
Answer Set Programming with
External Sources:

Algorithms and Efficient Evaluation

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Dipl.-Ing. Dipl.-Ing. Christoph Redl

Registration Number 0525250

to the Faculty of Informatics

at the Vienna University of Technology

Advisors: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Eiter

Associate Prof. Dipl.-Ing. Dr. techn. Stefan Woltran

The dissertation has been reviewed by:

(O. Univ.-Prof. Dipl.-Ing.

Dr. techn. Thomas Eiter)

(Prof. Dr. Giovambattista Ianni)

Vienna, 24th of April, 2014

(Dipl.-Ing. Dipl.-Ing.

Christoph Redl)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

DI DI Christoph Redl
Kieslingstraße 9
3500 Krems

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

Wien, 24.04.2014

(Christoph Redl)

i

Dedicated to my parents,
Anita and Karl.

Gewidmet meinen Eltern,
Anita und Karl.

Acknowledgements

First of all I thank my PhD supervisor Prof. Thomas Eiter for encouraging me to do a PhD
already while I worked on my master’s theses under his supervision. Finishing this PhD thesis
within the planned time frame would not have been possible without the continuous support
and advices he gave me in the last years. Although he is a top researcher with a very dense
schedule he always finds time for his students. I appreciated that he gave me much freedom
concerning timing and setting focuses, but also ensured by regular meetings a good progress of
my work. My second supervisor Prof. Stefan Woltran not only gave important feedback while
I was writing my PhD proposal and my thesis, but also proved to be very patient by answering
my pressing organizational questions about our doctoral program, even before it was officially
started.

Next, I want to thank Michael Fink who gave some excellent courses which I enjoyed during
my master studies. They attracted my interest and supported my decision for doing my theses
in the area of answer set programming. As a co-author of most papers in context of this thesis
and our project, he made many valuable suggestions for improvements and helped to present
the results in a convincing way. The work on my PhD would have been much harder without
the continuous help of Thomas Krennwallner, an expert in almost everything. He always has an
open ear for questions of any kind, including publication and programming issues and technical
problems with our benchmark systems. Peter Schüller is one of my predecessors in the DLVHEX

project. He was a great help at the beginning of my PhD project by supporting me when I needed
to get into the sourcecode of the system. Moreover, the good structure of his implementation
eased my work a lot. He also developed some benchmarks which were used for evaluating the
algorithms presented in this thesis.

Many thanks go to the Fonds zur Förderung der wissenschaftlichen Forschung (http://www.

fwf.ac.at) for the financial support of the projects Reasoning in Hybrid Knowledge Bases (FWF
P20840) and Evaluation of Answer Set Programs with External Source Access (FWF P24090),
which gave me the opportunity to work on this interesting topic. Special thanks go to our secre-
tary Eva Nedoma, who was a great help for the organization and accounting of scientific trips to
conferences and project partners.

My colleagues from the doctoral programme, Annu, Dasha, Friedrich, Giselle, Johannes,
Julia, Martin and Paolo, inspired me in the last years and motivated me each semester to work on
new topics which could be presented in our PhD workshop. Their feedback and questions guided
me to the right direction. In particular, I want to thank Martin and Johannes for organizing a great
student retreat where we could exchange ideas in a very familiar atmosphere, and Friedrich, who
is my office mate and has a wonderful dry humor.

Last but not least, I want to thank my family. My greatest thanks go to my beloved parents
Karl and Anita for making the education of my choice possible and for continuously supporting
me over many years of education and research, both morally and financially. They had an open
ear for problems of any kind and always supported my scientific goals, although they sometimes
said I should have spent more time on other activities. I owe them everything.

v

http://www.fwf.ac.at
http://www.fwf.ac.at

Danksagungen

Mein Dank gilt vor allem meinem Betreuer Prof. Thomas Eiter, der mich bereits zu einem Dok-
toratsstudium ermutigt hat als ich noch an meinen Diplomarbeiten schrieb. Der zeitgerechte
Abschluss wäre ohne seine Unterstützung niemals möglich gewesen, die er mir in meiner Zeit
als Dissertant zukommen ließ. Ich schätzte es, bei Zeiteinteilung und Schwerpunktsetzung viele
Freiheiten zu haben, und dennoch durch regelmäßige Meetings ein gutes Vorankommen sicher-
stellen zu können. Mein Zweitbetreuer Prof. Stefan Woltran gab nicht nur wertvolles Feedback
zu meiner Dissertation, sondern war auch sehr bemüht meine manchmal drängelnden Fragen zu
unserem Doktoratskolleg zu beantworten, selbst bevor dieses offiziell begonnen hatte.

Weiters möchte ich mich bei Michael Fink bedanken, bei dem ich während meiner Stu-
dienzeit einige hervorragende Lehrveranstaltungen genießen durfte, die mein Interesse auf den
Bereich des Answer Set Programming gezogen haben. Als Co-Author der meisten Publikationen
im Umfeld unseres Projektes half er durch ständige Verbesserungsvorschläge, die Ergebnisse in
einer überzeugenden Form zu präsentieren. Die Arbeit der letzten Jahre wäre ohne die ständige
Hilfe von Thomas Krennwallner viel beschwerlicher gewesen. Er ist unser Experte für fast alles
und hatte für Fragen jeglicher Art immer ein offenes Ohr, ganz gleich ob es nun um Publika-
tionen, Implementierungsfragen oder unseren Benchmark-Server ging. Peter Schüller ist einer
meiner Vorgänger im DLVHEX-Projekt und unterstützte mich besonders am Beginn meines Dok-
toratsstudium, als ich mich in den Quellcode einarbeitete. Auch die gute Strukturierung seiner
Implementierung vereinfachte meine Erweiterungen enorm. Er entwickelte außerdem einige
Benchmarks die zur Evaluierung der Techniken aus dieser Arbeit eingesetzt wurden.

Dem Fonds zur Förderung der wissenschaftlichen Forschung (http://www.fwf.ac.at) danke
ich für die freundliche finanzielle Unterstützung der Projekte Reasoning in Hybrid Knowledge

Bases (FWF P20840) und Evaluation of Answer Set Programs with External Source Access

(FWF P24090), in denen ich während meines Doktoratsstudiums arbeiten durfte. Ein besonderer
Dank geht auch an Eva Nedoma von unserem Sekretariat. Sie war bei der Organisation und
Abrechnung von Dienstreisen eine große Hilfe.

Meinen Kollegen aus dem Doktoratskolleg, Annu, Dasha, Friedrich, Giselle, Johannes, Ju-
lia, Martin und Paolo, danke ich dafür, dass sie mich in den letzten Jahren inspiriert und mo-
tiviert haben, in jedem Semester neue Ideen zu erarbeiten die ich in unserem Student-Workshop
präsentieren konnte. Ich bedanke mich vor allem für ihr Feedback und ihre Fragen, die mich
in die richtige Richtung lenkten. Besonders beigetragen haben Martin und Johannes durch die
Organisation eines Workshops, bei dem Ideen in einer familiären Atmosphäre diskutiert werden
konnten, sowie mein Bürokollege Friedrich, dessen trockener Humor für viele Lacher sorgte.

Mein größter Dank geht jedoch an meine Familie und vor allem meinen geliebten Eltern Karl
und Anita, die mir das Studium meiner Wahl ermöglicht haben und mich über die zahlreichen
Jahre meiner Ausbildung und Forschung sowohl moralisch als auch finanziell unterstützt haben.
Sie hatten immer ein offenes Ohr für Probleme jeglicher Art, sowie Verständnis für meine beru-
flichen Ziele und Vorhaben, auch wenn sie der Meinung waren, dass ich manchmal auch mehr
Zeit für andere Tätigkeiten hätte abzweigen sollen. All das habe ich ihnen zu verdanken und
wäre ohne ihre Hilfe wäre niemals möglich gewesen.

vi

http://www.fwf.ac.at

Abstract

Answer set programming (ASP) is a declarative programming approach which has gained in-
creasing attention in the last years. It is useful for many tasks in artificial intelligence, and many
language extensions have advanced the paradigm into a strong modeling language.

While the ASP programming paradigm has proved to be fruitful for a range of applications,
current trends in distributed systems and the World Wide Web, for instance, revealed the need
for access to external sources in a program, ranging from light-weight data access (e.g., XML,
RDF, or relational data bases) to knowledge-intensive formalisms (e.g., description logics). To
this end, HEX-programs are an extension and generalization of answer set programs by external
sources which can be tightly coupled to the reasoner. This is realized by external atoms, whose
truth value is not determined within the logic program, but by a background theory, which is
technically realized as a plugin to the reasoner.

The traditional evaluation algorithm for HEX-programs uses a translation approach which
rewrites them to ordinary ASP programs. The fundamental idea is to replace external atoms
by ordinary ones whose truth values are guessed. The resulting program is then evaluated by
a state-of-the-art ASP solver. The resulting model candidates are subsequently checked for
compliance with the external sources, and are discarded if the guesses value differs from the
real truth value. While this approach is intuitive and natural, it turned out to be a bottleneck
in advanced applications. It does not scale well, as the number of candidate answer sets grows
exponentially with the number of external atoms in the program. Moreover, the traditional
algorithms also impose very strong syntactic safety conditions on the input program, which
restricts the language. This motivates the development of novel evaluation algorithms for HEX-
programs, which treat external atoms as first-class citizens and build models from first principles;
it is expected that this increases scalability and expressiveness. The thesis consists of two major
parts.

In the first part, we present new algorithms for ground HEX-programs, i.e., programs without
variables. Conflict-driven learning techniques will be an important basis for our algorithms,

vii

but need to be extended from ordinary ASP solving to HEX-programs. Moreover, minimality
checking for model candidates of HEX-programs turned out to be an interesting topic because it
causes the major part of the computational costs. Hence, new minimality checking methods will
be developed and integrated into the overall evaluation algorithms.

The second part is concerned with HEX-programs with variables in general, and with value

invention in particular, i.e., the introduction of new constants by external sources, which do not
show up in the input program. Traditionally, value invention is restricted by syntactic condi-
tions such that grounding algorithms for ASP programs without external sources are applicable.
However, this restricts the expressiveness of the language. Thus the syntactic restrictions shall be
relaxed whenever possible, which also requires the development of a new grounding algorithm.

The practical part of this thesis deals with the implementation of the new methods and algo-
rithms in our prototype system DLVHEX. We will analyze and evaluate our work by empirical
experiments, and show that the new algorithms provide a much better scalability and richer
modeling language, which helps establishing HEX as a practical knowledge representation for-
malism. We then take a look at some practical applications and extensions of HEX-programs,
with focus on those domains which newly emerged or have been significantly extended during
the work on this thesis.

Kurzfassung

Antwortmengenprogrammierung (answer set programming, kurz ASP) ist ein deklarativer Pro-
grammieransatz der in den letzten Jahren stark an Popularität gewonnen hat. Sie ist für zahlrei-
che Probleme im Bereich der künstlichen Intelligenz gut geeignet, und hat sich dank zahlreicher
Spracherweiterungen zu einer reichen Modellierungssprache weiterentwickelt.

Während ASP-Systeme bereits für eine Vielzahl von Applikationen im Einsatz sind, er-
fordern neue Trends, beispielsweise im Bereich der verteilten Systeme und dem World Wide
Web, den Zugriff aus einem ASP-Programm auf externe Quellen, wie etwa XML- oder RDF-
Dokumente, relationale Datenbanken, oder Formalismen aus dem Bereich der Wissensrepräsen-
tation und -verarbeitung, beispielsweise Beschreibungslogiken (description logics). Zu diesem
Zweck wurden HEX-Programme entwickelt, die sich als Generalisierung und Erweiterung von
ASP verstehen, und die die Anknüpfung von externen Quellen an das ASP-System erlauben.
Dies wird über sogenannte externe Atome (external atoms) erreicht, deren Wahrheitswert nicht
im logischen Programm bestimmt, sondern von einer Hintergrundtheorie eingespeist wird, die
als Plugin in das ASP-System eingehängt wird.

Der ursprüngliche Ansatz zur Auswertung von HEX-Programmen verwendet eine Überset-
zung in gewöhnliche ASP-Programme. Externe Atome werden dabei durch gewöhnliche Atome
ersetzt, deren Wahrheitswert nichtdeterministisch geraten wird. Das entstehende Programm kann
von herkömmlichen ASP-Systemen ausgewertet werden. Anschließend wird jeder so gewonne-
ne Modellkandidat auf seine Kompatibilität mit der Semantik der externen Quellen getestet und
gegebenenfalls verworfen. Zwar ist dieser Ansatz elegant und natürlich, er skaliert aber schlecht
für mittelgroße und größere Anwendungen. Außerdem erfordert diese Vorgehensweise die Ein-
haltung von sehr restriktiven syntaktischen Bedingungen, durch die die Ausdrucksstä̈rke der
Sprache eingeschränkt wird. Daher ist das Hauptziel dieser Dissertation die Entwicklung von
neuen Evaluierungsalgorithmen für HEX-Programme, die externe Atome von Anfang an als sol-
che behandeln und in die Berechnungen miteinbeziehen. Dadurch soll sowohl die Skalierbarkeit
als auch die Ausduckssärke erhöht werden. Die Arbeit setzt sich aus zwei Hauptteilen zusam-

ix

men.
Im ersten Teil beschäftigen wir uns mit Algorithmen für variablenfreie HEX-Programme.

Konflikt-getriebene Techniken (conflict-driven techniques) sind ein wichtiger Grundstein für un-
sere Algorithmen, müssen dazu aber von ASP auf HEX-Programme erweitert werden und exter-
ne Atome berücksichtigen. Es hat sich dabei auch herausgestellt, dass der Minimalitätscheck für
Modellkandidaten eine wesentliche Rolle spielt, da er einen Großteil des gesamten Rechenauf-
wands verursacht. Deswegen werden wir uns in einem weiteren Schritt auch damit beschäftigen
und neuartige Algorithmen zur Sicherung der Minimalität von Modellen präsentieren.

Der zweite Teil der Arbeit befasst sich mit HEX-Programmen mit Variablen, und insbeson-
dere mit Domänenerweiterung durch externe Quellen (value invention). Darunter versteht man
das Hinzufügen von neuen Konstanten durch externe Quellen, die im ursprünglichen Programm
nicht vorkommen. Im bisherigen Ansatz wird dies durch starke syntaktische Einschränkungen
so weit beschränkt, dass das Programm mit den in ASP üblichen Methoden in ein variablenfreies
Programm übersetzt werden kann. Da dies jedoch auch den Freiraum bei der Modellierung ein-
schränkt, sollen die syntaktischen Einschränkungen gelockert werden, wenn immer das möglich
ist.

Der praktische Teil der Arbeit beschäftigt sich mit der Implementierung der neuen Methoden
und Algorithmen in unserem Prototypsystem DLVHEX. Damit werden wir unsere Algorithmen
auch empirischen Experimenten unterziehen, die zeigen, dass damit eine deutlich bessere Ska-
lierbarkeit erreicht wird, und dass die Modellierungssprache nun deutlich weniger Einschrän-
kungen unterliegt. Dies soll dazu beitragen, HEX zu einem praktisch nutzbaren Formalismus
weiterzuentwickeln. Abschließend betrachten wir einige Anwendungen und Erweiterungen von
HEX-Programmen, wobei der Fokus auf jenen Anwendungen liegt, die im Zuge dieser Arbeit
neu entstanden sind oder wesentlich erweitert wurden.

Contents

1 Introduction 1

1.1 Motivation . 3
1.2 State-of-the-Art . 4

1.2.1 Propositional Model Building . 4
1.2.2 Grounding Methods . 5
1.2.3 External Sources and Domains . 6

1.3 Contributions . 7
1.4 Organization of this Thesis . 8
1.5 Publications and Evolution of this Work . 9

2 Preliminaries 13

2.1 HEX-Programs . 13
2.1.1 Syntax . 15
2.1.2 Semantics . 17
2.1.3 Atom Dependency Graph and Domain-Expansion Safety 20
2.1.4 External Atom Input Grounding . 24
2.1.5 Modular Evaluation of HEX-Programs 25

2.2 Conflict-Driven Learning and Nonchronological Backtracking 25
2.3 Conflict-Driven ASP Solving . 27
2.4 Complexity . 29

3 Propositional HEX-Program Solving 33

3.1 Guess and Check Algorithm for General Ground HEX-Programs 34
3.1.1 Learning-Based Evaluation Algorithm 36
3.1.2 Concrete Learning Functions for External Behavior Learning 43

3.2 Minimality Check . 50
3.2.1 Basic Encoding of the Unfounded Set Search 54
3.2.2 Uniform Encoding of the Unfounded Set Search 57
3.2.3 Optimization and Learning . 63
3.2.4 Unfounded Set Check wrt. Partial Assignments 70
3.2.5 Deciding the Necessity of the UFS Check 71
3.2.6 Program Decomposition . 76
3.2.7 Minimality Checking Algorithm . 78

3.3 Wellfounded Evaluation Algorithm for Monotonic Ground HEX-Programs . . . 81
3.4 Related Work and Summary . 83

xi

3.4.1 Related Work . 83
3.4.2 Summary and Future Work . 85

4 Grounding and Domain Expansion 87

4.1 The Model-Building Framework for HEX-Programs 88
4.1.1 Formalization of the Model-Building Framework 89
4.1.2 Using the Framework for Model Building 94

4.2 Liberal Safety Criteria for HEX-Programs . 96
4.2.1 Liberally Domain-Expansion Safe HEX-Programs 97
4.2.2 Concrete Term Bounding Functions 101
4.2.3 Combination of Term Bounding Functions 105
4.2.4 Finite Restrictability . 106
4.2.5 Applications . 108

4.3 Grounding Algorithm for Liberally Domain-Expansion Safe HEX-Programs . . 110
4.3.1 Grounding Algorithm . 111
4.3.2 Soundness and Completeness . 114

4.4 Integration of the Algorithm into the Model-Building Framework 116
4.5 Greedy Evaluation Heuristics . 120
4.6 Related Work and Summary . 122

4.6.1 Related Work . 122
4.6.2 Summary and Future Work . 129

5 Implementation and Evaluation 131

5.1 Implementation . 131
5.1.1 System Architecture . 132
5.1.2 Command-Line Options . 134
5.1.3 Heuristics for External Atom Evaluation and Unfounded Set Checking . 136
5.1.4 User-Defined Learning Functions . 136
5.1.5 Language Extension for Property Specification 138

5.2 Evaluation of the Learning-based Algorithms 139
5.2.1 Detailed Benchmark Description . 140
5.2.2 Unfounded Set Checking wrt. Partial Assignments 148
5.2.3 Summary . 152

5.3 Evaluation of the Grounding Algorithm . 154
5.3.1 Detailed Benchmark Description . 154
5.3.2 Summary . 160

5.4 Summary and Future Work . 161
5.4.1 Related Work . 161
5.4.2 Summary and Future Work . 162

6 Applications and Extensions of HEX-Programs 163

6.1 HEX-programs with Existential Quantification 163
6.1.1 HEX-Programs with Domain-Specific Existential Quantification 164
6.1.2 HEX∃-Programs . 167

xii

6.1.3 Query Answering over Positive HEX∃-Programs 168
6.1.4 HEX-Programs with Function Symbols 171

6.2 HEX-Programs with Nested Program Calls . 173
6.2.1 External Atoms for Subprogram Handling 175
6.2.2 External Atoms for External Source Prototyping 177
6.2.3 Interface for External Source Developers 178
6.2.4 Applications . 178
6.2.5 Improvements . 179

6.3 ACTHEX . 180
6.3.1 ACTHEX Syntax . 180
6.3.2 ACTHEX Semantics . 181
6.3.3 Applications . 183
6.3.4 Improvements . 183

6.4 Multi-Context Systems . 184
6.5 Description Logic Knowledge-Bases . 185
6.6 Route Planning . 186
6.7 Summary and Future Work . 187

6.7.1 Related Work . 187
6.7.2 Summary and Future Work . 187

7 Conclusion and Outlook 189

7.1 Conclusion . 189
7.2 Outlook . 191

Bibliography 193

A Benchmark Encodings 207

A.1 Abstract Argumentation . 207
A.2 Conformant Planning . 209
A.3 Reachability . 210
A.4 Mergesort . 211
A.5 Argumentation with Subsequent Processing 212
A.6 Route Planning . 212

A.6.1 Single Route Planning . 212
A.6.2 Pair and Group Route Planning . 214

B Proofs 217

B.1 Characterization of Answer Sets using Unfounded Sets (cf. Section 3.2) 217
B.2 Soundness and Completeness of the Grounding Algorithm (cf. Section 4.3.2) . 219
B.3 Query Answering over Positive HEX∃-Programs (cf. Section 6.1.3) 226

Curriculum Vitae 231

xiii

Chapter 1
Introduction

Answer Set Programming (ASP) is a declarative programming paradigm which proved to be
useful for many problems in artificial intelligence and gained attention as a knowledge represen-
tation and reasoning formalism in the last years [Niemelä, 1999; Marek and Truszczyński, 1999;
Lifschitz, 2002]. Unlike traditional programming languages, the programmer specifies a de-
scription of the desired solution to some search problem rather than an algorithm which com-
putes it. The problem at hand is encoded as logic program such that its solutions can be com-
puted as models using an ASP solver. This approach is based on model finding methods for
logic theories and is in spirit of the Satisfiability Solving (SAT) approach [Biere et al., 2009],
but is more convenient for the user and has a richer expressiveness for many applications (e.g.,
transitive closure and programs with variables). Moreover, numerous extensions like aggre-
gates [Pelov et al., 2007; Lee and Meng, 2009; Ferraris, 2011; Faber et al., 2011] and weak con-
straints [Buccafurri et al., 1997] exist.

The predominant notions of models in this context are stable models for normal logic pro-
grams [Gelfond and Lifschitz, 1988] and the generalized notion of answer sets for (possible
disjunctive) logic programs [Gelfond and Lifschitz, 1991]. With both notions, the set of logi-
cal consequences from all stable models (resp. all answer sets) does, in general, not necessarily
grow with increasing information. This is due to the use of negation-as-failure and is called
nonmonotonicity. As a simple example, consider the computation of the symmetric difference
of two sets. Then the output of the operation does in general not grow monotonically with the
two sets. This kind of reasoning is also in spirit of human thinking, where it is very common to
make assumptions about the world, which may need to be withdrawn if the available knowledge
grows. This is referred to as default reasoning or commonsense reasoning and was formalized
by Reiter (1980) as default logic. This work is one of the theoretical foundations of modern
answer set programming systems.

While formalisms like Prolog have strong procedural elements, both the stable model and
the answer set semantics are fully declarative. That is, neither the order of rules nor the or-

1

1. INTRODUCTION

der of the literals in rules affect the result and program termination. The answer set semantics
is an extension of the stable model semantics. While programs under the latter semantics are
called normal logic programs (NLPs) and feature only negation-as-failure, the class of extended

logic programs (ELPs) under the answer set semantics supports in addition also strong nega-

tion (also often called classical negation) in program rules, and programs with disjunctions in
rule heads. The answer set semantics has then been further extended and generalized, e.g., to
nested logic programs [Lifschitz et al., 1999], to programs with aggregates [Pelov et al., 2007;
Lee and Meng, 2009; Ferraris, 2011; Faber et al., 2011], or to whole arbitrary propositional the-
ories [Ferraris, 2005].

Answer set programming is well-suited for applications with incomplete and inconsistent
information, and for expressing nondeterministic features. The popularity of ASP has espe-
cially increased since sophisticated solvers for the respective languages have become avail-
able, including DLV [Leone et al., 2006; DLV Website, 2014], SMODELS [Simons et al., 2002;
SMODELS Website, 2014], and the CLASP system in the Potassco suite [Gebser et al., 2007a;
Gebser et al., 2011b; CLASP Website, 2014]; (see Asparagus Website (2014) for more solvers).
Besides many applications in artificial intelligence [Eiter et al., 2011a; Brewka et al., 2011] and
data management [Antoniou et al., 2007; Halevy et al., 2003], ASP systems are also increas-
ingly applied in other sciences [Erdogan et al., 2010; Hoehndorf et al., 2007] and commercial
applications [Brewka et al., 2011]. Because of its expressiveness, ASP is also a suitable host
language for capturing advanced tasks in automated reasoning, like planning, scheduling, or
diagnosis. For this purpose, numerous front-ends to ASP solvers are available (the DLV sys-
tem [Leone et al., 2006], e.g., has several in its distribution).

While the ASP programming paradigm has turned out to be fruitful for a range of applica-
tions, current trends in distributed systems and the World Wide Web, for instance, revealed the
need for access to external sources in a program, ranging from light-weight data access (e.g.,
XML, RDF, or relational data bases) to knowledge-intensive formalisms (e.g., description log-
ics).

Although modular aspects of ASP have been considered, e.g., by Janhunen et al. (2009),
Dao-Tran et al. (2009a), Järvisalo et al. (2009), and Analyti et al. (2011), those frameworks are
limited to logic programs or related formalisms. Also multi-context systems can be seen as
modular logic programs. They allow for interlinking multiple knowledge bases (which can be
formalized in different host logics) using special bridge rules and axioms that access and import
information from other contexts to a local knowledge base, cf. Giunchiglia and Serafini (1994),
Brewka and Eiter (2007), Bikakis and Antoniou (2008), and Bikakis and Antoniou (2010). Fur-
ther extensions of ASP that allow for accessing information in external sources from logic pro-
grams include the DLVDB system [Terracina et al., 2008], which allows for querying relational
databases from the logic program, and VI programs [Calimeri et al., 2007], which allow for im-
porting knowledge from (monotonic) external sources with possibly fresh constants. This thesis
focuses on one particular extension, called HEX-programs [Eiter et al., 2005], which can be seen
as a generalization of other formalisms with external sources. Indeed, many other ASP exten-
sions and related formalisms can be translated to HEX-programs. For instance, Bögl et al. (2010)
present a system for inconsistency analysis in multi-context systems by rewriting the problem to
a HEX-program.

2

1.1. Motivation

1.1 Motivation

HEX-programs extend ASP with so called external atoms, through which the user can couple
any external data source, which can be represented by a computable function, with a logic
program. Roughly, such atoms pass information from the program, given by predicate exten-
sions and constants, to an external source, which returns output values of an (abstract) func-
tion that it computes. This is realized as a plugin system which supports the bidirectional
communication between the logic program and user-defined library functions. This extension
is convenient and very expressive due to the support of recursive data exchange between the
logic program and external sources. It has been exploited for applications in different areas,
e.g., in the Semantic Web, they have been used as a backend for the SPARQL Query Lan-
guage for RDF [Prud’hommeaux and Seaborne, 2007], which can be conveniently translated
to HEX-programs (see Polleres (2007)), for representing default knowledge in biomedical on-
tologies [Hoehndorf et al., 2007], and for ontology integration [Eiter et al., 2006c]. Further ap-
plications include planning with external functions [Van Nieuwenborgh et al., 2007], ranking
services using fuzzy HEX-programs [Heymans and Toma, 2008], geographic information sys-
tems [Mosca and Bernini, 2008], complaint management [Zirtiloǧlu and Yolum, 2008], multi-
context systems [Brewka and Eiter, 2007], querying biological or biomedical ontologies in nat-
ural language [Erdogan et al., 2010], and belief (set) merging [Redl et al., 2011]. The latter ap-
plication is in fact a further extension of HEX-programs by means which allow for the nesting of
logic programs, i.e., HEX-programs may call further HEX-programs. The realization is based on
special external atoms for calling subprograms, passing arguments to them, and accessing their
answer sets as objects. This allows for reasoning on the level of sets of answer sets, and to ag-
gregate and combine information from different answer sets. All these applications demonstrate
the usefulness of integrating external knowledge by means of external atoms.

The traditional evaluation algorithm for HEX-programs uses a translation approach which
rewrites them to ASP programs without external sources (we will sometimes call them ordinary

ASP programs to stress the absence of external sources). The fundamental idea is to guess the
truth values of external atoms (i.e., whether a particular fact is in the ‘output’ of the external
source access) in a modified guessing program, which is evaluated by a state-of-the-art ASP
system. After computing an answer set of the guessing program, a compatibility test checks
whether the guesses coincide with the actual source behavior. While this approach is intuitive
and natural, it turned out to be a bottleneck in advanced applications. It does not scale well,
as the number of candidate answer sets grows exponentially with the number of external atoms
in the program. This is because all combinations of truth values are blindly guessed, although
many of them fail the final compatibility test, frequently even due to the same reason. However,
when treating external sources as black-boxes, there is little room for improvement, as the inter-
nals of the model finding process are hidden in the ASP solver, which prevents a pruning of the
search space. Hence, even if properties of external sources would be known, it is impossible to
make use of them in the translation approach. In addition to efficiency problems, the translation
approach suffers also expressiveness restrictions. In order to rewrite HEX-programs to ordinary
ASP programs, the output values of external sources need to be known in advance (in general)
for grounding purposes. This is currently ensured by strong syntactic criteria which limit the

3

1. INTRODUCTION

use of external sources in many cases. These restrictions call for new genuine evaluation al-
gorithms, which handle external sourced as first-class citizens to increase both efficiency and
expressiveness.

1.2 State-of-the-Art

This section reviews existing approaches for three related topics which will be relevant for this
thesis: propositional model building algorithms for ordinary answer set programs, grounding

methods for programs with variables, and approaches of answer set programming with access to
external sources and domains.

1.2.1 Propositional Model Building

We will formally introduce ASP programs as a special case of HEX-programs in Chapter 2. For
now we give a more intuitive description. A propositional answer set program is a set of rules r
of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn,

where not denotes default-negation, and ai, 1 ≤ i ≤ k, bj , 1 ≤ j ≤ n are propositional atoms1.
The part to the left of← is the head and the part right the body of r.

An interpretation is a consistent set A of literals2. A satisfies a rule if either some bj
for 1 ≤ j ≤ m is not in A, some bj for m + 1 ≤ j ≤ n is in A, or some ai for 1 ≤
i ≤ k is in A; A satisfies a program Π (or is a model of Π) if A satisfies each rule r in
Π. An interpretation A is an answer set of Π if A is a subset-minimal model of the pro-
gram fΠA =

{
r ∈ Π | {b1, . . . , bm} ⊆ A, {bm+1, . . . , bn} ∩ A = ∅

}
, which is called

the FLP-reduct of Π with respect to A and consists of all rules whose body is satisfied by
A [Faber et al., 2011]. For ordinary programs the FLP-reduct is equivalent to the seminal GL-
reduct introduced by Gelfond and Lifschitz (1991), but preferable for programs with aggregates
and HEX-programs.

Model building algorithms for such programs can be classified in two major groups. The
first one consists of algorithms that translate the set of rules into another host logic (e.g., propo-
sitional logic or difference logic), for which one can apply specialized SAT solvers. This re-
sults in a reduction of the problem, i.e., the solutions to a constructed SAT instance can be
used to construct the answer sets of the original problem. Approaches of the second kind, on
which we focus in this thesis, search directly for models and are called genuine algorithms,
cf. Giunchiglia et al. (2008) and Baral (2002). The underlying idea of genuine algorithms, such
as those implemented by DLV or SMODELS, is to perform an intelligent (restricted) enumera-
tion of truth assignments to atoms used in the search for an answer set. That is, deterministic
consequences of the rules wrt. partial truth assignments are computed [Giunchiglia et al., 2008]
in order to set the truth values of further atoms; e.g., if the body of a rule is satisfied, also its

1Strongly (classically) negated atoms ¬p can be seen as new atoms together with a constraint which forbids that
p and ¬p are simultaneously true.

2For now this definition of an interpretation suffices, although we will introduce a more general one in Section 2
in order to support also partial assignments.

4

1.2. State-of-the-Art

head must be satisfied. If the assignment is still partial after all deterministic consequences have
been drawn, the value of a yet undefined atom is guessed in the style of DPLL algorithms for
SAT, and again deterministic consequences are determined, etc.; in case the guess leads to a
contradiction, the computation backtracks and the alternative value is considered.

In contrast to DLV and SMODELS, the CLASP system employs a conflict-driven method cor-
responding to conflict driven SAT solvers [Mitchell, 2005]. After some preprocessing steps (e.g.,
rewriting of optimization statements [Gebser et al., 2011a]), the solver creates a set of nogoods

for the input program [Gebser et al., 2007a], where a nogood is a set of literals that must not
occur simultanously in an answer set. For instance, it must never happen that all body literals of
some rule are true, but the body as a whole (represented by an auxiliary variable) is not. How-
ever, as there are exponentially many nogoods, some of them (the so called loop nogoods which
avoid cyclic justifications [Lin and Zhao, 2004; Gebser et al., 2007a]) are only introduced on the
fly. The basic operation of the algorithm is then unit propagation: if there is some nogood with
all except one literal satisfied, then the last literal must be false. This inference step is repeated
as long as new literals can be derived, i.e., until a fixpoint is reached. If no further literal can
be derived but some atoms have no truth value yet, then the algorithm guesses a truth value for
some such atom just as explained before. However, the distinguishing feature of conflict-driven
algorithms is nogood learning. Whenever a conflict emerges, the literals which were initially re-
sponsible for the conflict, are determined. This possibly results in adding further nogoods which
prevent the algorithm from reconstructing an interpretation with the same conflict again. This
considerably restricts the search space: instead of backtracking linearly, the reasoner immedi-
ately jumps to the assignment that initially caused the contradiction, and guides the algorithm
into another part of the search space. As conflict-driven algorithms are predominant in modern
SAT and ASP solving algorithms, we want to built upon them and introduce them formally and
in more detail in Chapter 2.

1.2.2 Grounding Methods

Non-ground answer set programs are like propositional programs, but the atoms in a rule are
of the form p(t1, . . . , tn), where p is a (first-order) predicate and the ti are terms in a first order
language. The semantics of such a program Π is defined in terms of its grounding, which consists
of all possible ground instances of the rules in Π, i.e., variable-free rules that result by replacing
all variables in r by ground terms in the language in all possible ways. For ordinary ASP
programs the grounding is finite, while it may be infinite for certain extensions like ASP with
function symbols and HEX-programs. However, in practice suitable safety conditions guarantee
that only a finite subset of the grounding is relevant for answer set computation. Finding such
safety conditions and developing efficient grounding algorithms for the resulting class of HEX-
programs will be in the focus of Chapter 4.

Most state-of-the-art ASP solvers (including DLV and CLASP) step to the grounding of a pro-
gram before the actual model finding algorithms are started. However, this is not done naively
by plugging in each constant for each variable. Instead, the grounder usually employs advanced
optimization techniques which try to eliminate irrelevant rules upfront. Modern grounders,
like the ones incorporated in DLV [Faber et al., 1999; Leone et al., 2001; Calimeri et al., 2008b],
or LPARSE [Syrjänen, 2009; SMODELS Website, 2014], and the GRINGO system as part of the

5

1. INTRODUCTION

Potassco suite [Gebser et al., 2011b; GRINGO Website, 2014], in fact compute the answer set for
monotonic programs or program components, such that only nondeterministic choices need to
be handled by the actual solver.

In contrast to pre-grounding, lazy grounding generates ground instances of rules only during
reasoning when the positive part of the body of a rule is already satisfied. This technique is used
for instance in GASP [Palù et al., 2009] and in the ASPeRiX solver [Lefèvre and Nicolas, 2009].
An advantage is that generating irrelevant ground rules can be avoided more effectively. How-
ever, the complexity of rule applications is higher than in the pre-grounding case since the match-
ing algorithm cannot compare rule bodies one-by-one with the current partial interpretation, but
must check if any grounded version is satisfied. Empirical results by Palù et al. (2009) are en-
couraging. Because HEX-programs cannot simply be pre-grounded since parts of the relevant
domain may never appear in the input program, we will partially build upon lazy grounding tech-
niques. Actually, we will choose a hybrid approach in Chapter 4, which alternates evaluation
and grounding for fragments of HEX-programs. That is, we instantiate program components
larger than single rules, but we do not carry out to overall grounding prior to evaluation but
interleave the two processes.

1.2.3 External Sources and Domains

There exist formalisms other than HEX-programs which have a similar intention and support ex-
ternal sources of computation. We now recall them and describe the most important differences
to HEX-programs.

GRINGO and Lua interface

The GRINGO system is a grounder for ASP which provides an interface for calling functions
written in the scripting language Lua [Lua Website, 2014] at certain points during the grounding
process [Gebser et al., 2011b]. The functions may access GRINGO data structures and return
new values to later grounding phases, which allows, e.g., to sort the input, to retrieve tuples
from a relational database and add them as facts to the grounder, as well as to insert atoms of a
model into the database. This is well-suited for implementing, for instance, user-defined built-in
predicates. However, in contrast to HEX-programs, the communication between the ASP system
and external scripts is only possible between specific grounding phases and is not tightly coupled
to and interleaved with model building.

ASP modulo Theories

The ASP solver CLASP provides an interface for adding custom theory propagators to the rea-
soner, which are executed after unit and unfounded set propagation have finished. This interface
was exploited by the CLINGCON system for integrating ASP with constraint satisfaction pro-
gramming [Ostrowski and Schaub, 2012; Gebser et al., 2009]. The CLINGCON approach can be
seen as a special case of HEX-programs: while it implements a solver for a specific theory, the
HEX formalism abstractly couples a large variety of different external sources to the solver.

6

1.3. Contributions

DLV-EX and DLV-Complex

DLV-EX, which is now part of DLV-Complex, is an extension of DLV which provides exter-
nal predicates similar to external atoms in HEX-programs. This allows for accessing sources of
computation that are defined outside the logic program [Calimeri et al., 2007], which is helpful
for functions that are not conveniently or not efficiently expressible by rules (for instance math-
ematical functions). As for HEX-programs, external computations possibly extend the Herbrand
universe of a logic program. Obviously, DLV-EX is related to HEX-programs, but a closer look
reveals that it is less general since it only allows for passing terms as input parameters to external
libraries, while HEX-programs allow for passing complete (or partial) interpretations by the use
of predicate parameters [Eiter et al., 2006a]. Consequently, external atoms in HEX-programs
are inherently more difficult to evaluate. The difficulty comes especially from nonmonotonic
behavior, which is not possible if only terms can be input to external sources.

1.3 Contributions

The overall goal of this thesis is therefore the development of advanced reasoning algorithms

which avoid the simple ASP translation approach in order to overcome the evaluation bottleneck
of HEX-programs. This class of algorithms will be called genuine algorithms throughout this
thesis. In contrast to the translation approach, they consider external atoms as first-class citizens
and natively build model candidates from first principles and accesses external sources already
during the model search, which allows to prune candidates early. For this purpose, they may also
exploit meta-knowledge about the internals of external sources, such as asserted properties like
monotonicity and functionality. These ideas are integrated with modern SAT and ASP solving
techniques based on clause learning [Biere et al., 2009], which led to very efficient conflict-

driven algorithms for (possibly disjunctive) answer-set computation [Drescher et al., 2008]. We
extend them to external sources, which is a major contribution of this work. Since typical rea-
soning tasks over HEX-programs such as cautious and brave reasoning are on the second level
of the polynomial hierarchy, the development of efficient algorithms is challenging.

As another important contribution we will also provide algorithms which handle programs
with variables and possible value invention, i.e., external sources which return constants that
do not show up in the original program. To this end, we will develop new safety criteria

which restrict the use of external sources less than other approaches, as e.g. those presented
by Gebser et al. (2007b) and Calimeri et al. (2007), but such that infinite value invention is still
avoided. For this novel class of programs we then introduce an efficient grounding algorithm.

As a proof of concept, the new algorithm will be integrated into our prototype system
DLVHEX, which is, to the best of our knowledge, the only implementation of the HEX-semantics.
The implementation is designed in an extensible fashion, such that the provider of external
sources can specify refined learning functions which exploit domain-specific knowledge about
the source. Also the safety criteria for programs with variables are implemented in an extensible
fashion such that application-specific knowledge can be exploited in addition to built-in criteria.
The theoretical work is complemented with experiments that we conducted with our prototype
on synthetic benchmarks and programs motivated by real-world applications. In many cases,

7

1. INTRODUCTION

significant performance improvements compared to the previous algorithm are obtained, which
shows the suitability and potential of the new techniques.

Finally, we discuss some existing and new applications and extensions of HEX-programs.
We will focus on those applications which emerged or have been significantly extended during
the work on this thesis, but we will also briefly discuss some traditional applications.

1.4 Organization of this Thesis

The remaining part of this thesis is organized as follows:

• In Chapter 2 we provide background about the concepts and techniques we will use
throughout this thesis. In particular, we introduce the syntax, semantics and the tradi-
tional evaluation algorithm for HEX-programs, which is based on a translation to ASP.
Moreover, we present state-of-the-art SAT and ASP solving algorithms based on conflict-

driven clause learning.

• In Chapter 3 we present novel evaluation algorithms for ground HEX-programs, i.e.,
variable-free programs. Our approach integrates conflict-driven algorithms with addi-
tional learning concepts related to techniques used in solvers for SAT modulo theories

(SMT) [Barrett et al., 2009]. We further develop new algorithms for minimality checking
of answer set candidates. This is an important topic because in many cases the major part
of the overall computational costs is caused by this check. The new minimality check is
tightly integrated with the conflict-driven algorithms.

In this chapter, we will also consider syntactic fragments of HEX-programs, which often
allow for a more efficient evaluation.

• In Chapter 4 we address non-ground programs and value invention (also called domain

expansion) in particular. That is, we consider external sources which may introduce new
values which do not appear in the original program. This obviously prevents naive pre-
grounding, as used in ordinary ASP solving, and requires additional safety criteria.

As the traditionally used criteria are unnecessarily restrictive, an important goal in this
chapter will be to relax these criteria whenever possible. However, we do not simply
provide more liberal safety criteria, but a generic and extensible notion of safety, where
concrete (syntactic and semantic) safety criteria can be plugged in. We then provide ex-
amples for concrete safety criteria, and prove that they are already strictly more general

than various other notions from the literature.

After the theoretical work on safety of HEX-programs, we will provide a grounding algo-

rithm for the defined class of HEX-programs. This algorithm is then integrated into the

evaluation framework, which is extended for this purpose.

• In Chapter 5 we first provide some information about the implementation of our algo-
rithms in our prototype system DLVHEX. The system is available from http://www.kr.

tuwien.ac.at/research/systems/dlvhex as open-source software. Then we evaluate the

8

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex

1.5. Publications and Evolution of this Work

system using a newly developed benchmark suite, which consists both of synthetic and
of real-world applications. We compare our algorithms to the traditional translation-based
algorithms and will be able to show a significant, in some cases even exponential, speedup.
The evaluation addressed both the learning-based solving and the grounding algorithms
which we developed in Chapters 3 and 4, respectively.

• Chapter 6 discusses applications and extensions of HEX-programs. The focus is on new
applications which emerged during the work on this thesis or have been significantly ex-
tended, but we will also recapitulate important traditional applications.

• Chapter 7 summarizes the main results, concludes the thesis, and gives an outlook on
future work.

• The HEX-encodings of benchmark problems are shown in Appendix A, lengthy proofs of
some presented results are outsourced in Appendix B.

1.5 Publications and Evolution of this Work

We now give a brief overview about the evolution of the techniques over time. We further give
references to the initial publications of the results presented this thesis.

This PhD project started started in October 2011 after the initial version of the model-
building framework has been introduced and the traditional algorithms have been integrated
into this framework. However, at this stage there was no tight integration of the ASP solver
used as backend with the reasoning algorithms for HEX-programs. In particular, there were no
learning techniques which consider external atoms as first-class citizens. Instead, the evaluation
of the logic program and the external sources were strictly separated, which not only turned out
to be an efficiency bottleneck in the evaluation, but also required strong syntactic limitations.

Thus, the goal in the first phase of the project from October 2011 to December 2012 was the
development of novel evaluation algorithms for ground HEX-programs presented in Chapter 3.
The main task was the development of the guess and check algorithm from Section 3.1, which
adds new learning techniques that are specific for ASP with external sources. We developed
the concept of learning functions in order to abstractly deal with external sources and allow for
flexible instantiation for concrete applications. The results were initially published in the Journal

of Theory and Practice of Logic Programming (TPLP) in September 2012 [Eiter et al., 2012a]
and included preliminary benchmark results. In parallel to this part of the theoretical work,
GRINGO and CLASP were integrated into our prototype system and replaced DLV as default
reasoning backend. This work was mainly carried out during a research visit at the University
of Potsdam, Germany in the group of Prof. Dr. Torsten Schaub in January and February 2012.

A subprocedure of this algorithm is the minimality check from Section 3.2. While the tra-
ditional approach used an explicit search for smaller models, the new approach is based on un-
founded sets, which were previously already exploited for normal logic programs and disjunctive
ASP. We presented the new minimality checking algorithm and initial benchmark results at the
Thirteenth European Conference on Logics in Artificial Intelligence (JELIA 2012) in September
2012 [Eiter et al., 2012c]. We then developed the idea that this step might not be necessary in

9

1. INTRODUCTION

all cases, which was soon confirmed by formal results. This led to the identification of a de-

cision criterion which was published in the proceedings of the Fifth Workshop on Answer Set

Programming and Other Computing Paradigms in September 2012 [Eiter et al., 2012b].

The minimality check was then further improved by using a more advanced encoding of the
unfounded set search. Compared to the initial technique, the improved version minimizes repet-
itive computation and led to a further speedup. We presented the final version of this technique
and the respective benchmark encodings and results in a technical report [Eiter et al., 2013d]
and in the Journal of Artificial Intelligence Research in 2014 [Eiter et al., 2014b], which coin-
cide with the contents presented in this thesis.

In the second phase of this PhD project from January 2013 to March 2014 we considered
grounding and domain expansion. The results are presented in Chapter 4. The first goal in
this phase was the relaxation of the syntactic restrictions. The traditional grounding algorithm
assumes that all constants are known in advance whenever external atoms are involved in cycles.
This requires the user to obey restrictive safety conditions. It turned out that in many cases these
restrictions are unnecessary, i.e., better algorithms do not need such restrictions. Based on this
observation we developed a new notion of safety which we called liberal domain-expansion

safety (Section 4.2). However, this notion does not only relax the previous one but is also
extensible and customizable. This led to the concept of liberal safety which we presented at the
Twenty-Seventh AAAI Conference (AAAI 2013) in July 2013 [Eiter et al., 2013c].

The theoretical work was then complemented by a new grounding algorithm for HEX-
programs which are safe according to the new notion (Section 4.3). The algorithm and bench-
mark results were presented at the Second Workshop on Grounding and Transformations for

Theories with Variables (GTTV 2013) in September 2013 [Eiter et al., 2013a]. This work also
presents a new heuristics for the model-building framework (Section 4.5), which is tailored to
the properties of the new grounding algorithm and aims at avoiding the worst-case of this algo-
rithm, which is possible in many cases. However, this task is challenging since the heuristics
influences both the grounding and the solving algorithm and some strategies might reduce the
grounding time but increase the solving time or vice versa.

In parallel to both phases of the project we also continuously developed new applications

of HEX-programs and extended existing ones, some of which are presented in Chapter 6. In
particular, the idea of HEX-programs with nested program calls which was initially developed
by Redl (2010) and published in the proceedings of the Thirteenth International Symposium on

Practical Aspects of Declarative Languages (PADL 2011) in January 2011 [Redl et al., 2011]
was significantly extended in order to serve as a development tool during the implementation
of the algorithms from this thesis. The results have been presented at the Nineteenth Inter-

national Conference on Applications of Declarative Programming and Knowledge Manage-

ment (INAP 2011) [Eiter et al., 2011b] and in more detail in the post-proceedings of the confer-
ence [Eiter et al., 2013f]. Another application are HEX-programs with existential quantification

that were mainly developed in order to show the generality of the new grounding algorithm.
We presented them at the Twentieth International Conference on Applications of Declarative

Programming and Knowledge Management (INAP 2013) [Eiter et al., 2013b] and in more de-
tail in the post-proceedings [Eiter et al., 2014a]. Less related but still in context of this thesis
is an alternative semantics for ASP programs with aggregates and HEX-programs, for which

10

1.5. Publications and Evolution of this Work

we provided an implementation which was presented in the Journal of Arificial Intelligence in
2014 [Shen et al., 2014].

The development of the previously mentioned applications was tightly coupled with the de-
velopment of the methods from this thesis and influenced their fine-tuning. However, while
the work on this thesis was in progress some applications were also developed by end users
of the system. Although the core team was involved in those applications on a more abstract
level as well, the details were developed and implemented by persons who do not directly work
on the reasoning algorithms in the system core. Thus, the encodings of those applications can
not unintentionally bias the results by guiding the algorithms (i.e., avoiding problematic cases),
and can thus be considered as real-world applications. One such application is ACTHEX, which
has been significantly extended during the work on this thesis3. The results have been pub-
lished in the proceedings of the Twelfth International Conference on Logic Programming and

Nonmonotonic Reasoning (LPNMR 2013) in September 2013 [Fink et al., 2013]. In summer
2013 we further participated at the AngryBirds AI Competition4 with an agent based on HEX-
programs [Calimeri et al., 2013a]. The agent is called AngryHEX and was joint work of the
University of Calabria and the Vienna University of Technology5. Later, the system was sig-
nificantly extended, e.g., by introducing a second strategy layer for choosing among levels, and
more details were presented at the National Workshop and Prize on Popularize Artificial Intelli-

gence (PAI 2013) [Calimeri et al., 2013b], where we were conferred the best paper award; in the
competition the system was in the semifinal. Finally, a prototypical implementation of constraint
ASP on top of HEX-programs was developed as part of a master’s thesis [Stashuk, 2013].

3The implementation was mainly carried out by our guest student Stefano Germano in summer 2012, to whom
the author is grateful for his work.

4Co-located with IJCAI 2013, Beijing, China; http://www.aibirds.org
5We are grateful to Daria Stepanova, who presented the poster as a deputy of the AngryHEX team.

11

http://www.aibirds.org

Chapter 2
Preliminaries

In this chapter we discuss the background of this thesis, which will also show the notions we
are going to use. We first introduce syntax and semantics of HEX-programs as an extension
of the answer set programming (ASP) paradigm. This knowledge representation and reason-
ing formalism, which was first introduced by Eiter et al. (2005) and described in more detail
by Schindlauer (2006), is in the focus of this thesis.

The first evaluation algorithm for HEX-programs was introduced by Schindlauer (2006), but
has been significantly changed since then. In particular, a flexible model building framework

was introduced by Eiter et al. (2011a) and Schüller (2012), which evaluates HEX-programs by
modular decomposition of the input program, driven by some heuristics. The original algo-
rithms of Schindlauer (2006) are then obtained by instantiating the framework with a specific
decomposition heuristics. However, we will directly recapitulate the work of Schüller (2012)
instead of Schindlauer (2006) because it is strictly more general and leads to significantly better
benchmark results.

We then present conflict-driven SAT and answer set solving, following Mitchell (2005)
and Drescher et al. (2008), as this is a very promising technique which is fundamental to state-
of-the-art solvers. This is the basis for the algorithms developed in later chapters.

2.1 HEX-Programs

HEX-programs have been introduced by Eiter et al. (2005) as a generalization of (disjunctive)
extended logic programs under the answer set semantics [Gelfond and Lifschitz, 1991]. The
latter will sometimes be called ordinary ASP throughout this thesis to stress the absence of
external sources. In order to cater for the requirements of modern trends in distributed systems
and the World Wide Web, HEX-programs provide a universal bidirectional interface between the
logic program and external sources of computation, which is realized as external atom. External

13

2. PRELIMINARIES

atoms allow for a tight integration of arbitrary sources, which are provided as plugins to the
reasoner, with the logic program.

We start our discussion with some basic notions that we need in order to formally define
the syntax and semantics of HEX-programs. We assume that for a given program the alphabet
consists of mutually disjoint sets

• C of constants;

• P of predicates;

• V of variables; and

• X of external predicates.

Noticeably, C may be larger than the set of constants which explicitly show up in the program
and can even be infinite. In our examples we adopt the following naming convention: constants
start with lower case letters at the beginning of the alphabet (a, b, . . .), predicates start with lower
case letters beginning from p (p, q, . . .), variables start with upper case letters (X,Y, . . .), and
external predicate names start with symbol & (&g ,&h, . . .). The set of terms is defined as C ∪V .
Note that we have no notion of function symbols because they are disallowed in HEX-programs,
but can be simulated by external atoms as we will show in Chapter 6.

For an ordinary predicate p ∈ P , let ar(p) denote the arity of p and for an external predicate
&g ∈ X , let ar I(&g) be the (fixed) input arity and arO(&g) the (fixed) output arity of &g1.

As with ordinary ASP programs, the basic building blocks of HEX-programs are atoms.

Definition 1 (Atom). An (ordinary) atom a is of form p(t1, . . . , tℓ), with predicate p ∈ P and
ℓ = ar(p) and terms t1, . . . , tℓ ∈ C ∪ V .

Sometimes we will call an atom also ordinary atom, to stress that we do not talk about
external atoms (which are formally introduced in the following). An atom p(t1, . . . , tℓ) is called
ground if all terms are constants, i.e., ti ∈ C for all 1 ≤ i ≤ ℓ.

In this thesis we will often use lists of elements l1, . . . , lℓ, which will be compactly notated
by bold face, i.e., l = l1, . . . , lℓ. For instance, an atom of form p(t1, . . . , tℓ) might be denoted
p(t). For a list l = l1, . . . , lℓ we write l ∈ l if l = li for some 1 ≤ i ≤ ℓ. When we explicitly
write a list l = l1, . . . , lℓ of length ℓ > 1, we may add parentheses for better readability, i.e., we
write (l1, . . . , lℓ). Moreover, whenever we write li in context of a list l whose elements are not
explicitly stated, we assume that li refers to the i-th element of the list, i.e., the list is implicitly
given by l = l1, . . . , lℓ.

Since we need to represent partial assignments in many sections of this thesis, we cannot
simply represent assignments as sets of atoms, as in the intuitive description in Chapter 1. This
would not allow for distinguishing between false and undefined atoms. Instead, we use the
following notion of assignments based on signed literals.

Definition 2 (Signed Literal). A (signed) literal is a positive or negated ground atom Ta or Fa.

1For user convenience the implementation supports external predicates with variable input arity in some cases,
but we restrict our formal investigation to external predicates with fixed input arity.

14

2.1. HEX-Programs

For a literal σ = Ta or σ = Fa, let σ denote its opposite, i.e. Ta = Fa and Fa = Ta.

Definition 3 (Assignment). An assignment A over a (finite) set of atoms A is a consistent (i.e,
for any atom a ∈ A, we have {Ta,Fa} 6⊆ A) set of signed literals Ta or Fa, where Ta

expresses that a is true and Fa that it is false.
An assignment A is called complete wrt. a set of atoms A (or an interpretation of the atoms

in A), if Ta ∈ A or Fa ∈ A for all a ∈ A.

We write AT to refer to the set of elements AT = {a | Ta ∈ A} and AF to refer to
AF = {a | Fa ∈ A}. In abuse of notation, we will sometimes write complete interpretations
A as the set of its positive signed literals {Ta ∈ A}, or as the set of the atoms {a | Ta ∈ A}
which are true in A, if the set of atoms A is clear from context.

We will often need to refer to all tuples of arguments c, for which a certain predicate p is
true in an assignment A. This is called the extension of p in A.

Definition 4 (Extension of a Predicate). The extension of a predicate p wrt. an assignment A is
defined as ext(p,A) = {c | Tp(c) ∈ A}.

Let further A|p be the set of all signed literals over atoms of form p(c) in A. For a list
p = p1, . . . , pk of predicates, we let A|p = A|p1 ∪ · · · ∪A|pk .

2.1.1 Syntax

We are now ready to introduce HEX-programs formally. Ordinary ASP programs correspond
then to a fragment of HEX-programs, which we will describe subsequently. We start the in-
troduction of the syntax of HEX-programs with external atoms as the most specific part of the
language.

Definition 5 (External Atom). An external atom is of the form

&g [Y1, . . . , Yk](X1, . . . , Xl),

where g ∈ X is an external predicate name with ar I(&g) = k and ar O(&g) = l, Yi ∈ C ∪P ∪V
for all 1 ≤ i ≤ k are input terms, and Xi ∈ C ∪ V for all 1 ≤ i ≤ l are output terms.

The lists Y = Y1, . . . , Yk and X = X1, . . . , Xl are called input and output list, respectively.
A predicate in the input list is called an input predicate.

An external atom &g [Y1, . . . , Yk](X1, . . . , Xl) is ground, if Yi ∈ C∪P for all 1 ≤ i ≤ k and
Xi ∈ C for all 1 ≤ i ≤ l. Using our list notation, we abbreviate &g [Y1, . . . , Yk](X1, . . . , Xl) as
&g [Y](X).

We further assume that the input parameters of every external predicate &g ∈ X are typed
such that type(&g , i) ∈ {const,pred} for every 1 ≤ i ≤ ar I(&g). We make also the restric-
tion that Yi ∈ P if type(&g , i) = pred and Yi ∈ C ∪ V otherwise. Intuitively, for a parameter
of type const the constant at the respective argument position is passed to the external source,
while for a parameter of type pred the extension of the given predicate name is passed. More-
over, we will sometimes assume that we know for predicate parameters if they are monotonic or

15

2. PRELIMINARIES

nonmonotonic. A formal definition these properties will follow in Chapter 3, for now we only
use them as tags to the external source and explain them intuitively as follows. An external atom
is monotonic in a predicate parameter p, if the output of the external atom does not shrink if the
extension of p grows, otherwise it is nonmonotonic in p.

Example 1. A non-ground external atom is &diff [set1, set2](X), a ground external atom is
&diff [set1, set2](a), where type(&diff , 1) = type(&diff , 2) = pred. ✷

HEX-programs are then defined similar to ordinary ASP programs.

Definition 6 (HEX-programs). A HEX-program is a finite set of rules of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn,

where each ai for 1 ≤ i ≤ k is an atom p(t1, . . . , tℓ) with terms tj , 1 ≤ j ≤ ℓ, and each bi
for 1 ≤ i ≤ n is either an ordinary (classical) atom or an external atom. Moreover, we require
k + n > 0, and call a rule a constraint if k = 0, and a fact or disjunctive fact if n = 0, k = 1
or n = 0, k > 1, respectively. For facts and disjunctive facts we may omit←. Sometimes we
terminate rules with a dot if this improves readability.

The head of a rule r is defined as H(r) = {a1, . . . , an} and the body is defined as B(r) =
{b1, . . . , bm, not bm+1, . . . , not bn}. We call b or not b in a rule body a default literal; B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body.

A rule is ground if all atoms and external atoms are ground. A program is ground if all rules
are ground.

Example 2. The following set of rules forms a non-ground HEX-program Π:

sel(X)← domain(X),&diff [domain,nsel](X)

nsel(X)← domain(X),&diff [domain, sel](X)

domain(a)←

✷

As already mentioned in Footnote 1 in Chapter 1, we do not formally introduce strong nega-
tion but see classical literals of form ¬a as new atoms together with a constraint which disallows
that a and ¬a are simultaneously true.

We next define groundings of rules and programs similar to Gelfond and Lifschitz (1991).

Definition 7 (Grounding). The grounding grndC(r) of a rule r wrt. a set of constants C is the set
of all rules {σ(r) | σ : V 7→ C}, where σ is a grounding substitution mapping each variable to a
constant, and σ(r) denotes the rule which results if each variable X in r is replaced by σ(X).

The grounding of a program Π is defined as grndC(Π) =
⋃

r∈Π grndC(r).

16

2.1. HEX-Programs

Example 3 (ctd.). Let Π be the HEX-program from Example 2 and C = {a} be a set of constants.
Then grndC(Π) is:

sel(a)← domain(a),&diff [domain,nsel](a)

nsel(a)← domain(a),&diff [domain, sel](a)

domain(a)←

✷

Note that grndC(r) and grndC(Π) may be infinite because C may be infinite. It will be the
focus of Chapter 4 to identify classes of programs which have a finite answer-set preserving
grounding, i.e., a finite grounding with the same answer sets as the complete grounding wrt. C.

Definition 8. The Herbrand base HBΠ of program Π is the set of all ground atoms constructible
from the predicates occurring in Π and the constants from C.

We further let A(r) and A(Π) denote the set of ordinary atoms in a rule r or in a program Π,
respectively, and EA(r) and EA(Π) denote the set of external atoms in a rule r or in a program
Π, respectively. Importantly, the sets A(·) and EA(·) include the atoms and external atoms,
which occur in default-negated form in the given rule or program.

2.1.2 Semantics

We start with the semantics of ordinary ground atoms wrt. an assignment.

Definition 9 (Satisfaction of Ground Atoms). A ground atom p(c) is true in assignment A,
denoted A |= p(c), if Tp(c) ∈ A, and false in assignment A, if Fp(c) ∈ A.

To evaluate an external atom the reasoner passes the constants and extensions of the pred-
icates in the list of input terms to the external source associated with the external atom, which
is plugged into the reasoner. The external source computes a set of output tuples, which are
matched with the output list. The external atom evaluates then to true for every output tuple
which matches with any of the tuples returned from the external source.

The semantics of a ground external atom &g [y](x) wrt. an assignment A is given by the
value of a 1+k+l-ary Boolean oracle function f&g , where ar I(&g) = k and arO(&g) = l, that
is defined for all possible values of A, y and x.

Definition 10 (Satisfaction of Ground External Atoms). A ground external atom &g [y](x) is
true in assignment A, denoted A |= &g [p](c), if f&g(A, y, x) = 1, and false in assignment A
if f&g(A, y, x) = 0.

Importantly, in this thesis we restrict oracle functions f&g for a given external predicate
&g with input list y to computable functions s.t. the set {x | f&g(A, y, x) = 1} is finite and
enumerable. We further assume that f&g(A, y, x) = f&g(A

′, y, x) for all A, A′ s.t. A|ypred =
A′|ypred where ypred is the sublist of y consisting of all input parameters pi at a position 1 ≤ i ≤
ar I(&g) with type(&g , i) = pred, i.e., only the extensions of predicates which occur explicitly
as input term of type pred influence the value of f&g(·, x, y).

17

2. PRELIMINARIES

When specifying the semantics of external atoms throughout this thesis, we will sometimes
only explicitly define under which conditions it is true and implicitly assume that it is false
otherwise; this will be stated as ‘iffdef’ expression, as demonstrated by the following example.

Example 4 (ctd.). The semantics of the external predicate &diff from Examples 2 and 3 is given
by the oracle function f&diff defined such that for predicates p and q, f&diff (A, p, q, x) = 1 iffdef

x ∈ A|p and x 6∈ A|q for all assignments A, predicates p, q and constants x. Intuitively, &diff

computes the set difference of the extensions of p and q in A, i.e., the external atom is true for
all constants x which are in the extension of p but not in that of q. The external predicate &diff

is monotonic in the first parameter and nonmonotonic in the second. ✷

Definition 11. A ground default-literal of form not a (where a can be a ground ordinary or a
ground external atom), is true in assignment A, denoted A |= not a, if a is false in A.

The notion of extension ext(·,A) for external predicates &g with input lists y is naturally
defined as follows.

Definition 12 (Extension of an External Predicate with Input List). The extension of an exter-

nal predicate &g with input list y wrt. an assignment A is defined as ext(&g [y],A) = {x |
f&g(A, y, x) = 1}.

Satisfaction of ordinary rules and ASP programs [Gelfond and Lifschitz, 1991] is then ex-
tended to HEX-rules and programs in the obvious way:

Definition 13 (Satisfaction of Ground Rules). A ground rule r of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn

is satisfied by A, denoted A |= r if one of ai for 1 ≤ i ≤ k is true in A, or one of bi for
1 ≤ i ≤ m is false in A, or one of bi for m+ 1 ≤ i ≤ n is true in A.

An assignment A is a model of a program Π, denoted A |= Π, if A |= r for all r ∈ Π.
We can now define answer sets of HEX-programs similar to ordinary ASP programs, but

using the Faber-Leone-Pfeifer (FLP) reduct [Faber et al., 2011] instead of the classical Gelfond-
Lifschitz (GL-)reduct [Gelfond and Lifschitz, 1988]. The FLP-reduct and the GL-reduct are
equivalent for ordinary ASP programs, but the former is superior for programs with aggregates
as it eliminates unintuitive answer sets.

Definition 14 (FLP-Reduct [Faber et al., 2011]). For an interpretation A over a ground program
Π, the FLP-reduct fΠA of Π wrt. A is the set

{
r ∈ Π | A |= b for all b ∈ B(r)

}
of all rules

whose body is satisfied by A.

In contrast to the FLP-reduct, which simply removes all rules with unsatisfied bodies, the
GL-reduct ΠA =

{∨
ai∈H(r) ai ←

∧
bi∈B+(r) bi | r ∈ Π,A |= not b for all b ∈ B−(r)

}
also

removes the default-negated literals from the remaining rules (where a rule as by Definition 6 is
written as a1 ∨ · · · ∨ ak ← b1 ∧ . . . ∧ bm ∧ not bm+1 ∧ . . . ∧ not bn).

18

2.1. HEX-Programs

Definition 15. Given assignments A1, A2 we say that A1 is smaller than A2, denoted A1 ≤
A2, if {Ta ∈ A1} ⊆ {Ta ∈ A2}. We say that it is strictly smaller than, denoted A1 < A2, if
{Ta ∈ A1} ({Ta ∈ A2}.

Definition 16 (Answer Set). An answer set of a ground program Π is a ≤-minimal model A of
fΠA. An answer set of a program Π is an answer set of grndC(Π).

The set of all answer sets of a program Π is denotedAS(Π). We let≡pos denote equivalence
of the answer sets of two programs Π and Π′ in their positive parts, i.e., we write Π ≡pos Π′ if{
AT | A ∈ AS(Π)

}
=

{
AT | A ∈ AS(Π′)

}
.

Example 5 (ctd.). Let Π be the HEX-program from Example 2. Then the answer sets are A1 =
{Tsel(a),Fnsel(a)} and A2 = {Fsel(a),Tnsel(a)} because they are subset-minimal models
(in the positive atoms) of

fΠA1 = {sel(a)← domain(a),&diff [domain,nsel](a); domain(a)←}

and
fΠA2 = {nsel(a)← domain(a),&diff [domain, sel](a); domain(a)←},

respectively. ✷

Note that for a non-ground program, answer sets possibly contain an infinite number of
signed literals because the grounding is possibly infinite. However, in Chapter 4 we will identify
criteria which ensure the existence of a finite grounding which preserves the finite positive part
of answer sets.

To see why the FLP-reduct is preferable to the GL-reduct for HEX-programs, consider the
following example.

Example 6. Let Π be the HEX-program Π

p(a)← not¬ [p](a)

f ← not p(a), not f

where f¬(A, p, a) = 1 iffdef a 6∈ ext(A, p).
Then we have four answer set candidates A1 = {Tp(a),Ff}, A2 = {Tp(a),Tf}, A3 =

{Fp(a),Ff} and A4 = {Fp(a),Tf}. Under the GL-reduct, we have ΠA1 = ΠA2 = {p(a)},
ΠA3 = {f} and ΠA4 = ∅. Then (the positive part of) A1 is the only model of ΠA1 , i.e., it
reproduces itself under the reduct and is thus a GL-answer set (while the other models do not
reproduce themselves under the respective reduct).

However, it is not intuitive that A1 is an answer set because p(a) supports itself. If we use
the FLP-reduct instead, then we get fΠA1 = {p(a) ← not¬ [p](a)}. But now A1 is not a
minimal model of fΠA1 because A3 is also a model of fΠA1 and A3 < A1. Thus, under the
FLP-reduct all interpretations fail to be answer sets. ✷

This concludes our introduction of the syntax and semantics of HEX-programs. The class
of (ordinary) ASP programs corresponds then simply to the class of HEX-programs without
external atoms.

19

2. PRELIMINARIES

2.1.3 Atom Dependency Graph and Domain-Expansion Safety

To guarantee the existence of a finite grounding of a program which preserves the answer sets of
the original program, we need additional safety criteria. The traditional safety criterion in ASP
is recapitulated as follows.

Definition 17 (Safety). A rule r is safe, if every variable in r occurs in an ordinary positive body
atom b ∈ B+(r) or in the output list of an external body atom b ∈ B+(r) such that all variables
in its input list are safe. A program is safe if all its rules are safe.

However, the usual notion of safety is not sufficient in presence of external sources as there
exist safe programs which do not have a finite grounding which preserve all answer sets.

Example 7. Consider the following program Π = {s(a); s(Y) ← s(X),&concat [X, a](Y)},
where for strings X , Y and C, &concat [X,Y](C) is true iffdef C is the string concatenation
of X and Y . Then this program is safe, but it does not have a finite grounding with the same
answer sets as the original program because it derives infinitely many strings. ✷

Therefore the additional notion of strong safety was introduced by Eiter et al. (2006a) and
further developed by Schüller (2012), which ensures that the output of cyclic external atoms
is limited. For defining strong safety formally, we need the notion of atom dependencies in a
program.

Definition 18 (External Atom Dependencies). Let Π be a HEX-program with external atoms in
different rules being standardized apart2.

• If a is an external atom of form &g [X1, . . . , Xℓ](Y) in Π and b = p(Z) is an atom in
the head of a rule in Π. Then a depends external monotonically (nonmonotonically) on b,
denoted a →e

m b (resp. a →e
n b) if Xi = p for some 1 ≤ i ≤ ℓ and type(&g , i) = pred

is a monotonic (nonmonotonic) predicate parameter3.

• If &g [X1, . . . , Xℓ](Y), p(Z) ∈ B+(r) for some r ∈ Π such that for some 1 ≤ i ≤ ℓ we
have type(&g , i) = const and Xi ∈ Z, then &g [X1, . . . , Xℓ](Y)→e

m p(Z).

• If &g [X1, . . . , Xℓ](Y),&h[V](U) ∈ B+(r) for some r ∈ Π such that for some 1 ≤ i ≤ ℓ
we have type(&g , i) = const and Xi ∈ U, then &g [X1, . . . , Xℓ](Y)→e

m &h[V](U).

We define→e=→e
m ∪ →

e
n. We further need the concept of unification of atoms.

Definition 19. An atom a unifies with with atom b, denoted a ∼ b, if there exist mappings
σa : V → V ∪ C and σb : V → V ∪ C such that σa(a) = σb(b), where σa(a) and σb(b) denote
the atoms constructed from a and b by replacing each variable X in a and Y in b by σa(X) and
σb(Y), respectively.

2That is, we distinguish syntactically equal external atoms in different rules, e.g., by introducing new external
predicates defined by the same oracle function.

3Note that Schüller (2012) did not use monotonicity of single predicate parameters but only monotonicity of all
parameters. However, since the following concepts use only →e

m ∪ →e
n this definition is equivalent for our purposes.

20

2.1. HEX-Programs

domain(a) domain(X)

sel(X) nsel(X)

&diff [domain,nsel](X) &diff [domain, sel](X)

→m

→m

→m →m

→e
m

→e
m

→e
n

→e
n

→m

Figure 2.1: Atom Dependency Graph of the Program in Example 2

We then introduce atom dependencies as follows.

Definition 20 (Atom Dependencies). For a HEX-program Π and atoms a, b ∈ A(Π), we say:

(i) a depends monotonically on b, denoted a→m b, if

• some rule r ∈ Π has a ∈ H(r) and b ∈ B+(r); or

• there are rules r1, r2 ∈ Π such that a ∈ B+(r1)∪B
−(r1) and b ∈ H(r2) and a ∼ b;

or

• some rule r ∈ Π has a ∈ H(r) and b ∈ H(r).

(ii) a depends nonmonotonically on b, denoted a →n b, if there is some rule r ∈ Π such that
a ∈ H(r) and b ∈ B−(r).

Let→+ be the transitive closure of→=→m ∪ →n ∪ →
e
m ∪ →

e
n. We write a 6→ b if a→ b

does not hold; similar for the other types of relations.
We can now introduce a graph which represents these kinds of dependencies in a program.

Definition 21 (Atom Dependency Graph). For a HEX-program Π, the atom dependency graph

ADG(Π) = (VA, EA) of Π has as nodes VA = A(Π) ∪ EA(Π) the (non-ground) ordinary and
external atoms occurring in Π and as edges EA the dependency relations →m,→n,→

e
m,→

e
n

between these atoms in Π, labeled with the type of the relation.

Example 8 (ctd.). The atom dependency graph of the program in Example 2 is shown in Fig-
ure 2.1 and those of Example 7 is shown in Figure 2.2. ✷

This allows us to introduce strong safety as follows [Schüller, 2012].

21

2. PRELIMINARIES

s(a)

s(Y)

s(X)

&concat [X, a](Y)

→e
m

→m

→m

→m

Figure 2.2: Atom Dependency Graph of the Programs in Example 7

Definition 22 (Strong Safety). An external atom b in a rule r in a HEX-program Π is strongly

safe wrt. r and Π if either

(i) b 6→+ b, i.e., there is no cyclic dependency over b; or

(ii) every variable in the output list of b occurs also in a positive ordinary atom a ∈ B+(r)
such that a does not depend on b in ADG(Π).

Example 9 (ctd.). In the program in Example 7, &concat [X, a](Y) is not strongly safe because
it occurs in a cycle and there is no ordinary body atom in the rule which binds Y and is not
involved in the cycle. To make the program strongly safe we have to add a domain predicate as
in Π′ = {s(a); s(Y)← s(X),&concat [X, a](Y), limit(Y)}. ✷

These definitions can be used as follows to define strong domain-expansion safety. Note
that Schindlauer (2006) and Schüller (2012) called this just domain-expansion safety. In this
thesis we call it strong, because we will develop a more liberal notion of domain-expansion
safety in Chapter 4, which gives the user more freedom when modelling a search problem in
HEX.

Definition 23 (Strong Domain-Expansion Safety). A HEX-program Π is strongly domain-ex-

pansion safe, if each rule in Π is safe and each external atom in a rule r ∈ Π is strongly safe
wrt. r and Π.

Tightly related to this notion of strong domain-expansion safety is that of pre-groundable

external atoms and pre-groundable HEX-programs [Schüller, 2012].

Definition 24 (Pre-groundable External Atoms and Programs). An external atom b in a rule r in
a HEX-program Π is pre-groundable wrt. r and Π if for each variable X in the output list of b
there exists a positive ordinary atom a ∈ B+(r) containing X such that a 6→+ b, i.e., a does not
transitively depend on b. A HEX-program Π is pre-groundable if all external atoms in all rules
r ∈ Π are pre-groundable wrt. r and Π.

This exactly reflects Condition (ii) in Definition 22.

22

2.1. HEX-Programs

Example 10 (ctd.). In the program Π′ in Example 9, the external atom &concat [X, a](Y) is
pre-groundable wrt. rule s(Y)← s(X),&concat [X, a](Y), limit(Y) and Π′ because Y occurs
in limit(Y), which does not transitively depend on &concat [X, a](Y). ✷

This notion was then extended to extended pre-groundable HEX-programs [Schüller, 2012].
Intuitively, extended pre-groundable HEX-programs may contain external atoms which are not
pre-groundable, but then they do depend on facts but not on any other rules. Such external atoms
will sometimes be called outer external atoms. The truth values of outer external atoms can be
deterministically computed once the facts of the program are fixed.

Definition 25 (Extended Pre-groundable Programs). A HEX-program is extended pre-ground-

able if for each external atom b in a rule r ∈ Π it holds that either b is pre-groundable wrt. r and
Π, or every atom a that b depends on is the head of a non-disjunctive fact in Π. That is, if atom
a occurs in a rule head in Π, this rule must be of the form a←.

Example 11. In the program Π = {q(a); p(X)← &id [q](X)} the external atom &id [p](X) is
not pre-groundable but the program is still extended pre-groundable because &id [p](X) depends
only on the fact q(a). ✷

It is easy to see that an external atom in a strongly domain-expansion safe program, which
is not pre-groundable, does not cyclically depend on itself (Proposition 12 by Schüller (2012)).
This is because of Condition (i) in Definition 22, which must hold if Condition (ii) does not hold.
This property will be exploited by the model-building framework (which is formally introduced
in Chapter 4) as follows. The overall program is split into fragments, called (evaluation) units,
such that every unit is extended pre-groundable. Each component can then be evaluated by an
algorithm which grounds the whole unit prior to evaluation. Intuitively, this means that value
invention occurs only between but not within evaluation units.

Extended pre-groundable HEX-programs can be evaluated by Algorithm EvaluateExtended-
PreGroundable, which computes the positive parts of all answer sets of a program, augmented
with facts from some input interpretation [Schüller, 2012]. The basic idea is to first evaluate all
external atoms which are not pre-groundable. As they depend only on facts, their input list must
be ground, because if there would be a variable in the input list, then the external atom would
depend on at least one non-ground atom. But then they can be immediately evaluated as soon
as the input interpretation A is known, thus also the truth values for all ground instances of the
external atom are fixed. An auxiliary fact of form e&g[y](z) is added for each (ground) output
tuple z ∈ ext(A,&g [y]) of the external atom with input list &g [y], which unifies (∼) with the
output list X given in the program. Then each external atom &g [Y](X) ∈ Eouter is replaced
by its auxiliary atom e&g[Y](X). The resulting program Π′ is now pre-groundable because all
external atoms which were not pre-groundable have been resolved. Thus, the program can now
be grounded similar to ordinary ASP programs using the procedure, but taking variables in the
input to external atoms into account, as discussed in the next subsection; we abstractly use the
resulting grounding algorithm as GroundProgram. We do not discuss the grounding procedure
in detail because we will develop a strictly more general approach in Chapter 4. The resulting
ground program is then given to procedure EvalGroundHexProgram(Π′

grnd), which computes
the answer sets of the input ground HEX-program Π′

grnd .

23

2. PRELIMINARIES

At this point we do not discuss ground model building, i.e. the implementation of the proce-
dure EvalGroundHexProgram. The development of appropriate algorithms are one of the main
goals of this thesis and will we shown them in detail in Chapter 3. However, the traditional
algorithm sketched by Schindlauer (2006) works roughly as follows. Each (ground) external
atom is replaced by an auxiliary atom and its truth value is guessed. The resulting ordinary
ASP program is then solved by a state-of-the-art ASP solver to produce answer set candidates.
Each candidate is then checked for compliance with the external sources. If all guesses coincide
with the semantics of external atoms, then minimality of the candidate wrt. the FLP-reduct is
checked. If also this check is passed, an answer set has been found.

Algorithm EvaluateExtendedPreGroundable

Input: A HEX-program Π, an input interpretation A

Output: Positive parts of all answer sets of Π ∪ {a← . | Ta ∈ A} without A

// determine non-disjunctive facts in Π and add them to A

A′ ← A ∪ {Ta | r ∈ Π such that H(r) = {a} and B(r) = ∅}
// determine external atoms that get input only from A′

Eouter ← {&g [X](Y) in Π | if &g [X](Y)→e b then Tb ∈ A′}
// evaluate external atoms and create corresponding

// ground replacement atoms

Aaux ← {Te&g[y](z) | &g [y](X) ∈ Eouter , z ∈ ext(A′,&g [y]), z ∼ X}

// introduce auxiliary atoms for outer external atoms

Π′ ← Π with external atoms &g [Y](X) ∈ Eouter replaced by auxiliaries e&g[Y](X)

// add input and auxiliaries as facts

Π′ ← Π′ ∪ (a← . | Ta ∈ A ∪Aaux)
// ground the program

Π′
grnd ← GroundProgram(Π′)

// ground program evaluation and output projection

return
{
A′′ \ (A ∪Aaux ∪ {Fa ∈ A′′}) | A′′ ∈ EvalGroundHexProgram(Π′

grnd)
}

2.1.4 External Atom Input Grounding

Following Schindlauer (2006) and Schüller (2012), we use the following precedure for ground-
ing the input of external atoms. We create for each external atom in the program an auxiliary
rule which computes the relevant substitutions for all variables in its input list. Then we evaluate
the set of all auxiliary rules and retrieve the tuples we need to substitute for the variables.

The following definition corresponds to Definition 4.6.11 by Schindlauer (2006) and Defi-
nition 23 by Schüller (2012). However, we call the following concept basic input auxiliary rule,
because we make use of a slightly adopted notion of input auxiliary rules in Chapter 4.

Definition 26 (Basic Input Auxiliary Rule). Let Π be a HEX-program, and let &g [Y](X) be
some external atom with input list Y occurring in a rule r ∈ Π. Then, for each such atom, a rule
r

&g
inp is composed as follows:

24

2.2. Conflict-Driven Learning and Nonchronological Backtracking

• The head H
(
r

&g
inp

)
contains an atom g

&g
inp(Y) with a fresh predicate g&g

inp .

• The body B
(
r

&g
inp

)
of the auxiliary rule contains all body literals of r other than &g [Y](X)

that have at least one variable in its arguments (resp. in its output list if b is another external
atom) that occurs also in Y.

For each external atom in Π we create such a rule and denote the resulting set of rules Πinp .

Example 12 (adopted from Example 43 by Schüller (2012)). Consider the non-ground HEX-
program

Π = {out(Y)← &concat [a, b](X),&concat [X, c](Y)}.

Then the program Πinp consists of the single rule g&concat
inp (X) ← &concat [a, b](X). If we

evaluate Πinp we get the single answer set {Tg&concat
inp (ab)}, which is used for grounding Π to

Πgrnd = {out(Y)← &concat [a, b](ab),&concat [ab, c](Y)}. Then we can evaluate Πgrnd and
get the single answer set {Tout(abc)}. ✷

The process of creating auxiliary rules needs to be iterated in general. For instance, for the
program Π = {out(Z) ← &concat [a, b](X),&concat [X, c](Y),&concat [Y, d](Z)}, we first
compute the input to &concat [X, c](Y), which is ab, and then the input to &concat [Y, d](Z),
which is abc.

2.1.5 Modular Evaluation of HEX-Programs

The evaluation of HEX-programs is based on a model-building framework [Eiter et al., 2011a;
Schüller, 2012], which splits the non-ground program into smaller program components, each
of which is extended pre-groundable.

At this point we do not recapitulate the details of the model-building framework because
they are not necessary for the general understanding of HEX-programs and for the development
of algorithms for ground HEX-program evaluation in Chapter 3. We rather delay the introduction
to Chapter 4. Here we only note that the decomposition is done for two reasons. First, this may
increase efficiency, as observed by Schüller (2012), and second, the decomposition is sometimes
even necessary because the actual evaluation in Algorithm EvaluateExtendedPreGroundable can
only handle extended pre-groundable HEX-programs. Thus, if the input program is not extended
pre-groundable, then the framework must split it such that each unit becomes extended pre-
groundable. It was shown by Schüller (2012) that such a splitting exists for every strongly
domain-expansion safe program. In Chapter 4 we will develop more advanced algorithms which
can handle a larger class of programs directly. This gives the framework more freedom in the
decision whether units are split or not.

2.2 Conflict-Driven Learning and Nonchronological Backtracking

In this section we describe the basic algorithm of conflict-driven SAT solvers. Conflict-driven

clause learning (CDCL) for SAT was first introduced by Mitchell (2005) and has turned out to be
very efficient for practical applications. Later, the approach has been adopted to conflict-driven

25

2. PRELIMINARIES

ASP solving [Gebser et al., 2007a] and to disjunctive ASP solving [Drescher et al., 2008]. Algo-
rithms based on conflict-driven techniques also fit into the framework for abstract ASP solving,
which formalize reasoning as a state transition system [Lierler, 2011]. That is, unit propagation,
learning and forgetting (see below) are described in terms of changes which are made to the
clause set and to the assignment.

We will use nogoods instead of classical clauses, following Drescher et al. (2008). The ap-
proach is therefore referred to as conflict-driven nogood learning (CDNL).

Definition 27 (Nogood). A nogood {L1, . . . , Ln} is a set of (signed) literals Li, 1 ≤ i ≤ n.

Note that every classical clause can be transformed into an equivalent nogood and vice versa
by negating all literals.

Definition 28. An assignment A is a solution to a nogood δ (resp. a set of nogoods ∆), if δ 6⊆ A

(resp. δ 6⊆ A for all δ ∈ ∆).
If for a nogood δ (resp. a set of nogoods ∆) we have δ ⊆ A (resp. δ ⊆ A for some δ ∈ ∆),

we say that A violates nogood δ (resp. set of nogoods ∆).

DPLL-style SAT solvers rely on an alternation of drawing deterministic consequences and
guessing the truth value of an atom towards a complete interpretation [Davis et al., 1962]. De-
terministic consequences are drawn by the basic operation of unit propagation, i.e., whenever
all but one signed literals of a nogood are true, the last one must be false. The solver stores an
integer decision level dl , written @dl as postfix to the signed literal. An atom which is set by
unit propagation using nogood δ gets the highest decision level of all already assigned atoms in
δ, whereas guessing increments the current decision level.

Most modern SAT solvers are conflict-driven, i.e., they learn additional nogoods when the
current assignment violates a nogood. Practical systems also implement heuristics for removal of
learned nogoods, which is called forgetting and prevents the reasoner from running into memory
problems, while learning prevents the solver from running into the same conflict again. The
learned nogood is determined by initially setting the conflict nogood to the violated one. As
long as it contains multiple literals on the same decision level, it is resolved with the reason of
one of these literals, i.e., the nogood which implied it4. This strategy is referred to as first unique

implication point or first UIP [Marques-Silva and Sakallah, 1999].

Example 13. Consider the nogoods

{Ta,Tb}, {Ta,Tc}, {Fa,Tx,Ty}, {Fa,Tx,Fy}, {Fa,Fx,Ty}, {Fa,Fx,Fy}

and suppose the assignment is A = {Fa@1,Tb@2,Tc@3,Tx@4}. Then the third nogood is
unit and implies Fy@4, which violates the fourth nogood {Fa,Tx,Fy}. As it contains multiple
literals (Tx and Fy) which were set at decision level 4, it is resolved with the reason for setting
y to false, which is the nogood {Fa,Tx,Ty}. This results in the nogood {Fa,Tx}, which
contains the single literal Tx set at decision level 4, and thus is the learned nogood.

4If one sees nogoods as conjunctions of literals which imply falsity, this amounts to a resolution of implicants
which is known as rule of consensus, cf. Brown (2003).

26

2.3. Conflict-Driven ASP Solving

In standard clause notation, the nogood set corresponds to

(¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (a ∨ ¬x ∨ ¬y) ∧ (a ∨ ¬x ∨ y) ∧ (a ∨ x ∨ ¬y) ∧ (a ∨ x ∨ y)

and the violated clause is (a ∨ ¬x ∨ y). It is resolved with (a ∨ ¬x ∨ ¬y) and results in the
learned clause (a ∨ ¬x). ✷

State-of-the-art SAT and ASP solvers backtrack then to the second-highest decision level in
the learned nogood. In Example 13, this is decision level 1. All assignments after decision level
1 are undone (Tb@2, Tc@3, Tx@4). Only variable Fa@1 remains assigned. This makes the
new nogood {Fa,Tx} unit and derives Fx at decision level 1.

In contrast, the classical DPLL algorithm without learning would only undo the last decision
level 4 and try the alternative guess Fx@4, which would produce another related conflict.

2.3 Conflict-Driven ASP Solving

In this subsection we summarize conflict-driven answer-set solving and disjunctive answer-set
solving as described by Gebser et al. (2012) and Drescher et al. (2008). The fundamental algo-
rithm, which will be used as foundation for our techniques developed in Chapter 3, is shown in
Algorithm DASP-CDNL. It corresponds to Algorithm Hex-CDNL in Chapter 3 without Parts (c)
and (d). To employ conflict-driven techniques from SAT solving in ASP, programs are repre-
sented as sets of nogoods. For a ground ASP program let BA(Π) =

{
{B(r)} | r ∈ Π

}
be the

set of all rule bodies of Π, where each body is viewed as a fresh atom, which are later projected
from the interpretations.

We first define the set

γ(C) =
{
{FC} ∪ {tℓ | ℓ ∈ C}

}
∪
{
{TC, fℓ} | ℓ ∈ C

}

of nogoods to encode that a set C of default literals must be assigned T or F in terms of the
conjunction of its elements, where t not a = Fa, ta = Ta, f not a = Ta, and fa = Fa. That
is, the conjunction is true iff each literal is true.

Example 14. For the set C = {a, not b}, which represents the conjunction of a and not b, we
have γ(C) =

{
{FC,Ta,Fb}, {TC,Fa}, {TC,Tb}

}
. ✷

Clark’s completion ∆Π of a program Π over atoms A(Π) ∪ BA(Π) amounts then to the
following set of nogoods [Clark, 1977]:

∆Π =
⋃

r∈Π
γ
(
B(r)

)
∪
{
{TB(r)} ∪ {Fa | a ∈ H(r)}

}

It encodes that the body of a rule is true iff each literal is true, and if the body is true, at least one
head atom must also be true. Unless a program is in the class of tight programs [Fages, 1994]5,
Clark’s completion does not fully capture the semantics of a program as unfounded sets may

5Without going into detail, tightness is a syntactic condition hinging on positive atom dependencies in the pro-
gram and is defined using level mappings.

27

2. PRELIMINARIES

occur, i.e., sets of atoms which only cyclically support each other, also called a loop. We will
formally introduce unfounded sets in a more general fashion in Section 3.2 and give an intuitive
explanation for now.

Example 15. Consider Π = {a← b; b← a}. Then Clark’s completion

∆Π =
{
{F{b},Tb}, {T{b},Fb}, {T{b},Fa}, {F{a},Ta}, {T{a},Fa}, {T{a},Fb}

}

has the solution A = {Ta,Tb,T{a},T{b}}, but the projection of A to signed literals over
atoms from A(Π), A∩{Ta,Fa | a ∈ A(Π)} = {Ta,Tb}, it is not an answer set of Π because
a and b support each other only cyclically. ✷

Avoidance of unfounded sets requires additional loop nogoods, but as there are exponentially
many, they are only introduced on-the-fly (see below).

It is common for disjunctive programs to introduce additional nogoods Θsh(Π) which regu-
late support of singletons. They are based on a transformation sh(Π) of the programm, called
shifted program. This allows for a more efficient implementation of UnfoundedSet because the
procedure can safely ignore head-cycle free program components. However, as this is not rele-
vant for the understanding of the overall algorithm and concerns only the ordinary ASP solver
but not the work in this thesis, we abstractly use them as Θsh(Π); for an exhaustive description
we refer to Drescher et al. (2008).

With these concepts we are ready to describe the basic algorithm for answer set computation,
which is shown in Algorithm DASP-CDNL. The algorithm keeps a set ∆Π∪Θsh(Π) of static no-
goods (from Clark’s completion and from the shifted program), and a set∇ of dynamic nogoods
which are learned from conflicts and unfounded sets. During construction of the assignment A,
the algorithm stores for each atom a ∈ A(Π) ∪ BA(Π) ∪ BA(sh(Π)) a decision level dl . The
decision level is initially 0 and incremented for each choice. Deterministic consequences of a
set of assigned values have the same decision level as the highest decision level in this set.

The main loop iteratively derives deterministic consequences using Propagation in Part (a)
trying to complete the assignment. This includes both unit propagation and unfounded set prop-
agation. Unit propagation derives d if δ \ {d} ⊆ A for some nogood δ, i.e. all but one literal
of a nogood are true, therefore the last one needs to be false. Unfounded set propagation detects
atoms which only cyclically support each other and falsifies them. For instance, in Example 15,
unfounded set propagation would immediately set one of a or b to false, and unit propagation
sets subsequently also the other one to false.

Part (b) checks if there is a conflict, i.e. a violated nogood δ ⊆ A. If this is the case the
algorithm needs to backtrack. For this purpose, the call to Analysis computes a learned nogood ǫ
and a backtrack decision level k. The learned nogood is added to the set of dynamic nogoods,
and assignments above decision level k are undone. Otherwise, Part (c) checks if the assignment
is complete. In this case, a final unfounded set check is necessary due to disjunctive heads. If the
candidate is founded, i.e., no unfounded set exists, then it is an answer set. Otherwise, a violated
loop nogood δ from the set

λΠ(U) =

{σ1, . . . , σm} | (σ1, . . . , σm) ∈ {Ta | a ∈ U} ×

∏

r∈supΠ(U)

satr(U)

28

2.4. Complexity

of all loop nogoods for an unfounded set U is selected, where

satr(U) =
{
F{B(r)}

}
∪
{
Ta | a ∈ H(r) \ U

}

is the set of all signed literals which satisfy r independently of U and

supΠ(U) = {r ∈ Π | H(r) ∩ U 6= ∅, B(r) ∩ U = ∅}

is the set of rules which may be used to derive one of U without depending on U . Intuitively, the
nogoods in λΠ(U) encode that it must never happen, that an atom in the unfounded set is true,
but each rule which supports this atom is already satisfied independently of U (because then the
rule cannot be used to justify this atom being true). After adding such a nogood, conflict analysis
and backtracking is carried out. If no more deterministic consequences can be derived and the
assignment is still incomplete, some truth value is guessed in Part (d) and the decision level is
incremented. The function Select implements a variable selection heuristics. In the simplest
case it chooses an arbitrary signed literal σ over a yet unassigned variable, but state-of-the-art
heuristics are more sophisticated. E.g., Goldberg and Novikov (2007) prefer variables which are
involved in recent conflicts. We will explain parts of the algorithm in more detail whenever this
becomes necessary throughout this thesis.

Note that the algorithm uses two variants of unfounded set detection. One is implemented in
the procedure Propagation and runs a priori, i.e., possible unfounded sets are already detected
before they have become manifest in the assignment. This form of unfounded set check runs in
polynomial time but cannot detect all kinds of unfounded sets. In contrast, the unfounded set
check UnfoundedSet in Part (c) runs a posteriori, i.e., after the assignment has been completed
and possibly contains the unfounded set. This unfounded set detection is only necessary due to
head-cycles in disjunctive programs and is co-NP-complete itself. The procedure UnfoundedSet
may be implemented as a SAT search problem itself, as described by Drescher et al. (2008). We
will make use of a related but more general approach in Section 3.2.

2.4 Complexity

We assume familiarity with basic concepts of complexity theory, e.g., Turing machines, com-
plexity classes and reductions; for details we refer to Papadimitriou (1994). We denote by P and
NP the classes of decision problems (i.e., computational problems with yes/no answer) which
can be solved in polynomial time by deterministic and nondeterministic Turing machines, re-
spectively. For a complexity classC, class co-C contains problems whose complement language
is in C. The polynomial hierarchy (PH) is a hierarchy of complexity classes ΣP

k , ΠP
k , ∆P

k , de-

fined by ΣP
0 = ΠP

0 = ∆P
0 = P, and for k ≥ 1, we have ΣP

k = NP
ΣP

k−1 and ΠP
k = co-ΣP

k

and ∆P
k = P

ΣP
k−1 . By PO (NPO) we denote the class of problems which can be solved by a

deterministic (nondeterministic) Turing machine in polynomial time if equipped with an oracle

for complexity class O, i.e., problems in O can be solved in one step. In particular, ΣP
1 = NP

and ΠP
1 = co-NP, which will be the most relevant complexity classes throughout this thesis.

We further have PH =
⋃

k≥0Σ
P
k . Classes PSPACE resp. NPSPACE contain the decision prob-

lems solvable by deterministic resp. nondeterministic Turing machines with polynomial space.

29

2. PRELIMINARIES

Algorithm DASP-CDNL

Input: A ground ASP program Π
Output: An answer set of Π, or ⊥ if none exists

A← ∅ // assignment over A(Π) ∪ BA(Π) ∪ BA
(
sh(Π)

)

∇ ← ∅ // dynamic nogoods

dl ← 0 // decision level

while true do

(a) (A,∇)← Propagation(Π,∇,A)
(b) if δ ⊆ A for some δ ∈ ∆Π ∪Θsh(Π) ∪∇ then

if dl = 0 then return ⊥
(ǫ, k)← Analysis(δ,Π,∇,A)
∇ ← ∇∪ {ǫ}
A← A \

{
σ ∈ A | k < dl(σ)

}

dl ← k

(c) else if AT ∪AF = A(Π) ∪ BA(Π) ∪ BA
(
sh(Π)

)
then

U ← UnfoundedSet(Π,A)
if U 6= ∅ then

Let δ ∈ λΠ(U) such that δ ⊆ A

if
{
σ ∈ δ | 0 < dl(σ)

}
= ∅ then return ⊥

(ǫ, k)← Analysis(δ,Π,∇,A)
∇ ← ∇∪ {ǫ}
A← A \

{
σ ∈ A | k < dl(σ)

}

dl ← k

else

return A ∩
{
Ta,Fa | a ∈ A(Π)

}

(d) else

σ ← Select(Π,∇,A)
dl ← dl + 1
A← A ∪ {σ}

30

2.4. Complexity

The complexity classes EXPTIME resp. NEXPTIME contain the decision problems solvable by
deterministic resp. nondeterministic Turing machines in exponential time. It is known that

P ⊆ NP ⊆ PH ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

Since P (EXPTIME, at least one of the inclusions must be strict, but it is widely believed that
all of them are strict, although not proven. It is also believed that the classes ΣP

k , ΠP
k for k ≥ 0

form a true hierarchy of infinitely many levels.

31

Chapter 3
Propositional HEX-Program Solving

In this chapter we present genuine evaluation algorithms for ground HEX-programs. The idea
is related to conflict-driven disjunctive ASP solving [Drescher et al., 2008], but strictly more
general as it integrates additional novel learning techniques to capture also HEX-programs with
external atoms. The term learning refers to the process of adding further nogoods to the nogood
set, which represents the program at hand, during exploration of the search space.

While additional nogoods are traditionally derived from conflict situations in order to avoid
similar conflicts during further search, we add a second type of learning which captures the be-
havior of external sources, called external behavior learning (EBL). Whenever an external atom
is evaluated, the algorithm might learn from the respective call. If we have no further informa-
tion about the internals of a source, we may learn only very general input-output relationships,
but if we have more information, we can learn more effective nogoods. In general, we will as-
sociate a learning-function with each external source which tells the system which nogoods to
learn. This learning function may be derived automatically from known properties of external
sources (such as monotonicity or functionality), but can also be overridden by the user in order
to give hints to the system why some tuple is in the output or why it is not in the output of an
external source.

All programs in this chapter are assumed to be ground. The algorithms introduced in this
chapter are intended to be used in place of EvalGroundHexProgram in Algorithm Evaluate-
ExtendedPreGroundable in Chapter 2. In particular, we will introduce two Algorithms Gues-
sAndCheckHexEvaluation and WellfoundedHexEvaluation. The Algorithm GuessAndCheck-
HexEvaluation may be applied to any ground HEX-program. Intuitively, the algorithm guesses
the truth values of all ground external atoms in the program, employs an ordinary ASP solver
to generate model candidates, and verifies then the guesses; but in contrast to the traditional
algorithm, it learns during this process in order to guide the algorithm. Instead of guessing,
Algorithm WellfoundedHexEvaluation performs a fixpoint iteration. This is usually faster, but
can be applied only to purely monotonic programs.

33

3. PROPOSITIONAL HEX-PROGRAM SOLVING

We start our discussion with the algorithm GuessAndCheckHexEvaluation. We abstractly
make use of a set of nogoods learned from the evaluation of some external predicate with input
list &g [y] wrt. assignment A. This set is specified by a learning function, denoted Λ(&g [y],A).
Based on this concept we then introduce the evaluation algorithm for HEX-programs. At this
point we use the minimality checker as a black box. Minimality checking of candidate answer
sets is an important issue because unfounded sets may involve the semantics of external sources
and are thus tricky to detect in some cases. However, we separate the construction of candidate
answer sets from the minimality check to make the presentation simpler.

Section 3.1.2 will then provide definitions of particular nogoods that can be learned for vari-
ous types of external sources, i.e., Λ(·, ·) is instantiated. The learning functions are automatically
derived from known properties of external sources, which are asserted by the user.

In Section 3.2 we introduce concrete algorithms for the final minimality check of candidate
answer sets. We show that there is a rather straightforward approach which explicitly searches
for models smaller than the current candidate. But since this method does not scale well in
practice, we then present an advanced algorithm based on unfounded sets. Our approach is re-
lated to those of Drescher et al. (2008) but strictly more general because it also respects external
sources. We further provide a syntactic decision criterion, which allows for skipping the whole
minimality check or restricting it to relevant program components in some practically relevant
cases.

Finally, in Section 3.3 we present the Algorithm WellfoundedHexEvaluation which is ap-
plicable to a fragment of HEX, called monotonic HEX-programs, and is more efficient in many
cases.

3.1 Guess and Check Algorithm for General Ground

HEX-Programs

We assume that we have an arbitrary ground HEX-program Π and want to compute all its an-
swer sets AS(Π). Schindlauer (2006) and Schüller (2012) proposed algorithms which deter-
mine the answer sets of a HEX-program Π using a transformation to ordinary ASP programs
as follows. Each external atom a = &g [y](x) in a rule r ∈ Π is replaced by an ordinary
ground (external) replacement atom â = e&g[y](x) (resulting in a rule r̂), and an additional
rule e&g[y](x)∨ne&g[y](x)← is added to the program. The answer sets of the resulting guessing

program Π̂ are determined by an ordinary ASP solver and projected to non-replacement atoms.
However, the resulting assignments are not necessarily models of Π, as the values of &g [y]
and e&g[y](x) relative to an interpretation may not coincide. Each answer set of Π̂ is thus a can-

didate compatible set (or model candidate) which must be checked against the external sources.
If no discrepancy is found, the model candidate is a compatible set of Π. More precisely,

Definition 29 (Guessing Program). For a ground HEX-program Π, let Π̂ be the guessing program

where for each external atom &g [y](x)

• &g [y](x) in a rule r ∈ Π is replaced by an ordinary ground (external) replacement atom
e&g[y](x) (resulting in a rule r̂); and

34

3.1. Guess and Check Algorithm for General Ground HEX-Programs

• a rule e&g[y](x) ∨ ne&g[y](x)← is added to the program.

For an external atom &g [y](x), the rule e&g[y](x) ∨ ne&g[y](x) ← is called ground external

atom guessing rule. In Chapter 4 we will also make use of non-ground external atom guessing

rules. Since in this chapter we always mean ground external atom guessing rules, we drop the
prefix ground.

Definition 30 (Compatible Set). A compatible set of a program Π is an assignment Â

(i) which is an answer set [Gelfond and Lifschitz, 1991] of the guessing program Π̂1; and

(ii) f&g(Â, y, x) = 1 if Te&g[y](x) ∈ Â and f&g(Â, y, x) = 0 otherwise for all external atoms
&g [y](x) in Π, i.e. the guessed values coincide with the values of the oracle functions.

Note that for each external atom a in a program Π, a compatible set Â must assign exactly
one of ea and nea to true.

Proposition 3.1. Let Â be a compatible set of a program Π. Then for each external atom a in

Π we have
∣∣{Tea,Tnea} ∩ Â

∣∣ = 1.

Proof. Because of the guessing rules in Π̂, at least one of ea and nea must be true for each exter-
nal atom a in Π, otherwise the according guessing rule would be unsatisfied, which contradicts
the assumption that Â is an answer set of Π̂.

However, if both ea and nea would be true, then
(
Â \ {Tnea}

)
∪ {Fnea} would also be a

model of Π̂ because the guessing rule corresponding to a would still be satisfied and nea does
not occur elsewhere in Π̂. But then by minimality of answer sets, Â cannot be an answer set of
Π̂, which contradicts the assumption that it is a compatible set of Π.

Proposition 3.1 allows us to slightly abuse notation by defining the truth value of only one
of ea or nea explicitly whenever we write compatible sets. We assume that the other atom has
implicitly the opposite truth value.

For a compatible set Â, let A be its projection to non-replacement atoms.

Example 16. Let Π be the program

dom(a); dom(b)

p(a) ← dom(a),&g [p](a)

p(b) ← dom(b),&g [p](b)

where &g implements the following mapping from ext(A, p) to ext(A,&g [p]):

∅ 7→ {b}; {a} 7→ {a}; {b} 7→ ∅; {a, b} 7→ {a, b}

1An assignment Â is an answer set of program Π̂, if it is the minimal model of Π̂Â.

35

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Then the guessing program Π̂ is given by the following set of rules:

dom(a); dom(b)

p(a) ← dom(a), e&g[p](a)

p(b) ← dom(b), e&g[p](b)

e&g[p](a) ∨ ne&g[p](a) ←

e&g[p](b) ∨ ne&g[p](b) ←

The interpretation

Â = {Tdom(a),Tdom(b),Tp(a),Fp(b),Te&g[p](a),Fne&g[p](a),Fe&g[p](b),Tne&g[p](b)}

is a compatible set of Π̂. ✷

The search for compatible sets will sometimes be called Main Search and is based on
conflict-driven nogood learning (CDNL) as recapitulated in Section 2.3.

A compatible set is not necessarily an FLP answer set of a program, but the set of all com-
patible sets includes all FLP answer sets. More formally, an answer set A of a program Π
corresponds to the compatible set

κ(Π,A) = A ∪
{
Tea,Fnea | a is an external atom in Π,A |= a

}

∪
{
Fea,Tnea | a is an external atom in Π,A 6|= a

}
.

We will prove this formally below.
Identifying the answer sets under all compatible sets requires an additional minimality check.

That is, for each compatible set Â one needs to check whether A is a subset-minimal model of
fΠA. Because the minimality is checked with respect to the FLP-reduct, this check will also be
called FLP check. However, we postpone the discussion of this check to later subsections but
first describe an algorithm which computes compatible sets of HEX-programs. The algorithm
is based on the traditional guess and check algorithm as shown above, but learns additional
nogoods from external source evaluations. The overall approach is visualized in Figure 3.1.

3.1.1 Learning-Based Evaluation Algorithm

It was observed that the naive guess and check approach suffers scalability problems. Although
the introduction of the model-building framework [Schüller, 2012] eased these problems, appli-
cability of the formalism to real-world applications is still moderate. The reasons for this can be
found in the blind guessing of all possible truth assignments to the external atoms. This leads
to an exponential number of candidate compatible sets, which have to be checked against the
external sources. In practice, many of them fail the check because of the same reason, i.e., there
might be repetitive computation. Therefore, it is a good idea to learn from evaluations of exter-
nal atoms such that assignments which violate the known behavior of external sources are not
generated again. The learned knowledge is represented by additional nogoods which are added
to the reasoner. Naively, one can simply observe the input-output relationships of external atoms

36

3.1. Guess and Check Algorithm for General Ground HEX-Programs

Π
Create Guess-
ing Program

Main Search (CDNL)

Check Unverified
External Atom Guesses

FLP CheckAnswer
Sets

External Atom
Evaluation

Π̂

Model Candidates

Compatible Sets

Figure 3.1: Visualization of the Overall Algorithm

during evaluation, but more advanced learning techniques are possible if side information about
properties of the external sources are known. As we will see, it is even possible to allow the user
for writing customized rules for nogood learning, which can exploit specific domain-dependent
knowledge for each external source.

In this section we abstractly use the set of nogoods Λ(&g [y],A) which are learned during the
evaluation of &g with input list y given the assignment A. Clearly, the learned information must
not be arbitrary but related to the actual behavior of the external source. The crucial requirement
is called correctness, which intuitively holds if the nogood can be added without eliminating
compatible sets.

Definition 31 (Correct Nogoods). A nogood δ is correct wrt. a program Π, if all compatible
sets of Π are solutions to δ.

The overall algorithm consists of two parts. First, Algorithm Hex-CDNL computes model
candidates; it is essentially an ordinary ASP solver (cf. Algorithm DASP-CDNL), but includes
calls to external sources in order to learn additional nogoods. The external calls in this algo-
rithm are not required for correctness of the algorithm, but may influence performance dra-
matically as discussed in Chapter 5. Second, Algorithm GuessAndCheckHexEvaluation uses
Algorithm Hex-CDNL to produce model candidates and checks each of them against the exter-
nal sources (followed by a minimality check). Here, the external calls are crucial for correctness
of the algorithm.

For computing a model candidate, Algorithm Hex-CDNL basically employs the conflict-
driven approach presented by Drescher et al. (2008) as summarized in Section 2, where the main
difference is the addition of Parts (c) and (d).

37

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Algorithm GuessAndCheckHexEvaluation

Input: A HEX-program Π
Output: All answer sets of Π

Π̂← Π with all external atoms &g [y](x) replaced by e&g[y](x)
Add guessing rules for all external atoms to Π̂
∇ ← ∅ // set of dynamic nogoods

S ← ∅ // set of all compatible sets

(a) while Ĉ 6= ⊥ do

Ĉ← ⊥
inconsistent ← false

(b) while Ĉ = ⊥ and inconsistent = false do

(c) Â← Hex-CDNL(Π, Π̂,∇)

if Â = ⊥ then

inconsistent ← true

else

compatible ← true

(d) for all external atoms with input list &g [y] in Π do

Evaluate &g [y] wrt. Â

(e) ∇ ← ∇∪ Λ(&g [y], Â)

Let Â&g[y](x) = 1⇔ Te&g[y](x) ∈ Â

if ∃x : f&g(Â, y, x) 6= Â&g[y](x) then

Add Â to ∇
compatible ← false

if compatible then Ĉ← Â

if inconsistent = false then

// Ĉ is a compatible set of Π

∇ ← ∇∪ {Ĉ}

if FLPCheck(Π, Ĉ,∇) then

S ← S ∪ {Ĉ}

return
{
{Ta ∈ Ĉ | a ∈ A(Π)} | Ĉ ∈ S

}

38

3.1. Guess and Check Algorithm for General Ground HEX-Programs

Algorithm Hex-CDNL

Input: A program Π, its guessing program Π̂, a set of nogoods ∇ofΠ
Output: An answer set of Π̂ (candidate for a compatible set of Π) which is a solution to

all nogoods d ∈ ∇, or ⊥ if none exists

Â← ∅ // assignment over A(Π̂) ∪ BA(Π̂) ∪ BA
(
sh(Π̂)

)

dl ← 0 // decision level

while true do

(Â,∇)← Propagation(Π̂,∇, Â)

(a) if δ ⊆ Â for some δ ∈ ∆Π̂ ∪Θ
sh(Π̂) ∪∇ then

if dl = 0 then return ⊥

(ǫ, k)← Analysis(δ, Π̂,∇, Â)
∇ ← ∇∪ {ǫ}

Â← Â \
{
σ ∈ Â | k < dl(σ)

}

dl ← k

(b) else if ÂT ∪ ÂF = A(Π̂) ∪ BA(Π̂) ∪ BA
(
sh(Π̂)

)
then

U ← UnfoundedSet(Π̂, Â)
if U 6= ∅ then

Let δ ∈ λΠ̂(U) such that δ ⊆ Â

if
{
σ ∈ δ | 0 < dl(σ)

}
= ∅ then return ⊥

(ǫ, k)← Analysis(δ, Π̂,∇, Â)
∇ ← ∇∪ {ǫ}

Â← Â \
{
σ ∈ Â | k < dl(σ)

}

dl ← k

else

return Â ∩
{
Ta,Fa | a ∈ A(Π̂)

}

(c) else if Heuristics decides to evaluate &g [y] then

Evaluate &g [y] wrt. Â

∇ ← ∇∪ Λ(&g [y], Â)

(d) else if Heuristics decides to do a UFS check then

Let Π′ ⊆ Π s.t. Â ∩
{
Ta,Fa | a ∈ A(Π̂′)

}
is a compatible set of Π′

FLPCheck(Π′,A,∇)

(e) else

σ ← Select(Π̂,∇, Â)
dl ← dl + 1

Â← Â ∪ {σ}

39

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Our extension in Part (c) is driven by the following idea: whenever unit and unfounded
set propagation does not derive any further atoms and the assignment is still incomplete, the
algorithm possibly evaluates external atoms with already known input instead of guesing truth
values. This might lead to the addition of new nogoods, which can in turn cause the propagation
procedure to derive further atoms. Guessing of truth values only becomes necessary if no de-
terministic conclusions can be drawn and the evaluation of external atoms does not yield further
nogoods, or evaluation of external atoms is denied by the heuristics. Our default heuristics evalu-
ates an external atom &g [y] whenever the input y is completely known. Different heuristics may
evaluate external atoms even if some of their input atoms are not yet assigned, i.e., they evalu-
ate external atoms wrt. partial assignments. This allows for adding nogoods in Part (c) which
imply the truth values of other, yet unassigned input atoms. This technique comes from the
field of SMT and is known as theory propagation [Nieuwenhuis and Oliveras, 2005]. However,
while our algorithm (and our implementation) fully supports theory propagation, the develop-
ment of concrete evaluation heuristics and learning functions which make use of this technique
is strongly application specific. As this is out of the scope of this thesis we will use the default
heuristics for all our benchmarks in Chapter 5.

Our second extension concerns Part (d), which may perform unfounded set checks already
during the search for compatible sets. Here we simply assume that this check does not eliminate
answer sets of Π, i.e., FLPCheck(Π′,A,∇) does not add any nogoods to∇which are violated
by some answer set of Π. Unfounded set checking will be described in Section 3.2, where we
also discuss how to do such checks wrt. partial assignments. For the minimality check, the
interpretation must be complete for a subprogram and the guesses of all external atoms in this
subprogram must be correct.

For a more formal treatment, let EI (Π) be the set of all external predicates with input list that
occur in Π, and let D(Π) be the set of all signed literals over atoms in A(Π) ∪ A(Π̂) ∪ BA(Π̂).

Then, a learning function for Π is a mapping Λ: EI (Π) × 2D(Π) 7→ 22
D(Π)

. We extend our
notion of correct nogoods to correct learning functions Λ(·, ·), as follows:

Definition 32. A learning function Λ is correct for program Π, if every d ∈ Λ(&g [y],A) is
correct for Π, for all &g [y] in EI (Π) and A ∈ 2D(Π).

Restricting to learning functions that are correct for Π, the following results hold.

Proposition 3.2. If for input Π, Π̂ and ∇, Algorithm Hex-CDNL returns (i) an interpretation

Â, then Â is an answer set of Π̂ and a solution to ∇; (ii) ⊥, then Π has no compatible set that

is a solution to ∇ and such that its restriction to positive atoms is an answer set of Π.

Proof. (i) The proof mainly follows Drescher et al. (2008). In our algorithm we have potentially
more nogoods, which can never produce further answer sets but only eliminate them. Hence,
each produced interpretation Â is an answer set of Π̂.

(ii) By completeness of the algorithm of Drescher et al. (2008) we only need to justify that
adding nogoods in Parts (c) and (d) does not eliminate compatible sets whose restriction to
positive atoms are answer sets of Π. In Part (c), adding the nogoods Λ(&g [y], Â) after evaluation
of &g [y] does not eliminate compatible sets of Π. For this purpose we need to show that when
one of the added nogoods is violated, the interpretation is incompatible with the external sources

40

3.1. Guess and Check Algorithm for General Ground HEX-Programs

anyway. But this follows from the correctness of Λ(·, ·) and (for derived nogoods) from the
completeness of the algorithm of Drescher et al. (2008). In Part (d), it holds by our assumption
about Algorithm FLPCheck that all answer sets of Π are solutions to all added nogoods.

The basic idea of Algorithm GuessAndCheckHexEvaluation is to compute all compatible
sets of Π by the loop at (a) and checking subset-minimality wrt. the FLP-reduct afterwards.
While minimality checking is explained in detail in Section 3.2, we first focus on the computa-
tion of compatible sets and assume that there is a proper implementation of Algorithm FLPCheck
which identifies the FLP answer sets among all compatible sets of the program Π at hand and
adds only nogoods to ∇ such that all answer sets of Π are solutions to them. However, it is
essential that the compatible sets restricted to ordinary atoms include all FLP answer sets, i.e.,
we do not miss answer sets. This is formalized as follows.

Proposition 3.3. For every program Π, each answer set A can be extended to a compatible set

Â = κ(Π,A).

Proof. Let A be an answer set of Π and let

Â = κ(Π,A) = A ∪
{
Tea,Fnea | a is an external atom in Π,A |= a

}

∪
{
Fea,Tnea | a is an external atom in Π,A 6|= a

}
.

We show that Â is a compatible set of Π.
Since A is an answer set of Π, it is also a model. Since the truth values of all replacement

atoms in Â coincide with the oracle function of all corresponding external atoms in Π wrt. A by
definition of Â, it satisfies all rules in r̂ ∈ Π̂ which result from a rule in r ∈ Π by substituting
external atoms by replacement atoms. Moreover, for each external atom &g [y](x) in Π, exactly
one of e&g[y](x) or ne&g[y](x) is true in Â, thus it also satisfies the external atom guessing rules

in Π̂ and is thus a model of Π̂.
It remains to show that Â is also a subset-minimal model of fΠ̂Â. Suppose Â is not a

subset-minimal model of fΠ̂Â. We show that then A is also not a subset-minimal model of
fΠA, i.e., it is not an answer set of Π. If Â is not a subset-minimal model of fΠ̂Â, then there
is a smaller model Â′. Note that the truth values of the replacement atoms in Â and Â′ are
the same because Â contains exactly one of Te&g[y](x) or Tne&g[y](x) for each external atom

&g [y](x) in Π. We show that the restriction A′ of Â′ to ordinary atoms is a model of fΠA.

Because Â′ is a model of fΠ̂Â, it is a model of every rule r̂ ∈ fΠ̂Â. But then either Th ∈ Â′

for some h ∈ H(r̂) or fb ∈ Â′ for some b ∈ B(r̂). However, in the latter case b cannot be a
(positive or default-negated) external atom replacement, because this would imply fb ∈ Â (Â
and Â′ coincide on replacement atoms) and contradict the assumption that r̂ is in the reduct.

Observe that fΠ̂Â contains all rules from fΠA, but with replacement atoms in place of
external atoms. The corresponding rule r ∈ fΠA of r̂ contains the same ordinary atoms in the
rule head and body as r̂. As A′ is the restriction of Â′ to ordinary atoms, we have A′ |= r.
Thus, A′ is a model of fΠA, which contradicts the assumption that A is an answer set of Π.

41

3. PROPOSITIONAL HEX-PROGRAM SOLVING

For computing compatible sets, the loop at (b) uses Algorithm Hex-CDNL to compute an-
swer sets of Π̂ in (c), i.e., candidate compatible sets of Π, and subsequently checks compatibility
for each external atom in (d). Here the external calls are crucial for correctness. However, dif-
ferent from the translation approach, the external source evaluation serves not only for compati-
bility checking, but also for generating additional dynamic nogoods Λ(&g [y], Â) in Part (e). We
have the following result, provided that Algorithm FLPCheck identifies the answer sets among
the compatible sets of Π and adds only nogoods to ∇ s.t. all answer sets of Π are solutions to
them.

Theorem 1 (Soundness and Completeness of Algorithm GuessAndCheckHexEvaluation). Al-

gorithm GuessAndCheckHexEvaluation computes all answer sets of Π.

Proof. We first show that the loop at (b) yields after termination a compatible set Ĉ of Π that is
a solution of ∇ at the stage of leaving the loop iff such a compatible set does exist, and yields
Ĉ = ⊥ iff no such compatible set exists.

Suppose that Ĉ 6= ⊥ after the loop. Then Ĉ was assigned Â 6= ⊥, which was returned by
Hex-CDNL(Π, Π̂, ∇). From Proposition 3.2 (i) it follows that Ĉ is an answer set of Π̂ and a
solution to ∇. Thus (i) of Definition 30 holds. As compatible = true , the for loop guarantees
the compatibility with the external sources in (ii) of Definition 30: if some source output on
input from Ĉ is not compatible with the guess, Ĉ is rejected (and added as nogood). Otherwise
Ĉ coincides with the behavior of the external sources, i.e., it satisfies (ii) of Definition 30 and
no further nogoods are added. Thus, Ĉ is a compatible set of Π wrt.∇ at the time of leaving the
loop.

Otherwise, after the loop Ĉ = ⊥. Then inconsistent = true , which means that the call
Hex-CDNL(Π, Π̂, ∇) returned ⊥. By Proposition 3.2 (ii) there is no answer set of Π̂ which is
a solution to ∇. As only correct nogoods were added to ∇, there exists also no answer set of Π̂
which is a solution to set∇. Thus the loop at (b) operates as desired.

If Algorithm FLPCheck adds no nogoods to ∇, then the loop at (a) then enumerates one
by one all compatible sets of Π and terminates: the update of ∇ with Ĉ prevents recomputing
Ĉ, and thus the number of compatible sets decreases. If we assume that Algorithm FLPCheck
correctly identifies the FLP answer sets among all compatible sets of Π, as we will formally show
in Theorem 3 after introducing an algorithm which implements Algorithm FLPCheck, we have
shown that the overall algorithm correctly outputs all answer sets of Π. If Algorithm FLPCheck
adds nogoods to ∇, then by assumption all answer sets of Π are solutions to them. Thus, if
these nogoods eliminate compatible sets of Π, then they are not relevant because they cannot be
answer sets anyway, thus we do not lose relevant interpretations.

Example 17. Let &empty be an external atom with one (nonmonotonic) predicate input p, such
that its output is c0 if the extension of p is empty and c1 otherwise. Consider the program Π
consisting of the following rules:

p(c0); dom(c0); dom(c1); dom(c2)

p(X)← dom(X),&empty [p](X)

42

3.1. Guess and Check Algorithm for General Ground HEX-Programs

Algorithm GuessAndCheckHexEvaluation transforms Π into the guessing program Π̂:

p(c0); dom(c0); dom(c1); dom(c2)

p(X)← dom(X), e&empty[p](X)

e&empty[p](X) ∨ ne&empty[p](X)← dom(X)

The traditional evaluation strategy without learning will then produce 23 model candidates in Al-
gorithm Hex-CDNL, which are subsequently checked in Algorithm GuessAndCheckHexEvalu-
ation. For instance, the guessed truth values of external atom replacements {Tne&empty[p](c0),
Te&empty[p](c1),Tne&empty[p](c2)} lead to the candidate compatible set {Tne&empty[p](c0),
Te&empty[p](c1), Tne&empty[p](c2), Tp(c1)} (neglecting false atoms and facts). This is also the
only model candidate which passes the compatibility check: p(c0) is always true, and therefore
e&empty[p](c1) must also be true due to definition of the external atom. This allows for deriving
p(c1) by the first rule of the program. All other atoms are false due to minimality of answer sets
(note that minimality wrt. the ordinary ASP program is already guaranteed by Hex-CDNL). ✷

3.1.2 Concrete Learning Functions for External Behavior Learning

We now discuss nogoods generated for external behavior learning (EBL) in detail. EBL is trig-
gered by external source evaluations instead of conflicts. The basic idea is to integrate knowledge
about the external source behavior into the program to guide the search. The program evalua-
tion then starts with an empty set of learned nogoods and the preprocessor generates a guessing
rule for each ground external atom, as discussed above, but further nogoods are added during
the evaluation as more information about external sources becomes available. This is in con-
trast to traditional evaluation, where external atoms are assigned arbitrary truth values which are
checked only after the assignment was completed.

We will first show how to construct useful learned nogoods after evaluating external atoms, if
we have no further information about the internals of external sources, which we call uninformed

learning. In this case we can only learn simple input/output relationships. Subsequently we
consider informed learning, where additional information about properties of external sources
is available. This allows for using more elaborated learning strategies.

Uninformed Learning

We first assume that we do not have information about the internals and consider external sources
as black boxes. Hence, we can just apply very general rules for learning: whenever an external
predicate with input list &g [y] is evaluated wrt. an assignment A, we learn that the input A|ypred
for ypred = p1, . . . , pn to the external atom &g produces the output ext(&g [y],A), where ypred
is the sublist of y containing all predicate input parameters. This can be formalized as the
following set of nogoods.

Definition 33. The learning function for a general external predicate with input list &g [y] in
program Π wrt. assignment A is defined as follows:

Λg(&g [y],A) =
{
A|ypred ∪ {Fe&g[y](x)} | x ∈ ext(&g [y],A)

}

43

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Guess Learned Nogood
{

Te&empty[p](c0),Tne&empty[p](c1),
Tne&empty[p](c2)

} {
Tp(c0),Fp(c1),Fp(c2),Fe&empty[p](c1)

}

{
Te&empty[p](c0),Tne&empty[p](c1),
Te&empty[p](c2),Tp(c2)

} {
Tp(c0),Fp(c1),Tp(c2),Fe&empty[p](c1)

}

{
Te&empty[p](c0),Te&empty[p](c1),
Tne&empty[p](c2),Tp(c1)

} {
Tp(c0),Tp(c1),Fp(c2),Fe&empty[p](c1)

}

{
Te&empty[p](c0),Te&empty[p](c1),
Te&empty[p](c2),Tp(c1),Tp(c2)

} {
Tp(c0),Tp(c1),Tp(c2),Fe&empty[p](c1)

}

Table 3.1: Learned Nogoods of Example 18

In the simplest case, an external atom has no input and the learned nogoods are unary, i.e.,
of the form {Fe&g[](x)}. Thus, it is learned that certain tuples are in the output of the external
source, i.e. they must not be false. For external sources with input predicates, the added rules
encode the relationship between the output tuples and the provided input.

Example 18 (ctd.). Recall Π from Example 17. Without learning, the algorithms produce 23

model candidates and check them subsequently. It turns out that EBL allows for falsification of
some of the guesses without actually evaluating the external atoms. Suppose the reasoner first
tries the guesses containing literal Te&empty[p](c0). While they are checked against the external
sources, the described learning function allows for adding the externally learned nogoods shown
in Table 3.1. Observe that the combination Tp(c0),Fp(c1),Fp(c2) will be reconstructed also for
different choices of the guessing variables. As p(c0) is a fact, it is true independent of the choice
between e&empty[p](c0) and ne&empty[p](c0). E.g., the guess Fe&empty[p](c0), Fe&empty[p](c1),
Fe&empty[p](c2) leads to the same extension of p. This allows for reusing the nogood, which is
immediately invalidated without evaluating the external atoms. Different guesses with the same
input to an external source allow for reusing learned nogoods, at the latest when the candidate is
complete, but before the external source is called for validation. However, very often learning al-
lows for discarding guesses even earlier. For instance, we can derive

{
Tp(c0),Fe&empty[p](c1)

}

from the nogoods above in 3 resolution steps. Such derived nogoods will be learned after run-
ning into a couple of conflicts. We can derive Te&empty[p](c1) from p(c0) even before the truth
value of Fe&empty[p](c1) is set, i.e., external learning guides the search while the traditional
evaluation algorithm considers the behavior of external sources only during postprocessing. ✷

Lemma 3.1. Let Π be a program which contains an external atom of form &g [y](·). For all

assignments A, the nogoods Λg(&g [y],A) in Definition 33 are correct wrt. Π.

Proof. The added nogood for an output tuple x ∈ ext(&g [y],A) contains A|ypred and the
negated replacement atom Fe&g[y](x). If the nogood is violated, then the guess was wrong as
the replacement atom is guessed false but the tuple (x) is in the output. Hence, the interpretation
is not compatible and cannot be a compatible set anyway.

44

3.1. Guess and Check Algorithm for General Ground HEX-Programs

Informed Learning

The learned nogoods of the above form can become quite large as they include the whole input
to the external source. However, known properties of external sources can be exploited in order
to learn smaller and more general nogoods. For example, if one of the input parameters of an
external source is monotonic, it is not necessary to include information about false atoms in its
extension, as the output will not shrink given larger input.

Properties for informed learning can be stated either on the level of predicates or on the level
of individual external atoms (see Chapter 5). The former means that all usages of the predicate
have the property. To understand this, consider predicate &union which takes two predicate
inputs p and q and computes the set of all elements which are in at least one of the extensions of
p or q. It will be always monotonic in both parameters, independently of its usage in a program.
While an external source may lack a property in general, it may hold for particular usages.

Example 19. Consider an external atom &db[r1, . . . , rn, query](y) as an interface to an SQL
query processor, which evaluates a given query (given as string) over tables (relations) provided
by predicates r1, . . . , rn. In general, the atom will be nonmonotonic, but for special queries
(e.g., simple selection of all tuples), it will be monotonic. ✷

Next, we discuss three particular cases of informed learning which customize the default
learning function for generic external sources by exploiting properties of external sources, and
finally present examples where the learning of user-defined nogoods might be useful.

Monotonic and Antimonotonic Atoms. A predicate parameter pi of an external atom &g is
called monotonic, if f&g(A, y, x) = 1 implies f&g(A

′, y, x) = 1 for all A′ with A′|pi ⊇ A|pi
and A′|p′ = A|p′ for all other predicate parameters p′ 6= pi. It is called antimonotonic, if
f&g(A, y, x) = 0 implies f&g(A

′, y, x) = 0 for all A′ with A′|Tpi ⊇ A|Tpi and A′|p′ = A|p′

for all other predicate parameters p′ 6= pi. It is called nonmonotonic, if it is neither monotonic
nor antimonotonic. The learned nogoods Λ(&g [y],A) after evaluating &g [y] are not required
to include Fpi(t1, . . . , tℓ) for monotonic pi ∈ y or Tpi(t1, . . . , tℓ) for antimonotonic pi ∈ y.
That is, for an external predicate with input list &g [y] with monotonic predicate input param-
eters pm ⊆ y, antimonotonic predicate input parameters am ⊆ y and nonmonotonic predicate
parameters pn = y \ (pm ∪ pa), the set of learned nogoods can be restricted as follows.

Definition 34. The learning function for an external predicate &g with input list y in program Π
wrt. assignment A, such that &g is monotonic in predicate input parameters pm ⊆ y and anti-
monotonic in predicate input parameters pa ⊆ y, is defined as follows:

Λm(&g [y],A) =

{
{Ta ∈ A|pm

} ∪ {Fa ∈ A|pa
} ∪

A|pn
∪ {Fe&g[y](x)}

∣∣∣ x ∈ ext(&g [y],A)

}

Example 20. Consider the external atom &diff [p, q](X) which computes the set of all ele-
ments X that are in the extension of p, but not in the extension of q. Suppose it is evaluated
wrt. A, s.t. ext(p,A) = {Tp(a),Tp(b),Fp(c)} and ext(q,A) = {Fq(a),Tq(b),Fq(c)}. Then
the output of the atom is ext(&diff [p, q],A) = {a} and the (only) naively learned nogood is

45

3. PROPOSITIONAL HEX-PROGRAM SOLVING

{
Tp(a),Tp(b),Fp(c),Fq(a),Tq(b),Fq(c),Fe&diff [p,q](a)

}
. However, due to monotonicity of

&diff [p, q] in p and antimonotonicity in q, it is not necessary to include Fp(c) or Tq(b) in the no-
good; the output of the external source will not shrink even if p(c) becomes true or q(b) becomes
false. Therefore the (more general) nogood

{
Tp(a),Tp(b),Fq(a),Fq(c),Fe&diff [p,q](a)

}
suf-

fices to correctly describe the input-output behavior. ✷

Lemma 3.2. Let Π be a program which contains an external atom of form &g [y](·). For all

assignments A, the nogoods Λm(&g [y],A) in Definition 34 are correct wrt. Π.

Proof. We must show that negative input literals over monotonic parameters and positive input
literals over antimonotonic parameters can be removed from the learned nogoods without affect-
ing correctness. For uninformed learning, we argued that for output tuple x ∈ ext(&g [y],A),
the replacement atom e&g[y](x) must not be guessed false if the input to &g [y](x) is A|ypred .
However, as the output of &g grows (shrinks) monotonically with the extension of a monotonic
(antimonotonic) parameter p ∈ pm (p ∈ pa), the same applies for any A′ s.t. p has a larger
(smaller) extension wrt. A′, i.e., {Ta ∈ A′|p} ⊇ {Ta ∈ A|p} ({Ta ∈ A′|p} ⊆ {Ta ∈ A|p})
and consequently {Fa ∈ A′|p} ⊆ {Fa ∈ A|p} ({Fa ∈ A′|p} ⊇ {Fa ∈ A|p}). Hence, the neg-
ative literals over monotonic parameters and the positive literals over antimonotonic parameters
are not relevant wrt. output tuple x and can be removed from the nogood.

Functional Atoms. When evaluating &g [y] with some &g that is a function wrt. assign-
ment A, only one output tuple can be contained in ext(&g [y],A), formally: for all assign-
ments A and all x, if f&g(A, y, x) = 1 then f&g(A, y, x

′) = 0 for all x′ 6= x. Therefore the
following nogoods may be added right from the beginning.

Definition 35. The learning function for a functional external predicate &g with input list y in
program Π wrt. assignment A is defined as follows:

Λf (&g [y],A) =
{
{Te&g[y](x),Te&g[y](x

′)} | x 6= x′
}

However, our implementation of this learning rule does not generate all pairs of output tuples
beforehand. Instead, it memorizes all generated output tuples xi, 1 ≤ i ≤ k during evaluation of
external sources. Whenever a new output tuple x′ is added, it also adds all nogoods which force
previously derived output tuples xi to be false.

Example 21. Consider the rules

out(X)← &concat [A, x](X), strings(A), dom(X)
strings(X)← dom(X), not out(X)

where &concat [X,Y](C) is true iffdef string C is the concatenation of strings X and Y , and
observe that the external atom is involved in a cycle through negation. As the extension of
the domain dom can be large, many ground instances of the external atom are generated. The
traditional evaluation algorithm guesses their truth values in a completely uninformed fashion.
E.g., e&concat(x, x, xx) (the replacement atom of &concat [A, x](X) with A = x and X = xx,
where dom(x) and dom(xx) are supposed to be facts) is in each guess set randomly to true

46

3.1. Guess and Check Algorithm for General Ground HEX-Programs

or to false, independent of previous guesses. In contrast, with learning from external sources,
the algorithm learns after the first evaluation that e&concat(x, x, xx) must be true. Knowing that
&concat is functional, all atoms e&concat(x, x,O) with O 6= xx must be false. ✷

Lemma 3.3. Let Π be a program which contains an external atom of form &g [y](·) s.t. &g is

functional. For all assignments A, the nogoods Λf (&g [y],A) in Definition 35 are correct wrt. Π.

Proof. We must show that the nogoods
{
{Te&g[y](x),Te&g[y](x

′)} | x 6= x′
}

are correct. Due
to functionality, the external source cannot return more than one output tuple for the same input.
Therefore no such guess can be part of a compatible set. Hence, the nogoods do not eliminate
possible compatible sets.

Linear Atoms. In some cases the evaluation of an external atom in fact answers multiple
independent queries simultanously. Splitting such queries into simpler ones might increase the
effects of learning. To this end, we call an external predicate &g with input list y linear wrt. a
partitioning A1, · · · ,An of an assignment A if ext(A,&g [y]) =

⋃n
i=1 ext(Ai,&g [y]).

Example 22. External predicate with input list &diff [p, q] is linear in partitionings A1, · · · ,An

s.t. for all c, Tp(c),Tq(c) ∈ A implies Tp(c),Tq(c) ∈ Ai for some i.
For example, the assignment A = {Tp(a),Tp(b),Fp(c),Tq(a),Fq(b),Tq(c)} can be

partitioned into A1 = {Tp(a),Tq(a)},A2 = {Tp(b),Fq(b)},A3 = {Fp(c),Tq(c)}. Ob-
viously ext(A,&diff [p, q]) = {b} =

⋃3
i=1 ext(Ai,&diff [p, q]). In contrast, the partitioning

A′
1 = {Tp(a)},A′

2 = {Tp(b),Tq(a),Fq(b),Fp(c),Tq(c)} is illegal (i.e., &diff [p, q] is not
linear wrt. it) because

⋃2
i=1 ext(A

′
i,&diff [p, q]) = {a} ∪ {b} 6= {b}. ✷

Linearity often allows for learning more general nogoods. In the above example, the sug-
gested partitioning allows for learning the nogood {Tp(b),Fq(b),Fe&diff [p,q](b)}, while with-
out exploiting linearity (but using monotonicity and antimonotonicity) the less general nogood{
Tp(a),Tp(b),Fq(b),Fe&diff [p,q](b)

}
is learned.

Definition 36. The learning function for an external predicate &g with input list y in program
Π, wrt. assignment A is defined as

Λl(&g [y],A) =

n⋃

i=1

Λm(&g [y],Ai),

where A1, · · · ,An is a partitioning of A s.t. &g [y] is linear wrt. it.

Lemma 3.4. For all assignments A, the nogoods Λl(&g [y],A) in Definition 36 are correct

wrt. Π.

Proof. By assumption A1, · · · ,An is a partitioning of A s.t. &g [y] is linear wrt. it. Hence,
ext(A,&g [y]) =

⋃n
i=1 ext(Ai,&g [y]). The correctness of Λl(&g [y],A) follows then from

correctness of Λm(&g [y],Ai) for all 1 ≤ i ≤ n (Lemma 3.2).

47

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Two special cases of linearity are linearity on the level of atoms and on the level of tuples. We
say that &g [y] is linear on the level of atoms if it is linear wrt. partitioning

{
{l} | l ∈ A

}
for all

assignments A, i.e., the assignment can be fully decomposed into assignments containing only
one signed literal each. We say that &g [y] is linear on the level of tuples if ypred = p1, . . . , pn
are predicate input parameters, the arities of all pi, 1 ≤ i ≤ n are the same, and it is linear
wrt. partitioning

{
{Tpi(x),Fpi(x) ∈ A | 1 ≤ i ≤ n} | x ∈ S

}
with S = {x | Tpi(x) ∈

A or Fpi(x) ∈ A for some 1 ≤ i ≤ n} for all assignments A, i.e., the assignment can be
decomposed into multiple assignments containing all input atoms over the same argument tuple.

Example 23. A useful learning function for &diff [p, q](X) is the following: whenever an el-
ement is in p but not in q, it belongs to the output of the external atom. This function works
elementwise and produces nogoods with three literals each, which models linearity on the level
of tuples. In contrast, the naive learning function from the Section 3.1.2 includes the complete
extensions of p and q in the nogoods, which are less general. ✷

Apart from linearity on the level of atoms or on the level of tuples, customized types of lin-
earity may be used for specific external sources to decompose the query into smaller subqueries.
In all cases the validity of the decomposition must be asserted by showing that the source is
indeed linear in the respective sense.

User-Defined Learning. In many cases the developer of an external atom has more informa-
tion about the internal behavior. This allows for defining more effective nogoods. It is therefore
beneficial to give the user the possibility to customize learning functions. Currently, user-defined
functions may either specify the learned nogoods directly, or by ASP-style rules (the details are
discussed in Chapter 5).

Example 24. Consider the program

r(X,Y) ∨ nr(X,Y)← d(X), d(Y)

r(V,W)← &tc[r](V,W), d(V), d(W)

It guesses, for some set of nodes d(X) of an undirected graph, all subgraphs of the complete
graph. Suppose &tc[r] checks if the edge selection r(X,Y) is transitively closed; if this is the
case, the output is empty, otherwise the set of missing transitive edges is returned. For instance,
if the extension of r is {(a, b), (b, c)}, then the output of &tc will be {(a, c)}, as this edge is
missing in order to make the graph transitively closed. The second rule eliminates all subgraphs
which are not transitively closed. Note that &tc is nonmonotonic. The guessing program is

r(X,Y) ∨ nr(X,Y)← d(X), d(Y)

r(V,W)← e&tc[r](V,W), d(V), d(W)

e&tc[r](V,W) ∨ ne&tc[r](V,W)← d(V), d(W)

The naive implementation guesses for n nodes all 2
n(n−1)

2 subgraphs and checks the transitive
closure for each of them, which is costly. Consider the domain D = {a, b, c, d, e, f}. After

48

3.1. Guess and Check Algorithm for General Ground HEX-Programs

checking one selection with r(a, b), r(b, c),nr(a, c), we know that no selection containing these
three atoms will be transitively closed. This can be formalized as a user-defined learning func-
tion. Suppose we have just checked our first guess r(a, b), r(b, c), and nr(x, y) for all other
(x, y) ∈ D × D. Compared to the nogood learned by the general learning function, the no-
good

{
Tr(a, b),Tr(b, c),Fr(a, c),Fe&tc[r](a, c)

}
is a more general description of the conflict

reason, containing only relevant edges. It is immediately violated and future guesses containing
{Tr(a, b),Tr(b, c),Fr(a, c)} are avoided. ✷

For user-defined learning, correctness of the learning function must be asserted.

Using Negative Information. Up to now we have learned positive facts about the output of
external sources, i.e., the learned nogoods in Λ(&g [y],A) encode under which conditions the
atoms in ext(A,&g [y]) become true.

However, there is no reason to restrict learning to positive examples. Signed literals of
kind Te&g[y](x) can be used to encode that a certain ground external atom must not be true, i.e.
tuple (x) is not in the output of the external source. Since we could in principle learn arbitrary
many negative facts, an important question is which tuples x to consider. We call this the scope

S of tuples. Clearly, it is unnecessary to consider tuples which do not occur in the program. Our
current implementation considers all tuples which were previously wrongly guessed to true.

Definition 37. The negative learning function for an external predicate &g with input list y in
program Π wrt. assignment A, such that &g is monotonic in predicate input parameters pm ⊆ y

and antimonotonic in predicate input parameters pa ⊆ y, and a finite set of tuples S (scope) is
defined as follows:

Λ¬(&g [y],A) =

{
{Fa ∈ A|pm

} ∪ {Ta ∈ A|pa
} ∪

A|pn
∪ {Te&g[y](x)}

∣∣∣ x ∈ S, x 6∈ ext(&g [y],A)

}

Lemma 3.5. For all assignments A, the nogoods Λ¬(&g [y],A) in Definition 37 are correct

wrt. Π.

Proof. We first focus on external sources without monotonic or antimonotonic input parameters.
Then a nogood encodes that e&g[y](x) must not be true if (x) 6∈ ext(&g [y],A) and the external
atom input is as in A. Such nogoods cannot eliminate compatible sets, because if e&g[y](x)
would be true, the assignment would not pass the compatibility check anyway.

We now show that positive input literals over monotonic parameters and negative input lit-
erals over antimonotonic parameters can be removed from the learned nogoods without affect-
ing correctness. Above, we argued that for output tuple x 6∈ ext(&g [y],A), the replacement
atom e&g[y](x) must not be guessed true if the input to &g [y](x) is A|ypred . However, as the
output of &g shrinks with growing (shrinking) extension of a antimonotonic (monotonic) pa-
rameter p ∈ pm (p ∈ pa), the same applies for any A′ in which the extension of p is larger
(smaller), i.e., {Ta ∈ A′|p} ⊇ {Ta ∈ A|p} ({Ta ∈ A′|p} ⊆ {Ta ∈ A|p}) and consequently
{Fa ∈ A′|p} ⊆ {Fa ∈ A|p} ({Fa ∈ A′|p} ⊇ {Fa ∈ A|p}). Hence, the negative literals over
antimonotonic parameters and the positive literals over monotonic parameters are not relevant
wrt. non-output tuple x and can be removed from the nogood.

49

3. PROPOSITIONAL HEX-PROGRAM SOLVING

3.2 Minimality Check

We now turn to the last statement of Algorithm GuessAndCheckHexEvaluation, which is the
minimality check, due to the use of the FLP-reduct subsequently also called the FLP check.
This check identifies assignments A extracted from compatible sets Â of a program Π that are
also answer sets of Π, i.e., subset-minimal models of fΠA. It appears that in many practical
applications most assignments extracted from compatible sets Â pass the FLP check. More-
over, this check is computationally costly: in a naive realization all models of fΠA must be
enumerated, along with calls to the external sources to ensure compatibility. Even worse, as one
needs to search for a smaller model and not just for a smaller compatible set, fΠA usually has
even more models then the original program. The explicit FLP check (explicit minimality check)

corresponds to the search for compatible sets of the following program:

Check(Π,A) = fΠ̂Â ∪
{
← a | a ∈ A(Π),Ta 6∈ Â

}
∪
{
a ∨ a′ ← . | Ta ∈ Â

}

∪
{
← not smaller

}
∪
{
smaller ← not a | a ∈ A(Π),Ta ∈ Â

}

It consists of the reduct fΠ̂Â and rules that restrict the search to proper sub-interpretations of
Â, where smaller is a new atom. Moreover, as one actually needs to search for models and not
just compatible sets, rules of the form a∨a′ ← (where a′ is a new atom for each Ta ∈ Â) make
sure that atoms can be arbitrarily true without having a justifying rule in Π.

Proposition 3.4. Let A be an interpretation extracted from a compatible set Â of a program Π.

Program Check(Π,A) has an answer set A′ such that f&g(A
′, y, x) = 1 iff Te&g[y](x) ∈ A′ for

all external atoms &g [y](x) in Π, if and only if A is not an answer set of Π.

Proof. (⇒) Let A′ be an answer set of program Check(Π,A) such that f&g(A
′, y, x) = 1 iff

Te&g[y](x) ∈ A′ for all external atoms &g [y](x) in Π.

Since Â is a compatible set of Π, f&g(A, y, x) = 1 iff Te&g[y](x) ∈ Â for all external

atoms &g [y](x) in Π. Thus, fΠ̂Â is the same as fΠA with replacement atoms in place of
external atoms, and with additional guessing rules for replacement atoms. Since A′ is a model

of Check(Π,A) it is also a model of fΠ̂Â. Let A′′ = {Ta ∈ A′ | a ∈ A(Π)} ∪ {Fa ∈ A′ |
a ∈ A(Π)}. Since f&g(A

′, y, x) = f&g(A
′′, y, x) = 1 iff Te&g[y](x) ∈ A′ for all external atoms

&g [y](x) in Π by assumption, A′′ is a model of fΠA.
Since A′ is an answer set of Check(Π,A), and ← a ∈ Check(Π,A) for all a ∈ A(Π)

with Ta 6∈ Â (and thus Ta 6∈ A), we have {Ta ∈ A′′ | a ∈ A(Π)} ⊆ A. Finally, due to
{← not smaller} ∪ {smaller ← not a | a ∈ A(Π),Ta ∈ Â} ∈ Check(Π,A), there is at least
one a ∈ A(Π) s.t. Ta ∈ Â (and thus also Ta ∈ A), but Fa ∈ A′ (and thus also Fa ∈ A′′).
Therefore {Ta ∈ A′′ | a ∈ A(Π)} (A is a model of Π, and thus A is not an answer set of Π.

(⇐) If A is not an answer set of Π, then there is a model A′′ of fΠA which is smaller in the
positive part, i.e., {Ta ∈ A′′} ({Ta ∈ A}.

Let

A′ = κ(Π,A′′) ∪ {Ta′ | Ta ∈ Â,Fa ∈ A′′} ∪ {Fa′ | Ta ∈ Â,Ta ∈ A′′} ∪ {Tsmaller}.

50

3.2. Minimality Check

We show that A′ is an answer set of Check(Π,A) such that f&g(A
′, y, x) = 1 iff Te&g[y](x) ∈

A′ for all external atoms &g [y](x) in Π.

Since A has been extracted from a compatible set Â of Π, fΠ̂Â is the same as fΠA with
replacement atoms in place of external atoms, and with additional guessing rules for replace-
ment atoms. Since A′′ is a model of fΠA, the truth values of all replacement atoms in A′

coincide with the oracle functions by definition of κ(Π,A′′), and exactly one of ea or nea for
each external atom a in Π is set to true (and thus the guessing rules for replacement atoms

are satisfied), A′ is a model of fΠ̂Â. Since {Ta ∈ A′′} ({Ta ∈ A} and thus also
{Ta ∈ A′ | a ∈ A(Π)} ({Ta ∈ Â}, no constraint of type ← a in Check(Π,A) with
a ∈ A(Π),Ta 6∈ Â is violated. Moreover, for each a with Ta ∈ Â we have either Ta ∈ A′

or Ta′ ∈ A′, thus the corresponding rule a ∨ a′ ← in Check(Π,A) is satisfied. Finally, since
Tsmaller ∈ A′, the rules {smaller ← not a | a ∈ A(Π),Ta ∈ Â} are satisfied and the
constraint← not smaller does not fire. Thus A′ is a model of Check(Π,A).

We show now that A′ is also a subset-minimal model of fCheck(Π,A)A
′
. Observe that

fCheck(Π,A)A
′
= fΠ̂Â ∪

{
a ∨ a′ ← . | Ta ∈ Â

}

∪
{
smaller ← not a | a ∈ A(Π),Ta ∈ Â

}
.

However, if an atom a ∈ A(fCheck(Π,A)A
′
) with Ta ∈ A′ is changed to false, then the inter-

pretation is not a model anymore because the corresponding rule a ∨ a′ ← remains unsatisfied
since only one of a and a′ is true in A′ by definition, thus no interpretation which is smaller
in the positive part than A′ can be a model of fCheck(Π,A)A

′
, thus A′ is an answer set of

Check(Π,A).
Finally, f&g(A

′, y, x) = 1 iff Te&g[y](x) ∈ A′ for all external atoms &g [y](x) in Π by
definition of κ(Π,A′′).

Example 25 (ctd.). Consider the program Π = {p← &id [q](); q ← p} Then the corresponding
guessing program is Π̂ = {p← e&id [q](); q ← p; e&id [q]() ∨ ne&id [q]()←} and yields the com-

patible sets Â1 = {Fp,Fq,Fe&id [p]} and Â2 =
{
Tp,Tq,Te&id [p]

}
. While A1 = {Fp,Fq}

is also a ≤-minimal model of fΠA1 = ∅, A2 = {Tp,Tq} is not a ≤-minimal model of
fΠA2 = Π. Indeed, the program

Check(Π,A2) = Π̂ ∪
{
p ∨ p′ ←; q ∨ q′ ←; e&id [q]() ∨ e

′
&id [q]()←

}

∪
{
← not smaller

}

∪
{
smaller ← not p; smaller ← not q

}

∪
{
smaller ← not e&id [q]()

}

has the answer set A′ = {Fp,Tp′,Fq,Tq′,Fe&id [q](),Tne&id [q](),Te
′
&id [q](),Tsmaller} and

f&id (A
′, q, ǫ) = 0 (where ǫ denotes the empty output list) and Fe&id [q]() ∈ A′. ✷

Because of the guessing rules a ∨ a′ ← for all a with Ta ∈ Â, the rules in the reduct fΠ̂Â,
except for the guesses on replacement atoms, can be rewritten to constraints. This might be more
more efficient.

51

3. PROPOSITIONAL HEX-PROGRAM SOLVING

We define

CheckOpt(Π,A) = f̄Π̂Â ∪
{
← a | a ∈ A(Π),Ta 6∈ Â

}
∪
{
a ∨ a′ ← . | Ta ∈ Â

}

∪
{
← not smaller

}
∪
{
smaller ← not a | a ∈ A(Π),Ta ∈ Â

}
,

where f̄Π̂Â denotes the FLP-reduct of Π̂ wrt. interpretation Â with each rule (cf. Definition 6)
except guessing rules for replacement atoms being rewritten to

← not a1, . . . , not ak, b1, . . . , bm, not bm+1, . . . , not bn.

Proposition 3.5. Let A be an interpretation extracted from a compatible set Â of a program Π.

Program CheckOpt(Π,A) has an answer set A′ such that f&g(A
′, y, x) = 1 iff Te&g[y](x) ∈ A′

for all external atoms &g [y](x) in Π, if and only if A is not an answer set of Π.

Proof. The proof is very similar to the one of Proposition 3.4.
(⇒) Let A′ be an answer set of program CheckOpt(Π,A) such that f&g(A

′, y, x) = 1 iff
Te&g[y](x) ∈ A′ for all external atoms &g [y](x) in Π.

Since Â is a compatible set of Π, f&g(A, y, x) = 1 iff Te&g[y](x) ∈ Â for all external

atoms &g [y](x) in Π. Thus, f̄Π̂Â is the same as f̄ΠA with replacement atoms in place of
external atoms, and with additional guessing rules for replacement atoms. Since A′ is a model

of CheckOpt(Π,A) it is also a model of f̄Π̂Â. Let A′′ = {Ta ∈ A′ | a ∈ A(Π)} ∪ {Fa ∈
A′ | a ∈ A(Π)}. Since f&g(A

′, y, x) = 1 iff Te&g[y](x) ∈ A′ for all external atoms &g [y](x)

in Π by assumption, A′′ is a model of f̄ΠA. But then it is also a model of fΠA.
Since A′ is an answer set of CheckOpt(Π,A), and ← a ∈ CheckOpt(Π,A) for all a ∈

A(Π) with Ta 6∈ Â (and thus Ta 6∈ A), we have {Ta ∈ A′′ | a ∈ A(Π)} ⊆ A. Finally, due
to {← not smaller} ∪ {smaller ← not a | a ∈ A(Π),Ta ∈ Â} ∈ CheckOpt(Π,A), there
is at least one a ∈ A(Π) s.t. Ta ∈ Â (and thus also Ta ∈ A), but Fa ∈ A′ (and thus also
Fa ∈ A′′). Therefore {Ta ∈ A′′ | a ∈ A(Π)} (A is a model of Π, and thus A is not an
answer set of Π.

(⇐) If A is not an answer set of Π, then there is a model A′′ of fΠA which is smaller in the
positive part, i.e., {Ta ∈ A′′} ({Ta ∈ A}.

Let

A′ = κ(Π,A′′) ∪ {Ta′ | Ta ∈ Â,Fa ∈ A′′} ∪ {Fa′ | Ta ∈ Â,Ta ∈ A′′} ∪ {Tsmaller}.

We show that A′ is an answer set of program CheckOpt(Π,A) such that f&g(A
′, y, x) = 1 iff

Te&g[y](x) ∈ A′ for all external atoms &g [y](x) in Π.

Since A has been extracted from a compatible set Â of Π, fΠ̂Â is the same as fΠA with
replacement atoms in place of external atoms, and with additional guessing rules for replacement
atoms. Since A′′ is a model of fΠA, and the truth values of all replacement atoms in A′

coincide with the oracle functions by definition of κ(Π,A′′), and exactly one of ea or nea for
each external atom a in Π is set to true (and thus the guessing rules for replacement atoms are

satisfied), A′ is a model of fΠ̂Â. But then it is also a model of f̄Π̂Â. Since {Ta ∈ A′′} (
{Ta ∈ A} and thus also {Ta ∈ A′ | a ∈ A(Π)} ({Ta ∈ A | a ∈ A(Π)}, no constraint

52

3.2. Minimality Check

of type ← a in CheckOpt(Π,A) with a ∈ A(Π),Ta 6∈ Â is violated. Moreover, for each a
with Ta ∈ Â we have either Ta ∈ A′ or Ta′ ∈ A′, thus the corresponding rule a ∨ a′ ←
in CheckOpt(Π,A) is satisfied. Finally, since Tsmaller ∈ A′, the rules {smaller ← not a |
a ∈ A(Π),Ta ∈ Â} are satisfied and the constraint← not smaller does not fire. Thus A′ is a
model of CheckOpt(Π,A).

We show now that A′ is also a subset-minimal model of f̄Check(Π,A)A
′
. Observe that

f̄CheckOpt(Π,A)A
′
= f̄Π̂Â ∪

{
a ∨ a′ ← . | Ta ∈ Â

}

∪
{
smaller ← not a | a ∈ A(Π),Ta ∈ Â

}
.

However, if an atom a ∈ A(f̄CheckOpt(Π,A)A
′
) with Ta ∈ A′ is changed to false, then

the interpretation is not a model anymore because the corresponding rule a ∨ a′ ← remains
unsatisfied since only one a and a′ is true in A′ by definition, thus no interpretation which is
smaller in the positive part than A′ can be a model of fOptCheck(Π,A)A

′
, thus A′ is an answer

set of OptCheck(Π,A).
Finally, f&g(A

′, y, x) = 1 iff Te&g[y](x) ∈ A′ for all external atoms &g [y](x) in Π by
definition of κ(Π,A′′).

Our benchmarks in Chapter 5 use this optimized version of the explicit check.
Next, we present a novel FLP check algorithm based on unfounded sets (UFS). Instead of

explicitly searching for smaller models of the reduct, we check if the candidate answer set is
unfounded-free (see below), which implies that it is an answer set [Faber, 2005]. The unfounded
set-based check can be realized as a post-check (i.e., it is carried out only after the interpretation
has been completed), or also wrt. partial assignments (thus interleaving it with the main search
for compatible sets). We realized both, but our benchmarks show that unfounded set checking
wrt. partial assignments is counterproductive, roughly because the unfounded set check is too
expensive and should be done rarely. We use unfounded sets for logic programs as introduced
by Faber (2005) for programs with arbitrary aggregates.

Definition 38 (Unfounded Set). Given a program Π and an assignment A, let U be any set of
ordinary ground atoms appearing in Π. Then, U is an unfounded set for Π wrt. A if, for each
rule r having some atoms from U in the head, at least one of the following conditions holds,
where A

.
∪ ¬.U =

(
A \ {Ta | a ∈ U}

)
∪ {Fa | a ∈ U}:

(i) some literal of B(r) is false wrt. A; or

(ii) some literal of B(r) is false wrt. A
.
∪ ¬.U ; or

(iii) some atom of H(r) \ U is true wrt. A.

Intuitively, an unfounded set U is a set of atoms for which no rule can be used to justify that
any of the atoms in U is true, because all rules are already satisfied independently of U .

Answer sets can then be characterized in terms of unfounded sets (corresponds to Corollary 3
by Faber (2005)).

53

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Definition 39 (Unfounded-Free Interpretations). An interpretation A of a program Π is un-

founded-free (in Π) if AT ∩ U = ∅, for all unfounded sets U of Π wrt. A.

Theorem 2. A model A of a program Π is an answer set iff it is unfounded-free (in Π).

Proof. See Appendix B, page 219.

Example 26. Consider the program Π= {p ← &id [p]()} and A = {Tp}. Then U = {p} is
an unfounded set since U intersects with the head of p ← &id [p]() and A

.
∪ ¬.U 6|= &id [p]().

Therefore A is not unfounded-free and not an answer set. ✷

3.2.1 Basic Encoding of the Unfounded Set Search

We realize the search for unfounded sets using nogoods, i.e., for a given Π and an assignment A
we construct a set of nogoods, such that solutions to this set correspond to (potential) unfounded
sets. We then use a SAT solver to search for such unfounded sets.

Our encoding of the unfounded set detection is related to the one of Drescher et al. (2008)
but respects external atoms. It uses a set ΓΠ,A = ΓN

Π,A∪Γ
O
Π,A, of nogoods where ΓN

Π,A contains

all necessary constraints and ΓO
Π,A are optional optimization nogoods that prune irrelevant parts

of the search space. The idea is that the set of ordinary atoms which are true in a solution to
ΓΠ,A represents a (potential) unfounded setU of Π wrt. A, while the external replacement atoms
encode the truth values of the corresponding external atoms wrt. A

.
∪ ¬.U .

Let B+
o (r) be the subset of B+(r) consisting of all ordinary atoms except external replace-

ment atoms, and Be(r) the subset of B(r) consisting of all external replacement literals. Then,
the nogood set ΓΠ,A is built over atoms A(ΓΠ,A) = A(Π̂) ∪ {hr, lr | r ∈ Π}, where hr, and
lr are new additional atoms for every rule r in Π. The necessary part ΓN

Π,A =
{
{Fa | Ta ∈

A}
}
∪
(⋃

r∈Π ΓR
r,A

)
consists of a nogood {Fa | Ta ∈ A}, eliminating all unfounded sets that

do not intersect with true atoms in A, as well as nogoods ΓR
r,A for every r ∈ Π. The latter

consist of a head criterion ΓH
r,A and a conditional part ΓC

r,A for each rule, defined by:

• ΓR
r,A = ΓH

r,A ∪ ΓC
r,A, where

• ΓH
r,A =

{
{Thr} ∪ {Fh | h ∈ H(r)}

}
∪
{
{Fhr,Th} | h ∈ H(r)

}

encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set; and

• ΓC
r,A =

{
{Thr} ∪

{Fa | a ∈ B+
o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪

{Th | h ∈ H(r),A |= h}
}

ifA |= B(r),

∅ otherwise

encodes that Condition (i), (ii) or (iii) of Definition 38 must hold if hr is true.

More specifically, for an unfounded set U and a rule r withH(r)∩U 6= ∅ (hr is true) it must
not happen that A |= B(r) (Condition (i) fails), no a ∈ B+

o (r) with A |= a is in the unfounded
set and all a ∈ Be(r̂) are true wrt. A

.
∪ ¬.U (Condition (ii) fails), and all h ∈ H(r) with A |= h

are in the unfounded set (Condition (iii) fails).

54

3.2. Minimality Check

Example 27. Consider Π= {r1 : p ← &id [p]()} and the compatible set Â= {Tp,Te&id [p]}.

The nogood set ΓN
Π,A is

{
{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 , Te&id [p](),Tp}

}
. ✷

Towards computing unfounded sets, observe that they can be extended to solutions to the set
of nogoods ΓΠ,A over A(ΓΠ,A). Conversely, the solutions to ΓΠ,A include specific extensions
of all unfounded sets, characterized by induced assignments: That is, by assigning true to all
atoms in U , to all hr such that H(r) intersects with U , and to all external replacement atoms
e&g[y](x) such that &g [y](x) is true wrt. A

.
∪ ¬.U , and assigning false to all other atoms in

A(ΓΠ,A). More formally, we define:

Definition 40 (Induced Assignment of an Unfounded Set wrt. ΓΠ,A). Let U be an unfounded
set of a program Π wrt. assignment A. The assignment induced by U wrt. ΓΠ,A, denoted
IΓ(U,ΓΠ,A,Π,A), is

IΓ(U,ΓΠ,A,Π,A) = I0Γ(U,Π,A) ∪
{
Fa | a ∈ A(ΓΠ,A),Ta 6∈ I0Γ(U,Π,A)

}
, where

I0Γ(U,Π,A) =
{
Ta | a ∈ U

}
∪
{
Thr | r ∈ Π, H(r) ∩ U 6= ∅

}
∪{

Te&g[y](x) | &g [y](x) ∈ EA(Π),A
.
∪ ¬.U |= &g [y](x)

}
.

For the next result we also require that the optimization part ΓO
Π,A is conservative in the

sense that, for every unfounded set U of Π wrt. A, it holds that IΓ(U,ΓΠ,A,Π,A) is a solution
to ΓO

Π,A as well (which is shown for the different optimizations considered subsequently). Then,
the solutions to ΓΠ,A include all assignments induced by unfounded sets of Π wrt. A, but not
every solution corresponds to such an induced assignment. Intuitively, this is because it does not
necessarily reflect the semantics of external sources.

Proposition 3.6. Let U be an unfounded set of a program Π wrt. assignment A such that AT ∩
U 6= ∅. Then IΓ(U,ΓΠ,A,Π,A) is a solution to ΓΠ,A.

Proof. We prove this by contraposition and show that if IΓ(U,ΓΠ,A,Π,A) is not a solution to
ΓΠ,A, then U cannot be an unfounded set.

First observe that the nogoods in ΓH
Π,A demand Thr to be true for a rule r ∈ Π if and

only if some head atom h ∈ H(r) of this rule is in U . As the conditions in these nogoods are
mutually exclusive and therefore consistent, and the truth value of hr in IΓ(U,ΓΠ,A,Π,A) is
defined exactly to this criterion, ΓC

r,A must be involved in a contradiction. Moreover, the nogood

{Fa | Ta ∈ A} ∈ ΓN
Π,A eliminates IΓ(U,ΓΠ,A,Π,A) only if U does not intersect with the

positive atoms in A. This is no problem because we are only interested in such unfounded sets.
Therefore, if IΓ(U,ΓΠ,A,Π,A) is not a solution to ΓΠ,A, then for some rule r ∈ Π the no-

good in ΓC
r,A must be violated. That is, we know the following: Thr ∈ IΓ(U,ΓΠ,A,Π,A) (and

therefore H(r) ∩ U 6= ∅), Fa ∈ IΓ(U,ΓΠ,A,Π,A) for all a ∈ B+
o (r), ta ∈ IΓ(U,ΓΠ,A,Π,A)

for all a ∈ Be(r̂), and Th ∈ IΓ(U,ΓΠ,A,Π,A) for all h ∈ H(r) with A |= h. Moreover, we
have ΓC

r,A 6= ∅. We now show that this implies that none of the conditions of Definition 38 holds
for r wrt. U and A, which contradicts the assumption that U is an unfounded set.

Condition (i) does not hold for r because A |= B(r) (otherwise ΓC
r,A = ∅).

Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be
some b ∈ B(r) s.t. A

.
∪ ¬.U 6|= b. Because ΓC

r,A 6= ∅, we know that A |= b. We make a case
distinction on the type of b:

55

3. PROPOSITIONAL HEX-PROGRAM SOLVING

• If b is a positive non-replacement atom, then Fb ∈ IΓ(U,ΓΠ,A,Π,A) and therefore b 6∈
U . Consequently A

.
∪ ¬.U |= b. Contradiction.

• If b is a negative non-replacement atom, then A |= b implies A
.
∪ ¬.U |= b. Contradic-

tion.
• If b is a positive or default-negated replacement atom, then tb ∈ IΓ(U,ΓΠ,A,Π,A). But

this implies, by definition of IΓ(U,ΓΠ,A,Π,A), that A
.
∪ ¬.U |= b. Contradiction.

Condition (iii) does not hold for r because Th ∈ IΓ(U,ΓΠ,A,Π,A) and thus, by definition
of IΓ(U,ΓΠ,A,Π,A), h ∈ U for all h ∈ H(r) with A |= h. Thus A 6|= a for all a ∈ H(r) \ U .

The next property allows us to find the unfounded sets of Π wrt. A among all solutions to
ΓΠ,A by using a post-check on the external atoms.

Proposition 3.7. Let S be a solution to ΓΠ,A such that

(a) Te&g[y](x) ∈ S and A 6|= &g [y](x) implies A
.
∪ ¬.U |= &g [y](x); and

(b) Fe&g[y](x) ∈ S and A |= &g [y](x) implies A
.
∪ ¬.U 6|= &g [y](x),

where U = {a | a ∈ A(Π),Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

Proof. Suppose U is not an unfounded set. Then there is an r ∈ Π s.t. H(r) ∩ U 6= ∅ and none
of the conditions in Definition 38 is satisfied. We show now that S cannot be a solution to ΓΠ,A.

Because Condition (i) does not hold, there is a nogood of form

N = {Thr} ∪ {Fa | a ∈ B
+
o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪ {Th | h ∈ H(r),A |= h}

in ΓΠ,A.
We now show that S contains all signed literals of N , i.e., the nogood is violated by S.
Because of H(r) ∩ U 6= ∅, Thr ∈ S (otherwise a nogood in ΓH

r,A is violated).
As U is not an unfounded set, Condition (ii) in Definition 38 does not hold. Consider all

a ∈ B+
o (r) s.t. A |= a. Then a 6∈ U , otherwise A

.
∪ ¬.U 6|= a and we have a contradiction with

the assumption that Condition (ii) is unsatisfied. But then Fa ∈ S.
Now consider all &g [y](x) ∈ EA(r). Then A

.
∪ ¬.U |= &g [y](x) (as Condition (ii) is

violated). If A 6|= &g [y](x), then Condition (i) would be satisfied, hence A |= &g [y](x). But
then Te&g[y](x) ∈ S, otherwise A

.
∪ ¬.U 6|= &g [y](x) by Condition (b) of this proposition.

Next consider all not&g [y](x) with &g [y](x) ∈ EA(r). Then A
.
∪ ¬.U 6|= &g [y](x) (as

Condition (ii) is violated). If A |= &g [y](x), then Condition (i) would be satisfied, hence
A 6|= &g [y](x). But then Fe&g[y](x) ∈ S, otherwise A

.
∪ ¬.U |= &g [y](x) by Condition (a) of

this proposition. Therefore, we have ta ∈ S for all a ∈ Be(r̂).
Finally, because Condition (iii) in Definition 38 does not hold, h ∈ U and therefore also

Th ∈ S for all h ∈ H(r) with A |= a.
This concludes the proof that S cannot be a solution to ΓΠ,A satisfying (a) and (b), if U is

not an unfounded set.

56

3.2. Minimality Check

Informally, the proposition states that true non-replacement atoms in S which also appear
in Π form an unfounded set, provided that truth of the external replacement atoms e&g[y](x) in

S coincides with the truth of the corresponding &g [y](x) wrt. A
.
∪ ¬.U (as in Definition 40).

However, this check is just required if the truth value of e&g[y](x) in S and of &g [y](x) in A

differ. This gives rise to an important optimization for the implementation: external atoms,
whose (known) truth value of &g [y](x) wrt. A matches the truth value of e&g[y](x) in S, do not
need to be post-checked.

We must further show that for an unfounded set U of a program Π wrt. an interpretation,
the induced assignment fulfills the conditions of Proposition 3.7, i.e., no unfounded sets are lost
during the post-check.

Proposition 3.8. Let U be an unfounded set of a program Π wrt. assignment A such that AT ∩
U 6= ∅. Then IΓ(U,ΓΠ,A,Π,A) fulfills Conditions (a) and (b) of Proposition 3.7.

Proof. Let S = IΓ(U,ΓΠ,A,Π,A). If for an external atom &g [y](x) in Π we have Te&g[y](x) ∈

S, then by definition of IΓ(U,ΓΠ,A,Π,A) we have A
.
∪ ¬.U |= &g [y](x) (satisfying (a)). If for

an external atom &g [y](x) in Π we have Fe&g[y](x) ∈ S, then by definition of IΓ(U,ΓΠ,A,Π,A)

we have A
.
∪ ¬.U 6|= &g [y](x) (satisfying (b)).

Corollary 3.1. If ΓΠ,A has no solution which fulfills the conditions of Proposition 3.7, then

U ∩AT = ∅ for every unfounded set U of Π.

Proof. If there would be a UFSU of Π wrt. A which intersects with AT, then by Proposition 3.6
IΓ(U,ΓΠ,A,Π,A) would be a solution to ΓΠ,A, and by Proposition 3.8 it would fulfill the
conditions of Proposition 3.7.

Example 28 (ctd.). Reconsider program Π= {r1 : p ← &id [p]()} from Examples 26 and 27
and the compatible set Â= {Tp,Te&id [p]}. The unfounded set search is encoded by the no-
good set ΓΠ,A=

{
{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p](),Tp}

}
and has some solutions

S⊇{Thr1 ,Tp,Fe&id [p]()}, which correspond to the unfounded set U = {p}. Here, Fe&id [p]()

represents that A
.
∪ ¬.U 6|= &id [p](). ✷

Note that due to the premises in Conditions (a) and (b) of Proposition 3.7, the post-check is
faster if it holds for many external atoms &g [y](x) in Π that A |= &g [y](x) implies Te&g[y](x) ∈
S. This can be exploited during the construction of S as follows: if it is not absolutely necessary
to set the truth value of e&g[y](x) differently, then carry over the value from &g [y](x) wrt. A.
Specifically, this is successful if e&g[y](x) does not occur in ΓΠ,A.

3.2.2 Uniform Encoding of the Unfounded Set Search

The encoding ΓΠ,A presented above has the disadvantage that it depends on the current assign-
ment A. Therefore it needs to be generated separately for every unfounded set check if the
assignment changed (which is very likely). As this causes significant overhead, we present now
an advanced encoding which is reusable for any assignment. For this we introduce some addi-
tional variables which represent the truth values of the atoms in the current assignment. Before

57

3. PROPOSITIONAL HEX-PROGRAM SOLVING

an unfounded set check, the current assignment is injected by setting the values of these vari-
ables to fixed values, which can be done using assumptions as supported by modern SAT solvers
such as CLASP [CLASP Website, 2014]. Changing assumptions is much easier than changing the
encoding, which leads to an additional speedup in some cases, especially for programs which
need many unfounded set checks. Moreover, this has the advantage that the solver instance for
the unfounded set check can keep running over the whole lifetime of the HEX solver; in contrast
to the creation of a separate instance for each unfounded set check, this preserves also learned
nogoods.

Our advanced encoding uses a set ΩΠ of nogoods. As before, the idea is that the set of non-
replacement atoms of a solution to ΩΠ represents a (potential) unfounded set U of Π wrt. some
assignment A, while the external replacement atoms encode the truth values of the correspond-
ing external atoms wrt. A

.
∪ ¬.U . The basic idea of the encoding is similar to the encoding ΓΠ,A.

However, unlike ΓΠ,A, the structure of the nogoods in ΩΠ do not depend on the current inter-
pretation A, but A is merely a parameter, which is injected by setting dedicated atoms in the
encoding to fixed values. This allows for reusing the same problem encoding for all unfounded
set checks also wrt. different assignments. However, as the encoding ΩΠ is conceptually more
complex than ΓΠ,A, the initialization is computationally (slightly) more costly, hence the ad-
vantages of our new encoding become visible for instances with many compatible sets and thus
many unfounded set checks, while it might be counterproductive for very small instances. The
development of a heuristics for dynamically choosing between the UFS search encodings is up
to future work.

The nogood set ΩΠ is built over atoms

A(ΩΠ) = A(Π̂) ∪
{
hr, lr | r ∈ Π

}
∪

{
aA | a ∈ A(Π̂)

}
∪{

a
A

.
∪¬.U , aA∧U , aA∨U | a ∈ A(Π)

}
,

where we have the following fresh atoms which do not occur in Π̂:

• hr and lr for every rule r in Π

• aA and for every ordinary atom a ∈ A(Π̂) (i.e. ordinary atoms in Π and external replace-
ment atoms)

• a
A

.
∪¬.U , aA∧U , aA∨U for every ordinary atom a ∈ A(Π)

The auxiliary atoms aA, a
A

.
∪¬.U , aA∧U , a

A∨U are used to make the encoding reuable for any
assignment A. Only during the unfounded set check with respect to a certain assignment, we
will temporarily add assumptions to the solver which force certain truth values of the atoms aA
for all a ∈ A(Π̂) depending on the current assignment A.

To this end, a set of assumptionsA is a consistent set of signed literals. An interpretation A is
a solution of a set of nogoods ∆ wrt. a set of assumptionsA if δ 6⊆ A for all δ ∈ ∆ andA ⊆ A.
That is, assumptions fix the truth value of some atoms. Modern ASP and SAT solvers support
assumptions natively, which can be easily undone without a complete reset of the reasoner and

58

3.2. Minimality Check

recreating the whole problem instance. This is an essential feature for efficiently implementing
our improved encoding.

Intuitively, aA represents the truth value of a in A, a
A

.
∪¬.U represents the truth value of a in

A
.
∪ ¬.U (where U is the currently constructed unfounded set), aA∧U represents that a is true

in A and is contained in U , and a
A∨U represents that a is false in A or it is contained in U . Our

encoding ΩΠ is then as follows:

• ΩΠ = ΩN
Π ∪ ΩO

Π with

• ΩN
Π = {Fa | a ∈ A(Π)} ∪

⋃
a∈A(Π)Ω

D
a ∪

⋃
r∈Π

(
ΩH
r ∪ ΩC

r

)

as the necessary part, where

• {Fa | a ∈ A(Π)}
encodes that we search for a nonempty unfounded set;

• ΩD
a =

{
{FaA∧U ,TaA,Ta}, {TaA∧U ,FaA}, {TaA∧U ,Fa}

}
∪{

{Fa
A∨U ,FaA}, {FaA∨U ,Ta}, {TaA∨U ,TaA,Fa}

}
∪{

{Ta
A

.
∪¬.U ,FaA}, {TaA

.
∪¬.U ,Ta}, {FaA

.
∪¬.U ,TaA,Fa}

}

encodes that aA∧U is true iff aA and a are both true, a
A∨U is true iff aA is false or a is

true, and a
A

.
∪¬.U is true iff aA is true and a is false;

• ΩH
r =

{
{Thr} ∪ {Fh | h ∈ H(r)}

}
∪
{
{Fhr,Th} | h ∈ H(r)

}

encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set;

• ΩC
r =

{
{Thr} ∪

{TaA | a ∈ B
+(r̂)} ∪ {FaA | a ∈ B

−(r̂)} ∪ (i)

{FaA∧U | a ∈ B
+
o (r)} ∪ {ta | a ∈ Be(r̂)} ∪ (ii)

{Th
A∨U | h ∈ H(r)}

}
(iii)

encodes that Condition (i), (ii) or (iii) of Definition 38 must hold if hr is true.

More specifically, for an unfounded set U and a rule r with H(r) ∩ U 6= ∅ (hr is true) it
must not happen that A |= B(r) (Condition (i) fails), no a ∈ B+

o (r) with A |= a is in
the unfounded set and all a ∈ Be(r̂) are true wrt. A

.
∪ ¬.U (Condition (ii) fails), and all

h ∈ H(r) with A |= h are in the unfounded set (Condition (iii) fails).

Example 29. Reconsider program Π= {r1 : p← &id [p]()} from Example 26. The constructed
nogood set is

ΩΠ =
{
{Fp}, {FpA∧U ,TpA,Tp}, {TpA∧U ,FpA}, {TpA∧U ,Fp},

{Fp
Ā∨U ,FpA}, {FpĀ∨U ,Tp}, {TpĀ∨U ,TpA,Fp},

{Tp
A

.
∪¬.U ,FpA}, {TpA

.
∪¬.U ,Tp}, {FpA

.
∪¬.U ,TpA,Fp},

{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p]()A,Te&id [p](),TpĀ∨U}
}

.

✷

59

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Towards computing unfounded sets, observe that they can be extended to solutions to the
set of nogoods ΩΠ over A(ΩΠ). Conversely, the solutions to ΩΠ include specific extensions of
all unfounded sets, which are again characterized by induced assignments: that is, by assigning
true to all atoms in U , to all hr such that H(r) intersects with U , and to all external replacement
atoms e&g[y](x) such that &g [y](x) is true wrt. A

.
∪ ¬.U , appropriate truth values to the auxiliary

atoms according to their intuitive meaning described above, and assigning false to all other atoms
in A(ΩΠ). More formally, we define:

Definition 41 (Induced Assignment of an Unfounded Set wrt. ΩΠ). Let U be an unfounded set
of program Π wrt. A. The assignment induced by U wrt. ΩΠ, denoted IΩ(U,ΩΠ,Π,A), is

IΩ(U,ΩΠ,Π,A) = I0Ω(U,Π,A) ∪
{
Fa | a ∈ A(ΩΠ),Ta 6∈ I

0
Ω(U,Π,A)

}
, where

I0Ω(U,Π,A) =
{
Ta | a ∈ U

}
∪
{
Thr | r ∈ Π, H(r) ∩ U 6= ∅

}
∪{

Te&g[y](x) | &g [y](x) ∈ EA(Π),A
.
∪ ¬.U |= &g [y](x)

}
∪{

TaA | a ∈ A(Π),Ta ∈ A
}
∪{

Te&g[y](x)A | &g [y](x) ∈ EA(Π),A |= &g [y](x)
}
∪{

TaA∧U | a ∈ A(Π),Ta ∈ A, a ∈ U
}
∪{

Ta
A

.
∪¬.U | a ∈ A(Π),Ta ∈ A, a 6∈ U

}
∪{

Ta
A∨U | a ∈ A(Π),Fa ∈ A or a ∈ U

}
.

Then, the solutions to ΩΠ with assumptions

AA =
{
TaA | a ∈ A(Π),Ta ∈ A

}
∪
{
FaA | a ∈ A(Π),Fa ∈ A

}
∪{

TâA | a ∈ EA(Π),A |= a
}
∪
{
FâA | a ∈ EA(Π),A 6|= a

}

include all assignments induced by unfounded sets of Π wrt. A. But as above, not every solution
corresponds to such an induced assignment.

As before, we assume that the nogoods in ΩO
Π are conservative in the sense that for every

unfounded set U of Π wrt. A, it holds that IΩ(U,ΓΠ,A,Π,A) is a solution to ΩO
Π as well. We

will present concrete optimization nogoods which fulfill this condition in the next section.

Proposition 3.9. Let U be an unfounded set of a program Π wrt. assignment A such that AT ∩
U 6= ∅. Then IΩ(U,ΩΠ,Π,A) is a solution to ΩΠ with assumptions AA.

Proof. We prove this by contraposition and show that if IΩ(U,ΩΠ,Π,A) is not a solution to ΩΠ

with assumptions AA, then U cannot be an unfounded set.
First observe that the nogoods in ΩH

r demand Thr to be true for a rule r ∈ Π if and only
if some head atom h ∈ H(r) of this rule is in U . Moreover, the nogoods in ΩD

a for each
a ∈ A(Π) force a

A
.
∪¬.U to true if and only if Ta ∈ A

.
∪ ¬.U , aA∧U to true if and only if

Ta ∈ A and a ∈ U , and a
A∨U to true if and only if Fa ∈ A or a ∈ U . As the truth values of

hr for each r ∈ Π, and a
A

.
∪¬.U , aA∧U and a

A∨U for each a ∈ A(Π) in IΩ(U,ΩΠ,Π,A) are
defined exactly to these criteria, a contradiction must involve ΩC

r for some r ∈ Π. Moreover,
the nogood {Fa | a ∈ A(Π)} eliminates IΩ(U,ΩΠ,Π,A) only if U does not intersect with the
positive atoms in A. This is no problem because we are only interested in such unfounded sets.

Therefore, if IΩ(U,ΩΠ,Π,A) is not a solution to ΩΠ,A, then for some rule r ∈ Π the
nogood in ΩC

r must be violated. That is, we know the following:

60

3.2. Minimality Check

(I) Thr ∈ IΩ(U,ΩΠ,Π,A) (and therefore H(r) ∩ U 6= ∅);

(II) TaA ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B+(r̂) and FaA ∈ IΩ(U,ΩΠ,Π,A) for all a ∈
B−(r̂);

(III) FaA∧U ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B+
o (r) and ta ∈ IΩ(U,ΩΠ,Π,A) for all a ∈

Be(r̂); and

(IV) Th
A∨U ∈ IΩ(U,ΩΠ,Π,A) for all h ∈ H(r).

We now show that this implies that none of the conditions of Definition 38 holds for r
wrt. U and A, which contradicts the assumption that U is an unfounded set (hr is true in
IΩ(U,ΩΠ,Π,A), which implies H(r) ∩ U 6= ∅).

Condition (i) does not hold for r because of (II), which implies, by definition of our assump-
tions AA, A |= B(r).

Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be
some b ∈ B(r) s.t. A

.
∪ ¬.U 6|= b. Since Condition (i) is already known to be violated, we can

assume that A |= b. We make a case distinction on the type of b:
• If b is a positive non-replacement atom, then b ∈ U (otherwise A

.
∪ ¬.U |= b). But

then we have by definition of IΩ(U,ΩΠ,Π,A) that TbA∧U ∈ IΩ(U,ΩΠ,Π,A), which
contradicts (III).
• If b is a negative non-replacement atom, then A |= b implies A

.
∪ ¬.U |= b. Contradic-

tion.
• If b is a positive or default-negated replacement atom, then tb ∈ IΩ(U,ΩΠ,Π,A) be-

cause of (III). But this implies, by definition of IΩ(U,ΩΠ,Π,A), that A
.
∪ ¬.U |= b.

Contradiction.
Condition (iii) does not hold for r because Th

A∨U ∈ IΩ(U,ΩΠ,Π,A) and thus, by def-
inition of IΩ(U,ΩΠ,Π,A), h ∈ U for all h ∈ H(r) with A |= h. Thus A 6|= a for all
a ∈ H(r) \ U .

The next property allows us to find the unfounded sets of Π wrt. A among all solutions to
ΩΠ wrt. assumptions AA by using a post-check on the external atoms.

Proposition 3.10. Let S be a solution to ΩΠ such that the assumptions AA are satisfied and

(a) Te&g[y](x) ∈ S and A 6|= &g [y](x) implies A
.
∪ ¬.U |= &g [y](x); and

(b) Fe&g[y](x) ∈ S and A |= &g [y](x) implies A
.
∪ ¬.U 6|= &g [y](x)

where U = {a | a ∈ A(Π),Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

As for ΓΠ,A, the proposition states that true non-replacement atoms in S which also appear
in Π form an unfounded set, provided that truth of the external replacement atoms e&g[y](x) in

S coincides with the truth of the corresponding &g [y](x) wrt. A
.
∪ ¬.U (as in Definition 40).

Again, this check is only required if the truth value of e&g[y](x) in S and of &g [y](x) wrt. A
differ.

61

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Proof. Suppose U is not an unfounded set. Then there is a r ∈ Π s.t. H(r) ∩ U 6= ∅ and none
of the conditions in Definition 38 is satisfied. We show now that S cannot be a solution to ΩΠ

s.t. the assumptions AA are satisfied.
For rule r, ΩΠ contains a nogood of form

N ={Thr} ∪

{TaA | a ∈ B
+(r̂)} ∪ {FaA | a ∈ B

−(r̂)} ∪

{FaA∧U | a ∈ B
+
o (r)} ∪ {ta | a ∈ Be(r̂)} ∪

{Th
A∨U | h ∈ H(r)}.

We now show that S contains all signed literals of N , i.e., the nogood is violated by S.
Because of H(r) ∩ U 6= ∅, Thr ∈ S (otherwise a nogood in ΩH

r is violated).
Because U is not an unfounded set, Condition (i) in Definition 38 does not hold. Therefore

A |= B(r). But then our assumptions AA force TbA ∈ S for all b ∈ B+(r̂) and FbA ∈ S for
all b ∈ B−(r̂).

As U is not an unfounded set, Condition (ii) in Definition 38 does not hold. Consider all
a ∈ B+

o (r). Then A |= a and a 6∈ U . But a 6∈ U implies Fa ∈ S. Then nogood {TaA∧U ,Fa}
implies FaA∧U .

Now consider all &g [y](x) ∈ EA(r). Then A
.
∪ ¬.U |= &g [y](x) (as Condition (ii) is

violated). If A 6|= &g [y](x), then Condition (i) would be satisfied, hence A |= &g [y](x). But
then Te&g[y](x) ∈ S, otherwise A

.
∪ ¬.U 6|= &g [y](x) by Condition (b) of this proposition.

Next consider all not&g [y](x) with &g [y](x) ∈ EA(r). Then A
.
∪ ¬.U 6|= &g [y](x) (as

Condition (ii) is violated). If A |= &g [y](x), then Condition (i) would be satisfied, hence
A 6|= &g [y](x). But then Fe&g[y](x) ∈ S, otherwise A

.
∪ ¬.U |= &g [y](x) by Condition (a) of

this proposition. Therefore, we have ta ∈ S for all a ∈ Be(r̂).
Finally, because Condition (iii) in Definition 38 does not hold, h ∈ U and therefore also

Th ∈ S for all h ∈ H(r) with A |= a. That is, for each h ∈ H(r), either FhA ∈ S or Th ∈ S.
But by the nogoods {Fa

A∨U ,FaA}, {FaA∨U ,Ta} ∈ ΩD
a both cases imply Ta

A∨U ∈ S.
This concludes the proof that S cannot be a solution to ΩΠ satisfying assumptions AA and

Conditions (a) and (b), if U is not an unfounded set.

Again, we must further show that for an unfounded set U of a program Π wrt. an interpreta-
tion, the induced assignment fulfills the conditions of Proposition 3.10.

Proposition 3.11. Let U be an unfounded set of a program Π wrt. assignment A such that

AT ∩ U 6= ∅. Then IΓ(U,ΓΠ,A,Π,A) fulfills Conditions (a) and (b) of Proposition 3.10.

Proof. Let S = IΩ(U,ΩΠ,Π,A). If for an external atom &g [y](x) in Π we have Te&g[y](x) ∈

S, then by definition of IΩ(U,ΩΠ,Π,A) we have A
.
∪ ¬.U |= &g [y](x) (satisfying (a)). If for

an external atom &g [y](x) in Π we have Fe&g[y](x) ∈ S, then by definition of IΩ(U,ΩΠ,Π,A)

we have A
.
∪ ¬.U 6|= &g [y](x) (satisfying (b)).

Corollary 3.2. If ΩΠ has no solution which satisfies the assumptions AA and which fulfills the

conditions of Proposition 3.10, then U ∩AT = ∅ for every unfounded set U of Π.

62

3.2. Minimality Check

Proof. If there would be a UFSU of Π wrt. A which intersects with AT, then by Proposition 3.9
IΩ(U,ΩΠ,Π,A) would be a solution to ΩΠ with assumptions AA, and by Proposition 3.11 it
would fulfill the conditions of Proposition 3.10.

Example 30 (ctd.). Reconsider program Π= {r1 : p ← &id [p]()} from Example 28 and the
compatible set A2= {Tp,Te&id [p]}.

The nogood set

ΩΠ =
{
{Fp}, {FpA∧U ,TpA,Tp}, {TpA∧U ,FpA}, {TpA∧U ,Fp},

{Fp
Ā∨U ,FpA}, {FpĀ∨U ,Tp}, {TpĀ∨U ,TpA,Fp},

{Tp
A

.
∪¬.U ,FpA}, {TpA

.
∪¬.U ,Tp}, {FpA

.
∪¬.U ,TpA,Fp},

{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p]()A,Te&id [p](),TpĀ∨U}
}

with assumptions AA2 = {TpA} has some solutions S⊇{Thr1 ,Tp,TpA,Fe&id [p], TpA∧U ,

Tp
Ā∨U , FpA

.
∪¬.U}, which correspond to the unfounded set U = {p}. Here, Fe&id [p]() repre-

sents that A2
.
∪ ¬.U 6|= &id [p](). ✷

We will show in Chapter 5 that this encoding is superior to ΓΠ,A for many applications.
The effect becomes especially visible for programs which require many unfounded set checks,
which is roughly the case if there exist many answer sets. Then the reusability of the encoding
is valuable. In contrast, for very small programs with few answer sets, the higher costs for
generating the encoding sometimes exceed the savings due to reusability.

3.2.3 Optimization and Learning

In this section we first discuss some refinements and optimizations of our encodings of the UFS
search. In particular, we add additional nogoods which prune irrelevant parts of the search space.
After that, we propose a strategy for learning nogoods from detected unfounded sets, avoiding
that the same unfounded set is generated again later.

The following optimizations turned out to be effective in improving the UFS search.

O1: Restricting the UFS Search to Atoms in the Compatible Set. Not all atoms in a pro-
gram are relevant for the unfounded set search. Formally one can show the following:

Proposition 3.12. If U is an unfounded set of Π wrt. an interpretation A and there is an a ∈ U
s.t. A 6|= a, then U \ {a} is an unfounded set of Π wrt. A.

Proof. Let r ∈ Π s.t. H(r) ∩
(
U \ {a}

)
6= ∅. We have to show that one of the conditions of

Definition 38 holds wrt. A and U \ {a}.
BecauseU is an unfounded set of Π wrt. A andH(r)∩

(
U \{a}

)
6= ∅ impliesH(r)∩U 6= ∅,

one of the conditions of Definition 38 holds wrt. A and U . If this is Condition (i) or (iii), it also
holds wrt. U \{a} because these condition depend only on r and A. Also if Condition (ii) holds,
it also holds wrt. U \{a} because A

.
∪ ¬.U is equivalent to A

.
∪ ¬.

(
U \{a}

)
since a 6∈ U .

The construction of the nogoods which implement this optimization is simple.

63

3. PROPOSITIONAL HEX-PROGRAM SOLVING

• For the encoding ΓΠ,A we add the conservative nogood {Ta} for each a ∈ A(Π) with
A 6|= a.

• For the encoding ΩΠ we add the conservative nogood {FaA,Ta} for each a ∈ A(Π).

O2: Avoiding Guesses of External Replacement Atoms. In some situations the truth value
of an external replacement atom b in a solution S to ΓΠ,A does not matter. That is, both

(
S \

{Tb,Fb}
)
∪{Tb} and

(
S\{Tb,Fb}

)
∪{Fb} are solutions to ΓΠ,A (resp. ΩΠ with assumptions

AA), which represent the same unfounded set. Then we can set the truth value to an (arbitrary)
fixed value instead of inspecting both alternatives. The following provides a sufficient criterion:

Proposition 3.13. Let b be an external replacement atom, and let S be a solution to ΓΠ,A (resp.

ΩΠ with assumptionsAA). If for all rules r ∈ Π, such that A |= B(r) and where b ∈ B+(r̂) or

b ∈ B−(r̂), either

(a) for some a ∈ B+
o (r) such that A |= a, it holds that Ta ∈ S; or

(b) for some a ∈ H(r) such that A |= a, it holds that Fa ∈ S

then both
(
S \ {Tb,Fb}

)
∪ {Tb} and

(
S \ {Tb,Fb}

)
∪ {Fb} are solutions to ΓΠ,A (resp. ΩΠ

with assumptions AA).

Proof. Suppose that changing the truth value of b in S turns the solution to a counterexample of
ΓΠ,A (resp. ΩΠ). Then there must be a violated nogood N ∈ ΓΠ,A (resp. N ∈ ΩΠ) containing
b, i.e., Tb ∈ N or Fb ∈ N .

For the encoding ΓΠ,A, this nogood corresponds to a rule with b ∈ B+(r̂) or b ∈ B−(r̂)
and A |= B(r), and it contains also the signed literals (1) Fa for all a ∈ B+

o with A |= a and
(2) Ta for all a ∈ H(r) with A |= a. By the precondition of the proposition we have either (a)
Ta ∈ S for some a ∈ B+

o (r) with A |= a, or (b) Fa for some a ∈ H(r) with A |= a. But then
the nogood cannot be violated, because (a) contradicts one of (1) and (b) contradicts one of (2).

For the encoding ΩΠ, this nogood also corresponds to a rule r with b ∈ B+(r̂) or b ∈ B−(r̂).
The nogood contains also the signed literals (1) TaA for all a ∈ B+(r̂) and FaA for all a ∈
B−(r̂), (2) FaA∧U for all a ∈ B+

o , and (3) Th
Ā∨U for all h ∈ H(r). Because of (1) and since

S is a solution to AA, A |= B(r). Then by the precondition of the proposition we have either
(a) Ta ∈ S for some a ∈ B+

o (r) with A |= a, or (b) Fa for some a ∈ H(r) with A |= a. But
then the nogood cannot be violated, because (a) contradicts one of (2) by definition of AA and
aA∧U , and (b) contradicts one of (3) by definition of AA and h

Ā∨U .

This property can be utilized by adding the following additional nogoods. Recall that
A(ΓΠ,A) and A(ΩΠ) contain atoms lr for every r ∈ Π. Intuitively, they are used to encode
for a solution S to ΓΠ,A resp. ΩΠ with assumptions AA, whether the truth values of the exter-
nal atom replacements in B(r) are relevant, or whether they can be set arbitrarily for r. The
following nogoods label relevant rules r, forcing lr to be false iff one of the preconditions in
Proposition 3.13 holds.

64

3.2. Minimality Check

• For the encoding ΓΠ,A we add the nogoods:

ΓL
r,A =

{
{Tlr,Ta} | a ∈ B

+
o (r),A |= a

}
∪
{
{Tlr,Fa} | a ∈ H(r),A |= a

}
∪{

{Flr} ∪ {Fa | a ∈ B
+
o (r),A |= a} ∪ {Ta | a ∈ H(r),A |= a}

}

• For the encoding ΩΠ we add the nogoods:

ΩL
r =

{
{Tlr,Ta,TaA} | a ∈ B

+
o (r)

}
∪
{
{Tlr,Fa,TaA} | a ∈ H(r)

}
∪{

{Flr} ∪ {FaA∧U | a ∈ B
+
o (r)} ∪ {TaĀ∨U | a ∈ H(r)}

}

These constraints exclusively enforce Tlr or Flr. Hence, the truth value of lr deterministi-
cally depends on the other atoms, i.e., the nogoods do not cause additional guessing.

By Proposition 3.13 we can set the truth value of an external replacement atom b arbitrarily,
if lr is false for all r such that b ∈ B+(r̂) or b ∈ B−(r̂), and the resulting interpretation will
still be a solution to ΓΠ,A (resp. ΩΠ). However, it must be ensured that changing the truth value
of replacement atoms does not harm the satisfaction of the conditions in Proposition 3.7 (resp.
Proposition 3.10).

As mentioned after Proposition 3.7, it is advantageous to set the truth value of e&g[y](x) to
the one of &g [y](x) wrt. A, because this can reduce the number of external atoms that must
be checked. Importantly, this also relaxes the antecedence of the conditions in Proposition 3.7
(resp. Proposition 3.10) and guarantees that they are not harmed. The following nogoods enforce
a coherent interpretation of the external replacement atoms.

• For the encoding ΓΠ,A we add the conservative nogoods:

ΓF
r,A =

{
{Flr | b ∈ B

+(r̂) ∪B−(r̂)} ∪ {Fb} | b ∈ Be(r̂),A |= b
}
∪

{
{Flr | b ∈ B

+(r̂) ∪B−(r̂)} ∪ {Tb} | b ∈ Be(r̂),A 6|= b
}

• For the encoding ΩΠ we add the conservative nogoods:

ΩF
r =

{
{Flr | b ∈ B

+(r̂) ∪B−(r̂)} ∪ {TbA,Fb} | b ∈ Be(r̂)
}
∪{

{Flr | b ∈ B
+(r̂) ∪B−(r̂)} ∪ {FbA,Tb} | b ∈ Be(r̂)

}

We give now an example for this optimization using our encoding ΓΠ,A.

Example 31. Consider the program Π = {r1 : p ← &id [p](); r2 : q ← &id [q]()}, and the
compatible set Â = {Tp,Tq,Te&id [p](),Te&id [q]()}. The necessary part of the encoding

ΓΠ,A =
{
{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p](),Tp},

{Thr2 ,Fq}, {Fhr2 ,Tq}, {Thr2 ,Te&id [q](),Tq}
}

has the solutions S1 ⊇ {Thr1 ,Tp,Fe&id [p](),Fhr2 ,Fq,Fe&id [q]()} and S2 ⊇ {Thr1 ,Tp,
Fe&id [p](),Fhr2 ,Fq,Te&id [q]()} (which represent the same unfounded set U = {p}). Here,

the optimization part for r2, ΓL
r2,A
∪ ΓF

r2,A
=

{
{Tlr2 ,Fq}, {Flr2 ,Tq}, {Flr2 ,Te&id [q]()}

}
,

eliminates solutions S2 for ΓΠ,A. This is beneficial as for solutions S1 the post-check is easier
(e&id [q]() in S1 and &id [q]() in A have the same truth value). ✷

65

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Note that, strictly speaking, this optimization is not conservative, since for a UFS the induced
assignment is not necessarily a solution to the UFS search encodings with this optimization.
However, we have shown that there is a related solution for each UFS.

Also note that if this optimization is not used, then for all rules r the atom lr is in fact
not needed and thus unconstrained. To avoid an exponential increase of the number of UFS
candidates, these atoms should then be set to a fixed value.

O3: Exchanging Nogoods between UFS and Main Search. Some nogoods learned from
external sources during the search for compatible sets can be reused for the UFS search and
vice versa. This is because such nogoods are independent of the program resp. SAT instance but
depend only on the semantics of the external sources. For this purpose, we first define nogoods
which correctly describe the input-output relationship of external atoms.

Definition 42. A nogood of the formN =
{
Tt1, . . . ,Ttn,Ff1, . . . ,Ffm, σe&g[y](x)

}
, where σ

is T or F, is a valid input-output relationship, if for all assignments A, Tti ∈ A, for 1 ≤ i ≤ n,
and Ffi ∈ A, for 1 ≤ i ≤ m, implies A |= &g [y](x) if σ = F, and A 6|= &g [y](x) if σ = T.

Here, the signed literals with atoms ti for 1 ≤ i ≤ n and fi for 1 ≤ i ≤ m reflect the
relevant true resp. false atoms in the interpretation A, built over predicates which occur in the
input list y.

LetN be a nogood which is a valid input-output relationship learned during the main search,
i.e., the search for compatible sets of Π, and let F̄ = T and T̄ = F.

Definition 43 (Nogood Transformation TΓ). For a valid input-output relationship N and an
assignment A, the nogood transformation TΓ is defined as

TΓ(N,A) =

∅ if Fti ∈ A for some 1 ≤ i ≤ n,{
{Ft1, . . . ,Ftn} ∪

{Tfi | 1 ≤ i ≤ m,A |= fi} ∪

{σe&g[y](x)}
}

otherwise.

The next result states that TΓ(N,A) can be considered, for all valid input-output relation-
ships N wrt. all assignments A, without losing unfounded sets.

Proposition 3.14. Let N be a valid input-output relationship, and let U be an unfounded set

wrt. Π and A. If ΓO
Π,A contains only conservative nogoods, then IΓ(U,ΓΠ,A,Π,A) is a solution

to TΓ(N,A) (i.e., also the nogoods TΓ(N,A) are conservative).

Proof. If TΓ(N,A) = ∅ then the proposition trivially holds. Otherwise TΓ(N,A) = {C} and
we know that Tti ∈ A for all 1 ≤ i ≤ n. SupposeC is violated. Then Fti ∈ IΓ(U,ΓΠ,A,Π,A)
and therefore ti 6∈ U for all 1 ≤ i ≤ n, and Tfi ∈ IΓ(U,ΓΠ,A,Π,A) for all 1 ≤ i ≤ m with
A |= fi, and σe&g[y](x) ∈ IΓ(U,ΓΠ,A,Π,A).

But then A
.
∪ ¬.U |= ti for all 1 ≤ i ≤ n and A

.
∪ ¬.U 6|= fi for all 1 ≤ i ≤ m.

Because the nogood N is a valid input-output relationship, this implies A
.
∪ ¬.U |= σ̄&g [y](x)

iff σ = F. Then by definition of IΓ(U,ΓΠ,A,Π,A) we have σ̄e&g[y](x) ∈ IΓ(U,ΓΠ,A,Π,A),
which contradicts the assumption that TΓ(N,A) is violated.

66

3.2. Minimality Check

Hence, all valid input-output relationships for external atoms which are learned during the
search for compatible sets, can be reused (applying the above transformation) for the unfounded
set check. Moreover, during the evaluation of external atoms in the post-check for candidate
unfounded sets (solutions to ΓΠ,A), further valid input-output relationships might be learned.
These can in turn be used in further unfounded set checks (in transformed form) or directly in
the main search.

Example 32 (Set Partitioning). Consider the program Π

sel(a)← domain(a),&diff [domain,nsel](a)

nsel(a)← domain(a),&diff [domain, sel](a)

domain(a)←

Informally, this program implements a choice from sel(a) and nsel(a). Consider the com-
patible set Â = {Tdomain(a),Tsel(a),Te&diff [nsel](a)}. Suppose the main search learned
the input-output relationship N =

{
Tdomain(a), Fnsel(a),Fe&diff [nsel](a)

}
. Then the trans-

formed nogood is T (N,A)=
{
{Fdomain(a),Fe&diff [nsel](a)}

}
, which intuitively encodes that,

if domain(a) is not in the unfounded set U , then e&diff [nsel](a) is true in A
.
∪ ¬.U . This is clear

because e&diff [nsel](a) is true in A and it can only change its truth value if domain(a) becomes
false. ✷

Finally, an important note is that the optimizations O2 and O3 can not be used simultane-
ously (differently from O1 and O2 resp. O1 and O3), as this can result in contradictions due to
(transformed) learned nogoods. We thus disabled O2 in our experiments.

This learning technique can be adopted for the encoding ΩΠ as follows.

Definition 44 (Nogood Transformation TΩ). For a valid input-output relationshipN , the nogood
transformation TΩ is defined as

TΩ(N) =
{
{Tt1A,Ft1, . . . ,TtnA,Ftn,Ff1A

.
∪¬.U , . . . ,FfmA

.
∪¬.U , σe&g[y](x)}

}
.

Compared to the nogood transformation TΓ(N,A), the main difference is that TΩ(N) is
reusable for any assignment, similar to the definition of our unfounded set detection problem
ΩΠ.

The next result states that TΩ(N) can be considered, for all valid input-output relationships
N wrt. all assignments A, without losing unfounded sets.

Proposition 3.15. Let N be a valid input-output relationship, and let U be an unfounded set

wrt. Π and A. If ΩO
Π contains only conservative nogoods, then IΩ(U,ΩΠ,Π,A) is a solution to

TΩ(N) (i.e., also nogoods TΩ(N) are conservative).

Proof. We know TΩ(N) = {C} Suppose C is violated. Then TtiA ∈ IΩ(U,ΩΠ,Π,A) and
therefore Tti ∈ A, Fti ∈ IΩ(U,ΩΠ,Π,A) for all 1 ≤ i ≤ n, FfiR ∈ IΩ(U,ΩΠ,Π,A) and
therefore Ffi ∈ A for all 1 ≤ i ≤ m, and σe&g[y](x) ∈ IΩ(U,ΩΠ,Π,A).

But then, by definition of IΩ(U,ΩΠ,Π,A), Tti ∈ A and ti 6∈ U for all 1 ≤ i ≤ n, hence
A

.
∪ ¬.U |= ti for all 1 ≤ i ≤ n. Moreover, A

.
∪ ¬.U 6|= fi for all 1 ≤ i ≤ m. Because nogood

67

3. PROPOSITIONAL HEX-PROGRAM SOLVING

N is a valid input-output relationship, this implies A
.
∪ ¬.U |= &g [y](x) iff σ = F. Then

by definition of IΩ(U,ΩΠ,Π,A) we have σ̄e&g[y](x) ∈ IΩ(U,ΩΠ,Π,A), which contradicts the
assumption that TΩ(N) is violated.

Hence, also with encoding ΩΠ all valid input-output relationships for external atoms that are
learned during the search for compatible sets can be reused and vice versa.

Example 33 (ctd.). Reconsider the program Π from Example 32. Consider the compatible set
Â = {Tdomain(a),Tsel(a),Te&diff [nsel](a)}. Suppose the main search has learned the input-
output relationship N = {Tdomain(a), Fnsel(a),Fe&diff [nsel](a)}. Then the transformed
nogood is

TΩ(N)=
{
{Tdomain(a)A,Fdomain(a),Fnsel(a)

A
.
∪¬.U ,Fe&diff [nsel](a)}

}
,

which intuitively encodes that, if domain(a) is true in the current assignment but not in the
unfounded set U , and nsel(a) is false in A

.
∪ ¬.U , then e&diff [nsel](a) is true in A

.
∪ ¬.U . This

is clear because e&diff [nsel](a) is true in A and it can only change its truth value if domain(a)
becomes false. ✷

The nogood exchange also benefits from the uniform encoding. With the encoding ΓΠ,A

the SAT instance needs to be built from scratch for every unfounded set check. Thus, nogoods
learned in the main search need to be transformed and added to the UFS detection problem for
every check (otherwise they are lost). With encoding ΩΠ this needs to be done only once because
the solver instance for UFS detection keeps running all the time and thus also learned nogoods
are kept between multiple unfounded set checks. This also allows us the make use of advanced
forgetting heuristics in SAT solvers more effectively.

Learning Nogoods from Unfounded Sets. Until now only detecting unfounded sets has been
considered. A strategy to learn from detected unfounded sets for the main search for compatible
sets is missing. Here we develop such a strategy and call it unfounded set learning (UFL).

Example 34. Consider the program Π = {p← &id [p](); x1 ∨ x2 ∨ · · · ∨ xk ←}. As we know
from Example 26, {p} is an unfounded set wrt. A= {Tp,Te&id ()}, regarding just the first rule.
However, the same is true for any A′ ⊃ A regarding Π, i.e., p must never be true. ✷

The program in Example 34 has many compatible sets, and half of them (all where p is true)
will fail the UFS check for the same reason. We thus develop a strategy for generating additional
nogoods to guide the further search for compatible sets in a way, such that the same unfounded
sets are not reconsidered.

UFS-Based Learning. For an unfounded set U of Π wrt. A we define the following set of
learned nogoods:

L1(U,Π,A) =
{
{σ0, σ1, . . . , σj} | σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ j)

}
,

where Hi = {Th | h ∈ H(ri) \ U,A |= h} ∪ {Fb | b ∈ B+
o (ri),A 6|= b} and {r1, . . . , rj} =

{r ∈ Π | H(r) ∩ U 6= ∅, U ∩ B+
o (r) = ∅} is the set of external rules of Π wrt. U , i.e., all rules

68

3.2. Minimality Check

which do not depend on U . Intuitively, the nogoods encode that no atom in the unfounded set
must be true, if each rule, that could be used to derive it is already satisfied independently of the
unfounded set.

Formally we can show that adding this set of nogoods does not eliminate answer sets of the
program:

Proposition 3.16. If U is an unfounded set of Π wrt. A and A |= Π, then every answer set of Π
is a solution to the nogoods in L1(U,Π,A).

Proof. Suppose there is an answer set A′ of Π which is not a solution to a nogood inL1(U,Π,A)
We show that then U is an unfounded set of Π wrt. A′ which intersects with A′, contradicting
the assumption that A′ is an answer set.

Let {σ0, σ1, . . . , σn} be a violated nogood. Let r ∈ Π be a rule such that H(r) ∩ U 6= ∅.
We have to show that one of the conditions of Definition 38 holds.

If B+
o (r) ∩ U 6= ∅, then Condition (ii) holds, therefore we can assume B+

o (r) ∩ U = ∅.
Hence r is an external rule of Π wrt. U . But then there is a σi with 1 ≤ i ≤ n such that either (1)
σi = Th for some h ∈ H(r) with h 6∈ U and A |= h, or (2) σi = Fb for some b ∈ B+

o (r) with
A 6|= b. Because the nogood is violated by A′ by assumption, we have σi ∈ A′. In Case (1)
Condition (iii) is satisfied, in Case (2) Condition (i) is satisfied.

Moreover, by definition of L1 there is an a ∈ U s.t. Ta ∈ A′, i.e., A′ intersects with U .

Example 35. Consider the program Π from Example 34 and suppose we have found the un-
founded set U = {p} wrt. interpretation A = {Tp,Tx1} ∪ {Fxi | 1 < i ≤ k}. Then the
learned nogood L2(U,A,Π) = {Tp} immediately guides the search to the part of the search
tree where p is false, i.e., roughly half of the guesses are avoided. ✷

Reduct-Based Learning. We may also consider a different learning strategy based on the
models of fΠA rather than the unfounded set U itself, hinging on the observation that for every
unfounded set U , the interpretation A

.
∪ ¬.U is a model of fΠA (hence U 6= ∅ refutes A as a

minimal model of fΠA), cf. Faber et al. (2011).
We exploit this to construct nogoods from a nonempty UFS U wrt. a model A as follows.

The interpretation A
.
∪ ¬.U is not only a model of fΠA but a model of all programs Π′ ⊆

fΠA. Hence, if an assignment A′ falsifies the bodies of at least the same rules of Π as A, and
A′T ⊃ (A

.
∪ ¬.U)T, then A′ cannot be an answer set of Π. This allows for generating the

following set of nogoods:

L2(U,Π,A) =
{
{Ta | a ∈A

.
∪ ¬.U} ∪ {σ0, σ1, . . . , σj}

| σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ j
}

,

where Hi = {ta | a ∈ B(r̂), Â 6|= a} for all 1 ≤ i ≤ j and {r1, . . . , rj | r ∈ Π,A 6|= B(r)} is
the set of rules which are not in the FLP-reduct of Π wrt. A.

That is, each nogood consists of the positive atoms from the smaller model of the reduct
A

.
∪ ¬.U , one unfounded atom σ0 (i.e. an atom which is true in A but not in A

.
∪ ¬.U), and

one false body literal σi (1 ≤ i ≤ j) for each rule of Π with unsatisfied body wrt. A.

69

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Formally, we can show the following proposition:

Proposition 3.17. If U is an unfounded set of Π wrt. A and A |= Π, then each answer set of Π
is a solution to all nogoods in L2(U,Π,A).

Proof. Suppose there is an answer set A′ of Π which is not a solution to the nogoods in
L2(U,Π,A). Let {Ta | a ∈ A

.
∪ ¬.U} ∪ {σ0, σ1, . . . , σn} be a violated nogood. Because

σi ∈ A′ for all 1 ≤ i ≤ n, we know A′ falsifies (at least) all rules falsified by A, thus
fΠA′

⊆ fΠA. But then A
.
∪ ¬.U is a model of ΠA′

because it is a model of ΠA by as-
sumption that it is an unfounded set. Moreover, Ta ∈ A′ for all a ∈ A

.
∪ ¬.U , and therefore

A′T ⊇ (A
.
∪ ¬.U)T. Because σ0 ∈ A′, we conclude A′T) (A

.
∪ ¬.U)T, i.e., A′ is not a

subset-minimal model of ΠA′
.

Example 36. Let Π = {p ← &id [p](); q ← &id [q]()}, where &id [a]() evaluates to true iffdef

a is true. Suppose A = {p, q}. Then U = {p, q} is an unfounded set wrt. A. In the above
construction rule we have A

.
∪ ¬.U = {Fp,Fq}, σ0 ∈ {Tp,Tq} and j = 0 (because both rule

bodies are satisfied wrt. A). The learned nogoods are {Tp} and {Tq}. ✷

In Example 36, the learned nogoods will immediately guide the search to the interpretation
{Fp,Fq}, which is the only one which becomes an answer set. However, this strategy appeared
to be clearly inferior to the UFS-based learning strategy, basically because the nogoods are
too specific for the currently detected unfounded set. That is, they do not generalize to other
unfounded sets.

3.2.4 Unfounded Set Check wrt. Partial Assignments

In some cases, a detected unfounded set wrt. a partial assignment implies the existence of an
unfounded set wrt. any completion of that assignment. Clearly, a search for unfounded sets
wrt. incomplete assignments is only useful if we can be sure that detected unfounded sets will
remain unfounded for arbitrary completions of the assignment.

Formally, we can show the following:

Proposition 3.18. Let Π′ be a program, let A′ be an assignment which is complete on Π′, and

let U be an unfounded set of Π′ wrt. A′. If Π ⊇ Π′ such that U ∩H(r) = ∅ for all r ∈ Π \ Π′,

then U is an unfounded set of Π wrt. any interpretation A ⊇ A′.

Proof. Let Π′ be a program, A′ be an assignment which is complete on Π′, and U be an un-
founded set of Π′ wrt. A′. Further let Π ⊇ Π′ and A ⊇ A′.

We have to show that if U ∩ H(r) 6= ∅ for some r ∈ Π, then one of the conditions in
Definition 38 holds wrt. A andU . Let r ∈ Π. If r ∈ Π′, then one of the conditions holds because
U is an unfounded set of Π′ wrt. A′ and A′ is complete on Π′. If r 6∈ Π′, then U ∩H(r) = ∅ by
assumption.

Intuitively, the proposition states that an unfounded set of a program wrt. some interpretation
will remain an unfounded set if the program is extended by rules which do not derive any of the
elements in the unfounded set.

70

3.2. Minimality Check

Corollary 3.3. If some assignment A′ is complete on a subprogram Π′ ⊆ Π and Π′ has an

unfounded set U wrt. A′ which intersects with A′ and such that U∩H(r) = ∅ for all r ∈ Π\Π′,

then no A ⊇ A′ is an answer-set of Π.

Proof. By Proposition 3.18, U is also an unfounded set of Π wrt. any A ⊇ A′. But then by
Theorem 2, A cannot be an answer set of Π.

This result can be used as follows. For a partial assignments A′ which is complete on a
subprogram Π′ ⊆ Π, if ΓΠ′,A′ ∪

{
{Fa} | r ∈ Π \ Π′, a ∈ H(r)

}
resp. ΩΠ′ ∪

{
{Fa} | r ∈

Π \ Π′, a ∈ H(r)
}

with assumptions AA has a solution which passes the post-check, then no
completion of A′ can be an answer set of Π.

Example 37. Consider again the program Π from Examples 34 and 35 and suppose we have
the partial interpretation A′ = {p}, i.e., the guess over the xi for 1 ≤ i ≤ n was not done yet.
Nevertheless, we can already make an unfounded set check over the subprogram Π′ = {p ←
&id [p]()} because A′ is complete over this program. The detected unfounded set U = {p} does
not intersect with the head of a rule r ∈ Π \Π′ = {x1 ∨ x2 ∨ . . . xn ←}. Therefore U is also an
unfounded set of Π wrt. arbitrary completions of A′ and we can immediatly backtrack, e.g., by
learning L2(U,A

′,Π′). ✷

Corollary 3.3 ensures that Part (d) in Algorithm Hex-CDNL does not affect the correctness
of the overall algorithm as stated by Proposition 3.2 and Theorem 1.

3.2.5 Deciding the Necessity of the UFS Check

Although the minimality check based on unfounded sets is more efficient than the explicit mini-
mality check, computational costs are still high. Moreover, during evaluation of Π̂ for computing
the compatible set Â, the ordinary ASP solver in Algorithm Hex-CDNL has already made an
unfounded set check, and we can safely assume that it is founded from its perspective. Hence,
all remaining unfounded sets which were not discovered by the ordinary ASP solver have to
involve external sources, as their behavior is not fully captured by the ASP solver.

In this section we formalize these ideas and define a decision criterion which allows for
deciding whether a further UFS check is necessary for a given program. We eventually define
a class of programs which does not require an additional unfounded set check. Intuitively, we
show that every unfounded set that is not already detected during the construction of Â contains
input atoms of external atoms which are involved in cycles. If no such input atom exists in the
program, then the UFS check is superfluous.

We start with a definition of atom dependency. Note that this definition is different from
Definition 20 in Chapter 2 because it captures only positive dependencies; in this subsection we
never use dependencies according to Chapter 2.

Definition 45 (Positive Atom Dependencies). For a ground program Π, and ground atoms p(c)
and q(d), we say that

(i) p(c) depends (positively) on q(d), denoted p(c) →p q(d), if for some rule r ∈ Π we have
p(c) ∈ H(r) and q(d) ∈ B+(r); and

71

3. PROPOSITIONAL HEX-PROGRAM SOLVING

(ii) p(c) depends externally on q(d), denoted p(c) →e
p q(d), if for some rule r ∈ Π we have

p(c) ∈ H(r) and there is a &g [q1, . . . , qn](e) ∈ B+(r) ∪ B−(r) with qi = q for some
1 ≤ i ≤ n.

In the following, we consider positive atom dependency graphs GR
Π for a ground program

Π, where the set of vertices is the set of all ground atoms, and the set of edges is given by the
binary relation R =→p ∪ →

e
p, whose elements are also called ordinary edges and e-edges,

respectively.
The next definition and lemma allow to restrict our attention to the core of an unfounded

set, i.e., its most essential part. For our purpose, we can then focus on such cores, disregarding
atoms in a cut of GR

Π which is defined as follows.

Definition 46 (Cut). Let U be an unfounded set of Π wrt. A. A set of atoms C ⊆ U is called a
cut of GR

Π, if

(i) b 6→e
p a, for all a ∈ C and b ∈ U (C has no incoming or internal e-edges); and

(ii) b 6→p a and a 6→p b, for all a ∈ C and b ∈ U \ C (there are no ordinary edges between C
and U \ C).

We first prove that cuts can be removed from unfounded sets and the resulting set is still an
unfounded set.

Lemma 3.6 (Unfounded Set Reduction). Let U be an unfounded set of Π wrt. an interpreta-

tion A, and let C be a cut of GR
Π. Then, Y = U \ C is an unfounded set of Π wrt. A.

Proof. If Y = ∅, then the result holds trivially. Otherwise, let r ∈ Π with H(r) ∩ Y 6= ∅. We
show that one of the conditions in Definition 38 holds. Observe that H(r) ∩ U 6= ∅ because
U ⊇ Y . Since U is an unfounded set of Π wrt. A, one of the conditions of Definition 38 holds.

If Condition (i) holds, then the condition also holds wrt. Y .
If Condition (ii) holds, let a ∈ H(r) such that a ∈ Y , and b ∈ B(r) such that A

.
∪ ¬.U 6|= b.

We make a case distinction: either b is an ordinary literal or an external one.
If it is an ordinary default-negated atom not c, then A

.
∪ ¬.U 6|= b implies Tc ∈ A and

c 6∈ U , and therefore also A
.
∪ ¬.Y 6|= b. So assume b is an ordinary atom. If b 6∈ U then A 6|= b

and the case for (i) applies, so assume b ∈ U . Because a ∈ H(r) and b ∈ B+(r), we have
a→p b and therefore either a, b ∈ C or a, b ∈ Y (because there are no ordinary edges between
C and Y). But by assumption a ∈ Y , and therefore b ∈ Y , hence A

.
∪ ¬.Y 6|= b.

If b is an external literal, then there is no q ∈ U with a →e
p q and q 6∈ Y . Otherwise, this

would imply q ∈ C and C would have an incoming e-edge, which contradicts the assumption
that C is a cut of GR

Π. Hence, for all q ∈ U with a →e
p q, also q ∈ Y , and therefore the truth

value of b wrt. A
.
∪ ¬.U and A

.
∪ ¬.Y is the same. Hence A

.
∪ ¬.Y 6|= b.

If Condition (iii) holds, then also A |= h for some h ∈ H(r) \ Y because Y ⊆ U and
therefore H(r) \ Y ⊇ H(r) \ U .

Example 38. Consider the following program (visualized in Figure 3.2):

Π = {r ← &id [r](); p← &id [r](); p← q; q ← p}

72

3.2. Minimality Check

r p q
→p

→e
p

→e
p

Cut C of GR
Π

Figure 3.2: Dependencies and Cut of the Program Π from Example 38

Then we have p →p q, q →p p, r →e
p r and p →e

p r. Program Π has the unfounded set

U = {p, q, r} wrt. A = {Tp,Tq,Tr}. Observe that C = {p, q} is a cut of GR
Π, and therefore

U \ C = {r} is an unfounded set of Π wrt. A. ✷

Next we prove that for each unfounded set U of Π, intuitively, either the input to some
external atom is unfounded itself, or U is already detected when Π̂ is evaluated.

Lemma 3.7 (EA-Input Unfoundedness). Let U be an unfounded set of Π wrt. an assignment A.

If GR
Π has no edge x →e

p y such that x, y ∈ U , then U is an unfounded set of Π̂ wrt. the

compatible set Â corresponding to A.

Proof. If U = ∅, then the result holds trivially. Otherwise, let r̂ ∈ Π̂ such that H(r̂) ∩ U 6= ∅.
Let a ∈ H(r̂)∩U . Observe that r̂ cannot be an external atom guessing rule because U contains
only ordinary atoms. We show that one of the conditions in Definition 38 holds for r̂ wrt. Â.

Because r̂ is no external atom guessing rule, there is a corresponding rule r ∈ Π containing
external atoms in place of replacement atoms. Because U is an unfounded set of Π and H(r) =
H(r̂), one of the conditions of Definition 38 holds.

If Condition (i) holds, let b ∈ B(r) such that A 6|= b and b̂ the corresponding literal in B(b̂)
(which is the same if b is ordinary and the corresponding replacement literal if b is external).
Then also Â 6|= b̂ because Â is compatible.

If Condition (ii) holds, let b ∈ B(r) such that A 6|= b. We make a case distinction: either b
is ordinary or external.

If b is ordinary, then b ∈ B(r̂) and Â
.
∪ ¬.U 6|= b holds because A and Â are equivalent for

ordinary atoms.
If b is an external atom or default-negated external atom, then no atom p(c) ∈ U is input to

it, i.e. p is not a predicate input parameter of b; otherwise we had a →e
p p(c), contradicting our

assumption that U has no internal e-edges. But then A
.
∪ ¬.U 6|= b implies A 6|= b because the

truth value of b in A
.
∪ ¬.U and A is the same. Therefore we can apply the case for (i).

If Condition (iii) holds, then also Â |= h for some h ∈ H(r̂) \ U because H(r) = H(r̂)
contains only ordinary atoms and A is equivalent to Â for ordinary atoms.

Example 39. Reconsider the program Π from Example 38. Then the unfounded set U ′ = {p, q}
wrt. A′ = {Tp,Tq,Fr} is already detected when

Π̂ =
{
e&id [r]() ∨ ne&id [r]()←; r ← e&id [r](); p← e&id [r](); p← q; q ← p

}

73

3. PROPOSITIONAL HEX-PROGRAM SOLVING

is evaluated by the ordinary ASP solver because p →e
p q 6∈ R and q →e

p p 6∈ R. In contrast,
the unfounded set U ′′ = {p, q, r} wrt. A′′ = {Tp,Tq,Tr} is not detected by the ordinary ASP
solver because p, r ∈ U ′′ and p→e

p r
2. ✷

The essential property of unfounded sets of Π wrt. A, that are not recognized during the
evaluation of Π̂, is cyclic dependencies including input atoms of some external atom. Towards
a formal characterization of a class of programs without this property, i.e., that do not require
additional UFS checks, we define cycles as follows.

Definition 47 (Cycle). A cycle wrt. a binary relation ◦ is a sequence C = c0, c1, . . . , cn, cn+1

of elements with n ≥ 0, such that (ci, ci+1) ∈ ◦ for all 0 ≤ i ≤ n and c0 = cn+1. We say that a
set S contains a cycle wrt. ◦, if there is a cycle C = c0, c1, . . . , cn, cn+1 wrt. ◦ such that ci ∈ S
for all 0 ≤ i ≤ n+ 1.

The following proposition states, intuitively, that each unfounded set U of Π wrt. A, which
contains no cycle through the input atoms to some external atom, has a corresponding unfounded
set U ′ of Π̂ wrt. Â. That is, the unfoundedness is already detected when Π̂ is evaluated.

Let→d
p = →p ∪ ←p ∪ →

e
p, where←p is the inverse of→p, i.e.←p =

{
(x, y) | (y, x) ∈

→p

}
. A cycle c0, c1, . . . , cn, cn+1 wrt. →d

p is called an e-cycle, if it contains e-edges, i.e., if
(ci, ci+1) ∈→

e
p for some 0 ≤ i ≤ n. We say that a set S contains e-edges, if there are x, y ∈ S

such that (x, y) ∈→e
p.

Proposition 3.19 (Relevance of e-cycles). Let U 6= ∅ be an unfounded set of Π wrt. an inter-

pretation A such that AT does not contain any e-cycle wrt.→d
p. Then, there exists a nonempty

unfounded set of Π̂ wrt. Â.

Proof. We define the reachable set R(a) from some atom a as

R(a) =
{
b | (a, b) ∈ {→p ∪ ←p}

∗
}

,

where {→p ∪ ←p}
∗ is the reflexive and transitive closure of→p ∪ ←p, i.e., R(a) is the set of

atoms b ∈ U reachable from a using edges from→p ∪ ←p only but no e-edges.
We first assume that U contains at least one e-edge, i.e. there are x, y ∈ U such that x→e

p y.
Now we show that there is a u ∈ U with outgoing e-edge (i.e. u→e

p v for some v ∈ U), but such
that R(u) has no incoming e-edges (i.e. for all v ∈ R(u) and b ∈ U , b 6→e

p v holds). Suppose to
the contrary that for all a with outgoing e-edges, the reachable setR(a) has an incoming e-edge.
We now construct an e-cycle wrt.→d

p, which contradicts our assumption. Start with an arbitrary
node with an outgoing e-edge c0 ∈ U and let p0 be the (possibly empty) path (wrt.→p ∪ ←p)
from c0 to the node d0 ∈ R(c0) such that d0 has an incoming e-edge, i.e. there is a c1 such that
c1 →

e
p d0. Note that c1 6∈ R(c0): whenever x →e

p y for x, y ∈ U , then there is no path from x

to y wrt.→p ∪ ←p, because otherwise we would immediately have an e-cycle wrt.→d
p.

By assumption, also some node d1 in R(c1) has an incoming e-edge (from some node c2 6∈
R(c1)). Let p1 be the path from c1 to d1, etc. By iteration we can construct the concatenation

2Out formal results only imply that it is not necessarily detected. However, it is easy to verify that U ′′ is indeed
not an unfounded set of Π̂ wrt. Â′′ = A

′′ ∪ {Te&id[r]()}.

74

3.2. Minimality Check

of the paths p0, (d0, c1), p1, (d1, c2), p2, . . . , pi, (di, ci+1), . . ., where the pi from ci to di are the
paths within reachable sets, and the (di, ci+1) are the e-edges between reachable sets. However,
as U is finite, some nodes on this path must be equal, i.e., a subsequence of the constructed
sequence represents an e-cycle (in reverse order).

This proves that there is a node u with outgoing e-edge but such that R(u) has no incoming
e-edges. We next show that R(u) is a cut of GR

Π. Condition (i) is immediately satisfied by
selection of u. Condition (ii) is shown as follows. Let u′ ∈ R(u) and v′ ∈ U \ R(u). We have
to show that u′ 6→p v

′ and v′ 6→p u
′. Suppose, towards a contradiction, that u′ →p v

′. Because
of u′ ∈ R(u), there is a path from u to u′ wrt.→p ∪ ←p. But if u′ →p v

′, then there would also
be a path from u to v′ wrt.→p ∪ ←p and v′ would be in R(u), a contradiction. Analogously,
v′ →p u

′ would also imply that there is a path from u to v′ because there is a path from u to u′,
again a contradiction.

Therefore, R(u) ⊆ U is a cut of GR
Π, and by Lemma 3.6, it follows that U \ R(u) is

an unfounded set. Observe that U \ R(u) contains one e-edge less than U because u has an
outgoing e-edge and is removed from the unfounded set. Further observe that U \ R(u) 6= ∅
because there is a w ∈ U such that u →e

p w but w 6∈ R(u). By iterating this argument, the
number of e-edges in the unfounded set can be reduced to zero in a nonempty core.

Eventually, or if the unfounded set did not contain any e-edges already at the beginning,
Lemma 3.7 applies, proving that the remaining set is an unfounded set of Π̂.

Corollary 3.4. If there is no e-cycle wrt.→d
p and Π̂ has no nonempty unfounded set wrt. Â, then

A is unfounded-free for Π.

Proof. Suppose there is an unfounded set U of Π wrt. A. Then it contains no e-cycle because
there is no e-cycle wrt. →d

p. Then by Proposition 3.19 there is an unfounded set of Π̂ wrt. Â,
which contradicts our assumption.

This corollary can be used as follows to increase performance of an evaluation algorithm:
if there is no cycle wrt. →d

p containing e-edges, then an explicit unfounded set check is not

necessary because the unfounded set check made during evaluation of Π̂ suffices. Note that
this test can be done efficiently (in fact in linear time, similar to deciding stratifiability of an
ordinary logic program). Moreover, in practice one can abstract from →d

p by using analogous
relations on the level of predicates instead of atoms. Clearly, if there is no e-cycle in the predicate
dependency graph, then there can also be no e-cycle in the atom dependency graph. Hence, the
predicate dependency graph can be used to decide whether the unfounded set check can be
skipped. In our implementation the check is done on the atom level.

Example 40. The program Π = {out(X) ← &diff [set1, set2](X)} ∪ F does not require an
unfounded set check for any set of facts F because there is no e-cycle wrt. →d

p, where diff

computes the set difference of the extensions of set1 and set2.
Also Π = {str(Z) ← dom(Z), str(X), str(Y), not&concat [X,Y](Z)} does not need

such a check; there is a cycle over an external atom, but no e-cycle wrt.→d
p. ✷

Note that Corollary 3.4 amounts to a static analysis of e-cycles in the program, whereas
Proposition 3.19 has a dynamic view, i.e., it takes also the current unfounded set (and thus the

75

3. PROPOSITIONAL HEX-PROGRAM SOLVING

assignment) into account. The direct application of Proposition 3.19 possibly eliminates more
unnecessary unfounded set checks than Corollary 3.4 because e-cycles in the program may be
broken with respect to the assignment. However, in order to apply Proposition 3.19 directly,
the existence of e-cycles has to be decided before every unfounded set check, and the computa-
tional overhead might easily exceed the savings due to avoided unfounded set checks, whereas
the static approach requires only one such check. Therefore we have decided to apply the deci-
sion criterion in form of Corollary 3.4. A closer analysis of the effects of direct application of
Proposition 3.19 is up to future work.

Moreover, the following proposition states that, intuitively, if Π̂ has no unfounded sets
wrt. Â, then any unfounded set U of Π wrt. A must contain an atom which is involved in a
cycle wrt.→d

p that has an e-edge.

Definition 48 (Cyclic Input Atoms). For a program Π, an atom a is a cyclic input atom, if there
is an atom b such that b→e

p a and there is a path from a to b wrt.→d
p.

Let CA(Π) denote the set of all cyclic input atoms of program Π.

Proposition 3.20 (Unfoundedness of Cyclic Input Atom). Let U 6= ∅ be an unfounded set of Π
wrt. A such that U does not contain cyclic input atoms. Then, Π̂ has a nonempty unfounded set

wrt. Â.

Proof. If U contains no cyclic input atoms, then all cycles wrt. →d
p containing e-edges in the

atom dependency graph of Π are broken, i.e., U does not contain an e-cycle wrt.→d
p. Then by

Proposition 3.19 there is an unfounded set of Π̂ wrt. Â.

Proposition 3.20 allows for generating the additional nogood {Fa | a ∈ CA(Π)} and adding
it to ΓΠ,A. Again, considering predicates instead of atoms is possible to reduce the overhead
introduced by the dependency graph.

3.2.6 Program Decomposition

The usefulness of the decision criterion can be increased by decomposing the program into
components such that the criterion can be applied component-wise. This allows for restricting
the unfounded set check to components with e-cycles, whereas e-cycle-free components can be
ignored in the check.

Related to our splitting set technique is the work by Drescher et al. (2008), where a similar
program decomposition is used, yet for ordinary programs only. While we consider e-cycles,
which are specific for HEX-programs, the interest of Drescher et al. (2008) is with head-cycles
with respect to disjunctive rule heads. In fact, our implementation may be regarded as an exten-
sion of their work since the evaluation of Π̂ follows their principles of performing UFS checks
in case of head-cycles. Note that our splitting is also different from the well-known splitting
technique [Lifschitz and Turner, 1994] as we consider only positive dependencies for ordinary
atoms.

Let Comp be a partitioning of the ordinary atoms A(Π) of Π into subset-maximal strongly
connected components wrt.→p ∪ →

e
p. We define for each partition C ∈ Comp the subprogram

ΠC associated with C as ΠC =
{
r ∈ Π | H(r) ∩ C 6= ∅

}
.

76

3.2. Minimality Check

We next show that if a program has an unfounded set U wrt. A, then U ∩C is an unfounded
set wrt. A for the subprogram ΠC associated with some strongly connected component C.

Proposition 3.21. Let U 6= ∅ be an unfounded set of Π wrt. A. Then, for some ΠC with

C ∈ Comp it holds that U ∩ C is a nonempty unfounded set of ΠC wrt. A.

Proof. Let U be a nonempty unfounded set of Π wrt. A. Because Comp is a decomposition of
A(Π) into strongly connected components, the component dependency graph

〈
Comp, {(C1, C2) | C1, C2 ∈ Comp, ∃a1 ∈ C1, a2 ∈ C2 : (a1, a2) ∈→p ∪ →

e
p}
〉

is acyclic. Following the hierarchical component dependency graph from the nodes without
predecessor components downwards, we can find a ‘first’ component which has a nonempty
intersection with U , i.e., there exists a component C ∈ Comp such that C∩U 6= ∅ but C ′∩U =
∅ for all transitive predecessor components C ′ of C.

We show that U ∩ C is an unfounded set of ΠC wrt. A. Let r ∈ ΠC be a rule such that
H(r) ∩ (U ∩ C) 6= ∅. We have to show that one of the conditions of Definition 38 holds for r
wrt. A and U ∩ C.

Because U is an unfounded set of Π wrt. A andH(r)∩ (U ∩C) 6= ∅ impliesH(r)∩U 6= ∅,
we know that one of the conditions holds for r wrt. A and U . If this is Condition (i) or (iii), then
it trivially holds also wrt. A and U ∩C because these conditions depend only on the assignment
A, but not on the unfounded set U .

If it is Condition (ii), then A
.
∪ ¬.U 6|= b for some (ordinary or external) body literal

b ∈ B(r). We show next that the truth value of all literals in B(r) is the same in A
.
∪ ¬.U and

A
.
∪ ¬.(U ∩ C), which proves that Condition (ii) holds also wrt. A and U ∩ C.
If b = not a for some atom a, then Ta ∈ A and a 6∈ U and consequently a 6∈ U ∩C, hence

A
.
∪ ¬.(U ∩ C) 6|= b. If b is an ordinary atom, then either Fb ∈ A, which implies immediately

that A
.
∪ ¬.(U ∩C) 6|= b, or b ∈ U . But in the latter case b is either in a predecessor component

C ′ of C or in C itself (since h→p b for all h ∈ H(r)). But since U ∩C ′ = ∅ for all predecessor
components ofC, we know b ∈ C and therefore b ∈ (U∩C), which implies A

.
∪ ¬.(U∩C) 6|= b.

If b is a positive or default-negated external atom, then all input atoms a to b are either in a
predecessor component C ′ of C or in C itself (since h →e

p a for all h ∈ H(r)). We show with

a similar argument as before that the truth value of each input atom a is the same wrt. A
.
∪ ¬.U

and A
.
∪ ¬.(U ∩ C): if A

.
∪ ¬.U |= a, then Ta ∈ A and a 6∈ U , hence a 6∈ (U ∩ C) and

therefore A
.
∪ ¬.(U ∩ C) |= a. If A

.
∪ ¬.U 6|= a, then either Fa ∈ A, which immediately

implies A
.
∪ ¬.(U ∩ C) 6|= a, or a ∈ U . But in the latter case a must be in C because

U ∩ C ′ = ∅ for all predecessor components C ′ of C. Therefore a ∈ (U ∩ C) and consequently
A

.
∪ ¬.(U ∩ C) 6|= a. Because all input atoms a have the same truth value wrt. A

.
∪ ¬.U and

A
.
∪ ¬.(U ∩ C), the same holds also for the positive or default-negated external atom b itself.

This proposition states that a search for unfounded sets can be done independently for the
subprograms ΠC for all C ∈ Comp. If there is an unfounded set of Π wrt. an assignment, then
there is also one of at least one program component wrt. this assignment. However, we know
by Corollary 3.4 that programs Π without e-cycles cannot contain unfounded sets, which are not

77

3. PROPOSITIONAL HEX-PROGRAM SOLVING

r p q
→p

→e
p

→e
p

Figure 3.3: Decomposition of the Program from Example 41

already detected when Π̂ is solved. If we apply this proposition to the subprograms ΠC , we can
safely ignore e-cycle-free program components.

Example 41. Reconsider the program Π from Example 38. Then Comp contains the compo-
nents C1 = {p, q} and C2 = {r} and we have ΠC1 = {p ← &id [r](); p ← q; q ← p}
and ΠC2 = {r ← &id [r]()} (see Figure 3.3). By Proposition 3.21, each unfounded set of Π
wrt. some assignment can also detected in one of the components. Consider e.g. U = {p, q, r}
wrt. A = {Tp,Tq,Tr}. Then U ∩ {r} = {r} is also an unfounded set of ΠC2 wrt. A.

By separate application of Corollary 3.4 to the components, we can conclude that there can
be no unfounded sets over ΠC1 that are not already detected when Π̂ is evaluated (because it
has no e-cycles). Hence, the additional unfounded set check is only necessary for ΠC2 . In-
deed, the only unfounded set which is not detected when Π̂ is evaluated is {r} of ΠC2 wrt. any
interpretation A ⊇ {Tr}. ✷

Finally, one can also show that splitting, i.e., the component-wise check for foundedness,
does not lead to spurious unfounded sets.

Proposition 3.22. If U is an unfounded set of ΠC wrt. A such that U ⊆ C, then U is an

unfounded set of Π wrt. A.

Proof. If U = ∅, then the result holds trivially. By definition of ΠC we have H(r) ∩ C = ∅ for
all r ∈ Π\ΠC . By the precondition of the proposition we have U ⊆ C. But then H(r)∩U = ∅
for all r ∈ Π \ΠC and U is an unfounded set of Π wrt. A.

More generally, unfounded set checks may also be performed over program components
larger than single strongly connected components, but we leave this extension for future work.

3.2.7 Minimality Checking Algorithm

We now summarize the results from the previous subsections algorithmically and integrate them
into Algorithm GuessAndCheckHexEvaluation. Intuitively, the idea is to construct the nogood
set for unfounded set detection (using one of the two encodings) and to enumerate its solutions
until either a solution passes the post-check or all solutions have been exhausted. In the for-
mer case an unfounded set has been found, in the latter it is proven that there does not exist
an unfounded set. The procedure is formalized in Algorithm FLPCheck and summarized in
Figure 3.4.

78

3.2. Minimality Check

Algorithm FLPCheck

Input: A program Π, a compatible set Â, a set of nogoods ∇ of Π
Output: true if A is an answer set of Π and false otherwise, learned nogoods added to∇

(a) for C ∈ Comp do

(b) if there is an e-cycle of ΠC wrt.→d
p then

if encoding Γ then

SAT instance is ΓΠC ,A

Let T (N) be TΓ(N)

if encoding Ω then

SAT instance is ΩΠC
with assumptions AA

Let T (N) be TΩ(N)

(c) while SAT instance has more solutions do

Let S be the next solution of the SAT instance
Let U be the unfounded set candidate encoded by S

isUFS ← true

(d) for all external atoms &g [y](x) in ΠC do

Evaluate &g [y]
∇ ← ∇∪ Λ(&g [y],A)
Add T (N) to the SAT instance for all N ∈ Λ(&g [y],A)

if Te&g[y](x) ∈ S, A 6|= &g [y](x) and A
.
∪ ¬.U 6|= &g [y](x) then

isUFS ← false

if Fe&g[y](x) ∈ S, A |= &g [y](x) and A
.
∪ ¬.U |= &g [y](x) then

isUFS ← false

(e) if isUFS then

Let N ∈ L1(U,ΠC ,A) be a nogood learned from the UFS
∇ ← ∇∪ {N}
return false

return true

79

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Basic
Encoding

Uniform
Encoding

Assumptions

Search
for UFS

Candidates

Verify
Candidate

(Post-Check)

Main Search
(CDNL)

Unfounded-Free

External Atom
Evaluation

Π Compatible Set Â

FLP Checks

ΓΠ,A ΩΠ

AA

UFS

Figure 3.4: Visualization of Algorithm FLPCheck

One can show that it identifies all answer sets among the compatible sets of a program. This
property is essential for the correctness and completeness of Algorithm GuessAndCheckHexE-
valuation as stated by Theorem 1. Thus, the collection of all algorithms developed in this section
is sound and complete for the HEX-semantics for arbitrary ground HEX-programs.

Theorem 3 (Soundness and Completeness of Algorithm FLPCheck). For every program Π
(i) Algorithm FLPCheck returns true if and only if the restriction A of Â to atoms A(Π) is

an answer set of Π. (ii) All answer sets of Π are solutions to all nogoods added to ∇ by Algo-

rithm FLPCheck.

Proof. (i) The loop at (a) enumerates all subset-maximal strongly connected components of the
ordinary atoms of Π wrt. →p ∪ →

e
p. By Theorem 2, A is an answer set of Π if and only if it

is unfounded-free. By Propositions 3.21 and 3.22, there is a nonempty unfounded set of some
ΠC wrt. A if and only if there a nonempty unfounded set of Π wrt. A. Thus, the proposition is

80

3.3. Wellfounded Evaluation Algorithm for Monotonic Ground HEX-Programs

proved if we can prove that the algorithm returns false if and only if there is an unfounded set
of ΠC wrt. A.

In Part (b), components without e-cycles are skipped. If there is a nonempty unfounded set
U of some ΠC wrt. A s.t. no e-cycle of ΠC wrt.→d

p exists, then by Proposition 3.19 there is also

a nonempty unfounded set U ′ of Π̂C wrt. Â = κ(Π,A). However, U ′ is then also an unfounded
set of Π̂ wrt. Â because U ′ ∩ H(r̂) = ∅ for all r̂ ∈ Π̂ \ Π̂C . Because Â is a compatible set
of Π by assumption, it is an answer set of Π̂. Thus Â is unfounded-free wrt. Π̂, i.e., U ′ cannot
exist. Thus, for components without e-cycles, no unfounded set can be detected and they can be
ignored.

If there are e-cycles of ΠC wrt. →d
p, then we choose an encoding Γ or Ω and setup the

according SAT instance. The loop at (c) enumerates all solutions S to ΓΠ,A, which encode can-
didate unfounded sets and include all unfounded sets of Π wrt. A by Proposition 3.6 resp. 3.9.
The loop at (d) evaluates all external atoms, and adds the learned valid input-output relationships
to the main search (via ∇) and in transformed form to the UFS search. This is conservative by
Propositions 3.14 and 3.15. The loop further implements the post-check formalized by Propo-
sitions 3.7 and 3.10. Thus, isUFS is set to true and the if at (e) returns false if and only if the
post-check is passed for some solution S, i.e., an unfounded set of Π wrt. A exists; otherwise
true is returned after the loop at (c).

(ii) The algorithm adds only a nogood N ∈ L1(U,ΠC ,A) if U is an unfounded set of ΠC

wrt. A. The claim follows then from Proposition 3.16.

3.3 Wellfounded Evaluation Algorithm for Monotonic Ground

HEX-Programs

For monotonic programs the evaluation is much simpler, both from a conceptual and from a
computational point of view. To this end, we introduce monotonic HEX-programs as follows.

Definition 49. A HEX-program Π is monotonic, if

(i) for any a, b ∈ A(Π), a →e
n b or a →n b in the atom dependency graph ADG(Π) implies

that b← . ∈ Π, i.e., b is a fact; and

(ii) Π does not contain disjunctions.

The intuition behind this definition is that there is no nondeterminism in the program, once
the facts have been fixed.

Example 42. The program Π′ = {s(a); s(Y) ← s(X),&concat [X, a](Y), limit(Y)} from
Example 9 is monotonic. ✷

The evaluation of such programs is carried out by Algorithm WellfoundedHexEvaluation.
This algorithm was sketched by Schindlauer (2006), but not formalized. It starts with an assign-
ment consisting of all Ta for all facts a ← in the program. Then the assignment is iteratively
expanded by adding the (single) head atoms of all rules whose bodies are satisfied by A, if the

81

3. PROPOSITIONAL HEX-PROGRAM SOLVING

unassigned atoms are assumed to be false. As the program is finite, this procedure will eventu-
ally reach a fixpoint, i.e., the assignment is not changed anymore, or a constraint fires. In the
latter case there does not exist an answer set of Π, otherwise the fixpoint, extended by Fa for all
atoms a which were not derived, is the unique answer set.

Algorithm WellfoundedHexEvaluation

Input: A monotonic ground HEX-program Π
Output: All answer sets of Π

A← ∅
// iteratively expand the assignment by all atoms derived

by rules with satisfied bodies

while A changed do

A← A ∪
{
Ta | r ∈ Π, a ∈ H(r),A ∪ {Fa | a ∈ A(Π),Ta 6∈ A} |= B(r)

}

if A ∪ {Fa | a ∈ A(Π),Ta 6∈ A} |= B(r) for constraint r ∈ Π then

return ∅

// add false literals for all atoms which were not derived

return
{
A ∪ {Fa | a ∈ A(Π),Ta 6∈ A}

}

One can formally show that this algorithm is sound and complete wrt. the HEX-semantics.

Proposition 3.23. If Algorithm WellfoundedHexEvaluation returns (i) a set containing one

interpretation, then it is the unique answer set of Π; (ii) ∅, then there is no answer set of Π.

Proof. (i) We first show that, if the algorithm returns a set containing one interpretation, then
this interpretation is an answer set. Suppose Algorithm WellfoundedHexEvaluation returns an
interpretation A. Then all rules in Π are satisfied, because otherwise for some rule r ∈ Π, the
body B(r) is satisfied and the head H(r) is not. But this is impossible, because in this case the
loop would not have terminated and a ∈ H(r) would have been added as positive literal to A.
Moreover, A is also subset-minimal wrt. fΠA because for any interpretation A′ < A, at least
one rule body B(r) for r ∈ Π is satisfied by A′ but such that the corresponding head H(r) is
not. Otherwise the atom a ∈ H(r) would not have been added to A. As A′ |= B(r) implies
A |= B(r) by monotonicity of our program, this means that we have also r ∈ fΠA. Hence, A′

is not a model of the reduct of Π wrt. A.
Moreover, A must be contained in any answer set A′ of Π since otherwise some rule would

be violated (a rule which derives some atom that is true in A but false in A′). But then by
minimality of answer sets we can conclude that A is the only answer set.

(ii) Now we show that, if the algorithm returns ∅, then there does not exist an answer set
of Π. Suppose the algorithm returns ∅. Then for the intermediate result A of our algorithm
just before ∅ is returned, a constraint in Π is violated. Since Π is monotonic, the only way of
satisfying the constraint is to change some signed literals in A from true to false (note that the
constraint cannot contain any not a in its body such that a could become true in a later iteration,
since this contradicts monotonicity of the program). But then the resulting assignment A′ keeps
at least one rule unsatisfied, because otherwise no a such that Ta ∈ A,Fa ∈ A′ would have

82

3.4. Related Work and Summary

been set to true by our algorithm. Hence, neither A, nor any smaller or incomparable assignment
can be an answer set of Π. By monotonicity of the constraint, also no larger assignment can be
an answer set, i.e., Π has no answer set.

Corollary 3.5. Algorithm WellfoundedHexEvaluation returns all answer sets of a monotonic

HEX-program Π.

Proof. If the algorithms returns an interpretation which is not an answer set we have a contra-
diction with Proposition 3.23 (i). If it misses to return an answer set we have a contradiction
with Proposition 3.23 (ii).

This allows for using Algorithm WellfoundedHexEvaluation in place of EvalGroundHex-
Program in EvaluateExtendedPreGroundable in Chapter 2. It is easy to see that this algorithm
is polynomial (modulo complexity of external atom evaluations) because the number of iter-
ations is bounded by A(Π) and each iteration is bounded by the total number of body atoms
in the program (if implemented naively). Thus, the algorithm is usually more efficient than
Algorithm GuessAndCheckHexEvaluation.

3.4 Related Work and Summary

The chapter is concluded with a discussion of related work. We then give a summary and an
outlook on future work.

3.4.1 Related Work

The basic idea of our conflict-driven algorithm is related to constraint ASP solving, which is
an extension of ASP programs by constraint atoms (comparisons of terms, e.g. X ≤ 5), and
global constraints such as domain restrictions of constraint variables. Algorithms for constraint
ASP solving have been presented by Gebser et al. (2009) and by Ostrowski and Schaub (2012)
and are realized in the CLINGCON system. External atom evaluation in our algorithm can su-
perficially be regarded as constraint propagation. However, while both Gebser et al. (2009)
and Ostrowski and Schaub (2012) consider a particular application, we deal with a more ab-
stract interface to external sources. An important difference between CLINGCON and external
behavior learning (EBL) is that the constraint solver is seen as a black box, whereas we ex-
ploit known properties of external sources. Moreover, we support user-defined learning, i.e.,
customization of the default construction of conflict clauses to incorporate knowledge about the
sources, as discussed in Section 3.1.1. Another difference is the construction of conflict clauses.
Constraint ASP has special constraint atoms, which may be contradictory, e.g. T(X > 10) and
T(X = 5). The learned clauses are sets of constraint literals, which are kept as small as pos-
sible. In our algorithm we have usually no conflicts between ground external atoms as output
atoms are mostly independent of each other (excepting e.g. functional sources). Instead, we have
a strong relationship between the input and the output. This is reflected by conflict clauses which
usually consist of (relevant) input atoms and the negation of one output atom. As in constraint
ASP solving, the key for efficiency is keeping conflict clauses small.

83

3. PROPOSITIONAL HEX-PROGRAM SOLVING

Unfounded set checking has been established as a fruitful approach in ASP solving. Found-
edness is besides grounding one of the main differences between ASP and SAT solving. Histor-
ically, different kinds of unfounded set checks with different complexities have been developed
for various program classes. Normal logic programs without external sources require already an
unfounded set check which runs, however, in polynomial time and is frequently realized using
source pointers [Simons et al., 2002]. Intuitively, the reasoner stores for each atom a pointer to
a rule which possibly supports this atom. The list of source pointers is updated during propaga-
tion. If at some point there is no supporting rule for an atom, then it can be concluded that this
atom must be false. The approach has then been extended to disjunctive logic programs. Related
to our work is the one of Koch et al. (2003), which reduces stable model checking for disjunc-
tive logic programs to unsatisfiability testing of CNFs, which, like answer set checking from
FLP-reducts, is co-NP-complete [Faber et al., 2011]. The approach of Koch et al. (2003) was
then extended to conflict-driven learning and unfounded set checking by Drescher et al. (2008).
Here, two instances of the reasoner generate and check answer set candidates. As a further exten-
sion we considered unfounded set checking for disjunctive logic programs with external atoms.
In our setting, we need in addition to respect the semantics of external sources, thus the results
there do not carry over immediately. External sources prevent encoding the whole unfounded set
search in a SAT instance since their semantics is in general not known a priori. Thus, we devel-
oped a SAT encoding combined with a post-check. The technique of Drescher et al. (2008) was
recently, in parallel to our work, refined by exploiting assumptions such that the encoding of the
unfounded set search does not need to be adapted to the current assignment [Gebser et al., 2013].
This is related to our uniform encoding of the unfounded set search, but still restricted to dis-
junctive ASP without external sources. From a complexity point of view, the difference between
ordinary disjunctive programs and FLP programs with external atoms is that co-NP-hardness
holds for the latter already for Horn programs with nonmonotonic external atoms that are de-
cidable in polynomial time. For computationally harder external atoms, the complexity might
increase relative to an oracle for the external function [Faber et al., 2011]. However, the results
from this thesis do still apply in such cases.

Moreover, Drescher et al. (2008) also use a splitting technique related to our program de-
composition, yet for ordinary programs only. While we consider e-cycles, which are specific
for HEX-programs, the interest of Drescher et al. (2008) is with head-cycles with respect to
disjunctive rule heads. In fact, our technique may be regarded as an extension of the work
by Drescher et al. (2008), since the evaluation of Π̂ follows their principles of performing UFS
checks in case of head-cycles. Note that our splitting is different from the well-known splitting
technique [Lifschitz and Turner, 1994] as we consider only positive dependencies for ordinary
atoms.

The unfounded set check presented in this work is needed for the FLP semantics, but other
semantics may not need on such a check. For instance, Shen (2011), Shen and Wang (2011)
and Shen et al. (2014) present a semantics where unfounded set checking is essentially replaced
by a fixpoint iteration which, intuitively, tests if a model candidate reproduces itself. This might
be more efficient in some cases.

84

3.4. Related Work and Summary

3.4.2 Summary and Future Work

In this chapter we have first introduced a novel guess and check evaluation algorithm for ground
HEX-programs. It is related to conflict-driven disjunctive ASP solving [Drescher et al., 2008],
but extends the techniques to programs with external atoms. In contrast to the previous transla-
tion approach, the new algorithms respect external atoms as first-class citizens.

Whenever the algorithm calls external sources, which is not only done after a model candi-
date has been created but possibly also during model construction, it possibly learns additional
nogoods from the call. While the algorithm is designed in a generic form which uses learned
nogoods abstractly defined by learning functions, we have also specified concrete learning func-
tions for external atoms with frequent properties, such as functionality and monotonicity. We
have shown that adding these nogoods to the solver is correct in the sense that it does not elimi-
nate compatible sets. Hence, the nogoods help restricting the search space by exploiting part of
the known input-output behavior of external atoms.

Answer sets are subset-minimal. Checking the minimality is in general (in presence of dis-
junctive rule heads and/or nonmonotonic external atoms) a co-NP-complete task and requires
special attention. We have designed a minimality check based on the concept of unfounded
sets [Faber, 2005]. The search for unfounded sets is realized as a separate search problem which
is encoded as SAT instance, for which we discussed two encodings. That is, the solutions to the
SAT instance contain representations of all unfounded sets, but not all solutions are such rep-
resentations. However, the unfounded sets can be identified among all solutions by a relatively
simple post-check. We have then shown several optimizations of the basic minimality check and
tightly coupled the minimality check and the search for unfounded sets by nogood exchanging,
i.e., nogoods learned in one search problem can be reused for the other one.

We have shown a decision criterion which allows for skipping the entire minimality check
for certain practically relevant program classes. The fundamental idea is exploiting the absence
of cycles over external atoms. This criterion can not only be applied on the overall HEX-program,
but also on program components wrt. a program decomposition introduced in this chapter.

Finally, we have provided an alternative algorithm for programs (or program components in
our model-building framework) which are monotonic. This algorithm has lower computational
costs as it is based fixpoint iteration instead of guessing, which runs in polynomial time.

Empirical benchmark results are postponed to Chapter 5. They will show that the new algo-
rithms lead to significantly better runtimes, where the gain is potentially even exponential.

We now discuss some starting points for future work. The identification of further proper-
ties for informed learning is an important topic. Another issue is the development of heuristics
for several purposes. First, our algorithm can perform unfounded set checks already during the
search. Second, we have introduced two encodings for unfounded set checking and observe in
Chapter 5 that each of them might be more efficient in some cases. A heuristics for dynami-
cally choosing between the two encodings might be subject to future work. Third, our algorithm
evaluates external atoms whenever their input is complete. However, this is only one possible
strategy. It is also possible to delay external atom evaluation although the input is already com-
plete, which may be advantageous for external sources with high computational costs. On the
other hand, it might also be useful in some cases to evaluate external atoms already with partial
input (e.g., for monotonic external atoms), since this could derive further nogoods which can

85

3. PROPOSITIONAL HEX-PROGRAM SOLVING

already falsify the partial assignments. Thus, the development of a heuristics for deciding when
to evaluate external atoms is also an interesting point for future work.

86

Chapter 4
Grounding and Domain Expansion

In this chapter we consider programs with variables and appropriate grounding algorithms, i.e.,
transformations of programs with variables into propositional programs. While efficient ground-
ing algorithms for ordinary ASP programs already exist, the presence of external atoms calls for
new grounding techniques. In particular, value invention is a special challenge, i.e., programs
with external sources which return constants that do not show up in the original program. While
naive support of value invention leads to programs with infinite groundings and answer sets in
general, suitable safety conditions can be used to restrict the use of value invention such that this
is avoided. Traditionally, the notion of strong domain-expansion safety as by Eiter et al. (2006a)
(recapitulated in Chapter 2) was used. However, this notion is unnecessarily restrictive because
it prevents value invention in many cases although the program can be finitely grounded.

After recapitulating the model-building framework for HEX-programs in Section 4.1, re-
laxing the safety conditions is thus a main concern in this chapter and will be addressed in
Section 4.2. This will lead to a new class of programs which is in contrast to strongly domain-
expansion safe HEX-programs from Chapter 2 and will be called liberally domain-expansion

safe HEX-programs.

Based on this new class we then develop a new grounding algorithm in Section 4.3. While
the traditional grounding algorithm cannot directly process arbitrary strongly domain-expansion
safe programs but relies on a decomposition into extended pre-groundable HEX-fragments, as
already briefly discussed in Chapter 2, the new algorithm will be able to ground arbitrary liber-
ally and strongly domain-expansion safe HEX-programs as the latter are a strict generalization
of liberally domain-expansion safe programs. While, program decomposition is not necessary
anymore, it still can be useful in some cases. This gives the designer of evaluation heuristics for
the model-building framework more freedom. The new algorithm is integrated into the model-
building framework, which is recapitulated in Section 4.1, in Section 4.4.

Finally, we will develop a new evaluation heuristics for the model-building framework which
aims at two opposite goals. The program shall be split as rarely as possible because this is

87

4. GROUNDING AND DOMAIN EXPANSION

advantageous for the evaluation algorithms from Chapter 3. However, in some cases splits are of
great importance for our new grounding algorithm from Section 4.3 for efficiency reasons. Thus,
the new heuristics splits the program whenever this is advantageous for grounding purposes
(although not necessary), but not more often.

4.1 The Model-Building Framework for HEX-Programs

The evaluation of HEX-programs is traditionally based on a model-building framework intro-
duced by Eiter et al. (2011a) and described in more detail by Schüller (2012). The idea is to
split the non-ground program into (possibly overlapping) smaller program components, called
evaluation units or units in short, where each evaluation unit is an extended pre-groundable
HEX-program as described in Chapter 2. The decomposition is achieved by application of a gen-
eralized version of the Splitting Theorem [Lifschitz and Turner, 1994] and the Global Splitting

Theorem [Schindlauer, 2006]. For this purpose, a dependency graph between non-ground rules
of the program is constructed, which is in contrast to former evaluation techniques that used
dependencies between atoms instead of rules [Eiter et al., 2006b; Schindlauer, 2006].

The decomposition of the overall program into evaluation units is done for two reasons.
First, this may increase efficiency in some cases, as observed by Schüller (2012). And second,
the decomposition is sometimes even necessary because the actual evaluation in Algorithm Eval-
uateExtendedPreGroundable (see Chapter 2) can only handle extended pre-groundable HEX-
programs. Thus, if the input program is not extended pre-groundable, the framework must split
it such that each unit becomes extended pre-groundable. It was shown by Schüller (2012) that
such a splitting exists for every strongly domain-expansion safe program. In later subsections
of this chapter, we will develop a more advanced algorithm which can handle a larger class of
programs directly. This gives the framework more freedom in the decision whether units are
split or not.

The work by Eiter et al. (2011a) and Schüller (2012) focuses on the evaluation framework as
a whole and uses black-box ASP solvers for evaluating the single evaluation unit, i.e., for imple-
menting Algorithm EvaluateExtendedPreGroundable. In this sense, a macroscopic perspective
is chosen. In contrast, this thesis puts the focus on the evaluation of the units and therefore
has a microscopic point of view. Nevertheless we describe the main aspects of the evaluation
framework to provide a complete picture of the evaluation methods.

Our running example in this subsection will be the following.

Example 43. Let Π be the following ground program with facts employee(a), employee(b),
employee(c) and qualification(c):

r1 : team1(a) ∨ team1(b)←
r2 : team1(b) ∨ team1(c)←
r3 : team2(X)← &diff [employee, team1](X)
r4 : team1a(X)← &diff [team1, qualification](X)
r5 : team1b(X)← team1(X), qualification(X)
r6 : bonus(X)← team2(X)
r7 : bonus(X)← team1b(X)

88

4.1. The Model-Building Framework for HEX-Programs

Intuitively, the program considers a company with employees defined using predicate employee,
some of which have a certain qualification . The program forms then two teams team1 and
team2 such that certain restrictions concerning the assignment of employees to team1, encoded
by r1 and r2, are satisfied. By r3, everyone who is not in team1 shall be in team2. Then team1
is further divided into two sub-teams team1a and team1b, where team1b shall consist of all
employees who have the qualification (r5); the others are assigned to team1a (r4). Finally, all
employees working in team2 or in team1b shall be eligible for a bonus (r6 and r7). ✷

4.1.1 Formalization of the Model-Building Framework

The model-building framework is based on a notion of rule dependencies, which is in contrast to
the previous approach [Schindlauer, 2006] based on the atom dependency graph ADG(Π). This
has the advantage that many theorems by Schüller (2012) become simpler. Moreover, the new
framework is also more flexible because it abstractly uses evaluation graphs which define the
ordering of program evaluation, while the former approach hard-coded this in the algorithms.

Definition 50 (Rule Dependencies). Let Π be a program with rules r, s ∈ Π. We denote by
r →m s (resp. r →n s) that r depends monotonically (resp. depends nonmonotonically) on s.
We define:

(i) If a ∈ B+(r), b ∈ H(s) and a ∼ b, then r →m s.

(ii) If a ∈ B−(r), b ∈ H(s) and a ∼ b, then r →n s.

(iii) If a ∈ H(r), b ∈ H(s) and a ∼ b, then both r →m s and s→m r.

(iv) If a ∈ B(r) is an external atom of form &g [Y](X) where Y = Y1, . . . , Yn, the input Yi = p

for 1 ≤ i ≤ ar I(&g) has type(&g , i) = pred, and b ∈ H(s) is an atom of form p(Z),
then

• r →m s if &g is monotonic (in all predicate parameters) and a ∈ B+(r); and

• r →n s otherwise.

Note that the dependency in Condition (iv) is considered monotonic only if the external atom
is monotonic in all parameters. This is because the former formalization (and implementation) of
HEX did not distinguish between different parameters, i.e., there was only a global monotonicity
attribute of each external predicate. In this thesis we have a more fine-grained approach and use
a separate monotonicity attribute for each predicate parameter, which allows for using a more
liberal definition of rule dependencies (monotonic dependencies are usually advantageous over
nonmonotonic ones). However, as this thesis does not focus on the evaluation framework, we
stick with the former definition at this point and leave the formalization of the relaxed notion for
future work.

Example 44 (ctd.). For the program from Example 43 we have the following dependencies,
which are visualized in Figure 4.1:

• r1 →m r2 and r2 →m r1 by (iii)

89

4. GROUNDING AND DOMAIN EXPANSION

r1 r2

r3 r4

r5

r6

r7

→m

→n →n

→n

→n

→m

→m

→m

→m

Figure 4.1: Rule Dependencies of the Program from Examples 43 and 44

• r3 →n r1 and r3 →n r2 by (iv)

• r4 →n r1 and r4 →n r2 by (iv)

• r5 →m r1 and r5 →m r2 by (i)

• r6 →m r3 by (i)

• r7 →m r5 by (i)

✷

The dependency graph is used to construct the evaluation graph which controls the overall
evaluation of the program. The evaluation graph is composed of extended pre-groundable HEX-
programs as nodes, which are called evaluation units in this context. The edges of the evaluation
graph connect the evaluation units acyclically and are derived from the dependency relation
between rules. More formally, we introduce the following concepts [Schüller, 2012].

Definition 51 ((Evaluation) Unit). An (evaluation) unit is an extended pre-groundable HEX-
program.

Definition 52 (Evaluation Graph). An evaluation graph E = 〈V,E〉 of a program Π is a directed
acyclic graph; vertices V are evaluation units and E has the following properties:

(a)
⋃

u∈V u = Π, i.e., every rule r ∈ Π is contained in at least one unit;

(b) for every non-constraint r ∈ Π, it holds that
∣∣{u ∈ V | r ∈ u}

∣∣ = 1, i.e., r is contained in
exactly one unit;

(c) for each nonmonotonic dependency r →n s between rules r, s ∈ Π and for all u ∈ V with
r ∈ u and v ∈ V with s ∈ v s.t. u 6= v, there exists an edge (u, v) ∈ E, i.e., nonmonotonic
dependencies between rules have corresponding edges everywhere in E ; and

90

4.1. The Model-Building Framework for HEX-Programs

(d) for each monotonic dependency r →m s between rules r, s ∈ Π, there exists one u ∈ V
with r ∈ u such that E contains all edges (u, v) with v ∈ V , s ∈ v and v 6= u, i.e.,
there is (at least) one unit in E where all monotonic dependencies from r to other rules have
corresponding outgoing edges in E .

We denote by predsE(u) the predecessors of unit u in E = 〈V,E〉, i.e., predsE(u) =
{
v ∈

V | (u, v) ∈ E
}

. For units u, w we write u < w if there exists a path from u to w in E
and u ≤ w if u < w or u = w. Moreover, for a unit u ∈ V let u< =

⋃
w∈U,u<w w and

u≤ = u< ∪ {u}.
Informally, the edges of E cover the rule dependencies in the sense that if r ∈ v depends on

s ∈ w with w 6= v ∈ V , then there must be an edge from v to w in E. For the sake of simplicity
of the formal results, it is advantageous to introduce an empty final evaluation unit ufinal which
depends on all other units, as shown in the following example.

Example 45 (ctd.). A valid evaluation graph for the program in Example 43 is E = 〈V,E〉 with

V =
{
u1 = {r1, r2}, u2 = {r3}, u3 = {r4}, u4 = {r5}, u5 = {r6, r7}, ufinal = ∅

}

E =
{
(u2, u1), (u3, u1), (u4, u1), (u5, u2), (u5, u4),

(ufinal , u1), (ufinal , u2), (ufinal , u3), (ufinal , u4), (ufinal , u5)
}

as visualized in Figure 4.2 (where ufinal is omitted). ✷

team1(a) ∨ team1(b) ←
team1(b) ∨ team1(c)←

team2(X)← &diff

[employee, team1](X)
team1a(X)← &diff

[team1, qualification](X)
team1b(X)← team1(X),
qualification(X)

bonus(X) ← team2(X)
bonus(X)← team1b(X)

u1

u2 u3 u4

u5

Figure 4.2: Evaluation Graph of Example 45 without ufinal

Note that there exist in general multiple valid evaluation graphs for a given program. How-
ever, it was shown in Proposition 16 by Schüller (2012) that every strongly domain-expansion
safe HEX-program has at least one evaluation graph, which is crucial for the applicability of the
framework in the general setting. The construction of a concrete evaluation graph is the job of
so-called evaluation heuristics which can be plugged into the framework. The heuristics may
have significant influence on efficiency [Eiter et al., 2011a] and we will develop a new heuristics
in Section 4.5.

91

4. GROUNDING AND DOMAIN EXPANSION

∅
mI

1

{team1(a),
team1(c)}

mO
2

{team1(b)}

mO
3

int(mO
2)

mI
4

int(mO
3)

mI
5

{team2(b)}
mO

6

{team2(a),
team2(c)}

mO
7

int(mO
2)

mI
8

int(mO
3)

mI
9

{team1a(a)}
mO

10

{team1a(b)}
mO

11

int(mO
2)

mI
12

int(mO
3)

mI
13

{team1b(c)}
mO

14

∅
mO

15

team2(b),
team1b(c)

mI
16

team2(a),
team2(c)

mI
17

{bonus(b),
bonus(c)}
mO

18

{bonus(a),
bonus(c)}
mO

19

u1

u2 u3 u4

u5

Figure 4.3: Answer Set Graph of Example 48

An important concept for the model building process is that of first ancestor intersection

units. This will allow us in the following to decide whether the output models of multiple
predecessor units origin from the same ancestor.

Definition 53 (First Ancestor Intersection Unit (FAI)). For an evaluation graph E = 〈V,E〉 and
distinct units v, w ∈ V , we say that w is a first ancestor intersection unit (FAI) of v if there exist
paths p1 6= p2 from v to w in E such that p1 and p2 share no nodes apart from v and w. We
denote by fai(v) the set of all FAIs of a unit v.

Example 46 (ctd.). In the evaluation graph from Example 44, u1 is the only FAI of u5 because
there exist two paths u5, u2, u1 and u5, u4, u1 from u5 to u1, but no other. ✷

Evaluation is then based on an answer set graph, which interrelates models at evaluation
units in the evaluation graph. Each unit u has assigned a set of input models i -ints(u) and a set
of output models o-ints(u).

92

4.1. The Model-Building Framework for HEX-Programs

Definition 54 (Interpretation Structure). An interpretation structure for an evaluation graph E =
〈V,E〉 is a labeled directed acyclic graph I = 〈M,F, unit , type, int〉where each nodeM ⊆ Iid
is from a countable set Iid of identifiers, e.g., from N, and unit : M → V , type : M → {I, O}
and int : M → 2HBΠ are total node labeling functions.

Given a unit u ∈ V of an evaluation graph E = 〈V,E〉, we denote for an interpretation struc-
ture I by i -intsI(u) =

{
m ∈ M | unit(m) = u and type(m) = I

}
the input interpretations,

and by o-intsI(u) =
{
m ∈ M | unit(m) = u and type(m) = O

}
the output interpretations

at unit u, respectively. Given vertex m ∈M , we further denote by

int+(m) = int(m) ∪
⋃{

int(m′) | m′ ∈M and m′ is reachable from m in I
}

the expanded interpretation of m.
An interpretation structure is called interpretation graph, if the edge relation satisfies some

further properties [Schüller, 2012].

Definition 55 (Interpretation Graph). An interpretation graph I = {M,F, unit , type, int} for
an evaluation graph E = 〈V,E〉 is an interpretation structure which fulfills for every u ∈ V the
following properties:

(IG-I) I-connectedness: for every m ∈ o-intsI(u) the structure contains exactly one outgoing
edge (m,m′) ∈ F and m′ ∈ i -intsI(u) is an i-interpretation at unit u;

(IG-O) O-connectedness: for every m ∈ i -intsI(u) and for every predecessor unit ui ∈
predsE(u) of u, there is exactly one outgoing edge (m,mi) ∈ F and mi ∈ o-intsI(ui)
(every mi is an o-interpretation at the respective unit ui);

(IG-F) FAI intersection1: for every m ∈ i -intsI(u), let I ′ be the subgraph of I reachable
from m, and let E ′ be the subgraph of E reachable from u. Then I ′ contains exactly one
o-interpretation at each evaluation unit of E ′; and

(IG-U) Uniqueness: for each pair of distinct verticesm1,m2 ∈M,m1 6= m2 with unit(m1) =
unit(m2) = u the expanded interpretation of m1 and m2 differs, formally int+(m1) 6=
int+(m2).

Example 47 (ctd.). Figure 4.3 shows an interpretation graph for the evaluation graph of Exam-
ple 44. Actually it shows an answer set graph, which is a special interpretation graph and is
introduced next. ✷

It is intended that an output model mO of a unit u results from the corresponding input
modelmI, if Algorithm EvaluateExtendedPreGroundable is called for the program u augmented
by mI interpreted as facts, and corresponds to an answer set of u≤. However, the definition

1This property is called FAI intersection because it implies that for any units u and v ∈ fai(u), all paths in the
interpretation graph from some m ∈ i-intsI(u) to an output model m′ ∈ o-intsI(v) share the same m′, i.e., the
paths ‘intersect’ at FAI units. In fact, in order to check the property for a unit u, it suffices to consider all v ∈ fai(u)
because other ancestor units between u and v are not reachable via multiple paths, thus the property cannot be
violated (cf. the proof of Proposition 17 by Schüller (2012)).

93

4. GROUNDING AND DOMAIN EXPANSION

of an interpretation graph does not refer to the HEX-programs in the evaluation units. Thus,
it is not yet guaranteed that the output interpretations of the final evaluation unit are really
the intended answer sets of the program. This requires the further notion of an answer set

graph [Schüller, 2012].

Definition 56 (Answer Set Graph). Given an evaluation graph E = 〈V,E〉, an answer set graph

is an interpretation graph I for E such that for each unit u ∈ V it holds that

(i) every expanded input interpretation in i -intsI(u) is an answer set of u<, i.e., int+(m) ∈
AS(u<) for all m ∈ i -intsI(u);

(ii) every expanded output interpretation in i -intsI(u) is an answer set of u≤, i.e., int+(m) ∈
AS(u≤) for all m ∈ o-intsI(u); and

(iii) every input interpretation at u is the union of the output interpretations it depends on, i.e.,
int(m) =

⋃
(m,mi)∈F

int(mi).

4.1.2 Using the Framework for Model Building

For the description of the evaluation algorithm we need to introduce the concept of joins. This
will allow us to decide which combinations of output models of predecessor units serve as an
input model to a successor unit.

Definition 57 (Join). Let I = 〈M,F, unit , type, int〉 be an interpretation graph for an evalua-
tion graph E = 〈V,E〉. Let u ∈ V be an evaluation unit and u1, . . . , uk be all units on which u
depends. Let mi ∈ o-ints(ui) for 1 ≤ i ≤ k be output models of predecessor units of u.

Then the join m1 ✶ · · · ✶ mk =
⋃

1≤i≤kmi is defined if for each u′ ∈ fai(u) there exists
exactly one model m′ ∈ o-ints(u′) reachable from some model mi, 1 ≤ i ≤ k, and undefined
otherwise.

Intuitively, the concept ensures that only those combinations of output models form an input
model to an evaluation unit, which result from one common ancestor model in the model graph.

During program evaluation, Algorithm BuildAnswerSets starts from an empty answer set
graph and expands it to the final answer set graph as follows. The algorithm iteratively selects
an evaluation unit u such that all direct predecessors u1, . . . , uk have already been processed.
Then the algorithm computes in the first step all input interpretations in Parts (a) and (b) (which
is the empty interpretation for units without predecessors) and in a second step all output inter-
pretations of u in Part (d). Both steps can be described in terms of updates to the answer set
graph. The input interpretations of ufinal correspond then to the answer sets of Π (cf. Part (c)),
which is formalized by the following theorem.

Theorem 4 (Theorem 15 by Schüller (2012)). Given an evaluation graph E = (V,E) of a

program Π, BuildAnswerSets returns AS(Π).

This is demonstrated with a final example.

94

4.1. The Model-Building Framework for HEX-Programs

Algorithm BuildAnswerSets

Input: Evaluation graph E = (V,E) for a HEX-program Π with a unit ufinal that depends
on all other units in V

Output: All answer sets of Π

M ← ∅, F ← ∅, unit ← ∅, type ← ∅, int ← ∅, U ← V

while U 6= ∅ do

Choose u ∈ U s.t. predsE(u) ∩ U = ∅
Let {u1, . . . , uk} = predsE(u)

(a) if k = 0 then

m← max (M) + 1
M ←M ∪ {m}
unit(m)← u, type(m)← I, int(m)← ∅

(b) else

for m1 ∈ o-ints(u1), . . . ,mk ∈ o-ints(uk) do

if J = m1 ✶ · · · ✶ mk is defined then

m← max (M) + 1
M ←M ∪ {m}
F ← F ∪

{
(m,mi) | 1 ≤ i ≤ k

}

unit(m)← u, type(m)← I, int(m)← J

(c) if u = ufinal then

return i -ints(ufinal)

(d) for m′ ∈ i -ints(u) do

O ← EvaluateExtendedPreGroundable
(
u, int(m′)

)

for o ∈ O do

m← max (M) + 1
M ←M ∪ {m}
F ← F ∪

{
(m,m′) | 1 ≤ i ≤ k

}

unit(m)← u, type(m)← O, int(m)← o

U ← U \ {u}

95

4. GROUNDING AND DOMAIN EXPANSION

Example 48 (ctd.). We now describe the construction of the answer set graph as depicted in
Figure 4.3 (without final unit ufinal). The evaluation graph in Example 44 has a single unit u1
without predecessors. Its only input model is the empty one, i.e., i -ints(u1) = {mI

1 = ∅}.
The algorithm chooses u1 and computes the set of output models for input model ∅, which

is o-ints(u1) =
{
mO

2 = {team1(a), team1(c)},mO
3 = {team1(b)}

}
.

In the next step, one of the components u2, u3 or u4 can be chosen for evaluation because for
each of them the single predecessor unit u1 has already been processed. For u2 and input model
mI

4 = mO
2 = {team1(a), team1(c)}, the unique output model is mO

6 = {team2(b)}, and for in-
put model mI

5 = mO
3 = {team1(b)}, the unique output model is mO

7 = {team2(a), team2(c)}.
For u3 and input model mI

8 = mO
2 = {team1(a), team1(c)}, the unique output model is

mO
10 = {team1a(a)}, and for input model mI

9 = mO
3 = {team1(b)}, the unique output model

is mO
11 = {team1a(b)}. For u4 and input model mI

12 = mO
2 = {team1(a), team1(c)}, the

unique output model is mO
14 = {team1b(c)}, and for input model mI

13 = mO
3 = {team1(b)},

the unique output model is mO
15 = ∅.

Then the algorithm chooses u5 for evaluation. The first step is the computation of the input
models of u5. Because u5 has two predecessor units u2 and u4 and each of them has two output
models mO

6 , mO
7 resp. mO

14, mO
15, there are four possible combinations. However, only the joins

mI
16 = mO

6 ✶ mO
14 = {team2(b), team1b(c)} and mI

17 = mO
7 ✶ mO

15 = {team2(a), team2(c)}
are defined, because for the common ancestor unit u1 of u5, there is exactly one output model
mO

2 ∈ o-ints(u1) reachable from mO
6 ,m

O
14 resp. mO

3 ∈ o-ints(u1) from mO
7 ,m

O
15. In con-

trast, from mO
6 ,m

O
15 and mO

7 ,m
O
14, both output models mO

2 ,m
O
3 of u1 are reachable. In the

second step, the output models of u5 are determined: for mI
16 the unique output model is mO

18 =
{bonus(b), bonus(c)} and for mI

17 the unique output model is mO
19 = {bonus(a), bonus(c)}.

Finally, unit ufinal is chosen for evaluation. Actually, as this is the final unit and contains no
rules, only the input models need to be determined. We have 5 units with 2 output models each,
thus we have 25 possible combinations. However, only mI

20 = mO
2 ✶ mO

6 ✶ mO
10 ✶ mO

14 ✶

mO
18 = {team1(a), team1(c), team1a(a), team1b(c), team2(b), bonus(b), bonus(c)} (with the

single reachable model mO
2 at the common ancestor unit u1) and mI

21 = mO
3 ✶ mO

7 ✶ mO
11 ✶

mO
15 ✶ mO

19 = {team1(b), team1a(b), team2(a), team2(c), bonus(a), bonus(c)} (with the sin-
gle reachable model mO

3 at the common ancestor unit u1) are defined. These models are the
answer sets of the program. ✷

4.2 Liberal Safety Criteria for HEX-Programs

In this section we want to relax the traditional safety criteria as formalized by strong domain-
expansion safety in Definition 23. We start with an example to demonstrate that some programs
which are not strongly domain-expansion safe are still finitely groundable, i.e., a finite subset of
the grounding suffices to compute the answer sets.

Example 49. Consider the program Π:

Π=

{
r1 : t(a); r3 : s(Y)← t(X),&concat [X, a](Y)

r2 : dom(aa); r4 : t(X)← s(X), dom(X)

}

96

4.2. Liberal Safety Criteria for HEX-Programs

where &concat [X, a](Y) returns in Y the string in X with a appended, has an infinite ground-
ing. Note that this program is not strongly domain-expansion safe due to the external atom in
rule r3. However, only rules using a and aa are relevant for program evaluation because the
cycle is ‘broken’ by dom(X) in r4. ✷

Note that external sources are largely black boxes to the reasoner. Thus the set of relevant
constants for grounding might be intuitively clear, but not formally. Predetermining is in general
not possible. We call a program finitely restrictable if a finite portion of the grounding of the
program is sufficient to preserve all answer sets, i.e., a finite grounding has the same answer sets
(wrt. the true atoms) as the complete grounding. This is ensured by additional safety criteria. As
the example demonstrates, strong domain-expansion safety as by Definition 23 is unnecessarily
restrictive.

Our overall objective in this section is thus to introduce a more liberal notion of safety that
still ensures finite restrictability. However, rather than to merely generalize an existing notion,
we aim for a generic notion at a conceptual level that may incorporate besides syntactic also se-
mantic information about sources. We will introduce a new notion of liberal domain-expansion

safety which incorporates both syntactic and semantic properties of the program at hand. In the
following, domain-expansion safety refers to liberal domain-expansion safety, unless we explic-
itly say strong domain-expansion safety. Compared to the latter, this gives us a larger class of
programs which are guaranteed to have a finite grounding that preserves all answer sets. Un-
like strong domain-expansion safety, liberal domain-expansion safety is not a property of entire
atoms but of attributes, i.e., pairs of predicates and argument positions. Intuitively, an attribute
is domain-expansion safe, if the number of different terms in an answer-set preserving ground-
ing (i.e., in a grounding which has the same answer sets if restricted to the positive atoms as
the original program) is finite. A program is domain-expansion safe, if all its attributes are
domain-expansion safe.

4.2.1 Liberally Domain-Expansion Safe HEX-Programs

Our notion of liberal domain-expansion safety (de-safety) is designed in an extensible fash-
ion, i.e., such that several safety criteria can be easily integrated. For this we parameterize
our definition of domain-expansion safety by a term bounding function (TBF), which identifies
variables in a rule that are ensured to have only finitely many instantiations in the answer set
preserving grounding. Finiteness of the overall grounding follows then from the properties of
TBFs. Concrete syntactic and semantic properties are realized in our definitions of concrete
TBFs (cf. Section 4.2.2).

Definition 58 (Attributes). For an ordinary predicate p ∈ P , let p↾i be the i-th attribute of p for
all 1 ≤ i ≤ ar(p). For an external predicate &g ∈ X with input list Y in rule r, let &g [Y]r↾T i
with T ∈ {I, O} be the i-th input resp. output attribute of &g [Y] in r for all 1 ≤ i ≤ arT (&g).

For a program Π, the range of an attribute is, intuitively, the set of ground terms which occur
in the position of the attribute. Formally:

97

4. GROUNDING AND DOMAIN EXPANSION

Definition 59 (Range). For an attribute p↾i we define range(p↾i,Π) = {ti | p(t1, . . . , tar(p)) ∈

A(Π)}; for an attribute &g [Y]r↾T i we define range(&g [Y]r↾T i,Π) = {xTi | &g [xI](xO) ∈
EA(Π)}, where xT = xT1 , . . . , x

T
arT (&g).

Example 50. Some attributes of the program Π from Example 49 are t↾1, &concat [X, a]r3↾I2
and &concat [X, a]r3↾O1. We further have range(t↾1,Π) = {a}. ✷

Definition 60 (Grounding Operator GΠ). We use the following monotone operator to compute
by fixpoint iteration a finite subset of grndC(Π) for a program Π:

GΠ(Π
′) =

⋃
r∈Π

{
rθ | ∃A ⊆ A(Π′),A 6|= ⊥,A |= B+(rθ)

}
,

where A(Π′) =
{
Ta,Fa | a ∈ A(Π′)

}
\ {Fa | a ← . ∈ Π} and rθ is the instance of r under

variable substitution θ : V → C.

Note that in this definition, A might be partial, but by convention we assume that all atoms
which are not explicitly assigned to true are false. Moreover, ranges are defined also for non-
ground programs.

That is, GΠ takes a ground program Π′ as input and returns all rules from grndC(Π) whose
positive body is satisfied by some assignment over the atoms of Π′. Intuitively, the operator iter-
atively extends the grounding by new rules if they are possibly relevant for the evaluation, where
relevance is in terms of satisfaction of the positive rule body by some assignment constructible
over the atoms which are possibly derivable so far.

Obviously, the least fixpoint G∞
Π (∅) of this operator is a subset of grndC(Π); we will show

that it is finite if Π is domain-expansion safe according to our new notion. Moreover, we will
show that this grounding preserves all answer sets because all rule instances which are not added
have unsatisfied bodies anyway.

Example 51. Consider the following program Π:

r1 :s(a); r2 : dom(ax); r3 : dom(axx)
r4 :s(Y)← s(X),&concat [X,x](Y), dom(Y)

The least fixpoint of GΠ is the following ground program:

r′1 : s(a); r′2 : dom(ax); r′3 : dom(axx)
r′4 : s(ax)← s(a),&concat [a, x](ax), dom(ax)
r′5 : s(axx)← s(ax),&concat [ax, x](axx), dom(axx)

Rule r′4 is added in the first iteration and rule r′5 in the second. ✷

Towards a formal definition of domain-expansion safety, we introduce the following notions.

Definition 61 (Bounded Terms). A term in a rule is bounded, if the number of substitutions in
G∞

Π (∅) for this term is finite.

Boundedness of terms is abstractly formalized using term bounding functions (TBFs). That
is, a TBF declares terms as bounded.

98

4.2. Liberal Safety Criteria for HEX-Programs

Definition 62 (Term Bounding Function (TBF)). A term bounding function b(Π, r, S,B) maps
a program Π, a rule r ∈ Π, a set S of domain-expansion safe attributes, and a set B of bounded
terms in r to an enlarged set of bounded terms b(Π, r, S,B) ⊇ B, such that all t ∈ b(Π, r, S,B)
have finitely many substitutions in G∞

Π (∅) if

(i) the attributes S have a finite range in G∞
Π (∅); and

(ii) each term in terms(r) ∩B has finitely many substitutions in G∞
Π (∅).

Intuitively, a TBF gets a set of already bounded terms and a set of already domain-expansion
safe attributes. The TBF then derives under these preconditions further terms which are also
bounded.

Our concept derives domain-expansion safety of attributes and programs from the bounded-
ness of variables according to a TBF. We use a mutually inductive definition that starts from the
empty set of domain-expansion safe attributes S0(Π) and then derives in each step n ≥ 1, first
the set Bn(r,Π, b) of bounded terms for all rules r, and then an enlarged set Sn(Π) of domain-
expansion safe attributes. The set of domain-expansion safe attributes in step n+1 thus depends
on the TBF, which in turn depends on the domain-expansion safe attributes from step n.

Definition 63 ((Liberal) Domain-Expansion Safety). Let b be a TBF. The set of bounded terms

Bn(r,Π, b) in a rule r ∈ Π in step n ≥ 1 is defined as

Bn(r,Π, b) =
⋃

j≥0

Bn,j(r,Π, b),

where Bn,0(r,Π, b) = ∅ and for j ≥ 0,

Bn,j+1(r,Π, b) = b(Π, r, Sn−1(Π), Bn,j).

The set of domain-expansion safe attributes S∞(Π) =
⋃

i≥0 Si(Π) of a program Π is itera-
tively constructed, where S0(Π) = ∅ and for Sn+1(Π) with n ≥ 0 we have

• p↾i∈Sn+1(Π) if for each r ∈ Π and atom p(t1, . . . , tar(p)) ∈ H(r), ti ∈ Bn+1(r,Π, b),
i.e., ti is bounded;

• &g [Y]r↾Ii∈Sn+1(Π) if each Yi is a bounded variable, or Yi is a predicate input parameter
p and p↾1, . . . , p↾ar(p) ∈ Sn(Π); and

• &g [Y]r↾Oi∈Sn+1(Π) if r contains an external atom &g [Y](X) such that either Xi is
bounded or &g [Y]r↾I1, . . . ,&g [Y]r↾Iar I(&g) ∈ Sn(Π).

A program Π is (liberally) domain-expansion safe, if it is safe and all its attributes are
domain-expansion safe.

An example is delayed until we have introduced concrete TBFs in Section 4.2.2. However,
the intuition is as follows. In each step, the TBF first derives terms which are bounded, exploiting

99

4. GROUNDING AND DOMAIN EXPANSION

e.g. syntactic or semantic criteria. This possibly makes additional attributes domain-expansion
safe, which may trigger in turn further terms to become bounded in the next step.

One can show that S∞(Π) is finite, thus the inductive definition can be used for computing
S∞(Π): the iteration can be aborted after finitely many steps. We first note this and other desired
properties.

Proposition 4.1. The set S∞(Π) is finite.

Proof. The sets P , X and Π are finite and each ordinary and external predicate has a finite (input
and output) arity. Therefore there exists only a finite number of attributes.

Moreover, domain-expansion safe attributes have a finite range in G∞
Π (∅).

Proposition 4.2. For every TBF b and n ≥ 0, if α ∈ Sn(Π), then the range of α in G∞
Π (∅) is

finite.

Proof. We prove this by induction on n.
For n = 0 we have S0(Π) = ∅ and the proposition holds trivially.
For the induction step n 7→ n+1, assume that the attributes in Sn(Π) are domain-expansion

safe (outer induction hypothesis). We first show that for each rule r and term t ∈ Bn+1(r,Π, b),
the set of ground instances of r in G∞

Π (∅) contains only finitely many different substitutions
for t. We consider Bn+1,j(r,Π, b) and again prove this by induction on j. For j = 0 we have
Bn+1,0(r,Π, b) = ∅ and the proposition holds trivially. For the induction step j 7→ j + 1,
assume that the terms in Bn+1,j(r,Π, b) are bounded (inner induction hypothesis). Let t ∈
Bn+1,j+1(r,Π, b). If t ∈ Bn+1,j(r,Π) then the claim follows from the inner induction hypothe-
sis. Otherwise t is added in step j +1. By the outer induction hypothesis all attributes in Sn(Π)
have a finite range in G∞

Π (∅). By the inner induction hypothesis there are only finitely many
substitutions for all terms t ∈ Bn+1,j(r,Π, b) in G∞

Π (∅). This fulfills the conditions of TBFs
(Definition 62). Since b is a TBF, this implies that there are also only finitely many substitutions
for all t ∈ b(r, Sn(Π), Bn+1,j). This proves the inner induction statement and, by definition
of Bn(r,Π, b), also that for each t ∈ Bn+1(r,Π, b) the set of ground instances of r in G∞

Π (∅)
contains only finitely many different substitutions for t.

If p↾i ∈ Sn+1(Π), then for each rule r ∈ Π and atom p(t1, . . . , tar(p)) ∈ H(r) we have
ti ∈ Bn+1(r,Π, b). As we have shown, this means that there are only finitely many different
substitutions for ti in the ground instances of r in the set G∞

Π (∅). As there are also only finitely
many different rules in Π, and the number of substitutions for the term ti in the head of r is
finite, this implies that also the set

{
ti | p(t1, . . . , tar(p)) ∈ A(G

∞
Π (∅))

}
is finite.

If &g [Y]r↾Ii ∈ Sn+1(Π), then the i-th input parameter is either of type constant and Yi is a
constant or a variable, or it is of type predicate. If it is of type constant and Yi is a constant, then
there exists only one ground instance. If it is of type constant and Yi is a variable, then Yi ∈
Bn+1(r,Π, b), for which we have shown that there are only finitely many different substitutions
for Y . If it is of type predicate input parameter p, then the range of all attributes p↾1, . . . , p↾ar(p)
in G∞

Π (∅) is finite by the (outer) induction hypothesis.
If &g [Y]r↾Oi ∈ Sn+1(Π), then either &g [Y]r↾I1, . . . ,&g [Y]r↾Iar I(&g) ∈ Sn(Π), or r con-

tains an external atom &g [Y](X) s.t. Yi is bounded. If &g [Y]r↾I1, . . . ,&g [Y]r↾Iar I(&g) ∈

100

4.2. Liberal Safety Criteria for HEX-Programs

Sn(Π), then the range of all input parameters in G∞
Π (∅) is finite by the (outer) induction hy-

pothesis. But then there exist only finitely many oracle calls to &g . As each such call can
introduce only finitely many new values, also the range of each output parameter in G∞

Π (∅) is
finite. If r contains an external atom &g [Y](X) such that Yi is bounded, then only finitely many
substitutions for &g [Y]r↾Oi can satisfy the rule body, thus G∞

Π (Π) will also contain only finitely
many values for &g [Y]r↾Oi. Thus, the (outer) induction hypothesis holds for n+1, which proves
the statement.

Corollary 4.1. If α ∈ S∞(Π), then range
(
α,G∞

Π (∅)
)

is finite.

Proof. If a ∈ S∞ then a ∈ Sn for some n ≥ 0 and the claim follows from Proposition 4.2.

From this result if follows that also G∞
Π (∅) is finite.

Corollary 4.2. If Π is a domain-expansion safe program, then G∞
Π (∅) is finite.

Proof. Since Π is domain-expansion safe by assumption, a ∈ S∞(Π) for all attributes a of Π.
Then by Corollary 4.1, the range of all attributes of Π in G∞

Π (∅) is finite. But then there exists
also only a finite number of ground atoms in G∞

Π (∅). Since the original non-ground program Π
is finite, this implies that also the grounding is finite.

It follows from these propositions that S∞(Π) is also finitely constructible. Note that they
hold independently of a concrete TBF, which is because the properties of TBFs are sufficiently
strong.

4.2.2 Concrete Term Bounding Functions

We now introduce concrete term bounding functions that exploit syntactic and semantic prop-
erties of external atoms to guarantee boundedness of variables. Consequently this ensures also
finiteness of the ground program given by G∞

Π (∅).

Syntactic Criteria

We first identify syntactic properties that can be exploited for our purposes.

Definition 64 (Syntactic Term Bounding Function). We define bsyn(Π, r, S,B) such that we
have t ∈ bsyn(Π, r, S,B) if

(i) t is a constant in r; or

(ii) there is an ordinary atom q(s1, . . . , sℓ) ∈ B+(r) s.t. t = sj , for some 1 ≤ j ≤ ℓ and
q↾j ∈ S; or

(iii) for some external atom &g [Y](X) ∈ B+(r), we have that t = Xi for some Xi ∈ X, and
for each Yi ∈ Y,{

Yi ∈ B, if type(&g , i) = const,

Yi↾1, . . . , Yi↾ar(Yi) ∈ S, if type(&g , i) = pred.

101

4. GROUNDING AND DOMAIN EXPANSION

Intuitively, Case (i) defines a constant as bounded because it is never substituted by other
terms in the grounding. In Case (ii) the precondition that an attribute q↾j for some 1 ≤ j ≤ ar(q)
is domain-expansion safe, and thus has a finite range in G∞

Π (∅), implies that the term at this
attribute is bounded. Case (iii) essentially states that if the input to an external atom is finite,
then also its output is finite.

Lemma 4.1. Function bsyn(Π, r, S,B) is a TBF.

Proof. If t is in the output of bsyn(Π, r, S,B), then one of the conditions holds.
If Condition (i) holds, then t is a constant, hence there is only one ground instance.
If Condition (ii) holds, then t must also occur as value for q↾j, which has a finite range by

assumption.
If Condition (iii) holds, then t is output of an external atom such that there are only finitely

many substitutions of its constant inputs and the attributes of all predicate inputs have a finite
range by assumption. Thus there are only finitely many different oracle calls with finite output
each.

Example 52 (ctd.). Consider program Π from Example 51. We get the set S1(Π) = {dom↾1,
&cat [X,x]r4↾I2}, as B1(r2,Π, bsyn) = {ax}, B1(r3, Π, bsyn) = {axx} and B1(r4, Π, bsyn) =
{x} (by (i) in Definition 64), i.e., the derived terms in all rules that have dom↾1 in their head
are known to be bounded. In the next iteration, we get B2(r4,Π, bsyn) = {Y } (by (ii) in Defi-
nition 64) as dom↾1 is already known to be de-safe. Since we also have B2(r1,Π, bsyn) = {a},
the terms derived by r1 and r4 are bounded, hence s↾1 ∈ S2(Π). Moreover, &cat [X,x]r4↾O1 ∈
S2(Π) because Y is bounded. The third iteration yields that attribute &cat [X,x]r4↾I1 ∈ S3(Π)
because X ∈ B3(r4,Π, bsyn) due to (ii) in Definition 64. Thus, all attributes are de-safe. ✷

Semantic Properties

We now define a TBF exploiting meta-information about external sources in three properties.
The first property is based on malign cycles in positive attribute dependency graphs, which

are the source of any infinite value invention. Intuitively, the positive attribute dependency graph

GA(Π) has as nodes the attributes of Π and its edges model the information flow between the
attributes. For instance, if for rule r we have p(X) ∈ H(r) and q(Y)∈B+(r) s.t. Xi=Yj for
some Xi∈X and Yj∈Y, then we have a flow from q↾j to p↾i. Formally:

Definition 65 (Positive Attribute Dependency Graph). The positive attribute dependency graph

GA(Π) = 〈Attr , E〉 of a program Π has as nodes Attr the set of all attributes in Π and as edges
the least set E such that for all r ∈ Π:

• If p(X) ∈ H(r), q(Y) ∈ B+(r) and for some i, j we have that Xi = Yj is a variable, then
(q↾j, p↾i) ∈ E.

• If &g [Y](X) ∈ B+(r), p(Z) ∈ B+(r) and for some i, j we have that Zi = Yj and
type(&g , i) = const, then (p↾i,&g [Y]r↾Ij) ∈ E.

• If &g [Y](X) ∈ B+(r), &h[U](V) ∈ B+(r) and for some i, j we have that Ui = Xj and
type(&h, i) = const, then (&g [Y]r↾Oj,&h[U]r↾Ii) ∈ E.

102

4.2. Liberal Safety Criteria for HEX-Programs

dom↾1

&concatr4↾I1 &concatr4↾I2

&concatr4↾O1

s↾1

Figure 4.4: Positive Attribute Dependency Graph GA(Π) of the Program Π from Example 51
with a Cycle (dashed)

• If &g [Y](X) ∈ B+(r), then (&g [Y]r↾Ii,&g [Y]r↾Oj) ∈ E for all 1 ≤ i ≤ ar I(&g) and
1 ≤ j ≤ arO(&g).

• If p(X) ∈ H(r), &g [Y](Z) ∈ B+(r) and for some i, j we have thatXi = Zj is a variable,
then (&g [X]r↾Oj, p↾i) ∈ E.

• If &g [Y](X) ∈ B+(r) such that p = Yi and type(&g , i) = pred, then (p↾k,&g [Y]r↾Ii) ∈
E for all 1 ≤ k ≤ ar(p).

Example 53 (ctd.). The positive attribute dependency graph of the program from Example 51
is as shown in Figure 4.4. ✷

Graph GA(Π) models the direct information flow in Π, while its transitive closure models
the indirect information flow.

Definition 66 (Benign and Malign Cycles). A cycle K in GA(Π) is benign wrt. a set S of safe
attributes, if there exists a well-ordering ≤C of C, s.t. for every &g [Y]r↾Oj 6∈ S in the cycle,
f&g(A, y1, . . . , ym, t1, . . . tn) = 0, whenever

• for some input parameter 1 ≤ i ≤ ar I(&g), type(&g , i) = pred, &g [Y]r↾Ii 6∈ S is in the
cycle K, (s1, . . . , sar(yi)) ∈ ext(A, yi), and tj 6≤C sk for some 1 ≤ k ≤ ar(yi); or

• some yi for 1 ≤ i ≤ ar I(&g) is a constant input parameter, &g [Y]r↾Ii 6∈ S is in K, and
tj 6≤C yi.

A cycle in GA(Π) is called malign wrt. S if it is not benign.

Intuitively, a cycle is benign if external atoms never deliver larger values wrt. to their yet
unsafe cyclic input. As there is a least element, this ensures a finite grounding.

Example 54 (ctd.). The cycle (dashed) in GA(Π) of Π from Example 51 (see Figure 4.4) is
malign wrt. S = ∅ because there does not exist a well-ordering as required by Definition 66.
Intuitively, this is because the external atom infinitely extends the string. However, it is benign
wrt. S = {s↾1}. ✷

103

4. GROUNDING AND DOMAIN EXPANSION

Three other properties involve meta-information which directly ensures that an output at-
tribute of an external source is finite.

Definition 67 (Finite Domain). An external predicate &g ∈ X has the finite domain property

wrt. output i ∈
{
1, . . . , ar O(&g)

}
, if

{
xi | y ∈ (P ∪ C)ar I(&g), x ∈ CarO(&g), f&g(A, y, x) = 1

}

is finite for all assignments A.

Here, the provider of the external source explicitly states that the output at a certain position
in the output tuple is finite. This is perhaps the most direct way to ensure boundedness of the
respective term.

Example 55. An external atom &md5 [S](Y) computing the MD5 hash value Y of a string S is
finite domain wrt. the (single) output element, as its domain is finite (yet very large). ✷

A relaxed notion of finiteness allows for open domains, but forbids constants in the output of
an external source which do not already appear in the extension of the respective input predicate
parameter.

Definition 68 (Relative Finite Domain). An external predicate &g ∈ X has the relative finite

domain property wrt. output argument i ∈
{
1, . . . , arO(&g)

}
and predicate input argument

j ∈ 1, . . . , ar I(&g), if
{
xi | y ∈ (P ∪ C)ar I(&g), x ∈ CarO(&g), f&g(A, y, x) = 1

}
⊆

{
c ∈ c |

c ∈ ext(A, yj)
}

is finite for all assignments A.

Example 56. An external atom &diff [dom, set](Y) has the relative finite domain property
wrt. output argument 1 and predicate input argument 1 because each constant c must already
occur in the extension of dom wrt. A if f&g(A, dom, set , c) = 1. ✷

While the previous properties conclude that an output term of an external atom is bounded
if there are only finitely many different input constants and interpretations, we now reverse the
direction. An external atom may have the property that only a finite number of different inputs
can yield a certain output, which is formalized as follows.

Definition 69 (Finite Fiber). An external predicate &g ∈ X has the finite fiber property, if{
y | y ∈ (P∪C)ar I(&g), f&g(A, y, x) = 1

}
is finite for every A and x ∈ CarO(&g).

Example 57. Let &square[X](S) be an external atom that computes the square S of the number
X . Then for some given S, there are at most two distinct values for X . ✷

The four properties above lead to the following TBF.

Definition 70 (Semantic Term Bounding Function). We define bsem(Π, r, S,B) such that we
have t ∈ bsem(Π, r, S,B) if

(i) t is captured by some attribute α in B+(r) that is not reachable from malign cycles in
GA(Π) wrt. S, i.e., if α = p↾i then t = ti for some body atom p(t1, . . . , tℓ) ∈ B+(r),
and if α = &g [Y]r↾T i then t = Y T

i for some &g [YI](YO) ∈ B+(r) where YT =
XT

1 , . . . , Y
T
ar (&g); or

104

4.2. Liberal Safety Criteria for HEX-Programs

(ii) t = Xi for some &g [Y](X) ∈ B+(r), where &g has the finite domain property in i; or

(iii) t = Xi for some &g [Y](X) ∈ B+(r), where &g has the relative finite domain property in

output argument i and predicate input argument j and Yj↾k ∈ S for all 1 ≤ k ≤ ar(Yj);
or

(iv) t ∈ Y for some &g [Y](X) ∈ B+(r), where X ∈ B for every X ∈ X and &g has the finite

fiber property.

This TBF is directly motivated by the introduced properties.

Lemma 4.2. Function bsem(Π, r, S,B) is a TBF.

Proof. If t is in the output of bsem(Π, r, S,B), then one of the conditions holds.
If Condition (i) holds, then there is no information flow from malign cycles wrt. S to t.

However, such cycles are the only source of infinite groundings: the attributes in S have a finite
domain by assumption. For the remaining attributes in the cycle, the well-ordering guarantees
that only finitely many different values can be produced in the cycle.

If Condition (ii) holds, then the claim follows immediately from finiteness of the domain of
the respective external atom.

If Condition (iii) holds, then the external atom cannot introduce new constants. Because the
set of constants in the extension of the respective input parameter Yj is finite by assumption that
Yj↾k ∈ S for all 1 ≤ k ≤ ar(Yj), it follows that also the set of constants in the output of the
external atom is finite.

If Condition (iv) holds, then there are only finitely many different substitutions for t because
the output of the respective external atom is bound by the precondition of TBFs and the finite
fiber ensures that there are only finitely many different inputs for each output.

4.2.3 Combination of Term Bounding Functions

The concept of liberal domain-expansion safety based on term bounding functions can be fruit-
fully exploited for easy extensions. In particular, multiple term bounding functions may be
combined in order to further relax the syntactic and semantic criteria.

The following proposition allows us to construct TBFs modularly from multiple TBFs.

Proposition 4.3. If bi(Π, r, S,B), 1 ≤ i ≤ ℓ, are TBFs, then the union of the term bounding

functions

b(Π, r, S,B) =
⋃

1≤i≤ℓ

bi(Π, r, S,B)

is also a TBF.

Proof. For t ∈ b(Π, r, S,B), t ∈ bi(Π, r, S,B) for some 1 ≤ i ≤ ℓ. Then there are only finitely
many substitutations for t in G∞

Π (∅) because bi is a TBF.

105

4. GROUNDING AND DOMAIN EXPANSION

In particular, a TBF which exploits syntactic and semantic properties simultaneously is

bsynsem(Π, r, S,B) = bsyn(Π, r, S,B) ∪ bsem(Π, r, S,B),

which we will use subsequently.

4.2.4 Finite Restrictability

We now make use of the results from above to show that domain-expansion safe programs are
finitely restrictable in an effective manner. Recall that ≡pos denotes equivalence of the answer
sets in their positive parts.

Theorem 5 (Finite Restrictability of Domain-Expansion Safe Programs). Let Π be a domain-

expansion safe program. Then Π is finitely restrictable and G∞
Π (∅) ≡pos Π.

Proof. We construct the grounding grndC(Π) as the least fixpoint G∞
Π (∅) of the grounding

operatorGΠ(X), which is known to be finite by Corollary 4.2. The setC is then implicitly given
by the set of constants appearing in grndC(Π). It remains to show that indeed grndC(Π) ≡

pos

grndC(Π). To make the proof reusable for Proposition 4.5, we will show the more general
proposition grndC(Π) ≡

pos grndC′(Π) for any C ′ ⊇ C.
(⇒) Suppose A ∈ AS

(
grndC(Π)

)
. Let A′ = A ∪

{
Fa | a ∈ A

(
grndC′(Π)

)
,Ta 6∈ A

}
,

i.e., the completion of A to all atoms in grndC′(Π) by setting all additional atoms to false.
Then {Ta ∈ A} = {Ta ∈ A′}. We show now that A′ is an answer set of grndC′(Π). First
observe that A′ 6|= B+(r) for all r ∈ grndC′(Π) \ grndC(Π); otherwise r ∈ GΠ

(
grndC(Π)

)
,

which contradicts the assumption that grndC(Π) is the least fixpoint of GΠ(∅). Hence, A′ |=
grndC′(Π). Moreover fgrndC(Π)

A = fgrndC′(Π)A
′
, hence A′ is a subset-minimal model of

the FLP-reduct of grndC′(Π) iff A is a subset-minimal model of the FLP-reduct of grndC(Π),
which is the case because A ∈ AS

(
grndC(Π)

)
. Therefore A′ ∈ AS

(
grndC′(Π)

)
.

(⇐) Now suppose A ∈ AS
(
grndC′(Π)

)
. Then A′ = A ∩

{
Ta,Fa | a ∈ A

(
grndC(Π)

)}

is a model of grndC(Π). Let A′′ = A′ ∪ {Fa | a ∈ A
(
grndC′(Π)

)
,Ta 6∈ A′}, i.e., the

completion of A′ to all atoms in grndC′(Π) by setting all additional atoms to false. Then A′′ 6|=
B+(r) for all r ∈ grndC′(Π)\grndC(Π); otherwise r ∈ GΠ

(
grndC(Π)

)
, which contradicts the

assumption that grndC(Π) is the least fixpoint ofGΠ(∅). Therefore, A′′ |= grndC′(Π). But this
implies that A = A′′: by construction of A′′ we have A′′T ⊆ AT, and A′′T (AT would imply
that A is not subset-minimal, which contradicts the assumption that A ∈ AS

(
grndC′(Π)

)
.

Moreover, fgrndC(Π)
A′

= fgrndC′(Π)A
′′
. Hence A′ is a subset-minimal model of the FLP-

reduct of grndC(Π) iff A′′ is a subset-minimal model of the FLP-reduct of grndC′(Π), which
is the case because A′′ ∈ AS

(
grndC′(Π)

)
. Therefore A′ ∈ AS

(
grndC(Π)

)
. The observation

{Ta ∈ A′} = {Ta ∈ A′′} concludes the proof.

This proposition holds independently of a concrete term bounding function. However, func-
tions that are too liberal are excluded by the preconditions in the definition of TBFs.

The operatorGΠ is exponential in the number of ground atoms as it considers all assignments
A ⊆ A(Π′) in every step. As this compromises efficiency, a better alternative is:

RΠ(Π
′) =

⋃

r∈Π

{
rθ | {Ta | a ∈ A(Π′)} |= B+(rθ)

}
.

106

4.2. Liberal Safety Criteria for HEX-Programs

Intuitively, instead of enumerating exponentially many assignments it simply maximizes the
output of external atoms by setting all input atoms to true, which is possible due to monotonicity.

Proposition 4.4. Let Π be a domain-expansion safe program s.t. each nonmonotonic predicate

input parameter to external atoms occurs only in facts. Then G∞
Π (∅) = R∞

Π (∅).

Proof. It suffices to show for any intermediate result X that we have A |= B+(r) for some
A ⊆

{
Ta,Fa | a ∈ A(X)

}
\ {Fa | a ← . ∈ Π} if and only if A′ |= B+(r) for A′ =

{
Ta |

a ∈ A(X)
}

.
(⇒) B+(r) contains only positive ordinary atoms a, hence A |= a implies A′ |= a. For

external atoms e, A |= e but A′ 6|= e is only possible if for some input atom a to e over
a nonmonotonic predicate parameter we have Fa ∈ A but Ta ∈ A′. But by assumption,
nonmonotonic predicate parameters do only occur in facts, hence Fa ∈ A is impossible.

(⇐) Trivial.

Thus, for such programs we may compute a sufficient finite subset of grndC(Π) using instead
GΠ the more efficient RΠ.

Example 58 (ctd.). In Example 51, &concat [X,x](Y) is monotonic, hence we can use RΠ for
restricted grounding. ✷

The operator can also be optimized in a different way. External atoms that are not rele-
vant for domain-expansion safety can be removed from the fixpoint iteration without affect-
ing correctness of the grounding. For each r ∈ Π, let r̄ = H ← B be any rule such that
r = H ← b1, . . . , bh, B where b1, . . . , bh ∈ EA(r) and var(r) = var(r̄), where var(r) denotes
the set of variables from V appearing in rule r. That is, r̄ results from r by possibly dropping
external atoms from B+(r) but such that r̄ contains all variables of r, and let Π̄ = {r̄ | r ∈ Π}
by a liberally domain-expansion safe program.

We then define the following monotone operator:

QΠ(Π
′) =

⋃

r∈Π

{
rθ | ∃A ⊆ A(Π′),A 6|= ⊥,A |= B+(r̄θ)

}
.

The intuition is that removing atoms from rule bodies makes rule applicability (possibly)
more frequent, which may result in a larger (but still finite) grounding. As this grounding is a
superset of the one computed by GΠ(Π

′), it is still answer set preserving.

Proposition 4.5. For every program Π, Q∞
Π (∅) ⊆ grndC(Π) is finite and Q∞

Π (∅) ≡pos G∞
Π (∅).

Proof. Clearly, satisfaction of rule bodyB+(r) implies satisfaction of the correspondingB+(r̄).
Thus Q∞

Π (∅) ⊇ G∞
Π (∅). It follows then from the proof of Theorem 5 that G∞

Π (∅) ≡pos Q∞
Π (∅).

Moreover, since Π̄ is still domain-expansion safe by assumption, G∞
Π̄
(∅) is still finite by

Theorem 5. But then also Q∞
Π (∅) is finite because the only difference between G∞

Π̄
(∅) and

Q∞
Π (∅) is that the latter may contain additional external atoms in the rule bodies.

107

4. GROUNDING AND DOMAIN EXPANSION

Example 59 (ctd.). In the program in Example 51, the external atom &concat [X,x](Y) is not
needed to establish domain-expansion safety, hence we might drop it during fixpoint iteration.
✷

The combination of the optimizations is especially valuable. One can first eliminate external
atoms with nonmonotonic input other than facts and check then rule body satisfaction as in RΠ.
If an external atom b is strongly safe wrt. the according rule and the program, then it is very often
(as in Example 51) not necessary for establishing domain-expansion safety and b is a candidate
for being removed. That is, the traditional strong safety criterion is now used as a weak criterion,
which is not strictly necessary but may help to reduce grounding time. We will build upon this
idea when designing our new grounding algorithm in Section 4.3.

4.2.5 Applications

Pushdown Automaton. As a demonstration of our relaxed notion of safety, we model a push-

down automaton in a HEX-program, which can be of use if context-free languages must be
parsed under further constraints that cannot be easily expressed in the production rules; the
HEX-program may be extended accordingly, where the declarative nature of HEX is versatile for
parsing and constraint checking in parallel as opposed to a generate-and-filter approach.

For instance, consider RNA sequences over the alphabet {a, g, c, u} and suppose we want
to accept all sequences ww′ such that w′ is the complementary string of w, where (a, u) and
(g, c) are complementary pairs. Because complementary strings within one sequence influ-
ence the secondary structure of an RNA molecule, this duality is important for its proper func-
tion [Zuker and Sankoff, 1984]. This language is easily expressed by the production rules

{S → aSu, S → uSa, S → gSc, S → cSg, S → ǫ}

with start symbol S. Now suppose that we want to check in addition the occurrence of cer-
tain subsequences, e.g., because they have a known function. A concrete example would be a
promoter sequence which identifies the location where a new gene starts and might be used to
distinguish between coding and non-coding sequences. Modeling this in the production rules
makes the grammar much more complex. Moreover, we might want to keep the grammar inde-
pendent of concrete subsequences but import them from a database. Then it might be useful to
model the basic language as automaton in a logic program and check side conditions by addi-
tional constraints.

Recall that a pushdown automaton is a finite-state machine with an additional stack; follow-
ing Sipser (2012), this is formalized as a tuple (Q,Σ,Γ, δ, q0, Z, F), where

• Q is a finite set of states;

• Σ is a finite input alphabet;

• Γ is a finite stack alphabet;

• δ ⊆ Q×
(
Σ ∪ {ǫ}

)
× Γ×Q× Γ∗ is the transition relation;

108

4.2. Liberal Safety Criteria for HEX-Programs

• q0 ∈ Q is the initial state;

• Z ∈ Γ is the initial stack symbol; and

• F ⊆ Q is the set of final states.

The transition relation maps the current state, an input symbol and the topmost stack symbol to
a successor state and a finite word over the stack alphabet, which is pushed onto the stack after
removing the topmost symbol.

We make the assumption that there are no ǫ-transitions, i.e., δ ⊆ Q×Σ×Γ×Q×Γ∗; such
an automaton is easily obtained from a normalized grammar, if one is not interested, as in our
example, in the empty word.

We use the following external atoms:

• &car [S](H ,T) splits S into first symbol H and rest T ;

• &concat [A,B](C) joins A and B to C;

• &inc[I](I1) increments the integer I to I1 = I+1; and

• &len[S](L) returns the length L of string S.

Then the automaton can be modeled as follows:

str(Word , 0)← input(Word) (1)

str(R, I1)← str(W , I),&car [W](C ,R),&inc[I](I1) (2)

char(C , I)← str(W , I),&car [W](C ,R) (3)

in(start , z, 0) (4)

in(NewState,NewStack ,NewPos)← (5)

in(State,Stack ,Pos), char(Pos,Char),

&car [Stack](SChar ,SRest),

transition(State,Char ,SChar ,NewState,Push),

&concat [Push,SRest](NewStack),&inc[Pos](NewPos)

accept ← input(W),&len[W](L), in(S , z,L),final(S) (6)

← not accept (7)

An atom in(state, stack , step) encodes that when processing symbol step, the machine is
in state state with stack content stack . Rules (1)-(3) split the input string into characters, and
the remaining ones model the automaton. The program starts in the initial state start with the
initial stack symbol z as stack content (fact (4)). Transition rule (5) splits the current stack
content into its topmost symbol SChar and its rest SRest and uses the predicate transition to
(nondeterministically) determine the successor state and the string to push onto the stack. The
rules (6)-(7) ensure that the input is accepted if eventually a final state is reached such that the
input has been completely processed and the stack content is z. Side conditions can now be

109

4. GROUNDING AND DOMAIN EXPANSION

modeled, e.g., by additional constraints which restrict the stack content, or by additional body
atoms in the transition rule.

The program is not strongly safe as all external atoms occur in cycles and their output is not
bounded by ordinary atoms from outside. However, it is domain-expansion safe if we exploit
semantical information. String splitting with &car yields ǫ or a shorter string, i.e., a well-
ordering exists. Hence the output terms of &car are safe by Proposition 4.2 due to Definition 70
(i). Each transition step pushes a finite word onto the stack, and only finitely many steps happen
(as no ǫ-transitions occur); hence only finitely many stack contents are possible, i.e., &concat

has a finite output domain. Thus the output terms are safe due to Definition 70 (ii). The domain
of &inc is finite for the same reason, which bounds NewPos . Hence, all variables are bounded
and all attributes are domain-expansion safe.

Further Applications. We now briefly discuss other applications which exploit the concept
of domain-expansion safety. Recursive processing of data structures, such as trees or lists, can
easily violate traditional safety criteria. However, in a concrete program the use of the external
sources may satisfy syntactic or semantic conditions such that finiteness of the grounding is still
guaranteed. For instance, if a list is only subdivided but not recursively extended, then there
exists a well-ordering as defined above and the grounding may be finite. Additional application-
specific safety criteria can be easily integrated into our framework by customized term bounding
functions. We will discuss a concrete application in detail in Chapter 5.

Another application is route planning, which we also discuss in Chapter 5 as a benchmark
(the details of the encoding can be found in Appendix A). Importing the complete map a priori
into the logic program is too expensive due to the large amount of data. The alternative is to
query direct location between nodes in a recursive fashion. But if the set of nodes is not known
in advance, then such queries do not satisfy traditional strong safety. However, as the map is
finite our notion of domain-expansion safety, the existence of a finite grounding is guaranteed.

4.3 Grounding Algorithm for Liberally Domain-Expansion Safe

HEX-Programs

In this section we present a grounding algorithm for liberally domain-expansion safe HEX-
programs. It is based on the following idea. Iteratively ground the input program and then
check if the grounding contains all relevant ground rules. The check works by evaluating ex-
ternal sources wrt. relevant interpretations and testing if they introduce any new values which
were not respected in the grounding. If this is the case, then the set of constants is expanded and
the program is grounded again. If the check does not identify additional constants which must
be respected in the grounding, then it is guaranteed that the unrespected constants from C are
irrelevant in order to ensure that the grounding has the same answer sets as the original program.
For liberally domain-expansion safe programs, this procedure will eventually reach a fixpoint,
i.e., all relevant constants are respected in the grounding.

110

4.3. Grounding Algorithm for Liberally Domain-Expansion Safe HEX-Programs

4.3.1 Grounding Algorithm

We start with some concepts and define external atoms which are relevant for domain-expansion
safety. Throughout the remainder assume that rules are standardized apart (i.e., have no variables
in common). Let R be a set of external atoms and let r be a rule. By r|R we denote the rule
obtained by removing all external atoms which are not in R, i.e., such that

H(r|R) = H(r) and Bs(r|R) =
(
Bs(r) ∩A(r)

)
∪
(
Bs(r) ∩R

)

for s ∈ {+,−}. Similarly, Π|R =
⋃

r∈Π r|R, for a program Π.

Definition 71 (Liberal Domain-Expansion Safety Relevance). A set R of external atoms is rel-

evant for liberal de-safety of a program Π, if Π|R is liberally de-safe and var(r) = var(r|R),
for all r ∈ Π.

Note that for a program, the set of de-safe relevant external atoms is not necessarily unique,
leaving room for heuristics. In the following we choose a specific set.

We further need the concepts of input auxiliary and external atom guessing rules. We say
that an external atom &g [Y](X) joins an atom b from the input list Y (output list X), if some
variable from Y (X) occurs in b, where in case b is an external atom, the occurrence is in the
output list of b. Note that this notion is slightly different from the one in previous work, as
recapitulated as basic input auxiliary rule in Chapter 2. In particular, our new notion makes use
of de-safety relevance.

Definition 72 (Input Auxiliary Rule). Let Π be a HEX-program, and let a = &g [Y](X) be some
external atom with input list Y occurring in a rule r ∈ Π. Then, for each such atom, a rule rainp
is composed as follows:

• The head is H
(
rainp

)
=

{
g

&g
inp(Y)

}
, where g&g

inp is a fresh predicate.

• The body B
(
rainp

)
contains each b ∈ B+(r) \ {a} such that a joins b in Y, and b is

de-safety relevant if it is an external atom.

The atom g
&g
inp(Y) in the head of such a rule is called input (auxiliary) atom.

Example 60. Consider the following non-ground HEX-program:

Π = {out(Y)← &concat [a, b](X),&concat [X, c](Y), limit(X), limit(Y)}

Then the input auxiliary rule for &concat [a, b](X) is g&concat
inp (a, b) ← (a fact), and that for

&concat [X, c](Y) is h&concat
inp (X, c)← &concat [a, b](X). ✷

Input auxiliary rules are used to derive all ground input tuples y with which the external atom
needs to be evaluated. Next, we need non-ground external atom guessing rules. Note that this
concept is different from ground external atom guessing rules used in Chapter 3, which always
have an empty body. In this chapter we always mean non-ground external atom guessing rules
and thus drop the prefix non-ground.

111

4. GROUNDING AND DOMAIN EXPANSION

Definition 73 (Non-ground External Atom Guessing Rule). Let Π be a HEX-program, and let
a = &g [Y](X) be some external atom. Then a rule raguess is composed as follows:

• The head is H
(
raguess

)
=

{
er,&g[Y](X),ner,&g[Y](X)

}
.

• The body B
(
raguess

)
contains

(i) each b ∈ B+(r) \ {a} such that a joins b in Y or X, and b is de-safety relevant if it
is an external atom; and

(ii) g&g
inp(Y).

It guesses the truth value of external atoms using a choice between the external replacement

atom er,&g[Y](X), and fresh atom ner,&g[Y](X).

Example 61 (ctd.). Consider the HEX-program Π from Example 60. Then the external atom
guessing rule for &concat [a, b](X) is

er,&concat [a,b](X) ∨ ner,&concat [a,b](X)← g&concat
inp (a, b), limit(X)

and that for &concat [X, c](Y) is

er,&concat [X,c](Y) ∨ ner,&concat [X,c](Y)← h&concat
inp (X, c), limit(Y).

✷

Our approach is based on a grounder for ordinary ASP programs. Compared to the naive
grounding grndC(Π), which substitutes all constants for all variables in all possible ways, we
allow the ASP grounder GroundASP to optimize rules by eliminating rules if their body is always
false, and ordinary body literals from the grounding if they are always true, as long as this does
not change the answer sets.

Definition 74. We call rule r′ an o-strengthening of r, if H(r′) = H(r), B(r′) ⊆ B(r) and
B(r) \B(r′) contains no external atoms and no external atom replacements.

Definition 75. An algorithm GroundASP is a faithful ASP grounder for a safe ordinary program
Π, if it outputs an equivalent ground program Π′ such that

• Π′ consists of o-strengthenings of rules in grndCΠ
(Π);

• if r ∈ grndCΠ
(Π) has no o-strengthening in Π′, then every answer set of grndCΠ

(Π)
falsifies some ordinary literal in B(r); and

• if r ∈ grndCΠ
(Π) has some o-strengthening r′ ∈ Π′, then every answer set of grndCΠ

(Π)
satisfies all default-literals in B(r) \B(r′).

112

4.3. Grounding Algorithm for Liberally Domain-Expansion Safe HEX-Programs

The formalization of the algorithm is shown in Algorithm GroundHEX. Our naming conven-
tion is as follows. Program Π is the non-ground input program. Program Πp is the non-ground
ordinary ASP prototype program, which is an iteratively updated variant of Π (with replacement
atoms in place of external atoms) with additional rules. In each step, the preliminary ground

program Πpg is produced by grounding Πp using a standard ASP grounding algorithm. Program
Πpg converges against a fixpoint from which the final ground HEX-program Πg is extracted.

The algorithm first chooses a set of de-safety relevant external atoms, e.g., all external atoms
as a naive and conservative approach, or following a greedy approach as in our implementation,
and then introduces input auxiliary rules rainp for every external atom a = &g [Y](X) in a rule r in
Π in Part (a). For all non-relevant external atoms, external atom guessing rules are introduced to
ensure that the ground instances of the corresponding external replacement atoms are introduced
in the grounding, even if they are not explicitly added. Then, all external atoms &g [Y](X) in all
rules r in Πp are replaced by ordinary replacement atoms er,&g[Y](X). This allows the algorithm
to use a faithful ASP grounder GroundASP in the main loop at (b). After the grounding step, the
algorithm checks whether the grounding is large enough, i.e., if it contains all relevant constants.
For this, it traverses all relevant external atoms at (c) and all relevant input assignments and tuples
at (d) and at (e); Ym, Ya and Yn refer to the sublists of Y consisting of monotonic, antimonotonic
and nonmonotonic input predicates, respectively. Then, constants returned by external sources
are added to Πp at (f); if the constants were already respected, then this will have no effect.
Thereafter the main loop starts over again. The algorithm will find a program which respects
all relevant constants. It then removes input auxiliary rules and translates replacement atoms to
external atoms at (g).

We illustrate our grounding algorithm with the following example.

Example 62. Let Π be the following program:

f1 : d(a); f2 : d(b); f3 : d(c); r1 : s(Y) ← &diff [d, n](Y), d(Y)
r2 : n(Y)← &diff [d, s](Y), d(Y)
r3 : c(Z) ← &count [s](Z)

Here, &count [s](i) is true for the integer i corresponding to the number of elements in the
extension of s. The program first partitions the domain (extension of d) into two sets (exten-
sions of s and n) and then computes the size of s. The external atoms &diff [d, n](Y) and
&diff [d, s](Y) are not relevant for de-safety. Thus, program Πp at the beginning of the first iter-
ation is as follows (neglecting input auxiliary rules, which are propositional facts in this example
and are not needed for the further processing). Let e1(Y), e2(Y) and e3(Z) be shorthands for
er1,&diff [d,n](Y), er2,&diff [d,s](Y), and er3,&count [s](Z), respectively.

f1 : d(a); f2 : d(b); f3 : d(c); r1 : s(Y) ← e1(Y), d(Y)
g1 : e1(Y) ∨ ne1(Y)← d(Y); r2 : n(Y)← e2(Y), d(Y)
g2 : e2(Y) ∨ ne2(Y)← d(Y); r3 : c(Z) ← e3(Z)

The ground program Πpg contains no instances of r3 because the optimizer recognizes that
er3,&count [s](Z) occurs in no rule head and no ground instance can be true in any answer set.
Then the algorithm comes to the checking phase. It does not evaluate the external atoms in r1 and

113

4. GROUNDING AND DOMAIN EXPANSION

Algorithm GroundHEX

Input: A liberally de-safe HEX-program Π
Output: A ground HEX-program Πg s.t. Πg≡

posΠ
(a) Choose a set R of de-safety relevant external atoms in Π

Πp ← Π ∪
{
rainp | a = &g [Y](X) in r ∈ Π

}

Πp ← Πp ∪
{
raguess | a = &g [Y](X) in r ∈ Π, a 6∈ R

}

Replace all external atoms &g [Y](X) in all rules r in Πp by er,&g[Y](X)

(b) repeat

// partial grounding

Πpg ← GroundASP(Πp)
// evaluate all de-safety relevant external atoms

(c) for a = &g [Y](X) ∈ R in a rule r ∈ Π do

Let g&g
inp be the unique predicate in the head of rainp

Ama ←
{
Tp(c) | p(c) ∈ A(Πpg), p ∈ Ym

}
∪
{
Fp(c) | p(c) ∈ A(Πpg), p ∈ Ya

}

// do this wrt. all relevant assignments

(d) for Anm ⊆ {Tp(c),Fp(c) | p(c) ∈ A(Πpg), p ∈ Yn} s.t. ∄a : Ta,Fa ∈ Anm do

A←
(
Ama ∪Anm ∪ {Ta | a← . ∈ Πpg}

)
\ {Fa | a← . ∈ Πpg}

(e) for y ∈
{

c | g&g
inp(c) ∈ A(Πpg)

}
do

(f) O ← {x | f&g(A, y, x) = 1}
// add the respective ground guessing rules

Πp ← Πp ∪
{
er,&g[y](x) ∨ ner,&g[y](x)← . | x ∈ O

}

until Πpg did not change

(g) Πg ← Πpg

Remove input auxiliary rules and external atom guessing rules from Πg

Replace all e&g[y](x) in Πg by &g [y](x)

return Πg

r2, because they are not relevant for de-safety due to the domain predicate d(Y). But it evaluates
&count [s](Z) wrt. all A ⊆ {s(a), s(b), s(c)} because the external atom is nonmonotonic in s.
Then the algorithm adds the rules

{
e3(z) ∨ ne3(z) ← . | z ∈ {0, 1, 2, 3}

}
to Πp. After the

second iteration, the algorithm terminates. ✷

4.3.2 Soundness and Completeness

One can show that Algorithm GroundHEXNaive is sound and complete. Towards a proof we first
consider a computationally slower but conceptually simpler variant of the algorithm, for which
we show these properties. Afterwards we prove that the optimizations in Algorithm GroundHEX
do not harm soundness and completeness.

Compared to the naive Algorithm GroundHEXNaive, Algorithm GroundHEX contains the
following modifications. The first change concerns the ordinary ASP grounder. We allow the

114

4.3. Grounding Algorithm for Liberally Domain-Expansion Safe HEX-Programs

grounder to optimize the grounding as formalized by Definition 75, whereas Algorithm Ground-
HEXNaive uses the naive grounding grndC(Πp).

The second change concerns the external atoms. Intuitively, an external atom may be skipped
if it can only return constants, which are guaranteed to appear also elsewhere in the grounding.
Thus, Algorithm GroundHEX evaluates only de-safety relevant external atoms, whereas Algo-
rithm GroundHEXNaive evaluates all of them.

The third optimization concerns the enumeration of assignments. Note that Step (c) in Algo-
rithm GroundHEXNaive enumerates all models of Πpg . That is, in order to ground the program,
a solver must be called. This is computationally expensive and in fact not necessary. Step (d) in
Algorithm GroundHEX simply enumerates assignments, which are directly extracted from the
partial grounding, and which are constructed such that it is guaranteed that all relevant ground
instances of the external atoms are represented in the grounding.

Algorithm GroundHEXNaive

Input: A liberally de-safe HEX-program Π
Output: A ground HEX-program Πg s.t. AS(Πg) ≡

pos AS(Π)
(a) Πp ← Π ∪

{
rainp | a = &g [Y](X) in r ∈ Π

}

Replace all external atoms &g [Y](X) in all rules r in Πp by er,&gY(X)
(b) repeat

// partial grounding

Πpg ← grndC(Πp) with constants C in Πp

// check if the grounding is large enough

(c) for all models A of Πpg over A(Πpg) do

// evaluate all external atoms

(d) for a = &g [Y](X) in a rule r ∈ Π do

Let g&g
inp be the unique predicate in the head of rainp

(e) for y ∈
{

c | Tg&g
inp(c) ∈ A

}
do

(f) O ← {x | f&g(A, y, x) = 1}
// add the respective ground guessing rules

Πp ← Πp ∪
{
er,&g[y](x) ∨ ner,&g[y](x)← . | x ∈ O

}

until Πpg did not change

(g) Πg ← Πpg

Remove input auxiliary rules and external atom guessing rules from Πg

Replace all er,&g[y](x) in Πg by &g [y](x)

return Πg

We now illustrate the algorithm with an example.

Example 63. Let

Π = {d(x) ∨ d(y); q(Y)← d(X),&concat [X, a](Y)}

115

4. GROUNDING AND DOMAIN EXPANSION

be the input program. In the first iteration we have

Πp = {d(x) ∨ d(y); q(Y)← d(X), er,&concat [X,a](Y); g&g
inp(X)← d(X)},

where g&concat
inp is the unique input auxiliary predicate for &concat [X, a](Y). The grounding

step yields

Πpg =
{
d(x) ∨ d(y)

}
∪

{
q(c2)← d(c1), er,&concat [c1,a](c2); g

&concat
inp (c1, a)← d(c1) | c1, c2 ∈ {x, y}

}
.

Now the algorithm comes to the checking phase at (c) and (d). Note that g&concat
inp (x, a) and

g&concat
inp (y, a) appear in all models A of Πpg . Therefore the algorithm will evaluate &concat

with inputs (x, a) and (y, a) and collect all output tuples x s.t. f&g(A, x, a, x) = 1 resp.
f&g(A, y, a, x) = 1 holds. This holds for the unary output tuples (xa) and (ya). Thus, Step (f)
adds the rules

er,&g[x,a](xa) ∨ ner,&g[x,a](xa)← and er,&g[y,a](xa) ∨ ner,&g[y,a](ya)←

to Πp and grounding starts over again. In the next iteration,

q(xa)← d(x), er,&concat [x,a](xa) and q(ya)← d(y), er,&concat [y,a](ya)

will appear in Πpg . As no new atoms g&concat
inp (y) appears in any of the models of the updated

Πpg , the loop terminates after the second iteration. ✷

Soundness and completeness of Algorithm GroundHEXNaive is formalized by the following
proposition.

Proposition 4.6. If Π is a liberally de-safe HEX-program, then Π ≡pos GroundHEXNaive(Π).

Proof. See Appendix B, page 220.

It can be shown that also the optimized algorithm is sound and complete.

Theorem 6 (Correctness of Algorithm GroundHEX). If Π is a liberally de-safe HEX-program,

then GroundHEX(Π)≡posΠ.

Proof. See Appendix B, page 225.

4.4 Integration of the Algorithm into the Model-Building

Framework

We are now ready to embed our grounding algorithm into the overall evaluation framework and
get Algorithm BuildAnswerSetsGeneralized. For this, we first introduce an algorithm which
computes the answer sets of a liberally de-safe HEX-program.

We first show that Algorithm EvaluateDomainExpansionSafe returns all answer sets of
domain-expansion safe HEX-programs.

116

4.4. Integration of the Algorithm into the Model-Building Framework

Algorithm EvaluateDomainExpansionSafe

Input: A liberally de-safe HEX-program Π, an input interpretation A

Output: All answer sets of Π ∪ {a← . | Ta ∈ A} without A
// add input facts and ground the program

Π′
grnd ← GuessAndCheckHexEvaluation

(
Π ∪ {a← . | Ta ∈ A}

)

// ground program evaluation and output projection

return
{
A′ \

(
A ∪ {Fa ∈ A′}

)
| A′ ∈ EvalGroundHexProgram(Π′

grnd)
}

Proposition 4.7. Given a domain-expansion safe HEX-program Π and an input assignment A,

Algorithm EvaluateDomainExpansionSafe returns

{
A′ \

(
A ∪ {Fa ∈ A′}

)
| A′ ∈ AS

(
Π ∪ {a← . | Ta ∈ A}

)}
,

i.e., the positive parts of all answer sets of Π augmented with the positive atoms in A.

Proof. The proposition follows from Theorem 6, which shows that the grounding Π′
grnd has

the same answer sets as Π (if restricted to their positive parts), and from the soundness and
completeness of the evaluation algorithms for ground HEX-programs introduced in Chapter 3.

We now replace Algorithm EvaluateExtendedPreGroundable in Algorithm BuildAnswer-
Sets by Algorithm EvaluateDomainExpansionSafe which computes the answer sets of the sin-
gle units. However, the formal incorporation of our algorithms into the framework described
by Schüller (2012) and recapitulated in Section 4.1 is nontrivial, because two of the fundamen-
tal definitions of the framework are that of an evaluation unit and of an evaluation graph, which
use extended pre-groundable HEX-programs (cf. Definition 25) as units. Our goal is to support
the generalized class of liberally domain-expansion safe programs as units. Because of The-
orem 4, which proves soundness and completeness of Algorithm BuildAnswerSets, and many
intermediate results of Schüller (2012) depend (transitively) on those basic definitions, they do
not immediately carry over to a generalized notion of evaluation units. However, a look into
the proofs by Schüller (2012) reveals that there is in fact only one proposition (Proposition 13)
which directly makes use of the property that evaluation units are extended pre-groundable. We
will introduce and prove an equivalent proposition for our generalized class of programs. Then
all other results still hold.

We have already shown that it is possible to finitely ground and evaluate domain-expansion
safe programs, i.e., the new algorithms work correctly within single evaluation units. However,
it remains to show that this is still compatible with the model-building framework introduced
in Chapter 2. In particular, we need to show that Theorem 4 still holds if evaluation units are
not necessarily extended pre-groundable but liberally domain-expansion safe HEX-programs. To
this end, we introduce a generalized notion of evaluation units and evaluation graphs (cf. Defi-
nitions 51 and 52).

Definition 76 (Generalized (Evaluation) Unit). A generalized (evaluation) unit is a liberally
domain-expansion safe HEX-program.

117

4. GROUNDING AND DOMAIN EXPANSION

Algorithm BuildAnswerSetsGeneralized

Input: Generalized evaluation graph E = (V,E) for a HEX-program Π with a unit ufinal
that depends on all other units in V

Output: All answer sets of Π

M = ∅, F = ∅, unit = ∅, type = ∅, int = ∅, U = V

while U 6= ∅ do

Choose u ∈ U s.t. predsE(u) ∩ U = ∅
Let {u1, . . . , uk} = predsE(u)

(a) if k = 0 then

m← max (M) + 1
M ←M ∪ {m}
unit(m)← u, type(m)← I, int(m)← ∅

(b) else

for m1 ∈ o-ints(u1), . . . ,mk ∈ o-ints(uk) do

if J = m1 ✶ · · · ✶ mk is defined then

m← max (M) + 1
M ←M ∪ {m}
F ← F ∪

{
(m,mi) | 1 ≤ i ≤ k

}

unit(m)← u, type(m)← I, int(m)← J

(c) if u = ufinal then

return i -ints(ufinal)

(d) for m′ ∈ i -ints(u) do

O ← EvaluateDomainExpansionSafe
(
u, int(m′)

)

for o ∈ O do

m← max (M) + 1
M ←M ∪ {m}
F ← F ∪

{
(m,m′) | 1 ≤ i ≤ k

}

unit(m)← u, type(m)← O, int(m)← o

U ← U \ {u}

118

4.4. Integration of the Algorithm into the Model-Building Framework

Definition 77 (Generalized Evaluation Graph). A generalized evaluation graph E = 〈V,E〉 of
a program Π is a directed acyclic graph; vertices V are generalized evaluation units and E has
the following properties:

(a)
⋃

u∈V u = Π, i.e., every rule r ∈ Π is contained in at least one unit;

(b) for every non-constraint r ∈ Π, it holds that
∣∣{u ∈ V | r ∈ u}

∣∣ = 1, i.e., r is contained in
exactly one unit;

(c) for each nonmonotonic dependency r →n s between rules r, s ∈ Π and for all u ∈ V with
r ∈ u and v ∈ V with s ∈ v s.t. u 6= v, there exists an edge (u, v) ∈ E, i.e., nonmonotonic
dependencies between rules have corresponding edges everywhere in E ; and

(d) for each monotonic dependency r →m s between rules r, s ∈ Π, there exists one u ∈ V
with r ∈ u such that E contains all edges (u, v) with v ∈ V , s ∈ v and v 6= u, i.e.,
there is (at least) one unit in E where all monotonic dependencies from r to other rules have
corresponding outgoing edges in E .

Example 64. Graph E from Example 45 is an evaluation graph and also a generalized evaluation
graph of program Π. Another generalized evaluation graph, which is not an evaluation graph, is
E ′ =

〈
{u1 = Π, ufinal}, {(ufinal , u1)}

〉
. ✷

We show now that for a generalized evaluation graph E = (V,E), BuildAnswerSetsGener-
alized still returns AS(Π).

Theorem 7 (Soundness and Completeness of Algorithm BuildAnswerSetsGeneralized). Algo-

rithm BuildAnswerSetsGeneralized applied to a generalized evaluation graph E = (V,E) of a

HEX-program Π returns AS(Π).

Proof. The proposition corresponds to Theorem 4, which is Theorem 15 by Schüller (2012),
but with generalized evaluation units in place of evaluation units, i.e., units may be domain-
expansion safe programs which are not extended pre-groundable.

The proofs by Schüller (2012) on which Theorem 15 depends in fact make use of pre-
groundability only in a single part. This is in Proposition 13, which states that for an extended
pre-groundable HEX-program Π and an input interpretation A, Algorithm EvaluateExtended-
PreGroundable returns

{
A′ \ (A ∪ {Fa ∈ A′}) | A′ ∈ AS(Π ∪ {a← . | Ta ∈ A})

}
, i.e., the

positive parts of all answer sets of Π augmented with A.

However, we have shown in Proposition 4.7 that Algorithm EvaluateDomainExpansionSafe
behaves exactly like this for domain-expansion safe HEX-programs. Because the remaining parts
of the proofs by Schüller (2012) do not make use of the property of extended pre-groundability,
Theorem 15 goes through also for domain-expansion safe programs if Algorithm EvaluateEx-
tendedPreGroundable is replaced by Algorithm EvaluateDomainExpansionSafe.

119

4. GROUNDING AND DOMAIN EXPANSION

4.5 Greedy Evaluation Heuristics

The motivation for the evaluation framework introduced by Eiter et al. (2011a) and described in
more detail by Schüller (2012) was performance enhancement. However, not every strongly safe
program is extended pre-groundable; thus program decomposition is in some cases indispens-

able for program evaluation. This is in contrast to the grounding algorithm introduced above,
which can directly ground any liberally de-safe, and thus strongly safe, program.

Example 65. Program Π from Example 62 cannot be grounded by the traditional HEX algo-
rithms as it is not extended pre-groundable. Instead, it needs to be partitioned into two units
u1 = {f1, f2, f3, r1, r2} and u2 = {r3} with u1 →n u2. Now u1 and u2 are extended pre-
groundable HEX-programs. Then the answer sets of u1 must be computed before u2 can be
grounded. Our algorithm can ground the whole program immediately. ✷

Therefore, in contrast to the previous algorithms one can keep the whole program as a single
unit, but also still apply decomposition with liberally de-safe programs as units. While program
decomposition led to performance increase for the traditional solving algorithms, it is counter-
productive for new learning-based algorithms because learned knowledge cannot be effectively
reused. In guess-and-check ASP programs, existing heuristics for the generation of the evalu-
ation graph frequently even split the guessing from the checking part, which is derogatory to
the learning. Thus, from this perspective is advantageous to have few units. However, for the
grounding algorithm a worst case is that a unit contains an external atom that is relevant for
de-safety and receives nonmonotonic input from the same unit. In this case it needs to consider
exponentially many assignments.

Example 66. Reconsider program Π from Example 62. The algorithm evaluates &count [s](Z)
wrt. all A ⊆ {s(a), s(b), s(c)} because it is nonmonotonic and de-safety relevant. Now assume
that the program contains the additional constraint

c1 : ← s(X), s(Y), s(Z), X 6= Y,X 6= Z, Y 6= Z,

i.e., no more than two elements can be in set s. Then the algorithm would still check all
A ⊆ {s(a), s(b), s(c)}, but it is clear that the subset with three elements, which introduces
the constant 3, is irrelevant because this interpretation will never occur in an answer set. If
the program is split into units u1 = {f, r1, r2, c1} and u2 = {r3} with u2 →n u1, then
{s(a), s(b), s(c)} does not occur as an answer set of u1. Thus, u2 never receives this inter-
pretation as input and never is evaluated wrt. this interpretation. ✷

Algorithm GroundHEX evaluates the external sources wrt. all interpretations such that the
set of observed constants is maximized. While monotonic and antimonotonic input atoms are
not problematic (the algorithm can simply set all to true resp. false), nonmonotonic parameters
require an exponential number of evaluations. Thus, in such cases program decomposition is still
useful as it restricts grounding to those interpretations which are actually relevant in some answer
set. Program decomposition can be seen as a hybrid between traditional and lazy grounding
(cf. e.g. Palù et al. (2009)), as program parts are instantiated which are larger than single rules
but smaller than the whole program.

120

4.5. Greedy Evaluation Heuristics

We thus introduce a heuristics in Algorithm GreedyGEG for generating a good generalized
evaluation graph, which iteratively merges units. Condition (d) maintains acyclicity, while the
condition at (e) deals with two opposing goals: (1) minimizing the number of units, and (2)
splitting the program whenever a de-relevant nonmonotonic external atom would receive input
from the same unit. It greedily gives preference to (1).

Algorithm GreedyGEG

Input: A liberally de-safe HEX-program Π
Output: A generalized evaluation graph E = 〈V,E〉 for Π

(a) G← 〈Π,→m ∪ →n〉
Let V be the set of (subset-maximal) strongly connected components of G
Update E

(b) while V was modified do

(c) for u1, u2 ∈ V such that u1 6= u2 do

(d) if there is no indirect path from u1 to u2 (via some u′ 6= u1, u2) or vice versa

then

(e) if no de-relevant &g [y](x) in some u2 has a nonmonotonic predicate input

from u1 then

V ←
(
V \ {u1, u2}

)
∪ {u1 ∪ u2}

Update E

return E = 〈V,E〉

We illustrate the heuristics with an example.

Example 67. Reconsider program Π from Examples 62 and 66. Then Algorithm GreedyGEG
creates a generalized evaluation graph with the two units u1 = {f1, f2, f3, r1, r2, c1} and u2 =
{r3} with u2 →n u1, which is as desired. ✷

It is not difficult to show that the heuristics yields a sound result.

Proposition 4.8. For a liberally de-safe program Π, Algorithm GreedyGEG returns a suitable

generalized evaluation graph of Π.

Proof. The initial set of nodes defined at (a) is the set of all subset-maximal strongly connected
components of the rules of Π wrt. →m ∪ →n. This ensures that the graph is acyclic, that
every rule (including constraints) is contained in exactly one unit, and that unit dependencies are
updated according to the rule dependencies. Thus the initial decomposition forms a generalized
evaluation graph.

Loop (b) then iteratively merges two different units, where Condition (d) ensures that the
graph remains acyclic. As the algorithm also updates E according to the rule dependencies, all
conditions of a generalized evaluation graph remain satisfied.

121

4. GROUNDING AND DOMAIN EXPANSION

4.6 Related Work and Summary

In this section, we discuss some other notions of safety from the literature and discuss their
relationship to liberal domain-expansion safety. We will establish that our concept is strictly
more general than many other notions of safety. In particular, we formally compare our notion
to strong safety, VI-restricted programs and logic programs with functions symbols. Afterwards
we summarize the chapter and give an outlook on future work.

4.6.1 Related Work

Our notion of liberal domain-expansion safety using bsynsem compares to the traditionally used
strong domain-expansion safety and to other formalizations.

Strong Safety. We have defined strong safety in Definitions 22 and 23. One can show that
(liberal) domain-expansion safety is strictly less restrictive.

Theorem 8. Every strongly domain-expansion safe program Π is domain-expansion safe.

Proof. Suppose Π is strongly safe. We show that for any attribute α of Π, we have a ∈ Sn(Π)
for some n ≥ 0, i.e., a is domain-expansion safe.

Let a be an attribute of Π and let j be the number of malign cycles wrt. ∅ in GA(Π) from
which a is reachable. We prove by induction that if a is reachable from j ≥ 0 malign cycles
wrt. ∅ in GA(Π), then a is domain-expansion safe.

If j = 0 we make a case distinction. Case 1: if a is of form p↾i, then there is no information
flow from a malign cycle wrt. ∅ to p↾i. Therefore, for every rule r with p(t1, . . . , tℓ) ∈ H(r) we
have that ti ∈ Bn+1(r,Π, bsynsem) for all n ≥ 0 due to Condition (i) in Definition 70. But then
p↾i is domain-expansion safe.

Case 2: if a is of form &g [Y]r↾Ii, then for every variable Yi ∈ Y with type(&g , i) = const

we have Yi ∈ Bn+1(r,Π, bsynsem) due to Condition (i) in Definition 70, and for every predicate
pi ∈ Y with type(&g , i) = pred we have that pi↾j is domain-expansion safe for every 1 ≤ j ≤
ar(pi) by Case 1; note that pi↾j is not reachable from any malign cycle wrt. ∅ because this would
by transitivity of reachability mean that also &g [Y]r↾Ii is reachable from such a cycle, which
contradicts our assumption. But then also &g [Y]r↾Ii is domain-expansion safe by Definition 63.

Case 3: if a is of form &g [Y]r↾Oi, then no &g [Y]r↾Ij for 1 ≤ j ≤ ar I(&g) is reachable
from a malign cycle wrt. ∅, because then also &g [Y]r↾Oi would be reachable from such a cycle.
But then by Definition 63, &g [Y]r↾Oi is domain-expansion safe. Hence, attributes of any kind,
which are not reachable from malign cycles wrt. ∅, are domain-expansion safe.

Induction step j 7→ j + 1: If a is reachable from j + 1 malign cycles wrt. ∅, then there is
an attribute α′ in such a cycle C from which a is reachable. The malign cycle C wrt. ∅ contains
an attribute of kind &g [Y]r↾Oi, corresponding to an external atom &g [Y](X) in rule r. Since
&g [Y]r↾Oi is cyclic in GA(Π), &g [Y](X) is cyclic in ADG(Π). Then by strong safety of Π,
each variable in Y occurs in a body atom p(t1, . . . , tℓ) ∈ B

+(r) which is not part of C, i.e., it
is captured by p↾k for some 1 ≤ k ≤ ar(p). But since p(t1, . . . , tℓ) is not part of the cycle C
in ADG(Π), also p↾k is not part of it. Therefore p↾k is reachable from (at least) one malign

122

4.6. Related Work and Summary

cycle wrt. ∅ less than a, i.e., it is reachable from at most j malign cycles. Thus p↾k is domain-
expansion safe by induction hypothesis. But then by Condition (ii) in Definition 64, also a is
domain-expansion safe.

The converse does not hold, as there are domain-expansion safe programs that are not
strongly safe, cf. Example 49.

VI-Restricted Programs. The notion of VI-restrictedness for VI programs was introduced by
Calimeri et al. (2007) and amounts to the class of HEX-programs in which all input parameters
to external atoms are of type const. More formally:

Definition 78 (VI-Programs). A VI-program is a HEX-program Π such that for every external
atom &g [X](Y) in Π we have type(&g , i) = const for all 1 ≤ i ≤ ar I(&g).

The notion of attribute dependency graph by Calimeri et al. (2007) is related to our notion
of ADG(Π), which is more fine-grained for attributes of external predicates. While we use
a separate node &g [Y]r↾T i for each external predicate &g with input list Y in a rule r and
T ∈ {I, O} for all 1 ≤ i ≤ arT (&g), Calimeri et al. (2007) use just one attribute &g↾i for each
i ∈ {1, . . . , ar I(&g)+arO(&g)} independent of Y. Thus, neither multiple occurrences of &g

with different input lists in a rule, nor of the same attribute in multiple rules are distinguished;
this collapses distinct nodes in our attribute dependency graph into one. We call the graph
GĀ(Π), which possibly contains (spurious) cycles not visible in GA(Π).

Example 68. Consider the program

Π = {r1 : t(X)← s(Y),&e[Y](X); r2 : r(X)← t(Y),&e[Y](X)}.

The attributes are s↾1, t↾1, r↾1, &e[Y]r1↾I1, &e[Y]r1↾O1, &e[Y]r2↾I1 and &e[Y]r2↾O1.
We get the following edges from the first rule:

(s↾1,&e[Y]r1↾I1),(&e[Y]r1↾I1,&e[Y]r1↾O1) and (&e[Y]r1↾O1, t↾1)

We get the following edges from the second rule:

(t↾1,&e[Y]r2↾I1),(&e[Y]r2↾I1,&e[Y]r2↾O1) and (&e[Y]r2↾O1, r↾1)

In contrast, Calimeri et al. (2007) have the attributes s↾1, t↾1, r↾1, &e↾1 and &e↾2 with the
following edges:

(s↾1,&e↾1),(&e↾1,&e↾2),(&e↾2, t↾1),(t↾1,&e↾1) and (&e↾2, r↾1)

The graphs GA(Π) and GĀ(Π) are visualized in Figure 4.5. ✷

Towards a definition of the class of VI-restricted programs we use the following notions:

• A rule r poisons an attribute p↾i, if p(t1, . . . , tℓ) ∈ H(r) and ti is a variable.

123

4. GROUNDING AND DOMAIN EXPANSION

s↾1

&e[Y]r1↾I1

&e[Y]r1↾O1 t↾1 &e[Y]r2↾I1

&e[Y]r2↾O1

r↾1

(a) GA(Π) without Cycles

s↾1 &e↾1

t↾1

&e↾2r↾1

(b) GĀ(Π) with a Cycle (dashed)

Figure 4.5: Visualization of the Program Π from Example 68

• A rule r is dangerous, if it poisons an attribute p↾i which is in a cycle in GĀ(Π); p↾i is
called dangerous attribute in r.

The sets of dangerous and of savior attributes are defined in a mutually recursive fashion as
the least sets satisfying the following conditions:

• If r is dangerous, then a dangerous attribute p↾i capturing X is blocked in r, if for every
&g [Y](X) with X ∈ X, it holds that for every variable Y ∈ Y there is a body atom
q(t1, . . . , tℓ) ∈ B+(r) such that X = ti for some 1 ≤ i ≤ ar(q) and attribute q↾i is
savior.

• An attribute p↾i is savior, if for every rule r ∈ Π with p(t1, . . . , tℓ) ∈ H(r):

– ti is a constant; or

– there is some ordinary atom q(s1, . . . , sar(q)) ∈ B
+(r) such that ti = sj for some

1 ≤ j ≤ ar(q) and q↾j is savior; or

– p↾i is blocked in r.

We now introduce a class of VI-programs as follows.

Definition 79 (VI-restricted Programs). A rule r ∈ Π is VI-restricted, if all its dangerous at-
tributes are blocked; a program Π is VI-restricted, if all its dangerous rules are VI-restricted.

Using bsynsem , we can show:

Theorem 9. Every VI-restricted program Π is domain-expansion safe.

124

4.6. Related Work and Summary

Proof. We first reformulate the definitions of blocking and savior attributes in an inductive way,
which is possible because criteria are monotonic.

Blocking:

• blocked0(r) = ∅ for all r ∈ Π

• blockedn+1(r) =
{
p↾i | p↾i is dangerous in r and p↾i captures X in r and

for every &g [Y](X) with X ∈ X,

for every variable Y ∈ Y there is a body atom q(t1, . . . , tℓ)
s.t. X = ti for some 1 ≤ i ≤ ar(q) and q↾i ∈ saviorn

}
,

for all n ≥ 0

• blocked∞(r) =
⋃

n≥0 blockedn(r)

Savior attributes:

• savior0 = ∅

• saviorn+1 =
{
p↾i | for all r ∈ Π with p(t1, . . . , tℓ) ∈ H(r), either

ti is a constant; or
ti is captured by some q↾j ∈ saviorn in B+(r); or
p↾i ∈ blockedn(r)

}
,

for all n ≥ 0

• savior∞ =
⋃

n≥0 saviorn

We show now by induction on n for all n ≥ 0:

• If p↾i ∈ blockedn(r) and p↾i captures variable X in r, then X ∈ Bn(r,Π, S, bsynsem).

• If p↾i ∈ saviorn for some n ≥ 0, then p↾i ∈ Sn(Π).

For n = 0 this is trivial.
For the induction step n 7→ n + 1, suppose p↾i ∈ blockedn+1(r). Then p↾i is dangerous

and captures some X in r. For every &g [Y](X) with X ∈ X and for every variable Y ∈ Y there
is a body atom q(t1, . . . , tℓ) such that X = tj for some 1 ≤ j ≤ ar(q) and q↾j ∈ saviorn
Then, by the induction hypothesis, q↾j is domain-expansion safe. But then by Condition (ii)
in Definition 64 all input variables Y ∈ Y are declared bounded in the first step, i.e., Y ∈
Bn+1,1(r,Π, bsynsem). Then by Condition (iii) in Definition 64 also all output variables X ∈ X

are declared bounded in the second step, i.e., X ∈ Bn+1,2(r,Π, bsynsem). Thus we have X ∈
Bn+1(r,Π, Sn(Π), bsynsem).

Now suppose p↾i in saviorn+1. Then we have for every rule r ∈ Π with p(t1, . . . , tℓ) ∈
H(r) that

(i) ti is a constant; or

(ii) ti is captured by some q↾j ∈ saviorn in B+(r); or

125

4. GROUNDING AND DOMAIN EXPANSION

(iii) p↾i ∈ blockedn(r).

In Case (i), ti ∈ Bn+1(r,Π, Sn(Π), bsynsem) by Condition (i) in Definition 64. In Case (ii),
q↾j is domain-expansion safe by the induction hypothesis and thus ti is declared bounded by
Condition (ii) in Definition 64. In Case (iii), ti ∈ Bn+1(r,Π, S, bsynsem) as shown above.

This shows that all dangerous (but blocked) attributes are domain-expansion safe. It remains
to show that also all non-dangerous attributes are domain-expansion safe. Let a be such an
attribute. If it occurs in a cycle in GA(Π), then it occurs also in a cycle in GĀ(Π) because in
this graph nodes from GA(Π) may be merged, i.e., the graph is less fine-grained. If it is of
type p↾i, then it is dangerous and we already know that it is domain-expansion safe. Otherwise
it is an external input attribute of form &g [X]r↾Ii or output attribute of form &g [X]r↾Oi. If
it is an input attribute, then we know that its cyclic input depends (possibly transitively) on
domain-expansion safe ordinary attributes. As the output attributes of external atoms become
domain-expansion safe as soon as the input becomes domain-expansion safe by Definition 63,
domain-expansion safety will be propagated by Condition (iii) in Definition 64 along the cycle,
beginning at the ordinary predicates, i.e., the input parameter will be declared domain-expansion
safe after finitely many steps (since the cycle is of finite length). This shows that all attributes in
cycles in GA(Π) are domain-expansion safe.

As all attributes in cycles are domain-expansion safe, the remaining attributes (attributes
which depend on a cycle but are not in a cycle) will also be declared domain-expansion safe
after finitely many steps by Definition 63.

The converse does not hold, as there are domain-expansion safe VI-programs (e.g. due to
semantic criteria) that are not VI-restricted.

Example 69. Consider the program Π = {p(Y) ← p(X),&le[X](Y)} where f&le(A, x, y) =
1 iffdef 0 ≤ y ≤ x, for all assignments A. Then Π is not VI-restricted because the attribute
p↾1 appears in a cycle in GĀ(Π) and is thus dangerous and not blocked because X does not
occur in a savior body atom. However, the program is domain-expansion safe by Condition (i)
in Definition 70 using the well-ordering ≤. ✷

This shows that our notion of domain-expansion safety is strictly more liberal than VI-
restrictedness.

Logic Programs with Function Symbols. Another related notion is that of ω-restricted logic

programs by Syrjänen (2001), which allow function symbols under a level mapping to control
the introduction of new terms with function symbols to ensure decidability.

In this paragraph we assume that a program is a set of rules of form

a← b1, . . . , bm, not bm+1, . . . , not bn,

with k + n > 0 where each ai for 1 ≤ i ≤ k is an atom p(t1, . . . , tℓ) with function terms tj ,
1 ≤ j ≤ ℓ, and each bi for 1 ≤ i ≤ n is a classical atom.

The notion of ω-restricted logic programs hinges on the concept of predicate dependencies.

Definition 80. For a program Π, the predicate dependencies are defined as follows.

126

4.6. Related Work and Summary

• Sets P+
1 (Π) resp. P−

1 (Π) are the least sets such that for all p1, p2 ∈ P it holds that
(p1, p2) ∈ P

+
1 (Π) resp. (p1, p2) ∈ P

−
1 (Π) whenever p1 occurs in an atom in H(r) and p2

occurs in an atom in B+(r) resp. B−(r) for some r ∈ Π.

• Set P+(Π) is the transitive closure of P+
1 (Π) ∪ P−

1 (Π).

• For all p1, pn ∈ P it holds that (p1, pn) ∈ P−(Π) if there is a sequence 〈p1, p2, . . . , pn〉
with (pi, pi+1) ∈ P

+
1 (Π) ∪ P−

1 (Π) for all 1 ≤ j < n and (pj , pj+1) ∈ P
−
1 (Π) for some

1 ≤ j < n.

Intuitively, a predicate p1 depends positively on a predicate p2, if there is a derivation path
from an atom over p2 to an atom over p1 in the program. It depends negatively on p2 if at least
one derivation step in such a path uses default-negation.

We then recall the definition of ω-restricted logic programs as follows.

Definition 81. An ω-stratification of a program Π is a function s : P → N ∪ {ω} such that

• for all p1, p2 ∈ P , if (p1, p2) ∈ P+(Π) then s(p1) ≥ s(p2); and

• for all p1, p2 ∈ P , if (p1, p2) ∈ P−(Π) then s(p1) > s(p2) or s(p1) = ω.

By convention, ω > n for all n ∈ N.
For a rule r ∈ Π with p(t) ∈ H(r) and an ω-stratification, let

Ω(r, s) = s(p)

and
Ω(v, r, s) = min

({
s(q) | q(t′) ∈ B+(r) and v ∈ var(q(t′))

}
∪ {ω}

)
.

A program Π is ω-restricted if it holds for all r ∈ Π that

for all v ∈ var(r) we have Ω(v, r, s) < Ω(r, s).

Intuitively, if a predicate p1 depends positively on p2, then its stratum must be at least as
high as the stratum of p2. If p1 depends negatively on p2, then the stratum of p1 must be higher
as those of p2 or both must be on the ω-stratum.

It was observed that such programs Π can be rewritten to VI-programs F (Π) using spe-
cial external predicates that compose/decompose terms from/into function symbols and a list of
arguments, such that F (Π) is VI-restricted [Calimeri et al., 2007].

We introduce for each k ∈ N two external predicates &compsek and &decompsek with
ar I(&composek) = 1 + k and arO(&composek) = 1, and ar I(&decomposek) = 1 and
arO(&decomposek) = 1 + k. We define

f&composek
(A, f,X1, . . . , Xk, T) = f&decomposek

(A, T, f,X1, . . . , Xk) = v

with v = 1 if T = f(X1, . . . , Xk) and v = 0 otherwise.
Then composition and decomposition of function terms can be simulated using these exter-

nal predicates. Intuitively, function terms are replaced by new variables and appropriate external

127

4. GROUNDING AND DOMAIN EXPANSION

atoms with predicate &composek or &decomposek are added to the rule body to compute their
values (cf. Example 70).

As every VI-restricted program, viewed as a HEX-program, is by Proposition 9 also domain-
expansion safe, we obtain:

Theorem 10. For every logic program with function symbols Π, if Π is ω-restricted, then F (Π)
is domain-expansion safe and there is a 1-to-1 mapping between the answer sets of Π and F (Π).

Proof. By Theorem 6 of Calimeri et al. (2007), F (Π) is VI-restricted, and thus by Theorem 9
also domain-expansion safe using bsynsem(Π, r, S,B). The correspondence of the answer sets
of Π and F (Π) follows from Proposition 3 of Calimeri et al. (2007).

As for the converse there exist programs Π with function terms which are not ω-restricted but
such that F (Π) is VI-restricted, VI-restrictedness is strictly more liberal than ω-restrictedness.
It turns out that domain-expansion safety is even more liberal because there exist programs Π
with function terms which are not ω-restricted such that F (Π) is not VI-restricted but domain-
expansion safe.

Example 70. Consider the program Π = {p(f(f(f(a)))); p(X) ← p(f(X))}. We get the
translation F (Π) = {p(f(f(f(a)))); p(X) ← p(T),&decompose1 [T](f,X)}. This program
is not VI-restricted (and thus Π is not ω-restricted) because p↾1 occurs in a cycle in GA(Π)
and cannot be declared domain-expansion safe by syntactic criteria. However, the program is
domain-expansion safe by Condition (i) in Definition 70 using the well-ordering ≤strlen

C s.t.
x ≤eq

C y if the length of the string x is shorter or equal to the one of y. Clearly, we have
X ≤strlen

C T for all output terms X of &decompose1 with input T . Thus, the cycle in GA(Π)
turns out to be benign, which makes the program domain-expansion safe by Condition (i) in
Definition 70. ✷

The reason why the program in Example 70 is not VI-restricted but domain-expansion safe is
that it cannot be detected by syntactic criteria alone that the cycle produces only strictly smaller
terms in each iteration. This requires semantic insights, which are captured by our notion of
semantic term bounding function in Definition 70.

More expressive variants of ω-restricted programs are λ-restricted [Gebser et al., 2007b] and
argument-restricted programs [Lierler and Lifschitz, 2009]. There are argument-restricted pro-
grams Π s.t. F (Π) is not domain-expansion safe wrt. bsynsem . The reason is that specific prop-
erties of the external atoms for term (de)composition are exploited, while our approach uses
general external sources. However, these classes of programs can be captured within our frame-
work as well if tailored TBFs are used. This is not surprising as TBFs have full access to
the program, thus the criteria of λ-restricted and argument-restricted programs can be checked
by the TBF and all terms can be declared bounded if they hold. This shows the flexibility of
our modular approach. The extension of argument-restricted programs by Greco et al. (2013),
which is called bounded programs, also uses parameterization of safety criteria but focuses on
programs with function symbols rather than general external sources; this notion might also be
captured in our approach by using dedicated term bounding functions.

128

4.6. Related Work and Summary

Similarly, by means of dedicated external atoms for (de)composing terms and a specialized
TBF, so-called FD programs [Calimeri et al., 2008a] map into our framework. Finitary pro-

grams [Bonatti, 2001; Bonatti, 2002] and FG programs [Calimeri et al., 2008a], however, dif-
fer more fundamentally from our approach and cannot be captured as domain-expansion safe
wrt. appropriate TBFs, as they are not effectively recognizable (and the former are in general
not even finitely restrictable, i.e., there is no finite grounding which has the same answer sets as
the original program).

Term Rewriting Systems. A term rewriting system is a set of rules for rewriting terms to
other terms, cf. Klop (1992). Termination is usually shown by proving that the right-hand side
of every rule is strictly smaller than its left-hand side [Zantema, 1994; Zantema, 2001]. Our
notion of benign cycles is similar, but different from term rewriting systems the values do not
need to strictly decrease. While terms that stay equal may prevent termination in term rewriting
systems, they do not harm in our case because they cannot expand the grounding infinitely.

Other Notions of Safety. Related to semantic properties in our safety concept are the works
by Sagiv and Vardi (1989), Ramakrishnan et al. (1987) and Krishnamurthy et al. (1996). They
exploit finiteness of attributes (cf. Condition (ii) in Definition 70) in sets of Horn clauses and de-
rive finiteness of further attributes using finiteness dependencies. This is related to Condition (iii)
in Definition 70 and Condition (iii) in Definition 64.

Also related is the work of Heymans et al. (2004), who exploit syntactic restrictions to guar-
antee tree-shapedness of the models of the program. But unlike our approach, this does not
guarantee finiteness of the model but only finite representability.

Less related to our approach are the works of Lee et al. (2008), Cabalar et al. (2009), and
Bartholomew and Lee (2010), who extend safety, resp. argument restrictedness, to arbitrary
first-order formulas without/with function symbols under the stable model semantics, rather
than generalizing the concepts.

4.6.2 Summary and Future Work

We have presented a framework for obtaining classes of HEX-programs that allow for finite
groundings sufficient for evaluation over an infinite domain (which arises by value invention in
calls of external sources). It is based on term bounding functions (TBFs) and enables modular
exchange and enhancement of such functions, and an easy combination of hitherto separate
syntactic and semantic criteria into a single notion of liberal domain expansion safety. Our
work pushes the classes of HEX-programs with evaluation via finite grounding considerably,
leading to strictly larger classes than available via well-known criteria for answer set programs
over infinite domains. We provided two concrete TBFs that capture syntactic criteria similar
to but more fine-grained than the ones by Calimeri et al. (2007), and semantic criteria related
to those of Sagiv and Vardi (1989), Ramakrishnan et al. (1987) but targeting model generation
(not query answering).

We have then presented an algorithm for grounding arbitrary liberally domain-expansion
safe HEX-programs. The algorithm is based on iterative grounding and checking whether the

129

4. GROUNDING AND DOMAIN EXPANSION

grounding is large enough. The algorithm incorporates several optimizations which try to avoid
the (expensive) evaluation of external atoms. A worst-case scenario for the grounding algorithm
is a program, that contains cyclic dependencies of nonmonotonic external atoms. However, this
worst-case can be effectively avoided in many programs using a newly developed decomposition
heuristics (see below).

Next, we integrated the grounding algorithm into the existing evaluation framework for HEX-
programs, which is extended for this purpose. In particular, we defined the notion of generalized

evaluation graphs, which allows for using arbitrary liberally domain-expansion safe programs as
units. In contrast to the traditional notion of evaluation graphs, splitting of programs is not nec-
essary anymore, but still useful an some cases. Thus we developed a new evaluation heuristics
which tries to achieve two contrary goals: splitting the program as rarely as possible (because
this is harmful to the learning-based algorithms), but as often as necessary in order to avoid the
worst-case for the grounding algorithm.

Issues for ongoing and future work are the identification of further TBFs and suitable well-
orderings of domains in practice. On the algorithmic side, further refinement and optimizations
are an interesting topic. The grounding algorithm may be extended in the future such that the
worst-case can be avoided in more cases. Also other optimizations to the algorithm are possible,
e.g., by reusing previous results of the grounding step instead of iterative regrounding of the
whole program. Moreover, the new evaluation heuristics for the (extended) evaluation frame-
work may be refined. Currently, the heuristics tries to avoid fusion of evaluation units whenever
this would introduce cyclic dependencies of nonmonotonic external atoms, which is a worst-case
for the grounding algorithm. However, sometimes this worst-case is not practically relevant be-
cause the concerned external atom has only few output tuples. Detecting such cases would allow
for fewer evaluation units in some cases, which is an advantage for the solving algorithms.

The setup of a library of TBFs, which exploit specific properties of concrete external sources,
is also a possible starting point for future work on the system side. Currently, the available TBFs
exploit rather generic properties of external atoms. However, it is expected that domain-specific
knowledge can be used to further relax safety criteria or speedup the grounding algorithm.

130

Chapter 5
Implementation and Evaluation

In this chapter we discuss the practical aspects of our work. We start with a description of the
system implementation in Section 5.1, including its architecture, command-line options which
are relevant in the context of this thesis, and the realization of specific features.

Then we present benchmark results for our new system implementation and compare them
to the traditional algorithms for HEX-evaluation, which will show a significant speedup in many
use cases. We first discuss evaluation of the learning-based algorithms for ground HEX-programs
that we developed in Chapter 3 in Section 5.2. Although the encodings of our benchmark prob-
lems may involve variables and value invention, the hardness of the programs stems clearly
from ground HEX-program solving rather than from grounding. The grounding algorithm from
Chapter 4 is evaluated in Section 5.3, using a different benchmark suite for which grounding is
computationally more sophisticated.

5.1 Implementation

In this section we give some details on the implementation of the techniques developed in this
thesis. Our prototype system is called DLVHEX and is written in C++. It is available from
http://www.kr.tuwien.ac.at/research/systems/dlvhex as open-source software. The sourcecode is
hosted by https://github.com under https://github.com/hexhex. The system was initially released
as version 1.0.0 in 2006. After major parts of the system were rewritten for architectural and
efficiency reasons, and the model-building framework from Section 4.1 was introduced, version
2.0.0 appeared in March 2012. The current version (released in December 2013) is 2.3.0 and
integrates all solving and grounding techniques from this thesis.

We first describe the general architecture, the major components, and their interplay. Then
we give an overview about the command-line options of the system in general, and the new
features compared to the previous version by Schüller (2012) specifically. We further show how

131

http://www.kr.tuwien.ac.at/research/systems/dlvhex
https://github.com
https://github.com/hexhex

5. IMPLEMENTATION AND EVALUATION

external source providers can define user-defined learning functions. Moreover, we show some
language extensions developed during the work on this thesis.

5.1.1 System Architecture

The DLVHEX system architecture is shown in Figure 5.1. The arcs model both control and data
flow within the system. The evaluation of a HEX-program works as follows.

First, the input program is read from the file system or from standard input and passed to
the evaluation framework described in Section 4.1 1©. The evaluation framework creates then
a generalized evaluation graph depending on the chosen evaluation heuristics. This results in
a number of interconnected generalized evaluation units. While the interplay of the units is
managed by the evaluation framework, the individual units are handeled by model generators of
different kinds.

As described in Chapter 3, general program components use a guess-and-check algorithm,
while monotonic program components may use a more efficient fixpoint iteration. This is re-
alized as different model generators. Each instance of a model generator takes care of a single
evaluation unit, receives input interpretations from the framework (which are either output by
predecessor units or come from the input facts for leaf units), and sends output interpretations
back to the framework 2©, which manages the integration of these interpretations to final answer
sets.

Internally, the model generators make use of a grounder and a solver for ordinary ASP pro-
grams. The architecture of our system is flexible and supports multiple concrete backends which
can be plugged in. Currently it supports DLV, GRINGO 3.0.4 and CLASP 2.1.3, and an internal
grounder and a solver which were built from scratch during the work on this thesis (mainly for
testing purposes); they use basically the same core algorithms as GRINGO and CLASP, but with-
out any kind of optimizations. The reasoner backends GRINGO and CLASP are statically linked
to our system, thus no interprocess communication is necessary. The model generator within the
DLVHEX core sends a non-ground program to the HEX-grounder, as described in Chapter 4, and
receives a ground program 3©. The HEX-grounder in turn uses an ordinary ASP grounder as sub-
module 4© and accesses external sources to handle value invention 5©. The ground-program is
then sent to the solver and answer sets of the ground program (i.e. candidate compatible sets) are
returned 6©. Note that the grounder and the solver are separated and communicate only through
the model generator, which is in contrast to previous implementations of DLVHEX where the
external grounder and solver were used as a single unit (i.e., the non-ground program was sent
and the answer sets were retrieved). Separating the two units became necessary because the
DLVHEX core needs access to the ground-program. Otherwise important structural information,
such as cyclicity as used in Section 3.2, would be hidden.

The solver backend makes callbacks to the post propagator in the DLVHEX core once a
model has been found or after unit and unfounded set propagation has been finished (actually,
with DLV backend there are no callbacks during model building but only after a candidate com-
patible set has been found). During the callback, a complete or partial model is sent from
the solver backend to the post propagator, and learned nogoods are sent back to the external
solver 7©. In case of CLASP as backend, we exploit its SMT interface, which was previously
used for the special case of constraint answer set solving [Gebser et al., 2009]. The post propa-

132

5.1. Implementation

HEX-
Program

Evaluation
Framework

Answer
Sets

Model
Generators

ASP Solver

ASP
Grounder

HEX-
Grounder

Post
Propagator

UFS-
Checker

SAT Solver

Plugins

DLVHEX core

1

2

3

4

5

6

7

8

9 10

11

12

Figure 5.1: Architecture of DLVHEX

gator has then two key tasks: compatibility checking with learning and unfounded set detection.
Compatibility checking, as formalized in Part (d) in Algorithm GuessAndCheckHexEvaluation
and in Part (c) in Algorithm Hex-CDNL, checks whether the guesses of the external atom re-
placements by the ordinary ASP solver coincide with the actual semantics of the external source.
This check also requires calls to the plugins, which implement the external sources. The input
list is sent to the external source and the truth values and possibly user-defined learnt nogoods
are returned to the post propagator 9©. Moreover, the post propagator also sends the (complete
or partial) model to the unfounded set checker (UFS checker) to find unfounded sets which are
not detected by the ordinary ASP solver (unfounded sets caused by external sources). For this,
the UFS checker employs a SAT solver 11©, which can either be CLASP or the internal solver.
The UFS checker possibly returns nogoods learned from unfounded sets to the post propaga-
tor 8©. UFS detection also needs to call the external sources for guess verification, as shown in
Algorithm FLPCheck 10©. The post propagator sends all learned nogoods (either directly from
external sources or from unfounded sets) back to the ASP solver. This makes sure that eventually
only valid answer sets arrive at the model generator 6©.

Finally, after the evaluation framework has built the final answer sets from the output inter-
pretations of the individual evaluation units, they are output to the user 12©.

133

5. IMPLEMENTATION AND EVALUATION

5.1.2 Command-Line Options

DLVHEX supports various command-line options which control the algorithms. An exhaustive
overview is available as online help which is printed if DLVHEX is run without arguments, i.e.,
$ dlvhex2.

The following list gives an overview about the most relevant options in the scope of this
thesis and describes the possible parameter values.

• --heuristics=[old,easy,monolithic,greedy]

Chooses the heuristics for the construction of the evaluation graph.
old and easy are described by Eiter et al. (2011a)
monolithic creates a single evaluation unit for the whole program
greedy is the new default heuristics as described in Section 4.5

• --solver=[dlv,genuineii,genuineic,genuinegi,genuinegc]
Selects the grounder and solver backend.
dlv uses DLV for grounding and solving
genuineii uses the internal grounder and solver
genuineic uses the internal grounder and CLASP

genuinegi uses GRINGO and the internal solver
genuinegc uses GRINGO and CLASP

• --eaevalheuristics=[never,inputcomplete,always]
Controls the heuristics for external atom evaluation in Part (c) of Algorithm Hex-CDNL
Hex-CDNL.
never does not evaluate external atoms during model building
inputcomplete evaluates external atoms whenever their input is fully known
always evaluates whenever the solver backend makes a callback to the post propagator

• --ufscheckheuristics=[post,periodic,max]
Controls how often the UFS checker is invoked.
post invokes it only for complete interpretations
periodic invokes it in regular intervals
max invokes it whenever the solver backend makes a callback to the post propagator

• --flpcheck=[explicit,ufs,ufsm,aufs,aufsm]
Selects the algorithm for the FLP check.
explicit uses the reduct as introduced at the beginning of Section 3.2
ufsm uses the UFS algorithm with encoding Γ but without program decomposition
ufs uses the UFS algorithm with encoding Γ and program decomposition
aufsm uses the UFS algorithm with encoding Ω but without program decomposition
aufs uses the UFS algorithm with encoding Ω and program decomposition

• --ufslearn=[none,ufs,reduct]
Selects a strategy for learning from unfounded sets.
none uses no learning

134

5.1. Implementation

ufs learns as formalized by L1(U,Π,A) in Section 3.2.3
reduct learns as formalized by L2(U,Π,A) in Section 3.2.3

• --extlearn=[none,iobehavior,monotonicity,functionality,
linearity,neg,user]

Chooses one or more strategies for learning from external sources as described in Sec-
tion 3.1.2.
none uses no learning
iobehavior learns in an uninformed fashion as described in Section 3.1.2
monotonicity learns as described in Section 3.1.2 by exploiting (anti-)monotonicity
functionality learns as described in Section 3.1.2 by exploiting functionality
linearity learns as described in Section 3.1.2 by exploiting linearity
neg learns as described in Section 3.1.2 by exploiting negative information
user exploits user-defined learning functions (if provided by the plugin developer)
If --extlearn is passed without any specific values, then all learning functions are
activated (for those external sources which have the respective properties).

• --noflpcriterion
Do not apply the decision criterion developed in Section 3.2.5.

• --liberalsafety
Use liberal domain-expansion safety from Section 4.2 instead of strong domain-expansion
safety.

A typical example for a complete call to DLVHEX is as follows:

$ dlvhex2 --heuristics=monolithic --solver=genuinegc --extlearn \
--flpcheck=aufs --liberalsafety setpartitioning.hex

The syntax of the input language is very similar to the one used in this thesis, but with :-
instead of← and letter v for ∨. Moreover, rules must be terminated with a dot.

Example 71. The program Π from Example 2 is encoded in file setpartitioning.hex
follows:

sel(X) :- domain(X), &diff[domain, nsel](X).

nsel(X) :- domain(X), &diff[domain, sel](X).

domain(a).

✷

It uses monolithic evaluation heuristics, GRINGO and CLASP as solver backends, turns
all options for learning from external sources on, uses the UFS-based FLP check with encoding
Ω, and uses liberal de-safety.

135

5. IMPLEMENTATION AND EVALUATION

5.1.3 Heuristics for External Atom Evaluation and Unfounded Set Checking

Our implementation supports customized heuristics for steps (c) and (d) in Algorithm Hex-
CDNL. A customized heuristics for external atom evaluation gets as input a partial assignment
and an external atom in the program and decides whether this external atom shall be evalu-
ated. In the positive case, the system evaluates the learning function associated with the ex-
ternal atom and its input list wrt. to the partial assignment (which may not even fully define
the input to the external atom), and adds the respective nogoods to the set of dynamic no-
goods. Note that this allows for learning nogoods which imply the truth values of yet unas-
signed input or output atoms of the external atom; this technique is well-known as theory prop-

agation [Nieuwenhuis and Oliveras, 2005]. However, exploiting the power of this technique
requires user-defined learning functions (see below) which need to be tightly coordinated with
the external atom heuristics such that useful nogoods can be learned even wrt. partial interpreta-
tions. This step is strongly application dependent and beyond the scope of this thesis. However,
our system provides a user-friendly programming interface for adding such learning functions
and heuristics. In our benchmarks we used our default heuristics which evaluates external atoms
whenever their input is completely known.

Customized heuristics for unfounded set checking also take as input a partial assignment
and decide whether an unfounded set check shall be done. In the positive case, the unfounded
set check is performed only over the subset-maximal subprogram over which the interpretation
is already complete. As described in Section 3.2.4, this ensures that detected unfounded sets
remain unfounded wrt. any completion of the assignment. We provide three concrete heuristics:

(1) Start unfounded set checking only wrt. complete interpretations.

(2) Start unfounded set checks periodically.

(3) Start unfounded set checks whenever no other propagation method yields additional assign-
ments (i.e., before guessing).

However, our experiments have shown that (1) is superior to the other two methods in all our
benchmarks. This is the case because unfounded set checking with external sources is a very
expensive check, while the benefit of detecting unfounded sets earlier is marginal as learning
effectively avoids the regeneration of unfounded sets anyway. Thus, we stick with heuristics (1)
in our benchmarks.

5.1.4 User-Defined Learning Functions

User-defined learning functions as described in Section 3.1.2 can be implemented in two ways.
The learned nogoods may be stated either directly as sets of signed literals, or encoded as (pos-
sibly non-ground) ASP rules. Stating them directly requires the user for writing some lines of
C++ code to assemble the learned nogoods during evaluation of the external source. This may
be more efficient than using ASP but less convenient. The traditional DLVHEX API for writing
plugins requires the plugin developer to provide an implementation of the method:

void retrieve(const Query& query, Answer& answer);

136

5.1. Implementation

It needs to transform a query object, containing the input list of the external atom and the ex-
tensions of the relevant predicates, into an answer object, containing all output tuples for which
the external atom shall be true. This was described by Schüller (2012). While this method ex-
ploits specific properties of external sources, as described in Section 3.1.2, the user may specify
custom learning methods by overriding the following method instead:

void retrieve(const Query& query, Answer& answer, NogoodContainerPtr ngcont);

Here, access to a nogood container is provided (roughly corresponding to the ASP solver),
which allows for adding custom nogoods by appropriate function calls. The construction of the
learned nogoods out of single literals is up to the user, but is supported by a library of helper
functions, which may be used to construct parts of the nogoods automatically. For instance,
there is a helper method which automatically constructs the set of all input atoms in the query
object.

One particular helper function allows for writing learning rules in a fragment of ASP itself.
The idea can be described as follows. Each rule specifies the preconditions for learning in terms
of signed literals in the current assignment in its body. The head atom specifies the output tuples
generated by the external source, i.e., they encode which atoms will be in the output (resp. not in
the output) under these preconditions. We used the predicates ini for 1 ≤ i ≤ n (for n-ary input)
in the learning rule body and out resp. nout in its head. For instance, for external predicate with
input list &g [p1, . . . , pn] the atom in2(c) in the body of a learning rule is true, if c is in the
extension of the second input parameter, which is p2 in this case. The atom out(c) in the head
of a learning rule states that c is in the output of the external source whenever the body of the
learning rule is satisfied. Note that we have to use anonymized predicates ini, 1 ≤ i ≤ n instead
of the predicate names used in a certain external atom, because the learning rule must work also
for different external atoms (but using the same external predicate).

Example 72. The behavior of external predicate with input list &diff [p, q] can compactly be
described by the rule out(X)← in1 (X), not in2 (X). ✷

The application of a learning rule during evaluation of an external atom under assignment A
works then as follows.

1. First, all predicates out resp. nout are replaced by the auxiliary name e&g[y] for the re-
spective external predicate with input list &g [y].

2. Then, all signed literals Ta ∈ A from the current assignment A which are input atoms to
the external atom (i.e. a = pi(c) for some c and pi ∈ y) are transformed into facts a←.

3. The facts and the learning rule form the learning program, which is grounded in the third
step. It is crucial to do the grounding without optimization. State-of-the-art grounders are
highly optimized and evaluate the deterministic part of a program already during ground-
ing as far as possible. This means in particular that atoms which are known to be true in
all answer sets, are removed from rule bodies. If a program is stratified, which is usually
the case for learning programs, it is completely evaluated to a set of facts. However, this is
undesired here: because we want to use the ground rule to construct a learned nogood, we

137

5. IMPLEMENTATION AND EVALUATION

have to ensure that it is correct also for future assignments, which may be different from
the one wrt. which the external atom is currently evaluated.

4. Finally, the algorithm learns for each ground rule r of type H(r) ← B+(r), notB−(r)
the nogood

{
Fh | h ∈ H(r)

}
∪
{
Tp | p ∈ B+(r)

}
∪
{
Fn | n ∈ B−(r)

}
.

Example 73 (ctd.). Continuing Example 72, the rule after renaming all predicates according to
the external atom is e&diff [p,q](X)← p(X), not q(X). Let A = {Tp(a),Tp(b),Fp(c), Tq(a),
Fq(b), Tq(c)}, then the grounded learning program is e&diff [p,q](b) ← p(b), not q(b) and the
nogood which is learned by the system is {Fe&diff [p,q](b),Tp(b),Fq(b)}. ✷

Observe that optimization during grounding would lead to an incorrect nogood. The ground
rule would be e&diff [p,q](b) ← in this case, which leads to the nogood {Fe&diff [p,q](b)} that
encodes that b is always in the output of the external source. However, this is only the case
for the current input interpretation, the precondition p(b), not q(b) was lost due to grounding
optimization.

5.1.5 Language Extension for Property Specification

The development of the algorithms presented in Chapters 3 and 4 required lots of experiments
with external sources of different kinds. Recall that our algorithms exploit syntactic and seman-
tic properties of external sources, such as monotonicity. Such properties are in practical use
reasonably specified by the provider of the respective external atoms. For this purpose, our C++
API offers property lists which can be assigned to external atoms. The properties of external
sources are usually fixed once the plugin has been developed.

However, during the work on this thesis it was of great interest to experiment with different
property lists for the same external atom. For instance, it was important to see what happens
if an external atom is monotonic, but not declared as such, i.e., the property is concealed from
the system. Then the system might be forced to use a more general and slower algorithm than
if the property was known. Conversely, it was sometimes also interesting to see how the system
behaves if a property is wrongly asserted, e.g., some nonmonotonic source is declared to be
monotonic. On the one hand, this was useful for making the system more robust against user
errors and programming errors in plugins, on the other hand the observations also led to a better
intuitive understanding of the algorithms.

It would have been cumbersome to change the C++ code of external sources for every ex-
periment with a different property list. Thus, the following extension of the HEX-language was
developed. External atoms &g [y](x) can now be post-fixed by inline property lists directly in
the HEX-program, which are of kind 〈P1, . . . , Pn〉 where the Pi for 1 ≤ i ≤ n are property

assertions, such as monotonic yk to define that &g is monotonic in predicate input parameter
yk ∈ y, or finitedomain 2 to define that the second output element x2 has a finite domain. For
an exhaustive description of the supported property assertions, we refer to the system documen-
tation.

138

5.2. Evaluation of the Learning-based Algorithms

5.2 Evaluation of the Learning-based Algorithms

We evaluated the implementation on a Linux server with two 12-core AMD 6176 SE CPUs with
128GB RAM running an HTCondor load distribution system1 which ensures robust runtimes
(i.e., multiple runs of the same instance have negligible deviations) and using DLVHEX version
2.3.0. The grounder and solver backends for all benchmarks are GRINGO 3.0.4 and CLASP

2.1.3. For each instance, we limited the CPU usage to two cores and 8GB RAM. The timeout
for all instances was 300 seconds. The instances of all benchmarks discussed in this section
are available as compressed tar archives from http://www.kr.tuwien.ac.at/staff/redl/aspext. The
required plugins are available from the repository (https://github.com/hexhex).

For evaluating the solving algorithms for ground HEX-programs, there is a large number of
combinations of the techniques developed in this thesis. We may either activate or deactivate
external behavior learning (EBL) and use either the explicit or the UFS-based minimality check.
In the latter case, we can further use unfounded set learning (UFL), the decision criterion for
skipping the unfounded set check can be exploited or ignored, and program decomposition might
be used. Moreover, we can choose between the encodings Γ and Ω.

However, we will restrict our discussion to some interesting configurations. In general, we
will activate the developed features stepwise such that in our tables the efficiency increases from
left to right. We will start with the traditional algorithm based on an explicit minimality check
without any learning techniques described in this thesis (i.e., only conflict-driven learning in-
side CLASP is used). In the next step we will add external behavior learning (EBL), while UFL
is not possible with the explicit check. Then we switch from the explicit minimality check to
the UFS-based one without learning and without exploiting the decision criterion and program
decomposition. Nevertheless, this naive kind of the UFS-based minimality checking is usually
already more efficient than the explicit minimality check with EBL. In the next step, we add the
decision criterion and program decomposition. In the following, monolithic (mol.) means that
both the decision criterion and the program decomposition are off, and modular (mod.) that they
are on. Then we add EBL and UFL to the UFS-based minimality check, which leads usually
to a significant speedup. Finally, we switch the encoding from Γ to Ω; in our experiments we
always enable modular decomposition and the decision criterion if encoding Ω is used. Since the
two encodings have different variables and clauses, their respective search spaces are of a differ-
ent structure, which may prefer or penalize the one or the other encoding for a given instance.
However, the systematic difference between the encodings is that Ω needs to be constructed
only once, which is an advantage and often leads to a smaller overall runtime. We might skip
some of the steps for specific benchmarks and argue why they are uninteresting in the respective
cases. The numbers in parentheses indicate the number of instances and the number of time-
outs in the respective categories. In all benchmarks of this section we used the monolithic
decomposition heuristics, i.e., we do not split the program.

We can see a clear improvement both for synthetic and for application instances, due to the
UFS check and EBL. Since some benchmarks are motivated by real applications, they will be
discussed in more detail in Chapter 6. Here we only give a brief description as far as this is
necessary to understand the benchmark results. A closer analysis shows that the UFS check in

1http://research.cs.wisc.edu/htcondor

139

http://www.kr.tuwien.ac.at/staff/redl/aspext
https://github.com/hexhex
http://research.cs.wisc.edu/htcondor

5. IMPLEMENTATION AND EVALUATION

do
m

ai
n All Answer Sets First Answer Set

explicit UFS Γ UFS Γ UFS Ω explicit UFS Γ UFS Γ UFS Ω
+EBL mol. mod. +EBL +EBL +EBL mol. mod. +EBL +EBL

1 (1) 0.05 (0) 0.05 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0)
2 (1) 0.28 (0) 0.20 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.09 (0) 0.10 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0)
3 (1) 4.65 (0) 2.82 (0) 0.06 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.70 (0) 0.70 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0)
4 (1) 69.66 (0) 36.64 (0) 0.14 (0) 0.14 (0) 0.06 (0) 0.06 (0) 6.34 (0) 6.35 (0) 0.04 (0) 0.04 (0) 0.05 (0) 0.05 (0)
5 (1) 300.00 (1) 300.00 (1) 0.33 (0) 0.32 (0) 0.09 (0) 0.07 (0) 54.02 (0) 53.80 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
6 (1) 300.00 (1) 300.00 (1) 0.77 (0) 0.81 (0) 0.12 (0) 0.10 (0) 300.00 (1) 300.00 (1) 0.04 (0) 0.05 (0) 0.06 (0) 0.06 (0)
7 (1) 300.00 (1) 300.00 (1) 1.73 (0) 1.78 (0) 0.20 (0) 0.13 (0) 300.00 (1) 300.00 (1) 0.06 (0) 0.06 (0) 0.06 (0) 0.07 (0)
8 (1) 300.00 (1) 300.00 (1) 4.35 (0) 4.17 (0) 0.31 (0) 0.16 (0) 300.00 (1) 300.00 (1) 0.07 (0) 0.06 (0) 0.07 (0) 0.07 (0)
9 (1) 300.00 (1) 300.00 (1) 10.42 (0) 10.21 (0) 0.47 (0) 0.23 (0) 300.00 (1) 300.00 (1) 0.08 (0) 0.07 (0) 0.08 (0) 0.09 (0)

10 (1) 300.00 (1) 300.00 (1) 26.31 (0) 25.13 (0) 0.53 (0) 0.29 (0) 300.00 (1) 300.00 (1) 0.09 (0) 0.09 (0) 0.11 (0) 0.12 (0)
15 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 2.83 (0) 0.79 (0) 300.00 (1) 300.00 (1) 0.19 (0) 0.15 (0) 0.27 (0) 0.26 (0)
20 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 12.98 (0) 1.95 (0) 300.00 (1) 300.00 (1) 0.38 (0) 0.29 (0) 0.57 (0) 0.57 (0)
25 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 45.18 (0) 4.11 (0) 300.00 (1) 300.00 (1) 0.70 (0) 0.47 (0) 1.09 (0) 1.08 (0)

Table 5.1: Set Partitioning – Benchmark Results

some cases not only decreases the runtime but also the numbers of enumerated candidates (UFS
candidates resp. model candidates of the FLP-reduct) and of external atom evaluations.

5.2.1 Detailed Benchmark Description

Set Partitioning. This benchmark extends the program from Example 32 by the additional
constraint ←sel(X), sel(Y), sel(Z), X 6= Y,X 6= Z, Y 6= Z and varies the size of domain .
The results are shown in Table 5.1. We can observe a big advantage of the UFS check over
the explicit check, both for computing all answer sets and for finding the first one. A closer
investigation shows that the improvement is mainly due to the optimizations described in Sec-
tion 3.2.3 which make the UFS check investigate significantly fewer candidates than the explicit
FLP check. Furthermore the UFS check requires fewer external computations.

Both the explicit and the UFS-based minimality check benefit from EBL if we compute all
answer sets, but the results show that the UFS-based check benefits more. In contrast, UFL (not
shown in the table) does not lead to a further speedup because no unfounded sets will be detected
in this program. Also the decision criterion and program decomposition (not shown in the table)
do not help because there is a cycle which involves the whole program.

If we compute only one answer set, then EBL turns out to be counterproductive. This is
because learning is involved with additional overhead, while the algorithm cannot profit much
from the learned knowledge if it aborts after the first answer set, hence the costs exceed the
benefit.

Using the encoding Ω instead of Γ increases the efficiency in this case, because there is not
only a large number of answer sets but also a large number of answer set candidates. Thus, a
reusable encoding is very beneficial, even if we compute only one answer set.

Multi-Context Systems (MCSs). Multi-context systems [Brewka and Eiter, 2007] are a for-
malism for interlinking knowledge based systems. So-called bridge rules are used to intercon-

140

5.2. Evaluation of the Learning-based Algorithms

nect the single knowledge bases by deriving the truth of some atom in one knowledge base
depending on atoms in different knowledge bases. More details are discussed in Chapter 6.

An important reasoning task for MCSs is finding inconsistency explanations (IEs), as defined
by Eiter et al. (2010), in terms of sets of sets of bridge rules which cause this inconsistency. This
benchmark computes the IEs, which correspond 1-1 to answer sets of an encoding rich in cycles
through external atoms (which evaluate local knowledge base semantics). We used random
instances of different topologies created with an available benchmark generator.

For most instances, we observed that the number of candidates for smaller models of the
FLP-reduct equals the one of unfounded set candidates. This is intuitive as each unfounded set
corresponds to a smaller model; the optimization techniques do not prune the search space in this
case. However, as we stop the enumeration as soon as a smaller model resp. an unfounded set is
found, depending on the specific program and solver heuristics, the explicit and the UFS check
may consider different numbers of interpretations. This explains why the UFS check is some-
times slightly slower than the explicit check. However, it always has a smaller delay between
different UFS candidates, which sometimes makes it faster even if it visits more candidates.

Note that MCS topologies are bound to certain system sizes, and the difficulty of the in-
stances varies among topologies; thus larger instances may have shorter runtimes.

The results for consistent MCSs are shown in Table 5.2 and the results for inconsistent MCSs
in Table 5.3. Consistent MCSs have no answer sets, thus we do not distinguish between com-
puting all and the first answer set. The effects of external behavior learning and of unfounded
set learning are clearly evident in the MCS benchmarks, both for computing all and for comput-
ing the first answer set. The UFS check profits more from EBL than the explicit check, further
adding to its advantage. By activating UFL (not possible in the explicit check) we gain another
significant speedup.

Intuitively, consistent and inconsistent MCSs are dual, as for each candidate the explicit
resp. UFS check fails, i.e., stops early, vs. for some (or many) candidates the check succeeds
(stops late). However, the mixed results do not permit us to draw solid conclusions on the
computational relationship of the evaluation methods.

We now discuss the effects of the syntactic decision criterion and program decomposi-
tion. We used the HEX-encoding by Eiter et al. (2012d), which contains saturation over ex-
ternal atoms, where nearly all cycles in the HEX-program contain at least one external atom2.
Therefore, the decision criterion can reduce the set of atoms, for which the UFS check needs
to be performed, only by the atoms that are defined in the EDB. This does not yield significant
efficiency improvements. However, the benchmark results for MCS instances confirm that the
syntactic check is very cheap and does not hurt performance, even if the instance does not admit

2The saturation technique (cf. e.g. Eiter et al. (2009)) is a programming technique in disjunctive ASP that ex-
ploits the subset-minimality property of answer sets for checking that a given property holds for all guesses in a given
search space. The idea is that whenever the property holds for all assignments, the program has a unique saturation

model, containing a unique atom asat and all ‘bad’ assignments, i.e., assignments which do not fulfill the property.
Thus, the saturation model is a proper superset of any bad assignment. Then by minimality of answer sets, the satu-
ration model is an answer set if and only if there is no bad assignment. Other rules in the program may refer to asat

to check if the property holds. A typical example is the check if a graph is not 3-colorable, i.e., all possible colorings
violate the conditions. A similar technique can be realized with external atoms.

141

5. IMPLEMENTATION AND EVALUATION

#c
tx explicit UFS Γ UFS Γ UFS Ω

+EBL mol. mod. +EBL +UFL +EBL+UFL

3 (6) 4.78 (0) 3.97 (0) 2.96 (0) 2.97 (0) 1.65 (0) 0.08 (0) 0.08 (0)
4 (10) 51.90 (1) 45.91 (1) 48.71 (1) 48.59 (1) 23.48 (0) 0.10 (0) 0.11 (0)
5 (8) 149.53 (3) 137.95 (3) 150.80 (3) 150.64 (3) 94.45 (1) 0.10 (0) 0.12 (0)
6 (6) 159.41 (3) 154.69 (3) 157.62 (3) 157.72 (3) 151.89 (3) 0.12 (0) 0.15 (0)
7 (12) 231.23 (9) 227.45 (9) 234.74 (9) 234.63 (9) 216.75 (8) 0.17 (0) 0.20 (0)
8 (5) 244.39 (4) 204.92 (3) 246.42 (4) 246.34 (4) 190.60 (3) 0.17 (0) 0.21 (0)
9 (8) 300.00 (8) 278.44 (7) 300.00 (8) 300.00 (8) 264.65 (6) 0.22 (0) 0.24 (0)

10 (11) 300.00 (11) 268.78 (9) 300.00 (11) 300.00 (11) 247.16 (8) 0.25 (0) 0.31 (0)

Table 5.2: Consistent MCSs – Benchmark Results

#c
tx

All Answer Sets
explicit UFS Γ UFS Γ UFS Ω

+EBL mol. mod. +EBL +UFL +EBL+UFL

3 (9) 3.29 (0) 2.70 (0) 2.44 (0) 2.34 (0) 1.09 (0) 0.14 (0) 0.14 (0)
4 (14) 41.57 (1) 17.94 (0) 37.04 (1) 37.03 (1) 6.05 (0) 2.71 (0) 0.61 (0)
5 (11) 154.55 (5) 148.11 (5) 154.17 (5) 153.94 (5) 108.87 (2) 3.65 (0) 1.28 (0)
6 (18) 130.90 (7) 102.57 (6) 128.26 (7) 128.12 (7) 87.75 (4) 10.61 (0) 1.55 (0)
7 (13) 166.14 (5) 118.04 (5) 157.67 (5) 157.06 (5) 107.50 (4) 84.08 (2) 29.47 (0)
8 (6) 261.96 (5) 143.75 (2) 262.95 (5) 263.00 (5) 118.36 (2) 55.86 (1) 51.13 (1)
9 (14) 286.74 (13) 206.10 (9) 287.10 (12) 287.32 (12) 189.48 (8) 124.34 (5) 130.56 (6)

10 (12) 300.00 (12) 300.00 (12) 300.00 (12) 300.00 (12) 290.18 (11) 290.69 (11) 277.05 (11)

#c
tx

First Answer Set
explicit UFS Γ UFS Γ UFS Ω

+EBL mol. mod. +UFL +EBL +EBL+UFL

3 (9) 0.09 (0) 0.09 (0) 0.08 (0) 0.08 (0) 0.08 (0) 0.08 (0) 0.09 (0)
4 (14) 0.13 (0) 0.14 (0) 0.11 (0) 0.12 (0) 0.12 (0) 0.11 (0) 0.13 (0)
5 (11) 0.16 (0) 0.17 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.16 (0)
6 (18) 0.18 (0) 0.19 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0) 0.18 (0)
7 (13) 0.19 (0) 0.17 (0) 0.17 (0) 0.17 (0) 0.15 (0) 0.15 (0) 0.17 (0)
8 (6) 0.23 (0) 0.20 (0) 0.21 (0) 0.20 (0) 0.17 (0) 0.17 (0) 0.19 (0)
9 (14) 0.32 (0) 0.27 (0) 0.28 (0) 0.28 (0) 0.22 (0) 0.23 (0) 0.28 (0)

10 (12) 0.44 (0) 0.33 (0) 0.39 (0) 0.39 (0) 0.29 (0) 0.29 (0) 0.34 (0)

Table 5.3: Inconsistent MCSs – Benchmark Results

to seriously reduce the size of the UFS check. There is also no difference in the number of
instance timeouts.

If we use encoding Ω instead of Γ, we can observe another significant speedup if we compute
all models of inconsistent MCSs. This is because there usually exist many answer sets (often
many thousands), and therefore a reusable encoding is very beneficial. In contrast, if we compute
only the first answer set or the MCS is consistent (and has therefore no answer set), then the
check becomes slightly slower with encoding Ω than with Γ. This is because of the higher
complexity of the encoding, while the reusability does not help if we abort after the first first
answer set.

In summary, we can observe that the encoding Ω leads to a significant performance gain over
encoding Γ, while the decision criterion and decomposition do not help. In our next benchmark
we will observe converse effects.

142

5.2. Evaluation of the Learning-based Algorithms

Abstract Argumentation. In this benchmark we compute ideal sets (cf. [Dung et al., 2007])
for randomly generated instances of abstract argumentation frameworks (AFs) [Dung, 1995] of
different sizes. Roughly, this corresponds to the detection of sets of nodes in a directed graph,
which fulfill certain conditions. The problem of checking whether a given set of arguments is
an ideal set of an AF is co-NP-complete [Dunne, 2009]. In this benchmark we used a HEX

encoding that mirrors this complexity: it guesses such a set and checks its ideality using the
Saturation technique involving an external atom. The HEX-encoding has been worked out by
Peter Schüller, to whom the author is grateful for his work, and is described in Section A.2.

Table 5.4 shows average runtimes for different numbers of arguments, each accumulated
over 30 benchmark instances. We compare the following configurations both for computing all
and for computing the first answer set. In the first column we do an explicit minimality check
without learning techniques. Our experiments have shown that learning (EBL) leads to slightly
higher runtime results (second column). This can be explained by the structure of the encoding,
which does not allow for effectively reusing learned nogoods but learning causes additional
overhead.

In the third column, we perform an UFS-based minimality check without application of the
decision criterion and decomposition using our encoding Γ. We can observe that this already
significantly improves the results compared to the explicit minimality check, which proves the
effectiveness of our new approach. As with MCS, the numbers of reduct model candidates and
UFS candidates are in most cases equal, but the UFS check again enumerates its candidates
faster; this explains the observed speedup.

Next we enable the decision criterion and program decomposition and can observe a further
speedup. This is because cycles in our argumentation instances usually involve only small parts
of the overall program, thus the UFS search can be significantly simplified by excluding large
parts of the programs. We further have observed that program decomposition without application
of the decision criterion is counterproductive (not shown in the table), because a single UFS
search over the whole program is replaced by many UFS searches over program components
(without the decision criterion, no such check is excluded). This involves more overhead.

In the fifth column we enable EBL and UFL, which leads to a small speedup in some cases.
However, as already mentioned above, no effective reuse of learned nogoods is possible.

Finally, we switch the encoding from Γ to Ω, which leads to a small speedup in some cases,
but is also counterproductive in other cases. This is explained by the different search spaces
traversed when the encoding is switched, which may have positive or negative effects on effi-
ciency. On the other hand, because of the small number of answer sets of the instances in this
benchmark, only few unfounded set checks are performed anyway. Thus, the lower initializa-
tion overhead of the encoding Ω does not influence the runtime dramatically and there is no
systematic advantage of Ω.

Conformant Planning. This benchmark was implemented and carried out by Peter Schüller;
the encoding is described in Section A.2. A planning problem consists of a set of actions, their
preconditions and effects in the world. The most important reasoning task is to find a sequence
of actions which reaches a certain goal state from a given initial state. In conformant planning,
this needs to be done in a nondeterministic domain and with an only partially specified initial

143

5. IMPLEMENTATION AND EVALUATION

#a
rg

s All Answer Sets
explicit UFS Γ UFS Γ UFS Ω

+EBL mol. mod. +EBL+UFL +EBL+UFL

1 (30) 0.06 (0) 0.06 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
2 (30) 0.08 (0) 0.07 (0) 0.06 (0) 0.06 (0) 0.06 (0) 0.07 (0)
3 (30) 0.11 (0) 0.10 (0) 0.08 (0) 0.08 (0) 0.08 (0) 0.09 (0)
4 (30) 0.19 (0) 0.19 (0) 0.14 (0) 0.12 (0) 0.12 (0) 0.13 (0)
5 (30) 0.32 (0) 0.32 (0) 0.26 (0) 0.18 (0) 0.18 (0) 0.19 (0)
6 (30) 0.71 (0) 0.72 (0) 0.55 (0) 0.33 (0) 0.33 (0) 0.36 (0)
7 (30) 1.58 (0) 1.66 (0) 1.16 (0) 0.52 (0) 0.51 (0) 0.56 (0)
8 (30) 4.75 (0) 5.04 (0) 3.06 (0) 1.09 (0) 1.08 (0) 1.15 (0)
9 (30) 14.02 (0) 14.97 (0) 8.65 (0) 1.86 (0) 1.84 (0) 1.95 (0)

10 (30) 41.10 (0) 44.38 (0) 24.53 (0) 4.73 (0) 4.58 (0) 4.79 (0)
11 (30) 129.35 (1) 139.80 (2) 51.39 (0) 9.34 (0) 9.34 (0) 9.48 (0)
12 (30) 250.16 (12) 258.82 (17) 119.44 (0) 12.49 (0) 12.38 (0) 12.39 (0)
13 (30) 294.91 (27) 296.67 (27) 274.65 (19) 24.26 (0) 24.33 (0) 24.44 (0)
14 (30) 290.01 (29) 290.01 (29) 290.00 (29) 51.38 (3) 51.65 (3) 51.98 (3)
15 (30) 290.01 (29) 290.01 (29) 290.00 (29) 79.93 (3) 78.00 (3) 78.19 (3)
16 (30) 300.00 (30) 300.00 (30) 300.00 (30) 80.10 (4) 77.91 (4) 77.95 (4)
17 (30) 300.00 (30) 300.00 (30) 300.00 (30) 81.90 (5) 77.04 (5) 76.85 (5)
18 (30) 300.00 (30) 300.00 (30) 300.00 (30) 127.43 (8) 126.57 (8) 125.91 (8)
19 (30) 300.00 (30) 300.00 (30) 280.39 (28) 173.16 (13) 148.13 (10) 147.62 (10)
20 (30) 300.00 (30) 300.00 (30) 278.20 (27) 167.72 (12) 167.02 (12) 166.07 (12)

#a
rg

s First Answer Set
explicit UFS Γ UFS Γ UFS Ω

+EBL mol. mod. +EBL+UFL +EBL+UFL

1 (30) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
2 (30) 0.07 (0) 0.07 (0) 0.06 (0) 0.06 (0) 0.06 (0) 0.06 (0)
3 (30) 0.09 (0) 0.09 (0) 0.08 (0) 0.08 (0) 0.07 (0) 0.08 (0)
4 (30) 0.14 (0) 0.14 (0) 0.12 (0) 0.10 (0) 0.10 (0) 0.12 (0)
5 (30) 0.22 (0) 0.22 (0) 0.21 (0) 0.15 (0) 0.15 (0) 0.17 (0)
6 (30) 0.46 (0) 0.47 (0) 0.42 (0) 0.27 (0) 0.27 (0) 0.29 (0)
7 (30) 0.76 (0) 0.79 (0) 0.68 (0) 0.37 (0) 0.37 (0) 0.40 (0)
8 (30) 2.34 (0) 2.44 (0) 1.98 (0) 0.89 (0) 0.90 (0) 0.94 (0)
9 (30) 7.35 (0) 7.82 (0) 5.76 (0) 1.36 (0) 1.28 (0) 1.34 (0)

10 (30) 19.47 (0) 21.05 (0) 15.37 (0) 3.54 (0) 3.53 (0) 3.68 (0)
11 (30) 63.39 (1) 67.39 (1) 26.30 (0) 4.61 (0) 4.66 (0) 4.69 (0)
12 (30) 119.65 (4) 126.18 (4) 60.88 (0) 6.11 (0) 6.11 (0) 6.13 (0)
13 (30) 197.04 (14) 201.27 (15) 149.25 (3) 16.34 (0) 16.49 (0) 16.50 (0)
14 (30) 227.27 (22) 227.72 (22) 218.00 (17) 41.28 (2) 41.68 (2) 41.76 (2)
15 (30) 260.02 (26) 260.02 (26) 260.01 (26) 40.92 (2) 41.38 (2) 41.62 (2)
16 (30) 230.04 (23) 230.04 (23) 230.02 (23) 40.63 (3) 40.69 (3) 40.84 (3)
17 (30) 250.03 (25) 250.03 (25) 250.01 (25) 35.24 (2) 35.60 (2) 35.57 (2)
18 (30) 270.02 (27) 270.02 (27) 270.01 (27) 74.89 (5) 75.47 (5) 75.10 (5)
19 (30) 230.06 (23) 230.06 (23) 211.12 (21) 66.58 (4) 67.03 (4) 67.04 (4)
20 (30) 220.07 (22) 220.07 (22) 200.29 (20) 81.81 (5) 82.33 (5) 82.45 (5)

Table 5.4: Argumentation – Benchmark Results

144

5.2. Evaluation of the Learning-based Algorithms

state such that the computed plan reaches the goal for all possible nondeterministic changes in
the world and for all possible initial states.

In this benchmark we assume that two robots with a limited sensor range patrol an area. An
object in the area is at an unknown location (partially specified initial state). We are looking for
a sequence of movements of the two robots such that the object is detected in all cases. Deciding
whether a robot detects the object if is is at a certain location is done by an external atom.

The results are displayed in Table 5.5. For each size of the area we present the average
runtimes over 10 instances with randomized robot and object locations. The instances have x×4
grids with a required plan length of x∈{3, . . . , 9}, for finding a solution.

The explicit FLP check performs worst, which is as expected, followed by the monolithic
UFS check using encoding Γ, followed by modular UFS using encoding Γ. The best results
are achieved using the UFS check with Ω encoding (but without external behavior learning and
without unfounded set learning) performs best.

Interestingly and in contrast to all other benchmarks, although EBL and UFL decrease the
number of unfounded set checks required and the number of external atoms evaluated, they both
have negative effects on the runtime. EBL and UFL decrease the performance significantly for
the modular UFS Γ check and slightly for the Ω check. As for the explicit check the runtimes
do not change with EBL, we omit these results. Detailed analysis identified two reasons for this
observation. First, the external atoms depend on a large part of the interpretation (locations of
the robots and the object), thus EBL cannot eliminate significant portions of the search space.
Second, the external atom is efficiently computable, i.e., it takes only a negligible amount of
time. Thus beneficial effects of EBL do not become evident or become hidden by the compu-
tational overhead introduced by learning. Also UFL is not effective because the instances of
this benchmark contain only few unfounded sets (less than half of the answer set candidates are
eliminated) therefore UFL does not improve performance significantly but introduces additional
overhead.

With UFS encoding Ω, the UFS check encoding is constructed only once, thus the overhead
of EBL and UFL observed with encoding Γ does no longer have such a big impact but is still
visible.

For small area sizes one can observe that for the encoding Ω, the 3×4 instance actually seem
to be harder to solve than the larger 4×4 and 5×4 instances. This is because all these instances
require plan length of only 1, while the larger instances are more constrained. Thus the robots
have less freedom to move around while still detecting the object. Consequently, for 5×4 maps
the solver finds solutions faster than for 4×4 areas.

We conclude that in some scenarios, using EBL and UFL can reduce efficiency.

Default Reasoning over Description Logics Benchmarks. We consider now a scenario using
the DL-plugin [Eiter et al., 2008] for DLVHEX, which integrates description logic (DL) knowl-
edge bases and nonmonotonic logic programs. The DL-plugin allows to access an ontology
using the description logic reasoner RacerPro 2.0 (http://www.racer-systems.com). For our first
experiment, consider the program (shown left) and the terminological part of a DL knowledge

145

http://www.racer-systems.com

5. IMPLEMENTATION AND EVALUATION

M
ap

S
iz

e

P
la

n
L

en
gt

h All Answer Sets

explicit UFS Γ UFS Γ UFS Ω UFS Ω
mol. mod. +EBL +UFL -EBL-UFL +EBL+UFL

3×4 (10) 1 7.10 (0) 0.12 (0) 0.11 (0) 0.11 (0) 0.12 (0) 0.12 (0) 0.14 (0)
4×4 (10) 1 10.66 (0) 0.16 (0) 0.15 (0) 0.15 (0) 0.15 (0) 0.15 (0) 0.18 (0)
5×4 (10) 1 10.69 (0) 0.15 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.15 (0)
6×4 (10) 2 206.45 (2) 1.98 (0) 1.38 (0) 1.67 (0) 1.69 (0) 1.09 (0) 1.35 (0)
7×4 (10) 2 258.82 (5) 2.85 (0) 1.79 (0) 2.44 (0) 2.43 (0) 1.50 (0) 1.84 (0)
8×4 (10) 3 300.00 (10) 36.80 (0) 16.41 (0) 40.94 (0) 40.99 (0) 10.42 (0) 13.88 (0)
9×4 (10) 3 300.00 (10) 43.20 (0) 19.53 (0) 78.11 (0) 77.10 (0) 13.91 (0) 19.62 (0)

10×4 (10) 4 300.00 (10) 300.00 (10) 274.53 (5) 300.00 (10) 300.00 (10) 203.70 (2) 252.31 (5)
11×4 (10) 4 300.00 (10) 299.76 (9) 239.61 (5) 300.00 (10) 300.00 (10) 174.86 (2) 209.41 (3)
12×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
13×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
14×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
15×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
16×4 (10) 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

M
ap

S
iz

e

P
la

n
L

en
gt

h First Answer Set

explicit UFS Γ UFS Γ UFS Ω UFS Ω
mol. mod. +EBL +UFL -EBL-UFL +EBL+UFL

3×4 (10) 1 0.89 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.06 (0) 0.06 (0)
4×4 (10) 1 1.36 (0) 0.06 (0) 0.05 (0) 0.05 (0) 0.06 (0) 0.06 (0) 0.06 (0)
5×4 (10) 1 2.23 (0) 0.06 (0) 0.07 (0) 0.06 (0) 0.06 (0) 0.07 (0) 0.07 (0)
6×4 (10) 2 7.21 (0) 0.22 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.12 (0) 0.13 (0)
7×4 (10) 2 17.39 (0) 0.34 (0) 0.22 (0) 0.21 (0) 0.20 (0) 0.17 (0) 0.18 (0)
8×4 (10) 3 139.26 (1) 6.07 (0) 2.73 (0) 2.73 (0) 2.69 (0) 1.45 (0) 1.78 (0)
9×4 (10) 3 150.50 (3) 3.24 (0) 1.47 (0) 1.69 (0) 1.70 (0) 0.89 (0) 1.16 (0)

10×4 (10) 4 255.89 (7) 92.19 (2) 47.58 (0) 82.84 (2) 82.52 (2) 24.23 (0) 31.36 (0)
11×4 (10) 4 300.00 (10) 97.11 (2) 39.99 (0) 84.08 (1) 83.85 (1) 19.53 (0) 25.85 (0)
12×4 (10) 5 287.76 (9) 198.75 (5) 143.52 (4) 184.81 (5) 184.78 (5) 131.46 (4) 136.64 (4)
13×4 (10) 5 300.00 (10) 287.07 (9) 211.97 (5) 277.79 (9) 277.71 (9) 165.64 (4) 185.84 (4)
14×4 (10) 6 300.00 (10) 300.00 (10) 244.33 (7) 300.00 (10) 300.00 (10) 213.89 (5) 232.85 (6)
15×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 285.36 (9) 296.10 (9)
16×4 (10) 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

Table 5.5: Conformant Planning – Benchmark Results

base on the right:

birds(X)← DL[Bird](X) Flier ⊑ ¬NonFlier

flies(X)← birds(X), notneg_flies(X) Penguin ⊑ Bird

neg_flies(X)← birds(X),DL[Flier ⊎ flies;¬Flier](X) Penguin ⊑ NonFlier

This encoding realizes the classic Tweety bird example using DL-atoms (which is an alternative
syntax for external atoms in this example and allows to express queries over description logics
in a more accessible way). The ontology states that Flier is disjoint with NonFlier , and that
penguins are birds and do not fly; the rules express that birds fly by default, i.e., unless the
contrary is derived. The program amounts to the Ω-transformation of default logic over on-
tologies to dl-programs [Dao-Tran et al., 2009b] (not to be confused with the Ω encoding of the
unfounded set search from Section 3.2), where the last rule ensures consistency of the guess with
the DL ontology. If the assertional part of the DL knowledge base contains Penguin(tweety),

146

5.2. Evaluation of the Learning-based Algorithms

then flies(tweety) is inconsistent with the given DL-program (neg_flies(tweety) is derived by
monotonicity of DL atoms and flies(tweety) loses its support). Note that defaults cannot be
encoded in standard (monotonic) description logics. Instead, cyclic interaction of DL-rules and
the DL knowledge base is necessary.

As all individuals appear in the extension of the predicate flies , all of them are considered
simultaneously. This requires a guess on the ability to fly for each individual and a subse-
quent check, leading to a combinatorial explosion. Intuitively, however, the property can be
determined for each individual independently. Hence, a query may be split into independent
subqueries, which is achieved by our learning function for linear sources, cf. Example 23. The
learned nogoods are smaller and more candidate models are eliminated. Table 5.6 shows the
runtime for different numbers of individuals. The runs with EBL exhibit a significant speedup,
as they exclude many model candidates; here, most of the time is spent calling the description
logic reasoner and not for the evaluation of the logic program. The runs with unfounded set
checking instead of the explicit FLP check do not show a further speedup because there is only
one candidate answer set for each instance, which is not enough to benefit from UFS check-
ing. Also UFL and the switch to encoding Ω do not lead to further performance improvements
because of the same reason.

The findings carry over to large ontologies (DL knowledge bases) used in real-world ap-
plications. We did similar experiments with a scaled version of the wine ontology (http://kaon2.

semanticweb.org/download/test ontologies.zip). The instances differ in the size of the ABox (rang-
ing from 247 individuals in wine_0 to 79287 in wine_10) and in several other parameters (e.g.,
on the number of concept inclusions and concept equivalences; Motik and Sattler (2006) de-
scribe the particular instances wine_i for all 1 ≤ i ≤ 10). We implemented a number of default
rules using an analogous encoding as above: e.g., wines not derivable to be dry are not dry, wines
which are not sweet are assumed to be dry, wines are white by default unless they are known to
be red. Here, we discuss the results of the latter scenario. The experiments classified the wines
in the 34 main concepts of the ontology (the immediate subconcepts of the concept Wine , e.g.,
DessertWine and ItalianWine), which have varying numbers of known concept memberships
(e.g., ranging from 0 to 43, and 8 on average, in wine_0) and percentiles of red wines among
them (from 0% to 100%, and 47% on average). That is, we have one benchmark instance for
each main category C, which computes for each individual wine w in C (i.e., the Abox contains
the assertion C(w)). whether it is red or white using default-negation and a recursive DL-atom.
Each such benchmark instance has exactly one answer set that encodes the classification of all
wines in the respective category. The results are summarized in Table 5.7. Again, EBL leads to
a significant improvement for most concepts and ontology sizes. E.g., there is a gain for 16 out
of the 34 concepts of the wine_0 runs, as EBL can exploit linearity. Furthermore, we observed
that 6 additional instances can be solved within the 300 seconds time limit. If a concept could
be classified both with and without EBL, we could observe a gain of up to 33.02 (on average
6.93). As expected, larger categories profit more from EBL as we can reuse learned nogoods
in these instances. As before, UFL does not have a significant impact because there is only one
minimality check for each instance.

Besides Ω, Dao-Tran et al. (2009b) describe other transformations of default rules over de-
scription logics. Experiments with these transformations revealed that the structure of the result-

147

http://kaon2.semanticweb.org/download/test_ontologies.zip
http://kaon2.semanticweb.org/download/test_ontologies.zip

5. IMPLEMENTATION AND EVALUATION

#c
nt explicit UFS Γ UFS Γ UFS Ω

+EBL mol. mod. +EBL +UFL +EBL+UFL

1 (1) 0.47 (0) 0.50 (0) 0.48 (0) 0.49 (0) 0.49 (0) 0.48 (0) 0.48 (0)
2 (1) 0.57 (0) 0.49 (0) 0.57 (0) 0.55 (0) 0.48 (0) 0.48 (0) 0.51 (0)
3 (1) 0.70 (0) 0.55 (0) 0.75 (0) 0.74 (0) 0.53 (0) 0.54 (0) 0.50 (0)
4 (1) 1.17 (0) 0.48 (0) 1.17 (0) 1.17 (0) 0.48 (0) 0.47 (0) 0.58 (0)
5 (1) 2.57 (0) 0.61 (0) 2.68 (0) 2.65 (0) 0.63 (0) 0.65 (0) 0.60 (0)
6 (1) 4.81 (0) 0.64 (0) 4.59 (0) 4.84 (0) 0.65 (0) 0.65 (0) 0.63 (0)
7 (1) 9.26 (0) 0.69 (0) 9.32 (0) 9.40 (0) 0.66 (0) 0.71 (0) 0.70 (0)
8 (1) 17.68 (0) 0.71 (0) 18.28 (0) 19.30 (0) 0.70 (0) 0.74 (0) 0.70 (0)
9 (1) 39.01 (0) 0.76 (0) 38.59 (0) 39.48 (0) 0.79 (0) 0.75 (0) 0.77 (0)

10 (1) 75.80 (0) 0.86 (0) 72.34 (0) 72.72 (0) 0.86 (0) 0.84 (0) 0.87 (0)
11 (1) 168.96 (0) 0.88 (0) 169.03 (0) 163.63 (0) 0.85 (0) 0.88 (0) 0.91 (0)
12 (1) 300.00 (1) 1.28 (0) 300.00 (1) 300.00 (1) 1.30 (0) 1.28 (0) 1.31 (0)
13 (1) 300.00 (1) 1.38 (0) 300.00 (1) 300.00 (1) 1.30 (0) 1.37 (0) 1.46 (0)
14 (1) 300.00 (1) 1.74 (0) 300.00 (1) 300.00 (1) 1.68 (0) 1.67 (0) 1.67 (0)
15 (1) 300.00 (1) 1.79 (0) 300.00 (1) 300.00 (1) 1.77 (0) 1.79 (0) 1.77 (0)
16 (1) 300.00 (1) 2.94 (0) 300.00 (1) 300.00 (1) 2.95 (0) 2.94 (0) 2.94 (0)
17 (1) 300.00 (1) 3.15 (0) 300.00 (1) 300.00 (1) 3.17 (0) 3.27 (0) 3.16 (0)
18 (1) 300.00 (1) 6.08 (0) 300.00 (1) 300.00 (1) 6.08 (0) 6.15 (0) 6.13 (0)
19 (1) 300.00 (1) 6.67 (0) 300.00 (1) 300.00 (1) 6.48 (0) 6.63 (0) 6.50 (0)
20 (1) 300.00 (1) 14.08 (0) 300.00 (1) 300.00 (1) 14.23 (0) 14.15 (0) 14.11 (0)

Table 5.6: Bird-Penguin – Benchmark Results

ing HEX-programs prohibits an effective reuse of learned nogoods. Hence, the overall picture
does not show a significant gain with EBL for these encodings. We could however still observe
a small improvement for some runs.

In this scenario, the decision criterion eliminates all unfounded set checks, because all cyclic
dependencies over external atoms involve negation and are therefore no cycles according to Def-
inition 45. However, as there is only one compatible set per instance, there would be only one
unfounded set check anyway, hence the speedup due to the decision criterion is not significant
and not visible in the results. But the effect of the decision criterion can be increased by slightly
modifying the scenario such that there are multiple compatible sets. This can be done, for in-
stance, by nondeterministic default classifications, e.g., if a wine is not Italian, then it is either
French or Spanish by default. Our experiments have shown that with a small number of compat-
ible sets, the performance enhancement due to the decision criterion is marginal, but increases
with larger numbers of compatible sets.

5.2.2 Unfounded Set Checking wrt. Partial Assignments

An unfounded set check wrt. partial assignments, that is sound with respect to any extension to a
complete assignment, is possible if the ASP solver has finished unit propagation over a maximal
subset of the program such that the interpretation is already complete on it, and all guessed
values of external atom replacements are correct. We thus used this criterion, which is easy to
test, for a greedy heuristics to issue UFS checks in our prototype system.

However, in contrast to our initial expectation, we found that for all our benchmarks the UFS
check wrt. partial assignments was not productive. A closer look reveals that this is essentially
because nogood learning from unfounded sets (UFL) effectively avoids the reconstruction of the

148

5.2. Evaluation of the Learning-based Algorithms

ontology
explicit UFS Γ UFS Γ UFS Ω

+EBL mol. mod. +EBL +UFL +EBL+UFL

wine_00 (34) 89.30 (9) 33.11 (3) 89.29 (9) 88.75 (9) 33.19 (3) 33.00 (3) 33.15 (3)
wine_01 (34) 188.79 (18) 105.22 (10) 189.51 (18) 188.18 (18) 104.80 (9) 104.59 (10) 105.47 (10)
wine_02 (34) 217.87 (22) 142.67 (14) 217.32 (22) 217.13 (22) 142.79 (14) 142.75 (14) 142.65 (14)
wine_03 (34) 266.10 (30) 183.98 (18) 266.15 (30) 266.14 (30) 183.69 (18) 184.91 (18) 184.73 (18)
wine_04 (34) 266.52 (30) 202.22 (19) 266.47 (30) 266.48 (30) 201.19 (18) 201.46 (19) 201.32 (19)
wine_05 (34) 266.67 (30) 220.87 (21) 266.83 (30) 266.83 (30) 221.21 (21) 221.07 (21) 220.33 (21)
wine_06 (34) 268.03 (30) 258.18 (26) 268.08 (30) 267.98 (30) 257.76 (26) 257.99 (26) 257.96 (26)
wine_07 (34) 271.86 (30) 269.57 (30) 271.97 (30) 272.14 (30) 269.43 (30) 269.45 (30) 269.20 (30)
wine_08 (34) 278.06 (30) 272.57 (30) 278.16 (30) 277.81 (30) 272.37 (30) 272.57 (30) 272.72 (30)
wine_09 (34) 295.35 (31) 282.05 (30) 295.32 (30) 295.35 (31) 282.27 (30) 282.19 (30) 281.87 (30)
wine_10 (34) 300.00 (34) 299.45 (32) 300.00 (34) 300.00 (34) 299.55 (32) 299.63 (32) 299.58 (32)

Table 5.7: Wine Ontology – Benchmark Results

same unfounded set anyway. Therefore, we believe that UFS checking wrt. a partial interpre-
tation rarely identifies an unfounded set earlier than UFS checking wrt. complete assignments.
As UFS checking for HEX-programs involves the evaluation of external sources and compatibil-
ity testing, this easily leads to costs that are higher than the potential savings. A more detailed
analysis requires further studies; since the results do not seem to be promising, we leave this for
possible future work.

Tables 5.8, 5.9, 5.10, 5.11 and 5.12 show the benchmark results if UFS checking wrt. par-
tial assignments is enabled when computing all or the first answer set only. We do not show
results for the description-logic benchmarks (bird-penguin and wine ontology), because in these
benchmarks the decision criterion eliminates unfounded set checks anyway, as described above.

The first column shows the runtime with UFS checking wrt. complete interpretations only,
using encoding Ω, EBL and UFL (equivalent to the last column in the tables in Section 5.2.1).
The second column shows the results with UFS checking wrt. partial assignments, using a
heuristics which performs the UFS check periodically (periodic). The third column shows the
runtimes if the UFS check is always performed, if no other propagation technique can derive
further truth values (max).

It can be observed that UFS checking wrt. partial assignments does not lead to a further
speadup in any case. Quite to the contrary, some instances have significantly higher runtimes
with more frequent unfounded set checks. This is best visible in the set partitioning benchmark
(Table 5.8), when computing all explanations for inconsistent MCSs with 5, 6 or 7 contexts
(Table 5.10), and when computing all answer sets in the conformant planning benchmark (Ta-
ble 5.12). In the set partitioning benchmark the effects are especially significant, which is as ex-
pected because every compatible set is unfounded-free. Thus, additional UFS checks are always
counterproductive. In the consistent multi-context systems, reasoning is fast anyway, thus the
frequency of UFS checking has no significant impact (Table 5.9). In the argumentation bench-
mark we can also observe a slight slowdown by more frequent UFS checking, although it is less
dramatic than in the other benchmarks because the other propagation methods are applicable
more frequently and thus fewer UFS checks are performed even with setting max (Table 5.11).

149

5. IMPLEMENTATION AND EVALUATION

#c
tx

All Answer Sets First Answer Set
Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)

+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

1 (1) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.05 (0)
2 (1) 0.04 (0) 0.05 (0) 0.05 (0) 0.04 (0) 0.04 (0) 0.05 (0)
3 (1) 0.05 (0) 0.05 (0) 0.07 (0) 0.05 (0) 0.04 (0) 0.05 (0)
4 (1) 0.06 (0) 0.07 (0) 0.08 (0) 0.05 (0) 0.05 (0) 0.06 (0)
5 (1) 0.07 (0) 0.09 (0) 0.11 (0) 0.05 (0) 0.06 (0) 0.07 (0)
6 (1) 0.10 (0) 0.13 (0) 0.15 (0) 0.06 (0) 0.07 (0) 0.09 (0)
7 (1) 0.13 (0) 0.15 (0) 0.19 (0) 0.07 (0) 0.08 (0) 0.11 (0)
8 (1) 0.18 (0) 0.20 (0) 0.26 (0) 0.08 (0) 0.10 (0) 0.14 (0)
9 (1) 0.24 (0) 0.26 (0) 0.35 (0) 0.09 (0) 0.12 (0) 0.17 (0)

10 (1) 0.29 (0) 0.33 (0) 0.47 (0) 0.11 (0) 0.14 (0) 0.21 (0)
15 (1) 0.80 (0) 0.96 (0) 1.61 (0) 0.24 (0) 0.38 (0) 0.73 (0)
20 (1) 1.96 (0) 2.46 (0) 4.92 (0) 0.51 (0) 0.97 (0) 2.30 (0)
25 (1) 4.15 (0) 5.52 (0) 11.25 (0) 0.97 (0) 1.98 (0) 4.50 (0)

Table 5.8: Set Partitioning – Benchmark Results with UFS Checking wrt. Partial Assignments

#c
tx Ω Ω partial (periodic) Ω partial (max)

+EBL+UFL +EBL+UFL +EBL+UFL

3 (6) 0.08 (0) 0.09 (0) 0.10 (0)
4 (10) 0.11 (0) 0.11 (0) 0.12 (0)
5 (8) 0.12 (0) 0.12 (0) 0.13 (0)
6 (6) 0.15 (0) 0.15 (0) 0.16 (0)
7 (12) 0.20 (0) 0.20 (0) 0.21 (0)
8 (5) 0.21 (0) 0.21 (0) 0.22 (0)
9 (8) 0.24 (0) 0.24 (0) 0.27 (0)

10 (11) 0.31 (0) 0.31 (0) 0.32 (0)

Table 5.9: Consistent MCSs – Benchmark Results with UFS Checking wrt. Partial Assignments

#c
tx

All Answer Sets First Answer Set
Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)

+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

3 (9) 0.14 (0) 0.13 (0) 0.16 (0) 0.09 (0) 0.09 (0) 0.10 (0)
4 (14) 0.61 (0) 0.64 (0) 0.88 (0) 0.13 (0) 0.13 (0) 0.14 (0)
5 (11) 1.28 (0) 1.36 (0) 1.81 (0) 0.16 (0) 0.16 (0) 0.17 (0)
6 (18) 1.55 (0) 1.67 (0) 2.49 (0) 0.18 (0) 0.18 (0) 0.18 (0)
7 (13) 29.47 (0) 31.54 (0) 44.90 (1) 0.17 (0) 0.17 (0) 0.18 (0)
8 (6) 51.13 (1) 51.22 (1) 51.66 (1) 0.19 (0) 0.20 (0) 0.21 (0)
9 (14) 130.56 (6) 130.99 (6) 133.84 (6) 0.28 (0) 0.27 (0) 0.28 (0)

10 (12) 277.05 (11) 277.20 (11) 278.21 (11) 0.34 (0) 0.35 (0) 0.36 (0)

Table 5.10: Inconsistent MCSs – Benchmark Results with UFS Checking wrt. Partial Assign-
ments

150

5.2. Evaluation of the Learning-based Algorithms
#a

rg
s All Answer Sets First Answer Set

Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)
+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

1 (30) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
2 (30) 0.07 (0) 0.06 (0) 0.07 (0) 0.06 (0) 0.07 (0) 0.07 (0)
3 (30) 0.09 (0) 0.09 (0) 0.10 (0) 0.08 (0) 0.08 (0) 0.09 (0)
4 (30) 0.13 (0) 0.14 (0) 0.16 (0) 0.12 (0) 0.12 (0) 0.14 (0)
5 (30) 0.19 (0) 0.20 (0) 0.22 (0) 0.17 (0) 0.16 (0) 0.18 (0)
6 (30) 0.36 (0) 0.36 (0) 0.39 (0) 0.29 (0) 0.29 (0) 0.31 (0)
7 (30) 0.56 (0) 0.56 (0) 0.59 (0) 0.40 (0) 0.40 (0) 0.42 (0)
8 (30) 1.15 (0) 1.15 (0) 1.19 (0) 0.94 (0) 0.94 (0) 0.96 (0)
9 (30) 1.95 (0) 1.94 (0) 2.01 (0) 1.34 (0) 1.35 (0) 1.39 (0)

10 (30) 4.79 (0) 4.80 (0) 4.96 (0) 3.68 (0) 3.67 (0) 3.75 (0)
11 (30) 9.48 (0) 9.49 (0) 9.71 (0) 4.69 (0) 4.71 (0) 4.74 (0)
12 (30) 12.39 (0) 12.42 (0) 12.79 (0) 6.13 (0) 6.11 (0) 6.23 (0)
13 (30) 24.44 (0) 24.45 (0) 25.32 (0) 16.50 (0) 16.46 (0) 16.80 (0)
14 (30) 51.98 (3) 52.03 (3) 52.57 (3) 41.76 (2) 41.80 (3) 41.98 (3)
15 (30) 78.19 (3) 78.14 (3) 79.81 (3) 41.62 (2) 41.53 (2) 42.02 (2)
16 (30) 77.95 (4) 77.99 (4) 79.52 (4) 40.84 (3) 40.79 (3) 41.04 (3)
17 (30) 76.85 (5) 76.86 (5) 77.82 (5) 35.57 (2) 35.53 (2) 35.58 (2)
18 (30) 125.91 (8) 126.17 (8) 128.83 (8) 75.10 (5) 75.32 (5) 75.37 (5)
19 (30) 147.62 (10) 147.51 (10) 149.62 (10) 67.04 (4) 66.88 (4) 67.59 (4)
20 (30) 166.07 (12) 165.96 (12) 168.53 (12) 82.45 (5) 82.27 (5) 82.90 (5)

Table 5.11: Argumentation – Benchmark Results with UFS Checking wrt. Partial Assignments

M
ap

S
iz

e

P
la

n
L

en
gt

h All Answer Sets First Answer Set

Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)
+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

3×4 (10) 1 0.14 (0) 0.14 (0) 0.16 (0) 0.06 (0) 0.06 (0) 0.08 (0)
4×4 (10) 1 0.18 (0) 0.17 (0) 0.20 (0) 0.06 (0) 0.06 (0) 0.08 (0)
5×4 (10) 1 0.15 (0) 0.15 (0) 0.18 (0) 0.07 (0) 0.07 (0) 0.09 (0)
6×4 (10) 2 1.35 (0) 1.35 (0) 1.48 (0) 0.13 (0) 0.13 (0) 0.15 (0)
7×4 (10) 2 1.84 (0) 1.83 (0) 2.03 (0) 0.18 (0) 0.18 (0) 0.21 (0)
8×4 (10) 3 13.88 (0) 14.23 (0) 17.27 (0) 1.78 (0) 1.86 (0) 2.36 (0)
9×4 (10) 3 19.62 (0) 19.96 (0) 23.75 (0) 1.16 (0) 1.18 (0) 1.42 (0)

10×4 (10) 4 252.31 (5) 257.18 (5) 289.20 (7) 31.36 (0) 33.40 (0) 49.36 (0)
11×4 (10) 4 209.41 (3) 214.72 (3) 244.84 (5) 25.85 (0) 27.15 (0) 37.64 (0)
12×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 136.64 (4) 137.22 (4) 142.74 (4)
13×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 185.84 (4) 188.73 (4) 209.44 (4)
14×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 232.85 (6) 235.06 (7) 243.73 (7)
15×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 296.10 (9) 297.42 (9) 300.00 (10)
16×4 (10) 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

Table 5.12: Conformant Planning – Benchmark Results with UFS Checking wrt. Partial Assign-
ments

151

5. IMPLEMENTATION AND EVALUATION

5.2.3 Summary

Our experiments have shown that the developed techniques lead to significant performance im-
provements in most cases, with few exceptions for specific benchmarks. The effects of exter-
nal behavior learning (EBL) are clearly evident both for the explicit minimality check and for
the unfounded set-based check, but are even more prominent with the latter. Independently of
whether EBL is used or not, unfounded set checking pushes efficiency of HEX-program evalu-
ation compared to explicit minimality checking. Moreover, it allows for learning of additional
nogoods, which is also advantageous in most of our benchmarks. Regarding the two problem
encodings, the benchmarks show that the UFS check is usually faster with the Ω encoding than
with the Γ encoding, but the former one involves more initialization overhead, which might be
counterproductive for small programs.

A detailed analysis has revealed the reasons why the unfounded set-based minimality check
is faster than the explicit check. As illustrated in Figure 5.2a, the overall search spaces for
smaller models of the reduct and for unfounded sets contain often the same number of candi-
dates, where some of them prove to be indeed smaller models or unfounded sets, respectively,
(✓), while others are spurious (✗). This is not surprising, as each unfounded set corresponds to
a smaller model and vice versa, cf. Faber et al. (2011). However, part of the search space for
unfounded sets is potentially cut off by our optimizations, as shown in Figure 5.2b. Moreover,
as the two search spaces are formed by two entirely different search problems, it might be the
case that a true smaller model resp. unfounded set is found earlier in one of the searches than
in the other, see Figure 5.2c. This effect sometimes also favors the explicit minimality check.
However, we have also discovered that the search space of the unfounded set-based minimality
check can be traversed faster than those of the explicit check and is in this sense ‘more compact’.
This is explained by the formalism in use: the explicit search space corresponds to an ASP in-
stance whereas the unfounded set search is realized as a SAT instance. As SAT is (in practice)
easier than ASP (due to initialization overhead, polynomial unfounded set check in ASP solvers,
etc), the search space can be often explored faster in the latter case, even in cases where more
candidates need to be investigated before the search can be aborted. In particular, if an answer
set has been found, then there is no smaller model of the reduct resp. unfounded set, and the
whole search space needs to be traversed in both implementations of the minimality check, see
Figure 5.2d; in this case both checks often need to investigate the same number of candidates (if
the optimizations do not prune the search space), but the unfounded set search needs less time
because of the faster enumeration.

The decision criterion may lead to an additional speedup and does not introduce notable
overhead, thus it can always be activated. Finally, program decomposition often leads to an
additional performance gain, but should only be used in combination with the decision criterion
because otherwise a single UFS check is replaced by multiple UFS checks, which involves more
overhead.

152

5.2. Evaluation of the Learning-based Algorithms

Explicit Check

Search for Smaller Models of the Reduct

✓

✗

✓

✗

✗

✗✗

✗

UFS-based Check

Search for Unfounded Sets

✗✓

✓

✗

✗

✗

✗

✗

(a) Different Search Spaces, but same Number of Candidates

✓

✗

✓

✗

✗

✗✗

✗

✗✓

✓

✗

✗

✗

✗

✗

Optimization!

(b) Reduced Search Space due to Optimization

✓

✗

✓

✗

✗

✗✗

✗

✗✓

✓

✗

✗

✗

✗

✗

(c) Different Search Problems: One of them may Enumerate Fewer Candidates

✗

✗

✗

✗

✗

✗✗

✗

✗✗

✗

✗

✗

✗

✗

✗

(d) Faster Candidate Enumeration in UFS Search

Figure 5.2: Illustration of the Observations

153

5. IMPLEMENTATION AND EVALUATION

With Domain Predicates Without Domain Predicates
wall clock ground solve wall clock ground solve

15 (10) 0.59 (0) 0.28 (0) 0.08 (0) 0.49 (0) 0.23 (0) 0.06 (0)
25 (10) 5.78 (0) 4.67 (0) 0.33 (0) 2.94 (0) 1.90 (0) 0.35 (0)
35 (10) 36.99 (0) 33.99 (0) 1.00 (0) 14.02 (0) 11.30 (0) 0.95 (0)
45 (10) 161.91 (0) 155.40 (0) 2.18 (0) 53.09 (0) 47.19 (0) 2.22 (0)
55 (10) 300.00 (10) 300.00 (10) n/a 171.46 (0) 158.58 (0) 5.74 (0)
65 (10) 300.00 (10) 300.00 (10) n/a 300.00 (10) 300.00 (10) n/a

Table 5.13: Reachability – Benchmark Results

5.3 Evaluation of the Grounding Algorithm

For the evaluation of the grounding algorithm, we present for all benchmarks the total wall clock
runtime (wt), the grounding time (gt) and the solving time (st). We possibly have wt 6= gt + st

because wt includes also computations other than grounding and solving (e.g., passing models
through the evaluation graph). As for the benchmarks in Section 5.2, the numbers in parentheses
indicate the number of instances and the number of timeouts in the respective categories, and
the instances of all benchmarks are available as compressed tar archives from http://www.kr.

tuwien.ac.at/staff/redl/aspext. The required plugins are available from the repository (https:

//github.com/hexhex). For determining de-safety relevant external atoms, our implementation
follows a greedy strategy and tries to identify as many external atoms as irrelevant as possible.

Since this section evaluates the grounding algorithm, we set the learning options to the op-
timal values, i.e., minimality checking is UFS-based using encoding Ω, and EBL and UFL
are both enabled. Except for Argumentation with Subsequent Processing, which compares two
decomposition heuristics, the decomposition heuristics in this section is the greedy heuristics
developed in Section 4.5. Note that the set partitioning and the bird-penguin benchmark have
already been used for evaluating the learning-based algorithms. However, the results from this
section and from the previous section are not directly comparable because different decomposi-
tion heuristics are used.

5.3.1 Detailed Benchmark Description

Reachability. We consider reachability, where the edge relation is provided as an external
atom &out [X](Y) delivering all nodes Y that are directly reached from a node X (see Sec-
tion A.3). The traditional implementation imports all nodes into the program and then uses
domain predicates. An alternative is to query outgoing edges of nodes on-the-fly, which needs
no domain predicates. This benchmark is motivated by route planning applications, where im-
porting a complete map might be infeasible due to the amount of data.

The results are shown in Table 5.13. We used random graphs with a node count from 5 to
70, an edge probability of 0.25 and the problem encoding from Section A.3. For each node
count, we average over 10 instances. Here we can observe that the encoding without domain
predicates is more efficient in all cases because only a small part of the map is active in the logic
program, which does not only lead to a smaller grounding, but also to a smaller search space
during solving.

154

http://www.kr.tuwien.ac.at/staff/redl/aspext
http://www.kr.tuwien.ac.at/staff/redl/aspext
https://github.com/hexhex
https://github.com/hexhex

5.3. Evaluation of the Grounding Algorithm

With Domain Predicates Without Domain Predicates
wall clock ground solve wall clock ground solve

10 (1) 0.49 (0) 0.01 (0) 0.39 (0) 0.52 (0) 0.02 (0) 0.41 (0)
20 (1) 3.90 (0) 0.05 (0) 3.62 (0) 4.67 (0) 0.10 (0) 4.23 (0)
30 (1) 16.12 (0) 0.18 (0) 15.32 (0) 19.59 (0) 0.36 (0) 18.32 (0)
40 (1) 48.47 (0) 0.48 (0) 46.71 (0) 51.55 (0) 0.90 (0) 48.74 (0)
50 (1) 115.56 (0) 1.00 (0) 112.14 (0) 119.40 (0) 1.79 (0) 114.11 (0)
60 (1) 254.66 (0) 1.84 (0) 248.88 (0) 257.78 (0) 3.35 (0) 248.51 (0)

Table 5.14: Set Partitioning for Liberal Safety – Benchmark Results

Set Partitioning. In this benchmark we consider a program similar to Example 32 with a
variable in place of the constant, which implements for each domain element X a choice from
sel(X) and nsel(X) by an external atom, i.e., forms a partitioning of the domain into two
subsets.

The domain predicate domain is not necessary under de-safety because &diff does not
introduce new constants. The effect of removing it is presented in Table 5.14. Since &diff

is monotonic in the first parameter and antimonotonic in the second, the measured overhead
is small in the grounding step. Although the ground programs of the strongly safe and the
liberally safe variants of the program are identical, the solving step is slower in the latter case;
we explain this with caching effects. Grounding liberally de-safe programs needs more memory
than grounding strongly safe programs, which might have negative effects on the later solving
step because parts of the code have been removed from the memory cache. However, the total
slowdown is moderate.

Recursive Processing of Data Structures. This benchmark shows how data structures can
be recursively processed. As an example we implement the merge sort algorithm using external
atoms for splitting a list in half and merging two sorted lists, where lists are encoded as constants
consisting of elements and delimiters (see Section A.4 for more information about the encoding).
However, this is only a showcase and performance cannot be compared to native merge sort
implementations.

In order to implement the application with strong safety, one must manually add a domain
predicate with the set of all instances of the data structures at hand as extension, e.g., the set
of all permutations of the input list. This number is factorial in the input size and thus already
unmanageable for very small instances. The problems are both due to grounding and solving.
Similar problems arise with other recursive data structures when strong safety is required (e.g.,
trees, for the pushdown automaton described by Eiter et al. (2013c), where the domain is the
set of all strings up to a certain length). However, only a small part of the domain will ever
be relevant during computation, hence the grounding algorithm for liberally de-safe programs
performs quite well, as shown in Table 5.15.

Bird-Penguin with Nonmonotonic External Atom. We consider now the Bird-Penguin sce-
nario using the DL-plugin as described above. In order to show the behavior of the algorithm in
presence of nonmonotonic external atom, we assume that the DL-atom in the above program is

155

5. IMPLEMENTATION AND EVALUATION

With Domain Predicates Without Domain Predicates
wall clock ground solve wall clock ground solve

5 (10) 0.22 (0) 0.04 (0) 0.10 (0) 0.10 (0) 0.01 (0) 0.04 (0)
6 (10) 1.11 (0) 0.33 (0) 0.54 (0) 0.10 (0) 0.01 (0) 0.04 (0)
7 (10) 9.84 (0) 4.02 (0) 4.42 (0) 0.11 (0) 0.01 (0) 0.05 (0)
8 (10) 115.69 (0) 61.97 (0) 42.30 (0) 0.12 (0) 0.01 (0) 0.05 (0)
9 (10) 300.00 (10) 300.00 (10) n/a 0.14 (0) 0.01 (0) 0.07 (0)

10 (10) 300.00 (10) 300.00 (10) n/a 0.15 (0) 0.08 (0) 0.01 (0)
15 (10) 300.00 (10) 300.00 (10) n/a 0.23 (0) 0.14 (0) 0.01 (0)
20 (10) 300.00 (10) 300.00 (10) n/a 0.47 (0) 0.35 (0) 0.02 (0)
25 (10) 300.00 (10) 300.00 (10) n/a 1.90 (0) 1.58 (0) 0.06 (0)
30 (10) 300.00 (10) 300.00 (10) n/a 4.11 (0) 3.50 (0) 0.12 (0)
35 (10) 300.00 (10) 300.00 (10) n/a 20.98 (0) 18.45 (0) 0.51 (0)
40 (10) 300.00 (10) 300.00 (10) n/a 61.94 (0) 54.62 (0) 1.46 (0)
45 (10) 300.00 (10) 300.00 (10) n/a 144.22 (2) 133.99 (2) 2.26 (0)
50 (10) 300.00 (10) 300.00 (10) n/a 300.00 (10) 300.00 (0) n/a

Table 5.15: Merge Sort – Benchmark Results

With Domain Predicates Without Domain Predicates
wall clock ground solve wall clock ground solve

5 (1) 0.06 (0) <0.005 (0) 0.01 (0) 0.08 (0) 0.02 (0) 0.01 (0)
10 (1) 0.14 (0) <0.005 (0) 0.08 (0) 1.32 (0) 1.12 (0) 0.10 (0)
11 (1) 0.27 (0) <0.005 (0) 0.19 (0) 2.85 (0) 2.43 (0) 0.27 (0)
12 (1) 0.32 (0) <0.005 (0) 0.23 (0) 6.05 (0) 5.53 (0) 0.26 (0)
13 (1) 0.69 (0) 0.01 (0) 0.60 (0) 12.70 (0) 11.76 (0) 0.61 (0)
14 (1) 0.66 (0) <0.005 (0) 0.57 (0) 28.17 (0) 26.70 (0) 0.73 (0)
15 (1) 1.66 (0) 0.01 (0) 1.49 (0) 59.73 (0) 57.14 (0) 1.46 (0)
16 (1) 1.69 (0) 0.01 (0) 1.53 (0) 139.47 (0) 131.87 (0) 1.92 (0)
17 (1) 3.83 (0) 0.01 (0) 3.57 (0) 300.00 (1) 300.00 (1) n/a
18 (1) 4.34 (0) 0.01 (0) 4.08 (0) 300.00 (1) 300.00 (1) n/a
19 (1) 10.07 (0) 0.01 (0) 9.56 (0) 300.00 (1) 300.00 (1) n/a
20 (1) 11.36 (0) 0.01 (0) 10.87 (0) 300.00 (1) 300.00 (1) n/a
24 (1) 95.60 (0) 0.01 (0) 93.35 (0) 300.00 (1) 300.00 (1) n/a
25 (1) 300.00 (1) 0.01 (0) 300.00 (1) 300.00 (1) 300.00 (1) n/a

Table 5.16: Bird-Penguin with Nonmonotonic External Atom and Liberal Safety – Benchmark
Results

replaced by a more general external atom which answers the DL-query as usual, but which also
returns a dedicated constant cons in addition whenever the updated ontology is consistent; note
that this makes the external atom nonmonotonic. Similar consistency checks have been used in
some of the encodings by Dao-Tran et al. (2009b).

The results are shown in Table 5.16. The external atom in the updated third rule is non-
monotonic and appears in a cycle, which is the worst case and cannot be avoided by the greedy
heuristics in this case. The results show a slowdown for the encoding without domain predicates.
It is mainly caused by the grounding, but also solving becomes slightly slower without domain
predicates.

Argumentation with Subsequent Processing. This benchmark demonstrates the advantage
of our new greedy decomposition heuristics, which is compared to the evaluation without

156

5.3. Evaluation of the Grounding Algorithm

monolithic greedy

wall clock ground solve wall clock ground solve

4 (30) 0.57 (0) 0.11 (0) 0.38 (0) 0.25 (0) 0.01 (0) 0.18 (0)
5 (30) 2.12 (0) 0.67 (0) 1.26 (0) 0.44 (0) 0.01 (0) 0.37 (0)
6 (30) 18.93 (0) 7.45 (0) 10.86 (0) 0.88 (0) 0.01 (0) 0.80 (0)
7 (30) 237.09 (9) 170.12 (9) 65.12 (0) 1.65 (0) 0.01 (0) 1.57 (0)
8 (30) 300.00 (30) 300.00 (30) n/a 3.13 (0) 0.01 (0) 3.05 (0)
9 (30) 300.00 (30) 300.00 (30) n/a 7.41 (0) 0.02 (0) 7.31 (0)

10 (30) 300.00 (30) 300.00 (30) n/a 15.92 (0) 0.02 (0) 15.81 (0)
11 (30) 300.00 (30) 300.00 (30) n/a 31.19 (0) 0.02 (0) 31.05 (0)
12 (30) 300.00 (30) 300.00 (30) n/a 63.16 (0) 0.02 (0) 62.95 (0)
13 (30) 300.00 (30) 300.00 (30) n/a 172.75 (1) 0.03 (0) 172.38 (1)
14 (30) 300.00 (30) 300.00 (30) n/a 256.60 (18) 0.01 (0) 256.44 (18)
15 (30) 300.00 (30) 300.00 (30) n/a 290.01 (29) <0.005 (0) 290.00 (29)

Table 5.17: Argumentation with Subsequent Processing – Benchmark Results

splitting (monolithic). We compute ideal sets for randomized instances of abstract argu-
mentation frameworks [Dung, 1995] of different sizes. Additionally, we perform a processing
of the arguments in each extension, e.g., by using an external atom for generating LATEX code
for the visualization of the framework and its extensions (see Section A.5). Without program
decomposition, this is the worst case for the grounding algorithm because the code generating
atom is nonmonotonic and receives input from the same component. But then the grounding
algorithm calls it for exponentially many extensions, although only few of them are actually
extensions of the framework.

We used random instances with an argument count from 1 to 15, and an edge probabil-
ity from {0.30, 0.45, 0.60}; we used 10 instances for each combination. We can observe that
grounding the whole program in a single pass causes large programs wrt. grounding time and
size. Since the grounding is larger, also the solving step takes much more time than with our
new decomposition heuristics, which avoids the worst case, cf. Table 5.17.

Route Planning. We have implemented two route planning scenarios using the public trans-
port system of Vienna. The data is available under creative commons license (cc-by)3 and con-
tains a map of 158 subway, tram, city bus and rapid transit train lines with a total number of 1701
stations. Since the data does not contain information about the distances between stations, we
uniformly assumed costs of 1, 2 and 3 for each stop traveled by subway/rapid transit train, tram
or bus, respectively. We further assumed costs of 10 for each necessary change, representing
walking and waiting time. However, with more detailed data, our encoding would also allow
for using different values for each line or station. Access to the data is provided via an external
atom &path[s, d](a, b, c, l), which returns for a start location s and a destination d the shortest
direct connection (computed using Dijkstra’s algorithm), represented as set edges (a, b) between
stations a and b with costs c using line l.

In order to model changes between lines, our graph has for each station and each line which
arrives at this station a separate node, with a label consisting of the actual name of the sta-
tion and the respective line. In order to encode a change, the external atom returns a tuple

3See data.wien.gv.at.

157

data.wien.gv.at

5. IMPLEMENTATION AND EVALUATION

(a, a′, 10, change), where a and a′ are two nodes representing the same station but for different
lines, and change is just a dedicated ‘line’ representing walks between platforms. In order to re-
lieve the user from writing line-specific names of stations in the input to the program, we further
have for each station a generic node which is connected to all line-specific nodes for this station.

For instance, a journey from Wien Mitte to Taubstummengasse is possible using subway
line U4 from Wien Mitte to Karlsplatz (with intermediate stop at Stadtpark), changing to
subway line U1, and going from Karlsplatz to Taubstummengasse (which is just one stop).
This will be represented as follows:

{
(Wien Mitte,Wien Mitte (U4), 10, change),

(Wien Mitte (U4),Stadtpark (U4), 1,U4),

(Stadtpark (U4),Karlsplatz (U4), 1,U4),

(Karlsplatz (U4),Karlsplatz (U1), 10, change),

(Karlsplatz (U1),Taubstummengasse (U1), 1,U1),

(Taubstummengasse (U1),Taubstummengasse, 10, change)
}

Note that there will never be cycles in the direct path between two stations because the costs
are minimized, thus the set representation is sufficient and there is no need to formally store the
order of the edges. Further note that the tuples (Wien Mitte,Wien Mitte (U4), 10, change)
and (Taubstummengasse (U1),Taubstummengasse, 10, change) are merely the connections
between the generic stations and the line-specific nodes, and are actually no real changes. This
allows the user to use the constants Wien Mitte and Taubstummengasse in the input without
predetermining which line to take at these stations. However, as these spurious changes at the
start and at the destination node are necessary in any route, this does not affect the minimization
of the costs.

Single Route Planning. We now come to the first scenario and consider route planning of a
single person who wants to visit a number of locations. Additionally, we have the side constraint
that the person wants to go for lunch in a restaurant when the tour is longer than the given limit
of costs 300. Because the external source allows only for computing direct connections between
two locations, it cannot solve the task completely and there needs to be interaction between the
HEX-program and the external source. We considered instances with 1 ≤ n ≤ 15 locations to
visit.

The sequence in which the locations are visited is guessed non-deterministically in the logic
program. While the direct connections between two locations are of minimum length by def-
inition of the external atom, the length of the overall tour is only optimal wrt. to the chosen
sequence of locations, but other sequences might lead to a shorter overall tour. However, we
have the constraint that for visiting n locations, there should be at most ⌈n× 1.5⌉ changes. Due
to this constraint not all instances have a solution. It would be easy to extend the scenario to pre-
determine the sequence of locations by additional constraints, e.g., by global weak constraints
in order to minimize the costs.

For each instance size n, we generated 50 instances by randomly drawing n locations to visit
plus n possible locations for having lunch (the data does not provide information about such
locations, but usually there are restaurants or snack bars in the near area of stations). We show

158

5.3. Evaluation of the Grounding Algorithm

for each instance size the averages of the wall clock runtimes, the grounding times, the solving
times, the percentage of instances for which a solution was found within the time limit (column
s.%)4, the average path length (costs) of the instances with solutions (column length), the average
number of necessary changes for instances with solutions, not counting changes between generic
and line-specific station nodes (column changes), and the percentage of instances with solutions
which require a restaurant visit due to length of the tour (column r.%). The results are shown in
Tables 5.18a, 5.18b and 5.18c using the full map, the map restricted to tram and subway, and the
map restricted to subway only, respectively.

The hardness of the benchmark stems from the side constraint concerning lunch. Without
this constraint, the tour could be computed deterministically by successive calls of the external
source, once the sequence of locations was guessed. However, due to the side constraint, not
only the overall tour does depend on the individual locations, but also the individual locations
depend on the overall tour (they need to contain a restaurant if the tour is too long and should
not contain one otherwise). This leads to a cycle over the external atom &path . With the notion
of strong safety, this requires the output variables of this external atom to be bounded by domain
predicates, thus the whole map needs to be imported a priori.

Pair-Route Planning. In our second scenario we consider two persons. Each of them wants
to visit a number 1 ≤ n ≤ 15 of locations (with at most ⌈n × 1.5⌉ changes). Additionally, the
two persons want to meet, thus the two tours need to intersect at some point. Possible meeting
locations are drawn randomly. We further have the side constraint that the meeting location shall
be a restaurant, if at least one of the tours is longer than the limit of costs 300. We created for
each instance size 1 ≤ n ≤ 15 a number of 50 instances, where the n locations for each person,
n possible (non-restaurant) meeting locations and n restaurants are drawn randomly. The results
are shown in Tables 5.19a, 5.19b and 5.19c using the full map, the map restricted to tram and
subway, and the map restricted to subway only, respectively. Columns length and changes show
the sums of the lengths of the tours and of the necessary changes for both persons.

Observations. In both scenarios we can observe that importing the whole map a priori is
merely impossible. Already the grounder fails with a timeout, but due to the large number
of (unnecessary) external atoms in the ground program, also solving would not be reasonably
possible with the given data. Only liberal safety allows for solving the task in the given time limit
by importing only the relevant part of the map during grounding. The external atom implements
a cache both for the graph representation of the map and for the results of Dijkstra’s algorithm.
The first call of the external source needs on our benchmark system approximately 5 seconds to
load the map (in case of the full map, but not for single route planning with n = 1 because there
will be no call of the external source). Moreover, Dijkstra’s algorithm computes for a given start
node the shortest paths to all nodes; thus after the external source has been called for a certain
start node, successive calls for the same start node are significantly faster. In particular, the cache
is already filled with all relevant data during grounding, thus solving will spend only very little
time in external sources and the solving time comes mainly from the HEX evaluation algorithms.

For pair-route planning, note that even instances with n = 1 have a path longer than 0
because the location for the meeting is not included in the instance size n.

4The number of instances for which no solution was found include both timeout instances and instances which
have no solution.

159

5. IMPLEMENTATION AND EVALUATION

With Domain Predicates Without Domain Predicates
wall clock ground solve s.% length changes r.% wall clock ground solve s.% length changes r.%

1 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 2.40 (0) 1.71 (0) 0.54 (0) 100.00 0.00 0.00 0.00
2 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 7.82 (0) 5.00 (0) 2.42 (0) 90.00 82.64 2.24 0.00
3 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 16.44 (0) 9.46 (0) 5.81 (0) 76.00 152.21 3.92 0.00
4 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 36.60 (0) 16.69 (0) 16.90 (0) 52.00 213.00 5.31 3.85
5 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 102.71 (0) 26.63 (0) 69.26 (0) 52.00 281.27 7.58 11.54
6 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 284.69 (38) 236.43 (38) 45.56 (0) 16.00 368.12 9.00 100.00
7 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a

(a) Full Map

With Domain Predicates Without Domain Predicates
wall clock ground solve s.% length changes r.% wall clock ground solve s.% length changes r.%

1 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 1.13 (0) 0.83 (0) 0.20 (0) 100.00 0.00 0.00 0.00
2 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 3.50 (0) 2.34 (0) 0.85 (0) 100.00 68.12 1.80 0.00
3 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 8.91 (0) 4.88 (0) 3.01 (0) 96.00 125.19 3.38 0.00
4 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 34.05 (2) 20.11 (2) 11.41 (0) 92.00 192.80 4.65 0.00
5 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 62.98 (0) 13.57 (0) 43.58 (0) 90.00 284.89 7.53 46.67
6 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 192.58 (11) 81.96 (11) 101.66 (0) 74.00 361.86 8.95 100.00
7 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 287.99 (38) 234.55 (38) 49.27 (0) 24.00 410.17 10.50 100.00
8 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 299.75 (48) 289.34 (48) 9.48 (0) 4.00 418.00 12.00 100.00
9 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a

(b) Subway and Tram

With Domain Predicates Without Domain Predicates
wall clock ground solve s.% length changes r.% wall clock ground solve s.% length changes r.%

1 (50) 295.42 (49) 294.73 (49) 0.29 (0) 2.00 0.00 0.00 0.00 0.89 (0) 0.65 (0) 0.15 (0) 100.00 0.00 0.00 0.00
2 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 2.89 (0) 1.92 (0) 0.66 (0) 100.00 64.04 1.22 0.00
3 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 8.08 (0) 4.10 (0) 2.91 (0) 100.00 127.16 2.62 0.00
4 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 23.87 (0) 7.31 (0) 13.72 (0) 100.00 206.78 4.16 12.00
5 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 57.30 (0) 11.69 (0) 39.37 (0) 100.00 317.08 7.20 90.00
6 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 107.05 (0) 17.32 (0) 78.33 (0) 100.00 364.32 8.46 100.00
7 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 225.16 (9) 73.97 (9) 135.58 (0) 82.00 405.27 9.61 100.00
8 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 299.90 (48) 289.15 (48) 9.83 (0) 4.00 353.00 9.00 100.00
9 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a

(c) Subway Only

Table 5.18: Single Route Planning – Benchmark Results

As expected, a restriction of the map to trams and subway or to subway only usually leads to
smaller runtimes. Also the number of changes decreases because multiple tram and especially
subway lines have usually more common stations than bus lines. With increasing number of
locations to visit, the number of restaurant visits usually increases as well. However, this is not
a strict rule and the tables show some exceptions since the locations were drawn randomly and
their distance to each other is an important factor.

5.3.2 Summary

Our new grounding algorithm allows for grounding liberally de-safe programs. Instances that
can be grounded by the traditional algorithm as well usually require domain predicates to be
manually added (which is often cumbersome and infeasible in practice, as for recursive data

160

5.4. Summary and Future Work

With Domain Predicates Without Domain Predicates
wall clock ground solve s.% length changes r.% wall clock ground solve s.% length changes r.%

1 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 11.60 (0) 9.32 (0) 1.31 (0) 82.00 150.98 4.54 0.00
2 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 34.20 (0) 26.00 (0) 6.54 (0) 90.00 300.69 8.53 0.00
3 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 89.21 (0) 53.31 (0) 29.95 (0) 44.00 449.77 11.14 9.09
4 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 204.73 (4) 107.60 (4) 83.28 (0) 76.00 592.87 15.47 84.21
5 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 297.29 (44) 278.85 (44) 15.03 (0) 12.00 710.00 17.50 100.00
6 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a

(a) Full Map

With Domain Predicates Without Domain Predicates
wall clock ground solve s.% length changes r.% wall clock ground solve s.% length changes r.%

1 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 8.17 (0) 7.32 (0) 0.44 (0) 98.00 133.76 3.67 0.00
2 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 23.35 (0) 19.09 (0) 2.78 (0) 100.00 269.54 7.62 0.00
3 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 59.04 (0) 36.47 (0) 17.64 (0) 98.00 390.37 10.08 0.00
4 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 147.43 (3) 75.46 (3) 59.60 (0) 94.00 582.55 14.51 89.36
5 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 255.94 (17) 161.93 (17) 76.12 (0) 66.00 636.55 16.61 100.00
6 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a

(b) Subway and Tram

With Domain Predicates Without Domain Predicates
wall clock ground solve s.% length changes r.% wall clock ground solve s.% length changes r.%

1 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 7.72 (0) 6.97 (0) 0.30 (0) 98.00 124.51 2.45 0.00
2 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 21.35 (0) 17.69 (0) 2.19 (0) 100.00 251.66 4.94 0.00
3 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 60.00 (0) 33.79 (0) 21.05 (0) 100.00 375.08 7.46 4.00
4 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 167.44 (5) 80.97 (5) 74.14 (0) 90.00 565.33 10.98 82.22
5 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 267.17 (20) 169.57 (20) 81.00 (0) 60.00 627.70 12.30 100.00
6 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 299.05 (48) 292.38 (48) 4.88 (0) 4.00 640.00 13.00 100.00
7 (50) 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a 300.00 (50) 300.00 (50) 0.00 (0) 0.00 n/a n/a n/a

(c) Subway Only

Table 5.19: Pair-Route Planning – Benchmark Results

structures). We can observe that our algorithm does not only relieve the user from writing
domain predicates, but in many cases also has a significantly better performance. Nonmonotonic
external atoms might be problematic for our new grounding algorithm. However, the worst case
can mostly be avoided by our new decomposition heuristics. Some benchmarks show that with
the traditional notion of safety, grounding is practically impossible.

5.4 Summary and Future Work

We now give a summary of this chapter and hint some starting points for future work.

5.4.1 Related Work

Our DLVHEX system is mainly based on GRINGO and CLASP from the Potassco suite, which
are statically linked to DLVHEX in order to avoid overhead due to interprocess communication.
It uses CLASP both as an ASP and as a SAT solver (for unfounded set checking) and exploits
its SMT interface for implementing the learning techniques. As an alternative to GRINGO and

161

5. IMPLEMENTATION AND EVALUATION

CLASP, the reasoner supports also DLV as solver backend. However, the learning techniques are
not applicable in this case because DLV does not provide an appropriate interface. We further
provide a grounder and solver which were implemented from scratch during the work on this
thesis (mainly for testing purposes, due to missing optimizations).

5.4.2 Summary and Future Work

Our experiments use synthetic and application-driven problems. They have shown significant
performance improvements due to the techniques developed in this thesis. We could even ob-
serve an exponential speedup in many cases, which turns HEX into a practically useful knowl-
edge representation and reasoning formalism also for larger applications. Some problems can
virtually not be solved with the traditional evaluation algorithms for HEX. In particular, programs
with value invention often violate the criteria of strong safety and adding domain predicates is
not only inconvenient, but merely impossible due to the large size of the domain in many appli-
cations.

One starting point for future work concerns the algorithms. Our experiments confirm that
exploiting application-specific properties of external atoms has a strong influence on efficiency.
Thus, the expectation is that if even more properties are exploited, performance can be further
improved. As already mentioned in Chapter 3, another issue is the development of heuristics.
We have introduced two encodings for unfounded set checking and observe that each of them
might be more efficient in some cases. A heuristics for dynamically choosing between the two
encodings might be subject to future work. Concerning unfounded set checking over partial
interpretations, we have briefly presented two heuristics but came to the conclusion that they
are both inferior to the implementation as a post-check, which is roughly the case because the
unfounded set check is too expensive and should be done rarely. However, more advanced
heuristics may have positive effects on efficiency.

On the implementation side, one possible improvement is an advanced passing of the non-
ground program to the GRINGO grounder. Currently, the already parsed program is sent in
string format, thus GRINGO needs to parse it again. Sending it in binary format by exploiting
GRINGO’s internal data structures can avoid the second parsing process and would be a more
elegant implementation. However, as the non-ground input program is usually of moderate size
and ASP parsers are simple, we do not expect that this leads to notable performance increase.

Currently, DLVHEX is available for Linux-based systems and for (Mac) OS X. Porting
the system to Microsoft Windows systems might be a future goal. Although most people in
academia have access to Linux-based systems anyway, this could increase the number of poten-
tial users. Moreover, a current issue is the simplification of the build and installation process of
the system. Currently, the user needs to build the system from source, which is quite complicated
for the average user. We want to provide pre-built packages for the most common platforms in
the near future.

An important goal is the extension of our benchmark suite. We are continuously working on
the realization of further applications which demonstrate the effectiveness of current and future
evaluation algorithms.

162

Chapter 6
Applications and Extensions of

HEX-Programs

In this chapter we discuss applications and extensions of HEX-programs. We focus on applica-
tions and extensions which emerged during the work on this thesis, or which have been signifi-
cantly extended in the context of this research. In the latter case we first give an overview about
the current state and then point out the improvements which were established during the work on
this thesis. Afterwards, some traditional applications are briefly sketched and references to more
elaborative discussions are given. Some of the applications already served as benchmarks in
Chapter 5. Other applications have not been used as benchmarks because they can be efficiently
realized with traditional algorithms for HEX and are thus not suited for showing computational
improvements; this is in particular true for most programs without cyclic structure.

6.1 HEX-programs with Existential Quantification

An important feature of external atoms in HEX-programs is value invention, i.e., the introduction
of new values that do not occur in the program. Such values may also occur in an answer set of
a HEX-program, if we have a rule like

lookup(X,Y)← p(X),&do_hash[X](Y),

where intuitively, the external atom &do_hash[X](Y) generates a hash key Y for the input
X and records it in the fact lookup(X,Y). Here, the variable Y can be seen under existen-
tial quantification, i.e., as ∃Y , where the quantifier is externally evaluated, by taking domain-
specific information into account; in the example above, this would be a procedure to calculate
the hashkey. Such domain-specific quantification occurs frequently in applications, be it e.g. for
built-in functions (just think of arithmetic), the successor of a current situation in situation calcu-
lus, retrieving the social security number of a person etc. To handle such quantifiers in ordinary

163

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

ASP is cumbersome; they amount to interpreted functions and require proper encoding and/or
special solvers.

HEX-programs however provide a uniform approach to represent such domain-specific exis-
tentials. The external treatment allows to deal elegantly with data types (e.g., the social security
number, or an IBAN1 of a bank account, or strings and numbers like reals), to respect parame-
ters, and to realize partial or domain-restricted quantification of the form ∃Y : φ(X) ⊃ p(X,Y)
where φ(X) is a formula that specifies the domain of elements X for which an existential value
needs to exist; clearly, also range-restricted quantification ∃Y : ψ(Y) ⊃ p(X,Y) that limits the
value of Y to elements that satisfy ψ can be conveniently realized.

In general, such value invention leads on an infinite domain (e.g., for strings) to infinite
models, which can not be finitely generated. Under suitable restrictions on a program Π, this can
be excluded, in particular if a finite portion of the grounding of Π is equivalent to its full, infinite
grounding. This is exploited by various notions of safety of HEX-programs that generalize safety
of logic programs.

Building on the grounding algorithm for liberally de-safe programs from Section 4.3, we
can effectively evaluate HEX-programs with domain-specific existentials that fall in this class.
In this application, we generalize this algorithm with domain specific termination hooks, such
that for non-safe programs, a finitely bounded grounding is generated. Roughly speaking, such
a bounded grounding amounts to domain-restricted quantification ∃Y : φ(X) ⊃ p(X,Y) where
the domain condition φ(X) is dynamically evaluated during the grounding, and information
about the grounding process may be also considered. This domain-specific termination produces
a partial (bounded) grounding of the program, Π′, that leads to bounded models of the program
Π; the idea is that the grounding is faithful in the sense that every answer set of Π′ can be
extended to a (possibly infinite) answer set of Π, and considering bounded models is sufficient
for an application. This may be fruitfully exploited for applications like query answering over
existential rules, reasoning about actions, or to evaluate classes of logic programs with function
symbols like FDNC programs [Eiter and Simkus, 2010]. Furthermore, even if bounded models
are not faithful (i.e., may not be extensible to models of the full grounding), they might be
convenient e.g. to provide strings, arithmetic, recursive data structures like lists, trees etc, or
action sequences of bounded length resp. depth. The point is that the bound does not have to
be ‘coded’ in the program (like the maxint in DLV to bound the integer range), but can be
provided via termination criteria in the grounding, which gives greater flexibility.

6.1.1 HEX-Programs with Domain-Specific Existential Quantification

In this subsection, we consider HEX-programs with domain-specific existential quantifiers. This
term refers to the introduction of new values in rule bodies which are propagated to the head
such that they may appear in the answer sets of a program. Logical existential quantification is
strictly an instance of our approach, where only the existence but not the structure of the values
is of interest. Instead, in our work also the structure of the introduced values may be relevant
and can be controlled by the external atoms. We consider logical existential quantification in
Section 6.1.2.

1International Bank Account Number

164

6.1. HEX-programs with Existential Quantification

We start by introducing a grounding algorithm for HEX-programs which extends Ground-
HEX from Section 4.3 by additional hooks that support the insertion of application-specific ter-
mination criteria. This may be exploited for computing a finite subset of the grounding of non-
de-safe HEX-programs, which is sufficient for the considered reasoning task, e.g., for bounded
model building. For instance, we discuss queries over (positive) programs with (logical) existen-
tial quantifiers in Section 6.1.3, which can be answered by computing a finite part of a canonical
model.

HEX-Program Grounding

Intuitively, the bounded grounding Algorithm BGroundHEX can be explained as follows. As
with Algorithm GroundHEX, program Π is the non-ground input program. Program Πp is the
non-ground ordinary ASP prototype program, which is an iteratively updated variant of Π en-
riched with additional rules. In each step, the preliminary ground program Πpg is produced
by grounding Πp using a standard ASP grounding algorithm. Program Πpg converges against
a fixpoint from which the final ground HEX-program Πg is eventually extracted. Compared to
Algorithm GroundHEX, Algorithm BGroundHEX contains the loop at (b) and the check at (f),
which introduce two hooks Evaluate and Repeat that allow for realizing application-specific
termination criteria in the algorithm. They need to be substituted by concrete code fragments
depending on the reasoning task. The remaining parts of the algorithm are equivalent to Algo-
rithm GroundHEX, where all external atoms are considered to be de-safety-relevant.

We assume that the hooks are substituted by code fragments with access to all local variables.
Moreover, the set PIT i contains the input atoms for which the corresponding external atoms

have been evaluated in iteration i. Evaluate decides for a given input atom r
&g[Y](X)
inp (c) whether

the corresponding external atom shall be evaluated with input c. This allows for abortion of the
grounding even if it is incomplete, which can be exploited for reasoning tasks over programs
with infinite groundings where a finite subset of the grounding is sufficient. The second hook
Repeat allows for repeating the core algorithm multiple times such that Evaluate can distinguish
between input tuples processed in different iterations. Naturally, soundness and completeness of
the algorithm cannot be shown in general, but must be done separately for different reasoning
tasks with concrete instances for Repeat and Evaluate.

Domain-Specific Existential Quantification in HEX-Programs

We can realize domain-specific existential quantification naturally in HEX-programs by appro-
priate external atoms that introduce new values to the program. Realizing existentials by external
atoms also allows to use constants different from Skolem terms, i.e., data types with a specific
semantics. The values introduced may depend on input parameters passed to the external atom.

Example 74. Consider the following rule:

iban(B, I)← country(B,C), bank(B ,N),&iban[C,N,B](I)

Suppose bank(b, n) models financial institutions b with their associated national number n, and
country(b, c) holds for an institution b its home country c. Then one can use &iban[C,N,B](I)
to generate an IBAN from the country, the bank name and number. ✷

165

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

Algorithm BGroundHEX

Input: A HEX-program Π
Output: A ground HEX-program Πg

(a) Πp = Π ∪
{
rainp | a = &g [Y](X) in r ∈ Π

}

Replace all external atoms &g [Y](X) in all rules r in Πp by er,&g[Y](X)

i← 0
(b) while Repeat() do

// remember already processed input tuples at iteration i

i← i+ 1
(c) Set NewInputTuples ← ∅ and PIT i ← ∅

repeat

Πpg ← GroundASP (Πp) // partial grounding

(d) // evaluate all external atoms

for a = &g [Y](X) in a rule r ∈ Π do

Let g&g
inp be the unique predicate in the head of rainp

(e) // do this wrt. all relevant assignments

Ama ← {Tp(c) | p(c) ∈ A(Πpg), p ∈ Ym} ∪
{Fp(c) | p(c) ∈ A(Πpg), p ∈ Ya}

for Anm ⊆

{
Tp(c),Fp(c)

∣∣∣ p ∈ Yn,

p(c) ∈ A(Πpg)

}
s.t. ∄a : Ta,Fa ∈ Anm do

A←
(
Ama ∪Anm ∪ {Ta | a← . ∈ Πpg}

)
\ {Fa | a← . ∈ Πpg}

(f) for y ∈
{

c | g&g
inp(c) ∈ A(Πpg) s.t. Evaluate(g&g

inp(c)) = true
}

do

(g) // add ground guessing rules

// and remember evaluation

Πp ← Πp ∪
{
er,&g[y](x) ∨ ner,&g[y](x)← . | f&g(A, y, x) = 1

}

NewInputTuples ← NewInputTuples ∪
{
g

&g
inp(c)

}

PIT i ← PIT i ∪NewInputTuples

until Πpg did not change

(h) Πg ← Πpg

Remove input auxiliary rules and external atom guessing rules from Πg

Replace all e&g[y](x) in Πg by &g [y](x)

return Πg

Here, the structure of the introduced value is relevant, but an algorithm which computes it
can be hidden from the user. The introduction of new values may also be subject to additional
conditions which cannot be easily expressed in the program.

Example 75. Consider the following rule:

lifetime(M,L)← machine(M,C),&lifetime[M,C](L)

It informally expresses that each purchased machine m with cost c (machine(m, c)) higher

166

6.1. HEX-programs with Existential Quantification

than a given limit has assigned an expected lifetime l (lifetime(m, l)) used for fiscal purposes,
whereas purchases below that limit are fully tax deductible in the year of acquirement. Then
testing for exceeding of the limit might involve real numbers and cannot easily be done in the
logic program. However, the external atom can easily be extended in such a way that the value
is only introduced if this side constraint holds. ✷

Also counting quantifiers may be realized in this way, i.e., expressing that there exist exactly

k or at least k elements, which is relevant e.g. in description logics. While a direct implementa-
tion of existentials requires changes in the reasoner, a simulation using external atoms is easily
extensible.

6.1.2 HEX
∃-Programs

We now realize the logical existential quantifier as a specific instance of our approach, which can
also be written in the usual syntax; a rewriting then simulates it by using external atoms which
return dedicated null values to represent a representative for the unnamed values introduced by
existential quantifiers.

We start by introducing a language for HEX-programs with logical existential quantifiers,
called HEX∃-programs, as follows.

Definition 82. A HEX∃-program is a finite set of rules of form

∀X∃Y : p(X′,Y)← conj[X], (6.1)

where X and Y are disjoint sets of variables, X′ ⊆ X, p(X′,Y) is an atom, and conj[X] is a
conjunction of default literals or default external literals containing all and only the variables X;
without confusion, we also omit ∀X.

Intuitively speaking, whenever conj[X] holds for some vector of constants X, then there
should exist a vector Y such that p(X′,Y) holds. Existential quantifiers are simulated by using
new null values which represent the introduced unnamed individuals. Formally, we assume that
N ⊆ C is a set of dedicated null values, denoted by ωi with i ∈ N, which do not appear in the
program. We transform HEX∃-programs to HEX-programs as follows.

Definition 83. For a HEX∃-program Π, let T∃(Π) be the HEX-program with each rule r of form
(6.1) replaced by

p(X′,Y)← conj[X],&exists |X
′|,|Y|[r,X′](Y),

where f&existsn,m (A, r, x, y) = 1 if y = ω1, . . . , ωm is a vector of fresh, unique null values for
r, x2, and f&existsn,m (A, r, x, y) = 0 otherwise; if n = 0 we may omit it.

Each existential quantifier is replaced by an external atom &exists |X
′|,|Y|[r,X′](Y) of appro-

priate input and output arity which exploits value invention for simulating the logical existential
quantifier similar to the parsimonious chase algorithm (see below).

2That is, for each rule r and input vector x there is exactly one vector y = ω1, . . . , ωm of null values that do not
occur in the input program.

167

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

We call a HEX∃-program Π liberally de-safe if T∃(Π) is liberally de-safe. Various notions
of cyclicity have been introduced, e.g., by Grau et al. (2012) (who also survey further notions);
here we use bsynsem from Section 4.2.2.

Example 76. The following set of rules is a HEX∃-program Π:

employee(john); employee(joe)
r1 : ∃Y : office(X,Y)← employee(X)
r2 : room(Y)← office(X,Y)

Then T∃(Π) is the following de-safe program:

employee(john); employee(joe)
r′1 : office(X,Y)← employee(X),&exists1 ,1 [r1, X](Y)
r2 : room(Y)← office(X,Y)

Intuitively, each employee X has some unnamed office Y of X , which is a room. The
unique answer set of program T∃(Π) is {employee(john), employee(joe), office(john, ω1),
office(joe, ω2), room(ω1), room(ω2)}. ✷

For grounding de-safe programs, we simply let Repeat test for i < 1 and Evaluate re-
turn true . Explicit model computation is in general infeasible for non-de-safe programs as
the grounding and the models might be infinite. The resulting algorithm GroundDESafeHEX

always terminates for de-safe programs. For non-de-safe programs, we can support bounded
model generation by other hook instantiations. This is exploited e.g. for query answering over
cyclic programs, as described next.

One can show that the algorithm indeed computes all models of the input program.

Proposition 6.1. For de-safe programs Π, AS
(
GroundDESafeHEX(Π)

)
≡pos AS(Π).

Proof. By definition of the hooks, GroundDESafeHEX behaves like Algorithm GroundHEX
and the claim follows from Theorem 6.

6.1.3 Query Answering over Positive HEX
∃-Programs

The basic idea for query answering over programs with possibly infinite models is to compute
a ground program with a single answer set that can be used for answering the query. Positive
programs with existential variables are essentially grounded by simulating the parsimonious

chase procedure in the form used by Leone et al. (2012), which uses null values for each exis-
tential quantification. However, for termination we need to use specific instances of the hooks
in Algorithm BGroundHEX.

We start by restricting the discussion to a fragment of HEX∃-programs, called Datalog∃-
programs [Leone et al., 2012].

Definition 84. A Datalog∃-program is a HEX∃-program where every rule body conj[X] consists
of positive ordinary atoms.

168

6.1. HEX-programs with Existential Quantification

Thus, compared to HEX∃-programs, default negation and external atoms are excluded.

Example 77. The following set of rules is a Datalog∃-program:

person(john); person(joe)
r1 : ∃Y : father(X,Y)← person(X)
r2 : person(Y)← father(X,Y)

✷

Next, we define homomorphisms for use in Datalog∃-semantics and query answering over
Datalog∃-programs.

Definition 85. A homomorphism is a mapping h : N ∪ V → C ∪ V .

For a homomorphism h, let h|S be its restriction to S ⊆ N ∪ V , i.e., h|S(X) = h(X)
if X ∈ S and let it be undefined otherwise. For any atom a, let h(a) be the atom where
each variable and null value V in a is replaced by h(V); this is likewise extended to h(S) for
sets S of atoms and/or vectors of terms. A homomorphism h is a substitution, if h(N) = N

for all N ∈ N . An atom a is homomorphic (substitutive) to atom b, if some homomorphism
(substitution) h exists such that h(a) = b. An isomorphism between two atoms a and b is a
bijective homomorphism h s.t. h(a) = b and h−1(b) = a.

A setM of atoms is a model of a Datalog∃-program Π, denotedM |= Π, such that whenever
h
(
B(r)

)
⊆ M for some substitution h and r ∈ Π of form (6.1), then h|X

(
H(r)

)
is substitutive

to some atom in M ; the set of all models of Π is denoted by mods(Π).
Next, we can introduce queries over Datalog∃-programs.

Definition 86. A conjunctive query (CQ) q is an expression of form ∃Y :← conj[X∪Y], where
Y and X (the free variables) are disjoint sets of variables and conj[X ∪ Y] is a conjunction of
ordinary atoms containing all and only the variables X ∪ Y.

The answer of a CQ q with free variables X wrt. a model M is defined as follows:

ans(q,M) =

{
h|X

∣∣∣ h is a substitution such that for all atoms a in q,
it holds that h|X(a) is substitutive to some a′ ∈M

}

Intuitively, this is the set of assignments to the free variables such that the query holds wrt. the
model. The answer of a CQ q wrt. a program Π is then defined as the set

ans(q,Π) =
⋂

M∈mods(Π)

ans(q,M).

Query answering can be carried out over some universal model U of the program that is
embeddable into each of its models by applying a suitable homomorphism. Formally,

Definition 87. A model U of a program Π is called universal if, for each M ∈ mods(Π), there
is a homomorphism h s.t. h(U) ⊆M .

169

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

The universal model uses null values for unnamed individuals introduced by existential
quantifiers. It is then used to answer the query using the following result, which was first shown
by Fagin et al. (2005); we use the formalization of Leone et al. (2012):

Proposition 6.2 (Proposition 2.4 by Leone et al. (2012)). Let U be a universal model of some

Datalog∃-program Π. Then for each CQ q, h ∈ ans(q,Π) if h ∈ ans(q, U) and h : V → C\N .

Intuitively, the set of all answers to q wrt. U which map all variables to non-null constants is
exactly the set of answers to q wrt. Π.

Example 78. Let Π be the program from Example 77. Then the CQ ∃Y : ← person(X),
father(X,Y) asks for all persons who have a father. A universal model is U = {person(john),
person(joe), father(john, ω1), father(joe, ω2), person(ω1), person(ω2), . . .} and ans(q,Π)
contains the answers h1(X) = john and h2(X) = joe . ✷

Thus, computing a universal model is a key issue for query answering. A common approach
for this step is the chase procedure [Johnson and Klug, 1984]. Intuitively, it starts from an empty
interpretation and iteratively adds the head atoms of all rules with satisfied bodies, where existen-
tially quantified variables are substituted by fresh nulls. However, in general this procedure does
not terminate. Thus, a restricted parsimonious chase procedure was used by Leone et al. (2012),
which derives less atoms, and which is guaranteed to terminate for the class of Shy-programs.
Moreover, it was shown that the interpretation computed by the parsimonious chase procedure
is, although not a model of the program in general, still sound and complete for query answering,
and a bounded model in our view.

For query answering over Datalog∃-programs we reuse the translation in Section 6.1.2.

Example 79. Consider the Datalog∃-program Π and its HEX translation T∃(Π):

Π:
person(john); person(joe)

∃Y : father(X,Y)← person(X)
person(Y)← father(X,Y)

T∃(Π):
person(john); person(joe)
father(X,Y)← person(X),

&exists1 ,1 [r1, X](Y)
person(Y)← father(X,Y)

Intuitively, each person X has some unnamed father Y of X who is also a person. ✷

Note that T∃(Π) is not de-safe in general. However, with the hooks in Algorithm BGround-
HEX we can still guarantee termination. Let GroundDatalog∃(Π, k) = BGroundHEX

(
T∃(Π)

)

with Repeat testing i < k + 1, where k is the number of existentially quantified variables
in the query, and Evaluate(x) = true if atom x is not homomorphic to any a ∈ PIT i, and
Evaluate(x) = false otherwise.

The produced program has a single answer set, which essentially coincides with the result of
pChase [Leone et al., 2012] that in turn can be used for query answering. Thus, query answering
over Shy-programs is reduced to grounding and solving of a HEX-program. More formally:

170

6.1. HEX-programs with Existential Quantification

Proposition 6.3. For a shy program Π, the program produced by GroundDatalog∃(Π, k) has

a unique answer set which is sound and complete for answering CQs with up to k existential

variables against Π.

Proof. See Appendix B, page 229.

The main difference to pChase by Leone et al. (2012) is essentially where the homomor-
phism check is done. pChase instantiates existential variables in rules with satisfied body to new
null values only if the resulting head atom is not homomorphic to an already derived atom. In
contrast, our method performs the homomorphism check for the input to the &existsn,m atoms.
Thus, homomorphisms are detected when constants are cyclically sent to the external atom.
Consequently, our algorithm may need one iteration more than pChase, but allows for reusing
the basic idea of the basic algorithm from Chapter 4.

Example 80. For the program and query from Example 79, the algorithm computes a program
with answer set {person(john), person(joe), father(john, ω1), father(joe, ω2), person(ω1),
person(ω2)}. In contrast, pChase would stop already earlier with the result {person(john),
person(joe), father(john, ω1), father(joe, ω2)} because there is a homomorphism which maps
person(ω1), person(ω2) to person(john), person(joe). ✷

More formally, one can show that GroundDatalog∃(Π, k) yields for a Shy-program Π a
program with a single answer set that is equivalent to pChase(Π, k + 1) by Leone et al. (2012).
Lemma 4.9 by Leone et al. (2012) implies that the resulting answer set can be used for answering
queries with k different existentially quantified variables, which proves Proposition 6.3.

While pChase intermingles grounding and computing a universal model, our algorithm
cleanly separates the two stages as common in ASP; modularized program evaluation by the
solver will however effect such intermingling. We expect this to be advantageous for extending
Shy-programs to programs involving both existential quantifiers and other external atoms, which
we leave for future work.

6.1.4 HEX-Programs with Function Symbols

In this subsection we show how to process terms with function symbols by a rewriting to de-
safe HEX-programs. We will briefly discuss advantages of our approach compared to a direct
implementation of function symbols.

We consider HEX-programs, where the arguments Xi for 1 ≤ i ≤ ℓ of ordinary atoms
p(X1, . . . , Xℓ), and the constant input arguments in Y and the output X of an external atom
&g [Y](X) come from a set of terms T that is the least set T ⊇ V∪C such that f ∈ C, t1, . . . , tn ∈
T implies f(t1, . . . , tn) ∈ T .

Following Calimeri et al. (2007), and as already recapitulated in Section 4.6.1, we introduce
for each k ≥ 0 two external predicates &composek and &decomposek with ar I(&composek) =
1 + k, arO(&composek) = 1, and ar I(&decomposek) = 1, arO(&decomposek) = 1 + k. We
define

f&composek
(A, f,X1, . . . , Xk, T) = f&decomposek

(A, T, f,X1, . . . , Xk) = v,

171

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

with v = 1 if T = f(X1, . . . , Xk) and v = 0 otherwise. Composition and decomposition of
function terms can be simulated using these external predicates. Function terms are replaced
by new variables and appropriate external atoms with predicate &composek or &decomposek
are added in rule bodies to compute their values. More formally, we introduce the following
rewriting.

Definition 88. For any HEX-program Π with function symbols, let Tf (Π) be the HEX-program
where each occurrence of a term t = f(t1, . . . , tn) in a rule r is recursively replaced by a new
variable V , and if V occurs afterwards in H(r) or the input list of an external atom in B(r), we
add &composen [f, t1, . . . , tn](V) to B(r); otherwise (i.e., V occurs afterwards in some ordi-
nary body atom or the output list of an external atom), we add &decomposen [V](f, t1, . . . , tn)
to B(r).

Intuitively, &composen is used to construct a nested term from a function symbol and argu-
ments, which might be nested terms themselves, and &decomposen is used to extract the func-
tion symbol and the arguments from a nested term. The translation can be optimized wrt. evalu-
ation efficiency, but we leave this for future work.

Example 81. Consider the HEX-program Π with function symbols and its translation:

Π: q(z); q(y)
p(f(f(X)))← q(X)

r(X)← p(X)
r(X)← r(f(X))

Tf (Π): q(z); q(y)
p(V)← q(X),&compose1 [f,X](U),

&compose1 [f, U](V)
r(X)← p(X)
r(X)← r(V),&decompose1 [V](f,X)

Intuitively, Tf (Π) first builds f(f(X)) for all X on which q holds using two atoms over
&compose1 , and then extracts the X from derived r(f(X)) facts using a &decompose1 -atom.
✷

Note that &decomposen supports a well-ordering on term depth such that its output has
always a strictly smaller depth than its inputs. This is an important property for proving finite
groundability of a program by exploiting the TBFs introduced in Section 4.2.2.

Example 82. The Π = {q(f(f(a))); q(X) ← q(f(X))} is translated to program Tf (Π) =
{q(f(f(a))); q(X) ← q(V),&decompose1 [V](f,X)}. As &decompose1 supports a well-
ordering, the cycle is benign, i.e., it cannot introduce infinitely many values because the nesting
depth of terms is strictly decreasing with each iteration. ✷

The realization of function symbols via external atoms has the advantage that their process-
ing can be controlled (and can in fact also be seen as domain-specific existential quantifiers). For
instance, the introduction of new nested terms may be restricted by additional conditions which
can be integrated in the semantics of the external predicates &composek and &decomposek . A
concrete example is data type checking, i.e., testing whether the arguments of a function term
come from a certain domain. In particular, values might also be rejected, e.g., bounded genera-
tion up to a maximal term depth is possible. Another example is to compute some of the term

172

6.2. HEX-Programs with Nested Program Calls

arguments automatically from others, e.g., constructing the functional term num(7, vii) from 7,
where the second argument is the Roman representation of the first one.

Another advantage is that the use of external atoms for functional term processing allows for
exploiting de-safety of HEX-programs to guarantee finiteness of the grounding. This allows for
reusing the expressive framework for domain-expansion safety and does not need safety criteria
specific for function terms.

6.2 HEX-Programs with Nested Program Calls

In procedural programming, the idea of calling subprograms and processing their output is in
permanent use. Also in functional programming this kind of modularity is popular. This helps
reducing development time (e.g., by using third-party libraries), the length of source code, and,
last but not least, makes code human-readable. Reading, understanding, and debugging a typical
size application written in a monolithic program is cumbersome. In this section we present a
subsystem of DLVHEX, which can be used to ‘call’ HEX-programs from other HEX-programs,
called the called program and the host program, respectively. This allows for a reasoning over
the set of answer sets of a different program. For this purpose we will provide several external
atoms for evaluating programs, retrieving the predicates which occur in a specific answer set of
the program and for retrieving the arguments of a specific atom within an answer set; objects
such as answer sets and atoms are identified by handles.

Modular extensions of ASP have been considered for instance by Janhunen et al. (2009)
and Eiter et al. (1997) with the aim of building an overall answer set from program modules;
however, multiple results of subprograms (as typical for ASP) are respected, and no reasoning
about such results is supported. XASP [Swift and Warren, 2012] is an SMODELS interface for
XSB-Prolog. This system is related to our work but less expressive, as it is designed for host
programs under well-founded semantics. Moreover, our system allows the seamless integration
of queries over subprograms with other external sources. Both is important for some applica-
tions, e.g., for the MELD belief set merging system [Redl et al., 2011], which require on the
one hand choices and on the other hand access to arbitrary external sources in order to query
the data sources to be merged. Adding such nesting to available approaches is not easy and re-
quires to adapt systems similar to our approach. Another approach for modularity was presented
by Faber and Woltran (2011). It allows answer set programs for reasoning over the answer sets
of other programs. However, unlike our approach, they compile both the host and the called
program into a single one, which is called manifold programs. In contrast, our approach keeps
independent programs which interact via external atoms only.

We realized (possibly parameterized) program calls on top of HEX-programs and call it
nested HEX-programs. It is the nature of nested HEX-programs to have multiple programs which
reason over the answer sets of each individual subprogram. This can be done in a user-friendly
way and enables the user to write purely declarative applications consisting of multiple interact-
ing modules. Notably, call results and answer sets are objects that can be accessed by identifiers
and processed in the calling program. Thus, different from the works of Janhunen et al. (2009)
and Eiter et al. (1997) and related formalisms, this enables (meta)-reasoning about the set of

answer sets of a program. In contrast to the work of Swift and Warren (2012), both the calling

173

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

and the called program are in the same formalism. In particular, the calling program has also
a declarative semantics. As an important difference to the formalism of Analyti et al. (2011),
nested HEX-programs do not require extending the syntax and semantics of the underlying for-
malism, which is the HEX-semantics. The integration is, instead, by defining external atoms,
making the approach simple and user-friendly for many applications. Furthermore, as nested
HEX-programs are based on HEX-programs, they additionally provide access to external sources
other than logic programs. This makes nested HEX-programs a powerful formalism, which has
been implemented using the DLVHEX reasoner for HEX-programs; applications like belief set
merging [Redl et al., 2011] show its potential and usefulness. Moreover, we will show how
nested programs can be used for external source simulation. This allows for rapid prototyping
without actually implementing plugins for the reasoner, which is time-consuming.

Nested HEX-programs are realized as a set of external atoms and an answer cache for the
results of subprograms. They have initially been developed by Redl (2010) and presented in
more detail by Redl et al. (2011) and Eiter et al. (2011b) as part of the belief set merging system
MELD. However, it turned out that calling subprograms is useful for many applications beyond
belief set merging. In particular, during the work on this thesis, the simulation of external sources

became relevant. Thus, the original plugin was integrated directly into the core of DLVHEX and
extended by new features.

When a subprogram call (corresponding to the evaluation of a special external atom) is
encountered in the host program, the subsystem for evaluating nested HEX-programs creates
another instance of the reasoner to evaluate the subprogram. Its result is then stored in the
answer cache and identified with a unique handle, which can later be used to reference the
result and access its components (e.g., predicate names, literals, arguments) via other special
external atoms. For economic memory management, the implementation may remove answer
cache entries dynamically in the style of a least frequently used heuristics, and reevaluate the
corresponding program if it is later accessed again.

There are two possible sources for the called subprogram: (1) either it is directly embedded

in the host program, or (2) it is stored in a separate file. In (1), the rules of the subprogram must
be represented within the host program. To this end, they are encoded as string constants.

An embedded program must not be confused with a subset of the rules of the host program.
Even though the embedded program is syntactically part of the host program, it is logically
separated to allow independent evaluation. In (2), merely the path to the external program in the
file system is given. Compared to embedded subprograms, code can be reused without the need
to copy, which is clearly advantageous when the subprogram is changed or extended. This might
be used to provide libraries for solving problems which often reoccur as sub-problems in ASP
applications, e.g., graph problems or combinatorial optimization problems. For maintenance of
the library and the depending programs (e.g., for bug fixing or for extending the library towards
a more general type of the problem), it is of great interest to have a clear interface and not to
hard-code the sub-programs within the host programs.

We now present external atoms &callhexn , &callhexfilen , &answersets , &predicates , and
&arguments which are used to realize nested HEX-programs.

174

6.2. HEX-Programs with Nested Program Calls

6.2.1 External Atoms for Subprogram Handling

We start with two families of external atoms

&callhexn [P, p1, . . . , pn](H) and &callhexfilen [FN, p1, . . . , pn](H)

that allow to execute a subprogram given by a string P respectively in a file FN; here n is an
integer specifying the number of predicate names pi, 1 ≤ i ≤ n, used to define the input facts.
When evaluating such an external atom relative to an interpretation A, the system adds all facts
{pi(t1, . . . , tℓ) ←| Tpi(t1, . . . , tℓ) ∈ A} to the specified program, creates another instance of
the reasoner to evaluate it, and returns a symbolic handle H as result. A handle is a unique
integer representing a certain program answer cache entry. For convenience, we do not write n
in &callhexn and &callhexfilen as it is understood from the usage.

Example 83. In the following program, we use two predicates p1 and p2 to define the input to the
subprogram sub.hex (n = 2), i.e., all atoms over these predicates are added to the subprogram
prior to evaluation. The call derives a handle H as result.

p1(x, y); p2(a); p2(b)
handle(H) ← &callhexfile[sub.hex, p1, p2](H)

In the implementation, handles are consecutive numbers starting with 0. Hence, the unique
answer set of the program is {Thandle(0)} (neglecting facts). ✷

Formally, given an interpretation A, f&callhexfilen
(A,file, p1, . . . , pn, h) = v with v = 1

if h is the handle to the result of the program in file file extended by the facts over predi-
cates p1, . . . , pn that are true in A, and v = 0 otherwise. The formal notion and use of &callhexn
to call embedded subprograms is analogous to &callhexfilen .

Example 84. Consider the following program:

h1(H) ← &callhexfile[sub.hex](H)
h2(H) ← &callhexfile[sub.hex](H)
h3(H) ← &callhex [a; b](H)

✷

The rules execute the program sub.hex and the embedded program Πe = {a; b}, with no
facts being added. The single answer set is {Th1(0),Th2(0),Th3(1)} or {Th1(1), Th2(1),
Th3(0)} depending on the order in which the subprograms are executed (which is irrelevant).
While h1(X) and h2(X) will have the same value for X , h3(Y) will be such that Y 6= X .
Our implementation realizes that the result of the program in sub.hex is referred to twice but
executes it only once; Πe is (possibly) different from sub.hex and thus evaluated separately.

Now we want to determine how many (and subsequently which) answer sets it has. For
this purpose, we define external atom &answersets[PH](AH) which maps handles PH to call
results to sets of respective answer set handles. Formally, for an interpretation A, we have
f&answersets(A, hProg , hAS) = v with v = 1 if hAS is a handle to an answer set of the program
with program handle hProg , and v = 0 otherwise.

175

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

Example 85. The single rule

ash(PH ,AH) ← &callhex [a ∨ b←](PH),&answersets[PH](AH)

calls the embedded subprogram Πe = {a ∨ b ←} and retrieves pairs (PH ,PA) of handles
to its answer sets. &callhex returns a handle PH = 0 to the result of Πe, which is passed
to &answersets . This atom returns a set of answer set handles (0 and 1, as Πe has two an-
swer sets, viz. {Ta,Fb} and {Fa,Tb}). The overall program has thus the single answer set
{Tash(0, 0),Tash(0, 1)}. As for each program the answer set handles start with 0, only a pair
of program and answer set handles uniquely identifies an answer set. ✷

We are now ready to solve our example of counting shortest paths from above.

Example 86. Suppose paths.hex is the search program and encodes each shortest path in a
separate answer set. Consider the following program:

as(AH) ← &callhexfile[paths.hex](PH),&answersets[PH](AH)
number(D) ← as(C), D = C + 1, not as(D)

The second rule computes the first free handleD; the latter coincides with the number of answer
sets of paths.hex (assuming that some path between the nodes exists). ✷

At this point we still treat answer sets of subprograms as black boxes. We now define an
external atom to investigate them.

Given an interpretation A, f&predicates(A, hProg , hAS , p, a) = v with v = 1 if p occurs as an
a-ary predicate in the answer set identified by hProg and hAS , and v = 0 otherwise. Intuitively,
the external atom maps pairs of program and answer set handles to the predicates names with
their associated arities occurring in the according answer set.

Example 87. We illustrate the usage of &predicates with the following program:

preds(P,A) ← &callhex [node(a); node(b); edge(a, b)](PH),
&answersets[PH](AH),&predicates[PH ,AH](P,A)

It extracts all predicates (and their arities) occurring in the answer of the embedded program Πe,
which specifies a graph. The answer set is {Tpreds(node, 1),Tpreds(edge, 2)} as the answer
set of Πe has atoms with predicate node (unary) and edge (binary). ✷

The final step to gather all information from the answer of a subprogram is to extract the
literals and their parameters occurring in a certain answer set. This can be done with external
atom &arguments , which is best demonstrated with an example.

Example 88. Consider the following program:

h(PH ,AH) ← &callhex [node(a); node(b); node(c); edge(a, b); edge(c, a)](PH),
&answersets[PH](AH)

edge(W ,V) ← h(PH ,AH),&arguments[PH ,AH , edge](I , 0,V),
&arguments[PH ,AH , edge](I , 1,W)

node(V) ← h(PH ,AH),&arguments[PH ,AH , node](I , 0,V)

176

6.2. HEX-Programs with Nested Program Calls

It extracts the directed graph given by the embedded subprogram Πe and reverses all edges; the
answer set is {Th(0, 0),Tnode(a),Tnode(b),Tnode(c),Tedge(b, a),Tedge(a, c)}. Indeed,
Πe has a single answer set, identified by PH = 0, AH = 0; via &arguments we can access in
the second resp. third rule the facts over edge resp. node in it, which are identified by a unique
literal id I; the second output term of &arguments is the argument position, and the third the
actual value at this position. If the predicates of a subprogram were unknown, we can determine
them using &predicates . ✷

6.2.2 External Atoms for External Source Prototyping

Our system provides another family of external atoms for rapid prototyping of (simple) external
sources directly in ASP. For this purpose, the input-output behavior of hypothetical external
sources is encoded by ASP rules. This is useful for quick experiments before a new external
source is actually implemented. It comes with less implementation overhead compared to a
native implementation in C++. This gives the user the possibility to see how the planned external
atom will behave in a program even before it is developed. This application of nested HEX-
programs was of great interest throughout the work on this thesis, because the development of
the algorithms presented in Chapters 3 and 4 required exhaustive experiments with various types
of external sources, and it would have been cumbersome to develop all of them natively in C++.

However, it is clear that the possibility of simulating external sources cannot replace the
plugin mechanism of DLVHEX as it cannot access real external sources. Moreover, simulation is
less efficient than a native implementation in C++.

For simulation our system supports the external atom:

&simulatorn,m [F, p1, . . . , pn](X1, . . . Xm)

The simulator atom takes as arguments a filename F , which refers to the ASP program defin-
ing the input-output behavior of the prototypical external source, and predicate inputs p1, . . . , pn.
The output list X1, . . . , Xm is used to retrieve the tuples produced by the simulated external
source.

When a simulator atom is encountered in the host program, it will evaluate the ASP-program
in F extended by the input atoms defined over predicates p1, . . . , pn. In particular, the system
will add for all 1 ≤ i ≤ n each input atom pi(a1, . . . , aℓ) a fact of form ini(a1, . . . , aℓ) to F.
The renaming of the predicates is necessary in order to make the program F independent of the
input predicate names in the host program. The result of F is expected to consist of exactly one
answer set, where all atoms of form out(o1, . . . , oℓ) define the output of the simulated external
source.

Example 89. Consider the following program P given by the rules:

dom(a); dom(b); dom(c)
sel(X) ← dom(X),&simulator2 ,1 [Q, dom,nsel](X)

nsel(X) ← dom(X),&simulator2 ,1 [Q, dom, sel](X)

Let further Q refer to the program:

177

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

out(X) ← in1 (X), not in2 (X)

Then Q simulates an external source which computes the set difference, where the extension
of the second predicate input in2 is subtracted from the extension of the first predicate input in1 .
The program P computes then the two sets sel and nsel , corresponding to all partitionings of
{a, b, c} into two subsets. ✷

6.2.3 Interface for External Source Developers

As an important difference compared to the initial version of nested HEX-programs [Redl, 2010;
Redl et al., 2011; Eiter et al., 2011b], the subsystem for subprogram handling is now not only
available through special external atoms for the writer of HEX-program, but also as a C++ API for
external source developers. That is, the DLVHEX core system offers methods to the developers
of plugins which allow them for evaluating subprograms during the evaluation of an external
source.

An application of this API is the argumentation benchmark from Section 5.2. The external
sources in this benchmark need to check candidate extensions of argumentation frameworks.
This check is again encoded as an ASP program, which is realized using the API for nested
HEX-programs.

6.2.4 Applications

We conclude this section with a brief discussion of some concrete applications of nested HEX-
programs.

MELD

The MELD system deals with merging collections of belief sets [Redl, 2010; Redl et al., 2011].
Roughly, a belief set is a set of classical ground literals. Practical examples of belief sets include
explanations in abduction problems, encodings of decision diagrams, and relational data. The
merging strategy is defined by tree-shaped merging plans, whose leaves are the collections of
belief sets to be merged, and whose inner nodes are merging operators (provided by the user).
The structure is akin to syntax trees of terms.

The automatic evaluation of tree-shaped merging plans is based on nested HEX-programs; it
proceeds bottom-up, where every step requires inspection of the subresults, i.e., accessing the
answer sets of subprograms. The meta program at the root node generates then one answer set
for each integrated belief set. For this purpose, guessing rules select an integrated belief set of
the top-level merging operator. The meta program then inherits the conclusions of the chosen
belief set in order to make it visible to the user. Note that XASP [Swift and Warren, 2012] is
thus not appropriate for such unstratified host programs, as it can only compute the well-founded
semantics.

178

6.2. HEX-Programs with Nested Program Calls

Aggregate Functions

Nested HEX-programs can also be used to emulate aggregate functions [Faber et al., 2011] (see
e.g. #sum, #count, #max) where the (user-defined) host program computes the function given
the result of a subprogram. This can be generalized to aggregates over multiple answer sets of the
subprogram; e.g., to answer set counting, or to find the minimum/maximum of some predicate
over all answer sets (which may be exploited for global optimization).

Generalized Quantifiers

Nested HEX-programs make the implementation of brave and cautious reasoning for query an-
swering tasks very easy, even if the backend reasoner only supports answer set enumeration.
Furthermore, extended and user-defined types of query answers (cf. Eiter et al. (1997)) are de-
finable in a very user-friendly way, e.g., majority decisions (at least half of the answer sets
support a query), or minimum and/or maximum number based decisions (qualified number re-
strictions).

Preferences

Answer sets as accessible objects can be easily compared wrt. user-defined preference rules,
and used for filtering as well as ranking results (cf. Delgrande et al. (2004)): a host program
selects appropriate candidates produced by a subprogram, using preference rules. The latter can
be elegantly implemented as ordinary integrity constraints (for filtering), or as rules (possibly
involving further external calls) to derive a rank. A popular application are online shops, where
the past consumer behavior is frequently used to filter or sort search results. Doing the search
via an ASP program, that delivers the matches in answer sets, a host program can reason about
them and act as a filter or ranking algorithm.

Nested Programs as a Development Tool for DLVHEX

The further development of our system DLVHEX uses the idea of annotated external sources.
That is, known properties like monotonicity and functionality shall be exploited for speeding
up the reasoning process. Developing appropriate algorithms and heuristics requires empirical
experiments with a variety of external sources. As it would be cumbersome to implement all
of them as real plugins to DLVHEX, simulating them via our &simulatorn,m atom is a good
alternative.

6.2.5 Improvements

We summarize the improvements to nested HEX-programs which were done during the work on
this thesis compared to the initial version of the techniques [Redl, 2010; Redl et al., 2011].

First, input parameters to subprograms, as supported by the external atoms introduced in
Section 6.2.1, were not allowed in the initial version. Redl (2010) used nested HEX-programs for
evaluating tree-sharped merging plans of the MELD system, which did not require this feature.

179

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

However, it is natural to support argument passing if we consider subprogram calls, thus the
feature was added.

Next, external atom simulation as illustrated in Section 6.2.2 was also out of the scope of the
initial work on the topic. However, this extension is highly relevant in the context of this thesis
as it eases experimenting with various external sources significantly.

Finally, while nested HEX-programs in its initial form were implemented as a plugin, the
current version is directly embedded in the system core. This step was chosen because program
calls are not only useful for the HEX-programmer, but also for the developer of external sources,
which sometimes need to solve declarative subproblems during evaluation. Then it is convenient
to have an API for solving nested HEX-programs.

6.3 ACTHEX

ACTHEX [Basol et al., 2010] is an extension of HEX-programs which allows for the execution
of declaratively scheduled actions. To this end, action atoms are introduced to rule heads, which
operate on an environment and may modify it. The environment can be seen as an abstraction
of realms outside the logic program. Thus, in contrast to ASP and HEX-programs, which are
stateless, ACTHEX allows for actual modifications of the external environment without wrapping
the solver in a procedural language.

Intuitively, the evaluation of an ACTHEX-program is by first evaluating it similar to an or-
dinary HEX-program and then selecting a set of action atoms based on the answer sets of the
program. The associated actions are then executed in a given sequence, and possibly modify the
environment.

During the work on this thesis the ACTHEX formalism was extended in various ways. We
will now describe the basics of ACTHEX and then point out the improvements.

6.3.1 ACTHEX Syntax

The ACTHEX language uses, besides the signature introduced in Chapter 2, a set A of action

predicate names, which are prefixed with #.

Definition 89 (Action Atom). An action atom is of the form

a = #g [Y1, . . . , Yn]{o, r}[w : l],

where #g ∈ A is an action predicate name, Y1, . . . , Yn is the input list of length n, o ∈ {b, c, cp}
is the action option which declares actions as brave, cautious or preferred cautious, respectively,
and the optional integer attributes r, w, and l are called precedence, weight, and level, denoted
by prec(a), weight(a), and level(a), respectively.

Rules and programs are then defined as in Chapter 2 but may contain action atoms in rule
heads.

180

6.3. ACTHEX

6.3.2 ACTHEX Semantics

We first give an intuitive overview about the evaluation of an ACTHEX program. Basically, the
following steps are performed:

1. Determine the answer sets of Π wrt. to a snapshot of the environment.

2. Select a subset of all answer sets, called best models, using an objective function.

3. Select one of the best models using a best model selector.

4. For the chosen best model, determine an execution schedule, i.e., a sequence of actions.

5. Execute the execution schedule, which yields an updated environment.

6. Iterate the process.

Formally, we introduce the semantics as follows. First, we generalize the semantics of ex-
ternal atoms such that the environment may influence its truth value. To this end, we introduce
for a ground external atom &g [y](x) with k-ary input and l-ary output a 2+k+l-ary Boolean
oracle function f&g and say that &g [y](x) is true wrt. assignment A and environment E if
f&g(A, E, y, x) = 1. Satisfaction of ordinary and action atoms a is independent of the envi-
ronment: a is true if Ta ∈ A and false if Fa ∈ A. Satisfaction of ground rules and programs
is then naturally defined as in Chapter 2. We denote by AS(Π, E) the set of all answer sets of
program Π wrt. environment E.

Next, we define the best models of a program.

Definition 90 (Best Models [Schüller, 2012]). The best models BM(P,E) ⊆ AS(P,E) of Π
are those answer sets which minimize the following objective function.

Let AAg
w(Π) denote the set of action atoms in grndC(Π) with explicit weight and level

values. Let further

wΠ
max = max

a∈AA
g
w(Π)

weight(a) and lΠmax = max
a∈AA

g
w(Π)

level(a)

denote the maximum weight and maximum level over weighted action atoms in grndC(Π),
respectively; and let

MΠ
i (A) =

{
#b[Y]{o, r}[w : i] | T#b[Y]{o, r}[w : i] ∈ A

}

denote the set of action atoms true in A with level i.
An auxiliary function fΠ is then recursively defined as follows:

fΠ(1) = 1,

fΠ(n) = fΠ(n− 1) ·
∣∣AAg

w(Π)
∣∣ · wΠ

max + 1, for n > 1.

Given an answer set A, the objective function HΠ(A) is then defined as

HΠ(A) =

lΠmax∑

i=1

(
fΠ(i) ·

∑

a∈MΠ
i (I)

weight(a)
)
.

181

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

The intuition is that an answer set is in the set of best models, if no other answer set contains
only actions with a lower level, and no other answer set which contains only actions on the same
level has a smaller weight of all actions. Note that there are in general multiple best models.
However, a possibly customized best model selector, as introduced by Fink et al. (2013), is used
to select a single one. Once a best model has been selected, the executability of action atoms is
determined as follows.

Definition 91 (Executable Action Atoms). An action atom a = #b[y]{o, r}[w : i] is executable

wrt. a best model A, if:

(i) o = b and Ta ∈ A; or

(ii) o = c and Ta ∈ A′ for all A′ ∈ AS(Π, E); or

(iii) o = cp and Ta ∈ A′ for all A′ ∈ BM(Π, E).

Finally, we define a sequence of all actions executable in the selected best model as follows.

Definition 92 (Execution Schedule [Basol et al., 2010; Schüller, 2012]). An execution schedule

SA for a best model A is a sequence of all actions executable in A, such that for all pairs of
action atoms a, b with Ta,Tb ∈ A, if prec(a) < prec(b) then a must precede b in SA.

The set of all execution schedules of a best model A can be formalized as follows:

ESΠ,E(A) =
{
[a1, . . . , an] | prec(ai) ≤ prec(aj) for all 1 ≤ i < j ≤ n

}

Although there can be many execution schedules in general, one is usually interested in a
single one which is to be actually executed on the environment. For this purpose, customizable
execution schedule builders have been introduced by Fink et al. (2013), but also some predefined
ones are available in the system.

We now illustrate ACTHEX with the following example [Fink et al., 2013].

Example 90. Consider the following ACTHEX-program:

#robot [goto, charger]{b, 1}[1 : 1]← &sensor [bat](low)

#robot [clean, kitchen]{c, 2}[1 : 1]← night

#robot [clean, bedroom]{c, 2}[1 : 1]← day

night ∨ day ←

It uses action atom #robot to control a robot and an external atom &sensor to access sensor
data. Intuitively, precedence 1 of action atom #robot [goto, charger]{b, 1} should make the robot
recharging its battery, if necessary, before cleaning actions. The cleaning action depends on the
time of day. ✷

The effect of executing a ground action #b[y]{o, r}[w : i] on an environment E is modeled
by a (2+n)-ary function f#b , where n is the length of y, which computes an updated environment
E′ = f#b(A, E, y). Similarly, for an execution schedule S = [a1, . . . , an], the execution out-

come of S in environment E is EX (S,A, E) = En, where E0 = E and Ei+1 = f#b(A, Ei, y
i),

where yi is the input vector of action atom ai. Intuitively, the environment is iteratively updated
following the order of actions in the execution schedule.

182

6.3. ACTHEX

6.3.3 Applications

We finally discuss some applications of ACTHEX-programs. For a more elaborative discussion
we refer to the works of Basol et al. (2010) and Fink et al. (2013).

Action Languages

Action languages, such as the one by Giunchiglia et al. (2004), are used to describe the relations
between actions and fluents, where the latter describe the state of the world at specified times
which is modified by the former. It is not surprising that such languages can be captured by
ACTHEX, exploiting the precedence attribute of action atoms to model time.

Knowledge-Base Updates

Adding and removing statements is an issue when maintaining knowledge bases and can be
modeled by action atoms. This allows the ACTHEX-programmer to reason over knowledge bases
and modify them declaratively depending on the current content. This gives raise to various
use cases such as belief revision, belief merging or the implementation of observe-think-act
cycles [Kowalski and Sadri, 1999].

Iterative Agent Strategies

The iteration feature introduced by Fink et al. (2013) allows for the stepwise computation of
solutions to a problem. This might be exploited to implement agent strategies, e.g., for logic
games such as Sudoku or Reversi, in an easily extensible way. For instance, an existing Sudoku
agent based on ACTHEX adds in each iteration numbers to a cell or excludes them from the set
of possible values. It was observed by Fink et al. (2013) that this strategy has potential to solve
instances with a size beyond that which is computable in pure ASP.

6.3.4 Improvements

One improvement in the work of Fink et al. (2013) over the one of Basol et al. (2010) is the
generalization of the HEX-semantics. While Basol et al. (2010) associated a 1+k+l-ary Boolean
oracle function to external atoms &g [y](x) with k-ary input and l-ary output, Fink et al. (2013)
use a 2+k+l-ary function to allow the external atom evaluation to depend on the environment.
Previously, the environment was only used for action atoms.

Next, as practical applications are usually interested in a single execution, best model selec-
tors and execution schedule builders were introduced by Fink et al. (2013). The system imple-
mentation provides some predefined variants (e.g., lexicographical ordering), but allows also for
customizing them.

One of the most important improvements is the possibility of iteration. That is, after execut-
ing an execution schedule, the whole program may be evaluated again on the updated environ-
ment. Termination can be controlled by command-line or (with higher priority) by built-in con-
stants, which set either a fixed number of iterations, a maximum execution time, or iteration ad
infinitum. Alternatively, the use of dedicated action atoms #acthexContinue and #acthexStop

183

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

is possible which decide about continuation or termination of iteration. If one of these action
atoms is true in the selected best model, then the iteration options set by command-line or built-
in constants are overruled in case. Moreover, in order to capture dynamic environments, the
environment E′

i used as input for the i+1-th iteration may differ from the outcome Ei from
iteration i.

6.4 Multi-Context Systems

Multi-context systems (MCSs) [Brewka and Eiter, 2007] are a formalism for interlinking mul-
tiple knowledge based systems, which are called contexts. The formalism abstracts from the
knowledge representation language and identifies the contexts by their accepted belief sets. The
latter are abstractly defined as collections of elements. More specifically, the definition of the
interlinked systems hinges on the notion of a logic, i.e., a tuple L = (KBL,BSL,ACCL)
consisting of a set KBL of well-formed knowledge bases in some knowledge representation
formalism (which may be a different one for each logic), a set BSL of possible belief sets, and
a function ACCL : KBL → 2BSL which assigns to each knowledge base a set of acceptable
belief sets.

The interlinking of contexts is described by bridge rules. For a sequence of logics L =
(L1, . . . , Ln), an Lk-bridge rule over L is of form

(k : s)← (c1 : p1), . . . , (cj : pj), not(cj+1 : pj+1), . . . , not(cm : pm), (6.2)

where 1 ≤ k ≤ n and for each 1 ≤ i ≤ m we have 1 ≤ ci ≤ n and pi is an element of some
belief set of Lci .

A context is then a tuple Ci = (Li, kbi, br i), where Li = (KBi,BSi,ACCi) is a logic,
kbi ∈ KBi and br i is a set of Li-bridge rules over (L1, . . . , Ln). A multi-context system is a
sequence C = (C1, . . . , Cn) of contexts.

The semantics of an MCS M = (C1, . . . , Cn) is given by accepted belief states S =
(S1, . . . , Sn), which choose for each context Li a belief set Si ∈ BSi for 1 ≤ i ≤ n. We
call a bridge rule of form (6.2) applicable wrt. an accepted belief state S, if pi ∈ Si for all
1 ≤ i ≤ j and pi 6∈ Si for all j + 1 ≤ i ≤ m. A belief state is called an equilibrium if for all
1 ≤ i ≤ n, Si ∈ ACCi

(
kbi∪h(r) | r ∈ app(br i, S)

)
. Here, app(br i, S) denotes the set of ap-

plicable Li-bridge rules wrt. S and h(r) denotes the head atom of the respective rule which must
be derived in context i. Intuitively, an equilibrium is an accepted belief state S = (S1, . . . , Sn)
such that the accepted belief sets in all contexts also respect the semantics of bridge rules, i.e.,
for all applicable Li-bridge rules with head atom s we have s ∈ Si.

Example 91. Suppose we have two contexts C1 and C2 using ASP syntax and semantics as
logics s.t. kb1 = {a ∨ b ←} and kb2 = {x ∨ y ←}. Let the only bridge rule be b1 : (1 : a) ←
(2 : x). Then the equilibria are S1 = ({a}, {x}), S2 = ({a}, {y}) and S3 = ({b}, {y}). In
contrast, S4 = ({b}, {x}) is not an equilibrium because b1 is applicable wrt. S4 and thus derives
a in context C1, but is not contained in the respective belief set {b}. ✷

Besides computing equilibria, an important reasoning task for MCSs is inconsistency anal-

ysis. That is, for an MCS M with bridge rules brM without equilibria, a reason for this incon-

184

6.5. Description Logic Knowledge-Bases

sistency shall be computed. To this end, the notion of inconsistency explanations (IEs) has been
introduced by Eiter et al. (2010). An IE is a pair (E1, E2) of bridge rulesE1 ⊆ brM , E2 ⊆ brM
with the following intuition. The set E1 is relevant to cause an inconsistency, i.e., whenever the
bridge rules brM are replaced byE1, then the system is already inconsistent and it is not possible
to get a consistent MCS by adding further bridge rules from brM . This inconsistency can how-
ever be repaired by adding at least one of the bridge rules inE2 unconditionally, i.e., for a rule of
form (6.2) inE2 one adds (k : s)←. For a formal discussion of IEs, we refer to Schüller (2012).

Inconsistency explanations can be computed using an encoding as HEX-program developed
by Bögl et al. (2010), which we used as a benchmark problem in Section 5.2. The idea is essen-
tially to guess the membership of rules in sets E1 and E2 using disjunctive rules and checking
each candidate explanation using the saturation programming technique, which is necessary due
to the nature of the definition of inconsistency explanations. External atoms are used for check-
ing if a context accepts a certain belief set. The use of external atoms is highly cyclic because of
the saturation encoding. This lifts the problem to the second level of the polynomial hierarchy.

6.5 Description Logic Knowledge-Bases

Description logics (DLs) are a knowledge representation formalism which is well-suited for
ontologies as used in the Semantic Web [Heflin and Munoz-Avila, 2002] or in medical appli-
cations [Hoehndorf et al., 2007]. Intuitively, ontologies represent classes of objects, referred to
as concepts, and the relations between objects, called roles. Concepts and roles correspond to
unary and binary predicates in first-order logic, respectively. A description logic knowledge

base consists of a Tbox (terminological knowledge or intensional part) and an Abox (assertions

or extensional part), cf. Baader et al. (2003). The Tbox defines concepts and roles and repre-
sents relations between them, whereas the Abox contains specific knowledge about membership
of individuals in concepts or pairs of individuals in roles.

Example 92. Let PhDStudent , Student and Professor be concepts and isAssistantOf be
a role. Then the Tbox may contain the concept inclusion axiom PhDStudent ⊑ Student ,
representing that the class of PhD students is a subclass of all students. The Abox contains
concept membership assertions like Professor(smith) and PhDStudent(johnson), represent-
ing that smith is a professor and johnson a PhD student. A role membership assertion of form
isAssistantOf (johnson, smith) represents that johnson is an assistant of professor smith . ✷

Typical reasoning tasks over description logic knowledge bases include concept and role
retrieval, i.e., listing all individuals or pairs of individuals which are members of a given concept
or role, respectively. In the example above one may ask for all members of Student and expects
as answer the individual johnson because he is a PhDStudent and thus, by the terminological
knowledge, also a Student .

The combination of ontologies and answer set programming is especially valuable as it al-
lows for accessing existing domain knowledge from logic programs. To this end, DL-programs

have been developed by Eiter et al. (2008) which can be implemented on top of HEX-programs
with dedicated external atoms [Dao-Tran et al., 2009b]. The external source features external
atoms for concept and role queries. During a query, the set of members of a concept or role can

185

6. APPLICATIONS AND EXTENSIONS OF HEX-PROGRAMS

be extended by additional individuals defined in the ASP program. This allows for advanced
reasoning tasks such as default reasoning over description logic knowledge bases. We explain
this using the example which was also used as a benchmark problem in Chapter 5.

Example 93. Consider the program on the left and the terminological part of a DL knowledge
base on the right. They encode the Tweety bird example:

birds(X)← DL[Bird](X) Flier ⊑ ¬NonFlier

flies(X)← birds(X), notneg_flies(X) Penguin ⊑ Bird

neg_flies(X)← birds(X),DL[Flier ⊎ flies;¬Flier](X) Penguin ⊑ NonFlier

The ontological knowledge expresses that Flier and NonFlier are disjoint, and that penguins are
birds and do not fly. The rules express that birds fly by default. Intuitively the encoding works
as follows; a detailed description can be found in the work of Dao-Tran et al. (2009b). Suppose
the assertional part of the DL knowledge base contains Penguin(tweety). Then the truth of
DL[Flier ⊎ flies;¬Flier](tweety) is guessed by our evaluation algorithm for HEX-programs.
Thus, flies(tweety) and neg_flies(tweety) are either true or false. However, if flies(tweety) is
true, then the DL-program becomes inconsistent because Flier ⊎flies extends the concept Flier
by the individual tweety , which contradicts the knowledge derivable from Penguin(tweety)
and the Tbox. As in classical logic, an inconsistent description knowledge base implies every-
thing, thus neg_flies(tweety) is derived. But then flies(tweety) loses its support. Therefore the
candidate where flies(tweety) is true is rejected. In contrast, if flies(tweety) is false, then the
description logic knowledge base remains consistent and DL[Flier ⊎flies;¬Flier](tweety) and
neg_flies(tweety) are true. Thus, the only answer set correctly identifies tweety as a non-flier.
✷

Since description logics are purely monotonic, default reasoning can only be realized by the
interaction of rules and the DL knowledge base with a highly cyclic structure. For more back-
ground and a formal discussion, we refer to Dao-Tran et al. (2009b) and Schindlauer (2006).

Another reasoning task for DL-programs is the repair of inconsistencies which might appear
due to the interaction of the program with the ontology [Eiter et al., 2013e]. A repair is a set of
changes in the program or in the ontology in order to restore consistency and might be computed
by a variant of the evaluation algorithms for HEX-programs.

6.6 Route Planning

While there exist numerous commercial and open route planning applications, with the currently
most popular one being probably Google Maps3, the types of supported queries are usually
limited. In contrast, an implementation in a declarative formalism like HEX-programs allows for
easy addition of side constraints and thus tailoring to very specific use cases.

We have presented two route planning scenarios in Section 5.3 and explained how side con-
straints may look like. While the application was mainly developed to serve as a benchmark
problem, the results show that the techniques from this thesis allow the application to scale to
realistic map material. Thus, the application is ready to be used for practical purposes.

3https://maps.google.com

186

https://maps.google.com

6.7. Summary and Future Work

6.7 Summary and Future Work

We now summarize the chapter, discuss some relations to other applications from the literature
and give a brief outlook on further developments.

6.7.1 Related Work

Comparable to HEX is SAT modulo theories (SMT) [Barrett et al., 2009], which is satisfiability
checking with dedicated theory atoms. The background theory (e.g., bit vectors) constraints the
truth values of theory atoms. However, unless SMT, HEX also supports programs with variables
and unfounded set checking. In this sense, HEX relates to SMT like ASP to SAT.

Constraint ASP [Gebser et al., 2009; Ostrowski and Schaub, 2012] is an extension of ASP
by constraint atoms. It has been directly implemented in the CLINGCON system, but is in fact a
particular instance of HEX and can be translated to plain HEX. A prototypical implementation of
this translation has been developed by Stashuk (2013).

6.7.2 Summary and Future Work

HEX-programs have been successfully used to implement a variety of applications. Notably, the
concept of external atoms is very expressive and allows for realizing even syntactic extensions
of HEX-programs by translation to plain HEX (e.g., aggregation functions). In this sense, HEX is
a generic basis for many knowledge representation and reasoning tasks.

We are continuously looking for further applications which can be effectively implemented
using HEX-programs. A convincing application suite can not only serve as benchmark suite, but
also helps to establish HEX as a popular knowledge representation formalism.

A concrete important topic is the improvement of the constraint ASP realization on top
of HEX. The current implementation is not yet comparable to direct implementations, as in
the CLINGCON system, because important optimizations are missing (thus the application was
not discussed in more detail in this chapter). While user-defined learning functions have al-
ready been used by Stashuk (2013), application-specific heuristics for external atom evaluation
(cf. Section 5.1.3) are missing, thus effective theory propagation (partial assignments and the
theory deterministically imply further truth values of constraint atoms) is not possible. Thus,
theory propagation is an important part of future extensions.

187

Chapter 7
Conclusion and Outlook

We now summarize the thesis and recapitulate the main contributions. Afterwards we give an
outlook on possible starting points for future work.

7.1 Conclusion

In this thesis we have developed evaluation and grounding algorithms for HEX-programs, which
is an extension of ASP with external sources represented by external atoms. The traditional
evaluation strategy guesses the truth values of external atoms to produce model candidates. Sub-
sequently, each guess is checked against the real semantics of the external atoms. This usually
leads to a large number of independent guesses and limits scalability. Therefore, a main goal
of this thesis was the development of genuine evaluation algorithms which avoid blind guessing
and turn HEX-programs into a practically usable knowledge representation formalism.

As in ASP, non-ground HEX-programs are translated into ground programs by a ground-

ing procedure. However, unlike in ASP, the grounding of HEX-programs may need to contain
constants which are not part of the input program. This is due to value invention, i.e., the in-
troduction of new constants into the program by external atoms. Traditionally, strong syntactic
safety criteria are used to restrict value invention and guarantee finite groundability. However,
these criteria are in many cases unnecessarily restrictive, thus the traditional approach suffers
not only scalability but also expressiveness problems. Overcoming them by relaxing the safety
criteria and the development of a suitable grounding algorithm was the second main goal of this
thesis.

We first developed a new evaluation strategy for ground HEX-programs in Chapter 3, which
makes use of advanced learning techniques. Intuitively, our new algorithm learns additional
clauses while the search space is traversed, which prevent the algorithm later from running
into the same conflicts again. These clauses reflect the behavior of external sources, and the
learning technique is thus called external behavior learning (EBL). The basic idea of our algo-

189

7. CONCLUSION AND OUTLOOK

rithm is related to constraint ASP solving presented by Gebser et al. (2009), which is realized
in the CLINGCON system. External atom evaluation in our algorithm can superficially be seen
in place of constraint propagation. However, while Gebser et al. (2009) consider a particular
application, we deal with a more abstract interface to external sources. An important differ-
ence between CLINGCON and EBL is that the constraint solver is seen as a black box, whereas
we exploit known properties of external sources. Moreover, we support user-defined learning,
i.e., customization of the default construction of learned clauses to incorporate specific knowl-
edge about the sources, as discussed in Section 3.1.2. Another difference is the construction
of learned clauses. Constraint ASP has special constraint atoms, which may be contradictory,
e.g., T(X > 10) and T(X = 5). The learned clauses are sets of constraint literals, which are
kept as small as possible. In our algorithm we have usually no conflicts between ground external
atoms as output atoms are mostly independent of each other (excepting e.g. functional sources).
Instead, we have a strong relationship between the input and the output. This is reflected by
clauses which usually consist of (relevant) input atoms and the negation of one output atom. As
in constraint ASP solving, the key for efficiency is keeping clauses small.

Ensuring minimality of answer sets is in general non-trivial and requires special attention.
We have designed a minimality check which is based on unfounded sets [Faber, 2005], realized
as a separate search problem encoded as a SAT instance. We have then shown several optimiza-
tions of the basic minimality check and tightly coupled the minimality check and the search for
model candidates by nogood exchanging, i.e., nogoods learned in one search problem can be
reused for the other one. We have then presented a decision criterion which allows for skipping
the entire minimality check for certain program classes.

In Chapter 4 we considered programs with variables and value invention in particular. Since
naive value invention can lead to infinite groundings and infinite answer sets, it must be re-
stricted by appropriate safety criteria. In this thesis we have replaced the traditional notion of
strong safety by the less restrictive notion of liberal domain-expansion safety, which increases
the freedom of the HEX-programmer when modeling a search problem. We have compared our
notion to several other notions of safety and concluded that it is strictly more liberal. Our new
notion of safety exploits both syntactic and semantic criteria to guarantee the existence of finite
groundings. Moreover, it is designed in an extensible fashion such that additional safety criteria
can be easily integrated. This also includes application-specific criteria which can be added to
the system using a plugin interface.

Based on the relaxed notion of safety, we have designed a novel efficient grounding algo-
rithm. The new algorithm for HEX-program evaluation can ground any program which satisfies
the new safety criteria, while the traditional grounding algorithm relies on a program decompo-
sition step for subdividing the program into groundable fragments. However, program decom-
position is still advantageous in some cases, although not necessary anymore. This gives the
designer of evaluation heuristics more freedom, which we exploited when we designed a novel
heuristics capturing the insights from this thesis.

Our theoretical research is confirmed by an implementation and promising benchmark re-
sults in Chapter 5. We have seen that the learning-based algorithms lead to significant speedup
during evaluation because of effective pruning of the search space. In some cases we even ob-
served an exponential speedup. The minimality check based on unfounded sets often results in

190

7.2. Outlook

an additional speedup, compared to naive minimality checking using an explicit construction
of the FLP-reduct. For programs with variables and domain expansion, we experienced that
our new grounding algorithm does not only relieve the user from the burden of writing domain
predicates manually, but sometimes also speeds up the grounder significantly compared to a pre-
computation of the domain. The worst-case scenario for our new grounding algorithm can be
effectively avoided using our new evaluation heuristics for the evaluation framework, which has
been extended during the work on this thesis.

Finally, we have also briefly discussed some new and some traditional applications of HEX-
programs in Chapter 6, including HEX-programs with (domain-specific) existential quantifica-
tion [Eiter et al., 2013b], HEX-programs with nested program calls [Eiter et al., 2011b], AC-
THEX [Fink et al., 2013], multi-context systems [Brewka and Eiter, 2007], and programs with
description knowledge bases [Dao-Tran et al., 2009b].

7.2 Outlook

For ground HEX-program evaluation, the identification of further properties for informed learn-
ing is an important topic. Our experiments in Chapter 5 confirm that exploiting application-
specific properties of external atoms may have strong influence on efficiency. Thus, the expec-
tation is that if even more properties are exploited, then performance can be further improved.
Another issue is the development of heuristics for several purposes. First, our algorithm evalu-
ates external atoms whenever their input is complete. However, this is only one possible strategy.
It is also possible to delay external atom evaluation although the input is already complete, which
may be advantageous for external sources with high computational costs. Second, our algorithm
can perform minimality checks for model candidates already during the search. However, the
development of a concrete heuristics for deciding when to do such a check, was out of the scope
of this thesis. Third, we have introduced two encodings for unfounded set checking. A heuristics
for dynamically choosing between the two encodings might also be subject to future work.

For non-ground HEX-programs, the identification of further (syntactic or semantic) proper-
ties, which allow for finite groundability, is an issue. Of particular interest are external atoms
that provide built-in functions and simulate, in a straightforward manner, function symbols. On
the implementation side, further refinement and optimizations are an issue, as well as the setup
of a library of term bounding functions (TBFs) which exploit specific properties of concrete
external sources. The grounding algorithm may be extended in the future such that the worst-
case can be avoided in more cases. Also other optimizations to the algorithm are possible, e.g.,
by reusing previous results of the grounding step instead of iterative regrounding of the whole
program. Moreover, the new evaluation heuristics for the (extended) evaluation framework may
be refined. In the long term, a tighter integration of the grounding and the solving algorithm
is desirable. This might be realized as interleaved grounding and solving phases, which reason
over an incrementally extended program. The algorithms from this thesis pave the way for future
development in this direction.

191

Bibliography

[Analyti et al., 2011] Analyti, A., Antoniou, G., and Damasio, C. V. (2011). MWeb: a princi-
pled framework for modular web rule bases and its semantics. ACM Transactions on Com-

putational Logic, 12(2):17:1–17:46.

[Antoniou et al., 2007] Antoniou, G., Baldoni, M., Bonatti, P. A., Nejdl, W., and Olmedilla,
D. (2007). Secure Data Management in Decentralized Systems, volume 33 of Advances in

Information Security, chapter Rule-based Policy Specification, pages 1–57. Springer.

[Asparagus Website, 2014] Asparagus Website (2014). http://asparagus.cs.uni-potsdam.de/.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-
Schneider, P. F. (2003). The Description Logic Handbook: Theory, Implementation, and

Applications. Cambridge University Press, New York, NY, USA.

[Baral, 2002] Baral, C. (2002). Knowledge Representation, Reasoning and Declarative Prob-

lem Solving. Cambridge University Press.

[Barrett et al., 2009] Barrett, C., Sebastiani, R., Seshia, S. A., and Tinelli, C. (2009). Satisfia-

bility Modulo Theories, chapter 26, pages 825–885. Volume 185 of [Biere et al., 2009].

[Bartholomew and Lee, 2010] Bartholomew, M. and Lee, J. (2010). A decidable class of
groundable formulas in the general theory of stable models. In Proceedings of the Twelfth

International Conference on the Principles of Knowledge Representation and Reasoning (KR

2010), Toronto, Canada, May 9-13, 2010, pages 477–485. AAAI Press.

[Basol et al., 2010] Basol, S., Erdem, O., Fink, M., and Ianni, G. (2010). HEX programs with
action atoms. In Technical Communications of the Twenty-Sixth International Conference on

Logic Programming, ICLP 2010, July 16-19, 2010, Edinburgh, Scotland, UK, pages 24–33.

193

http://asparagus.cs.uni-potsdam.de/

BIBLIOGRAPHY

[Biere et al., 2009] Biere, A., Heule, M. J. H., van Maaren, H., and Walsh, T., editors (2009).
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applica-

tions. IOS Press.

[Bikakis and Antoniou, 2008] Bikakis, A. and Antoniou, G. (2008). Alternative strategies for
contextual reasoning with conflicts in ambient computing. In Calvanese, D. and Lausen,
G., editors, Web Reasoning and Rule Systems, volume 5341 of Lecture Notes in Computer

Science, pages 234–235. Springer.

[Bikakis and Antoniou, 2010] Bikakis, A. and Antoniou, G. (2010). Defeasible contextual rea-
soning with arguments in ambient intelligence. IEEE Transactions on Knowledge and Data

Engineering, 22(11):1492–1506.

[Bögl et al., 2010] Bögl, M., Eiter, T., Fink, M., and Schüller, P. (2010). The MCS-IE system for
explaining inconsistency in multi-context systems. In In Proceedings of the Twelfth European

Conference on Logics in Artificial Intelligence (JELIA 2010), pages 356–359.

[Bonatti, 2001] Bonatti, P. A. (2001). Reasoning with infinite stable models. In Proceedings of

the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pages
603–610. Morgan Kaufmann.

[Bonatti, 2002] Bonatti, P. A. (2002). Reasoning with infinite stable models II: Disjunctive
programs. In Proceedings of the Eighteenth International Conference on Logic Programming

(ICLP 2002), volume 2401 of LNCS, pages 333–346. Springer.

[Brewka and Eiter, 2007] Brewka, G. and Eiter, T. (2007). Equilibria in heterogeneous non-
monotonic multi-context systems. In Proceedings of the Twenty-Second AAAI Conference on

Artificial Intelligence (AAAI 2007), July 22–26, 2007, Vancouver, British Columbia, Canada,
pages 385–390. AAAI Press.

[Brewka et al., 2011] Brewka, G., Eiter, T., and Truszczyński, M. (2011). An-
swer set programming at a glance. Communications of the ACM, 54(12):92–103.
doi>10.1145/2043174.2043195.

[Brown, 2003] Brown, F. (2003). Boolean Reasoning: The Logic of Boolean Equations. Dover
Books on Mathematics. Dover Publications.

[Buccafurri et al., 1997] Buccafurri, F., Leone, N., and Rullo, P. (1997). Strong and weak con-
straints in disjunctive datalog. In Proceedings of the Fourth International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR 1997), pages 2–17, London,
UK. Springer.

[Cabalar et al., 2009] Cabalar, P., Pearce, D., and Valverde, A. (2009). A revised concept of
safety for general answer set programs. In Proceedings of the Tenth International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009), volume 5753 of
LNCS, pages 58–70. Springer.

194

Bibliography

[Calimeri et al., 2007] Calimeri, F., Cozza, S., and Ianni, G. (2007). External sources of knowl-
edge and value invention in logic programming. Annals of Mathematics and Artificial Intel-

ligence, 50(3–4):333–361.

[Calimeri et al., 2008a] Calimeri, F., Cozza, S., Ianni, G., and Leone, N. (2008a). Computable
functions in ASP: theory and implementation. In Proceedings of the Twenty-Fourth Interna-

tional Conference on Logic Programming (ICLP 2008), volume 5366 of LNCS, pages 407–
424. Springer.

[Calimeri et al., 2013a] Calimeri, F., Fink, M., Germano, S., Ianni, G., Redl, C., and Wimmer,
A. (2013a). AngryHEX: an angry birds-playing agent based on HEX-programs. Angry-Birds
Competition 2013, August 6-9, 2013, Beijing, China.

[Calimeri et al., 2013b] Calimeri, F., Fink, M., Germano, S., Ianni, G., Redl, C., and Wimmer,
A. (2013b). AngryHEX: an artificial player for angry birds based on declarative knowledge
bases. In Baldoni, M., Chesani, F., Mello, P., and Montali, M., editors, National Workshop

and Prize on Popularize Artificial Intelligence, Turin, Italy, December 5, 2013, pages 29–35.

[Calimeri et al., 2008b] Calimeri, F., Perri, S., and Ricca, F. (2008b). Experimenting with par-
allelism for the instantiation of ASP programs. Journal of Algorithms, 63(1-3):34–54.

[Clark, 1977] Clark, K. L. (1977). Negation as failure. In Logic and Data Bases, pages 293–
322.

[CLASP Website, 2014] CLASP Website (2014). http://www.cs.uni-potsdam.de/clasp.

[Dao-Tran et al., 2009a] Dao-Tran, M., Eiter, T., Fink, M., and Krennwallner, T. (2009a). Mod-
ular nonmonotonic logic programming revisited. In Hill, P. M. and Warren, D. S., edi-
tors, Proceedings of the Twenty-Fifth International Conference on Logic Programming (ICLP

2009), Pasadena, California, USA, July 14–17, 2009, volume 5649 of LNCS, pages 145–159.
Springer.

[Dao-Tran et al., 2009b] Dao-Tran, M., Eiter, T., and Krennwallner, T. (2009b). Realizing de-
fault logic over description logic knowledge bases. In Sossai, C. and Chemello, G., editors,
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 5590 of Lec-

ture Notes in Computer Science, pages 602–613. Springer Berlin / Heidelberg.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397.

[Delgrande et al., 2004] Delgrande, J. P., Schaub, T., Tompits, H., and Wang, K. (2004). A clas-
sification and survey of preference handling approaches in nonmonotonic reasoning. Com-

putational Intelligence, 20(2):308–334.

[DLV Website, 2014] DLV Website (2014). http://www.dlvsystem.com.

195

http://www.cs.uni-potsdam.de/clasp
http://www.dlvsystem.com

BIBLIOGRAPHY

[Drescher et al., 2008] Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Os-
trowski, M., and Schaub, T. (2008). Conflict-driven disjunctive answer set solving. In
Proceedings of the Eleventh International Conference on Principles of Knowledge Repre-

sentation and Reasoning (KR 2008), pages 422–432. AAAI Press.

[Dung et al., 2007] Dung, P., Mancarella, P., and Toni, F. (2007). Computing ideal sceptical
argumentation. Artificial Intelligence, 171:642–674.

[Dung, 1995] Dung, P. M. (1995). On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–357.

[Dunne, 2009] Dunne, P. E. (2009). The computational complexity of ideal semantics. Artificial

Intelligence, 173(18):1559–1591.

[Egly et al., 2010] Egly, U., Gaggl, S. A., and Woltran, S. (2010). Answer-set programming
encodings for argumentation frameworks. Argument and Computation, 1(2):147–177.

[Eiter et al., 2011a] Eiter, T., Fink, M., Ianni, G., Krennwallner, T., and Schüller, P. (2011a).
Pushing efficient evaluation of HEX programs by modular decomposition. In Delgrande,
J. and Faber, W., editors, Proceedings of the Eleventh International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR 2011), Vancouver, BC, Canada, May

16-19, 2011, volume 6645 of LNCS, pages 93–106. Springer.

[Eiter et al., 2012a] Eiter, T., Fink, M., Krennwallner, T., and Redl, C. (2012a). Conflict-driven
ASP solving with external sources. Theory and Practice of Logic Programming: Special

Issue Twenty-Eighth International Conference on Logic Programming (ICLP 2012), 12(4–
5):659–679. Published online: September 5, 2012.

[Eiter et al., 2013a] Eiter, T., Fink, M., Krennwallner, T., and Redl, C. (2013a). Grounding
HEX-Programs with Expanding Domains. In Pearce, D., Tasharrofi, S., Ternovska, E., and
Vidal, C., editors, Second Workshop on Grounding and Transformations for Theories with

Variables (GTTV 2013), Corunna, Spain, September 15, 2013, pages 3–15.

[Eiter et al., 2013b] Eiter, T., Fink, M., Krennwallner, T., and Redl, C. (2013b). HEX-Programs
with Existential Quantification. In Rocha, R., editor, Proceedings of the Twentieth Interna-

tional Conference on Applications of Declarative Programming and Knowledge Management

(INAP 2013), Kiel, Germany, September 11-13, 2013.

[Eiter et al., 2013c] Eiter, T., Fink, M., Krennwallner, T., and Redl, C. (2013c). Liberal safety
for answer set programs with external sources. In desJardins, M. and Littman, M., editors,
Proceedings of the Twenty-Seventh AAAI Conference (AAAI 2013), July 14–18, 2013, Belle-

vue, Washington, USA. AAAI Press.

[Eiter et al., 2014a] Eiter, T., Fink, M., Krennwallner, T., and Redl, C. (2014a). HEX-programs
with existential quantification. In Rocha, R., editor, Proceedings of the Twentieth Interna-

tional Conference on Applications of Declarative Programming and Knowledge Manage-

196

Bibliography

ment (INAP 2013), Kiel, Germany, September 11-13, 2013. Post proceedings. Accepted for
publication.

[Eiter et al., 2012b] Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. (2012b).
Eliminating Unfounded Set Checking for HEX-Programs. In Fink, M. and Lierler, Y., editors,
Fifth Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP

2012), September 4, 2012, Budapest, Hungary, pages 83–97.

[Eiter et al., 2012c] Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. (2012c).
Exploiting Unfounded Sets for HEX-Program Evaluation. In del Cerro, L. F., Herzig, A.,
and Mengin, J., editors, Proceedings of the Thirteenth European Conference on Logics in

Artificial Intelligence (JELIA 2012), September 26-28, 2012, Toulouse, France, volume 7519
of LNCS, pages 160–175. Springer.

[Eiter et al., 2013d] Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. (2013d).
Improving HEX-program evaluation based on unfounded sets. Technical Report INFSYS
RR-1843-12-08, Institut für Informationssysteme, Technische Universität Wien, A-1040 Vi-
enna, Austria.

[Eiter et al., 2014b] Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. (2014b).
Efficient HEX-program evaluation based on unfounded sets. Journal of Artificial Intelligence

Research, 49:269–321.

[Eiter et al., 2010] Eiter, T., Fink, M., Schüller, P., and Weinzierl, A. (2010). Finding expla-
nations of inconsistency in multi-context systems. In Proceedings of the Twelfth Interna-

tional Conference on the Principles of Knowledge Representation and Reasoning (KR 2010),

Toronto, Canada, May 9-13, 2010, pages 329–339. AAAI Press.

[Eiter et al., 2012d] Eiter, T., Fink, M., Schüller, P., and Weinzierl, A. (2012d). Finding expla-
nations of inconsistency in nonmonotonic multi-context systems. Technical Report INFSYS
RR-1843-12-09, INFSYS RR-1843-03-08, Institut für Informationssysteme, TU Wien.

[Eiter et al., 2013e] Eiter, T., Fink, M., and Stepanova, D. (2013e). Data repair of inconsistent
dl-programs. In Proceedings of the Twenty-Third International Joint Conference on Artificial

Intelligence, IJCAI 2013, pages 869–876. AAAI Press.

[Eiter et al., 1997] Eiter, T., Gottlob, G., and Veith, H. (1997). Modular logic programming
and generalized quantifiers. In Proceedings of the Fourth International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR 1997), volume 1265 of LNCS, pages
290–309. Springer.

[Eiter et al., 2009] Eiter, T., Ianni, G., and Krennwallner, T. (2009). Answer set programming:
A primer. In Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset,
M.-C., and Schmidt, R. A., editors, Fifth International Reasoning Web Summer School (RW

2009), Brixen/Bressanone, Italy, August 30–September 4, 2009, volume 5689 of LNCS, pages
40–110. Springer.

197

BIBLIOGRAPHY

[Eiter et al., 2008] Eiter, T., Ianni, G., Krennwallner, T., and Schindlauer, R. (2008). Exploiting
conjunctive queries in description logic programs. Annals of Mathematics and Artificial In-

telligence: Logic in AI: A Special Issue Dedicated to Victor W. Marek on the Occasion of His

65th birthday, 53(1–4):115–152. Published online: January 27, 2009.

[Eiter et al., 2005] Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2005). A uniform
integration of higher-order reasoning and external evaluations in answer-set programming. In
Kaelbling, L. P. and Saffiotti, A., editors, Proceedings of the Nineteenth International Joint

Conference on Artificial Intelligence (IJCAI 2005), pages 90–96, Denver, Colorado, USA.
Professional Book Center.

[Eiter et al., 2006a] Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2006a). Effective
integration of declarative rules with external evaluations for semantic-web reasoning. In
Proceedings of the Third European Conference on Semantic Web (ESWC 2006), volume 4011
of LNCS, pages 273–287. Springer.

[Eiter et al., 2006b] Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2006b). Effective
integration of declarative rules with external evaluations for semantic-web reasoning. In
Proceedings of the Third European Conference on Semantic Web (ESWC 2006), pages 273–
287.

[Eiter et al., 2006c] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., and Wang, K. (2006c).
Forgetting in managing rules and ontologies. In IEEE/WIC/ACM International Conference

on Web Intelligence (WI 2006), Hongkong, December 2006, pages 411–419. IEEE Computer
Society. Preliminary version at ALPSWS 2006.

[Eiter et al., 2011b] Eiter, T., Krennwallner, T., and Redl, C. (2011b). Nested HEX-programs.
CoRR, abs/1108.5626.

[Eiter et al., 2013f] Eiter, T., Krennwallner, T., and Redl, C. (2013f). HEX-Programs with
Nested Program Calls. In Tompits, H., editor, Nineteenth International Conference on Ap-

plications of Declarative Programming and Knowledge Management (INAP 2011), volume
7773 of LNAI, pages 1–10. Springer.

[Eiter and Simkus, 2010] Eiter, T. and Simkus, M. (2010). FDNC: decidable nonmonotonic
disjunctive logic programs with function symbols. ACM Transactions on Computational

Logic, 11(2):14:1–14:50.

[Erdogan et al., 2010] Erdogan, H., Oztok, U., Erdem, Y., and Erdem, E. (2010). Querying
biomedical ontologies in natural language using answer set programming. In Paschke, A.,
Burger, A., Splendiani, A., Marshall, M. S., and Romano, P., editors, 3rd International Work-

shop on Semantic Web Applications and Tools for the Life Sciences (SWAT4LS 2010), Berlin,

Germany, December 8-10, 2010, volume abs/1012.1899 of CoRR, page 4.

[Faber, 2005] Faber, W. (2005). Unfounded sets for disjunctive logic programs with arbitrary
aggregates. In Proceedings of the Eighth International Conference on Logic Programming

198

Bibliography

and Nonmonotonic Reasoning (LPNMR 2005), Diamante, Italy, September 5-8, 2005, volume
3662, pages 40–52. Springer.

[Faber et al., 1999] Faber, W., Leone, N., Mateis, C., and Pfeifer, G. (1999). Using database
optimization techniques for nonmonotonic reasoning. In Seventh International Workshop on

Deductive Databases and Logic Programming (DDLP 1999), pages 135–139. Prolog Asso-
ciation of Japan.

[Faber et al., 2011] Faber, W., Leone, N., and Pfeifer, G. (2011). Semantics and complexity of
recursive aggregates in answer set programming. Artificial Intelligence, 175(1):278–298.

[Faber and Woltran, 2011] Faber, W. and Woltran, S. (2011). Manifold answer-set programs
and their applications. In Balduccini, M. and Son, T. C., editors, Logic Programming, Knowl-

edge Representation, and Nonmonotonic Reasoning, volume 6565 of Lecture Notes in Com-

puter Science, pages 44–63. Springer.

[Fages, 1994] Fages, F. (1994). Consistency of Clark’s completion and existence of stable mod-
els. Journal of Methods of Logic in Computer Science, 1:51–60.

[Fagin et al., 2005] Fagin, R., Kolaitis, P., Miller, R., and Popa, L. (2005). Data exchange:
Semantics and query answering. Theoretical Computer Science, 336(1):89–124.

[Ferraris, 2005] Ferraris, P. (2005). Answer sets for propositional theories. In Baral, C., Greco,
G., Leone, N., and Terracina, G., editors, Proceedings of the Eighth International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005), Diamante, Italy,

September 5-8, 2005, volume 3662 of Lecture Notes in Computer Science, pages 119–131.
Springer.

[Ferraris, 2011] Ferraris, P. (2011). Logic programs with propositional connectives and aggre-
gates. ACM Transactions on Computational Logic (TOCL), 12(4):44.

[Fink et al., 2013] Fink, M., Germano, S., Ianni, G., Redl, C., and Schüller, P. (2013). Act-
HEX: implementing HEX programs with action atoms. In Cabalar, P. and Son, T., editors,
Proceedings of the Twelfth International Conference on Logic Programming and Nonmono-

tonic Reasoning (LPNMR 2013), volume 8148 of Lecture Notes in Computer Science, pages
317–322. Springer Berlin Heidelberg.

[Gebser et al., 2011a] Gebser, M., Kaminski, R., König, A., and Schaub, T. (2011a). Advances
in gringo series 3. In Delgrande, J. and Faber, W., editors, Logic Programming and Non-

monotonic Reasoning, volume 6645 of Lecture Notes in Computer Science, pages 345–351.
Springer Berlin Heidelberg.

[Gebser et al., 2011b] Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., and
Schneider, M. (2011b). Potassco: The potsdam answer set solving collection. AI Communi-

cations, 24(2):107–124.

199

BIBLIOGRAPHY

[Gebser et al., 2007a] Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. (2007a). clasp:
a conflict-driven answer set solver. In Baral, C., Brewka, G., and Schlipf, J. S., editors, Pro-

ceedings of the Ninth International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR 2007), Tempe, Arizona, USA, May 15-17, 2007, volume 4483 of Lecture

Notes in Computer Science, pages 260–265. Springer.

[Gebser et al., 2012] Gebser, M., Kaufmann, B., and Schaub, T. (2012). Conflict-driven answer
set solving: From theory to practice. Artificial Intelligence, 187-188(0):52–89.

[Gebser et al., 2013] Gebser, M., Kaufmann, B., and Schaub, T. (2013). Advanced conflict-
driven disjunctive answer set solving. In Proceedings of the Twenty-Third International Joint

Conference on Artificial Intelligence, IJCAI 2013, pages 912–918. AAAI Press.

[Gebser et al., 2009] Gebser, M., Ostrowski, M., and Schaub, T. (2009). Constraint answer set
solving. In Hill, P. and Warren, D., editors, Proceedings of the Twenty-Fifth International

Conference on Logic Programming (ICLP 2009), volume 5649 of Lecture Notes in Computer

Science, pages 235–249. Springer.

[Gebser et al., 2007b] Gebser, M., Schaub, T., and Thiele, S. (2007b). Gringo: A new grounder
for answer set programming. In Nineteenth International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2007), volume 4483, pages 266–271. Springer.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model seman-
tics for logic programming. In Kowalski, R. and Bowen, K., editors, Logic Programming:

Proceedings of the Fifth International Conference and Symposium, pages 1070–1080. MIT
Press.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic
programs and disjunctive databases. New Generation Computing, 9(3–4):365–386.

[Giunchiglia et al., 2004] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H., and
Lifschitz, J. L. V. (2004). Nonmonotonic causal theories. Artificial Intelligence, 153:2004.

[Giunchiglia et al., 2008] Giunchiglia, E., Leone, N., and Maratea, M. (2008). On the relation
among answer set solvers. Annals of Mathematics and Artificial Intelligence, 53:169–204.

[Giunchiglia and Serafini, 1994] Giunchiglia, F. and Serafini, L. (1994). Multilanguage hierar-
chical logics or: How we can do without modal logics. Artificial Intelligence, 65(1):29–70.

[Goldberg and Novikov, 2007] Goldberg, E. and Novikov, Y. (2007). Berkmin: A fast and ro-
bust SAT-solver. Discrete Applied Mathematics, 155(12):1549–1561.

[Grau et al., 2012] Grau, B. C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B.,
and Wang, Z. (2012). Acyclicity conditions and their application to query answering in de-
scription logics. In Brewka, G., Eiter, T., and McIlraith, S. A., editors, Proceedings of the

Thirteenth International Conference on Principles of Knowledge Representation and Rea-

soning. AAAI Press.

200

Bibliography

[Greco et al., 2013] Greco, S., Molinaro, C., and Trubitsyna, I. (2013). Bounded programs: A
new decidable class of logic programs with function symbols. In Proceedings of the Twenty-

Third International Joint Conference on Artificial Intelligence (IJCAI 2013), IJCAI 2013,
pages 926–931. AAAI Press.

[GRINGO Website, 2014] GRINGO Website (2014). http://www.cs.uni-potsdam.de/gringo.

[Halevy et al., 2003] Halevy, A. Y., Ives, Z. G., Suciu, D., and Tatarinov, I. (2003). Schema
mediation in peer data management systems. In Proceedings of the Ninteenth International

Conference on Data Engineering (ICDE 2003), pages 505–517.

[Heflin and Munoz-Avila, 2002] Heflin, J. and Munoz-Avila, H. (2002). Lcw-based agent plan-
ning for the semantic web. In Pease, A., editor, Ontologies and the Semantic Web, number
WS-02-11 in AAAI Technical Report, pages 63–70, Menlo Park, CA. AAAI Press.

[Heymans et al., 2004] Heymans, S., Nieuwenborgh, D., and Vermeir, D. (2004). Semantic web
reasoning with conceptual logic programs. In Antoniou, G. and Boley, H., editors, Rules and

Rule Markup Languages for the Semantic Web, volume 3323 of Lecture Notes in Computer

Science, pages 113–127. Springer Berlin Heidelberg.

[Heymans and Toma, 2008] Heymans, S. and Toma, I. (2008). Ranking services using fuzzy
HEX-programs. In Calvanese, D. and Lausen, G., editors, Proceedings of the Second Inter-

national Conference on Web Reasoning and Rule Systems (RR 2008), volume 5341 of LNCS,
pages 181–196. Springer.

[Hoehndorf et al., 2007] Hoehndorf, R., Loebe, F., Kelso, J., and Herre, H. (2007). Represent-
ing default knowledge in biomedical ontologies: Application to the integration of anatomy
and phenotype ontologies. BMC Bioinformatics, 8(1):377.

[Janhunen et al., 2009] Janhunen, T., Oikarinen, E., Tompits, H., and Woltran, S. (2009). Mod-
ularity aspects of disjunctive stable models. Journal of Artificial Intelligence Research,
35:813–857.

[Järvisalo et al., 2009] Järvisalo, M., Oikarinen, E., Janhunen, T., and Niemelä, I. (2009). A
module-based framework for multi-language constraint modeling. In Erdem, E., Lin, F., and
Schaub, T., editors, Proceedings of the Tenth International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR 2009), Potsdam, Germany, 14-18 September,

2009, pages 155–168. Springer.

[Johnson and Klug, 1984] Johnson, D. and Klug, A. (1984). Testing containment of conjunc-
tive queries under functional and inclusion dependencies. Journal of Computer and System

Sciences, 28(1):167 – 189.

[Klop, 1992] Klop, J. W. (1992). Handbook of logic in computer science (vol. 2). In Abramsky,
S., Gabbay, D. M., and Maibaum, S. E., editors, Handbook of Logic in Computer Science,
chapter Term Rewriting Systems, pages 1–116. Oxford University Press, Inc., New York, NY,
USA.

201

http://www.cs.uni-potsdam.de/gringo

BIBLIOGRAPHY

[Koch et al., 2003] Koch, C., Leone, N., and Pfeifer, G. (2003). Enhancing disjunctive logic
programming systems by SAT checkers. Artificial Intelligence, 151(1–2):177–212.

[Kowalski and Sadri, 1999] Kowalski, R. and Sadri, F. (1999). From logic programming to-
wards multi-agent systems. Annals of Mathematics and Artificial Intelligence, 25(3-4):391–
419.

[Krishnamurthy et al., 1996] Krishnamurthy, R., Ramakrishnan, R., and Shmueli, O. (1996). A
framework for testing safety and effective computability. Journal of Computer and System

Sciences, 52(1):100–124.

[Lee et al., 2008] Lee, J., Lifschitz, V., and Palla, R. (2008). Safe formulas in the general theory
of stable models (preliminary report). In Proceedings of the Twenty-Fourth International

Conference on Logic Programming (ICLP 2008), volume 5366 of LNCS, pages 672–676.
Springer.

[Lee and Meng, 2009] Lee, J. and Meng, Y. (2009). On reductive semantics of aggregates in
answer set programming. In Erdem, E., Lin, F., and Schaub, T., editors, Proceedings of

the Tenth International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR 2009), Potsdam, Germany, 14-18 September, 2009, volume 5753 of LNCS, pages
182–195. Springer.

[Lefèvre and Nicolas, 2009] Lefèvre, C. and Nicolas, P. (2009). The first version of a new ASP
solver: ASPeRiX. In Erdem, E., Lin, F., and Schaub, T., editors, Proceedings of the Tenth In-

ternational Conference on Logic Programming an Nonmonotonic Reasoning (LPNMR 2009),

Potsdam, Germany, September 14-18, 2009, volume 5753 of LNCS, pages 522–527. Springer.

[Leone et al., 2012] Leone, N., Manna, M., Terracina, G., and Veltri, P. (2012). Efficiently
computable datalog∃ programs. In Proceedings of the Thirteenth International Conference

on Principles of Knowledge Representation and Reasoning (KR 2012), pages 13–23.

[Leone et al., 2001] Leone, N., Perri, S., and Scarcello, F. (2001). Improving ASP instantiators
by join-ordering methods. In Proceedings of the Sixth International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR 2001), volume 2173 of LNCS, pages
280–294. Springer.

[Leone et al., 2006] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. (2006). The dlv system for knowledge representation and reasoning. ACM Transac-

tions on Computational Logic (TOCL), 7(3):499–562.

[Lierler, 2011] Lierler, Y. (2011). Abstract answer set solvers with backjumping and learning.
Theory and Practice of Logic Programming (TPLP), 11(2–3):135–169.

[Lierler and Lifschitz, 2009] Lierler, Y. and Lifschitz, V. (2009). One more decidable class of
finitely ground programs. In Proceedings of the Twenty-Fifth International Conference on

Logic Programming (ICLP 2009), volume 5649 of LNCS, pages 489–493. Springer.

202

Bibliography

[Lifschitz, 2002] Lifschitz, V. (2002). Answer set programming and plan generation. Artificial

Intelligence, 138:39–54.

[Lifschitz et al., 1999] Lifschitz, V., Tang, L., and Turner, H. (1999). Nested expressions in
logic programs. Annals of Mathematics and Artificial Intelligence, 25(3-4):369–389.

[Lifschitz and Turner, 1994] Lifschitz, V. and Turner, H. (1994). Splitting a logic program. In
Proceedings ICLP-94, pages 23–38, Santa Margherita Ligure, Italy. MIT-Press.

[Lin and Zhao, 2004] Lin, F. and Zhao, Y. (2004). ASSAT: computing answer sets of a logic
program by SAT solvers. Artificial Intelligence, 157(1–2):115–137.

[Lua Website, 2014] Lua Website (2014). http://www.lua.org.

[Marek and Truszczyński, 1999] Marek, V. W. and Truszczyński, M. (1999). Stable models and
an alternative logic programming paradigm. In Apt, K., Marek, V. W., Truszczyński, M., and
Warren, D. S., editors, The Logic Programming Paradigm – A 25-Year Perspective, pages
375–398. Springer.

[Marques-Silva and Sakallah, 1999] Marques-Silva, J. P. and Sakallah, K. A. (1999). GRASP:
a search algorithm for propositional satisfiability. IEEE Transactions on Computers,
48(5):506–521.

[Mitchell, 2005] Mitchell, D. G. (2005). A SAT solver primer. EATCS Bulletin (The Logic in

Computer Science Column), 85:112–133.

[Mosca and Bernini, 2008] Mosca, A. and Bernini, D. (2008). Ontology-driven geographic in-
formation system and dlvhex reasoning for material culture analysis. In Italian Workshop

RiCeRcA 2008.

[Motik and Sattler, 2006] Motik, B. and Sattler, U. (2006). A comparison of reasoning tech-
niques for querying large description logic aboxes. In Proceedings of the Thirteenth interna-

tional conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR

2006), pages 227–241. Springer.

[Niemelä, 1999] Niemelä, I. (1999). Logic programming with stable model semantics as con-
straint programming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3–
4):241–273.

[Nieuwenhuis and Oliveras, 2005] Nieuwenhuis, R. and Oliveras, A. (2005). DPLL(T) with
exhaustive theory propagation and its application to difference logic. In Seventeenth Interna-

tional Conference on Computer Aided Verification (CAV 2005), pages 321–334. Springer.

[Ostrowski and Schaub, 2012] Ostrowski, M. and Schaub, T. (2012). ASP modulo CSP: the
clingcon system. Theory and Practice of Logic Programming (TPLP), 12(4-5):485–503.

203

http://www.lua.org

BIBLIOGRAPHY

[Palù et al., 2009] Palù, A., Dovier, A., Pontelli, E., and Rossi, G. (2009). Answer set program-
ming with constraints using lazy grounding. In Hill, P. and Warren, D. S., editors, Proceedings

of the Twenty-Fifth International Conference on Logic Programming (ICLP 2009), volume
5649 of LNCS, pages 115–129. Springer.

[Palù et al., 2009] Palù, A. D., Dovier, A., Pontelli, E., and Rossi, G. (2009). GASP: answer set
programming with lazy grounding. Fundamenta Informaticae, 96(3):297–322.

[Papadimitriou, 1994] Papadimitriou, C. M. (1994). Computational complexity. Addison-
Wesley, Reading, Massachusetts.

[Pelov et al., 2007] Pelov, N., Denecker, M., and Bruynooghe, M. (2007). Well-founded and
stable semantics of logic programs with aggregates. Theory and Practice of Logic Program-

ming (TPLP), 7(3):301–353.

[Polleres, 2007] Polleres, A. (2007). From SPARQL to rules (and back). In Proceedings of the

Sixteenth World Wide Web Conference (WWW 2007), pages 787–796.

[Prud’hommeaux and Seaborne, 2007] Prud’hommeaux, E. and Seaborne, A. (2007). SPARQL
query language for RDF. W3C Proposed Recommendation, World Wide Web Consortium.

[Ramakrishnan et al., 1987] Ramakrishnan, R., Bancilhon, F., and Silberschatz, A. (1987).
Safety of recursive horn clauses with infinite relations. In Sixth Symposium on Principles

of Database Systems (PODS 1987), pages 328–339. ACM.

[Redl, 2010] Redl, C. (2010). Development of a belief merging framewerk for dlvhex. Master’s
thesis, Vienna University of Technology, Knowledge-based Systems Group, A-1040 Vienna,
Karlsplatz 13.

[Redl et al., 2011] Redl, C., Eiter, T., and Krennwallner, T. (2011). Declarative belief set merg-
ing using merging plans. In Rocha, R. and Launchbury, J., editors, Thirteenth International

Symposium on Practical Aspects of Declarative Languages (PADL 2011), Austin, Texas, USA,

January 24-25, 2011, volume 6539 of LNCS, pages 99–114. Springer.

[Reiter, 1980] Reiter, R. (1980). Readings in nonmonotonic reasoning. In Ginsberg, M. L.,
editor, Readings in Nonmonotonic Reasoning, chapter A logic for default reasoning, pages
68–93. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Sagiv and Vardi, 1989] Sagiv, Y. and Vardi, M. Y. (1989). Safety of datalog queries over infi-
nite databases. In Eighth Symposium on Principles of Database Systems (PODS 1989), pages
160–171. ACM.

[Schindlauer, 2006] Schindlauer, R. (2006). Answer Set Programming for the Semantic Web.
PhD thesis, Vienna University of Technology, Vienna, Austria.

[Schüller, 2012] Schüller, P. (2012). Inconsistency in Multi-Context Systems: Analysis and

Efficient Evaluation. PhD thesis, Vienna University of Technology, Vienna, Austria.

204

Bibliography

[Shen, 2011] Shen, Y.-D. (2011). Well-supported semantics for description logic programs. In
Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI 2011), pages
1081–1086.

[Shen and Wang, 2011] Shen, Y.-D. and Wang, K. (2011). Extending logic programs with de-
scription logic expressions for the semantic web. In International Semantic Web Conference

(ISWC 2011), pages 633–648.

[Shen et al., 2014] Shen, Y.-D., Wang, K., Deng, J., Redl, C., Krennwallner, T., Eiter, T., and
Fink, M. (2014). FLP answer set semantics without circular justifications for general logic
programs. Artificial Intelligence. Accepted for publication.

[Simons et al., 2002] Simons, P., Niemelä, I., and Soininen, T. (2002). Extending and imple-
menting the stable model semantics. Artificial Intelligence, 138:181–234.

[Sipser, 2012] Sipser, M. (2012). Introduction to the Theory of Computation. Course Technol-
ogy, 3rd edition.

[SMODELS Website, 2014] SMODELS Website (2014). http://www.tcs.hut.fi/Software/smodels.

[Stashuk, 2013] Stashuk, O. (2013). Integrating constraint programming into answer set pro-
gramming. Master’s thesis, Vienna University of Technology, Knowledge-based Systems
Group, A-1040 Vienna, Karlsplatz 13.

[Swift and Warren, 2012] Swift, T. and Warren, D. S. (2012). Xsb: Extending prolog with
tabled logic programming. Theory and Practice of Logic Programming (TPLP), 12(1–
2):157–187.

[Syrjänen, 2001] Syrjänen, T. (2001). Omega-restricted logic programs. In Sixth International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2001), pages
267–279. Springer.

[Syrjänen, 2009] Syrjänen, T. (2009). Logic Programs and Cardinality Constraints: Theory

and Practice. PhD thesis, Helsinki University of Technology, Espoo, Finland.

[Terracina et al., 2008] Terracina, G., Leone, N., Lio, V., and Panetta, C. (2008). Experimenting
with recursive queries in database and logic programming systems. Theory and Practice of

Logic Programming (TPLP), 8(2):129–165.

[Van Nieuwenborgh et al., 2007] Van Nieuwenborgh, D., Eiter, T., and Vermeir, D. (2007).
Conditional planning with external functions. In Proceedings of the Ninth International Con-

ference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007), volume 4483
of LNAI, pages 214–227. Springer.

[Zantema, 1994] Zantema, H. (1994). Termination of term rewriting: Interpretation and type
elimination. Journal of Symbolic Computation, 17(1):23–50.

205

http://www.tcs.hut.fi/Software/smodels

BIBLIOGRAPHY

[Zantema, 2001] Zantema, H. (2001). The termination hierarchy for term rewriting. Applicable

Algebra in Engineering, Communication and Computing, 12(1-2):3–19.

[Zirtiloǧlu and Yolum, 2008] Zirtiloǧlu, H. and Yolum, P. (2008). Ranking semantic informa-
tion for e-government: complaints management. In Proceedings of the First International

Workshop on Ontology-supported Business Intelligence (OBI 2008), number 5 in OBI 2008,
page 7. ACM.

[Zuker and Sankoff, 1984] Zuker, M. and Sankoff, D. (1984). RNA secondary structures and
their prediction. Bulletin of Mathematical Biology, 46(4):591–621.

206

Appendix A
Benchmark Encodings

In this appendix, we give details to some of those benchmark encodings which are not described
in the existing literature or directly in Chapter 5. The encodings are very natural representations
of the underlying problems in HEX and have not been optimized for our algorithms, thus they
have been developed under realistic conditions; some of them have even existed before the
techniques in this thesis were developed.

The encodings have been included to make the thesis self-contained. However, it is noted
that some of them were not developed by the author of this thesis; in such cases the name of the
actual author, both of the HEX-rules and of the informal explanation, is given in the respective
section. Some of the encodings have been published by Eiter et al. (2014b).

A.1 Abstract Argumentation

The Abstract Argumentation benchmark results in Section 5.2.1 were obtained using the follow-
ing encoding, which has been developed by Peter Schüller [Eiter et al., 2014b]. It is derived from
encodings for admissible and preferred set extensions of an argumentation framework (A, att),
given by Egly et al. (2010).

Input instances of this benchmark are defined over a set A of arguments encoded as facts
arg(a) for each a ∈ A and a set att of attacks between arguments, encoded as facts att(a, b)
for some (a, b) ∈ A× A. The encoding consists of the following rules where x, y, z ∈ A; very
similar encodings are explained in detail by Egly et al. (2010) (but without the use of external
atoms).

First, we define defeat from attacks.

defeat(x, y)← att(x, y)

We guess a set S ⊆ A using predicates inS and outS .

inS (x)← not outS (x), arg(x); outS (x)← not inS (x), arg(x)

207

A. BENCHMARK ENCODINGS

Next, we require that all arguments in S are conflict-free and defended from S.

← inS (x), inS (y), defeat(x, y)

defeated(x)← inS (y), defeat(y, x)

notDefended(x)← defeat(y, x), not defeated(y)

← inS (x),notDefended(x)

For saturation we define a linear order on arguments, including infimum and supremum.

lt(x, y)← arg(x), arg(y) (x < y)

nsucc(x, z)← lt(x, y), lt(y, z)

succ(x, y)← lt(x, y), notnsucc(x, y)

ninf (x)← lt(y, x); nsup(x)← lt(x, y)

inf (x)← notninf (x), arg(x); sup(x)← notnsup(x), arg(x)

We perform a guess over a set T ⊆ A using a disjunction.

inT (x) ∨ outT (x)← arg(x)

We check each argument of T whether it is in S and spoil the answer set if S ⊆ T .

sInT upto(y)← inf (y), inS (y), inT (y)

sInT upto(y)← inf (y), outS (y)

sInT upto(y)← succ(z, y), inS (y), inT (y), sInT upto(z)

sInT upto(y)← succ(z, y), outS (y), sInT upto(z)

sInT ← sup(y), sInT upto(y)

spoil ← sInT

We also spoil the answer set if T is not a preferred extension, determined by an external atom
with semantics f&argSemExt s.t. f&argSemExt(A, pref , arg , att , inT , unused , spoil) = 1 iffdef

Fspoil ∈ A or the extension of predicate inT is a preferred set extension of the argumentation
framework specified by the extension of predicates arg and att . Internally, the external atom
uses another ASP program to compute the semantics. This check is performed using an ASP
encoding for preferred extensions proposed by Egly et al. (2010).

tIsNotPref ← &argSemExt [pref , arg , att , inT , unused , spoil]()

spoil ← tIsNotPref

Note that the parameters pref and unused support more general functionalities of f&argSemExt

which are not relevant for this benchmark. We create a unique answer set whenever spoil is true
and require that only spoiled answer sets are returned.

inT (x)← spoil , arg(x); outT (x)← spoil , arg(x)

sInT ← spoil ; tIsNotPref ← spoil ; ← not spoil

Given an instance encoded as above, the above program computes all ideal sets of the argu-
mentation framework, which correspond 1-1 to its answer sets.

208

A.2. Conformant Planning

A.2 Conformant Planning

The Conformant Planning benchmark results in Section 5.2.1 were obtained using the following
encoding, which has also been developed by Peter Schüller [Eiter et al., 2014b].

Input instances of this benchmark are defined over a set R of robots, sets X and Y of valid
x and y coordinates of the environment, and a maximum plan length l; an instance contains
for each robot r ∈ R the initial position (x, y) as facts roboX(r, x, 0) and roboY (r, y, 0). The
encoding consists of the following rules where, unless stated otherwise, 0 ≤ t < l, r ∈ R,
x ∈ X , y ∈ Y .

For each robot we generate four possible moves in the environment.

move(r, x, y + 1, t) ∨move(r, x, y + 1, t)← roboX(r, x, t), roboY (r, y, t) (y + 1 ∈ Y)

move(r, x, y − 1, t) ∨move(r, x, y − 1, t)← roboX(r, x, t), roboY (r, y, t) (y − 1 ∈ Y)

move(r, x+ 1, y, t) ∨move(r, x+ 1, y, t)← roboX(r, x, t), roboY (r, y, t) (x+ 1 ∈ X)

move(r, x− 1, y, t) ∨move(r, x− 1, y, t)← roboX(r, x, t), roboY (r, y, t) (x− 1 ∈ X)

We disallow moving to multiple locations and standing still (the latter is not strictly necessary
but we obtained experiments results that way).

← move(r, x1, y1, t),move(r, x1, y2, t) (x1, x2 ∈ X, x1 < x2, y1, y2 ∈ Y)

← move(r, x, y1, t),move(r, x, y2, t) (y1, y2 ∈ Y, y1 < y2)

move∃(r, t)← move(r, x, y, t)

← notmove∃(r, t)

The effect of moving is a deterministic change of location.

roboX(r, x, t+ 1)← move(r, x, y, t); roboY (r, y, t+ 1)← move(r, x, y, t)

For saturation we guess the position of the object.

objX(x) ∨ objX(x)←; objX(y) ∨ obj Y (y)←

We spoil the answer set if the object is at multiple locations.

spoil ← objX(x1), objX(x2) (x1, x2 ∈ X, x1 < x2)

spoil ← obj Y (y1), obj Y (y2) (y1, y2 ∈ Y, y1 < y2)

We spoil the answer set if the object is at no location.

objectHasNoXUpTo(1)← objX(1)

objectHasNoXUpTo(x)← objectHasNoXUpTo(x− 1), objX(x) (x− 1 ∈ X)

spoil ← objectHasNoXUpTo(xmax) (xmax = max(X))

objectHasNoYUpTo(1)← obj Y (1)

objectHasNoYUpTo(y)← objectHasNoYUpTo(y − 1), obj Y (y) (y − 1 ∈ Y)

spoil ← objectHasNoYUpTo(ymax) (ymax = max(Y))

209

A. BENCHMARK ENCODINGS

We spoil the answer set if the object is sensed, which is determined by an external atom with the
semantic function f&sense such that f&sense(A, roboX , roboY , objX , obj Y , range, spoil) = 1
iffdef Tspoil ∈ A or the predicates roboX , roboY , objX , obj Y represent in A a state where
the robot has a distance less than range to the object, i.e., the robot can detect the object. The
implementation of this external atom was realized in C++ and consists of verifying range ≤√
∆2

x +∆2
y and bookkeeping code to extract ∆x and ∆y from A.

spoil ← &sense[roboX , roboY , objX , obj Y , range, spoil]()

We create a unique answer set whenever spoil is true and require that only spoiled answer sets
are returned.

objX(x)← spoil ; objX(x)← spoil

obj Y (x)← spoil ; obj Y (x)← spoil

objectHasNoXUpTo(x)← spoil ; objectHasNoYUpTo(y)← spoil

← not spoil

Given an instance encoded as above, an answer set to the above program exists iff there
exists a sequence of movements that ensures to detect the object no matter where it is located.
Furthermore the movements required to detect the object, i.e., the conformant plan, is encoded
in the answer set in the extension of the move predicate.

A.3 Reachability

We assume that the instance consists of two facts start(s) and end(e). The goal is to check if
node e is reachable from node s and to compute a witness in this case (i.e., a path from s to e).

The problem encoding uses the following set of rules to import the relevant part of the graph,
consisting of all nodes and edges reachable from s. We use an external atom &out [X](Y) to get
all nodes Y which are directly reachable from X .

edge(X,Y)← node(X),&out [X](Y)

node(X)← start(X)

node(X)← end(X)

node(X)← edge(X,Y)

We then guess the path as a set of pairs (n, i), where n is the node visited in step i. Con-
straints are used to ensure that the path is consecutive and reaches e in the last step.

210

A.4. Mergesort

path(X, 0)← start(X)

← path(X,N), path(Y,N), X 6= Y

path(Y,N) ∨ path(Y,N)← node(Y),#int(N)

← path(X,N), path(Y,N2),N2 = N + 1, not edge(X,Y)

existspath(N)← path(X,N)

← #int(N), not existspath(N), existspath(N2),N2 = N + 1

lastnode(X)← path(X,N),N2 = N + 1, not existspath(N2)

← end(Z), lastnode(Y), Z 6= Y

The strongly safe version of the program needs to import the whole graph a priory because
&reachable[X](Y) appears in a cycle and thus needs a domain predicate which bounds Y .

A.4 Mergesort

In this benchmark encoding, lists are encoded as string constants. A dedicated separator charac-
ter allows for decoding the list representations in the external atoms.

We first use a set of rules to split the input list inp, given by a fact list(inp), recursively
into half. For each list l, its halves l1 and l2 are generated by the use of an external atom
&splitHalf [l](l1, l2). We then derive an atom sublist(l, l1, l2) that allows us later to reassemble
the list from its (sorted) sublists. Let ǫ denote the empty list.

sublist(L,H1 ,H2)← list(L),&splitHalf [L](H1 ,H2)

sublist(L,H1 ,H2)← sublist(_,L, _),&splitHalf [L](H1 ,H2),H1 6= ǫ,H2 6= ǫ

sublist(L,H1 ,H2)← sublist(_, _,L),&splitHalf [L](H1 ,H2),H1 6= ǫ,H2 6= ǫ

Next, we declare each sublist of length 1 immediately as sorted, where we use an external
atom &getLength[l](L) to get the length L of list l.

sorted(L,L)← sublist(L, _, _),&getLength[L](1)

sorted(L,L)← sublist(_,L, _),&getLength[L](1)

sorted(L,L)← sublist(_, _,L),&getLength[L](1)

Finally, we realize the merge step as follows. For each list l and its sublists l1 and l2, we
determine the sorted versions s1 and s2 of l1 and l2, respectively, and merge them using external
atom &merge[s1, s2](s) to get the sorted version of l.

sorted(L,S)←sublist(L,H1 ,H2), sorted(H1 ,H1s), sorted(H2 ,H2s),

&merge[H1s,H2s](S)

output(Sorted)←list(Final), sorted(Final ,Sorted)

211

A. BENCHMARK ENCODINGS

Note that both the splitting and the merging part uses external atoms in cycles, thus the
program is not strongly safe. In order to make it strongly safe, we need to generate all lists (i.e.,
permutations of the input list) a priori and add domain predicates.

A.5 Argumentation with Subsequent Processing

This benchmark uses the encoding from Section A.1 extended by an additional rule which per-
forms further computations over the ideal sets. For instance, we might use a rule of form

latex (L)← &toLatex [inS , outS](L)

to generate a LATEX representation of the arguments that are in resp. not in the extension.

A.6 Route Planning

We present the encodings for the two route planning scenarios separately. Once the single route
planning scenario was introduced, the extension to pair route planning is quite simple. In fact,
we will present a more general encoding which allows for planning tours for an arbitrary number
of persons.

A.6.1 Single Route Planning

We start by guessing a sequence of the locations which are defined in the instance by facts of kind
location(loc). The following rules ensure that for a set L of n locations, the atoms seq(i, loci)
for 0 ≤ i < n, order the locations such that L = {loci | 0 ≤ i < n}.

seq(I, L) ∨ seq(I, L)← location(L),#int(I) (R1)

← seq(I1 , L), seq(I2 , L), I1 6= I2

← seq(I,L1), seq(I,L1),L1 6= L2

haveSeq(L)← seq(I, L)

← location(L), not haveSeq(L)

haveLoc(I)← seq(I, L)

← seq(I, L), I1 < I,#int(I1), not haveLoc(I1)

The following rules choose exactly one restaurant and add it to the set of locations to visit,
if necessary. It is assumed that the instance defines possible locations for having the lunch by
facts of kind possibleRestaurant(r).

212

A.6. Route Planning

restaurant(R) ∨ restaurant(R)← haveLunch, possibleRestaurant(R)

restaurantChosen ← restaurant(R)

← restaurant(R1), restaurant(R2),R1 6= R2

← haveLunch, not restaurantChosen

location(R)← restaurant(R)

We further need rules to check if our tour has to include a restaurant. The constant limit

is to be replaced by an integer which defines the maximal costs of a tour without restaurant.
The external atom &longerThan[path, limit]() is true iffdef the path encoded in the extension
of path is longer than limit . Note that despite the rules (R3) and (R4), the choice between
haveLunch and haveLunch in rule (R2) is not redundant due to the use of the FLP-reduct1.

haveLunch ∨ haveLunch ← (R2)

haveLunch ← &longerThan[path, limit]() (R3)

haveLunch ← not&longerThan[path, limit]() (R4)

The following rules plan the tour using the external atom &path[L1 ,L2](X,Y,Cost ,Type).
Atoms of form path(L1 ,L2 , X, Y,Cost ,Type) are used to encode the path (consisting of edges
(X,Y) with costs Cost and type Type) from L1 to L2 . Since the same station may be visited
multiple times, the end points L1 to L2 must be included to make the representation unique.

path(L1 ,L2 , X, Y,Cost ,Type)←seq(Nr ,L1), seq(NrNext ,L2), (R5)

NrNext = Nr + 1,

&path[L1 ,L2](X,Y,Cost ,Type)

Finally, we ensure that all pairs of sequent locations are connected. Otherwise, the program
would still have answer sets (leaving some locations unconnected) if a location is not reachable.

pathExists(L1 ,L2)←seq(Nr ,L1), seq(NrNext ,L2),NrNext = Nr + 1,

path(L1 ,L2 , X, Y,Cost ,Type)

←seq(Nr ,L1), seq(NrNext ,L2),NrNext = Nr + 1, (R6)

not pathExists(L1 ,L2)

1 Constraints are never contained in the FLP-reduct because their body is unsatisfied. Therefore constraint (R6)
does not check the existence of paths in the reduct. But then, without further techniques, the FLP check could fail
because the reduct has a smaller model which does not connect all locations. However, since rule (R1) enforces the
same sequence of locations in the reduct and rule (R5) deterministically computes the shortest paths between two
successive locations, this can only happen if the set of locations is different in the model of the reduct. But this is only
possible if the model candidate represents a tour with a restaurant and the model of the reduct represents one without
a restaurant or vice versa. This case is excluded by rule (R2) which ensures that the choice between haveLunch and
haveLunch is the same in both models; without rule (R2), it might happen that neither haveLunch nor haveLunch
is true in the model of the reduct since either rule (R3) or (R4) will be missing in the reduct due to unsatisfied body.

213

A. BENCHMARK ENCODINGS

A.6.2 Pair and Group Route Planning

Compared to single route planning from Section A.6.1, the predicates location , seq , haveSeq ,
haveLoc and path are extended by an additional argument P , which is inserted at argument
position 1. It allows for discriminating multiple persons. While we considered the special case
of two persons in our benchmarks in Chapter 5, the encoding is strictly more general and allows
arbitrary many persons who need to be defined as facts of kind person(p).

seq(P, I, L) ∨ seq(P, I, L)←person(P), location(L),#int(I)

←person(P), seq(P, I1 , L), seq(P, I2 , L),

I1 6= I2

←person(P), seq(P, I,L1), seq(P, I,L1),

L1 6= L2

haveSeq(P,L)←person(P), seq(P, I, L)

←person(P), location(P,L), not haveSeq(P,L)

haveLoc(P, I)←person(P), seq(P, I, L)

←person(P), seq(P, I, L), I1 < I,#int(I1),

not haveLoc(P, I1)

Computing the path and ensuring its existence is extended to multiple persons as follows.

path(P,L1 ,L2 , X, Y,Cost ,Type)←person(P),

seq(P,Nr ,L1), seq(P,NrNext ,L2),

NrNext = Nr + 1,

&path[L1 ,L2](X,Y,Cost ,Type)

pathExists(P,L1 ,L2)←person(P),

seq(P,Nr ,L1), seq(P,NrNext ,L2),

NrNext = Nr + 1,

path(P,L1 ,L2 , X, Y,Cost ,Type)

←person(P),

seq(P,Nr ,L1), seq(P,NrNext ,L2),

NrNext = Nr + 1,

not pathExists(P,L1 ,L2)

The following rules choose a meeting point and include it in the tour of each person. It is
assumed that the possible meeting locations are defined by facts of form possibleMeeting(m).

214

A.6. Route Planning

meeting(M) ∨meeting(M)← possibleMeeting(M)

meetingChosen ← meeting(M)

← meeting(M1),meeting(M2),M1 6= M2

← notmeetingChosen

location(P,M)← person(P),meeting(M)

If the tour is longer than the given limit limit , then the meeting location should be a restau-
rant. The external atom &longerThanForPerson[path, p, limit]() is true iffdef the path for
person p encoded in the extension of path is longer than limit .

haveLunch ∨ haveLunch ←

haveLunch ← person(P),&longerThanForPerson[path, P, limit]()

haveLunch ← person(P), not&longerThanForPerson[path, P, limit]()

← haveLunch,meeting(M), not possibleRestaurant(M)

← haveLunch,meeting(M), possibleRestaurant(M)

As for the encoding from Section A.6, the choice between haveLunch and haveLunch is
not redundant.

215

Appendix B
Proofs

We now show the lengthy proofs of some lemmas, propositions and theorems of this thesis.

B.1 Characterization of Answer Sets using Unfounded Sets

(cf. Section 3.2)

To show Theorem 2 one can use the proofs by Faber (2005) mutatis mutandi, with external
atoms in place of aggregates. To make the thesis self-contained we include the proofs and start
with some lemmas. Lemma B.1 and Lemma B.3 are equivalent to Theorem 4 and Theorem 5
by Faber (2005), respectively, Lemma B.2 is equivalent to Proposition 1, and Theorem 2 corre-
sponds to Corollary 3.

Lemma B.1. Given a total interpretation A and program Π, AF is an unfounded set for Π
wrt. A iff A is a model of Π.

Proof. (⇒) For any rule, either (1) H(r)∩AF = ∅, or (2) H(r)∩AF 6= ∅. If (1), then H(r) ∩
AT 6= ∅, i.e. the head is true and r is satisfied wrt. A. If (2), then one of the conditions
of Definition 38 must hold. If Condition (i) holds, the body is false wrt. A and r is satisfied
wrt. A. If Condition (ii) holds, a body literal is false wrt. A

.
∪ ¬.AF = A, so it coincides

with Condition (i). If Condition (iii) holds, H(r) ∩AT 6= ∅, and therefore the rule is satisfied
wrt. A. In total, if AF is an unfounded set for Π wrt. A, all rules are satisfied wrt. A, hence A

is a model of Π.
(⇐) If A is a model, all rules are satisfied, so for any rule r, either (1) H(r) ∩ AT 6= ∅

or (2) if H(r) ∩ AT = ∅ then a body literal is false wrt. A. So also for any rule r with
H(r) ∩AF 6= ∅, either (1) or (2) holds. If (1), then Condition (iii) of Definition 38 applies. If
(2), then Condition (i) (and also Condition (ii), since A

.
∪ ¬.AF = A) applies. Therefore AF

is an unfounded set.

217

B. PROOFS

Lemma B.2. If U1 and U2 are unfounded sets of a program Π wrt. A and both U1 ∩AT = ∅
and U2 ∩AT = ∅, then U1 ∪ U2 is an unfounded set of Π wrt. A.

Proof. Consider a rule r where H(r) ∩ U1 6= ∅ (symmetric arguments hold for U2). At least
one of the conditions of Definition 38 holds wrt. U1. We will show that the conditions also hold
wrt. U1 ∪ U2.

If Condition (i) holds wrt. U1, then it trivially holds also for U1 ∪U2. If Condition (ii) holds,
a body literal is false wrt. A

.
∪ ¬.U1. Then it is also false wrt. A

.
∪ ¬.U1

.
∪ ¬.U2 = A

.
∪

¬.(U1 ∪ U2) since AT ∩ U2 = ∅ and thus A
.
∪ ¬.U1

.
∪ ¬.U2 = A

.
∪ ¬.U1. If Condition (iii)

holds, some atom a ∈ H(r) \ U1 is true wrt. A, so a ∈ AT. It follows that a 6∈ U2, and so
H(r) \ (U1 ∪ U2) is still true wrt. A.

Lemma B.2 implies in particular that if U1 and U2 are unfounded sets of a program Π wrt. an
unfounded-free interpretation A, then also U1∪U2 is an unfounded set of Π wrt. A (Corollary 2
by Faber (2005)). This allows for a program Π and an unfounded-free interpretation A to define
the greatest unfounded set GUSΠ(A) (the GUS for Π wrt. A) as the union of all unfounded sets
for Π wrt. A (Definition 3 by Faber (2005)); for interpretations A which are not unfounded-free,
GUSΠ(A) is undefined.

Lemma B.3. A total interpretation A is an answer set of Π iff AF = GUSΠ(A).

Proof. (⇒) If A is an answer set, it is also a model of Π, so by Lemma B.1, AF is an unfounded
set for Π wrt. A. We next show that A is unfounded-free wrt. Π, from which AF = GUSΠ(A)
follows. Let us assume an unfounded set U for Π wrt. A exists such that AT ∩ U 6= ∅. We
can show that then A

.
∪ ¬.U is a model of fΠA, contradicting the fact that A is an answer set

of Π. First note that for any rule r in fΠA, all body literals are true wrt. A (by construction
of fΠA), and H(r) ∩AT 6= ∅ (since A is a model of fΠA). We differentiate two cases: (1)
H(r) ∩ (A

.
∪ ¬.U)T 6= ∅ and (2) H(r) ∩ (A

.
∪ ¬.U)T = ∅. For (1), r is trivially satisfied by

A
.
∪ ¬.U . For (2), since we know H(r) ∩AT 6= ∅, H(r) ∩ U 6= ∅ must hold. Since U is an

unfounded set wrt. Π and A (and r ∈ Π), a body literal of r must be false wrt. A
.
∪ ¬.U (note

that neither a body literal of r is false wrt. A since r ∈ fΠA, nor (H(r) \ U) ∩AT 6= ∅ holds,
otherwise H(r) ∩ (A

.
∪ ¬.U)T 6= ∅). So r is satisfied also in Case (2). A

.
∪ ¬.U is therefore a

model of fΠA, and since (A
.
∪ ¬.U)T (AT, A is not a minimal model of fΠA, contradicting

that A is an answer set of Π.
(⇐) By Lemma B.1 if AF is an unfounded set for Π wrt. A, A is a model of Π, so it is

also a model of fΠA. We show by contradiction that it is in fact a minimal model of fΠA.
Assume that a total interpretation A′, where A′T (AT, is a model of fΠA. Since both A′

and A are total, A′F) AF. Again by Lemma B.1, A′F is an unfounded set for fΠA wrt. A′.
We can then show that A′F is also an unfounded set for Π wrt. A, contradicting the fact that
AF is GUSΠ(A). For any rule in Π \ fΠA , a body literal is false wrt. A, so Condition (i)
of Definition 38 holds. For a rule r ∈ fΠA such that H(r) ∩ A′F 6= ∅, (1) a body literal
of r is false wrt. A′ (note that A′

.
∪ ¬.A′F = A′) or (2) an atom a in H(r) \ A′F is true

wrt. A′. Concerning (1), observe that A
.
∪ ¬.A′F = A′ so (1) holds iff a body atom is false

wrt. A
.
∪ ¬.A′F. Concerning (2), since A′T (AT, atom a is also true wrt. A. In total,we have

218

B.2. Soundness and Completeness of the Grounding Algorithm (cf. Section 4.3.2)

shown that A′F is an unfounded set for Π wrt. A, a contradiction to AF = GUSΠ(A). So A is
indeed a minimal model of fΠA, and hence an answer set of Π.

We can now show the main theorem.

Theorem 2. A model A of a program Π is an answer set iff it is unfounded-free (in Π).

Proof. (⇒) Since A is an answer set, by Lemma B.3 we have AF = GUSΠ(A). But this
implies that GUSΠ(A) is defined, which is only the case if A is unfounded-free.

(⇐) Since A is unfounded-free, we have that AT ∩ U = ∅ and thus U ⊆ AF for each
unfounded set U of Π wrt. A. But then AF ⊇ GUSΠ(A). Moreover, since A is a model,
by Lemma B.1 AF is an unfounded set of Π wrt. A and thus AF ⊆ GUSΠ(A). But then
AF = GUSΠ(A) and by Lemma B.3 A is an answer set of Π.

B.2 Soundness and Completeness of the Grounding Algorithm

(cf. Section 4.3.2)

We now formally prove that Algorithms GroundHEXNaive and GroundHEX are sound and
complete as stated by Proposition 4.6 and Theorem 6, respectively. As the programs Πp and Πpg

are iteratively updated in the algorithms, we make the following convention. Whenever we write
Πp or Πpg in one of the proofs, we refer to the status just before Algorithm GroundHEXNaive
or Algorithm GroundHEX returns.

A key concept in our proofs will be that of representation of external atoms in a ground
program.

Definition 93. For a ground external atom &g [y](x) in a rule r, its representation degree in a

program Π is 0, if Π contains a rule er,&g[y](x) ∨ ner,&g[y](x) ←. It is n + 1, if Π contains a
rule with head er,&g[y](x)∨ner,&g[y](x) and the maximum representation degree of all &h[w](v)
s.t. es,&h[w](v) occurs in the body of this rule, is n. Otherwise (i.e., there is no rule with head
er,&g[y](x) ∨ ner,&g[y](x)), the representation degree is undefined.

If the representation degree for some ground external atom is undefined, we also say that the
external atom is not represented. Intuitively, if an external atom is represented, this means that
the program contains a guessing rule for the respective replacement atom. The representation
degree specifies on how many other external atom replacements this guess depends. Note that
in general, an external atom can have multiple representation degrees simultaneously. However,
in the following we will only use its minimum representation degree and can therefore drop the
prefix minimum.

In the proofs of the grounding algorithms, we will usually denote assignments as sets of
atoms which are true. All other atoms are then implicitly false.

Towards a proof of Proposition 4.6 we first prove the following lemma. Recall that, whenever
we write Πp or Πpg in the proofs, we refer to the status just before Algorithm GroundHEXNaive
returns.

219

B. PROOFS

Lemma B.4. Let Πg = GroundHEXNaive(Π) and let C be the constants which appear in Πg.

Then for any C ′ ⊇ C and each model A of grndC(Π), A 6|= B(r) for all r ∈ grndC′(Π) \
grndC(Π).

Proof. Let A be a model of grndC(Π). Then it can be extended to a model Apg of Πpg as
follows:

• For all er,&g[y](x) ∈ A(Πpg), add er,&g[y](x) if f&g(A, y, x) = 1 and add ner,&g[y](x)
otherwise.

• Add all g&g
inp(y) ∈ A(Πpg), for all predicates g&g

inp occurring in the head of some rainp (for
an external atom a = &g [Y](X)).

This satisfies each ground instance of each input auxiliary rule rainp because the head g&g
inp(y) is

true. Moreover, because A is a model of grndC(Π) = Πg and Πpg contains er,&gy(x) in place of
&g [y](x) and we set er,&g[y](x) to true iff f&g(A, y, x) = 1, it satisfies also all remaining rules.

We show now that A is also a model of grndC′(Π). Let r ∈ grndC′(Π) and suppose A 6|= r,
then A 6|= H(r) and A |= B(r). Since A |= B(r), we have A |= a for each ordinary literal
a ∈ B(r). If there would be only ordinary literals in B(r), then Πg would also contain this rule
instance because all constants in B(r) must appear in the atoms which are true in A und thus in
Πg. Hence, A could not be a model of Πg. Therefore there must be external atoms in B(r).

We show now that each positive external atom in r is represented in Πpg (with degree 0).
Suppose there is an external atom in B(r) which is not represented in Πpg . Then, due to safety
of r, which forbids cyclic passing of constant input within a rule body, there is also a ‘first’
unrepresented external atom &g [v](u), i.e., one such that all its input constants in v either:
(1) appear in a positive ordinary atom, (2) appear in the output list of a represented external
atom, or (3) were already constants in the input program. In all three cases, the input auxiliary
rule for &g [v](u) is instantiated for this v because its body atoms are potentially true (they are
ordinary atoms or replacement atoms of represented external atoms), i.e., g&g

inp(v) appears in the
program and is therefore true in Apg . Thus, the loop at (e) would evaluate &g with Apg and
v and determine all tuples w s.t. f&g(Apg , v,w) = 1. However, f&g(Apg , v, u) = 0, because
otherwise rule er,&g[v](u)∨ner,&g[v](u)←would have been added at (f) to Πp and thus &g [v](u)
would be represented in Πpg , which contradicts our assumption. But if f&g(Apg , v, u) = 0 then
also f&g(A, v, u) = 0 because Apg and A differ only on input auxiliary atoms and external
atom replacement atoms, which would imply A 6|= B(r).

Thus, all positive external atoms are represented in Πpg . But as default-negated ones cannot
introduce new values due to ordinary safety, all constants in r also appear in Πg, thus r ∈ Πg.
But then A could not be a model of Πg if A |= B(r), hence A 6|= B(r).

Now we can now show the proposition.

Proposition 4.6. If Π is a liberally de-safe HEX-program, then Π ≡pos GroundHEXNaive(Π).

220

B.2. Soundness and Completeness of the Grounding Algorithm (cf. Section 4.3.2)

Proof. Let Πg = GroundHEXNaive(Π). For the proof, observe that Πg = grndC(Π) where C
is the set of all constants which appear in Πg. We show now

grndC(Π) ≡
pos grndC′(Π)

for any C ′ ⊇ C. Because Π ≡pos grndC(Π) for Herbrand universe C ⊇ C by definition of the
HEX-semantics, this implies the proposition.

Termination of the algorithm follows from Theorem 6, where we will prove that an optimized
version of the algorithm, which may produce a larger grounding (wrt. the number of constants)
but need less iterations, terminates. As the grounding produced by this algorithm is even smaller,
it terminates as well.

(⇒) Let A ∈ AS
(
grndC(Π)

)
. By Lemma B.4 it is also a model of grndC′(Π). It

remains to show that it is also a subset-minimal model of fgrndC′(Π)A. Since C ⊆ C ′,
fgrndC(Π)

A ⊆ fgrndC′(Π)A. By Lemma B.4, A 6|= B(r) for any r ∈ grndC′(Π) \
grndC(Π), thus fgrndC(Π)

A = fgrndC′(Π)A. But since A ∈ AS
(
grndC(Π)

)
, it is a mini-

mal model of fgrndC(Π)
A, thus also of fgrndC′(Π)A, i.e., A ∈ AS

(
grndC′(Π)

)
.

(⇐) Let A′ ∈ AS
(
grndC′(Π)

)
. We show that A = A′ ∩ A

(
grndC(Π)

)
is an answer set

of grndC(Π). Because grndC(Π) ⊆ grndC′(Π), it is trivial that A is a model of grndC(Π).
It remains to show that it is also a subset-minimal model of fgrndC(Π)

A. By Lemma B.4, A
is a model of grndC′(Π). Clearly, A ⊆ A′. But A (A′ would imply that A′ is not subset-
minimal, which contradicts the assumption that it is an answer set of grndC′(Π), thus A = A′.
Because grndC(Π) ⊆ grndC′(Π) and A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π), we have
fgrndC(Π)

A = fgrndC′(Π)A. Because A is a subset-minimal model of grndC′(Π)A, it is a
subset-minimal model of fgrndC(Π)

A. Thus, A is an answer set of grndC(Π).

In order to prove soundness and completeness of our optimized algorithm in Theorem 6, we
first show a lemma analogous to Lemma B.4. Recall that, whenever we write Πp or Πpg in the
proofs, we refer to the status just before Algorithm GroundHEX returns.

Lemma B.5. Let Πg = GroundHEX(Π) and let C be the constants which appear in Πg. Then

for anyC ′ ⊇ C and each model A of grndC(Π), A 6|= B(r) for all r ∈ grndC′(Π)\grndC(Π).

Proof. Let A be an model of grndC(Π). Then it can be extended to a model Apg of Πpg as
follows:

• For all er,&g[y](x) ∈ A(Πpg), add er,&g[y](x) if f&g(Ag, y, x) = 1 and add ner,&g[y](x)
otherwise.

• Add all g&g
inp(y) ∈ A(Πpg), for all predicates g&g

inp occurring in the head of some rainp (for
an external atom a = &g [Y](X)).

This satisfies each external atom guessing rule as for &g [y](x) either er,&g[y](x) or ner,&g[y](x) is

true, and each input auxiliary rule rainp because the head g&g
inp(y) is true. Moreover, because A is

a model of grndC(Π), it is also a model of the (possibly) less restrictive program Πg. Since Πpg

contains er,&gy(x) in place of &g [y](x) and we set er,&g[y](x) in Apg to true iff f&g(A, y, x) = 1,
Apg satisfies also all remaining rules in program Πpg .

221

B. PROOFS

We show now that A is a model of grndC′(Π). Let r ∈ grndC′(Π) and suppose A 6|= r,
i.e., A 6|= H(r) but A |= B(r).

As we have seen in the proof of Proposition 4.6, all de-safety relevant positive external atoms
in r are represented with degree 0 in the program computed by Algorithm GroundHEXNaive.
As such external atoms are handled equivalently by our optimized algorithm, they are also rep-
resented in Πpg . We show that this holds also for positive external atoms which are not de-safety
relevant.

Suppose r contains an external atom which is not de-safety relevant and which is not repre-
sented in Πpg . Then there is a ‘first’ such external atom &g [v](u) in B(r), i.e., its input list only
contains constants which (1) appear in ordinary atoms, (2) appear in de-safety relevant external
atoms, or (3) were already constants in the input program. In all three cases, the input auxiliary
rule for &g [v](u) is instantiated for this v because its body atoms are potentially true (ordinary
atoms appear also in B(r) and are potentially true, otherwise r would not have been added to
Πg; external atoms are all not de-safety relevant and are potentially true since they are repre-

sented with degree 0), i.e., g&g
inp(v) appears in the program. Moreover, the respective external

atom guessing rule is instantiated for v and u because all its body atoms are potentially true
(with the same argument as for input auxiliary rules). Thus, &g [v](u) would be represented in
Πp with some degree > 0, and thus also in Πpg and Πg.

Thus, all positive external atoms are represented in Πpg . But as default-negated ones can-
not introduce new values due to ordinary safety, all constants in r also appear in Πg, thus a
strengthening of r would be in Πg. But then A could not be a model of Πg if A |= B(r), hence
A 6|= B(r).

We now show some additional lemmas to simplify the proof of soundness and completeness.

Lemma B.6. Let Πg = GroundHEX(Π) and let C be the constants which appear in Πg. Every

answer set A of Πg can be extended to an answer set Apg of Πpg .

Proof. Let A ∈ AS(Πg). Then Apg is constructed by iteratively adding additional atoms to A

as follows:

• If the body B of a ground external atom guessing rule er,&g[y](x) ∨ ner,&g[y](x) ← B in
Πpg is satisfied by Apg , add er,&g[y](x) if f&g(A, y, x) = 1 and add ner,&gy(x) otherwise.

• Add all g&g
inp(y) ∈ A(Πpg) if the body of the respective input auxiliary rule is satisfied by

Apg .

Note that this operation is monotonic because input auxiliary rules and external atom guessing
rules contain only positive body literals.

Then the fixpoint of this operation Apg is by construction a model of all input auxiliary rules
and external atom guessing rules. Moreover, it is also a model of all remaining rules because A

is a model of the corresponding rules in Πg with external atoms in place of replacement atoms,
and we set the truth values of the external atom replacement atoms exactly to the truth values
of the external atoms in A. Note that there might be external atoms in Πg for which neither
er,&g[y](x) nor ner,&g[y](x) is added to Apg , but then the body of the respective external atom

222

B.2. Soundness and Completeness of the Grounding Algorithm (cf. Section 4.3.2)

guessing rule is unsatisfied by Apg . But since the body of an external atom guessing rule is a
subset of the body of the rule where this external atom occurs, also this rule is satisfied.

It remains to show that Apg is also a subset-minimal model of fΠpg
Apg . Suppose there is

a smaller model A′
pg (Apg . Then Apg \ A

′
pg must contain at least one atom which is not a

replacement atom or an input auxiliary atom, because by construction of Apg such atoms are
only set to true if necessary, i.e., if they are supported by A, and all rules used to derive such
atoms are also in fΠpg

Apg . We now show that the restriction of A to ordinary atoms A′ (A

(i.e., without replacement atoms e&g[y](x) and ne&g[y](x) and without external atom input atoms

g
&g
inp(y)) is a model of fΠg

A, which contradicts the assumption that A is an answer set of Πg.
Observe that, except for the external atom guessing and input auxiliary rules, the reduct

fΠpg
Apg contains the same rules as fΠg

A with replacement atoms instead of external atoms.
Thus, for r ∈ fΠg

A, the corresponding rpg ∈ fΠpg
Apg contains the same ordinary literals in

the head and body.
We show now that A′

pg |= rpg implies A′ |= r. If A′
pg is a model of rpg , then we have

either (1) A′
pg |= h for some h ∈ H(rpg), or (2) A′

pg 6|= b for some b ∈ B(rpg). In Case (1),
we also have h ∈ H(r). Since A′

pg and A′ coincide on non-replacement and non-input atoms,
this implies A′ |= r. In Case (2), b is either (2a) a non-replacement literal, or (2b) a (positive
or default-negated) external atom replacement. In Case (2a), we also have b ∈ B(r). Since
A′

pg and A′ coincide on such atoms, this implies A′ |= r. In Case (2b), we either have (2b′)
Apg 6|= b, or (2b′′) b is positive (since a default-negated atom cannot become false by removing
atoms from the interpretation) and some literal b′ in the body of the external atom guessing or
in the input rule for b is false in A′

pg ; in this case b is represented in Πp with some degree n. In
Case (2b′), A falsifies by construction of Apg the external atom in B(r) which corresponds to
the replacement atom b. In Case (2b′′), b′ also appears in B(rpg). Note that b′ can be another
external replacement atom. But in this case, the external atom corresponding to b′ is represented
with some degree < n. Thus, we start the case distinction for b′ again. However, because the
degree is reduced with every iteration, we will eventually end up in one of the other cases.

Thus, A′ would be a model of fΠg
A, which contradicts the assumption that A is an answer

set of Πg. This shows that Apg is an answer set of Πpg .

Lemma B.7. Let Πg = GroundHEX(Π) and let C be the constants which appear in Πg. Every

answer set A of grndC(Π) can be extended to an answer set Ap of grndC(Πp).

Proof. Let A ∈ AS
(
grndC(Π)

)
. Then Ap is constructed by iteratively adding additional atoms

to A as follows:

• If the body B of a ground external atom guessing rule er,&g[y](x) ∨ ner,&g[y](x) ← B in
grndC(Πp) is satisfied by Ap, add er,&g[y](x) if f&g(A, y, x) = 1 and add ner,&g[y](x)
otherwise.

• Add all g&g
inp(y) ∈ A

(
grndC(Πp)

)
if the body of the respective input auxiliary rule is

satisfied by Ap.

Note that this operation is monotonic because input auxiliary rules and external atom guessing
rules contain only positive body literals.

223

B. PROOFS

Then the fixpoint of this operation Ap is by construction a model of all ground input auxiliary
rules and external atom guessing rules. Moreover, it is also a model of all remaining rules in
grndC(Πp) because A is a model of the corresponding rules in grndC(Π) with external atoms
in place of replacement atoms, and we set the truth values of the external atom replacement
atoms exactly to the truth values of the external atoms in A. Note that there might be external
atoms &g [y](x) for which neither er,&g[y](x) nor ner,&g[y](x) is added to Ap, but then the body
of the respective external atom guessing rule is unsatisfied by Ap. But since the body of an
external atom guessing rule is a subset of the body of the rule where this external atom occurs,
also this rule is satisfied.

Thus Ap is a model of grndC(Πp). It remains to show that it is also a subset-minimal

model of fgrndC(Πp)
Ap . Suppose there is a smaller model A′

p (Ap. Then Ap \ A
′
p must

contain at least one atom which is not a replacement atom or an input auxiliary atom, because
by construction of Ap such atoms are only set to true if necessary, i.e., if they are supported

by A, and all rules used to derive such atoms are also in fgrndC(Πp)
Ap . We now show that

the restriction of A to ordinary atoms A′ (A (i.e., without replacement atoms e&g[y](x) and

ne&g[y](x) and without external atom input atoms g&g
inp(y)) is a model of fgrndC(Π)

A, which
contradicts the assumption that A is an answer set of grndC(Π).

Observe that, except for the external atom guessing and input auxiliary rules, the reduct
fgrndC(Πp)

Ap contains the same rules as fgrndC(Π)
A with replacement atoms instead of

external atoms. Thus, for r ∈ fgrndC(Π)
A, the corresponding rp ∈ fgrndC(Πp)

Ap contains
the same ordinary literals in the head and body.

We show now that A′
p |= rp implies A′ |= r. If A′

p is a model of rp, then we have either (1)
A′

p |= h for some h ∈ H(rp), or (2) A′
p 6|= b for some b ∈ B(rp). In Case (1), we also have

h ∈ H(r). Since A′
p and A′ coincide on non-replacement and non-input atoms, this implies

A′ |= r. In Case (2), b is either (2a) a non-replacement literal, or (2b) a (positive or default-
negated) external atom replacement. In Case (2a), we also have b ∈ B(r). Since A′

p and A′

coincide on ordinary atoms, this implies A′ |= r. In Case (2b), we either have (2b′) Ap 6|= b, or
(2b′′) b is positive (since a default-negated atom cannot become false by removing atoms from
the interpretation) and some literal b′ in the body of the external atom guessing or in the input
rule for b is false in A′

p; in this case b is represented in grndC(Πp) with some degree n. In
Case (2b′), A falsifies by construction of Ap the external atom in B(r) which corresponds to
the replacement atom b. In Case (2b′′), b′ also appears in B(rp). Note that b′ can be another
external replacement atom. But in this case, the external atom corresponding to b′ is represented
with some degree < n. Thus, we start the case distinction for b′ again. However, because the
degree is reduced with every iteration, we will eventually end up in one of the other cases.

Thus, A′ would be a model of fgrndC(Π)
A, which contradicts the assumption that A is an

answer set of grndC(Π). This shows that Ap is an answer set of grndC(Πp).

Lemma B.8. Let Πg = GroundHEX(Π) and letC be the constants which appear in Πg. It holds

that AS(Πg) = AS
(
grndC(Π)

)
.

Proof. (⇒) Let A ∈ AS(Πg). Then by Lemma B.6 it can be extended to an answer set Apg of
Πpg . By Definition 75, Apg is also an answer set of grndC(Πp).

224

B.2. Soundness and Completeness of the Grounding Algorithm (cf. Section 4.3.2)

Let r ∈ grndC(Π) and let r′ be the respective rule in grndC(Πp) with replacement atoms
instead of external atoms. (1) If there is no strengthening of r in Πg, then there is also no
strengthening of r′ in Πpg . Then by Definition 75, every answer set of grndC(Πp) falsifies
some ordinary body literal of r′. Thus this holds also for Apg . But all ordinary literals of r′

are also in r and A coincides with Apg on ordinary literals, thus A is a model of r. (2) If there
is a strengthening r̄ of r in Πg, then there is also a strengthening r̄′ of r′ in Πpg from which r̄
was generated by replacing external replacement atoms by external atoms. Because Apg is an
answer set of grndC(Πp), it is also a model of r̄′. Moreover, by Definition 75, it satisfies also
all ordinary literals B(r′) \ B(r̄′). This is the same set as B(r) \ B(r̄). Because A and Apg

coincide on ordinary literals, also A is a model of r. Thus, A is a model of grndC(Π).
We show now that A is also a subset-minimal model of fgrndC(Π)

A. Because we have seen
that A 6|= B(r) for every r ∈ grndC(Π) which has no strengthening in Πg, it follows that fΠg

A

contains a strengthening r̄ for every rule r ∈ fgrndC(Π)
A. Conversely, by Definition 75 every

rule in fΠg
A is a strengthening of some rule r ∈ fgrndC(Π)

A. Thus, the rules in fgrndC(Π)
A

are even more restrictive, i.e., every model of fgrndC(Π)
A is also a model of fΠg

A. Thus, if

there would be a smaller model A′ (A of fgrndC(Π)
A, it would also be a model of fΠg

A,
which contradicts the assumption that A is an answer set of Πg.

(⇐) Let A ∈ AS
(
grndC(Π)

)
, then it is also a model of Πg because this program is (pos-

sibly) less restrictive. It remains to show that A is also a subset-minimal model of fΠg
A. By

Lemma B.7, A can be extended to an answer set Ap of grndC(Πp).
Let for every r ∈ grndC(Π) be r′ the respective rule in grndC(Πp) with replacement

atoms instead of external atoms. Note that the rules in fΠg
A are strengthenings of the rules

in fgrndC(Π)
A. Let r ∈ grndC(Π). (1) If there is no strengthening of r in Πg, then also r′

has no strengthening in Πpg . But this means, that every answer set of grndC(Πp) falsifies an
ordinary body literal in r′, thus also Ap. Because A and Ap coincide on ordinary literals, also

A falsifies some ordinary literal in B(r), thus r is not in fgrndC(Π)
A. (2) Now suppose there

is a strengthening r̄ of r in Πg. Then A |= B(r) implies A |= B(r̄). Conversely, if A |= B(r̄),
then the missing literals in B(r) \ B(r̄) are satisfied as well because they are satisfied by all
answer sets of grndC(Πp), including Ap, which coincides with A on ordinary atoms (otherwise
the literal would not have been removed by the optimizer).

Now suppose fΠg
A has a smaller model A′ (A. Then A′ is a model of fgrndC(Π)

A

because we have seen that the missing literals are satisfied as well.

Now we can now prove the following result.

Theorem 6 (Correctness of Algorithm GroundHEX). If Π is a liberally de-safe HEX-program,

then GroundHEX(Π)≡posΠ.

Proof. Let Πg = GuessAndCheckHexEvaluation(Π) and let C be the constants which appear
in Πg.

The differences to Algorithm GroundHEXNaive are that we (i) use a faithful (optimized)
ASP grounding procedure to compute Πg instead of the naive grndC(Πp); (ii) consider only
de-safety relevant external atoms in Part (b); and (iii) a different set of interpretations in Part (c).
We will now show that the algorithm is still correct.

225

B. PROOFS

We first ignore modification (iii) and show that the algorithm is still correct if only modifi-
cations (i) and (ii) are active.

We need to show that AS(Πg) = AS(Π). Recall that AS(Πg) = AS
(
grndC(Π)

)
by

Lemma B.8, thus it suffices to show AS
(
grndC(Π)

)
= AS

(
grndC′(Π)

)
for any C ′ ⊇ C.

(⇒) Let A ∈ AS
(
grndC(Π)

)
. By Lemma B.5, A is a model of grndC′(Π). It remains

to show that it is also a subset-minimal model of fgrndC′(Π)A. As C ⊆ C ′, fgrndC(Π)
A ⊆

fgrndC′(Π)A. Moreover, by Lemma B.5 A 6|= B(r) for any r ∈ grndC′(Π) \ grndC(Π), thus
fgrndC(Π)

A = fgrndC′(Π)A. But since A ∈ AS
(
grndC(Π)

)
, it is a subset-minimal model

of fgrndC(Π)
A, thus also of fgrndC′(Π)A, i.e., A ∈ AS

(
grndC′(Π)

)
.

(⇐) Let A′ ∈ AS
(
grndC′(Π)

)
. We show that A = A′ ∩A

(
grndC(Π)

)
is an answer set of

grndC(Π).
Because grndC(Π) ⊆ grndC′(Π), it is trivial that A is a model of grndC(Π). It remains to

show that it is also a subset-minimal model of fgrndC(Π)
A.

By Lemma B.5, A is also a model of grndC′(Π). But then A = A′ because A (A′

would imply that A′ is not subset-minimal, which contradicts the assumption that it is an answer
set of grndC′(Π), thus A = A′. Because grndC(Π) ⊆ grndC′(Π) and A 6|= B(r) for all
r ∈ grndC′(Π) \ grndC(Π) by Lemma B.5, we have fgrndC(Π)

A = fgrndC′(Π)A. Because
A is a subset-minimal model of grndC′(Π)A, it is a subset-minimal model of fgrndC(Π)

A.
Thus, A is an answer set of grndC(Π).

Finally, consider modification (iii). While Algorithm GroundHEXNaive loops for all models
of Πpg , the optimized algorithm constructs the considered assignments such that the output of the
external atoms is maximized: all monotonic input atoms are set to true, all antimonotonic input
atoms to false, and for nonmonotonic input atoms all combinations are checked (except facts,
which are always true). Every model of Πpg considered by Algorithm GroundHEX, is contained
in some assignment enumerated by Algorithm GroundHEXNaive. The output of the external
atom wrt. this assignment may be larger, but never smaller. Thus, the optimized algorithm only
produces larger but never smaller groundings wrt. the set of constants. As we have shown in
Lemma B.5, this guarantees that the program has the same answer sets.

We also need to show that the algorithm terminates. But this follows from the observa-
tion that each run of the loop at (c) corresponds to a (restricted) application of operator GΠ;
while GΠ instantiates rules whenever their positive body is satisfied by some of the enumer-
ated assignments, our algorithm also respects the negative part of the rule body, i.e., it is even
more restrictive. But by Corollary 4.2, G∞

Π (∅) is finite for liberally de-safe programs, thus the
grounding produced by our algorithm is finite as well. Therefore the algorithm terminates.

B.3 Query Answering over Positive HEX
∃-Programs

(cf. Section 6.1.3)

Towards a proof of Proposition 6.3, we first introduce some lemmas.

Lemma B.9. If Π is a shy Datalog∃-program and Πg = GroundDESafeHEX
(
T∃(Π)

)
, then the

unique answer set of Πg is a universal model of Π.

226

B.3. Query Answering over Positive HEX∃-Programs (cf. Section 6.1.3)

Algorithm Chase

Input: A Datalog∃-program Π
Output: A universal model Chase(Π) for Π

(a) C ← {a | a← . ∈ Π}
(b) NewAtoms ← ∅

for r ∈ Π do

Let X be the universal variables and let Y be the existential variables in r
for each firing substitution σ for r wrt. C do

(c) if C ∪NewAtoms 6|= σ
(
H(r)

)
then

Let σ̂ extend σ on Y ∪ X s.t. it associates each variable in Y a different null
Add σ̂

(
H(r)

)
to NewAtoms

if NewAtoms 6= ∅ then

C ← C ∪ NewAtoms

Goto (b)

return C

Proof. In this proof we refer to the Algorithm Chase as used by Leone et al. (2012)1.
When we write n-th iteration, we mean the the n-th iteration of the outermost loop of algo-

rithm GroundDESafeHEX. Let A be the unique answer set of Πg and let U = Chase(Π) be the
universal model computed by the Chase procedure. We first show that there exists a homomor-
phism from A to U . Then we prove that A is a model of Π, which concludes the proof that it is
a universal model as well.

For a rule r ∈ Π, let rT∃
∈ T∃(Π) be the corresponding rule in T∃(Π). We stepwise construct

an isomorphism h, beginning with the empty one, and show by induction that the following holds
for this isomorphism. Whenever Chase adds an atom a = σ̂

(
H(r)

)
to C, then our algorithm

adds an o-strengthening r′T∃
of an instance of rT∃

to the grounding Πg s.t. a = h
(
H(r′T∃

)
)

(and

h−1(a) = H(r′T∃
)) and such that for the unique answer set A of Πg it holds that A |= B(r′T∃

)
(and thus, as it is an answer set, also A |= H(r′T∃

)).
Suppose some atom p(u, e) is added to C by Chase in the n-th iteration, where u are the sub-

stitutions for universally quantified variables and e the substitutions for existentially quantified
ones.

For the base case n = 0, all (possibly existentially quantified) facts in Π are added to C.
Facts without existential variables are trivially also part of the grounding Πg, thus the proposition
holds for any isomorphism, thus also for h. Facts with existential variables do not contain uni-
versal variables (otherwise they would not be safe), i.e., they are of form r = ∃X : p(X). Then
Chase adds p(e) for some vector of fresh nulls e to C. Thus rT∃

= p(X) ← &exists |X|[](X).
Since the external atom has no input parameters, the input auxiliary rule degenerates to fact

r
&exists|X|[r](X)
inp () and the algorithm introduces at (g) a rule er,&g[](x) ∨ ner,&g[](x) ← for a

1The parsimonious chase algorithm pChase corresponds to Algorithm Chase if the check at (c) is changed from
‘C ∪ NewAtoms 6|= σ

(

H(r)
)

’ to ‘σ
(

H(r)
)

is not homomorphic to an atom in C ∪NewAtoms’.

227

B. PROOFS

fresh vector of nulls x. Since x is new in Πp and e is new in C, we can easily extend h s.t.
h
(
p(x)

)
= p(e) and h−1

(
p(e)

)
= p(x).

For the induction step n 7→ n+ 1, suppose there is a firing substitution σ for some r wrt. C
and suppose C ∪ NewAtoms 6|= σ

(
H(r)

)
, i.e., Chase adds σ̂

(
H(r)

)
to NewAtoms and thus

to C. Because σ is a firing substitution, σ
(
B(r)

)
⊆ C, i.e., all body atoms of r under σ have

been added to C in some earlier iteration. Thus, by the induction hypothesis, our algorithm adds
for all b ∈ σ

(
B(r)

)
a rule rb with h

(
H(rb)

)
= b and H(rb) = h−1(b) to Πg, s.t. B(rb) and

H(rb) are satisfied by the unique answer set of Πg, i.e., rb is the rule which derives atom h−1(b).
All ordinary atoms in B(rT∃

) occur also in B(r), thus A satisfies the ordinary atoms in B(rT∃
)

under substitution h−1◦σ. For existentially quantified variables, rT∃
contains an additional atom

&exists[Y](X) in the rule body and we show now that this atom is satisfied by A as well, for an
appropriate vector c in place of Y and some fresh vector of nulls x in place of X. Because all
ordinary atoms in B(rT∃

) under substitution h−1 ◦ σ are satisfied by A, our algorithm will add

an o-strengthening of the input auxiliary rule of &exists[r,Y](X) and the atom r
&exists[r,Y](X)
inp (c)

will appear in A(Πpg), where c = h−1 ◦ σ(u) is the vector of substitutions for the universally
quantified variables in r as defined by h−1 ◦σ. But then by definition, &exists[r, c](x) holds for
a vector of nulls x, which is unique for c and r and new in Πp. The algorithm will add a guessing
rule for &exists[c](x) to Πp and subsequently the desired instance r′T∃

with H(r′T∃
) = p(c, x)

will appear in Πg. Because x is new in Πp and e is new in C, h does not define any mapping for
them so far, thus we can easily extend h s.t. h−1

(
p(u, e)

)
= p(c, x) and p(u, e) = h

(
p(c, x)

)
.

This concludes the induction step.
This shows that for any atom a = σ̂

(
H(r)

)
added to C in some interation n ≥ 0, our

algorithm adds an according rule to Πg. Since U is just the fixpoint of this iteration, this holds
also for the universal model U . The algorithm may add further rules to Πg. However, their
bodies remain unsatisfied by A because otherwise Chase(Π, 0) would have identified firing
substitutions and added the respective rule heads. Thus, the additional rules do not harm the
procedure.

Moreover, the definition of &exists correctly models the semantics of the existential quan-
tifier. Thus, A is also a model of Π. Since we have defined a homomorphism from A to U , we
have shown that A is also a universal model of Π.

Lemma B.10. If Π is a shy Datalog∃-program, then GroundDatalog∃(Π,∞) yields the same

(possibly infinite) program Πg as GroundDESafeHEX
(
T∃(Π)

)
.

Proof. Resetting PIT to ∅ at the beginning of each iteration of the loop at (b) has the same
effect as disabling the homomorphism check.

Lemma B.11. Let Π by a Shy-program and let q be conjunctive query with n different existen-

tially quantified variables. Then ans(q,Π) ⊆ ans
(
q, pChase(Π, n+ 1)

)
.

Proof. The lemma is equivalent to Lemma 4.10 by Leone et al. (2012).

Lemma B.12. If Π is a shy Datalog∃-program and Πg = GroundDatalog∃(Π, k), then the

unique answer set of Πg is complete for conjunctive query answering of queries with up to k

existentially quantified variables.

228

B.3. Query Answering over Positive HEX∃-Programs (cf. Section 6.1.3)

Proof. Resetting PIT to ∅ after every iteration of the main loop at (b) behaves like freezing of
nulls as used by Leone et al. (2012) and the loop at (b) runs k+1 times. Thus, the claim follows
from Lemma B.11.

Lemma B.13. Algorithm GroundDatalog∃(Π, k) terminates.

Proof. Since all newly introduced values are null values, the loop at (f) introduces only finitely
many new values because all remaining vectors y will eventually become homomorphic to some
previously processed input vector. Thus each iteration of the loop at (c) terminates. As k is
finite, also the loop at (b) terminates.

We are now ready to show Proposition 6.3.

Proposition 6.3. For a shy program Π, the program produced by GroundDatalog∃(Π, k) has

a unique answer set which is sound and complete for answering CQs with up to k existential

variables against Π.

Proof. Soundness follows from Lemmas B.9 and B.10 (GroundDatalog∃(Π, k) yields a subset
of a universal model of Π), in combination with Proposition 6.2. Completeness follows from
Lemma B.12, and termination follows from Lemma B.13.

229

Curriculum Vitae

Personal Information

Date and Place of Birth

July 3, 1986 in St. Pölten, Austria

Citizenship

Austria

Family Status

Unmarried, No Children

Affiliation

Knowledge-Based Systems Group
Institute of Information Systems
Technische Universität Wien (TU Vienna)
Vienna, Austria

Academic Degrees

Dipl.-Ing. (=̂ M.Sc.) in Medical Informatics

Dipl.-Ing. (=̂ M.Sc.) in Computational Intelligence

B.Sc. in Software and Information Engineering

Current Position

PhD Student and Research Assistant (FWF)

Research Interests

Knowledge Representation and Reasoning; Computational Logic;
Nonmonotonic Logic Programming and Databases;
Answer Set Programming and Extensions;
Reasoner Design; Algorithms

231

CURRICULUM VITAE

Education

2010–ongoing

PhD Student at TU Vienna, Institute of Information Systems

Program: Mathematical Logic in Computer Science

Supervisor: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Eiter
Second Supervisor: Associate Prof. Dipl.-Ing. Dr. techn. Stefan Woltran

2009–2010

Master Student of Medical Informatics at TU Vienna
Graduation with Distinction as a Dipl.-Ing. (=̂ M.Sc.)

2008–2010

Master Student of Computational Intelligence at TU Vienna
Graduation with Distinction as a Dipl.-Ing. (=̂ M.Sc.)

2005–2008

Bachelor Student of Software and Information Engineering at TU Vienna
Graduation with Distinction as a B.Sc.

2000–2005

Upper Secondary School in St. Pölten, Austria
Higher Technical Institute
Department of Electronic Data Processing and Business Organization

Graduation with Distinction

Career History

November 2010–ongoing

Research Assistant (FWF) at TU Vienna, Institute of Information Systems

Current Project: Evaluation of ASP Programs with External Source Access

(FWF P24090)
Previous Project: Reasoning in Hybrid Knowledge Bases

(2010–2012) (FWF P20840)

March 2007–June 2010

Tutor at TU Vienna for Several Courses

Summer 2004

Internship at Cincinnati Extrusion GmbH, Vienna, Austria
Employed in the IT Department: Help-Desk Tasks and Hardware Assembling

Summer 2002

Internship at A. Porr AG, Vienna, Austria
Office Tasks and Web Development

232

Journal Publications

[J3] Yi-Dong Shen, Kewen Wang, Jun Deng, Christoph Redl, Thomas Krennwallner, Thomas
Eiter, and Michael Fink. FLP answer set semantics without circular justifications for general
logic programs. Artificial Intelligence, 2014. Accepted for publication.

[J2] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller.
Efficient HEX-program evaluation based on unfounded sets. Journal of Artificial Intelli-

gence Research, 49:269–321, February 2014.

[J1] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Conflict-driven
ASP solving with external sources. TPLP, 12(4-5):659–679, 2012.

Conference Publications

[C11] Thomas Eiter, Michael Fink, Christoph Redl, and Daria Stepanova. Exploiting support
sets for answer set programs with external evaluations. In Proceedings of the Twenty-

Eighth AAAI Conference (AAAI 2014), July 27–31, 2014, Québec City, Québec, Canada.
AAAI Press, July 2014. Accepted for publication.

[C10] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. HEX-programs
with existential quantification. In Ricardo Rocha, editor, Proceedings of the Twentieth

International Conference on Applications of Declarative Programming and Knowledge

Management (INAP 2013), Kiel, Germany, September 11-13, 2013, September 2014. Post
proceedings. Accepted for publication.

[C9] Thomas Eiter, Thomas Krennwallner, and Christoph Redl. HEX-programs with nested
program calls. In Hans Tompits, editor, Proceedings of the Nineteenth International Con-

ference on Applications of Declarative Programming and Knowledge Management (INAP

2011), volume 7773 of LNAI, pages 1–10. Springer, October 2013.

[C8] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. HEX-programs
with existential quantification. In Ricardo Rocha, editor, Proceedings of the Twentieth

International Conference on Applications of Declarative Programming and Knowledge

Management (INAP 2013), Kiel, Germany, September 11-13, 2013, September 2013.

[C7] Michael Fink, Stefano Germano, Giovambattista Ianni, Christoph Redl, and Peter Schüller.
ActHEX: implementing HEX programs with action atoms. In Pedro Cabalar and TranCao
Son, editors, Proceedings of the Twelfth International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2013), volume 8148 of Lecture Notes in Computer

Science, pages 317–322. Springer Berlin Heidelberg, 2013.

[C6] Mario Alviano, Francesco Calimeri, Günther Charwat, Minh Dao-Tran, Carmine Dodaro,
Giovambattista Ianni, Thomas Krennwallner, Martin Kronegger, Johannes Oetsch, An-
dreas Pfandler, Jörg Pührer, Christoph Redl, Francesco Ricca, Patrik Schneider, Martin
Schwengerer, Lara Katharina Spendier, Johannes Peter Wallner, and Guohui Xiao. The

233

CURRICULUM VITAE

fourth answer set programming competition: Preliminary report. In Pedro Cabalar and
Tran Cao Son, editors, Proceedings of the Twelfth International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning (LPNMR 2013), Corunna, Spain, September 15-

19, 2013, volume 8148 of LNCS, pages 42–53. Springer, September 2013.

[C5] Günther Charwat, Giovambattista Ianni, Thomas Krennwallner, Martin Kronegger, An-
dreas Pfandler, Christoph Redl, Martin Schwengerer, Lara Spendier, Johannes Peter Wall-
ner, and Guohui Xiao. VCWC: a versioning competition workflow compiler. In Pedro
Cabalar and Tran Cao Son, editors, Proceedings of the Twelfth ernational Conference

on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013), Corunna, Spain,

September 15-19, 2013, volume 8148 of LNCS, pages 233–238. Springer, September 2013.

[C4] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Liberal safety
for answer set programs with external sources. In Marie desJardins and Michael Littman,
editors, Proceedings of the Twenty-Seventh AAAI Conference (AAAI 2013), July 14–18,

2013, Bellevue, Washington, USA, pages 267–275. AAAI Press, July 2013.

[C3] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller.
Exploiting unfounded sets for HEX-program evaluation. In Proceedings of the Thirteenth

European Conference on Logics in Artificial Intelligence (JELIA 2012), Toulouse, France,

September 26-28, 2012, September 2012.

[C2] Thomas Eiter, Thomas Krennwallner, and Christoph Redl. Nested HEX-programs. In
Hans Tompits, editor, Proceedings of the Nineteenth International Conference on Appli-

cations of Declarative Programming and Knowledge Management (INAP 2011), Vienna,

Austria, September 28–30, 2011, number arXiv:1108.5626v1 in arXiv. Computing Re-
search Repository (CoRR), September 2011.

[C1] Christoph Redl, Thomas Eiter, and Thomas Krennwallner. Declarative belief set merging
using merging plans. In Ricardo Rocha and John Launchbury, editors, Proceedings of

the Thirteenth International Symposium on Practical Aspects of Declarative Languages

(PADL 2011), Austin, Texas, USA, January 24-25, 2011, volume 6539 of LNCS, pages
99–114. Springer, January 2011.

Workshop Publications

[W4] Francesco Calimeri, Michael Fink, Stefano Germano, Giovambattista Ianni, Christoph
Redl, and Anton Wimmer. AngryHEX: an artificial player for angry birds based on declar-
ative knowledge bases. In Matteo Baldoni, Federico Chesani, Paola Mello, and Marco
Montali, editors, National Workshop and Prize on Popularize Artificial Intelligence, Turin,

Italy, December 5, 2013, pages 29–35, December 2013.

[W3] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Grounding
HEX-programs with expanding domains. In David Pearce, Shahab Tasharrofi, Evgenia Ter-
novska, and Concepción Vidal, editors, Second Workshop on Grounding and Transforma-

234

tions for Theories with Variables (GTTV 2013), Corunna, Spain, September 15, 2013, pages
3–15, September 2013.

[W2] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller.
Eliminating unfounded set checking for HEX-programs. In Michael Fink and Yuliya Lier-
ler, editors, Fifth Workshop on Answer Set Programming and Other Computing Paradigms

(ASPOCP 2012), September 4, 2012, Budapest, Hungary, pages 83–97, September 2012.

[W1] Thomas Eiter, Thomas Krennwallner, and Christoph Redl. Declarative merging of and
reasoning about decision diagrams. In Alessandro Dal Palù, Agostino Dovier, and An-
drea Formisano, editors, Workshop on Constraint Based Methods for Bioinformatics (WCB

2011), Perugia, Italy, September 12, 2011, pages 3–15. Dipartimento di Matematica e In-
formatica, Universita degli Studi di Perugia, September 2011.

Doctoral Consortia

[D1] Christoph Redl. Answer set programming with external sources. In Eighth ICLP Doctoral

Consortium, Budapest, Hungary, September 4, 2012, pages 469–475, 2012.

Technical Reports

[R1] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller.
Improving HEX-program evaluation based on unfounded sets. Technical Report INFSYS
RR-1843-12-08, Institut für Informationssysteme, Technische Universität Wien, A-1040 Vi-
enna, Austria, September 2013.

Poster Presentations

[P1] Francesco Calimeri, Michael Fink, Stefano Germano, Giovambattista Ianni, Christoph
Redl, and Anton Wimmer. AngryHEX: an angry birds-playing agent based on HEX-
programs. Angry-Birds Competition 2013, August 6-9, 2013, Beijing, China, August 2013.

Theses

[T2] Christoph Redl. Merging of biomedical decision diagrams. Master’s thesis, Vienna Uni-
versity of Technology, Knowledge-Based Systems Group, A-1040 Vienna, Karlsplatz 13,
October 2010.

[T1] Christoph Redl. Development of a belief merging framewerk for dlvhex. Master’s the-
sis, Vienna University of Technology, Knowledge-based Systems Group, A-1040 Vienna,
Karlsplatz 13, July 2010.

235

CURRICULUM VITAE

Scientific Talks

[S9] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. HEX-programs
with existential quantification. In Ricardo Rocha, editor, Twentieth International Conference

on Applications of Declarative Programming and Knowledge Management (INAP 2013),

Kiel, Germany, September 11-13, 2013, September 2013.

[S8] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Liberal safety
criteria for HEX-programs. In Marie desJardins and Michael Littman, editors, Twenty-

Seventh AAAI Conference (AAAI 2013), July 14–18, 2013, Bellevue, Washington, USA,
pages 267–275. AAAI Press, July 2013.

[S7] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller.
Exploiting unfounded sets for HEX-program evaluation. In Thirteenth European Conference

on Logics in Artificial Intelligence, Toulouse, France, September 26-28, 2012, September
2012.

[S6] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Conflict-driven
ASP solving with external sources. In Eighth International Conference on Logic Program-

ming (ICLP 2012), Budapest, Hungary, September 4–8, 2012, pages 659–679, 2012.

[S5] Christoph Redl. Answer set programming with external sources. In Eighth ICLP Doctoral

Consortium, Budapest, Hungary, September 4, 2012, pages 469–475, 2012.

[S4] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller.
Evaluation of ASP programs with external source access. In University of Potsdam, Pots-

dam, Germany, February 1, 2012.

[S3] Thomas Eiter, Thomas Krennwallner, and Christoph Redl. Nested HEX-programs. In
Hans Tompits, editor, Nineteenth International Conference on Applications of Declarative

Programming and Knowledge Management (INAP 2011), Vienna, Austria, September 28–

30, 2011, number arXiv:1108.5626v1 in arXiv. Computing Research Repository (CoRR),
September 2011.

[S2] Thomas Eiter, Thomas Krennwallner, and Christoph Redl. Declarative merging of and
reasoning about decision diagrams. In Alessandro Dal Palù, Agostino Dovier, and An-
drea Formisano, editors, Workshop on Constraint Based Methods for Bioinformatics (WCB

2011), Perugia, Italy, September 12, 2011, pages 3–15. Dipartimento di Matematica e In-
formatica, Universita degli Studi di Perugia, September 2011.

[S1] Christoph Redl, Thomas Eiter, and Thomas Krennwallner. Declarative belief set merging
using merging plans. In Ricardo Rocha and John Launchbury, editors, Thirteenth Inter-

national Symposium on Practical ASPects of Declarative Languages (PADL 2011), Austin,

Texas, USA, January 24-25, 2011, volume 6539 of LNCS, pages 99–114. Springer, January
2011.

236

	Introduction
	Motivation
	State-of-the-Art
	Propositional Model Building
	Grounding Methods
	External Sources and Domains

	Contributions
	Organization of this Thesis
	Publications and Evolution of this Work

	Preliminaries
	hex-Programs
	Syntax
	Semantics
	Atom Dependency Graph and Domain-Expansion Safety
	External Atom Input Grounding
	Modular Evaluation of hex-Programs

	Conflict-Driven Learning and Nonchronological Backtracking
	Conflict-Driven ASP Solving
	Complexity

	Propositional hex-Program Solving
	Guess and Check Algorithm for General Ground hex-Programs
	Learning-Based Evaluation Algorithm
	Concrete Learning Functions for External Behavior Learning

	Minimality Check
	Basic Encoding of the Unfounded Set Search
	Uniform Encoding of the Unfounded Set Search
	Optimization and Learning
	Unfounded Set Check wrt. Partial Assignments
	Deciding the Necessity of the UFS Check
	Program Decomposition
	Minimality Checking Algorithm

	Wellfounded Evaluation Algorithm for Monotonic Ground hex-Programs
	Related Work and Summary
	Related Work
	Summary and Future Work

	Grounding and Domain Expansion
	The Model-Building Framework for hex-Programs
	Formalization of the Model-Building Framework
	Using the Framework for Model Building

	Liberal Safety Criteria for hex-Programs
	Liberally Domain-Expansion Safe hex-Programs
	Concrete Term Bounding Functions
	Combination of Term Bounding Functions
	Finite Restrictability
	Applications

	Grounding Algorithm for Liberally Domain-Expansion Safe hex-Programs
	Grounding Algorithm
	Soundness and Completeness

	Integration of the Algorithm into the Model-Building Framework
	Greedy Evaluation Heuristics
	Related Work and Summary
	Related Work
	Summary and Future Work

	Implementation and Evaluation
	Implementation
	System Architecture
	Command-Line Options
	Heuristics for External Atom Evaluation and Unfounded Set Checking
	User-Defined Learning Functions
	Language Extension for Property Specification

	Evaluation of the Learning-based Algorithms
	Detailed Benchmark Description
	Unfounded Set Checking wrt. Partial Assignments
	Summary

	Evaluation of the Grounding Algorithm
	Detailed Benchmark Description
	Summary

	Summary and Future Work
	Related Work
	Summary and Future Work

	Applications and Extensions of hex-Programs
	hex-programs with Existential Quantification
	hex-Programs with Domain-Specific Existential Quantification
	hex-Programs
	Query Answering over Positive hex-Programs
	hex-Programs with Function Symbols

	hex-Programs with Nested Program Calls
	External Atoms for Subprogram Handling
	External Atoms for External Source Prototyping
	Interface for External Source Developers
	Applications
	Improvements

	Acthex
	Acthex Syntax
	Acthex Semantics
	Applications
	Improvements

	Multi-Context Systems
	Description Logic Knowledge-Bases
	Route Planning
	Summary and Future Work
	Related Work
	Summary and Future Work

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Benchmark Encodings
	Abstract Argumentation
	Conformant Planning
	Reachability
	Mergesort
	Argumentation with Subsequent Processing
	Route Planning
	Single Route Planning
	Pair and Group Route Planning

	Proofs
	Characterization of Answer Sets using Unfounded Sets (cf. Section 3.2)
	Soundness and Completeness of the Grounding Algorithm (cf. Section 4.3.2)
	Query Answering over Positive hex-Programs (cf. Section 6.1.3)

	Curriculum Vitae

