
DIPLOMARBEIT

Abnormal Event Detection

By Using

Data Mining And Machine Learning Methods

Modelling Normality and Anomalies

Ausgeführt am Institut für

Analysis & Scientific Computing
der

Technischen Universität Wien
unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker
durch

Matthias Wastian

Sonnenrain 11
A-9300 St. Veit/Glan

Wien, 25. November 2013

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

For my parents and Sarah, who always support
me with their love

Zusammenfassung

In der vorliegenden Diplomarbeit werden unterschiedliche Ansätze
diskutiert, um ungewöhnliche und außerordentliche Ereignisse, für die
man eine separate und spezialisierte Betrachtung als wünschenswert
erachtet, anhand regelmäßig mitprotokollierter Daten in dieser Zeitrei-
he möglichst frühzeitig zu detektieren und bei Möglichkeit sogar vor-
herzusagen. Dieser Problemstellung, die in einem einleitenden Kapi-
tel zusammen mit unterschiedlichen Anwendungsbereichen, in denen
ebendiese auftritt, etwas ausführlicher vorgestellt wird, wird mittels
einiger Methoden aus dem Bereich des Data Mining, des Machine
Learning und des Soft Computing hybrid begegnet.
Nach einer kurzen Grundlageneinführung zu Zeitreihen mitsamt den
zugehörigen statistischen Vorhersagemodellen werden die erwähnten
Begriffe näher abgesteckt, bevor der Fokus auf die einzelnen Teilme-
thoden gelegt wird. Auf eine Vorstellung von Werkzeugen zur Ausreißer-
bzw. Novumserkennung folgt eine abschließende Diskussion der Simu-
lationsergebnisse, die im Rahmen jenes Projekts erzielt wurden, in
Zuge dessen diese Arbeit entstand. Der Text endet mit einem Aus-
blick auf mögliche Modellerweiterungen und zukünftige Arbeiten.

Abstract

This diploma thesis will discuss several approaches to detect un-
usual and extraordinary events, which we consider to be worth a sepa-
rate and specialised further investigation, in a time series of frequently
collected data as early as possible and - wherever applicable - to even
predict them. We rise to this task, which will be introduced together
with some different scopes of application in a more detailed way in the
opening chapter, using various methods originating in the field of data
mining, machine learning and soft computing in a hybrid manner.
Following a short and basic introduction to time series including sev-
eral statistical prediction models, I will delimit and discuss these terms
in general, before I will focus on the modular parts of the proposed
methodology. After the presentation of some algorithms to detect out-
liers and novelties, the results of the simulation gained in the project
this work was part of are put up for discussion. The text ends with
some prospects of possible extensions and enhancements as well as
future research work.

2

Contents

List of Figures 5

List of Tables 7

1 Problem Statements and Applications 8

2 Introduction to Time Series 11
2.1 General Properties of Time Series 14

2.1.1 Deterministic and Stochastic Component 14
2.1.2 Stationarity . 15
2.1.3 Trend . 16
2.1.4 Seasonality . 18
2.1.5 Chaos . 18

2.2 Regression Models . 20
2.2.1 AR Models . 22
2.2.2 MA Models . 23
2.2.3 I Models . 24
2.2.4 VSARIMA Models . 25

2.3 Forecasting . 30
2.3.1 Forecasting Methods 31

3 Machine Learning, Data Mining, Soft Computing 33
3.1 Definitions and Overview . 33
3.2 Algorithm Types - Different Approaches to Learning 36
3.3 Introduction to Fuzzy Logic 39

3.3.1 Fuzzy Sets and Membership Functions 39
3.3.2 Fuzzy Set Operators 41
3.3.3 Fuzzy Control System 43

3.4 Artificial Neural Networks . 43
3.4.1 Archetype Biology . 43
3.4.2 Basic Considerations about Modelling Neural Networks 46
3.4.3 Different Types of Networks 53
3.4.4 Learning Algorithms 56
3.4.5 Time Series Prediction with Neural Networks 61

3.5 Clustering . 63
3.6 Support Vector Machines . 65

3.6.1 Kernels . 68

3

4 Abnormal Event Detection 71
4.1 Proximity-Based Anomaly Detection 71

4.1.1 Distance-Based Anomaly Detection 72
4.1.2 Density-Based Anomaly Detection 73
4.1.3 Statistical Anomaly Detection 74

4.2 Angle-Based Outlier Detection 75
4.3 Neural Networks for Anomaly Detection 77
4.4 One-Class Support Vector Machines 79

4.4.1 Idea . 79
4.4.2 Algorithm . 80

4.5 Using Temporal Integration to Detect Abnormal Events 82
4.6 Event Classification . 85

5 Results of a Simulation to Detect/Predict Server Problems 86
5.1 Problem Statement . 86
5.2 Software Environment and Data Generation 87
5.3 Feature Selection and Data Preprocessing 89
5.4 Applied Methods . 94

5.4.1 Predictor . 94
5.4.2 Anomaly Detector . 100

5.5 List of the Most Important Tuning Parameters 105
5.5.1 ANN Tuning Parameters 105
5.5.2 ABOD Tuning Parameters 107
5.5.3 OC-SVM Tuning Parameters 107

6 Comparison of the Applied Methods, Résumé and Outlook 109

A Abbreviations and Mathematical Symbols 112

B Auxiliary Calculations and Examples 116
B.1 Initial Values for Example 6 116
B.2 List of the Variables of D1 . 116
B.3 ARIMA Model for Gas Prices 118

C References 120

D Statutory Declaration 124

E Acknowledgements 125

4

List of Figures

1 Dow Jones Industrial Average (http://www.djindexes.com);
Mackey-Glass time series (M. Wastian, MATLAB) 12

2 Aliasing (http://music.columbia.edu/cmc/musicandcomputers/
chapter2/02_03.php) . 12

3 Gas prices time series and its differences (M. Wastian, MAT-
LAB) . 28

4 Autocorrelation and partial autocorrelation coefficients of the
differenced and logged gas prices time series (M. Wastian,
MATLAB) . 29

5 Kehlog Albran (http://teifidancer-teifidancer.blogspot.
co.at/2010/05/kehlog-albran-1933-1927.html) 30

6 Niels Bohr (http://de.wikipedia.org/wiki/Niels_Bohr) . 31
7 Lotfi Askar Zadeh (http://en.wikipedia.org/wiki/Lotfi_

A._Zadeh) . 36
8 Albert Einstein (http://www.treffpunktboulevard.ch/DE/

Reportagen_Teil/Portrats/Albert_Einstein/albert_einstein.

html) . 36
9 AND and XOR operators (http://www.heatonresearch.com/

articles/1/page4.html) . 38
10 Fuzzy membership functions (http://www.biomedical-engineering-

online.com/content/4/1/58/figure/F3?highres=y) 40
11 A human brain (http://www.dreamstime.com) 44
12 Structure of a typical human neuron (http://wikieducator.

org/Neuron_Creations) . 46
13 Graphs of the most commonly used activation functions (M.

Wastian, MATLAB) . 48
14 A possible structure of a neural network (http://allthingscs.

blogspot.co.at/2011/04/neural-networks-with-c-part-

1.html) . 50
15 Illustration of the basic idea of a support vector machine (http:

//www.cac.science.ru.nl/people/ustun/index.html) . . . 66
16 Illustration of the kernel trick (http://www.sussex.ac.uk/

Users/christ/crs/ml/lec08a.html) 69
17 Illustration of the angle-based outlier detection method (http:

//www.siam.org/meetings/sdm10/tutorial3.pdf) 76
18 One-Class Support Vector Machine Model ([19]) 80
19 Screenshot of IBM Lotus Domino Server.Load - Script selection 89
20 Screenshot of IBM Lotus Domino Server.Load - Some script

variables . 90

5

21 Gas prices time series and prediction errors (M. Wastian, MAT-
LAB) . 96

22 Non-linear autoregressive neuro-predictor model (MATLAB
Neural Network Toolbox) . 97

23 Details of the artificial neural network used to predict the next
observation (MATLAB Neural Network Toolbox) 98

24 Platform.System.PctTotalPrivilegedCpuUtil and the predictions
of Platform.System.PctTotalPrivilegedCpuUtil (M. Wastian, MAT-
LAB) . 99

25 Differences between Platform.System.PctTotalPrivilegedCpuUtil
and its predictions (M. Wastian, MATLAB) 100

26 Neuro-differences of Platform.System.PctTotalPrivilegedCpuUtil
(M. Wastian, MATLAB) . 101

27 ARIMA-differences of Platform.System.PctTotalPrivilegedCpuUtil
(M. Wastian, R) . 101

28 Median error of the neuro-predictions of the gas time series
(M. Wastian, MATLAB) . 102

29 Angle-based outlier detector detecting the server change from
idle to busy and busy to idle (M. Wastian, R) 103

30 Gas prices time series and its differences after the logarithmic
transformation (M. Wastian, MATLAB) 118

31 Autocorrelation and partial autocorrelation coefficients of the
differenced gas prices time series (M. Wastian, MATLAB) . . 119

6

List of Tables

1 Properties of order, chaos and randomness 20
2 Properties of human brains and computers 45
3 Priority-0-variables of the Panagenda data set 92
4 Variable groups of the Panagenda data set 95
5 List of the tuning parameters 105

7

1 Problem Statements and Applications

Almost every system in the real world can be observed by measuring certain
parameters at certain times, some of them being very important, others not
so important and others maybe even completely irrelevant for the actual
or future system behaviour. In general the parameters’ importance for the
system behaviour is a priori not known, it can vary over time and may also
depend on the values of other observed or not observed parameters. The
values taken by these parameters can be seen as the result of one or several
events that took place inside or outside the system.

Definition 1 (Event). An event is an occurrence happening at a deter-
minable time and place and has a certain duration. It may be a part of a
chain of occurrences as an effect of a preceding occurrence and as the cause
of a succeeding occurrence. It is possible that more than one event occurs at
the same time and/or place.

In many cases the observer of a system wants to detect severe changes of
a system’s behaviour as early as possible to have the opportunity to decide
if any possible actions should be taken or not.

Example 1. The tectonic movements of the earth are observed constantly
by GPS stations and seismic sensors especially in areas with a large risk
of earthquakes. In case of a detected imminent earthquake, an evacuation
of certain areas that are in danger of a possible tsunami could be ordered
by the local governments. Such tsunami warning systems are established
in Honolulu, Hawaii (Pacific Tsunami Warning Center PTWC), Malaysia,
Taiwan and Indonesia (German Indonesian Tsunami Early Warning System
GITEWS).

Example 2. In the local area network of a large company a huge amount of
parameters like the number of logged in users, the number of mails sent, the
free space left on a hard disc of a server or the percentage of the memory
of a server that is used at a certain time can be measured. This thesis
suggests a conglomerate of intelligent mathematical algorithms that analyses
these parameters and detects problems in such a network that could cause
server outages or a rapid decline in a server’s performance. In case of a
detected problem the network’s administrator could carry out a software
update, supply additional hardware or replace defect hardware as early as
possible to guarantee the functionality of the server.

Before the term abnormal event is discussed in more detail, the terms
abnormal, outlier and novelty are defined:

8

Definition 2 (Abnormal). The Oxford English Dictionary defines abnormal
as: deviating from the ordinary type, especially in a way that is undesirable
or prejudicial; contrary to the normal rule or system; unusual, irregular,
aberrant.

Definition 3 (Outlier). An outlier is an observation that deviates so much
from other observations of a set of data as to arouse suspicion that it was
generated by a different mechanism. [20]

Definition 4 (Novelty). Given a set of data not polluted by any outliers,
new observations are made and checked whether they are regular inliers. A
novelty is an anomaly in these new observations.

Definition 5 (Abnormal Event). An abnormal event is an outlier in a chain
of events, an event that deviates so much from the other events as to arouse
suspicion that it was caused by something that does not follow the usual
behaviour of the considered system and that it could change the entire system
behaviour.

Applications of abnormal event detection can be found in a broad variety
of areas, almost all of them following the idea to guarantee a certain level of
safety of the system considered:

• natural catastrophes

- earthquakes

- floodings

- hurricanes

• server outages

• stock market breakdowns

• network intrusion

• safeguards system for a series of nuclear fuel cycle facilities

• audio and video surveillance

- security

- video traffic analysis

- crowd behaviour

- ambient assisted living.

9

Due to the large variety of applications, various different approaches have
been suggested for abnormal event detection. While this thesis is going to
mainly focus on time series forecasting with artificial neural networks (section
3.4.5) and outlier detection with one-class support vector machines (section
4.4), some other possible methods to deal with abnormal event detection
problems are listed below:

• sparse reconstruction cost [22]

• wavelet decomposition [23]

• statistical methods

– explicit descriptors statistical model

– bayes estimation

– maximum likelihood

– correlation analysis

– principal component analysis (PCA).

10

2 Introduction to Time Series

Definition 6 (Time Series). A sequence of vectors or scalars in successive
order depending on time t is a so-called time series. The term univariate time
series refers to such sequences of scalars, the term multivariate time series
refers to sequences of vectors which all have the same dimension m ≥ 2.

Remark. Although this does not necessarily have to be the case for time
series, in this thesis only sequences spaced at (at least except for very small
measurement errors) uniform time intervals are considered. The most recent
time series element is going to be called xn.

Remark. Multivariate time series are best understood as being a set of si-
multaneously built time series. The values of each series have not only an
internal dependency within the series itself, but also an interdependency with
the values of other component series.

Talking of a univariate time series (but analogue for multivariate time se-
ries), a time series usually contains observation values of a physical, financial
or sociological variable made at equally spaced time intervals ∆t, represented
as a set of discrete real, rational, or (positive) integer numbers:

{x[t]} = {x(0), x(∆t), . . . , x
(
(i− 1)∆t

)
, x(i∆t), x

(
(i+ 1)∆t

)
, . . .},

{x[t]} = {x(t0), x(t1), . . . , x(ti−1), x(ti), x(ti+1), . . .},
{x[t]} = {x1, x2, . . . , xi−1, xi, xi+1, . . .} = {xi : i ∈ N}.1

Examples for various time series of interest are given below. Some of
them origin from discrete phenomena, others from continuous ones:

• Dow Jones Industrial Average

• price for a barrel of Brent oil

• number of inhabitants of Austria

• real average retirement age or unemployment rate in a country

• temperature in a nuclear reactor

• electricity and water demand of a huge city

• tectonic movements in an area where earthquakes are likely to occur

• air pressure, temperature, other physical variables to forecast weather.

1In this thesis 0 is NOT an element of N.

11

Whereas the Dow Jones Industrial Average closing values of each day are a
classic discrete case, temperature is a typical example for a continuous signal.

Figure 1: Graphs of two time series, on the left Dow Jones Industrial Average
closing values and on the right a chaotic Mackey-Glass time series.

In engineering practice, the sequence of values {x[t]} is obtained from
sensors by uniformly sampling the related continuous signal x(t) at discrete
points xi, i ∈ N. The modeller wants to be able to interpolate x(t) from {x[t]}
as true as possible, wherefore ∆t must be chosen according to the Nyquist
sampling theorem.

Definition 7 (Aliasing). Aliasing refers to an effect that causes different
signals to become indistinguishable (or aliases of one another) when sampled.

Figure 2: Aliasing. The blue graph is the original signal, the dots mark the
sampling points. The red graph is an alias that is misleadingly recovered
from the samples.

12

Theorem 1 (Nyquist-Shannon Sampling Theorem). If fmax is the highest
frequency component of x(t), the sampling rate must be larger than twice as
high:

1

∆t
= fsampling > 2fmax ⇔ ∆t <

1

2fmax
. (1)

If the inequality (1) is obeyed, x(t) is completely determined by giving its
ordinates at a series of points spaced ∆t seconds apart. If not, we would see
aliasing of frequencies in the range [fsampling/2, fmax].

Proof. Let X(t) be the spectrum of x(t) and W the bandwidth limit. Then

x(ω) =
1

2π

∫ ∞
−∞

X(ω)eiωtdω =
1

2π

∫ 2πW

−2πW

X(ω)eiωtdω

since X(ω) is assumed to be zero outside the band W . We choose t = k
2W

with k ∈ Z and obtain

x
(k

2W

)
=

1

2π

∫ 2πW

−2πW

X(ω)eiω
k

2W dω.

On the left are values of x(t) at the sampling points. The integral on the right
will be recognized as the kth coefficient in a Fourier-series expansion of the
function X(ω), taking the interval [−W,W] as the fundamental period. This
means that the values of the samples x

(
k

2W

)
determine the Fourier coefficients

in the series expansion of X(ω). Thus they determine X(ω), since X(ω)
is zero for frequencies greater than W , and for lower frequencies X(ω) is
determined if its Fourier coefficients are determined. But X(ω) determines
the original function x(t) completely, since a function is determined if its
spectrum is known. Therefore the original samples determine the function
x(t) completely.

Basically, there are two approaches to time series analysis:

1. time domain approach, mainly based on the use of the covariance func-
tion of the time series, and

2. frequency domain approach, based on spectral density function analysis
and Fourier analysis.

[1] states that both approaches are appropriate for application to a wide
range of disciplines, but the time domain approach is mostly used in engineer-
ing practice. This is particularly due to the availability of the Box-Jenkins
approach to time series analysis, which I will talk about later. As a matter of
fact I only use the time domain approach in the simulation that is presented
in section 5.

13

The broad term of time series analysis includes activities like

• definition, classification and description of time series

• model building using collected time series data (e.g. transforming one
time series into another, for example oil prices into interest rates)

• forecasting or prediction of future values.

2.1 General Properties of Time Series

We distinguish between several major characteristic features of a time series
{x[t]}, and although the time series can exhibit one or more of these proper-
ties, for the analysis and for a prediction each property is treated separately.
Depending on the character of data that it carries, the time series could be

• univariate and multivariate

• stationary or non-stationary

• seasonal or non-seasonal

• linear or non-linear

• chaotic or random.

2.1.1 Deterministic and Stochastic Component

Most of the time series models look at the given time series values as the sum
of true and predictable time series values and random disturbances which are
expected to be Gaussian distributed.2 Thus a time series, usually based on
measured values that are corrupted by noise, can be considered as the compo-
sition of a deterministic and a stochastic signal. The deterministic component
models the self-dependent aspects of the process, while the stochastic com-
ponent simulates not only the usual noise interference, but also not known
and not foreseeable aspects that cannot be modelled adequately. These not
known aspects can either have a significant influence on the sequel of the pro-
cess we look at (e.g. the sale of a huge amount of company shares by a single
person or enterprise that makes other holders nervous, the announcement of
the last years profit of a company that is very different to the expectations,
a significant and maybe random change of a bank’s or country’s rating by

2This assumption has to be fulfilled for a variety of further approaches to time series
analysis.

14

a rating agency, the outage of several memory components of a server) or
they do not change the general behaviour of the process (e.g. the sale of
many shares that does not have a large impact on the other holders, the
outage of a memory component of a server which is compensated by other
memory components). The goal of the proposed methods is to distinguish
between such important abnormal events that influence the future quality of
the process in a significant way and not so relevant events that do not.

Summing up and speaking from a modelling point of view that underlies
this whole thesis, a time series {x[t]} is the output of a process P we are
interested in. In general, we do not have any additional knowledge about
P and have to gain information from the output itself to detect important
changes of P . Thus the process can be considered as a black box:

P - {x[t]}

In this and the following chapters, various traditional approaches to time
series classification, modelling and forecasting are introduced. They are
needed for a better understanding of the modern approaches to time series
analysis and forecasting using soft computing methods that will be presented
especially in section 3.4.5.

2.1.2 Stationarity

For the following definition the time series is considered as a random process,
i.e. a sequence of random variables, the elements of the time series.

Definition 8 (Stationarity). A time series {x[t]} is called stationary, if

1. E(xt) = µ < ∞ ∀t, that is, the expectation of xt is finite and does
not change over time, and

2. COV(xt+τ , xt) = κτ < ∞ ∀τ , that is, for each τ the autocovariance
of the random variables xt+τ and xt does not depend on time, but only
on the distance between the two observations.

If we set τ = 0, we see that this already includes the condition that the
variance of xt is also constant over time. If all xt have the same finite variance,
they are called homoscedastic.

15

Remark. The above given definition refers to the more exact statistical term
(weak) stationarity. The difference to strict stationarity, which requests that
all random vectors (xt1 , . . . , xtk)

T and (xt1+τ , . . . , xtk+τ)
T have the same joint

distribution for all sets of indices {t1, . . . , tk} and for all integers τ and k > 0,
will not become important in this thesis.

The stationarity of a time series can be roughly checked by looking at the
time series pattern. A flat-looking pattern with no seasonality or trend and
with time-invariant variance indicates that this could be a stationary time
series. Non-stationary time series can often be transformed into equivalent
stationary time series by taking single or multiple differences between the
successive data values along the time series pattern.

Theorem 2 (Wold-von Neumann Decomposition). Any stationary discrete
time stochastic process can be decomposed into a pair of uncorrelated pro-
cesses, one deterministic and the other being a moving average process (which
will be introduced in section 2.2.2).

Remark. The Wold-von Neumann decomposition originates from the field of
operator theory and is a classification theorem for isometric linear operators
on a given Hilbert space that states that any isometry is a direct sum of
copies of the unilateral shift and a unitary operator.

2.1.3 Trend

Definition 9 (Trend). The trend is the component of a time series that
represents variations of low frequency in a time series, the high and medium
frequency fluctuations having been filtered out.3 Thus the trend determines
the long-term behaviour of the time series that is manifested through the local
or global increase or decrease of data values as a consequence of superposition
of true time series values and a disturbance with upward or downward trend
([1]).

For identifying the trend present in an observed time series {x1, . . . , xn},
one tries to fit the collected data by a certain relation as well as possible.
Such relations (for a univariate time series) could be:

• linear: x̂t = λ1t+ λ0 + εt

• polynomial (degree m ∈ N): x̂t = λmt
m + λm−1t

m−1 + . . .+ λ0 + εt

• exponential or log-linear: x̂t = eλ1t+λ0+εt .

3Definition given by the OECD.

16

Example 3. Examples of linear models are the AR, MA, ARMA and ARIMA
models (see section 2.2), based on autoregression and/or on a moving average
technique.

Definition 10 (Regression). Regression is the discovery of a predictive learn-
ing function - the regression function of the independent variables, which
maps a data item to a real-value prediction variable, the dependent variable
[3]. Regression analysis estimates the average value of the dependent variable
when the independent variables are fixed. An autoregressive model tries to
predict the output of a system based on the previous outputs, that means
that the dependent and the independent variable become the same.

Assuming that the disturbances εt of the time series trend are normally
distributed, the fitting is done by the least-squares method. λ contains the
m + 1 adjustable parameters, f(x, λ) is the right hand side of the equation
of the above relations without any disturbances (e.g. in the polynomial case
f(x, λ) = λmt

m +λm−1t
m−1 + . . .+λ0) and r is called residual, the difference

between the actual value of the dependent variable and the value predicted
by the model:

min
λ∈Rm+1

n∑
i=1

r2
i = min

λ∈Rm+1

n∑
i=1

(xi − f(xi, λ))2. (2)

Now the R2-value can be calculated.

Definition 11 (Coefficient of Determination R2). Given n data points xi
with mean x̄ and variance σ2, the most general definition of R2 is

R2 = 1− 1

nσ2

n∑
i=1

r2
i = 1−

n∑
i=1

(xi − fi)2

n∑
i=1

(xi − x̄)2

, (3)

with x̄ =
1

n

n∑
i=1

xi and σ2 =
1

n

n∑
i=1

(xi − x̄)2.

R2 is the proportion of variance in a data set explained by the chosen statis-
tical model and provides a measure of how good predictions by that model
are likely to be.

Remark. In the case of linear least-squares regression, R2 equals the square
of the correlation coefficient between the observed and modelled data values.
Sometimes R2 is calculated as the square of the correlation coefficient, no

17

matter whether a least-squares regression was done or not. If R2 is calculated
as stated in Definition 11, it is not the square of a real number R! If a very
inadequate model is chosen, or if there are constraints that do not make sense
for the given data, R2 can also be negative.

Remark. R2 does not relate to the statistical significance of the trend line,
which is determined by its t-statistic. Very noisy series can have a low R2-
value, but a very significant trend. Nevertheless only trends of time series
with R2-values exceeding 0.65 are identified as meaningful.

2.1.4 Seasonality

Definition 12 (Seasonality). Seasonality is defined by a periodically fluctu-
ating pattern of the time series which leads to a repetitive and predictable
movement around the trend line of the time series. The pattern may repeat
itself hourly, daily, weekly, monthly, yearly etc., very often depending on the
process the time series data is generated from.

Example 4. If a given time series represents the number of logged in users in
the network of a company, it will exhibit a weekly seasonality. The number
of logged in users on a Monday at 9 a.m. will strongly depend on the number
of logged in users on the Monday the week before at 9 a.m., if none of these
Mondays is a non-business day.

Example 5. Unemployment rates exhibit strong seasonal effects.

Removal of Seasonality. By removing the seasonal component, it is a lot
easier to focus on other components like the trend. If the components of the
decomposition of the time series - trend, seasonality, irregularity and cycle -
act multiplicatively, the seasonal component is estimated and then the values
are divided by it.
The ratio-to-moving-average method uses moving average windows for cal-
culating the centered average time series values within the windows, whose
width is exactly the length of the season. Each data value is expressed as
percentage of the corresponding centered moving average value. These per-
centages are arranged according to weeks, months or quarters of given years,
and the averages over all weeks, months or quarters are calculated and rep-
resent the seasonal index.

2.1.5 Chaos

Definition 13 (Chaotic Time Series). A time series whose values are non-
periodic and highly sensitive to initial conditions, but result from a com-

18

pletely deterministic process (i.e., if you create two time series of this pro-
cess with identical initial data and do not consider any noise, they are the
same), is called chaotic. The deterministic nature of such processes does not
necessarily make them predictable, especially in a long term.

Remark. One should notice the difference between the two terms random
and chaotic, which are used more or less in the same way in daily life. Two
successive realizations of a random process will give two different time series,
even if the initial state is the same, i.e. a random process is non-deterministic.

Example 6. A so-called Mackey-Glass time series originates from the equation

xt+1 =
axt−d
b+ xht−d

− cxt, d, t ∈ N, a, b, c, h ∈ R\{0}. (4)

and d + 1 given initial conditions. The right part of figure 1 on page 12
shows the graph of a Mackey-Glass time series with the parameters a =
0.2, b = 1, c = −0.9, d = 17 and h = 10 and the initial values listed in
appendix B.1. Originally, Mackey and Glass presented equations of the form
(4) to illustrate the appearance of complex dynamics in physiological control
systems by bifurcations, which might arise from disease or environmental
factors, such as drugs. A special Mackey-Glass equation is used in a model
to describe the regeneration of white blood corpuscles.

For the following definition a dynamical system xt+1 = f(xt) is consid-
ered, where all xt are vectors of Rm.

Definition 14 (Lyapunov Exponent, Lyapunov Time). Consider a univari-
ate signal {x[t]} of two possibly multivariate time series of the same process
with two close points at step t, xt and xt + ∆xt. At the next time step
they will have diverged, namely to xt+1 and xt+1 + ∆xt+1. It is this average
rate of exponential divergence (or convergence) that the Lyapunov exponent
captures. The Lyapunov exponents λi are given by

λi = lim
N→∞

1

N

N∑
t=1

ln
(∆xt+1

∆xt

)
, i = 1, . . . ,m (5)

1
λi

is called Lyapunov time and gives an idea about the lapse of time which
predictions are reliable for.

Definition 15 (Chaotic Time Series by Lyapunov Exponents). A bounded
time series {x[t]} originating from the system xt+1 = f(xt) is called chaotic,
if

1. {x[t]} is not asymptotically periodic,

19

2. no Lyapunov exponent vanishes and

3. the largest Lyapunov exponent is strictly positive.

The following table lists the main properties of ordered, chaotic and ran-
dom systems:

System Order Chaos Randomness

Paradigm Clock Weather Snow on TV Screen

Control Easy Tricky Poor

Predictability Very High Short Term None

Stability4 High Very Low No Wise Predictions

Dimension Finite Low Infinite

Attractor5 Point, Cycle, Torus Strange, Fractal No

Table 1: A comparison of properties of ordered, chaotic and random systems.

2.2 Regression Models

The regressive models that are introduced in the following subsections are
built using regression analysis, which is a collection of methods for the study
of relationships between the variables and for estimation and prediction of
values of one variable using the values of other variables incorporated in a
joint time series.6

Because it is relevant to all the following models, the terms autocorrela-
tion for time series and white noise are introduced before the presentation of
the various regression models.

Definition 16 (Autocorrelation of Time Series). Similar to the correlation
coefficient r of two random variables x and y, a correlation coefficient be-
tween one time series {x[t]}, t = 1, . . . , n and the same series lagged by one

4A time series is called stable if small errors of the given data only lead to small errors
of a prediction.

5An attractor is a set towards which a system variable evolves over time. That is,
points close enough to the attractor remain close when disturbed.

6Definition by Draper and Smith. Applied Regression Analysis, 2nd edition, Wiley,
New York, 1981.

20

or more time units can be calculated. If the lag is d time units, the au-
tocorrelation coefficient rd is the correlation coefficient of the observations
{x[t]}, t = 1, . . . , n − d and the observations {x[t]}, t = d + 1, . . . , n. For n
reasonably large, rd can be approximated as follows:

rd ≈

n−d∑
t=1

(xt − x̄)(xt+d − x̄)

n∑
t=1

(xt − x̄)
. (6)

The autocorrelation matrix R is built analogously to the covariance matrix
and therefore

R =


r0 r∗1 r∗2 . . . r∗n−1

r1 r0 r∗1 . . . r∗n−2

r2 r1 r0 . . . r∗n−3
...

...
...

. . .
...

rn−1 rn−2 rn−3 . . . r0

 . (7)

Remark. R is positive semi-definite for stationary processes. For time series
the equation r0 = 1 holds.

Definition 17 (Autocorrelation Function, Partial Autocorrelation Func-
tion). The sequence {ri}, i = 0, . . . , n−1, according to a time series {x[t]}, t =
1, . . . , n, is called autocorrelation function (ACF). If first any linear depen-
dence on the time series elements between those two elements that the au-
tocorrelation is calculated for is removed, the sequence of autocorrelations is
called partial autocorrelation function (PACF).

The ACF and the PACF are mathematical tools to find repeating pat-
terns.

Definition 18 (White Noise Process). A white noise process is a random
process of a random variable x if and only if its mean vector and autocorre-
lation matrix R are the following:

1. E(x) = 0,

2. R(x) = E(xxH) = σ2I.

That means, a white noise process is a random process of random variables
that are uncorrelated, have mean zero and a finite variance.

Example 7. The snow on the TV screen is visual white noise. Acoustic white
noise sounds similar to static electricity discharge or a hiss. In a linguistic
sense white noise is any random, collective occurrence of unrelated things.

21

2.2.1 AR Models

Algorithm 1 (AR(p) Model). Autoregression models express the current
value of a time series by a finite linear aggregate of previous values, by a
white noise εt and sometimes a real constant c. Their validity assumes that
the time series to be modelled is stationary, to assure stability the model
parameters φi have to be within a certain range.
p ∈ N is the so-called model order, being the number of previous outputs
that determine the actual output in the model:

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + εt + c. (8)

Remark. For an AR(p) model to be stationary, the roots of the polynomial
zp−

∑p
i=1 φiz

p−i must lie within the unit circle, i.e., each root zi must satisfy
|zi| < 1.

Definition 19 (Delay Operator). The delay operator B - also called back-
shift operator - is defined by

B(xt) = xt−1. (9)

Definition 20 (Autoregressive Operator). The autoregressive operator of
order p is defined as follows:

φ(B) = 1−
p∑
i=1

φiB
i. (10)

Usually the time series is transformed to mean zero by x̃t = xt−µ. Using
the autoregressive operator, the AR(p)-model can be written in the compact
form

φ(B)x̃t = εt. (11)

Estimation of the parameters of the AR(p) model. All in all, an
AR(p) model contains p + 1 unknown parameters: the p internal parame-
ters φi and σ2

ε , the variance of the white noise. There are many ways to
estimate the coefficients φi, among them the ordinary least-squares method,
the Markov chain Monte Carlo method or the method of moments by us-
ing the Yule-Walker equations, which are created by multiplying (8) by an
xi, i = t−1, . . . , t−p−1, taking the expectance, dividing by n−1 and using
the evenness of the autocovariance, leading to

22

Algorithm 2 (Yule-Walker Equations).
1 r1 r2 . . . rp−1

r1 1 r1 . . . rp−2

r2 r1 1 . . . rp−3
...

...
...

. . .
...

rp−1 rp−2 rp−3 . . . 1




φ1

φ2

φ3
...
φp

 =


r1

r2

r3
...
rp

 , (12a)

or shorter: Rφ = r, (12b)

and σ2
ε = 1−

p∑
k=1

φkrk. (13)

Selection of the order of the AR(p) model. The crucial point of an
adequate selection of the model order p is done by an analysis of the au-
tocorrelation function or in the case of lower order models sometimes the
partial autocorrelation function which is computationally complicated. A
further discussion on how to find a good AR model order will be presented
in chapter 2.2.4 where various models are combined to one model.

2.2.2 MA Models

The basic assumption behind averaging and smoothing models like the MA
models is that the time series is not globally stationary, but at least locally
stationary with a slowly varying mean. Hence, a moving (i.e., local) average
is taken to estimate the current value of the mean.

Remark. The moving average is often called a smoothed version of the original
series, since short-term averaging has the effect of smoothing out the bumps
in the original series.

Algorithm 3 (MA(q) Model). The MA(q) model is conceptually a linear
regression of the current value of the series against previous (unobserved)
white noise error terms εt−i. Again, the random shocks at each point are
assumed to come from a normal distribution with mean zero and finite vari-
ance. The MA(q)-model suggests that these random shocks are propagated
to future values of the time series.
q ∈ N is the model order, µ the mean of the series, θi are the model param-
eters.

xt = µ+ εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q (14)

23

Definition 21 (Moving-Average Operator). The moving-average operator
of order q is defined analogously to the autoregressive operator (10):

θ(B) = 1−
q∑
i=1

θiB
i, (15)

B being the delay operator (9).

Thus the MA(q) model can be written in the compact form

x̃t = θ(B)εt. (16)

Remark. Estimating the MA parameters is more complicated than estimating
the parameters φi in AR models, because the error terms are not observable.
This means that iterative non-linear fitting procedures need to be used in
place of linear least squares. MA models also have a less obvious interpreta-
tion.

Remark. An MA process is always stationary.

2.2.3 I Models

In this section the method of differencing time series is going to be introduced,
which is the key point of integrated models.

A variety of time series exhibit non-stationary behaviour, but some of
them become stationary after differencing the time series {x[t]} with n ele-
ments d times in a non-seasonal way, which means building a new time series
consisting of the n− d successive differences of successive time series values.
For example, a time series with a linear trend becomes stationary by differ-
encing the time series once. The new time series does not exhibit any trend
any more, i.e. the detrending of the time series was successful.

Definition 22 (Differencing Operator). The differencing operator ∇ shall
be introduced as

∇ = 1−B, (17)

B again being the delay operator (9). Thus differencing a time series can be
written as

∇xt ≡ (1−B)xt = xt − xt−1. (18)

Definition 23 (Generalised Autoregressive Operator). For a fixed d the
generalised autoregressive operator ϕ(B) is

ϕ(B)xt ≡ φ(B)(1−B)dxt, (19)

φ(B) being the autoregressive operator (10).

24

Example 8 (Random Walk). The random walk model assumes that, from
one period to the next, the original time series merely takes a random ”step”
away from its last recorded position, like an inebriated person who steps
randomly to the left or right at the same time as he steps forward: the path
he traces will be a random walk.
A typical random walk time series shows irregular growth. It is best to
analyse the first difference of the series and not the series itself.

Selection of the order of differencing. In practice d is mostly 0 or
1, almost never greater than 2. The optimal order of differencing is often
the order of differencing at which the standard deviation of the time series
is lowest. If the series has a lot of positive autocorrelation coefficients ri
(from equation (6)) to a high number of lags, then the order of differencing
is probably not high enough. Increasing standard deviation and r1 ≤ −0.5
are signs of over-differencing.

Seasonal differencing. The seasonal difference of a time series is the series
of changes from one season to the next. For example, for monthly data, in
which there are 12 periods in a season, the seasonal difference of a time series
{x[t]} at period t is xt−xt−12. Seasonal differencing therefore usually removes
the seasonality from a time series, as well as most of the trend.

Definition 24 (Seasonal Differencing Operator). s shall be the length of the
season. Then the seasonal differencing operator ∇s is defined as

∇s = 1−Bs (20)

and
∇sxt ≡ (1−Bs)xt = xt − xt−s. (21)

Remark. Seasonal differencing and differencing can both be necessary for
the same time series to make it stationary. If the series has a strong and
consistent seasonal pattern, first the order of seasonal differencing D should
be chosen. Usually D is not greater than 1, the sum d + D is not greater
than 2 in general.

2.2.4 VSARIMA Models

All of the above mentioned models can be easily combined to a VSARIMA
model (vector seasonal autoregressive integrated moving average model), the
most general statistical time series model presented in this chapter.

25

Algorithm 4 (ARIMA(p, d, q) Model). Using the notations from the equa-
tions (19) and (15), an ARIMA(p, d, q) model with d non-seasonal differences,
p autoregressive and q moving average parameters is given by

ϕ(B)xt = θ(B)εt. (22)

Remark. An ARIMA model with d = 0 is also called ARMA model.

Algorithm 5 (SARIMA(p, d, q) × (P,D,Q)s Model). If the time series is
seasonal and D seasonal differences are added to the ARIMA(p, d, q) model,
the model becomes a SARIMA(p, d, q)× (P,D,Q)s model:

Φ(Bs)φ(B)∇D
s ∇dxt = Θ(Bs)θ(B)εt, (23)

where Φ(z) and Θ(z) are polynomials of order P and Q.

Selection of the SARIMA model parameters. First of all the orders
of differencing have to be identified according to section 2.2.3 to attain a
stationary time series. By looking at the ACF and PACF plots - they are
in fact bar charts - of the differenced series, the numbers of AR and/or MA
terms that are needed can tentatively be identified.

• If the PACF bar chart of the differenced series displays a sharp cutoff
while the ACF decays more slowly and/or r1 is positive, then adding
an AR term to the model should be considered. The lag at which the
PACF cuts off is the indicated number of AR terms. An AR term can
act like a partial difference in the forecasting equation, thus more AR
terms are required if the series appears slightly under-differenced.

• If the ACF bar chart of the differenced series displays a sharp cutoff
while the PACF decays more slowly and/or r1 is negative, then adding
an MA term to the model should be considered. The lag at which
the ACF cuts off is the indicated number of MA terms. An MA term
can partially cancel an order of differencing in the forecasting equation,
thus more MA terms are required if the series appears slightly over-
differenced.

• It is possible for an AR term and an MA term to cancel each other’s
effects, so if a mixed ARIMA model seems to fit the data, also a model
with one fewer AR term and one fewer MA term could fit the data
in a very adequate way, particularly if the parameter estimates in the
original model require more than 10 iterations to converge.

26

• If there is a unit root in the AR part of the model, i.e., if
∑p

i=1 φi ≈ 1,
the number of AR terms should be reduced by one, while the order of
differencing should be increased by one.

• If there is a unit root in the MA part of the model, i.e., if
∑q

i=1 θi ≈ 1,
both the number of MA terms and the order of differencing should be
reduced by one.

• If the long-term forecasts appear erratic or unstable, there may be a
unit root in the AR or MA coefficients.

• The signature of pure seasonal AR (SAR) or pure seasonal MA (SMA)
behavior is very similar to the signature of pure AR or pure MA be-
haviour, except that the pattern appears across multiples of lag s in
the ACF and PACF. For example, a pure SAR(1) process has spikes in
the ACF at lags s, 2s, 3s etc., while the PACF cuts off after lag s.
Conversely, a pure SMA(1) process has spikes in the PACF at lags
s, 2s, 3s etc., while the ACF cuts off after lag s.
If the autocorrelation rs is positive, adding an SAR term to the model
should be considered. If it is negative, adding an SMA term to the
model should be considered.
SAR and SMA terms should not be mixed in the same model, and
using more than one of either kind should be avoided. [25]

Choosing the best of several adequate models. If several models seem
to be adequate, the best one can be chosen according to so-called information
criteria. Based on the concept of information entropy, they describe the
trade-off between the accuracy of a model and its complexity, thus they
provide a mean for model selection. The smaller the below defined AIC and
BIC are, the better is the model.

Definition 25 (Akaike’s Information Criterion).

AIC = −2 ln(L) + 2k, (24a)

L being the likelihood function, k the number of parameters of the model.

In the case of SARIMA models, AIC can be calculated as follows:

AIC = ln
(1

n

n∑
i=1

r2
i

)
+ 2k, (24b)

n being the number of samples and ri being the residuals from (2).

27

Definition 26 (Bayesian Information Criterion).

BIC = −2 ln(L) + k ln(n), (25a)

In the case of SARIMA models, BIC can be calculated as follows:

BIC = ln
(1

n

n∑
i=1

r2
i

)
+ k ln(n). (25b)

The disadvantage of the AIC, which tends to prefer overfitting, is that
the penalty term 2k is independent of the number of samples n. I.e., for large
n the AIC tends to prefer models with many parameters. The BIC tends
to prefer underfitting, worsening the score of models with more parameters
starting from 8 samples (ln(8) > 2). Apart from these two information
criteria there exist some others, like the Hannan-Quinn criterion.

Example 9. The SARIMA(0, 1, 1) × (0, 1, 1) model is basically a seasonal
random trend model. It is probably the most commonly used SARIMA
model.

Example 10. A SARIMA model for a gas prices time series (which is provided
by MATLAB) shall be established.

Figure 3: Gas prices time series and its differences.

The time series consists of 180 monthly observations of the gas and the oil
prices, starting from July 1973. Only the gas prices shall now be of interest.

28

A graph of the time series as well as a graph of the differenced time series
are shown in figure 10. The time series show an exponential trend in a little
bit more than the first half of the series and an increasing variance - the
gas time series is heteroscedastic. Both effects can be reduced by logging
the time series, which dampens exponential growth patterns and reduces
heteroscedasticity. The logged time series and its differences are shown in
figure 30 in section B.3 in the appendix. The differenced logged series appears
almost stationary.

When used in conjunction with differencing, logging converts absolute
differences into relative differences. Thus, a differenced logged time series
represents the percentage change from period to period. [25]

To establish a suitable SARIMA model, the ACF and the PACF need to
be looked at. The correlation function of the differenced non-logged series
are shown in B.3, those of the differenced logged series are shown in figure
10 below.

Figure 4: Autocorrelation and partial autocorrelation coefficients of the dif-
ferenced and logged gas prices time series.

29

The ACF shows a sharp cutoff after lag 1, while the PACF decays more
slowly. This indicates an MA(1)-model. The parameter θ1 is −0.5273. The
AIC of the model is -6.3594, which is very good.

Seasonality is only slightly notable for this series and is not considered in
the final (0,1,1)-model.

Remark. Multivariate time series can be processed using multivariate anal-
ysis, which can be computationally very expensive for large vectors. The
presented models have multidimensional analogons, in the most general case
the VSARIMA model. For dimensionally reduced modelling of multivariable
time series, the method of principal components analysis can be used.

Remark. Of course there exist further time series models not discussed in this
thesis, for example generalised autoregressive conditionally heteroscedastic
models (GARCH models).

2.3 Forecasting

Once an adequate time series model has been chosen, it can be used to
forecast future values using an adequate forecasting method. The following
two quotes should always be kept in mind by someone trying to predict7

future values of a time series:

”I have seen the future and it is
very much like the present, only

longer.”

Kehlog Albran, The Profit

Figure 5: Kehlog Albran

This pseudo-philosophic quote is actually a concise description of statis-
tical forecasting. A time series is described by statistical properties that are
constant in trends, seasonal patterns, correlations and autocorrelations etc.
It is assumed that those properties will describe the future as well as the
present.

7Forecasting and prediction are two very similar terms, but forecasting is predominantly
associated with time series analysis.

30

Figure 6: Niels Bohr in 1922,
the year he won the Nobel prize.

”Prediction is very difficult,
especially if it’s about the

future.”

Niels Bohr, Nobel laureate in
Physics

This quote can be seen as a warning of the importance of validating a
forecasting model out-of-sample. It is often easy to find a model that fits
the past data very well - perhaps too well! -, but quite another matter to
find a model that correctly identifies those patterns in the past data that
will influence the time series values in the future. Only the future can really
tell, if such an overfitting has been avoided or if maybe even new, previously
unknown patterns arose. One way to minimise the risk of overfitting is cross-
validation like it is introduced at the end of section 3.4.2.

2.3.1 Forecasting Methods

Before selecting an adequate forecasting method, it is essential to consider
what forecasting accuracy is expected, what computational resources are
available, how much data are available, how many items are to be forecast
and how far ahead forecasts should be calculated. Apart from this, some
forecasting methods simply produce point forecasts. In some cases it is more
desirable to produce interval forecasts with an upper and lower limit like
the Box-Jenkins method (named after the two statisticians George Box and
Gwilym Jenkins) does.

Two of the easiest forecasting methods just use trend analysis or regres-
sion analysis. The Box-Jenkins method uses the ARIMA models described in
section 2.2. For the calculation of the h-step-prediction, in general first the
calculation of the 1- to h-1-step-prediction has to be done. Other advanced
statistical forecasting methods include (multiple) exponential smoothing (for
example by using the Holt-Winter algorithm) or adaptive smoothing - more
details can be found in [1].

31

Interval Forecast. Assuming normally distributed errors and an unbiased
forecast - i.e., E(e2

n(h)) = VAR(en(h)) for the error en(h) of the h-step-
prediction at the time step n -, the general formula for an 100(1 − α)%
prediction interval is

x̂n(h)± zα/2
√

VAR(en(h)), (26)

zα/2 being the α/2 percentage point of the standard normal distribution and
x̂ being the point forecast produced by the ARIMA model.

The key point is the evaluation of VAR(en(h)). It may not always be
easy for an ARIMA model, but it is possible, in contrary to GARCH or
other more complicated statistical models. For example, for an AR(1) model
xt = φ1xt−1 + εt the variance of the error of the h-step-forecast is

VARAR(1)(en(h)) = σ2
ε

1− φ2h
1

1− φ2
1

. (27)

32

3 Machine Learning, Data Mining,

Soft Computing

3.1 Definitions and Overview

Machine Learning is one part of modern Artificial Intelligence, which has its
origins somewhere around 1943. Some exemplary areas of application are
detecting spam mails (Naive Bayes, rule mining), giving automatically gen-
erated purchase recommendations on amazon.com (clustering), identifying
faces on pictures uploaded on facebook (decision trees), identifying sound
patterns with Shazam (feature extraction, support vector machines) and so
on and so forth. Especially since the beginning of the new millennium a pretty
strong overlap between machine learning and statistics can be observed.

Definition 27 (Machine Learning). In 1959, nine years after the proposal of
Alan Turing’s test for Artificial Intelligence, Arthur Samuel defined machine
learning (ML) as a ”field of study that gives computers the ability to learn
without being explicitly programmed”.8

Tom Mitchell provided a widely quoted, more formal definition: ”A com-
puter program is said to learn from experience E with respect to some class
of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E”.9

In contrary to mechanics, in many domains the underlying first principles
are unknown, or the systems under study are too complex to be mathemati-
cally formalized. With the growing use of computers, it is not a great problem
to record a huge amount of data being generated by such systems - in general
not even knowing which part of the data is important and which part is not.
In the absence of obvious glass box models, such data can be used to derive
models by estimating useful relationships between some system’s variables.
If these relationships are interpretable, one might derive a new white or at
least grey box model, if not, an input-output dependency might at least give
an idea about the changes of the system.

The strong wish to understand large, complex, information-rich data sets
is common to almost all fields of business, science and engineering. In the
business world, corporate and customer data are becoming recognized as a
strategic asset. The ability to extract useful knowledge hidden in these data

8http://www.holehouse.org/mlclass/01_02_Introduction_regression_

analysis_and_gr.html
9This definition can be found in his book Machine Learning, p. 2. McGraw Hill, 1997,

ISBN 0070428077.

33

and to act on that knowledge is becoming increasingly important. The buzz
phrase personalised advertising stands for itself. In engineering industry, the
detection of system changes and their reasons is of great interest as well as
production optimisation - a company that runs servers wants the recorded
data to reveal when a hard disk is about to fail, a company that produces any
machines wants to know how to reduce the heat loss in the factory depending
on what is produced at a certain time etc.

The entire process of applying a computer-based methodology for discov-
ering knowledge from data is called data mining.

Definition 28 (Data Mining). Data mining (DM) is the analysis of (often
large) observational data sets to find unsuspected relationships and to sum-
marize the data in novel ways that are both understandable and useful to
the data owner.10

DM is an iterative process, the progress of which is defined by discovery
through either automatic or manual methods. It is the cooperative search
of humans and computers for new, valuable and non-trivial information in
large amounts of data and is therefore most useful in an exploratory analysis
scenario where it is not predetermined what might constitute an interesting
outcome. Best results with DM are achieved by balancing the knowledge of
human experts and the capabilities of computers.

Definition 29 (Knowledge Discovery in Databases). Knowledge discovery in
databases (KDD) is simply the extraction of (previously uncharted) knowl-
edge out of the data. Data mining is the analysis step of knowledge discovery
in databases.

In practice, the two primary goals of DM tend to be prediction and de-
scription, i.e. finding patterns describing the data that can be interpreted by
human beings:

• Predictive data mining produces the model of the system described by
the available data.

• Descriptive data mining produces new, non-trivial information based
on the given data set.

The goals of prediction and description can be achieved by using data-
mining techniques - partially already explained and partially yet to be ex-
plained in this thesis - for the following primary data-mining tasks:

10David Hand, Padhraic Smyth, Heikki Mannila. Principles of data mining. MIT Press,
2001.

34

• classification: discovery of a predictive learning function that classifies
a data item into one of several predefined classes.

• regression: discovery of a predictive learning function, which maps a
data item to a real-value prediction variable

• clustering: a common descriptive task in which one seeks to identify a
finite set of categories or clusters to describe the data.

• summarisation: an additional descriptive task that involves methods
for finding a compact description for a set (or subset) of data.

• dependency modelling: finding a local model that describes significant
dependencies between variables or between the values of a feature in a
data set or in a part of a data set.

• change and deviation detection: discovering the most significant changes
in the data set.

In essence, data mining is like solving a puzzle. The individual pieces
of the puzzle are not complex structures in and of themselves. Taken as a
collective whole, however, they can constitute very elaborate systems. [3]

As the two terms machine learning and data mining are commonly con-
fused, because they often employ similar methods and overlap significantly,
the following can be seen as a rough distinction: Machine learning focuses
on prediction, based on known properties learned from some training data,
while data mining focuses on the discovery of (previously) unknown proper-
ties of the data. In ML, performance is usually evaluated with respect to the
ability to reproduce known knowledge, while in KDD the key task is the dis-
covery of previously unknown knowledge. Evaluated with respect to known
knowledge, an uninformed (unsupervised) method will in general easily be
outperformed by supervised methods, but in a typical KDD task, supervised
methods cannot be used due to the simple fact that there is no training data
available. An exact distinction between unsupervised and supervised meth-
ods as well as a presentation of other approaches to learning will be given in
the following section 3.2.

Many of the data mining and machine learning methods are so-called soft
computing methods. A definition of the term soft computing is given below:

Definition 30 (Soft Computing). The aggregation of several intelligent com-
puting techniques like artificial neural networks, fuzzy logic, probabilistic
reasoning, chaos theory, genetic algorithms, swarm intelligence and parts of
the learning theory, that can deal with the indeterminacy and imprecision of
the real world, is called soft computing (SC). [4]

35

Figure 7: Lotfi Askar Zadeh
(born February 4, 1921), proposer
of fuzzy logic and creator of the
term Soft Computing.

”As the complexity of a system
increases, our ability to make

precise and yet significant
statements about its behaviour
diminishes until a threshold is
reached beyond which precision
and significance (or relevance)

become almost mutually exclusive
characteristics.”

Lotfi Zadeh, 1973

Soft computing methods deal with imprecision, uncertainty, partial truth
and approximation to achieve practicability, robustness and low solution cost.
Often resembling biological processes, these methods are intended to com-
plement each other to achieve more efficient hybrid modelling.

”So far as laws of mathematics
refer to reality, they are not
certain, and so far they are
certain they do not refer to

reality.”

Albert Einstein, 1921

Figure 8: Albert Einstein,
14.03.1879 - 18.04.1955

3.2 Algorithm Types - Different Approaches to
Learning

Learning and intelligence are two very important key words of DM, ML and
SC. After a definition of the term learning several approaches to learning are
presented. Which approach has to be chosen for a certain model heavily de-

36

pends on the available data (e.g., if it is pre-labelled or not) and whether the
nature of the main task of the model is descriptive (favours strict supervised
learning) or predictive.

Definition 31 (Learning). Learning is constructing or modifying represen-
tations of what is being experienced.11

Supervised Learning. Supervised learning generates a function that maps
inputs to desired outputs, which can originate from measurements or experts.
These desired outputs are also called labels, because they are often provided
by human experts labelling the training examples, or targets, because the
goal of this kind of learning is that the function maps the inputs as close as
possible to these desired outputs. Learning in a supervised sense occurs by
adapting the function according to the difference of the function outputs and
the labels.

Of course supervised learning is only possible, if the target values are
available! Unfortunately this is not always the case.

Unsupervised Learning. Unsupervised learning refers to the problem of
finding hidden structures in unlabelled data. As there do not exist any labels,
there is no possibility to calculate any error to evaluate a potential solution.
There is no reward signal either. This clearly distinguishes unsupervised
learning from supervised learning and reinforcement learning. The key point
of unsupervised learning is very often an estimation of density.

Unsupervised learning algorithms include clustering (see section 3.5), fea-
ture extraction techniques for dimensionality reduction (PCA, singular value
decomposition,. . .) and neural network models (self-organising map, adap-
tive resonance theory, see section 3.4.3).

Semi-supervised Learning. Semi-supervised learning combines both la-
belled and unlabelled examples to generate an appropriate function or clas-
sifier.

Deep Learning. The deep learning concept12 is based on learning several
levels of representations, corresponding to a hierarchy of features or factors,
whose appropriate number of levels and whose structure is something that a
deep learning algorithm is also expected to discover from examples. While

11Ryszard Michalski, Gheorghe Tecuci (editors). Volume IV of Machine Learning: A
Multi-Strategy Approach. Morgan Kaufmann, San Francisco.

12A great introduction to this concept is [27].

37

the task is usually semi-supervised, the algorithms are often framed as un-
supervised.

Reinforcement Learning. Inspired by behaviourist psychology, reinforce-
ment learning is based on feedback in the form of rewards that guides the
learning algorithm. This feedback can be as simple as one bit, telling the
algorithm if the result was good or bad. In machine learning, the environ-
ment of reinforcement learning is typically formulated as a Markov decision
process.

Although not an approach to learning itself, the term linear separability
is introduced in the following definition because some learning algorithms
need to be adapted to solve non-linearly separable problems - an attribute
most real-life problems certainly have.

Definition 32 (Linearly Separable). Two sets of points X0 and X1 in an m-
dimensional space are linearly separable, if they can be separated by an m−1-
dimensional hyperplane, i.e. if there exist m+ 1 real numbers ω1, . . . , ωm, k,
such that every point x ∈ X0 satisfies

∑m
i=1 ωixi ≥ k and every point x ∈ X1

satisfies
∑m

i=1wixi < k.

Usually the number of hyperplanes that separate the two linear separable
classes is infinite, the best probably being the one whose orthogonal distance
to the closest data point(s) is maximal. While an ANN generally only tries to
find a more or less arbitrary separating hyperplane, a support vector machine
intends to find the described best (see section 3.6 for further details).

Example 11. The logical operator AND is linearly separable.

Example 12. The logical operator XOR is the easiest example of non-linearly
separable functions.

Figure 9: The linearly separable AND operator on the left and the non-
linearly separable XOR operator on the right.

38

3.3 Introduction to Fuzzy Logic

Although the term fuzzy logic was introduced only in 1965 with the proposal
of fuzzy set theory by Lotfi A. Zadeh, it has been studied since the 1920s
as infinite-valued logics notably by Lukasiewicz and Tarski. Fuzzy logic has
been applied to many fields, from control theory to artificial intelligence,
experiencing its first boom in the 1980s in Japan, where the subway of Sendai
could be run fully automatically due to fuzzy logic. About the same time lots
of home appliances started to be operated using fuzzy rules. This nowadays
makes fuzzy logic part of our every-day life.

Fuzzy logic is an extension of the classic binary logic, the first roots of
which can be found in Aristotle’s Organon, where his syllogism is introduced.
More formally, the Boolean algebra was introduced by George Boole in his
book An Investigation of the Laws of Thought in 1854. Boolean logic is a
subarea of algebra in which the values of the variables are the truth values
true and false, usually 1 and 0, while fuzzy logic allows the modeller to also
handle the concept of partial truth. If linguistic variables (e.g. full) are used,
these degrees of truth (e.g. rather full) may be dealt with specific functions.

Definition 33 (Fuzzy Logic). Fuzzy Logic is a branch of logic designed to
allow imprecisions in reasoning, knowledge and truth.

As fuzzy logic does not play an important role in this thesis, only some
basic terms and concepts are introduced in the following subsections.

3.3.1 Fuzzy Sets and Membership Functions

A membership function of a fuzzy set is a generalization of the indicator
function in classical sets. It represents the degree of truth.

Definition 34 (Membership Function). A membership function for a fuzzy
set A on the universe of discourse X is defined as µA : X → [0, 1], where each
element of X is mapped to a value between 0 and 1, the so-called membership
value or degree of membership, which quantifies the grade of membership of
the element in X to the fuzzy set A.13

Membership functions allow to graphically represent a fuzzy set. While
the x-axis represents the universe of discourse, the y-axis represents the de-
grees of membership in the unit interval.

Simple functions are used to build membership functions, which makes
sense because of the nature of fuzziness itself:

13Definition from http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/funpert_en.

htm.

39

• triangular functions,

• trapezoidal functions,

• R-/L-functions,

• Gaussian functions.

The membership functions of non-fuzzy sets - so-called crisp sets) - look
like rectangles, as they are simply indicator functions.

Figure 10: Three fuzzy membership functions of the linguistic variables dark,
gray and bright. The membership function of dark is an R-function, the one
of bright an L-function and the one of gray is in this case a triangular one.

Example 13. If a modeller wants to detect outliers, it is possible to assign
each datum a value of outlierness, the potential to be an outlier, according to
the values calculated using any method for outlier detection. If these values
of outlierness are mapped into the unit interval, outlierness can be looked at
as a fuzzy variable.

Fuzzy Logic and Probability Theory. Fuzzy logic and probability the-
ory are mathematically similar, both use truth values ranging between 0 and
1. Conceptually they are distinct: Fuzzy logic corresponds to degrees of
truth, while probability theory corresponds to terms like probability or like-
lihood. Concerning sets, the two concepts differ in the following way: Fuzzy
set theory uses the concept of membership functions, the modeller wants to
know how much a variable is in a set. On the contrary, a modeller that uses
the probability theory asks how probable does he think that a variable is in

40

a set. It has to be stated that both methods are subjective. Representatives
of both theories have stated that the other theory is only a sub-concept of
their own theory and therefore unnecessary.

One of many examples that at least shows some advantages of the fuzzy
view to a modeller in my personal opinion, is the following: Let a person
be 180cm tall. Then two concepts may be considered: The person is tall or
the person is small. The meaning of each of them can be represented by a
certain fuzzy set. One modeller might define the person as 0.5 tall and as
0.5 small, another designer as 0.8 tall and as 0.1 small. Of course this could
also depend on the fact, if the person is male or female and if this fact is
even known or not. The concept of size in this model is highly subjective and
depends on the designer. The probabilistic view in such an example seems
somehow strange: Should the person be considered as tall with a probability
of 80%? This seems odd, because the size of the person can certainly be
looked at as a constant.

It is essential to realize that fuzzy logic uses truth degrees as a mathe-
matical model of the vagueness phenomenon.

3.3.2 Fuzzy Set Operators

Any kind of logic works on sets and uses operators like intersection or union
of sets. For fuzzy sets the classic intersection and union operators need to
be generalised, leading to fuzzy t-norms and fuzzy t-conorms.

Definition 35 (Fuzzy T-Norm). A fuzzy t-norm is a function > : [0, 1] ×
[0, 1]→ [0, 1] which satisfies the following properties:

1. >(a, b) = >(b, a) (Commutativity)

2. >(a, b) ≤ >(c, d), if a ≤ c and b ≤ d (Monotonicity)

3. >(a,>(b, c)) = >(>(a, b), c) (Associativity)

4. >(a, 1) = a (1 is an identity element)

Example 14. Examples for fuzzy t-norms fulfilling the above stated require-
ments are:

• >(a, b) = min{a, b}, the minimum or Gödel t-norm, is the pointwise
largest t-norm.

• >(a, b) = ab

• >(a, b) = max{0, a+ b− 1} is called Lukasiewicz t-norm.

41

• the drastic t-norm is the pointwise smallest: >(a, b) =


b if a = 1,
a if b = 1,
0 otherwise.

• the Hamacher product >(a, b) =

{
0 if a = b = 0,

ab
a+b−ab otherwise.

Definition 36 (Fuzzy T-Conorm). T-conorms are dual to t-norms under the
order-reversing operation which assigns 1−x to x on [0, 1]. Thus a t-conorm
⊥ : [0, 1]× [0, 1]→ [0, 1] is defined by:

1. ⊥(a, b) = ⊥(b, a) (Commutativity)

2. ⊥(a, b) ≤ ⊥(c, d), if a ≤ c and b ≤ d (Monotonicity)

3. ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c) (Associativity)

4. ⊥(a, 0) = a (0 is identity element)

Example 15. Examples for fuzzy t-conorms fulfilling the above stated require-
ments are:

• ⊥(a, b) = max{a, b}, the maximum t-conorm, is the pointwise smallest
t-conorm.

• ⊥(a, b) = a+ b− ab

• ⊥(a, b) = min{a+ b, 1} is called Lukasiewicz t-conorm.

• the drastic t-conorm is the pointwise largest: ⊥(a, b) =


b if a = 0,
a if b = 0,
1 otherwise.

• the Einstein sum ⊥(a, b) = a+b
1+ab

.

As fuzzy t-norms and t-conorms are generalisations of intersection and
union of sets, it suggests itself that also a generalisation of the De Morgan’s
laws can be proven:

Theorem 3 (Generalised De Morgan’s Laws).

⊥(a, b) = 1−>(1− a, 1− b). (28)

42

3.3.3 Fuzzy Control System

For a fuzzy control system first of all the input variables need to be mapped to
fuzzy variables by the membership functions. The conversion of crisp values
to fuzzy values is called fuzzification. The micro-controller makes decisions
according to a set of fuzzy rules applied to these variables defined on fuzzy
sets.

Definition 37 (Fuzzy Rule). A fuzzy rule is defined as a conditional state-
ment of the form:

IF x is A
THEN y is B.

x and y shall be linguistic variables, A and B linguistic values determined
by fuzzy sets on the universe of discourse X and Y . The IF part is called
antecedent, the THEN part consequent.

Example 16. If the fuzzy variable height increases towards tall, the fuzzy
variable weight increases towards heavy.

If a rule consists of several antecedents, they can be combined using fuzzy
operators as AND, OR or NOT (AND uses simply a t-norm, OR a t-conorm
and NOT the complementary function.). The membership functions used
in these fuzzy rules can also be modified by adjectives: very squares the
membership function, extremely cubes it, rather takes the square root.

The result of the (usually dozens of) rules is determined using again the
membership functions involved. Finally the fuzzy value of the output variable
is transferred back to a crisp value - this is the so-called defuzzification. The
crisp output value can now be used to adjust the system, for example the
heater that shall be controlled.

There are several defuzzification methods. One of the most common tech-
niques is the method of center of gravity, which simply calculates the centroid
of the output membership function as the crisp value that is returned.

3.4 Artificial Neural Networks

3.4.1 Archetype Biology

There are a lot of problems that cannot be represented by a simple algorithm,
but are solved by a human being who learned how to deal with similar kinds
of problems. This exact ability to learn in a very adaptive way is something
very important which computers and algorithms obviously have a lack of.

43

Figure 11: A human brain and its most important partitions.

In theory, a computer could outperform a human pertaining to efficiency in
solving complex problems due to the short response time of its transistors (see
table 2), but of course this is only true for complex numerical calculations.
Some main advantages of the human brain compared to a computer are:

• the ability that many areas of the brain work in a parallel way at the
same time, while most of the computer transistors only passively store
data

• the ability to readjust its structure

• the ability to generalise

• the ability to tolerate errors.

The basic idea of an artificial neural network (ANN) is to harness these
abilities for computers. [5]

Because of its above introduced modelling approach, ANNs are a typical
soft computing method according to definition 30.

The basic element of a neural network is of course a neuron. All neu-
rons are electrically excitable cells, maintaining voltage gradients across their
membranes by means of metabolically driven and sometimes voltage-depen-
dent ion pumps that move ions such as sodium, potassium, chloride and
calcium from the inside to the outside of the cell or vice-versa.

44

Brain Computer

Number of Processing Units ≈ 1011 ≈ 109

Type of Processing Units Neurons Transistors

Form of Calculation Massively Parallel Generally Serial

Data Storage Associative Address-based

Response Time ≈ 10−3s ≈ 10−9s

Processing Speed Very Variable Fixed

Potential Processing Speed ≈ 1013 FLOPS 14 ≈ 1018 FLOPS

Real Processing Speed ≈ 1012 FLOPS ≈ 1010 FLOPS

Resilience Very High Almost None

Power Consumption per Day 20W 300W 15

Table 2: A comparison of properties of a human brain and an average per-
sonal computer. [5]

If the voltage changes by a large enough amount, an all-or-none electro-
chemical impulse called an action potential is generated and propagated to
other cells, where it again causes a voltage change. Thus a certain neuron
works like a switch which is turned on if the sum of voltage changes arriving
to this neuron is above some threshold.

Human beings possess many different kinds of neurons, all of them spe-
cialised in their own way. Basically, a human being has phasic and tonic
receptors (i.e., special neurons), a distinction made due to the rate of adap-
tation. A phasic receptor adapts rapidly to a stimulus, fires its action po-
tential and then stops at least for the absolute refractory period (approx-
imately 2ms), which is followed by the relative refractory period (approxi-
mately 1.5ms), in which stimuli need to be stronger to produce an action
potential. This kind of receptor does not provide information about the
length of the stimulus. A tonic receptor adapts slowly to a stimulus, it is
able to produce action potentials over the duration of a stimulus. Some tonic

14floating point operations per second
15A supercomputer needs up to 10 million watts a day!

45

Figure 12: Structure of a typical human neuron.

receptors are even permanently active. Examples for tonic receptors are pain
receptors and receptors for the perception of vibrations.

Also the propagation of an action potential between two neurons occurs
in different specific ways: Human beings have some hard-coded electrical
synapses (e.g. for the initiation of the flight reflex). Chemical synapses work
with neurotransmitters like acetylcholine, dopamine or serotonin, which has
- though slower and more complex - many advantages: the propagation of
the electric impulse works one-way and there is a great adjustability due
to different amounts of neurotransmitters with various restraining or stim-
ulating effects. For example, the intensity of signals heard is propagated
logarithmically by nerval stimuli. [5]

Keeping in mind that there are many different specialised neurons in
a human being, a typical structure of a neuron is shown in figure 12. At
the majority of synapses, signals are sent from the axon of one neuron to
a dendrite of another, thus the dendritic tree of a neuron somehow collects
the arriving stimuli. This is also the basic idea of the connection of artificial
neurons.

3.4.2 Basic Considerations about Modelling Neural Networks

Without going into too much detail at this point, a definition of an artificial
neural network by Teuvo Kohonen is given below:

Definition 38 (Artificial Neural Network). Artificial neural networks are
massively parallelly distributed networks consisting of simple, usually adap-
tive elements that are arranged and organised hierarchically. They are built
on the analogy to the human information processing system and should in-
teract with the world in the same way as biological neural networks do.

46

Of course it has to be stated that ANNs are a radical simplification of
the highly specialised human neural network.

The term time in the context of ANNs usually refers to the number of
iterations that were used in the implementation of the ANN. This has only
practical reasons and has neither an analogon in real life nor anything to do
with any time discretisation of the whole model.

The elements of an ANN are also called neurons - small processing units.
The output of a neuron is a (usually non-linear) function of the (possibly
weighted) sum of inputs minus some threshold θ. Thus the whole ANN is in
general highly non-linear. While the input is usually mathematically spoken
a vector, the output is a scalar. The neurons are arranged in layers and it has
to be defined which neurons are connected with each other. The neurons, the
connections between them and their weights fully define the ANN. Usually
non-existing connections are simply defined by the weight 0, which makes it
possible to assume that every ANN is fully connected. The weights symbolise
the biological synapses, their entirety represents the known information of
the network. Therefore it is necessary that the weights are variable.

The actual weight between the neuron Ni and the neuron Nj shall be ωij.
All weights are stored in a quadratic matrix W - this is called the Hinton
representation. oi being the output of the Neuron Ni, the input netj of a
neuron Nj is usually calculated as the weighted sum

netj =
∑
i∈I

ωijgi(oi), (29)

the functions gi often being the identity. The propagation of the data is
modelled by the use of the activation function (also transfer function) in a
neuron.

Definition 39 (Activation Function). Let ok(t) be the activation16 of the
neuron Nk at iteration t, netk(t) the neuron input at t and θk the threshold
of the activation function of Nk according to the following definition 40. The
activation function fact depends on the actual input, the last output as well
as the threshold and returns the new output:

ok(t) = fact(netk(t), ok(t− 1), θk). (30)

Definition 40 (Threshold θk). Let Nk be a neuron. Its threshold θk is the
value with the largest slope of the activation function of Nk.

Example 17. Widely used activation functions are the Heaviside function
(not continuous), linear functions, the hyperbolic tangent (range (−1, 1),

16In this thesis the terms activation and output shall be equivalent.

47

differentiable), the sigmoid function (see the following definition 41) and
radial basis functions (see the following definition 42).

Figure 13: Graphs of the most commonly used activation functions.

Remark. Due to numerical reasons Davide Anguita et al.17 suggested a fast
approximation hyperbolic tangent, consisting of two parabolic arcs and two
half-lines. Because evaluations of the exponential function are avoided, this
function can improve the calculation time by the astonishing factor 200.

Definition 41 (Sigmoid Function).

f(x) =
1

1 + e−x
(31)

is called sigmoid or logistic function. Its range is the interval (0, 1).

17D. Anguita, G. Parodi and R. Zunino. Speed improvement of the back-propagation
on current-generation workstations, Volume 1 of the World Congress on Neural Networks,
July 11-15, 1993, Oregon Convention Center, Portland, Oregon. Lawrence Erlbaum, 1993.

48

Definition 42 (Radial Basis Function). A real-valued function φ is called
radial basis function (RBF), if its values only depend on the distance from
some center c, which is very often the origin. Thus the condition for being a
RBF is

φ(x, c) = φ(‖x− c‖) ∀x with a certain center c or (32a)

φ(x) = φ(‖x‖) ∀x. (32b)

The threshold θ has been introduced as a parameter of the activation
function fact. During the training of the ANN (see section 3.4.4) it is com-
plicated to access and change fact, if θ should be changed. In this case it
is easier to represent θ in a totally different way, indeed as the weight of an
always firing on-neuron.

Definition 43 (Bias Neuron). The output of a bias neuron or on-neuron
is always 1. It is used to represent thresholds as weights, the weight of the
connection between the bias neuron and a neuron Nj being the negative
threshold −θj.

The new threshold of Nj is 0, fact only depends on the actual input and
the last output. This makes the implementation a lot easier, although the
schematic representation becomes more complicated.

The number of neuron layers of a typical ANN varies between 1 and 4. An
ANN consists of an input and an output layer (which are the same in certain
ANNs) and possibly some hidden layers between those two. The numbers
of neurons per layer strongly depends on the complexity of the problem the
ANN is applied to. Often not the neuron layers of an ANN, but the number
of variable weight layers are counted. That means that an ANN with two
neuron layers and one weight layer between them is often called a single-layer
ANN.

Approximation Capacity of ANNs. There is a universal approxima-
tion theorem for ANNs that states that the standard multilayer feed-forward
network with one hidden layer, which contains a finite number of hidden
neurons, is a universal approximator among continuous functions on com-
pact subsets of Rn, under mild assumptions on the activation function. The
following theorem was proved by George Cybenko in 1989 for a sigmoid ac-
tivation function, and is therefore named after him.

Kurt Hornik from the Technical University Vienna showed in 1991 in [26]
that it is not the specific choice of the activation function, but rather the
multilayer feed-forward architecture itself which gives neural networks the
potential of being universal approximators.

49

Figure 14: A possible structure of an ANN.

Theorem 4 (Cybenko). Let ϕ be a non-constant, bounded and monotonically-
increasing continuous function. Let Im denote the m-dimensional unit-hypercube
[0, 1]m. C(Im) denotes the space of continuous functions on Im. For any
given function f ∈ C(Im) and ε > 0 there exist an integer N and sets of real
constants αi, βi ∈ R and vectors ωi ∈ Rn, where i = 1, . . . , N , such that F (x)
can be defined as follows:

F (x) =
N∑
i=1

αiϕ
(
ωTi x+ βi

)
(33)

is an approximate realisation of the function f ; that is in mathematical
terms,

|F (x)− f(x)| < ε ∀x ∈ Im. (34)

Remark. The sums of the type of the right-hand side of (33) are dense in
the space of continuous functions on the unit cube, if ϕ complies the above
mentioned requirements. These sums generalise approximations by finite
Fourier series. The proof uses Borel measures, the Hahn-Banach theorem,
Riesz’ representation theorem, the Lebesgue-bounded convergence theorem
and that ϕ is discriminatory.18

Remark. The Cybenko theorem is formulated for only one (linear) output
neuron simply due to notational convenience.

18A full proof can be found at:
http://cs.haifa.ac.il/~hhazan01/AdvanceSeminaronNeuro-Computation/2010/

nn1.pdf

50

Applying the above formulated theorem 4 to an ANN with one hidden
layer, N is the number of the neurons in the hidden layer, f the continuous
function to be approximated (i.e. in the context of this thesis, representing
the solution of the problem or the time series to be modelled), ωi are the
weights of the input layer, βi the thresholds of the neurons in the hidden
layer or the bias neuron inputs, αi the weights in the hidden layer and ϕ
is the activation function (The sigmoid function, the hyperbolic tangent,
the fast approximation hyperbolic tangent and the squashing function are
certainly non-constant, bounded and monotonically-increasing).

As a consequence of Cybenko’s theorem, bad approximations of ANNs for
continuous multivariate functions are caused by bad weights, a bad number
of neurons, a bad learning rate or something similar. The fact that f ∈ C(Im)
suggests a normalisation of the available data.

Network Topology. Until now, there does not exist a clearly formulated
method to design a good topology of an ANN. It is thought that a huge
performance improvement can be achieved by the ability to choose a good or
maybe even optimal topology of an ANN. Different problems require different
network topologies. The modelling approach makes it clear, how many input
and output neurons are needed, but does not necessarily tell anything about
the hidden layers or the connections between the neurons. Some rules of
thumb for starting points for the number of hidden neurons nh do exist: For
example, for an ANN with an input layer with ni neurons, one hidden and
an output layer with no neurons, one could start with nh =

√
nino hidden

neurons or something similar between ni and no. A more general rule of
thumb is the geometric pyramid rule:

nh = α
√
nino, α ∈ [0.5, 2]. (35)

The use of too many hidden neurons not only increases the calculation
time, but also represents the well-known problem of over-parameterised mod-
els with more degrees of freedom than observations in the training set [15].
It is recommendable to follow a bottom-up principle: First an ANN with few
neurons is tested, and the number of neurons should be augmented as long as
the performance of the network increases significantly. [5] The performance
of an ANN can only be measured after an adequate training.

Initialisation. Before the training, the weights of an ANN need to be
initialised. Usually this is done by symmetry breaking, by choosing random
small initial weights, which are not too close to zero, i.e. from a set of
the type [−0.5, 0.5]\(−ε, ε) for a small ε > 0. Symmetry breaking has the

51

positive effect that the weighted input to a certain layer is probably close
to 0, where the threshold of most activation functions is. This allows great
learning impulses at the beginning of the training. [5]

Training. In this paragraph only a supervised learning approach is consid-
ered. Right after the initialisation, the ANN is not able to solve a specific
problem. First it needs to be trained, wherefore a training set is presented
numerous times to the ANN during the learning process. The training set
does not only consist of observed input vectors, but also of the corresponding
(except for possible measurement errors) correct output vectors, the target
vectors. The ANN can be trained either in an off-line way (also called batch-
training, i.e. the whole training set is presented to the net before changing
the weights) or in an on-line way (the weights are adapted after every single
input vector/target vector pair). During the learning process, the weights
are changed in a way to minimise some norm of the error vectors, which are
simply the differences between the target and the output vectors. The one-
time presentation of the training set to the ANN and the related adaptation
of the weights is called training epoch.

Training Set. The order of the training set is relevant to the performance
of the ANN. A completely random presentation to the net does not guarantee
an uniformly distributed learning success, presenting the training set always
in the same order to the ANN constrains its ability to generalise, especially in
the case of recurrent ANNs. Shuffling the training set (i.e., creating a random
permutation of the training set) in every epoch avoids both problems, but
by doing this the calculations for the training become more complex. The
best way to achieve a good trade-off between high accuracy and a strong
generalisation ability of the ANN is to use cross-validation by dividing the
training set into three parts:

• a training set, which is really used to train the ANN (usually about
70% of the whole training data)

• a validation set, which is used to measure the learning progress (usually
about 15% of the whole training set); furthermore the training and the
validation set are used to decide when to stop the training

• a test set, which gives an idea about the quality of the ANN (usually
about 15% of the whole training set).

52

Convergence. Nothing can be said in general about the convergence of an
ANN. There might exist many local minima of the error function and the
optimization method used might not converge, when starting far away from
a local minimum. Apart from that also the topology of the ANN might be
so bad that the found global minimum of the error function is not acceptable
for practical reasons.

3.4.3 Different Types of Networks

A variety of different types of ANNs exists, which differ in their topology, in
the existence of loops or in their modelling approaches. Some of the most
important types are going to be presented in the following paragraphs.

Feed-Forward Neural Networks. In this most simple type of ANNs the
information moves in only one direction, there are neither loops nor cycles.
Examples of feed-forward networks are single-layer and multi-layer percep-
trons. Applied to a classification problem, single-layer perceptrons can sep-
arate classes by hyperplanes, two-layer perceptrons by convex polygons and
three-layer perceptrons can classify any given sets correctly. These networks
are usually trained by the backpropagation algorithm.

Radial Basis Function Networks. RBF networks consist of exactly three
neuron layers and have a feed-forward structure without bias neurons. The
input layer is directly connected with the hidden layer whose activation func-
tion is an RBF function with centres ci, only the connections between the
hidden layer and the output layer are weighted (These linear weights in-
fluence the amplitude of the Gaussian bells). RBF networks are universal
function approximators. The training procedure is different to the one of
feed-forward networks, it is usually a combination of an algorithm based on
a descending gradient and solving equation systems using the Moore-Penrose
pseudo-inverse matrix. The most important issue of RBF networks is the se-
lection of the centres ci and the related spread parameters, which are either
fixed (due to some available knowledge) or calculated by k-means cluster-
ing (see section 3.5), a self-organising map (see below in this section) or
something else. RBF networks have advantages in comparison to multi-layer
perceptrons, if the output dimension is high and if interpolation is more im-
portant than extrapolation. They have disadvantages, if the input dimension
is high. Apart from that, RBF networks have the possibility to use the out-
put 0 to create an answer to a classification problem that - transferred to
words - is ”I don’t know”.

53

Replicator Neural Networks. A replicator neural network is a multi-
layer perceptron neural networks with three hidden layers. As the network
tries to replicate the data (i.e., the input is the desired output), the number
of output neurons equals the number of input neurons. Usually the first and
third hidden layer use the hyperbolic tangent and the second hidden layer
uses a staircase function as activation function. The replicator neural network
forms an implicit, compressed model of the data during the training. A
measure of outlierness of each datum is then developed as the reconstruction
error of individual data points. The replicator neural network approach has
its linear analogon in principal components analysis (PCA). [20]

Hopfield Networks. Hopfield networks are inspired by the behaviour of
particles in a magnetic field. They consist of K fully connected neurons,
which are not ordered in any layers. The activation function used is −1+2H,
H being the Heaviside function. Thus the network status is a binary string
z ∈ {−1, 1}|K|. Nowadays they are not of huge interest anymore.

Recurrent Neural Networks. Contrary to the above described networks,
recurrent neural networks (RNN) are models with bidirectional data flow.
Two of the simplest models of this type are the Elman and the Jordan net-
work, which both have three layers like the classic three-layer perceptron,
but with the addition of a layer with context neurons in the input layer. A
context neuron saves the previous output of the neuron it belongs to, thus
the only incoming connection from a hidden neuron in the case of an Elman
net or from an output neuron in the case of a Jordan net has the weight
1. Due to their internal memory RNNs deliver mentionable results in tasks
like speech processing or handwriting recognition and are well applicable for
dynamic systems. The training of these nets can be done by backpropaga-
tion through time: The network gets unfolded in time, every context neuron
represents a neural network of the same architecture and the obtained huge
network can be trained by the backpropagation algorithm. Other algorithms
used to learn the RNN are real-time recurrent learning or evolutionary algo-
rithms. A major problem with gradient descent methods for standard RNN
architectures is that error gradients vanish exponentially with the size of the
time lag, a problem that is overcome by long short-term memory networks.

Long Short-Term Memory Networks. Long short-term memory net-
works (LSTM networks) include special LSTM blocks apart from regular
network units. Such a block basically consists of a normal input neuron and
three gate control neurons, which control the input gate, the forget gate and

54

the output gate respectively. Within the block the calculated value is fed
back in without being altered by weights or an activation function and thus
is remembered as long as the forget gate allows. Because of this property an
LSTM network is well-suited to process time series when there are very long
time lags of unknown size between important events. The architecture of
these high-end ANNs was proposed in 1997 by Sepp Hochreiter and Jürgen
Schmidhuber.

Deep Networks. Following the deep learning idea (see section 3.2), these
networks use a very high number of layers.

Neuro-Fuzzy Networks. As soft computing methods can be combined
efficiently in a hybrid way, there are a lot of neuro-fuzzy systems which try
to use the fact that ANNs are universal approximators and the fact that
fuzzy systems are well interpretable, especially if the system includes fuzzy
if-then-rules. The term neuro-fuzzy networks is a pretty general one and
also involves deriving fuzzy rules or realising fuzzy membership functions
from ANNs, fuzzy logic based tuning of ANN training parameters and ANNs
whose inputs, outputs and/or weights are fuzzy values.

Unsupervised Neural Networks. The human brain does neither map
input to output vectors nor has training examples with target vectors. Its
reaction to an input is a change of its status, and this can be considered as its
output. According to this unsupervised principle, Teuvo Kohonen proposed
self-organising maps (SOM). The key question in this model is not what the
neurons calculate, but which neurons are active. SOMs use a neighbourhood
function to preserve the topological properties of the input space, which
makes them useful to visualise two-dimensional views of high-dimensional
data. The neurons of an SOM are arranged in a lattice (a square grid with
the Von Neumann or Moore neighbourhood, a hexagonal grid), their weights
initialisation can be done by sampling evenly from the subspace spanned by
the two largest principal component eigenvectors. The training uses com-
petitive learning, the best matching unit (i.e. the neuron whose weight is
closest to the input) and its neighbours are adjusted to the input. Topologic
functions used during the training are for example Gaussian bell functions,
cone functions or the Mexican hat function. SOMs find similarities and can
therefore be used to suggest similar songs, scientific papers or articles to a
costumer.
The adaptive resonance theory (ART) model is an ANN that is not only used
for binary classification but also should be able to encounter new classes. An

55

ART network consists of two layers, the input layer is fully connected with
the recognition field (top-down) where the the-winner-takes-it-all-strategy
is used. The activation of the recognition field is propagated back to the
input layer, creating resonance (bottom-up). Learning an ART network in-
cludes either differential equations (slow learning) or algebraic equations (fast
learning). ART networks are used for many pattern recognition tasks, such
as automatic target recognition and seismic signal processing.

3.4.4 Learning Algorithms

Training a neural network model essentially means applying a learning al-
gorithm that minimises the error function. There are numerous algorithms
available, most of these algorithms employ some form of gradient descent.
This is done by simply taking the derivative of the error function with re-
spect to the network parameters and then changing those parameters in a
gradient-related direction. Other methods that can be used for training an
ANN are evolutionary methods like genetic algorithms, simulated annealing,
expectation-maximisation or particle swarm optimization.

After feeding an ANN with some training data, the error function needs
to be evaluated.

Definition 44 (Error Function). In the case of on-line learning, the error
function is usually

ESSE =
1

2

∑
Ω∈O

(tΩ − oΩ)2, (36)

based on the summed squared error (SSE). Ω are output neurons, O is the
set of all output neurons of the ANN. Other possibilities for error functions
are based on the root mean square (RMS) or, especially in low-dimensional
spaces, the euclidean distance. In the case of off-line learning the error func-
tion is the sum of all individual errors.

Plotting the error function of the training set and the test set against
time/training epochs generates the two training curves. An ideal training
curve of the training set behaves like e−t, the training curve of the test set
usually lies above the training curve of the training set and oscillates more
wildly. If the training curve of the test set starts to ascend, this may be
an indication that the ANN is starting to learn the training data by heart
and is losing its ability to generalise. The strategy of early stopping quits
the training, if the training curve of the test set rises over for example 6
consecutive epochs.

56

Definition 45 (Gradient Descent). Given a differentiable m-dimensional
function f and a starting point p0 ∈ Rm, a gradient descent method starts at
f(p0) and moves into the direction of the negative gradient ∇f(p0) to smaller
values of f . This is repeated iteratively.

pi+1 = pi − η∇f(pi), (37)

where η could be |∇f(pi)|.

Remark. The gradient descent method is an optimisation method which is
not faultless. In most cases these algorithms work, but it is not always
possible to even see whether the method worked well or not.

Problems of Gradient Descent Methods. Gradient descent methods
search for local minima. It is possible that the difference between a found
local minimum and the global minimum is huge. If the function exhibits flat
spots, many iterations are necessary to overcome this flat spot. It is possible
that the method leaves a good minimum in future iterations or even oscillates
in deep canyons without converging to a local minimum.

A basis for more complex learning algorithms is often the Hebbian learn-
ing rule:

Algorithm 6 (Hebbian Learning Rule). Let neuron i be connected with
neuron j, the weight of the connection shall be ωij. The basic idea of this
algorithm is that the weight of the connection increases, if the activations of
both neurons are high. The incrementation happens proportionally to the
learning rate η > 0:

∆ωij = ηoioj. (38)

Remark. Hebb’s rule (38) is in general unsupervised and unstable for any
neuron model.

Algorithm 7 (Delta Rule). For an output neuron Ω and its known teaching
input tΩ the weight update for an ANN with a linear activation function
shall be calculated as follows:

∆ωiΩ = ηoi(tΩ − oΩ) = ηoiδΩ. (39)

The difference between the teaching input and the actual output of the neu-
ron Ω is called δΩ. This is the reason why the algorithm is called delta or
Widrow-Hoff rule.

57

The delta rule originates from the idea to see the error function as a function
of the weights and to apply the gradient descent method:

∆W = −η∇ESSE(W). (40)

Using the chain rule

∂ESSE(W)

∂ωiΩ
=
∂ESSE(W)

∂oΩ

∂oΩ

∂ωiΩ
, (41)

the first factor can be substituted by δΩ and the second is (due to the required
linear activation function) oi.

Remark. As the delta rule only provides an instrument to update the weights
of output neurons, it is obviously suited for single-layer networks only. The
delta rule belongs to supervised learning algorithms.

The expansion of the delta rule - including a more general delta - to
a multi-layer network with more general activation functions is the back-
propagation algorithm. Already published by Paul Werbos in 1974, it took
the scientific society until 1986 and the publications of work by Rumelhart,
McClelland and Hinton to realise the power of this algorithm. The backprop-
agation works only with monotonous and differentiable activation functions.

Algorithm 8 (Backpropagation). A neuron h is considered. A neuron k is
a predecessor of neuron h, a neuron l a successor of h. L shall be the set of
all successors of neuron h.

∆ωkh = ηokδh (42)

with

δh =

{
f ′act(neth)(th − oh) if h is an output neuron,

f ′act(neth)
∑

l∈L δlωhl if h is an inner neuron.
(43)

Choosing a good η. The smaller η is the higher is the chance to find
a minimum of the error function, but the calculating time increases with
smaller η. Experiences teach to choose the learning rate as follows:

0.01 ≤ η ≤ 0.9, (44)

often starting with a large η and reducing it stepwise during the training.
Learning rates closer to the input layer should be larger than learning rates
closer to the output layer. These are two main issues of the backpropagation
algorithm: That it is difficult to choose a good learning rate and that learning
far away from the output layer is very slow. An extension to this algorithm
that tries to deal with these issues is the so called resilient backpropagation.

58

Resilient Backpropagation. Resilient backpropagation (Rprop) does not
use a global learning rate, every weight ωij has its own learning rate ηij which
is not chosen by the modeller, but by the Rprop algorithm itself. Furthermore
Rprop updates the learning rates after every learning step. Thus it is better
to talk about learning rates ηij(t). Another different approach of the Rprop
is that the weight update is not proportional to the gradient of the error
function anymore, as it is in the case of the backpropagation algorithm. This
property of the backpropagation algorithm usually leads to jagged weight
updates, if the error function is full of fissures. For the Rprop algorithm the
following equation holds:

|∆ωij(t)| = ηij(t). (45)

If the gradient g =
∂ESSE(W)

∂ωij
is positive, ∆ωij(t) is the negative learning

rate −ηij(t), if the gradient is negative, then ∆ωij(t) = ηij(t), if the gradient
is 0, the weight does not change. This leads to a smoother learning. The
learning rates are updated according to the following formula:

ηij(t) =


η↑ηij(t− 1) if g(t− 1)g(t) > 0,
η↓ηij(t− 1) if g(t− 1)g(t) < 0,
ηij(t− 1) if g(t− 1)g(t) = 0.

(46)

If the sign of the gradient has changed in the last two iterations, this
means that there must be a local minimum between the two weights and
the weight updates should be smaller to find it. The last update will not be
done. If the sign of the gradient has not changed, it is possible to slightly
increment the learning rate. Instead of choosing the learning rate manually
for every iteration, for Rprop the modeller has to choose the two constants
η↑ and η↓, the initial learning rates and an upper boundary ηmax and a lower
boundary ηmin for the learning rates. Standard choices for these parameters
are: eta↑ = 1.2, η↓ = 0.5, ηij(0) = 0.1, etamax = 50 and ηmin = 10−6.

Remark. Because the error function and its gradient need to be same for
many iterations, Rprop is only applicable for off-line learning. As Rprop
overcomes the problem that learning far away from the output layer is too
slow, it is highly recommendable for deep networks.

As the error function ESSE is a sum of squares of the residuals rΩ =
tΩ − yΩ, it is also possible to use the Gauss-Newton algorithm instead of a
gradient descent method to minimise it. w shall be the vector including all
weights, r the vector of the residuals.

59

Algorithm 9 (Gauß-Newton).

w(s+1) = w(s) −
(
JTr Jr

)−1
JTr r, where Jr =

∂ri
∂wj

(w(s)). (47)

Remark. JTr Jr is used as an approximation of the Hessian matrix.

More commonly used than the Gauß-Newton algorithm is the Levenberg-
Marquardt algorithm (LMA), a combination of a gradient descent method
and Gauß-Newton.

Algorithm 10 (Levenberg-Marquardt). Basically, the main task of the Le-
venberg-Marquardt algorithm is to solve the following equation with respect
to ∆w:

(JTJ + λI)∆w = JT r (48)

λ is the damping factor, which is adjusted at each iteration. If the reduction
of r is rapid, a smaller value can be used, if the reduction is insufficient, the
damping factor can be increased. λ → 0 means that the LMA becomes the
Gauß-Newton algorithm, λ→∞ signifies that the LMA becomes a gradient
descent method. Usually the initial value of λ is 0.1.
If JTJ is not singular, the equation system can be solved by using the LU
decomposition, if it is singular, the system is solved by SVD decomposition.

Remark. The LMA converges locally quadratically. It is very sensitive to the
initial network weights. Also, it does not consider outliers in the data. To
avoid those situations a technique known as regularisation can be used. If a
network training works with the LMA, the training is usually fast.

Further Algorithm Adaptations. There are lots of adaptations to the
backpropagation and the other learning algorithms. Which one is the best
for a certain application, depends on the problem that is modelled. Very
often this is not known a priori and needs to be tested. Adaptations can
include a momentum term, second order derivatives, flat spot elimination,
pruning/optimal brain damage (elimination of neurons with weights close to
0) or the use of different error functions like the cross-entropy or a weight
decay addend:

Definition 46 (Weight Decay Error Function).

EWD = ESSE + β
1

2

∑
ω∈W

ω2 (49)

β regulates the penalisation of large weights19 and is usually chosen from the
interval [0.001; 0.02]. W shall be the set of weights in this definition.

19Again, this is biologically inspired. Synaptic weights cannot become extremely large.

60

Dropout Technique. On each presentation of each training datum, each
hidden unit is randomly omitted from the network with a probability of 0.5,
so a hidden unit cannot rely on other hidden units being present. This mimics
the standard technique of training several ANNs and averaging them, but it
is faster. This dropout technique provides a more robust learning without
overfitting.

3.4.5 Time Series Prediction with Neural Networks

Forecasting seasonal time series is still a difficult task for researchers. There
are numerous models to analyse and forecast a time series (the classical
statistical VSARIMA models have been presented elaborately in section 2),
but unfortunately there is no single modelling approach that is best for all
seasonal time series [14]. In fact there exist lots of different recommendations
and conflicting results. One among many difficulties is to distinguish seasonal
from non-seasonal fluctuations, an other is to choose a highly adequate model.

Using NNs, which are non-linear and data-driven by nature and are there-
fore theoretically very well suited to model seasonality interacting with other
components, can at least transfer the burden of a difficult a priori model
selection to the selection of NN parameters. Nevertheless, also in the case of
using NNs results obtained by various authors differ widely in quality: Some
suggest that NNs are better than other forecasting models, others contradict
them. Some have seemed to obtain better results with seasonally adjusted
data, others think that NNs are able to directly model seasonality in an im-
plicit way, without any seasonal adjustments on the input data. Detailed
research results are presented in [14], indicating that NNs may be inferior
to the Box-Jenkins model, if they shall model seasonality directly for short
time series, but even in this case some adaptations may lead to better perfor-
mances than those achieved by linear time series models. Lapedes and Farber
(1988) were the first to report that simple neural networks can outperform
traditional methods by up to many orders of magnitude.

In 1991 Sharda, Patil and Tang identified a number of facts that determine
which method is superior, by experiments:

• For time series with long memory, both approaches deliver similar re-
sults.

• For time series with short memory, NNs outperform the traditional
Box-Jenkins approach in some experiments by more than 100%.

61

• For time series of various complexity, the optimally tuned neural net-
work topologies are of higher efficiency than the corresponding tradi-
tional algorithms. [1]

When the modeller of a neuro-predictor is able to influence the data
acquirement, two main issues should be considered: the sampling period (see
theorem 1 for further details) and the number of data needed. Simon Haykin
suggests to choose the number of training patterns based on

N ≈ W

ε
. (50)

W shall be the number of weights used in the NN, ε shall be the error the
training examples should be classified with and N shall be the number of
patterns in the training set. [1]

When using NNs to forecast time series, data normalisation is a key issue.
Various normalisation methods can be applied, logarithmic or exponential
scaling can be used if problems with non-linearities are expected during the
network training. Linear normalisations can be used to meet the require-
ments of the network input layer, as the input range must not be too wide.
Significant patterns as seasonality and trends should be removed, if possible,
to make the NN time series model easier. To be able to use the concept of
cross-validation, appropriate training, test and validation data sets need to
be chosen.

The tasks of structuring the data and choosing the number of input nodes
of the NN predominantly depend on the number d of lagged values to be used
for forecasting of the next value in the standard case of a one-step-ahead pre-
diction. Additional dummy variables can also be used as input variables, but
they have not proven to significantly improve the NN forecasting performance
[14]. Thus the function to be modelled by the NN is of the type

xt+1 = f(xt, xt−1, . . . , xt−d+1). (51)

The number of output neurons directly corresponds to the forecasting
horizon, i.e. in the case of a one-step-ahead forecast there is only one output
neuron. Usually only one hidden layer is used, the number of the neurons in
the hidden layer can be chosen according to the geometric pyramid rule (35).
Choosing the number of hidden neurons as well as the data normalisation
involves trial-and-error experimentation.

As activation function in the hidden layer either the sigmoid function or
the hyperbolic tangent shall be used, while for the output layer the linear
activation function provides the best results. A non-linear activation function

62

in the output layer is only needed, if the time series shows a significant trend
even after the data preprocessing.

If there are several NN models that the modeller finally can choose from,
he can apply an adapted version of the AIC:

Definition 47 (Akaike’s Information Criterion for NNs). With N being
the number of training examples, no the number of output neurons, σ2 the
maximum likelihood estimate of the mean squared error for the training data
and k the number of model parameters, the AIC from definition 25 can be
rewritten as:

AIC = Nno ln(σ2) + 2k. (52)

The model with the smallest AIC shall be preferred. The network infor-
mation criterion NIC is a generalisation of the AIC and easier to apply.
Further details can be checked in [1].

The network training occurs as described in section 3.4.4.
A hybrid combination of neural networks and traditional approaches has

been found very promising, but excesses the range of this thesis.

3.5 Clustering

Definition 48 (Clustering). Cluster analysis is a set of methodologies for
automatic classification of samples into a number of groups using a measure
of association, so that the samples in one group are similar and samples
belonging to different groups are not similar. The input for a system of
cluster analysis is a set of samples and a measure of similarity or dissimilarity
between two samples. The output from a cluster analysis is a number of
groups (the so-called clusters) that form a partition of the data set. [3]

Considering the already presented different learning approaches, a clus-
ter analysis can be done either in an unsupervised or in a supervised way.
It is a primary data mining task, and there are tons of different cluster-
ing algorithms, especially due to the fact that a cluster is defined rather
imprecisely. The most common measures of similarity used in clustering al-
gorithms include distance functions (some of them are presented in section
4.1) or statistical distributions.

One of the most simple clustering algorithms is the unsupervisedK-means
algorithm, that uses the Euclidean distance:

Algorithm 11 (K-Means Clustering - Lloyd’s Algorithm). The algorithm
needs a fixed number K of clusters as well as n observations {x1, . . . , xn} as

63

input. K means m
(1)
1 , . . . ,m

(1)
k need to be chosen initially20. The algorithm

alternates between an assignment and an update step. First, each observation
is assigned to the cluster Ci whose mean is closest to it:

C
(t)
i =

{
xl : ‖xl −m(t)

i ‖ ≤ ‖xl −m
(t)
j ‖ ∀ 1 ≤ j ≤ k

}
(53)

After this assignment new means are calculated:

m
(t+1)
i =

1

|C(t)
i |

∑
xl∈C

(t)
i

xl (54)

The algorithm has converged when the assignments no longer change.

The idea that several examples which do not clearly belong to a single
class could exist implies that a fuzzy approach should make sense for a lot
of clustering tasks. In fuzzy clustering, also called soft clustering, an obser-
vation can belong to more than one class. The most simple fuzzy clustering
algorithm is the fuzzy c-means algorithm:

Algorithm 12 (Fuzzy C-Means Clustering). Given a chosen number C of

clusters with initial centres C
(1)
j , j = 1, . . . , C, n observations {x1, . . . , xn}

and additionally a fuzzifier m > 1 and a threshold ε and/or a maximum
number of iterations tmax, the algorithm returns the cluster centres Cj, j =
1, . . . , C and a partition matrix W ∈ [0, 1]n×C , where each element wij tells
the degree to which element xi belongs to cluster Cj.

w
(t)
ij =

1
C∑
l=1

(
d(xi,C

(t)
j)

d(xi,C
(t)
l)

) 2
m−1

. (55)

After calculating these degrees, the new means are the means of all points,
weighted by their degree of belonging to the cluster:

C
(t+1)
j =

n∑
i=1

xiw
(t)
ij

n∑
i=1

w
(t)
ij

. (56)

The algorithm stops, if the maximum number of iterations is reached or the
fuzzy coefficients do not change more than the given threshold ε:

max
i,j
|w(t+1)

ij − w(t)
ij | ≤ ε ∨ t ≥ tmax. (57)

20Superscript numbers in parenthesis indicate which iteration the algorithm is in.

64

Results depend on the choice of the distance function, the chosen number
of clusters C and the fuzzifier m. The larger m, the fuzzier the clusters;
m→ 1 leads to crisp clustering.

A complete cluster analysis usually also varies the number of classes to
choose the most appropriate number of clusters. In general, this can be
done in an agglomerative or a divisive way using single, complete or average
linkage or Ward’s method.

3.6 Support Vector Machines

Support vector machines (SVM) are (in general supervised) learning models
used for classification and regression tasks. They were invented by Vladimir
Vapnik. The SVM in its basic form aims directly for the decision bound-
ary between the two classes the data can be separated into. Imagining
two linearly separable two-dimensional data classes, many lines can sepa-
rate the two classes. An SVM selects the line that maximises the margin,
the space between the decision boundary and the closest points from each of
the classes. These points closest to the decision boundary are called the sup-
port vectors. For m-dimensional data, the SVM tries to find the separating
m− 1-dimensional hyperplane with a maximised margin.

Given a set of labelled training examples, each marked as belonging to
one of two categories, an SVM training algorithm builds a model that assigns
new examples into one category or the other, depending on which side of the
maximised gap they fall on. Any distance (or similar values) from the new
example to the decision boundary can be seen as some degree of certainty
the example belongs to the class the SVM model suggests. If these values
are normalised, they can be looked at as fuzzy values.

Using training data D =
{

(xi, yi)|xi ∈ Rm, yi ∈ {−1, 1}, i = 1, . . . , n
}

,
where yi indicates which class xi belongs to, the hyperplane can be written
as the set of points x that satisfy

wx+ b = 0 (58)

for a normal vector w and a bias b (− b
‖w‖ determines the offset of the hyper-

plane from the origin along the normal vector w.). The region bounded by
the hyperplanes

wx+ b = +1 (59a)

wx+ b = −1 (59b)

has no element of D in it and is exactly the margin. It can easily be calcu-
lated that the distance between those two hyperplanes is 2

‖w‖ , thus the SVM

65

Figure 15: Illustration of the basic idea of an SVM.

algorithm tries to minimise ‖w‖ to maximise the margin. Rewriting this as
a quadratic optimisation problem - minimise 1

2
‖w‖2 in (w, b) -, the margin

is maximised subject to the following constraints, which assure that data
points do not fall into the margin:

wx+ b ≥ +1 for yi = +1 (60a)

wx+ b ≤ −1 for yi = −1 (60b)

In addition to performing linear classification, SVMs can efficiently per-
form non-linear classification using two different approaches:

• If the two classes are almost linearly separable, the SVM allows a small
number of observations to be on the wrong side of the decision boundary
by adapting the equation (58) to equation (61), introducing the slack
variables ξi and the budget B for observations on the wrong side of the
decision boundary. The obtained margin is called soft margin.

• If the two classes are certainly not linearly separable, the so-called
kernel trick can be used, an implicit mapping of the inputs xi into
high-dimensional feature spaces, where the mapped vectors are linearly
separable. How this can be done is described in the following chapter
3.6.1.

66

wx+ b ≥ 1− ξi for yi = 1 (61a)

wx+ b ≤ −1 + ξi for yi = −1 (61b)
n∑
i=1

ξi ≤ B (61c)

With or without slack variables, the quadratic optimisation problem is
solved by introducing Lagrange multipliers. As there are inequality con-
straints, the SVM algorithm also needs the Karush-Kuhn-Tucker (KKT)
conditions.

Theorem 5 (Karush-Kuhn-Tucker Conditions). Considering a non-linear
optimisation problem

min f(x) s.t. gi(x) ≤ 0, hj(x) = 0; i = 1, . . . , k; j = 1, . . . , l (62)

and supposing that f, gi and hj are continuously differentiable in x? which is a
local minimum that satisfies some regularity conditions21, there exist constant
KKT multipliers µi and λj such that

∇f(x?) +
k∑
i=1

µi∇gi(x?) +
l∑

j=1

λj∇hj(x?) = 0, (63a)

gi(x
?) ≤ 0, hj(x

?) = 0 ∀i, j, (63b)

µi ≥ 0 ∀i, (63c)

µigi(x
?) = 0 ∀i (63d)

Remark. For k = 0 the KKT conditions turn into the Lagrange conditions.

Remark. The class of functions in which KKT conditions guarantee global
optimality are type 1 invex functions. Subdifferential versions of the KKT
conditions are also available.

With Lagrange multipliers αi the previous constrained problem can be
expressed as

min
w,b

max
αi≥0

{
1

2
‖w‖2 −

n∑
i=1

αi

[
yi(wxi + b)− 1

]}
(64)

21Some regularity conditions or constraints qualifications are needed, but they are not
part of this thesis. For further details see http://en.wikipedia.org/wiki/Karush-

Kuhn-Tucker_conditions.

67

The KKT condition (63a) implies that the solution can be expressed as
a linear combination of the training vectors:

w =
n∑
i=1

αiyixi. (65)

All the points which can be separated by the margin do not matter since
the corresponding αi must be set to 0. The xi that correspond to the non-
zero αi are exactly the support vectors, which lie on the margin. From this
and averaging over all N support vectors

b =
1

N

N∑
i=1

yi − wxi (66)

can be derived. The problem can now be solved using some standard
quadratic programming technique like interior point, active set, augmented
Lagrangian, conjugate gradient, gradient projection or extensions of the sim-
plex algorithm.

Writing the classification rule in its unconstrained dual form reveals that
the maximum margin hyperplane and therefore the classification task is only
a function of the support vectors. Without going into too much detail, the
dual problem can be written as

max
αi

L(α) =
n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj) (67a)

s.t. αi ≥ 0 and
n∑
i=1

αiyi = 0; i = 1, . . . , n. (67b)

K is any adequate kernel function.

3.6.1 Kernels

Definition 49 (Kernel). A kernel K is a symmetric real function with ar-
guments from X ×X (X is the input space.), so that for all x, y ∈ X

K(x, y) = 〈ϕ(x), ϕ(y)〉, (68)

where ϕ is a (non-linear) mapping from the input space X into the high-
dimensional Hilbert space F (the feature space) provided with the inner
product 〈., .〉.

68

Figure 16: Illustration of the kernel trick by mapping the data into a high-
dimensional feature space, where it is linearly separable.

In general it is not necessary to exactly know F , whose dimension is
usually the number of pairs of data points, due to Mercer’s theorem. Fol-
lowing this theorem, theoretically a kernel should be positive semi-definite.
The kernel trick is to avoid the explicit mapping and to calculate the high-
dimensional dot products within the original space by using the kernel func-
tion. The linear separation of the data occurs in the high-dimensional F .
Manipulating points in the feature space has the effect of stretching or com-
pressing areas of the original data space which may help to separate the data
correctly.

It remains to say that with primitive data a good kernel is easy to find,
for very complex problems finding a sensible kernel might be much harder.
Some widely used kernels are presented below.

Algorithm 13 (Polynomial Kernel).

Kp(x, y) = (xTy)p = 〈x, y〉p (69)

Algorithm 14 (Gaussian Kernel).

K(x, y) = e
−‖x−y‖2

2σ , σ > 0 (70)

Algorithm 15 (Sigmoid Kernel).

K(x, y) = tanh(κ〈x, y〉+ ϑ), (71)

where κ > 0 and ϑ < 0.

69

Remark. The sigmoid kernel is an example for non-positive definite kernels
that nevertheless have been used successfully.

Other kernels use Bn-splines of odd order or other RBFs than the Gaus-
sian function.

70

4 Abnormal Event Detection

According to definition 5, an abnormal event is an outlier in a chain of events.
There are three fundamental approaches to detect outliers [16]:

1. Model neither normality nor abnormality. Determine the outliers with
no prior knowledge of the data. This is essentially a learning approach
analogous to unsupervised clustering.

2. Model both normality and abnormality. This approach is analogous
to supervised classification and requires pre-labelled data, tagged as
normal or abnormal.

3. Model only normality, maybe tolerate abnormality in very few cases.
Authors generally name this technique novelty detection or novelty
recognition, especially if only normal data is given. It is analogous
to a semi-supervised recognition or detection task. Only the normal
class is taught but the algorithm learns to recognise abnormality. The
approach needs pre-classified data but only learns data marked normal.

The curse of dimensionality is a main issue of anomaly detection, and the
dimension of the data highly influences how good a chosen method can work
for a certain data set. Another very important issue is data preprocessing.

Theorem 6 (Curse of Dimensionality). Considering a certain point p in an
m-dimensional data set and any distance d, results of many studies state that
the relative contrast of the distance dmax between the point farthest away from
p and p and the distance dmin between the point nearest to p and p converges
to 0 for increasing dimensionality:

lim
m→∞

dmax − dmin
dmin

→ 0. (72)

4.1 Proximity-Based Anomaly Detection

Models based on spatial proximity are most commonly distance-based or
density-based. The computational complexity is directly proportional to the
dimension m of the data and n, the number of observations, which can
become a major problem for high-dimensional data sets. Proximity-based
techniques define a data point as an outlier, if its locality (or proximity) is
sparsely populated. They usually do not make prior assumptions about the
data distribution and can be used in the sense of the fundamental approaches
1 and 2 described at the beginning of this section 4.

71

4.1.1 Distance-Based Anomaly Detection

The distance-based approach takes into account the following basic ideas:

• A point is judged based on the distance(s) to its neighbours.

• Normal points have a dense neighbourhood.

• Outliers are far apart from their neighbours, i.e., they have a less dense
neighbourhood.

Various distances can be used, some of the most common ones are pre-
sented below.

Definition 50 (Manhattan Distance). Hermann Minkowski considered the
so-called taxicab geometry in the 19th century. In taxicab geometry the
distance between two points x = (x1, . . . , xm)T and y = (y1, . . . , ym)T is the
sum of the absolute differences of their coordinates. This metric is called
Manhattan distance and is induced by the `1-norm:

d1(x, y) = ‖x− y‖1 =
m∑
i=1

|xi − yi|. (73)

Definition 51 (Euclidean Distance). The Euclidean distance is the ’ordi-
nary’ distance between two points x = (x1, . . . , xm)T and y = (y1, . . . , ym)T

that one would measure with a ruler and that is given by the Pythagorean
formula. This metric is induced by the `2-norm:

d2(x, y) = ‖x− y‖2 =

√√√√ m∑
i=1

(xi − yi)2. (74)

Definition 52 (Mahalanobis Distance). The Mahalanobis distance, intro-
duced by Prasanta Chandra Mahalanobis in 1936, is based on correlations.
Let S be the covariance matrix:

dM(x, y) =
√

(x− y)TS−1(x− y). (75)

Remark. For S = I, I being the identity matrix, the Mahalanobis distance
becomes the Euclidean distance (74). If S is a diagonal matrix, dM is called
normalised Euclidean distance.

The Mahalanobis distance is computationally expensive to calculate for
large high dimensional data sets compared to the Euclidean distance as it

72

requires a pass through the entire data set to identify the attribute correla-
tions. Apart from that the Mahalanobis distance values become more similar
with increasing degrees of freedom (curse of dimensionality). dM is closely
related to the leverage h:

d2
M(x, x̄) = (m− 1)(h− 1

m
). (76)

Definition 53 (Leverage). The leverage is defined as the diagonal of the
so-called hat matrix H of a regular square matrix X:

H = X(XTX)−1XT . (77)

Remark. High-leverage points are those that cause large changes in the pa-
rameter estimates when they are deleted and can therefore be seen as outliers
with respect to the independent variables.

Concrete distance-based outlier detection algorithms are for example the
DB(ε, π)-method and outlier scoring based on k nearest neighbour (kNN)
distance dk, the distance to the kth nearest neighbour of a datum.

Algorithm 16 (DB(ε, π) Outlier Detection). A radius ε and a percentage
π shall be given beside the data set D. A point p is considered an outlier if
at most π percent of all other points have a distance to p less than ε. Thus
the set of outliers O is defined as

O =
{
p ∈ D :

|{q ∈ D : d(p, q) < ε}|
|D|

≤ π
}

(78)

If the data set is clustered, the kNN approach can be substituted by
comparing new data only with the cluster means, which reduces the compu-
tational complexity a lot.

4.1.2 Density-Based Anomaly Detection

The general idea of this approach is to compare the density around a point
with the density around its local neighbours. The relative density of a point
compared to its neighbours can be computed as an outlier score. The density
around a normal data object should be similar to the density around its
neighbours, whereas the density around an outlier tends to be considerably
different to the density around its neighbours.

Density-based methods overcome the problem of data sets with different
densities, which usually cannot be solved by distance-based methods.

The local outlier factor (LOF) algorithm developed by Markus Breunig,
Hans-Peter Kriegel et. al. does exactly that; it compares the density of a

73

point with the density of its neighbours, a point with a significantly lower
density is considered as an outlier. The LOF algorithm uses the kNN distance
and the reachability distance, which is mathematically spoken not a distance,
because it is not symmetric:

Definition 54 (Reachability Distance).

dreach,k(A,B) = max{dk(B), d(A,B)} (79)

The use of dreach,k makes the local outlier factor algorithm more stable.

Definition 55 (Local Reachability Density). Nk(A) shall be the set of the
k nearest neighbours of the point A.22 Then the local reachability density
lrdk(A) of the point A is defined as:

lrdk(A) =
|Nk(A)|∑

B∈Nk(A)

dreach,k(A,B)
. (80)

Algorithm 17 (Local Outlier Factor). Using the definition from above, the
local outlier factor of a point A and for a chosen k is defined as:

LOFk(A) =

∑
B∈Nk(A)

lrdk(B)
lrdk(A)

|Nk(A)|
. (81)

A value of approximately 1 indicates that the considered objects is compara-
ble to its neighbours, a value significantly higher than 1 indicates an outlier.

If clusters of different densities are not clearly separated, the LOF al-
gorithm will be confronted with problems. These can be overcome by the
influenced outlierness (INFLO) algorithm, which was developed by Jin et
al. in 2006. It takes into account a symmetric neighbourhood; the influence
space of a point p includes not only the kNN, but also the reverse kNN (the
set of objects whose kNN contain p). Another rather specified algorithm is
the local outlier correlation integral algorithm.

4.1.3 Statistical Anomaly Detection

A certain kind of statistical distribution (e.g., Gaussian) must be given. All
the parameters like mean and standard deviation of this distribution can be
calculated under the assumption that all data points have been generated by

22In case of a tie this set can include more than k elements.

74

the chosen statistical distribution. The idea of statistical outlier detection is
that outliers are those points that have the lowest probability to be generated
by the distribution. Basically, it is up to the modeller to choose how sensitive
the detection should be, but a rule of thumb is that those data points that
deviate more than three times the standard deviation from the mean are the
outliers.

Some of the main problems of statistical tests to detect outliers are:

• Robustness:

– Mean and standard deviation are very sensitive to outliers.

– dM is used to detect outliers, although it is influenced by them.

• The distribution is usually fixed.

4.2 Angle-Based Outlier Detection

Angles are more stable than distances in high-dimensional spaces, which
suggests the use of angles instead of distances for high-dimensional data.
In fact, the situation is contrary for low-dimensional data. The angle-based
outlier detection (ABOD) method alleviates the effects of the notorious curse
of dimensionality compared to purely distance-based methods.

Following the idea of the algorithm developed by Kriegel et al. in [17] in
2008, a point is considered as outlier, if most other points are located in a
similar direction, and a point is considered as an inlier, if many other points
are located in varying directions. The broadness of the spectrum of the angles
between a certain point p and all pairs of the other points is a score for the
outlierness of p: The smaller the score, the greater is the point’s outlierness.
The angles in the so-called angle-based outlier factor are weighted by the
squared inverse of the corresponding distances to avoid bigger problems with
low-dimensional data sets.

Algorithm 18 (Angle-Based Outlier Detection). A,B and C shall be any
points in a data set D. The angle-based outlier factor ABOF is defined as:

ABOF (A) = VAR
B,C∈D

(
〈 ~AB, ~AC〉
‖ ~AB‖2‖ ~AC‖2

)
(82)

=
∑
B∈D

∑
C∈D

(
〈 ~AB, ~AC〉
‖ ~AB‖2‖ ~AC‖2

)2

−

(∑
B∈D

∑
C∈D

〈 ~AB, ~AC〉
‖ ~AB‖2‖ ~AC‖2

)2

.

The naive algorithm is O(m3n), which is not very attractive, but most
implementations do not use all pairs of other points and use a good approx-
imation of the ABOF instead of the exact value.

75

Figure 17: Illustration of the angle-based outlier detection method.

Algorithm 19 (Approximative Angle-Based Outlier Detection by Kriegel et
al.). One possibility to approximate the ABOF is to calculate the variance
of the angles only of the pairs of points which are kNN of A, since these
are the ones with the largest weights in the formula (82). This FastABOD
algorithm is O(m2 + k2m). Again, Nk(A) shall be the set of the k nearest
neighbours of the point A.

ABOFk(A) = VAR
B,C∈Nk

(
〈 ~AB, ~AC〉
‖ ~AB‖2‖ ~AC‖2

)
(83)

=
∑
B∈Nk

∑
C∈Nk

(
〈 ~AB, ~AC〉
‖ ~AB‖2‖ ~AC‖2

)2

−

(∑
B∈Nk

∑
C∈Nk

〈 ~AB, ~AC〉
‖ ~AB‖2‖ ~AC‖2

)2

.

Experiments show that the quality of the results of the FastABOD al-
gorithm becomes worse for higher-dimensional data, but it works great on
lower-dimensional big data sets. The lower bound FastABOD (LB-ABOD)
algorithm, which is also presented in [17], works great for higher-dimensional
data sets: Candidates for the top l outliers with respect to the lower bound
are selected and afterwards this list is refined until none of the remaining
candidates can have a lower ABOF than the largest of the best already
examined data objects.

Remark. For any triple in question, the three points A,B and C have to
be mutually different. This is left out in the algorithm description above in
favour of readability.

In [18], Ninh Pham and Rasmus Pagh introduce an approximative ABOD
algorithm that is based on random projections and AMS sketches. This

76

approximation algorithm runs in near-linear time in the size of the data set
and is also well suited for parallel processing. To be exact, the algorithm is
O(n log n(m + log n)). In their paper, the two Danes present a theoretical
analysis of the quality of approximation to guarantee the reliability of their
estimation algorithm as well as empirical experiments on synthetic and real
world data sets to demonstrate the scalability, effectiveness and efficiency of
their approach on detecting outliers in very large high-dimensional data sets.

As the angles in the classic ABOD algorithm are weighted in the cal-
culation of the variance in (82), different weights can be used for similar
algorithms, of course. One of the most promising approaches is to use time-
dependent weights, if the available data is time-stamped.

Two other outlier detection algorithms for high-dimensional data that
follow the idea of searching for outliers in subspaces are:

• grid-based subspace outlier detection

• subspace outlier degree (SOD).

Other approaches to detect outliers in high-dimensional data sets use
feature reduction methods like PCA.

4.3 Neural Networks for Anomaly Detection

If normality and abnormality are modelled and therefore a supervised ap-
proach is used, a standard multi-layer-perceptron should be able to solve the
classification task. As always, it is far more difficult if it is not possible to
model abnormality and if an unsupervised or only semi-supervised model
can be used. Neural networks that can be used to detect outliers in a not
supervised way are:

• self-organising maps

• adaptive resonance theory

• replicator neural networks.

As described in section 3.4.3, SOMs are competitive, unsupervised ANNs,
and the modeller is interested in what neuron is the most active for some
input data. Each neuron in the grid has an associated weight vector that
can be seen as analogon to the mean vector representing each cluster in a K
means system. The updating processes of SOMs and K means systems differ,
as SOMs also update the neighbouring neurons, which clusters the network
into regions of similarity. When applied to the field of novelty recognition,

77

Saunders and Gero as well as Vesanto defined a new observation as novelty,
if the error between the best matching unit and the input vector (i.e. the
new observation) is greater than a chosen threshold ε that directly controls
the sensitivity of the anomaly detection. [16]

As ART models are designed to also encounter new classes, it is possible to
use a ART network that is plastic while learning and stable while classifying.
The network can return to plasticity to learn again. If a new input vector does
not match an existing class well enough (This is controlled by a user-specified
vigilance threshold ε.), the ART model creates a new class by adding a new
node. Every time the network adds a new node, this indicates a change in
the time series. [16]

The replicator neural network used for outlier detection aims to reproduce
the input data pattern at the output layer after an internal data compression
and extraction. During the training the mean square error - in this context
also called reconstruction error - is minimised for all training examples, which
makes common patterns more likely to be well reproduced by the trained
replicator ANN [20]. The network uses three hidden layers, both the input
and output layer have m neurons, the dimension of the data. It is fully
connected, the activation functions of the two outer hidden layers are

fact,k(netj) = tanh(aknetj) i ∈ {2, 4}, (84)

where netj is the weighted input sum of the neuron Nj, k indicates the
number of the layer including the input layer and ak is a tuning parameter
which can be set to 1 initially. The key idea of the replicator ANN is the
use of a staircase activation function with K steps in the middle hidden
layer. This divides the continuously distributed data points into a number
of discrete valued vectors. This data compression can be seen as similar to
clustering. As always for this kind of tasks, a good choice of K is essential
for a satisfactory outcome of the outlier detection. After the extraction of
the data in the lowest hidden layer, the output layer can either use a linear
or a sigmoid function as activation function. Usually the outer hidden layers
consist of more neurons than the middle hidden layer with n3 neurons, it is
reasonable that they even use the same number of neurons. Checking the
outputs of the middle hidden layer, the modeller automatically obtains Kn3

clusters.
The average reconstruction error over all m features is defined as outlier

factor OFi of the corresponding ith observation.

OFi =
1

m

m∑
j=1

(xij − oij)2, (85)

78

where xij is the value of the jth feature of the ith observation and oij is the
output of the jth output neuron, when the ith observation is the input of the
replicator ANN.

After calculating the outlier factor for the whole data set, the observations
can be ranked according to a large OF , the observations at the top of this
list are the main candidates for outliers, which can be investigated further
by other methods, if necessary.

4.4 One-Class Support Vector Machines

4.4.1 Idea

In general, one-class support vector machines (OC-SVMs) are designed for
the certain kind of a (1 + x)-class learning task. This is a model with an
unknown number of classes, but the modeller is only interested in one specific
class. Typical examples for these kinds of tasks are content-based image
retrieval or document-retrieval in general. Making enquiries for this thesis
on the internet can be seen as such a task: Papers which treat relevant topics
are alike, they represent the class the modeller is interested in. These are
the positive examples and it is easy to find some good representatives of this
class. The negative examples are simply the rest of the web pages or papers,
and they originate from an unknown number of different negative classes.

It is daunting and wrong to try to characterise the distribution of the
negatives in such cases; they could belong to any negative class, and the
modeller is not even interested which exact negative classes they might belong
to. Each negative example is negative in its own way, but as the positive
ones are alike, it is possible to model their distribution. According to this the
OC-SVM is a typical example of a model of normality, matching the third
approach described at the beginning of section 4.

The OC-SVM tries to fit a tight hypersphere W to include most, but
not all positive examples. If it attempted to fit all positive examples, this
would lead to overfitting. In fact, the OC-SVM searches for the maximal
margin hyperplane which separates the training data from the origin in the
best way. It may be interpreted as a regular two-class SVM, where almost
all the training data lies in the first class and the origin is the only member
of the second class.

If the one class the modeller is interested in is considered as the regu-
lar data, resulting from normality, the negative examples detected by the
OC-SVM can be considered as outliers of a different nature resulting from
anomaly. This makes the OC-SVM an effective outlier detection tool.

79

Figure 18: Illustration of the basic idea of an OC-SVM model.

4.4.2 Algorithm

Let {x1, . . . , xn}, xi ∈ X ⊆ Rm be the training set of n ∈ N observations
that belong to a single class. The OC-SVM aims to define the minimum
volume region enclosing (1 − ν)n observations. The parameter ν ∈ [0, 1]
thus controls the fraction of observations that are allowed to be outliers. K
shall be a kernel with a mapping function ϕ as defined in definition 49. Like
for the general SVM ξi shall be the slack variables, non-zero slack variables
correspond to the tolerated outliers.

Remark. It is essential not to use an OC-SVM model with ν extremely close
to 0, because for a very small ν the OC-SVM is not able to find a good
representation of the data distribution.

Algorithm 20 (One-Class SVM).

min
w,ξ,b

1

2
‖w‖2 − b+

1

νn

n∑
i=1

ξi (86a)

s.t. wTϕ(xi)− b ≥ ξi ≥ 0, i = 1, . . . , n (86b)

Again, solving the OC-SVM optimisation problem is equivalent to a dual
quadratic programming problem with Lagrangian multipliers αi that can be
solved with standard methods:

80

max
αi
−1

2

n∑
i=1

n∑
j=1

αiαjK(xi, xj) (87a)

s.t.
n∑
i=1

αi = 1 and 0 ≤ αi ≤
1

νn
(87b)

Those patterns with corresponding αi > 0 are the support vectors. By
using the KKT conditions from theorem 5, w and b can be obtained as:

w =
n∑
i=1

αixi (88a)

b =
n∑
i=1

αix
T
i xj (88b)

for any xj with 0 < αj <
1
νn

. For new data x that shall be checked by the
OC-SVM the decision function

f(x) = sgn(wTϕ(x)− b) (89)

will be positive for positive examples and negative for outliers. Introduc-
ing D0 as the decision and H0 as the hypothesis that some observation x
belongs to the normal class - the ambience - and D1 as the decision and H1

as the hypothesis that x is an abnormal event, the decision function can be
formed to {

if f(x) ≥ 0, then D0

if f(x) < 0, then D1.
(90)

Adapting the Decision Function. It is easily possible to define a family
of decision rules introducing a threshold γ ∈ R:{

if f(x) ≥ γ, then D0

if f(x) < γ, then D1.
(91)

This formulation allows controlling the trade-off between the probability
to miss outliers P (D0|H1) and the probability to falsely declare an observa-
tion an outlier P (D1|H0). A good threshold γ might be determined exper-
imentally by operational requirements, which can vary a lot. Often missed
outliers are not tolerable to the user of an abnormal event detection soft-
ware, especially if the field of application is the security sector or something

81

similar. Mathematically spoken γ controls a translation of the separating
hypersphere W in the feature space F and therefore the resulting contour of
the decision function in the representation space. In [19], Sébastien Lecomte
et al. suggest to select an optimal value of ν that is only driven by the qual-
ity of the input signal, estimating the number of potential outliers, at the
beginning and then to try to raise the performance according to operational
requirements using a suitable threshold γ.

4.5 Using Temporal Integration to Detect Abnormal
Events

All the above sections have left out the fact that in most cases an event is
not determined by a single observation. Of course, an outlying observation
or especially a significantly increased density of outliers can indicate an ab-
normal event. And in some cases simple rules for determining events are well
known, e.g. if the temperature inside a computer or a boiler goes above a
certain threshold, an alarm occurs and the computer/boiler is switched off.
However, if the system is more complex or less deterministic, a more system-
atic approach is required for processing the raw sensor data to generate an
event sequence.

How many observations belong to a certain event directly depends on
the sampling rate fsampling and the duration M of the event, and therefore
it is highly reasonable to include M as a parameter into an abnormal event
detection model.

Most of the presented anomaly detection algorithm return an outlier
score. It is easy to construct a decision function f(x) from these outlier
scores in a heuristic and application orientated way. Assuming M is the
same and constant duration for all events, this decision function for single
observations can be median-filtered to assign an outlier score to events during
which M observations have been recorded:

Definition 56 (Median-Filtered Decision Function). MM(xk) shall be the
operator returning the median value of the series {xk−M+1, . . . , xk}, f(x)
shall be a decision function and γ the decision threshold as it is introduced
in (91). Then a median-filtered decision function is defined as:{

if MM(f(x)) ≥ γ, then D0

if MM(f(x)) < γ, then D1.
(92)

Remark. The median-filtered decision function checks the data like a sliding
window.

82

Remark. Of course other filtered decision functions can be designed, if other
quantiles seem more reasonable in an abnormal event detection model.

This filter provides a good performance, if M is a constant and identified
correctly. [19] If events are of different length in the field of application the
model is used for, possible further adaptations of the model are presented
below.

There are different ways to segment the raw data to an event sequence. In
[19], Lecomte suggests to use a buffer. If it is full, the segmentation process
starts. Based on a predefined similarity criterion, the closest successive pairs
of segments are iteratively merged until only one segment remains, starting
with single observations. This is a bottom-up hierarchical-clustering-based
merging process. The resulting structure can be represented as a dendrogram.
In this dendrogram it is possible to look for the best segmentation level.
Lecomte et al. computed the intra-segment correlation coefficient and chose
the segmentation level which provides correlation coefficients above a given
threshold for all segments (e.g., 0.98). The segmentation at this level is kept
except for the last segment that contains the first frames of the next buffer
segment. After the segmentation process, the decision statistic is integrated
over each homogeneous segment. The final decision function is defined as
follows: {

if 〈f(x)〉Sj ≥ γ, then D0

if 〈f(x)〉Sj < γ, then D1,
(93)

where 〈y〉 is the operator returning the average value of the series {xi} ∀i ∈ Sj
and Sj is the set of frame indices belonging to segment j.

Algorithms to Detect Change Points. A more conventional approach
to segment a time series to a sequence of events can be found in [28], which
introduces some adaptations to the statistical change point detection prob-
lem: The problem investigated is identifying the time points at which the
behaviour change of the system occurs. Two algorithms are presented by
the authors Valery Guralnik and Jaideep Srivastava: The batch algorithm,
which needs the entire data set to be available before the analysis, and the
incremental algorithm.

The key idea of one iteration of Guralnik’s and Srivastava’s algorithm
is to examine each segment and to decide whether it can be split into two
significantly different segments or not. This decision is based on the max-
imum likelihood function L. The batch algorithm determines the index j
that minimises L(1, j) + L(j + 1, n), the sum of the maximum likelihood
functions for the models for {x1, . . . , xj} and {xj+1, . . . , xn}. Of course the

83

range of j depends on p, the least points needed for model fitting in each
segment. Such models could be VSARIMA models, for example. Thereafter,
each of the two segments is analysed in the next iteration step and the best
candidate change points c1 and c2 of each segment are located. Only the
better of these two candidates is selected, yielding a division of the original
sequence into three segments. Gaining one additional segment per iteration,
the algorithm should stop when the likelihood criterion becomes stable or
starts to increase. Formally, this stopping condition is

Lk − Lk+1

Lk
< ε, (94)

where ε is a user-defined stability threshold and Lk is the likelihood criterion
value of the iteration k. When the stability threshold ε is set to 0, the
algorithm stops exactly when the likelihood criterion starts to increase.

As mentioned before, the batch algorithm is only useful, if the data col-
lection precedes the data analysis, which is not always the case: for example,
when a system is controlled in an on-line way (Server outage prediction cer-
tainly requires an on-line system analysis.). For this kind of task Guralnik’s
and Srivastava’s incremental algorithm can be used. Its key idea is that if the
next observation collected by the sensor reflects a significant change of the
system, then its likelihood criterion Lchange of being a change point is going
to be smaller than the likelihood criterion Lno change that it is not. Small
likelihood differences may be caused by the noise of the data, wherefore the
criterion for the detection of a change point is

Lno change − Lchange
Lno change

< ε, (95)

where ε is a user-defined likelihood increase threshold.
Assuming that the last change point was tk−1, the algorithm starts with

simply collecting enough data to build an adequate regression model. If the
local regression model is available, candidate change points are those tj that
minimise the likelihood criterion

Lmin(k, i) = min
k<j≤i

L(k, j) + L(j + 1, i). (96)

If Lmin(k, i) is significantly smaller than L(k, i), tj is considered a changing
point. Because computations can become extremely expensive, if no change
point has been detected for quite a long time, it seems reasonable to use a
sliding window technique instead of taking into account all the data including
older observations to detect a new change point.

84

4.6 Event Classification

If an abnormal event has been detected by one of the methods presented, one
could further investigate which kind of abnormal event the detected anomaly
is. This classification of abnormal events requires at least a decent amount
of abnormal events, so that the modeller is able to use one of the presented
classification or clustering methods like an ANN, an SVM or some clustering
algorithms. This makes the task of event classification almost impossible at
the beginning of most projects, but of course it is very useful to store the
data belonging to abnormal events so that these can be classified at a later
date at which this data may be analysed and labelled by experts. If this is
the case, the classification can be done in a supervised way.

If a detection method like a replicator ANN that already provides the
modeller with a cluster topology is used, further investigations on these clus-
ters seem useful for the event classification task.

85

5 Results of a Simulation to Detect/Predict

Server Problems

5.1 Problem Statement

Panagenda develops software for IBM Lotus Notes and Domino. The com-
pany is located in Vienna and Heppenheim near Frankfurt am Main. Over 4
million licensed module users in over 70 countries use their software to reduce
their operating costs. With clients ranging from 10 to 140000, many of them
operate in highly secure environments such as financial institutions and need
their servers to run in a consistent and secure way with as few outages as
possible.

It is easy to gather tons of data of a server running, but it is hard to
tell what the data reveals about the status of the server, whether an outage
could happen within a short time or the server runs as the clients want it to
run.

Panagenda intends to develop a software tool that detects possible server
outages as early as possible in order to allow their clients a more comfortable
operation of the server. Of course, it is of high interest not only to know
when a certain problem is going to cause an outage, but also to know why
this outage might happen. In the end, fewer server outages save everybody’s
money.

It has to be stated that it is almost impossible to precisely define the
term server outage, wherefore a definition is not given in this thesis. Any
limitation to the normal operation of a server is unwanted. Many times
only a certain kind of tasks is delayed or cannot be executed at all. The
severity of this limitation also depends on the fact whether users can carry
out other tasks in the mean time. The only possibilities to give the modeller
an idea about the severity of an outage are the total downtime minutes or
the downtime minutes per user.

It has been proposed to combine several of the mathematical models de-
scribed in the earlier sections to achieve the goal of server outage prediction.
How these partial models and algorithms can be combined to a whole model
is presented in the following sections. It has to be noted that Panagenda
did not release its software up to the day that this thesis was published; but
they had run several tests. Thus it has not been possible to fully evaluate the
whole model in a daily-life-scenario up to now. It also seems logical that not
every server behaves in the same way. These are the two main reasons why it
is intended to make the whole model adjustable via a few tuning parameters
that allow the users of the software also to control the sensitivity of outage

86

alarms. The role of these model tuning parameters is discussed in section
5.5.

5.2 Software Environment and Data Generation

Though the expensiveness of most calculations needed for the simulation
runs of the proposed models is an important factor, it was possible to use
a standard personal computer for most calculations due to the fact that
all the data was labelled with priorities and only the most influencing data
was taken into account for the simulation runs (See section 5.3 for further
information.).

The personal computer used was equipped with an AMD Athlon 64 X2
Dual Core Processor 4200+ with 2.21GHz, 3GB RAM and Microsoft Win-
dows 7. Most of the calculations and most of the programming were done
using MATLAB R2011b, but also the statistical software R (version 2.15.3)
was used as well as ggobi (version 2.1.10) and Mondrian (version 1.2) as data
analysis visualisation tools. Especially Mondrian is able to produce scatter
plots, bar charts and histograms of huge data sets very quickly.

For the simulation runs done in MATLAB the following four additional
toolboxes were used: the Neural Network Toolbox and the System Identi-
fication Toolbox, both developed by MathWorks, the OpenTSTool and the
SVM and Kernel Methods Toolbox developed by S. Canu, Y. Grandvalet,
V. Guigue and A. Rakotomamonjy from Rouen, France. The latter is fully
written in MATLAB, even the QP solver. The last update of the SVM and
Kernel Methods Toolbox used for the simulation runs for this thesis was on
20.02.2008. Due to the newer MATLAB version used some small adaptations
in the code of the toolbox were necessary. The key features of the toolbox
are:

• SVM classification using linear and quadratic penalisation of misclas-
sified examples (penalisation coefficients can be different for each ex-
ample)

• SVM classification with the nearest point algorithm

• multiclass SVM

• large scale SVM classification/regression

• SVM epsilon and nu regression

• one-class SVM

87

• regularisation networks

• SVM bounds (span estimate, radius/margin)

• wavelet kernel

• SVM based feature selection

• kernel PCA

• kernel discriminant analysis

• SVM based feature selection

• SVM AUC optimization (ranking SVM, ROC SVM) and RankBoost

• kernel basis pursuit and least angle regression (LARS) algorithm

• wavelet kernel regression with backfitting

• interface with a version of libsvm.

The OpenTSTool, a toolbox especially designed for non-linear time-series
analysis, is partly written in Matlab and partly written in C++, using as ad-
vantages of Matlab the reduced development time, the extensive collection
of intrinsic mathematical functions, the excellent graphical capabilities as
well as the high portability from Unix to other platforms and as advantages
of C++ the better performance of computationally demanding algorithms.
The C++ code is saved in .mex files. The version 1.2, developed by Chris-
tian Merkwirth, Ulrich Parlitz, Immo Wedekind, David Engster and Werner
Lauterborn, was used.

All the algorithms needed for the outage detection model were tested
within this mathematical software environment. A prototype of the outage
detection software was written in Java; it also used several already existing
Java toolboxes.

Besides historical data, Panagenda also used the additional software tool
IBM Lotus Domino Server.Load V8 to simulate several different servers op-
erating in order to provide the dwh GmbH with the data needed for the sim-
ulation test runs (See figures 19 and 20.). Server.Load is a capacity-planning
tool that is used to run tests, also called scripts and workloads, against a tar-
geted IBM Lotus Domino server to measure its server capacity and response
metrics. Each client running Server.Load generates a simulated user load of
IBM Lotus Notes transactions against the server under test, which reports
server statistics back to the client. There are several built-in scripts, but

88

Figure 19: Screenshot of IBM Lotus Domino Server.Load - Script selection.

also custom scripts can be created. The users of Server.Load have real-time
control of the test environment and variables.

The parameters were measured approximately every minute or approxi-
mately every 15 minutes. The two sampling rates were chosen to compare
the respective results. Measuring the parameters every minute and especially
analysing the data can certainly influence the performance of the server. Of
course the goal is to lose as less computing capacity as possible due to the
gathering and the analysis of the server data.

5.3 Feature Selection and Data Preprocessing

The central assumption when using a feature selection technique is that large
data sets contain many redundant features that do not provide mode infor-
mation than the previously selected ones or irrelevant features that do not
provide any useful information in any context. Feature selection is supposed
to

• improve the interpretability of the model

89

Figure 20: Screenshot of IBM Lotus Domino Server.Load - Some script vari-
ables.

• shorten training times

• enhance the generalisation ability of the model by reducing overfitting.

Though a broad field of scientific research interest, for the simulation
carried out within the scope of this thesis, automatic feature selection was
not a main issue, mainly because of the fact that an exact evaluation of most
feature selection methods is not possible at this early project stage. Feature
selection was done in a manual way, categorising all the variables observed
into four main classes of priorities. This classification in categories was done
by experts from Panagenda who have maintained servers and observed their
outages for a long time and therefore have the essential expert knowledge to
do this categorisation. Variables labelled with priority 0 are thought to have
the largest impact on server outages, variables labelled with priority 1 are
thought to also play an important role for the functionality of the servers
the data is recorded from. In contrary, the experts think that those variables
they labelled with priority 3 do absolutely scarcely reflect changes in the
behaviour of the servers. As the total of up to 1439 variables recorded for a

90

single server is such a huge amount of data many algorithms cannot deal with
within an acceptable running time, most of the sub-models were optimised
for the data set D1 with priorities 0 and 1 or for the data set D0 with priority
0 variables only. Whenever possible, the results of the simulations with D0

and D1 were compared. Some variables cannot be observed for all servers
(For example, if a server has only two hard disks, it is not possible to measure
the percentage of the utilisable space of the third, forth or fifth disk.), thus
D0 and D1 do not contain the same number of variables for all servers. To
get an idea about the dimension of the data the simulations have to deal
with, it can be stated that

|D0| ≤ 14, |D1| ≤ 73. (97)

If a more highly sophisticated feature selection method is desired, the
Pearson correlation coefficient and the Spearman’s rank correlation coeffi-
cient could be used to cluster the variables into groups or a PCA could be
done.

Besides the feature selection task the simulations to detect server outages
have another sine qua non: Data preprocessing is indispensable, many algo-
rithms used would be confronted with problems if all the variables were left in
their generic ranges, which differ a lot. Some variables are measured in mil-
liseconds or bytes and take on values in the region of 1011, other variables take
on values between 0 and 0.4 (e.g. Platform.System.PctTotalPrivilegedCpuUtil)
and the variable greenlight.time.s2c.difference is always negative.

Accumulated Values. Some of the variables accumulate values and it
seems more reasonable to use the differences of two consecutive observations,
because the differences describe what happened within the system and not
the status quo as the original variable did. Thus all accumulated variables
were transformed to their differences:

xt 7→ zt = ∇xt = (1−B)xt, (98)

using the notations (9) and (17).

Example 18. In table 3 the 14 variables of D0 are listed together with their
ranges for a certain server test run. The variables of D1 can be found in the
appendix section B.2.

91

Variable Range

api statistics status 0 2051
Database.Database.BufferPool.PerCentReadsInBuffer 99.33 99.39
Database.DbCache.OvercrowdingRejections 0 0
Mail.Mailbox.AccessConflicts 0 4
Platform.LogicalDisk.1.PctUtil23 0 1.8447 · 1017

Platform.LogicalDisk.2.PctUtil NaN NaN
Platform.LogicalDisk.3.PctUtil NaN NaN
Platform.LogicalDisk.4.PctUtil NaN NaN
Platform.LogicalDisk.5.PctUtil NaN NaN
Platform.Memory.RAM.PctUtil 67 99
Platform.System.PctTotalPrivilegedCpuUtil 0.01 18.52
Platform.System.PctTotalUserCpuUtil 0.01 10.65
Server.AvailabilityIndex 0 100
Server.ConcurrentTasks 0 11

Table 3: Variables of D0 with their ranges.

The server this data was recorded from has only one disk and is probably
not a mail server, because the total number of mailbox access conflicts does
not exceed 4.

Example 19. Mail.Mailbox.AccessConflicts counts the total number of mail-
box access conflicts since the start of the observation of the server. It is of
greater interest to detect whether there have been a lot of access conflicts
in the last few minutes (E.g., this could indicate an event like an intrusion
attempt.) than to know the exact number of total access conflicts.

Example 20. Server.AvailabilityIndex is 0, if there is no obvious dysfunction
of the server. It takes values like 2051, if a dysfunction has been detected.
Thus Server.AvailabilityIndex cannot be seen as a continuous variable, it
should be considered a categorical variable which is almost impossible to
predict. That is why it has not been attempted to predict this variable. It has
to be stated that this variable does not cover all dysfunctions that can cause
an outage and sometimes indicates minor dysfunctions which do not influence
the over-all status of the server at all. It seems reasonable to simply slightly
increase the outlierness of an observation with Server.AvailabilityIndex not
equalling 0, no matter what exact value the variable takes on.

23If all outliers obviously caused by a bad sensor or measurement are deleted, the upper
boundary of the range is only 5.93. See example 21 for further details.

92

Outliers and NaNs. Another part of data preprocessing included scan-
ning the data for outliers obviously caused by a bad sensor or measurement
and for NaNs. In order to not confuse the outlier detection task to determine
abnormal events with this outlier detection, an example is given:

Example 21. Platform.LogicalDisk.1.AvgQueueLen is a variable that mea-
sures the average queue length for tasks that should be executed on the
first hard disk of a server. For a specific data set of a server the range of
Platform.LogicalDisk.1.AvgQueueLen is

[0, 5.93] ∪ {2.6352 · 1010} ∪ {3.0745 · 1010} ∪ {1.8447 · 1017} (99)

It can be assumed that the queue is rather long, when the variable takes on
one of these extremely large values, or that maybe the sensor does not work
properly. But it is obvious that the exact value that is taken is of no interest.
It has probably something to do with the computational accuracy and does
not reflect the true queue length. Outliers such as these were treated like
NaNs in all the further simulation runs or replaced by the preceding value.

Another question during the data preprocessing that had to be dealt
with was the role of NaN values. If they originate from an abnormal event,
they are of high interest. If they originate from a bad sensor, this raises
the question whether any data obtained from this sensor can be trusted for
further investigations. Apart from the difficulties most algorithms used are
faced with when they have to process NaNs, it was decided that all variables
which contained more than a certain percentage of NaNs should be deleted
during the data preprocessing. This threshold was initially set to 60%. For
the remaining NaNs it can be stated that an accumulation of NaNs for many
variables at a certain time can certainly indicate an abnormal event. An
analysis of when how many sensors return an NaN should therefore always
be done besides all the other approaches used in these simulation runs.

Adapting the Variable Ranges. To gain appropriate variable ranges,
several transformations were considered, but two transformations introduced
below seemed to deliver the best results. The first transformation is called Z-
score due to the fact that the normal distribution is also called Z-distribution:

Algorithm 21 (Z-Score).

fzscore : R→ R, x 7→ z =
x− µ
σ

(100)

The quantity z represents the distance between the raw score and the data’s
mean µ in units of the standard deviation σ. z is negative when the raw score

93

is below the mean, positive when above. As in most cases the true standard
deviation is not known, it has to be estimated. Especially if there are no
outliers in the given data, but as outliers are expected to occur in the future,
the quality of this estimation could be rather bad.
Of course a Z-score can be defined without assumptions of normality.

Algorithm 22 (Minmax-Mapping). Given a set {x1, . . . , xn}, the follow-
ing mapping transforms this set to a new set {y1, . . . , yn} in the interval
[ymin, ymax] in an affine way.

fminmax : [xmin, xmax]→ [ymin, ymax],

x 7→ y =
(ymax − ymin)(x− xmin)

xmax − xmin
+ ymin (101)

Remark. The parameters ymin and ymax have to be chosen in a manner ad-
equate for the further methods applied, for example −0.6 and 0.6 for the
input vectors of an ANN.

Remark. Because fminmax is an affine transformation the parameters of which
are chosen in the preprocessing phase of a training and remain fix, new
arriving and transformed data does not necessarily have to be an element of
the interval [ymin, ymax]!

5.4 Applied Methods

Basically, the applied methods of the proposed server outage prediction
model belong to one of the following two sub-tasks:

a) predicting the next observations

b) deciding whether the deviation of the prediction and the actual value
indicates an abnormal event.

General Model Assumption. The predictors work very well, if the status
of the server is good, i.e., if the system works in a normal way. At least at
the beginning of outage-like problems these predictions, i.e., if the status of
the system becomes abnormal, the predictions become notably worse and
originate from a different distribution.

5.4.1 Predictor

For the above stated sub-task a) two different approaches were used:

a.1) a neuro-predictor

a.2) an ARIMA model.

94

Univariate/Multivariate Approach. Both approaches were tested in a
univariate and a multivariate way. The multivariate way is for both ap-
proaches computationally very demanding and restricted the number of vari-
ables predicted on the standard PC used to marginally fewer than 10. Apart
from this problem many of the variables are not correlated and do not have
any causal dependencies, wherefore it is not reasonable to predict multivari-
ate vectors of a large size. All further simulation runs were modelled in a
univariate way, using a predictor of its own for every feature. Nevertheless,
all the features were categorised into groups of possible causal relations, e.g.
one group containing all the variables that have something to do with mails.
If a multivariate approach is considered, it only seems auspicious to use one
predictor per group and not an overall predictor. The groups are presented
in table 4. Every feature can belong to more than one group.

Group Number of Variables in D0 Number of Variables in D1

Agents 0 9
Cache 1 9
Cluster 0 5
CPU 2 3
Database 2 7
Disk 5 0
Full Text 0 3
http 0 2
Indexer 0 2
Mail 1 10
Network 0 4
RAM 1 2
Replicator 0 5
Resources 8 8
Server 3 9
Tasks 0 16
Transactions 0 2
Users 0 3

Table 4: Variable groups of the Panagenda data set.

While an ARIMA model needs a training data set to estimate its pa-
rameters before it can be used to predict future values (See section 2.2 for

95

further details.), a neuro-predictor needs a classical neural network training
to adjust the weights of the ANN before it can be used for the prediction
task. Of course this will have to be done for every server after the server
outage prediction software has been installed.

Example 22. Like in example 10, the gas prices time series is used for demon-
stration purposes in this example. This time the oil prices were considered
as well; the prediction was done in a bivariate way. Figure 21 shows the
untransformed time series and the predictions as well as the prediction er-
rors below. Accumulation of larger prediction errors could indicate abnormal
events. Further details to this example are discussed in example 25.

Figure 21: Gas prices time series and neuro-prediction errors using an ANN
with 10 hidden neurons and a delay of 3 months.

Neuro-Predictor. The ANNs used as neuro-predictors require pre-labelled
data. This is simply done by preprocessing the data into an adequate block
structure. The block size depends directly on the tuning parameter argBlock-
Size that defines the number of rows of the block. The number of columns of
the block is m, the number of those features that are taken into account for
the simulation. Thus one column contains the argBlockSize - 1 inputs for one
of the m neuro-predictors as well as the latest observation, which is the tar-
get value for the neuro-predictors. As argBlockSize will be chosen rather low
in general (probably below 10, but certainly below 100), it seems promising
to adapt the blocks in the following way: The rows should not only con-
tain the argBlockSize - 1 former observation values in order to predict the
actual one, but they should contain at least some observation values that

96

were measured exactly a week before.24 The sampling rate of some minutes
is too high and the possible number of input neurons of the neuro-predictors
must be too low to implicitly take into account a possible (and most likely)
weekly seasonality. Thus the weekly seasonality can be explicitly modelled
by preparing adequate blocks during the data preprocessing. argBlockSize
could then become a vector, the sum of the entries minus 1 defining the
number of input neurons and the entries defining how many observations of
which period should be considered for the prediction.

Figure 22 shows how the neuro-predictor was modelled with the MATLAB
Neural Network Toolbox. d in the figure equals argBlockSize - 1.

Figure 22: Illustration of the non-linear autoregressive neuro-predictor model
using the MATLAB Neural Network Toolbox.

Changing the tuning parameter argBlockSize requires a complete restart
of the training and should therefore not be done unless it seems really nec-
essary.

Before being able to begin the training, some further preprocessing steps
need to be taken. Many algorithms used cannot deal with NaNs, so they
have to be deleted within the data preprocessing. First of all, variables with
more than argPercentNanColumn percent NaN entries are totally deleted.
It is assumed that the sensor does not work properly and that the (few)
observations cannot be trusted. Apart from that, if theses variables were
not deleted, many predictions would be impossible to make due to the large
amount of NaNs remaining in the data set. Although this sounds a little bit
paradox, deleting variables can delimit the necessity of deleting too many
data blocks.

After this column-wise scanning for NaNs, the rows are checked for NaNs.
If an NaN is located, the whole blocks the NaN entry belongs to are deleted.

To improve the performance of the ANNs especially at the beginning
of the training, algorithm 22 is used to map each variable to the range

24This follows the idea of example 4 in section 2.1.4.

97

[−0.6, 0.6] in an affine way. Changing the weights (i.e., the learning pro-
cess) occurs faster this way due to the ranges of the activation functions
used. All the ANNs are designed in the same way: The input layer consists
of argBlockSize - 1 nodes, the output layer only has one neuron and the
one hidden layer shall use dsqrt(argBlockSize - 1)e neurons, where d·e is the
ceiling function. All the nets were also tested with 10 hidden neurons, which
worked as well as the choice of dsqrt(argBlockSize - 1)e hidden neurons. The
latter is the more generic choice and for most tuning parameters argBlockSize
dsqrt(argBlockSize - 1)e is lower than 10, which means less computing time.
As shown in figure 23, the activation function between the input and the
hidden layer is the hyperbolic tangent and the activation function between
the hidden and the output layer is simply the linear activation function. The
training algorithm used is the Levenberg-Marquardt algorithm 10 introduced
in section 3.4.4.

Figure 23: A detailed look at the artificial neural network used to predict
the next observation using the MATLAB Neural Network Toolbox.

Within the final step of the data preprocessing, the set of data blocks is
divided into a training data set (70%), a validation data set (15%) and a test
data set (15%). Only the training data set influences the change of the ANN
weights.

The training sets are presented to the ANNs in several epochs. The su-
pervised learning stops as soon as one of the following three break conditions
is met:

1. The number of training epochs exceeds the value of the tuning param-
eter setAbortNumberOfEpoch.

2. The number of back-to-back epochs, which the error function of the
validation set increases in, exceeds the value of the tuning parameter
setAbortRisingErrors.

3. The error value of the test data set falls below the minimal error value,
which was set to 10−6.

98

When all the trainings have terminated, the ANNs can be used as neuro-
predictors. Further investigation should be done on the issue of detecting
time points, when the ANNs should be retrained with up-to-date data.

Example 23. The following figure shows the time series of the feature Plat-
form.System.PctTotalPrivilegedCpuUtil of a certain server test run and its
predictions by a neuro-predictor with 10 hidden neurons. To get a bet-
ter idea of the local quality of the predictions, also the differences between
Platform.System.PctTotalPrivilegedCpuUtil and its predictions are shown in
figure 25.

Figure 24: Platform.System.PctTotalPrivilegedCpuUtil and the predictions
of Platform.System.PctTotalPrivilegedCpuUtil for a certain server test run.

ARIMA Predictor. Several simulation runs on Panagenda data sets did
not indicate a notable difference between using an ARIMA model and the
ANN. Thus predictions by ARIMA models look very much like figure 24.
General considerations about which approach works better for which data are
listed in section 3.4.5. It should be considered that for the time series of some
features the neuro-predictor could be able to make more exact predictions,
whereas for time series of other features ARIMA models might be the better
choice due to the properties of the time series. Which model is able to predict
more exactly for a certain feature can also be server-dependent. Nevertheless,
simulation runs are easier if only one prediction method is chosen for all time
series of all features.

99

Figure 25: Differences between Platform.System.PctTotalPrivilegedCpuUtil
and its predictions, which shall be analised by an anomaly detector.

All in all, the aim of both of the presented approaches is to predict the
expected developing of the values as well as possible. These predictions are
then compared with the next observations as soon as they are measured.

5.4.2 Anomaly Detector

Judging upon the differences between the predicted and the measured values,
the linked anomaly detector has to decide if these differences underlie a small
and tolerated prediction error or if these differences are the effect of an arising
problem of the server that finally could cause an outage. While the prediction
was done in univariate way, the anomaly detector has to deal with the vectors
of the prediction differences of all variables, i.e., works in a multivariate way.

Example 24. As a univariate example, the following figure 26 shows a his-
togram of the differences between the predictions and the new observations of
the variable Platform.System.PctTotalPrivilegedCpuUtil. This is more or less
exactly the distribution that was expected for a single variable: a rather clear
Gaussian bell and a few values rather far away from the centre, indicating
large differences between the prediction and the new observation.

For the above stated sub-task b) the following three different approaches
were used:

b.1) a threshold

b.2) ABOD

b.3) a OC-SVM.

100

Figure 26: Prediction differences of the variable Plat-
form.System.PctTotalPrivilegedCpuUtil, having used the neuro-predictor
and Mondrian as visualisation tool. The prediction differences using the
ARIMA predictor look extremely similar - see figure 27 below.

Figure 27: Prediction differences of the variable Plat-
form.System.PctTotalPrivilegedCpuUtil, having used an ARIMA model
and Mondrian as visualisation tool. Not only the distributions of the
prediction differences look very much alike, the most extreme values also
belong to the same or at least very close time steps.

All approaches are not able to deal with NaN values, wherefore they
do not deliver any output if it was not possible to predict the values or if
one of the actual observations is an NaN. For all three different approaches
the sliding window technique can be applied to detect the accumulation of
outliers and deflate single outliers.

101

Threshold. The most simple approach is the use of a threshold for any
distance function applied on the actual feature values and its predictions;
this threshold can be determined heuristically and adjusted as a tuning pa-
rameter.

Example 25. This example is a continuation of examples 22 and 10. A sliding
window of length 6 was used for filtering the prediction error norm, following
the idea of definition 56. The monthly time series starts in July 1973, the
clear peak where the threshold is clearly passed for several months belongs
therefore to the end of 1979 and the beginning of 1980, the period of the
second oil crisis, when with the Iranian Revolution and the First Persian
Gulf War two external events took place that had a massive influence upon
the oil and gas prices and that were not predictable by any means within the
rather simple prediction model.

Figure 28: Median error of the neuro-predictions of the gas time series.

ABOD-Detector. Concerning the angle-based outlier detection, first the
classic which was presented as algorithm 18 in section 4.2 was implemented.
Via the tuning parameter setWeightFunction, also the adapted quicker algo-
rithm 19 can be used. In the latter case every point A in space is compared
only with those in Nk, those sets that include the k nearest neighbours of A;
the neighbours of a point can be defined on grounds of spatial or spatiotem-
poral proximity - this has to be done by setting addTimeWeight adequately.
The classic algorithm is rather slow, so if the amount of data which is the
model input is huge, the adapted algorithm should be preferred.

For every point A of the multivariate time series the corresponding angle-
based outlier factor ABOF (A) is calculated. The lower this value is, the more
likely it is that A belongs to an abnormal event. It can either be returned
that the ABOF -value of the actual feature vector is among the lowest x
values ever measured (x being the number the system administrator might

102

be interested in) or the threshold value setLimitPosition. Feature vectors
A with an ABOF value below this threshold are detected as outliers. The
degree of outlyingness can be defined as follows:

Definition 57 (Outlierness (ABOD)).

OABOD(x) = 1− ABOF (A)

setLimitPosition
. (102)

Additionally, a sliding window technique with a sliding window of length
setWindowLength can be applied.

Example 26. During several test runs, the anomaly detectors easily detected
when the servers changed their status from idle to busy and vice versa. A
graphical analysis of one of the test runs is shown in the following figure 29.
The OC-SVM-detector worked as well as the ABOD-detector and therefore
gave a very similar output on these simulation runs.

Figure 29: Angle-based outlier detector detecting the server change from
idle to busy (green) and busy to idle (red), using one of the test data sets
provided by Panagenda.

103

OC-SVM-Detector. As indicated in section 4.4, the one class support
vector machine only models normal data, but also tolerates a few outliers.
These outliers accord to a somehow restricted operation of a server. The
input values of the OC-SVM are differences between the predictions and the
actual values. Also the OC-SVM needs some training time to adjust the
internal parameters. After this training the OC-SVM can be used to detect
possible server outages.

First, the input data is mapped to the unit hypersphere of a feature space.
This mapping is done by a Gaussian kernel (algorithm 14) with bandwidth
setGamma. Then the OC-SVM calculates the hyperplane f(x) = 0 with
the maximum distance from the origin that separates approximately setNu
percent of the training data set - the inliers, which f(x) > 0 holds for - from
approximately 100 - setNu percent of the training data set. These are the
outliers, which f(x) < 0 holds for. setGamma and setNu are two important
tuning parameters. b being the bias of the hyperplane, now each prediction
difference vector x or each sliding window (of the length setWindowLength)
belonging to such an x can be assigned a value of outlierness OOC−SVM(x):

Definition 58 (Outlierness (OC-SVM)).

OOC−SVM(x) = 100o(x) = 100

∣∣∣∣f(x)

b

∣∣∣∣, for f(x) < 0. (103)

Remark. The origin is the point with the maximum outlierness possible.

Remark. The range of o(x) is [0, 1], thus it can be interpreted as a fuzzy
membership function. If it seems more adequate to the system administrator,
o(x) can be replaced by an oq(x) for q ∈ R that empirically fits the severeness
of outages better than o(x). This follows the idea of the fuzzy linguistic
variables which are introduced at the end of section 3.3.

By evaluating the detector with many training data, a threshold can be
also set to determine the severity of the anomalies. In [7], Zhang et al. also
use the return value of the decision function to distinguish between minor
and major outliers. This is very helpful for server administrators to help
them prioritising their work.

After the training, the hyperplane remains fixed and the outlierness values
of recently calculated prediction differences can be computed. Again, it is
not a priori clear, when the hyperplane parameters need to be adjusted, i.e.
when the OC-SVM needs to be retrained.

Following the idea presented in the paragraph Adapting the Decision
Function in section 4.4, it may enhance the performance of the server outage
detection model to separate the data set with a hyperplane f(x) = setLambda

104

and varying yet another tuning parameter setLambda. This basically estab-
lishes the possibility to control the trade-off between false and missed alarms.

5.5 List of the Most Important Tuning Parameters

Choosing a good parameter setting is of uttermost importance for the per-
formance of the server outage detection model. Readapting the parameters
might be necessary from time to time.

Parameter Name Model Part Type Default Value

argData ANN-Predictor Array None

argBlockSize ANN-Predictor Integer None

argPercentNanColumn ANN-Predictor Integer 60

setAbortNumberOfEpoch ANN-Predictor Integer 1000

setAbortRisingErrors ANN-Predictor Integer 6

setWeightFunction ABOD Integer 0

setLimitPosition ABOD Double 2

addTimeWeight ABOD Array, Calender None

setGamma OC-SVM Double σ

setNu OC-SVM Double 0.99

setLambda OC-SVM Double 0

setWindowLength OC-SVM, ABOD Integer 0

Table 5: List of the tuning parameters for the server outage detection model.

5.5.1 ANN Tuning Parameters

Array argData : full, specifically sorted, but in other respects unedited
data set of all features. The way argData is sorted is directly influenced by
the seasonality modelled and also fully determines all seasonal dependencies

105

within the model proposed. If the array is read column-wise, one gets the
time series of each feature which are organised row-wise.

Integer argBlockSize: argBlockSize - 1 is the total number of relevant
points in time that influence the prediction of the next time series element of
every feature. argBlockSize determines the size of all blocks within the array
argData, the last entry of a block being the respective target value for the
predictor. Changing it makes a complete restart of all trainings necessary
and is therefore only recommended, if the seasonal dependencies modelled
by the initial choice of argBlockSize proved to be not sufficient for adequate
predictions.

Integer argPercentNanColumn : If the ratio of NaN values per column
exceeds the percentage argPercentNanColumn, the whole column is deleted
from the array argData. Obviously this feature cannot be measured with
adequate quality to precisely predict its future values. The default value of
argPercentNanColumn is 60.

Integer setAbortNumberOfEpoch : This integer parameter represents
the maximum number of training epochs for every ANN. In case it is set too
small, the accuracy of the predictions might be not as sufficient as wanted;
in case it is set too large, undesirable long computation times might occur.
The default value of setAbortNumberOfEpoch is 1000.

Integer setAbortRisingErrors: This tuning parameter defines the max-
imum number of consecutive epochs, in which the error function of the vali-
dation set rises with respect to the prevenient epoch. Is setAbortRisingErrors
set too small, the training might terminate too early, which can lead to bad
predictions. If it is set too large, the generalisation ability of the ANN might
not be guaranteed due to overfitting. The default value of setAbortRising-
Errors is 6.

General Remarks: The two most performance affecting tuning parame-
ters of the above described are argBlockSize and the way argData is sorted,
because they establish the seasonality within the model. All the other of
the above parameters are rather common default values for neuro-predictors,
which do not necessarily have to be tuned in the first place, but for sure also
leave some room for improvements.

106

If an ARIMA predictor is used, the first three tuning parameters men-
tioned above are used in the same way, before the ARIMA models are gen-
erated automatically for each feature.

5.5.2 ABOD Tuning Parameters

Integer setWeightFunction : setWeightFunction can be set to 0, which
means that no additional weighting function is used for the ABOD algorithm
(This is also the default setting.), 1, which means that a distance function
is considered additionally, leading to a comparison with the spatially closest
points, or 2, which means that a temporal distance function is considered ad-
ditionally, i.e. a certain point is compared with the spatiotemporally closest
points. Setting this tuning parameter to 0 corresponds to applying algorithm
18, while setting this tuning parameter to 1 or 2 corresponds to applying al-
gorithm 19 for certain sets of k nearest neighbours Nk.

Double setLimitPosition : The tuning parameter setLimitPosition de-
fines the threshold of ABOF (A), which separates outliers from inliers. The
lower ABOF (A) is, the more likely it is that A is an outlier. Thus setLimit-
Position can be seen as an adjustable screw of the outageness; varying this
tuning parameter gives a system administrator the possibility to control the
total number of alarms.

Array addTimeWeight : If setWeightFunction is set to 2, addTimeWeight
defines the sets Nk which are used to calculate ABOF (A).

5.5.3 OC-SVM Tuning Parameters

Double setGamma : setGamma is the bandwidth of the Gaussian kernel.
The lower the bandwidth is, the larger the number of inliers; the higher the
bandwidth is, the larger the number of outliers and their outageness. The
default value of setGamma is the approximated standard deviation of the
prediction errors.

Double setNu : setNu is the desired inlier ratio for the training of the
OC-SVM. It is definitely the most important parameter of which the vernier
adjustment during the operation is highly recommended. It can be seen as
an adjustable screw of the outageness, and different system administrators
will probably prefer a different outageness for different servers. The range of
setNu is [0, 1], but in general setNu will be very close to 1, e.g. 0.99.

107

Double setLambda : setLambda is used to separate the data set by dint
of the OC-SVM with the translated hyperplane f(x) = setLambda instead
of f(x) = 0. This basically establishes the possibility to control the trade-off
between false and missed alarms and therefore allows a system administrator
to tune this parameter according to his preferences. Following the sugges-
tions by Lecomte made in [19], first setNu should be tuned before tuning
setLambda. If setLambda remains set to its default value 0, the hyperplane
translation technique is not used.

Integer setWindowLength : setWindowLength defines the length of the
sliding window that is used for the outlier detection model. A reasonable
window length also depends on the sampling rate of the model. If setWin-
dowLength remains set to its default value 0, the sliding window technique
is not applied within the model.

108

6 Comparison of the Applied Methods, Résumé

and Outlook

First of all, it has to be stated again that it is almost impossible to precisely
define the term server outage, wherefore a definition is not given in this paper.
Any limitation to the normal operation of a server is unwanted. Many times
only a certain kind of tasks is delayed or cannot be executed at all. The
severity of this limitation also depends on the fact whether users can carry
out other tasks in the mean time. The only possibilities to give the modeler
an idea about the severity of an outage are the total downtime minutes or
downtime minutes per user. Thus the basic idea of this model is to be able
to provide the administrator of a server with the detection/prediction of
irregularities, of anomalies which differ from the usual server operation.

Huge amounts of data that describe the actual server status are recorded
with a nearly constant sampling rate and constitute the model input that
needs to be preprocessed adequately. Inter alia, a feature selection is done
using a classification done by experts according to the features’ importance.

Basically, the proposed server outage detection model consists of two
parts: a prediction model and an outlier detection model. For the prediction
model two different methods have been implemented: a statistical ARIMA
model and a neuro-predictor that uses an artificial neural network. Both
prediction models work in a univariate way and are supposed to produce
very accurate predictions, if the server status is ok. Both methods use cross-
validation and can return the coefficient of determination R2 for a test data
set that was not used for establishing the model. The R2-values are very
high for almost all features for both methods, not indicating a significant
preference for one of the two methods. As listed in section 3.4.5, there are
certain time series properties like short memory and various complexity that
can favour the neuro-predictor according to the findings by Sharda, Patil
and Tang mentioned in citets1. Although it would be possible to choose
a different predictor for every feature, this is not recommended due to the
fact that this makes the implementation more difficult; in the end, a server
outage detection tool should work in an on-line way. On these grounds also
the numbers of lagged time series elements that are relevant for the univariate
prediction models for each server feature and the seasonality parameters of
the feature time series were chosen globally, although the optimal parameters
certainly vary for each feature. All in all, the prediction models with global
parameters for all the predictors worked very well during a normal operation
of servers and seem to be sufficient for an on-line server outage detection
model.

109

For the connected outlier detection model also two differents methods
have been implemented: a one-class support vector machine and angle-based
outlier detection, both methods suiting the requirements of the dimension of
the outlier detection model which is usually higher than 70 and can be as
high as 1439, if all the data is available and considered.

Model Validation. During several test runs, the anomaly detectors easily
detected when the servers changed their status from idle to busy and vice
versa. They also detected abnormal events within the gas price time series
which was used as a benchmark data set. For this time series, an abnormal
event is for example the oil crisis of 1979, which was caused by the Islamic
revolution in Iran and the first gulf war, i.e. by external events. Other bench-
mark data sets for abnormal event detection are mostly data belonging to
images or videos and would therefore require a totally different preprocess-
ing that suits the requirements of image processing. The validation of the
proposed server outage detection model is very difficult due to its nature. In
the end, models including aspects about the future can only be validated, if
the future has already become the present. Historic data set are available,
but they are not labelled with respect to outages. The sensitivity of the de-
tectors must be adjusted while the programme and the servers are running,
and this will only be possible, if Panagenda finally publishes its software tool
and allows the developers of this model to access actual data as well as to
get some feedback of the users of this server outage detection software tool
in a real-life scenario. So far, the detectors worked well with the test data
sets.

The idea seems promising that several outlier detection methods could
be used in a parallel way and that the outlierness increases if both methods
classify an observation or a sequence of observations as an outlier.

Of course, a server outage prediction software has a cold start: During the
training some internal model parameters that are required to run the model
need to be adjusted, before an expert can adjust several tuning parameters
to control the alert sensitivity of the software. The most important tuning
parameters are part of the anomaly detector, all the tuning parameters are
listed and discussed in section 5.5. One could say that the server outage
detection model needs to get to know the server that the outages shall be
predicted of. As parts of the model are able to learn from the past, the
software will highly improve its performance after several days. An important
question that still remains unanswered is when the neuro-predictors should
be retrained or when the ARIMA models should be updated. Certainly, if

110

the way the server is used changes considerably, a re-start of the model is
necessary.

In the future, an automatic classification of outages would be very useful,
but requires outage data to learn from. This data should be labelled with the
outage cause by experts and could build the basis for an intelligent catalogue
of outages. This classification would allow a far more exact description of
outage causes, but this still remains future work. A big advantage would
probably be that such a catalogue should be easy to port to different server
systems, which would also reduce the time needed for the cold start of the
server outage detection software.

111

A Abbreviations and Mathematical Symbols

ak tuning parameter
A fuzzy set; a point

ABOD angle-based outlier detection
ABOF angle-based outlier factor
ABOFk angle-based outlier factor belonging to the FastABOD algorithm

ACF autocorrelation function
AIC Akaike information criterion
AR autoregressive

ARIMA autoregressive integrated moving average
ARMA autoregressive moving average
ART adaptive resonance theory
AUC area under the curve
b bias of a support vector machine
B delay operator; a point; budget

BIC Bayesian information criterion
c constant
C a point

COV(x, y) covariance of two random variables x and y
d delay; distance; number of differences
d1 Manhattan distance
d2 Euclidean distance
dk distance to the kth nearest neighbour
dM Mahalanobis distance
dmax distance to the point farthest away
dmin distance to the closest point
dreach,k reachability distance
D number of seasonal differences
D data set
D0 Panagenda data set including only variables with priority 0
D1 Panagenda data set including only variables with priority 0 and 1
D0 decision that an observation is an inlier
D1 decision that an observation is an outlier
DM data mining
e error
E error

E(x) expectation of a random variable x
f a function; frequency
fact activation function

fminmax minmax-mapping function

112

fsampling sampling rate
fzscore Z-score-mapping function

FastABOD approximative angle-based outlier detection
g a function; gradient

GARCH generalised autoregressive conditionally heteroscedastic
h leverage; h-step-prediction; a function
H hat matrix
H0 hypothesis that an observation is an inlier
H1 hypothesis that an observation is an outlier
i iteration indices
I identity matrix

INFLO influenced outlierness
j iteration indices
k iteration index; number of model parameters
K kernel function

KDD knowledge discovery in databases
KKT Karush-Kuhn-Tucker
kNN k nearest neighbours
Lchange maximum likelihood criterion for being a change point
Lno change maximum likelihood criterion for being no change point

Lk maximum likelihood criterion for the iteration k
LARS least angle regression algorithm

LB-ABOD lower bound angle-based outlier detection
LMA Levenberg-Marquardt algorithm
LOF local outlier factor
lrdk local reaching density
m dimension
M duration of an event

MA moving average
ML machine learning
n number of time series elements

ni, nh, no number of input, hidden and output neurons
N number of training examples; number of support vectors
Nj the neuron j
Nk set of the k nearest neighbours of a point

NaN not a number
neti input of neuron Ni

NIC network information criterion
NN artificial neural network
oj output of neuron Nj

O set of outliers

113

O(x) outlierness of x
OC-SVM one-class support vector machine

p order of an AR model; a point
P probability

PACF partial autocorrelation function
PCA principal component analysis
q order of an MA model; a point
r correlation coefficient; residual
R autocorrelation matrix
R2 coefficient of determination, see definition 11

RBF radial basis function
RL reinforcement learning

RMS root mean square
RNN recurrent neural network
ROC receiver operatoring characteristic
Rprop resilient backpropagation
s length of the season
S covariance matrix

SARIMA seasonal autoregressive integrated moving average
SC soft computing

SOD subspace outlier degree
SOM self-organising map
SSE summed squared error
s.t. subject to

SVD singular value decomposition
SVM support vector machine
t time, time index
> fuzzy t-norm
⊥ fuzzy t-conorm

VAR(x) variance of the random variable x
VSARIMA vector seasonal autoregressive integrated moving average

w weight vector of a neural network; normal vector of a
hypersphere

W weight matrix of a neural network; set or number of weights;
hypersphere

WD weight decay
x time series element; input neuron
X set of points; universe of discourse; a matrix
x̄ mean value of observed data xi
y vector; output neuron
z polynomial variable

114

αi real constant; Lagrange multiplier
βi real constant
γ threshold of the decision function of a one-class support

vector machine
∆ differencing operator
ε white noise, error; radius; threshold
ηij learning rate for the weight ωij

η↑, η↓, ηmin, ηmax resilient backpropagation parameters
θ the moving-average operator; threshold
θi MA model parameter; threshold of neuron Ni

ϑ kernel parameter
λ Lyapunow exponent; model parameter; Levenberg-Marquardt

algorithm damping factor
λi Karush-Kuhn-Tucker multiplier
µ expectation of the random variable that is talked about
µA membership function of the fuzzy set A
µi Karush-Kuhn-Tucker multiplier
ν fraction of data that are allowed to be outliers
ξi slack variable
π percentage
σ variance of the random variable that is talked about
τ a not specified number of time steps into the past or future
φ the autoregressive operator; a function; kernel mapping

function
φi AR model parameter
ϕ generalized autoregressive operator; kernel mapping function
ωij weight between input neuron Ni and output neuron Nj

∇ differencing operator
∇s seasonal differencing operator

115

B Auxiliary Calculations and Examples

B.1 Initial Values for Example 6

 x1
...
x18

 =



0.9697
0.9699
0.9794
1.0003
1.0319
1.0703
1.1076
1.1352
1.1485
1.1482
1.1383
1.1234
1.1072
1.0928
1.0820
1.0756
1.0739
1.0759


B.2 List of the Variables of D1

api statistics status
Database.Database.BufferPool.PerCentReadsInBuffer
Database.DbCache.OvercrowdingRejections
Mail.Mailbox.AccessConflicts
Platform.LogicalDisk.1.PctUtil
Platform.LogicalDisk.2.PctUtil
Platform.LogicalDisk.3.PctUtil
Platform.LogicalDisk.4.PctUtil
Platform.LogicalDisk.5.PctUtil
Platform.Memory.RAM.PctUtil
Platform.System.PctTotalPrivilegedCpuUtil
Platform.System.PctTotalUserCpuUtil
Server.AvailabilityIndex
Server.ConcurrentTasks
Agent.Hourly.AccessDenials
Agent.Hourly.ScheduledRuns

116

Agent.Hourly.UnsuccessfulRuns
Database.DbCache.CurrentEntries
Database.DbCache.Hits
Database.FreeHandleStack.MissRate
Database.NAMELookupCacheHits
Database.NAMELookupCacheMisses
Database.NAMELookupCacheNoHitHits
Database.NIFPool.Used
Database.NSF.Replicate.SCR.SrvTotalOps
Database.NSFPool.Used
Domino.Cache.Design.HitRate
Domino.Cache.User.Cache.HitRate
FT.Index.Total.Bytes
FT.Index.Total.TimeMS
FT.Search.Total.TimeMS
Http.Accept.Errors
Http.CurrentConnections
Mail.AverageDeliverTime
Mail.DBCacheHits
MAIL.Dead
MAIL.Hold
Mail.Queue.Dispatch.Waiting
Mail.Queue.Event.Waiting
Mail.Queue.Mailbox.Waiting
Mail.Queue.Sweep.Waiting
Mail.Queue.ThreadPool.Waiting
MAIL.Waiting
Mem.Free
NET.TCPIP.BytesReceived
NET.TCPIP.BytesSent
Platform.Memory.PageFaultsPerSec
Platform.Network.Total.NetworkBytesPerSec
Platform.Network.Total.PctUtilBandwidth
Platform.PagingFile.Total.PctUtil
Platform.Process.ActiveDomino.TotalCpuUtil
Platform.Process.amgr.1.PctCpuUtil
Platform.Process.amgr.1.PgFaultsPerSec
Platform.Process.amgr.2.PctCpuUtil
Platform.Process.amgr.2.PgFaultsPerSec
Platform.Process.amgr.3.PctCpuUtil
Platform.Process.amgr.3.PgFaultsPerSec

117

Platform.Process.server.1.PctCpuUtil
Platform.Process.server.1.PgFaultsPerSec
Platform.Process.update.1.PctCpuUtil
Replica.Cluster.Failed
Replica.Cluster.SecondsOnQueue
Replica.Cluster.WorkQueueDepth
Replica.Failed
Server.Cluster.OpenRequest.ClusterBusy
Server.Cluster.OpenRequest.LoadBalanced
Server.ExpansionFactor
Server.Sessions.Dropped
Server.Trans.PerMinute
Server.Trans.Total
Server.Users
Server.Users.Active
Update.PendingList

B.3 ARIMA Model for Gas Prices

Figure 30: Gas prices time series and its differences after the logarithmic
transformation.

118

Figure 31: Autocorrelation and partial autocorrelation coefficients of the
differenced gas prices time series.

119

C References

[1] Aloy Palit, Dobrivoje Popovic. Computational Intelligence in Time Se-
ries Forecasting - Theory and Engineering Applications. Springer Verlag,
London, 2005, ISBN 1852339489.

[2] Mark Last, Abraham Kandel, Horst Bunke (editors). Data Mining
in Time Series Databases, Volume 57 of Series in Machine Percep-
tion & Artificial Intelligence. World Scientific, Singapore, 2004, ISBN
9812382909.

[3] Mehmed Kantardzic. Data Mining - Concepts, Models, Methods, and
Algorithms. John Wiley & Sons, Hoboken, New Jersey, 2003, ISBN
0471228524.

[4] Rafig Älijev, Karl Bonfig, Fuad Älijev. Soft Computing - eine grundle-
gende Einführung. Verl. Technik, Berlin, 2000, ISBN 3341012389.

[5] David Kriesel. Ein kleiner Überblick über Neuronale Netze. Published
online, 2007, available at http://www.dkriesel.com, downloaded
21.02.2012.

[6] Stephan Dreiseitl, Melanie Osl, Christian Scheibböck, Michael Binder.
Outlier Detection with One-Class SVMs: An Application to Melanoma
Prognosis, Proceedings of the AMIA Annual Symposium 2010, pp. 172-
176. Published online, 2010, available at http://www.ncbi.nlm.nih.

gov/pmc/articles/PMC3041295, downloaded 17.07.2012.

[7] Riu Zhang, Shaoyan Zhang, Yang Lan, Jianmin Jiang. Network Anomaly
Detection Using One Class Support Vector Machine, Volume 1 of the
Proceedings of the MultiConference of Engineers and Computer Scien-
tists 2008. IAENG, Hong Kong, 2008, ISBN 9789889867188.

[8] Xiaoming Wang, Shitong Wang. On the Hyperplane of One-class Support
Vector Machine, Number 6 of Volume 8 of the Journal of Computational
Information Systems, pp. 2301-2308. Binary Information Press, USA,
2012, ISSN 15539105.

[9] Katherine Heller, Krysta Svore, Angelos Keromytis, Salvatore Stolfo.
One Class Support Vector Machines for Detecting Anomalous Windows
Registry Accesses, Proceedings of the Workshop on Data Mining for
Computer Security in conjunction with the IEEE International Confer-
ence on Data Mining 2003, pp. 2-9. Melbourne, Florida, 2003, available
at http://cs.fit.edu/~pkc/dmsec03.

120

[10] Larry Manevitz, Malik Yousef. One-Class SVMs for Document Classi-
fication, Volume 2 of the Journal of Machine Learning Research, pp.
139-154. MIT Press, Cambridge, Massachusetts, 2001, ISSN 15324435,
available at http://jmlr.csail.mit.edu.

[11] Régis Vert. The Limit of One-Class SVM University of Paris-Sud 11.
Video published 25.02.2007, recorded in October 2005, available at
http://videolectures.net/mcslw04_vert_locs.

[12] Bernhard Schölkopf, Alexander Smola. Learning with Kernels. MIT
Press, Cambridge, Massachusetts, 2002, ISBN 0262194759.

[13] Paul Evangelista, Piero Bonnisone, Mark Embrechts, Boleslaw Szyman-
ski. Fuzzy ROC Curves for the 1 Class SVM: Application to Intrusion
Detection, Proceedings of the 13th European Symposium on Artificial
Neural Networks 2005, pp. 345-350. d-side, Bruges, Belgium, 2005, ISBN
2930307056, available at http://www.dice.ucl.ac.be/esann/.

[14] G. Peter Zhang, Douglas Kline. Quarterly Time-Series Forecasting With
Neural Networks, Number 6 of Volume 8 of the IEEE Transactions on
Neural Networks, pp. 1800-1814. IEEE Computational Intelligence So-
ciety, November 2007, ISSN 10459227.

[15] Sven Crone, Rohit Dhawan. Forecasting Seasonal Time Series with Neu-
ral Networks: A Sensitivity Analysis of Architecture Parameters, Pro-
ceedings of the International Joint Conference on Neural Networks 2007,
pp. 2099-2104. IEEE, Orlando, Florida, 2007, ISSN 10987576.

[16] Victoria Hodge, Jim Austin. A Survey of Outlier Detection Methodolo-
gies, Issue 2 of Volume 22 of the Artificial Intelligence Review, pp. 85-
126. Kluwer Academic Publishers, Netherlands, 2004, ISSN 02692821.

[17] Hans-Peter Kriegel, Matthias Schubert, Arthur Zimek. Angle-Based
Outlier Detection in High-Dimensional Data. Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining 2008, pp. 444-452. Las Vegas, Nevada, 2008. ACM, New
York, 2008, ISBN 9781605581934.

[18] Ninh Pham, Rasmus Pagh. A Near-Linear Time Approximation Al-
gorithm for Angle-Based Outlier Detection in High-Dimensional Data.
Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining 2012, pp. 877-885. ACM, New
York, 2012, ISBN 9781450314626, available at http://www.itu.dk/

people/pagh/papers/outlier.pdf.

121

[19] Sébastian Lecomte, Régis Lengellé, Cédric Richard, Francois Capman,
Bertrand Ravera. Abnormal Events Detection using Unsupervised One-
Class SVM - Application to Audio Surveillance and Evaluation. Proceed-
ings of the 8th IEEE International Conference on Advanced Video and
Signal-Based Surveillance 2011, pp. 124-129. IEEE, Klagenfurt, Austria,
2011, ISBN 9781457708442.

[20] Simon Hawkins, Hongxing He, Graham Williams, Rohan Baxter. Out-
lier Detection Using Replicator Neural Networks, Proceedings of the 4th
International Conference on Data Warehousing and Knowledge Discov-
ery 2002. Aix-en-Provence, France, 2002. Published in Lecture Notes in
Computer Science 2454, Springer 2002, pp. 113-123, ISBN 3540441239.

[21] Fan Jiang, Ying Wu, Aggelos Katsaggelos. Abnormal Event Detection
Based on Trajectory Clustering by 2-Depth Greedy Search, Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal
Processing 2008, pp. 2129-2132. IEEE, Las Vegas, Nevada, 2008, ISBN
1424414849.

[22] Yang Cong, Junsong Yuan, Ji Liu. Sparse Reconstruction Cost for Ab-
normal Event Detection, Proceedings of the 24th IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3449-3456. IEEE, Col-
orado Springs, Colorado, 2011, available at http://pages.cs.wisc.

edu/~ji-liu/paper/Cong-Yuan-CVPR11.pdf.

[23] Mitsutoshi Suzuki, Hitoshi Ihara. Development of Safeguards System
Simulator Composed of Multi-Functional Cores, Number 2 of Volume
2 of the Journal of Power and Energy Systems, pp. 899-907. J-Stage,
Japan, 2008, ISSN 18813062, available at https://www.jstage.jst.

go.jp/browse/jpes.

[24] Alireza Ferdowsizadeh Naeeni. Advanced Multi-Agent Fuzzy Reinforce-
ment Learning, Master Thesis Computer Engineering, E3098D, 2004,
available at http://www2.informatik.hu-berlin.de/~ferdowsi/.

[25] Robert Nau. Forecasting - Decision 411, online course, 2005, available
at http://people.duke.edu/~rnau/Decision411CoursePage.htm.

[26] Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Net-
works, Number 2 of Volume 4 of Neural Networks, pp. 251-257. Elsevier,
1991, ISSN 08936080.

[27] Yoshua Bengio. Learning Deep Architectures for AI, Number 1 of Vol-
ume 2 of Foundations and Trends in Machine Learning, pp. 1-127.

122

2009, ISSN 19358237, available at http://www.iro.umontreal.ca/

~bengioy/papers/ftml_book.pdf.

[28] Valery Guralnik, Jaideep Srivastava. Event Detection from Time Series
Data, Proceedings of the 5th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 33-42. ACM New York,
USA, 1999, ISBN:1-58113-143-7, available at dmr.cs.umn.edu/Papers/
P1999_6.pdf.

123

D Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources and resources and that I have explicitly
marked all material which has been quoted either literally or by content from
the used sources.

Date, Signature

124

E Acknowledgements

I would like to express my gratitude to Michael Landsiedl and Christoph
Urach of the dwh GmbH for the useful comments, remarks and engagement
through the learning process of this master thesis. Furthermore I would like
to thank Niki Popper and Martin Bruckner of the dwh GmbH as well as
supervisor Dr. Felix Breitenecker for their support on the way. Also, I like
to thank the partners from Panagenda, especially Franz Walder, who have
willingly provided tons of data. A special thanks to my father Josef Wastian
and my friend Christoph Topitschnig for their remarks on how to express
myself in English as correctly as possible.

I would like to thank all my loved ones, especially my love Sarah Wagner,
who have supported me throughout the entire process. I will be grateful
forever for your love.

Matthias Wastian

125

