixels as background. Algorithm 1 shows
the resulting classification method.

for every depth map pixel do
if value not 0 and value < (model - threshold) then

classify as foreground
else

classify as background
end

end
Algorithm 1: Pixel classification.

In contrast to existing BS methods, DMD computes t dynamically based on observed
distances. This approach has two advantages. First, it allows DMD to optimize t so that
foreground objects are detected more accurately even if they are close to the background,
which is particularly important for fall detection. Second, it frees the user from selecting
appropriate thresholds based on particular scene conditions.

DMD computes dynamic thresholds based on the model presented in Section 2.2.3.
According to this model the distribution of the sensor noise is approximately Gaussian,
with a known distance-dependent standard deviation σ. Consequently, 99.7% of deviations
due to noise deviate from the mean by less than 3σ, which suggests that t = 3σ is a
suitable choice. Tests confirmed this, except for small object distances. To this end,
DMD assigns no thresholds lower than tmin = 10cm.

For increased efficiency, DMD computes dynamic thresholds only once and stores
them in a lookup table for fast retrieval. More precisely, t is calculated and stored for
all distances d for which t > tmin and d < dmax, with dmax representing the maximum
distance observed during initialization.

26

3.3.2 Model Initialization

Many BS methods require an initial learning phase in which the background model
is initialized from observed frames. This increases robustness but delays operability.
Furthermore, learning the background over a longer time period can be counterproductive
if the scene changes during that time or soon afterwards. An alternative is to initialize
the model based on the first observed frame and to rely on on-line learning for improving
the model over time. How this initialization is performed depends on the background
model. For example, the Σ − ∆ family of methods simply use the first frame as the
model [52]. However, single frames do not encode temporal variability. ViBe employs an
interesting approach to account for this limitation. The method assumes that adjacent
pixels depict the same object and uses these pixels during initialization [10].

The model of DMD is a single matrix that represents central tendency of observed
measurements, similar to [61, 52]. DMD employs a single-frame approach to model
initialization that is similar to ViBe. More precisely, during initialization each model
pixel is set to the minimum non-zero value of the corresponding pixel in the first frame
and its 4-neighborhood. The minimum is used in order to decrease the likelihood of noise
being detected as foreground. The approach of treating measurements from adjacent
pixels as equal can lead to significant errors at object borders. DMD is able to detect
and correct such errors quickly, as discussed below.

Classification, as shown in Algorithm 1, works correctly only if the model does not
contain zero-pixels. Therefore, DMD interpolates model values during initialization.
Different methods for this purpose have been proposed [18, 48]. Inpainting methods
[21, 90] are feasible as well. However, the focus of these methods appears to be a high
interpolation quality, often at the cost of speed. On the other hand, DMD does not
require high quality because errors are corrected at runtime.

DMD thus employs a custom interpolation method with sufficient quality and low
computational requirements. This method is illustrated in Figure 3.2. Initially, the
current pixel and its four nearest neighbors are examined and the minimum non-zero
value is obtained. This step corresponds to the model initialization method described
above. If no such value exists, the next four nearest neighbors are examined analogously.
This iterative algorithm continues until the first non-zero value is found, or until a
predefined iteration limit.2 This results in a star-like sampling, originating from the
current pixel. The method is accurate for small areas of zero-pixels as the sampling
is dense initially. The algorithm converges quickly even for larger regions because the
number of comparisons per iteration remains constant.

3.3.3 Model Adaption

The model adaption scheme of DMD consists of two parts, namely gradual updates and
ghost detection. These parts are independent but complement each other.

2In the current implementation, this limit is defined as 1/8th of the smallest depth map dimension.

27

Figure 3.2: Interpolation of zero-pixels during model initialization (first five iterations).
Pixels that are examined together have the same color. Darker pixels are processed first.
The white circle marks the current pixel.

Gradual Updates

DMD employs the method proposed by McFarlane and Schofield [61] for incorporating
information from observed frames into the background model. More precisely, DMD
periodically compares each observed value p with the corresponding model value m. m is
incremented if m < p, otherwise it is decremented. This causes p to converge towards
the temporal median of the previously observed values [61]. This model is appropriate,
given the distribution of the sensor noise.

Measurements are given in mm, hence m changes by 1mm per update. If the model
is updated every α-th frame, this corresponds to a maximum change of f/α mm per
second, where f is the framerate. The larger α, the slower the model adapts to changes
in the scene. In the context of fall detection, a slow adaption rate is feasible as it allows
for a longer detection of fallen persons. However, if the adaption rate is too slow it
takes a long time before changes in the scene are reflected in the model, which can cause
persistent errors. It was found applicable to to choose α so that f/α ≈ 10. This allows
for detection of fallen persons over prolonged periods of time, while small scene changes
are incorporated into the model within few seconds. Scene changes that are significant in
terms of measured distances are accounted for by means of ghost detection.

Ghost Detection

A background object that changes its position is detected twice by most BS methods,
once at the new position and once at the original position. The erroneous detection
at the original position is often referred to as a ghost [10]. A common cause for ghosts
are foreground objects that are present during model initialization. In this case the
model must be refined gradually, an approach called bootstrapping [92, 17]. In practice, it

28

cannot be ensured that no foreground objects are present during initialization. Moreover,
the background in indoor environments is generally not static over long periods of time
(e.g. moved chairs). Therefore, fast ghost detection and correction as well as a high
bootstrapping performance were considered mandatory when designing DMD.

Gradual updates alone are insufficient in this regard. If a background object with
measured distance do was moved, it would take α/f · |do − dn| seconds for the model
to converge to the new measured distance dn. Therefore, DMD specifically detects and
corrects for ghosts. For this purpose, it periodically compares each model pixel m with
the currently observed measurement p 6= 0. Under the assumption that background
objects are rigid, p is expected not to exceed m+ t, unless the background has changed.
Consequently, each model pixel is classified as a ghost if (p−m) > 2t. The coefficient 2 is
added in order to ensure that sensor noise has no effect. Model pixels that are classified
as ghosts are set to p. By default, ghost detection is carried out once every two seconds.

3.4 Results and Discussion
In order to evaluate the performance of DMD, the algorithm was applied to two test
sequences described below. Ground-Truths (GTs) for both sequences were generated by
first processing the sequences with DMD. A low threshold was used (5-7cm, depending
on object distance) in order to detect persons accurately, apart from regions that were
not present in the data because of the limited sensor resolution and precision. Errors
were removed manually in a post-processing step. This data-centric approach was chosen
in favor of others because it results in more significant evaluation scores. More precisely,
on this basis a perfect motion detection algorithm would be able to score 100% in terms
of detection performance. If the GTs were obtained by other means (e.g. based on RGB
information as in [19]) this would not be the case as the data would be insufficient. One
GT was obtained for every second (30 frames) of the sequences.

The performance of DMD was assessed by means of the PCC-score, a prominent
metric for evaluating binary classifiers [81]. The PCC-score yields the percentage of
correct classification as

PCC-score = TP + TN
TP + TN + FP + FN . (3.1)

In the context of background subtraction, the terms of (3.1) have the following meaning:

• TP: number of pixels correctly classified as foreground
• TN: number of pixels correctly classified as background
• FP: number of pixels incorrectly classified as foreground
• FN: number of pixels incorrectly classified as background

DMD was tested with default settings. To allow for comparison, ViBe was tested
as well, using the parameters N = 12, t = 200, #min = 2 and model adaption rates
φ = {2, 16}. N was set to correspond to about twice the expected data variability due

29

to sensor imprecision (Table 2.2). t was chosen in correspondence with the maximum
assigned threshold of DMD in both scenes. φ = 16 and #min = 2 were defaults in [10].
The detector output was evaluated directly, without post-processing.

An own implementation of ViBe was used, based on the pseudo-code presented in
[10]. In contrast to the reference implementation, random numbers were generated using
a fast xorshift-algorithm [59]. Given the indeterministic nature of ViBe, the results are
thus expected to differ slightly from the reference implementation.

3.4.1 Fall Detection

In order to assess the performance of DMD with respect to fall detection, a sequence was
recorded that shows a typical fall. In this sequence a person walks into the view after
ten seconds, falls on the floor at a distance of 3.5m from the sensor and remains there,
lying flat on the back without moving. The sensor was located at a height of 2.5m with
a tilt of 25 degrees. The total duration of the sequence is 30 seconds.

Figure 3.3 shows the PCC-scores obtained for this sequence. For the first ten seconds
DMD performed slightly better than ViBe. During this period no foreground objects
were present, thus errors are due to false positives. DMD was more robust than ViBe
in this regard because DMD never classifies pixels as foreground that cannot possibly
represent foreground, regardless of value.

0 5 10 15 20 25 30
0.96

0.97

0.98

0.99

1

second

P
C

C
 s

c
o

re

DMD

ViBe (φ = 16)

ViBe (φ = 2)

Figure 3.3: PCC-scores for the fall sequence.

During and immediately after the fall (seconds 12 to 15) DMD performed best for
two reasons, (i) the aforementioned robustness with respect to measurement noise, and
(ii) the smaller threshold t. In fact, the dynamically computed thresholds of DMD were
in the range of 10cm at the distance of the fallen person, whereas the threshold of ViBe
was set to 20cm. At t = 20cm parts of the lying person were not detected. This threshold
was chosen based on scene geometry; a smaller threshold would have resulted in a better

30

detection of the person at the expense of more false positives and consequently a lower
PCC-score. DMDs’ dynamic thresholds do not have this limitation.

After the fall the scores decreased with time due to model adaption. This effect
is highlighted in Figure 3.4, which visualizes the speed at which foreground pixels
representing the fallen person were incorporated into the model. DMD incorporated
foreground pixels much slower in the model than ViBe.

Proper configuration of update rates depend on the task at hand. For example, a
slow update rate is required if the employed fall detection algorithm requires detection of
fallen persons over prolonged periods of time. However, a slow update rate may cause
problems related to scene changes, particularly slow removal of ghosts. DMD is able to
detect and remove ghosts independently, thus fast update rates are not required.

0 5 10 15 20 25 30
0

20

40

60

80

100

second

d
e

te
c
te

d
 p

e
rs

o
n

 a
re

a
 (

%
)

DMD

ViBe (φ = 16)

ViBe (φ = 2)

Figure 3.4: Percentage of detected foreground pixels of the lying person over time.

3.4.2 Ghost Removal

The performance of ghost detection and removal was examined by means of a test
sequence showing a group of persons in an office environment. In this sequence, five
persons are standing still initially for four seconds and then walk around for 26 seconds.
The sensor height and tilt were 2.5m and 25 degrees, respectively.

Figure 3.5 visualizes the obtained PCC-scores. The scores were low initially because no
persons were detected, as they were part of the background models. DMD performed very
well in terms of bootstrapping; the negative effects disappeared almost instantaneously
as soon as the persons started to walk. This has two reasons. First, DMD never classifies
pixels that are larger (and thus represent further distances) than the model as foreground.
Therefore, ghosts cannot cause false positives.3 Second, the ghost removal algorithm,
which runs every two seconds in the default configuration, is able to correct for all ghosts
immediately, except for regions that are obscured by foreground objects.

3However, they may obscure other objects, causing false negatives.

31

0 5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

second

P
C

C
 s

c
o

re

DMD

ViBe (φ = 16)

ViBe (φ = 2)

Figure 3.5: PCC-score of the group scene.

The time it takes ViBe to remove ghosts depends on φ. With φ = 16 the performance
not improve considerably throughout the sequence, as visible in Figure 3.5. With φ = 2
the performance improved faster, but it still took about 25 seconds until all ghosts were
removed.4 These results highlight the importance of fast ghost removal.

At the end of the sequence, the performances of DMD and ViBe with φ = 2 were
similar. This was expected as the higher sensitivity of DMD is not beneficial with regard
to foreground objects that are distant from the background. In fact, algorithm and
configuration choices were found to have only little impact on the detection performance
of standing or moving persons.

3.4.3 Speed

Motion detection algorithms must be fast even on low-end hardware in order to be
applicable for the proposed fall detection system. The speed of DMD was measured using
the fall and group sequences. The time required to process every frame was measured
and the results of 30 consecutive frames were averaged. All tests were repeated three
times, the results reported below represent the mean. Three systems with the following
CPUs were tested: Intel Core i7 2600, Intel Atom D2500, and Dual ARM Cortex A9
(PandaBoard ES). Ubuntu 12.04 with GCC 4.7.2 was used on all systems. DMD was
compiled directly on all systems with the optimization flags -O3 -march=native.

Figure 3.6 (a) shows the measured speed of DMD on the Intel i7 system. The
continuous lines depict the speed of DMD in default configuration. The average frame
rate over both sequences was 751 fps. This is about three times as fast as ViBe on similar
data and hardware [10]. To the knowledge of the author, DMD is faster than all other
state-of-the-art background subtraction algorithms.

4The reason why the person disappeared more quickly in Section 3.4.1 is that its detected region was
much smaller initially than some of the areas representing ghosts.

32

The dashed lines show the performance of an alternative version denoted DMDs,
which uses static thresholds. This limits the applicability for fall detection but has
negligible effects with respect to standing or walking persons. DMDs achieved an average
framerate of 874 fps, which amounts to an improvement of 16.4%.

0 5 10 15 20 25 30
700

750

800

850

900

950

second

fp
s

DMD (fall scene)

DMD (group scene)

DMDs (fall scene)

DMDs (group scene)

(a) Intel i7 2600

0 5 10 15 20 25 30
75

80

85

90

95

100

105

110

second
fp

s

DMD (Atom)

DMD (PandaBoard)

DMDs (Atom)

DMDs (PandaBoard)

(b) Intel Atom & PandaBoard ES

Figure 3.6: Speed of DMD and DMDs on an Intel i7 2600 desktop computer (a) as well
as on an Intel Atom system and a PandaBoard ES (b).

Figure 3.6 (b) illustrates the speed on the Intel Atom system and the PandaBoard ES
on the group sequence. DMD was fast enough for real-time processing on both systems.
The Cortex A9 CPU of the PandaBoard ES was faster than the Atom CPU.

In order to estimate the speed of model-initialization, the times required to initialize
the model for the fall and group sequences were measured. The first frame of the fall
sequence contained mostly small zero-pixel areas, as summarized in Table 3.1. Model
initialization completed in 0.97ms on the Intel i7 system, which corresponds to a framerate
of 103fps. The first frame of the group sequence contained four large zero-pixel areas
(windows). The initialization speed remained relatively high, given the much larger
zero-pixel areas. This confirms that interpolation scales well in this regard.

Table 3.1: Interpolation speed of zero-pixel regions. # denotes the number of zero-pixel
regions and qi represents the ith quantile of region sizes (number of pixels).

sequence # q0.25 q0.5 q0.75 q0.9 q1 fps
fall 104 1.0 9.5 56.5 177.0 5211.0 103

group 101 2.0 38.0 101.7 383.8 21522.0 54

33

CHAPTER 4
Person Detection and Tracking

The aim of person detection and tracking is to detect persons in image sequences and
associate these detections correctly between frames. Person detection and tracking is a
complex problem due to the nonrigid nature of persons, complex motion, and occlusions,
among others [99]. With grayscale or color images, another complication is the fact
that the perspective projection of the scene during image formation causes a loss of
information. Kinect and other depth sensors allow for a partial reconstruction of the
scene geometry, which facilitates the problem. The proposed system utilizes this fact
and detects and tracks persons in so-called plan-view maps, concise representations of
the scene as viewed from above.

4.1 Related Literature
Person detection and tracking has been an active research field for decades; comprehensive
reviews are available in [99, 63, 39]. This section reviews a selection of recent methods
designed for or applicable to Kinect sensors, categorized based on the data representation
they operate on (depth maps, point clouds, or plan-view maps).

Depth Maps

Methods operating on depth maps frequently utilize histogram-based features and super-
vised learning for person detection [85, 41, 97]. Conceptually, these methods are similar to
a seminal work by Dalal and Triggs [24] that introduced histograms of oriented gradients
as powerful features for person detection in grayscale images. These features model the
local appearance of objects by means of gradient distribution and, when consolidated
to larger blocks, constitute powerful feature descriptors. These descriptors are then
classified as (not) representing a person using a support vector machine. Spinello and
Arras [85] as well as Wu et al. [97] proposed similar descriptors for depth maps, which
model the local distribution depth gradient orientations. The approach by Ikemura and

34

Fujiyoshi [41] is similar in terms of block generation and classification, but uses pairwise
similarities between image regions as features.

These methods reportedly perform well (detection rates of up to 99% at error rates
below 10% [41]) but have high computational requirements. In fact, [85] employ GPU
programming to achieve real-time performance, while [41] report a framerate of only
10fps on a high-end system. One reason is that they process frames completely and
independently; neither motion detection nor tracking are used. Furthermore, they must
be trained on a comprehensive database in order to achieve a high performance in practice,
but such databases are hard to compile, especially in the context of fall detection.

Xia et al. [98] follow a different approach, first detecting heads of persons via shape
matching. Based on these detections, persons are segmented via region growing and
tracked based on the coordinates and velocities of their centroids. This approach has the
advantage of being less complex and not requiring a training phase, which increases its
flexibility. However, its head detection algorithm is expected to fail for lying persons.

Point Clouds

Another approach is to first reproject depth map pixels to world coordinates and to
operate on the resulting point cloud. Kelly et al. [45] follow this approach, clustering the
point cloud using an iterative top-down approach based on 3D proximity tests. Thresholds
are computed dynamically from the observed maximum height and the golden ratio,
which allows for estimating the proportion of persons based on their height. Subsequently
the obtained clusters are analyzed with respect to under- and over-segmentation via
ellipse fitting on shoulder and head height, respectively. This method is able to cope
with significant occlusions but is prohibitively slow (less than 1fps including tracking).
Furthermore, the assumptions used for clustering do not apply to fallen persons.

Hegger et al. [37] compute surface normals from subsampled point clouds and cluster
points using an efficient top-down method that results in small clusters of adjacent points.
These clusters are then classified as human or non-human by processing normal vector
histograms of the constituting points with a Random Forest classifier. Subsequently,
nearby clusters classified as representing a person are merged. According to the authors,
the system is too slow for real-time applications and achieves a detection rate of 84%,
which is considered too low for reliable fall detection.

Plan-View Maps

A reason why methods operating on point clouds are slow is the large number of points
(up to 307200) and the fact that clustering is a complex task. Hegger et al. [37] alleviate
this problem by subsampling the point cloud. This is accomplished by discretizing the
continuous space into cubic cells, which significantly reduces the number of points at the
expense of resolution. A similar yet more extreme approach to data reduction is to utilize
so-called plan-view maps, two-dimensional representations of the scene as viewed from
the top and under orthographic projection [13]. Plan-view maps are computed from point
clouds by subsampling X and Z coordinates (assuming the scene geometry presented in

35

Section 4.2) and calculating scalar statistics over all points that belong to the same cell.
This represents a significant data reduction (up to two orders of magnitude, depending
on the configuration). Furthermore, plan-view maps are two-dimensional matrices and
hence efficient to process. On the other hand, they convey much less information than
the original point clouds. Whether this is a problem depends on the task at hand.

Beymer [13] first showed that plan-view maps allow for efficient detection and tracking
of persons in depth data. He introduced occupancy maps, which represent the number of
points that belong to each cell, and tracked persons in these maps via Gaussian mixtures
and Kalman filtering. Harville [33] computed occupancy and height maps from foreground
pixels obtained via background subtraction and tracked persons by means of plan-view
templates and Kalman filtering. Height maps encode the largest Y coordinate observed
for each cell and thus are powerful representations of the scene geometry. Later works
improved the tracking stage and introduced new plan-view maps. Harville [35] used an
algorithm reminiscent of particle filtering for tracking. Muñoz-Salinas [79] introduced
color maps and employed the CONDENSATION algorithm for tracking.

Conclusions

Considering the aim of this thesis, plan-view maps have several advantages over alter-
natives. They can be computed comparatively quickly, especially if only foreground
pixels are considered. Furthermore, they represent powerful cues for person detection
and tracking. Most importantly, (i) person sizes do not depend on the sensor distance,
(ii) persons are better separable because of the virtual top-view, and (iii) height maps
are robust with respect to partial occlusions. Moreover, they allow for robust features
for fall detection, as discussed in Section 5.1. Regarding tracking, complex algorithms
are considered superfluous. This is because the number of simultaneously visible persons
is expected to be small (three persons at most), considering the purpose of the system.

4.2 Sensor-World Geometry
In order to be able to compute plan-view maps, the relation between points in the scene
and pixels of the depth map must be known. Kinect uses a traditional CCD sensor for
acquiring IR images, from which disparities are estimated. It is thus applicable to regard
depth maps as images from a camera, which simplifies computations.

4.2.1 Sensor Model

A simple model for describing how points in the scene are mapped to an image is the
pinhole camera model [32]. This model assumes the coordinate system (O; e1, e2, e3)
with O(0|0|0), e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T and has a single parameter
f > 0. This parameter, called focal length, defines the image plane, Z = −f . The image
coordinates of a point P (X|Y |Z) are the (X,Y) coordinates of the intersection point
between the image plane E : (x − a)T e3 = 0 and the line l : x = λ

»

OP = λP (λ ∈ R).

36

Combining both equations yields

(λP − a)T e3 = 0 ⇐⇒ λP T e3 − ae3 = 0 ⇐⇒ λ = − f
Z
,

hence the image coordinates of P are p = (x, y)T = (−fX/Z,−fY/Z)T . Figure 4.1
illustrates this model and the resulting mapping, which is called central projection.

e3

e1

e2

f
O

P

p

Figure 4.1: The pinhole camera model.

The intersection point of the image plane and the line l : x = λe3 (λ ∈ R) is called
principal point. The pinhole model assumes that this point has the image coordinates
(x0, y0)T = (0, 0)T , but in practice this is not always the case. To this end, the mapping
becomes P (X|Y |Z) 7→ (−fX/Z + x0,−fY/Z + y0)T . Moreover, CCD sensors have a
finite resolution, hence image coordinates must be discretized accordingly. This can be
accomplished by multiplying x and y with the number of pixels per unit distance, mx

and my. In practice, this step is usually carried out during central projection. Doing
so yields the mapping P (X|Y |Z) 7→ (αxX/Z + x′0, αyY/Z + y′0)T with αx = −mxf, αy =
−myf, x

′
0 = mxx0, and y′0 = myy0 [32]. This mapping can be written asXY

Z

 7→
αxX + Zx′0
αyY + Zy′0

Z

 =

αx 0 x′0
0 αy y′0
0 0 1

XY
Z

 = KP = p̃, (4.1)

with p̃ representing the homogeneous image coordinates of P . The calibration matrix K
can be obtained by means of camera calibration. Different methods for calibrating the
Kinect have been proposed [82, 47, 38]. According to Smisek et al. [82] the parameters of
the infrared sensor are αx = αy = −585.6px, x′0 = 316px and y′0 = 247.6px.

Infrared images and depth maps are shifted by about three pixels in both directions
[82]. This shift can be corrected by adapting x′0 and y′0 accordingly. The resulting model
approximates the mapping between points in the scene and depth map pixels. This
model was found sufficiently accurate with respect to fall detection, in spite of neglecting
factors such as lens distortions.

4.2.2 World Coordinates

In practice, the camera coordinate system varies depending on how the camera is
positioned in the scene. It is thus practicable to regard (0; e1, e2, e3) as the so-called

37

world coordinate system, and to examine how both coordinate systems are related. Two
coordinate systems with origins O1, O2 are always related by a translation by O2 −O1
and a rotation R. Consequently, the mapping from world to camera coordinates is
Pc = R(P −O) [32]. This mapping can be written in terms of homogeneous coordinates,

P̃c =
(
R −RO
0T 1

)
P̃ = EP̃ . (4.2)

Image coordinates are thus obtained by mapping points from world to camera coordinates
before applying K (4.3). The matrix C is denoted camera matrix.(

p̃
1

)
=
(
K 0
0T 1

)
EP̃ = CP̃ (4.3)

4.3 Sensor Calibration
E varies with the sensor position and orientation, which are not known beforehand. The
proposed system is able to estimate E automatically during startup, which simplifies
the system setup. This is accomplished by detecting the floor and fitting a plane to the
corresponding points in camera coordinates, which yields the equation of the ground plane
in camera coordinates. Subsequently the sensor position and height can be estimated by
comparing this equation with the known ground plane equation in world coordinates.

4.3.1 Floor Detection

The first step of estimating E is the detection of depth map pixels that constitute the
floor. A fast and reliable approach for this purpose is to use so-called v-disparity images.
These scene representations are popular for road and obstacle detection [51, 16] but also
allow for detection of the floor in indoor scenes [74]. V-disparity images are obtained
by computing a histogram with n bins for each depth map row r, considering only
values inside some interval [zmin, zmax]. This results in an image whose pixels encode
the frequency of measurements of particular distance ranges. On the condition that the
sensor is positioned correctly (not flipped upside-down and with little rotation along the
e3-axis), distance measurements of the floor change approximately linearly with respect
to r. Consequently, depth map pixels that represent the floor constitute a line in the
v-disparity image [51]. Figure 4.2 shows an example.

The floor can thus be found by means of line detection in the v-disparity image. The
current implementation uses Hough transform for this purpose, as in [51]. Detected lines
are examined in terms of length, slope as well as position and the line that most likely
represents the floor plane is selected. The criteria the floor line must fulfill are that (i) it
must exceed some minimum length, (ii) the slope between its normal vector and (1, 0)T

must be 0 < α < π/2, and (iii) it must appear rightmost in the v-disparity image. These
criteria allow for reliable detection of the floor plane in presence of other lines (which
originate from desks and walls, for example), as illustrated in Figure 4.2.

38

Figure 4.2: A color-coded depth map with samples from the floor (left), as obtained
via detection of the floor line in the corresponding v-disparity image (right).

Once the floor line has been found, depth map pixels representing the floor are
obtained on a row-by-row basis. This is accomplished by selecting pixels that fall in the
interval [zr − ε, zr + ε], with zr being the distance represented by the floor line at row r.
The current implementation uses ε = 25cm, which is appropriate considering the quality
characteristics of the sensor.

4.3.2 Sensor Calibration

After floor detection a subset of the floor pixels is selected randomly and projected to
camera space, Pk = K−1p̃k. The projected points comprise a point cloud in camera
coordinates from which the equation of the floor plane can be estimated via plane fitting.
There are no outliers (ε is small compared to the observed distances), hence robust
techniques such as RANSAC are not beneficial. Thus total least squares is employed,
that is the goal is to find the plane E : (x − a)T n = 0 with ||n|| = 1 that minimizes∑

k(Pk − a)T n. It can be shown that E contains the barycenter p = 1/m∑k Pk of the
projected points [80], hence E satisfies ytn = 0 with y = x− p and thus minimizes∑

(QT
k n)2 =

∑
QT

k nQT
k n = nT

(∑
QkQ

T
k

)
︸ ︷︷ ︸

=Σ∈R3×3

n (Qk = Pk − p) (4.4)

under the constraint ||n|| = 1 (which implies nT n = 1). The desired minimum can
be calculated using Lagrange multipliers, that is by solving for ∂F/∂(·) = 0 with
F = nT Σn − λ(nT n − 1). One obtains ∂F/∂n = 2Σn − 2λn = 0 (Σ is symmetric by
definition) and thus Σn = λn. This implies that n is a normalized eigenvector of Σ.

39

On the condition that ||n|| = 1 the term −λ(nT n − 1) vanishes, hence n minimizes
nT Σn = nT (λn) = λnT n = λ. Consequently, n is the normalized eigenvector of Σ with
the smallest eigenvalue λ. This eigenvalue analysis of Σ (which represents the covariance
of the samples around their mean) is called principal component analysis [88].

A viable alternative for obtaining n is by means of singular value decomposition of
Q = (Q1 · · ·Qm)T . Namely, n corresponds to the right singular vector of Q with the
smallest singular value [88, 83]. Singular value decomposition has the advantage of being
numerically stable [84]. Computation times were found similar for m = 2000.

Another optimization is to estimate the hyperplane coordinates ẽ = (a, b, c, d)T of E
in projective space, which is possible directly from P = (P1 · · ·Pm)T . Similar to before ẽ
corresponds to the right singular vector of P with the smallest singular value.

The matrix E is obtained directly from ẽ. On the condition that b ≥ 0 (which can
always obtained by computing ẽ = −ẽ if necessary) the distance between the origin
(the sensor location) and the floor plane is s = d/n with n = ||(a, b, c)T ||. The sensor
orientation corresponds to the rotation that maps e2 = (0, 1, 0)T (the normal vector of the
floor plane in world coordinates) to n = (a, b, c)T /n. By definition the angle ϕ between
e2 and n satisfies cos(ϕ) = eT

2 n. Consequently e2 can be transformed to n by rotating
e2 by ϕ = arccos(eT

2 n) along the axis v = e2 × n. The rotation matrix corresponding to
this so-called axis-angle representation (v, ϕ) = (v1, v2, v3, ϕ) can be calculated by means
of Rodrigues’ formula [88], R = I + sin(ϕ)K + (1− cos(ϕ))K2, with

K =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 . (4.5)

Subsequently E is obtained as

E =
(
R −sRe2
0T 1

)
. (4.6)

4.3.3 Parameter Smoothing

E is obtained from several frames in order to increase robustness. This is accomplished
by estimating ẽ1 · · · ẽm over m consecutive frames (currently m = 30) and computing E
based on n = median(n1, . . . ,nm) and s = median(s1, . . . , sm).

4.3.4 Results and Discussion

Table 4.1 summarizes test results regarding calibration performance in the office environ-
ment illustrated in Figure 4.2. The results were obtained by applying the algorithm ten
times in succession for each tested sensor position. The mean calibration errors (difference
between the actual sensor height and the mean of the estimations) were approximately
5cm and the standard deviations of the estimations were below 1cm. The values of the
last column were obtained by applying the estimated matrices E1 · · · E10 on a vector and
calculating the standard deviation of the angles between the results. The values thus

40

indicate the variance between successive estimations of R. The results suggest that the
proposed calibration method is able to estimate E accurately and reliably, and that it
is robust with respect to sensor height and tilt. However, the sensor rotation along the
e3-axis of the world coordinate system should be small to ensure that the floor appears
as a distinctive line in v-disparity images. The processing time required for estimating E
is less than two seconds on a PandaBoard ES for m = 30.

Table 4.1: Calibration performance in an office environment at different sensor positions
and tilts (negative rotation along the e1-axis).

sensor height sensor tilt mean error stddev angle stddev
1.5m 15° 5.3cm 0.9cm 0.22°
2.0m 25° 5.0cm 0.3cm 0.12°
2.5m 35° 4.9cm 0.5cm 0.05°
3.0m 45° 5.9cm 0.9cm 0.20°

Evaluation in practice has confirmed the reliability of the proposed method. Moreover,
the method is flexible in terms of scene conditions as long as (i) the sensor rotation
along the e3-axis is small and (ii) the floor is visible. A correct sensor placement can be
ensured by positioning the sensor on top of furniture or other planar objects. The latter
requirement is potentially restrictive but was found less so in practice. This is because
the floor is detectable as long as larger parts are visible, even in cluttered environments.
However, the method may fail if only a small fraction of the floor is visible. Improvements
in this regard are planned, for example by iteratively adapting parameters for ground
line detection or using a more flexible line detection algorithm.

4.4 Person Detection
The proposed system detects persons using occupancy and height maps that are generated
from regions classified as foreground during motion detection. Given the high data quality,
robust person detection can be achieved by classifying obtained occupancy and height
map regions using simple geometrical properties. Features that are too restrictive for
detecting fallen persons are used only initially.

4.4.1 Computation of Plan-View Maps

Algorithm 2 shows how occupancy O and height maps H are computed from a depth map
and a foreground mask. Firstly, the world coordinates (X,Y, Z) of each foreground pixel
p = (x, y, Z)T are obtained. This is accomplished by multiplying the homogeneous version
p̃ with the inverse of the camera matrix C. On this basis, the plan-view coordinates of the
pixel are (|(X−Xmin)/δ|, |(Z−Zmin)/δ|) = (px, pz).1 Only points within a certain region
of interest ([Xmin, Xmax], [Ymin, Ymax], [Zmin, Zmax]) are considered. Ymin = −20cm and

1The symbol | | means „round to nearest integer”.

41

Ymax = 2m are reasonable choices for person detection (the negative lower limit accounts
for imprecise calibration). The other limits are selected automatically based on scene
analysis, as described in Section 5.3. Proper selection of δ depends on the data quality
and resolution requirements. Setting δ too low causes significant noise due to the limited
sensor resolution and precision. Considering the data quality of Kinect, an appropriate
choice in terms of noise robustness is to define δ = 7.5cm and apply a 3× 3 box filter.
Figure 4.3 illustrates an occupancy map and a height map.

Set O(·) = H(·) = 0
for every depth map pixel p do

if classified as foreground then
map to world coordinates: P̃ = C−1p̃
if P lies within the region of interest then

compute plan-view coords.: px = |(X −Xmin)/δ|, py = |(Y − Ymin)/δ|
update occupancy map: O(px, pz) = O(px, pz) + (Zc/1000)2

update height map: H(px, pz) = max(H(px, pz), Y)
end

end
end

Algorithm 2: Computation of plan-view maps.

5
10

15
20

25
5

10

15

20

25

0

2000

4000

6000

p
z

p
x

o
c
c
u

p
a

n
c
y

(a) occupancy map

5
10

15
20

25
5

10

15

20

25

0

500

1000

1500

p
z

p
x

h
e

ig
h

t
(m

m
)

(b) height map

Figure 4.3: Occupancy and height maps generated from a depth map. The peaks
towards the right represent a person.

Occupancy and height maps are complementary with regard to person detection.
The former are robust in terms of noise, but not in terms of occlusions. On the other
hand, the latter are less affected by partial occlusions but susceptible to noise, as visible

42

in Figure 4.3 (b). To this end, occupancy maps are frequently utilized to height maps,
by thresholding height maps based on occupancy [33, 34, 79]. The occupancy threshold
t0 must be selected carefully as occupancies of lying persons are naturally lower than
those of upright persons. An appropriate threshold for the given plan-view configuration,
t0 = 300, was found by examining occupancy statistics of fallen persons from different
distances and angles. This threshold did not affect regions corresponding to fallen persons
significantly, while removing most errors due to sensor noise.

4.4.2 Detection of Candidate Regions

In [33, 35] plan-view regions that ought to represent persons are detected in a greedy
fashion. In each iteration the plan-view cell with the largest occupancy is located and
a quadratic region with a fixed size around this cell is selected as a person candidate
region. Subsequently, all occupancies in this region are set to zero and the next iteration
starts, until the maximum occupancy decreases below a threshold. A similar method is
employed in [79]. This approach is inadequate for fall detection because the area occupied
by persons varies on an individual basis and increases significantly if they are lying.
Setting the area large enough to encompass lying persons increases the likelihood of
undersegmentation in presence of multiple persons.

The proposed system detects candidate regions via connected component analysis of
the binary version of the height map, H > 0. This approach is suitable for fall detection
because regions of persons are stable in plan-view space, as verified using the fall database
kindly provided by the authors of [69]. This database is henceforth referred to as „the fall
database”. Connected components have the advantage of representing regions occupied
by persons more precisely than templates with predetermined shapes. For computation
the algorithm presented in [36] was optimized with regard to the characteristics of the
input (the number of connected components is small in general).

4.4.3 Feature Selection

The resulting candidate regions R1 · · ·Rn must be analyzed for whether they represent
persons. From a pattern recognition standpoint, this represents a binary classification
problem and the goal of feature selection is to find features that are distinctive in this
regard. For this purpose, it is assumed that persons are upright when they enter the field
of view. This assumption enables powerful features for classifying new objects but is too
restrictive with regard to fallen persons. Therefore, some features are used only initially,
that is until the object in question has been classified as a person for several frames.

One used feature is the number of cells of Ri, which represents the area occupied by
the object. An analysis of 250 frames from different scenes depicting standing, sitting,
and lying persons from different distances and angles suggests that this feature follows a
Rayleigh distribution with µ̂ ≈ 68 (Figure 4.4 (a)).

On the condition that persons appear upright, a naturally distinctive feature is
the maximum height observed for Ri [35]. Figure 4.4 (b) shows the distribution of the
90th percentiles of regions representing upright and sitting persons, obtained from the

43

aforementioned dataset. As expected, this distribution is approximately Gaussian with
maximum likelihood estimates of µ̂ = 1341 and σ̂ = 205. The 90th percentile is used in
favor of the maximum because it is a more robust statistic.

Another intuitively suitable feature is the 90th percentile of occupancies, an indicator
for object size (Figure 4.4 (c), µ̂ = 5426, σ̂ = 1661). However, this feature is susceptible
to measurement noise and partial occlusions. Furthermore, it is not completely stable
with respect to object distance from the sensor, in spite of the fact that occupancies are
normalized. These reasons explain the high standard deviation.

The fourth feature employed is a simple shape feature, namely the number of cells
with heights of at least m− 20cm divided by those with heights of at least m− 50cm,
with m representing the observed maximum. The rationale for using this feature is that
the head of a person has a smaller size than the upper body, thus the ratio is expected
to be below 1. Results obtained from the test set confirm this hypothesis (Figure 4.4 (d),
µ̂ = 0.42, σ̂ = 0.11). This feature is general, robust with respect to partial occlusions,
and rotational invariant.

40 60 80 100 120 140

0.01
0.05
0.1

0.25

0.5

0.75

0.9

0.95

0.99
0.995

area of person region

p
ro

b
a
b
ili

ty

(a) number of cells

1000 1200 1400 1600 1800

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

0.9th quantile of measured heights of upright persons (mm)

p
ro

b
a
b
ili

ty

(b) 90th height percentile

2000 4000 6000 8000 10000 12000

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

0.9th quantile of measured occupancies of upright persons

p
ro

b
a

b
ili

ty

(c) 90th occupancy percentile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

cell area ratio

p
ro

b
a
b
ili

ty

(d) cell area ratio

Figure 4.4: Distribution plots of features obtained from candidate regions that represent
persons. Plot (a) shows the occupied area of upright, sitting, and fallen persons in
comparison with a Rayleigh distribution. The other plots depict features obtained from
upright or sitting persons in comparison with Gaussian distributions.

44

4.4.4 Classification

The task of classification is to examine the features derived from Ri and deduce whether
Ri represents a person or not. This is often accomplished by means of supervised learning,
that is by training a classifier on a database of feature vectors with known class labels.
This allows the classifier to learn decision boundaries between classes in feature space,
which in turn are used for classification. To this end, person detection in plan-view maps
can be achieved by manually labeling a large number of candidate regions as positive
(representing a person) or negative, and use the resulting database to train a classifier,
which is then used to classify Ri (the histogram-based methods reviewed in Section
4.1 follow this approach). Negative samples can also be obtained in large numbers by
generating candidate regions randomly, on the condition that no persons are present.2

In order to assay the performance of this approach for person detection in plan-view
maps, a dataset containing 80 positive and 800 negative regions was obtained from the
fall database. Linear discriminant analysis applied on this dataset using the features
b, c, d (Figure 4.4) achieved an average classification sensitivity of 0.99 at a specificity
of 0.77 (obtained via ten-fold stratified cross-validation). This analysis is flawed (e.g.
sampling bias and the fact that the negative features were not approximately Gaussian)
but nonetheless suggests that supervised learning is suitable, on the condition that an
extensive training database is available.

However, it is hard to compile such a database because of the large variation in
the appearance of persons, particularly in combination with assistive equipment such
as rollators. Furthermore, manually obtaining an extensive set of negative samples (as
opposed to random sampling, which is flawed because it generates synthetic regions)
is time consuming and arguably unfruitful. To this end, feature vectors x = (a, b, c, d)
are classified solely based on comparison with positive samples. For this purpose, it is
assumed that the features are statistically independent, thus P (x) = P (a)P (b)P (c)P (d).
This is a strong assumption that does not actually apply, but it allows for an efficient
component-wise classification. The rationale is that x can be rejected as soon as any
factor in the above equation is found to be below a threshold.

To further increase the classification speed, the current implementation does not
compute probabilities but utilizes step functions S(a), S(b), S(c), S(d). These functions
are defined based on the estimated feature distributions of positive samples. For example,
considering Figure 4.4 (a) a conservative choice for S(a) with an expected false rejection
rate of about 1% is given in equation (4.7). The other features are approximately normally
distributed, hence appropriate thresholds are [−2.5z, 2.5z], with z denoting the z-score.

S(a) =
{

1, 30 ≤ a ≤ 160
0, otherwise

(4.7)

On this basis, x is classified as representing a person if S(a)S(b)S(c)S(d) = 1. This
implies that x does not represent a person if any factor is zero, which increases efficiency;
the system computes and evaluates features in succession and aborts as soon as S(·) = 0.

2This approach is used in [85].

45

4.4.5 Results and Discussion

The training error (i.e. the fraction of misclassified samples) of the proposed classification
algorithm on the aforementioned dataset is 0.18 (sensitivity: 0.99, specificity: 0.8).

In order to obtain an objective estimate of the classification performance, one frame
was extracted every second for sequences from the fall database that depict upright
persons. The person detection algorithm was applied to each of the 625 frames obtained
this way. It was able to detect all persons correctly (530 regions), as assessed via visual
comparison of the input and the detector output. Only three detected regions did not
represent persons but were caused by sensor noise. These results confirm the applicability
of the person proposed detection method. Future work will focus on improving the
training database by incorporating data recorded in practice.

The detection performance in presence of multiple persons was assayed on two test
sequences, which were recorded in an office environment at a sensor height of 2.2m.
In these sequences, two and three persons, respectively, are walking around without
restrictions at distances of up to 5m from the sensor. Both sequences have a duration of
60 seconds. For evaluation purposes, three frames per second were extracted from each
sequence. The sensitivity decreased with an increasing number of persons but remained
above 94%. Table 4.2 summarizes the person detection performance.

Table 4.2: Performance of the proposed person detection method on test frames depicting
one, two, and three persons, respectively.

persons positives true positives sensitivity false positives
one person 530 530 100% 3
two persons 322 317 98.5% 1

three persons 492 465 94.5% 0

There are two causes for the decreasing sensitivity. First, the likelihood of occlusions
increases with the number of present persons. The person detection method is robust
with respect to partial occlusions, but significant occlusions can cause misdetections. This
circumstance is illustrated in Figure 4.5. Second, persons that stand close together can
cause the corresponding plan-view regions to merge, which leads to undersegmentation
(Figure 4.5 (c)). This problem is accounted for during tracking.

The connected component algorithm employed for detecting person candidate regions
has a time complexity of O(n), with n representing the number of plan-view cells [36].
The time complexity for computing the features for a candidate region is O(m logm)
(features b and c require sorted data), with m denoting the number of occupied cells.
Erroneous region candidates due to sensor noise are often small and thus rejected early,
reducing the time complexity for computing features to O(1) (feature a can be computed
in constant time). In summary, the person detection method has moderate computational
requirements and scales well with the number of visible persons. Quantitative test results
summarized in Figure 4.9 confirm this fact.

46

(a) partial occlusion (b) partial occlusion (c) undersegmentation

Figure 4.5: Visualization of the detector output; each detected person is shown in a
different color. The proposed person detection method is robust with respect to partial
occlusions (a) but fails if the degree of occlusion becomes too high (b). The second cause
for errors is undersegmentation of close persons (c).

4.5 Tracking
For the purpose of tracking, each region Rj is represented as a point in three-dimensional
plan-view space, denoted as rj = (xj , zj , hj). cj = (xj , zj) is the center of mass of Rj ,
calculated as stated in Equation 4.8. The center of mass is used in favor of the centroid
because it is more stable with respect to moving limbs. This is because the corresponding
regions have lower occupancies and hence contribute less to cj . hj = H(cj)/δ represents
the height of Rj at the position of its center of mass in plan-view coordinates. If cj /∈ Rj ,
which is possible unless Rj is convex, the maximum observed height is used instead.

cj = 1∑
O(Rj)

∑
p∈Rj

O(p)p (4.8)

Similarly, each track is represented by a tuple ti = (xi, zi, hi). The problem is thus to
find, in each frame, the optimal association between the known tracks t1 · · · tm and the
detected person regions r1 · · · rn. An association is optimal if it minimizes the association
costs ∑wij . On the condition that m = n and that each track must be assigned to a
different region, this represents a linear assignment problem, which can be solved in
polynomial time using the Hungarian algorithm [50].

4.5.1 Association Costs

Association costs are calculated based on distance and velocity constraints. More precisely,
the cost wij to associate track Ti with region Rj is calculated as the Euclidean distance
between the the estimated position of the former and the point representation the latter,
||ti − rj ||. This applies unless ||(xi, zi)− cj || > t, in which case wij =∞. This distance

47

constraint is motivated by the fact that the velocity of persons is limited. Heights are
not used in this context because they are less stable, especially during falls. The current
implementation uses a threshold of t = 5, which corresponds to 37.5cm, in order to
account for the limited stability of cj with respect to changes in pose.

ti is estimated under the assumption that the velocity remains constant between
frames and that there are no measurement errors. In this case ti = 2t′i − t′′i , with t′i
and t′′i denoting the track position in the most recent and second most recent frame,
respectively. More sophisticated means for state estimation exist, such as the popular
Kalman and particle filters [6]. However, the employed method was found sufficient for
fall detection and has the advantage of being computationally simple.

Computing the association costs between all tracks and regions results in a m× n
cost matrix (wij). On the condition that m = n this matrix is square and the Hungarian
algorithm can be applied directly. However, in general m 6= n because persons may enter
or leave the view at any time, or due to occlusions. This problem is solved by introducing
dummy tracks and regions with zero association costs.

4.5.2 Association of Tracks and Regions

The Hungarian algorithm yields pairs (i, j)k so that ∑k wij is minimized. It does not
assign multiple tracks to the same region (and vice versa), which is required if multiple
person regions become merged due to proximity. This section outlines a simple algorithm
to overcome this limitation.

The first step of this algorithm is to create two Boolean m×n matrices (oij) and (aij),
with oij encoding whether the estimated track position (xi, zi) lies within the bounding
box of Rj . Similarly, (aij) encodes whether track i and region j are part of the found
optimal association. (aij) is obtained by initializing it with zeros and subsequently setting
aij = 1 for every (i, j)k for which i ≤ m, j ≤ n, and wij 6=∞.

On the condition that no rows of the matrix (aij) are zero vectors, it represents the
sought optimal association between tracks and regions. In this case, the track positions
are updated, t′′i = t′i, t′i = rj , and new tracks are generated for all regions not assigned
to any track (indicated by columns that are zero vectors).

If the ith row of (aij) is a zero vector, no association was found for Ti. There are two
possible reasons for this circumstance; the corresponding region was either not detectable
or merged with other regions. (oij) is a hint for the present reason; Ti lies within the
bounding box of region j if oij = 1. In this case, it is assumed that Ti and Rj correspond
and that the reason for aij = 0 is that Rj was already assigned to another track k.
Consequently, Rj is split between Ti and Tk (and in general all other tracks assigned this
way) via nearest neighbor clustering. Subsequently, the positions of Ti and Tk are set to
the center of mass of the resulting regions.

If, on the other hand, there is no such component j, the position of Ti is updated
under the assumption that the velocity remains constant and a counter is incremented
that encodes for how many frames Ti has not been associated with any region. If this
counter exceeds a threshold (ten seconds in the current implementation), Ti is discarded.

48

(a)

T1

T2 T3R1

(b)

R1 R2

(c) (d)

Figure 4.6: Correction for undersegmentation. Image (a) illustrates the situation in
frame t− 1. There are three tracked regions, the arrows represent their center of mass
and estimated velocity. In frame t one region is no longer detected and the two other
regions are merged (b). a11 = 0 and o11 = 0, hence track T1 is not associated to any
region. On the other hand, a31 = 0 and o31 = 1 (T3 is not associated to region R1 but lies
within its bounding box). Consequently, R1 is split among T2 (to which it was assigned
to originally) and T3 via nearest neighbor clustering (c). Finally, the positions of T2 and
T3 are set to the center of mass of the corresponding split regions (d). The position of T1
is updated under the constant velocity assumption.

4.5.3 Tracking-Based Classification

As discussed before, some features used for classifying candidate regions are too restrictive
with respect to fallen persons. Therefore, these features are used only for classifying
regions that correspond to new tracks. The rationale behind this approach is that persons
are expected to be upright when they enter the view. This is implemented as follows.
First, only feature (a) is evaluated, and all candidate regions for which S(a) = 0 are
discarded. The remaining regions are input to the tracking stage, and the other features
are tested only for regions for which ki ≤ K, with ki denoting the number of frames the
corresponding tracks have been known. If a region is not classified as representing a
person on this basis, both the region and the associated track are discarded. Consequently,
objects must be classified as persons for K consecutive frames before they are regarded
as such. Only tracks with ki > K are considered, which implies a delay of K frames.
Small values for K were found to be sufficient (e.g. corresponding to one second).

4.5.4 Results and Discussion

In order to evaluate the tracking performance in the context of fall detection, the person
detection and tracking algorithms discussed in this chapter were tested on the fall database.
This database comprises 144 sequences with durations between 15 and 40 seconds. In
each sequence a single person performs an activity of daily living or a simulated fall. No
tracking errors (e.g. losing track of the person) were observed.

The performance in presence of multiple persons was assayed on the two test sequences
introduced in Section 4.4.5. All persons were tracked correctly even though some were not

49

detected over several frames due to occlusions. This confirms that the tracking algorithm
can cope with temporary missed detections. Merged person regions were detected and
corrected successfully, as illustrated in Figures 4.7 and 4.8.

Figure 4.7: Illustration of the tracking performance in presence of three persons, in
five second intervals. All persons were tracked correctly over time, even if their occupied
regions overlapped in plan-view space (third illustration). The smooth trajectories
highlight the stability of the center of mass as a region representation. For clarity, only
trajectories corresponding to recent observations are shown.

(a) without correction (b) with correction

Figure 4.8: Visualization of two tracked persons without (a) and with (b) the proposed
method for correcting for undersegmentation due to proximity.

In order to ensure a high specificity of the fall detection system, the tracking algorithm
must be able to cope with situations in which a person moves a chair while sitting on it
before standing up and moving away. This situation can cause two candidate regions, one
for the person and one for the moved chair. It is important that the person is tracked
correctly in order to rule out false alarms. This is the main reason why object height
contributes to association costs. Doing so ensures reliable tracking in such situations.
This was verified using a test sequence in which a person performs the aforementioned
action 40 times with four different chairs. No tracking errors occurred.

In summary, these results confirm the applicability of the proposed person detection
and tracking algorithms for fall detection. However, there is a possibility that persons that
fall out of their beds are not detected. This is due to the height feature used classifying
candidate regions, which causes regions with heights below 83cm to be discarded. If a

50

person rolls out of the bed without rising up, this height criterion might be dissatisfied.
On the other hand, sitting up on the bed is sufficient for a correct detection, and if the
person falls afterwards (e.g. while attempting to stand up) he or she is tracked correctly.

The tracking algorithm can be improved by employing an advanced motion model
(e.g. a particle filter) or multiple state hypotheses [99]. Furthermore, the simple clustering
method can cause temporary classification errors (Figure 4.8 (b)) which, however, were
found not to impact the fall detection performance. Unfortunately, the use of more
complex methods is aggravated by the limited processing power of the target system.

Figure 4.9 illustrates the combined speed of person detection and tracking, as measured
using three test sequences depicting one, two, and three persons, respectively. The test
methods and systems were identical to those presented in Section 3.4.3. The speed on
the test sequences decreased considerably with an increasing number of visible persons.
This is mainly attributed to the increasing number of foreground pixels and hence slower
plan-view computation time. Nevertheless, the framerate remained fast enough for real-
time processing even on low-end hardware; the average framerates on the PandaBoard
ES were 117fps, 83fps, and 66fps, respectively.

0 5 10 15 20 25 30
200

300

400

500

600

700

800

900

second

fp
s

1 person

2 persons

3 persons

(a) Intel Core i7 2600

0 5 10 15 20 25 30
0

50

100

150

200

250

second

fp
s

1 person

2 persons

3 persons

(b) PandaBoard ES

Figure 4.9: Speed of person detection and tracking on the test system with the Intel
Core i7 CPU (a) and on the PandaBoard ES (b).

51

CHAPTER 5
Fall Detection

The proposed system detects falls by means of height map analysis. A finite state machine
is used to model the state of each tracked person over time; state transitions are governed
by height map statistics. Falls and other events are detected based on state transitions
as well as temporal analysis. The system is able to estimate fall confidence scores, which
allow caretakers to balance the trade-off between sensitivity and specificity according to
their needs. Regions in which reliable fall detection is possible are detected automatically,
based on the sensor position and scene geometry. This aids in sensor placement and
improves the specificity. For flexibility, detected falls and other events are processed and
relayed by so-called event handlers, which interface with the outside world.

5.1 State Detection
The proposed system classifies persons as being in one of the following states.

• Active: the person is standing, walking, or sitting on a sitting accommodation.

• Fallen: the person is lying or sitting on the floor.

• Resting: the person is lying on a bed or couch (or other objects).

• Unknown: the person has not been detected for several frames.

This classification is based on height map analysis because person heights are naturally
well-suited for this task (active persons clearly differ from fallen persons in terms of
height), as verified in the pertinent literature [8, 29, 69, 74]. Furthermore, height maps
are robust with respect to partial occlusions and can be processed quickly. On the other
hand, occupancy maps are susceptible to partial occlusions, hence features based on
occupancy are not used.

52

5.1.1 Discrimination Between Active and Inactive Persons

Figure 5.1 illustrates 250 90th percentiles of height map regions representing active, fallen,
and resting persons, obtained from the fall database and own test sequences. It is visible
that this feature is powerful for classifying persons as active or inactive (fallen or resting).
In fact, 17 features (percentiles as well as different measures of central tendency and
dispersion) were evaluated in this regard and the 90th percentile was found the feature
of choice in terms of discriminability. Based on this data, the classification threshold
was defined as η = 775, which maximizes the margin. This nonparametric approach was
employed because the two subsets are not distributed normally, unlike in [74].

96 1826775

fall / resting

active / sitting

Figure 5.1: 90th percentiles of height map regions representing persons.

The 90th percentile is the only feature used for differentiating between active an
inactive persons because it is powerful and robust with respect to partial occlusions and
misdetections of limbs, and because features with similar characteristics were found to be
highly correlated. Furthermore, it is already computed during person detection. Features
representing velocities are not used because of their limitations, particularly the fact
that they are too restrictive for detecting slow falls. Another type of feature employed in
the existing literature is the orientation of the main axis [68, 69]. While this feature is
reportedly well-suited for classification, it is not used for state detection because it is
expected to be of limited robustness with respect to falls that end in sitting positions.

The main motivation for using only a single feature for differentiating between active
an inactive persons is efficiency, which is important considering the limited computational
capabilities of the target system. The fraction of time during which a person falls or is
lying on the floor is very small in general. Consequently, the efficiency can be improved
dramatically by performing fall analysis only if an actual incident is likely. This is
accomplished by testing for whether η < 775, which is possible in constant time, and
proceeding only if this is the case for several frames.

For this purpose, the system assigns one instance of the finite state machine visualized
in Figure 5.2 to each tracked person, hence fall detection in presence of multiple persons
is supported. State transitions depend on the person state, which is computed in each
frame. For example, the state changes to Fallen if the person is classified as such for
n consecutive frames. Transitions to the other states are defined analogously. n = 2
seconds proved to be a valid compromise in terms of transition delay and robustness.

53

Figure 5.2: The finite state machine used to model the state of a person.

5.1.2 Discrimination Between Fallen and Resting Persons

In order to achieve a high specificity, fall detection systems must be able to differentiate
between persons that have fallen and those that are resting on beds or couches, for
example. Differentiation based on velocities is not reliable in practice because falls can
happen slowly and, conversely, people might sit or lie down quickly [69, 74, 46]. Features
derived from plan-view maps are considered impracticable, given the variety of sitting
accommodations. Particularly, the 90th percentile of heights is not suitable for classifying
between fallen and resting persons because observed heights of fall victims that end up
sitting on the floor are similar to those of resting persons, as visible in Figure 5.1.

In consequence, the proposed system differentiates between fallen and resting persons
based on an explicit localization of sitting accommodations during startup. More precisely,
objects (or parts thereof) are detected if they have a height between 30cm and 85cm
and occupy an area of at least 0.75m2 (the area of an object with a size of 150cm times
50cm). These criteria are general enough to apply to most sitting accommodations that
are large enough to lie on. No further classification is performed because doing so would
increase the complexity and arguably decrease the sensitivity in this regard. Instead,
the proposed method detects not only sitting accommodations but also other furniture
that matches these criteria, such as desks. This is not considered a limitation because
such objects cannot cause classification errors for reasons described shortly. On the other
hand, the method is fast and was found robust in practice.

Given the simple criteria, sitting accommodations can be detected reliably and quickly
using height maps. For this purpose a height map of the scene is computed during system
initialization. This is accomplished as stated in Algorithm 2, but without restricting to
foreground pixels. Morphological closing [84] with a 3× 3 circular structuring element is
applied to the result. Closing is advantageous over linear filtering in this context because
it better corrects for local minima that originate from the limited sensor resolution. On
this basis, sitting accommodations can be localized by thresholding the height map.
Subsequently, objects that are too small to lie on are removed via connected component
analysis and area-based classification. This results in a binary plan-view map that encodes
the locations of furniture, as illustrated in Figure 5.3.

54

Figure 5.3: Furniture detection via height map analysis. The black crosses represent
plan-view cells classified as being part of an object. The minimum object height was set
to 20cm for generating this figure because of the low height of the mattress (actual beds
are expected to be higher, hence the default threshold of 30cm).

Once the location and extent of sitting accommodations is known, robust discrimina-
tion between fallen and resting persons is possible based on area overlap in plan-view
space. More precisely, during state detection the percentage of overlap between the area
occupied by the tracked person and localized furniture is calculated. Only overlapping
regions in which the observed height of the person is larger than the corresponding object
height are considered. This ensures that persons are only classified as resting if they lie
on top of objects, not underneath them (which may happen with desks, for example). If
the overlap percentage is below 75% the person is classified as fallen, otherwise as resting.
Using a threshold of 75% as apposed to 100% accounts for imprecise object detection
while being restrictive enough to ensure that falls are detected as such.

5.2 Fall Detection
Falls and other events are initiated by state transitions, as summarized in Table 5.1. More
precisely, the fall detection system distinguishes between Fall, LikelyFall, and Recovery
events. A Fall event signals that a fall was observed, while a LikelyFall event indicates a
situation in which a fall is likely even though it could not be observed explicitly due to
occlusions, for example. State transitions from Fallen to Active trigger a Recovery event,
which signals that a person that had suffered from a fall was able to recover. Transitions
from Inactive to Fallen cause a Fall event only if the second last state differs from Fallen
in order to suppress multiple Fall events that represent the same incidence.

55

Table 5.1: Observed state transitions and effects (rows: old state; columns: new state).
Events written inside brackets are triggered only under certain conditions.

Active Fallen Resting Unknown
Active (Fall) (LikelyFall)
Fallen Recovery

Resting Fall
Unknown (Fall)

5.2.1 Detection of Falls

State transitions from Active to Fallen do not directly cause a Fall events because the
governing criterion was chosen general enough to ensure a high sensitivity (Figure 5.1) at
the expense of specificity. Therefore, Fall events are triggered only after verification by
means of temporal analysis, which is possible due to the robust person detection and
tracking algorithms. For this purpose, the system maintains a list p = (p1 · · · p2n) of
the 2n most recently observed 90th height percentiles for every tracked person, with n
denoting the state transition delay introduced in Section 5.1.1. p encodes the temporal
height progression of a person, from which discriminative features can be derived.

One such feature is the temporal height change. This feature is well-suited for fall
detection because person heights decrease significantly in the course of falls. It is computed
by first smoothing p with a median filter for noise reduction. If a state transition from
Active to Fallen occurs, the most recent occurrence of pi ≥ η happened n frames ago and
indicates the frame during which the (possible) fall was in progress. Consequently, the
height of the person before and after the fall is estimated as hmax = max({p1, . . . , pn−1})
and hmin = min({pn+1, . . . , p2n}), respectively. The temporal height change is calculated
as the difference between the person height before and after the fall, ∆h = hmax − hmin.

662 1511

Figure 5.4: Observed temporal height changes due to falls, in millimeters.

Figure 5.4 shows the distribution of this feature among 60 falls, as obtained from
the fall database. The data were recorded at a rate of 15 frames per second and with
n = 30. The smallest recorded value was 762mm, measured during an fall incident that
ended in a kneeing position. Falls ending in lying poses caused significantly larger values
(µ = 1152mm, σ = 157mm). On this basis, the minimum temporal height change due
to falls was defined as γ = 600mm. This is a conservative choice that is expected to
guarantee a high sensitivity independently of person size and ending pose. Moreover,
this criterion is robust with respect to fall speed as long as the fall duration in frames
does not exceed 2n. The current implementation uses n = 2 seconds, that is falls are
expected not to last longer than four seconds. This assumption is comparatively general,
for example [100] assumes a maximum duration of only two seconds.

56

The temporal height change is the only criterion that determines whether a Fall
event is triggered. Instead of utilizing more criteria of this kind, the system provides fall
confidence scores. This approach, which to the knowledge of the author has not been
followed in this context so far, is considered superior because it enables caretakers to
balance the trade-off between system sensitivity and specificity according to their needs.

Two factors contribute to these confidences, the first one is the observed temporal
height change ∆h, which is normalized according to γ and µ (5.1). Consequently,
c∆h ∈ [0.2, 1] represents the likelihood that a fall occurred based on the temporal height
change, optimized so that falls from the test database achieve c∆h = 1 on average.

c∆h = min
(

1, 0.2 + 0.8∆h− γ
µ− γ

)
(5.1)

The second factor is obtained as follows. Figure 5.5 (a) illustrates the median-filtered
height progressions of the 60 aforementioned falls. It is visible that these progressions are
similar during falls (at frame indices around 0), except for slow falls. On the other hand,
the progressions vary before and afterwards, depending on person size and pose. These
variations can be corrected via normalization according to hmin and hmax, after which
pi ∈ [0, 1]. Figure 5.5 (b) shows the resulting normalized progressions q = (q1 · · · q2n)
along with their average a = (a1 · · · a2n), which was calculated as the trimmed mean of
the individual progressions.

−30 −20 −10 0 10 20 30
0

500

1000

1500

2000

η

frame (0 = last time for which h > η)

9
0
th

 h
e
ig

h
t
p
e
rc

e
n
ti
le

 h
 (

m
m

)

(a) height progressions

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

0.8

1

frame (0 = last time for which h > η)

n
o
rm

a
liz

e
d
 9

0
th

 h
e
ig

h
t
p
e
rc

e
n
ti
le

 h

(b) normalized height progressions

Figure 5.5: Height progressions of falls before (a) and after (b) normalization, centered
at frame n (the time of the last incident of pi ≥ η). The average normalized height
progression is shown in red in Figure (b).

The influence of fall speed is accounted for by resampling q accordingly. For this
purpose, the frames that are expected to represent the begin and end of the fall are
estimated by searching for the last and first occurrences of qi > 0.95 and qi < 0.05,
respectively. Subsequently, q is resampled so that the indices of these occurrences match
those of a. Aliasing effects are suppressed via lowpass filtering. Figure 5.6 (a) illustrates
the resulting progressions r = (r1 · · · r2n) (missing values are interpolated). It is visible
that progressions of slow falls no longer differ considerably from the average.

57

Alignment errors are corrected via template matching. For this purpose, q and r are
matched to u = (an−n/3 · · · an+n/3), that is regarding only central indices, which are ex-
pected to represent the actual fall event. The sought displacements q′ and r′ minimize the
sum of absolute differences [88], arg min q′

∑
k

∣∣qk+q′ − uk

∣∣ and arg min r′
∑

k |rk+r′ − uk|.
Figure 5.6 shows the height progressions after resampling and alignment.

On this basis, the second factor c∆t is calculated as stated in Equation 5.2, that is
using the sums of absolute differences of both the normalized and resampled progressions.
This increases the stability of the algorithm with respect to resampling errors. The
scaling factor 1.68 results in an average score of c∆t = 1 for falls from the test database.

c∆t = min
(

1.68
/(

1 + min
(∑

k

∣∣qk+q′ − uk

∣∣ ,∑
k

|rk+r′ − uk|
))

, 1
)

(5.2)

The fall confidence is calculated as the weighted mean c = 2c∆h/3 + c∆t/3. c∆h has
a greater impact on the confidence because it is considered a more robust statistic.

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

0.8

1

frame (0 = last time for which h > η)

re
s
a
m

p
le

d
 9

0
th

 h
e
ig

h
t
p
e
rc

e
n
ti
le

 h

(a) resampled height progressions

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

0.8

1

frame (0 = last time for which h > η)

re
s
a
m

p
le

d
 9

0
th

 h
e
ig

h
t
p
e
rc

e
n
ti
le

 h

(b) final height progressions

Figure 5.6: Height progressions after resampling (a) and alignment (b).

5.2.2 Detection of Likely Falls

Fall detection systems must cope with the fact that person detection might fail in order to
be reliable in practice. In the context of Kinect-based fall detection there are two major
causes for detection errors that can lead to unrecognized falls, namely occlusions and
exposure to direct sunlight. The proposed system thus aims to detect such incidences,
which is accomplished similarly to the detection of visible falls. More precisely, each
time a state transition from Active to Inactive occurs, the temporal height change is
estimated as introduced in Section 5.2.1. In order to obtain a proper threshold γ, the
aforementioned 80 test falls were rerecorded and an occluding object with a height of
60cm was simulated by increasing the motion detector threshold accordingly. Figure
5.7 shows the resulting height progressions. The minimum and average temporal height
changes were 380mm and 616mm, respectively. In consequence, LikelyFall events are
triggered if ∆h exceeds γ = 300mm.

58

−30 −25 −20 −15 −10 −5 0
0

500

1000

1500

2000

η

frame (0 = last observation)

9
0

th
 h

e
ig

h
t

p
e

rc
e

n
ti
le

 h
 (

m
m

)

Figure 5.7: Height progressions of occluded falls.

The system is able to compute robust confidence scores for LikelyFall events by
detecting regions that are occluded, exposed to direct sunlight, or not visible to the
sensor for other reasons. This is accomplished in plan-view space, by maintaining a list of
all cells ci occupied by each tracked person during the last half-second. If a LikelyFall is
triggered, an occupancy map O is calculated without restricting to foreground pixels and
the confidence amounts to the fraction of recently occupied cells for which O(ci) = 0.

To the best knowledge of the author, only Rougier et al. [74] aim to detect falls that
are not entirely visible as well. However, they use velocity for this purpose, which, as
they mention, can lead to false alarms and may fail to detect slow falls.

5.3 View Frustum Analysis
The proposed system is able to automatically determine scene regions in which reliable
person detection is possible. This further increases the specificity and enables the system
to provide feedback that aids in sensor placement. Furthermore, it allows the system
to compute the optimal region of interest without manual intervention (unless desired),
which simplifies the system setup. This functionality is achieved by analyzing the viewing
frustum of the sensor, that is the volume that encompasses those parts of the scene that
are visible to the camera. Viewing frustums are commonly used in rendering engines for
culling objects that are outside the camera view [7].

The viewing volume of a pinhole camera corresponds to a frustum of a pyramid, with
the camera being located at the apex and the base being parallel to the image plane (this
follows directly from central projection, Section 4.2.1). The frustum originates from two
planes that intersect this pyramid parallel to the base. These planes are called near and
far plane and represent the minimum and maximum distance of visible objects from the
camera. Suitable distances for the Kinect sensor depend on the required data quality, the
current implementation uses zmin = 0.5m and zmax = 7m. The extent of the pyramid

59

depends on the field of view of the camera, which is 57.5 times 45 degrees according to
the datasheet (Page 11). Given a focal length of 585.6px [82], the precise field of view is

585.6 = rx,y

2 tan(fx,y/2) ⇐⇒ fx = 57.31◦ , fy = 44.57◦, (5.3)

with rx,y denoting the depth map dimensions (640 by 480 pixels) [88].
If φx and φy are the horizontal and vertical field of views in radians and the plane

distance from the sensor is z, then from simple geometry it follows that the width of
the plane is wz = 2z tan(φx/2) and the height is hz = 2z tan(φy/2). The extents of the
near and far plane are thus wzmin ≈ 55cm times hzmin ≈ 41cm and wzmax ≈ 765cm times
hzmax ≈ 574cm, respectively. Subsequently the corner points of the near and far planes
can be calculated and transformed to world coordinates. The resulting viewing frustum
in world coordinates is shown in Figure 5.8.

Y
 (

m
m

)

Z (mm)

-3000
-2000

-1000
0

1000
2000

0 1000 2000 3000 4000 5000 6000 7000

Figure 5.8: The viewing frustum of the Kinect sensor and the point cloud representation
of a scene, in world coordinates. It is visible that the sensor is tilted downwards and
rotated slightly along e3.

In Figure 5.8 the floor is not visible for Z < 1.6m. Conversely, upright persons are not
fully visible for Z > 4m. For reliable state detection persons must be visible if they are
lying and the largest visible Y -coordinate must be at least η+ε (the height threshold used
for detecting falls plus some value to increase the robustness, the current implementation
uses ε = 30cm). These criteria are the basis for an automatic determination of the region
of interest. Let (x1, y1, z1) denote the coordinates of a corner point of the near plane
and (x2, y2, z2) the coordinates of the corresponding point of the far plane. The equation
of the line that connects these points is (z2 − z1)(y − y1) = (y2 − y1)(z − z1) and thus
z = (z2 − z1)(y − y1)/(y2 − y1) + z1. There are four such lines, which correspond to the

60

edges of the frustum, and the range [Z1, Z2] for which reliable fall detection is possible is
obtained by evaluating the corresponding equations for y = 0 respectively y = η + ε. On
this basis the region of interest is defined as (Xmin, Xmax,max(Z1, Zmin),min(Z2, Zmax)),
with the variables denoting the smallest and largest observed world coordinates. This
region of interest is optimal in the sense that it is the smallest rectangular region that
encompasses all visible areas in which reliable fall detection is possible, and thus is used
by default for computing plan-view maps (Section 4.4.1).

However, this region is not restrictive enough because the aforementioned criteria
depend on both X and Z. An alternative would be to regard only those pixels during
person detection for which both (X, 0, Z) and (X, η+ ε, Z) lie inside the viewing frustum,
that is to employ frustum culling. This approach, illustrated in Figure 5.9, is precise but
has high computational requirements, which is prohibitive in practice. To this end, the
proposed system operates in plan-view space. More precisely, during system initialization
the above test is conducted for each plan-view cell (with known (X,Z) coordinates) and
pixels are classified on this basis. This results in a binary plan-view map that allows for
fast filtering of plan-view pixels for which reliable fall detection is possible via masking.

Figure 5.9: View frustum culling for pixel classification. Dashed regions mark pixels
for which (X, 0, Z) or (X, η + ε, Z) are not visible to the sensor.

5.4 Event Handling
The system communicates via event handlers, which process and relay system information
to different receivers. This increases its flexibility because support for new platforms can
be added independently of the core system. Event handlers can be added and removed
dynamically, and multiple event handlers can be registered simultaneously. This allows
for flexible event reporting, particularly in combination with fall confidence scores. For

61

example, one event handler could relay all events to an e-mail address, while another
event handler could additionally relay fall events with high confidences to a mobile phone,
in order to ensure that falls are noticed quickly.

At the time of writing, the proposed fall detection system is being evaluated as part
of the FEARLESS project. For this purpose, an event handler was implemented that
visualizes and relays fall events and status notifications to the FEARLESS web platform.
Figure 5.10 shows visualizations of a Fall and a Recovery event, as generated by the event
handler. These visualizations convey enough information to enable caretakers to quickly
assess the situation, while being abstract enough to preserve the privacy of subjects [74].

(a) Fall event (b) Recovery event

Figure 5.10: Visualizations of Fall and Recovery events.

5.5 Results and Discussion
The fall detection performance under experimental conditions was evaluated on three test
databases. The evaluation was carried out by examining the system output for missed
falls as well as false alarms. The remainder of this section presents and discusses the
results. The default configuration was used for all tests, unless stated otherwise.

5.5.1 Detection of Visible Falls

The detection performance of visible falls was tested using all sequences from the fall
database. This dataset consists of 144 sequences in which four persons perform different
activities of daily living (e.g. sitting, lying) as well as simulated falls. To the knowledge
of the author, this database is the only extensive and publicly available fall database
recorded with a Kinect sensor. For testing purposes, the parameter that represents the
minimum height of sitting accommodations was reduced to 20cm in order to account for
the low height of the mattress used for simulating a bed (Figure 5.3).

Table 5.2 outlines the test results. The system was able to detect all falls that
happened while standing or walking correctly; the reported fall confidence was 0.91 on

62

average. Two falls originating from a sitting position were not detected. These falls
ended in a kneeing position, thus the observed temporal height change was too small
(480mm and 390mm, respectively). All eight falls out of the bed were detected correctly.
This amounts to an overall system sensitivity of 97.5%. Only a single false alarm was
observed, which occurred because a resting person was not classified as such. This
happened because the legs of the person were located outside the mattress, which caused
the overlap ratio to drop below the threshold. This is expected not to be an issue in
practice because beds provide enough space for persons to lie on.

Table 5.2: Test results on the test database introduced in [69].

sequence type # sequences # errors average fall confidence
fall from standing or walking 64 0 0.91

fall from sitting 8 2 0.40
fall from resting 8 0 –

activity of daily living 64 1 –

The results indicate a high sensitivity and specificity as well as robust confidence
scores for falls that originate from an upright position. Two falls that both originated and
ended in a sitting position were not detected. However, such falls are arguably unlikely
in practice. It should be noted that, while all falls from the bed were detected, such falls
may not be reliably detectable in practice. This is attributed to the criteria used for
classifying new tracks, as discussed in Section 4.5.4. If falls that occur because the victim
rolls out of the bed without ever sitting up are to expect, this opposes a limitation of the
proposed system that could be addressed by employing pressure mats around the bed.

The performance on this test database is similar to the method presented in [69],
which reportedly detected all falls correctly and produced only a single false alarm.
However, the method was tested on only half the number of sequences. Unfortunately, a
meaningful comparison with other existing methods is not possible because these methods
were tested on custom sequences.

5.5.2 Detection of Invisible Falls Due to Sunlight

In order to evaluate the performance with respect to falls that are (partially) invisible
due to sunlight exposure, an own set of test sequences was compiled. This set depicts
backward, forward, and lateral falls as described in [69] in regions subjected to direct
sunlight exposure from five different sensor positions, for a total number of 35 falls.
Figure 5.11 illustrates two frames from these sequences.

The system detected 32 of 35 falls, which corresponds to a sensitivity of 91%. Four of
these falls caused a Fall event, that is person detection did not fail despite the sunlight
interferences. The remaining falls were classified as likely falls, with an average confidence
of 0.58. Three falls were not detected because the detection failed while the person was
still upright due to the significant quality degradation, as visible in Figure 5.11 (b). The

63

(a) sensor position 1 (b) sensor position 2

Figure 5.11: Illustration of falls performed in regions with direct sunlight exposure.
Areas colored dark-blue represent regions in which no measurements are available.

results indicate a high sensitivity of the system with respect to such falls, on the condition
that persons are detectable while they are still upright.

To the knowledge of the author, the proposed fall detection system is the only one
that is able to explicitly detect such falls, and that can do so robustly by providing
reliable and intuitive confidence scores.

5.5.3 Detection of Occluded Falls

The performance with regard to occluded falls was tested on test sequences in which a
person performs 35 simulated falls behind a desk that has a height of 75cm. The person
ends up partially or completely occluded after each fall (Figure 5.12).

Figure 5.12: Illustration of an occluded fall.

The proposed system was able to detect all occluded falls correctly. Six partially
occluded falls caused Fall events, the remaining falls triggered LikelyFall events with an
average fall confidence of 0.86. The only existing method that is able to detect occluded
falls [74] employs fall velocities, which may fail to detect slow falls.

64

5.5.4 Performance in Practice

At the time of writing, the proposed system is evaluated under practical conditions in
four countries (Austria, Germany, Italy, and Spain). Preliminary results indicate a high
specificity in practice; the number of false alarms varies between 0 and 2 per day on
average, depending on confidence thresholds.

5.5.5 Speed

Figure 5.13 outlines the overall speed of the proposed fall detection system, that is
including motion detection, person detection and tracking, and fall detection. The
measurements were obtained using the test methods and systems presented in Section
3.4.3 and using the test sequences introduced in Section 4.4.5. The results confirm that
the system is fast enough for real-time operation on low-end hardware, even in presence of
multiple persons. The moderate computational requirements allow for multiple instances
to be run concurrently on desktop computers, which is beneficial in cases in which fall
detection must span multiple rooms.

0 5 10 15 20 25 30
140

160

180

200

220

240

second

fp
s

1 person

2 persons

3 persons

(a) Intel Core i7 2600

0 5 10 15 20 25 30
10

20

30

40

50

second

fp
s

1 person

2 persons

3 persons

(b) PandaBoard ES

Figure 5.13: Overall speed of the fall detection system on an Intel Core i7 2600 desktop
computer (a) and a PandaBoard ES (b), as measured on three test sequences.

65

CHAPTER 6
Conclusions

Depth data from Kinect sensors allow for reliable and practical fall detection. This is
because these sensors are inexpensive, unobtrusive, privacy-preserving, and independent
of lighting conditions. The produced data are of high quality and robust with respect
to external infrared radiation and common clothing fabrics, as verified by means of a
quantitative sensor analysis. However, it has been shown that limbs of fallen persons
are not reliably detectable at larger distances and that direct sunlight exposure prevents
measurements. These aspects are important to the design of reliable fall detection
algorithms. The introduced error model aids in proper a configuration of algorithms.

The proposed fall detection system operates in plan-view space, which allows for
robust detection and tracking of persons and enables distinctive features for fall detection.
Operating in this space leads to a significant data reduction, which is required to ensure
real-time application on inexpensive hardware. Furthermore, this space allows for efficient
scene analysis, particularly the detection of sitting accommodations and regions in which
no measurements are available. It has been demonstrated that this information can be
utilized to increase the fall detection performance. The system is able to estimate the
parameters required for computing plan-view coordinates automatically. Moreover, it
detects regions in which reliable fall detection is possible, which aids in sensor placement
and increases its efficiency. In consequence, the system does not require any configuration,
which simplifies its setup and is expected to promote its acceptance in practice.

In contrast to previous works, fall detection builds upon reliable person detection
and tracking algorithms, which allow for robust temporal analysis and enable operability
in presence of multiple persons. On this basis, falls are detected and verified based
on temporal height progressions. The proposed system follows a novel approach by
estimating fall confidences, which enable caretakers to balance the trade-off between
sensitivity and specificity based on their individual needs. An advantage of the proposed
system over existing alternatives is that invisible falls can be detected reliably.

The high fall detection performance of the system under experimental conditions was
verified on a comprehensive test database comprising 214 falls and activities of daily

66

living. At the time of writing, the system is evaluated under practical conditions in
four countries; first results indicate a high specificity in practice. In conclusion, the
results suggest that reliable and practical fall detection using Kinect sensors is possible.
Future work will focus on extending the fall database with data recorded under practical
conditions in order further evaluate and optimize the system.

The proposed system is future-proof because it supports all sensors that produce
depth maps. The motion detector is the only component that must be modified in this
case. A study on how different sensors impact the fall detection performance is planned.

The contributions of this work to the field of person detection and tracking can be
applied in contexts other than fall detection. Particularly, this work has presented a new
background subtraction algorithm for Kinect depth maps that performs better than the
state of the art. Two variants of this algorithm have been discussed, one optimized for
fall detection and one for general person or object detection tasks.

67

Bibliography

[1] M. Alwan, P. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe, and R. Felder,
A Smart and Passive Floor-Vibration Based Fall Detector for Elderly, Proc. Int.
Conf. Information & Communication Technologies, 2006, 1003–1007.

[2] M. Andersen, T Jensen, P Lisouski, A. Mortensen, M. Hansen, T. Gregersen, and
P. Ahrendt, Kinect Depth Sensor Evaluation for Computer Vision Applications,
tech. rep. ECE-TR-6, Aarhus University, 2012.

[3] D. Anderson, J. M. Keller, M. Skubic, X. Chen, and Z. He, Recognizing falls from
silhouettes, Proc. IEEE Conf. Engineering in Medicine and Biology Society, 2006,
6388–6391.

[4] D. Anderson, R. H. Luke, J. M. Keller, M. Skubic, M. Rantz, and M. Aud,
Linguistic summarization of video for fall detection using voxel person and fuzzy
logic, Computer Vision and Image Understanding, 113 (1), 2009, 80–89.

[5] C. L. Arfken, H. W. Lach, S. J. Birge, and J. P. Miller, The prevalence and
correlates of fear of falling in elderly persons living in the community, American
Journal of Public Health, 84 (4), 1994, 565–570.

[6] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal
Processing, 50 (2), 2002, 174–188.

[7] U. Assarsson and T. Moller, Optimized view frustum culling algorithms for
bounding boxes, Journal of Graphics Tools, 5 (1), 2000, 9–22.

[8] E. Auvinet and J. Meunier, Head detection using Kinect camera and its application
to fall detection, Proc. Int. Conf. Information Science, Signal Processing and their
Applications, 2012, 164–169.

[9] F. Bagalà, C. Becker, A. Cappello, L. Chiari, K. Aminian, J. M. Hausdorff, W.
Zijlstra, and J. Klenk, Evaluation of accelerometer-based fall detection algorithms
on real-world falls, PLoS ONE, 7 (5), 2012.

[10] O. Barnich and M. Van Droogenbroeck, ViBe: a universal background subtraction
algorithm for video sequences, IEEE Trans. Image Processing, 20 (6), 2011, 1709–
1724.

68

[11] K. Berger, K. Ruhl, C. Brümmer, Y. Schröder, A. Scholz, and M. Magnor,
Markerless Motion Capture using multiple Color-Depth Sensors, Proc. Vision,
Modeling and Visualization, 2011, 317–324.

[12] T. Bernhard, A. Chintalapally, and D. Zukowski, A Comparative Study of Struc-
tured Light and Laser Range Finding Sensors, tech. rep., University of Colorado,
2012.

[13] D. Beymer, Person counting using stereo, Proc. Workshop on Human Motion,
2000, 127–133.

[14] A. Bourke, P Van de Ven, M Gamble, R O’Connor, K Murphy, E Bogan, E
McQuade, P Finucane, G OLaighin, and J Nelson, Evaluation of waist-mounted tri-
axial accelerometer based fall-detection algorithms during scripted and continuous
unscripted activities, Journal of Biomechanics, 43 (15), 2010, 3051–3057.

[15] T. Bouwmans, F. El Baf, B. Vachon, et al., Background modeling using mixture
of gaussians for foreground detection – a survey, Recent Patents on Computer
Science, 1 (3), 2008, 219–237.

[16] A. Broggi, C. Caraffi, R. Fedriga, and P. Grisleri, Obstacle Detection with Stereo
Vision for Off-Road Vehicle Navigation, Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2005, 65–65.

[17] S. Brutzer, B. Hoferlin, and G. Heidemann, Evaluation of background subtraction
techniques for video surveillance, Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2011, 1937–1944.

[18] M. Camplani and L. Salgado, Adaptive Spatio-Temporal Filter for Low-Cost
Camera Depth Maps, Proc. IEEE Conf. Emerging Signal Processing Applications,
2012, 33–36.

[19] M. Camplani and L. Salgado, Background foreground segmentation with RGB-D
Kinect data: An efficient combination of classifiers, Journal of Visual Communi-
cation and Image Representation, 2013.

[20] J. Chow, K. Ang, D. Lichti, and W. Teskey, Performance Analysis of a Low-
Cost Triangulation-Based 3D Camera: Microsoft Kinect System, Int. Archives
Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX (B5),
2012, 175–180.

[21] A. Criminisi, P. Perez, and K. Toyama, Region filling and object removal by
exemplar-based image inpainting, IEEE Trans. Image Processing, 13 (9), 2004,
1200–1212.

[22] R. Cucchiara, A. Prati, and R. Vezzani, A multi-camera vision system for fall
detection and alarm generation, Expert Systems, 24 (5), 2007, 334–345.

[23] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan, Mobile phone-based pervasive fall
detection, Personal and Ubiquitous Computing, 14 (7), 2010, 633–643.

[24] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection,
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005, 886–893.

69

[25] G Demiris, Smart homes and ambient assisted living in an aging society, Methods
of Information in Medicine, 47 (1), 2008, 56–57.

[26] N. Deshpande, E. J. Metter, S. Bandinelli, F. Lauretani, B. G. Windham, and
L. Ferrucci, Psychological, physical, and sensory correlates of fear of falling and
consequent activity restriction in the elderly: the InCHIANTI study, American
Journal of Physical Medicine and Rehabilitation, 87 (5), 2008, 354–362.

[27] G Diraco, A Leone, and P Siciliano, An active vision system for fall detection and
posture recognition in elderly healthcare, Design, Automation & Test in Europe
Conference & Exhibition, 2010, 1536–1541.

[28] R. Dubey, B. Ni, and P. Moulin, A Depth Camera Based Fall Recognition System
for the Elderly, Image Analysis and Recognition, Lecture Notes in Computer
Science vol. 7325, 2012, 106–113.

[29] A. Dubois and F. Charpillet, Automatic Fall Detection System with a RGB-D
Camera using a Hidden Markov Model, Proc. Int. Conf. Smart Homes and Health
Telematics, 2013, 259–266.

[30] A. Elgammal, D. Harwood, and L. Davis, Non-parametric Model for Background
Subtraction, Europ. Conf. Computer Vision, 2000, 751–767.

[31] B. Freedman, S. Alexander, M. Machline, and Y. Arieli, Depth Mapping Using
Projected Patterns, US patent 2010/0118123 A1, 2010.

[32] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2004.

[33] M. Harville, Fast, integrated person tracking and activity recognition with plan-
view templates from a single stereo camera, Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2004, 398–405.

[34] M. Harville, Stereo person tracking with short and long term plan-view appearance
models of shape and color, Proc. IEEE Conf. Advanced Video and Signal Based
Surveillance, 2005, 522–527.

[35] M. Harville, Stereo person tracking with adaptive plan-view templates of height
and occupancy statistics, Image and Vision Computing, 22 (2), 2004, 127–142.

[36] L. He, Y. Chao, K. Suzuki, and K. Wu, Fast connected-component labeling,
Pattern Recognition, 42 (9), 2009, 1977–1987.

[37] F. Hegger, N. Hochgeschwender, G. Kraetzschmar, and P. Ploeger, People Detec-
tion in 3D Point Clouds Using Local Surface Normals, Robot Soccer World Cup
2012, Lecture Notes in Computer Science vol. 7500, 2013, 154–165.

[38] C. D. Herrera, J. Kannala, and J. Heikkila, Accurate and Practical Calibration
of a Depth and Color Camera Pair, Computer Analysis of Images and Patterns,
Lecture Notes in Computer Science vol. 6855, 2011, 437–445.

[39] W. Hu, T. Tan, L. Wang, and S. Maybank, A survey on visual surveillance of
object motion and behaviors, IEEE Trans. Systems, Man, and Cybernetics, 34
(3), 2004, 334–352.

70

[40] M. Humenberger, S. Schraml, C. Sulzbachner, and A. N. Belbachir, Embedded
Fall Detection with a Neural Network and Bio-Inspired Stereo Vision, Proc. IEEE
Conf. Computer Vision and Pattern Recognition Workshops, 2012, 60–67.

[41] S. Ikemura and H. Fujiyoshi, Real-time human detection using relational depth
similarity features, Proc. Asian Conf. Computer Vision, 2011, 25–38.

[42] R. Jain and H.-H. Nagel, On the Analysis of Accumulative Difference Pictures
from Image Sequences of Real World Scenes, IEEE Trans. Pattern Analysis and
Machine Intelligence, 1 (2), 1979, 206–214.

[43] B. Jansen, F. Temmermans, and R. Deklerck, 3D human pose recognition for home
monitoring of elderly, Proc. IEEE Conf. Engineering in Medicine and Biology
Society, 2007, 4049–4051.

[44] Joint Committee for Guides in Metrology, International vocabulary of metrology –
Basic and general concepts and associated terms (VIM), 2008.

[45] P. Kelly, N. E. O’Connor, and A. F. Smeaton, Robust pedestrian detection and
tracking in crowded scenes, Image and Vision Computing, 27 (10), 2009, 1445–
1458.

[46] M. Kepski and B. Kwolek, Fall Detection on Embedded Platform Using Kinect
and Wireless Accelerometer, Proc. Int. Conf. Computers Helping People with
Special Needs, 2012, 407–414.

[47] K. Khoshelham and S. Elberink, Accuracy and Resolution of Kinect Depth Data
for Indoor Mapping Applications, Sensors, 12 (2), 2012, 1437–1454.

[48] S.-Y. Kim, M. Kim, and Y.-S. Ho, Removal of Mixed, Lost, and Noisy Depth
Pixels in Time-of-flight RGB-D Cameras, IEEE Trans. Multimedia, 2012.

[49] T. Kleinberger, M. Becker, E. Ras, and A. Holzinger, Ambient Intelligence in
Assisted Living: Enable Elderly People to Handle Future Interfaces, Universal
Access in Human-Computer Interaction, Lecture Notes in Computer Science
vol. 4555, 2007, 103–112.

[50] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research
Logistics Quarterly, 2 (1), 1955, 83–97.

[51] R. Labayrade, D. Aubert, and J.-P Tarel, Real time obstacle detection in stereovi-
sion on non flat road geometry through v-disparity representation, Proc. IEEE
Intelligent Vehicle Symposium, 2002, 646–651.

[52] L. Lacassagne, A. Manzanera, and A. Dupret, Motion detection: Fast and robust
algorithms for embedded systems, IEEE Int. Conf. Image Processing, 2009, 3265–
3268.

[53] J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Systems:
Modeling and Performance Prediction, Artech House, 2001.

[54] Y. Li, K. C. Ho, and M. Popescu, A microphone array system for automatic fall
detection, IEEE Trans. Bio-Medical Engineering, 59 (5), 2012, 1291–1301.

71

[55] Y. Li, Z. Zeng, M. Popescu, and K. C. Ho, Acoustic fall detection using a circular
microphone array, Proc. IEEE Conf. Engineering in Medicine and Biology Society,
2010, 2242–2245.

[56] D. Litvak, Y. Zigel, and I. Gannot, Fall detection of elderly through floor vibrations
and sound, Proc. IEEE Conf. Engineering in Medicine and Biology Society, 2008,
4632–4635.

[57] C. Lord and D. Colvin, Falls In The Elderly: Detection And Assessment, Proc.
IEEE Conf. Engineering in Medicine and Biology Society, 1991, 1938–1939.

[58] A. Manzanera and J. C. Richefeu, A new motion detection algorithm based on
Σ–∆ background estimation, Pattern Recognition Letters, 28 (3), 2007, 320–328.

[59] G. Marsaglia, Xorshift RNGs, Journal of Statistical Software, 8 (14), 2003, 1–6.
[60] G. Mastorakis and D. Makris, Fall detection system using Kinect’s infrared sensor,

Journal of Real-Time Image Processing, 2012.
[61] N. McFarlane and C. Schofield, Segmentation and tracking of piglets in images,

Machine Vision and Applications, 8 (3), 1995, 187–193.
[62] F. G. Miskelly, Assistive technology in elderly care, Age and Ageing, 30 (6), 2001,

455–458.
[63] T. B. Moeslund, A. Hilton, and V. Krüger, A survey of advances in vision-based

human motion capture and analysis, Computer Vision and Image Understanding,
104 (2), 2006, 90–126.

[64] M. Mubashir, L. Shao, and L. Seed, A survey on fall detection: Principles and
approaches, Neurocomputing, 100, 2012, 1–9.

[65] K. Niazmand, C. Jehle, L. T. D’Angelo, and T. C. Lueth, A new washable low-cost
garment for everyday fall detection, Proc. IEEE Conf. Engineering in Medicine
and Biology Society, 2010, 6377–6380.

[66] N Noury and A Fleury, Fall detection – principles and methods, Proc. IEEE Conf.
Engineering in Madicine and Biology Society, 2007, 1663–1666.

[67] N. Noury, P. Rumeau, A. Bourke, G. ÓLaighin, and J. Lundy, A Proposal for the
Classification and Evaluation of Fall Detectors, IRBM, 29 (6), 2008, 340–349.

[68] A. Nowakowska, Recognition of a vision approach for fall detection using a
biologically inspired dynamic stereo vision sensor, MA thesis, Vienna University
of Technology, 2011.

[69] R. Planinc and M. Kampel, Robust Fall Detection by Combining 3D Data and
Fuzzy Logic, Computer Vision – ACCV 2012 Workshops, Lecture Notes in Com-
puter Science vol. 7729, 2013, 121–132.

[70] R. S. Porter, The Merck Manual of Diagnosis and Therapy, Wiley, 2011.
[71] C. Pramerdorfer, Evaluation of Kinect Sensors for Fall Detection, Proc. IASTED

Conf. Signal Processing, Pattern Recognition and Applications, 2013.

72

[72] A. Prati, I. Mikic, M. Trivedi, and R. Cucchiara, Detecting moving shadows:
algorithms and evaluation, IEEE Trans. Pattern Analysis and Machine Intelligence,
25 (7), 2003, 918–923.

[73] N. Rafibakhsh, J. Gong, and M. Siddiqui, Analysis of XBOX Kinect Sensor Data
for Use on Construction Sites: Depth Accuracy and Sensor Interference Assessment,
Constitution Research Congress, 2012, 848–857.

[74] C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, and J. Meunier, Fall Detection
from Depth Map Video Sequences, Proc. Int. Conf. Smart Homes and Health
Telematics, 2011, 121–128.

[75] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, Fall Detection from
Human Shape and Motion History Using Video Surveillance, Proc. Int. Conf.
Advanced Information Networking and Applications, 2007, 875–880.

[76] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, Monocular 3D head
tracking to detect falls of elderly people., Proc. IEEE Conf. Engineering in
Medicine and Biology Society, 2006, 6384–6387.

[77] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, Robust Video Surveillance
for Fall Detection Based on Human Shape Deformation, IEEE Trans. Circuits
and Systems for Video Technology, 21 (5), 2011, 611–622.

[78] L. Z. Rubenstein, Falls in older people: epidemiology, risk factors and strategies
for prevention, Age and Ageing, 35, 2006, 1137–1141.

[79] R. Muñoz Salinas, A Bayesian plan-view map based approach for multiple-person
detection and tracking, Pattern Recognition, 41 (12), 2008, 3665–3676.

[80] C. M. Shakarji, Least-squares fitting algorithms of the NIST algorithm testing
system, Journal of Research of the National Institute of Standards and Technology,
103, 1998, 633–641.

[81] Shireen, Khaled, and Sumaya, Moving Object Detection in Spatial Domain using
Background Removal Techniques – State-of-Art, Recent Patents on Computer
Science, 1, 2008, 32–34.

[82] J. Smisek, M. Jancosek, and T. Pajdla, 3D with Kinect, Proc. IEEE Conf. Com-
puter Vision Workshops, 2011, 1154–1160.

[83] L. Smith, A tutorial on principal components analysis, tech. rep., Cornell University,
2002.

[84] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine
vision, Cengage Learning, 2007.

[85] L. Spinello and K. Arras, People detection in RGB-D data, Proc. Int. Conf.
Intelligent Robots and Systems, 2011, 3838–3843.

[86] C. Stauffer and W. Grimson, Learning patterns of activity using real-time tracking,
IEEE Trans. Pattern Analysis and Machine Intelligence, 22 (8), 2000, 747–757.

73

[87] E. E. Stone and M. Skubic, Evaluation of an Inexpensive Depth Camera for
Passive In-Home Fall Risk Assessment, Proc. Int. Conf. Pervasive Computing
Technologies for Healthcare, 2011, 71–77.

[88] R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.
[89] B. Taylor, C. Kuyatt, and J. Lyons, Guidelines for Evaluating and Expressing the

Uncertainty of NIST Measurement Results, Diane Publishing, 1994.
[90] A. Telea, An image inpainting technique based on the fast marching method,

Journal of Graphics Tools, 9 (1), 2004, 23–34.
[91] M. E. Tinetti and C. S. Williams, Falls, injuries due to falls, and the risk of

admission to a nursing home, New England Journal of Medicine, 337 (18), 1997,
1279–1284.

[92] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, Wallflower: principles and
practice of background maintenance, Proc. IEEE Int. Conf. Computer Vision,
1999, 255–261.

[93] United Nations, Department of Economic and Social Affairs, Population Division,
World Population Prospects: The 2012 Revision, http://esa.un.org/wpp, June
2013.

[94] S. Wang, Lying Pose Recognition for Elderly Fall Detection, Robotics: Science
and Systems, 7, 2012, 345–352.

[95] D Wild, U. S. Nayak, and B Isaacs, How dangerous are falls in old people at
home?, British Medical Journal, 282 (6260), 1981, 266–268.

[96] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, Pfinder: real-time tracking
of the human body, IEEE Trans. Pattern Analysis and Machine Intelligence, 19
(7), 1997, 780–785.

[97] S. Wu, S. Yu, and W. Chen, An attempt to pedestrian detection in depth images,
Proc. Chinese Conf. on Intelligent Visual Surveillance, 2011, 97–100.

[98] L. Xia, C.-C. Chen, and J. Aggarwal, Human detection using depth information by
Kinect, Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops,
2011, 15–22.

[99] A. Yilmaz, O. Javed, and M. Shah, Object Tracking: A Survey, ACM Computing
Surveys, 38 (4), 2006.

[100] X. Yu, Approaches and principles of fall detection for elderly and patient, Proc.
Int. Conf. e-health Networking Applications and Services, 2008, 42–47.

74

http://esa.un.org/wpp/

